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CHAPTER ONE 
 

General Introduction 
 
 

Conservation is getting nowhere because it is incompatible with our 
Abrahamic concept of land. We abuse land because we regard it as a 
commodity belonging to us. When we see land as a community to which 
we belong, we may begin to use it with love and respect. There is no 
other way for land to survive the impact of mechanized man, nor for us to 
reap from it the esthetic harvest it is capable, under science, of 
contributing to culture. 

— Aldo Leopold 
 

 
A common convention for the introduction of research from the tallgrass prairie consists 

of describing the scarcity and fragility of what remains of the North American Pleistocene 

grasslands. I suspect that these statistics are meant to underscore the urgency of determining 

how these communities are composed and how they function, naturally, in order to 

successfully restore them to a natural state. It is hard, however, to escape the sense that such 

research constitutes the final examination of the last extant individual of some mysterious, 

soon-to-be-extinct species, kept this long behind the fingerprinted glass wall of an ecosystem 

zoo.  

The chapters that follow are part of an attempt to pursue ecological inquiry positively, to 

understand our relationship with the world we inhabit as a constant interaction rather than a 

series of impacts. Sustainable Agriculture is the application of ecological knowledge to food 

systems. The ecological food system – nay, the greater ecological lifestyle – asks questions 

of the land, rather than making demands of it. Instead of approaching landscapes with the 

intent to manipulate it to achieve an a priori goal, ecologically-motivated agriculture seeks to 

determine what the ecology of the system is capable of producing at a sustainable rate. 
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 Unfortunately, the ecological potential of most systems has been reduced by “the 

impact of mechanized man.” The first chapter of this thesis represents research that seeks to 

understand not only the extent of our degradation, but also its nature, so that we might act in 

an ecological manner to reverse it. Chapter 2 explores this idea directly: how can we restore 

the native ecology of a system – in this case, the fire-grazing interaction – in order to restore 

the integrity of that system, and produce our food in the process? As an element of the 

ecological lifestyle, patch-burn grazing might not be as graceful as windfarms or as heart-

warming as sun-ripened organic tomatoes. But recall that, ecologically, the majority of this 

continent, this Earth, was grassland before our species’ tenure began. If we must reap, let it 

be the esthetic and nutritive harvest of restored, pre-historic range.  

While the relevance of prairie vegetation to the study of Animal Ecology might not be 

immediately apparent, consider this axiom of the American bus system: The only reliable 

part of the experience is the certainty that there will be at least one crazy person on your bus. 

If you, as a passenger on a bus, look around and see no crazy people, then it necessarily 

follows that you are in fact the crazy person. Likewise, if we look around these fragmented, 

invaded, eroded, paved formerly glorious grasslands and can’t find the animals, perhaps the 

animals are indeed us. Sociology and ecology split many decades ago and set about 

describing, in analogous terms, the structure and behavior of human and biotic communities, 

respectively. As we begin to “re-wild” the landscape, I hope we take pride in being the 

prairie’s naturalized megafauna, and positively identify ourselves, in Leopold’s words, as 

plain members and citizens of this biotic community.  
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CHAPTER TWO 
 

Grazing history, soil carbon, and invasion by an exotic cool-season grass interact to 
shape composition of remnant tallgrass prairie in a working landscape 

 
Manuscript to be submitted to: 

 
Agriculture, Ecosystems, and the Environment 

 
 
 

Introduction 
 

A central theme in applied ecology is the relationship between disturbance and the 

species composition of biological communities. Non-equilibrium theories (Connell 1978, 

Huston 1979) suggest that diversity is highest at moderate intensity or frequency of 

disturbance. Milchunas et al. (1988) proposed a grazing-specific model that described the 

expected response of rangeland communities to herbivory in terms of climate and the 

community’s evolutionary history of grazing: diversity in communities with short 

evolutionary histories of grazing will decline more quickly than those with a longer history 

of grazing, and this effect is enhanced as aridity increases.  The contribution of Milchunas et 

al. (1988) emphasizes the importance of understanding “disturbance” within the context of a 

specific system and its evolutionary history: responses to a disturbance are not consistent 

across systems with different evolutionary histories.  

However, differences in community composition are not solely determined by 

differences in evolutionary history. Milchunas et al. (1988) overlook exotic species in their 

discussions of diversity in “climatically determined” or nonanthropogenic grasslands (as 

opposed to successional and agricultural grasslands, which are artificially created and 

maintained (Lauenroth 1979)). The modern problem with the focus on “natural” systems is 
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that the line between nonanthropogenic grasslands (rangelands) and anthropogenic 

grasslands (pastures) is blurred by the effects of anthropogenic activities bleeding into 

wildlands (Ellis and Ramankutty 2007).  

To understand the role of disturbance in shaping community composition, one must 

recognize that invasive species are ecological actors even in “wildlands.” Exotic species 

invasions have been documented in most of Earth’s ecosystems, with significant effects on 

ecosystem processes (Vitousek et al. 1997, Levine et al. 2003, Ehrenfeld 2003, Brooks et al. 

2004) and substantial environmental and economic impacts (Pimentel et al. 2005).  

While ecologists have sought to explain the effects of disturbance on the relationship 

between diversity and invasion, this research has not produced much clarity. It is at least 

accepted that disturbance and resources (e.g., light, water and nutrients) interact to affect a 

community’s invasibility and thus the community’s composition, but the magnitude and 

direction of these effects often vary with community type and scale (Brown and Allen 1989, 

Dorrough et al. 2007). The interaction of herbivory, resources, and community composition 

has been studied in several communities (see meta-analysis by Proulx and Mazumder 1998). 

We present a conceptual model that describes these interactions in grassland ecosystems 

(Fig. 1).  

There is general consensus that a range of disturbance exists wherein grazing has a 

positive effect on diversity, but the specific nature of the effect is dependent on the 

evolutionary history of grazing in the ecosystem, the system’s limiting resources, and the 

frequency and intensity of grazing (reviewed in Olff and Ritchie 1998; see also Smith and 

Knapp 1999, Stohlgren et al. 1999, Hickman et al. 2004, Bock et al. 2007). All of the major 

disturbances in grasslands – grazing, fire, and mechanical disturbance of the soil – have been 
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shown to influence soil resources. Both fire and grazing influence plant-available nitrogen 

(Blair 1997, McNaughton et al. 1997). Fire regime and plant productivity interact to affect 

soil properties and processes (Prober et al. 2008). Excessive grazing and cultivation have 

deleterious effects on soil organic carbon (Mann 1986, Fuhlendorf et al. 2002, Guo and 

Gifford 2002), and the recovery to pre-disturbance carbon levels is very slow (Voroney et al. 

1981, Kindscher and Tieszen 1998). Natural alterations to the soil-vegetation matrix include 

prairie dog burrows (Winters et al. 2002) and bison wallows (Coppedge and Shaw 2000, 

Trager et al. 2004). Invasive species benefit from such altered nutrient balances by thriving 

on levels below the optima of native species or taking advantage of surpluses not sequestered 

by the native community (Shea and Chesson 2002, Suding et al. 2004). 

Our conceptual model also accounts for positive feedback by invasive species on soil 

nutrients (Fig. 1), such as increased nitrogen turnover in tallgrass prairie due to the more 

rapid decomposition of exotic cool-season grass tissue (Mayer et al. 2005, Vinton and 

Goergen 2006). More generally, invasive species have been implicated in ecosystem-level 

changes from nutrient and water cycling to fire regime (Vitousek et al. 1997, Levine et al. 

2003, Ehrenfeld 2003, Brooks et al. 2004). 

In this paper, we describe the composition of 9 remnant tallgrass prairie communities. 

We use grazing intensity, soil organic carbon, and invasion by exotic plant species to explain 

patterns of composition and suggest potential mechanisms behind these patterns. We are 

specifically interested in soil organic C as both an index of soil quality including nutrient 

availability because it is an indicator of soil degradation by cultivation based on the dramatic 

and almost immediate declines in soil organic C upon tillage (Voroney et al. 1981, Guo and 

Gifford 2002).  
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All of our sites are situated in a working landscape, in which conservation and 

restoration strategies and challenges differ from those in traditional parks and reserves 

(Fischer et al. 2006). All sites are in close proximity to a variety of land uses, including row 

crop agriculture, intensive grazing, and conservation/recreation public and private 

ownerships. Most have a history of grazing and some were grazed intensively up until the 

year before this study. As such, these sites have been exposed to a wide suite of potentially 

invasive species. 

Of specific interest is the Eurasian, cool-season grass, tall fescue (Festuca 

arundinacea syn. Lolium arundinaceum), which was immediately observed to be a nearly 

ubiquitous and often abundant invader in this landscape (Engle et al., personal observation). 

Introduced to the United States in the 1940s as a forage grass (Bacon 1995), tall fescue is 

today the most abundant grass species in the eastern United States (Fribourg et al. 1991) and 

a frequent, difficult-to-control invader in tallgrass prairie (Washburn and Barnes 2000, 

Barnes 2004). 

 Tall fescue merits such specific concern because it often hosts a fungal endophyte 

(Clay 1993, Bacon 1995, Malinowski and Belesky 2006). The symbiosis has been shown to 

confer several ecological advantages onto the grass that might increase its potential as an 

invasive species via all three of the invasion mechanisms – diversity (Clay and Holah 1999, 

Rudgers et al. 2004, Rudgers et al. 2005), resources (Elmi and West 1995, Malinowski et al. 

2000), and enemy avoidance (Bacon 1995, Durham and Tannenbaum 1998, Tannenbaum et 

al. 1998, Malinowski and Belesky 2006).  

We predict that tall fescue will be an important factor in community composition in 

these prairies. While the idea that a single invasive species can drive ecological change in a 
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community has recently been called into question (Gurevitch and Padilla 2004, Didham et al. 

2005, MacDougall and Turkington 2005), it is unmistakable that in some instances a single 

species shows a disproportionate presence in invaded communities (Heidinga and Wilson 

2002, Kissling et al. 2005, Gabbard and Fowler 2007, Somodi et al. 2008). We predict that 

grazing history, invasion by exotic species (specifically tall fescue) and altered soil organic C 

will each be effective in describing patterns of composition in the vegetation communities of 

these prairies. We use these results to suggest pathway(s) from our conceptual model (Fig. 1) 

that most influence community composition. Identifying the components of the disturbance-

resource-invasion interaction that most affect community dynamics will potentially help 

managers and restoration ecologists focus effort on the elements of the system that are most 

likely to produce positive restoration outcomes.  

 

Methods 

Study Area 

Our research was conducted within the Grand River Grasslands (GRG), an area of 

about 30,000 ha identified by The Nature Conservancy (TNC) for its potential for grassland 

conservation. The GRG spans the Iowa-Missouri state border and includes Ringgold County, 

Iowa, and Harrison County, Missouri.  

We selected 9 prairie remnants identified by TNC as moderate to high in conservation 

value, based on identification of conservative prairie species (The Nature Conservancy, 

unpublished data). While each of our sites were selected for their known prairie elements, it 

is apparent that in many sites, at least sections have been subject to cultivation, terrace 

forming, and pond building, and that whatever prairie remnants remain might be constrained 
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to specific locations within the sites. Prairie size ranges from 15 to 31 ha. The prairies were 

generally dominated by two soil types, 172 Gara and 792 Armstrong, with slopes ranging 

from C to F. Some sites had been extensively grazed and unburned for several years prior to 

inclusion in the study, others had been left ungrazed and burned only a few years previous, 

while yet others had been without fire for several years. Grazing histories were determined 

from informal interviews with current and previous landowners and managers. Upon 

inclusion in the study, cattle stocked at moderate rates were added to six of the sites as part 

of long-term experimental treatments. Three prairies were left ungrazed.  

 

Sampling  

We used a permanent modified Whittaker plot design (Stohlgren et al. 1998) to 

sample the presence and abundance of native and exotic vascular plant species. The modified 

Whittaker plot methodology is effective in detecting rare species, including exotics 

(Stohlgren et al. 1998), and has the advantage of collecting abundance data in addition to 

accruing more accurate species lists. Each site had six plots. While the exact position of each 

site was determined randomly, possible locations were constrained to the two most dominant 

soil types (three plots on each) and controlled for catena.  

 Within our modified Whittaker plots, sampling occurred at four different scales: 

0.5m2, 2.5m2, 250m2, and 500m2. Abundance data (relative cover) were sampled only within 

the 10 0.5m2 quadrats based on the Daubenmire (1959) scale of cover classes: 0, <1%, 1-5%, 

6-25%, 26-50%, 51-75%, 76-95% 96-100%, indexed as 0, 1, 3, 16, 38, 63, 86 and 98, 

respectively. Overlapping layers of vegetation were taken into account by allowing sums of 

quadrat cover to exceed 100%. Above the 0.5m2 scale, only species presence was recorded. 
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For the purposes of the analyses in this paper, species found outside of the 10 quadrats but 

within the 500m2 plot were assigned percent cover values of 0.001. Sampling occurred twice 

during the growing season – once in late May-early June and again in August – to account 

for community changes through different growing seasons. Maximum values for each species 

across both sampling periods were used in the analyses. 

Soils were sampled in winter of 2006-2007 at a depth of 6cm located in the center 

grid cells (63 x 63m) in each site. Samples were analyzed for total organic carbon and 

expressed on a percent dry-weight basis. None of the soil sampling points fell within a 

Whittaker plot, so we used Geographical Information System (GIS) software to map soil 

organic carbon for each site by interpolating from sampled values using natural neighbor 

analysis (Sibson 1981). The interpolation produces isoclines giving probable ranges of soil 

carbon across each site. To estimate soil carbon of the Whittaker plots, we located each plot 

on the map and assigned an indexed value based on the soil carbon isocline. 

 

Data Analysis 

 We used the ordination technique Non-metric Multidimensional Scaling (NMDS) to depict 

and relate the plant communities of the sampled remnant prairies. We used the Canberra 

distance measure to emphasize rare species. The NMDS was performed with the VEGAN 

package in Program R (Oksanen 2007). Community dissimilarity, a measure of beta diversity 

and turnover, was determined from the NMDS distance matrix. Community composition (as 

described by the ordination) was compared to tall fescue, total exotic cover, and various 

measures of diversity by regressing these variables on site scores of the first two ordination 

axes. We used Multivariate Analysis of Variance (MANOVA) on site scores to test for 
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differences between groups in ordination space, and Analysis of Variance (ANOVA) to test 

for differences in species richness and abundance between grazed and ungrazed groups.  

In NMDS, the axes in the two-dimensional ordination simply represent the two 

dimensions explaining the greatest amount of variation in plant community composition. 

Because NMDS does not identify which elements of the community data account for this 

variation, we correlated the average relative cover of each species with axes 1 and 2 scores 

for each Whittaker plot. We considered species with a correlation ≥ |0.35| and fitted those 

species against the original NMDS axes. 

  

Results 

Community-level variation 

Grazing history, followed by tall fescue abundance, and soil organic carbon explained 

variation in plant composition among 9 remnant tallgrass prairie communities. The 

relationship between tall fescue and soil C depended on grazing history: soil C explained 

more variation in historically severely grazed sites and tall fescue explained more variation 

in sites without a history of severe grazing. Dissimilarity among sites – a measure of beta 

diversity – was high. On a scale of 0 to 1, with 0 indicating identical community composition 

and 1 indicating completely dissimilar communities, mean Canberra distance between sites 

was 0.83 (+/- 0.01 s.e.). Within sites, Whittaker plot communities clustered together in the 

two-dimensional ordination space (fig. 2a).  

Vegetation.—We observed 196 unique species across 51 dicot families and 3 grass 

subfamilies, in addition to sedges (Cyperaceae), which were not identified beyond family. 
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Across functional groups, we observed 129 flowering herbaceous (forb) species, 14 legumes, 

18 warm-season grasses, 18 woody species and 14 cool-season grasses. Seventy-one percent 

of the total species were native.  

 Eleven species had a strong correlation with Axis 1, while 4 species had strong 

correlations with Axis 2 (fig. 3). With the exception of the native horse nettle (Solanum 

carolinense), exotic species were negatively correlated and native species positively 

correlated with axis 1. Tall fescue explained the most variation in axis 1 score in a linear 

regression (F = 99.58, p < 0.001, R2 = 0.66). Of species correlated with axis 1 scores, tall 

fescue was by far the most abundant (fig. 4a). In this sense, axis 1 can be considered a 

gradient of tall fescue abundance, with sites scoring low on axis 1 having relatively low tall 

fescue cover. Tall fescue had no correlation with axis 2. 

 Pastures scoring farther to the right of axis 1 (Fig. 2a) contained more native plants 

species relative to exotic plant species, especially tall fescue, than those pastures along the 

left of axis 1. Axis 1 was positively correlated with native species richness (F = 64.76, p < 

0.001, R2 = 0.52) (Fig. 5b) and total native cover (F = 102.74, p << 0.001, R2 = 0.68). 

Conversely, axis 1 was negatively correlated with exotic cover (F = 82.52, p < 0.001, R2 = 

0.69) (Fig. 5c). Interestingly, the relationship between total species richness and axis 1 was 

quadratic (F = 12.50, p < 0.001, R2 = 0.30) (Fig. 5a).  

Soil carbon.—Soil organic carbon at individual sampling points was highly variable, 

ranging from a low of 1.3% in the Pyland pastures to a high of 5.4% in Pawnee Prairie. 

Pasture averages were less variable, ranging from 2.1% in Ringgold North to 3.4% in 

Pawnee Prairie (fig. 6).  
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 Soil organic carbon was not correlated with the first axis of the NMDS ordination. 

There was, however, a positive correlation with axis 2, although the correlation was 

relatively weak (F = 7.47, p < 0.01, R2 = 0.15). Pastures at the top of axis 2 (fig. 2a) had 

more soil carbon, while pastures along the bottom of axis 2 were relatively carbon-poor. It is 

notable that although Pawnee and Ringgold North overlap greatly and group far to the right 

along axis 1, they each represent the extremes among pastures of high and low soil organic 

carbon, respectively.  

Grazing history 

 Pastures with a history of grazing separated from ungrazed sites in ordination space 

(Exact F = 47.38, p < 0.001; Fig. 2b). Several measures of species richness and abundance 

differed between these groups (Fig. 7). On average, historically grazed sites had larger 

species lists than ungrazed sites (F = 7.80, p < 0.01) because grazed pastures contained more 

exotic species (F = 140.64, p < 0.001). Native species richness did not vary significantly 

across the two groups (F = 1.97, p = 0.17). Native species abundance was greater in 

historically ungrazed prairies (F = 8.19, p < 0.01), while historically grazed prairies had more 

exotic species (F = 59.14, p < 0.001) including tall fescue (F = 28.43, p < 0.001).  

Grazed group.—In the historically grazed group, total species richness (ST) 

correlated with scores along both axes. There was a positive relationship between ST and axis 

1 scores (F = 36.96, p < 0.001, R2 = 0.51), and a negative relationship with axis 2 (F = 6.50, 

p = 0.02, R2 = 0.14). Tall fescue accounted for 14% of the variation along the second axis (F 

= 6.75, p = 0.01), but very little variation along axis 1 (F = 3.48, p = 0.07, R2 = 0.06). Soil C 

had a negative correlation (F = 6.00, p = 0.02, R2 = 0.12) with axis 1 in the grazed group, and 

no relationship with axis 2. 
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Ungrazed group.—Soil C explained 41% of the variation along axis 2 in the 

historically ungrazed group (F = 20.90, p < 0.001) and had no relationship with axis 1. 

Whereas tall fescue explained 66% of the entire variation along axis 1 in Figure 2a, this 

effect was primarily due to the strong negative relationship (R2 = 0.65) with axis 1 in the 

historically ungrazed group.  

Plotting this relationship revealed an interesting pattern of tall fescue as a function of 

axis 1 (Fig. 8). For Whittaker plots in ungrazed pastures with axis 1 scores below 0.3, tall 

fescue explained 20% of the variation along axis 1, and none of the variation along axis 2 (F 

= 10.7, p < 0.01 and F = 0.93, p = 0.34, respectively). For this sub-group of historically 

ungrazed sites, native species richness was positively correlated with axis 1 scores (F = 

26.64, p < 0.0001, R2 = 0.40) and total species richness was negatively correlated with axis 2 

scores (F = 28.30, p < 0.001, R2 = 0.42).  

The ungrazed sub-group scoring greater than approximately 0.3 along axis 1 had very 

little or no tall fescue. The remaining variation along axis 1 (beyond 0.3) was negatively 

correlated with total exotic cover (F = 12.92, p < 0.01, R2 = 0.46). Soil C (F = 14.13, p < 

0.01, R2 = 0.48) and total species richness (F = 8.37, p = 0.01, R2 = 0.34) were positively 

correlated with axis 2. 

 

Discussion 

We sampled the composition of the vegetation communities and soil carbon 

concentration in 9 remnant prairie pastures in Ringgold County, Iowa and Harrison County, 

Missouri. We found considerable variation in community composition among pastures, and 
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found relationships between this variation and our predicted elements of ecological 

degradation: history of intense grazing, tall fescue invasion and soil organic carbon paucity. 

Pastures formed distinct groups in ordination space based on historic grazing 

intensity. These results are consistent with previous research comparing the communities of 

grazed and ungrazed sites (Altesor et al. 2006). Our grazed pastures were characterized by 

higher species richness on account of exotic species, particularly introduced forage species 

such as tall fescue, smooth brome (Bromus inermis), Kentucky bluegrass (Poa pratensis), 

and red and white (Trifolium spp.) clover. Soil C and tall fescue correlated with variation 

within each of the groups, but the strength of these correlations switched between groups. In 

the historically intensively-grazed pastures, soil C explained the most variation along axis 1, 

indicating that it has the strongest relationship with the composition of grazed communities. 

This might represent a gradient of disturbance, perhaps intensity of grazing and/or 

mechanical soil degradation – i.e. tillage – at the extreme end. Unfortunately, we were unable 

to classify grazing history beyond whether it was known to have occurred within the recent 

memory of landowners and managers, and cannot explore this gradient further with regard to 

stocking rate or other features of herbivory (e.g., season and frequency of grazing).  

A more evocative effect of disturbance is suggested by the quadratic relationship 

between total species richness and axis 1 (Fig. 5a). The curve suggests the theoretical 

relationship between diversity and disturbance as predicted by many non-equilibrium 

theories (Connell 1978, Huston 1979, Milchunas et al. 1988). Considering the end points of 

axis 1lie at opposite extremes in terms of grazing history, it is tempting to conclude that the 

midpoint of axis 1 – which corresponds to the peak of the species richness curve – represents 

a moderate intensity of (or intermediate time since) disturbance where high diversity is 
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maintained. Rather than a direct effect of disturbance intensity, however, it is clear that the 

high species richness near the midpoint (0) of axis 1 is produced by the intersection of two 

opposite trends: declining exotic species richness (Fig. 5c) and increasing native species 

richness (Fig. 5b) along axis 1. These trends are best explained independently in the context 

of groups with similar grazing history, rather than as a single, quadratic relationship at the 

landscape scale. Angermeir (1994) argues that conflating exotics with native species can 

compromise the usefulness of diversity in ecological research and management. At the very 

least, these data underscore the importance of distinguishing between exotic and native 

species when studying the relationship between disturbance and composition in real-world 

communities, lest ecologically-meaningful patterns go overlooked.  

Tall fescue abundance was most explanatory of variation at the landscape level, and 

remained an important factor in explaining variation within both historically grazed and 

ungrazed pastures. We believe it is telling that tall fescue consistently had correlations with 

site scores along NMDS axes at several scales, unlike any other exotic species, total exotic 

cover or total exotic richness. Tall fescue was certainly a common species throughout the 

landscape, but it was most abundant in grazed pastures.  

The greatest amount of within-group variation occurred along axis 1 in the grazed 

group (Fig. 2b). This variation might indicate two sub-groups within sites without a history 

of intense grazing, delineated by the transition that appears at approximately 0.35 along axis 

1 (Fig. 8). Variation within the sub-groups appears to be derived from different sources: ST, 

SN, and tall fescue cover correlated with variation within the < 0.35 sub-group, while SN, soil 

C, and exotic cover correlated with variation in the > 0.35 sub-group. We believe that these 

sub-groups reflect differences in land ownership and management. The Richardson tract is 
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privately owned, borders cultivated agricultural land, and has the highest average abundance 

of tall fescue of all the pastures (Fig. 4b). Pawnee and Ringgold North are both state-owned 

properties, are buffered by other conservation lands, and have little to no tall fescue. While 

data on fire histories was not explicitly collected in this study, conversations with past and 

current managers indicate that only the state-owned properties have a recent history of fire 

management. As prescribed fire is an effective means of controlling invasive species 

(DiTomaso et al. 2006), it is possible that a history of fire suppression and a close proximity 

to source populations has created an invaded sub-group within the historically ungrazed 

communities. 

Implications for restoration 

On the whole, these results support our general model relating disturbance, soil 

resources, and exotic species invasion to community composition (Fig. 1). When we consider 

the different and occasionally opposite relationships between these factors and the variation 

in communities that share a common disturbance history, it becomes clear that the relative 

contributions of each factor are variable.  

Based on the data presented here, we propose a dichotomous schema designed to 

describe the relative influence of these factors in this working landscape (Fig. 9). The model 

begins by differentiating sites by grazing history and considers the effects of tall fescue 

invasion and soil C condition separately within the grazed-ungrazed groups. Such a 

framework allows managers to understand the hierarchies of effect within ecosystems and 

identify priorities and goals for restoration and/or control.  

In our model (Fig. 9), current and potential tall fescue invasions determine the 

urgency and intensity of recommended management practices in these grasslands. Sites that 
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currently have no tall fescue are not free from management concern in a working landscape: 

even without the facilitation of past or current agricultural activity within the boundaries of 

the site, high propagule availability in the landscape can eventually overwhelm even the most 

ecologically resistant sites (e.g., Von Holle and Simberloff 2005).   

Once tall fescue has established, it is critical to determine what level of invasion 

constitutes a management priority. The first step consists of identifying thresholds where tall 

fescue abundance effects significant change in key ecosystem processes. Percolation theory 

(Gardner et al. 1987, Turner et al. 1989) suggests that the spread of a disturbance (e.g., fire, 

Hargrove et al. (2000)) across a matrix (e.g., a grassland landscape) is drastically reduced 

when approximately 59% of that matrix is not conducive to propagation. Thus, we might 

expect that 59% canopy cover of tall fescue represents a critical threshold beyond which fire 

will not spread. This would have system-wide consequences, as fire suppression promotes 

the encroachment and eventual dominance of woody species such as eastern redcedar 

(Juniperus virginiana) at the expense of herbaceous species (Engle et al. 1987, Briggs et al. 

2002).  

 Because restoration costs increase in proportion to increased degradation (Milton et 

al. 1994), there is an incentive to identify and address symptoms of degradation at an early 

stage (Whisenant 1999). State-and-transition models (Westoby et al. 1989) help managers 

predict stages of ecosystem degradation and identify pathways communities follow as they 

transition between states. In the state-and-transition framework, the point at which 

management and/or natural events precipitate the transition from one state to another is 

referred to as a threshold (Briske et al. 2006). A state is generally defined as “a recognizable, 
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resistant and resilient complex of 2 components, the soil base and the vegetation (Stringham 

et al. 2003).”  

We can hypothesize on what the potential states of our grasslands might be. Fifty-

nine percent tall fescue cover might represent a threshold where an otherwise stable, fully-

functioning grassland transitions to a tall fescue-dominated system characterized by rapid 

nutrient cycling and infrequent fire. The next stable state would likely consist of eastern 

redcedar-dominated woodland. From our results, historically severely grazed sites are at a 

greater risk of crossing this threshold. Under the hypothetical percolation model that assumes 

a threshold at 59% tall fescue cover, none of our pastures would appear to be at immediate 

risk of transitioning to eastern redcedar woodland (Fig. 4b), although all 3 Pyland sites, 

Gilleland and especially Richardson are high in tall fescue abundance. Predictably, these 5 

sites cluster together in ordination space (Fig. 2a), and (except for Richardson) comprise the 

historically grazed group (Fig. 2b).  

Whisenant (1999) and Briske et al. (2006) identify stages of degradation that are 

characterized by modified or reduced function in primary processes and the beginnings of 

native species loss. Briske et al. (2006) defines this stage as the “exotic species state.” 

Whisenant (1999) lists herbivory manipulation and fire among potential management options 

for repairing systems with damaged but functioning primary processes. From an ecological 

restoration perspective, it appears that restoring historic disturbance regimes, including fire 

and grazing (Fuhlendorf and Engle 2001, Fuhlendorf et al. in press), while the system is still 

within the stable grassland state is the most effective way to reduce tall fescue abundance 

and increase the dominance of native species in these remnant grasslands. 
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Fig. 1: Conceptual model describing the general relationships between disturbance, invasion, 
and resources as they affect community composition.
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Fig. 2: (A) Plot of NMDS of plant species composition showing community clusters at the 
pasture level. Points represent individual modified Whittaker plots, while convex hulls 
enclose the six plots within the named pastures. (B) Same NMDS plot as above, except 
grouped by history of intense grazing. 
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Fig. 3: Vectors of species correlated (R2 ≥ |0.35|) with NMDS axes 1 and 2. 
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Fig. 4: (A) Abundance of 11 species correlated (P<0.05) with NMDS axis 1. Invasive species 
in CAPITALS. (B) Abundance of tall fescue by pasture, with history of severe grazing 
denoted. Pastures lacking a bar had either no tall fescue cover or <1% tall fescue cover.  
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Fig. 5: (A) Quadratic relationship between total species richness (ST) and NMDS axis 1 site 
scores, showing apparent maximum richness around 0.25. (B) Linear positive relationship 
between native species richness (SN) and Axis 1 site scores. (C) Linear negative relationship 
between exotic species richness (SE) and Axis 1 site scores. 
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Fig. 6: Histogram showing the mean (± s.e.) soil organic carbon (C) for 9 remnant prairie 
pastures (the 3 Pyland tracts are grouped together in this analysis). 
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Fig. 7: Comparison of community measures across grazed and ungrazed sites. 
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Fig. 8: Tall fescue abundance versus Axis 1 site scores for ungrazed sites, denoting the 
transition at approximately 0.3 on axis 1. 
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Fig. 9: A dichotomous schema representing pathways of disturbance-driven effects on 
grassland composition in a working landscape. Endpoints suggest management strategies for 
restoration and invasive species control within communities determined by each unique 
hierarchy of effects. 
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CHAPTER THREE 

Patch-burning increases grazer selection for an invasive cool-season grass in degraded 
tallgrass prairie remnants 

Manuscript to be submitted to Ecological Applications 1

 
 

Introduction 

Considerable research has focused on the relationship between native plant 

communities and exotic species, especially the mechanisms and processes that influence 

whether a given species will become invasive (Davis et al. 2000, Stohlgren 2002, Shea and 

Chesson 2002, Levine et al. 2003). Meanwhile, applied ecologists and managers have 

grappled with controlling existing invasions. Invasive species are the second-greatest threat 

to native biodiversity (behind habitat loss; Wilcove et al. 1998), and alter ecosystem 

processes such as fire regime (Mack and D’Antonio 1998, Brooks et al. 2004) and nutrient 

and water cycling (Vitousek et al. 1997, Levine et al. 2003, Ehrenfeld 2003).  

 The term “invasive species” is applied to a broad range of life forms across almost 

every ecosystem on Earth (Pimentel et al. 2005). In this paper, however, we focus on exotic 

plant invaders in native grasslands, particularly in North America, where farmers and 

ranchers spend more than $5 billion annually in the control and management of invasive 

species, and suffer an even greater loss in productivity (Babbit 1998). The cost of invasive 

species management is high because of the resource-intensive nature of common control 

methods, such as herbicide application, and mechanical and manual removal (Mack et al. 

2000). For example, the cost of keeping a 160-acre grassland free of eastern redcedar 

                                                          

 

 

 

 
1 Submission is contingent on at least one more year of data collection and re-analysis. 
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(Juniperus virginiania) with prescribed fire is $10 per acre, but mechanically removing  

mature stands of trees can range from $40 to $90 per acre (Bidwell et al. 2002). Herbicid

control costs of spotted knapweed (Centaurea maculosa, an invader of North American 

rangelands), are only justifiable when substantial forage increases are the result, regardless of 

the treatment’s efficacy (Griffith and Lacey 1991). On top of the economic costs of che

control are the environmental implication

e 

mical 

s of widespread herbicide application in our 

ire 

of the focal ecosystem in a natural context, and 

aking

ng 

ndently applied (Dwyer et al. 1964, Madison et al. 2001, 

arnes 2004, Munger 2004).  

The fir

independently-applied fire or grazing, Fuhlendorf and Engle (2004) suggest patch-burn 

ecosystems (e.g., Battaglin et al. 2005).  

 Given the high economic and environmental costs of intensive, technological 

methods for the management of invasive species, there is a motivation for less costly 

methods with fewer negative ecosystem impacts. Zavaleta et al. (2001) endorse an ent

ecosystem perspective in invasive species control, to minimize secondary effects and 

maximize longevity of positive results. Implicit in this argument is the importance of 

identifying and understanding the processes 

m  attempts to restore those functions. 

 Both fire (DiTomaso et al. 2006) and grazing (Olson and Lacey 1994, Frost and 

Launchbaugh 2003) are natural processes that have been used to control invasive species in 

native grasslands. However, some invasive species are able to persist despite fire or grazi

when these methods are indepe

B

 

e-grazing interaction 

Rather than use intensive methods to control invasive species resistant to 
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grazing as an alternative approach. Patch-burn grazing capitalizes on the interaction of fire 

and grazing, rather than relying on their independent effects alone. Fuhlendorf et al. (in 

press) argue that fire and grazing interact so tightly in the landscape that they act as a single 

disturbance, referred to as pyric-herbivory. When applied to modern grasslands, patch-burn 

grazing replicates the disturbance patterns of pre-settlement North American rangelands, 

wherein large herbivores concentrate their grazing on recently burned patches to create a 

heterogeneous landscape mosaic (Fuhlendorf and Engle 2001). This concentration of grazing 

pressure on burned patches has an effect on grassland communities that is unique from fire or 

grazing alone (Collins and Smith 2006).  

It is reasonable, then, to predict that the effects of the fire-grazing interaction on 

invasive species might differ from either fire or grazing applied alone. Indeed, Fuhlendorf 

and Engle (2004) showed that patch-burn grazing reduces invasion of sericea lespedeza 

(Lespedeza cuneata), an invasive species in North American grasslands known to be 

promoted by fire (Munger 2004) and avoided by grazers (Dwyer et al. 1964). Patch-burn 

grazing also was more effective in limiting the annual spread of sericea lespedeza than 

traditional, homogeneity-based pasture management (Cummings et al. 2007).  

Mechanistically, patch-burn grazing works by drawing grazers to the succulent 

regrowth of the burned patch – the “magnet effect” (Archibald et al. 2005) – and overriding 

the tendency of grazers to select forage on a plant-by-plant level (Stuth 1991). Repeated 

grazing in the burned patch creates a “grazing lawn” (McNaughton 1984) in which grazers 

are presumably unable to distinguish preferred forages by individual species. The result is the 

inadvertent consumption of otherwise less-desired species along with preferred forage. 

Complementary to the “magnet effect” is that grazers avoid unburned patches for their lower 
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proportion of nutritious forage and the physical barriers presented by accumulated litter 

(Stuth 1987, Vallentine 1990).  

In this paper, we report on tall fescue (Festuca arundinacea syn. Lolium 

arundinaceaum) defoliation under patch-burn grazing in remnant tallgrass prairie degraded 

by invasion from exotic forage species. We predict that contrast in vegetation structure 

between burned and unburned patches will increase tall fescue tiller defoliation in the 

recently-burned patch of patch burn-grazed pastures when compared to pastures grazed and 

burned in their entirety every third year. We also predict that increasing tiller defoliation in 

the burned patches will reduce the abundance of tall fescue in patch-burn grazed pastures.  

Introduced in the 1940s as a forage species (Bacon 1995), tall fescue is now the most 

abundant grass in the eastern United States (Fribourg et al. 1991) and has become a 

troublesome invader in many humid and sub-humid native grasslands within the region 

(Barnes et al. 1995, Washburn and Barnes 2000, Barnes 2004). Control of invasive tall 

fescue has proven difficult: prescribed fire is not effective against tall fescue in native grass 

communities (Madison et al. 2001, Barnes 2004). Likewise, grazing alone is an ineffective 

means of control in mixed stands if grazers avoid tall fescue in favor of other species.   

Like many cool-season grasses, tall fescue is often host to a symbiotic fungal 

endophyte (Clay 1993) that has been shown to have several adverse effects on livestock 

(reviewed in Malinowski and Belesky 2006). While it might seem counterintuitive and 

perhaps even negligent to encourage intensive grazing on a species with so many known 

toxic effects, we predict that cattle will suffer no negative effects from consuming tall fescue 

in the grazing lawn. Firstly, cattle are capable of “detoxifying” after consuming toxic forage 

by periodically abstaining from that forage when alternatives are available (Pfister 1997). 
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Secondly, endophyte-infected tall fescue has been shown to have lower concentrations of 

alkaloids after repeated defoliation (Belesky and Hill 1997), suggesting that tall fescue in 

patch-burned pastures might actually be better for cattle than tall fescue under 

homogeneously managed pastures. 

 

Methods 

Study area 

 This study was conducted in the Grand River Grasslands, a 30,000 ha landscape of 

mixed agriculture, recreation, and conservation land including Ringgold County, Iowa and 

Harrison County, Missouri (Fig. 1). We selected six grassland parcels with known elements 

of tallgrass prairie (The Nature Conservancy, unpublished data), although the pastures varied 

in the quality of native vegetation and the extent to which they were invaded by exotic 

species, primarily forage grasses and legumes (see previous chapter). Observations of forage 

residue in fall of 2005 and spring 2006 and conversations with managers indicated that the 

majority of our sites had been intensively grazed at heavy stocking rates prior to their 

inclusion in this study. Each site was dominated by soil types 179 Gara and 792 Armstrong, 

and slopes ranged from C to F. The sites varied in size from 15 to 31 ha. 

Each pasture was moderately stocked (target rates = 0.53 Animal Unit Months 

[AUM]/ha (1.25 AUM/acre) in 2006, 0.42 AUM/ha (1.00 AUM/acre) in 2007 and 2008) 

with cows from local cattle owners, and included both spring-calving and fall-calving cows. 

The grazing season extended from early May to mid-October. Cows received no additional 

feed beyond forage available in the pastures and mineral supplements.  
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These six grazed sites were divided into two treatment groups: three pastures were 

patch-burned – i.e., a third of the pasture (one patch) is burned every year (Fuhlendorf and 

Engle 2004, Fuhlendorf et al. 2004) –  while the other three pastures are burned in their 

entirety every three years (hereafter referred to as “control pastures” as they were not patch-

burned). In this manner, any given patch is managed for a three-year fire return interval. We 

used ground-truthed, remotely-sensed imagery to create patch boundaries that made use of 

natural fuel breaks (trails, gullies, etc.) while ensuring equal divisions of the pastures. Fires 

were conducted in the spring between snowmelt and the beginning of the growing season 

(2006: no fire, pre-treatment year; 2007: April fires; 2008: mid-March fires). Fire spread in 

2007 was limited in part due to extensive live material in the fuelbed, so in 2008 we 

attempted to burn before the cool-season grass component of the plant community broke 

dormancy. 

 

Tall fescue selectivity 

 We sampled tall fescue defoliation by cattle by recording the number of grazed and 

ungrazed leaves of 100 tillers per patch, and measuring the height of the longest leaf of each. 

We sampled tillers along the 25-m center line of two permanently-marked modified 

Whittaker plots in each patch (see Methods in McGranahan (2008) for a description of the 

modified Whittaker plot, including the criteria for their location in this study). In 2006, the 

first 150 tall fescue tillers encountered, beginning from the northernmost point of the 25m 

transect, were measured. In subsequent years, the nearest tillers from either side of the 25m 

transect were measured at 1m intervals, for a total of 50 tillers per plot (100 tillers per patch). 

For the purpose of analysis, we randomly selected 50 of the 150 tillers per plot from the 2006 
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dataset. Tall fescue tillers were sampled in late July in all three years. In this paper, we report 

both the proportion of ungrazed tillers and the relative height of grazed tillers (versus 

ungrazed tillers within the same patch) for each treatment. We used multiple linear 

regressions to test for treatment effects over time, and pair-wise Analysis of Variance 

(ANOVA) to compare selection frequency and tiller heights across treatments within years. 

 

Patch contrast 

 Contrast in vegetation structure across patches (patch contrast) was determined by 

comparing the average visual obstruction between patches within each pasture. We recorded 

visual obstruction at 30 points per patch using a Robel pole (Robel et al. 1970), which is 

correlated with biomass (Ganguli et al. 2000, Vermeire and Gillen 2001). Each Robel pole 

measurement consisted of the mean of four readings taken per point, taken from a height of 

1m above the ground, 4m away from the pole in each of the cardinal directions. Obstruction 

was defined as the highest value (1 dm increments) on the pole that was ≥ 50% obscured by 

vegetation. Sampling occurred in mid July each year. To determine patch contrast in patch-

burned pastures, we compared the visual obstruction between burned and unburned patches. 

We calculated contrast as  

C = ((UB – B) / B) * 100,                                                 [Eq. 1] 

where C = contrast, UB = mean Robel height of the unburned patch, and B = mean Robel 

height of the burned patch. For control pastures in all three years, contrast was calculated by 

substituting the highest patch mean visual obstruction for UB in the contrast equation (Eq. 1) 

and substituting the lowest patch mean visual obstruction for B. This measure makes for a 
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conservative comparison against contrast in patch-burned pastures because it represents the 

highest possible contrast value for each control pasture. In 2007, when there were two 

unburned patches and one burned patch, the mean visual obstruction of the unburned patches 

was used as the UB term in the contrast equation.  

We constructed multiple linear regression models to test for treatment effects across 

years. We also used a t-test to compare across treatments within years.  

 

Animal performance 

 Animal performance was determined by comparing animal condition at the end of the 

grazing season to condition at the beginning of the grazing season. We used Body Condition 

Scoring (BCS), a nine-point scale used to index the condition of cows based on visual 

estimations of body fat (Edmonson et al. 1989). In this paper, we report the changes in mean 

BCS for each treatment over the 2007 grazing season. The changes in mean herd BCS for 

each treatment over the grazing season were compared with Analysis of Variance (ANOVA).  

 

Tall fescue abundance 

 We monitored the effectiveness of patch-burn grazing in reducing the abundance of 

invasive tall fescue by comparing changes in tall fescue cover between patch-burned and 

control pastures. In mid July of each year, we visually estimated tall fescue canopy cover 

within a 0.5m2 quadrat using the Daubenmire (1959) scale: 0, <1% (1), 1-5% (3), 6-25% 

(16), 26-50% (38), 51-75% (63), 76-95% (86), 96-100% (98). Quadrats were placed at each 

Robel pole observation (see above) for a total of 30 quadrats per patch. Change in tall fescue 

abundance in control pastures and within the recent burned patch of patch-burned pastures in 
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2007 and 2008 was determined by comparing cover of tall fescue in each of these patches 

compared to 2006 pre-treatment abundance for each of those patches. We used pair-wise 

ANOVA to compare tall fescue abundance in the control pastures and recently-burned 

patches in 2007 and 2008 to tall fescue abundance in 2006. 

 

Results 

Tall fescue selectivity 

There was no treatment effect over time for either tiller defoliation (T = 0.15, p = 

0.89) or relative tiller length (T = -1.57, p = 0.21). In 2008, more tillers were grazed in the 

burned patches than both the unburned patches (F = 14.63, p = 0.02) and control pastures (F 

= 22.53, p < 0.001; fig. 1a). Also in 2008, the relative height of grazed tillers in the burned 

patches was less than those in both unburned patches (F = 15.39, p = 0.02) and control 

pastures (F = 17.55, p < 0.01).  

Variance in these data was relatively low, indicating that across sites and across cattle 

herds, the burned patch was consistently effective in concentrating grazing (i.e., increasing 

patch-level selection) and reducing plant-level selection in 2008.   

 

Patch contrast 

 There was no change in patch contrast over time for patch-burned pastures (Fig. 2). 

Multivariate regression indicated that the treatment effect was significant (T = -2.19, p = 

0.04), which was explained by the nearly significant trend towards decreased patch contrast 

in the control pastures from 2006 to 2008 (F = 4.12, p = 0.08, R2 = 0.28). Contrast in patch-

burned pastures followed no trend (F < 0.01, p = 0.92). Variation in contrast for patch burned 
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pastures was very high in 2007 due to one burned patch that had higher visual obstruction 

than the unburned patches.  

Interestingly, variation in contrast was apparently greater in the control than 

treatment pastures in 2006, despite the random assignment of experimental units. Variation 

in contrast among all pastures in 2006 is probably best explained by high variability in 

grazing management (i.e., uniformity and severity of forage utilization) prior to the 

experiment. Consistent declines in variation in contrast in 2007 and 2008 likely reflects a 

response to moderated stocking rate across all treatment pastures.  

 

Animal performance 

 There was no difference in the average change in Body Condition Scores between 

treatments over the course of the 2007 grazing season (F = 0.16, p = 0.71). Average fall BCS 

for patch-burned pastures was 6.1 (+/- 0.2 s.e.) and the average fall BCS for control pastures 

was 5.8 (+/- 0.1 s.e.).  

 

Tall fescue abundance 

 Tall fescue abundance increased on the control pastures in 2007 (F = 20.74, p < 

0.001) and 2008 (F = 15.55, p = 0.001) when compared to 2006 canopy cover (fig. 3). Tall 

fescue abundance in burned patches of patch-burned pastures, however, did not increase 

when compared to 2006 abundance in either year (F < 0.001, p > 0.97).  

 Variation across sites within each treatment (patch-burned or grazed control) is 

probably attributable to differences in tall fescue abundance, which is variable at several 

spatial scales, including within patches and within pastures (data not shown). Increased tall 
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fescue abundance in the 2007 burned patches of the patch-burn treatment pastures and in the 

control pastures in 2007 and 2008 is a function of either absolute abundance as a result of 

increased invasion, or relative abundance as the native community recovers more slowly than 

tall fescue from high levels of use in previous years. 

 

Discussion 

Patch contrast and tall fescue defoliation 

We applied a patch-burn grazing treatment to native tallgrass prairie pastures to test 

the efficacy of the fire-grazing interaction in promoting selective defoliation of invasive tall 

fescue tillers. As predicted, selection for tall fescue tillers increased and the relative height of 

grazed tillers decreased in the most recently-burned patches, although tiller selection within 

burned patches did not differ from unburned patches within patch-burned pastures and 

control pastures until the second year of the study. Contrast decreased in control pastures as 

we would expect from moderated stocking following years of heavy use, but we did not 

observe the increase in patch contrast we predicted would develop as a result of the patch-

burn grazing treatment. Thus, we cannot conclude that patch contrast as measured 

contributed to increased tall fescue defoliation in burned patches in 2008. 

As predicted, patch-burning appeared to have a negative effect on tall fescue 

abundance. Also, animal performance did not vary between cattle on control and patch-burn 

grazed pastures, indicating that cattle were unaffected by tall fescue consumption. Animal 

condition was generally high from the beginning of the grazing season to the end across all 

pastures. 
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 It is interesting that while we observed treatment differences in defoliation of tall 

fescue tillers in 2008, no difference was detected in the first year of patch-burning (2007).  

While the goal of reducing tall fescue abundance was accomplished, it was not the result of 

our predicted mechanism – contrast in vegetation structure between the burned and unburned 

patches. With the exception of tiller defoliation in 2008, variance in our data was quite high 

on account of many sources of ecological variation in the field. Table 1 lists sources of 

ecological and biological variability that might explain variance in defoliation of tall fescue 

by cattle across treatment pastures that might have dampened the influence of contrast. Here, 

we discuss how each might have affected our results and how their consideration affects the 

nature of our conclusions. 

 

Variation within the plant community affects patch contrast 

 Perhaps the largest potential source of variance in the data arises from variability in 

pasture history. While we controlled for management as part of the experiment, our sites had 

previously been diversely managed: ownership was both public and private, and some had 

been grazed intensively for many years prior to inclusion in this study, whereas others had 

been moderately grazed, or not grazed at all. Unfortunately, most of our information of site 

histories are based on the recollection of past owners, managers, and neighbors. Observing 

man-made structures such as ponds and old terraces, it is likely that management history 

varies within sites, as well as between sites. Other elements of an agricultural history include 

fire suppression, herbicide application, and fertilization to promote introduced forage species 

over the native community. 
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 Of forage species introduced to our sites, tall fescue is by far the most abundant and 

probably the most ecologically significant (McGranahan 2008). Thus, the extent to which it 

has invaded a particular patch – which can be variable within pastures – affects response of 

grazers to the experimental treatment. For example, tall fescue density will affect the rate at 

which grazers select for tall fescue tillers. In particular, interpretation of the change in tall 

fescue abundance over the course of this study is confounded by the fact that patch-burn 

grazed pastures had more tall fescue prior to treatment than control pastures (mean 29.5% ± 

2.3 s.e. versus 18.5% ± 3.4 s.e., p = 0.03). 

 The rate of infection by the fungal endophyte might affect the frequency at which 

grazers can return to tall fescue: higher infection rates might require longer or more frequent 

abstention periods to maintain low toxin levels in the animals’ systems (Pfister 1997). On the 

other hand, endophyte infection rates might not account for variability so much as generally 

low rates of selection for tall fescue tillers across sites, as the infection rate was consistently 

high (mean 78% ± 6% s.e., Rebecca McCulley, personal communication).  

 In the context of this study, site history – especially those elements that promote 

invasion by tall fescue – is probably most important in affecting the rate at which patch 

contrast develops. A landscape can retain ecological memory from previous processes that 

affect patterns within that landscape through time (Peterson 2002). In this system, the 

generally slow rate of contrast development, as well as the wide variation in contrast across 

treatment pastures, is likely a vestige of variable rates of vegetation recuperation from 

overgrazing.  

 As defined in this paper, contrast is composed of the absolute difference between two 

elements: the average visual obstruction across unburned patches and the average visual 
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obstruction in the most recently burned patch. Contrast begins with a successful fire in the 

burned patch: the succulent regrowth attracts grazers, and repeated herbivory maintains the 

low sward height and high forage quality of the grazing lawn as described by Fuhlendorf and 

Engle (2004). This interaction, however, is dependent on a successful fire, which depends on 

sufficient fuel. Here again, tall fescue creates variability. Tall fescue has been implicated as 

an “anti-pyric” invasive species (McGranahan et al., unpublished manuscript), which is a 

reference to traits that limit fire in tall fescue-dominated fuelbeds. When invasive in native, 

fire-adapted grasslands, tall fescue can limit fire spread in three ways: (1) by increasing the 

amount of live, green material in the fuelbed to the point that that fires fail to propagate 

(Jolly 2007); (2) by outcompeting native vegetation that would otherwise contribute 

dormant-season fuel (Clay 1993, Rudgers et al. 2004, Rudgers et al. 2005); and (3) through 

rapid decomposition of its own otherwise combustible litter (Mayer et al. 2005). Thus, 

accumulating enough fuel to successfully carry a fire is the first step in creating a grazing 

lawn in which grazers are not adverse to consuming tall fescue, and the rate of fuel 

accumulation (as measured by visual obstruction) might be hampered by slow vegetation 

recovery from an ecological memory of overgrazing.  

 The contribution of the burned patch to patch contrast, however, cannot increase 

further once the fire has consumed fuel entirely and evenly throughout the patch. In other 

words, there is a maximum degree to which managers can rely on the “magnet effect” to 

attract grazers and drive the fire-grazing interaction. Grazers must perceive an advantage to 

grazing in the burned patch, and thus perceive a disincentive to foraging in the other patches. 

Here, ecological memory – specifically, temporal distance from severe grazing – is perhaps 

at its peak importance. The amount of biomass in the unburned patches is determined by the 



48

species composition of the patch, and their productivity. Evidence that the unburned patches 

have not sufficiently recovered is apparent in the lack of difference in visual obstruction 

between burned and unburned patches, and the lack of difference in total canopy cover in the 

Daubenmire frames between the patches (McGranahan et al, unpublished data). We predict 

that as we continue with moderate stocking, these grasslands will continue to recover and 

accumulate standing necromass and a deep litter layer that contribute to structural and 

nutritional deterrents from grazing in these patches. These deterrents will continue to 

concentrate grazing in the burned patch and further force selection for tall fescue tillers. In 

this manner, the unburned patches are nearly limitless in their contribution to patch contrast. 

Through 2008, however, any interest by cattle in tall fescue in the burned patch has been a 

function of the fire’s magnet effect, rather than structural deterrents in the unburned patches. 

 

Variation among grazers affects selection for targeted species 

 Unlike mechanical and chemical methods of control that can be expected to perform 

in a uniformly predictable manner, any grazing system has an inherent degree of variability 

due to the inclusion of living organisms with a complex suite of needs. Herbivores are 

constantly making decisions, including foraging decisions, at several spatial scales (Senft et 

al. 1987, Stuth 1991), and are constantly re-evaluating their forage options along a dynamic 

scale of nutritional needs (Stuth 1991, Launchbaugh et al. 2001). As such, managers must 

appreciate the varied needs of herbivores and learn how to manipulate the landscape in which 

foraging decisions are made in order to achieve management goals. 

 A key element in the management of the fire-grazing interaction, as with grazing 

management in general (Vallentine 1990), is stocking rate. Establishment and maintenance of 
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an effective grazing lawn requires the proper balance of burn area and herbivore population: 

too few grazers or too large of a burned area will not sufficiently concentrate grazing to 

create a grazing lawn, while too many grazers or too small of a burned patch will force 

animals to forage in the less-nutritious unburned areas (Fuhlendorf et al. in press). Table 1 

shows potential sources of variation in stocking rate, including herd demographics (age, sex, 

etc.) and animal type. For example, calves born in the spring might increase stocking rate of 

a pasture compared to fall-calving cows that spend the grazing season gestating rather than 

lactating.  

 A final source of variation is attributable to the experience of the individual animals. 

Grazers introduced to new sites with potentially unfamiliar forage are forced to explore and 

experiment, and the rate at which the animals learn and familiarize themselves with new 

surroundings is critical not only to the effectiveness of the grazers in achieving management 

goals, but also to the animals’ health and condition (Provenza and Launchbaugh 1999). Thus, 

in our experiment, variation in the responses of each herd to patch-burn grazing, as measured 

by their utilization of tall fescue, might be partially attributable to different levels of 

experience with the landscape and the forage matrix, in addition to the characteristics of the 

vegetation community as discussed above.  

 

Conclusions 

 Despite the lack of support for patch contrast as a primary mechanism behind patch-

burn grazing in invasive species control, the fact remains that we observed higher levels of 

grazing on tall fescue tillers in the patch-burn grazing treatment. Thus, we conclude that 

pyric-herbivory – the single disturbance that results from the interaction of fire and grazing 
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within a heterogeneously-managed landscape – shows promise as an effective method of 

managing tall fescue invading tallgrass prairie. Conclusions about the mechanisms behind 

increased grazer selection for an otherwise unpreferred species, however, are more tenuous. 

The magnet effect certainly appears to have been a factor in the patch-burned pastures in 

2008, even though patch contrast was not achieved. Persistent ecological memory resulting 

from a recent history of heavy stocking rate in the plant community was most likely 

responsible for accumulated biomass in the unburned patches below that necessary to 

contrast with the burned patches. We predict that, as sites respond to moderated stocking rate 

and lose ecological memory and returning herds carry over their experiences with grazing 

lawns, the effects of pyric-herbivory will intensify and the mechanisms that drive the fire-

grazing interaction will play an increasingly efficacious role in selective herbivory of tall 

fescue.  
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Level of consideration Sources of variation 
Vegetation  
 Tall fescue 
  extent of invasion
  endophyte infection rate
  composition of plant matrix
 Disturbance history 
  agricultural activity
  grazing intensity
  fire suppression
Herbivores     
 Class 
  age
  sex
  reproductive status
 Kind 
  breed
 Experience  
  familiarity with site
    previous exposure to forage types

 
 
 
Table 1: List of several factors that potentially contribute to variation in the effects of the 
patch-burn grazing treatment on herbivore selection of tall fescue.  
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Fig. 1: Tall fescue tillers (%) left ungrazed (A) and relative height (%) of grazed to ungrazed 
tall fescue tillers (B) within burned and unburned patches in patch-burn treatment 
pasturesand within grazed control pastures.  
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Fig. 2: Contrast between patches in patch-burned and grazed control pastures over three 
years. Year effect was not significant. Contrast between patches in patch-burned pastures 
(i.e., recently burned patch contrasted with unburned patch) did differ from contrast between 
patches in the control pastures in any year. 
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Fig. 3: Relative change in tall fescue cover in the patch-burned treatment patches and across 
3 control patches for 2007 and 2008, each compared to the same patch in 2006. Three stars 
(***) represent significance at p < 0.001. 
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