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CHAPTER 1. GENERAL INTRODUCTION  

Few environmental factors play as significant a role in shaping ecological and social 

communities as soil. Soil is a dynamic amalgamation of living, dead, and abiotic components 

that literally form the foundation for terrestrial life. Soil performs a number of functions that 

are critical to humanity including supporting crop growth and regulating greenhouse gases 

(Morgan, 2005; USDA-NRCS, 2010). One of the defining characteristics of soil is its biotic 

components, which form some of the most biologically diverse and least understood 

ecosystems on Earth (Begon et al., 1996; Christensen et al., 1999). The incredible capacity of 

soil to support life, however, does not make it immune to anthropogenic abuse. Although 

agriculture is often cited as the primary culprit, the mismanagement of soils is by no means 

limited to farmers. Urban populations have also contributed to soil loss and degradation 

through ignorance, apathy, and tacit support of unsustainable soil management practices. The 

fundamental need for healthy, functional soils is shared by all; both rural and urban alike. 

Likewise, if unsustainable soil management practices are to be stopped, then both rural and 

urban populations must take action to better understand and interact with soil. If our society 

is to have healthy, sustainable communities, then measures must be taken to encourage 

sustainable human interactions with soil.   

Definitions of “sustainability” can vary markedly depending on the source, which is 

why it is prudent to explain exactly what is meant by the term “sustainability” as it is used in 

this paper. For example, the Monsanto Corporation, a global leader in biotechnology and 

agri-business, envisions sustainability as achieving higher crop yields while using fewer 

resources; “Farmers need to get more from every acre of land, every drop of water and every 
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unit of energy” (Monsanto, 2012). Farmer, philosopher, and author Fred Kirschenmann 

offers an alternative view of sustainability. Kirschenmann envisions sustainability as systems 

that use nature as a model for success. According to Kirschenmann, sustainable agriculture is 

“agriculture grounded more in perennials rather than annuals, closed nutrient cycles rather 

than inputs, diverse combinations of species organized so that the waste of one species 

becomes the food for another …and a gradual phasing out of specialized monocultures” 

(Kirschenmann, 2011). These are but two of the myriad interpretations that exist for 

agricultural sustainability.  

The aforementioned examples are greatly simplified as they lack any mention of 

factors beyond the environmental aspects of sustainability, and serve only to illustrate the 

importance of relaying a clear definition to readers whenever using a term as open to 

interpretation as “sustainability”. Sustainability, as used throughout this thesis, refers to 

practices that preserve, enhance and replenish natural resources; provide accessible, 

nutritious, and culturally appropriate food to everyone in the community; and offer non-

exploitative economic opportunities to all of those whose labor keep the food system 

functioning.  

Thesis Organization 

Following this general introduction (Chapter 1) is a general review of literature 

(Chapter 2) that establishes the relevance and relationship of the following chapters. The 

literature review presented in Chapter 2 contains some of the same material as the literature 

reviews of the later chapters and is intended only as an overview of the topics that will be 



3 
 

 

 

presented. The literature reviews of the individual chapters are more detailed, however they 

will likely be condensed prior to journal submission. Chapter 3 presents the findings of a 

field experiment designed to investigate the use of winter cover crops as a means to improve 

the sustainable management of agricultural soils in Iowa. Chapter 3 is written in manuscript 

style and will be submitted for publication in a scientific journal. E.B. Moore is the primary 

author and the other names listed are co-authors. Chapter 4 recaps the pilot season of an 

educational program designed to introduce Iowa’s urban youth to the importance of 

sustainable agriculture and healthy soil, especially as it pertains to personal and 

environmental health. This chapter will be submitted as a paper to a science education 

journal. E.B. Moore is the primary author and the other names listed are co-authors. Lastly, 

Chapter 5 provides a general summary of the entire thesis project.   
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CHAPTER 2. GENERAL LITERATURE REVIEW  

Introduction 

Iowa is one of the largest producers of agricultural commodities in the U.S. In 

addition to being the third largest producer of total agricultural products, Iowa is the nation’s 

largest producer of several major commodities including corn, soybeans, eggs, and hogs 

(USDA NASS, 2007). The conventional corn/soybean cropping systems that dominate the 

Iowa landscape are among the most productive in the world and contribute to making the 

U.S. the world’s largest producer of corn and soybeans (USDA FAS, 2012). However the 

success of conventional corn/soybean cropping systems in Iowa has not come without costs. 

Iowa’s agricultural land has lost substantial amounts soil organic matter over the past century 

(Paustian et al., 1997), resulting in a decline in overall soil quality. The continued 

degradation of soil will undoubtedly have negative long-term consequences on agricultural 

productivity and quality of life among Iowa residents. If Iowa’s corn/soybean cropping 

systems are to remain highly productive, then immediate action must be taken to reverse soil 

degradation and move towards sustainable management of soil resources. One of the best 

ways to promote soil health and improve soil quality is by increasing soil organic matter.  

Soil Organic Matter 

Soil organic matter is often considered the single most important factor contributing 

to overall soil quality (Larson and Pierce, 1991; Sikora et al., 1996). The influence of soil 

organic matter on overall soil quality stems from its effects on physical, chemical, and 

biological characteristics of soil (Doran and Parkin, 1994). Although the importance of 

organic matter to proper soil functioning is understood, quantifying changes in soil organic 
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matter is challenging. Challenges include difficulty in detecting the relatively small changes 

in soil organic matter due to management practices (Kaspar et al., 2006) and difficulty in 

detecting changes amidst the variable climatic conditions that influence soil organic matter 

accumulation and decomposition (Sikora et al., 1996; Wilhelm et al., 2010).  

Building Organic Matter: Reducing Soil Organic Matter Loss 

One of the ways that soil organic matter loss can be reduced is by adopting no-tillage 

(Ismail et al., 1994; Triplett and Dick, 2008).  No-tillage is defined as the practice of planting 

crops in undisturbed soil which retains at least 30% residue cover (Triplett and Dick, 2008). 

No-till has been touted as an effective means of reducing soil erosion and conserving soil 

water (Aase and Pikul, 1995; Liebig et al., 2004; Triplett and Dick, 2008). In general, 

research indicates that no-till enhances soil quality when compared to conventional tillage 

(Cambardella and Elliot, 1992; Beare et al., 1994; Ismail et al., 1994). With proper 

management, crop yield differences between no-till and conventional tillage are usually 

negligible (Triplett and Dick, 2008). Excessive tillage can result in accelerated soil organic 

matter oxidation, which can lead to a decline in soil quality (Tate, 1987; Ismail et al., 1994; 

Triplett and Dick, 2008). Managing crops under no-till is a viable means of improving soil 

quality by reducing soil organic loss.  

Building Organic Matter: Increasing Soil Carbon Inputs 

The benefits of no-tillage to soil organic matter accumulation are largely derived from 

reducing soil organic matter loss. Another viable strategy for increasing soil organic matter is 

to increase inputs of carbon into the soil by adding more plant biomass. In many agricultural 
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systems, adding plant biomass can be accomplished through reducing the fallow periods in 

crop rotations. One approach is to incorporate cover crops into crop rotations. Cover crops 

are plants grown during the fallow period between main crops. Cover crops comprise a broad 

range of plant species which perform a wide range of ecosystem services including erosion 

mitigation (Kaspar et al., 2001; Wilhelm et al., 2010), nitrogen fixation (Reicosky and 

Forcella, 1998), nutrient scavenging (Kaspar et al., 2007), weed suppression (Liebman and 

Davis, 2000), and beneficial insect habitat (Tillman et al., 2004). Despite the functional 

diversity that exists among cover crops, they have at least one thing in common: they all add 

an additional crop to the rotation sequence, resulting in greater annual biomass production 

and potential increase in the amount of carbon deposited into the soil organic matter pool. 

Cover crops reduce fallow periods and extend the crop rotation sequence, both of which can 

increase soil carbon inputs and enhance soil quality (Wienhold et al., 2006).  

Challenges of Implementing Cover Crops 

Although the benefits of cover crops are understood, the perceived lack of short-term 

economic benefit to farmers has hindered widespread adoption of this practice (Singer et al., 

2007; Faé et al., 2009). Other factors such as time required to manage cover crops, costs 

associated with cover crops, and lack of knowledge about cover crops also hinder widespread 

adoption (Singer et al., 2007). A survey conducted by Singer (2008) found that only 11% of 

Corn Belt farmers planted winter cover crops between the years 2001 to 2005. More 

information about the economic benefits of cover crops, particularly as it pertains to soil 

productivity and nutrient management, may encourage more widespread adoption of cover 

crops.    
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Rye Cover Crops 

Cereal rye was the most planted cover crop in Illinois and Iowa in the period between 

2001 and 2005 (Singer, 2008). There is a substantial body of research that has demonstrated 

the ability of rye to provide multiple ecosystem services; including mitigation of nutrient 

leaching (Logsdon et al., 2002; Kaspar et al., 2007), erosion control (Wendt and Burwell, 

1985; Kaspar et al., 2001; Wilhelm et al., 2010) and weed suppression (Barnes et al., 1987; 

Liebman and Davis, 2000; Zotarelli et al., 2009). Rye also synthesizes an array of antifreeze 

proteins (Griffith and Xiao-Ming, 1999), giving it extraordinary cold-tolerance. In fact, rye is 

the most winter-hardy of all the small grains (Geiger and Miedaner, 2009), making it an ideal 

choice for overwintering in Iowa. There is also research supporting the plausibility of using 

cereal rye as a means to improve soil quality. Rye has been shown to increase several soil 

quality indicators including nitrogen mineralization (Malpassi et al., 2002), soil organic 

carbon (Wilhelm et al., 2010) and soil aggregation (Sainju et al., 2003; Jokela et al., 2009).  

Enhancing Sustainable Soil Management with Rye Cover Crops 

Farmers are faced with a number of challenges including demands to increase 

production to meet the needs of a growing population, adapting to an increasingly variable 

climate, and the rising costs of energy and inputs. These challenges can only be met through 

increasing on-farm sustainability, which includes the sustainable management of soil 

resources. Although a number of studies have demonstrated the ability of rye to perform 

ecosystem services, few have investigated how rye can be used to enhance soil quality in the 

corn-soybean cropping systems of the northern U.S Corn Belt. Rye cover crops have the 
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potential to increase inputs of organic matter to soil by reducing fallow periods and extending 

the cropping sequence, and are one approach to improving soil quality. 

Extending Soils and Agriculture beyond the Farm 

The conversation thus far has been about how farmers’ decisions affect soil quality 

and measures that can be taken by farmers to improve soil sustainability. However, farmers 

are not the only group whose decisions impact soil health and sustainability; the rest of 

society also plays an important role. Approximately 56% of Iowa’s population is urban 

(USDA ERS, 2012), and this demographic distribution plays an important role in 

determining a person’s exposure to agriculture in Iowa. Urban youth in particular are less 

likely to understand and have direct experiences with agriculture.  

Gardens as an Education Tool for Urban Youth 

Education is a powerful tool that can empower youth to learn more about how 

agriculture affects their everyday lives and be inspired to take an interest in how food is 

produced. Agricultural education for urban youth is a relevant issue because understanding 

agriculture is linked to understanding personal and environmental health (Trexler et al., 

2000). Agricultural education can be enhanced through hands-on, or experiential, learning. 

One of the most common ways that agriculture is taught experientially is via school gardens 

(Brink and Yoast 2004). School gardens also provide ample opportunity for youth-initiated 

learning and inter-generational transfer of knowledge through prolonged youth contact with 

adult gardeners (Rahm, 2002). Additionally, school gardens have been shown to improve 

student test scores and behavior (Blair, 2009).  
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The Importance of Fostering Urban Youth’s Connection to Food and Soil 

Diet-related health epidemics are a critical problem in the U.S., especially amongst 

racial minority groups in urban populations. These segments of the population are 

disproportionately affected by type-2 diabetes, obesity, and hypertension; all of which are 

diet related and preventable (CDCP, 2007, 2009; USDHHS, 2011). Diet-related epidemics 

can be mitigated by teaching youth healthy food habits that will stay with them for life. Blair 

(2009) suggests that youth need to “broaden their perspective on what foods are edible and to 

re-personalize food” to combat diet related epidemics. Educational programs offer an 

effective means to broaden youth perspectives and provide a framework from which youth 

can begin to re-think issues pertaining to food choice and health. Knowledge about where 

food comes from, how food is grown, and how food production affects natural resources, 

such as soil, is needed in urban youth education. Providing urban youth with sustainable 

agriculture education will better prepare them to make conscious and informed decisions 

pertaining to food and the environment throughout their lives. The impacts of agriculture 

extend far beyond the farm, which is why it is important in Iowa, and elsewhere, to teach 

youth about the impacts that their choices play in personal and environmental health. This 

sentiment is echoed by the National Research Council (1988), which asserts that agriculture 

is “too important a topic to be taught to the relatively small percentage of students 

considering a career in agriculture”.  
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Sustainable Soils, Sustainable Communities: A Collective Responsibility 

Moving towards the long-term sustainability of soils in Iowa does not depend solely 

on the actions of farmers; the citizenry also plays an important role. People are more likely to 

support soil conservation measures and demand government conservation policies if they 

understand the role that healthy soils play in personal health and in creating sustainable 

communities. There are numerous actions that can empower farmers and the general public 

to move towards a more sustainable relationship with soil. The following chapters will 

highlight two approaches that can have a major impact; adding winter cover crops to corn 

and soybean cropping systems, and starting sustainable agriculture education programs for 

urban youth.   
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CHAPTER 3. RYE COVER CROP EFFECTS ON SOIL PROPERTIES IN NO-

TILL CORN SILAGE / SOYBEAN AGROECOSYSTEMS 

A paper to be submitted to the Agronomy Journal 

E. B. Moore, T. Kaspar, M. Wiedenhoeft, and C. Cambardella   

 

Abstract 

Farmers in the U.S. Corn Belt are showing increasing interest in winter cover crops. Known 

benefits of winter cover crops include reductions in nutrient leaching, erosion mitigation, and 

weed suppression, however little research has investigated the effects of winter cover crops 

on soil properties. Evidence of improvements in soil quality would provide further incentive 

for farmers to implement winter cover crops. This experiment investigated the effects of a 

rye (Secale cereale L.) winter cover crop on several soil quality indicators including 

particulate organic matter, potential nitrogen mineralization, and total soil organic matter. 

The objectives of this experiment were to determine whether a rye winter cover crop 

improves soil quality, if rye effects on soil quality vary depending on which crop it follows in 

the corn silage/soybean rotation sequence, and if the effects of a rye winter cover crop differ 

depending on soil depth. Soil properties were measured on four treatments and at two depths, 

0-5cm and 5-10cm. Treatments included no rye winter cover crop (control), rye following 

soybean [Glycine max (L.) Merr.], rye following corn silage (Zea mays L.), and rye following 

both soybean and corn silage. All three of the soil quality indicators measured in this 

experiment responded positively to a rye cover crop. Data from this experiment suggests that 
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incorporation of a rye cover crop is a viable means for improving soil quality in corn 

silage/soybean rotations. The effects of the rye cover crop were most pronounced in the top 

5cm of soil and when following corn silage.  

Literature Review 

Conventional corn/soybean cropping systems in the northern U.S Corn Belt are 

among the most productive in the world and contribute to making the U.S. the world’s largest 

producer of corn and soybeans (USDA FAS, 2012). However the success of conventional 

corn/soybean cropping systems in this region has not come without costs. Agricultural land 

in this region has lost substantial amounts soil organic matter (SOM) over the past century 

(Paustian et al., 1997), resulting in a decline in overall soil quality. The continued 

degradation of soil quality will undoubtedly have negative long-term consequences on soil 

health and crop productivity. If corn/soybean cropping systems in the northern Corn Belt are 

to remain highly productive then action must be taken to reverse this trend in soil degradation 

and improve soil quality by increasing soil organic matter.  

Soil quality is the physical, chemical, and biological properties of a soil that 

determine its suitability to support plant and animal growth (Larson and Pierce, 1991; Doran 

and Parkin, 1994). Soil quality can be assessed using soil quality indicators (Karlen et al., 

2006), which include measurements such as potential nitrogen mineralization (POTMIN-N), 

total soil organic matter, particulate organic matter (POM), and bulk density. No uniform set 

of optimal soil quality indicators are used due to heterogeneity among environments and 

management goals (Karlen et al., 2006). Useful indicators for determining soil quality are 
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often chosen based on processes that are most sensitive to changes in soil function (Karlen et 

al., 2006). The soil quality indicators chosen for this experiment were potential nitrogen 

mineralization, total soil organic matter, and particulate organic matter.  

Soil organic matter is often considered the single most important factor contributing 

to overall soil quality (Larson and Pierce, 1991; Sikora et al., 1996).  The influence of soil 

organic matter on overall soil quality stems from its effects on physical, chemical, and 

biological characteristics of soil (Doran and Parkin, 1994). One of the ways that soil organic 

matter and its associated microflora improve soil tilth is through enhancing soil aggregate 

formation (Tate, 1987). Soil aggregation serves to physically protect the organic matter 

within the aggregates from degradation, allowing the SOM within to serve as a slow release 

form of mineralized N, P, and S (Tate, 1987). Additionally, soil organic matter can hold up to 

20 times its weight in water (Stevenson, 1994); significantly improving soil water holding 

capacity. The organic matter fraction also contains up to 99% of total nitrogen in soil (Sikora 

et al., 1996), serving as the primary source of mineralized N (Drinkwater et al., 1996). Lastly, 

the humic fraction of SOM serves to enhance soil cation exchange capacity (Magdoff, 1996).  

Although the importance of organic matter to proper soil functioning is understood, 

quantifying changes in SOM is still challenging. A relatively large amount of background 

soil organic carbon (SOC) exists in northern Corn Belt soils, which makes it difficult to 

detect the relatively small changes in SOC due to management practices (Kaspar et al., 

2006). Additionally, soil organic matter accumulation can be impacted by variable climatic 

conditions. Soil organic matter degradation is slower under cooler and drier conditions 

(Wilhelm et al., 2010), which retard microbial activity (Sikora et al., 1996). The 
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measurement of soil organic carbon in agricultural fields is further complicated by spatial 

and temporal variability (Janzen et al., 2002). Soil organic matter also exists in both labile 

and recalcitrant pools, which vary substantially in their permanence in soil (Magdoff, 1992).  

Nitrogen and carbon cycles are highly interdependent in soil ecosystems. Nitrogen 

cycling in soil is not possible in the absence of a functional carbon cycle, and vice versa 

(Tate, 1987).  Soil microbes utilize the C in detritus to satisfy their energy needs, however, 

soil microbes, like all organisms, require more than energy; they also require nutrients to 

support physiological functions. The inorganic nutrient that has the most pronounced effect 

on the soil microbial community is nitrogen (Begon et al., 1996). Microbial biomass contains 

a relatively high percentage of N and has an average C/N ratio of approximately 8:1 (Myrold 

and Bottomly, 2008). Soil microbes will eventually release the N that they have incorporated 

through excretions, cell death, or when they are preyed upon by other soil organisms (Myrold 

and Bottomly, 2008). The biochemical composition of organic material entering the SOM 

pool influences the rate at which microbes are able to decompose it (Enriquez et al., 1993). 

Decomposition of low C/N residue will occur faster than decomposition of high C/N residue 

(Enriquez et al., 1993; Green et al., 1995). If residue with a high C/N ratio is added to the 

soil, then microbes will need to utilize N from their environment, effectively rendering the N 

unavailable for immediate plant uptake. If residue additions have a low C/N ratio, then 

microbes will be able to meet their N requirements from their food source and will not need 

to scavenge N from the environment.  

Although microorganisms comprise less than 5% of total SOM (Myrold and 

Bottomly, 2008) they are indispensable to N cycling and are responsible for most of the 
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mineralization of organic N compounds to inorganic N in soil (Tate, 1987; Drinkwater et al., 

1996; Sikora et al., 1996). Nitrogen mineralization is critical for crop production because 

almost all of the N taken up by plant roots is in inorganic forms. Potential nitrogen 

mineralization (POTMIN-N) can be determined by measuring the change in inorganic N 

present in soil over time under optimal conditions for microbial activity (Drinkwater et al., 

1996). Thus, potential nitrogen mineralization is a relative measure of the ability of the soil to 

supply N to plants and it is commonly used in soil quality assessments (Sainju et al., 2003; 

Liebig et al., 2004; Andraski and Bundy, 2008). Despite the utility of the procedure, several 

drawbacks limit its scope of inference. For example, a short-term aerobic incubation under 

optimal conditions, while useful for uniform and consistent handling of multiple samples, 

may not provide an accurate representation of N mineralization in the field under less than 

optimum conditions. Additionally, if soil samples are air-dried prior to re-hydration and 

measurement of POTMIN-N, then the soil microbe community that re-establishes itself after 

the soil rehydration may not be representative of the original microbial community 

(Drinkwater et al., 1996). Another problem is that sieving, drying, and mixing soil in 

preparation for this test can break apart soil aggregates and expose SOM to mineralization 

that would not occur if the soil were left undisturbed (Tate, 1987; Drinkwater et al., 1996). 

These factors work in concert to limit the scope of inference to laboratory conditions 

(Drinkwater et al., 1996). Despite the limitations, a short-term aerobic incubation to 

determine POTMIN-N remains a useful tool for comparing relative differences among 

management practices on the soil’s capacity to supply inorganic nitrogen.  
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Determination of soil organic matter is another useful soil quality indicator. The 

weight loss on ignition (WLOI) procedure can be used to measure SOM and involves burning 

a dry soil sample within a narrow temperature range for a pre-determined period of time to 

completely oxidize SOM and measure the resulting change in weight (Schulte and Hopkins, 

1996). Soil samples are completely dried prior to WLOI to remove any water, which may 

otherwise be misinterpreted as SOM. Additionally, temperatures for the WLOI procedure 

must be high enough to ensure the complete oxidation of SOC, yet low enough (<500°C) to 

avoid the oxidation of inorganic C (Schulte and Hopkins, 1996). Studies conducted by 

Cambardella et al. (2001) and Kaspar et al. (2006) provide an overview on how WLOI is 

used to measure soil organic matter. Soil organic carbon comprises approximately 50% 

percent of SOM on average (Stevenson, 1994), however the percentage of SOC in SOM can 

vary widely (Cambardella et al., 2001; Wilhelm et al., 2010). Accurate estimates of soil 

organic carbon can be determined by weight loss on ignition of SOM if a calibration curve is 

developed based on a common set of samples using measurements of soil C determined using 

a method such as dry combustion (Kaspar et al., 2006).  

Particulate organic matter also has properties that make it useful as a soil quality 

indicator. Particulate organic matter is defined as the organic fraction of soil less than 2mm 

and greater than 53 µm in size (Cambardella and Elliot, 1992) and is usually separated from 

soil by adding a chemical dispersant and shaking before passing the solution through a 53-

µm sieve (Cambardella et al., 2001). The material retained on the sieve contains both POM 

and sand. Cambardella et al. (2001) assert that WLOI can be used to determine POM present 

in the sand-POM mixture and is a viable means to assess management-induced changes in 



21 
 

 

 

POM. In general, particulate organic matter is highly heterogeneous, containing both labile 

and recalcitrant elements, which range from root fragments to charcoal. Cambardella et al. 

(2001) describes the POM fraction as SOM, which is in the intermediate stages of transition 

between fresh plant residues and stable organic matter. Particulate organic matter is more 

sensitive to management-induced changes than total SOM (Cambardella and Elliot, 1992; 

Paustian et al., 1993; Bremer et al., 1994; Gregorich et al., 1995; Sikora et al., 1996; Liebig et 

al., 2004; Coulter et al., 2009), making POM a useful early indicator of long-term changes in 

SOM (Magdoff, 1996; Sikora et al., 1996). Particulate organic matter represents a 

substantial, yet variable, component of soil organic carbon. A study of Nebraska native 

grassland soils by Cambardella and Elliot (1992) discovered that as much as 39% of SOC is 

associated with the POM fraction. A study by Carter et al. (2003) on soils in eastern Canada 

found that POM in systems managed under continuous corn ranged from 18-29% of total 

SOC. The two previous studies suggest that positive changes in POM indicate improvement 

in soil quality.  

Tillage influences soil quality and SOM in a number of ways including; disturbing 

microbial community dynamics, altering soil temperature, destroying soil aggregates, and 

increasing erosion. Excessive tillage can foster SOM decomposition by destroying physical 

barriers in soil that limit organic matter decomposition (Tate 1987). Accelerated organic 

matter oxidation and soil loss work in concert to reduce soil organic carbon stocks, leading to 

a decline in soil quality (Tate, 1987; Ismail et al., 1994; Triplett and Dick, 2008). Adopting a 

no-tillage system can reduce soil organic matter loss (Ismail et al., 1994; Triplett and Dick, 

2008).  Triplett and Dick (2008) define no-tillage as the practice of planting crops in 
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undisturbed soil which retains at least 30% residue cover. As of 2008, no-till was practiced 

on approximately 24% of the total cropland in the United States, a dramatic rise from 5% of 

total U.S. cropland two decades earlier (CTIC, 2008). In general, research suggests that no-

till enhances soil quality when compared to conventional tillage. In wheat cropping systems 

Cambardella and Elliot (1992) reported that POM levels in no-till soils were 50% higher 

compared to tilled soils. Beare et al. (1994) found that no-till increased POM and soil 

aggregation when compared to tillage. A 20-yr. tillage study conducted by Ismail et al. 

(1994) concluded that no-tillage can enhance cation exchange capacity and SOC in the top 5 

cm of soil. No-till has also been identified as an effective means of reducing erosion and 

conserving soil water (Aase and Pikul, 1995; Liebig et al., 2004; Triplett and Dick, 2008).  

No-till may also offer a means to sequester atmospheric carbon. Conservative 

estimates from a meta-analysis presented by West and Post (2002) suggests that transitioning 

to no-till from conventional tillage can sequester an average of 430 kg C ha−1 yr−1 over the 

first 10 years, after which SOC may approach a new equilibrium. A study of silt loams in 

Saskatchewan by Campbell et al. (1999) found that transitioning to no-till increased soil C 

storage in the top 15cm of soil by an average of 25 kg C ha−1 yr−1.  It is important to note that 

the C sequestration capacity of transitioning to no-till is a contentious issue in the scientific 

literature. Baker et al. (2007) suggests that most experiments examining the accrual of SOC 

as a result of adopting conservation tillage have biased sampling protocols because soil 

sampling was restricted to a depth of 30 cm or less. This bias in sampling fails to take into 

account the relatively higher concentrations of SOC that are present in deeper soil layers 

managed under conventional tillage. Baker et al. (2007), however, admit that the standard 
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error of SOC measurements is usually so large that it is difficult to measure either positive or 

negative responses of SOC to tillage. A study conducted by Liebig et al. (2004) in the 

northern Great Plains suggests that management effects, including tillage, are mostly limited 

to the top 7.5 cm of the soil surface, reinforcing the Baker et al. (2007) claim that sampling 

too shallow can bias data. 

No-tillage can have negative consequences on crop productivity as well. Surface 

residues can harbor pests, including insects and pathogens, which can make pest control 

more difficult on land managed under no-till (Triplett and Dick, 2008). Andraski and Bundy 

(2008) found that residue cover lowered soil temperatures early in the southern Wisconsin 

growing season, which led to decreased early season soil N mineralization. Nutrient 

stratification can also cause crop productivity issues under no-tillage. Phosphorous, due to its 

relative water insolubility, can become stratified in the upper layers of soil, leading to P 

deficiencies in the rhizosphere (Triplett and Dick, 2008). 

Benefits of no-till to SOC accumulation are largely derived from slowing SOC loss. 

Another strategy for increasing SOC is to increase the input of biomass C to the soil. Adding 

greater biomass C can be accomplished through the implementation of cover crops. Cover 

crops are plants grown during the fallow period between main crops. Cover crops comprise a 

broad range of plant species, which perform a wide range of ecosystem services including 

erosion mitigation (Kaspar et al., 2001; Wilhelm et al., 2010), nitrogen fixation (Reicosky 

and Forcella, 1998), nutrient scavenging (Kaspar et al., 2007), weed suppression (Liebman 

and Davis, 2000), and beneficial insect habitat (Tillman et al., 2004). Despite the functional 

diversity that exists among cover crops, they have at least one thing in common: they all add 
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an additional crop to the rotation sequence, resulting in greater annual biomass production 

and an increase in the amount of C deposited into the soil organic matter pool. Wilhelm et al. 

(2010) used modeling to predict that adding cover crops to a cropping system where some of 

the corn stover is removed would help maintain soil C by increasing total biomass 

production. Similarly, Wienhold et al. (2006) asserted that a reduction in fallow periods 

coupled with an extended crop rotation sequence, both of which can be accomplished with 

cover crops, can enhance soil quality. Karlen et al. (2006) determined that an extended crop 

rotation sequence increased total organic carbon. Cover crops can also be used to enhance the 

labile SOM pool. A study conducted by Faé et al. (2009) in Ohio found that intermediately 

labile organic matter was increased as a result of implementing winter cover crops. The same 

study found that particulate organic carbon responds rapidly to changes in management (Faé 

et al., 2009). 

Despite the benefits conferred by cover crops, they have also been shown to 

negatively impact crop productivity under certain circumstances. Allelopathy has been 

observed in some cover crops, particularly among the Poaceae, or grass family (Sanchez-

Moreiras and Reigosa-Roger, 2003). Allelopathy is the term given to plant chemical 

interactions that influence the growth and development of other plants (Barnes et al., 1987). 

Rye produces phytotoxic chemicals that have been shown to inhibit root growth in other 

plants by as much as 50% (Barnes et al., 1987). Rye shoot residue has been shown to contain 

twice as much allelochemical as rye root residue (Barnes et al., 1987). In no-till systems, rye 

shoot residue is concentrated near the seed germination zone, where it may have a greater 

impact on seedling growth (Barnes et al., 1987). Allelochemicals, however, are generally 
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short-lived in soils. Dabney et al. (1996) found that legume allelochemical potency declined 

dramatically within three weeks of the legume kill date. Some research suggests that cover 

crops reduce main crop yields. Johnson et al. (1998) found that a rye cover crop reduced corn 

grain yield by as much as 1.6 Mg ha-1 when compared to a no cover crop treatment. The 

authors posit that the yield decline may have been due to reduced soil temperatures, less 

nutrient availability, or negative allelopathic interactions. Alternately, a meta-analysis 

performed by Miguez and Bollero (2005) found that although some experiments show a yield 

decrease in corn following a grass cover crop, there is on average a neutral corn yield 

response to grass cover crops. Faé et al. (2009) found that winter cover crops can be added to 

corn silage systems as a forage supplement without negative effects on corn silage 

productivity. Additionally, research by Singer et al. (2008) found that corn grain yield was 

unaffected by a rye cover crop. Although cover crops can harm main crop yields under 

certain circumstances, the benefits of implementing cover crops outweigh the negative 

impacts through providing multiple ecosystem services. Proper management and selection of 

cover crops is usually sufficient to prevent problems associated with yield decline. 

Although the benefits of cover crops are understood, the lack of short-term economic 

benefit to farmers has hindered widespread adoption of this practice (Singer et al., 2007; Faé 

et al., 2009). Other factors such as time required to manage cover crops, costs associated with 

cover crops, and lack of knowledge about cover crops also hinder widespread adoption 

(Singer et al., 2007). A survey conducted by Singer (2008) found that only 11% of Corn Belt 

farmers planted winter cover crops between the years 2001 to 2005. Given the fact that crop 

nutrient supplements typically account for a significant percentage of crop production 
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budgets, research demonstrating the potential of winter cover crops to enhance soil quality 

and increase the supply of plant nutrients may increase the adoption of cover crops in the 

northern Corn Belt. 

Cereal rye was the most planted cover crop in Illinois and Iowa in the period between 

2001 and 2005 (Singer, 2008). A substantial body of research has demonstrated the ability of 

rye to provide multiple ecosystem services; including mitigation of nutrient leaching 

(Logsdon et al., 2002; Kaspar et al., 2007), erosion control (Wendt and Burwell, 1985; 

Kaspar et al., 2001; Wilhelm et al., 2010) and weed suppression (Barnes et al., 1987; 

Liebman and Davis, 2000; Zotarelli et al., 2009). Rye is an effective scavenger of residual 

inorganic N that could otherwise be lost from the rhizosphere (Kaspar et al., 2007; Zotarelli 

et al., 2009). Research conducted by Kaspar et al. (2007) has demonstrated rye’s ability to 

reduce nitrate concentrations in water by as much as 59% when compared to a no rye control. 

Nitrate leaching is a major water quality concern in the northern Corn Belt (Kaspar et al., 

2007) and in large estuarine areas that receive water flow from this region. Hypoxic areas, 

also known as “dead zones”, in the Gulf of Mexico are largely the result of leached nitrate 

from the Corn Belt (Rabalais et al., 1996). Nitrate concentrations exceeding 10 mg L-1 in 

drinking water pose a direct risk to human health and are known to cause 

methemoglobinemia, also known as blue baby syndrome (USEPA, 2012).  

Cereal rye has also been shown to be effective at reducing soil erosion. Kaspar et al. 

(2001) found that rye following soybean reduced soil loss by 20 to 27 kg ha-1 when compared 

to no cover crop in no-till managed systems. Additionally, rye produces allelopathic 

phytochemicals, which inhibit weed growth (Barnes et al., 1987) and effectively outcompetes 
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weeds for nutrients, water, and light (Liebman and Davis, 2000). Rye also synthesizes an 

array of antifreeze proteins (Griffith and Xiao-Ming, 1999), giving it extraordinary cold-

tolerance.  In fact, rye is the most winter-hardy of all the small grains (Geiger and Miedaner, 

2009), making it an ideal choice for overwintering in the northern Corn Belt. 

There is also research that supports the plausibility of using cereal rye as a means to 

improve soil quality. A study by Malpassi et al. (2002) investigating rye root decomposition 

suggests that rye plants were responsible for an increase in net N mineralization. The 

increase in N mineralization may have been due to increased microbial activity resulting 

from rye root exudates (Parkin et al., 2002). Villamil et al. (2006) found that winter cover 

crop sequences that included rye had lower bulk density and penetration resistance. A study 

conducted by Sequeira and Alley (2011) also found that rye cover crops positively influence 

light organic matter fractions. Rye adds a large amount of residue to the soil, which increases 

soil organic carbon (Wilhelm et al., 2010). Research by Jokela et al. (2009) suggests that rye 

may improve soil quality by increasing soil aggregation. Sainju et al. (2003) drew the same 

conclusion, particularly for aggregate formation in intermediate and small size classes.  

In contrast to management practices that increase inputs of organic matter to the soil, 

harvesting corn for silage or energy biomass can have profound negative consequences on 

soil quality. Silage production is one the most soil resource intensive cropping systems in 

practice due to the drastic reduction in biomass and nutrients being returned to the soil 

(Jokela et al., 2009). Stalk removal during corn silage harvest can remove as much as twice 

the N, three times the amount of P, and 10 times the amount of K compared to corn harvested 

only for grain (Wheaton et al., 1993). Silage harvest greatly reduces the amount of soil 
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residue cover, leaving soil more vulnerable to erosion (Wilhelm et al., 2010). Wendt and 

Burwell (1985) found that a combination of winter cover crops and no-till could significantly 

reduce erosion in corn silage systems. Silage harvesting also has negative impacts on soil by 

reducing the input of shoot residues, which results in a net loss of carbon (Wilhelm et al., 

2010). Thus, this negative impact may be partly mitigated by promoting management 

practices, like cover crops, that increase organic matter inputs (Wilhelm et al., 2010).       

Farmers are faced with a number of challenges including demands to increase 

production in an increasingly variable climate with the rising costs of energy and inputs. 

These challenges can only be met through increasing on-farm sustainability, which includes 

enhancing soil quality. Although a number of studies have supported the benefits of cover 

crops, few have investigated how cover crops can be used to enhance soil quality in a corn-

soybean rotation in the northern U.S Corn Belt. A rye winter cover crop has the potential to 

increase inputs of organic matter to soil in this rotation and is one approach to improving 

overall soil quality. Measuring changes in soil organic matter, however, is often difficult in 

the high organic matter soils of the northern Corn Belt. We hypothesized that it would be 

easier to measure the positive benefits of a rye winter cover crop after nine years of a corn 

silage-soybean rotation because of the reduced main crop residue inputs and the greater 

growth of rye cover crop following corn silage. Therefore, the objectives of this experiment 

were to measure three indicators of soil quality; particulate organic matter, total soil organic 

matter, and potential nitrogen mineralization, in a no-till corn silage/soybean rotation 

managed with and without a rye cover crop. The results of this experiment will provide 

farmers with information on the extent to which rye cover crops can improve soil quality and 



29 
 

 

 

whether the effects of rye vary depending on which crop it follows in the corn/soybean 

rotation.  

Materials and Methods 

This experiment was conducted at Iowa State University’s Boyd Farm, located in 

Boone County, IA (42° 00’ 26” N; -93° 47’ 31” W) in 2009-2011. The two adjacent fields 

used in this experiment were established in 2001 and represent a combined area of 

approximately two hectares. The fields have a 2% slope with two predominant soil series: 

Clarion loam and Nicollet clay loam (Andrews and Diderikson, 1981). The Clarion loam 

series is fine-loamy, mixed, supreactive, mesic Typic Hapludolls, and the Nicollet clay loam 

series is fine-loamy, mixed, supreactive, mesic Aquic Hapludolls. The experiment site is 

located on the Des Moines Lobe, an area characterized by low slope (0-3%) and a relatively 

young (< 14,000 yr.) landscape (Prior, 1991).  

A corn silage/soybean rotation was established in 2001 and the corn silage and 

soybean phases of the rotation were grown alternately in the two adjacent fields. As a result, 

the main crop preceding soil sampling each year, that is the previous crop, depended on the 

year and the field being sampled. For each of the two fields individually the two factors, 

previous crop and year, are synonymous, but for the combined analysis across fields and 

years the effect of previous crop was of more interest. The experimental layout for each field 

was a randomized complete block design with six treatments randomly assigned to the five 

blocks in each field.  Only four of the six treatments were examined in this study. The four 

cropping system treatments compared in this experiment: (1) rye cover crop after corn silage: 
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soybean with no rye; (2) rye after both corn silage and soybean; (3) corn silage and soybean 

with no rye (control); (4) rye after soybean: corn silage with no rye. Each plot was 54.9 m 

long and 3.8 m wide and consisted of five rows spaced 0.76 m apart. Dates for winter cover 

crop planting and termination are listed in Table 3.1.  

The site was managed with no-tillage. Weeds were suppressed using pre-emergence 

herbicides in corn and glyphosate [N-(phosphonomethyl) glycine] in soybean. A glyphosate-

resistant cultivar of soybean (Pioneer 92M11) and a modern corn hybrid (Pioneer 36V75) 

were used throughout this experiment. Both corn and soybeans were planted with a five-row, 

0.76 m row width no-till planter. Soybeans were planted at 395,000 seeds ha−1 in mid-May 

(Table 3.1). Corn was planted at 79,000 seeds ha−1 in late Apr. to early May (Table 3.1). 

Nitrogen fertilizer was applied before corn at a rate of 208 kg N ha-1 as sidedress applications 

at planting and in late May.  Phosphorus and potassium fertilizer were applied as a 

subsurface band at rates of 117 kg P ha-1 and 74 kg K ha-1 in the fall before corn silage years 

as indicated by soil tests and corn silage nutrient removal rates.  

A winter hardy variety of cereal rye (cv. Rymin) was used for the rye winter cover 

crop treatments. Rye was seeded using a no-till grain drill following soybean harvest in late 

Sept. to mid Oct. (Table 3.1) at a rate of 3.0 x 106 seeds ha−1. Rye was drilled at the same 

seeding rate following corn silage harvest in late Aug. to mid Sept. (Table 3.1). Rye was 

drilled in the crop inter-row in three rows spaced 0.19 m apart, leaving the old crop row in 

the center of an unplanted 0.19 m gap. The main crop was planted into this gap the following 

spring. Rye was killed with glyphosate [N-(phosphonomethyl) glycine] applied at 1.12 kg of 

active ingredient ha-1 4-21 days prior to planting the main crop (Table 3.1). The variable field 
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conditions that are common to central Iowa during spring were responsible for the wide 

termination interval.  

Average monthly air temperatures and precipitation were calculated using 

information collected at the Iowa State University research farm located approximately 2 km 

from experiment field site and is listed in Table 3.2 (Iowa Environ. Mesonet, 2012).        

Soil Sampling and Analysis 

Soil sampling took place on 9 June 2010 and 13 June 2011. All soil samples were 

taken from un-trafficked inter-rows at five separate locations starting 9.14 m from the end of 

each plot and then sampling every 9.14 m. Three soil cores were taken at each of the five 

locations within the plot. Three soil cores were taken at each location within a plot; one in the 

center rye row and the other two at evenly spaced distances relative to the center of the rye 

cover crop inter-row. A total of 15 soil cores were taken per plot at a depth of greater than 10 

cm using a 32-mm diameter soil probe. After each sample extraction, soil cores were 

immediately measured and divided into 0-5 cm and 5-10 cm depth samples. The samples 

taken in each plot were combined based on depth; yielding two plastic storage bags of soil 

per plot.       

After the samples were collected, they were transported to the laboratory in insulated 

coolers and then refrigerated at 4°C until processing. When removed from refrigerated 

storage, the bags were weighed and the soil was pushed through sieves with 8mm and 4mm 

openings and mixed. A subsample of approximately 100 g was then taken and oven-dried at 

105º C for 48 hr to determine soil water content. Soil water content, along with the original 
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soil weights and volumes of the soil samples were then used to calculate bulk density. Bulk 

density data was expressed as g soil cm-3. Two approximately 50-g subsamples of the oven-

dried soil were later analyzed for weight loss-on-ignition by weighing samples before and 

after burning in a programmable muffle furnace (Fisher-Scientific Isotemp® 650-126) at 

460º C for 16 hr. Weight loss-on-ignition was considered to be the ash-free change in weight 

during burning per 50 g of air-dry soil. Data will be expressed as change in g SOM g dry soil-

1. The remainder of the original soil sample was partially air-dried and then pushed through a 

2mm mesh sieve. Samples were then completely air-dried and returned to refrigerated 

storage until analysis for potential nitrogen mineralization and particulate organic matter.  

The POM fraction was isolated by adding 240 ml of 5 g L-1 sodium 

hexametaphosphate to two 80-g soil sub-samples, shaking for no less than 18 hr., and then 

wet sieving the soil slurry through a 53-µm sieve (Cambardella and Elliot, 1992; 

Cambardella et al., 2001). Sand particles and POM remaining on the sieve were oven-dried at 

105º C for 48 hr., weighed, burned in a muffle furnace at 460°C for 16 hr., and weighed 

again in a manner consistent with the aforementioned WLOI procedure. Particulate organic 

matter was considered to be the ash-free change in weight during burning per 80 g of air-dry 

soil. Data will be expressed as g POM g dry soil-1.  

Potential nitrogen mineralization was determined by re-hydrating two 40 g sub-

samples of air-dried soil with 14.95 g of water, which was calculated to provide 60% water-

filled pore space, and aerobically incubating at 30º C for 28 days, which is similar to the 

procedure described by Drinkwater et al. (1996). After incubation, 200 ml of 2 M potassium 

chloride solution was added to each sub-sample. Afterwards, sub-samples were shaken for 30 



33 
 

 

 

minutes and filtered using ashless 185 mm filter paper. The filtered solution was then frozen 

until analysis. After thawing the filtrate was immediately analyzed for nitrate (NO3 +NO2) 

and ammonia using a colorimetric method (Keeney and Nelson, 1982) and flow injection 

technology (Zellweger Analytics, Lachat Instrument Division, Milwaukee, WI). Data will be 

expressed as mg N kg soil-1.        

Statistical Analysis 

Data sets for individual combinations of field, previous crop, and depth initially were 

analyzed separately for block and treatment effects as a randomized complete block design 

using the PROC GLM procedure. The two subsamples from each plot for each measurement 

and sampling year (previous crop) were averaged before any statistical analyses. For the 

combined analysis, data from both fields and previous crops were combined, but depths were 

kept separate.  Because soil samples were taken early in the growing season, it was assumed 

that effect of the previous crop was more important than the current crop and that any year 

effects would be confounded by the previous crop.  Therefore, the combined year and 

previous crop effect will be referred to as previous crop.  Additionally, because soil samples 

were taken at the same locations in each plot in both years, the previous crop effect is treated 

as a repeated measure. For the combined analysis the experiment could be considered a split 

plot treatment structure arranged in a completely randomized complete block design 

combined over fields (McIntosh, 1983). The cover crop treatments were the main-plot factors 

and previous crop was the repeated-measure split-plot factor. The combined data were 

analyzed as a mixed model ANOVA with repeated measures using PROC MIXED. When the 
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analysis of variance indicated significant effects at the 0.05 probability level, the LSD test at 

the 0.05 probability level was used to compare treatment means.   

Results and Discussion 

Weather  

 Average monthly air temperatures and total monthly precipitation for 2009-2011 are 

shown in Table 3.2. Weather data for 2009 are included because the rye winter cover crop 

treatments that were sampled in summer 2010 were planted in fall 2009. Air temperatures 

during the fall 2009 cover crop establishment season varied from the 60-yr average, with 

temperatures 3.6°C cooler in October and 3.8°C warmer in November. Total precipitation in 

2009 was 89 mm higher than the 60-yr average, however it is worth noting that the cover 

crop establishment season varied from the average with September being drier than normal 

(58 mm below average) and October being wetter than normal (124 mm above average). 

Average air temperatures in 2010 did not show much variation from the 60-yr average; 

however total precipitation was significantly higher than normal. Total precipitation for 2010 

was 431 mm higher than the long-term average, with precipitation from June-August being 

68-174 mm higher than average for each month during that period. Average air temperatures 

in 2011 did not show much variation from the long-term average with the exception of a 

cooler than average (-3.3°C) December. Total precipitation in 2011 was 30 mm lower than 

the 60-yr average, with the period between July-October being 30-39 mm less than average.    
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Rye Cover Crop Shoot Biomass  

 Over the course of the experiment rye biomass was consistently lower when 

following soybean compared with following corn silage. Average rye shoot biomass 

following soybean was similar to rye biomass yield data presented by Johnson et al. (1998), 

who reported an average rye biomass of 0.41 Mg ha-1. Approximately 5 times more rye shoot 

growth was present when rye followed corn silage compared to rye following soybean. This 

difference is most likely attributable to an extended rye growing season when following 

silage. Silage was harvested earlier than soybean, giving the rye following corn silage an 

extra 14-41 days of growth when compared with rye following soybean (Table 3.1).  

Corn Silage and Soybean Yields   

 Corn silage and soybean grain yields are shown in Table 3.4. Corn silage is reported 

as dry weight of silage and soybean is reported as grain yield at 130 g kg-1 water content. 

Soybean yields were slightly higher when soybean was preceded by a rye cover crop in 2009 

and 2010, and were not different in 2011. Corn silage yields were numerically higher for the 

treatment that had a rye cover crop following both corn silage and soybean; however this was 

not a statistically significant difference.  The lower yields in 2010 for both main crops may be 

attributable to abnormally wet conditions during summer 2010 (Table 3.2). Although there is 

some concern that rye reduces corn productivity (Johnson et al., 1998), our yield data 

indicate that rye did not reduce corn silage yield. Miguez and Bollero (2005) drew the same 

conclusion and found that there is a neutral corn grain yield response to grass cover crops. 

Faé et al. (2009) also drew the same conclusion after they determined that a rye cover crop 

can be added to corn silage systems without negative effects to silage productivity.      
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Bulk Density  

Bulk density showed no significant differences among cover crop treatments in the 0-

5cm or 5-10cm depths, and the only significant effect was for previous crop for the 5-10 cm 

soil layer (Table 3.5). Bulk density means are shown in Tables 3.6 and 3.7 and were on 

average 1.26 and 1.45 g cm-3 for the 0-5 and 5-10 cm layers, respectively. Calculations of 

equivalent soil mass help eliminate bias derived from comparing management practices that 

have different bulk densities (Ellert and Bettany, 1995). Cambardella et al. (2001) 

recommended measuring bulk density in order to calculate SOM on a volumetric basis, 

which allows for comparisons of SOM across management systems. In our experiment the 

cover crop treatments did not affect bulk density; therefore, values for SOM and POM were 

calculated on a concentration basis instead of an area or volumetric basis.  

Total Soil Organic Matter 

 Total soil organic matter was significantly higher in the ‘rye following silage’ and the 

‘rye following both main crops’ treatments than in the ‘no cover crop’ and ‘rye following 

soybean’ treatments at the 0-5cm soil depth (Tables 3.5 and 3.8). In fact, the average SOM 

weight loss was 15% greater in the ‘rye following both main crops’ treatment than the ‘no 

cover crop’ treatment at the 0-5 cm soil depth. Total SOM in the ‘rye following both main 

crops’ treatment was also higher in the 5-10 cm soil depth (Table 3.9), suggesting that rye’s 

effect on total SOM has begun to move deeper into the soil profile. There was also a previous 

crop effect for both depth layers. Data indicate that total SOM was significantly higher when 

the previous crop was soybean. For the most part, this was probably because all of the 

soybean stover was returned to the soil surface, whereas nearly all the corn stover was 
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removed during silage harvest. There was a significant field x previous crop interaction for 

both depth layers. In Field 42 SOM was greater when soybean was the previous crop and in 

Field 44 SOM was greater or equal when corn was the previous crop. Year determined which 

main crop was planted in each field, and because main crops alternated between fields from 

year to year, previous crop effects were confounded with year. We suspect that the field x 

previous crop interaction was largely due to higher main crop yields, and most likely, greater 

shoot and root growth in 2009 compared to 2010 (Table 3.4). Measuring changes in SOM 

resulting from the implementation of cover crops, however, can be difficult. Jokela et al. 

(2009) were not able to detect a cover crop induced change to total SOM; even though they 

were able to detect a change in POM. Kaspar et al. (2006) were also unable to detect a 

change to soil organic carbon resulting from the addition of a rye cover crop. The probable 

reason that our experiment has been able to detect changes in total SOM is the length of time 

our treatments have been in place, which was 10 years in 2011. While we were able to detect 

relative differences in total SOM between treatments, our experiment was not designed to 

quantify changes in net SOM over time. Thus, adding a rye cover crop to a no-till corn 

silage/soybean cropping system may or may not have increased net SOM, but at a minimum 

the rye cover crop mitigated the loss of SOM compared to the treatment without a rye cover 

crop.  

Particulate Organic Matter 

Particulate organic matter was significantly higher in the ‘rye following silage’ and 

the ‘rye following both main crops’ treatments compared to the ‘no cover crop’ and ‘rye 

following soybean’ treatments at the 0-5 cm soil depth (Tables 3.5 and 3.10). Particulate 
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organic matter averaged over both years was 44% greater in the ‘rye following both main 

crops’ treatment than the ‘no cover crop’ treatment.  Both Jokela et al. (2009) and Sequeira 

and Alley (2011) also observed greater POM in a corn silage system with cover crops. A 

significant field x previous crop interaction was also measured for the 0-5 cm depth and this 

was identical to the significant interaction observed for SOM. There was no significant 

difference among treatments at the 5-10 cm depth (Table 3.11), although the probability of a 

greater F value from the ANOVA came close to being significant (Pr > F = 0.07; Table 3.5). 

Although previous research asserts that POM is more sensitive to management-induced 

changes than total SOM (Cambardella and Elliot, 1992), our experiment was not able to 

discern a treatment effect in POM at the 5-10 cm depth, despite the fact that we were able 

discern a treatment effect in SOM at the 5-10 cm depth. Our experiment used the weight 

loss-on-ignition technique to measure both SOM and POM. The POM measurement, 

however, had the additional steps of soil dispersal and sieving, both of which could have 

added some additional variability to the measurement, which may explain why we detected a 

treatment effect at the 5-10 cm depth for SOM but not POM. In general, greater POM in 

treatments with a rye cover crop may indicate that even greater differences in total SOM 

between treatments with and without cover crops may occur over time (Cambardella and 

Elliot 1992; Sikora et al., 1996). 

Potential Nitrogen Mineralization  

  Potential nitrogen mineralization was significantly higher in the ‘rye following 

silage’ and the ‘rye following both main crops’ treatments compared to the ‘no cover crop’ 

and ‘rye following soybean’ treatments at the 0-5cm soil depth (Tables 3.5 and 3.12), 
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however there was no significant difference among treatments at the 5-10cm depth (Table 

3.13). Data from the 0-5cm soil layer show that N mineralization was 38% less in the ‘no 

cover crop’ treatment than in the ‘rye following both main crops’ treatment. There were also 

significant previous crop effects for both depth layers, with POTMIN-N being higher when 

the previous crop was soybean. The previous crop effect was likely due in part to differences 

in mineralization rates between corn and soybean stover, and the amount of stover added to 

the surface. The interaction effect of field x previous crop was also significant at the 0-5cm 

depth layer, as it was for SOM and POM. Similarly, the significant interaction may have 

been caused by the differences observed between 2009 and 2010 main crop yields (Table 

3.4). Research by Biederbeck et al. (1994) suggests there is a positive correlation between 

POM and POTMIN-N. While our experiment did not investigate this correlation, our data did 

show a similar treatment effect pattern for both POM and POTMIN-N at both depth layers. 

The greater POTMIN-N observed when the main crops were followed by a rye cover crop 

could mean the potential for greater long-term N availability (Drinkwater et al., 1996) in 

cropping systems that have a rye cover crop, which could reduce the need for synthetic N 

fertilizers. 

Summary 

 Adding a rye winter cover crop to no-till corn silage/soybean cropping systems can 

improve or maintain soil quality. Our data show that rye cover crops had higher total soil 

organic matter, particulate organic matter, and nitrogen mineralization relative to the 

treatment without cover crops, resulting in overall better soil quality. All of the soil quality 

indicators measured in this experiment responded positively when a rye cover crop was 
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present following both main crops. Each of the soil quality indicators also responded 

positively when rye followed corn silage, which is most likely the result of the rye having an 

extra 2-4 weeks of growth in the fall when compared to the rye following soybean treatment. 

Our data also indicate that the effects of a rye cover crop are most pronounced in the 

uppermost layer of the soil profile. Although our experiment has demonstrated the ability of 

a rye cover crop to improve or maintain soil quality, it is worth noting that this improvement 

is not immediate and may take several years before the benefits to soil quality begin to show. 

This time lag should not, however, deter farmers from adopting a rye cover crop since rye 

performs a number of other valuable ecosystems services including; reductions in nutrient 

leaching, erosion control, and weed suppression, without harming main crop productivity. 

Some additional obstacles may hinder the adoption of rye cover crops, including knowledge 

about successfully managing cover crops, and costs associated with cover crops, however 

these obstacles are likely to diminish over time as rye cover crops gain more widespread use 

in the Corn Belt.          
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Table 3.1:  Management dates. 

 Field 42 Field 44 

 2009 2010 2011 2009 2010 2011 

Main Crop Soybean Corn Soybean Corn Soybean Corn 

       

Main Crop Planting date 12-May 28-Apr 19-May 5-May 19-May 4-May 

       

Main Crop Harvest date 30-Sept 24-Aug 7-Oct 16-Sept 4-Oct 31-Aug 

       

Rye Cover Crop Planting date 1-Oct 25-Aug 7-Oct 17-Sept 5-Oct 1-Sept 

       

Rye Cover Crop Kill date 8-May 19-Apr 6-May 22-Apr 28-Apr 25-Apr 
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Table 3.2: Average monthly air temperature and total precipitation 2009-2011. 

 Average Air Temperature (ºC)  Total Precipitation (mm) 

Month 

 

 

2009  

 

2010  2011 

 1951-
2011 
Avg.   

 

2009  

 

2010  2011 

 1951-
2011 
Avg. 

Jan.  -10.0  -10.0  -8.9  -7.4   25  28  18  19 

Feb.  -2.2  -8.9  -4.4  -4.2   7  19  33  22 

Mar.  3.3  3.3  2.8  2.1   103  55  20  53 

Apr.  8.9  13.3  8.9  10.0   116  93  101  90 

May  15.6  16.7  15.6  16.2   102  92  142  115 

June  21.1  22.2  21.1  21.3   104  284  160  128 

July  20.6  23.9  25.6  23.3   70  173  75  105 

Aug.  21.1  24.4  22.2  22.0   123  285  76  111 

Sep.  17.8  18.9  15.6  17.8   24  167  43  82 

Oct.  7.8  13.3  12.2  11.4   186  12  25  62 

Nov.  6.7  3.3  4.4  2.9   34  60  78  43 

Dec.  -6.7  -6.7  -1.1  -4.4   50  18  54  26 

Jan.-Dec.†  8.9  9.4  9.4  9.3   945  1287  826  856 

 

† Values for the Jan. through Dec. periods are averages for the period for air temperature and 
totals for the period for precipitation. 
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Table 3.3: Rye cover crop dry weight for the corn silage-soybean rotation over two years and two adjacent fields. 

Field (F)

Previous  Crop (P)1 Corn Soybean Avg. Corn Soybean Avg. Corn Soybean Avg.

Treatment (T)2

1 3.40 ----- 3.40 1.99 ----- 1.99 2.69 ----- 2.69
2 3.23 0.69 1.96 2.50 0.21 1.35 2.86 0.45 1.66
3 ----- ----- ----- ----- ----- ----- ----- ----- -----
4 0.87 0.87 ----- 0.28 0.28 ----- 0.57 0.57

F * P Avg. 3.31 0.78 2.24 0.25
F Avg. 2.08 1.21
P Avg. 2.78 0.51

Field 42 Field 44 Avg. of Both Fields

----------------------------------------------- Mg ha-1 ------------------------------------------------

 

1 Previous crop refers to main crop that was present in a field the year before soil samples were taken.  This effect is confounded 
with years because main crops were rotated between the two fields.  Field 42 had soybean in 2009 and corn silage in 2010.  Field 
44 had corn silage in 2009 and soybean in 2010. 

2 There were four cover crop treatments:  1 = rye cover following corn silage and no cover crop following soybean; 2 = rye cover 
crop following both corn silage and soybean; 3 = no cover crop; 4 = rye cover following soybean and no cover crop following corn 
silage. 
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Table 3.4: Corn silage and soybean yields for treatments with a rye cover crop in a corn 
silage-soybean rotation over three years and two adjacent fields.  Corn silage is reported as 
dry weight of silage and soybean is reported as grain yield at 130 g kg-1 water content.   
      

Field 

Main  Crop1 Corn Soybean Corn Soybean

Treatment2 Year
2009

1 ----- 4.00 a3 19.21 a -----
2 ----- 3.95 ab 19.60 a -----
3 ----- 3.90 ab 19.21 a -----
4 ----- 3.77 b 19.61 a -----

Avg. ----- 3.91 19.40 -----

2010
1 16.72 b ----- ----- 2.92 ab
2 19.58 a ----- ----- 2.99 a
3 18.57 ab ----- ----- 2.66 b
4 17.26 ab ----- ----- 2.81 ab

Avg. 18.03 ----- ----- 2.84

2011
1 ----- 3.51 a 18.21 b -----
2 ----- 3.51 a 19.30 a -----
3 ----- 3.41 a 18.87 ab -----
4 ----- 3.29 a 18.50 ab -----

Avg. ----- 3.43 18.72 -----

Field 42 Field 44

---------------------- Mg ha-1 ---------------------

 

1 Main crop that was present in a field in the year indicated.  Main crops were rotated 
between the two fields:  Field 42 had soybean in 2009, corn silage in 2010, and soybean in 
2011; Field 44 had corn silage in 2009, soybean in 2010, and corn silage in 2011.   

2 There were four cover crop treatments:  1 = rye cover following corn silage and no cover 
crop following soybean; 2 = rye cover crop following both corn silage and soybean; 3 = no 
cover crop; 4 = rye cover following soybean and no cover crop following corn silage.  

3 Numbers within a column and year followed by the same lowercase letter are not 
significantly different as indicated by LSD test at the 0.05 probability level.  
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Table 3.5: Probabilities of a greater F value for main effects and interactions from the analysis of variance for bulk density, total 
soil organic matter, particulate organic matter, and potential N mineralization for the 0-5 and 5-10 cm soil layers. 

Soil Layer

Measurement

df
ANOVA Effect

Field (F) 1 0.2566 0.2260 0.9601 0.2350 0.3119 0.3904 0.1051 0.3276
Treatment (T) 3 0.3031 0.0001 ** 0.0001 ** 0.0001 ** 0.4537 0.0435 * 0.0681 0.1414
T×F 3 0.5145 0.3878 0.7425 0.7051 0.1800 0.6139 0.2204 0.0613

Previous Crop (P) 1 0.1782 0.0445 * 0.9492 0.0082 ** 0.0394* 0.0001 ** 0.5710 0.0538*
F×P 1 0.8138 0.0001 ** 0.0015 ** 0.0009 ** 0.2804 0.0001 ** 0.9338 0.3861
T×P 3 0.0947 0.0875 0.1071 0.0249 * 0.7190 0.1906 0.3800 0.7224
T×F×P 3 0.6965 0.1638 0.3304 0.2897 0.1493 0.5532 0.3777 0.5673

0 - 5 cm soil layer

------------------------------------------------ Pr > F -----------------------------------------------------

5-10 cm soil layer

Bulk 
Density

Total Soil 
Organic 
Matter

Particulate 
Organic 
Matter 

Potential N 
Mineraliza-

tion 
Bulk 

Density

Total Soil 
Organic 
Matter

Particulate 
Organic 
Matter 

Potential N 
Mineraliza-

tion 

 

*, ** Indicates the probabilities of a greater F are less than the 0.05 and 0.01 significance levels, respectively. 
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Table 3.6: Bulk density for the 0-5 cm depth layer for treatments with and without a rye cover crop in a corn silage-soybean 
rotation over two years. 

Field (F)

Previous  Crop (P)1 Corn Soybean Avg. Corn Soybean Avg. Corn Soybean Avg.

Treatment (T)2

1 1.22 1.26 1.24 1.27 1.25 1.26 1.25 1.25 1.25
2 1.30 1.20 1.25 1.21 1.19 1.20 1.25 1.19 1.22
3 1.31 1.35 1.33 1.22 1.26 1.24 1.27 1.31 1.29
4 1.32 1.23 1.28 1.33 1.18 1.25 1.32 1.21 1.27

F * P Avg. 1.29 1.26 1.26 1.22
F Avg. 1.27 1.24
P Avg. 1.27 1.24

Field 42 Field 44 Avg. of Both Fields

----------------------------------------------- g soil cm-3 ------------------------------------------------

 

1 Previous crop refers to main crop that was present in a field the year before soil samples were taken.  This effect is confounded 
with years because main crops were rotated between the two fields.  Field 42 had soybean in 2009 and corn silage in 2010.  Field 
44 had corn silage in 2009 and soybean in 2010. 

2 There were four cover crop treatments:  1 = rye cover following corn silage and no cover crop following soybean; 2 = rye cover 
crop following both corn silage and soybean; 3 = no cover crop; 4 = rye cover following soybean and no cover crop following corn 
silage. 
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Table 3.7: Bulk density for the 5-10 cm depth layer for treatments with and without a rye cover crop in a corn silage-soybean 
rotation over two years. 

Field (F)

Previous  Crop (P)1 Corn Soybean Avg. Corn Soybean Avg. Corn Soybean Avg.

Treatment (T)2

1 1.43 1.43 1.43 1.47 1.46 1.46 1.45 1.44 1.45
2 1.50 1.43 1.47 1.43 1.39 1.41 1.47 1.41 1.44
3 1.57 1.42 1.49 1.44 1.47 1.45 1.50 1.44 1.47
4 1.48 1.47 1.47 1.47 1.41 1.44 1.47 1.44 1.46

F * P Avg. 1.50 1.44 1.45 1.43
F Avg. 1.47 1.44
P Avg. 1.47 B 1.43 A

Field 42 Field 44 Avg. of Both Fields

----------------------------------------------- g soil cm-3 ------------------------------------------------

 

1 Previous crop refers to main crop that was present in a field the year before soil samples were taken.  This effect is confounded 
with years because main crops were rotated between the two fields.  Field 42 had soybean in 2009 and corn silage in 2010.  Field 
44 had corn silage in 2009 and soybean in 2010. 

2 There were four cover crop treatments:  1 = rye cover following corn silage and no cover crop following soybean; 2 = rye cover 
crop following both corn silage and soybean; 3 = no cover crop; 4 = rye cover following soybean and no cover crop following corn 
silage. 

3 Numbers within a column followed by the same lowercase letter and numbers within a row followed by the same uppercase letter 
are not significantly different as indicated by LSD test at the 0.05 probability level. 



 
 

 

 

54 

Table 3.8: Total soil organic matter (SOM) for the 0-5 cm depth layer determined by weight loss on ignition for treatments with 
and without a rye cover crop in a corn silage-soybean rotation over two years and two adjacent fields. 

Field (F)

Previous  Crop (P)1 Corn Soybean Avg. Corn Soybean Avg. Corn Soybean Avg.

Treatment (T)2

1 0.0552 0.0574 0.0563 0.0538 0.0514 0.0526 0.0545 0.0544 0.0544 a3

2 0.5680 0.0602 0.0585 0.0558 0.0532 0.0545 0.0563 0.0567 0.0565 a
3 0.0520 0.0535 0.0528 0.0464 0.0453 0.0459 0.0492 0.0494 0.0493 b
4 0.0500 0.0537 0.0519 0.0473 0.0470 0.0472 0.0487 0.0504 0.0495 b

F * P Avg. 0.0535 0.0562 0.0508 0.0492
F Avg. 0.0548 A 0.0500 A
P Avg. 0.0522 B 0.0527 A

Field 42 Field 44 Avg. of Both Fields

----------------------------------------------- g SOM g soil-1 ------------------------------------------------

 

1 Previous crop refers to main crop that was present in a field the year before soil samples were taken.  This effect is confounded 
with years because main crops were rotated between the two fields.  Field 42 had soybean in 2009 and corn silage in 2010.  Field 
44 had corn silage in 2009 and soybean in 2010. 

2 There were four cover crop treatments:  1 = rye cover following corn silage and no cover crop following soybean; 2 = rye cover 
crop following both corn silage and soybean; 3 = no cover crop; 4 = rye cover following soybean and no cover crop following corn 
silage. 

3 Numbers within a column followed by the same lowercase letter and numbers within a row followed by the same uppercase letter 
are not significantly different as indicated by LSD test at the 0.05 probability level. 
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Table 3.9: Total soil organic matter (SOM) for the 5-10 cm depth layer determined by weight loss on ignition for treatments with 
and without a rye cover crop in a corn silage-soybean rotation over two years and two adjacent fields. 

Field (F)

Previous  Crop (P)1 Corn Soybean Avg. Corn Soybean Avg. Corn Soybean Avg.

Treatment (T)2

1 0.0482 0.0511 0.0496 0.0475 0.0472 0.0473 0.0479 0.0491 0.0485 ab
3

2 0.0491 0.0528 0.0509 0.0484 0.0505 0.0495 0.0487 0.0516 0.0502 a
3 0.0477 0.0516 0.0497 0.0455 0.0456 0.0455 0.0466 0.0486 0.0476 b
4 0.0473 0.0504 0.0489 0.0458 0.0455 0.0457 0.0466 0.0480 0.0473 b

F * P Avg. 0.0481 0.0515 0.0468 0.0472
F Avg. 0.0498 A 0.0470 A
P Avg. 0.0474 B 0.0493 A

Field 42 Field 44 Avg. of Both Fields

----------------------------------------------- g SOM g soil-1 ------------------------------------------------

 

1 Previous crop refers to main crop that was present in a field the year before soil samples were taken.  This effect is confounded 
with years because main crops were rotated between the two fields.  Field 42 had soybean in 2009 and corn silage in 2010.  Field 
44 had corn silage in 2009 and soybean in 2010. 

2 There were four cover crop treatments:  1 = rye cover following corn silage and no cover crop following soybean; 2 = rye cover 
crop following both corn silage and soybean; 3 = no cover crop; 4 = rye cover following soybean and no cover crop following corn 
silage. 

3 Numbers within a column followed by the same lowercase letter and numbers within a row followed by the same uppercase letter 
are not significantly different as indicated by LSD test at the 0.05 probability level. 
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Table 3.10: Particulate organic matter (POM) for the 0-5 cm depth layer determined by weight loss on ignition for treatments with 
and without a rye cover crop in a corn silage-soybean rotation over two years and two adjacent fields. 

Field (F)

Previous  Crop (P)1 Corn Soybean Avg. Corn Soybean Avg. Corn Soybean Avg.

Treatment (T)2

1 0.0085 0.0087 0.0086 0.0090 0.0076 0.0083 0.0088 0.0081 0.0084 a3

2 0.0078 0.0093 0.0086 0.0098 0.0084 0.0090 0.0088 0.0089 0.0088 a
3 0.0060 0.0059 0.0060 0.0066 0.0060 0.0063 0.0063 0.0059 0.0061 b
4 0.0055 0.0073 0.0065 0.0060 0.0062 0.0061 0.0058 0.0067 0.0063 b

F * P Avg. 0.0070 0.0078 0.0080 0.0070
F Avg. 0.0074 A 0.0074 A
P Avg. 0.0074 0.0074

Field 42 Field 44 Avg. of Both Fields

----------------------------------------------- g POM g soil-1 ------------------------------------------------

 

1 Previous crop refers to main crop that was present in a field the year before soil samples were taken.  This effect is confounded 
with years because main crops were rotated between the two fields.  Field 42 had soybean in 2009 and corn silage in 2010.  Field 
44 had corn silage in 2009 and soybean in 2010. 

2 There were four cover crop treatments:  1 = rye cover following corn silage and no cover crop following soybean; 2 = rye cover 
crop following both corn silage and soybean; 3 = no cover crop; 4 = rye cover following soybean and no cover crop following corn 
silage. 

3 Numbers within a column followed by the same lowercase letter and numbers within a row followed by the same uppercase letter 
are not significantly different as indicated by LSD test at the 0.05 probability level. 
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Table 3.11: Particulate organic matter (POM) for the 5-10 cm depth layer determined by weight loss on ignition for treatments 
with and without a rye cover crop in a corn silage-soybean rotation over two years and two adjacent fields. 

Field (F)

Previous  Crop (P)1 Corn Soybean Avg. Corn Soybean Avg. Corn Soybean Avg.

Treatment (T)2

1 0.0040 0.0038 0.0039 0.0033 0.0030 0.0032 0.0037 0.0034 0.0035a3

2 0.0038 0.0039 0.0038 0.0038 0.0047 0.0042 0.0038 0.0043 0.0040 a
3 0.0031 0.0038 0.0035 0.0030 0.0028 0.0029 0.0030 0.0033 0.0032 a
4 0.0038 0.0036 0.0037 0.0030 0.0029 0.0029 0.0034 0.0032 0.0033 a

F * P Avg. 0.0037 0.0038 0.0033 0.0034
F Avg. 0.0037 A 0.0033 A
P Avg. 0.0035 0.0036

Field 42 Field 44 Avg. of Both Fields

----------------------------------------------- g POM g soil-1 ------------------------------------------------

 

1 Previous crop refers to main crop that was present in a field the year before soil samples were taken.  This effect is confounded 
with years because main crops were rotated between the two fields.  Field 42 had soybean in 2009 and corn silage in 2010.  Field 
44 had corn silage in 2009 and soybean in 2010. 

2 There were four cover crop treatments:  1 = rye cover following corn silage and no cover crop following soybean; 2 = rye cover 
crop following both corn silage and soybean; 3 = no cover crop; 4 = rye cover following soybean and no cover crop following corn 
silage. 

 

Table 3.12: Potential nitrogen mineralization for the 0-5 cm depth layer for treatments with and without a rye cover crop in a corn 
silage-soybean rotation over two years and two adjacent fields. 
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Field (F)

Previous  Crop (P)1 Corn Soybean Avg. Corn Soybean Avg. Corn Soybean Avg.

Treatment (T)2

1 37.40 45.25 41.35 51.75 48.20 50.00 44.60 46.75 45.65 a3

2 45.25 49.20 47.20 54.40 49.25 51.85 49.85 49.20 49.55 a
3 31.40 36.85 34.10 36.85 37.85 37.35 34.15 37.35 35.75 b
4 24.60 48.45 36.55 37.80 40.15 39.00 31.20 44.30 37.75 b

F * P Avg. 34.65 44.95 45.20 43.90
F Avg. 39.80 A 44.55 A
P Avg. 39.95 B 44.20 A

Field 42 Field 44 Avg. of Both Fields

----------------------------------------------- mg N kg soil-1 -----------------------------------------------

 

1 Previous crop refers to main crop that was present in a field the year before soil samples were taken.  This effect is confounded 
with years because main crops were rotated between the two fields.  Field 42 had soybean in 2009 and corn silage in 2010.  Field 
44 had corn silage in 2009 and soybean in 2010. 

2 There were four cover crop treatments:  1 = rye cover following corn silage and no cover crop following soybean; 2 = rye cover 
crop following both corn silage and soybean; 3 = no cover crop; 4 = rye cover following soybean and no cover crop following corn 
silage. 

3 Numbers within a column followed by the same lowercase letter and numbers within a row followed by the same uppercase letter 
are not significantly different as indicated by LSD test at the 0.05 probability level. 
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Table 3.13: Potential nitrogen mineralization for the 5-10 cm depth layer for treatments with and without a rye cover crop in a corn 
silage-soybean rotation over two years and two adjacent fields. 

Field (F)

Previous  Crop (P)1 Corn Soybean Avg. Corn Soybean Avg. Corn Soybean Avg.

Treatment (T)2

1 23.25 23.40 23.20 19.65 19.80 19.75 21.45 21.60 21.50a3

2 20.25 24.55 22.40 23.55 29.90 26.70 21.90 27.20 24.55 a
3 15.90 22.15 19.05 16.50 19.45 18.00 16.20 20.80 18.50 a
4 21.45 34.65 28.05 17.85 17.65 17.75 19.65 26.15 22.90 a

F * P Avg. 20.20 26.20 19.40 21.70
F Avg. 23.20 A 20.55 A
P Avg. 19.80 B 23.95 A

Field 42 Field 44 Avg. of Both Fields

----------------------------------------------- mg N kg soil-1 -----------------------------------------------

 

1 Previous crop refers to main crop that was present in a field the year before soil samples were taken.  This effect is confounded 
with years because main crops were rotated between the two fields.  Field 42 had soybean in 2009 and corn silage in 2010.  Field 
44 had corn silage in 2009 and soybean in 2010. 

2 There were four cover crop treatments:  1 = rye cover following corn silage and no cover crop following soybean; 2 = rye cover 
crop following both corn silage and soybean; 3 = no cover crop; 4 = rye cover following soybean and no cover crop following corn 
silage. 

3 Numbers within a column followed by the same lowercase letter and numbers within a row followed by the same uppercase letter 
are not significantly different as indicated by LSD test at the 0.05 probability level. 
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CHAPTER 4. AGCULTURE: ENGAGING IOWA’S URBAN YOUTH  IN HANDS-ON 
SUSTAINABLE AGRICULTURE EDUCATION  

A paper to be submitted to the Journal of Natural Resources and Life Science Education  

 E. B. Moore, T. Kaspar, M. Wiedenhoeft, and C. Cambardella   

 

Abstract 

AgCulture was created to address the lack of practical agricultural education offered to urban 

secondary students in Central Iowa. Current trends in youth gardening programs target 

elementary and middle school students, however, few have been designed with secondary 

school students in mind. Programs that build the skills and knowledge needed to develop 

healthy eating habits and to grow and cook fresh foods, while typically not geared towards 

secondary students, have the potential to create lasting positive impacts in the lives of high 

school students. This impact extends further for urban youth, because they are less likely than 

rural youth to understand food’s journey from farm to fork. The primary objective of 

AgCulture was to increase food knowledge among high school youth by providing hands-on 

experiences growing, cooking, and eating fresh foods. The goals designed to meet this 

objective were: increasing the youth’s consumption of fresh fruit and vegetables, increasing 

knowledge pertaining to growing and cooking fresh foods, and developing an interest in 

agriculture among the youth. This paper recaps the pilot season of AgCulture in Ames, IA, 

complete with discussions of the successes and short-comings of our nascent program, as 

well as the benefits and challenges associated with using this program model in other 

locations. Overall, youth in the program increased their consumption of fresh fruits and 
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vegetables, increased their confidence in cooking with fresh foods, and increased their 

confidence in growing their own food. Youth also used the skills gained in this program to 

start a student-managed garden at the Ames High School. 

Introduction 

Iowa is one of the largest producers of agricultural commodities in the U.S. In 

addition to being the third largest producer of total agricultural products, Iowa is the nation’s 

largest producer of several key commodities including corn, soybeans, eggs, and hogs 

(USDA NASS, 2007). Despite the importance of agriculture to Iowa’s economy, many Iowa 

youth often have few direct experiences with agriculture. Approximately 56% of Iowa’s 

population is urban (USDA ERS, 2012); and this demographic distribution may play an 

important role in determining youth exposure to agriculture in Iowa. Urban youth are often 

less likely to understand and have direct experiences with agriculture. Agricultural education 

for urban youth is a relevant issue because understanding agriculture is linked to 

understanding personal and environmental health. A focus group study in Michigan on 

teacher’s perceptions found that educators noticed links between their students’ 

understanding of agriculture and their understanding of nutrition and environmental issues 

(Trexler et al., 2000). This same study also observed that teachers often perceived that their 

students were both apathetic and uninformed about where food comes from. Education is a 

powerful tool that can empower youth to learn more about how agriculture affects their 

everyday lives and be inspired to take an interest in how food is produced.  
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Agricultural education can be enhanced through hands-on, or experiential learning. 

One of the most common ways that agriculture is taught experientially is via school gardens. 

Brink and Yoast (2004) describe school gardens as a means to promote experiential learning 

through the creation of outdoor learning landscapes. School gardens can also provide ample 

opportunity for youth-initiated learning and inter-generational transfer of knowledge through 

prolonged youth contact with adult gardeners (Rahm, 2002). A meta-analysis by Blair (2009) 

suggests that school gardens are also a viable means to “improve students’ test scores and 

school behavior”.  

Despite the known benefits of experiential agricultural education, few programs are 

targeted towards secondary students (Blair, 2009). For many urban secondary students, 

knowledge of where food comes from doesn’t extend beyond the supermarket. In the U.S. an 

estimated 83% of the population is non-rural (USDA ERS, 2009).  The demographic trend of 

increasing urbanization is expected to continue well into the future; highlighting the need for 

agricultural education geared towards urban secondary students. Familiarizing secondary 

students with the importance of fresh food and an understanding of where food comes from 

is an issue that demands immediate attention.  

Diet-related health epidemics are a critical problem in the U.S., especially amongst 

racial minority groups in urban populations. Racial minorities are disproportionately affected 

by type-2 diabetes, obesity, and hypertension, all of which are diet related and preventable 

(CDCP, 2007, 2009; USDHHS, 2011). Blair (2009) suggests that youth need to “broaden 

their perspective on what foods are edible and to re-personalize food” to combat diet related 

epidemics. Educational programs can be an effective means to broaden youth perspectives 
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and provide a framework from which youth can re-think issues pertaining to food choice and 

health.  

Given the fact that many of society’s most pressing concerns are heavily influenced 

by our food system; including diet-related health problems, biodiversity preservation, and 

non-renewable energy consumption, knowledge about where food comes from and how food 

is grown is desperately needed in youth education programs. This sentiment is echoed by the 

National Research Council (1988), which asserts that agriculture is “too important a topic to 

be taught to the relatively small percentage of students considering a career in agriculture”.  

In February 2011, Urban Dreams, a non-profit organization based in Des Moines, IA, 

initiated a program called AgCulture to help address the lack of experiential agriculture 

programs offered to urban secondary students in Iowa. AgCulture was designed to increase 

food knowledge among high school youth by providing hands-on experiences growing, 

cooking, and eating fresh foods. The core goals of the program were: increasing the youth’s 

consumption of fresh fruit and vegetables, increasing knowledge pertaining to growing and 

cooking fresh foods, and developing an interest in agriculture among the youth. The program 

also placed strong emphasis on fostering participation among racial minorities.   

The pilot season of AgCulture began in spring 2011 and focused primarily on 

cooking and gardening principles. AgCulture youth applied the skills and knowledge gained 

from the spring program to create a student-led garden at the local high school in fall 2011. 

Examples of lessons and activities will be presented along with the results of surveys and 

questionnaires used to assess youth attitude changes towards cooking and gardening. An 
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assessment of how well program objectives were met and suggestions for improving the 

program will also be presented.    

Spring Program Overview 

The spring program began on 4 April 2011 and ended 2 June 2011. Eight youth, ages 

14-16, and two instructors participated in the program. AgCulture met twice a week at the 

United Church of Christ facility in Ames, IA. Although meetings took place in a church, the 

AgCulture program contained no religious aspects. Each Tuesday was devoted to cooking 

lessons and assisting with Farm to Folk, which is one of the farmer’s markets that service the 

Ames community. Cooking lessons were taught by the instructors and guests from the 

community. Each Tuesday the youth cooked a meal using fresh ingredients from the Farm to 

Folk farmer’s market, which was also located at the United Church of Christ facility. 

Tuesdays also provided youth with an opportunity talk with the farmers that sold at Farm to 

Folk. Each youth was asked to profile one of the farmers that serviced Farm to Folk. These 

one-on-one interviews allowed the youth to get to know the farmers on a more personal level 

and also gave the youth the opportunity to learn more about the business aspects of farming. 

Each of the youth gave a synopsis of their interview to their peers and the instructors.  

Thursdays were devoted to gardening and agricultural education. Gardening lessons 

focused primarily on garden design, plant seasonality, crop rotation, and soil health 

principles. Over the course of the program youth also learned about food plant origins, 

identification of plant families, sustainable agriculture principles, soil and water 

conservation, and Iowa agriculture. The Thursday gardening section culminated in students 
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successfully designing a garden plan, which was implemented at the Iowa State University 

Student Organic Farm in May 2011. Youth participation in planning and creating a garden 

was deemed essential to the success of the program. Thorp and Townsend (2001) observed a 

transitional stage in which youth up to age 14 bond closely to natural spaces outside of the 

home. One of the ways that this bond, which, according to Thorp and Townsend (2001), is 

“essential for healthy maturation”, can be developed is through youth being active 

participants in planning and creating a garden (Blair, 2009).  

Spring Program Learning Activities 

At the beginning of the program students were asked to work together to create a 

group mission statement for the program. They agreed upon: 

"We strive to learn more about our food, how it’s grown, and how to prepare it. We commit 

to use this knowledge to help educate the community about local foods, and to have fun 

doing it!" 

The strategy for reaching this group goal revolved around incorporating hands-on learning 

activities. Agricultural education activities used in this program employed a learner-centered 

approach, which is the cornerstone of many successful non-formal education programs 

(Seevers et al., 2007). The learner-centered approach differs markedly from a teacher-

centered approach, which is used in most formal secondary school courses. The learner-

centered approach is characterized by the learners being actively engaged in determining the 

program content, whereas the teacher-centered approach is characterized by the educator 

assuming all control over program content (Seevers et al., 2007).   
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AgCulture is a completely voluntary program; youth received no pay or academic 

credit for participating. Non-formal, voluntary programs such as AgCulture can only be 

successful if participants perceive that their interests are being addressed. According to 

Seevers et al. (2007), non-formal education should be “practical, flexible, and based on the 

needs of the participants”.  Cooking and gardening activities revolved around crops that were 

of interest to the group. The garden planted by the youth at the end of the spring program at 

the Iowa State University Student Organic Farm was composed entirely of plants that the 

youth expressed an interest in growing. 

All activities employed during the program were designed to educate as well as 

engage youth in learning about food. The following example is an activity from Week 2 of 

the spring program:      

The goal of this activity was to encourage the youth to begin thinking about which crops 

would be successful in an Iowa garden. Achieving this learning goal required several steps. 

First, the youth needed to be made aware that different plants evolved in different 

environments, which has a major influence on where those plants can be grown successfully. 

Secondly, the youth needed to understand the environmental factors that influence where 

certain plants can grow. Lastly, the youth needed to apply the knowledge gained from the 

previous step to create a list of plants that would be likely to do well in an Iowa garden. The 

activity began with a game adapted from the book “French Fries and the Food System” 

(Coblyn, 2002): 



67 
 

 

 

“Pair off in teams of two and take 10 minutes to help me work on a story that I’m writing. 

The story takes place 600 years ago in London, and it is about a fancy birthday party for the 

main character, and at this party the main courses are French fries and ketchup, corn on the 

cob, and chocolate pudding. I want my story to be as historically accurate as possible so tell 

me if there is anything I can change to make it better.” 

The students provided a wide range of responses; some said that people didn’t fry food in 

those days, so no one ate French fries; some said that people in London have always 

preferred mashed potatoes instead of French fries; some even said that people didn’t 

celebrate birthdays back then. The youth were surprised to learn that this meal was 

impossible in London in the year 1411 because all the plants that these foods are made from 

(potatoes, tomatoes, maize, and cacao) are native to the New World and thus were not 

available to Europeans until after Christopher Columbus sailed to the Americas in 1492. 

The youth were then challenged to think about the reasons that plants are able to be grown in 

areas other than where they were first domesticated, and how this has influenced their own 

cultures. We gathered around a world map and played food origins “Jeopardy” (Coblyn, 

2002). Clues about different food plants were given, and the youth eagerly competed to be 

the first with the correct answer. An example of one of the questions is: “It stood taller than a 

man and had ears as thick as a human arm”: the answer of course is maize. Another example 

is “Some are sweet, but some make you cry”: the correct answer being onions. After giving 

the correct answer the group worked together to guess the place on the map where the crop 

originated and, with the assistance of the instructors, successfully mapped over 20 crops. We 

also used the map to find where our family origins are and what types of crops are native to 
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those places. Students reacted very positively to this part of the exercise and were often 

surprised when learning where some of their favorite foods originated. A Mexican-American 

youth responded to this activity with pride, noting that “a lot of the really tasty foods 

(avocado, cacao, and maize) come from Mexico”. Afterwards, the youth were tasked with 

using this information to think about which plants were likely to be successful in an Iowa 

garden. The youth worked together to construct a list of plants that would do well in Iowa’s 

temperate climate. This list was used in later lessons about plant families, crop rotation, and 

garden design.  

Another example of youth activities is from Week 5 of the spring program:   

The objective of this activity was to encourage youth to view gardening as an activity that 

can be adapted to indoor scenarios. This learning objective was deemed especially important 

for urban youth since many of them may not have access to outdoor space for growing food. 

Achieving this objective required youth to learn which foods plants are adapted to thrive in 

small spaces. Herbs fit in with our learning goal excellently. In addition to their suitability for 

growing in small spaces, herbs allowed the youth to explore edible plants other than fruits 

and vegetables. Youth grew a variety of herbs from seed and later transplanted the herbs to 

pots, which each of the youth took home. Creating indoor herb pots served as a way to 

provide the youth with a constant reminder that growing fresh food is an option for everyone; 

even those that live in urban spaces. Starting potted herb gardens had the added benefit of 

providing the youth with experience in transplanting, which proved valuable when work 

began at the Iowa State University Student Organic Farm. Anecdotal evidence shared by the 
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youth suggests that the indoor herb pots also provided the youth with opportunities to share 

their enthusiasm about edible plants with others, including their parents and friends.  

Youth Peer Outreach 

In addition to teaching youth practical skills such as healthy eating, proper food 

preparation, and home gardening; the youth were also encouraged to become active 

community members by sharing their food knowledge with others. An informational event 

for the On-Farm Summer AgCulture Program, a paid internship which offered youth an 

opportunity to gain valuable work experience while learning about agriculture, was held in 

April 2011.  

The goals of this event were to disseminate information about the summer AgCulture 

program to youth in the community, foster a sense of community by sharing a meal that used 

locally grown ingredients, and spark interest in gardening among the youth. The latter was 

accomplished through hosting a “seed bomb” workshop (Fig.1). Seed bombs consist of clay, 

water, composted manure, and seed mixed together and shaped like a ball. Seed bombs are 

popular because they provide an easy means of facilitating the successful establishment of 

plants and can be used with a wide variety of seeds. AgCulture youth were responsible for all 

cooking at the event and for teaching their peers how to make seed bombs. This event 

enabled AgCulture youth to meet part of their original mission statement: “to help educate 

the community about local foods, and to have fun doing it!”. This event also succeeded in 

encouraging several youth from the community to apply for the On-Farm Summer Program.  
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Spring AgCulture Program Results 

Each of the youth was given a pre-survey on the first day of the program and a post-

survey on the last day of the program (Fig. 2). These surveys were designed to assess the 

youth’s food knowledge and eating habits. The surveys included questions pertaining to the 

youth’s knowledge about how agriculture affects the environment, which foods are healthy, 

fruit and vegetable consumption habits, and confidence in cooking, gardening, and making 

healthy food choices. Youth were asked to rate the degree to which they agreed with 

statements such as “I know what foods are grown around here”, “I want to be a farmer”, and 

“It is important to eat local foods”. Most of the questions required a response that ranged 

from 1-5, with “1” being the lowest (never, or strongly disagree) and “5” being the highest 

(always, or strongly agree). The survey also included questions that required a written 

response, allowing the instructors to better understand the perspectives of each youth 

participant. The pre survey and post survey were identical with the exception of one question 

being changed from “What are the main things you want to learn” in the pre-survey to “What 

are the main things you learned” in the post-survey.  

Overall, the youth showed a more positive attitude towards fresh local foods, 

increased confidence in growing their own food, better understanding of food seasonality, 

and more confidence in their ability to cook with raw ingredients (Fig. 3). It is also worth 

noting that fruit and vegetable consumption among the group increased by an average of 

29%. There was also a 21% average increase amongst the group in confidence cooking with 

fresh/raw ingredients. Youth agreement with the statements “I help people in my community 

find fresh food” and “I am a leader in my community” both declined by 4%. These were the 
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only progress indicators that showed a decline over the period of the program. It is possible 

that this decline was due to the youth having a more realistic understanding of what each of 

those questions means as a result of the program. It is also worth noting that the number of 

participants was relatively small (n=8), allowing the responses of one participant to heavily 

skew the group average in either direction.  

Comparison of the pre-survey question “What are the main things you want to learn 

in this program” and the post-survey question “What are the main things you have learned in 

this program” revealed that the youth learned a great deal of what they hoped to learn in the 

program (Fig. 2). For example, in the pre-survey one of the youth wrote that they would like 

to “learn how to cook with fruits and vegetable and learn about gardening”. In the post-

survey the same youth wrote they had “learned how to cook and grow fruits and vegetables”. 

Another youth hoped to learn “how to make fresh food!, how to make a very neat garden” in 

the pre-survey and noted they had learned “gardening, cooking, establishing a farmer’s 

market” in the post-survey. Additional survey results can be found in Figure 3.  

Youth were also asked to provide feedback about the program as a whole (Fig. 4). As 

a group, the youth were asked about the parts of the program they enjoyed most, and which 

aspects they would like to see changed. In general, the youth enjoyed having guest chefs, 

visiting gardens, and learning how to cook without recipes. Many youth also said they would 

have liked to have more educational games, plant more unconventional crop varieties (e.g. 

yellow-fleshed watermelon, purple carrots) and have more workshops centered on their 

interests.   
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Survey results indicate that AgCulture was successful in meeting all of its main 

objectives. Consumption of fresh fruit and vegetables was increased; however fresh fruits 

and vegetables were provided to the youth during the Tuesday cooking lessons and it remains 

unclear whether the increase was solely a result of consumption at AgCulture lessons, or the 

result of increased consumption at home and at school. The program was also successful at 

increasing knowledge about growing and cooking fresh foods.  

The final objective, developing an interest in agriculture among the youth, was more 

difficult to assess. For example, youth response to the statement “I want to be a farmer” 

showed no net change. Youth could become more interested in agriculture without 

necessarily wanting to become farmers; however some may interpret these results as 

indicating that the youth did not develop an interest in agriculture. A negligible increase in 

students’ desire to study agriculture in college presents the same issues as the previous 

example. Likewise, students showed increased agreement with the statement “It is important 

to eat local food”; however this does provide direct evidence that they have developed a 

greater interest in agriculture. Youth were asked to provide a written response to the survey 

question “Is eating food from local, sustainable farms important to you? Why or why not”; 

however some of the youth didn’t exactly answer the question being asked of them, and one 

youth did not provide a response. These factors make it difficult to definitively state that 

AgCulture youth developed an interest in agriculture; however anecdotal evidence such as 

some of the youth opting to participate in the On-Farm Summer program and some deciding 

to volunteer at local farmer’s markets, seem to suggest at least a modest increase in their 
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interest in agriculture. Re-wording of the survey questions could help the instructors gain a 

better understanding of the extent to which youth have developed an interest in agriculture.  

Responses from the pre-survey also made it clear that the youth did not have a firm 

understanding of what is considered a vegetable. One youth counted a fast-food baked potato 

as a fresh vegetable, and several youth counted tomatoes, which should have been placed in 

the fruit category. While this point is moot, establishing definitions for certain terms, such as 

fresh vegetables, local foods, and leadership, prior to the survey may have yielded more 

accurate results.  

Although still in its infancy, AgCulture seems to show promise as a vehicle for 

providing experiential agriculture education to urban secondary students. No major factors 

prohibit the implementation of similar programs in other parts of the country; however, 

having access to farmer’s markets and farm land did make it easier to provide the youth with 

a more well-rounded agricultural education experience. Agricultural education is important 

for all students, not just those who live in rural areas. Youth will be less capable of making 

conscious, informed food and environmental choices throughout their lives, if they are not 

exposed to sustainable agricultural education. Increasing the number of programs similar to 

AgCulture could help address the agricultural knowledge gap among urban youth and move 

our society towards a future where the public is informed enough to make conscious food 

and environmental choices and support farmers and landowners in using sustainable soil 

management practices.        
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Figure 1.  This is the informational flyer for the On-Farm Summer Program. Flyers were 
posted at Ames High School and circulated by AgCulture youth. 
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Figure 2.   A survey given to each of the youth on the first day of the spring program. The 
same survey was given to each of the youth on the last day of the spring program. 
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Figure 2 cont. 
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Figure 3.  These tables are the original data from the pre survey and post survey. Responses 
range from 1-5, and from 1-3 in some questions. Lower numbers are associated with the 
youth having less confidence with an action or disagreeing with a statement, whereas higher 
numbers are associated with the youth having more confidence or agreeing with a statement.  
 
1= never, not confident, strongly disagree 
2= rarely, somewhat confident, disagree 
3= some of the time, very confindent, neutral 
4= most of the time, agreee 
5= all of the time, strongly agree 
 

Δ- Denotes the difference in response values from the pre survey and post survey. 

How often 
do you 

know about 
each of the 
following 

items?

Where the 
food I eat 

comes from

What 
foods are 

grown 
around 

here

What 
foods 

grow in 
each 

season

What 
distance 

foods 
travel 
before 

they get to 
me

Which 
foods are 
healthy

Why farms 
and 

gardens 
are 

important

How 
agriculture 
affects the 

environment 

The food 
traditions 

of my 
friends

Is eating 
food from 

local, 
sustainable 

farms 
important 
to you?

a. from b. grown c. season d. distance e. healthy f. important g. environment h. traditions

AF - pre 5 3 3 3 4 4 3 5 0.5

AF - post 3 4 4 3 5 4 3 5 1

FP - pre 1 1 2 1 3 4 3 1 1

FP - post 3 2 4 2 3 4 4 2 1

RL - pre 3 4 3 3 4 4 3 3 0

RL - post 4 4 3 3 4 3 3 3 1

CH - pre 3 3 5 2 5 4 5 3 1

CH - post 4 5 5 3 5 5 5 4 1

CB - pre 3 3 2 3 4 4 4 4 0.5

CB - post 2 3 4 2 4 5 5 4 1

EE - pre 3 4 2 3 4 2 2 2 1

EE - post 4 4 3 4 4 3 4 5 1

IB - pre 4 4 4 3 4 5 5 4 1

IB - post 4 5 5 4 5 5 5 4 1

SH - pre 4 4 3 3 4 4 5 4

SH - post 4 4 4 3 3 5 5 4 1

Pre Mean 3.25 3.25 3 2.625 4 3.875 3.75 3.25 0.71428571
Post Mean 3.5 3.875 4 3 4.125 4.25 4.25 3.875 1

Δ 0.07 0.19 0.33 0.14 0.03 0.1 0.13 0.19 0.4  
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Figure 3 cont. 

Rate the 
extent to 

which you 
agree or 
disagree 
the the 

following

I can cook a 
healthy 
meal for 
myself

It is 
important to 

eat local 
food

I want to be 
a farmer

I care about 
the 

environment

I know how 
to grow my 
own food

I feel 
comfortable 
speaking in 

front of 
groups

I am a 
leader in 

my 
community

People in 
my 

community 
can easily 
get fresh 

food

I plan on 
studying 

agriculture 
in college

It is 
important to 
participate 
in activities 
with diverse 

groups of 
people

I help 
people in 

my 
community 
find fresh 

food

a. cook b. local c. farmer d. environment e. grow f. speaking g. leader h. get fresh i. studying j. diverse k. find fresh

AF - pre 5 3 3 3 5 2 4 3 1 2 3

AF - post 5 4 3 3 5 3 3 4 1 3 3

FP - pre 3 4 3 5 3 2 1 4 3 4 3

FP - post 4 5 3 5 4 3 2 4 3 5 3

RL - pre 3 2 3 4 2 3 4 4 3 4 2

RL - post 5 4 2 5 3 3 3 5 2 4 2

CH - pre 4 5 2 5 3 4 3 3 2 5 3

CH - post 5 5 3 5 5 4 3 4 3 5 3

CB - pre 4 4 2 4 4 5 3 4 2 5 3

CB - post 4 3 2 4 3 4 3 4 3 4 3

EE - pre 5 4 3 4 4 3 4 3 3 4 5

EE - post 5 4 4 5 5 3 4 4 4 5 4

IB - pre 5 5 4 4 4 4 4 3 3 5 3

IB - post 4 5 3 4 4 4 4 2 3 5 3

SH - pre 4 4 5 5 3 3 3 5 4 5 3

SH - post 4 5 5 4 4 3 3 4 3 5 3

Pre Mean 4.125 3.875 3.125 4.25 3.5 3.25 3.25 3.625 2.625 4.25 3.125
Post Mean 4.5 4.375 3.125 4.375 4.125 3.375 3.125 3.875 2.75 4.5 3

Δ 0.09 0.13 0 0.03 0.18 0.04 -0.04 0.07 0.04 0.06 -0.04  
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Figure 4.  The youth provided feedback about things they liked and disliked about the spring 
program. Positives are the things the youth enjoyed and deltas are things that they would 
have changed. 
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CHAPTER 6. GENERAL CONCLUSION 

Healthy soil, healthy people, and healthy communities are inextricably linked. The 

long-term sustainability of communities in Iowa, and elsewhere, depend upon the sustainable 

management of soil resources. Moving our society towards a sustainable relationship with 

soil requires concerted action on the part of both farmers and urbanites. Farmers need to 

understand the importance and benefits of implementing sustainable soil management 

practices. Urbanites need to support farmers both socially and economically in their efforts to 

sustainably manage soil. This thesis examined two strategies that have the potential to 

dramatically improve the sustainability of human interactions with soil in Iowa. One of these 

strategies is implementing rye winter cover crops in corn and soybean cropping systems. The 

field experiment presented in this thesis shows that rye winter cover crops can improve soil 

quality. Other scientific work has demonstrated the ability of rye cover crops to provide 

multiple ecosystem services, however these services have generally been viewed by farmers 

as lacking economic incentive. Results from our experiment show that rye cover crops can 

enhance the ability of soil to provide plant nutrients, which may encourage more farmers to 

adopt cover crops. The other strategy for improving sustainable human relationships with soil 

involved teaching urban teenagers about the role that soils and agriculture play in their 

personal health and the health of the environment. The first season of AgCulture introduced 

urban youth to fresh foods, gardening, soils and sustainable agriculture. After completing the 

AgCulture program, youth expressed more interest in gardening and eating fresh, healthy 

foods. It remains to be seen whether this display of interest will translate into a life-long 

appreciation of agriculture and soil, however preliminary results indicate that the youth have 
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at least begun to re-assess their relationship with soil. The strategies investigated in this 

thesis are but two of myriad actions that can be taken to improve the sustainability of human-

soil interactions. More research is needed in both the natural and social sciences to help 

further move our society towards a sustainable relationship with the soil that forms the very 

foundation of our livelihoods and communities. 
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