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Abstract

Protein-protein interactions (PPIs) play a key role in many biological processes and func-

tions in living cells. Hence, identification, prediction, and analysis of PPIs are important

problems in molecular biology. Traditional solutions (laboratory based experiments) to this

problem are labor intensive and time consuming. As a result, the demand of a computa-

tional model to solve this problem is increasing day by day. In this thesis, I propose a

computational model to predict biological PPI types using short, linear motifs (SLiMs).

The information contained in a protein sequence is retrieved using the profiles of SLiMs. I

use sequence information as a distinguishing property between interactions types, mainly

obligate and non-obligate. I also propose another model to predict PPIs using desolvation

and electrostatic energies. These computational models use the information contained in

the sequence, and desolvation and electrostatic energies of the protein complex as prop-

erties. After computing all the properties, the well-known classifiers, k-nearest neighbor

(k-NN), support vector machine (SVM) and linear dimensionality reduction (LDR) have

been implemented. Results on two well-known datasets confirm the accuracy of the mod-

els, which is above 99%. Analysis and comparison of the results show that the information

contained in the sequence is very important for prediction and analysis of protein-protein

interactions.
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Chapter 1

Introduction

1.1 Computational Molecular Biology

Molecular Biology is the branch of biology in which all biological processes and functions

are viewed and analyzed in terms of molecules and molecular chemistry. This branch is

able to provide all the explanations of different types of interactions between cell systems

such as different types of DNA, RNA, and protein complexes. Understanding and analyz-

ing these interactions is very important. This branch of biology studies all details of such

interactions. Molecular biology revealed the original convergence of geneticists, physicists

and structural biochemists on a common problem; the structure and function of a biological

complex. Key concepts of molecular biology include mechanisms, information and genes.

The history of molecular biology provides the importance of the discovery of macromolec-

ular mechanisms [29].

Computational molecular biology can be seen as an application of molecular biology

and computer science along with statistics. The main idea is to accomplish molecular bio-

logical experiments and analysis using different computer science techniques [51]. These

1
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days, computational molecular biology is very important in genomics. Data about different

biological experiments and analysis are growing very rapidly. This rapid development in

biological science is generating huge amounts of data every day. To manage and manipu-

late all the information and data efficiently there is no alternative of computational models.

At present, analyzing DNA, protein sequences, protein complexes, and structure analysis

of DNA and protein need powerful computational models. Besides all these, different ma-

chine learning, data mining, pattern recognition techniques are also being used to make the

computational models more efficient, intelligent and accurate for different biological ex-

periments. For example, the development and evolution of drugs needs information about

biological processes, and hence this area of research is very important for health science.

1.2 Protein-protein Interaction

Polypeptide chains of amino acids that have a specific tertiary structure that perform a spe-

cific biological function are known as proteins. Proteins have different types and four levels

of structure (details in Chapter 2). Based on their structure and function, different levels of

classification are possible. In this thesis, I focus mainly on prediction of obligate and non-

obligate types and their interactions. According to the authors of [39], precise collision in

different proteins often leads to the final complex which is known as obligate complex, and

when this collision forms an encounter complex that may finally lead to another different

one is known as non-obligate complex. Figure 1.1a shows the graphical orientation of two

chains (A:B) of Aminoimidazole Ribonucleotide Synthetase (PurM), which is an obligate

complex(1cli). Figure 1.1b shows two chains (A:E) of RhoA.GDP - RhoGDI, which is a

non-obligate complex (1cc0).

Figure 1.1 shows a primary comparison between an obligate and non-obligate complex.
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(a) Obligate complex - 1cli (A:B) (b) Non-obligate complex - 1cc0 (A:E)

Figure 1.1: Obligate vs. non-obligate complex. These figures were produced using ICM
Browser [1] from the PDB [6] structure files of the complexes.

Obligate complex 1cli has a larger interface area between the chains (A:B), which indicates

that this complex will have more interacting atoms and interactions. On the other hand,

non-obligate complex 1cc0 has a smaller interface area and less interacting atoms between

the chains (A:E). The primary focus of this thesis is to predict types of protein complexes

using their structural and interaction data using a computational approach.

Biological cellular processes such as signal transduction, immune response, regulation

of gene expression and many biological processes need oligomerization involved in PPIs.

These interactions can be attractive or repulsive and depend on protein surface, environment

conditions. A lot of efforts have been made to identify and understand different types of

properties and factors for different types of interactions [40]:

1. β-factor

2. Solvent Accessibility

3. Geometric features
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4. Evolutionary features

5. Physicochemical features

Different levels of information in different biological processes can be derived from

different types of PPIs [39]. Obligate and non-obligate types of interactions come with

information about the interaction lifetime and stability among others. Non-obligate inter-

actions are usually less stable which makes predictions a difficult task [34, 54].

1.3 Feature Generation and Classification

To predict class types, every prediction method needs observed properties of the known

class samples called features. Features are generally nominal or numeric values, and the

process of calculating the features for each sample from a dataset is called feature gener-

ation. To reduce the size of the generated features from the input, I use feature extraction

methods. Feature extraction is a popular pattern recognition method [27]. It is a special

form of dimensionality reduction. When the length of the feature vector is very large, we

may need to apply feature extraction methods to find a lower dimensional representation of

that original feature vector. The transformation of high dimensional data to lower dimen-

sional data is called feature extraction [27]. There are many feature extraction methods and

for this thesis I use three linear dimensionality reduction (LDR) methods [43] (details in

Chapter 3) which are:

• Fisher’s discriminant analysis (FDA) [16, 21]

• Heteroscedastic discriminant analysis (HDA) [17]

• Chernoff discriminant analysis (CDA) [43]
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Lower dimensional data obtained by these three LDR methods are then passed through

quadratic Bayesian (QB) and linear Bayesian (LB) classifiers for final prediction [16]. For

each classifier, prediction accuracy and time taken for that prediction are very important.

1.4 Motivation and Objectives

To understand different biological functions and processes based on protein sequence and

structure many researchers have been working for stability. They are accomplishing ei-

ther the traditional labor intensive biological experiments or adopting the computational

approaches. For the computational approaches, they are gathering information based on

the interactions and different properties of protein complexes. After each interaction, the

shape of the complex and the functionality of the complex may change. Thus, by analyzing

and understanding PPIs, a plausible mechanism for complex information can be delivered

and also the explanation of different biological processes (e.g. signal transduction) is possi-

ble. This information about proteins helps researchers understand different diseases, which

can lead to effective drug development and uncover a new arena of treatment. Different

information from protein composition, structure, stability and interaction duration are key

factors to differentiate two specific types of protein groups, one is obligate and another one

is non-obligate which can help the research work greatly. Thus, studying these two types of

PPIs helps researchers gather more information, select the best describing information for

understanding and explaining different biological processes and mechanisms.

Although there are different types of PPIs, this thesis is mainly focused on obligate and

non-obligate types of PPIs [34, 54]. During the interaction, the protein chains interact with

each other even within themselves changing the geometric shape or other complexes to

perform a specific biological task. Co-Immunoprecipitation or affinity chromatography [7,
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23, 24] is often used to determine the whether an interaction is of obligate or non-obligate

type. Such types of experiments are highly labor expensive and suffer from different types

of system errors. Thus, efficient and intelligent computational models are necessary to

solve such a problem successfully. In this thesis, the main focus is to determine the types

of interactions (obligate or non-obligate) based on the different properties of the protein

complexes (e.g. information contained in the sequences, desolvation or electrostatic energy

and others).

Different properties, features and prediction methods can be used to solve this specific

problem. Information contained in protein sequence is very useful to predict PPI sites

[41] and also to predict PPI types [8, 44]. In this thesis, information contained in the

sequence of a protein complex has been used to determine the types of the PPIs. Using the

information contained in the sequence, I show that it is better than recently used properties

such a NOXClass features (interface area, interface area ratio, amino acid composition of

the interface, correlation between amino acid compositions of interface and protein surface,

gap volume index and conservation score of the interface) [53], and desolvation energies

[9].

The Protein Data Bank (PDB) [6] is the main source of the molecular structures of pro-

tein complexes. The PDB provides the structural information in different formats; text is

one of the mostly used formats. This text format of the structure file is not perfect. It usually

contains a lot of spacing errors, numbering errors, alignment issues. Besides these, in many

cases the PDB does not provide complete structural information of protein complexes. Pro-

cessing all the information of a protein complex at the atomic level is also time consuming

and computationally expensive. Thus, a model based on structural information from the

PDB can not be accurate and perfect and must be time consuming and computationally
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expensive. Besides, a small number (approximately 80,000) of structures are known com-

pared to millions number of sequences. As a result, models based on the protein structures

are not compatible for a large number of proteins. One model that can replace the use

of structural information with sequence information is an important subject to investigate,

which is also a motivation to propose this model. On the other hand, sequence information

is calculated from the SLiMs, which represent the conserved regions of protein complexes.

The conserved region property for different types of complexes is different and can be used

to predict PPIs, as shown presently.

1.5 Problem Definition

The main focus of this thesis is to classify a protein complex whether it belongs to obligate

or non-obligate class. The aim is also to use information contained in sequences to classify

obligate and non-obligate complexes. Hence, the usage of structural information can be

avoided as using structural information needs more computing and in many cases, it is not

available.

1.6 Contributions

The main focus of this thesis is to predict obligate/non-obligate PPIs using short, linear

motifs. To solve the classification problem, this thesis includes:

• A new model (PPI-SLiM-Seq) to predict PPIs which uses sequence information as

features and different machine learning techniques.

• Another model (PPI-SLiM-DEEE) to predict PPIs using desolvation and electro-
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static energies.

• For SLiM identification, the parallel version of the Multiple EM for Motif Elicitation

(MEME) tool has been configured and deployed.

• Information contained in the sequence has been calculated using position specific

probability matrices (PSPMs) which are provided by SLiMs.

• Comparison between the performance and accuracy of the proposed models and other

existing models.

• Visual and graphical analysis.

• Different programming techniques with implementation (using Python) to refine the

PDB structure files.

In summary, I propose a new model which uses sequence information as distinguishing

features. It calculates the information contained in sequence using a profile. In this way, it

avoids the use of structural information. In many cases, the annotation of protein structure

is not 100% accurate or complete yet. Thus, using such information may lead to results

which are not accurate or reliable. Once the features are ready, I implement different ma-

chine learning and pattern recognition techniques to train the model which performs the

classification. I also compare the results of the proposed model with other existing models

with some post analysis.

1.7 Thesis Organization

This thesis has a total of eight chapters. Chapter 2 provides details of protein structures,

PPIs and a brief survey on obligate and non-obligate PPIs. Chapter 3 describes differ-
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ent feature extraction methods that can be used for prediction. It also includes different

classifiers used for classification. Chapter 4 describes short, linear motifs (SLiMs), their

identification methods and a short survey on SLiM discovery. Chapter 5 describes differ-

ent SLiM identification tools briefly. It also focuses on the usefulness and configuration,

parameter optimization of a SLiM identification tool - Multiple EM for Motif Elicitation

(MEME). The proposed models are discussed in Chapter 6, while Chapter 7 describes the

results. Finally, Chapter 8 draws the conclusions of the thesis along with the identification

of some new problems and future work.



Chapter 2

Proteins and PPI Prediction

2.1 Proteins

Amino acids are the small organic molecules and the basic building blocks for polypep-

tides. Amino acids combine with each other and form a longer chain which is known as

polypeptide. In the combination, amino acids bind to each other by means of peptide bonds

(between carboxyl and amino groups). When these polypeptides fold into a specific three-

dimensional structure and performs a specific biological function, they are called proteins

[47]. Proteins were first named by Jakob Berzelius and described by Dutch chemist Ger-

hardus Johannes Mulder as an organic compound.

The most common partner of a folded polypeptide is another identical or different folded

polypeptide. If the partners of a protein are identical to each other, that protein is known as

homo protein complex. On the other hand, if the partners are not identical they are known

as hetero protein complex [47].

10
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2.1.1 Domains

Protein domains can be sequence or structural. Sequential domains are the sub-sequences

of a chain that are present in different proteins, in different combinations. These sub-

sequences must be biologically significant and functional. There should be a clear func-

tional difference between a domain sequence and the corresponding sequence of raw amino

acids. The functional level of a protein domain must be higher than the functional level of

same raw amino acid sequence [46].

Figure 2.1: Domain α/β C-terminal found on Cytoplasmic Malate Dehydrogenase (4mdh
A:B). The green space-filled area is the domain in Chains A and B. This figure was produced
using ICM Browser [1] from the PDB [6] structure file of the complex.

Figure 2.1 shows the domain α/β C-terminal. The green space-filled area represents the

domain found in Chain A (gold colored) of Cytoplasmic Malate Dehydrogenase (4mdh).

On the other part, the green space-filled area represents the same domain found in Chain B
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(light blue) of the same protein complex, 4mdh (A:B). This is a 149-residue long domain,

and in both chains, it starts at position 4.

2.1.2 Motifs and SLiMs

A protein motif can be defined as a pattern of a set of protein chains. Motifs are widespread

and have or might have biological significance. In proteomics, there are sequence motifs

and structural motifs. Usually each motif contains a sequence pattern of 3-20 amino acids.

Figure 2.2: Motif (SLiM) found in E.Coli glutathione S-transferase (1a0f), Chain B at
position 42. The SLiM was identified using MEME and the image was produced using
ICM Browser [1] from the PDB [6] structure file of the complex.

Motifs of length of 2-10 amino acids are considered as short, linear motifs (SLiMs) or
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minimotifs [12]. There are some special properties that distinguish SLiMs from motifs. One

of them is that SLiMs should have the capacity to encode a functional interaction interface

in a short sequence, enrichment in intrinsically disordered regions of protein sequence.

SLiMs should also be able to function independently of their tertiary structure context and

have a tendency to evolve convergently [12]. Figure 2.2 shows a SLiM found in E.Coli

glutathione S-transferase (1a0f), Chain B, at position 42. The space-filled part of the chain

(inside the circle) is the SLiM and the regular expression is F[AE][IEV]N[PT]K. The SLiM

was identified using MEME.

2.2 Protein Structures

Proteins or folded, biologically functional polypeptides are mainly composed of 20 differ-

ent amino acids and have four different levels of structure [42]:

• Primary Structure

• Secondary Structure

• Tertiary Structure and

• Quaternary Structure

Figure 2.3a shows the the primary structure of a protein. These are simply the sequences

of different amino acids which are similar to the polypeptide chain representations. When

some parts of these polypeptide chains fold into a specific three dimensional structure, such

as α-helix (Figure 2.3c) or β-sheet (Figure 2.3b), it is called secondary structure. Figure:

2.3d shows the secondary structure of a protein where different α-helices and β-sheets are
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(a) Primary structure (b) Secondary structure (β-sheet)

(c) Secondary structure (α-helix) (d) Secondary structure (β-sheet and
α-helix)

Figure 2.3: Primary and secondary structures of a protein.
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bonded together in order to perform a biological task. These α-helices and β-sheets are

held together by hydrogen bonds.

Figure 2.4: Tertiary structure of E. Coli. This figure was produced using ICM Browser [1]
from the PDB [6] structure file of the complex 1a0f.

When primary structures combine with the secondary structure elements (α-helix, β-

sheet and coils) and have a stable three dimensional shape, it is called the tertiary structure

(Figure 2.4) of a protein. The tertiary structures of a protein complex interacting are called

the quaternary structure (Figure 2.5). In this thesis, primary (sequence), tertiary and qua-

ternary structures are used. The primary structure information is used to find the SLiMs,

calculating the information contained in protein sequences.



CHAPTER 2. PROTEINS AND PPI PREDICTION 16

Figure 2.5: Quaternary structure of human placental RNase inhibitor (hRI) protein (1a4y).
This figure was produced using ICM Browser [1] from the PDB [6] structure file of the
complex.

The other structure information that has been used is to determine whether a SLiM is

on the interface or not. If the SLiM is on the interface, is it interacting with other SLiMs

on another chain or any other part of the chain? In case of the interaction, the desolva-

tion and electrostatic energies are calculated from the structural information of the protein

complexes and used for prediction.

2.3 Protein-protein Interactions (PPIs)

If two or more than two proteins or protein chains are close enough and meet some criterion,

they bind with each other and may perform a new type of biological function. This process

is known as protein-protein interaction (PPI) [39]. PPIs involve:

• Direct Molecular Contact: If the molecule (one or more than one) of amino acids
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within a protein is close enough to the molecules (one or more than one) of the amino

acids within another protein, these two proteins may interact with each other. Accord-

ing to the authors of [9], if the molecules from two chains are within 7Å distance, it

is assumed that there will be a direct molecular contact and hence and interactions

between the protein chains.

• Long Ranged Interactions: There is also a possibility of interactions even after if

the molecules are not within 7Å distance as the environment around the molecules

and also molecules themselves create an electro-magnetic forces which mediates the

PPI processes. This type of interaction is known as long ranged interactions [31].

Long ranged interactions can take place up to 10Å distance between two molecules

or even more.

Figure 2.6: PPI between two protein chains of Inositol Monophosphatase, 2hmm (A:B).
This figure was generated using ICM Browser [1] from the PDB [6] structure files of the
complex.
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Figure 2.6 shows PPIs between two chains of Inositol Monophosphatase, 2hhm (A:B).

The molecules in the highlighted area are within a 7Å distance and they are in direct atomic

contact. This region is also called the interface of the PPI.

PPIs are very important in many biological functions, including cell growth, nutrient

uptake, motility, inter-cellular communication and apoptosis [25]. PPIs play a vital role in

cell regulation, inter-cell communication, mutation, where cell regulation, inter-cell com-

munication, mutation are very important in diseases and drug analysis, new drug discovery,

among others.

2.3.1 Protein-protein Interaction Types

PPIs depend on the type of protein chains, between which the interactions take place. PPIs

also depend on the family of the interacting proteins and their geometric structures. There

are different types of PPIs. Based on the protein types, there are mainly three mutual

nonexclusive types of PPI [39]:

(a) Obligate PPI in 2nac (A:B) (b) Non-obligate PPI in 2pcb (A:C)

Figure 2.7: Obligate and non-obligate PPIs. These figure were generated using ICM
Browser [1] from the PDB [6] structure files of the complexes.

1. Homo and hetero-oligomeric: The interactions between two structurally symmet-

rical protein chains are called homo-oligomeric PPIs. On the other hand, if the in-
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teracting protein chains are not structurally symmetrical, that interaction is called

hetero-oligomeric PPI.

2. Transient and permanent: In terms of life time of a protein complex, there are

transient and permanent PPIs. PPIs, which output relatively stable complexes after

an interaction, are known as permanent PPIs. On the other hand, PPIs delivering

relatively less stable complexes that last for a short period of time are known as

transient PPIs.

3. Non-obligate and obligate: There are two types of PPIs based on the composition:

obligate and non-obligate. Obligate interactions are usually permanent in nature and

the structural units of obligate complexes do not exist as stable. Non-obligate in-

teractions are less stable compared to the obligate complexes and in non-obligate

complexes, the structures are more stable. The study of non-obligate and obligate

PPIs are much more difficult as the life time of the non-obligate PPIs are usually very

short and unstable in nature [30].

Figure 2.7a shows an obligate PPI, found between the chains of the Holo and Apo

formate Dehydrogenase protein, 2nac (A:B). The figure shows that these types of interac-

tions have larger interface area. A larger interface area indicates much more atomic contacts

between the chains within a less distance range. In such situation, the probability of rela-

tively strong and permanent interactions are very high. Figure 2.7b shows a non-obligate

PPI, found between chains of the Cytochrome C Peroxidase, 2pcb (A:C). From the figure

it is clear, that the interface area is smaller and hence less number of atomic contact be-

tween the chains, which will result in weak or less stable interactions. In addition, the

surrounding environment of the complexes and presence of other molecules also mediate

the mechanisms of PPIs.
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2.3.2 Protein-protein Interaction Prediction

To predict PPIs, many researchers have been working on it from different perspectives. To

predict PPIs, there are mainly two major approaches:

1. Biological experimental approaches

2. Computational approaches

In biological experimental approaches, the detection of PPI is limited to laboratory-

based experimental techniques such as co-immunoprecipitation or affinity chromatography

[7, 23, 24]. These types of experimental prediction are quite labor-intensive and the results

of such approaches contain systematic errors as there is no backtracking mechanism. In

addition, the amount of data for prediction is growing and incorporating all the available

data, becoming almost impossible for the biological experimental approaches. That is one

of the main reasons that computational models are in demand. In this thesis, to predict

obligate and non-obligate I propose two computational models, which combine biological

information and computational techniques for the prediction.

2.3.3 Protein-protein Interaction Prediction Strategy

Different classifiers such as the support vector machine (SVM), k-nearest neighbor (k-NN),

linear dimensionality reduction (LDR), random forest (RF), decision trees, logistic regres-

sion can be used for predicting obligate and non-obligate PPIs. These classifiers use differ-

ent properties of the protein complexes as features. Using desovation energy, amino acid

composition, conservation scores, electrostatic energy, and hydrophobicity as features, the

accuracy for the classifiers were about 70% [16, 21, 43]. In this thesis, different classifiers
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such as SVM, k-NN, LDR and sequence information, desolvation and electrostatic energies

are used as features.

According to the authors of [41], PPIs largely depend on the contact between residues,

and the compositions of residues in protein complexes are unique. This unique composi-

tion yields unique sequence information, which can be used to distinguish between different

types of interactions. Also, the authors of [8] showed a model which combines SVM and

primary structure (sequence), achieving an accuracy of 80% in predicting PPIs. The authors

of [44] also described another computational model that combines SVM and sequence in-

formation to predict PPIs along with PPI networks.

In this thesis, I calculate the sequence information in terms of sub-sequences. First

of all, I have generated a database of protein sequences. Then I have identified SLiMs

(discussed in Chapter 4 and 5) from that database of different lengths. I have used the

position specific probability matrices (PSPMs) provided by the SLiMs as profiles (discussed

in Chapter 3) to compute the sub-sequence information. On the other hand, I split the

protein sequences into overlapping sub-sequences to match the length of the SLiMs. For

example, if a sequence is 180 amino acid long, there will be a total of
(
(180−10)+1

)
=

171 sub-sequences of length 10. Then, I use the PSPMs of the SLiMs of length 10 to

calculate (discussed in Chapter 3) the information contained in that sub-sequence. For each

protein, I take the top-twenty sub-sequence information for simplicity. I use sub-sequence

information to fill the vector space for that protein and in this way, I generate feature vectors

for classification.
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Feature Extraction and Classification

3.1 Features

Classification can be performed using different machine learning and pattern recognition

techniques. But the main question is, what should be the input for those machine learning

and pattern recognition techniques to perform the classification accurately? The properties

or information of any object used to train a system are known as features. Not all the

properties of an object are considered as features, but those which are distinguishable from

object to object. In the field of machine learning and pattern recognition, one of the major

challenges is to select and use the right features for successful classification or prediction.

Usually, these are numerical values, but other types such as strings or graphs can also be

used as features.

22
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3.1.1 Features Used to Predict PPIs

There are many features which can be used to predict PPIs. The features are based on

different properties of the protein complexes. Some of them are [40]:

β-factor : The flexibility of a protein complex at the time time of the interaction is known

as the β-factor.

Solvent Accessibility : The exposed surface of a protein complex that affects contact of

atoms during the interaction is known as solvent accessibility of that protein complex.

Geometric features : The shape index, planarity and curvedness of the interacting com-

plexes are known as geometric features of that protein complex.

Evolutionary features : The conservation scores or sequence profiling information of a

protein complex are known as evolutionary features.

Physicochemical features : This includes physiochemical properties such as hydropho-

bicity, electrostatic potential and desolvation energy.

In this thesis, sequence information as evolutionary features have been used to predict

the PPI types (obligate and non-obligate). Sequence information as features have been

proved to be very good in predicting protein structure and interacting sites within protein

complexes [8, 41, 44, 50].

3.1.2 Desolvation Energy

Desolvation energy can be defined as the knowledge-based contact potential that accounts

for hypdophobic interactions, self-energy change upon desolvation of charged and polar
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atom groups and side-chain entropy loss [9]. The desolvation energy of an atom pair i and

j of a complex can be approximated as follows [9]:

∆Edes = g(r)×∑∑ei j (3.1)

where, ei j is the atomic contact potential (ACP) [33, 52] between the ith and jth atoms

and g(r) is the smooth function score, based on their distance. For simplicity, I consider the

smooth function to be linear for a distance within 5Å-7Å. I also consider the criteria that

for a successful interaction, atoms should be within 7Å [9]. Within 5Å-7Å, the value of g(r)

varies from 1 to 0 which is equivalent to 100%−0%. According to the authors of [33, 52],

desolvation energy for a particular atom-atom type pair is predetermined (approximated)

which is calculated using the ACP matrix.
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Figure 3.1: Plot of the smooth function, g(r).

Thus, during the interaction the actual energy depends on the inter-atom distances. If

the atoms are within 5Å, then their actual energy will also be closer to that fixed value for
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those particular atom pairs in the ACP matrix in [52]. If the distance is within 5Å-7Å, then

I use Equation (3.2) to calculate the smooth function value:

g(r) =
7−δ

2
(3.2)

where δ is the distance between an atom pair in Angstroms and the value of the smooth

function for that pair is g(r). The behavior of the smooth function is shown in Figure 3.1.

3.1.3 Electrostatic Energy

Electrostatic energy is another important property in molecular biology as it has a high im-

pact in biochemical reactions [5]. It also plays vital role in NMR, X-Ray and Cryo-Electron

microscopy techniques. As a result, there is a steady increase in the size and number of bio-

chemical and molecular complexes for which coordinates are available. The most widely

used model to calculate the electrostatic energy is the Poisson-Boltzmann equation (PBE)

[5], which is given by Equation (3.3):

−▽· ε(x)▽ϕ(x)+ k−2sinh ϕ(x) = f (x) (3.3)

Equation (3.3) is a second-order nonlinear elliptic partial differential equation that re-

lates the electrostatic potential ϕ to the dielectric properties of the solute and solvent ε, the

ionic strength of the solution and the accessibility of ions to the solute interior k−2, and

the distribution of solute atomic partial charges f . To expedite the solution of the equa-

tion, this nonlinear PBE is often approximated by the linearized PBE (LPBE) by assuming

sinh ϕ(x)≈ ϕ(x).
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Figure 3.2: Two oppositely charged (Q1,Q2) atoms within distance R.

Figure 3.2 shows two oppositely charged atoms within distance R. From Equation (3.3)

a simple formula can be derived to calculate the electrostatic energy:

∆Eele ∝
Q1 ×Q2

R

⇒ ∆Eele =
Q1 ×Q2

4πε×R

 (3.4)

Here, 4πε is a constant, and so it is possible to calculate the electrostatic energy of an

atom pair if the charges Q1 and Q2 are known. In this thesis, I have used electrostatic energy

between two atoms as properties to evaluate long ranged PPIs. I have used APBS [5] and

PDB2PQR [14] to calculate the electrostatic energies between two atoms from two chains

of a complex. I consider all the atom pairs within 10Å distance.

3.2 Proposed Features

According to the authors of [8, 41, 44, 50], the information contained in the sequence has

a significant impact in prediction of PPIs. There are different methods to calculate the

information contained in a sequence [48]:

1. Symbol frequency scores
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2. Symbol entropy scores

3. Stereochemical scores

In this thesis, I use an enhanced model of symbol entropy scores. I use position specific

probability matrices (PSPMs) as background (profile) to calculate the information con-

tained in the sites. The posterior probability of a site a of length ℓ, for a given profile X ,

can be defined as:

P(a | X) =

ℓ

∏
i=1

P(ai) (3.5)

As P(ai) ≤ 1, ∏P(ai) will be smaller for larger sites. Taking − log on both side of

Equation (3.5):

− log
(

P(a | X)

)
=−

[
log
( ℓ

∏
i=1

P(ai)

)]

=−

[ ℓ

∑
i=1

log
(

P(ai)

)]


(3.6)

The information amount contained in the site is equivalent to the product of P(ai) and

log P(ai) [19, 35]. From Equation (3.6), the amount of information contained in a sequence

a of length ℓ can be defined as:

I(a | X) =− log
(

P(a | X)

)
×P(ai)

=−

[ ℓ

∑
i=1

P(ai)× log(P(ai))

]


(3.7)
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Equation (3.7) implies that the larger sites is, the larger the information amount is. Thus,

I divide the total information amount by the length of the site, ℓ. Finally, the information

contained in a site a of length ℓ can be defined by Equation (3.8) as:

Î(a | X) =−1
ℓ
×

ℓ

∑
i=1

P(ai)× log(P(ai)) (3.8)

In this equation, X is the profile, P(ai) is the probability (of ith residue of a) from the

profile, and I(a | X) represents the information contained by a. Again, it is known that

log(1) = 0.

log(P(ai)) =


log(0.99) if P(ai) = 1

log(P(ai)) otherwise
(3.9)

Thus, for any P(ai) = 1, a fraction (say 0.01) from P(ai) is subtracted as per the Equa-

tion (3.9).

3.3 Classifiers

Generally speaking, classification consists of determining the class of an unknown object

(which class the object belongs to). There are mainly two different types of classification,

supervised and unsupervised classification. In both types, classification is performed on

the basis of the provided training instances. For supervised classification, the training set

is provided with labels and in case of unsupervised classification, the training set is left

without any labels. With the provided training set, the classifiers acquire the knowledge to

perform the classification and can classify an unknown sample. As the training dataset of
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an unsupervised classifier does not have label information, it attempts to find the inherent

patterns in the data that can hopefully determine the correct class for the unknown sample.

There are different types of classifiers available among others [20]:

1. Linear classifiers

2. Quadratic classifiers

3. Support vector machine

4. Nearest neighbor

5. Decision tree

6. Neural networks

7. Hidden Markov models

In this thesis, SVM, LDR and k-NN have been used to predict the type of complex;

obligate or non-obligate.

3.3.1 Linear Dimensionality Reduction

Representing an object of dimension n as a lower-dimensional vector of dimension d is

known as linear dimensionality reduction (LDR), and this is achieved by performing a

linear transformation.

Suppose there are two classes, obligate or ω1 and non-obligate or ω2, represented by

two normally distributed random vectors x1 ∼ N(m1,S1) and x2 ∼ N(m2,S2), respectively,

with p1 and p2 the a priori probabilities. After LDR is applied, two new random vectors

y1 = Ax1 and y2 = Ax2, where y1 ∼ N(Am1; AS1At) and y2 ∼ N(Am2; AS2At) with mi
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and Si being the mean vectors and covariance matrices in the original space, respectively.

The aim of LDR is to find a linear transformation matrix A in such a way that the new

classes (yi = Axi) are as separable as possible. Let SW = p1S1 + p2S2 and SE = (m1 −

m2)(m1−m2)
t be the within-class and between-class scatter matrices respectively. Various

criteria have been proposed to measure the separability between the underlying classes [43].

I focus on the following three LDR criteria:

Fisher’s discriminant analysis (FDA) [15, 22] : Its optimization criterion is as follows:

JFDA(A) = tr
{
(ASW At)−1(ASEAt)

}
(3.10)

The matrix A is found by considering the eigenvector corresponding to the largest

eigenvalue of SFDA = S−1
W SE .

Heteroscedastic discriminant analysis (HDA) [17] : It aims to obtain the matrix A that

maximizes the function:

JHDA(A) = tr
{
(ASW At)−1 [ASEAt

−AS
1
2
W

p1 log(S
− 1

2
W S1S

− 1
2

W )+p2 log(S
− 1

2
W S2S

− 1
2

W )
p1 p2

S
1
2
W At

]}
(3.11)

This criterion is maximized by obtaining the eigenvectors, corresponding to the largest

eigenvalues, of the matrix:

SHDA = S−1
W[

SE −S
1
2
W

p1 log(S
− 1

2
W S1S

− 1
2

W )+p2 log(S
− 1

2
W S2S

− 1
2

W )
p1 p2

S
1
2
W

]
(3.12)
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Chernoff discriminant analysis (CDA) [43] : It aims to maximize the following func-

tion:
JCDA(A) = tr{p1 p2ASEAt(ASW At)−1

+ log(ASW At)− p1 log(AS1At)− p2 log(AS2At)}
(3.13)

In this thesis, I have used the gradient-based algorithm proposed in [43], which maxi-

mizes the function in an iterative way. For this gradient algorithm, a learning rate, αk, needs

to be computed. In order to ensure that the gradient algorithm converges, αk is maximized

by using the secant method. One of the keys in this algorithm is the random initialization

of the matrix A, and in this work, different initializations were performed and then chosen

the solution for A that gives the maximum Chernoff distance.

3.3.2 Support Vector Machine

I have used SVM, which is widely used in bioinformatics for classification. It takes the

set of input vectors and predicts the possible classes of output based on the support vectors

[28]. The kernel trick allows to map the original vectors onto a much higher dimensional

space that hopefully makes class separation easier. I use linear kernel with default parameter

setup which does not need any parameter optimization.

The way SVM works depends on the training data. Basically, there are two kinds of

margins. The first one is called hard margin and the second one is called soft margin. In

the hard margin SVM, the training data is linearly separable in the input space. On the

other hand, if the training data are not linearly separable they can be mapped onto a higher

dimension feature space to increase the separability.
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3.3.3 k-Nearest Neighbor

For classification and data mining, k-nearest neighbor is one of the top 10 because of its

simplicity. The k-NN method uses the well-known principle of Cicero pares cum paribus

facillime congregantur (birds of a feather flock together) [36]. It classifies an unknown

sample based on the known sample of its neighbor. It calculates the distance between the

unknown sample and training samples. The distance with the smallest value corresponds to

the sample in the training set closest to the unknown sample, and the unknown sample is

classified as the class of that training sample.

(a) 1-NN Rule (b) 6-NN Rule

Figure 3.3: Schematic view of k-NN Classification for k = 1 and 6.

If only one instance from the training samples is used for the classification, the 1-NN

rule is applied. Figure 3.3a shows a schematic view of the 1-NN rule. In the 1-NN rule, the

unknown sample is compared (or distance calculated) only once. In the same way, if two

instances are used, the 2-NN rule is applied. Figure 3.3b shows the schematic view of the

6-NN rule. In this 6-NN rule, the unknown sample is compared with the 6 training sample

and the class of the largest number of matching sample is chosen.

In k-NN classification, two major aspects need to be taken care of, one being the dis-

tance function and the other being the value of k [36]. As k-NN considers that, the smaller



CHAPTER 3. FEATURE EXTRACTION AND CLASSIFICATION 33

the distance is, the greater the likelihood the sample belongs to that class, this distance

function should designed in such way that it is not biased. Another major consideration is

the value of k, which represents the number of nearest neighbors for the unknown sample.

If the value of k is too large, classes with the large number of classified samples can over-

whelm smaller ones and the results could be biased. Again, if the value of k is too small,

the advantage of using many samples in the training set is not exploited. Usually, the value

of k is optimized by trials on the training and validation sets.

Algorithm 1 k-NN Algorithm
for all unknown samples, USi do

for all known samples, KS j do
ComputeDistance(USi,KS j)

end for
find the k smallest distances
locate the corresponding samples KS j1, · · · ,KS jk
assign USi to the class that appears more frequently

end for

The k-NN method does not generate an actual classifier using the training samples, but

it rather uses the training samples every time it classifies an unknown sample. That is why

it is called lazy classification method, which is much easier but computationally expensive.

Algorithm 1 shows the pseudocode for the k-NN method. In the pseudocode, for each

unknown sample, all possible distances between that sample and the known samples are

calculated, which makes it computationally expensive. In this thesis, I use the k-NN method

for the classification along with other classifiers, LDR and SVM. For the k-NN, I use the

Eucledian distance and k= 1,5,10,15,20,25,30,35.
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3.4 Prediction Evaluation

To validate a classification or prediction, the result needs to be validated. There are different

methods available for validation. In this thesis, I have used cross validation, leave-one-out,

and cross dataset validation methods to validate the results.

3.4.1 Cross Validation

Cross validation is a technique for assessing how the results of statistical analysis will

generalize to independent datasets. It plays an important role on checking the prediction

results. It divides the whole dataset into subsets (mainly two). One subset is called training

set and the other is called test set or validation set. The most common approach used is the

K-fold cross validation. Figure 3.4 explains 4-fold cross validation graphically. The whole

dataset is divided into four parts, one part (orange) is used for test and the other three parts

(blue) are used for training purposes. After each iteration, the test and one of the training

datasets swaps and in this way it cover all the datasets.

The total values for TP, TN, FP and FN are calculated to compute the accuracy as stated

in Equation (3.14). To compute the accuracy for each classifier, the following equation is

used:

Accuracy =

(
T P+T N

T P+FP+T N +FN

)
×100% (3.14)

where,

• TP - when positive is classified as positive
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• TN - when negative is classified as negative

• FP - when negative is classified as positive

• FN - when positive is classified as negative

Figure 3.4: Schematic view of 4-fold cross validation.

TP is the number of correctly identified obligate complexes and TN is the number of

correctly identified non-obligate complexes. FP and FN are number of incorrectly classified

obligate and non-obligate complexes respectively.
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3.4.2 Leave-One-Out

In cross validation, the dataset is divided into subsets (sample and training) in each iteration.

For a dataset of size n and a validation of k folds, the iteration process runs for n
k times.

When n = k, the validation is called leave-one-out [16].

Figure 3.5: Schematic view of leave-one-out validation.
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Figure 3.5 shows a schematic view of the leave-one-out method. In each iteration, one

sample is kept out and all the others are used to train the classifiers to classify that sample

which was kept out while training the classifier. As it is an iterative process, it covers all

the samples. This is why leave-one-out is computationally expensive. In this thesis, I have

used this method along with 10-fold cross validation.

3.4.3 Cross Dataset Validation

Using information from one dataset to train the classifier which will classify another dataset

is known as cross dataset validation. A dataset A is used to train the classifier which will

classify dataset B and dataset B is used for dataset A. In this thesis, I also implemented

cross dataset validation. I have used two different datasets, one is the Zhu et al. [54] dataset

and the other is the Mintseris et al. [34] dataset.



Chapter 4

Short, Linear Motif - SLiM

4.1 What is a SLiM?

A protein motif can be defined as a pattern of a set of protein chains. Motifs are widespread

over a group of related protein sequences and have or might have biological significance. In

proteomics, there are sequence motifs and structural motifs. Usually each motif contains a

sequence pattern of 3-20 amino acids.

The motifs of 3-10 amino acids are considered as short, linear motifs (SLiMs) or mini-

motifs [12]. There are some special properties which distinguish SLiMs from motifs. One

of them is that SLiMs should have the capacity of encode a functional interaction in a short

sequence, and enrichment in intrinsically disordered regions of protein sequence. SLiMs

should also be able to function independently of their tertiary structure context and their ten-

dency to evolve convergently [12]. Figure 4.1 shows a SLiM found in E.Coli glutathione

S-transferase (1a0f), Chain B, at position 42. The space-filled area of the chain (inside the

circle) is the SLiM. The SLiM was identified using MEME.

38
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Figure 4.1: A short, linear motif found in E.Coli glutathione S-transferase (1a0f), Chain B
at position 42. The regular expression of this SLiM is F[AE][IEV]N[PT]K. The SLiM was
identified using MEME and the image was produced using ICM Browser [1] from the PDB
[6] structure file of the complex.

SLiMs play a vital role in PPIs; they highly mediate the interactions between protein

chains. Some recent studies show the importance of SLiMs when outsider viruses attack

cell regulations which may cause different diseases such as cancer or tumors.
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4.2 SLiMs on Interfaces

From the definition, it is known that SLiMs are shorter amino acid sequences which are

present in protein complexes with specific biological properties. How can it be defined

whether a SLiM is on the interface or not? In this thesis, I have considered a SLiM to be on

the interface if at least one amino acid of a SLiM is on the interface. This answer leads to

another question; how it is determined if an amino acid is on the interface? If at least one

atom of the amino acid is on the interface, I have considered that amino acid to be on the

interface.

Figure 4.2: A SLiM found on the interface of 1tgs (Chain Z).

Figure 4.2 shows a SLiM which is on the interface. This SLiM was found in Chain Z
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of Pancreatic Secretory Trypsin Inhibitor (Kazal type), PDB identifier 1tgs. The regular

expression of the SLiM is [YT][PN][DS][IVAL][LMA][KQR]C. This SLiM is 7 amino

acids long, four of them (Y, D, V and L) being on the interface. Thus, I consider this SLiM

to be on the interface. In this thesis, I have used one amino acid as threshold to check

if a SLiM is on the interface and one atom threshold to check if an amino acid is on the

interface. This threshold can be changed for further experiments.

4.3 SLiM Representation

SLiMs or motifs can be represented in different ways. The most used ways to represent a

SLiM are:

• Regular expression

• Sequence logo

• Position specific probability matrix (PSPM)

• Block representation

A regular expression is the simplest way, while the sequence logo is the graphical rep-

resentation of a SLiM.

4.3.1 Regular Expression

A regular expression is the simplest and widely used mean to represent a SLiM. It is the

consecutive appearance of the amio acid letters of the SLiM. The occurrence of multiple

letters for a single position is shown inside square brackets [35]. For example, the regular
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expression of one SLiM found in E.Coli glutathione S-transferase (1a0f), Chain B, at po-

sition 42 is F [AE] [IEV]N[PT]K. This SLiM is six amino acids long. The first position

of the SLiM is filled by F, the second position is filled by either Aor E and similarly for

the other positions. The regular expression however, does not provide the significance, fre-

quency, information contained in a letter of a position. It simply shows the occurrence of

the letters for that position.

4.3.2 Sequence Logo

A sequence logo is a graphical representation of a motif. It shows how well are amino acids

conserved at each position; the higher the number of amino acids, the higher the letter will

be as the conservation at that position is higher. Different amino acids at the same position

are scaled according to the information content of that amio acid [35].

Figure 4.3: SLiM found in both chains of Cytoplasmic Malate Dehydrogenase (4mdh) at
position 233. This sequence logo was generated using MEME.
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Figure 4.3 shows the sequence logo for the SLiM found on the chains of Cytoplasmic

Malate Dehydrogenase (4mdh) at position 233. The regular expression of the SLiM is

[RN][YDG]I[GRW][YF]G.

The x-axis of the sequence logo represents the positions in the SLiM and the y-axis

represents the information contained in a specific position. The information content of

y-axis is given by Equation (4.1):

Ri = log2(20)− (Hi + en) (4.1)

where Hi is the uncertainty of a position i and Hi is defined as:

Hi =−∑ fa,i × log2( fa,i) (4.2)

Here, fa,i is the relative frequency of amino acid a at position i, en is the small-sample

correction for an alignment of n letters. The height of letter a in column i is given by

Equation (4.3):

en =
(s−1)

2× ln(2)×n
(4.3)

For proteins, the value of s is 20 and n is the length of the SLiM.

4.3.3 Position Specific Probability Matrix

A position specific probability matrix (PSPM) is the matrix {mi, j} representation of a SLiM

where the value of each element represents the probability of the jth letter occuring at the

ith position. Each column in the matrix {mi, j} represents each of the 20 amino acids and

the rows represent each potion of SLiM. Figure 4.4 shows the PSPM of a SLiM found in
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E.Coli glutathione S-transferase (1a0f), Chain A, at position 310:

Figure 4.4: PSPM representation of a SLiM, found in E.Coli glutathione S-transferase
(1a0f), Chain A, at position 310. This figure was generated using MEME.

The regular expression of the SLiM is C[SDK][LQS]C[SA]CT. The value of the sec-

ond column of the first row of the Matrix is 1.0, which means that the first position of the

SLiM will be filled by C and its probability is 1.0. The value of the third column of the

second row of the PSPM is 0.25, which means that the second position of the SLiM will be

filled by D and its probability is 0.25, the probability of filling that position with K is 0.25

and this probability is 0.5.

To fill the third position, the probability of L is 0.5 and the probability of Q and S is 0.25.

In this way, the PSPM represents the distribution information of the letters for a SLiM. This

distribution values also represents the information contained in each position. The higher

the distribution value, the higher the information content [35].
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4.3.4 Block Representation

One SLiM might appear in multiple sites (on the same chain or different chains). The block

representation shows the presence and positions of a SLiM in different chains. The block

representation of the SLiMs is also very important to have an idea about the presence of a

SLiM in different complex chains. Figure 4.5 shows the SLiM [LF]MQ[RS][MT][VA]E in

different chains in different complexes:

Figure 4.5: SLiM found in E.Coli glutathione S-transferase (1a0f), Chain A, B at position
180. This same SLiM was also found in 5 more different chains. This figure was generated
using MEME.

Besides being found in 1a0f, this SLiM was found in both chains (A and B) of complex

1brm at position 16, in Chains A and B of complex 1a4i, at position 282 and in Chain S

of complex 1bkd at position 142. The block diagram does provide information about the

SLiMs, such as the occurrences of the SLiM in different sites.
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4.4 Types of SLiMs

There are mainly three types of SLiMs and this categorization is based on their different

properties. The types of SLiMs are:

• Sequence SLiMs

• Structural SLiMs

• Functional SLiMs

Sequence SLiM can be defined as an amino acid sequence pattern which is wide spread

over a data set, might have biological significance and can perform some function [10]. A

sequence SLiM is the simplest form of a motif. For a specific site, all the amino acids of

a sequence motif will come from a single chain of a complex, while for other chains or

complexes, the amino acid may vary a little. Figure 4.6 shows a sequence SLiM which

was found in β-TRYPSIN (2ptc:E) starting from the 50th amino acid up to 59th amino acid

covering all the consecutive amino acids.
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Figure 4.6: A sequence SLiM found in β-TRYPSIN (2ptc), Chain E and B at position 50.
The SLiM was identified using MEME and the image was produced using ICM Browser
[1] from the PDB [6] structure file of the complex.

On the other hand, a structural motif can be defined as a combination of amino acids

from different parts of a chain or different chains, but closer enough to form a stable struc-

ture. This type of motifs are biologically more important as the structure is conserved and

can perform a specific task being or not as a part of the protein complex. Figure 4.7 shows

the formation of a structural motif from different parts of a single chain.

Figure 4.7: A structural SLiM formed from different part of the chains.
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There is another type of SLiM, known as functional motif, which does not have either

sequence similarity or structural similarity, but the sites perform the same biological task

and hence they are biologically relevant.

4.5 SLiM Discovery

In 1970 Needleman and Wunsch and in 1981 Smith and Waterman introduced the Needleman-

Wunsch algorithm and the Smith-Waterman algorithm respectively. These algorithms were

capable only for alignment and could not detect the pattern regions from the sequences

which reflect the structure and function of a protein. Also these algorithms could not deal

with distantly coupled sequences. At that time pairwise alignment and visual observation

was the only way to detect motifs or domains from a protein sequence which is laborious

and expensive.

Neuwald et al. [38] proposed the Gibbs sampling algorithm that detects motif-encoding

regions from protein sequences and classifies them. This strategy tries to solve the motif

detection problem assuming that the motif occurrence number is provided as prior informa-

tion. With the prior information, this strategy samples sites for each motif iteratively until

it finds the optimal partitions of motif-encoding regions into different motifs which can

also be used to classify the related motifs. Another Gibbs sampling strategy, called column

sampling, is applied within the motif sampling algorithm for the motif length optimization.

The performance of the Gibbs sampling method compared to all other existing meth-

ods is high enough. Some methods using the Hidden Markov Model (HMM) for multiple

sequence alignment can produce results closer to the Gibbs sampling. But the HMMs are

EM-based, and hence suffer from the problem of becoming stuck in local optima. Also the

model to deal with gaps can deal only with the closely related sequences, where on the other
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hand, the Gibbs sampling method does not have all these issues even it can detect subtle

block-based motifs. This strategy works fine for related protein sequences even though it

does not work that much accurately for unrelated protein sequences.

Tan et al. [45] described a new approach with two new algorithms for finding corre-

lated, short motifs. These types of motifs are important in PPIs and also in drug discovery,

analyzing such motifs is very important. Finding such binding motifs is not easy at all by

traditional biological experiments as it becomes laborious and expensive. The authors pro-

pose an (l, d)-motif pair finding model which is a combination of the (l, d)-motif model,

D-STAR and S-STAR algorithms, and looks for motif pairs from interacting protein se-

quences, one motif from one interacting protein partner and the other motif from the other

interacting protein partner. This model is based on the (l, d)-motif model and the D-MOTIF

and D-STAR algorithms where the D-STAR is faster enough than the D-MOTIF for a larger

dataset. Processing data for the algorithm is crucial, as these algorithms work on interacting

data only. Once the interacting data is ready the parameters l and d need to be tuned. After

successfully running the algorithms, a validation step is performed on the output.

Edwards et al. [18] described a probabilistic method to identify over-represented, con-

vergently evolved, SLiMs called SLiMFinder. Typically, SLiMs consists of 3-10 residues,

from the primary protein structure. From a study it has been found that 15%-40% of the

interactions are mediated by SLiMs beside the large domain-domain interface. As SLiMs

are short and degenerate in nature, it is hard to find new SLiMs. All the existing methods

incorporate a model of convergent evolution to identify new SLiMs.

The authors introduced a novel algorithm, called SLiMBuild. Initially, SLiMBuild de-

fines the motifs by combining residues into longer sequences before efficiently incorporat-

ing amino acid degeneracy and/or variable length wild-cards by adding variants that occur
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in the desired number of unrelated proteins, and increase the total number of unrelated

proteins in which the ambiguous motif occurs.

As the short motifs are expected to occur in multiple unrelated protein sequences, iden-

tifying the recurring motifs becomes the major part of the challenge. This algorithm also

considers a score that indicates how likely a given motif is compared to other motifs. When

the SLiMBuild algorithm ends, the SLiMChance algorithm is started to improve the scores

by making a crude but efficient adjustment of motif probabilities.

The authors claim that this method was implemented on 750 random datasets and the

false-positive rates for this method were found very similar at any given significant thresh-

old for any random dataset. The differences between different types of random data are

minimal. The most significant motifs returned by the SLiMFinder from each dataset are not

strongly dependent on the size although SLiMFinder is relatively biased.

Narlikar et al. [37] described a way to use the nucleosome occupancy information to

discover the transcription factor bindings or motifs. Study and identification of transcription

factor bindings or moitfs are required in a large scale to understand the transcriptional

regulatory process in living cells. The motifs are short, degenerate sequences which occur

frequently by chance and this is the main reason that finding motifs is still difficult. Noise

generated by the non-functional sites over the functional sites make this process even more

complicated.

The authors use the Gibbs sampling method with nucleosome occupancy information as

prior information and position-specific scoring matrix (PSSM) as a motif model. To find the

motifs, they adopted a sequence model and objective function. Having a sequence model

and objective function, a strategy to optimize the model parameter and scoring scheme is

selected. Gibbs sampling is in the heart of the model, with prior information. Here the
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prior information is based on the nucleosome occupancy from both bound and unbound

sequences. They also use another type of prior called discriminative prior with the Gibbs

sampling model. Using all the prior information, they derive a prior set which is called

positional prior which is used to find the starting point of a motif in a sequence. If no prior

is provided, it will assume all the positions having same probability as a starting point.

The authors claim that the method is implemented using four different prior models

PRI-U, PRI-N, PRI-D and PRI-DN, where PRI-DN is the combination of the priori from

nucleosome occupancy and discriminative prior. In an experiment, a set of 156 sequences is

used. While PRI-U finds 46 correct motifs, PRI-DN finds 69 correct motifs which implies

an improvement of 50%. The nucleosome occupancy controls the binding activity and

plays an important role in finding the motifs. The authors also claim that they are the first

in introducing this feature for finding motifs with high accuracy.

The methods/algorithms/approaches discussed here are the most well-known for motif

or SLiM discovery. Only these methods proposed new, unique algorithms and all other

methods are any how fully or partially based on one of these methods. For example, we

can state that BLAST and Pfam are based on multiple sequence alignment and the Hidden

Markov model (HMM) respectively. So far, the Gibbs sampling algorithm still achieves the

better performance than any other algorithm or method.



Chapter 5

SLiM Finding Tools

5.1 Introduction

In proteomics, to understand the PPIs, the structure and function of a protein the study

of pairwise alignment, local/global alignment, multiple alignment, SLiMs, domains are

very important as they play a vital role on these. A lot of research has been conducted

for more than two decades on the protein sequences, motifs and domains, and as a re-

sult there are many online databases and tools to facilitate the protein sequence research.

These online tools allow the user to find motifs or domains for a specific dataset although

motif/domain identification uses the same kind of knowledge-base and sometimes identifi-

cations are highly biased. Beside identification, searching motifs/domains from a specific

data set is also provided by these facilities. These tools and databases are mainly web-based

(installation versions are also available) and open for all researchers.

Gutman et al. [26] described QuasiMotiFinder which is a new, complementary method

for motif search against the original database. In this method, the original query protein is

replaced by multiple aligned, homologous proteins. Highly conserved signatures are con-

52
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sidered to indicate the correct protein function. The degree of evolutionary conservation of

the signature within the protein family is estimated, and this estimation is used to calculate

the likelihood of the motif.

According to the authors, the input for QuasiMotiFinder should be multiply aligned ho-

mologous query proteins in MSA format. If FASTA format is provided instead of the MSA,

QuasiMotiFinder uses CLUSTALW to find the MSA file for that query protein sequence.

For each position of the MSA, evolutionary conservation scores are calculated using the

likelihood-based algorithm Rate4Site. A negative score indicates high conservation and a

positive score indicates a variable residue. A physiochemical similarity using the physio-

chemical similarity matrix with the PROSITE signatures is performed to assign the scores.

After the total score, the statistical significance of a putative signature is estimated based

on its pre-calculated distribution. 181 proteins sequences were used for the testing and 65

were found in the true-positive subgroup, 65 in the false-positive sub-group and 51 in the

false-negative subgroup using both strict and quasi-PROSITE. Some random experiments

with some sequences (i.e. FURIN BOVIN) was performed to make a comparison between

the QuasiMotiFinder and PROSITE. It was always found that QuasiMotiFinder detects at

least one more motif than PROSITE.

Bailey et al. [4] described the online tool, Multiple EM for Motif Elicitation (MEME)

which can identify motifs without prior knowledge or database. As motifs are shorter in

nature, it is not easy to find a motif from a given data set. That is why motif discovery can

be compared with finding a needle in a haystack problem. On the other hand, comparatively

longer motifs are easy to find than shorter motifs. Again, finding TFBS motifs from DNA

sequences is quite difficult, which have a tendency of having binding sites to be short and

degenerate. Another issue in this case is that, it is often difficult to identify precisely the
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promoter regions. This problem becomes more severe in Eukaryotes than in Prokaryotes

and yeast as TFBS in eukaryotes tend to become shorter and variable.

Figure 5.1: Schematic diagram of the MEME software suite. The diagram was taken from
www.meme.sdsc.edu/meme/intro.html [4].

According to the authors, the user need to input a set of protein or DNA sequences in

FASTA format in order to find motifs using MEME. The user can simply copy-paste the

sequence set or upload a sequence file. For the online version, the user needs to provide

a valid email address. In the online version, there are a few parameters, which the user

can leave as default or can set the parameters. Among the parameters are: width of the

motif, number of motifs, number of sites, and model (ZOOPS, OOPS, ANR) being used by

MEME are available. Although it is easy to use, it has a limitation on the size of the input

set of sequences. It can not take an input set of more than 60,000 characters.

MEME delivers an output in three different formats, HTML, TEXT and XML, where

HTML represents the motif information in the most interactive way. It shows the local

multiple alignments along with block diagrams. The block diagram shows a schematic view

of the motifs in a sequence. This HTML file also shows the sequence logo representation
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of a motif along with PSPM information. Besides, there are also some buttons available

to submit the motif information for further processing, such as the user can submit the

motif information to the MAST web server to search the motif into different sequence

server. On the other hand, TEXT and XML versions are mostly used for further analysis and

information processing. MEME’s developers plan to add a facility to upload a background

Markov model to increase the sensitivity of MEME searches. Also they plan to add an

algorithm for removing low-complexity regions and repeated elements. Another option

called MCAST will also be introduced.

Davey et al. [11] described the SLiMSearch tool for searching minimotifs for a given

protein sequence set. Tools such as ELM, MnM, SIRW, ScanProsite and QuasiMotifFinder

are well-known for motif search, but generally they search the motifs only from databases

of known motif patterns provided by the user although they have some special features. The

question is about to predict genuinely novel motifs, so that knowledge of existing motifs is

less useful. Instead of using knowledge about existing motifs, using the contextual informa-

tion about the input data sequences helps more in finding new, novel motifs. SLiMSearch

receives the motif information from the powerful novel motif discovery tool, SLiMFinder,

along with the same contextual information and enables the results to be masked or ranked

based on the biological indicators. These indicate the sequence conservation and struc-

tural disorder and features which are as same as SLiMChance for assessing statistical over

representation of SLiM occurrences, correcting for biases introduced by evolutionary rela-

tionships within the data. SLiMSearch was also optimized for small protein data sets such

as SLiMFinder.

The total SLiMSearch method consists of three major parts, pre-formatted database,

scoring and enrichment of the scores. Pre-computed databases for each proteome are used
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to speed up the motif attribute calculations. There are several pre-formatted databases such

as domain data from Pfam, structural data from PDB, experimentally validated data from

the ELM database and SNP, and modification data from UniProt. SLiMSearch extends the

RLC score to return a probability score, P(RLC) using the Gaussian cumulative distribution

function. This P(RLC) is then converted to p-value as the final score for a motif. In the last

enrichment score step, the scores are calculated against the reverse of the motifs and a

randomly shuffled variant of the motif. The score is the ratio of the input motif count and

reverse motif count.

The authors claim that for using SLiMSearch, a motif in a regular expression form is

compulsory. The response time and complexity depending on the motif complexity and cur-

rent load of the server. The output is delivered in a tabular format with annotated attributes

such as conservation and disorder statistics, overlapping features, and overlapping exper-

imentally validated motifs. Currently, SLiMSearch includes all the human proteome. At

present, thousands of users from different countries are using this online tool for searching

de novo motifs.

Dinkel et al. [13] described a well formatted database of 1,800 annotated eukaryotic

linear motifs and a SLiM search mechanism for a set of input sequences. Although there

some other resources for SLiMs such as ProSite, MiniMotifMiner, ScanSite, none of them

has the base of manually annotated motifs while all of them are generalized for all types

of SLiMs. That is why there is a need of a SLiM database which would be specialized on

a certain type of SLiMs along with the search facility. Based on this, ELM started with

manually annotated Eukaryotic linear motifs.

ELM is designed in a way that it consists of two major applications, one is the linear

motif database and the other is the motif detection pipeline to detect putative motifs from
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a query sequence. The main idea is to annotate one SLiM with its class and instance. Be-

sides, it provides the user an interactive way to visualize the motifs, its location on the main

sequence graphically, and user friendly representation of other information. The current

version of the ELM resource contains 170 classes which is about 43 times more than the

initial version and 1,800 instances and all the instances are linked to more than 1,500 anno-

tations. Regular expressions are used to represent the classes and also for searching motifs

in an input sequence set. When a query is performed, the output page can be divided into

two parts: the upper part which contains the colors/symbols used to explain different issues,

and the lower part which contains the annotated and putative ELM instances for the input

sequences.

The authors also claim that the SLiMs are very important in virus-host interactions,

which make the ELM resource a highly important tool for the researcher who deals with

virus studies. A study showed that phosphatase 1 (PP1) docking motif in protein 7 of a

transmissible gastroenteritis virus motif mediates binding to the PP1 catalytic subunit [13],

a key regulator of the cellular antiviral defense mechanisms. This is also found in other viral

proteomes, suggesting that it might be a recurring strategy to counteract the host defense

against RNA viruses. A special focus has been attributed to the annotation of viral instances

in the ELM database to increase the awareness of viral motifs.

Mi et al. [32] described the online tool Mini Motif Miner (MnM) and the mini motif

database. There are a few online tools for finding mini motifs from protein sequences

which include MEME, Eukaryotic Linear Motif (ELM), and Phospho-ELM. MEME finds

the motif in an unsupervised way, and for this reason the accuracy of the motifs found by

MEME is not that high. On the other hand, ELM focuses only on special types of motifs.

Previous versions of the MnM did not have any filtering method to improve the accuracy
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and also the motif database was not sufficiently large.

According to the authors, the current version of MnM has improved filters, which in-

crease the accuracy of mini motif prediction. The filter removes the false positives for the

prediction. They have also increased the size of the mini motif database by both manual

annotation from different literature and by cooperation with other known databases such as

PhosphoSite, DOMINO, MEROPS, UniProt, PepX, 3DID, PeptiDB and HPRD. The MnM

database now includes a total of 294 933 mini motif definitions, consisting of 880 consen-

sus mini motifs and 294 053 instances. All these mini motifs play a vital role in three major

biological activity: trafficking, binding, and modifying.

The authors claim that the current version of MnM has 640 times more minimotifs

than the first ever version and about 60 times more than the previous version. The current

version contains 30 times more binding sites than the first version, where it has 7 times more

trafficking information. In the previous version of the MnM model, each minimotif was

described using only 22 attributes, while the current version uses 28 attributes. This motif

describing model includes a protein sequence definition, describing the chemistry of the

motif and a functional definition. All these modifications made in the newer version include

an extensible expanded definition of the covalent chemistry of the protein that contains that

minimotif.

5.2 Why MEME?

There are few SLiM finding tools available to find SLiMs such as SLiMFinder, SLiMDisc,

SLiMSearch, QuasiMotiFinder, MnM and MEME. But none of them finds SLiMs in a

unsupervised fashion. Most of them use predefined knowledge (SLiM/Motif database) to

find SLiMs which are not of interest. As I wanted to find SLiMs in a specified data set,
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with predefined parameters, in an unsupervised fashion, MEME resulted in the best option.

Only MEME allows controlling the parameters and also assures motif identification in an

unsupervised manner. The MEME suite currently offers the following facilities [4]:

• Motif Discovery: MEME, DREME (DNA only), GLAM2

• Sequence Search with Motif: FIMO, MCAST, GLAM2SCAN

• Compare a motif to all motifs in a database

• Analyze motif enrichment using SpaMo, CentriMo

Besides, MEME is based on the MM algorithm which incorporates the expectation

maximization (EM) technique for the finite mixture model introduced by Aitkin and Rubin

[4]. For a given sequence dataset, it searches for the maximum likelihood estimation of the

parameters using EM. The idea of missing data (Z, which group of each sample in the data

came from) is used by EM. When MM is applied to a dataset to find SLiMs in that dataset,

this is done by repeatedly and probabilistically erasing all occurrences of the discovered

SLiMs; it is able to find SLiMs with different numbers of occurrences in a single dataset.

The MM algorithm has two major advantages over the Gibbs sampling algorithm [3],

proposed by Neuwald et al. [38], it is the most successful existing algorithm for discovering

SLiMs in a set of protein sequences. First, the classification of input data sequences by a

biologist as known to contain the motif in advance is not required, while it calculates the

number of occurrences of a motif in the input dataset. Second, it is the formal probabilistic

model of the whole dataset used by MM and can systematically select the parameter value

of this model that maximizes the likelihood.
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5.3 MM with the EM Algorithm

The MM algorithm aims to maximize the likelihood of the parameters of a finite mixture

model. Let us consider Y , a dataset of protein sequences represented as:

Y = {Y1,Y2, . . . . . .YN} (5.1)

where Y1,Y2, . . . . . .YN are the N sequences in the dataset and let us consider the se-

quence Yi represented as:

A = {a1,a2, . . . . . .aL} (5.2)

This is provided to the MM as input. The model used by MM does not use the dataset

directly. Instead, it breaks the dataset into overlapping subsequences of length W . The new

dataset is presented as:

X = {X1,X2, . . . . . .Xn} (5.3)

Sequence X is divided into n overlapping subsequences. The model used by MM uses

the new abstract dataset.

The new model of the new dataset consists of two components, one of them models the

motifs and the other models the background. The MM algorithm assumes that each position

in a subsequence of a motif model is generated by an independent random variable describ-

ing a multinomial trial with parameter fi = ( fi1, fi2, .... fiL). This means the probability of a

letter a j appearing at position i in the motif is fi j. The parameters fi j for i = 1,2, . . .W and

i = 1,2, . . .L must be estimated from the data.

For the background model of the new dataset, each position of a subsequence which

is not a part of a motif occurrence is generated independently by a multinomial random

variable with a common parameter f0 = ( f01, . . . . . . f0L). Thus, finally the dataset used by
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the MM algorithm has two models, one is the motif model (with probability λ1) and the

other one is the background model (with probability λ2 = λ1 - 1). Thus, the parameters of

the mixture model are λ = (λ1, λ2), the vectors of letter frequencies for the motif model θ1

= ( f1, f2, . . . . . . fW ) and a single vector of letter frequencies for the background model θ0 =

f0.

The main goal is to find the values of the parameters for the overall model which max-

imize the likelihood of the data. For this purpose, EM is used which is an iterative process

and finds the values for λ = (λ1,λ2) and θ = (θ1,θ2). The EM algorithm uses the concept of

missing data, which is the knowledge of which group each sample in the data came from.

For missing data, the following notations are important:

Z = {Z1,Z2, . . . . . .Zn},n is the number of samples (5.4)

Zi = {Zi1,Zi2} (5.5)

Zi j =


1 if Xi is from group j

0 otherwise
(5.6)

Zi provides the information about the group of the sample. If Zi j = 1 then Xi has the

probability distribution of p(Xi | θ j). Then, EM will try to find out the value of Zi j along

with the other two parameters θ and λ. The likelihood of the model parameters for the data

X can be defined as:

L(θ,λ | X ,Z) = p(X ,Z | θ,λ) (5.7)
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and the log-likelihood is given by:

log(L(θ,λ | X ,Z)) =

n

∑
i=1

2

∑
j=1

Zi j log[p(Xi | θ j)λ j] (5.8)

The E-step and the M-step of the EM algorithm repeatedly maximize the log-likelihood

over the conditional distribution of the missing data, Z, given the observed data X and the

current estimates of the parameters θ and λ.

The E-step finds the expected value of Equation (5.8) over the values of missing data Z,

given the observed data X , and the current parameter values θ = θ(0) and λ = λ(0),

E{log[L(θ,λ | X ,Z)]}=
n

∑
i=1

2

∑
j=1

Z(0)
i j log[p(Xi | θ j)]+

n

∑
i=1

2

∑
j=1

Z(0)
i j log(λ j) (5.9)

Z(0)
i j =

p(Xi | θ(0)j )λ(0)
j

2

∑
k=1

p(Xi | θ(0)k )λ(0)
k

(5.10)

for i = 1, . . . ,n and j = 1,2

The M-step maximizes Equation (5.9) over θ and λ in order to find the next estimates

for them, say θ(1) and λ(1). The maximization over λ involves only the second term in

Equation (5.9)

argmax︸ ︷︷ ︸
λ

=

n

∑
i=1

2

∑
j=1

Z(0)
i j log(λ j) (5.11)

which has the solution
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λ(1)
j =

n

∑
i=1

Z(0)
i j

n
for j = 1, 2 (5.12)

and θ can be maximized by separately maximizing the first term of Equation (5.9) over

θ j:

θ(1)j = argmax︸ ︷︷ ︸
θ

n

∑
i=1

Z(0)
i j log[p(Xi) | θ j] for j = 1, 2 (5.13)

The distributions for the motif class and background class are assumed by the MM

algorithm as:

p(Xi | θ1) =
W

∏
j=1

L

∏
k=1

f I(k,Xi j)
jk (5.14)

p(Xi | θ2) =
W

∏
j=1

L

∏
k=1

f I(k,Xi j)
0k (5.15)

where Xi j represents the jth letter of sample Xi and I(k,a) indicates the function which

is 1 if and only if a = ak, which implies:

I(k,a) =


1 if a = ak

0 otherwise
(5.16)

for k = 1, . . . ,L. Now, let us consider,

c0k =

n

∑
i=1

W

∑
j=1

Z(0)
i2 I(k,Xi j) and (5.17)
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c jk =

n

∑
i=1

EiZ
(0)
i1 I(k,Xi j) (5.18)

here, c0k is the estimated number of times a letter ak occurs in a position for the back-

ground model, and c jk is the estimation for the motif model for j = 1 . . .W . θ can be

re-estimated by replacing Equation (5.14) and (5.15) into the right side of Equation (5.13):

θ1 =
(

f̂0, f̂1, . . . , f̂W
)

=

argmax︸ ︷︷ ︸
θ

 W

∑
j=0

L

∑
k=1

c jk log( f jk)

(5.19)

thus finally,

f̂ jk =
c jk

L

∑
k=1

c jk

for j= 0 . . . W and k = 1 . . . L (5.20)

For a smaller dataset, if the frequency f̂i j of any letter becomes 0, this value is never

changed. Thus, according to Brown et al. and Lawrence et al., Equation (5.20) can be

written as [3]:

f̂i j =
ci j +β j
L

∑
k=1

cik + β́

(5.21)

here, i = 0, . . . ,W , j = 1, . . . ,L, β =

L

∑
k=1

βk and β́ = (β1, . . . ,βL). This is equivalent to

using Bayes estimates for the value of θ.



Chapter 6

Model Implementation

In this thesis, I have implemented two different models to predict PPIs. One of the models

(PPI-SLiM-Seq) predicts PPIs using the information contained in the sequence and the

other model (PPI-SLiM-DEEE) predicts PPIs using desolvation and electrostatic energies

as features. For both models, I use the same two datasets. This chapter discusses both

models.

6.1 Datasets

For all experiments of the models proposed in this thesis, two well-known different datasets

have been used:

1. Dataset by Zhu et al. [54] (the ZH dataset) and

2. Dataset by Mintseris et al. [33] (the MW dataset)

Table 6.1 shows an overview of the datasets used in this thesis. The ZH dataset has a

total of 137 binary complexes and the MW dataset has a total of 327 complexes. Although

65
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Dataset name No. of obligate complex No. of non-obligate complex
Mintseris dataset 115 212
Zhu dataset 75 62

Table 6.1: Overview of the ZH and MW datasets.

most of the complexes of the MW dataset are dimers, there are also some complexes which

are not multimers.

6.1.1 The ZH dataset

The ZH dataset is composed of 137 different complexes, 75 of the complexes are obligate

and the remaining 62 are non-obligate. This dataset was compiled and proposed by Zhu et

al. [54]. Each complex of this dataset has only two chains; that is why it also known as the

ZH binary dataset.

Complex Chain Complex Chain Complex Chain Complex Chain Complex Chain
1AHJ A:B 1B34 A:B 1DCE A:B 1EFV A:B 1GUX A:B
1H2A L:S 1LUC A:B 1PNK A:B 1REQ A:B 1TCO A:B
2AAI A:B 1A0F A:B 1A4I A:B 1aFW A:B 1AJ8 A:B
1AJS A:B 1AOM A:B 1AQ6 A:B 1AT3 A:B 1B3A A:B
1B5E A:B 1B7B A:C 1B8A A:B 1B8J A:B 1B9M A:B
1BJN A:B 1BOL A:B 1BRM A:B 1BYF A:B 1BYK A:B
1C7N A:B 1CLI A:B 1CMB A:B 1CNZ A:B 1COZ A:B
1CP2 A:B 1DOR A:B 1F6Y A:B 1GPE A:B 1HGX A:B
1HJR A:C 1HSS A:B 1ISA A:B 1JKM A:B 1KPE A:B
1MSP A:B 1NSE A:B 1ONE A:B 1PP2 A:B 1QAE A:B
1QAX A:B 1QBI A:B 1QFE A:B 1QFH A:B 1QOR A:B
1QU7 A:B 1SMT A:B 1SOX A:B 1SPU A:B 1TRK A:B
1VLT A:B 1VOK A:B 1WGJ A:B 1XIK A:B 1XSO A:B
1YPI A:B 1YVE I:J 2AE2 A:B 2HDH A:B 2HHM A:B
2NAC A:B 2PFL A:B 2UTG A:B 3TMK A:B 4MDH A:B

Table 6.2: Obligate complexes in the ZH dataset.

Table 6.2 shows all 75 obligate complexes used for the experiments from the dataset

compiled by Zhu et al. [54]. Each cell in the table represents one complex, the first part is

the PDB ID of the complex and second part specifies the chains (separated by “:”) associ-

ated with the complex.
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Complex Chain Complex Chain Complex Chain Complex Chain Complex Chain
1AVA A:B 1AVW A:B 1BVN T:P 1CSE I:E 1F34 A:B
1FSS L:S 1GLA F:G 1KXQ H:A 1SMP I:A 1TAB I:E
1TGS I:Z 2PTC I:E 2SIC I:E 4SGB i:E 1AGR E:A
1ATN A:D 1B6C A:B 1BKD R:S 1BUH A:B 1DOW A:B
1EUV A:B 1I2M A:C 1I8L A:C 1KAC A:B 1PDK A:B
1QAV A:B 1TX4 A:B 1C0F S:A 1ZBD A:B 1AK4 A:D
1D09 A:B 1CQI A:B 1FIN A:B 1DHK A:B 1BI7 A:B
1RRP A:B 1CC0 A:E 1EG9 A:B 1AVZ B:C 1FRV A:B
3HHR A:C 1YCS A:B 1CVS A:C 1ARO L:P 1CMX A:B
1BML A:C 2PCB A:B 1F60 A:B 1STF E:I 1EMV A:B
1UEA A:B 1QBK B:C 1HLU A:P 1ITB A:B 1ETH A:B
1JTD A:B 1LFD A:B 1Dn1 A:B 1TMQ A:B 1A4Y A:B
1WQ1 R:G 1EAI C:A

Table 6.3: Non-obligate complexes in the ZH dataset.

Table 6.3 shows all 62 non-obligate complexes used for the experiments from the dataset

compiled by Zhu et al. [54].

6.1.2 The MW dataset

The MW dataset is composed of 327 different complexes; 115 of the complexes are ob-

ligate and the remaining 212 complexes are non-obligate. This dataset was compiled and

proposed by Mintseris et al. [33].

Table 6.4 shows all 115 obligate complexes used in the experiments from the dataset

compiled by Mintseris et al. [33]. Table 6.5 shows all 212 non-obligate complexes used in

the experiments from the dataset compiled by Mintseris et al. [33].
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Complex Chain Complex Chain Complex Chain Complex Chain Complex Chain
1NBW AC:B 1DXT A:B 1B8M A:B 1K8K C:G 2KAU B:C
1H8E A:D 1B7Y A:E 4RUB A:DT 1JB0 AB:C 1FFV A:B
1K8K C:F 1E50 A:B 1LD8 A:B 1B4U A:B 1DKF A:B
2Q33 A:B 1CPC A:B 1RAF A:BD 1VKX A:B 1JMZ AD:B
1FXW A:F 1JB0 AB:E 1IR1 A:S 1H2R L:S 1SGF A:BY
1K8K D:F 1JV2 A:B 1E6V A:B 1HSA A:B 1H2V C:Z
1MJG AB:M 1F3U A:B 2MIN A:B 1SPP A:B 1KTD A:B
1GKA A:B 1IHF A:B 1A6D A:B 1TBG A:B 1FFU A:C
1K8K B:F 1DM0 A:BCFDE 1MRO A:C 1DTW A:B 1FS0 E:G
1H32 A:B 1POI A:B 1JK0 A:B 1JRO A:BD 1YTF BC:D
3PCE A:M 1EFV A:B 1JWH A:CD 2MTA H:L 1JKJ A:B
1C3O A:B 1K8K A:E 1MRO B:C 1GPW A:B 1M2V A:B
1HCN A:B 1JB0 A:BD 2AHJ A:B 3GTU A:B 1KQF A:B
1HZZ A:BC 1HFE L:S 1EZV C:F 1EEX A:G 1H4I A:B
1L9J C:HLM 1QLB B:C 1CCW A:B 1JK8 A:B 1JB7 A:B
1REQ A:B 1QGW B:C 1VCB A:B 1JNR A:B 1LUC A:B
1JB0 C:D 1BE3 CDEGK:A 1EG9 A:B 1K28 A:D 1DII A:C
2BS2 A:B 1EEX A:B 1EXB A:E 1E8O A:B 1HXM A:B
1E9Z A:B 1HR6 AE:B 1DJ7 A:B 1LTI AC:DEHFG 1JB0 C:B
1LDJ A:B 1FCD A:C 1K3U A:B 1L7V AB:C 1AUI A:B
1GO3 G:F

Table 6.4: Obligate complexes in the MW dataset.

6.2 PPI-SLiM-Seq

In this thesis, I propose a computational model, PPI-SLiM-Seq, to predict PPIs using in-

formation contained in the sequences. I have used leave-one-out validation to validate this

model. This model has a few components:

• Sequence database compilation

• SLiM finding

• Separating sample and training sequences

• Sequence partitioning

• Calculation of the information contained in the ℓ-mers

• Select top 20 values from the calculated ℓ-mers’ information values
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Complex Chain Complex Chain Complex Chain Complex Chain Complex Chain
1WQ1 G:R 1TMQ A:B 1FBI HL:X 1BQH AB:GM 1AKJ AB:DE
1LK3 A:HL 1F51 AB:E 1BVN P:T 1G73 AB:C 1IB1 AB:E
1EER A:B 4SGB E:I 1G4Y B:R 1STF E:I 1GL1 A:I
2BTC E:I 1FQJ A:C 1DKG AB:D 1DF9 B:C 1EBP A:CD
1M10 A:B 2SIC E:I 1GP2 A:B 1WWW VW:X 1CS4 AB:C
1MBU A:C 1NF5 A:B 1ICF AB:I 1BKD R:S 1AR1 AB:CD
1JMA A:B 1QFU AB:HL 1EZV E:XY 1BDJ A:B 1ILA AB:CD
3G94 A:BC 1CC0 A:E 1KYO O:W 1IBR A:B 1DEV A:B
1JCH A:B 2TEC E:I 1EZX AB:C 1GH6 A:B 1AK4 A:D
1FQ1 A:B 1JIW I:P 1F60 A:B 1STF E:I 1EMV A:B
1UEA A:B 1QBK B:C 1HLU A:P 1ITB A:B 1ETH A:B
1JTD A:B 1LFD A:B 1DN1 A:B 1TMQ A:B 1A4Y A:B
1WQ1 R:G 1EAI C:A 1AVZ B:c 1D4X A:C 1BI8 A:B
1ES7 AC:B 1HE1 A:C 1KZY A:C 1DOA A:B 1K5D A:B
1GL4 A:B 1FQV A:B 1O6S A:B 1FBV A:C 1T7P A:B
1FSK A:BC 1E6J HL:P 1BZQ A:L 1GC1 C:G 1CLV A:I
1F34 A:B 1JTD A:B 1EJA A:B 1AY7 A:C 1DFJ E:I
1F80 A:E 1F02 I:T 1AVX A:B 1RLB ABCD:E 2BTF A:B
1BHU A:B 1K5D A:C 1KCG AB:C 1YCG A:B 1YCS A:B
2MTA A:HL 1N2C AB:BF 1D2Z A:B 1K3Z AB:D 1H2K A:S
1C4Z A:D 1ZBD A:B 1KXT A:B 1WEJ F:HL 1NSN HL:S
1BJ1 HL:VW 1AVA A:C 1DPJ A:B 1D5X A:C 1LPB A:B
1DX5 A:C 1ZBD A:B 1AVG HL:I 1BUV M:T 1TAB E:I
1AZZ A:CD 1ARO L:P 1HX1 A:B 1QO0 A:DE 1HWG A:BC
1EFX ABC:D 1GLA F:G 1B9Y AB:C 1MAH A:F 3YGS C:P
1M4U A:L 1MLE A:B 1FNS A:HL 1AHW AB:C 2JEL HL:P
1BGX HL:T 1MR1 A:D 1K4C AB:C 1DHK A:B 1IM3 AB:D
1I4E A:B 1DTD A:B 1KK1 ABC:H 1K90 A:D 4HTC HL:I
2PTC E:I 1BML A:C 1AWC A:B 1ATN A:D 1UGH E:I
1FG9 AB:C 1DE4 CF:A 1CXZ A:B 4CPA I:O 1GCQ B:C
1GRN A:B 1M2O AC:B 1O94 AB:CD

Table 6.5: Non-obligate complexes in the MW dataset.

These components are executed one after the other. Figure 6.1 shows the work flow

diagram of the PPI-SLiM-Seq model. I discuss all the components in detail in the next

sub-sections.
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Figure 6.1: Work flow diagram of the PPI-SLiM-Seq.
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6.2.1 Sequence Database Compilation

This component takes the list of all the complexes for a dataset as input. For each complex

in the list, it downloads the FASTA sequence file from the PDB server. It extracts the

sequence for each chain (listed in the dataset) from the file and adds it to the sequence

database. Finally, the database has all the sequences for all the chains of each complex.

6.2.2 SLiM Finding

I have used MEME to find SLiMs from the collected sequence dataset. I optimized the

parameters of the tools. I did run MEME to find 500 and 1,000 SLiMs from the dataset. I

specified the lengths of the SLiMs as 3−10 and 2−7, the minimum number of sites as 8

and the maximum number of sites as 200. Details about MEME are discussed in Chapter 5

and Appendix A.

6.2.3 Separating Sample and Training Sequences

To implement the leave-one-out process, dividing the sequence database into target sample

and training sample is needed. Each time, the target sample (one) and training samples

(remaining) are separated. As it is an iterative process, the same procedure continues until

it covers all the complexes. The components of this model take care of this.
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Figure 6.2: Separating sample and training sequences.

Figure 6.2 shows the working procedure of the component. Each iteration, the model

takes one complex out as target sample and uses the remaining samples for training. In the

next iteration, it places the previously taken out complex back and takes another complex

out to cover all the complexes.

6.2.4 Sequence Partitioning

For both training and sample complexes, the sequences are divided into overlapping sub-

sequences. The sequence partitioning component takes a sequence as input and outputs all

possible subsequences (ℓ-mers). Let us consider a, a sequence of length L which is input

into the sequence partitioning component. The component will divide the sequence into all

possible overlapping ℓ-mers of length W and deliver a total of {L− (W +1)} ℓ-mers.
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Figure 6.3: Splitting a sequence into ℓ-mers.

Figure 6.3 shows the partitioning process of a sequence of length 18 delivering a total

(18− (10+1)) = 9 of ℓ-mers.

6.2.5 Calculating Information Contained in the ℓ-mers

This component calculates the information contained in each ℓ-mer for a given profile. It

uses the PSPMs as profiles from the SLiM database. For profile selection, it follows mainly

two rules:

1. It excludes all the profiles of all the SLiMs which were found in the current complex

2. It takes only those profiles of SLiMs which have the same length as the current ℓ-mer.

For calculating the information contained in the ℓ-mer, it follows Equation (6.1):

Î(a | X) =−1
ℓ
×

ℓ

∑
i=1

P(ai)× log(P(ai)) (6.1)
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where X is the given profile (PSPM) from the SLiM, a is the ℓ-mer, P(ai) is the proba-

bility of ith amino acid in the profile and Î(a | X) is the information contained in the ℓ-mer.

6.2.6 ℓ-mer Information Selection

Each sequence is then partitioned into all possible ℓ-mers. If the sequence is of length L,

then it has a total of (L− (W +1)) ℓ-mers of length W . For each ℓ-mer, ai, I calculate the

information (Î1, · · · , În) for all given profiles, (X1, · · · ,Xn) using Equation (6.1). From the

set of information values, I select only the maximum. In this way, I cover all the ℓ-mers.

Once I have information values for all the ℓ-mers, I select the top 20 ℓ-mer’s information

values. I use top 20 ℓ-mer information values as features for the complex.

6.3 Pseudo Code for PPI-SLiM-Seq

Algorithm 2 shows all the steps for the PPI-SLiM-Seq model. It takes a list of complexes,

sequence files for all the complexes, SLiM database as inputs. It outputs the feature vector,

which is then used for classification. For the ZH and MW datasets, each complex has 20

features. Thus, the ZH dataset yields feature matrices of 136×20 and 137×20 dimensions

and the MW dataset yields feature matrices of 326× 20 and 327× 20 dimensions. The

feature matrices generated by this model are then used for the classification. I use k-NN,

LDR and SVM classifiers for classification.
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Algorithm 2 PPI-SLiM-Seq Algorithm

FeatureVector = [ ]
for all the complexes SCi do

SequencePartition(SCi)
LIST SCi = [ ]
for all the ℓ-mers LL j do

MaxIn f o j = 0
SelectProfile(SCi,LL j)
for all the profiles LPk do

LLINFOk = CalculateInformation(LL j,LPk)
if LLINFOk > MaxIn f o j then

MaxIn f o j = LLINFOk
end if

end for
ADD(MaxIn f o j,LIST SCi)

end for
ADDROW(LIST SCi,FeatureVector)

end for

6.4 PPI-SLiM-DEEE

In this thesis, I also propose another model to predict PPIs using SLiMs. In this model,

I determine if two SLiMs from two different chains of a protein complex are interacting

or not and using this information, I predict the type of the complexes; obligate and non-

obligate. Besides, I also check if one SLiM from one chain is interacting with the other

chain (any part of the chain) of the complex. To predict these interactions I use desolvation

and electrostatic energies as features. This model also contains different components:

1. Sequence dataset compilation

2. SLiM finding

3. Selecting interface SLiMs
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4. Selecting interacting SLiM pairs

5. Calculating desolvation energy

6. Calculating electrostatic energy

7. Generating atom-atom type feature matrix

In PPI-SLiM-Seq, I have already described the first two components, sequence database

compilation and SLiM finding. Here I describe the other components. Thus, I assume that

I already have the SLiMs from the sequence dataset.

6.4.1 Selecting Interface SLiMs

This component checks if a SLiM is on the interface or not. In this experiment, I consider

a SLiM is on the interface if at least one atom from any of the residues (amino acids) of

the SLiM is on the interface (as discussed in Chapter 4). This component takes a SLiM as

input and outputs TRUE, if the SLiM is on the interface otherwise it outputs FALSE. Figure

6.4 shows the work flow diagram of the component. Once it has a SLiM as input it has the

following information about that SLiM:
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Figure 6.4: Work flow diagram to check if a SLiM is on the interface.

• Complex name

• Chain name

• Residue name

• Start point of the SLiM in the chain

• Length of the SLiM
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Algorithm 3 Check if a SLiM is on the interface

SLiMAtomList = [ ]
FLAG = FALSE
for all the residues in SLiM SRi do

for all the residues in PDB PR j do
if SRi = PR j then

Add(AtomNumk,SLiMAtomList)
end if

end for
end for
for all atoms in SLiMAtomList ASm do

for all atoms in interface database ADn do
if ADn == ASm then

FLAG = T RUE
break

end if
end for

end for
return FLAG

Using this information, it generates a list of all the atoms that belong to this SLiM

from the PDB structure file and interface database. Algorithm 3 shows all the steps of this

component.

6.4.2 Selecting Interacting SLiM Pairs

This component of the model checks if two SLiMs Mi and M j are interacting with each

other or not. If ai and a j are the atoms where ai ∈ Mi and a j ∈ M j, if ∀ δ(ai,a j) there

∃ δ(ai,a j) : δ(ai,a j) < 7Å, then Mi and M j will be interacting, where δ(ai,a j) represents

the distance between ai and a j.
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Figure 6.5: Work flow diagram to check if two SLiMs are interacting.

To check the interactions between two SLiMs, the algorithm takes two SLiMs as input

and outputs T RUE if they are interacting, otherwise FALSE is returned. Figure 6.5 shows

the work flow diagram of the component. It takes two SLiMs as input and has the following

information about the SLiMs:

• Complex name
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• Chain name

• Residue name

• Start point of the SLiM in the chain

• Length of the SLiM

Using this information with the structural information from the PDB structure file, this

component determines whether the SLiMs are interacting or not. In this thesis, I have used

7Å distance as threshold when using desolvation energy and 10Å distance for electrostatic

energy.

6.4.3 Calculating Desolvation Energies

To predict PPIs, I have formalized the desolvation energy in an atom-atom type matrix.

For SLiM-SLiM interaction, I consider all the atoms of the SLiM pair (M1 −M2) that are

within the threshold distance. In case of desolvation energy, I have used 7Å as the threshold

distance. Calculation of desolvation energy has been discussed in Chapter 3.

Algorithm 4 shows all steps to calculate the desolvation energies of all atom-atom pairs

for all atoms that belongs to the SLiM pair. Again, when I consider SLiM-protein interac-

tions, I consider all the atoms from the protein chain interacting with a SLiM (M1) rather

than considering only atoms from the other SLiM (M2). I use the same algorithm (with

some minor modifications) to compute the desolvation energy for SLiM-protein.

This component is based on Algorithm 4. The same algorithm was also used to calculate

electrostatic energies. It takes two SLiMs or one SLiM as input, and delivers all the atom-

atom pairs found for the SLiM-SLiM and SLiM-protein schemes along with the calculated

desolvation energies for each atom-atom pair.



CHAPTER 6. MODEL IMPLEMENTATION 81

Algorithm 4 Calculating desolvation/electrostatic energy
∆Em = 0
if PDBID1 == PDBID2 AND CHAIN1 ̸= CHAIN2 then

AtomListM1 = AtomSelector(PDBID1,CHAIN1,ST POS1,L1)
AtomListM2 = AtomSelector(PDBID2,CHAIN2,ST POS2,L2)
for all atoms in AtomListM1, A1i do

XA1i = xCoord(A1i,PDBID1)
YA1i = yCoord(A1i,PDBID1)
ZA1i = zCoord(A1i,PDBID1)
for all atoms in AtomListM2, A2 j do

XA2 j = xCoord(A2 j,PDBID2)
YA2 j = yCoord(A2 j,PDBID2)
ZA2 j = zCoord(A2 j,PDBID2)
δ = distanceCalculator(XA1i,YA1i,ZA1i,XA2 j,YA2 j,ZA2 j)
if δ < 7Å then

∆Em = ∆Em +EnergyCalculator(A1i,A2 j,δ)
end if

end for
end for

else
return ∆Em

end if
return ∆Em

6.4.4 Calculating Electrostatic Energies

To predict PPIs, I have gathered the electrostatic energies in the atom-atom type matrix. For

SLiM-SLiM, I consider all the atoms of the SLiM pair that are within the threshold distance.

In case of electrostatic energies, I have used 10Å as the threshold distance. Calculation of

electrostatic energy is discussed in Chapter 3.

I have also used Algorithm 4 to calculate the electrostatic energies. Again, when I

consider SLiM-protein, I consider all the atoms from the protein chain interacting with

a SLiM (M1) rather considering only atoms from the other SLiM (M2). I use the same

algorithm (with some minor modification) to compute the electrostatic energies.



CHAPTER 6. MODEL IMPLEMENTATION 82

6.4.5 Generating Atom-atom Type Feature Vector

This component generates the complex vs. atom-atom type matrix. According to the au-

thors of [52], there are mainly 18 different types of atoms and the atomic contact potential

(ACP) for each atom-atom type pair is fixed [9]. Thus, for each complex, I consider all the

atom-atom types, which yields a total of (18C2)+18 = 171. For the ZH dataset, I obtain a

feature matrix of 137×171 dimensions and the MW dataset a feature matrix of 327×171

dimensions.

This component is internally integrated with the previous components and each time the

previous component outputs one atom-atom type with desolvation/electrostatic energies, it

manages them to map it onto the feature matrix.



Chapter 7

Results and Analysis

Two different computational models have been designed and implemented in this thesis.

To measure the performance and accuracy of those models, different experimental setups

were adopted. For all the experiments and analysis, the two datasets have been used. In

this chapter, results from both models for different experimental setups are discussed and

analyzed. This chapter also provides a comparative view and analysis of the performance

and accuracy of these models with other existing models.

7.1 Dataset Analysis

As discussed in Chapter 6, I use two different datasets; the ZH and MW dataset. The ZH

dataset contains 75 obligate and 62 non-obligate complexes while the MW dataset has 212

non-obligate and 115 obligate complexes.

83
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Figure 7.1: Sequence length analysis of the ZH obligate dataset.

Figure 7.1 shows the sequence length distribution of ZH obligate complexes. The x-axis

represents all the complexes and the y-axis represents the lengths of the chains. In the figure,

each complex is represented with two marks (red o and x). Each mark represents the length

of one chain of the complexes. Complex 2pfl has the longest chain which is 759 residues

long while complex 1b3a has the shortest chain of 67 residues. It also shows that in most

of the complexes, both chains have the same length. Again, Figure 7.2 shows the sequence

distribution of the ZH non-obligate complexes. In case of the ZH non-obligate, complex

1qbk has the longest chain of 890 residues and complex 1dow has the shortest chain of 32

residues long. But no complex has chains of the same length. This is a noticeable difference
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between these two datasets. The obligate complexes are mostly homodimers and this is one

of the main reasons behind this difference.

Figure 7.2: Sequence length analysis of the ZH non-obligate dataset.

Figure 7.3 shows the sequence length distribution of the MW obligate complexes. The

x-axis represents all the complexes and the y-axis represents the lengths of the chains. Most

of the complexes in the MW dataset have two chains, but there are some complexes which

have more than two chains. For simplicity, I consider up to five chains from complexes

having more than two chains.
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Figure 7.3: Sequence length analysis of the MW obligate dataset.

A red circle represents the first chain, a blue cross, green square, black square and

black diamond represent the second, third, fourth and fifth chain, respectively. In the MW

obligate dataset, complex 1c3o has the longest chain of 1,073 residues while complex 2q33

has the shortest chain of 43 residues.
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Figure 7.4: Sequence length analysis of the MW non-obligate dataset.

Figure 7.4 shows all the complexes of the MW non-obligate dataset. In this dataset,

complex 1aro has the longest chain of 883 residues and 1ao7 has the shortest chain of 9

residues. The differences between the chains of obligate and non-obligate are not noticeable

as in the ZH dataset.
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7.2 SLiM Analysis

The two datasets, MW and ZH, have been used for all experiments. Based on the length

and total number of SLiMs, different sets of SLiMs have been defined from the datasets:

• SLiM ZH 1000 3 10 - 1000 SLiMs, length : 3−10, dataset: ZH

• SLiM ZH 1000 2 7 - 1000 SLiMs, length : 2−7, dataset: ZH

• SLiM ZH 500 3 10 - 500 SLiMs, length : 3−10, dataset: ZH

• SLiM ZH 500 2 7 - 500 SLiMs, length : 2−7, dataset: ZH

• SLiM MW 1000 3 10 - 1000 SLiMs, length : 3−10, dataset: MW

• SLiM MW 1000 2 7 - 1000 SLiMs, length : 2−7, dataset: MW

• SLiM MW 500 3 10 - 500 SLiMs, length : 3−10, dataset: MW

• SLiM MW 500 2 7 - 500 SLiMs, length : 2−7, dataset: MW

7.2.1 SLiMs for the ZH Dataset

Figure 7.5 shows the SLiM distribution of SLiM ZH 500 3 10 over the ZH obligate dataset.

SLiMs that have sites in the ZH obligate complexes are considered. The x-axis represents

the complexes and the y-axis represents the SLiMs found in the complexes. Complex 1

(1ahj A:B), complex 25 (1b9m A:B), complex 50 (1qfe A:B) and complex 75 (4mdh A:B)

have a total of 15, 27, 20 and 45 SLiMs respectively.
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Figure 7.5: SLiM distribution in the ZH obligate dataset.

Figure 7.6 shows the SLiM distribution of SLiM ZH 500 3 10 over the ZH non-obligate

dataset. SLiMs that have sites in the ZH non-obligate complexes are considered. In the ZH

non-obligate dataset there are a total of 62 complexes. Complex 1 (1ava A:C), complex 25

(1kac A:B), complex 50 (1stf E:I) and complex 62 (1wq1 R:G) have a total of 56, 18, 23

and 26 SLiMs respectively.
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Figure 7.6: SLiM distribution in the ZH non-obligate dataset.

As the figure for the entire ZH dataset is larger, I show SLiM distribution separately,

obligate and non-obligate. The full SLiM distribution of SLiM ZH 500 3 10 over the entire

ZH dataset is included in Appendix C.

All the SLiMs of SLiM ZH 500 3 10 are distributed over 137 complexes (274 chains),

a total of 4,286 sites. Figure 7.7 shows the number of the sites of SLiMs in ZHSLiM3. The

x-axis shows the SLiMs and the y-axis shows the number of sites. The minimum number of

sites is 8 and the maximum number of sites is 22 for SLiM ZH 500 3 10. From the graph,

it is clear that most SLiMs have 8 sites, and in average 8.58 sites. As the figure for all the

SLiMs in ZHSLiM3 is larger, I show only the first fifty SLiMs in this figure. The SLiM vs.
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site number figure for all the SLiMs of SLiM ZH 500 3 10 is included in Appendix C.

Figure 7.7: Distribution of the number of sites of SLiMs in SLiM ZH 500 3 10.

In SLiM ZH 1000 3 10, there are 1,000 SLiMs, a total of 8,298 sites, 5,052 of them are

from the obligate complexes and 3,246 of them are from non-obligate complexes. Figure

7.8 shows the ratio of complex types holding SLiM sites of SLiM ZH 1000 3 10. 61% of

the sites are from obligate complexes and 39% from non-obligate. The minimum number

of sites of SLiMs in SLiM ZH 1000 3 10 is 8 and the maximum is 22, which is similar to

SLiM ZH 500 3 10.
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Figure 7.8: Types of the complexes holding sites of SLiMs in SLiM ZH 1000 3 10.

7.2.2 SLiMs for the MW Dataset

Figure 7.9 shows the SLiM distribution of SLiM MW 500 3 10 over the MW obligate

dataset. SLiMs that have sites in the MW obligate complexes are considered. The x-

axis represents the complexes and the y-axis represents the SLiMs found in the complexes.

Complex 1 (1b4u A:B) holds a total of 4 SLiMs, while complex 50 (1k8k A:B) has a total

of 27 SLiMs.
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Figure 7.9: SLiM distribution in the MW obligate dataset.

Figure 7.10 shows the SLiM distribution of SLiM MW 500 3 10 over the MW non-

obligate dataset. SLiMs that have sites in the MW non-obligate complexes are considered.

In the MW non-obligate dataset there are a total of 212 complexes. Complex 1 (1wq1

G:R), complex 25 (1jma A:B), complex 50 (1bdj A:B), complex 100 (1e6e A:B), complex

200 (1mbu A:C) and complex (1mr1 A:D) have a total of 13, 32, 37, 23, 12 and 8 SLiMs

respectively.



CHAPTER 7. RESULTS AND ANALYSIS 94

Figure 7.10: SLiM distribution in the MW non-obligate dataset.

As the figure for the entire MW dataset is larger, I show SLiM distribution separately,

obligate and non-obligate. The full SLiM distribution of SLiM MW 500 3 10 over the

entire MW dataset is included in Appendix C.

All the SLiMs in SLiM MW 500 3 10 are distributed over 327 complexes (more than

654 chains). Figure 7.11 shows the number of sites of SLiMs in SLiM MW 500 3 10. The

x-axis shows the SLiMs and the y-axis shows the site number. This set has a minimum site

number of 8 and a maximum of 62. Most of the SLiMs have 8 sites and the average number

of sites is 9.55. As the figure for all the SLiMs in SLiM MW 500 3 10 is larger, I show

only the first fifty SLiMs in this figure. The SLiM vs. site number figure for all the SLiMs
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of SLiM MW 500 3 10 is included in Appendix C.

Figure 7.11: Distribution of number of sites of SLiMs in SLiM MW 500 3 10.

In SLiM MW 1000 3 10, there are 1,000 SLiMs and a total of 9,556 sites, 2,452 of

them are obligate complexes and 7,104 of them are non-obligate. Figure 7.12 shows the

ratio of complex types holding SLiM sites of SLiM MW 1000 3 10. 26% of the sites are

obligate complexes and 74% from non-obligate.
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Figure 7.12: Types of the complexes holding sites of SLiMs in SLiM MW 1000 3 10.

7.3 Experimental Results

In this thesis, I propose two different models and one new feature, sequence information.

I also use desolvation and electrostatic energies. I use sequence information in PPI-SLiM-

Seq and desolvation and electrostatic energies in PPI-SLiM-DEEE. To validate the perfor-

mance of the models, I use leave-one-out with a k-NN, and cross dataset and 10-fold cross

validation with LDR and SVM.
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7.3.1 Results for PPI-SLiM-Seq

In PPI-SLiM-Seq, I use sequence information as features for prediction. The sequence

information extraction procedure has been discussed in Chapter 3. I implement leave-one-

out validation with a k-NN classifier. I also implement cross dataset validation to test the

accuracy and significance of the newly proposed features. For cross dataset validation I

also use LDR and SVM for classification. For SVM, I use the linear kernel and for LDR I

use FDA, HDA and CDA with QB and LB classifiers. In a 10-fold cross validation process,

reductions to dimensions d = 1,2, . . . ,20 were performed, followed by QB and LB. I use

the datasets ZH and MW. For each dataset, classification accuracy is shown here.

7.3.1.1 The ZH Dataset

Table 7.1 shows the results of leave-one-out cross validation with k-NN. The first column of

the table shows the SLiM set used for the results. The next column holds the SLiM length

which is the same as the partition length (discussed in Chapter 6). The next columns show

the classification results for different values of k. The values of k = 1,5,10,15,20,25,30,35

have been chosen arbitrarily. I use the Euclidean distance as distance metric which is

learned with the specialized large margin nearest neighborhood algorithm.
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Length

(ℓ)

k-NN ( k =)

1 5 10 15 20 25 30 35

ZH SLiMs

ℓ= 3−10

# of SLiMs

= 1,000

10 96.35 95.62 97.08 97.08 97.08 97.08 97.81 98.54

9 96.35 96.35 97.81 97.81 97.81 99.27 98.54 99.27

8 93.43 95.62 95.62 95.62 95.62 95.62 95.62 95.62

7 99.27 99.27 99.27 99.27 99.27 99.27 99.27 99.27

6 99.27 99.27 99.27 99.27 98.54 98.54 98.54 96.35

5 99.27 98.54 95.62 95.62 95.62 95.62 95.62 95.62

4 99.27 97.81 98.54 98.54 98.54 99.27 99.27 99.27

3 67.88 69.34 62.77 56.93 65.93 59.85 61.31 62.77

ZH SLiMs

ℓ= 2−7

# of SLiMs

= 1,000

7 98.35 98.35 98.35 98.35 98.35 98.35 98.35 98.35

6 97.81 98.54 98.54 98.54 98.54 98.54 98.54 98.54

5 99.27 99.27 99.27 99.27 99.27 99.27 99.27 99.27

4 94.16 96.35 94.16 93.43 92.70 92.70 92.70 91.97

3 93.43 92.70 92.70 91.97 91.97 91.97 91.24 91.24

Table 7.1: k-NN classification results for the ZH dataset using PPI-SLiM-Seq.

For ℓ= 10, the highest accuracy is 98.54% for k= 35 and the lowest is 95.62% for k= 5.

For ℓ = 9,7,6,5, it achieves the highest accuracy of 99.27% and for ℓ = 8 it achieves the

highest accuracy of 95.62%. This table also shows that for a partition size of 3, it achieves

lower accuracy. For k = 5, it achieves the highest accuracy of 69.34% and lowest accuracy

of 56.93% is for k = 15. Again, for the other SLiM set, when ℓ= 3, it achieves the lowest

accuracy of 91.24%. For the ZH dataset, the highest accuracy is 99.27% for different values
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of ℓ and k. For ℓ= 7, all the values of k result in accuracy of 99.27%.

7.3.1.2 The MW Dataset

Table 7.2 shows the results of leave-one-out cross validation with a k-NN for the MW

dataset. The first column of the table shows the SLiM set used for the results. The next

column shows the SLiM length which is same as the partition length (discussed in Chapter

6). The next columns contains the classification results for different values of k.

Length

(ℓ)

k-NN ( k =)

1 5 10 15 20 25 30 35

MW SLiMs

ℓ= 3−10

# of SLiMs

= 1,000

10 98.15 98.77 98.77 98.46 98.46 98.46 98.46 98.46

9 98.77 99.07 99.07 99.07 99.07 99.07 99.07 99.07

8 98.15 99.07 99.07 99.07 99.07 99.07 99.07 99.07

7 92.63 96.31 96.31 96.31 96.31 96.31 96.31 96.31

6 96.62 96.62 96.31 96.01 96.01 96.01 96.01 96.01

5 97.54 99.07 98.15 98.46 99.07 99.07 99.07 99.07

4 96.01 97.54 96.62 96.31 95.70 95.70 95.39 95.09

3 98.46 99.07 99.07 98.77 98.77 98.77 98.77 98.77

MW SLiMs

ℓ= 2−7

# of SLiMs

= 1,000

7 97.54 98.46 97.85 97.85 97.85 97.85 97.85 97.85

6 96.31 96.31 96.62 96.62 96.62 96.62 96.62 96.62

5 98.77 98.46 98.46 98.46 98.46 98.46 98.15 98.15

4 97.54 99.07 99.07 99.07 99.07 99.07 99.07 99.07

3 55.21 58.28 64.41 61.34 55.82 65.64 63.80 63.49

Table 7.2: k-NN classification results for the MW dataset using PPI-SLiM-Seq.
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The values of k = 1,5,10,15,20,25,30,35 have been chosen arbitrarily. I use the

Euclidean distance metric and large margin nearest neighborhood algorithm for k-NN.

For ℓ = 10, the highest accuracy is 98.77% for k= 5,10 and the lowest is 98.46% for

k= 15,20,25,30,35. For ℓ = 9,8,5, it yields the highest accuracy of 99.07% and yields

the lowest accuracy of 95.70% for ℓ= 4, k= 20. For the other set ℓ= 3 it gives the lowest

accuracy of 55.21% for k= 1.

7.3.2 Cross-dataset Validation of PPI-SLiM-Seq

To validate the results achieved by PPI-SLiM-Seq, I also implemented the cross dataset

validation method. I use the two datasets, ZH and MW, for all the experiments. To perform

the cross dataset validation, I use the SLiMs of the MW dataset for training with the ZH

dataset for testing and vice versa. Using the cross dataset validation, PPI-SLiM-Seq gives

almost the same accuracy using different classifiers.

Length

(ℓ)
SVM

LDR

Quadratic Linear

FDA HDA CDA FDA HDA CDA

ZH dataset

MW SLiMs

5 95.62 95.62 97.81 96.35 93.43 97.08 96.35

4 97.81 97.08 98.54 99.27 97.81 97.81 97.81

MW dataset

ZH SLiMs

6 98.77 98.77 98.77 98.77 98.16 98.47 98.47

5 98.47 99.08 99.08 99.08 98.47 98.47 98.47

Table 7.3: SVM and LDR classification results for the ZH and MW datasets with the MW
and ZH SLiMs respectively.
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Table 7.3 shows the results of cross dataset validation. The first column briefly describes

the dataset with SLiM, length column is for the partition size or SLiM length. The SVM

column holds the classification accuracy obtained by SVM and the remaining columns are

for different LDR criteria. I use the ZH SLiMs for training with the MW dataset for ℓ= 5,6

and achieve almost the same accuracy. The MW SLiMs for training with the ZH dataset for

ℓ= 4,5 also yields almost the same results. I chose the values of ℓ experimentally.

Cross dataset validation yields an accuracy of 99.27% and 97.81% for ℓ = 4,5 respec-

tively using SVM and different LDR for the ZH dataset with the MW SLiMs for training.

For the same values of ℓ, leave-one-out with a k-NN gives an accuracy of 99.27% (for

k= 1) and 99.27% (for k= 1,25,30,35) respectively. Again, for the MW dataset with the

ZH SLiMs for training cross dataset validation gives an accuracy of 98.77% and 99.08%

for ℓ = 6,5 respectively using SVM and different LDR, while for the same values of ℓ,

leave-one-out with a k-NN yields an accuracy of 96.62% (for k= 1,5) and 99.07% (for

k= 20,25,30,35) respectively.

7.3.3 PPI-SLiM-DEEE Results

For PPI-SLiM-DEEE, I use desolvation and electrostatic energies as features. Calculation

of desolvstion and electrostatic energies has been described in Chapter 3. For the LDR

schemes, six different classifiers were implemented and evaluated, namely the combina-

tions of FDA, HDA and CDA with QB and LB classifiers. In a 10-fold cross validation

process, reductions to dimensions d = 1,2, . . . ,20 were performed, followed by QB and

LB. I use the two datasets, ZH and MW. For each dataset, classification accuracy is de-

scribed here.
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7.3.3.1 The ZH dataset

Tables 7.4 and 7.5 show the classification results achieved by PPI-SLiM-DEEE for the ZH

dataset. I use SLiM-protein interactions (discussed in Chapter 6) to produce the atom-atom

type feature vectors. The first column shows the energy used as features. The second

column contains the SLiM lengths. I used two different sets of SLiM lengths, ℓ = 3− 10

and ℓ = 2− 7. Table 7.4 shows the results considering 1,000 SLiMs and Table 7.5 shows

the results considering 500 SLiMs from the same ZH dataset. The next column shows the

accuracy obtained by SVM and all the remaining columns are for different LDR.

# of SLiMs

= 1000

ZH dataset

SVM

LDR

Quadratic Linear

FDA HDA CDA FDA HDA CDA

Desolvation

Energy

ℓ= 3−10 67.69 59.23 62.31 60.00 59.23 61.54 70.77

ℓ= 2−7 63.85 48.46 55.38 56.15 49.23 51.54 68.46

Electrostatic

Energy

ℓ= 3−10 77.69 53.08 60.77 66.92 57.69 55.38 71.54

ℓ= 2−7 76.15 46.92 54.62 67.69 49.23 51.54 72.31

Table 7.4: Classification results for the ZH dataset using desolvation and electrostatic ener-
gies with SVM and LDR. 1,000 SLiMs for two different sets of lengths (ℓ) are considered.

Table 7.4 shows that PPI-SLiM-DEEE yields a maximum accuracy of 70.77% for ℓ =

3−10 using desolvation energy with linear CDA. It gives a maximum accuracy of 77.69%

for ℓ = 3− 10 using electrostatic energy with SVM. In both cases, 1,000 SLiMs from the

same ZH dataset were considered.
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# of SLiMs

= 500

ZH dataset

SVM

LDR

Quadratic Linear

FDA HDA CDA FDA HDA CDA

Desolvation

Energy

ℓ= 3−10 67.69 55.38 58.46 56.15 52.31 53.08 78.46

ℓ= 2−7 63.08 47.69 56.15 56.92 53.08 53.08 65.38

Electrostatic

Energy

ℓ= 3−10 73.85 52.31 62.31 72.31 54.62 54.62 79.23

ℓ= 2−7 71.54 56.92 58.46 67.69 56.15 57.69 73.85

Table 7.5: Classification results for the ZH dataset using desolvation and electrostatic ener-
gies with SVM and LDR. 500 SLiMs for two different sets of lengths (ℓ) are considered.

Table 7.5 shows that PPI-SLiM-DEEE yields a maximum accuracy of 78.46% for ℓ =

3−10 using desolvation energy with linear CDA. It gives a maximum accuracy of 79.23%

for ℓ = 3− 10 using electrostatic energy linear CDA. In both cases, 500 SLiMs from the

same ZH dataset were considered.

7.3.3.2 The MW dataset

Tables 7.6 and 7.7 show the classification results achieved by PPI-SLiM-DEEE, using the

MW dataset. I use SLiM-protein interactions (discussed in Chapter 6) to produce the atom-

atom type feature vectors.
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# of SLiMs

= 1000

MW dataset

SVM

LDR

Quadratic Linear

FDA HDA CDA FDA HDA CDA

Desolvation

Energy

ℓ= 3−10 60.20 52.17 66.22 61.54 53.51 67.56 68.56

ℓ= 2−7 68.72 49.79 69.55 60.49 53.50 69.55 69.14

Electrostatic

Energy

ℓ= 3−10 65.31 60.52 68.27 67.90 62.36 67.90 69.37

ℓ= 2−7 66.22 51.51 66.22 68.23 61.54 66.89 67.22

Table 7.6: Classification results for the MW dataset using desolvation and electrostatic en-
ergies with SVM and LDR. 1,000 SLiMs for two different sets of lengths (ℓ) are considered.

# of SLiMs

= 500

MW dataset

SVM

LDR

Quadratic Linear

FDA HDA CDA FDA HDA CDA

Desolvation

Energy

ℓ= 3−10 61.87 58.19 70.23 70.90 58.53 68.90 70.23

ℓ= 2−7 62.54 62.88 66.89 61.20 61.87 66.89 67.89

Electrostatic

Energy

ℓ= 3−10 66.89 59.53 72.24 73.24 62.21 71.91 73.91

ℓ= 2−7 66.89 64.21 72.24 68.90 65.89 74.58 74.58

Table 7.7: Classification results for the MW dataset using desolvation and electrostatic
energies with SVM and LDR. 500 SLiMs for two different sets of lengths (ℓ) are considered.

The first column shows the type of energy used as features. The second column shows

the SLiM lengths. I used two different sets of SLiM lengths, ℓ= 3−10 and ℓ= 2−7. Table
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7.6 shows the results for considering 1,000 SLiMs, while Table 7.7 shows the results for

considering 500 SLiMs from the same MW dataset. The next column shows the accuracy

obtained by SVM and all the remaining columns are for different LDR criteria.

Table 7.6 shows that PPI-SLiM-DEEE yields a maximum accuracy of 69.14% for ℓ =

2− 7 using desolvation energy with linear CDA and 69.37% for ℓ = 3− 10 using elec-

trostatic energy with linear CDA. Again, Table 7.7 shows that PPI-SLiM-DEEE gives a

maximum accuracy of 70.90% for ℓ= 3−10 using desolvation energy with quadratic CDA

and 74.58% for ℓ= 2−7 using electrostatic energy with linear HDA.

7.4 Result Comparison

In [54], Zhu et al. predicted obligate and non-obligate complexes with 70.07% accuracy.

They used four NOXclass features with two stage SVM to achieve that performance. Again

the authors of [2] claim that they achieved maximum accuracy of 82.13% with LDR (HDA,

FDA, CDA) combined with quadratic Bayesian (QB) and linear Bayesian (LB). Thus, they

had over 12% improved result for this case. To do a fair comparison, they also used the

same features with the prediction methods by Zhu et al. [54] and it achieved maximum

accuracy of 77.92% which is still lower than the accuracy of their approach by 4%.

Vasudev and Rueda predicted obligate and non-obligate complexes with an accuracy of

96.17% [49] which is over 14% improved result than the results by Aziz et al. [2] and over

26% improved than the results by Zhu et al. [54]. In this thesis, I use information contained

in sequence as features to achieve maximum accuracy of 99.27% using leave-one-out with a

k-NN, which is over 17% more than the results in [2] and over 3% improved than the results

by Vasudev and Rueda [49]. I use different lengths of sequences (ℓ = 10,9,8,7,6,5,4,3)

to calculate the information values. For the classification, I use Eucledian distance and



CHAPTER 7. RESULTS AND ANALYSIS 106

different values of k, k = 1,5,10,15,20,25,30,35.

NOXClass

Feature +

SVM

NOXClass

feature +

LDR

Approach

by Aziz et

al. [2]

Approach by

Vasudev and

Rueda [49]

Sequence

Information

with k-NN

Zhu et al.

[54]

70.07 77.92 82.13 96.17 99.27

Mintseris

et al. [34]

77.64 77.32 80.86 97.36 99.07

Table 7.8: Comparison of classification accuracy with other related works.

With the same four NOXclass features, Mintseris et al. [34] achieved 77.64% accuracy

with an optimized SVM. The authors of [2] achieved 80.86% accuracy which is over 3%

improvement from results in [34]. The authors of [2] also tested those features for [34]

with their prediction method, in which they achieved 77.32% accuracy. Using sequence

information I achieve a maximum accuracy of 99.07%, which is over 19% improved results

than the results in [2]. Table 7.8 shows a comparison between the results of PPI-SLiM-

Seq and the results obtained by Zhu et al. [54], Mintseris et al. [34], Aziz et al. [2] and

Vasudev and Rueda [49]. For the ZH dataset, the model achieves an accuracy of 99.27%

which is about 29% higher than the accuracy obtained by Zhu et al. [54]. Accuracy by

the PPI-SLiM-Seq, for the ZH dataset is about 17% higher than the accuracy obtained by

Aziz et al. [2] and about 3% higher than the accuracy obtained by Vasudev and Rueda

[49]. Again, PPI-SLiM-Seq yields an accuracy of 99.07% for the MW dataset which is
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about 22% higher than the accuracy obtained by Mintseris et al. [34]. For the MW dataset,

accuracy achieved by the PPI-SLiM-Seq is about 19% higher than the accuracy obtained

by Aziz et al. [2] and 2% higher than the accuracy obtained by Vasudev and Rueda [49].

For a fair comparison, I also implemented cross dataset validation with SVM and LDR.

To perform the cross dataset validation, I use SLiMs from the MW dataset to calculate

the sequence information of the ZH dataset and vice versa. Table 7.9 shows that the cross

dataset validation with SVM yields over 15% improved accuracy than the results by Aziz

et al. [2] and with LDR it yields over 17% improved accuracy. It gives over 1% and

3% improved accuracy than the results by Vasudev and Rueda [49] using SVM and LDR

respectively.

NOXClass

Feature +

SVM

NOXClass

feature +

LDR

Approach

by Aziz et

al. [2]

Approach by

Vasudev and

Rueda [49]

Cross dataset

validation +

SVM/LDR

Zhu et al.

[54]

70.07 77.92 82.13 96.17 97.81/99.27

Mintseris

et al. [34]

77.64 77.32 80.86 97.36 98.77/99.08

Table 7.9: Accuracy comparison of cross dataset validation with other related works.

Cross dataset validation yields over 18% and 19% improved accuracy than the results

by Aziz et al. [2] with SVM and LDR respectively using the ZH SLiMs with the MW

dataset. It also yields accuracies 1% and 2% higher than that of the work by Vasudev and
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Rueda [49]. For cross dataset validation, I use two values of ℓ, ℓ = 5,4 for the ZH dataset

and ℓ= 6,5 for the MW dataset. These values of ℓ were found experimentally.

7.5 PPI-SLiM-Seq vs. PPI-SLiM-DEEE

As discussed earlier, the PPI-SLiM-Seq model yields very good accuracy which is much

higher than the accuracy by the other model, PPI-SLiM-DEEE. For the ZH dataset, PPI-

SLiM-Seq achieves an accuracy of 99.27% using information contained in the sequences

while PPI-SLiM-DEEE yields an accuracy of 79.23% using electrostatic energy. PPI-

SLiM-Seq achieves an accuracy of 99.07% for the MW dataset while PPI-SLiM-DEEE

yields 74.58% accuracy using electrostatic energy. In both cases, PPI-SLiM-Seq results in

better accuracy.

PPI-SLiM-DEEE uses desolvation and electrostatic energies as distinguishing features.

Desolvation and electrostatic energies are based on atomic distance and interface area. The

distances between two atoms are calculated using three coordinates (X , Y , and Z) of the

atoms. Thus, distance calculation for all possible atom-atom pairs requires long time. If a

protein contains a total of n atoms, there will be n×(n−1)
2 possible unique atom-atom pairs.

Calculating distances for such a high number of atom-atom pairs runs in O(n2

2 ) time which

makes the model time consuming.

The Protein Data Bank (PDB) [6] is the main source of the structures of protein com-

plexes. The text format of the structure file which is mostly used is not perfect. It usually

contains a lot of spacing errors, numbering errors, alignment issues. In many cases the

PDB does not provide complete structural information of protein complexes. All these is-

sues may lead to wrong result. Also, processing all the information of a protein complex at

the atomic level is also time consuming and computationally expensive.
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PPI-SLiM-Seq uses information contained in the sequences. Sequence information val-

ues are calculated using the sequences and PSPMs. Calculating sequence information val-

ues is simple and much faster than calculating desolvation or electrostatic energies as tomic

level information of protein atoms are not required. In this way, PPI-SLiM-Seq avoids the

usage of the PDB structure files. As a result, the performance of the PPI-SLiM-Seq is not

affected by the errors in the PDB structure files.

Structure files are available for approximately 80,000 protein complexes while there are

millions of sequences available. The number of available structure files limits the scope

of the PPI-SLiM-DEEE as it is based on the structural information of protein complexes.

PPI-SLiM-Seq uses sequence information values and hence, has a wider scope than the

PPI-SLiM-DEEE.

Considering all the issues, it is clear that the performance of the PPI-SLiM-Seq model is

better than the performance of PPI-SLiM-DEEE. The accuracy achieved by the PPI-SLiM-

Seq is also higher than the accuracy by PPI-SLiM-DEEE. PPI-SLiM-Seq can be used for

millions of proteins while PPI-SLiM-DEEE is limited only to 80,000 proteins.



Chapter 8

Conclusion

8.1 Summary of Contributions

In this thesis, I present two new models to predict obligate and non-obligate protein com-

plexes. In both models, I use SLiMs to generate the features for classification. The key

contributions of the thesis can be summarized as follows:

• The PPI-SLiM-Seq model presented in this thesis results in significant improvements

in the ZH and MW datasets for predicting obligate and non-obligate complexes with

information contained in sequences as properties and leave-one-out with a k-NN.

• I also introduce a new feature, information contained in sequence, which can be cal-

culated only from sequence data using PSPMs. It does not need to use the protein

structure file.

• Corss dataset validation with SVM and LDR also shows a better performance, which

indicates the significance of sequence information values for predicting obligate and

non-obligate complexes.

110
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• The other model, PPI-SLiM-DEEE uses desolvation and electrostatic energies as fea-

tures with SVM and LDR, and achieves higher accuracy than that of Zhu et al. [54],

Mintseris et al. [34] and close to the accuracy by Aziz et al. [2].

• A visual analysis of SLiMs shows how the regions are conserved over a sequence

dataset and how they are important in PPI. Another visual analysis of site numbers of

SLiMs provides a very good insight about how the sites of SLiMs are distributed in

different protein chains.

8.2 Limitations

In PPI-SLiM-Seq, for the leave-one-out method, I do not use well-known classifiers such as

SVM and LDR although I used SVM and LDR for cross dataset validation. Again, in PPI-

SLiM-DEEE, I use SLiMs to calculate the features. SLiMs do not cover the entire interface

of a complex. Thus, I exclude a potential amount of interface area which is important in

PPI. However, the advantage of using sequence information only is that the method can be

applied even when protein structures are unknown.

8.3 Future Work

I use the SLiMs identified by MEME where there are other SLiM identification tools avail-

able. One can use other SLiM identification tools in order to compare the results. Again, I

use a maximum sequence partition of length 10, which can be extended to a partition size up

to 20. While identifying SLiMs from the sequence datasets, I always use ranges of lengths,

such as 3−10, 2−7 and ranges of site numbers such as 8−200. Different parameters can

be defined in different combinations to identify different SLiM sets. Fixed length of SLiMs
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and fixed site number can be another approach in SLiM identification. Again, in PPI-SLiM-

DEEE, I use only SLiMs. One can use motifs and domains in PPI-SLiM-DEEE instead of

SLiMs, or combine sequence information with different physiochemical properties or other

evolutionary properties for generating features. All these can be summarized as follows:

• Sets of SLiMs of different lengths, numbers and site number can be defined and used.

• Different combinations of other MEME parameters can be used to define different

sets of SLiMs.

• Other SLiM identification tools can be used in order to find different sets of SLiMs.

• Extend the partition size up to 20 while varying the SLiM lengths.

• Longer motifs or shorter domains of different lengths can be used to calculate the

information contained in sequences.

• Combination of sequence information with other evolutionary information can be

used as properties.

• A way to use the combination of sequence information with different physiochemical

properties can also be investigated.



Appendix A

Discovering SLiMs using MEME

Finding SLiMs using MEME is easy enough and straightforward. MEME offers SLiM

finding services both as online web server and also via installation of software packages.

The standard version can be configured as serial or parallel. The performance of the parallel

version depends on the processors available and is faster than the serial version.

A.1 MEME Web Service (Online)

The online version of MEME can be used at http://meme.sdsc.edu/meme/intro.html or

http://meme.nbcr.net/meme/intro.html. This version of MEME is very user friendly but

limited in terms of defining different parameters as per the requirements. It only allows the

user to define the maximum and minimum width of a motif, maximum number of motifs

and maximum and minimum number of sites. It does not support maximum number of mo-

tifs more than 100 and can not handle a sequence dataset of more than 60,000 characters. It

shows the output online and also it emails the output to the email address provided by the

user.
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A.2 Installing the Standard version

The installation version of MEME can be configured as per the requirements. The latest

source code of this version is available at http://meme.nbcr.net/downloads/meme 4.8.1.tar.gz.

I configured it to support a maximum number of motifs = 2,000, a dataset of 200,000 char-

acters, and minimum width of a motif = 2. It can also be configured either as a serial or

parallel process. As the serial process is time consuming, I configured the parallel one. For

a comparison between serial and parallel MEME it can be said that to find 100 motifs (of

3-10 width) from a dataset of 60,000 characters, serial MEME takes about 24 hours while

parallel MEME takes about 5 hours given that 8 processors run at the same time.

Currently, MEME can be installed only on Linux given that some prerequisite soft-

ware and packages/libraries are already installed or configured. The prerequisite software

packages are as follows:

1. Perl (v.5.10 or higher)

1.1 HTML::PullParser

1.2 HTML::Template

1.3 LWP

1.4 SOAP::Lite

1.5 XML::Simple

2. Python (v2.6 up to v2.7.x)

3. Bourne compatible shell

4. C Compiler

http://meme.nbcr.net/downloads/meme_4.8.1.tar.gz
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5. GZip/gunzip utilities

6. ImageMagick

7. Libxml2

8. Libxslt

9. MPICH (for the parallel version)

A.3 Installing Serial MEME

The installation of the serial version of MEME is straightforward and can be accomplished

using a few commands:

$ tar zx f meme V ERSION.tar.gz

$ cd meme V ERSION

$ ./con f igure−−pre f ix = $home/meme

$ make

$ make test

$ make install

As mentioned above, I configured the parallel version of MEME.
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A.4 Installing Parallel MEME

A.4.1 Configuring the Source Code

The default installation of MEME outputs a maximum of 100 motifs. To configure MEME

for a higher number of motifs, the MAXG parameter needs to be defined based on the

requirements (in our case 2000) in the user.h file (at line #20) which is located at the /src

directory. By default, MEME does not find the SLiMs. The default minimum width of a

motif is defined as 8. Thus, to find motifs with shorter lengths (e.g. 2, 3, 5) the MIN W

parameter (at line #31) needs to be defined in the same user.h file, which I set to 2. Having

all these changes, MEME can be used to discover SLiMs from a sequence dataset.

A.4.2 Installation of the Parallel Version

Installing the parallel version of MEME is not that much difficult. MPICH package, which

supports parallelism, needs to be configured correctly. Once MPICH is configured and

working properly, just an additional parameter needs to be passed. The commands to install

the parallel version of MEME are as follows:

$ tar zx f meme V ERSION.tar.gz

$ cd meme V ERSION

$ ./con f igure−−pre f ix = $home/meme−−with−mpicc = /usr/bin/mpicc

$ make

$ make test

$ make install

The $ make test command checks the installation whether or not it is correct. There are



APPENDIX A. DISCOVERING SLIMS USING MEME 117

three major tests, if it passes all the tests, then the installation is successful.

A.4.3 MEME on Sharcnet

Shared Hierarchical Academic Research Computing Network (SHARCNET) was formally

established in 2001. SHARCNET is the largest high performance computing consortium

in Canada, including 17 universities, colleges and research institutes across South western,

Central and Northern Ontario. Currently, the grid architecture of the SHARCNET facility

is serving all the researchers with more that 10,000 processors and 1 PB of storage. One

user can use 32 processors at the same time (e.g., on Hound Cluster) and can use 120 GB

of physical memory.

Figure A.1: Schematic diagram of MEME on SHARCNET.
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As finding SLiMs from a sequence dataset using MEME is an iterative process, it needs

longer time and enough computation power. It also needs large amounts of physical mem-

ory for larger sequence datasets. To meet this requirement, I deployed and configured

MEME on SHARCNET. It showed a great performance by finding 2000 motifs within 48

hours using 20 processors and 40 GB of physical memory. In this way, I was able to run

MEME multiple times for different datasets, with different parameter settings.

A.5 Inputs to MEME

All the inputs to MEME can be categorized into two categories; one is the input dataset and

the other is the parameters.

A.5.1 FASTA Format Dataset

MEME takes a FASTA format sequence file as input. The input file may contain the se-

quence for a single protein complex or a set of sequences for different protein complexes.

A sample FASTA sequence file for protein complex Cytoplasmic Malate Dehydrogenase

(4mdh) is the following:

4mdh:A

XSEPIRVLVTGAAGQIAYSLLYSIGNGSVFGKDQPIILVLLDITPMMGVLDGVLMELQDCALPLLKDVIATDKEEIA

FKDLDVAILVGSMPRRDGMERKDLLKANVKIFKCQGAALDKYAKKSVKVIVVGNPANTNCLTASKSAPSIPKENFSC

LTRLDHNRAKAQIALKLGVTSDDVKNVIIWGNHSSTQYPDVNHAKVKLQAKEVGVYEAVKDDSWLKGEFITTVQQRG

AAVIKARKLSSAMSAAKAICDHVRDIWFGTPEGEFVSMGIISDGNSYGVPDDLLYSFPVTIKDKTWKIVEGLPINDF

SREKMDLTAKELAEEKETAFEFLSSA

4mdh:B
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XSEPIRVLVTGAAGQIAYSLLYSIGNGSVFGKDQPIILVLLDITPMMGVLDGVLMELQDCALPLLKDVIATDKEEIA

FKDLDVAILVGSMPRRDGMERKDLLKANVKIFKCQGAALDKYAKKSVKVIVVGNPANTNCLTASKSAPSIPKENFSC

LTRLDHNRAKAQIALKLGVTSDDVKNVIIWGNHSSTQYPDVNHAKVKLQAKEVGVYEAVKDDSWLKGEFITTVQQRG

AAVIKARKLSSAMSAAKAICDHVRDIWFGTPEGEFVSMGIISDGNSYGVPDDLLYSFPVTIKDKTWKIVEGLPINDF

SREKMDLTAKELAEEKETAFEFLSSA

A.5.2 Defining the Parameters

To run MEME for the expected output, the parameters need to be defined accordingly.

Among all the supported parameters, the dataset parameter is the only one required and

the others are optional. MEME allows defining lots of parameters [4], but I only used the

following:

• dataset - file containing sequences in FASTA format

• -h - print this message

• -o - name of directory for output files will not replace existing directory

• -oc - name of directory for output files will replace existing directory

• -dna - sequences use DNA alphabet

• -protein - sequences use protein alphabet

• -mod [oops, zoops, anr] specify any one

• -nmotifs nmotifs - maximum number of motifs to find

• -nsites nsites - number of sites for each motif
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• -minsites minsites - minimum number of sites for each motif

• -maxsites maxsites - maximum number of sites for each motif

• -w w - motif width

• -minw minw - minumum motif width

• -maxw maxw - maximum motif width

• -maxiter maxiter - maximum EM iterations to run

• -psp psp - name of positional priors file

• -maxsize maxsize - maximum dataset size in characters

• -p np - use parallel version with n processors

A.6 Output from MEME

MEME delivers four different output formats for motif information; HTML, XML, TEXT

and sequence logo. Among all the formats, HTML has the format for visualization along

with all other information.

• HTML: In the HTML output, all the motifs and corresponding motif information are

graphically presented in an HTML file. It contains the regular expression, start point,

end point, all the sites, site containing chains and sequence logo of each motif. It also

shows the block representation of all the sites on the different chains.
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• TEXT: It shows regular expressions, start point, end point, and site information for a

motif in text format. It does not incorporate the sequence logo and block diagram of

the sites.

• XML: XML format is good for precise parsing. It shows regular expression, start

point, end point, and site information for a motif in text format. It does not incorpo-

rate the sequence logo and block diagram of the sites.

• Sequence Logo: The sequence logo is a graphical representation of the protein mo-

tifs. It shows how well are amino acids conserved at each position. Different amino

acids at the same position are scaled based on the information content of that amino

acid.
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Source Code Explanation

Most of the modules of the models are developed in Python. All the source code used in this

thesis is available at http://sanjuan.cs.uwindsor.ca/ppipaw/download/SourceCode/manish/PPI-

SLiM-Seq.zip and http://sanjuan.cs.uwindsor.ca/ppipaw/download/SourceCode/manish/PPI-

SLiM-DEEE.zip.

Here, I explain all the source code (input, output and parameters) briefly. For classifica-

tion, Matlab implementations of k-NN, SVM and LDR have been used. Different SLiM sets

are available and can be downloaded at http://sanjuan.cs.uwindsor.ca/ppipaw/download/SLiMs.

B.1 Generic Modules

The modules under the generic module section are used in both models. Other modules are

model-specific and can not be used for other models.
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http://sanjuan.cs.uwindsor.ca/ppipaw/download/SourceCode/manish/PPI-SLiM-Seq.zip
http://sanjuan.cs.uwindsor.ca/ppipaw/download/SourceCode/manish/PPI-SLiM-Seq.zip
http://sanjuan.cs.uwindsor.ca/ppipaw/download/SourceCode/manish/PPI-SLiM-DEEE.zip
http://sanjuan.cs.uwindsor.ca/ppipaw/download/SourceCode/manish/PPI-SLiM-DEEE.zip
http://sanjuan.cs.uwindsor.ca/ppipaw/download/SLiMs
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B.1.1 File Downloader

The main purpose of the file downloader module is to download a file from a specified

server (given that the server permits downloading). I developed and used this module to

download the PDB and sequence files from the PDB server. It needs a list of file names

and a destination folder where it will save the downloaded files. The main function calls

the fileDownloader(listFileName, targetFolder) function with the provided inputs. In the

source code, the server address can be changed easily by changing the value of the lnk

variable inside the fileDownloader(listFileName, targetFolder) function.

B.1.2 Sequence Dataset Compiler

This module merges protein sequences from different sequence files into a single file, which

is known as sequence dataset/database in this thesis. This module takes two inputs, one is

the list of complexes with chains and the other is the path to the protein sequence files. Be-

fore using this module, it should be assured that the path provided has sequence files for all

the complexes in the provided list. The name of the function that needs to be called is db-

Compiler(path, listFile). This module outputs a sequence dataset which contains sequences

for all the chains of all the complexes separated by new line. I use this compiled sequence

dataset as an input to MEME to find SLiMs.

B.1.3 XML Parser

MEME outputs the SLiM information in XML, TEXT and HTML format. I use the XML

format and this is why I needed to develop this module to parse the XML file and get

the SLiM information. The name of the function is parseBookXML(xmlFile, textFilePath)

which takes two inputs. One is the XML file and the other is the path in which SLiM
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information is to be stored. This module is slightly modified and used to parse the PSPMs

from the XML files.

B.2 PPI-SLiM-Seq Modules

These modules are developed particularly for the PPI-SLiM-Seq model and will not work

with other models such as PPI-SLiM-DEEE. The source code is available to download at

http://sanjuan.cs.uwindsor.ca/ppipaw/download/SourceCode/manish/PPI-SLiM-Seq.zip.

B.2.1 Sequence Partitioning

This module partitions a sequence into all overlapping sub-sequences of specified length.

This module takes a sequence and an integer number as input. Then, it divides the sequence

into sub-sequences of provided lengths (integer number) and outputs all the overlapping

sub-sequences of that length.

B.2.2 Information Calculator

This module calculates the information contained in a sequence using a profile. This mod-

ule take one sequence and one profile file as input and outputs the information contained in

that sequence.

B.2.3 Main Module

The main module coordinates all other modules to accomplish the goal. First of all, it

compiles the sequence dataset by calling dbCompiler(path, listFile), then for each se-

quence, it calls the sequence partitioning module, seqSplitter(STR, LEN). For each parti-

http://sanjuan.cs.uwindsor.ca/ppipaw/download/SourceCode/manish/PPI-SLiM-Seq.zip
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tion, it selects all possible PSPMs for that partitioned sequence using the selectMotifPro-

fileFiles(PDB, CH, LEN, filePath) function. It calls the information calculator module,

gramScoring(SubStr, Profile).

For a sub-sequence, it calculates the information values using all the PSPMs and selects

the best one. And for a sequence it selects the top-20 sub-sequence information values and

writes them in a text file which is used as the feature matrix.

B.3 PPI-SLiM-DEEE Modules

These modules are developed particularly for the PPI-SLiM-DEEE model and do not work

with other models such as PPI-SLiM-Seq. All the source code is available for down-

loading at http://sanjuan.cs.uwindsor.ca/ppipaw/download/SourceCode/manish/PPI-SLiM-

DEEE.zip.

B.3.1 Chain Separator

The PDB file of a complex contains structural information of all the chains that belong to

that complex. This module is used to separate the structure information of the chains from

the PDB file. For example, protein complex 1a4y has two chains, A and B. The PDB file,

1a4y.pdb has the information for both chains. This module separates the information and

generate new files for the chains, 1a4y A.pdb and 1a4y B.pdb. This module, chainSepara-

tor(fileName, pdbFilePath), takes two inputs, one is the PDB file name and the other is path

of the PDB file. It generates the chain-separated PDB files and saves them in the same path.

http://sanjuan.cs.uwindsor.ca/ppipaw/download/SourceCode/manish/PPI-SLiM-DEEE.zip
http://sanjuan.cs.uwindsor.ca/ppipaw/download/SourceCode/manish/PPI-SLiM-DEEE.zip
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B.3.2 Distance Calculator

This module is used to calculate the distance between two chains of a complex. This

module, distanceCalculator(fileOneName, fileTwoName, distanceFile, pdbFilePath, desti-

nationFolder, th), takes six inputs and outputs one distance file. First, two inputs are the

chain-separated PDB files of the complex, distanceFile is the name of the distance file,

pdbFilePath is the path to the PDB files, destinationFolder is the path in which the distance

file is to be saved and th is the distance threshold. If the distance between two atoms from

two chains is less than or equal to th, the atoms are of interest and the atomic information

along with the distance are saved in the distance file.

B.3.3 SLiM Atom Selector

This module selects all the atoms that belong to a SLiM. The module allAtomSelect(PDB ID,

CH ID, ST POS, END POS, filePath) takes five inputs, where PDB ID, CH ID and ST POS

come with the SLiM information. END POS is determined by adding the length of the

SLiM to the ST POS and the filePath is the PDB file of the complex. It outputs a list of

atoms belonging to that SLiM.

B.3.4 Interface SLiM Checker

This module checks whether a SLiM is in the interface or not. This module takes a SLiM as

input and outputs TRUE is the SLiM is in the interface, otherwise it outputs FALSE. When

it takes a SLiM, that SLiM has the complex and chain names, start position of the sites of

the SLiM. For each site, it selects all the atoms using the allAtomSelect(PDB ID, CH ID,

ST POS, END POS, filePath) function. Then, it checks if any of the atoms are present in

the distance file and determines if the SLiM is in the interface or not.
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B.3.5 Desolvation Energy Calculator

This modules calculates desolvation energies using the ACP matrix, saved in a text file. It

takes the atomic distance from the distance files, generates the value of the smooth function

and outputs the desolvation energy which is the product of the ACP matrix value and a

smooth function.

B.3.6 Electrostatic Energy Calculator

Using two different software packages (PDB2PQR and APBS), atomic electrostatic ener-

gies are calculated and saved in a text file. This module uses those text files to obtain the

electrostatic energies for the specific atoms.
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SLiM Distribution
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Figure C.1: SLiM distribution in the ZH dataset. 500 SLiMs of length 3−10 were identified
using MEME.
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Figure C.2: SLiM distribution in the MW dataset. 500 SLiMs of length 3−10 were identi-
fied using MEME.
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Figure C.3: Distribution of the number of sites of SLiMs in SLiM ZH 500 3 10. 500 SLiMs
of length 3−10 were identified from the ZH dataset using MEME.
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Figure C.4: Distribution of the number of sites of SLiMs in SLiM MW 500 3 10. 500
SLiMs of length 3−10 were identified from the MW dataset using MEME.
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