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CHAPTER 1: GENERAL INTRODUCTION 

INTRODUCTION 

 

Land use change through human activity has dramatically altered the global carbon 

cycle (Houghton et al. 1983). In the Midwestern U.S.A., agricultural expansion has driven 

the widespread conversion of native tallgrass prairie ecosystems into a landscape presently 

dominated by annual cropping systems, primarily corn and soybean. While these cropping 

systems have been designed to maximize the productive potential of aboveground plant 

biomass for the harvest of food and fuel crops, they have reduced the capacity of agricultural 

land to sustain historic levels of soil carbon (e.g. Tiessen et al. 1982; Huggins et al. 1998). 

Soil carbon loss with the cultivation of tallgrass prairie soils has been estimated to range 

from 40-60% of native levels (Huggins et al. 1998). This process of soil carbon depletion has 

been driven by a combination of agricultural management strategies that have decreased 

belowground carbon inputs, accelerated rates of decomposition, and increased soil erosion 

(Buyanovsky et al. 1987; Huggins et al. 2007).  

Largely as a result of anthropogenic induced increases in atmospheric CO2 

concentrations, attention has been given to quantifying carbon stocks and flows across both 

grassland and agricultural ecosystems (Brye et al. 2002; Paustian et al. 2000). In historical 

grassland regions, efforts have been directed toward quantifying the potential of 

reconstructed grassland ecosystems within agricultural landscapes to increase the carbon 

storage capacity of soils (Paustian et al. 1998; Rees et al. 2005; Kucharik et al. 2001). In the 

past, federal programs, such as the Conservation Reserve Program, have facilitated the 
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planting of perennial grasslands and have served to retire highly erodible lands and enhance 

soil carbon stocks (Gebhart et al. 1994; Burke et al. 1995; Baer et al. 2002). Tallgrass prairie 

reconstructions have introduced a level of native plant diversity that has led to the study of 

community and system level processes that influence soil carbon accumulation in formerly 

cultivated land (Camill et al. 2004; Jastrow 1987). Estimates of the rate of change in soil 

organic carbon with grassland reconstruction are highly variable, depending on pre-existing 

soil carbon conditions and the difficultly in distinguishing small increases from relatively 

large backround pools (McLaughan 2006).    

The accumulation of soil organic matter in reconstructed tallgrass prairie ecosystems 

is largely dependent on the storage of root-derived carbon. Tallgrass prairies allocate a large 

percentage of fixed carbon belowground relative to annual crops (Jackson et al. 1996) and 

the distribution and cycling of plant biomass belowground is in part responsible for the 

distinction of carbon rich, tallgrass prairie derived soils (Rice et al. 1998). However, our 

present understanding of belowground carbon cycling in tallgrass prairie reconstructions is 

limited by the difficulty in quantifying plant root dynamics. Estimates of belowground plant 

growth within grassland reconstructions and differences in plant carbon allocation among 

annual crops and young grasslands will provide critical knowledge towards predicting how 

reconstructions alter the magnitude and rate of soil carbon cycling processes.  

Meanwhile, the consequence of tallgrass prairie age on changes in the quantity and 

quality of belowground plant inputs remains a major knowledge gap in the study of tallgrass 

prairie ecosystem development. Tallgrass prairie plantings have been shown to accelerate 

plant community succession relative to natural rates of succession (Camill et al. 2004), 

leading to relatively fast changes in both the quantity and quality of belowground inputs. 
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While poorly documented, patterns in belowground plant production with age will have 

important implications for the rate of carbon accumulation in reconstructed grasslands.   

Our understanding of the rate of change in soil carbon with grassland development 

must extend beyond changes in belowground production to consider the processes that 

influence the fate of carbon allocated belowground. Studies in reconstructed grasslands have 

frequently considered the quality of root-derived inputs and their relative availability for soil 

microbial decomposition (Burke et al. 1995; Baer et al. 2002), while little work has actually 

quantified in-situ rates of the quantity of carbon respired from the soil to the atmosphere. The 

process of soil respiration represents a combination of CO2 respired through root and 

rhizosphere metabolism and the microbial decomposition of soil organic matter. Soil 

respiration and its sensitivity to environmental change (Kirschbaum 2000) could ultimately 

determine the capacity of reconstructed ecosystems to accumulate soil carbon with age.  

Predictions of soil carbon cycling in tallgrass prairie reconstructions should also take 

into account that these grasslands will be planted within a changing global environment, 

where a rise in atmospheric CO2 concentrations will alter both climatic conditions and plant 

growth and allocation (Hungate et al. 1997). Globally, the annual flux of carbon produced by 

soils has been estimated to be 10 times that of fossil fuel combustion (Raich and Potter 

1995). In this context, efforts to quantify the magnitude of change in soil respiration with 

grassland reconstruction should be incorporated with an assessment of the climatic and 

biological drivers of this process. Predictions of soil respiration in grasslands could require 

accounting for differences in carbon supply to roots and the quantity and quality of detritus, 

where variability in the response of soil respiration to climatic change, i.e. rising 

temperatures, could also depend on substrate conditions (Hibbard et al. 2005). Identifying the 
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controls on soil respiration in reconstructed grasslands over time is necessary if we are to 

predict future trends in the soil carbon budget in these ecosystems.  

Root production and soil respiration are critical ecosystem processes within the 

tallgrass prairie carbon budget; however we have limited knowledge of the magnitude and 

directional change of either process with the development of tallgrass prairies planted into 

formerly cultivated ecosystems. This research was designed to quantify changes in carbon 

fluxes with the development of tallgrass prairie plantings in cultivated land and the controls 

on soil carbon cycling across a reconstructed landscape.  This study used tallgrass prairie 

reconstructions along a 12 yr chronosequence in central Iowa, USA, including a no-till 

soybean field, to assess how ecosystem carbon fluxes changed with prairie age. The first 

objective of this research was to quantify changes in soil respiration, root biomass, above and 

belowground plant production, and the quality of root derived inputs (i.e. C:N) with tallgrass 

prairie age. Secondly, this study was designed to identify the importance and interaction of 

climatic and biological controls in predictions of soil respiration across a landscape of annual 

cropping systems and grassland reconstructions. 

THESIS ORGANIZATION 

 

This thesis is composed of three chapters. Chapter I is a concise introduction to the 

research problem. Chapter II is the main body of the thesis and was written with intent for 

publication in the journal Ecosystems. Chapter III summarizes the conclusions of the research 

and outlines suggestions for future research directions.  
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CHAPTER 2: SOIL RESPIRATION AND PLANT GROWTH ACROSS A 

CHRONOSEQUENCE OF TALLGRASS PRAIRIE RECONSTRUCTIONS 

A paper to be submitted to the journal Ecosystems 

Ryan M. Maher1, Heidi Asbjornsen, Randall K. Kolka,  

James W. Raich, and Cynthia A. Cambardella 

ABSTRACT 

 

An understanding of changes in soil respiration (Rs) and plant growth in tallgrass 

prairies planted into formerly cultivated land is critical if we are to predict the effects of 

grassland reconstructions on belowground carbon cycling. In addition, predicting changes in 

the ecosystem carbon balance in grassland reconstructions will require identifying the 

climatic and biological controls on Rs across a landscape of cultivated and reconstructed 

grassland ecosystems. This study used a 12 yr chronosequence of tallgrass prairie 

reconstructions in central Iowa, including a no-till soybean field (age 0), to quantify the 

relationship between tallgrass prairie age, Rs, root biomass, root ingrowth, and aboveground 

production. We also assessed the strength and interaction of soil temperature and soil 

moisture in predictions of Rs across the chronosequence. Linear regressions showed a 

significant increase in standing root biomass carbon (R2 = 0.89) and growing season Rs (R
2 = 

0.83) with prairie reconstruction age while changes in aboveground production and root 

ingrowth were less predictable. Growing season (gs) Rs represented the largest carbon flux 

                                                 

1 Primary researcher and author  
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among prairie ages, ranging from 624 g C m-2 gs-1 in the soybean cropping system to 939 g C 

m-2 gs-1 in the oldest reconstruction (age 12), and was positively correlated with changes in 

root biomass. Among all tallgrass prairie reconstructions there was a strong, positive 

relationship between soil temperature and Rs (R
2 = 0.80 to R2 = 0.91) while the effect of soil 

moisture was greatest for the youngest prairie (age 4). Soil temperature was less correlated 

with Rs in the no-till soybean field (R2 = 0.40) and the inclusion of soil moisture added 

limited additional predictive power (R2 = 0.48). Our findings indicate that an increase in 

cumulative Rs with prairie reconstruction age was related to the interaction of soil 

temperature and the accumulation of root biomass with young grassland development.  

INTRODUCTION 

 

Land use change through agricultural conversion has dramatically altered the carbon 

cycle within terrestrial ecosystems (Paustian et al. 1998). The loss of tallgrass prairie 

ecosystems in the Great Plains region of the U.S. to annual cropping systems led to a historic 

decline in soil C and N stocks (Huggins et al. 1998) and has altered the processes that 

contribute to soil organic carbon accumulation (Buyanovsky et al. 1987). Our attempts to 

restore ecosystem functions, including soil organic matter accumulation, to agriculturally 

dominated landscapes through grassland reconstructions demands a greater understanding of 

belowground carbon cycling within these intensively managed landscapes.  

The accumulation of soil carbon in reconstructed grasslands planted into formerly 

cultivated land will largely depend on the quantity and quality of carbon allocated 

belowground (Kucharik et. al 2001; Baer et al. 2002; Camill et al. 2004). However, the 
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response of soil respiration or “soil CO2 efflux” (Rs), a measure of total soil metabolism that 

includes both root and rhizosphere and microbial respiration, will also have an important 

consequence on the ecosystem carbon balance (Valentini et al. 2000). Within tallgrass prairie 

ecosystems, Rs has shown to account for a majority of total ecosystem respiration (Ham et al. 

1995) and Brye et al. (2002) suggested that the carbon balance could be more sensitive to 

fluctuations in soil respiration than net primary production. Despite their importance within 

the grassland carbon cycle, patterns and controls on plant root allocation and Rs within 

grassland reconstructions are poorly understood and there have been few attempts to assess 

how these processes change with grassland age. Therefore, understanding how Rs changes 

over time in tallgrass prairie reconstructions is critical to predictions of their capacity to 

enhance ecosystem carbon storage.  

Grasslands planted into cultivated ecosystems over time have offered a 

chronosequence approach for monitoring changes in soil physical characteristics (Jastrow 

1987), carbon and nitrogen dynamics (Burke et al. 1995; Baer et al. 2002; Camill et al. 2004; 

Kucharik et al. 2001), microbial and fungal community composition (Allison et al. 2005), 

and plant community composition (Jastrow 1987; Camill et. al 2004). While small changes in 

large pools of soil carbon can be difficult to detect in the short term (Brye et al. 2002; Camill 

et al. 2004), studies of tallgrass prairie reconstructions suggest significant changes in plant 

carbon allocation with young grassland development. For example, C4 dominated grassland 

plantings have shown a linear increase in standing root biomass and the C:N ratio of root 

tissue with age (Baer et al. 2002). Similarly, Camill et al. (2004) found an increase in 

belowground production in tallgrass prairie after 3 growing seasons in accordance with a 

shift in the plant community towards C4 grass dominance. Trends in aboveground 
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productivity have been less consistent (Camill et al. 2004; Jastrow 1987) given the 

predominance of management, such as fire and mowing, in directly regulating aboveground 

stocks (Baer et al. 2002). Overall, these previous studies suggest significant changes in the 

quantity and quality of belowground biomass and production across young grassland 

chronosequences, however estimates of belowground production remain limited and none of 

these studies quantified changes in soil respiration over time. To date, Rs in tallgrass prairies 

has only been measured in mature tallgrass prairie ecosystems (e.g. Kucera and Kirkham 

1971; Mielnick and Dugas 2000; Brye et al. 2002; Knapp et al. 1998; Wagai et al.1998; 

Franzluebbers et al. 2002). Accounting for changes in Rs with seasonal and annual measures 

of plant allocation across different age grassland reconstructions will improve our 

understanding of the processes that influence the directional change in soil carbon storage 

over time.  

Despite the significance of Rs as the primary component of ecosystem metabolism 

and as the second largest flux in the terrestrial carbon cycle (Raich and Schlesinger 1992), we 

have a limited understanding of the controls on Rs at local and regional scales. Identifying the 

controls on Rs is important if we are to predict the response of soil respiration to future land 

use and climate change. While soil temperature and moisture have been used to predict Rs 

within tallgrass prairie ecosystems (Kucera and Kirkham 1971; Mielnick and Dugas 2000), 

these abiotic controls have also shown limitations when predicting across local grassland 

ecosystems (Bremer and Ham 2002; Craine and Wedin 2002) and recent attention has been 

given to differences in substrate supply (Hibbard et al. 2005). Variability in the relationship 

between abiotic controls and Rs across sites has been associated with differences in carbon 

supply to roots or the quantity and quality of detritus available for microbial decomposition 
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(Ryan and Law 2005). In both native and experimental grasslands, measures of canopy 

photosynthesis, such as leaf area index and ANPP, have been used as a surrogate for 

belowground carbohydrate supply to improve models of Rs (Bremer and Ham 2002; Craine 

et al. 1999; Franzluebbers et al. 2002), while others have shown that direct measurements of 

root biomass and root biomass N are more appropriate (Dornbush and Raich 2006). 

Dornbush and Raich (2006) suggested that a decoupling of above and belowground plant 

biomass allocation in grasslands could provide support for the importance of incorporating 

measures of root activity into models developed for predicting Rs.  

Reconstructed tallgrass prairies could provide a gradient in root biomass, 

belowground and aboveground production, and root tissue nitrogen content that would 

provide insight into the importance of these different measures of substrate quantity and 

quality and their interaction with soil microclimate conditions in predictions of Rs across 

grasslands. For example, changes in root nitrogen concentrations with plant community 

succession (Baer et al. 2002) could control total root nitrogen content and override the 

positive relationship between root nitrogen and root respiration (Bahn et al. 2006), potentially 

limiting the effect of increasing plant root biomass on Rs. Differences in soil microclimate 

driven by changes in vegetation structure (Raich and Tufekcioglu 2000) could also influence 

the relationship between plant production and Rs across tallgrass prairie plant communities.   

Additionally, predictions of Rs with land use change, such as prairie reconstructions 

in former agricultural lands, could be improved when considering differences in plant 

allocation between perennial grasslands and annual croplands. Annual cropping systems have 

been designed to maximize aboveground production while grasslands allocate greater than 

50% of productivity belowground (Brye et al. 2002; Buyanovsky et al. 1987). Differences in 
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Rs among a reconstructed tallgrass prairie and a corn cropping system have been poorly 

predicted by soil temperature and moisture and Wagai et al. (1998) suggested that higher 

rates in prairie were related to greater fine root and microbial biomass. Models of Rs within 

cultivated ecosystems and in comparison to grasslands could be improved by taking into 

account differences in belowground plant activity (Raich and Mora 2005) and/or changes in 

perennial root biomass with ecosystem development.  

Large-scale tallgrass prairie reconstructions within landscapes dominated by annual 

cropping systems present a unique experimental framework for studying the impact of native 

perennial plantings on both Rs and plant production. This study used a chronosequence of 

tallgrass prairie reconstructions to investigate how time since tallgrass prairie planting affects 

seasonal and annual plant growth and Rs and to assess soil temperature, moisture, and plant 

growth as determinants of Rs. Specifically, this study was designed to test the following 

hypotheses:  

(1) Cumulative Rs, standing root biomass, root ingrowth, aboveground production, 

and the ratio of root ingrowth to aboveground plant production will increase with 

tallgrass prairie age over the 12 yr chronosequence; 

(2) Seasonal variation in Rs is strongly related to seasonal changes in soil temperature 

and moisture within grasslands; 

(3) Changes in the relationship between Rs and soil microclimate with reconstruction 

age are related to differences in root biomass and root ingrowth (e.g. root C and N).   

Information on Rs and belowground biomass and production combined with measurements 

of changes in soil carbon pools will enhance understanding of the carbon transformations 
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between the plant, soil, and atmosphere with tallgrass prairie establishment and provide 

insight into the mechanisms that influence soil carbon accumulation over time.  

METHODS 

 

Study Site 

This study was conducted in 2006 at the Neal Smith National Wildlife Refuge 

(NSNWR) in Jasper County, central Iowa (41˚33 N, 93˚17 W). The refuge was established in 

1991 under the mission of converting over 3,400 ha of an agriculturally dominated landscape 

to pre-European settlement tallgrass prairie and oak-savanna ecosystems. Presently, the 

refuge consists of a mosaic of reconstructions and agricultural land uses with approximately 

1,200 ha planted to tallgrass prairie through annually successive plantings. This region has a 

mean annual precipitation (based on 1971-2000 average) of 87.4 cm and mean annual 

temperature of 9.6˚C (MRCC 2007). In 2006, annual precipitation was approximately 64.2 

cm and average monthly temperature was 10.8˚C, ranging from -3.0˚C in February to 24.8˚C 

in July (NESDIS 2007).  

This study used five tallgrass prairie plantings and a no-till soybean field (n = 6), 

ranging in size from 2 to 7.5 ha, to represent a gradient in time of reconstructions that 

included prairies planted into formerly cropped lands in 2002 (age 4), 2000 (age 6), 1998 

(age 8), 1997 (age 9), and 1994 (age 12). Each site was sampled during the 2006 growing 

season and age was based on the number of growing seasons since planting. Prairie plantings 

were seeded in the late fall after a soybean crop, therefore we used the predominant land use 

in the region, a corn-soybean cropping system, to represent a 2006 planting (age = 0). Seed 
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sources and composition over the chronosequence has changed with refuge expansion and 

adaptive management. Generally, seed sources shifted from local prairie remnants and 

outside suppliers (pre-1996) to bulk harvests from within refuge plantings (post-1996). All 

plantings were supplemented with forb species collected from local remnants.  Difficulty 

establishing cool season grasses led to a modification in seed composition after 1997 with an 

increase in the use of Elymus canadensis as a nurse crop. The soybean field was managed 

under a standard no-till corn-soybean rotation and soybeans were planted on DOY 127 and 

harvested on DOY 272.   

The plantings used within this study were selected to complement a long-term 

assessment of changes in soil carbon with tallgrass prairie establishment at NSNWR 

(Cambardella et al. 2004). The oldest reconstructions were selected in the spring of 2000 

based on GIS overlays of refuge plantings and soil mapping units with additional younger 

sites added in 2005. All plantings were located on either Tama (Fine-silty, mixed, 

superactive, mesic Typic Argiudoll) or Otley (Fine, smectitic, mesic Oxyaquic Argiudoll) 

soil series. Both of these map units are deep, well-drained soils developed in loess under 

grassland vegetation and occur on convex ridge tops and side slopes (ranging from 0 to 9%). 

Similarity in specific soil characteristics collected in previous work (Cambardella, 

unpublished) suggests that site comparisons are reasonable (Table 1).   

A subsample of the original, replicated chronosequence was selected for this study 

with additional consideration for refuge management history. While we could not control for 

the historical burn regime, sites were selected so that time since last burn remained constant. 

All sites received a prescribed burn in the fall of 2004. None of the sites had been grazed 

since prairie planting. Within each of the six sites, 10 random plot locations were selected 
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through ArcView GIS and we used Geographic Position System (GPS) to locate sampling 

plots in the field.  

This prairie chronosequence is subject to the limitations of space-for-time substitution 

(Pickett 1989). However, consideration of soil characteristics and management history in site 

selection and sampling design, as stated above, can minimize confounding factors that 

influence trends due to time. Site selection was based on clearly defined criteria that was 

chosen a priori to minimize intersite variability in variables other than ‘time since 

establishment’. The chronosequence approach has shown to be a reliable measure of 

successional change (Foster and Tilman 2000) and chronosequence studies have shown to be 

valuable in developing our understanding of changes in reconstructed grassland structure and 

function over time (Jastrow 1987; Camill et al. 2004; Baer et al. 2002).  

 

Root Biomass 

Standing root biomass (≤ 2 mm) was sampled in the spring of 2006 on DOY 100. 

One root core (diameter 7.0 cm) was taken at each plot to a depth of 30 cm from a random 

location in close proximity to each Rs collar within each site (n = 60). Cores in the soybean 

crop were stratified to account for row and inter-row locations. Root cores were subdivided 

into three depth intervals prior to processing: 0-10, 10-20, and 20-30 cm. Samples were 

washed using a hydropneumatic elutriation system (Russell et al. 2004), dried at 65˚C for 24 

hours, and sorted from organic debris. No attempt was made to distinguish live from dead 

roots. Total carbon and nitrogen in root biomass was conducted using a LECO TruSpec CHN 

Analyzer.  

 



 

 

17 

Root Ingrowth 

Root production was estimated using the root ingrowth technique (Dornbush 2005; 

Johnson and Matchett 2001; Russell et al. 2004). For site installation, litter was removed 

from the soil surface and one soil core (diameter 7 cm) was harvested in close proximity to 

each soil Rs collar. The soil core was then replaced with a soil-filled root ingrowth tube and 

covered with surface litter. Root ingrowth tubes were constructed of polypropylene mesh 

tubes (16-mm2 holes)(InterNet Inc., Anoka, MN), 7 cm in diameter and 30 cm in length, and 

sown with mesh bottoms. Each ingrowth tube was filled with soil that was collected on site 

and sieved (6 mm) to remove roots. Ingrowth cores in the soybean crop were stratified to 

account for row and inter-row locations. Harvested root ingrowth biomass samples were 

washed, dried, sorted, and analyzed for total C and N similar to root biomass samples.  

Root ingrowth was measured for approximately three months over three overlapping 

time intervals: DOY 100 through DOY 193 (spring), DOY 157 through DOY 251 (summer), 

and DOY 221 through DOY 310 (fall). Overlapping ingrowth periods were used based on the 

methods of Dornbush (2005) to address the disturbance-induced biases associated with root 

ingrowth methods (Vogt et al. 1998). Root ingrowth during overlapping growth periods, 

approximately 30 days, was determined based on the average daily production of overlapping 

ingrowth samplings. Annual root ingrowth (g C or g N m-2 yr-1) was estimated by multiplying 

the average daily growth by the number of days within each period and then summing all 

ingrowth periods.  

Aboveground Production 

Aboveground biomass was harvested four times between May and October on an 

average of 2 month intervals, DOY 134, 178, 226, and 293. A total of eight 0.25 m2 quadrats 
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were randomly sampled from each site adjacent to Rs sample plots. All vegetation within the 

quadrat was clipped, removed, and separated into live and dead fractions. Biomass was dried 

at 65˚C for at least 48 hours, and weighed. Aboveground net primary production (ANPP) (g 

m-2 yr-1) in the prairie was based on the sum of positive increments in live and dead biomass 

(Scurlock et al. 2002; Dornbush and Raich 2006), using the following procedure:   

If ∆ Live > 0 and ∆ Litter > 0, then ANPP = ∆ Live + ∆ Litter 

If ∆ Live > 0 and ∆ Litter < 0, then ANPP = ∆ Live 

If ∆ Live < 0 and ∆ Litter > 0, then ANPP = ∆ Live + ∆ Litter 

If ∆ Live < 0 and ∆ Litter < 0, then ANPP = 0 

If ANPP < 0, then ANPP = 0. 

This method attempts to account for growth and death with seasonably variable production in 

multispecies grasslands. Live biomass harvested on DOY 134 was assumed to be current 

year’s growth and was added to total annual production. Aboveground live biomass harvests 

in the soybean crop were also conducted on DOY 134, 178, 226, and 293 for direct seasonal 

comparisons with prairie. Additionally, we collected a separate biomass sample at DOY 244 

to account for peak live biomass in the soybean crop. Based on minimal litter accumulation 

in soybean, ANPP (g m-2 yr-1) was equivalent to peak live standing crop. Aboveground 

biomass in all ages was converted to grams of carbon based on an estimate of 43% carbon in 

plant biomass (Kucharik et al. 2006). 

 

 Soil Respiration 

Soil surface CO2 efflux was measured with a custom gas-analysis system, controlled 

by a Campbell 10X datalogger with an infrared gas analyzer (IRGA, LI-COR 820). This 
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system is designed for large PVC chambers (506.7 cm2 soil surface area). Prior to each 

measurement, CO2 is scrubbed below ambient concentration to minimize bias associated with 

CO2 concentration gradients between the chamber and the air. After scrubbing, the change in 

concentration was measured every 5 seconds for a 75 second sampling interval through 

ambient concentration. The IRGA was calibrated at a high (500 ppm CO2) and low (0 ppm 

CO2) standard prior to each measurement period.  

Plastic (PVC) collars, 8 cm tall x 25 cm diameter, were permanently installed one 

week prior to the first sampling period to allow time for collars to equilibrate with the soil 

and minimize the effects of disturbance (Davidson et al. 2002). Collars (n = 10 per site) were 

inserted to a depth of 2 cm and included surface litter and plant crowns, accounting for  

potential high flux that derives from plant crowns (Craine et al. 1999). Standing live 

vegetation within each collar was clipped at the soil surface 24 hours before sampling when 

growing conditions required.  

Rs measurements were conducted from day-of-year (DOY) 109 through DOY 321, 

approximately biweekly (n = 15 in each prairie site and n = 13 in the soybean site). Fewer 

measurements were taken in the soybean field because planting and harvest required removal 

and replacement of collars. The large number of collars and within-site distance between 

collars required two consecutive days for each sampling period. The order in which sites 

were sampled was randomized for each measurement period and measurements took place 

between the hours of 1000 and 1500. Rs rates (µmol CO2 m
-2 sec-1) during this time period 

were used as representative of the daily average Rs. Based on diurnal measurements 

conducted on DOY 173 and DOY 306, efflux rates between 1000 and 1500 were within 8% 

of the daily average (Appendix). A similar agreement between mid-day measurements and 
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the daily average has been reported by others (Knapp et al. 1998; Kaye et al. 2005), further 

suggesting that instantaneous measurements at this time period provided a reasonable 

estimate of the daily average Rs.  

Soil temperature at 10 cm was measured simultaneously with Rs measurements with a 

digital long-stem thermometer attached to the IRGA system. Volumetric soil moisture 

content (% vol) was measured with a ThetaProbe (Delta-T Devices Inc.) to a depth of 6 cm at 

four random locations adjacent to each collar immediately after soil CO2 flux measurements. 

Millivolt output was converted to volumetric soil moisture content based on calibration 

standards for mineral soil.  

 

Scaling Rs to Cumulative Growing Season Estimates  

Daily average Rs measurements were used to estimate cumulative growing season Rs 

based on linear interpolation between measurement periods. This estimate assumes that a two 

week measurement interval is sufficient to capture seasonal variation in Rs. We tested this 

assumption for DOY 165 through DOY 294 using continuous soil temperature data collected 

at a nearby upland prairie site within the refuge (T. Sauer, unpublished). Daily soil 

temperature averages from continuous measurements were correlated with instantaneous 

temperature measurements when days overlapped (n = 9) and the resulting regression models 

were used to derive estimates of soil temperature in study sites when instantaneous 

measurements were not taken. Extrapolated soil temperatures were then applied to regression 

models generated based on instantaneous Rs and soil temperature for each site using all 

sampling dates. These models were used to estimate daily Rs for all days between DOY 165 

and DOY 294. Across all grassland sites, annual Rs totals based on instantaneous 
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measurements alone were within 5% of the estimate based on continuous soil temperature 

data. These results suggested that linear interpolation between the two week sampling 

intervals provided a good estimate of cumulative Rs for this study. 

 

Statistical Analysis 

Statistical analyses were conducted using JMP 6.0 and SAS (SAS Institute Inc.). 

Changes in cumulative growing season Rs, standing root biomass (C and N), annual root 

ingrowth (C and N), annual aboveground production C, and the ratio of root ingrowth to 

aboveground production with time since prairie reconstruction was examined using linear 

regression with site means (n = 6). The soybean cropping system was excluded from linear 

regressions for annual root ingrowth and ANPP (n = 5). 

Stepwise linear regression was used to identify the strength of soil temperature and 

soil moisture in explaining seasonal variation in Rs within each age (n = 125 for age 0, n = 

150 for ages ≥ 4). Based on the strong significance of soil temperature in explaining seasonal 

variation in Rs within each age, a two stage analysis was used to test for differences in the 

effect of soil temperature on Rs among sites. Linear regression was used to model the effect 

of temperature on Rs within each location for each age (6 ages x 10 locations = 60). General 

linear model analysis of variance was used to compare model parameter coefficients (e.g. 

slopes and intercepts) between ages. A similar analysis was conducted using multiple 

regressions, including both soil temperature and soil moisture within the model. We 

compared the results of models based on soil temperature with those based on soil 

temperature and moisture to assess whether differences in the Rs response to soil temperature 

among ages could be accounted for by soil moisture. A heterogeneous variance ANOVA 
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model was used for the soybean cropping system to account for unequal variance. Statistical 

significance in parameter coefficients was assessed using Bonferroni adjusted p-values.  In 

all cases, soil respiration was natural log-transformed prior to analyses to meet assumptions 

of uniform variance. We used correlation analyses to assess the relationship between 

cumulative growing season Rs, root biomass (C and N), annual root ingrowth (C and N), and 

annual aboveground production (C) among ages.  

RESULTS 

 

Changes in root biomass, root ingrowth, and aboveground production with age 

Root biomass showed a significant linear increase with prairie age (R2
 = 0.89,  P = 

0.003), ranging from 17 g C m-2 in the soybean crop to 205 C g m-2 in the 12 yr old prairie 

(Table 2). Root biomass in the soybean crop was similar to the 4 yr old prairie (38 g C m-2) 

while there was over a threefold increase in biomass from the 4 and 6 yr old prairie (131 g C 

m-2). The ratio of carbon to nitrogen in root biomass did not show a linear trend with age, 

doubling between the 4 and 6 yr old reconstructions and leveling off among the oldest 

reconstructions. Nitrogen content in root biomass showed a similar pattern to that of root 

carbon content and increased linearly with age (R2= 0.86, P = 0.005). 

Annual root ingrowth (g C m-2) increased with prairie age, although this trend was not 

statistically significant (P = 0.14) (Figure 1). Annual root ingrowth was lowest in the soybean 

cropping system (60 g C m-2) and ranged from 89 (age 4) to 202 (age 8) g C m-2 among 

prairies. A doubling in annual root ingrowth occurred between the 6 and 8 yr old prairies and 

then showed a trend toward leveling off, 166 g C m-2 (age 9) and 176 g C m-2 (age 12). 
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Within age, seasonal root ingrowth was generally similar in the spring and summer periods 

and declined in the fall (Figure 2). However, across ages, there was a pattern toward greater 

spring and summer ingrowth in the 8, 9, and 12 yr old sites in comparison to the 4 and 6 yr 

old sites and ingrowth in the 8 yr old prairie had a more distinct summer peak. 

Root ingrowth tissue chemistry varied considerably both within and among seasons. 

The ratio of carbon to nitrogen (C:N) in seasonal root ingrowth tissue ranged from 18 in the 

soybean crop (spring) to 83 in the 12 yr old reconstruction (summer) (Figure 2). The C:N 

among prairie reconstructions ≥ age 4 had a similar range in the spring (30 to 45) and fall (31 

to 54) ingrowth periods. The summer C:N ratio ranged from 43 to 83 and showed a strong, 

positive increase with age (R2 = 0.98, P < 0.001). In contrast to root biomass N content, total 

nitrogen in root ingrowth tissue did not show a linear trend with age and ranged from 2.2 to 

4.4 g N m-2  in the 6 and 8 yr old prairies respectively (P = 0.28).  

Aboveground production showed no significant linear trend with tallgrass prairie age 

(P = 0.22), ranging from 148 (age 4) to 368 (age 9) g C m-2 (Figure 1). The absence of any 

discernable trend over time reflected variable spring growth among young and old prairies 

(Figure 3). Seasonal production increased sharply between DOY 134 and 178 for the 6, 9, 

and 12 yr old prairies, ranging from 217 to 241 g C m-2. This period alone accounted for as 

much as 80% of annual production in age 6. Aboveground production in age 4 (95 g C m-2) 

increased similar to age 8 (98 g C m-2) and accumulated less than half of the biomass 

compared to the other prairie ages over the spring time period. From DOY 178 to 226, 

production decreased considerably across all prairies compared to the spring period, with 

accumulation in the 4, 6, 8, and 12 yr old sites ranging from 46 to 77 g C m-2. Production in 

the 9 yr old prairie over the same summer period was 151 g C m-2. In contrast to prairie 
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reconstructions, the soybean crop accumulated only 33 g C m-2 during the spring growth 

period, with just 10% of the total aboveground crop biomass present by DOY 178. The 

soybean crop accumulated almost 75% of total biomass, 248 g m-2, within the mid-summer 

period and productivity increased to 336 g C m-2 by DOY 244, a level similar to that of the 

most productive prairie.  

The ratio of root ingrowth to aboveground production did not show any trend with 

age (P = 0.92). The total of root ingrowth and aboveground production did show an increase 

with age although it was not significant at the 0.05 level (R2 = 0.66, P = 0.06). Our estimate 

of total plant production ranged from 248 to 551 g C m-2 yr-1 in the 4 and 9 yr old 

reconstructions, respectively.   

 

Seasonal patterns in soil temperature, soil moisture, and Rs 

Maximum soil temperatures across all ages occurred between mid July and early 

August (Figure 4). Mean soil temperatures ranged from 4.1˚C in early October within the 

soybean crop to 26.4˚C in early August in the 4 yr old prairie. Mean annual soil temperature 

ranged from 16.9˚C in the 6, 8, and 9 yr old prairies to 17.0˚C, 17.4˚C, and 17.9˚C in prairies 

age 0, 12, and 4, respectively. Mean soil moisture content (% water volume per soil volume) 

ranged from 12.1% in the soybean to 39.6% in the 12 yr old prairie (Figure 4). Averaged 

over all dates, soil moisture content ranged from 27.1% to 30.9% across all sites. Soil 

moisture was highest in April and generally declined through spring and early summer until 

reaching seasonal lows between mid-June and mid-July, ranging from 12.1% to 19.4% 

among all ages. Soil moisture increased from August through the fall, approaching moisture 

conditions similar to the spring although declining briefly in early October. 
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The greatest seasonal variability in Rs among prairie ages occurred during the spring 

and early summer months (Figure 5). At the initiation of Rs sampling (DOY 108), Rs ranged 

from 1.12 (age 0) to 2.91(age 4) g C m-2 day-1. Similar to soil temperature, Rs within each age 

peaked between mid-July and early-August, with maximum mean daily Rs ranging from 6.20 

(age 4) to 8.32 (age 9) g C m-2 day-1. Rs in the two oldest prairies (ages 9 and 12) accelerated 

at a greater rate into the mid-summer months in comparison to the 4, 6, and 8 yr prairies 

(Figure 5). The soybean cropping system showed a contrasting pattern in seasonal Rs in 

comparison to the prairie reconstructions. Early spring Rs rates were relatively depressed 

until mid-June, then rose rapidly and peaked in early August at a time similar to the oldest 

prairies. Rs rates into the fall, after DOY 243, were less variable among all prairie ages and 

declined steadily until the end of the sampling period (DOY 320), reaching seasonal lows 

that ranged from 0.67 in age 8 to 0.96 g C m-2 day-1 in age 0. Considering these seasonal 

patterns, cumulative growing season Rs showed a significant, positive increase with 

grassland age (R2 = 0.86, P < 0.0074), ranging from 624 (age 0) to 939 (age 12) g C m-2 gs -1 

(Figure 6).   

Seasonal changes in Rs were strongly related to soil temperature within each prairie 

age (P < 0.0001) (Table 3). However, seasonal variation in Rs was considerably less 

predictable with soil temperature in the soybean field (R2
 = 0.40).  The relationship between 

Rs and soil temperature was particularly weak in the early spring in the absence of the 

soybean crop. The addition of soil moisture to soil temperature-based models within each age 

explained a significant amount of seasonal Rs variation (P < 0.02); however moisture added 

limited explanatory power. The improvement in model R2 was greatest in the soybean crop 

(from R2 = 0.40 to R2 = 0.48) and the 4 yr old prairie (from R2 = 0.80 to R2 = 0.90).  
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Coefficients of variation (CV) in Rs on a given day averaged 23% with a range from 

7% to 66% across sites. The soybean cropping system had the greatest average site level 

variation (CV 34%), which could be related to the effects of crop management (e.g. soil 

compaction) on Rs in annual cropping systems (Rochette et al. 1991). These estimates are 

consistent with reports of a CV of 30% reported for Rs measurements conducted using large 

chambers (300-500 cm2) (Davidson et al. 2002). 

 

Predicting Rs across the chronosequence 

A comparison of regression slopes from soil temperature-based Rs models showed a 

significant age effect (P < 0.0001) (Figure 7). There was a trend toward increasing slopes 

with age, peaking at age 8 and leveling off in the 9 and 12 yr old reconstructions. Pairwise 

slope comparisons revealed significant differences between the soybean cropping system and 

prairies ≥ 6 yrs of age (P < 0.0001) and when comparing the 4 yr old prairie to prairies ≥ age 

6 (from P < 0.0001 to P = 0.03). Negative slope coefficients indicate that the response of Rs 

to soil temperature was significantly lower in both the soybean crop and 4 yr old prairie when 

compared to the prairies ≥ age 6. There was a significant difference in model intercepts 

among ages (P = 0.017), however we did not compare intercepts for ages with significantly 

different slopes. Trends in model intercepts among ages with non-significant slopes could be 

interpreted as a measure of overall seasonal Rs means. Differences in intercept coefficients 

among prairies ≥ age 6 were no longer significant when pairwise comparisons were 

Bonferroni adjusted (ranging from P = 0.72 to P = 0.07). Among prairies ≥ age 6, the 

intercept was distinctively low in the 8 yr old prairie and increased through age 12. Overall, 
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linear regression models including age, soil temperature, and the interaction term explained 

79% of the variation in Rs across the chronosequence.   

Comparisons among parameter coefficients from multiple regression models, 

including soil temperature and soil moisture, showed that prairie age had a significant effect 

on the temperature coefficient (P < 0.0001). Temperature coefficients showed a similar 

pattern with age in comparison to models based on soil temperature alone. However, 

accounting for soil moisture slightly increased the temperature coefficient for each age and 

had the greatest effect in the 0 and 4 yr old reconstructions. As a result, after accounting for 

soil moisture, soil temperature coefficients were no longer significant when comparing the 4 

yr and 6 old prairies (P = 0.92). Pairwise comparisons revealed a significant difference in the 

Rs response to soil temperature between the 4 yr old prairie and all prairies ≥ age 8 (P < 

0.0001 to P = 0.017). Therefore, while holding soil moisture constant, the effect of 

temperature on Rs was still significantly lower in the 4 yr old prairie. A comparison of 

parameter coefficients from the multiple regression models among the soybean cropping 

system and each prairie indicated that the temperature coefficient was no longer significant 

(ranging from P = 0.073 to P = 1.00), in part, a result of a distinct increase in the variance 

associated with the soil temperature coefficient in the soybean Rs model.  

Comparison of multiple regression Rs models indicated that prairie age had a 

significant effect on the soil moisture coefficient (P = 0.0012). Pairwise comparisons 

indicated a significant difference in the effect of soil moisture on Rs when comparing the 4 yr 

to the 6, 9, and 12 yr old prairies (P = 0.003 to P = 0.006) and differences were less 

significant in comparison to age 8 (P = 0.064). Parameter coefficients suggest that soil 

moisture had a positive influence on Rs in the 4 yr old prairie. Intercept coefficients in 
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multiple regression models were significantly different (P = 0.017) among ages and showed a 

similar pattern to models based on temperature alone. However, differences in intercept 

coefficients when comparing ages 4 and 6, 8 and 9, and 8 and 12 were no longer significant 

when pairwise comparisons were Bonferroni adjusted (range P = 0.20 to P = 0.27). Overall, 

the inclusion of soil moisture in regressions based on soil temperature improved model R2 by 

0.04, explaining 83% of the variation in Rs across the chronosequence.   

 

Correlations among cumulative Rs and plant growth  

There was a significant, positive correlation between cumulative growing season Rs 

and root biomass (r = 0.89, P = 0.018) (Figure 8). The positive correlation between Rs and 

annual root ingrowth was not significant (r = 0.70, P = 0.12), largely because of a relatively 

low cumulative Rs with high root ingrowth in the 8 yr old prairie (Figure 8). Removal of the 

8 yr reconstruction from the analysis resulted in a strong positive correlation between annual 

root ingrowth and cumulative Rs (r = 0.997, P = 0.0002).  ANPP and cumulative Rs were not 

correlated across prairie ages (r = 0.38, P = 0.46) (Figure 8).  

DISCUSSION 

 

It was hypothesized that the establishment and accumulation of belowground plant 

biomass with early tallgrass prairie development would contribute to increasing rates of Rs 

with age. Considering that the estimated contribution of root respiration to total Rs in 

tallgrass prairies may be as high as 40% (Kucera and Kirkham 1971; Craine et al. 1999), 

greater belowground biomass should lead to an increase in root and rhizosphere respiration 
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as perennial roots colonize the soil resource and plants allocate carbon belowground to 

support root growth and maintenance. In addition, root-derived detritus provides the primary 

source of substrate for microbial decomposition in grasslands and it has been shown that both 

microbial biomass (Allison et al. 2005) and potential carbon mineralization rates (Camill et 

al. 2004; Baer et al. 2002) increase with age. However, the changes in the magnitude and 

controls on Rs across an early tallgrass prairie chronosequence have not been quantified in-

situ and are critical to our understanding of the changes in the ecosystem carbon balance with 

prairie reconstruction. The interaction of age-related changes in above and belowground 

plant growth and seasonal variation in soil microclimate provided a dynamic set of 

conditions for predicting Rs across the tallgrass prairie chronosequence.  

 

Changes in plant growth with prairie age 

As expected, there was an increase in standing belowground biomass across the 

chronosequence, consistent with the establishment and accumulation of perennial roots with 

tallgrass prairie development (Brye et al. 2002). Notably, we observed a threefold increase in 

root biomass and a twofold increase in the C:N ratio between the 4 and 6 yr old 

reconstructions.  This relatively fast shift toward greater root biomass with lower tissue 

quality could be related to both the accumulation of dead root biomass and higher N use 

efficiencies with grassland development (Wedin and Tilman 1990; Craine et al. 2002). For 

example, a shift in functional dominance within the plant community from C3 to C4 grasses 

has been documented across several young tallgrass prairie plantings (Jastrow 1987; Sluis 

2002; Camill et al. 2004). However, contrary to Baer et al. (2002), the increase in root 
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biomass with age in our study compensated for lower tissue nitrogen concentrations and led 

to greater accumulation of total N stored in root biomass.   

Comparing rates of belowground biomass accumulation with other chronosequence 

studies in the same geographic region over a similar age gradient are complicated by 

variability in regional climatic variability, topographic position, and sampling design (e.g. 

soil depth). However, Baer et al. (2002) reported end-of-the-season root biomass at 1016 g 

m-2 (0-20 cm) in a 12 yr chronosequence of C4 dominated CRP grasslands in Nebraska, a 

quantity almost double that within our reconstructions (572 g m2 from 0-30 cm). Allison et 

al. (2005) reported 582 g m-2 (0-5 cm) in an Illinois tallgrass prairie chronosequence after 15 

years while suggesting that after 25 yrs root biomass could be approaching equilibrium. Our 

estimate is also lower than that in native tallgrass prairie in Kansas, where root biomass 

ranged from 859 to 1086 g m-2 (Seastedt and Ramundo 1990). Lower rates of root biomass 

accumulation compared to these studies could also be attributed to differences in sampling 

protocol, considering samples in our study were taken in early spring. A relatively low root 

biomass in this 12 yr chronosequence and a linear trend with age suggests that carbon storage 

in root biomass has not reached steady state in our grasslands and will likely continue to 

increase, although not necessarily at a linear rate. 

Patterns in root ingrowth and aboveground production with grassland age were more 

difficult to discern, attributable in part to a distinct increase in root ingrowth and a decrease 

in aboveground production within the 8 yr old prairie. We can not distinguish this 

observation from site-specific effects, however, similar to our findings with belowground 

biomass and the results of Camill et al. (2004), large shifts in root ingrowth occurred over a 

relatively fast time scale. Our findings indicate these tallgrass prairie reconstructions 
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produced 1.6 to 3.7 times more belowground plant biomass relative to the soybean cropping 

system. In addition, a change in tissue chemistry towards increasing C:N ratios during the 

summer root ingrowth period suggests greater nitrogen use efficiency among older plantings, 

where more carbon was allocated belowground per unit of nitrogen. This decrease in root 

tissue quality in older reconstructions has been associated with the increasing dominance of 

warm season grasses (Baer et al 2002). Interestingly, a consistently low C:N ratio in soybean 

roots led to only a 20% increase in root ingrowth nitrogen after 12 yrs, despite a threefold 

increase in carbon inputs. High carbon to nitrogen ratios in roots has been correlated with 

lower rates of root respiration per unit of production, greater root longevity, and a decrease in 

availability for soil microbial decomposition (Craine et al. 2002), while also correlated with 

positive rates of soil organic matter accumulation (Knops and Tilman 2000; Russell et al. 

2004).  

Our annual root ingrowth estimate in the oldest prairies (≥ age 8, 458-577 g m-2 yr-1) 

is on the high end of estimates of root production through various methods summarized by 

Johnson and Matchett (2001) for studies in native tallgrass prairie (202 to 429 g m-2 yr-1). Our 

observation of a large shift in root ingrowth among prairies ≤ age 6 and ≥ age 8 combined 

with estimates of root ingrowth in mature prairies (Johnson and Matchett 2001) suggests that 

root growth in our reconstructions within 12 years is comparable to that of native tallgrass 

prairie. Our annual estimate for soybean (156 m-2 yr-1) is considerably lower than that 

reported for soybean in Missouri (478 g m-2 yr-1) (Buyanovsky and Wagner 1986). Lower 

than average annual precipitation, particularly in the early spring and summer, and variability 

in soybean cultivars could potentially explain some of this variation.   
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The range of aboveground production across all sites (345-856 g m-2) is generally 

higher than the 20 yr average of ungrazed tallgrass prairie (416 g m-2) reported by Knapp et 

al. (1998) and the regional average of 560 g m2 summarized by Risser et al. (1981). 

However, our estimates are comparable to those reported in young grasslands recently 

planted into cultivated land (Dornbush and Raich 2006; Baer et al. 2002; Baer et al. 2003).  

While the ratio of aboveground to root ingrowth showed no trend with age, our 

results suggest that our reconstructions were highly productive both above and belowground 

within 12 years. Most notably, annual aboveground production among the oldest 

reconstructions (ages 9 and 12) was similar to that of the soybean cropping system despite a 

roughly threefold increase in root ingrowth rates. The percentage of root ingrowth relative to 

total production in our prairie reconstructions (31% to 59%) is within the range reported for 

temperate grasslands (Gower et al. 1999) while that within the soybean field was 

approximately 17%, compared to 45% reported by Buyanovsky and Wagner (1986).  

Total plant production increased across the chronosequence with a maximum of 1304 

g m-2 yr-1 in the 9 yr old prairie. This estimate is within the range of NPP reported by Risser 

(1991), 850 to 1350 g m-2 yr-1, for grasslands within our geographic region. In the case of 

soybean, Buyanovsky and Wagner (1986) reported a net annual production of 1309 g m-2 yr-1 

compared to a value of 938 g m-2 yr-1 in our study. Although our relatively shallow sampling 

depth (30 cm) could underrepresented root growth, particularly in older prairies, reports in 

native tallgrass prairie suggest that 70-90% of total root biomass is found within the top 30 

cm of the soil profile (Dahlman and Kucera 1965; Rice et al. 1998; Kucharik et al. 2006).  
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Relationship between Rs, temperature, and moisture across the chronosequence 

Seasonal variation in Rs was strongly related to seasonal changes in soil temperature 

across prairie reconstructions, similar to studies in native tallgrass prairies (Mielnick and 

Dugas 2000; Knapp et al. 1998; Kucera and Kirkham 1971, Dugas et al. 1999), older prairie 

reconstructions (Wagai et al. 1998; Kucharik et al. 2006) and young grassland plantings 

(Dornbush and Raich 2006). While low soil moisture has the potential to limit Rs and 

confound predictions based on soil temperature, particularly at high temperatures, soil 

moisture explained little additional variation within these reconstructed prairies. Despite a 

distinctly dry spring and early summer, there was no evidence that soil moisture presented 

strong limitations to Rs. However, we did find evidence for differences in the response of Rs 

to soil moisture among prairies. The significant positive Rs response to soil moisture in the 

youngest prairie (age 4) could have been related to the effects of aboveground plant biomass 

on soil microclimate. Limited aboveground cover (considering both live vegetation and dead 

litter) in younger reconstructions could lead to decreased interception rates and a lower 

buffering capacity to both soil wetting and subsequent surface evaporation (Knapp and 

Seastedt 1996) Therefore, Rs in the 4 yr old prairie would have been more responsive to 

seasonal precipitation events and more extreme fluctuations in soil moisture. Specifically, it 

appears that a midsummer increase in soil moisture corresponded with an increase in Rs in 

the youngest prairie. These results are consistent with Knapp et al. (1998), where the effects 

of irrigation were observed from July through September, although increasing maximum 

monthly Rs by only 8%.  

In comparisons of seasonal Rs patterns among ages, the slope of soil temperature-

based Rs models varied across the chronosequence, indicating the importance of age-related 



 

 

34 

site characteristics to predict seasonal Rs differences across the chronosequence. The trend 

toward a greater response of Rs to soil temperature with age was significant in comparisons 

among the youngest (4 yr old) and oldest prairies (ages 8, 9, 12). In general, the slope of the 

Rs by soil temperature regression increased along the chronosequence until the 8 yr old 

reconstruction and leveled off in ages 9 and 12. In another comparative study among tallgrass 

prairies in Wisconsin, Kucharik et al. (2006) cited the importance of different soil moisture 

conditions in accounting for seasonal differences in the Rs response to soil temperature, 

however our results suggested that after accounting for surface soil moisture conditions 

across sites, the trend toward increasing slopes with age remained and there were still 

significant differences among the youngest and oldest reconstructions.  

Relative to the prairie reconstructions, seasonal soil temperature and moisture were 

relatively poor predictors of Rs within the soybean cropping system, suggesting that abiotic 

parameters alone are insufficient for predicting intra-annual variation in Rs at that site. Others 

have reported similar findings in annual cropping systems (Wagai et al. 1998; Han et al. 

2007), where changes in seasonal Rs were not reflected in soil temperature and Rs predictions 

have been improved with the inclusion of a measure of substrate supply (Han et al. 2007). 

Han et al. (2007) modeled intra-annual Rs in a corn crop based on the interaction of soil 

temperature and plant activity and found that the seasonal temperature response of Rs could 

be predicted using soil temperature and both plant biomass and NPP, which were correlated 

with intercept and slope parameters respectively. Similarly, our results suggest that low root 

biomass and activity in the soybean site in the early spring potentially limited the rhizosphere 

contribution to total soil respiration at the beginning of the season (Rochette and Flanagan 
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1997) and could have detached the otherwise strong relationship between soil temperature 

and soil respiration across the chronosequence.  

 

Changes in cumulative Rs across the chronosequence  

To our knowledge, no previous study has assessed the relationship between age and 

soil respiration in early tallgrass prairie reconstructions. Brye et al. (2002) found no 

differences in annual soil respiration in tallgrass prairie reconstructions from age 19 to 24 

while Dornbush and Raich (2006) reported greater annual Rs in older grasslands among C3 

and C4 dominated plantings. Our results indicate that growing season Rs increased by 64% 

over the 12 yr chronosequence at a rate of approximately 27 g C m-2 yr-1. This study suggests 

that changes in growing season Rs with prairie age were strongly related to the interaction of 

soil temperature, root biomass accumulation, and seasonal root activity.  

These findings are consistent with a number of studies that have found strong 

relationships between root biomass and Rs across grasslands at local scales (Craine and 

Wedin 2002; Kucera and Kirkham 1971; Dornbush and Raich 2006; Dugas et al. 1999). The 

increasing response of Rs to soil temperature across the chronosequence was likely a factor of 

both the direct effects of temperature on root and rhizosphere metabolism and an increase in 

root respiration associated with greater spring and summer root growth in older prairies. This 

finding is consistent with those of Boone et al.(1998), where the temperature sensitivity of 

roots and the associated rhizosphere was found to be greater than the bulk soil; however it is 

difficult to distinguish between the contribution of greater specific root respiration (CO2 

produced per g of tissue) and the direct effects of temperature (Davidson et al. 2006). Similar 

to Dornbush and Raich (2006) and in contrast to studies that have suggested a relationship 



 

 

36 

between canopy characteristics and Rs (Norman et al. 1992; Bremer and Ham 2002; Craine et 

al. 1999; Franzluebbers et al. 2002) we found no correlation between cumulative Rs and 

aboveground production across the chronosequence. This result could be attributed to the 

lack of any consistent trend between aboveground and belowground plant growth across the 

chronosequence.  

We also expected a strong relationship between cumulative Rs and annual root 

ingrowth across the chronosequence, in part, associated with the contribution of root and 

rhizosphere respiration to total soil respiration in developing prairies. The 8 yr old 

reconstruction detached an otherwise strong, positive relationship between annual root 

ingrowth and cumulative Rs across the chronosequence, where consistently high seasonal 

ingrowth rates were not reflected in seasonal Rs. Given the lack of true replication this 

observation is difficult to explain and could be an artifact of site-specific conditions or 

management history. These findings also support recent analyses that suggest using the 

temperature response of Rs (i.e. Q10) to predict the seasonality of Rs can be misleading 

(Davidson et al. 2006). The slope of soil temperature-based Rs model in the 8 yr old 

reconstruction appeared to be an artifact of lower basal respiration, with low Rs rates in early 

spring rather than greater Rs rates at high temperatures.  

Differences in root tissue chemistry, as found in our study, have shown to influence 

rates of decomposition in both soybean cropping systems (Cheng et al. 2003; Broder and 

Wagner 1988) and perennial grasslands (Wedin and Tilman 1990). High nitrogen content in 

root tissues has shown to have a positive rhizosphere priming effect in soybean and 

contributed to high seasonality in total Rs (Cheng et al. 2003) with greater rates of soil 

organic matter decomposition relative to other annual crops (Cheng et al. 2003; Broder and 
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Wagner 1988). High decomposition rates in combination with low inputs in soybean have 

suggested limited carbon accumulation rates in these systems (Huggins et al. 2007).  In our 

study, cumulative Rs rates per unit of annual root ingrowth ranged from 10 to 3.7 in the 

soybean crop and 8 yr old prairie, respectively.  

Comparison of our cumulative estimate with other studies is limited because we did 

not account for winter Rs. Assuming winter Rs is not zero, linear interpolation between end-

of-season Rs to early spring Rs rates produces a maximum annual Rs estimate of 1197 g C m-2 

yr-1 in the 12 yr old prairie. This estimate is on the low end of the 1229 and 1428 g C m-2 yr-1 

range reported by Kucharik et al. (2006) in a Wisconsin tallgrass prairie remnant and a 60 yr 

old reconstruction respectively, as well as the range of 1.3 to 2.1 kg C m-2 yr-1 reported from 

native tallgrass in Kansas (Knapp et al. 1998). However, this estimate is similar to the 

maximum annual Rs (1260 g C m-2 yr-1) reported from slightly younger C4 dominated Iowa 

grasslands (Dornbush and Raich 2006).   

 

Conclusion 

Changes in root biomass and root ingrowth with tallgrass prairie age revealed that 

these young reconstructions were highly productive belowground within 12 years, especially 

in comparison to the soybean cropping system. Cumulative Rs increased with tallgrass prairie 

age and Rs represented the greatest carbon flux across the chronosequence. We found a 

strong positive correlation between cumulative Rs and root activity with the development of 

these young grasslands in formerly cultivated land. These changes in belowground plant 

development with age influenced soil temperature-based Rs predictions, while there was no 

relationship between Rs and aboveground production. However, among age variation in 
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belowground plant biomass was far greater than that of cumulative Rs and a threefold 

increase in root ingrowth and an eightfold increase in standing root biomass were 

accompanied by only a 50% increase in cumulative Rs. Therefore, our study suggests an 

overriding influence of soil temperature in predictions of intra-annual Rs across these young 

tallgrass prairie reconstructions while improving Rs predictions will require the direct 

assessment of belowground plant activity.  Clearly, further study is required to consider these 

trends over longer time scales and with intra-annual climatic variability. Future study should 

also focus on the separation of root and microbial respiration within reconstructions in an 

effort to differentiate the response of these component fluxes with prairie development. 
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APPENDIX 

 

Diurnal soil respiration rates and soil temperature (10 cm) on (a) 22 June 2006 (DOY 173) 

and (b) 2 November 2006 (DOY 306) at Neal Smith National Wildlife Refuge, Iowa. Values 

represent the mean (± 1 standard error) of four locations measured within each hour and the 

horizontal line represents the daily average soil respiration for each day.  
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FIGURE LEGENDS 

 

Figure 1: Changes in annual root ingrowth (0-30 cm) and aboveground production among a 

soybean cropping system (age 0) and five different-aged prairie reconstructions in the 2006 

growing season at Neal Smith National Wildlife Refuge, Iowa. The soybean cropping system 

(age 0) is represented for comparison only and values represent the mean of 10 locations 

within each age.  

 

Figure 2: Seasonal patterns in root ingrowth C (0-30 cm) and the C:N ratio of root ingrowth 

tissues among a soybean cropping system (age 0) and five different-aged prairie 

reconstructions in the 2006 growing season at Neal Smith National Wildlife Refuge, Iowa. 

Values represent the mean of 10 locations within each age.  

 

Figure 3: Patterns in cumulative aboveground production for a soybean cropping system (age 

0) and five different-aged prairie reconstructions in the 2006 growing season, Neal Smith 

National Wildlife Refuge, Iowa. Values shown represent the mean of 8 locations within each 

age and the soybean cropping system (age 0) is represented for comparison only. 

 

Figure 4:  Seasonal patterns in soil temperature (10 cm) and volumetric soil moisture content 

(% water volume per soil volume) from 0-6 cm in a soybean cropping system (age 0) and 

five different-aged prairie reconstructions during the 2006 growing season at Neal Smith 

National Wildlife Refuge, Iowa. Values shown represent the mean of 10 locations within 

each age. 
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Figure 5: Seasonal pattern in mean daily and mean cumulative soil respiration for a soybean 

cropping system (age 0) and five different-aged prairie reconstructions during the 2006 

growing season at Neal Smith National Wildlife Refuge, Iowa.  Values shown represent the 

mean of 10 locations within each age.  

 

Figure 6: The relationship between age of reconstructed prairie (age 0 = soybean) and 

cumulative growing season (April through November) soil respiration in 2006 at Neal Smith 

National Wildlife Refuge, Iowa. Values shown represent the mean of 10 locations within 

each age.  

 

Figure 7: The relationship between soil temperature (10 cm) and soil respiration (natural log 

transformed) based on seasonal instantaneous measurements in a soybean cropping system 

(age 0) and five different-aged prairie reconstructions from May through November 2006 at 

Neal Smith National Wildlife Refuge, Iowa. Lines represent best fit linear regressions and 

values shown represent the mean of 10 locations for each measurement date within each age.  

 

Figure 8: Correlations between cumulative growing season (gs) soil respiration (May through 

November) and root biomass C (0-30 cm), annual root ingrowth C (0-30 cm), and annual 

aboveground production C for a soybean cropping system (age 0) and five-different aged 

prairie reconstructions at Neal Smith National Wildlife Refuge, Iowa 2006. Values shown 

represent site means for each age.  
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Figure 2: 
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Figure 3: 
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Figure 4: 
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Figure 5: 
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Figure 6: 
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Figure 8: 
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TABLE LEGENDS 

 

Table 1: Soil carbon and nitrogen content and soil physical characteristics for a soybean 

cropping system (age 0) and five different-aged prairie reconstructions at Neal Smith 

National Wildlife Refuge, Iowa. Values represent the mean of locations for each site and 

correspond to a 0-30 cm sampling depth (Cambardella, unpublished). *Represents missing 

data.   

 

Table 2: Changes in spring root biomass (0-30 cm) parameters with age of prairie 

reconstruction (age 0 = soybean) in 2006 at Neal Smith National Wildlife Refuge, Iowa, 

including simple linear regression (SLR) equations, coefficient of determination, and 

significance level. Biomass values represent the mean of 10 locations within each age.  

 

Table 3: Linear regression models describing the relationship between soil temperature (10 

cm) and soil respiration for a soybean cropping system (age 0) and five-different aged prairie 

reconstructions, Neal Smith National Wildlife Refuge, Iowa. Regressions are based on 

biweekly instantaneous measurements over the 2006 growing season (n = 125 for age 0 and n 

= 150 for age 4-12).  
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TABLES 

 

Table 1:  

    Soil Texture 

Reconstruction 

Age (yr) % C % N C:N % Sand % Silt % Clay 

0 3.0 0.26 11.6 2.4 67.6 30.0 

4 2.7 0.26 10.3 1.9 65.8 32.3 

6 2.5 0.24 10.3 2.6 67.6 29.2 

8 3.6 0.32 11.1 2.7 68.3 29.0 

9 3.2 0.29 10.8 2.7 66.9 30.5 

12 3.1 0.28 10.8 2.4 67.6 30.0 

 

Table 2: 

Reconstruction 

Age (yr) 

Root Biomass 

(g m-2) Root C:N 

Root Biomass 

C (g m-2) 

Root Biomass 

N (g m-2) 

0 48 24 17 0.7 

4 96 49 38 0.8 

6 337 97 131 1.6 

8 445 83 164 2.0 

9 511 71 186 2.7 

12 572 77 205 2.8 

SLR 10.2 + 49.9x  6.8 + 17.9x 0.45 + 0.2x 

R2 0.89  0.89 0.86 

P value 0.003 0.1 0.003 0.005 
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Table 3: 

Reconstruction 

Age (yr) Model R2 P value 

0 ln (Rs) = -0.4855 + 0.0751(T) 0.40 <0.0001 

4 ln (Rs) = -0.6033 + 0.0899(T) 0.80 <0.0001 

6 ln (Rs) = -0.8017 + 0.1068(T) 0.85 <0.0001 

8 ln (Rs) = -1.0469 + 0.1209(T) 0.91 <0.0001 

9 ln (Rs) = -0.7453 + 0.1152(T) 0.88 <0.0001 

12 ln (Rs) = -0.6863 + 0.1124(T) 0.88 <0.0001 
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CHAPTER 3: GENERAL CONCLUSIONS 

CONCLUSIONS 

 

Our study of plant growth and soil respiration across a 12 yr chronosequence of 

tallgrass prairie reconstructions quantified how reconstructions alter the magnitude and rate 

of soil carbon cycling processes when planted into formerly cultivated land. As expected, the 

planting of young grasslands resulted in relatively fast changes in the accumulation of 

belowground biomass and the quantity of carbon and nitrogen stored within roots increased 

across the chronosequence. While patterns in belowground plant growth were more difficult 

to predict, reconstructions were highly productive and root ingrowth in older reconstructions 

was comparable to ingrowth estimates from native tallgrass prairie (Johnson and Matchett 

2001). Our results also provided a measure of plant carbon allocation in prairie 

reconstructions relative to a soybean cropping system. For example, estimates of 

belowground plant growth in the oldest (12 yr) reconstruction were three times that of the 

soybean crop, despite relatively similar rates of aboveground production. Contrary to our 

hypothesis that the ratio of belowground plant growth to aboveground production would 

increase with age, changes in plant allocation were more dynamic and much less predictable, 

although total plant production increased with age. 

Our results showed seasonal differences in the tissue chemistry of root inputs, where 

the soybean crop had consistently high quality (low C:N ratio) inputs and an decrease in the 

quality of root inputs among older reconstructions was most pronounced during the summer 

growth season. Results suggest differences in nitrogen use efficiency among reconstructions, 
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where older plantings allocated more carbon belowground per unit of nitrogen. Other studies 

have documented a similar trend with an increase in warm season grass dominance in young 

reconstructions (Camill et al. 2004). Lower quality root tissues have been associated with 

lower rates of root respiration per unit of production, greater root longevity, and a decrease in 

availability for soil microbial decomposition (Craine et al. 2002), traits that could influence 

rates of soil carbon accumulation in grassland reconstructions (Knops and Tilman 2000).  

These changes in belowground plant development with tallgrass prairie age 

influenced cumulative soil respiration and soil temperature-based soil respiration predictions. 

Cumulative soil respiration represented the largest flux of carbon across the chronosequence 

and increased with tallgrass prairie age. We found no correlation between aboveground 

production and cumulative soil respiration while this increase was strongly related to the 

accumulation of belowground biomass with age. An increase in root biomass with age could 

lead an increase in both the root and rhizosphere and the microbial contribution to total soil 

respiration.  

While soil temperature explained a majority of the seasonal variation in soil 

respiration within each reconstruction, our results suggest that tallgrass prairie age and 

increasing root activity within older reconstructions also had an effect on the seasonal 

variation in soil respiration. The interaction between soil temperature and soil respiration 

among ages was most dramatic in the soybean cropping system with the absence of perennial 

root biomass. This study suggests an overriding influence of soil temperature in predicting 

intra-annual soil respiration across these young reconstructions while improving soil 

respiration predictions will require the direct assessment of belowground plant activity.   
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RECOMMENDATIONS FOR FUTURE RESEARCH 

 

Growing concerns over the future increase in atmospheric CO2 concentrations and 

attention towards the design of multifunctional agricultural landscapes will likely increase 

incentives towards the reconstruction of grassland ecosystems. Therefore, there is a demand 

to both quantify soil carbon stocks and fluxes in reconstructed grasslands and to predict the 

future potential for grasslands to accumulate soil carbon. Given the conclusions of this 

research the following research directions are advised: 

 

1) Our understanding of tallgrass prairie development will require long-term monitoring 

beyond the time frame considered within this study to document changes in plant allocation, 

particularly belowground, and soil respiration while accounting for annual climatic 

variability. Incorporating the impact of disturbance, including fire and grazing, in long-term 

studies could also provide insight into interaction of age and management practices in 

determining changes in belowground carbon allocation with tallgrass prairie development;     

 

2) Soil respiration represents the total of root and rhizosphere respiration and the turnover of 

soil carbon through microbial respiration. Therefore, soil carbon budgets in reconstructed 

grasslands based on measurements of soil respiration will require research towards 

distinguishing the relative contribution of these different sources and how this contribution 

changes over time. Similarly, work towards the separation of heterotrophic and autotrophic 

sources could elucidate differences in the importance of climatic and biological controls on 
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these two processes that otherwise complicate the interpretation of soil respiration and 

predictions to environmental change;  

 

3) A mechanistic understanding of soil carbon accumulation in grassland reconstructions 

requires research towards the potential for negative feedbacks associated with plant growth 

and development and microbial activity. For example, attention could be given to the 

interaction between low quality root inputs, soil nitrogen dynamics, and the effects on the 

contribution of microbial activity to total soil respiration in reconstructed grasslands. 
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