
Washington University in St. Louis
Washington University Open Scholarship

All Theses and Dissertations (ETDs)

January 2009

Networking Mechanisms for Delay-Sensitive
Applications
Maxim Podlesny
Washington University in St. Louis

Follow this and additional works at: http://openscholarship.wustl.edu/etd

This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in All
Theses and Dissertations (ETDs) by an authorized administrator of Washington University Open Scholarship. For more information, please contact
digital@wumail.wustl.edu.

Recommended Citation
Podlesny, Maxim, "Networking Mechanisms for Delay-Sensitive Applications" (2009). All Theses and Dissertations (ETDs). 278.
http://openscholarship.wustl.edu/etd/278

http://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Fetd%2F278&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F278&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F278&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/etd/278?utm_source=openscholarship.wustl.edu%2Fetd%2F278&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

Department of Computer Science and Engineering

Dissertation Examination Committee:
Sergey Gorinsky, Co-Chair

Roger Chamberlain Co-Chair
Ron Cytron

Victor Gruev
Aleksandar Kuzmanovic

Robert Morley
Robert Pless

NETWORKING MECHANISMS FOR DELAY-SENSITIVE APPLICATIONS

by

Maxim Podlesny

A dissertation presented to the
Graduate School of Arts and Sciences

of Washington University in
partial fulfillment of the

requirements for the degree
of Doctor of Philosophy

August 2009
Saint Louis, Missouri

copyright by

Maxim Podlesny

2009

ABSTRACT OF THE THESIS

Networking Mechanisms for Delay-Sensitive Applications

by

Maxim Podlesny

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2009

Research Advisor: Professor Sergey Gorinsky

The diversity of applications served by the explosively growing Internet is increasing. In

particular, applications that are sensitive to end-to-end packet delays become more com-

mon and include telephony, video conferencing, and networked games. While the single

best-effort service of the current Internet favors throughput-greedy traffic by equipping con-

gested links with large buffers, long queuing at the congested links hurts the delay-sensitive

applications. Furthermore, while numerous alternative architectures have been proposed to

offer diverse network services, the innovative alternatives failed to gain widespread end-to-

end deployment.

This dissertation explores different networking mechanisms for supporting low queueing

delay required by delay-sensitive applications. In particular, it considers two different ap-

proaches. The first one assumes employing congestion control protocols for the traffic

generated by the considered class of applications. The second approach relies on the router

operation only and does not require support from end hosts.

ii

Acknowledgments

The work on this thesis has been an exciting, challenging, interesting, and invaluable unique
experience in my life. The thesis has been possible due to many people. First, I would like
to express my great sense of gratitude to my research advisor Dr. Sergey Gorinsky for his
advising and financial support. He has taught me how to find interesting research problems,
how to come up with a solution, and how to deliver my ideas to other people in the research
community. Working with my research advisor has been an invaluable experimence for my
research career.

I am grateful to my thesis committee, Dr. Roger Chamberlain, Dr. Ron Cytron, Dr. Viktor
Gruev, Dr. Aleksandar Kuzmanovic, Dr. Robert Morley, and Dr. Robert Pless. Hav-
ing useful discussions with them and getting helpful comments from them allowed me to
significantly improve and polish my thesis work.

I am grateful to many graduate students and faculty within my department for their feed-
back and discussions about my research, and for their various help. In particular, special
thanks to Phillip Jones.

I am grateful to the Chair of the Department Dr. Gruia-Catalin Roman for helpful discus-
sions and support. I am also grateful to our departmental Staff for everyday help during my
stay in the Department.

Finally, I am grateful to my parents, my sister, and all my friends for their support and
patience while I have been working on this thesis.

Maxim Podlesny

Washington University in Saint Louis
August 2009

iii

Dedicated to my family.

iv

Contents

Abstract . ii

Acknowledgments . iii

List of Tables . viii

List of Figures . ix

1 Introduction . 1
1.1 Problem Formulation . 1
1.2 Used Approach . 2

1.2.1 Congestion Control Protocol . 2
1.2.2 Service Differentiation . 3
1.2.3 Buffer Management . 5

1.3 Main Contributions . 6
1.3.1 MCP: Congestion Control Protocol 6
1.3.2 RD Network Services: Service Differentiation Architecture 6
1.3.3 TMD: Scheme for Accelerating FCT 7

1.4 Dissertation Overview . 7

2 Background and Related Work . 9
2.1 Definitions . 9
2.2 Transmission Control Protocol (TCP) . 11

2.2.1 Reliability . 11
2.2.2 Congestion Control . 12

2.3 Congestion Control Protocols . 13
2.4 Router-Based Mechanisms . 14
2.5 Service Differentiation Architectures . 16

3 MCP: Congestion Control Protocol for Low Queuing 19
3.1 Requirements and Design Principles . 19

3.1.1 Requirements . 19
3.1.2 Design Principles . 21

3.2 Design Details . 22
3.2.1 Link Utilization as Explicit Feedback 22
3.2.2 Operational Modes . 24
3.2.3 Timing of Transmission Adjustment 28
3.2.4 Analysis of the Fairing Mode . 29

v

3.2.5 Summary of the MCP Design . 32
3.3 Performance Evaluation . 33

3.3.1 Experimental Settings . 33
3.3.2 Convergent Behavior . 33
3.3.3 Scalability Properties . 34
3.3.4 Heterogeneous Environments . 36
3.3.5 Comparison with TCP and VCP 41
3.3.6 Behavior in the Complex Topology 41

3.4 Summary . 44

4 RD Network Services: An Architecture for Service Differentiation 45
4.1 Model and Principles . 45
4.2 Conceptual Design . 46
4.3 Analytical Foundation . 49

4.3.1 Notation and Assumptions . 49
4.3.2 Sizing and Serving the R and D Queues 49

4.4 Design Details . 50
4.4.1 End Hosts . 50
4.4.2 Routers . 51

4.5 Stateless RD Router Implementation . 56
4.5.1 Sizing the R and D Queues . 56
4.5.2 Serving the R and D Queues . 56
4.5.3 Analysis of the S-RD Design . 58

4.6 Performance Evaluation of the RD Services 63
4.6.1 Experimental Settings . 64
4.6.2 Various Transport Protocols for D Flows 65
4.6.3 Scalability Properties . 66
4.6.4 Heterogeneous Environments . 77
4.6.5 Dynamic Network Conditions . 82
4.6.6 Legacy Traffic and Incremental Deployment 87
4.6.7 Impact on the Loss Rate . 90

4.7 Performance Evaluation with Telephony Traffic 91
4.7.1 Dynamic Network Conditions . 94
4.7.2 Influence of Propagation RTT . 94
4.7.3 Scalability Properties . 97
4.7.4 Partial Deployment . 97

4.8 Summary . 101

5 TMD: Accelerating Flow Completion through Dynamic Buffer Allocation . 102
5.1 Analytical Foundation . 102
5.2 Conceptual Design . 103
5.3 Design Details . 103

5.3.1 Routers . 103
5.3.2 End Hosts . 105
5.3.3 TMD Partitioning Parameter . 105

vi

5.4 Performance Evaluation . 106
5.4.1 Parameter Setting . 106
5.4.2 Experimental Settings . 113
5.4.3 Dynamic Changes . 114
5.4.4 Scalability Properties . 116
5.4.5 Influence of the Propagation RTT of the Web-like Traffic 118
5.4.6 UDP Flows . 119
5.4.7 Incremental Deployment . 120

5.5 Security Considerations . 122
5.6 Summary . 122

6 Conclusion . 123
6.1 Summary . 123
6.2 Future Work . 124

References . 127

Vita . 135

vii

List of Tables

1.1 Requirements of Internet applications . 2
1.2 Delay requirements of delay-sensitive applications 2

4.1 Internal variables of the RD router algorithms in Figures 4.1, 4.2, and 4.3. . 51
4.2 Parameters of the RD router algorithms. 51
4.3 Categories of voice transmission quality 93

viii

List of Figures

3.1 Network topology. 27
3.2 Modes of MCP operation . 28
3.3 Speed of fairness convergence under AIMD(x; 0.5). 31
3.4 MCP convergence to fair high utilization and low queue size at the bottleneck link:

(a) Transmission rates of the three flows; (b) Utilization of the bottleneck link;
(c) Queue size at the bottleneck link. 35

3.5 Low sensitivity to the bottleneck link capacity: (a) Fairness index; (b) Utilization of
the bottleneck link; (c) Peak queue size at the bottleneck link. 37

3.6 Dependence on the number of flows: (a) Utilization of the bottleneck link; (b) Peak
queue size at the bottleneck link; (c) Peak queue size at the bottleneck link in the
stable state. 38

3.7 Independence of MCP stable-state operation from RTT: (a) Fairness index; (b) Uti-
lization of the bottleneck link; (c) Peak queue size at the bottleneck link. 39

3.8 Independence of MCP stable-state operation from packet sizes: (a) Fairness index,
(b) utilization of the bottleneck link; (c) Peak queue size at the bottleneck link. . . . 40

3.9 Queuing at the bottleneck link: (a) under MCP, (b) under VCP, (c) under TCP. . . . 42
3.10 MCP versus VCP: (a) utilization of the bottleneck link, (b) queue size at the bottle-

neck link under MCP, and (c) queue size at the bottleneck link under VCP. 43
3.11 Transmission rates of MCP flows converge to fair rates after the bottleneck link

migrates. 44

4.1 Router operation upon receiving a packet destined to the RD link. 52
4.2 Router operation when the RD link is idle, and the link buffer is non-empty. 53
4.3 Update of the RD algorithmic variables upon timeout. 55
4.4 The exceeding of the delay constraint: combination of both and one queue backlogged. 57
4.5 Router operation when the S-RD link is idle, and the link buffer is non-empty. . . . 58
4.6 Update of the S-RD algorithmic variables upon timeout. 59
4.7 Schedule of packet departures when δ(ta) > 0, δ(td) ≥ 0. 61
4.8 Schedule of packet departures when δ(ta) ≤ 0, δ(td) < 0. 62
4.9 Shared settings of the multi-ISP topologies. 65
4.10 Bottleneck link utilization with different transport protocols for D flows: (a) TCP

NewReno; (b) Paced TCP; (c) TFRC. 67
4.11 Queuing delay for R packets with different transport protocols for D flows: (a) TCP

NewReno; (b) Paced TCP; (c) TFRC. 68
4.12 Queuing delay for D packets with different transport protocols for D flows: (a) TCP

NewReno; (b) Paced TCP; (c) TFRC. 69
4.13 Loss rate for R flows with different transport protocols for D flows: (a) TCP NewReno;

(b) Paced TCP; (c) TFRC. 70
4.14 Loss rate for D flows with different transport protocols for D flows: (a) TCP NewReno;

(b) Paced TCP; (c) TFRC. 71

ix

4.15 Scalability of the RD services with respect to the bottleneck link capacity (S-RD
version): (a) Link utilization; (b) Loss rate for D flows; (c) Maximum queuing
delay for D flows. 72

4.16 Scalability of the RD services with respect to the number of long-lived D flows:
(a) Link z1-z2 utilization; (b) Link y1-y1 utilization; (c) Loss rate for D flows at
link z1-z2; (d) Loss rate for D flows at link y1-y2. 74

4.17 Scalability of the RD services with respect to the number of long-lived R flows:
(a) Link z1-z2 utilization; (b) Link y1-y1 utilization; (c) Loss rate for D flows at
link z1-z2; (d) Loss rate for D flows at link y1-y2. 75

4.18 Sensitivity to the delay constraint of the D service (S-RD version): (a) Link utiliza-
tion; (b) Loss rate for D flows; (c) Maximum queuing delay for D flows. 76

4.19 Impact of the propagation RTT diversity: (a) Link z1-z2 utilization; (b) Link y1-y1
utilization; (c) Loss rate for D flows at link z1-z2; (d) Loss rate for D flows at link
y1-y2. 78

4.20 Impact of the propagation RTT diversity (S-RD version): (a) Link z1-z2 utilization;
(b) Link y1-y1 utilization; (c) Maximum queuing delay for D flows at link z1-z2;
(d) Maximum queuing delay for D flows at link y1-y2. 79

4.21 Sensitivity of the S-RD version to the size of packets from class R: (a) Maximum
queueing delay for D flows at link z1-z2; (b) Maximum queuing delay for D flows
at link y1-y2; (c) Loss rate for D flows at link z1-z2; (d) Loss rate for D flows at
link y1-y2. 80

4.22 Sensitivity of the S-RD version to the size of packets from class D: (a) Maximum
queueing delay for D flows at link z1-z2; (b) Maximum queuing delay for D flows
at link y1-y2; (c) Loss rate for D flows at link z1-z2; (d) Loss rate for D flows at
link y1-y2. 81

4.23 Impact of the web-like traffic (S-RD version): (a) Link utilization; (b) Loss rate for
D flows; (c) Maximum queuing delay for D flows. 83

4.24 Bottleneck link utilization under the RD services with the Pareto distribution for the
interarrival times of the web-like flows: (a) Average arrival rate 50 fps; (b) Average
arrival rate 100 fps; (c) Average arrival rate 200 fps. 84

4.25 Loss rate for D flows under the RD services with the Pareto distribution for the
interarrival times of the web-like flows: (a) Average arrival rate 50 fps; (b) Average
arrival rate 100 fps; (c) Average arrival rate 200 fps. 85

4.26 Queuing delay for D packets under the RD services with the Pareto distribution
for the interarrival times of the web-like flows: (a) Average arrival rate 50 fps;
(b) Average arrival rate 100 fps; (c) Average arrival rate 200 fps. 86

4.27 Reaction to sudden changes in the numbers of R and D flows: (a) Dynamics of the
number of flows; (b) Link utilization; (c) Queuing delay for D packets; (d) Loss rate
for D flows. 88

4.28 Impact of the incremental deployment on the performance at link y1-y2 of ISP Y:
(a) Per-flow rates; (b) Loss rate for D flows; (c) Maximum queuing delay for D
flows (S-RD version). 89

4.29 Influence of avoiding the ”flushing” of the D queue with different intensities of web-
like traffic: (a) Maximum queuing delay for class D; (b) Average loss rate for class
D. 91

x

4.30 Influence of avoiding the ”flushing” of the D queue with the incremental deployment
of the S-RD design: (a) Maximum queuing delay for class D; (b) Average loss rate
for class D. 92

4.31 Performance for different web-like traffic intensities: (a) Average MOS; (b) average
utilization of class R; (c) Average throughput of ”misbehaving” throughput-greedy
flow; (d) Average loss rate of class R. 95

4.32 Performance for different propagation RTTs: (a) Average MOS; (b) Average uti-
lization of class R; (c) Average loss rate of class R. 96

4.33 Performance for different numbers of R flows: (a) Average MOS; (b) Average uti-
lization of class R; (c) Average loss rate of class R. 98

4.34 Performance for different numbers of VoIP flows: (a) Average MOS; (b) Average
utilization of class R; (c) Average loss rate of class R. 99

4.35 Performance under partial deployment for different propagation RTTs: (a) Average
MOS; (b) Average per-flow throughput of class R; (c) Average loss rate of class R. 100

5.1 TMD router operation upon receiving a packet destined to the link where Bx and qx

respectively refer to the buffer partition and queue sizes for traffic class x. 104
5.2 Average per-flow queue sizes for TCP slow-start flows and TCP congestion-avoidance

flows with the non-partitioned FIFO DropTail buffer at the bottleneck link: (a) N =
0, a = 400 fps, b = 10 KB; (b) N = 500, a = 400 fps, b = 30 KB; (c) N = 100, a = 50
fps, b = 30 KB. 107

5.3 Average FCT of short-lived flows for their different intensities: (a) 20 fps; (b) 100
fps; (c) 200 fps. 109

5.4 Zoomed average FCT of short-lived flows for their different intensities: (a) 20 fps;
(b) 100 fps; (c) 200 fps sec. 110

5.5 Average throughput of long-lived flows for their different intensities: (a) 20 fps; (b)
100 fps; (c) 200 fps. 111

5.6 Average FCT of short-lived flows for their different propagation RTTs: (a) RTT =
30 ms; (b) RTT = 300 ms. 112

5.7 Zoomed average FCT of short-lived flows for their different propagation RTTs: (a)
RTT = 30 ms; (b) RTT = 300 ms. 113

5.8 Average throughput of long-lived flows for their different propagation RTTs: (a)
RTT = 30 ms; (b) RTT = 300 ms. 114

5.9 Influence of the intensity of web-like traffic: (a) Throughput of long-lived flows; (b)
Goodput of web-like flows. 115

5.10 Average goodput of web-like flows and throughput of long-lived flows for different
average sizes of web-like flows: (a) Lavg = 30 KB; (b) Lavg = 100 KB. 116

5.11 Scalability of the TMD design with respect to the number of long-lived flows: (a)
Throughput of long-lived flows; (b) Goodput of web-like flows. 117

5.12 Scalability of the TMD design with respect to the bottleneck link capacity: (a)
Throughput of long-lived flows; (b) Goodput of web-like flows. 118

5.13 Influence of the propagation RTT of web-like flows: (a) Throughput of long-lived
flows; (b) Goodput of web-like flows. 119

5.14 Coexistence with the non-elastic UDP traffic. 120
5.15 Multi-bottleneck topology. 120
5.16 Incremental deployment in the multi-bottleneck topology: (a) Throughput of long-

lived flows; (b) Goodput of web-like flows. 121

xi

Chapter 1

Introduction

1.1 Problem Formulation

The growth of the Internet has led to a significant increase in networking applications and,
which is much more important, to the divergence of their requirements for the network.
For example, if a user wants to download from a Microsoft server and install an update
for Windows, he will be interested in performing that operation as fast as possible, which
means that to meet the needs of that user the download rate should be high. Another
user, for example, wants to play a Counter Strike game with his friends living in another
country. To deliver a good performance, network latency experienced by the players should
be low. Below we provide the main metrics used for characterizing requirements of Internet
applications:

• Latency. The time between sending of data by one end-host and receiving of data
by the other end-host.

• Data loss. The part of sent data that have not been received by the end-host correctly.

• Available capacity. The capacity of a link that may be used for sending data of an
application.

• Jitter. The variability of latency for different parts of transmitted data.

In Table 1.1 we show the requirements of the main types of applications for the network.
As it is observed, Internet applications may have absolutely different, even opposite needs
in terms of required capacity, delay, loss, and jitter. The problem is that the Internet still
offers only a single best-effort service that cannot handle sufficiently well the whole set of
existing network applications.

1

Application Delay Loss Available capacity Jitter
type sensitivity sensitivity sensitivity sensitivity

File transfer Low Low Low None
Web traffic Moderate Low Moderate None
Transaction- Moderate None Low None
based
Voice (VoIP) High Moderate Low High
Real-time Video High Moderate High High

Table 1.1: Requirements of Internet applications

In this dissertation, the efforts are concentrated on delay-sensitive applications. Latency,
or one-way delay, is one of the crucial requirements for this type of Internet applications.
One-way delay consists of two parts: propagation delay characterizing the transmission
time of a signal through network links, and queuing delay describing waiting time of data
packets in link buffers. Table 1.2 illustrates the requirements of delay-sensitive applications
concerning one-way delay [49]. Current manufacturers of routers configure link buffers so
that the maximum queuing delay is at least 250 ms [103]. However, if round-trip time
(RTT) exceeds few hundred milliseconds, human perception of an interactive multimedia
application might degrade dramatically.

1.2 Used Approach

1.2.1 Congestion Control Protocol

Transmission Control Protocol (TCP) [52] is the most prominent representative of a popu-
lar congestion control paradigm where a flow increases its transmission until the bottleneck

Application Maximum
type one-way delay

IPTV 100 ms
Video-on-Demand 50 ms
VoIP 150 ms
Video Conferencing 150 ms
Gaming 50 ms

Table 1.2: Delay requirements of delay-sensitive applications

2

link buffer saturates, causing the router to discard a packet. Since conventional routers em-
ploy First-In First-Out (FIFO) discipline for their link scheduling, such TCP-like probing
for the available network capacity builds up long queues at shared bottleneck link buffers
and hampers performance of some applications. For example, human perception of an in-
teractive multimedia application might degrade dramatically after round-trip time (RTT)
exceeds few hundred milliseconds.

The first part of the dissertation investigates how to provide low queuing delay through
congestion control protocols. Achieving low queues, fair sharing, no losses, full bottleneck
link utilization is a challenging problem, and a common solution is to operate in multiple
modes so that each mode would allow to meet a particular requirement. MCP (Multimodal
Control Protocol) follows this paradigm, and, in particular, to ensure convergence to fair-
ness, MCP uses an innovative mechanism that allows a flow just joining the network to get
fair-share transmission rate, which is the first contribution of the work. The main idea of
the mechanism is the following: a new flow urges all existing flows sharing its bottleneck
links to switch to a fairing mode dedicated to fairness improvement. As soon as flows have
converged to fair sharing, flows go to the stable mode, which is the other contribution of
the work. The idea of the stable mode is to transmit data at the constant rate, which allows
to significantly decrease a queue size in the buffer of a bottleneck link. To make the sta-
ble fair rates independent of round-trip times and packet sizes, MCP employs rate-based
control and uniform timing of adjustments.

MCP is targeted to improve performance in the environments in which the inter-arrival
time for flows on a bottleneck link is less than the transmission time. While in the core it
is problematic, prior research [76] indicates that congestion occurs during the ”first mile”
or ”last mile” at the edge link of the network, with low degrees of multiplexing.

1.2.2 Service Differentiation

The mismatch between the single best-effort service of the current Internet and diverse
communication needs of different distributed applications has led to numerous proposals
of alternative architectures with diversified network services. Although those architec-
tures [10, 12] propose a high variety of services, they have not been widely deployed. The
experience with such proposals reveal that technical merits of an innovative architecture
are neither the only nor the most important factor in determining its success. Economic
and legacy issues become a crucial consideration because the Internet of today is a loose

3

confederation of infrastructures owned by numerous commercial entities, governments,
and private individuals [19]. The multiplicity of the independent stakeholders and their
economic interests implies that partial deployment of a new service is an unavoidable and
potentially long-term condition. Hence, a successful architecture should provide ISPs (In-
ternet Service Providers) and users with incentives to adopt the new service despite the
partial deployment. The other important issue is that the proposed architectures require
special mechanisms for billing customers and managing the services proposed by architec-
tures, the design of which seems a challenging problem.

The second part of the dissertation explores the problem of supporting low queuing delay
employing service differentiation. In particular, it puts attention on investigating a novel
paradigm for network service differentiation that makes deployability the primary design
concern. It explicitly postulates that partial deployment is unavoidable and that the new de-
sign should be attractive for early adopters even if other ISPs or users refuse to espouse the
innovation. Besides, it is demanded that the benefits of the service diversification should
not come at the expense of legacy traffic. The imposed constraints are potent. In particu-
lar, they imply that the new architecture may not assume even for the Internet edges that
most ISPs will support admission control, traffic shaping, metering, billing, or any other
mechanism added by the architecture.

The above design principles lead to the key idea of making performance itself an incentive
for network service differentiation. While prior studies have established a fundamental
trade-off between link utilization and queuing delay [44, 90], the Internet practice favors
full utilization of bottleneck links at the price of high queuing delay. Unfortunately, delay-
sensitive applications suffer dearly from the long queues created by throughput-greedy
applications at shared bottleneck links. The RD (Rate-Delay) Services proposed in this
dissertation resolve this tension by offering two classes of service: an R (Rate) service puts
an emphasis on a high transmission rate, and a D (Delay) service supports low queuing
delay. Each of the services is neither better nor worse per se but is simply different, and its
relative utility for a user is determined by whether the user’s application favors a high rate
or low delay. Hence, the RD architecture provides the user with an incentive and complete
freedom to select the service class that is most appropriate for the application. The user
chooses the R or D service by marking a bit in the headers of transmitted packets.

The interest of users in the D service is considered as an indirect but powerful incentive
for ISPs to adopt the RD services. By switching to the RD architecture, an ISP attracts
additional customers and thereby increases revenue. In addition, the dissertation envisions

4

an RD certification program championed by early adopters. The RD certification will serve
as a catalyst for virulent deployment of the RD architecture because being RD-certified
will give an ISP a differentiation advantage over legacy ISPs when competing with them
for users and provider peering agreements.

1.2.3 Buffer Management

While web applications and other sources of network traffic tend to generate short-lived
flows, 85% of TCP flows are short-lived. The prevalence of short-lived flows makes
their performance an important consideration, and FCT (Flow Completion Time) has been
viewed as the most relevant metric for this type of traffic [24].

On the other hand, the existing Internet architecture does not offer effective support for
keeping FCT of short-lived flows minimal. In particular, TCP congestion control is de-
signed primarily to accommodate the needs of long-lived flows, which carry 80% of all
TCP traffic. After ramping up transmission exponentially during the TCP slow-start mode,
a long-lived flow is envisioned to utilize the bottleneck link capacity efficiently and fairly
by operating mostly in the TCP congestion-avoidance mode. It is common for short-lived
flows to terminate during the initial restrictive slow-start phase or suffer an even further
increase of their FCT due to losses fomented by other traffic, such as long-lived flows in
the congestion-avoidance mode.

The third part of the dissertation explores a new approach to reducing FCT of short-lived
flows. The approach relies on the observation that while TCP serves 95% of Internet traffic,
the longevity of a flow under this predominant transport protocol has a strong correlation
with the main TCP operation mode of the flow. In particular, short-lived TCP flows tend to
operate in the slow-start mode, and long-lived TCP flows operate largely in the congestion-
avoidance mode. Thus, it proposes TMD (TCP Mode Differentiation) that classifies traffic
according to the current TCP operation modes of the flows. TCP flows in the slow-start
mode are categorized as class S (Start). Class A (Avoidance) comprises all the other traffic
including TCP flows in the congestion-avoidance mode and UDP (User Datagram Proto-
col) [84] flows.

Based on the TMD classification, it investigates a buffer management scheme that dynam-
ically splits the shared FIFO (First-In First-Out) link buffer between the two traffic classes.
Specifically, the buffer space is partitioned so that the ratio of the per-flow buffer shares

5

for classes S and A is maintained around k, which is the only parameter in the design. To
enable simple implementation of the TMD classification in routers, the sender marks the
packets of its flow as belonging to class S by setting a bit in the packet headers. The default
setting of the bit indicates that the packet should be treated as belonging to class A.

1.3 Main Contributions

1.3.1 MCP: Congestion Control Protocol

This chapter proposes a new congestion control protocol named Multimodal Control Pro-
tocol (MCP) [81, 82], which has the following main characteristics:

• Convergence of data flows to full and fair utilization of the network resources.

• Fair use of the network resources by data flows with heterogeneous RTTs or packet
sizes.

• Low data losses at network links.

• Congestion control overhead is limited to few bits per packet.

• Scaled responsiveness to changes in communication demands and network capabili-
ties.

A distinguishing property of MCP is stable transmission after converging to efficient fair
states. To ensure convergence to fairness, MCP incorporates an innovative mechanism
that enables a flow to urge all flows sharing its bottleneck links to operate in a fairing
mode dedicated to fairness improvement. To make the stable fair rates independent of
round-trip times and packet sizes, MCP employs rate-based control and uniform timing of
adjustments.

1.3.2 RD Network Services: Service Differentiation Architecture

The proposed RD Network Services [83] assume partial deployment, which is one of the
main goals. The other important issue that we pursue is no punishment of currently existed

6

legacy traffic due to the deployment of the new architecture. Third, we rely on the currently
existed transport protocols like TCP or UDP.

Summarizing, the main contributions of the RD Services are:

• Incremental deployability within the current Internet.

• No changes required in end-to-end transport protocols.

• Preservation of the current structure of the IP datagram header.

• Elimination of the billing and management problems of previous Differentiated Ser-
vices (DiffServ) designs.

Besides, the approach of designing for deployability holds promise for solving other types
of networking problems.

1.3.3 TMD: Scheme for Accelerating FCT

The TMD buffer partitioning consistently provides short-lived TCP flows with better per-
formance without reducing throughput of long-lived flows. In some settings, TMD reduces
FCT of web-like flows by as much as 40%. While offering the significant performance ben-
efits, the simple TMD scheme comes with a low overhead and is amenable to incremental
deployment in the current Internet. In particular, TMD does not require any changes in
the end-to-end TCP congestion control, packet structure, or FIFO link scheduling. The
link buffer is partitioned via differentiated simple discard of packets upon their arrival to
the buffer. The treatment of legacy traffic, which TMD views as belonging to class A, is
similar to the single service of the existing Internet.

1.4 Dissertation Overview

The dissertation has the following structure. Chapter 2 discusses the background and re-
lated work. In particular, it considers different approaches that allow to support perfor-
mance characteristics of the Internet applications. Chapter 3 talks about MCP, a congestion
control protocol that aims at supporting low queuing delay. Chapter 4 describes the RD

7

Services, a new service differentiation architecture. Chapter 5 presents TMD, a new link
buffer allocation scheme, for expediting FCT of short-lived flows. Finally, Chapter 6 sum-
marizes the dissertation with the conclusions and future work.

8

Chapter 2

Background and Related Work

The goal of this chapter is to give a reader the general understanding of the networking
techniques that are used for the Internet applications. First, it provides main definitions used
throughout the rest of the dissertation. Second, the chapter explains the main functional
principles of TCP [52,54], the main transport protocol currently used in the Internet. Then,
it surveys the research results in the area of supporting low queuing delay.

This dissertation distinguishes three main approaches that allow to support low queuing
delay. In the first one, a congestion control protocol is a main tool providing low queuing
delay. The second approach relies on Active Queue Management (AQM), which incorpo-
rates different techniques for packet scheduling, dropping, and buffer allocation. The third
approach extends the second one, and, besides router functionality, relies on assistance
from end-hosts.

2.1 Definitions

The dissertation contains the following main terms:

Congestion window. It is the maximum amount of data a TCP source can send without
acknowledgment from a TCP receiver. In other words, it is a maximum amount of data that
a TCP source can send in RTT.

Flow. A network flow is a sequence of data packets that share the source and destination IP
(Internet Protocol) [85] addresses, the source and destination port numbers, and the same
transport protocol.

9

Flow Completion Time (FCT). FCT is the interval between initializing a network connec-
tion and receiving the last data packet by a destination.

Goodput. A connection goodput is the ratio between the amount of received data passed
by a destination host to an application and the interval during which the considered data
have been passed.

Link utilization. A link utilization is the ratio between the amount of data departed to the
link and the maximum amount of data that can be sent by the link during the same time.

Loss rate. A loss rate at a link is the ratio between the amount of data dropped at the link
and the amount of data arrived at the link during the same interval.

Max-min fairness. A max-min fairness is the way to allocate the network resources to
flows. It maximizes the sending rates of flows with lower rates and satisfies the following
conditions:

1. The rate allocation is feasible, i.e., the sum of allocated sending rates of flows sharing
the same link does not exceed the link capacity.

2. The allocated sending rate of a flow cannot be increased without violating the al-
location feasibility or without decreasing a sending rate of a flow that has equal or
smaller sending rate.

In particular, for a network with a single bottleneck link a max-min fairness assumes that
all flows get the same part of the link capacity. If a flow needs a less amount of the link
capacity, then the other flows share the rest of the link capacity equally. We will refer to
max-min fairness as fairness.

Propagation Round Trip Time (RTT). A propagation RTT is the total time required for
a data packet to come to the destination and an ACK packet to come back to the source
disregarding delays at link queues.

Queuing delay. A queuing delay of a packet is the interval between the packet arrival at
the link and the packet departure to the link.

Sending rate. A sending rate, or sending bitrate, is the ratio between the amount of data
sent by a source and the interval during which the considered data have been sent.

10

Throughput. A connection throughput is the ratio between the amount of data received by
a destination and the interval during which the considered data have been received.

2.2 Transmission Control Protocol (TCP)

TCP has been the dominant transport protocol in the Internet since being proposed. TCP
relies on a window-based congestion control mechanism, which means that a source con-
trols its data sending rate through congestion window. TCP in general is not max-min fair,
because its sending rate depends on RTT. TCP is an end-to-end protocol, which means that
TCP does not use any information from the network routers, i.e., TCP relies only on signals
from the ends of a TCP connection. Next, this section will overview two main mechanisms
of TCP: reliability and congestion control.

2.2.1 Reliability

The reliable delivery of data over a TCP connection is realized as follows. The data to be
transmitted are split into small pieces named segments. The maximum size of a segment
can not exceed a special parameter, MSS (Maximum Segment Size). Each segment has its
own sequence number. On getting a data segment, a TCP receiver sends a special acknowl-
edgment packet, or ACK, to the TCP source. The main purpose of the ACK is to confirm
the successful delivery of the data segment to the receiver. There is a special timeout mech-
anism implemented at a source. The main purpose of the timeout is to control time interval,
during which a source is waiting for an ACK. If the timer expires, a source resends a seg-
ment that induced the timeout. Besides, there is a special mechanism that controls integrity
of segments that is realized through calculating a checksum. If the checksum at the receiver
is different from the checksum calculated by the source, it means that a segment has been
modified while traveling from the source to the receiver. In this case, the receiver drops
such a corrupted packet, which leads to retransmission of the corrupted packet.

11

2.2.2 Congestion Control

To determine an appropriate data sending rate, a TCP source employs a special mechanism
named congestion control. In particular, the TCP source can operate in two different modes:
slow start and congestion control.

Slow start.

A TCP source starts transmitting a data flow in slow start. The initial congestion window
is typically one segment. Each time a TCP source gets an ACK, it increases the congestion
window by one segment. Thus, the congestion window is doubled each RTT. Mathemati-
cally, operating in slow start is described by Multiplicative Increase:

cwnd = cwnd ∗ bI (2.1)

where bI = 2. As soon as the congestion window achieves the window threshold, one of
TCP parameters, a TCP flow continues operating in congestion avoidance.

Congestion avoidance.

While operating in congestion avoidance, a TCP source increases its congestion window
by one segment per RTT. In other words, on each receiving of an ACK, the congestion
window changes as follows:

cwnd = cwnd +
1

cwnd
(2.2)

Thus, each subsequent successful delivery of a data packet leads to the increase of TCP
congestion window. The behavior of TCP on data loss event will be discussed next.

There are two main signals of losses delivered to a TCP source:

• Duplicate ACK. This is the situation when a TCP source gets three ACKs of the
packet that has already been acknowledged.

• Timeout. It takes place when a retransmission timeout expires. It has been discussed
in Section 2.2.1.

12

On each loss event a TCP source may react in two different ways. It either decreases
the congestion window by two, i.e., applying Multiplicative Decrease (MI) rule, or set
congestion window to one packet. In particular, TCP NewReno [34], the currently used
version, uses the MI rule on receiving a duplicate ACK, and sets the congestion window to
one on entering timeout. The duration of the retransmission timeout is controlled through
a special variable, RTO, which is estimated based on the value of RTT and its variance.
Besides, on each expiration of retransmission timeout the RTO is doubled.

2.3 Congestion Control Protocols

Based on the type of feedback, congestion control protocols that support low queuing delay
can be divided into two main groups.

Delay-based congestion control is represented by such protocols as Congestion Avoidance
using Round-trip Delay (CARD) [56], TCP Vegas [13], and TCP Africa [65]. In this ap-
proach, a flow measures its RTT and curbs transmission when RTT increases. The reaction
to raising delays is helpful for avoiding buffer overflows but unfortunately comes only after
the link queue has started to grow. The problem with these protocols is their slow conver-
gence and absence of min-max fairness in the networks with heterogeneous RTTs.

Explicit congestion feedback from routers enables a congestion control protocol to prevent
queuing. Depending on whether the explicit feedback consumes few bits per packet or
more, explicit congestion control protocols can be classified as limited-feedback and rich-
feedback. Katabi et al. [60] designed XCP (eXplicit Control Protocol) employing explicit
feedback from routers. However, XCP requires multiple bits as a feedback, which leads
to a potential overhead in a network and per-packet calculations. Dukkipati et al. [23]
propose a new transport protocol named RCP (Rate Control Protocol) for decreasing FCT
of short-lived flows. The idea was to calculate a fair sharing rate by routers and deliver
that information to sending hosts. The subsequent work [25, 57] aims to handle the ag-
gressiveness of RCP, which revealed in the scenarios with quick changes of network con-
ditions. The other example of rich-feedback designs include JetMax [114] also suffering
from a feedback containing multiple bits. Examples of limited-feedback protocols are Ex-
plicit Congestion Notification (ECN) [91], Variable-structure congestion Control Protocol
(VCP) [107], Multi-Level feedback Congestion control Protocol (MLCP [87]), and Bi-
nary Marking Congestion Control (BMCC) [86]. In addition, a common drawback of the

13

mentioned protocols is a relatively big queuing delay, which can negatively affect the per-
formance of the applications with strict requirements concerning delay.

Besides, researchers have proposed changes to TCP for improving the performance of TCP.
Hu and Steenkiste [50] propose Paced Start, a new TCP startup algorithm. The main idea
is to use the difference between the data packet spacing and the ACK packet spacing for
estimating the available capacity. In addition, some attention was dedicated to admission
control. In particular, Ramesh and Kasera [92] propose two session-control algorithms,
which searched for an optimal rate of session admissions allowing to maximize the flow
completion rate and minimize FCT.

2.4 Router-Based Mechanisms

This approach distinguishes two main techniques: buffer management and scheduling al-
gorithms.

A buffer management technique specifies the algorithm according to which routers enqueue
and drop the arriving data packets. Active Queue Management (AQM) allows to achieve
low queuing delay through supporting a particular length of queue size in a buffer. Ran-
dom Early Detection (RED) [35] and its variants [69], [29] make decisions about dropping
packets based on the average queue length. Loss Ratio based RED (LRED) [104] employs
loss ratio, BLUE [30] uses the loss rate and link utilization, Proportional-Integral (PI) [48]
relies on the queue length and input traffic rate. Georgiadis et al. investigate buffer man-
agement policies for delivering rate and delay guarantees and propose Guaranteed Rate
(GR) [38] service. Small link buffers [4, 27, 40, 89, 106, 115] assure that a shared queue
stays short. This approach also requires a complementary end-to-end congestion control
to ensure that buffer overflow and link underutilization do not disrupt application perfor-
mance. Evolutional TCP (E-TCP) [43] is a recent loss-driven proposal for such congestion
control. However, the proposals of small buffers do not come up with a unique conclusion
about how to configure link buffers. Kumazoe et al. [66] propose to add two parameters
to packet headers, Maximum Transmission Unit Delay (MTQ) and Queue Delay To Live
(QTL), and use these parameters by routers for identifying and dropping packets experi-
encing too large end-to-end delay.

14

Scheduling algorithms describe the rules according to which data packets depart from link
queues. Exploring scheduling algorithms to support delay guarantees has also attracted a lot
of interest from researchers. Currently existing scheduling algorithms can be divided into
three groups. The first one incorporates round-robin algorithms. Whereas G-3 [16], SRR+,
SRR# [17] support bounded queuing delay, Deficit Round Robin (DRR) [96], Smoothed
Round Robin (SRR) [15], FRR [111] are able to provide only delay bounds in proportion
to the number of active flows.

The second group of scheduling algorithms includes timestamp-based algorithms, where
a virtual clock is maintained to emulate the concept of Generalized Processor Sharing
(GPS) [78, 79]. In particular, WFQ (Weighted Fair Queueing) [21, 99, 100] as a part of
Integrated Services (IntServ) [12] offers rate and delay guarantees to users. An improved
version of WFQ is Worst-case Fair Weighted Fair Queueing (WF2Q) [9] algorithm. The
key problem for efficient implementation of WFQ and WF2Q is a high complexity of com-
puting the virtual time function [39]. Virtual Clock (VC) [112] allows to support end-to-end
delay guarantees, but the problem of this scheme is the need to maintain per-flow state at
each router. Core Jitter Virtual Clock (CJVC) [102] is able to support end-to-end delay
guarantees without any per-flow state. Core-Stateless Fair Queuing (CSFQ) [101] is a fair
queuing discipline that employs per-flow management only in edge routers. Core-Stateless
Guaranteed Rate (CSGR) [62] algorithm provides the same delay guarantees as Guaran-
teed Rate (GR) [42] per-flow scheduling algorithm without maintaining per-flow state in
core routers required by the latter. The extension of that work, Core-Stateless Guaranteed
Throughput (CSGT) [63] architecture, provides the delay guarantees not only over long
periods, but also over short time scales.

The third group uses the information about the total size of a flow or its already transmitted
part. A number of size-sensitive link scheduling algorithms have been proposed [37, 94].
Avrachenkov et al. [6] come up with a scheduling algorithm named RuN2C that gives a
priority to short-lived flows and relies on a size threshold for classifying flows. LAS (Least
Attained Policy) [88] schedules the next packet to be served belonging to a flow that has
received the least amount of service.

15

2.5 Service Differentiation Architectures

A prominent representative of the architectural innovations, IntServ (Integrated Services) [12],
offers users a rich choice of services, including guarantees on end-to-end throughput and
delay within a packet flow by means of admission control and link scheduling mechanisms
such as WFQ and WF2Q. While IntServ failed to gain ubiquitous adoption, early IntServ
retrospectives attributed the failure to the complexity of supporting the per-flow perfor-
mance guarantees, especially in busy backbone routers.

The proposal of DiffServ (Differentiated Services) [10] addresses the scalability concerns
of IntServ by restricting complex operations to the Internet edges and offering just few ser-
vices at the granularity of traffic classes, rather than individual flows. DiffServ maps the
whole traffic into several classes, each of them gets the particular service specified by a
Per-Hop Behavior (PHB). The set of PHBs for each data flow on its network path defines
the service offered to the flow. Packets are assigned to a particular class by setting Differen-
tiated Service Code Point (DSCP), the six most significant bits of the DiffServ Field in an
IP header of a packet. Edge routers police the traffic through classifying, metering, mark-
ing, dropping, and shaping the traffic whereas core routers support PHBs. PHBs typically
include two mechanisms: queue management and packet scheduling. Such an architecture
allows to change policing and supporting mechanisms independently from each other. One
can distinguish two different approaches that implement the idea of DiffServ.

The first one concentrates on ensuring particular performance characteristics. The Expe-
dited Forwarding (EF) PHB [55] supporting Premium Service is used to provide the service
characterized by low loss, low delay, low jitter, and ensured rate through domains. EF is
attractive for such applications as VoIP, video [5], and other real-time services like on-
line trading. EF traffic uses policing for ensuring its delay, loss, and jitter characteristics.
Another PHB class, Assured Forwarding (AF) PHB [47], specifies different forwarding as-
surances for data packets. In more details, AF defines four classes of traffic, each of them
is assigned to a certain amount of link capacity and buffer space. Within each class AF
defines three drop priorities that specify a packet that should be dropped if congestion hap-
pens. The concept of AF called Assured Service is implemented on the basis of Random
Early Detection (RED) [35] schema and is called RED with In and Out (RIO) [18]. The
idea of RIO is based on applying different drop functions employed in RED for different
classes of traffic. The Default PHB [74] is used to provide the classical best-effort service.
Another AF implementation assumes use of Class Based Queuing (CBQ) [36], which is a

16

packet scheduling algorithm based on supporting hierarchical link sharing. In particular,
the whole traffic is represented as a tree of different traffic classes, and each of them is
assigned a queue and a certain capacity.

The second approach strives at providing relative differentiation of services. In particu-
lar, the approach defines Class-Selector PHBs [74] that assume eight different classes of
traffic. Data packets from each subsequent class get the better service in the assigned ca-
pacity, packet delay, and loss rate than from the previous class. A model for relative delay
differentiation is proposed in [22].

Alternative Best Effort (ABE) [51] proposes loss-delay differentiation. In particular, ABE
offers a blue service with a smaller loss rate and a green service with a lower delay. The key
problem with ABE is that it does not provide an explicit control over forwarding rates for
blue and green packets. Most importantly, the blue service does not consistently provide a
larger rate, e.g., by transmitting more aggressively, the green users can enjoy both a higher
rate and lower queuing delay than those of the blue users. Besides, as the control rules of
this architecture rely on loss rate and RTT estimations, it may be problematic to perform
the estimations with good accuracy. Also, ABE requires per-packet calculations, which can
negatively affect the link performance. Finally, while ABE considers it normal for a flow to
mark some packets blue and other packets green, potential negative impact of such practices
on legacy traffic raises a concern that the ABE design does not incorporate a sound strategy
for incremental deployment. The lack of explicit rate-delay differentiation significantly
weakens incentives for adopting ABE. Best Effort Differentiated Services (BEDS) [31] are
similar to ABE and suffer from similar limitations.

In [75] the authors propose two architectures of service differentiation similar to Assured
Forwarding services. The first one employs application-based differentiation, and the serv-
ing priority depends on the application. In particular, Telnet traffic gets the highest priority,
web-like traffic - a smaller one, and ftp - the lowest priority. The second approach priori-
tizes short-lived flows, and classifies flows based on window of TCP flow. The problems
with these designs are similar to the ones with the original DiffServ proposal, i.e., billing,
management, and deployability. The Lottery Queuing [26] approach assumes applying lot-
tery in making decisions about scheduling and dropping packets within routers to provide
service differentiation. The question of providing several services for delay-sensitive appli-
cations with different delay requirements is considered in [8]. In [108] authors deliver the
new routing mechanism, the key idea of which is to diversify routing paths. The proposed

17

architecture is scalable, compatible with the current ISP policies and incrementally deploy-
able. Traffic Validation Architecture (TVA) [109] confines the impact of denial-of-service
attacks. The key idea of the design consists of two points. The first one is the concept of
capability that enables receivers to authorize senders. The second one assumes preferential
forwarding of authorized traffic by routers.

There have been numerous proposals of new architectures for improving the performance
of TCP flows. One of the approaches relies on isolation of short-lived flows from long-
lived ones. In particular, Yilmaz and Matta [110] come up with the idea of isolating short-
lived, long-lived TCP flows, and UDP flows, but configuring the buffers for the partitions
remained an open issue. Matta and Guo [71] in their architecture have a similar problem.
Moreover, their scheme does not accommodate the changes in the network as their queue
service assumes a static configuration. Shaikh et al. [95] propose a new routing scheme,
the main idea of which is to perform dynamic routing for long-lived flows while employing
static routing for short-lived flows.

Another promising direction for improving the per-flow performance is to use different
dropping policies for short-lived and long-lived flows [45,46]. In particular, the idea of the
mentioned work is to give a higher priority to flows with the current length smaller than
a defined threshold. The proposed architectures employ RIO (RED with In and Out) [18]
or WRR (Weighted Round Robin) [61] schemes. One of the most important issues related
to this design is that configuring RED [35] is a challenging task. The other solution is to
use DropTail queues and to drop packets only from long-lived flows [68] relying on the
idea of closely paced packets from high-rate flows. The idea of using the history of drops
of already arrived packets is used by Mahajan et al. [70], where authors propose to apply
RED preferentially to high-rate flows using drop history of packets, and by Stanojevic and
Shorten [98]. Pan et al. [77] rely on the assumption that high-rate flows occupy a relatively
large amount of buffer. Kantawala and Turner [59] investigate new schedulers based on
DRR (Deficit Round Robin) [96] algorithm for improving the performance of short-lived
flows.

18

Chapter 3

MCP: Congestion Control Protocol for
Low Queuing

This Chapter presents MCP which strives to maintain low queues and avoid congestion
losses at network links. The multimodal MCP engages routers and hosts in limited explicit
communication. A distinguishing property of MCP is stable transmission after converging
to efficient fair states. To ensure convergence to fairness, MCP incorporates an innovative
mechanism that enables a flow to urge all flows sharing its bottleneck links to operate in a
fairing mode, dedicated to fairness improvement. To make the stable fair rates independent
of round-trip times and packet sizes, MCP employs rate-based control and uniform timing
of adjustments. The reported evaluation of MCP confirms achieving its design objectives.

3.1 Requirements and Design Principles

This section presents requirements for MCP and design principles that are the basis of the
design.

3.1.1 Requirements

One of the common congestion control objectives is that packet flows generated by appli-
cations should utilize the network efficiently and share it fairly. By efficiency, this chapter
means high utilization of bottleneck links. In the view of fairness, flows that contend for
a bottleneck link should acquire equal shares of the link bitrate. Hence, the first design
requirement is as follows:

19

Requirement 1 Controlled flows should converge to utilizing the network efficiently and

fairly, where fairness means equal rates on shared bottleneck links.

TCP does not support such max-min fairness because the sending rate of a TCP flow de-
pends on the packet size and RTT of the flow. Since local flows might compete for a
bottleneck link with flows that span countries or even continents, a TCP-like dependence
of the stable transmission rate on RTT is found unacceptable. Also, any dependence of the
fair share on packet sizes is considered undesirable. Therefore, one can add the following
clarifying requirement:

Requirement 2 Heterogeneity of RTTs or packet sizes should not undermine fairness.

While the propagation component alone can make RTT of a flow high, extra queuing in
the network can render the RTT unacceptable for the served application. For example,
human perception of an interactive multimedia application is likely to degrade dramatically
when RTT exceeds few hundred milliseconds. Another negative aspect of long queuing in
routers is the possibility of packet discard when the queue grows too large. Such losses are
undesirable because recovery from the losses raises communication overhead (e.g., when
the recovery relies on forward error correction) or boosts delays even further (e.g., when
the recovery is through retransmission). Thus, the third design requirement is as follows:

Requirement 3 At any network link, queuing should be low, and losses should be avoided.

It is important that the communication overhead of the protocol does not consume a signif-
icant fraction of the network capacity. Moreover, to facilitate integration of the design with
current protocols, such as the IP, it is required that the congestion control protocol uses no
more than few bits in the header of each packet:

Requirement 4 Congestion control overhead should be limited to few bits per packet.

TCP enables a new flow to acquire the available network capacity promptly. Unfortunately,
the reaction of existing TCP flows to increases in bottleneck link capacities or declines in
competing traffic is less scalable. When the available capacity is large, TCP in congestion
avoidance converges to high utilization of the bottleneck link slowly. It is postulated that
the congestion control protocol should provide scalable responses to all possible changes
in network conditions:

20

Requirement 5 Response to changes in communication demands and network capabilities

should scale well.

3.1.2 Design Principles

Satisfying all of the above requirements with a single simple algorithm is difficult, if not
infeasible. To provide a new flow with scalable acquisition of the available capacity, TCP
uses the slow-start mode which unfortunately does not assure convergence to fairness and
might cause significant losses by overrunning the buffer of the bottleneck link. For fair-
ness convergence and smoother transmission increases, TCP also employs the congestion-
avoidance mode. The design of TCP highlights the promise of a multimodal approach
where each mode of operation pursues only a subset of all the design requirements. This
approach constitutes the basis for the first design principle:

Principle 1 Incorporate multiple modes of operation where each mode pursues a subset of

the design objectives.

Requirement 3 of low queuing in the network necessitates that flows react to incipient
congestion of a link even before the router queue starts to build up. Hence, it is opted
for a design where routers inform hosts explicitly about the bottleneck link utilization. In
accordance with Requirement 4, such explicit feedback should not consume more than few
bits in the header of any packet. This leads us to:

Principle 2 To prevent queue buildups in routers, use the bottleneck link utilization as

explicit few-bit feedback.

As per Requirement 2, the stable transmission rate of a flow should be independent from
RTT. To compensate the natural dependence of self-clocked protocols on RTT, the algo-
rithm for adjusting the transmission window should explicitly account for RTT. VCP is an
example of such solution. However, the RTT-aware transmission adjustment faces instabil-
ity problems due to changes in RTT [107]. To satisfy Requirement 1, a different approach
is selected where the control parameter is not the congestion window but the sending rate,
and all flows adhere to uniform rules and timing for transmission adjustment. Furthermore,
to make the transmission rate independent of packet sizes, the protocol should view the rate
in terms of bits, not packets. Hence, the third design principle is as follows:

21

Principle 3 Use the sending bitrate as the control parameter and employ uniform adjust-

ment timing for all flows.

TCP, VCP, and other protocols continue adjusting the transmission even when the bottle-
neck link is utilized efficiently and shared fairly. These further oscillations yield no mean-
ingful improvement in fairness but cause such undesirable effects as long queuing at the
bottleneck link or low utilization of the link capacity. This leads to the following design
principle that distinguishes the approach used in this chapter significantly from the existing
protocols:

Principle 4 Incorporate a fairing mode and operate in it only as long as needed for con-

vergence to sufficient fairness.

After the bottleneck link is utilized efficiently, and the fairing mode ensures high fairness,
the protocol supports Requirement 3 the best if the transmission is kept the most smooth,
i.e., constant. Hence, the last design principle is as follows:

Principle 5 Keep the transmission steady after achieving high efficiency and fairness.

3.2 Design Details

Based on the principles formulated in Section 3.1.2, we now design Multimodal Control
Protocol (MCP). First, this section describes MCP features in the order of their derivation
from the design principles. Then, it summarizes the protocol with respect to the following
four general categories of its operation: explicit communication format, router, sender, and
receiver algorithms.

3.2.1 Link Utilization as Explicit Feedback

In accordance with Principle 2, MCP uses the bottleneck link utilization as explicit few-bit
feedback. Computing the feedback involves computing the link utilization at every router
on the data path of the flow. Below, this chapter describes when and how this information
is computed and communicated to the sender.

22

Timing

The router measures utilization for each of its output links. In support of Principle 3, all
routers adhere to uniform timing by measuring the link utilization periodically with the
same period of duration T . According to statistics [58, 80], between 75% and 90% of all
Internet flows have RTT less than 200 ms. Therefore, to alleviate unnecessary oscillations
of the end-to-end control, the design uses 200 ms as the value of T .

Calculation

The router employs the following equation to compute utilization U of a link:

U =
N + Q

CT
(3.1)

where N is the amount of data that has arrived for the link during the previous period, Q is
the minimum size of the link queue during this previous period, and C is the link capacity.
Including Q into the equation helps MCP to avoid persistent long queuing.

Communication

Because Principle 2 limits the amount of communication overhead, the router encodes the
calculated link utilization into few bits. If E1 and E2 denote respectively encodings of
utilizations U1 and U2, then E1 > E2 is equivalent to U1 > U2. The sender transmits
each data packet with the lowest encoding. When the router receives a packet, the router
compares encoding E of the local link utilization and encoding P contained in the packet
header. If E > P , then the router resets the encoding in the packet header to E. After the
packet reaches the receiver, the encoding in the packet header represents the bottleneck link
utilization for the data path of the flow. The receiver echoes this encoding to the sender via
an acknowledgment (ACK) packet.

23

3.2.2 Operational Modes

Scaling mode

Now, it is discussed how the sender benefits from received encoding E of bottleneck link
utilization U . Whenever E indicates that the bottleneck link utilization is below 48%, the
sender operates in a scaling mode designed for scalable increase of U into an area of rela-
tively light underutilization. The scaling mode achieves this by using MI(2), multiplicative
increase with factor 2. The choice of the factor ensures that upon leaving the scaling mode,
MCP does not raise the bottleneck link utilization above 96%.

Overloaded mode

Another extreme on the bottleneck utilization spectrum is represented by the encoding that
corresponds to U ≥ 0.98. When U is at least 98%, the sender is in an overloaded mode

and uses MD(0.5), i.e., multiplicative decrease with factor 0.5. The only exception to
the decrease rule is discussed later in the context of another mode. The overloaded mode
provides MCP with scalable response to severe overloads of the bottleneck link. The choice
of factor 0.5 ensures that a decrease from the overloaded mode lowers the bottleneck link
utilization to at most 49% and does not switch MCP into the scaling mode.

Fairing mode

MCP concerns itself with fairness improvement and uses a fairing mode for these purposes
only when U ∈ [0.48; 0.98). The fairing mode improves fairness by using AI(80 kbps), i.e.,
additive increase with coefficient 80 kbps. The measurement of the increase step in bits per
second, rather than packets per RTT, is in conformance with Principle 3. The increase
by 80 kbps corresponds to one 1000-byte packet per RTT of 100 ms, a common setting for
TCP flows in congestion avoidance. In general, the duo of the fairing and overloaded modes
provides fairness convergence via AIMD(80 kbps; 0.5) control similar to TCP congestion
avoidance. According to Principle 4, flows should operate in the fairing mode only as long
as needed to achieve sufficient fairness. Next section specifies how long the flows stay in
the fairing mode, and how they decide when to switch into the fairing mode.

24

Time to stay in the fairing mode

To determine an appropriate longevity for operating in the fairing mode, the analysis in
the classical Chiu-Jain model is conducted where n distributed users adjust their loads on
a shared resource in response to uniform binary feedback that indicates whether the total
load exceeds the target load [14]. Each user i uses AIMD(x; 0.5) to adjust its load li(t) at
time t, where i = 1, . . . , n. The particular value of x is not essential for the analysis, and
the analytical results also apply to the AIMD(80 kbps; 0.5) control employed by MCP. It
is reasoned about fairness improvement under AIMD(x; 0.5) in terms of increase-decrease

cycles where an increase-decrease cycle consists of adjustments between two peaks of the
oscillating total load. We quantify fairness of the resource sharing at time t with the fol-
lowing fairness index:

F (t) =
n

min
i,j=1

li(t)

lj(t)
. (3.2)

The fairness index of 1 corresponds to the perfect fairness when all individual loads are
equal.

To improve readability, the detailed descriptions of the used model and analysis is relegated
to Section 3.2.4. The main conclusion from the analysis is that a small number of increase-
decrease cycles is sufficient for AIMD(x; 0.5) to provide high fairness. For scenarios where
the increase step is small in comparison to the fair share, and new users do not outnumber
existing converged users, this chapter derives a lower bound for fairness improvement under
AIMD(x; 0.5) and show that the fairness index grows after one increase-decrease cycle to at
least 0.33, after two cycles to at least 0.60, after three cycles to at least 0.77, and after seven
cycles to at least 0.98. Since 98% is viewed as sufficiently high fairness, MCP operates
in the fairing mode for seven increase-decrease cycles. If during the process of fairness
improvement the contending flows switch temporarily into the scaling mode (because of
decline in competing traffic or increase in the bottleneck link capacity), the disruption does
not affect the count of remaining increase-decrease cycles.

Mechanism for switching into the fairing mode

When a flow terminates, or the capacity of the bottleneck link changes, the fairness index
does not decrease. Hence, the mechanism for switching into the fairing mode is important

25

primarily when new flows start. A less common but plausible scenario occurs when an ap-
plication that has willingly generated a data flow at an unfairly low rate decides to increase
the rate of the flow to the fair share of the bottleneck link capacity. Handling such scenar-
ios is not straightforward. Without assistance from the network, it is extremely difficult for
existing flows to detect that their bottleneck links have started to serve a new flow. Even
the router of the bottleneck link has no effective implicit means to infer the desire of an
existing slow flow to reclaim its fair share of the link capacity.

Due to above reasons, and because Principle 2 allows explicit limited feedback, MCP incor-
porates an explicit communication mechanism that enables a flow to urge all flows sharing
its bottleneck links to operate in the fairing mode. More specifically, whenever a flow wants
to improve fairness of the bottleneck link sharing, the sender of the flow sets a fairing bit in
the headers of all data packets transmitted during the next seven increase-decrease cycles.
When a packet with the set fairing bit arrives for being forwarded to a link, the router does
the following for all data packets of all flows forwarded into the link before the end of the
next period of the link-utilization measurement: before forwarding the packet into the link,
the router checks the link-utilization encoding in the packet header; if the encoding corre-
sponds to utilization range [0.48; 0.98), the router sets the fairing bit in the header of the
packet. This ensures that the receivers of all flows behind the shared bottleneck links learn
about the need to switch into the fairing mode. Whenever the receiver of a flow receives a
data packet with the set fairing bit, the receiver echoes the set fairing bit to the sender of
the flow via the ACK packet. After the sender receives an ACK packet with the set fairing
bit and link-utilization encoding that indicates the bottleneck link utilization between 48%

and 98%, the sender switches into the fairing mode.

The above mechanism conceals a danger that a request to switch into the fairing mode
might affect an unnecessarily large portion of the network. Consider the following example
in the topology shown in Figure 3.1, where a through h denote hosts while A, B, C, and D

are routers. Flows f1 and f2 traverse paths gCDh and aABCDd respectively. Then, flow
f3 starts and traverses path eABf . After the new flow requests the fairing mode, router A

sets the fairing bit in packets of flow f2, and this causes router C to set the fairing bit in
packets of flow f1. Consequently, all three flows start operating in the fairing mode, even
though f1 does not share any link with f3.

To ensure that a request of the fairing mode affects only those flows that share bottleneck
links with the requesting flow, MCP relies once again on explicit communication between
hosts and routers and incorporates a this-path bit. Whenever the sender of a flow sets the

26

A B C D

8ms 8ms6ms 6ms

6ms 6ms3ms 3ms

8ms 8ms

40Mbps 40Mbps 40Mbps 40Mbps

40Mbps 40Mbps 40Mbps

15Mbps 20Mbps 20Mbps

8ms

40Mbps

a b c d

e f g h

�������� ���� �
�
�
�
�
�
�
�

���� ���� ���� ����

Figure 3.1: Network topology.

fairing bit in a data packet, the sender also sets the this-path bit in the packet. Routers never
change this-path bits of forwarded packets. Only if both the fairing and this-path bits are
set in the header of an incoming packet, the router propagates the set fairing bit to other
flows. This prevents chain reactions that multiply set fairing bits needlessly.

Enhancing mode

From now on, this chapter discusses MCP operation when no flow demands the fairing
mode but U ∈ [0.48; 0.98). Although high fairness is achieved by this point, the bottle-
neck link utilization can be as low as 48%. To improve the utilization, range [0.48; 0.98) is
split into ranges [0.48; 0.88) and [0.88; 0.98). Hence, MCP distinguishes between only the
following four ranges of link utilization: [0; 0.48), [0.48; 0.88), [0.88; 0.98), and [0.98;∞).
Their respective two-bit encodings are 00, 01, 10, and 11. When U ∈ [0.48; 0.88), MCP
is in an enhancing mode and uses MI(1.1), which ensures a scalable increase into the
[0.88; 0.98) range without overshooting into the overloaded mode.

Smoothing mode

After rising from the enhancing mode, MCP switches into a smoothing mode where U ∈
[0.88; 0.98). The goal is to push the bottleneck link utilization further up, while being cau-
tious not to cause a buildup of the link queue. The smoothing mode employs AI(80 kbps)

27

Mode Bottleneck link utilization Fairing bit Control rule
Range Encoding

Scaling [0; 0.48) 00 0 or 1 MI(2)
Fairing [0.48;0.98) 01 or 10 1 AI(80 kbps)
Enhancing [0.48;0.88) 01 0 MI(1.1)
Smoothing [0.88;0.98) 10 0 AI(80 kbps) until first overload

then AD(80 kbps) once
Stable [0.88;0.98) 10 0 constant
Overloaded [0.98;∞) 11 0 or 1 MD(0.5)

Figure 3.2: Modes of MCP operation

until the first overload (i.e., until U becomes at least 98%) and then applies AD(80 kbps)
once to negate the previous overloading increase. As it is mentioned in Section 3.2.2,
applying AD(80 kbps) is the only exception to using MD(0.5) for decrease. After the back-
tracking, MCP switches into a stable mode.

Stable mode

The stable mode is the ultimate regime of constant transmission prescribed by Principle 5.
A flow stays in the stable state as long as U ∈ [0.88; 0.98) and no flow requests a switch
into the fairing mode.

3.2.3 Timing of Transmission Adjustment

As per Principle 3, MCP prescribes uniform timing for transmission adjustment by all
flows. According to the control theory, the sender of a flow should adjust its transmis-
sion rate only after the feedback reflects the impact of the previous adjustment on the net-
work [90]. In the proposed design, the sender increases its transmission once per 2T , where
T is the period of link-utilization measurement. Since the default value of T is 200 ms, each
flow regardless of its RTT raises its transmission rate once per 400 ms. As soon as the feed-
back indicates nascent overload, the sender immediately curbs the transmission and restarts
its transmission-adjustment timer. The reaction to sustained overload is at the standard pace
of one decrease per 2T .

The initial transmission rate for every flow is 80 kbps. To translate the current transmission
rate into a specific schedule of packet transmission, MCP distributes the transmitted packets

28

uniformly during any inter-adjustment interval. After starting transmission of a packet of
size S bytes, the sender schedules transmission of the next packet for 8S

R
seconds later,

where R denotes the current transmission rate in bps. Whenever the sender adjusts R (i.e.,
when the transmission-adjustment timer expires, or when the feedback indicates nascent
overload), the sender also recalculates 8S

R
and adjusts accordingly the remaining wait for

the next packet.

3.2.4 Analysis of the Fairing Mode

This section reviews the classical Chiu-Jain model and then uses it to analyze for how long
MCP flows should operate in the fairing mode.

Chiu-Jain model

In Chiu-Jain model [14], n distributed users share a single resource that has a target load C.
The model is synchronous and employs a discrete timescale. Every instant on the timescale
represents a moment when all the users adjust their loads on the resource. At time t,
user i imposes a positive real load li(t). Vector ~l(t) = (l1(t), l2(t), . . . , ln(t)) captures all

individual loads. The total load of the users is L(t) =
n∑

i=1

li(t). By time t, the system

provides all users with a uniform binary feedback

f(t) =

{
0 if L(t− 1) ≤ C,

1 otherwise
(3.3)

that indicates whether the total load of the users after the previous round of adjustments
exceeds the target load.

Chiu and Jain applied their model to analyze behavior of Additive-Increase Multiplicative-
Decrease (AIMD) algorithms that change the load of each user i as follows:

li(t) =

{
li(t− 1) + x if f(t) = 0,

yli(t− 1) otherwise
(3.4)

where coefficients x and y are constants such that x > 0 and 0 ≤ y < 1. A specific
adjustment algorithm within the AIMD class is referred to as AIMD(x; y) where x and y

represent respectively the AI and MD coefficients of the algorithm. Chiu and Jain showed

29

that the load of every user under an AIMD algorithm converges from any initial state to-
ward the efficient fair state where the load of each user is C

n
. The fairness index increases

monotonically and converges to 1.

Sufficient longevity of the fairing mode

To reason about fairness improvement under AIMD(x; 0.5) after the total load reaches
the target load, this chapter defines a notion of an increase-decrease cycle as a series of
adjustments between two peaks of the oscillating load. If the increase step is sizable in
comparison to the fair share, each increase-decrease cycle improves fairness significantly.
Hence, we focus on more challenging scenarios where x is small with respect to C

n
and

assume that the extent of overshooting the target load is always negligible. Then, since
decrease with factor 2 releases one half of the target load, each increase-decrease cycle
contains

m =
C

2nx
(3.5)

increase steps. In considered cases, new users arrive to the system when existing users
already utilize the resource efficiently and fairly. Also, we limit the analysis to settings
where the new users do not outnumber the existing users. Then, the maximal individual
load is initially at most twice the fair share:

lmax(t0) ≤ 2C

n
(3.6)

where tk denotes the k-th time the total load reaches the target load, and lmax(tk) represents
the maximum individual load at time tk. The k-th increase-decrease cycle transforms the
maximal individual load into

lmax(tk) =
lmax(tk−1)

2
+

C

2n
. (3.7)

After k − 1 increase-decrease cycles, the maximal individual load reduces by time tk−1 to

lmax(tk−1) =
lmax(t0)

2k−1
+

C

n

(
1− 1

2k−1

)
. (3.8)

30

Number of increase−decrease cycles

F
ai

rn
es

s

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

n = 3
n = 10
n = 100
lower bound

Figure 3.3: Speed of fairness convergence under AIMD(x; 0.5).

Taking into account Inequality 3.6, we derive

lmax(tk−1) ≤ C

n

(
1 +

1

2k−1

)
. (3.9)

From the definition of the fairing index, we derive that fairness after the k-th increase-
decrease cycle of one decrease and m increases becomes

F (tk) = F (tk−1) +
1− F (tk−1)

1 + lmax(tk−1)

2mx

. (3.10)

Combining the above expression with Equation 3.5 and Inequality 3.9, we establish that
the fairness index after the k-th increase-decrease cycle is bounded from below as:

F (tk) ≥ F (tk−1) +
1− F (tk−1)

1 +
C
n (1+ 1

2k−1)
2 C

2nx
x

, (3.11)

i.e.,

F (tk) ≥ F (tk−1) +
1− F (tk−1)

2 + 0.5k−1
. (3.12)

Since the fairness index is at least zero, combination of F (t0) = 0 and Inequality 3.12
provides an approximate lower bound for fairness after an arbitrary number of increase-
decrease cycles. Figure 3.3 plots this lower bound together with graphs of the fairness

31

index under AIMD(80 kbps; 0.5) for different values of n in the system where the target
load is C = 100 Mbps, one (new) user has initial load 80 kbps while the initial load of
every other user is C

n−1
. The line for n = 2 is indistinguishable from the lower bound. All

the plotted graphs agree that seven increase-decrease cycles are sufficient to provide high
fairness of at least 98%.

3.2.5 Summary of the MCP Design

This section summarizes MCP design in terms of its explicit communication format, router,
sender, and receiver operation.

Explicit communication format

MCP allocates four bits in the header of each data packet for explicit communication be-
tween hosts and routers. Two of the bits are used to notify the sender about the bottleneck
link utilization of its data path. The other two bits (fairing bit and this-path bit) enable the
sender to urge all flows sharing its bottleneck links to operate in the fairing mode.

Router operation

Routers provide explicit feedback to senders through receivers. To form the feedback, each
router periodically computes utilizations of its output links. Routers also set fairing bits in
forwarded packets to disseminate to appropriate flows a request of operating in the fairing
mode.

Sender operation

The sender operates in one of the following six modes: scaling, overloaded, fairing, en-
hancing, smoothing, and stable. The choice of the mode depends on explicit feedback in
accordance with Figure 3.2.

32

Receiver operation

The receiver sends an ACK packet for every incoming data packet. The ACK packet echoes
the fairing bit and encoding of the the bottleneck link utilization.

3.3 Performance Evaluation

This section reports the experimental evaluation of MCP and discusses the results. In par-
ticular, to estimate the performance characteristics of the proposed protocol, we conduct
the simulations in version 2.29 of ns-2 [72].

3.3.1 Experimental Settings

General settings in the experiments are as follows: a packet size equals 1000 bytes; prop-
agation delay of a bottleneck link is 8 ms; buffer size of a link is equal to the product of
the link capacity and the minimum RTT among the flows in the simulation; link queuing
discipline is FIFO. Unless stated otherwise, the capacity of a bottleneck link is 20 Mbps,
and the capacities of non-bottleneck access links are 40 Mbps. To trace changes of a queue
size in time, we sample the queue size every 10 ms. To plot the dependency of a queue
size on a parameter, we measure the instantaneous value of the queue size. There are three
types of conducted simulations. Simulations of the first kind illustrate how MCP behaves,
e.g.,with respect to fairness convergence and bottleneck link utilization. The second class
of simulations studies characteristics of MCP as functions of different network parameters.
In these experiments, a single parameter is varied while all the other parameters are kept
fixed. We run five simulations for each experimental settings, and calculate the average
value. Besides, we plot the minimum and maximum values for each experimental settings.
The third type of the experiments compares MCP with the existed protocols TCP and VCP.

3.3.2 Convergent Behavior

To illustrate the convergent behavior of MCP, this section presents the results of an experi-
ment with three flows that have propagation RTT of 20 ms, 40 ms, and 100 ms respectively.

33

The network topology is a single-bottleneck dumbbell with the bottleneck link capacity of
20 Mbps. The duration of the experiment is 800 sec. Figure 3.4 reports the experimental
results. The queue size at the bottleneck link never exceeds 7 packets. All three flows
converge to stable transmission. In the stable state, the fairness index is 0.91, and the
bottleneck link utilization reaches the high 0.97.

3.3.3 Scalability Properties

Influence of the Link Capacity

To study the impact of the bottleneck link capacity on MCP operation, simulations with
20 flows are performed. Propagation RTTs of the flows are uniformly distributed over the
range from 20 to 100 ms. Each simulation lasts for 480 sec. The network topology is a
single-bottleneck dumbbell where the bottleneck link capacity varies from 20 to 500 Mbps,
and the capacities of non-bottleneck access links are scaled up proportionally. Arrival times
of the flows are selected randomly from the interval between 0 and 10 sec. Figure 3.5 shows
that the stable-state fairness, bottleneck link utilization, and peak queue size are relatively
insensitive to the bottleneck link capacity: the average fairness index is between 0.776 and
0.886; the average link utilization lies is the range from 0.924 to 0.970; the peak queue size
falls between 9.4 and 12.6 packets.

Impact of the Population Size

MCP performance with different numbers of flows is investigated in the single-bottleneck
dumbbell topology where the bottleneck link has capacity 200 Mbps and propagation delay
24 ms while every access link has capacity 400 Mbps and propagation delay 3 ms. Hence,
propagation RTT for each flow is 60 ms. The number of flows is changed from 50 to 600.
Arrival times of the flows are randomly chosen from the interval between 0 and 10 sec.
Figure 3.6 depicts how the number of flows affects the bottleneck link utilization and queue
size. While the average link utilization remains relatively stable (it varies between 0.896
and 0.968), the queue size at the bottleneck link is significantly more sensitive to the flow
count. As the number of flows increases, the average peak queue size rises from 17.8 to
931.4 packets, and the average peak queue size in the stable state grows from 6.2 to 152.8
packets. Although the buffer consumption per flow is less than 1.6 packets in general and

34

(a)
Time, sec

R
at

e,
 M

b
p

s

0
3
6
9

12
15
18
21

0 200 400 600 800

RTT = 20ms
RTT = 40ms
RTT = 100ms
bottleneck capacity

(b)
Time, sec

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800

(c)
Time, sec

Q
u

eu
e

si
ze

, p
ac

ke
ts

0

2

4

6

8

10

0 200 400 600 800

Figure 3.4: MCP convergence to fair high utilization and low queue size at the bottleneck
link: (a) Transmission rates of the three flows; (b) Utilization of the bottleneck link;

(c) Queue size at the bottleneck link.

35

less than 0.26 packets in the stable state, MCP design needs further improvements in order
to maintain a low overall queue size regardless of the number of flows. Figure 3.6b also
shows that MCP prevents packet losses in all the conducted simulations.

3.3.4 Heterogeneous Environments

Influence of Propagation RTTs

To evaluate MCP under different RTTs, simulations in the single-bottleneck dumbbell
topology with 10 competing flows and the bottleneck link capacity 50 Mbps are conducted.
This section uses Pmax

Pmin
as a control parameter where Pmax and Pmin respectively refer to

the maximum and minimum propagation RTT of all the flows. Pmin is always set to 20 ms,
whereas Pmax is modified in the range between 20 and 300 ms. Propagation RTTs of
other flows are uniformly distributed between Pmin and Pmax. Arrival times for the flows
are randomly picked from the range between 0 and 10 sec. The complete duration of the
simulation is 120 sec. Figure 3.7 confirms that MCP stable-state operation is relatively
independent of RTT heterogeneity: the fairness index varies from 0.880 to 0.934; the bot-
tleneck link utilization lies in the range between 0.958 and 0.962; the average peak queue
size at the bottleneck link changes only slightly from 7.2 to 11 packets.

Impact of Packet Sizes

This section also examines the impact of packet-size heterogeneity. The topology is a
single-bottleneck dumbbell with 5 flows and the bottleneck link capacity 50 Mbps. Ar-
rival times of the flows are randomly chosen from the range between 0 and 5 sec. Each
experiment lasts 200 sec. Propagation RTTs of the flows are uniformly distributed between
20 and 100 ms. In this set of the experiments, Smin

Smax
is employed as a control parameter

where Smax, and Smin denote respectively the maximum and minimum packet size across
all the flows. Packets within each particular flow are of the same size. Smax is always fixed
to 1500 bytes, whereas Smin is varied between 500 and 1500 bytes. Other packet sizes
are uniformly distributed between Smin and Smax. Figure 3.8 shows relative immunity of
MCP stable-state operation to the heterogeneous packet sizes: the fairness index stays in
the range from 0.742 to 0.930; the bottleneck link utilization varies from 0.962 to 0.970;
the average peak queue size is almost constant, between 4.4 and 5.0 packets.

36

(a)
Bottleneck link capacity, Mbps

F
ai

rn
es

s

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

(b)
Bottleneck link capacity, Mbps

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

(c)
Bottleneck link capacity, Mbps

Q
u

eu
e

si
ze

, p
ac

ke
ts

0

5

10

15

20

0 100 200 300 400 500

Figure 3.5: Low sensitivity to the bottleneck link capacity: (a) Fairness index;
(b) Utilization of the bottleneck link; (c) Peak queue size at the bottleneck link.

37

(a)
Number of flows

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

(b)
Number of flows

Q
u

eu
e

si
ze

, p
ac

ke
ts

 x
10

0

0

3

6

9

12

15

0 100 200 300 400 500 600

queue size
buffer size

(c)
Number of flows

Q
u

eu
e

si
ze

, p
ac

ke
ts

0

30

60

90

120

150

180

0 100 200 300 400 500 600

Figure 3.6: Dependence on the number of flows: (a) Utilization of the bottleneck link;
(b) Peak queue size at the bottleneck link; (c) Peak queue size at the bottleneck link in the

stable state.

38

(a)
RTT ratio

F
ai

rn
es

s

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15

(b)
RTT ratio

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15

(c)
RTT ratio

Q
u

eu
e

si
ze

, p
ac

ke
ts

0

3

6

9

12

15

1 3 5 7 9 11 13 15

Figure 3.7: Independence of MCP stable-state operation from RTT: (a) Fairness index;
(b) Utilization of the bottleneck link; (c) Peak queue size at the bottleneck link.

39

(a)
Packet size ratio

F
ai

rn
es

s

0

0.2

0.4

0.6

0.8

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b)
Packet size ratio

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(c)
Packet size ratio

Q
u

eu
e

si
ze

, p
ac

ke
ts

0

2

4

6

8

10

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.8: Independence of MCP stable-state operation from packet sizes: (a) Fairness
index, (b) utilization of the bottleneck link; (c) Peak queue size at the bottleneck link.

40

3.3.5 Comparison with TCP and VCP

First, this section compares MCP, TCP, and VCP in terms of queuing at the bottleneck
link. In each simulation of this series, the single-bottleneck dumbbell serves five flows that
have propagation RTT of 20, 40, 60, 80, and 100 ms. The bottleneck link has capacity
20 Mbps and buffer for 50 packets of size 1000 bytes. The flows arrive 1 sec after each
other. The simulation duration is 200 sec. The experiment is repeated for each of the three
protocols. Figure 3.9 plots the queue size at the bottleneck link for two time scales: the
whole experiment duration and zoomed interval between 90 and 95 sec. The graphs show
that MCP significantly subdues the queuing: the peak queue size under TCP is 50 packets,
under VCP is 20 packets, and under MCP is 6 packets. In the stable state of the above
experiments, the bottleneck link utilization is 0.92 under MCP and oscillates between 0.89
and 1 under VCP.

Besides, an additional comparative evaluation of MCP and VCP is conducted in the single-
bottleneck dumbbell topology where the bottleneck link capacity is 500 Mbps, and the
capacities of the access links are 1 Gbps. In both experiments which last 50 sec, 1000
flows with propagation RTT 60 ms arrive at randomized moments between 0 and 1 sec.
Figure 3.10 traces the bottleneck link utilization and queue size under each protocol. The
peak queue size under MCP is 31% of the buffer size and close to the 39% under VCP.
However, while the peak queue size under VCP stays at the same level in the stable state,
MCP reduces its peak queue size in the stable state dramatically to 1.7% of the buffer size.

3.3.6 Behavior in the Complex Topology

To investigate MCP operation in scenarios with multiple and migrating bottleneck links,
this section conducts an experiment in the parking-lot topology shown in Figure 3.1. The
simulation lasts 600 sec and involves 4 flows with propagation RTT of 80, 60, 40, and
40 ms: flow f1 arrives at time 0 and traverses path aABCDd, flow f2 arrives at time
100 sec and traverses path eABCDh, flow f3 arrives at time 300 sec and traverses path
bBCc, and flow f4 arrives at time 400 sec and traverses path fBCg. Flows f1 and f2 are
bottlenecked at link AB before time 300 sec but the bottleneck migrates to link BC when
flow f3 arrives. Figure 3.11 shows that despite the migration of the bottleneck link, MCP
always enables all the flows to converge to fair transmission rates.

41

(a) Time, sec

Q
u

eu
e

si
ze

, p
ac

ke
ts

0

10

20

30

40

50

0 50 100 150 200

Time, sec

Q
u

eu
e

si
ze

, p
ac

ke
ts

0

10

20

30

40

50

90 91 92 93 94 95

(b) Time, sec

Q
u

eu
e

si
ze

, p
ac

ke
ts

0

10

20

30

40

50

0 50 100 150 200

Time, sec

Q
u

eu
e

si
ze

, p
ac

ke
ts

90 91 92 93 94 95
0

10

20

30

40

50

(c) Time, sec

Q
u

eu
e

si
ze

, p
ac

ke
ts

0

10

20

30

40

50

0 50 100 150 200

Time, sec

Q
u

eu
e

si
ze

, p
ac

ke
ts

0

10

20

30

40

50

90 91 92 93 94 95

Figure 3.9: Queuing at the bottleneck link: (a) under MCP, (b) under VCP, (c) under TCP.

42

(a)
Time, sec

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

MCP
VCP

(b)
Time, sec

Q
u

eu
e

si
ze

, p
ac

ke
ts

 x
10

0

0

5

10

15

20

25

30

0 10 20 30 40 50

queue size
buffer size

(c)
Time, sec

Q
u

eu
e

si
ze

, p
ac

ke
ts

 x
10

0

0

5

10

15

20

25

30

0 10 20 30 40 50

queue size
buffer size

Figure 3.10: MCP versus VCP: (a) utilization of the bottleneck link, (b) queue size at the
bottleneck link under MCP, and (c) queue size at the bottleneck link under VCP.

43

Time, sec

R
at

e,
 M

b
p

s

0

5

10

15

20

0 100 200 300 400 500 600

RTT = 80ms
RTT = 60ms
RTT = 40ms
RTT = 40ms
bottleneck capacity

Figure 3.11: Transmission rates of MCP flows converge to fair rates after the bottleneck
link migrates.

3.4 Summary

This Chapter presented the design and evaluation of MCP, a congestion control protocol
for low stable-state queuing at bottleneck links. To achieve its design objectives, the pro-
tocol engages hosts and routers in limited explicit communication and exploits the insight
that the transmission should be kept constant after converging to fair efficient rates. For
convergence to fair transmission rates, MCP incorporates a novel explicit-communication
mechanism that allocates fairing and this-path bits in the header of each data packet.
These two bits enable the sender of a flow (e.g., of a new flow) to urge all flows shar-
ing its bottleneck links to operate in the fairing mode for seven increase-decrease cycles of
AIMD(80 kbps; 0.5) control. The analysis shows that the seven-cycle longevity of the fair-
ing mode is sufficient to provide high levels of fair sharing. The evaluation of MCP and its
comparison with TCP and VCP show that, by and large, MCP meets its design objectives.

44

Chapter 4

RD Network Services: An Architecture
for Service Differentiation

With the Internet offering a single best-effort service, there have been numerous proposals
of diversified network services that align better with the divergent needs of different dis-
tributed applications. The failure of these innovative architectures to gain wide deployment
is primarily due to economic and legacy issues, rather than technical shortcomings. This
Chapter proposes a new paradigm for network service differentiation where design princi-
ples account explicitly for the multiplicity of Internet service providers and users as well as
their economic interests in environments with partly deployed new services. The key idea
is to base the service differentiation on performance itself, rather than price. The proposed
RD (Rate-Delay) services enable a user to choose between a higher transmission rate or
low queuing delay at a congested network link. An RD router supports the two services by
maintaining two queues per output link and achieves the intended rate-delay differentiation
through simple link scheduling and dynamic buffer sizing. The conducted extensive simu-
lations confirm effectiveness of the RD services geared for incremental deployment in the
Internet.

4.1 Model and Principles

This chapter models the Internet as an interconnection of network domains owned and
operated by numerous independent ISPs. ISPs generate revenue by selling network services
to their direct customers. Users are the customers whose applications run at end hosts and
send flows of packets over the Internet. In general, a network path that connects the end
hosts of a distributed application traverses an infrastructure that belongs to multiple ISPs.

45

While different applications have different communication needs, the single best-effort ser-
vice of the current Internet matches the interests of the users imperfectly. In response to
this tension, various architectures with diversified network services have been proposed.
Although technically brilliant, even the best of the proposals failed to gain wide deploy-
ment. This dissertation attributes the failures to ignoring the serious economic challenges
of deploying a new service in a confederated infrastructure governed by numerous indepen-
dent stakeholders. Instead of treating the deployment as an afterthought, this dissertation
bases the design on principles that explicitly acknowledge the multiplicity of Internet par-
ties and their economic rationale in deciding whether to adopt new services.

First, it is explicitly recognized that partial deployment is an unavoidable and potentially
long-term condition for any newly adopted service. Hence, the new design should be at-
tractive for early adopters even if other ISPs or users refuse to embrace the innovation:

Principle 1 A new service should incorporate incentives for both ISPs and end users to

adopt the service despite the continued presence of legacy traffic or other ISPs that do not

espouse the new service.

The above principle has a more specific but nevertheless important implication that the new
design should not worsen the service provided to legacy Internet users. Doing otherwise is
against the economic interests of ISPs due to the danger of losing a large number of current
customers who keep communicating via legacy technologies. This consideration leads to
the following principle:

Principle 2 Adoption of a new service should not penalize legacy traffic.

4.2 Conceptual Design

Below, the principles from Section 4.1 are applied to derive a conceptual design for Rate-
Delay (RD) services, the solution to the problem of network service differentiation. As the
name reflects, the RD services enable a user to choose between a higher transmission rate
or low queuing delay at a congested network link.

46

Principle 1 prescribes providing both end users and ISPs with incentives for early adoption
of the RD services. The constraint of the partial deployment excludes the common ap-
proach of pricing and billing, e.g., because a user should be able to opt for the RD services
despite accessing the Internet through a legacy ISP that provides no billing or any other
support for service differentiation. With direct financial incentives not being an option,
the key idea of this chapter is to make the performance itself a cornerstone of the service
differentiation. While the performance is subject to a fundamental trade-off between link
utilization and queuing delay [44, 90], different applications desire different resolutions
to the tension between the two components of the performance. Hence, the RD services
consist of two classes:

• an R (Rate) service puts an emphasis on a high transmission rate;

• a D (Delay) service supports low queuing delay.

Each of the two services is neither better nor worse per se but is merely different, and its
relative utility for a user is determined by whether the user’s application favors a high rate
or low delay. Since the network services are aligned with the application needs, each user
receives an incentive to select the service of the most appropriate type, and the RD service
architecture empowers the user to do such selection by marking the headers of transmitted
packets.

An ISP finds the RD services attractive due to the potential to boost revenue by adding cus-
tomers who are interested in the D service. This dissertation envisages an RD certification
program championed by a nucleus of early adopters. The RD certification will serve as
a catalyst for virulent deployment of the RD architecture because being RD-certified will
give an ISP a differentiation advantage over legacy ISPs when competing with them for
users and provider peering agreements.

To support the RD services on an output link, the router maintains two queues for packets
destined to the link. This chapter refers to the queues as an R queue and D queue. Depend-
ing on whether an incoming packet is marked for the R or D service, the router appends the
packet to the R or D queue respectively. The packets within each queue are served in the
FIFO (First-In First-Out) order. Whenever there is data queued for transmission, the router
keeps the link busy, i.e., the RD services are work-conserving.

By deciding whether the next packet is transmitted from the R or D queue, the router
realizes the intended rate differentiation between the R and D services. In particular, the

47

link capacity is allocated to maintain a rate ratio of

k =
rR

rD

> 1 (4.1)

where rR and rD refer to per-flow forwarding rates for packet flows from the R and D class
respectively.

The router supports the desired delay differentiation between the R and D services through
buffer sizing for the R and D queues. As common in current Internet routers, the size of the
R buffer is chosen large enough so that the oscillating transmission of TCP (Transmission
Control Protocol) [52] and other legacy end-to-end congestion control protocols utilizes
the available link rate fully. The D buffer is configured to a much smaller dynamic size to
ensure that queuing delay for each forwarded packet of the D class is low and at most d.
The assurance of low maximum queuing delay is attractive for delay-sensitive applications
and easily verifiable by outside parties. An interesting direction for future studies is an
alternative design for the D service where queuing delay stays low on average but is allowed
to spike occasionally in order to support a smaller loss rate.

In agreement with the overall design philosophy, parameters k and d are independently de-
termined by the ISP that owns the router. The ISP uses the parameters as explicit levers over
the provided RD services. The subsequent experimental study reveals suggested values for
parameters k and d.

As per Principle 2, adoption of the RD services by an ISP should not penalize traffic from
legacy end hosts. While the R service and legacy Internet service are similar in putting the
emphasis on a high transmission rate rather than low queuing delay, the legacy traffic and
any other packets that do not explicitly identify themselves as belonging to the D class are
treated by an RD router as belonging to the R class, i.e., the router diverts such traffic into
the R queue. Since those flows that opt for the D service acquire the low queuing delay by
releasing some fraction of the link capacity, the adopters of the D service also benefit the
legacy flows by enabling them to communicate at higher rates.

Due to the potentially partial deployment of the RD services, R and D flows might be
bottlenecked at a link belonging to a legacy ISP. Furthermore, the R and D flows might
share the bottleneck link with legacy traffic. This has an important design implication that
end-to-end transmission control protocols for the R and D services have to be compatible
with TCP.

48

4.3 Analytical Foundation

While Section 4.2 outlined the conceptual design of the RD services, this section now
presents an analytical foundation for the specific implementation of the RD routers.

4.3.1 Notation and Assumptions

Consider an output link of an RD router. Let C denote the link capacity and n be the number
of flows traversing the link. This section uses nR and nD to represent the number of flows
from the R and D class respectively. Since the router treats legacy traffic as belonging to
the R class, we infer that:

nR + nD = n. (4.2)

For analytical purposes, it is assumed that both R and D queues are continuously back-
logged and, hence:

RR + RD = C (4.3)

where RR and RD refer to the service rates for the R and D queues respectively. Also, the
analysis assumes that every flow within each class transmits at its respective fair rate, rR or
rD:

RR = nRrR and RD = nDrD. (4.4)

The experiments in this chapter with dynamic realistic traffic including a lot of short-lived
flows confirm that the above assumptions do not undermine the intended effectiveness of
the RD services in practice.

The sizes of the R and D queues are denoted as qR and qD respectively and the buffer
allocations for the queues as BR and BD respectively. If the corresponding buffer does not
have enough free space for an arriving packet, the router discards the packet.

4.3.2 Sizing and Serving the R and D Queues

Combining equations (4.1), (4.3), and 4.4, we determine that the service rates for the R and
D queues should be respectively equal to

RR =
knRC

nD + knR

and RD =
nDC

nD + knR

. (4.5)

49

To ensure that queuing delay for any packet forwarded from the D queue does not exceed d,
the buffer allocation for the queue should be bounded from above as follows:

BD ≤ RDd. (4.6)

Taking the second one of equations (4.5) into account, we establish the following buffer
allocation for the D queue:

BD =
nDCd

nD + knR

. (4.7)

In practice, it is expected BD to be much smaller than overall buffer B that the router has
for the link. Manufacturers equip current Internet routers with substantial memory so that
router operators could configure the link buffer to a high value Bmax, chosen to support
throughput-greedy TCP traffic effectively [103]. Thus, it is recommended to allocate the
buffer for the R queue to the smallest of B − BD and Bmax (and expect Bmax to be the
common setting in practice):

BR = min

{
Bmax; B − nDCd

nD + knR

}
. (4.8)

4.4 Design Details

The description of the design of the RD services is split into two parts. First, the section
talks about the end hosts, and, second, it specifies the details of the routers.

4.4.1 End Hosts

As per the discussion at the end of Section 4.2, the RD services restrict end-to-end trans-
mission control protocols to being compatible with TCP. The only extra support required
from end hosts is the ability to mark a transmitted packet as belonging to the D class. This
requirement is implemented by employing bits 3-6 in the TOS (Type of Service) field of
the IP (Internet Protocol) datagram header [85]. To choose the D service, the bits are set
to 1001. The default value of 0000 corresponds to the R service. Thus, the RD services
preserve the IP datagram format.

50

Variable Semantics
x class of the service, R or D
nx number of flows from the x class
Bx buffer allocation for the x queue
qx size of the x queue
Lx amount of data transmitted from

the x queue since the last reset of Lx

p packet
tp arrival time of p

S packet size

Table 4.1: Internal variables of the RD router algorithms in Figures 4.1, 4.2, and 4.3.

Parameter Semantics
k ratio of per-flow rates for R and D flows
d upper limit on queuing delay of D packets
b timestamp vector size
T update period
E flow expiration period

Table 4.2: Parameters of the RD router algorithms.

4.4.2 Routers

The main challenge for transforming the analytical insights of Section 4.3.2 into specific
algorithms for RD router operation lies in the dynamic nature of Internet traffic. In partic-
ular, while equations (4.5), (4.7), and (4.8) depend on nR and nD, the numbers of R and D
flows change over time. Hence, the RD router periodically updates its values of nR and nD.
In the next three subsequent sections we describe the algorithms for processing a packet
arrival, serving the queues, and updating the algorithmic variables at the RD router respec-
tively. Table 4.1 summarizes the internal variables of the algorithms. In addition to the
internal variables, a number of parameters characterize the RD router operation. Table 4.2
sums up these parameters.

51

p ← received packet;
x ← class of p;
S ← size of p;
if qx + S ≤ Bx

append p to the tail of the x queue;
qx ← qx + S;
if x = D

tp ← current time;
else

discard p

Figure 4.1: Router operation upon receiving a packet destined to the RD link.

Handling a packet arrival

Figure 4.1 presents the simple algorithm for dealing with packet arrivals. When the router
receives a packet destined to the link, the router examines the seventh TOS bit in the packet
header to determine whether the packet belongs to the R or D class. If the corresponding
buffer is already full, the router discards the packet. Otherwise, the router appends the
packet to the tail of the corresponding queue. Besides, if the enqueued packet belongs to
the D class, the router remembers the arrival time of the packet until the packet reaches the
head of the queue. Since the D buffer is typically small, storing the arrival times does not
require significant memory.

Serving the R and D queues

The arrival times of enqueued D packets are used by the algorithm that serves the queues.
The algorithm uses the times to ensure that queuing delay of forwarded D packets does
not exceed upper bound d. More specifically, if the packet at the head of the D queue
has been queued for longer, the router discards the packet. The situation might arise due
to the dynamic nature of Internet traffic: since the population of flows changes, the ser-
vice rate for the D queue might decrease after the packet arrives. The preliminary version
of this algorithm did not include the last-moment enforcement of the queuing delay con-
straint. Experimental results for the preliminary version were similar to those reported in
Section 4.6: while the loss rates did not differ much, the maximum observed queuing delay
exceeded d by about 0.5 ms. It remains to be seen whether the strict enforcement of the

52

* select the queue to transmit from *\
if qR > 0 and qD > 0

if knRLD > nDLR

x ← R;
else

x ← D;
else * exactly one of the R and D buffers is empty *\

x ← class of the non-empty buffer;
p ← first packet in the x queue;
S ← size of p;
if x = D

* enforce the delay constraint of the D service *\
while current time - tp > d and qD > 0

discard p;
qD ← qD − S;
p ← first packet in the D queue;
S ← size of p;

if p != null
* update the L variables *\
if qR > 0 and qD > 0

Lx ← Lx + S;
else * one of the R and D buffers is empty *\

LR ← 0; LD ← 0;
transmit p into the link;
qx ← qx − S

Figure 4.2: Router operation when the RD link is idle, and the link buffer is non-empty.

queuing delay constraint is worth the price of tracking the arrival times of the enqueued D
packets.

Figure 4.2 reports further details of the algorithm for serving the R and D queues. While
the RD services are work-conserving, the router transmits into the link whenever the link
buffer is non-empty. Since the router can transmit at most one packet at a time, the intended
split of link capacity C into service rates RR and RD can be only approximated. The router
does so by:

• monitoring LR and LD, the amounts of data transmitted from the R and D queues
respectively since the last reset of these variables;

• transmitting from such queue that LR

LD
approximates RR

RD
= knR

nD
most closely.

53

More specifically, when knRLD > nDLR, the router transmits from the R queue; other-
wise, the router selects the D queue.

This chapter derived the above algorithm from the assumption that all flows within a class
transmit at the same fair rate, rR or rD. While the assumption is clearly unrealistic, one
specific problematic scenario occurs when the total transmission rate of the D flows is much
less than nDrD, the maximum service rate for the D queue. Then, a throughput-greedy
flow has an incentive to mark its packets as D packets and thereby achieve a much higher
forwarding rate than the one offered by the intended R service. Although this scenario has
not surfaced in the extensive simulations, and the unintended selection of the D service
by the throughput-greedy flow does not disrupt the D service, this issue deserves close
consideration. The future study will explore in detail the implications of the diversity in
flow rates and user behaviors (including deliberate denial-of-service attacks) for the RD
services.

Updating the algorithmic variables

Whereas nR and nD play important roles in the presented RD router algorithms, two ap-
proaches to computing the numbers of flows are compared: explicit notification from end
hosts and independent inference by the router. Since the design principles allow a possi-
bility that many users do not embrace the RD services, it is likely that the router serves
many legacy flows and needs to do at least some implicit inference. Furthermore, since this
chapter favors solutions with minimal modification of the current infrastructure, the router
in the RD implementation estimates nR and nD without any help from end hosts.

To estimate the numbers of flows, the timestamp-vector algorithm [64] is applied separately
to the R and D classes. The experiments confirm the excellent performance of the algo-
rithm. Using a hash function, the algorithm maps each received packet into an element of
the array called a timestamp vector. The timestamp vector accommodates b elements. The
algorithm inspects the timestamp vector with period T and considers a flow inactive if the
timestamp vector does not register any packets of the flow during last period E. Follow-
ing the guidelines in [28] and assuming E = 1 s, 105 active flows, and standard deviation
ε = 0.05, we recommend b = 18,000 as the default setting for the timestamp vector size.

The RD router updates nR and nD with period T . At the same time, the router updates the
buffer allocations for the R and D queues. Even if nR or nD is zero, the router allocates a

54

update nR and nD as per Section 4.4.2;
update BR and BD as per Section 4.4.2;
LR ← 0; LD ← 0;
if qD > BD

discard all packets from the D queue;
qD ← 0;

else while qR > BR

p ← last packet in the R queue;
S ← size of p;
discard p;
qR ← qR − S

Figure 4.3: Update of the RD algorithmic variables upon timeout.

non-zero buffer for each of the queues. The experimental results suggest that the specific
allocation split is not too important; in the reported experiments, the buffer allocations are
initialized to BD = 4Cd

4+k
and BR = min {Bmax; B −BD}, which correspond to the 1:4

ratio between the numbers of flows from the R and D classes. If both nR and nD are
positive, the router updates the buffer allocations according to equations (4.7) and (4.8).

The update of BR and BD can make one of them smaller than the corresponding queue
size. Figure 4.3 describes how the router deals with this issue. If the updated BR is less
than qR, the router discards packets from the tail of the R queue until qR becomes at most
BR. The discards ensure that the D service receives the intended buffer allocation. If BD

is decreased below qD, the router flushes all packets from the D queue. Emptying the D
buffer assures that neither of the packets will be queued for longer than d and thus need
to be discarded after reaching the head of the queue. The longer queueing might occur
otherwise because the decrease of BD also proportionally reduces the service rate for the
D queue. Although the D buffer is typically small, discarding the burst of packets might
affect the loss rate negatively and be even unnecessary because it might be still possible
to forward at least some of the discarded D packets in time despite the reduced service
rate. While the experiments show acceptably low loss rates with this implementation of the
algorithm, more subtle discard policies will be explored in the future work.

To select update period T , it is observed that reducing T increases the computational over-
head. Also, the operation might become unstable unless T is much larger than d. However,
with larger T , the design responds slower to changes in the network conditions. The exper-
iments show that T = 400 ms offers a reasonable trade-off between these factors.

55

4.5 Stateless RD Router Implementation

Maintaining the per-packet state to track the packet arrival times constitutes a weakness of
the original RD design because the added memory and processing requirements can de-
teriorate the router performance, make the router hardware more complex, and increase
the router cost, e.g., due to relying on the expensive Static Random Access Memory
(SRAM) [53]. This section proposes an alternative S-RD (Stateless Rate-Delay) router
design that guarantees low queuing delay of the D service without keeping any per-packet
state. The S-RD algorithm achieves this objective by configuring the D buffer to a smaller
size.

4.5.1 Sizing the R and D Queues

The service rates for the R and D queues, i.e. RR and RD, are calculated using the same
control equations (4.5) as for the RD services. To ensure that queueing delay does not
exceed d, the size of the D buffer should be bounded as follows:

BD = bRD(d− w)c+ (4.9)

where:
w =

2

C

(Smax
D

α
+ Smax

R

)
. (4.10)

Section 4.5.3 shows that configuring the buffer size of queue D through equations (4.9)
and (4.10) guarantees the strict support of the delay constraint.

4.5.2 Serving the R and D Queues

Whereas the original RD algorithm handles the potential danger of exceeding the delay
constraint if qD > BD at the moment of the recalculating of control parameters, the RD
buffer sizing misses one case of exceeding the delay constraint. In particular, this happens
if Bold

D > BD, where Bold
D is the previous value of the size of the D buffer, as draining

rate of the D queue after recalculation decreases. The S-RD algorithm handles this through
flushing the whole D queue.

56

time
t_1 t_2 t_3

packet from class R

packet from class D D queue

R queue

Figure 4.4: The exceeding of the delay constraint: combination of both and one queue
backlogged.

To avoid overflow of the values LD and LR, they are periodically assigned to zero values.
In particular, the assignment happens in two cases. The first one occurs if only one queue
is backlogged. In this case, both LD and LR are zeros until both queues get backlogged
again. The second one happens upon a timeout for recalculating the control parameters.
The problem is that exceeding the delay constraint can occur right after the assignment of
zero values to LD and LR, as it is discussed below.

Figure 4.4 illustrates the first case corresponding to only one backlogged queue. This
section will refer to the value of the ratio between LD(t) and LR(t) as to β(t). During time
interval [t1 − δt; t1), δt > 0, both queues R and D are backlogged. Then only one queue
D gets backlogged during time interval [t1; t2). Finally, both queues are backlogged again
starting from time t2. Let us denote the amount of traffic sent during time interval [t1; t3]

as δL′D. Besides, let us assume that traffic is such that β(t1) < α, where α is defined as
follows:

α =
nD

knR

. (4.11)

Then if the following inequality:

LD(t1) + δL′D
LR(t1)

< α (4.12)

takes place, then it is possible to exceed the delay constraint for D packets that arrive after
time t3. The reason is that RD is less than the required rate during time interval [t1; t3), and
that is ”forgotten” by the algorithm as LD and LR are assigned to zero values at time t1.
Applying similar speculations, one can demonstrate exceeding the delay constraint in the
second case related to the timeout expiration. To handle the described problems, we use a
special parameter δL that tracks the amount of traffic that needs to depart from the D queue
to avoid exceeding the delay constraint. Figures 4.5 and 4.6 give the detailed specification
of the implementation of the S-RD router.

57

* select the queue to transmit from *\
if qR > 0 and qD > 0

if knRLD > nDLR

x ← R;
else

x ← D;
else * exactly one of the R and D buffers is empty *\

x ← class of the non-empty buffer;
p ← first packet in the x queue;
S ← size of p;
if p != null

* update the L variables *\
if qR > 0 and qD > 0

Lx ← Lx + S;
δL ← LRnD

knR
− LD;

if δL < 0 δL ← 0;
else * only D buffer is empty *\
if qR > 0 and qD = 0

LR ← 0; LD ← 0;
else * only R buffer is empty *\;

if δL > 0 δL ← δL− S;
if δL > 0 LD ← −δL;
else

LD ← 0;
LR ← 0;

transmit p into the link;
qx ← qx − S

Figure 4.5: Router operation when the S-RD link is idle, and the link buffer is non-empty.

4.5.3 Analysis of the S-RD Design

This section shows that the S-RD router design ensures the strict delay constraint without
tracking packet arrival times or discarding packets at the head of the D queue.

We distinguish two different cases of backlogging at an S-RD link depending on the number
of backlogged queues. Section 4.5.2 has already considered the first case characterized by
one backlogged queue. We now examine the case when both the D and R queues are
backlogged. Let us consider an arbitrary packet p from the D queue. We assume that p

arrives at the D queue at time ta and departs from the D queue at time td. Let us suppose

58

Bold
D ← BD;

update nR and nD as in [64];
update BR and BD according to (4.8),(4.7);
if δL > 0 LD ← −δL;

else LD ← 0;
LR ← 0;
if qD > BD or Bold

D < BD

discard all packets from the D queue;
qD ← 0;

else while qR > BR

p ← last packet in the R queue;
S ← size of p;
discard p;
qR ← qR − S

Figure 4.6: Update of the S-RD algorithmic variables upon timeout.

that:
LD(ta)

LR(ta)
= α + δ(ta), (4.13)

LD(td)

LR(td)
= α + δ(td), (4.14)

where LR(ta) > 0 and LR(td) > 0. We consider scenario where both the D and R queues
are backlogged during time period [ta; td]. We will refer to the traffic sent from the D and R
queues during time period [ta; td] as δLD and δLR, δLR > 0, respectively. We distinguish
two cases of the S-RD buffer configuration. The first one corresponds to a buffer of zero
size, and, therefore, gives no queuing delay. The second case reflects a non-zero buffer, i.e.,
d − w > 0, where d is the delay constraint, w is defined by equation (4.10). The analysis
considers the second case. Next, we will prove the following:

Theorem 1 Maximum queuing delay d-w is supported for any packet p within any traffic

pattern if:
δLD

δLR

≥ α. (4.15)

Proof: Indeed, if inequality (4.15) takes place, then RD

RR
≥ α during [ta; td]. From

BD = αRR(d−w) we conclude that the maximum packet delay does not exceed d−w.

59

As δLD = LD(td) − LD(ta), δLR = LR(td) − LR(ta), we rewrite inequality (4.15) as
follows:

LD(td)− LD(ta)

LR(td)− LR(ta)
≥ α. (4.16)

Let us denote the left part of inequality (4.16) as γ. Then, using equations (4.13) and (4.14)
and performing simple transformation, we establish that:

γ = α +
(
δ(td) +

LR(ta)

δLR

(δ(td)− δ(ta))
)
. (4.17)

Therefore, inequality (4.15) takes place if and only if:

δ(td) +
LR(ta)

δLR

(δ(td)− δ(ta)) ≥ 0. (4.18)

We now will prove the following:

Theorem 2 δLD

δLR
≥ α is supported for any traffic pattern and any packet p if and only if:

δ(ta) ≤ 0, δ(td) ≥ 0. (4.19)

Proof: First, we will prove that it is a sufficient condition. Indeed, if δ(ta) ≤ 0,
δ(td) ≥ 0, then inequality (4.18) is true for any values of LR(ta) and δLR, i.e., for any
traffic pattern and any packet p.

Second, we will prove that it is a required condition. Let us suppose that it is not true. We
need to consider all such possible cases:

Case 1: δ(ta) ≤ 0, δ(td) < 0. Then from inequality (4.18) we have that:

δLR

LR(ta)
+ 1 ≤ δ(ta)

δ(td)
. (4.20)

As the left part of inequality (4.20) is larger than 1, and its right part can be smaller than 1,
there is a contradiction.

Case 2: δ(ta) > 0, δ(td) ≥ 0. Then from inequality (4.18) we derive that:

δLR

LR(ta)
+ 1 ≥ δ(ta)

δ(td)
. (4.21)

60

timet_0 t_a

w’
packet p

packet from class R

packet from class D

t_1 t_d

Figure 4.7: Schedule of packet departures when δ(ta) > 0, δ(td) ≥ 0.

As there exists a traffic pattern and packet p such that the left part of inequality (4.21) is
smaller than 2, while the right part of inequality (4.21) is bigger than 2, there is a contra-
diction.

Case 3: δ(ta) > 0, δ(td) < 0. Inequality (4.18) leads us to:

δLR

LR(ta)
+ 1 ≤ δ(ta)

δ(td)
. (4.22)

As the left part of inequality (4.22) is bigger than 0, and its right part is smaller than 0,
there is a contradiction.

Thus, we have shown that the made assumption is not true, which means than inequalities
in (4.19) state a required condition.

From Theorem 1 and Theorem 2 we conclude that inequalities in (4.19) express a sufficient
condition for supporting queueing delay of at most d − w for any packet with an arbitrary
traffic pattern at the S-RD link. Now let us consider packet p that fills up buffer of the D
queue, i.e., the enqueing of that packet satisfies qD = BD.

Theorem 3 Maximum queuing delay d-w is supported for p within any traffic pattern if

and only if δLD

δLR
≥ α.

Proof: The sufficiency follows from Theorem 1. This section will now prove the
necessity. Indeed, if δLD

δLR
< α, then RD

RR
< α. From BD = αRR(d − w) we conclude that

the maximum packet delay is bigger than d− w.

Now we consider all possible cases when the packet delay exceeds d − w for such packet
p.

Case 1: δ(ta) > 0, δ(td) ≥ 0. Figure 4.7 shows the schedule of packet departures in the
considered case. According to Theorems 2 and 3, if packet p arrived at time t1 and departed

61

timet_1

packet p

packet from class D

packet from class R

t_2t_a t_d

w’’

Figure 4.8: Schedule of packet departures when δ(ta) ≤ 0, δ(td) < 0.

at td then its queuing delay would not exceed d − w as δ(t1) < 0, δ(td) ≥ 0. As in the
interval [ta; t1] there is no potential arrival time t′a of packet p at which δ(t′a) < 0, queuing
delay of packet p might be exceeded by the interval [ta; t1]. We will refer to the length of
that interval as w′, and to the amount of R traffic sent during this interval w′ as X . Let us
suppose that a D packet departing at time t0 has size SD, then the following inequalities
take place:

LD(t0) ≤ αLR(t0), (4.23)

LD(t0) + SD > αLR(t0), (4.24)

LD(t0) + SD ≤ αLR(t0) + Xα. (4.25)

Lemma 1 The worst-case solution to inequalities (4.23), (4.24), and (4.25) is at most:

X =
Smax

D

α
+ Smax

R . (4.26)

Proof: Indeed, X defined by equation (4.26) is a solution to the considered three
inequalities. Next, we need to show that there is no smaller solution. Suppose that there
exists X ′:

X ′ = X − δX, (4.27)

where X is defined by equation (4.26), δX > 0, δX < X , δX is an integer, i.e., there exists
δX such that X ′ satisfies inequalities (4.23), (4.24), and (4.25). Let us assume that the
traffic scenario is such that inequality (4.23) becomes equality. Then from inequality (4.25)
and LD(t0) = αLR(t0) we derive that:

SD ≤ Smax
D + αSmax

R − αδX. (4.28)

Assuming that SD = Smax
D and Smax

R < δX , we conclude that inequality (4.28) is not valid.
As it means that there exists a traffic scenario such that inequality (4.25) is not valid, there

62

is a contradiction. Finally, we mention that Smax
R in equation (4.26) reflects that traffic is in

packets, i.e., not fluid.

From Lemma 1 we conclude that the maximum queuing delay in excess of d − w in the
considered case is as follows:

w′ =
1

C

(Smax
D

α
+ Smax

R

)
. (4.29)

Case 2: δ(ta) ≤ 0, δ(td) < 0. Figure 4.8 demonstrates how the packets are scheduled for
this case. If during time interval [t1; t2], instead of packets from class R, the link continued
to serve the D queue up to packet p, then, according to Theorems 2 and 3, queuing delay
of packet p would not exceed d − w as δ(ta) < 0, δ(t′d) ≥ 0, where t′d would be its
departure time. Therefore, queuing delay of packet p can exceed the delay constraint by
the interval [t1; t2]. We will refer to the length of that interval as w′′, and to the amount of
D traffic sent during this time interval as Y . As in Case 1, Y is defined by the right part of
equation (4.26). Therefore, w′′ equals to w′ defined by equation (4.29).

Case 3: δ(ta) > 0, δ(td) < 0. As this case is a combination of the two previous ones, the
maximum queuing delay in excess of d− w is the sum of w′ and w′′:

w =
2

C

(Smax
D

α
+ Smax

R

)
. (4.30)

As we have not used the information that p fills up the buffer of queue D while considering
the three possible cases of the exceeding the d − w delay, we have proved the following
theorem:

Theorem 4 Sizing the D buffer according to equations (4.9) and 4.10 ensures that the

S-RD router algorithm supports maximum queuing delay d.

4.6 Performance Evaluation of the RD Services

This section describes the performance evaluation of the RD Network Services. To evaluate
the architecture, the networking simulator ns-2 [72], version 2.29, is used.

63

4.6.1 Experimental Settings

Unless explicitly stated otherwise, all flows employ TCP NewReno [33] and data packets
of size 1 KB. Each link buffer is configured to B = Bmax = C · 250 ms, where C is the
capacity of the link. Every experiment lasts 60 s and is repeated five times for each of
the considered parameter settings. We calculate the average for each set of the parameters.
The default settings include k = 2, d = 10 ms, b = 18,000, T = 400 ms, E = 1 s, Tavg

= 200 ms, and Tq = 10 ms, where Tavg refers to the averaging interval for the bottleneck
link utilization and loss rate, and Tq denotes the averaging interval for queuing delay. This
section also averages the utilization and loss rate over the whole experiment with exclusion
of its first five seconds.

In the experiments, we evaluate the original version of the RD services and stateless S-RD
version. While queuing delay for the D service is at most d by the original design, all the
experiments for the original version confirm that the maximum delay of D packets satis-
fies and closely approximates this upper limit. The utilization and loss rate characteristics
are similar to the ones revealed by both the versions so for the S-RD version this section
presents only the maximum queuing delay of D packets.

Simple Topology

To understand basic properties of the RD services, we use a traditional dumbbell topology.
The experiments using such a topology include different transport protocols for D flows,
both long-lived and short-lived traffic, diverse bottleneck link capacities, various settings
for the delay constraint of the D service, Exponential and Pareto-distributed flow interar-
rival times, and sudden changes in the numbers of R and D flows. The core bottleneck and
access links have capacities 100 Mbps and 200 Mbps, respectively. The bottleneck link
carries 100 R flows and 100 D flows in both directions and has propagation delay 50 ms.
The propagation delays for the access links are chosen so that propagation RTT (Round-
Trip Time) for the flows is uniformly distributed between 104 ms and 300 ms. We will
refer to the topology described in this section as a simple topology.

64

Figure 4.9: Shared settings of the multi-ISP topologies.

Complex Topology

The investigation of the RD services proceeds by examining their incremental deployability
and other properties in topologies where multiple ISPs own the infrastructure. Figure 4.9
depicts the settings shared by the multi-ISP topologies, where both ISPs espouse the RD
services. The network core belongs to ISP Z and ISP Y. Routers y1 and y2 of ISP Y offer
the RD services with k = 2 and d = 15 ms. ISP Z configures all its four routers to offer
the rate-delay differentiation with k = 2 and d = 10 ms. Backbone link z2-y1 connects
the two ISPs and provides universal connectivity for all users. The users form five pools
H, J, K, F, and G. Each user accesses his or her ISP through a personal link with capacity
100 Mbps. Every user from pools H, J, K, and F transmits a long-lived flow to a separate
user in pool G. Hence, while the flows from K and F traverse the infrastructure that belongs
only to ISP Y, both ISPs serve the flows from pools H and J. The propagation delays for
the access links are chosen so that propagation RTT for the flows is uniformly distributed
between 64 ms and M . In particular, propagation delay for both access links of each flow
from pool H or J is chosen between 1 ms and M

4
− 15 ms, and both access-link propagation

delays for a flow from pool K or F are selected between 11 ms and M
4
− 5 ms. The default

setting for the maximum propagation RTT is M = 300 ms. The flows arrive according to
a Poisson process. The average arrival rate is set by default to 100 flows per sec (fps) for
creating a confident expectation that all the flows arrive before the measurement stage of the
experiment. We will refer to the topology described in this section as a complex topology.

4.6.2 Various Transport Protocols for D Flows

While the RD services restrict end-to-end transmission control to being compatible with
TCP, this section illustrates how the RD design performs when the D flows employ TCP
NewReno [33], Paced TCP [3, 20], or TFRC [32]. In this set of experiments, we use the

65

simple topology, and all flows stay throughout the experiment. With k = 2 and equal
numbers of R and D flows, it is expected the R and D services to utilize the bottleneck
link capacity fully with the 2:1 ratio. Figure 4.10 mostly confirms this expectation. In
Figure 4.11, one can observe that the maximum queuing delay for R flows is about 375 ms,
as expected for the link that allocates two thirds of its capacity C to the R flows and has
the buffer sized to the product of C and 250 ms. Figure 4.12 demonstrates that the queuing
delay for D flows fluctuates between 0 and d = 10 ms. Besides, the loss rate of R flows
and D flows are shown in Figures 4.13 and 4.14, respectively. Due to slower detection
of congestion and higher loss synchronization, Paced TCP yields larger losses than TCP
NewReno. Among the three evaluated protocols, TFRC supports the smallest loss rate
and most balanced rate differentiation. These superior properties make TFRC an attractive
option for transmission control of D flows.

4.6.3 Scalability Properties

Influence of Link Capacity

This series of experiments employs the simple topology and varies the bottleneck link
capacity from 1 Mbps to 1 Gbps while keeping the access link capacities twice as large. The
traffic mix on the bottleneck link is enhanced with web-like flows from two sources: one
source generates R flows, and the other transmits D flows. The sizes of the web-like flows
are Pareto-distributed with the average of 30 packets and shape index of 1.3. The flows
arrive according to a Poisson process. The average arrival rate for the web-like flows in
this and next sections stays at 50 fps. Figure 4.15 shows that the rates of the R and D flows
deviate from the intended 2:1 ratio significantly only for the lowest examined capacities
close to 1 Mbps. The deviation occurs due to the extremely small buffering available for D
packets in those settings. In particular, satisfying the 10-ms delay constraint at the 1-Mbps
bottleneck link reduces the D buffer to about one packet, and the minimal buffering causes
heavy losses and effectively shuts down the D service. As the bottleneck link capacity
grows, the loss rate for the D flows decreases exponentially. Besides, Figure 4.15c confirms
that there is no violation of the delay constraint for the whole range of the varied parameter
if using the S-RD version.

66

(a)
Time, s

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

both services

R service

D service

(b)
Time, s

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

both services

R service

D service

(c)
Time, s

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

both services

R service

D service

Figure 4.10: Bottleneck link utilization with different transport protocols for D flows:
(a) TCP NewReno; (b) Paced TCP; (c) TFRC.

67

(a)
Time, s

D
el

ay
, m

s

0

100

200

300

400

0 10 20 30 40 50 60

(b)
Time, s

D
el

ay
, m

s

0

100

200

300

400

0 10 20 30 40 50 60

(c)
Time, s

D
el

ay
, m

s

0

100

200

300

400

0 10 20 30 40 50 60

Figure 4.11: Queuing delay for R packets with different transport protocols for D flows:
(a) TCP NewReno; (b) Paced TCP; (c) TFRC.

68

(a)
Time, s

D
el

ay
, m

s

0

2

4

6

8

10

0 10 20 30 40 50 60

(b)
Time, s

D
el

ay
, m

s

0

2

4

6

8

10

0 10 20 30 40 50 60

(c)
Time, s

D
el

ay
, m

s

0

2

4

6

8

10

0 10 20 30 40 50 60

Figure 4.12: Queuing delay for D packets with different transport protocols for D flows:
(a) TCP NewReno; (b) Paced TCP; (c) TFRC.

69

(a)
Time, s

L
o

ss
, %

0

10

20

30

40

0 10 20 30 40 50 60

(b)
Time, s

L
o

ss
, %

0

10

20

30

40

0 10 20 30 40 50 60

(c)
Time, s

L
o

ss
, %

0

10

20

30

40

0 10 20 30 40 50 60

Figure 4.13: Loss rate for R flows with different transport protocols for D flows: (a) TCP
NewReno; (b) Paced TCP; (c) TFRC.

70

(a)
Time, s

L
o

ss
, %

0

10

20

30

40

0 10 20 30 40 50 60

(b)
Time, s

L
o

ss
, %

0

10

20

30

40

0 10 20 30 40 50 60

(c)
Time, s

L
o

ss
, %

0

10

20

30

40

0 10 20 30 40 50 60

Figure 4.14: Loss rate for D flows with different transport protocols for D flows: (a) TCP
NewReno; (b) Paced TCP; (c) TFRC.

71

(a)
Bottleneck link capacity, Mbps

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

R service

D service

(b)
Bottleneck link capacity, Mbps

L
o

ss
, %

0

10

20

30

40

50

60

0 200 400 600 800 1000

(c)
Bottleneck link capacity, Mbps

D
el

ay
, m

s

0

2

4

6

8

10

12

0 200 400 600 800 1000

delay constraint
maximum delay

Figure 4.15: Scalability of the RD services with respect to the bottleneck link capacity
(S-RD version): (a) Link utilization; (b) Loss rate for D flows; (c) Maximum queuing

delay for D flows.

72

Impact of the Population Size

This section also explores population scalability of the RD services, i.e., examines how
their performance scales when the numbers of R and D flows change in the complex topology.
A scaling factor σ is used to modify the traffic mix as follows: the population of the long-
lived flows includes 25 R flows and d25σe D flows from pool H, 25 R flows and d25σe
D flows from pool J, 50 R flows from pool K, and 2 · d25σe D flows from pool F. To pre-
serve the expectation that all the long-lived flows arrive before the measurement stage of
the experiment, average interarrival time is reduced to 3 ms for σ > 3. The long-lived
traffic in the reverse direction mirrors again the forward-direction arrangement.

For either of bottleneck links z1-z2 and y1-y2, Figure 4.16 shows that increasing the num-
ber of long-lived D flows redistributes some of the link capacity from the R service to the
D service. Due to the presence of the web-like flows, the redistribution depends on σ non-
linearly. Also, since links z1-z2 and y1-y2 serve different numbers of flows, the D service
gains parity with the R service in utilizing link z1-z2 with a larger scaling factor than for
link y1-y2. As σ grows, the per-flow rates of the R and D flows decrease, and the loss rates
of the services increase accordingly.

Finally, a similar study for scalability of the RD services with respect to the number of
R flows is conducted. Once again, the long-lived traffic arrangement is symmetrical in
the forward and reverse directions. In the forward direction, the long-lived traffic includes
d25σe R flows and 25 D flows from pool H, d25σe R flows and 25 D flows from pool J,
2 ·d25σe R flows from pool K, and 50 D flows from pool F. Figure 4.17 plots utilization and
loss rates for links z1-z2 and y1-y2. The analytical rationale for the observed performance
profiles is the same as the above explanations for the scaling of the D population.

Sensitivity to the Delay Constraint

To examine sensitivity of the RD services to d, simple topology is employed, and the delay
constraint of the D service is varied from 3 ms to 15 ms. Figure 4.18 demonstrates that the
per-flow rate ratio for the R and D flows stays close to the intended 2:1. As d increases, the
loss rate for the D service decreases from about 8% to about 5% due to the increasing size
of the D buffer. Moreover, Figure 4.18c shows that the stateless version of the RD services
keeps the delay constraint.

73

(a) Scaling factor

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

R service

D service

(b) Scaling factor

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

R service

D service

(c) Scaling factor

L
o

ss
, %

0

3

6

9

12

15

0 1 2 3 4 5 6 7

(d) Scaling factor

L
o

ss
, %

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7

Figure 4.16: Scalability of the RD services with respect to the number of long-lived D
flows: (a) Link z1-z2 utilization; (b) Link y1-y1 utilization; (c) Loss rate for D flows at

link z1-z2; (d) Loss rate for D flows at link y1-y2.

74

(a) Scaling factor

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

R service

D service

(b) Scaling factor

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

R service

D service

(c) Scaling factor

L
o

ss
, %

0
3
6
9

12
15
18
21

0 1 2 3 4 5 6 7

(d) Scaling factor

L
o

ss
, %

0

2

4

6

8

10

0 1 2 3 4 5 6 7

Figure 4.17: Scalability of the RD services with respect to the number of long-lived R
flows: (a) Link z1-z2 utilization; (b) Link y1-y1 utilization; (c) Loss rate for D flows at

link z1-z2; (d) Loss rate for D flows at link y1-y2.

75

(a)
Delay constraint, ms

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16

R service

D service

(b)
Delay constraint, ms

L
o

ss
, %

0

2

4

6

8

2 4 6 8 10 12 14 16

(c)
Delay constraint, ms

D
el

ay
, m

s

0
2
4
6
8

10
12
14
16

2 4 6 8 10 12 14 16

delay constraint
maximum delay

Figure 4.18: Sensitivity to the delay constraint of the D service (S-RD version): (a) Link
utilization; (b) Loss rate for D flows; (c) Maximum queuing delay for D flows.

76

4.6.4 Heterogeneous Environments

Influence of Propagation RTTs

This set of the experiments is conducted in the complex topology. The long-lived traffic
includes 25 R flows and 25 D flows from pool H, 25 R flows and 25 D flows from pool J,
50 R flows from pool K, and 50 D flows from pool F. For each of the flows, the reverse
direction of its path carries another long-lived flow of the same class. Also, two sources
in pool H transmit web-like R and D flows to pool G. The web-like traffic has the same
characteristics as in Section 4.6.3. The capacity of link z1-z2 is set to 100 Mbps. Thus, the
network contains two bottleneck links: z1-z2 and y1-y2.

To study the impact of propagation RTT on the RD services, M is changed from 80 ms
to 1.5 s. As the maximum propagation RTT grows, the per-flow number of packets inside
the network increases. Consequently, the TCP flows enjoy lower loss rates. Figure 4.19
confirms this expectation and also shows that the RD services consistently support the
intended 2:1 per-flow rate ratio for the R and D flows.

Besides, the same experiment is run for the S-RD version of the architecture. Figure 4.20
demonstrates that the throughput differentiation is supported over the whole range of the
varied parameter. Moreover, the maximum queuing delay at both the monitored bottleneck
links does not exceed the delay constraint.

Impact of the Packet Size

To estimate the influence of the packet size on the performance of S-RD implementation of
the design, the sizes of packets in both the classes are varied in the simple topology. There
are two sets of the experiments. In each set, the packet size for one class is fixed to 1000
bytes, and the packet size for the other class is modified in the range between 100 bytes and
1500 bytes. Figures 4.21 and 4.22 depict that the delay constraint is kept over the whole
range of packet sizes from class R and class D, respectively. Whereas the size of packets
from class R does not affect significantly the loss rate of class D, the loss rate of class D
increases monotonically with the size of packets from class D. We explain it by the bigger
contribution of part Smax

D

α
than Smax

R in equation (4.10) into the D buffer size.

77

(a) Maximum RTT, ms

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

100 200 500 1000 1500

R service

D service

(b) Maximum RTT, ms

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

100 200 500 1000 1500

R service

D service

(c) Maximum RTT, ms

L
o

ss
, %

0
2
4
6
8

10
12
14

100 200 500 1000 1500

(d) Maximum RTT, ms

L
o

ss
, %

0

1

2

3

4

5

6

100 200 500 1000 1500

Figure 4.19: Impact of the propagation RTT diversity: (a) Link z1-z2 utilization; (b) Link
y1-y1 utilization; (c) Loss rate for D flows at link z1-z2; (d) Loss rate for D flows at link

y1-y2.

78

(a) Maximum RTT, ms

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

100 200 500 1000 1500

class R
class D

(b) Maximum RTT, ms

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

100 200 500 1000 1500

class R
class D

(c) Maximum RTT, ms

D
el

ay
, m

s

0

2

4

6

8

10

12

100 200 500 1000 1500

delay constraint
maximum delay

(d) Maximum RTT, ms

D
el

ay
, m

s

0

3

6

9

12

15

100 200 500 1000 1500

delay constraint
maximum delay

Figure 4.20: Impact of the propagation RTT diversity (S-RD version): (a) Link z1-z2
utilization; (b) Link y1-y1 utilization; (c) Maximum queuing delay for D flows at link

z1-z2; (d) Maximum queuing delay for D flows at link y1-y2.

79

(a) Packet size, bytes

D
el

ay
, m

s
0

2

4

6

8

10

12

100 300 500 700 900 1100 1300 1500

delay constraint
maximum delay

(b) Packet size, bytes

D
el

ay
, m

s

0

3

6

9

12

15

100 300 500 700 900 1100 1300 1500

delay constraint
maximum delay

(c) Packet size, bytes

L
o

ss
, %

0

3

6

9

12

100 300 500 700 900 1100 1300 1500

(d) Packet size, bytes

L
o

ss
, %

0

1

2

3

4

100 300 500 700 900 1100 1300 1500

Figure 4.21: Sensitivity of the S-RD version to the size of packets from class R:
(a) Maximum queueing delay for D flows at link z1-z2; (b) Maximum queuing delay for D

flows at link y1-y2; (c) Loss rate for D flows at link z1-z2; (d) Loss rate for D flows at
link y1-y2.

80

(a) Packet size, bytes

D
el

ay
, m

s
0

2

4

6

8

10

12

100 300 500 700 900 1100 1300 1500

delay constraint
maximum delay

(b) Packet size, bytes

D
el

ay
, m

s

0

3

6

9

12

15

100 300 500 700 900 1100 1300 1500

delay constraint
maximum delay

(c) Packet size, bytes

L
o

ss
, %

0

4

8

12

16

100 300 500 700 900 1100 1300 1500

(d) Packet size, bytes

L
o

ss
, %

0

1

2

3

4

5

100 300 500 700 900 1100 1300 1500

Figure 4.22: Sensitivity of the S-RD version to the size of packets from class D:
(a) Maximum queueing delay for D flows at link z1-z2; (b) Maximum queuing delay for D

flows at link y1-y2; (c) Loss rate for D flows at link z1-z2; (d) Loss rate for D flows at
link y1-y2.

81

4.6.5 Dynamic Network Conditions

Influence of Web-like Traffic

To see how web-like flows affect the RD services, the average arrival rate is varied from
1 fps to 400 fps in the simple topology. When the flows arrive more frequently, the traffic
mix becomes more bursty and imposes higher load on the bottleneck link. As expected,
these factors drive up the loss rate for the D service. As the approximate number of flows
is the same, we expect that the ratio of the link utilizations by R flows and D flows should
be 2:1, which is observed in Figure 4.23. More importantly, despite the increasing losses,
the RD services still closely maintain the intended 2:1 per-flow rate ratio for the R and D
flows. In addition, Figure 4.23c demonstrates that the maximum queuing delay for D flows
revealed by the stateless version of the design does not exceed the expected 10 ms.

Heavy-tailed Flow Interarrival Times

While the previous section experiments with the web-like traffic where the flow interarrival
times adhere to the Exponential distribution, this section now modifies that arrangement
to the Pareto distribution with the shape index of 1.1. The only other traffic besides the
web-like flows comes from 50 R flows and 50 D flows that traverse the reverse direction of
the bottleneck link throughout the experiment. The access links for the web-like flows have
capacity 1 Gbps. The Pareto interarrival times make the traffic bursty and highly dynamic.
Figure 4.24 reflects the high dynamism of the R and D flow counts by showing the widely
fluctuating utilization of the bottleneck link by either R or D service. When the flows arrive
at average rate 50 fps, their average cumulative load is low, and they rarely congest the
bottleneck link. Arrival rate 100 fps makes the congestion instances more frequent and
intense. Increasing the average arrival rate to 200 fps creates persistent overload of the
bottleneck link. Together with the burstiness of the arrival process, the persistent overload
causes heavy losses for the D service, which is shown in Figure 4.25. Despite the burstiness
of the traffic, the delay constraint is always satisfied, as Figure 4.26 demonstrates.

82

(a)
Flow arrival rate, fps

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400

R service

D service

(b)
Flow arrival rate, fps

L
o

ss
, %

0

10

20

30

40

0 100 200 300 400

(c)
Flow arrival rate, fps

D
el

ay
, m

s

0

2

4

6

8

10

12

0 100 200 300 400

delay constraint
maximum delay

Figure 4.23: Impact of the web-like traffic (S-RD version): (a) Link utilization; (b) Loss
rate for D flows; (c) Maximum queuing delay for D flows.

83

(a)
Time, s

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

both services
R service
D service

(b)
Time, s

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

both services
R service
D service

(c)
Time, s

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

both services
R service
D service

Figure 4.24: Bottleneck link utilization under the RD services with the Pareto distribution
for the interarrival times of the web-like flows: (a) Average arrival rate 50 fps; (b) Average

arrival rate 100 fps; (c) Average arrival rate 200 fps.

84

(a)
Time, s

L
o

ss
, %

0

10

20

30

40

50

0 10 20 30 40 50 60

(b)
Time, s

L
o

ss
, %

0

10

20

30

40

50

0 10 20 30 40 50 60

(c)
Time, s

L
o

ss
, %

0

10

20

30

40

50

0 10 20 30 40 50 60

Figure 4.25: Loss rate for D flows under the RD services with the Pareto distribution for
the interarrival times of the web-like flows: (a) Average arrival rate 50 fps; (b) Average

arrival rate 100 fps; (c) Average arrival rate 200 fps.

85

(a)
Time, s

D
el

ay
, m

s

0

2

4

6

8

10

0 10 20 30 40 50 60

(b)
Time, s

D
el

ay
, m

s

0

2

4

6

8

10

0 10 20 30 40 50 60

(c)
Time, s

D
el

ay
, m

s

0

2

4

6

8

10

0 10 20 30 40 50 60

Figure 4.26: Queuing delay for D packets under the RD services with the Pareto
distribution for the interarrival times of the web-like flows: (a) Average arrival rate 50 fps;

(b) Average arrival rate 100 fps; (c) Average arrival rate 200 fps.

86

Sudden Changes in Network Conditions

To investigate how the RD services react to sudden changes in the network, the numbers of
R and D flows are changed in the simple topology as follows. 100 R flows start at time 0.
50 D flows join them 20 s later. 50 additional D flows arrive at time 40 s and thereby
equalize the flow counts for the two services at 100. At time 60 s, 80 D flows finish. 80
other D flows arrive at time 80 s. All R flows leave at time 100 s but 20 new R flows start
40 s later. Finally, 80 extra R flows arrive at time 160 s and reestablish the parity in the
numbers of R and D flows. Figure 4.27 shows that the RD design responds to the changes
promptly and appropriately: reflecting the current ratio of the flow counts, the per-flow rate
ratio for R and D flows becomes 4:1 at time 20 s, reduces to 2:1 at time 40 s, grows to
10:1 at time 60 s, and returns to 2:1 at times 80 s and 160 s, at the latter time by reverting
from 1:2. The sudden changes in the flow counts cause sharp spikes in the loss rate for
the D service but the spikes are short, and the losses decrease quickly to under 10%. The
RD services utilize the bottleneck link fully except between 100 s and 140 s. During that
interval, the link carries only D flows and is underutilized due to the small size of the D
buffer.

4.6.6 Legacy Traffic and Incremental Deployment

The design principles in Section 4.1 prescribe that a new service should attract adopters de-
spite continued presence of legacy ISPs and without penalizing legacy traffic. This section
experimentally verifies whether the RD services fulfill these design aspirations, and it uses
the complex topology. Unlike ISP Y, ISP Z does not support the RD services and treats
all traffic with the legacy service. 500 flows traverse the network: 125 flows come from
pool H, other 125 flows originate at pool J, and the remaining 250 flows enter from pools
K or F. Link z1-z2 has capacity 55 Mbps making link y1-y2 a bottleneck for all the flows.
This section varies ρ, the percentage of D flows. The other 1− ρ flows are either legacy or
R flows. More specifically, d125ρe D flows come from pool H, d125ρe D flows originate at
pool J, all 2 · d125ρe flows from pool F indicate their preference for the D service, and the
rest of the traffic consists of legacy and R flows.

Figure 4.28a plots the per-flow rates achieved by the legacy and R flows and D flows at
link y1-y2 of ISP Y. As those legacy flows that are interested in low delay opt for the D
service and thereby increase the percentage of D flows, the per-flow rate for the remaining

87

(a) Time, s

N
u

m
b

er
 o

f
fl

o
w

s
0

20

40

60

80

100

0 30 60 90 120 150 180

R service

D service

(b) Time, s

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180

both services

R service

D service

(c) Time, s

D
el

ay
, m

s

0

2

4

6

8

10

0 20 40 60 80 100 120 140 160 180

(d) Time, s

L
o

ss
, %

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

Figure 4.27: Reaction to sudden changes in the numbers of R and D flows: (a) Dynamics
of the number of flows; (b) Link utilization; (c) Queuing delay for D packets; (d) Loss rate

for D flows.

88

(a)
Percentage of D flows, %

R
at

e,
 M

b
p

s

0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70 80 90 100

Legacy and R flows

D flows

(b)
Percentage of D flows, %

L
o

ss
, %

0

3

6

9

12

15

0 10 20 30 40 50 60 70 80 90 100

(c)
Percentage of D flows, %

D
el

ay
, m

s

0

3

6

9

12

15

0 10 20 30 40 50 60 70 80 90 100

delay constraint
average delay

Figure 4.28: Impact of the incremental deployment on the performance at link y1-y2 of
ISP Y: (a) Per-flow rates; (b) Loss rate for D flows; (c) Maximum queuing delay for D

flows (S-RD version).

89

legacy flows consistently improves even though some of them enter the network through
the legacy ISP Z. Hence, the legacy traffic not only avoids being penalized by the adopters
of the D service in accordance with Principle 2 but also benefits itself by becoming able to
communicate at higher rates. Besides, Figure 4.28 reveals that adoption of the RD services
yields a win-win outcome for all users: as ρ grows, the per-flow rate increases for the D
flows as well, and the increasing size of the D buffer reduces the loss rate of the D service.
In addition, Figure 4.28 illustrates that the stateless version satisfies the delay constraint for
all the values of the varied parameter. Therefore, whereas a user opts for the D service to
acquire low delay, future adoptions of the D service by other legacy users make the service
even more valuable, facilitating the virulent deployment of the RD services.

4.6.7 Impact on the Loss Rate

Finally, this section explores how the discard of all packets from the D queue at the moment
of the recalculation of control parameters affects the loss rate of class D. Such flushing is
done to address a possibility of exceeding the delay constraint. As a theoretical analysis of
the influence of the flushing is difficult, we apply an experimental approach and conduct
two sets of simulations employing the S-RD version of the design.

Figure 4.29 reports the results for the same experimental settings as in the part of Sec-
tion 4.6.5 exploring influence of web-like traffic, with no flushing from the D queue. As
expected the maximum queuing delay of class D exceeds the delay constraint for all the
values of the arrival rate for web-like flows except for 1 fps. The loss rate of class D is
approximately the same as with the flushing.

Figure 4.30 shows the results for the same experimental settings as in Section 4.6.6, which
illustrates incremental deployment, with avoiding flushing from the D queue. One can
observe that the maximum queuing delay of class D is bigger than the delay constraint for
the half of the values of the percentage of D flows. The loss rate of class D is approximately
the same as with the flushing except for the traffic with 5% of D flows, for which the loss
rate increases by 3%.

The explanation of the loss rate behavior is as follows. Although with the flushing there are
induced losses of class D, the dropping of packets creates the room in the buffer for new
packets from class D, and this compensates for losses caused by the flushing. Thus, based

90

(a)
Flow arrival rate, fps

D
el

ay
, m

s

0

2

4

6

8

10

12

0 100 200 300 400

delay constraint
maximum delay

(b)
Flow arrival rate, fps

L
o

ss
, %

0

10

20

30

40

0 100 200 300 400

with flushing
w/o flushing

Figure 4.29: Influence of avoiding the ”flushing” of the D queue with different intensities
of web-like traffic: (a) Maximum queuing delay for class D; (b) Average loss rate for class

D.

on the results of the experiments, we assert that flushing the D queue for ensuring the delay
constraint does not lead to deterioration of the loss rate.

4.7 Performance Evaluation with Telephony Traffic

To evaluate the performance of the RD services for VoIP (Voice over Internet Protocol),
we vary the intensity of the web-like traffic, propagation RTT, and the number of VoIP
flows. We use the simple topology, and there are 100 flows from class R and 100 VoIP
flows. To generate the VoIP traffic, we use the tool developed in [7]. RTTs of the VoIP
flows are the same and equal to 150 ms. Besides, there are 100 flows from class R in the

91

(a)
Percentage of D flows, %

D
el

ay
, m

s

0

4

8

12

16

20

0 10 20 30 40 50 60 70 80 90 100

delay constraint
average delay

(b)
Percentage of D flows, %

L
o

ss
, %

0
4
8

12
16
20
24
28

0 10 20 30 40 50 60 70 80 90 100

with flushing
w/o flushing

Figure 4.30: Influence of avoiding the ”flushing” of the D queue with the incremental
deployment of the S-RD design: (a) Maximum queuing delay for class D; (b) Average

loss rate for class D.

reverse direction. The value of d is 50 ms. In addition, there is one web server and one web
traffic receiver connected to the bottleneck link for classes R and D. The size of web flows
is described by the Pareto distribution with the average of 30 packets and shape index of
1.3. Web flows arrive with the intensity of 50 fps. We perform five experiments for each
settings, and each experiment lasts for 70 sec. To encode the speech, we employ AMR
(Adaptive Multi-Rate) Audio Codec [97] operating at audio bitrate of 12.2 kbps.

To evaluate the quality of the delivered service, we use the Mean Opinion Score (MOS) [1],
a subjective score for voice quality ranging from 1, unacceptable, to 5, excellent. To es-
timate a MOS score, we apply the E-Model [2], which assesses VoIP quality accounting
network characteristics. The E-Model uses the R-factor that is computed as a function of
all of the impairments occurring with the voice signal, and is ranged from 0 to 100. The

92

R-factor range MOS Category of voice User satisfaction
transmission quality

90 - 100 4.34 - 4.50 Best Very satisfied
80 - 90 4.03 - 4.34 High Satisfied
70 - 80 3.60 - 4.03 Medium Some users dissatisfied
60 - 70 3.10 - 3.60 Low Many users dissatisfied
50 - 60 2.58 - 3.10 Poor Nearly all users dissatisfied

Table 4.3: Categories of voice transmission quality

relationship between the R-factor and MOS score can be described through the following
equation [2]:

MOS = 1 + 0.035R + 7 ∗ 10−6R(R− 60)(100−R) (4.31)

According to E-Model, R-factor is calculated as follows:

R = R0 − Is − Ie,eff − Id + A (4.32)

where R0 captures the basic signal-to-noise ratio, Is accounts the impairments occurring
with the voice signal and does not depend on the transmission over the network, Ie,eff

describes impairments related to data loss and low rate codecs, Id specifies the impairments
induced by delay and echo, and A, ”advantage factor”, compensates the above impairments
taking into account that a user may tolerate some decrease of voice quality in exchange for
access advantage. For example, whereas for a wired phone A equals to zero, A becomes
equal to ten for cellular in a moving vehicle. Table 4.3 maps the values of R-factor into
MOS, the category of voice transmission quality, and user satisfaction. One should notice
that connections with R-factor below 50 are not recommended.

To characterize the performance of the architecture for VoIP, we measure average MOS
of all VoIP flows, the average utilization and loss rate of class R. While measuring MOS,
first ten seconds of the experiment are neglected. All flows join the network during the
first second. We compare the performance of the RD services with the performance of the
DropTail routers.

93

4.7.1 Dynamic Network Conditions

Influence of Web-like Traffic

To study the influence of web-like traffic, we change the intensity of the web-like traffic
in the interval between 1 fps and 150 fps. Besides, we keep tracking the performance of
one long-lived throughput-greedy flow that initially uses R service and then switches to D
service. The results are presented in Figure 4.31. One can observe that the RD services
demonstrate better performance for VoIP over almost the whole range of the varied param-
eter, whereas the R traffic gets the same bottleneck link utilization and smaller loss rate
comparing to the DropTail link. It means that the R flows get better goodput if employing
RD services. One can also see that whereas the loss rate of class R with DropTail is bigger,
the throughput is approximately the same with both the RD services and DropTail. Besides,
the misbehaving throughput-greedy flow gains the performance after switching to class D
for almost the whole range of the varied parameter, which is expected, as VoIP flows do
not consume the whole throughput provided by RD routers.

Transient Behavior

In this experiment, VoIP flows join the network during the whole experiment lasting for 600
sec. There are 500 VoIP flows that start coming to the network from the beginning. The
arrival process is described by the Exponential distribution with the average 1 fps. Whereas
the average MOS for DropTail is 2.97, MOS with the RD services is 4.16. The throughput
of class D is 84.45% and 83.85% for RD services and DropTail, respectively. The loss rate
of class D is 0.38% and 0.4% with the RD services and the DropTail link, respectively.
Thus, one can observe that the RD services deliver better service for VoIP in the dynamic
scenario.

4.7.2 Influence of Propagation RTT

To explore how propagation RTT affects the quality of VoIP, we modify the propagation
RTT of VoIP flows in the interval between 30 ms and 800 ms. The delay of the bottleneck
link is 10 ms. In Figure 4.32, we notice that RD services reveal better performance for
VoIP over the whole range of the varied parameter. In particular, at least medium quality of

94

(a) Flow arrival rate, fps

M
O

S
0

1

2

3

4

5

0 30 60 90 120 150

RD services
RD services with m/b
DropTail

(b) Flow arrival rate, fps

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 30 60 90 120 150

RD services
RD services with m/b
DropTail

(c) Flow arrival rate, fps

R
at

e,
 M

b
p

s

0

1

2

3

4

0 30 60 90 120 150

R flow
R flow with m/b

(d) Flow arrival rate, fps

L
o

ss
, %

0

0.2

0.4

0.6

0.8

1

0 30 60 90 120 150

RD services
RD services with m/b
DropTail

Figure 4.31: Performance for different web-like traffic intensities: (a) Average MOS; (b)
average utilization of class R; (c) Average throughput of ”misbehaving”

throughput-greedy flow; (d) Average loss rate of class R.

95

(a)
RTT, ms

M
O

S

0

1

2

3

4

5

0 100 200 300 400 500 600 700 800

RD services
DropTail

(b)
RTT, ms

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800

RD services
DropTail

(c)
RTT, ms

L
o

ss
, %

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800

RD services
DropTail

Figure 4.32: Performance for different propagation RTTs: (a) Average MOS; (b) Average
utilization of class R; (c) Average loss rate of class R.

96

voice is supported for the propagation RTTs up to 300 ms with the RD link. On the other
hand, the DropTail link can support the same quality of voice for the propagation RTTs no
more than 50 ms. Besides, the R traffic gets the same bottleneck link utilization and loss
rate as in the case of the DropTail link.

4.7.3 Scalability Properties

Influence of Long-lived R Flows

In this experiment, we change the number of long-lived R flows flows in the interval be-
tween 100 and 500. Figure 4.33 shows that VoIP flows receive better service comparing to
the DropTail link through almost the whole range of the varied parameter, whereas R flows
reveal the same performance concerning link utilization and loss rate. The deterioration of
the voice quality with the increase of the number of R flows, when MOS reduces from 4.14
till 2.5, is because the decrease of the D buffer size increases the loss rate.

Impact of the VoIP Population Size

To examine the scalability of the design concerning the population of VoIP flows, we vary
the number of them in the interval between 100 and 500. In Figure 4.34, we observe that
the number of VoIP flows does not affect the quality of VoIP. In particular, MOS with the
RD services stays in the range between 4.14 and 4.16 whereas MOS with the DropTail link
is between 3.01 and 3.13. On the other hand, R flows reveal the same performance for both
the schemes concerning the link utilization, which is between 82% and 87%, and loss rate,
which values are between 0.32% and 0.38%.

4.7.4 Partial Deployment

This experiment explores the situation when VoIP flows use the service provided by two
different ISPs. There is one bottleneck within each ISP, 50 VoIP flows, 50 R flows going
through both the ISPs, and two groups of 50 R flows each so that each group goes only
through one ISP. In particular, we consider two deployment scenarios. The first one as-
sumes that only one ISP has deployed the RD services, whereas in the second one both

97

(a)
Number of long−lived R flows

M
O

S

0

1

2

3

4

5

100 200 300 400 500

RD services
DropTail

(b)
Number of long−lived R flows

U
til

iz
at

io
n

0

0.2

0.4

0.6

0.8

1

100 200 300 400 500

RD services
DropTail

(c)
Number of long−lived R flows

Lo
ss

, %

0

0.5

1

1.5

2

2.5

3

100 200 300 400 500

RD services
DropTail

Figure 4.33: Performance for different numbers of R flows: (a) Average MOS; (b)
Average utilization of class R; (c) Average loss rate of class R.

98

(a)
Number of VoIP flows

M
O

S

0

1

2

3

4

5

100 200 300 400 500

RD services
DropTail

(b)
Number of VoIP flows

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

100 200 300 400 500

RD services
DropTail

(c)
Number of VoIP flows

L
o

ss
, %

0

0.2

0.4

0.6

0.8

1

100 200 300 400 500

RD services
DropTail

Figure 4.34: Performance for different numbers of VoIP flows: (a) Average MOS; (b)
Average utilization of class R; (c) Average loss rate of class R.

99

(a)
RTT, ms

M
O

S

0

1

2

3

4

5

50 100 150 200 250 300 350 400 450 500

RD services: p/d
RD services: f/d
DropTail

(b)
RTT, ms

R
at

e,
 M

b
p

s

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250 300 350 400 450 500

RD services: p/d
RD services: f/d
DropTail

(c)
RTT, ms

L
o

ss
, %

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250 300 350 400 450 500

RD services: p/d
RD services: f/d
DropTail

Figure 4.35: Performance under partial deployment for different propagation RTTs: (a)
Average MOS; (b) Average per-flow throughput of class R; (c) Average loss rate of class

R.

100

the ISPs have adopted the proposed architecture. The propagation RTT of the VoIP flows
is varied in the range between 64 ms and 500 ms. In Figure 4.35, we observe that even
under the partial deployment of the RD services, which is labeled as ”p/d” in the graph, the
VoIP flows get better service. Moreover, the full deployment of the design labeled as ”f/d”
further improves the voice quality. More importantly, the improvements of VoIP quality do
not affect the service delivered to the R class concerning the flow rates.

4.8 Summary

This Chapter reconsidered the problem of aligning network services with application needs.
It argued that design of a new service should put an emphasis on providing both end users
and ISPs with incentives to adopt the new service despite its partial deployment. It designed
and implemented the RD services that offer two best-effort services of low queuing delay
or higher throughput. The RD router supports the services with two queues per output link,
one queue per traffic class. The extensive evaluation revealed that the design supports the
intended delay-rate differentiation with a reasonable level of losses in a wide variety of
settings.

101

Chapter 5

TMD: Accelerating Flow Completion
through Dynamic Buffer Allocation

FCT (Flow Completion Time) has been recognized as a major performance metric for short-
lived flows, e.g., for short-lived web flows. The problem of reducing FCT of short-lived
flows without doing harm to long-lived flows is commonly tackled by treating the two types
of traffic differently at a congested link. However, the existing solutions struggle with clas-
sifying flows as short-lived versus long-lived so that to perform successfully under various
network conditions. While TCP (Transport Control Protocol) remains the dominant trans-
port protocol in the Internet and for web applications in particular, this Chapter proposes to
differentiate the forwarded traffic based on the current TCP operation modes of the flows.
Because short-lived TCP flows tend to operate mostly in the slow-start mode, this Chap-
ter proposes TMD (TCP Mode Differentiation), which categorizes slow-start TCP flows
as belonging to class S and treats the other traffic as class A. Then, it explores a TMD
buffer management scheme that dynamically partitions the shared FIFO (First-In First-
Out) link buffer between the two traffic classes S and A. TMD imposes a low overhead and
is amenable to incremental deployment in the Internet. Nevertheless, the extensive experi-
mentation for a wide range of network settings demonstrates that TMD decreases FCT of
short-lived flows significantly without reducing throughput of long-lived flows.

5.1 Analytical Foundation

To understand why the TCP mode might be a promising basis for reducing flow completion
time, let L = LS(lS) + LA(lA) denote the amount of data delivered by a TCP flow where
LS(lS) represents the data delivered in the slow-start mode, LA(lA) captures the delivered

102

during congestion avoidance and the other (e.g., fast-recovery) modes, and lS and lA are
respective loss rates. With gS(lS) and gA(lA) denoting respectively goodput of the TCP
flow in the slow-start mode and all the other modes, one can express completion time of
the flow as:

FCT =
LS(lS)

gS(lS)
+

LA(lA)

gA(lA)
. (5.1)

While loss rates lS and lA are interrelated, a change in their balance might lead to new
values l′S and l′A that provide the flow with smaller completion time:

FCT ′ =
LS(l′S)

gS(l′S)
+

LA(l′A)

gA(l′A)
< FCT. (5.2)

5.2 Conceptual Design

This section explores whether the desired balance between the loss rates is achievable
through dynamic partitioning of the congested link buffer. More specifically, TMD (TCP
Mode Differentiation) design categorizes slow-start TCP flows as belonging to class S
(Start), treats the other traffic as class A (Avoidance), and splits the link buffer between
the two classes to maintain the ratio of per-flow buffer shares bS and bA for classes S and A
at k:

bS

bA

= k, (5.3)

where k is the only parameter of the proposed scheme. Hence, if nS and nA represent
respectively the number of flows from classes S and A, TMD splits total space B of the
link buffer between classes S and A into partitions BS and BA sized as:

BS =
knSB

nA + knS

and BA =
nAB

nA + knS

. (5.4)

5.3 Design Details

5.3.1 Routers

A TMD router employs Equations 5.4 to partition the link buffer between classes S and A.
When a packet arrives, the router determines the class of the packet. If the buffer partition

103

p ← received packet;
x ← class of p;
S ← size of p;
if qx + S ≤ Bx

append p to the tail of the link queue;
qx ← qx + S;

else
discard p

Figure 5.1: TMD router operation upon receiving a packet destined to the link where Bx

and qx respectively refer to the buffer partition and queue sizes for traffic class x.

for this class has enough free space for the packet, the router append the packet to the tail
of the link queue. Otherwise, the router discards the packet. Figure 5.1 depicts the above
simple algorithm.

Whereas the dynamic buffer partitioning relies on nS and nA, the design estimates the num-
bers of flows for classes S and A using the timestamp-vector algorithm [64]. The algorithm
maps each received packet into an element of the array called a timestamp vector employing
a hash function. The timestamp vector accommodates b elements. The algorithm inspects
the timestamp vector with period T and considers a flow inactive if the timestamp vector
did not register any packets of the flow during the last period E. Following the guidelines
in [28] and assuming E = 1 s, 105 active flows, and standard deviation ε = 0.05, we use
b = 18, 000 as the default setting for the timestamp vector size.

A TMD router updates nS and nA with period T . Upon each update, the router adjusts the
buffer partitions for classes S and A. Even if nS or nA is zero, the router allocates non-zero
buffers for both classes. The experimental results suggest that specific partition sizes are
not too important. In the reported experiments, the design initializes the buffer partitions
to BS = 4kB

1+4k
and BA = B

1+4k
, which correspond to the 4:1 ratio between the numbers of

TCP slow-start flows and all the other flows.

The TMD design partitions the buffer rigidly in the sense that if the partition for one class
is full, arriving packets of this class are discarded regardless of the space availability in the
other partition. An alternative implementation could allow the excessive traffic to utilize
the unused space in the other partition with the obligation to return the space immediately
(i.e., through discard of already enqueued packets) whenever traffic of the lending class
needs the space. It is not clear whether the flexible alternative would have a positive impact

104

on flow performance. We do not undertake this alternative due to complexities associated
with the discard of already enqueued packets.

Since the link is served from the single FIFO queue, packets within a TCP flow do not
change their order while traversing the TMD router. By preserving the FIFO link schedul-
ing, the TMD design avoids the well-known problems caused for TCP performance by
packet reordering.

5.3.2 End Hosts

In principle, a router might be able to infer the current mode of a TCP flow without any
assistance from the sender [11]. However, such inference would put a significant burden
on the router. Instead, the design delegates the TMD classification to the senders. The TCP
slow-start sender marks the packets of its flow as belonging to class S by setting one of the
currently reserved and unused bits in the TCP segment headers. The default setting of the
bit indicates that the packet should be treated as belonging to class A. Thus, TMD preserves
the TCP segment format. Also, the incrementally deployable scheme views legacy flows
as belonging to class A and provides them with a similar service as in the existing Internet.

Except for the class signaling, TMD does not require any support from end hosts. In
particular, TMD does not modify end-to-end transport protocols.

5.3.3 TMD Partitioning Parameter

The only parameter of the TMD scheme is k, the ratio of the per-flow buffer shares for
classes S and A. While robust setting of parameters has turned into a central concern for
prior designs [35], we start with a qualitative discussion on how to set k. If k is too large,
smaller FCT of short-lived flows comes at the expense of long-lived flows whose through-
put drops due to insufficient buffer space. If k is too small, FCT of short-lived flows
increases.

For further insights into setting k, this chapter experiments in ns-2 [72] with a non-partitioned
FIFO DropTail buffer at the core bottleneck link of a single-bottleneck dumbbell topology.
The bottleneck link has capacity 100 Mbps and propagation delay 50 ms. There are N long-
lived flows with propagation RTTs distributed uniformly between 104 ms and 300 ms. One

105

web server generates TCP traffic with propagation delay 100 ms. Web flows arrive accord-
ing to the Exponential distribution with average intensity a. The sizes of web flows are
Pareto-distributed with average b and shape index 1.3. All flows use packets sized to 1 KB.
The long-lived flows start during the first second of the experiment. Web traffic is gener-
ated throughout the experiment. The duration of the experiment is 60 s. N , a, and b are
varied, and the average per-flow queue sizes at the bottleneck link for slow-start flows and
congestion-avoidance flows are measured. The measurements are performed every 0.1 s.
Figure 5.2 shows that the ratio of the per-flow queue sizes is close to 0.5. These results for
the non-partitioned buffer suggest that the explored range of k values for the partitioned
TMD design should include k = 0.5.

5.4 Performance Evaluation

This section evaluates performance of the TMD design in ns-2 [72]. First, it takes a close
look at setting k. Then, it uses the chosen value of k in the extensive evaluation of TMD.

5.4.1 Parameter Setting

To find reasonable values for the TMD main control parameter k, we experiment in a single-
bottleneck dumbbell topology with short-lived and long-lived flows. In each experiment,
every short-lived flow has the same size and propagation RTT. For each experimental set-
ting, the size of the short-lived flows is varied from 1 KB up to 150 KB. The packet size
of all the flows is 1 KB. The bottleneck link capacity is 100 Mbps, each access link is 200
Mbps. The delay of the bottleneck link is 50 ms, and the maximum queuing delay at the
bottleneck link buffer is 250 ms. There are 100 long-lived flows, and propagation delays of
them are uniformly distributed in the range between 104 ms and 300 ms. The short-lived
flows are generated by one web server, and they have propagation RTT equal to 100 ms.
Five experiments are performed for each experimental settings, and the average value is
calculated. This section reports the average flow completion time of the short-lived flows
and the throughput of the long-lived flows in terms of the bottleneck link utilization. It runs
the experiments for the DropTail link and the following values of k: 0.1, 0.5, 1.0, 2.0, 10.0.

106

(a)
Time, s

Q
u

eu
e,

 %
 o

f
b

u
ff

er

0

0.05

0.1

0.15

0.2

0 10 20 30 40 50 60

slow start
congestion avoidance

(b)
Time, s

Q
u

eu
e,

 %
 o

f
b

u
ff

er

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

slow start
congestion avoidance

(c)
Time, s

Q
u

eu
e,

 %
 o

f
b

u
ff

er

0

0.02

0.04

0.06

0.08

0.1

0 10 20 30 40 50 60

slow start
congestion avoidance

Figure 5.2: Average per-flow queue sizes for TCP slow-start flows and TCP
congestion-avoidance flows with the non-partitioned FIFO DropTail buffer at the

bottleneck link: (a) N = 0, a = 400 fps, b = 10 KB; (b) N = 500, a = 400 fps, b = 30 KB;
(c) N = 100, a = 50 fps, b = 30 KB.

107

Different intensities of short-lived flows

In this set of experiments, we use three different values of the intensity of web-like flows:
a1 = 20 fps, a2 = 100 fps, and a3 = 200 fps. Figures 5.3, 5.4, 5.5 report the results for the
whole range of the varied parameter, and the average FCT for web-like flows with sizes
between 1 KB and 30 KB. One can observe that for intensities a1 and a2 the performance
of the short-lived flows corresponds to the qualitative description that has been given in
Section 5.3.3. In particular, a big value of k such as 10.0 gives better FCT for the short-
lived flows with sizes up to 30 KB comparing to the DropTail link, but FCT for bigger
flows is larger comparing to the DropTail link. On the other hand, a small value of k such
as 0.1 gives better FCT for the short-lived flows with size bigger than 70 KB for intensity
of the short-lived flows a3. In addition, FCT decreases if changing intensity a3 by intensity
a2. Concerning intensity a1, increasing the value of k improves FCT for all the values of
flow sizes. It is explained that the value of the size of the short-lived flows starting from
which bigger values of k deteriorate FCT, is bigger for a1 comparing to a2 and a3 due to the
smaller loss rate. Moreover, the average FCT of the short-lived flows with the DropTail link
is bigger by up to 54% depending on the flow size for all the sizes of the short-lived flows
for k = 0.5. The throughput of the long-lived flows is approximately the same for TMD
with k = 0.5 and the DropTail link. On the other hand, the scheme with k = 0.1 reveals
better performance of the long-lived flows for a2, a3 than the DropTail link, and deteriorates
the throughput of the long-lived flows for a2 if employing values of k bigger than 0.5. Thus,
we conclude that k = 0.5 is close to optimal value in the design. As expected the scheme
reveals better performance if the duration of slow start is comparable with the duration
of congestion avoidance. The similarity of the throughput of the long-lived flows of the
design with k = 0.5 and the DropTail link is explained that the long-lived flows operate in
congestion avoidance for the vast majority of their existence. Thus, while not deteriorating
the performance of long-lived flows, the TMD design improves the performance of short-
lived flows.

Different propagation RTTs of web-like flows

To evaluate the design for different propagation RTTs for web-like flows, the mentioned
RTTs are modified between 30 ms and 300 ms. The intensity of the short-lived flows is
100 fps. The size of the short-lived flows is varied in the range between 1 KB and 150
KB. Figures 5.6 and 5.7 report the results for the whole range of the varied parameter,

108

(a) Flow size, KB

F
C

T
, s

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90 100

k = 0.1
k = 0.5
k = 1.0
k = 2.0
k = 10.0
DropTail

(b) Flow size, KB

F
C

T
, s

0

4

8

12

16

20

24

0 30 60 90 120 150

k = 0.1
k = 0.5
k = 1.0
k = 2.0
k = 10.0
DropTail

(c) Flow size, KB

F
C

T
, s

0

5

1010

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

k = 0.1
k = 0.5
k = 1.0
k = 2.0
k = 10.0
DropTail

Figure 5.3: Average FCT of short-lived flows for their different intensities: (a) 20 fps; (b)
100 fps; (c) 200 fps.

109

(a) Flow size, KB

F
C

T
, s

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30

k = 0.1
k = 0.5
k = 1.0
k = 2.0
k = 10.0
DropTail

(b) Flow size, KB

F
C

T
, s

0

1

2

3

4

0 5 10 15 20 25 30

k = 0.1
k = 0.5
k = 1.0
k = 2.0
k = 10.0
DropTail

(c) Flow size, KB

F
C

T
, s

0

1

2

3

4

5

6

0 5 10 15 20 25 30

k = 0.1
k = 0.5
k = 1.0
k = 2.0
k = 10.0
DropTail

Figure 5.4: Zoomed average FCT of short-lived flows for their different intensities: (a) 20
fps; (b) 100 fps; (c) 200 fps sec.

110

(a) Flow size, KB

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

k = 0.1
k = 0.5
k = 1.0
k = 2.0
k = 10.0
DropTail

(b) Flow size, KB

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 30 60 90 120 150

k = 0.1
k = 0.5
k = 1.0
k = 2.0
k = 10.0
DropTail

(c) Flow size, KB

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

k = 0.1
k = 0.5
k = 1.0
k = 2.0
k = 10.0
DropTail

Figure 5.5: Average throughput of long-lived flows for their different intensities: (a) 20
fps; (b) 100 fps; (c) 200 fps.

111

(a) Flow size, KB

F
C

T
, s

0

4

8

12

16

20

24

0 30 60 90 120 150

k = 0.1
k = 0.5
k = 1.0
k = 2.0
k = 10.0
DropTail

(b) Flow size, KB

F
C

T
, s

0

3

6

9

12

15

18

21

24

27

0 30 60 90 120 150

k = 0.1
k = 0.5
k = 1.0
k = 2.0
k = 10.0
DropTail

Figure 5.6: Average FCT of short-lived flows for their different propagation RTTs: (a)
RTT = 30 ms; (b) RTT = 300 ms.

and the average FCT for the short-lived flows with sizes between 1 KB and 30 KB. The
performance with the TMD link is qualitatively similar to the one revealed in Section 5.4.1.
In particular, k = 0.5 decreases FCT of the short-lived flows for the whole range of their
sizes without degrading the throughput of the long-lived flows. The relative improvement
of FCT for k = 0.5 is bigger when the propagation RTT of the short-lived flows is 30
ms. In addition, bigger values of k improve FCT for the short-lived flows with sizes up to
100 KB, but deteriorate the throughput of the long-lived flows. On the other hand, smaller
values of k gain the performance of the short-lived flows with sizes larger than 100 KB
degrading FCT of the smaller short-lived flows. Again, one can observe that k = 0.5 seems
to be the most appropriate value that decreases FCT of the short-lived flows of different
sizes without diminishing the throughput of the long-lived flows.

112

(a) Flow size, KB

F
C

T
, s

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30

k = 0.1
k = 0.5
k = 1.0
k = 2.0
k = 10.0
DropTail

(b) Flow size, KB

F
C

T
, s

0

1

2

3

4

5

6

0 5 10 15 20 25 30

k = 0.1
k = 0.5
k = 1.0
k = 2.0
k = 10.0
DropTail

Figure 5.7: Zoomed average FCT of short-lived flows for their different propagation
RTTs: (a) RTT = 30 ms; (b) RTT = 300 ms.

5.4.2 Experimental Settings

Now and till the end of this section, the performance of the TMD design is evaluated with
k = 0.5 chosen in accordance with the above experimental study. This series of experi-
ments uses the same settings as in Section 5.4.1, except for the bottleneck link propagation
delay, which is set to 10 ms. We perform five experiments for each experimental settings,
and calculate the average value. We report the average goodput of the web-like traffic as
the average of the goodput of each web-like flow. We calculate the goodput of a web-like
flow as the ratio between the flow size and its FCT. We also plot the minimum and the
maximum values for each experimental settings. To compare the TMD design, we run the
experiments with the same settings for the DropTail link.

113

(a) Flow size, KB

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 30 60 90 120 150

k = 0.1
k = 0.5
k = 1.0
k = 2.0
k = 10.0
DropTail

(b) Flow size, KB

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 30 60 90 120 150

k = 0.1
k = 0.5
k = 1.0
k = 2.0
k = 10.0
DropTail

Figure 5.8: Average throughput of long-lived flows for their different propagation RTTs:
(a) RTT = 30 ms; (b) RTT = 300 ms.

5.4.3 Dynamic Changes

Influence of Web-like Traffic

This section studies the influence of the intensity of the web-like traffic for the arrival rate
of web-like flows between 1 fps and 400 fps. The flow size is described by the Pareto
distribution with the average of 30 KB and shape index 1.3. Figure 5.9 demonstrates that
the TMD link improves the performance of web-like flows by 20% for almost the whole
range of the varied parameter. For the intensity of web-like traffic of at least 300 fps, the
gain of the considered performance is up to 72%. The long-lived flows with the design
demonstrate the same performance as with the DropTail scheme.

114

(a)
Flow arrival rate, fps

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

TMD
DropTail

(b)
Flow arrival rate, fps

G
o

o
d

p
u

t,
 K

B
p

s

0

2

4

6

8

10

0 50 100 150 200 250 300 350 400

TMD
DropTail

Figure 5.9: Influence of the intensity of web-like traffic: (a) Throughput of long-lived
flows; (b) Goodput of web-like flows.

Heavy-tailed arrivals of flows

The purpose of these experiments is to explore the performance of the design for heavy-
tailed arrivals of flows. Web-like flows join the network according to the Pareto distribution
with the average intensity 100 fps and shape index 1.1. The flows sizes of the web-like
flows are Pareto-distributed with shape index 1.3 and average size Lavg. This section runs
the experiments for Lavg = 30 KB and Lavg = 100 KB. Figure 5.10 demonstrates better
performance of the proposed design for the web-like traffic and the similar throughputs of
the long-lived flows with the TMD and DropTail links. In particular, the improvement from
TMD for the web-like flows is up to 62% for Lavg = 30 KB and up to 36% for Lavg = 100
KB.

115

(a)
50 200 400

Flow arrival rate, fps

G
o

o
d

p
u

t,
 K

B
p

s

0
2

4
6

8
10

TMD
DropTail

50 200 400

Flow arrival rate, fps

T
h

ro
u

g
h

p
u

t,
 M

b
p

s

0
20

40
60

80
10

0

TMD
DropTail

(b)
50 200 400

Flow arrival rate, fps

G
o

o
d

p
u

t,
 K

B
p

s

0
5

10
15

TMD
DropTail

50 200 400

Flow arrival rate, fps

T
h

ro
u

g
h

p
u

t,
 M

b
p

s

0
10

20
30

40
50

60 TMD
DropTail

Figure 5.10: Average goodput of web-like flows and throughput of long-lived flows for
different average sizes of web-like flows: (a) Lavg = 30 KB; (b) Lavg = 100 KB.

5.4.4 Scalability Properties

Population Scalability

To explore the performance concerning the population scalability, the number of the long-
lived flows is varied between 50 and 600. The intensity of web-like traffic is 100 fps.
Figure 5.11 demonstrates that whereas the long-lived flows have the same throughput with
the TMD and DropTail links, the design improves the goodput of the web-like traffic by
19%-37%.

116

(a)
Number of long−lived flows

U
til

iz
at

io
n

0

0.2

0.4

0.6

0.8

1

100 200 300 400 500 600

TMD
DropTail

(b)
Number of long−lived flows

G
oo

dp
ut

, K
B

ps

0

2

4

6

8

10

12

100 200 300 400 500 600

TMD
DropTail

Figure 5.11: Scalability of the TMD design with respect to the number of long-lived
flows: (a) Throughput of long-lived flows; (b) Goodput of web-like flows.

Scalability with the Bottleneck Link Capacity

To study the scalability concerning the bottleneck link capacity, the bottleneck link capacity
is modified in the range between 1 Mbps and 1 Gbps. The propagation RTT of web-like
flows is 100 ms. Figure 5.12 demonstrates that whereas the performance of TMD and
DropTail schemes are similar for the long-lived flows except for the bottleneck link capacity
of 500 Mbps, for which the scheme produces a slightly smaller throughput. However, the
design reveals advantage over the DropTail link concerning the performance of the web-
like traffic. In particular, TMD improves the goodput of the web-like flows by up to 55%.
The decrease of the goodput of the web-like traffic for small values of the bottleneck link
capacity down to almost zero is explained by the very high loss rate. The similarity of
the performance of the web-like flows for large bottleneck link capacities is due to very

117

(a)
Bottleneck link capacity, Mbps

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

TMD
DropTail

(b)
Bottleneck link capacity, Mbps

G
o

o
d

p
u

t,
 K

B
p

s

0

3

6

9

12

15

0 200 400 600 800 1000

TMD
DropTail

Figure 5.12: Scalability of the TMD design with respect to the bottleneck link capacity:
(a) Throughput of long-lived flows; (b) Goodput of web-like flows.

small loss rates, which limits the space for redistribution of losses between slow start and
congestion avoidance.

5.4.5 Influence of the Propagation RTT of the Web-like Traffic

In this experiments, the propagation RTT of the web-like flows is changed in the range
between 30 ms and 500 ms. The number of the long-lived flows is 100. Figure 5.13 shows
that TMD scheme allows to improve the goodput of the web-like flows by up to 61%,
and the performance with the TMD and DropTail links for the long-lived flows is similar.
Besides, the performance of the web-like traffic with the TMD link becomes closer to one

118

(a)
RTT, ms

U
ti

liz
at

io
n

0

0.2

0.4

0.6

0.8

1

100 200 300 400 500

TMD
DropTail

(b)
RTT, ms

G
o

o
d

p
u

t,
 K

B
p

s

0
2
4
6
8

10
12
14

100 200 300 400 500

TMD
DropTail

Figure 5.13: Influence of the propagation RTT of web-like flows: (a) Throughput of
long-lived flows; (b) Goodput of web-like flows.

with the DropTail link with the increase of propagation RTT because large propagation
RTT dominates FCT.

5.4.6 UDP Flows

To investigate how TMD deals with non-elastic traffic, we enhance the bottleneck link
traffic with three UDP flows. Each of these flows transmits at the rate of 10 Mbps. The
duration of the experiment is 130 s. The first, second, third UDP flows start at 20 s, 40 s,
and 60 s, respectively, and finish at 80 s, 100 s, and 120 s, respectively. Five experiments are
run for each of the schemes, i.e., with the TMD and DropTail links. The average goodput of
the web-like traffic for the proposed design and the DropTail link are 9.08 KBps and 6.22

119

Time, sec

T
h

ro
u

g
h

p
u

t,
 M

b
p

s

0

20

40

60

80

100

0 20 40 60 80 100 120

TCP+UDP
TCP
UDP

Figure 5.14: Coexistence with the non-elastic UDP traffic.

5msr3r2r1r0

200Mbps

5ms r7

P7

5ms r6

P1

100Mbps100Mbps100Mbps200Mbps

P0

P6P2

P3

P4

P5

r55ms5ms5ms5ms

100Mbps100Mbps

r4

Figure 5.15: Multi-bottleneck topology.

KBps, respectively, i.e., TMD improves the performance by 46 %. The average throughputs
of the long-lived flows with the TMD and DropTail links are 64 Mbps each. Figure 5.14
reports the throughputs of TCP, UDP traffic, and the total throughput of the bottleneck link
with the TMD scheme for one of the experiments. One can see that the proposed design
handles the UDP traffic as expected and reacts to sudden changes in the bottleneck link
capacity promptly and appropriately.

5.4.7 Incremental Deployment

To explore the performance of TMD under multi-bottleneck topology, a parking lot topol-
ogy shown in Figure 5.15 is used. All access links are 200 Mbps. Propagation RTTs of
the flows are uniformly distributed in the range between 74 ms and 300 ms. There are 20
long-lived flows going from pool P0 to P7, and 20 long-lived flows in the reverse direction.
Each of the bottleneck links r1-r2, r2-r3, r3-r4, r4-r5, r5-r6 are shared by 20 long-lived

120

(a) Number of TMD routers

T
h

ro
u

g
h

p
u

t,
 M

b
p

s

0

3

6

9

12

0 1 2 3 4 5

(b) Number of TMD routers

G
o

o
d

p
u

t,
 K

B
p

s

0

1

2

3

4

5

0 1 2 3 4 5

Figure 5.16: Incremental deployment in the multi-bottleneck topology: (a) Throughput of
long-lived flows; (b) Goodput of web-like flows.

flows starting from pools P1, P2, P3, P4, P5, and destining to pools P2, P3, P4, P5, P6, re-
spectively. Besides, a web-server in pool P0 generates traffic destined to pool P7, which is
described by the same parameters as in Section 5.4.4. The number of bottleneck links with
the deployed TMD scheme are varied between 0 and 5. Figure 5.16 reports the throughput
of the long-lived flows going from pool P0 to P7 and the goodput of the web-like traffic.
One can observe that wider deployment of the TMD design improves the performance of

121

the web-like traffic and the long-lived flows. Moreover, both the reported goodput and
throughput are increasing functions of the number of the TMD links. Deploying the pro-
posed scheme on all the bottleneck links allows to increase the throughput for the long-lived
flows by 13 % and the goodput for the web-like traffic by 34%.

5.5 Security Considerations

Inappropriate classification of packets by the senders is an issue that warrants a discussion.
In one such scenario, a TCP sender marks as A-class all its packets, including the packets
transmitted in the slow-start mode. The deviation from the intended marking causes the
slow-start packets of the flow to be forwarded through the buffer partition for class A. This
outcome is similar to the current Internet service with a non-partitioned FIFO DropTail link
buffer. Hence, the attempt to manipulate the TMD scheme does not reward the misbehaving
sender with better performance.

In another extreme instance of inappropriate packet classification, a TCP sender marks as
S-class all its packets, including the packets transmitted in the congestion-avoidance mode.
With the default setting of k = 0.5, the per-flow buffer allocation for S-class flows is
lower. Performance of the misbehaving flow might suffer from the smaller per-flow buffer
allocation. Hence, the success of such attack is not assured and depends on nS , nA, and
other information that is not available to the misbehaving sender. In contrast, following the
TMD making guidelines consistently provides TCP flows with better performance. This
property of the TMD design can be viewed as a strong incentive for TCP senders to classify
packets as prescribed by the proposed scheme.

5.6 Summary

This Chapter reconsidered the problem of accelerating TCP flows concerning their com-
pletion times and proposed TMD, a new scheme for decreasing FCT. The key idea of the
scheme is to dynamically allocate buffer space for short-lived and long-lived flows. The
extensive evaluation demonstrated that TMD allows to significantly increase the goodput
of short-lived flows without deteriorating the performance of long-lived flows.

122

Chapter 6

Conclusion

This Chapter summarizes the main results of the dissertation and potential directions for
future research.

6.1 Summary

Chapter 3 described MCP, a new congestion control protocol based on the following key
design principles: use of multiple operation modes, transmission at the constant rate in
the stable state, and use of the explicit-communication mechanism for converging to fair-
ness. The latter feature of the design is one of the MCP main contributions, and enables
a flow to request competing flows to operate in a mode allowing convergence to the fair
sharing of the network capacity. MCP uses several modes of operation for meeting all the
requirements to the protocol. The proposed protocol makes data transmission stable for
maintaining fairness, high utilization, and low queue size. MCP uses the sending bit rate
as a control parameter, and this ensures that the flow throughput is independent of the flow
RTT and packet size. Simulations showed that MCP achieves high utilization, reveals good
convergence to fairness, flow throughput independent of flow RTT and packet size, and low
buffer queue size.

Chapter 4 presented the RD Network Services, a new architecture for aligning network ser-
vices with application needs. Based on the principles that a new service should incorporate
incentives for users and ISPs to adopt the service despite partial deployment and without
penalizing legacy traffic, the RD services were designed and implemented to empower each
user to choose between a higher rate or low queuing delay. The RD design does not require
changes in end-to-end transport protocols, preserves the IP datagram format, and relies on

123

simple router algorithms that are easy to implement even for high-capacity links. The ex-
tensive evaluation of the RD services confirmed their effective rate-delay differentiation as
well as their fitness for incremental virulent deployment.

Chapter 5 proposed a solution to the problem of decreasing FCT of short-lived TCP flows
without doing harm to long-lived flows. The advocated TMD design categorizes TCP slow-
start flows as class S and all the other traffic as class A. The TMD buffer partitioning
scheme for FIFO links was explored where the ratio of the per-flow buffer shares for S-
class flows and A-class flows is maintained at k. Based on the analytic speculation and
experimental validation, it was established that k = 0.5 was the preferred parameter setting
that consistently satisfies the design objectives. The TMD scheme is simple, incrementally
deployable, and does not require any changes in TCP congestion control, packet format, or
FIFO link scheduling. The experiments reveal that TMD increases the goodput of web-like
flows decreasing FCT of short-lived TCP flows by as much as 40%. Whereas the presented
TMD design dynamically partitions the fixed-sized buffer between the two traffic classes,
an interesting direction for further studies is to combine buffer partitioning with dynamic
buffer sizing.

6.2 Future Work

Further work on MCP is needed to address the following three concerns about its original
design:

• Synchronous control ensures that MCP flows having the same bottleneck link oper-
ate in the same mode. However, asynchrony of modes might be beneficial in some
scenarios. For example, TCP might provide a new flow with faster convergence to a
fair transmission rate than under MCP because the asynchronous TCP allows the new
flow to operate in the aggressive slow-start mode whereas existing flows continue to
operate in the congestion-avoidance mode, where TCP acquires the available capac-
ity at a slower pace.

• Vulnerability to host misbehavior is another concerning property of MCP. In partic-
ular, by setting the fairing and this-path bits persistently beyond the prescribed seven
increase-decrease cycles, a malicious host can make all flows sharing its bottleneck

124

link to keep operating in the fairing mode, causing needless oscillations of the bot-
tleneck link utilization and queue size.

• Handling short-lived flows is not effective. While short-lived flows constitute more
than 85% of all flows in the Internet, their frequent arrivals to the network make
long-lived flows constantly switch into the fairing mode. Moreover, the main need
of short-lived flows is a minimized FCT rather than convergence to the fare share.
Therefore, MCP currently does not handle traffic consisting of short-lived flows per-
fectly.

The above concerns are not unique to MCP. For example, VCP also faces the issue of syn-
chronous control. It is planned to examine whether randomizing the mode selection under
some circumstances is able to realize the potential benefits of asynchrony without under-
mining the overall performance of MCP. The mechanism for requesting the fairing mode of
MCP operation adds a new avenue for attacks to the already wide arsenal available to ma-
licious hosts. Since senders and receivers might collude, effective protection against host
attacks necessitates router assistance. Thus, lightweight router techniques for making MCP
resilient to host misbehavior will be studied. Due to the mode synchronization and uniform
timing of transmission adjustments, it seems easier for routers to detect misbehaving MCP
flows than flows of other protocols where transmission rates depend on non-uniform packet
losses, RTT, and packet sizes.

While the design principles of the RD Network Services led to the elegant effective solu-
tion for network service differentiation, it is believed that design for deployability holds
great promise for solving other types of networking problems. Even within the conceptual
framework of rate-delay differentiation, one can see numerous opportunities for further
fruitful exploration. For example, whereas the strict enforcement of the delay constraint
for the D service is a conscious attempt to encourage the service adoption only if the user
is really interested in assuredly low queuing delay, it is worth to investigate whether delay
should be allowed to spike occasionally as long as average low delay remains guaranteed.

A related issue is whether the RD architecture will induce any unintended behavior of
users who seek to improve own service or deliberately disrupt services for other users. Al-
though the two-queue design alleviates some denial-of-service attacks, the RD architecture
inherits most security problems of the Internet. While securing the RD design is clearly
an important area for future investigation, prior simple performance-based [41, 93] and
other [105, 109] security proposals constitute promising starting points.

125

Our preliminary assessment suggests that denial-of-service attacks do not pose a significant
danger to TMD. However, we plan to investigate the question of the attacks on the TMD
design more extensively in future.

126

References

[1] Methods for Subjective Determination of Transmission Quality. ITU-T Recommen-
dation P.800, August 1996.

[2] The E-model, a Computational Model for Use in Transmission Planning. ITU-T
Recommendation G.107, June 2006.

[3] A. Aggarwal, S. Savage, and T. Anderson. Understanding the Performance of TCP
Pacing. In Proceedings IEEE INFOCOM 2000, March 2000.

[4] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing Router Buffers. In Proceed-
ings ACM SIGCOMM 2004, August 2004.

[5] W. Ashmawi, R. Guerin, S. Wolf, and M. Pinson. On the Impact of Policing and Rate
Guarantees in Diff-Serv Networks: A Video Streaming Application Perspective. In
Proceedings ACM SIGCOMM 2001, August 2001.

[6] K. Avrachenkov, U. Ayesta, P. Brown, and E. Nyberg. Differentiation Between Short
and Long TCP Flows: Predictability of the Response Time. In Proceedings IEEE
INFOCOM 2004, March 2004.

[7] A. Bacioccola, C. Cicconetti, and G. Stea. User-level Performance Evaluation of
VoIP Using ns-2. In Proceedings NSTools 2007, October 2007.

[8] S. Bajaj, L. Breslau, and S. Shenker. Is Service Priority Useful in Networks? In
Proceedings ACM SIGMETRICS 1998, June 1998.

[9] J. Bennett and H. Zhang. WF2Q: Worse-case Fair Weighted Fair Queuing. In Pro-
ceedings IEEE INFOCOM 1996, March 1996.

[10] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Architecture
for Differentiated Services. IETF RFC 2475, December 1998.

[11] D. Blandford, S. Goldman, S. Gorinsky, Y. Zhou, and D. Dooly. Smartacking: Im-
proving TCP Performance from the Receiving End. Journal of Internet Engineering,
1(1):6–21, January 2007.

[12] R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet Architecture:
an Overview. IETF RFC 1633, June 1994.

[13] L. Brakmo, S. Malley, and L. Peterson. TCP Vegas: New Techniques for Congestion
Detection and Avoidance. In Proceedings ACM SIGCOMM 1994, August 1994.

127

[14] D. Chiu and R. Jain. Analysis of the Increase and Decrease Algorithms for Conges-
tion Avoidance in Computer Networks. Journal of Computer Networks and ISDN,
17(2):1–14, July 1989.

[15] G. Chuanxiong. SRR: An O(1) Time Complexity Packet Scheduler for Flows
in Multi-Service Packet Networks. IEEE/ACM Transactions on Networking,
12(6):1144–1155, 2004.

[16] G. Chuanxiong. G-3:An O(1) Time Complexity Packet Scheduler That Provides
Bounded End-to-End Delay. In Proceedings IEEE INFOCOM 2007, May 2007.

[17] G. Chuanxiong. Improved Smoothed Round Robin Schedulers for High-Speed
Packet Networks. In Proceedings IEEE INFOCOM 2008, April 2008.

[18] D.D. Clark and W. Fang. Explicit Allocation of Best Effort Packet Delivery Service.
IEEE/ACM Transactions on Networking, 6(4):362–373, August 1998.

[19] D.D. Clark, J. Wroclawski, K.R. Sollins, and R. Braden. Tussle in Cyberspace:
Defining Tomorrow’s Internet. In Proceedings ACM SIGCOMM 2002, August 2002.

[20] D. Wei. A TCP pacing implementation for NS2.
http://netlab.caltech.edu/projects/ns2tcplinux/ ns2pacing/.

[21] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a Fair Queuing
Algorithm. In Proceedings ACM SIGCOMM 1989, September 1989.

[22] C. Dovrolis, D. Stiliadis, and P. Ramanathan. Proportional Differentiated Services:
Delay Differentiation and Packet Scheduling. In Proceedings ACM SIGCOMM
1999, September 1999.

[23] N. Dukkipati, M. Kobayashi, and N.McKeown. Processor Sharing Flows in the
Internet. Thirteenth International Workshop on Quality of Service (IWQoS), June
2005.

[24] N. Dukkipati and N. McKeown. Why Flow-Completion Time is the Right Metric for
Congestion Control. ACM SIGCOMM Computer Communication Review, 36(1):59–
62, 2006.

[25] N. Dukkipati, N. McKeown, and A. Fraser. RCP-AC: Congestion Control to Make
Flows Complete Quickly in Any Environment. In Proceedings High-Speed Net-
working Workshop: The Terabits Challenge, IEEE INFOCOM 2006, April 2006.

[26] J. Eggleston and S. Jamin. Differentiated Services with Lottery Queueing. In Pro-
ceedings IEEE IWQoS 2001, June 2001.

[27] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T. Roughgarden. Part
III: Routers with Very Small Buffers. ACM Computer Communication Review,
35(3):83–90, July 2005.

128

[28] C. Estan, G. Varghese, and M. Fisk. Bitmap Algorithms for Counting Active Flows
on High Speed Links. IEEE/ACM Transactions on Networking, 14(5):925–937, Oc-
tober 2006.

[29] W. Feng, D. Kandlur, D. Saha, and K. Shin. A Self-configuring RED Gateway. In
Proceedings IEEE INFOCOM 1999, March 1999.

[30] W. Feng, K. Shin, D. Kandlur, and D. Saha. The Blue Active Queue Management
Algorithms. IEEE/ACM Transactions on Networking, 10(4):513–528, 2002.

[31] V. Firoiu, X. Zhang, and Y. Guo. Best Effort Differentiated Services: Tradeoff
Service Differentiation for Elastic Applications. In Proceedings IEEE ICT 2001,
June 2001.

[32] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-Based Congestion Con-
trol for Unicast Applications. In Proceedings ACM SIGCOMM 2000, August 2000.

[33] S. Floyd and T. Henderson. The NewReno Modification to TCP’s Fast Recovery
Algorithm. RFC 2582, April 1999.

[34] S. Floyd, T. Henderson, and A. Gurtov. The NewReno Modification to TCP’s Fast
Recovery Algorithm, April 2004.

[35] S. Floyd and V. Jacobson. Random Early Detection Gateways for Congestion Avoid-
ance. IEEE/ACM Transactions on Networking, 1(4):397–413, 1993.

[36] S. Floyd and V. Jacobson. Link Sharing and Resource Management Models for
Packet Networks. ACM Transactions on Database Systems, 3(4):365–386, August
1995.

[37] E. Friedman and S. Henderson. Fairness and Efficiency in Web Server Protocols. In
Proceedings ACM SIGMETRICS 2003, June 2003.

[38] L. Georgiadis, R. Guerin, V. Peris, and R. Rajan. Efficient Support of Delay and Rate
Guarantees in an Internet. In Proceedings ACM SIGCOMM 1996, August 1996.

[39] S.J. Golestani. A Self-Clocked Fair Queuing Scheme for High Speed Applications.
In Proceedings IEEE INFOCOM 1994, June 1994.

[40] S. Gorinsky, A. Kantawala, and J. Turner. Link Buffer Sizing: A New Look at the
Old Problem. In Proceedings IEEE Symposium on Computers and Communications
(ISCC 2005), June 2005.

[41] S. Gorinsky, S.Jain, H. Vin, and Y. Zhang. Design of Multicast Protocols Robust
against Inflated Subscription. IEEE/ACM Transactions on Networking, 14(2):249–
262, April 2006.

[42] P. Goyal, S. Lam, and H. Vin. Determining End-to-End Delay Bounds in Heteroge-
neous Networks. In Proceedings NOSSDAV 1995, April 1995.

129

[43] Y. Gu, D. Towsley, C. Hollot, and H. Zhang. Congestion Control for Small Buffer
High Speed Networks. In IEEE INFOCOM 2007, April 2007.

[44] R. Guerin, S. Kamat, V. Peris, and R. Rajan. Scalable QoS Provision Through Buffer
Management. In Proceedings ACM SIGCOMM 1998, September 1998.

[45] L. Guo and I. Matta. The War Between Mice and Elephants. In Proceedings IEEE
ICNP 2001, November 2001.

[46] L. Guo and I. Matta. Differentiated Control of Web Traffic: A Numerical Analysis.
In Proceedings SPIE ITCOM 2002: Scalability and Traffic Control in IP Networks,
August 2002.

[47] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured Forwarding PHB
Group. IETF RFC 2597, June 1999.

[48] C. Hollot, V. Misra, D. Towsley, and W. Gong. Analysis and Design of Controllers
for AQM Routers Supporting TCP Flows. IEEE/ACM Transactions on Networking,
47(6):945–959, 2002.

[49] J. D. Houle, K. K. Ramakrishnan, R. Sadhvani, M. Yuksel, and S. Kalyanaraman.
The Evolving Internet - Traffic, Engineering, and Roles. In Proceedings Research
Conference on Communication, Information and Internet Policy (TPRC), September
2007.

[50] N. Hu and P. Steenkiste. Improving TCP Startup Performance using Active Queue
Measurements: Algorithm and Evaluation. In Proceedings IEEE ICNP 2003,
November 2003.

[51] P. Hurley, J.-Y. Le Boudec, P. Thiran, and M. Kara. ABE: Providing a Low-Delay
Service within Best Effort. IEEE Network, 15(3):60–69, May/June 2001.

[52] Information Sciences Institute. Transmission Control Protocol, September 1981.

[53] S. Iyer, R. Kompella, and N. McKeown. Designing Packet Buffers for Router Line
Cards. Technical Report, TR-02-HPNG-031001, October 2002.

[54] V. Jacobson. Congestion Avoidance and Control. In Proceedings ACM SIGCOMM
1988, August 1988.

[55] V. Jacobson, K. Nichols, and K. Poduri. An Expedited Forwarding PHB. IETF RFC
2598, June 1999.

[56] R. Jain. A Delay-Based Approach for Congestion Avoidance in Interconnected
Heterogeneous Computer Networks. ACM Computer Communications Review,
19(5):56–71, October 1989.

[57] S. Jain and D. Loguinov. PIQI-RCP: Design and Analysis of Rate-Based Explicit
Congestion Control. In Proceedings IEEE IWQoS 2007, June 2007.

130

[58] H. Jiang and C. Dovrolis. Passive Estimation of TCP Round-Trip Times. ACM
Computer Communications Review, 32(3):75–88, July 2002.

[59] A. Kantawala and J. Turner. Queue Management for Short-Lived TCP Flows
in Backbone Routers. In Proceedings High-Speed Networking Symposium, IEEE
Globecom 2002, November 2002.

[60] D. Katabi, M. Handley, and C. Rohrs. Congestion Control for High Bandwidth-
Delay Product Networks. In Proceedings ACM SIGCOMM 2002, August 2002.

[61] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis. Weighted Round Robin Cell
Multiplexing in a General-Purpose ATM Switch. IEEE Journal on Selected Areas
in Communications, 9(8):1265–1279, October 1991.

[62] J. Kaur and H. Vin. Core-Stateless Guaranteed Rate Scheduling Algorithm. In
Proceedings IEEE INFOCOM 2001, April 2001.

[63] J. Kaur and H. Vin. Core-Stateless Guaranteed Throughput Networks. In Proceed-
ings IEEE INFOCOM 2003, April 2003.

[64] H. Kim and D. O’Hallaron. Counting Network Flows in Real Time. In Proceedings
IEEE GLOBECOM 2003, December 2003.

[65] R. King, R. Baraniuk, and R. Riedi. TCP-Africa: An Adaptive and Fair Rapid
Increase Rule for Scalable TCP. In Proceedings IEEE INFOCOM 2005, March
2005.

[66] K. Kumazoe, M. Tsuru, and Y. Oie. Improving Delay Characteristics of Real-Time
Flows by Adaptive Early Packet Discarding. In Proceedings International Confer-
ence on Information Networking (ICOIN), January 2006.

[67] A. Kuzmanovic and E. Knightly. Low-Rate TCP-Targeted Denial of Service Attacks
and Counter Strategies. IEEE/ACM Transactions on Networking, 14(4):683–696,
August 2006.

[68] L. Le, J. Aykat, K. Jeffay, and F. Smith. Differential Congestion Notification: Tam-
ing the Elephants. In Proceedings IEEE ICNP 2004, October 2004.

[69] D. Lin and R. Morris. Dynamics of Random Early Detection. In Proceedings ACM
SIGCOMM 1997, September 1997.

[70] R. Mahajan, S. Floyd, and D. Wetherall. Controlling High-Bandwidth Flows at the
Congested Router. In Proceedings IEEE ICNP 2001, November 2001.

[71] I. Matta and L. Guo. Differentiated Predictive Fair Service for TCP Flows. In
Proceedings IEEE ICNP 2000, October 2000.

[72] S. McCanne and S. Floyd. ns Network Simulator. http://www.isi.edu/nsnam/ns/.

131

[73] M. Mellia, I. Stoica, and H. Zhang. TCP Model for Short Lived Flows. IEEE
Communications Letters, February 2002.

[74] K. Nichols, S. Blake, F. Baker, and D.L. Black. Definition of the Differentiated
Services Field (DS Field) in the IPv4 and IPv6 Headers. IETF RFC 2474, December
1998.

[75] W. Noureddine and F. Tobagi. Improving the Performance of Interactive TCP Appli-
cations Using Service Differentiation. In Proceedings IEEE INFOCOM 2002, June
2002.

[76] A. Odlyzko. The Many Paradoxes of Broadband. First Monday, 8(9), September
2003.

[77] R. Pan, B. Prabhakar, and K. Psounis. CHOKe: A Stateless AQM Scheme for
Approximating Fair Bandwidth Allocation. In Proceedings IEEE INFOCOM 200,
March 2000.

[78] A. Parekh and R. Gallager. A Generalized Processor Sharing Approach to Flow
Control in Integrated Services Networks: the Single-node Case. IEEE/ACM Trans-
actions on Networking, 1(3):344–357, 1993.

[79] A. Parekh and R. Gallager. A Generalized Processor Sharing Approach to Flow Con-
trol in Integrated Services Networks: the Multiple Node Case. IEEE/ACM Transac-
tions on Networking, 2(2):137–150, 1994.

[80] V. Paxson. End-to-End Internet Packet Dynamics. In Proceedings ACM SIGCOMM
1997, September 1997.

[81] M. Podlesny and S. Gorinsky. ”MCP: Few Bits for Fairing and Small Queues in the
Stable State”. In Proceedings IEEE ISCC 2007, July 2007.

[82] M. Podlesny and S. Gorinsky. Multimodal Congestion Control for Low Stable-State
Queuing. In Proceedings IEEE INFOCOM 2007, May 2007.

[83] M. Podlesny and S. Gorinsky. RD Network Services: Differentiation through Per-
formance Incentives. In Proceedings ACM SIGCOMM 2008, August 2008.

[84] J. Postel. User Datagram Protocol. IETF RFC 763, August 1980.

[85] J. Postel. Internet Protocol, September 1981.

[86] I. Qazi, L. Andrew, and T. Znati. Congestion Control using Efficient Explicit Feed-
back. In Proceedings IEEE INFOCOM 2009, April 2009.

[87] I. Qazi and T. Znati. On the Design of Load Factor based Congestion Control Pro-
tocols for Next-Generation Networks. In Proceedings IEEE INFOCOM 2008, April
2008.

132

[88] I. Rai, E. Biersack, and G. Urvoy-Keller. Size-based Scheduling to Improve the
Performance of Short TCP Flows. IEEE Networks, 19:12–17, January/February
2005.

[89] G. Raina, D. Towsley, and D. Wischik. Part II: Control Theory for Buffer Sizing.
ACM Computer Communication Review, 35(3):79–82, July 2005.

[90] K. K. Ramakrishnan and R. Jain. A Binary Feedback Scheme for Congestion Avoid-
ance in Computer Networks with a Connectionless Network Layer. In Proceedings
ACM SIGCOMM 1988, August 1988.

[91] K.K. Ramakrishnan and S. Floyd. A Proposal to Add Explicit Congestion Notifica-
tion (ECN) to IP. RFC 2481, January 1999.

[92] S. Ramesh and S. Kasera. Best-Effort Session Level Congestion Control. In Pro-
ceedings IEEE ICNP 2007, October 2007.

[93] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson. TCP Congestion Control
with a Misbehaving Receiver. ACM Computer Communications Review, 29(5):71–
78, October 1999.

[94] L. Schrage. A Proof of the Optimality of the Shortest Remaining Processing Time
Discipline. Operations Research, 16(3):687–690, 1968.

[95] A. Shaikh, J. Rexford, and K. Shin. Load-Sensitive Routing of Long-Lived IP Flows.
In Proceedings ACM SIGCOMM 1999, August 1999.

[96] M. Shreedhar and G. Varghese. Efficient Fair Queuing Using Deficit Round-Robin.
IEEE/ACM Transactions on Networking, 4(3):375–385, 1996.

[97] J. Sjoberg, M. Westerlund, A. Lakaniemi, and Q. Xie. Real-Time Transport Protocol
(RTP) Payload Format and File Storage Format for the Adaptive Multi-Rate (AMR)
and Adaptive Multi-Rate Wideband (AMR-WB) Audio Codecs. IETF RFC 3267,
June 2002.

[98] R. Stanojevic and R. Shorten. Drop Counters are Enough. In Proceedings IEEE
IWQoS 2007, June 2007.

[99] D. Stidialis and A. Varma. Efficient Fair Queueing Algorithms for Packet-Switched
Networks. IEEE/ACM Transactions on Networking, 6(2):175–185, 1998.

[100] D. Stidialis and A. Varma. Latency-Rate Servers: A General Model for Analysis of
Traffic Scheduling Algorithms. IEEE/ACM Transactions on Networking, 6(5):611–
624, 1998.

[101] I. Stoica, S. Shenker, and H. Zhang. Core-Stateless Fair Queueing: Achieving Ap-
proximately Fair Bandwidth Allocations in High Speed Networks. In Proceedings
ACM SIGCOMM 1998, September 1998.

133

[102] I. Stoica and H. Zhang. Providing Guaranteed Services Without Per Flow Manage-
ment. In Proceedings ACM SIGCOMM 1999, September 1999.

[103] C. Villamizar and C. Song. High performance TCP in ANSNET. ACM SIGCOMM
Computer Communication Review, 24(5):45–60, October 1994.

[104] C. Wang, B. Li, Y. Thomas Hou, K. Sohraby, and Y. Lin. LRED: A Robust Active
Queue Management Scheme Based on Packet Loss Ratio. In Proceedings IEEE
INFOCOM 2004, March 2004.

[105] D. Wetherall, U. Legedza, and J. Guttag. Introducing New Internet Services: Why
and How. IEEE Network, 12(3):12–19, May-June 1998.

[106] D. Wischik and N. McKeown. Part I: Buffer Sizes for Core Routers. ACM Computer
Communication Review, 35(3):75–78, July 2005.

[107] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman. One More Bit Is Enough.
In Proceedings ACM SIGCOMM 2005, August 2005.

[108] X. Yang and D. Wetherall. Source Selectable Path Diversity via Routing Deflections.
In Proceedings ACM SIGCOMM 2006, September 2006.

[109] X. Yang, D. Wetherall, and T. Anderson. A DOS-limiting Network Architecture. In
Proceedings ACM SIGCOMM 2005, August 2005.

[110] S. Yilmaz and I. Matta. On Class-Based Isolation of UDP, Short-Lived and Long-
Lived TCP Flows. In Proceedings International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MASCOTS) 2001,
August 2001.

[111] X. Yuan and Z. Duan. FRR: A Proportional and Worst-Case Fair Round Robin
Scheduler. In Proceedings IEEE INFOCOM 2005, March 2005.

[112] L. Zhang. Virtual Clock: A New Traffic Control Algorithm for Packet Switching
Networks. In Proceedings ACM SIGCOMM 1990, August 1990.

[113] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On the Characteristics and Origins
of Internet Flow Rates. In Proceedings ACM SIGCOMM 2002, August 2002.

[114] Y. Zhang, D. Leonard, and D. Loguinov. JetMax: Scalable Max-Min Congestion
Control for High-Speed Heterogeneous Networks. In Proceedings IEEE INFOCOM
2006, April 2006.

[115] Y. Zhang and D. Loguinov. ABS: Adaptive Buffer Sizing for Heterogeneous Net-
works. In Proceedings IEEE IWQoS 2008, June 2008.

134

Vita
Maxim Podlesny

Date of Birth February 6, 1979

Place of Birth Perm, USSR/Russia

Degrees B.S. Summa Cum Laude, Applied Physics and Mathematics, June
2000

M.S. Summa Cum Laude, Applied Physics and Mathematics, June
2002

Ph.D., Computer Science, August 2009

Publications M. Podlesny, S. Gorinsky. RD Network Services: Differentia-
tion through Performance Incentives, in Proceedings ACM SIG-
COMM, August 2008

M. Podlesny, S. Gorinsky. Price of Asynchrony: Queuing under
Ideally Smooth Congestion Control, poster paper, in Proceedings
IEEE ICNP, October 2007

S. Gorinsky, M. Georg, M. Podlesny, and C. Jechlitschek. A The-
ory of Load Adjustments and Its Implications to Congestion Con-
trol, Journal of Internet Engineering, 1(2): 82–93, October 2007

M. Podlesny, S. Gorinsky. MCP: Few Bits for Fairing and Small
Queues in the Stable State, in Proceedings IEEE ISCC, July 2007

M. Podlesny, S. Gorinsky. Multimodal Congestion Control for
Low Stable-State Queuing, in Proceedings IEEE INFOCOM, May
2007

August 2009

135

Serving Internet Applications, Podlesny, Ph.D. 2009

	Washington University in St. Louis
	Washington University Open Scholarship
	January 2009

	Networking Mechanisms for Delay-Sensitive Applications
	Maxim Podlesny
	Recommended Citation

	tmp.1328376754.pdf.piiDt

