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ABSTRACT 

 

Existing web content extracting systems use unsupervised, supervised, and semi-

supervised approaches. The WebOMiner system is an automatic web content data 

extraction system which models a specific Business to Customer (B2C) web site such as 

“bestbuy.com” using object oriented database schema. WebOMiner system extracts 

different web page content types like product, list, text using non deterministic finite 

automaton (NFA) generated manually. 

This thesis extends the automatic web content data extraction techniques proposed in the 

WebOMiner system to handle multiple web sites and generate integrated data warehouse 

automatically. We develop the WebOMiner-2 which generates NFA of specific domain 

classes from regular expressions extracted from web page DOM trees’ frequent patterns. 

Our algorithm can also handle NFA epsilon() transition and convert it to deterministic 

finite automata (DFA) to identify different content tuples from list of tuples. Experimental 

results show that our system is highly effective and performs the content extraction task 

with 100% precision and 98.35% recall value. 

Keywords:  Web mining, regular expression, non deterministic finite automata, B2C, 

frequent pattern, deterministic finite automata, regular expression, DOM tree, Web 

schema. 
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CHAPTER 1 - Introduction 

The World-wide-web has become the source of a huge amount of information on the 

internet due to explosive growth and popularity (Embley et al., 1999). Day by day 

internet users are also increasing. There are different kinds of users including customers, 

retailers, service companies, etc. They use the web for gathering detailed information. 

And these are displayed by different web sites which are in heterogeneous formats. By 

collecting and organizing this information, it is possible to produce metadata for many 

applications. It is beneficial to create a huge collection of historical and derived data on 

the products from different domains (business to Customer, research, library, etc.). These 

historical and derived data could be used for different purposes such as shopping 

comparisons, detecting user intention and further knowledge discovery.  For example, 

there is a huge number of online stores (B2C) selling their products through internet. It is 

hard for customers to retrieve, analyze and compare products or their prices from online 

stores. In order to get a product with the special attribute (for example: 56” LCD TV) and 

lowest cost compared to other similar products, a user has to go through all the online 

stores, which takes a lot of time. Annoni and Ezeife (2009) proposed an approach called 

OWebMiner that represents web content as objects. They identified six object types 

which include text, list, image, form, separator and structure. Mutsuddy and Ezeife 

(2010), Ezeife and Mutsuddy (2013) proposed an approach called WebOMiner that is an 

automatic web content data extraction technique which models web sites of a specific 

domain as object oriented database schemas.  For Business to Customer (B2C) web sites 

such as "Bestbuy.com”, “Futureshop.com” ,"CompUSA.com", the  WebOMiner system 

is able to extract different types of web page contents like product, list, text and 
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advertisement information from multiple sources using content non-deterministic finite 

automaton (NFA) it generated. 

In this thesis, we study the problem of extracting information from web pages of different 

domains (B2C, research, library etc.). The WebOMiner (Mutsuddy and Ezeife, 2010; 

Ezeife and Mutsuddy, 2013) extracts web contents from B2C web sites. It uses NFA to 

identify tuple from list of tuple that extracted from web pages DOM tree. There is still 

need for automatic NFA generation for the object oriented schema for each web site or 

data sources. Other shortcoming of their work is that they didn’t handle ambiguity and 

epsilon () transition of NFA. This thesis extends the automatic web content data 

extraction techniques proposed in the WebOMiner system. Our proposed approach is able 

to generate automatic source database schema NFA of domain classes from frequent 

patterns extracted from web pages DOM trees. By converting NFA into deterministic 

finite automata (DFA), our algorithm handles ambiguity and epsilon () transition and 

able to identify different tuples from list of tuples. Our proposed approach is also able to 

generate integrated data warehouse schema automatically by using regular expression 

generated from frequent pattern extracted.  

In the following sections of this chapter, we introduce the problem of information 

extraction from the web. The information extraction problem is discussed in detail in 

section 1.1, section 1.2 describes data type, section 1.3 explains the information 

extraction problem in the context of e-commerce, section 1.4 describes document object 

model, section 1.5 explains finite automata, section 1.6 explains the idea of object-

oriented web content extraction, section 1.7 defines the problem statement of this thesis. 
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The contributions of this thesis are briefly explained in section 1.8. We conclude the 

chapter with the organization of this thesis in section 1.9.  

1.1 Information Extraction 

 

Information extraction (IE) is defined by Peshkin and Preffer (2003) as the task of filling 

in template information from previously unseen text which belongs to a pre-defined 

domain. Lerman et al. (2004) identify that IE task is defined by its input and its extraction 

target whereas input can be categorized into two types, namely unstructured document 

and semi-structured document. The main goal of information extraction is to extract 

information automatically from data source such as entities, relationships between 

entities and attributes describing entities from structured and semi-structured documents. 

This information can be stored into the database for further knowledge discovery, 

shopping comparisons and detecting user intentions. In this thesis, we consider 

information extraction from semi-structured documents that are present on the web.  

1.1.1 Types of web page 

 

The World-wide-web can be called a vast repository of information. Data stored on the 

web can be accessible by the user through search form or dynamically generated web 

page. The World-wide-web consists of huge amounts of web pages which represent 

different products (Buttler et al., 2001). Two different types of web pages can be 

distinguished.  

1.1.1.1 Unstructured pages: Also called free-text documents, unstructured pages are 

written in natural languages. There is no predefine template can be found, and only 
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information extraction (IE) techniques can be applied with a certain degree of confidence. 

For example, figure 1 represents an unstructured web page from “Wikipedia.org” which 

contains only text and there is no template. 

 
Figure 1: An unstructured web page (wikipedia.com) 

 

1.1.1.2 Structured/semi-structured web page: Structured/Semi-structured pages are 

normally obtained from a structured data source, e.g., a database, and data are published 

together with information on structure. The extraction of information is accomplished 

using techniques based on wrapper generation, rule generation and automatic approaches. 

Most of the web document formed by structured data such as text, image, hyperlink, 

structured record such as list, table, and database generated content. This type of web 

page generated by a program that access structured data in a local database and embeds 
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them in a HTML template. For example, Figure 2 represents a structured/semi-structured 

web page which is a product list page from “Bestbuy.com”.  

 
Figure 2: A structured web page (bestbuy.com) 

 

1.1.1.3 List page: List pages are web pages that contain several structured records.  

Generally, online stores display their different products with list pages. The data record 

of list pages is important to create a historical and derived data warehouse with the 

extracted data from it. For example, Figure 2 represents a list page from “Bestbuy.com”. 

There are two types of list pages, vertically labeled list page and horizontally labeled list 

pages. Another type of list pages called result page produced by search engines with a 

user query which is presented as a list or a table on an automatically generated page. For 

example, Figure 3 represents a web result page which is generated by google search 

engine. These list pages are called dynamic web pages because they are generated by 
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using their own template. The template is generated using html tag. There is a query 

working in the backend to fill the template and display data in the browser. 

 

Figure 3:Result page generated by google search engine(google.com) 

When a page is generated using a template, a common structure which is created with 

html tag can be found in the source code of the page. For example, on a page displaying 

10 laptops from different brands and prices, their presentation structures are the same 

through the entire page. This structure can be assumed as a schema of the product. 

Different domain specific web sites use different structures to display their products. For 

example, the structure of a B2C web site is different from the structure of a library web 

site. So, it is a big challenge to create a historical and derived data warehouse with 

different domain specific web sites. 
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1.2 Data types in data warehouse 

1.2.1 Historical data: Historical data is the data from previous time periods, in contrast 

to current data (Singhal and Seborg, 2001). It is used for comparisons to previous periods 

and trend analysis. The past information about a company can be extracted using 

historical data, and it can be used to help forecast the company’s future, for example, 

“Given a product type and business name, output all promotion price offered by the 

business within last 10 years”. This query extracts all the information about the product 

until today’s date. And from it user can get idea about the promotional trend of this 

product. Using historical data, we are able to extract information about a specific trend 

about the sale price of a product which is sold by a B2C company. For example, 

“Bestbuy.com” offers promotion on their product once a month. If we have a database 

with historical database we are able to find the trend of the promotional price of any 

particular product. The advantage is that user can decide about the right time to buy a 

product. 

1.2.2 Derived Data: Derived data types are those that are defined in terms of other data 

types, called base types (Botzer and Etzion, 1996). Derived data types contain attributes, 

element or mixed content. They exist in data warehouse as built-in or user-derived. Base 

types can be derived data types or primitive types. Restriction facets and extension are 

used to create derived data types. A table exists in database can have derived columns, 

which values are computed, based on the values of other table columns. It is called 

a derived table, if all columns are derived. Derived data exists in the database as 

aggregates such as count, sum, average, minimum, maximum which can be computed 

from web content data. For example, “What is the average number of laptop on sale each 
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month or how many times a company offer promotion on their product each year”. By 

getting these two results user can get the idea about the promotional trend of a business to 

a particular product. 

1.2.3 Metadata: Metadata is structured information that describes an information 

resource and makes it easier to retrieve, use, or manage an information resource (Mize 

and Habermann, 2010). Metadata is often known as information about information or 

data about data. How the data is formatted and how and when and by whom a particular 

set of data was collected, is described by metadata. Metadata helps to understanding 

information stored in data warehouses. The telephone book is an example of metadata 

that we are very familiar with, where we search for a telephone number using name or 

location. Another example of metadata is the catalogue in a library, where we search for 

information using "Subject", "Title" and "Author". 

1.3 Application of Information Extraction 

 

In recent years, a large number of architecture has been proposed for extracting 

information from web pages. Three approaches are used, which are unsupervised 

(automatic), supervised (manual) and semi-supervised. In this section we describe 

different applications used in information extraction from web pages. 

1.3.1 Wrapper 

 

The process of information extraction uses a program which is called extractor or 

wrapper (Adleberg, 1998). The information integration system considers a wrapper as a 

component which has a single uniform query interface to access multiple information 

http://www.webopedia.com/TERM/D/data_Warehouse.html
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sources. An information source (e.g., database server, web server) is wrapped by a 

program and the integration system able to access that source without changing its core 

mechanism. When the web server is considered as information source, then, the wrapper 

uses HTTP protocols to query the web server to collect the resulting pages, extract 

content from HTML documents, and after that integrates with other data sources.  

Wrappers are used in information extraction from web sites and consist of a series of 

rules and some codes to apply those rules and are specific to a source. Some examples of 

existing wrappers are WIEN (Kushmerick et al., 1997), SOFTMEALY (Hsu and Dung 

1998) STALKER Muslea et al., 1999) etc. 

1.3.2 Traditional Information Extraction versus Web Information Extraction 

 

Information extraction from web is different from traditional information extraction (IE) 

(Appelt and Israel, 1999). In traditional IE, data are extracted from totally unstructured 

free texts that are written in natural language. But information extraction from web 

processes structured data which are online documents and the server-side application 

program generates it automatically. Usually, Web IE task is performed by machine 

learning approach (Soderland, 1999), pattern or rule mining techniques (Chang and Lui, 

2001; Wang and Lochovsky, 2002; Chang et al., 2003) to extract the data from different 

sources. 
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Figure 4: A general view of Information extraction System 

 

1.3.3 Applications of web information extraction 

 

The wrapper Induction (WI) generates wrapper (Wang and Lochovsky, 2002) or 

information extraction (IE) systems (Kushmerick et al., 1997). Wrapper works as pattern 

matching procedure (e.g., a form of finite-state machine) which depends on a set of 

extraction rules. A wrapper generated by wrapper induction is used to extract the 

information from target resources. In the earlier system, wrapper generation was manual 

process where programmer was involved in writing extraction rule whereas later systems 

are automatic rule generalization process based on machine learning. In wrapper 

induction process, user writes extraction rules manually to labeling target extraction data. 

Current wrapper induction systems are created with unlabeled training example. The 

wrapper induction system can be categorized into four groups, include manually-

constructed IE system (Hammer et al.,1997;Crescenzi and Mecca,1998; Arocena and 

Mendelzon, 1999; Liu et al.,2000; Saiiuguet and Azavant, 2001), supervised IE Systems 

(kushmerick et al., 1997;Califf and Mooney.,1998; Muslea et al., 1999; Soderland, 1999), 
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Semi-supervised IE Systems(Chang and Lui.,2001; Chang and Kuo,2004; Hogue and 

Karger, 2005), and unsupervised IE Systems (Arasu and Gracis-Molina,2003; Wang and 

Lochovsky 2003; Zhai and Liu, 2005). 

1.3.3.1 Manually-Constructed IE Systems 

 

In manually-constructed IE system, user creates wrapper program using general 

programming language like Perl or special-designed language for each web site. This 

approach is considered as time consuming and labor intensive procedure because it 

requires the user to have strong computer and programming background. Some existing 

systems are TSIMMIS (Hammer et al., 1997), Minerva (Crescenzi and Meca, 1998), 

WEBOQL (Arocena and Mendelzon, 1998), W4F (Saiiuguet and Azavant, 2001) and 

XWRAP (Liu et al., 2000). Methods in this approach simplify the construction of data 

extraction system by using some languages. In this approach the user are involved with 

manually construct data records pattern for the extraction target. For example, TSIMMIS 

is one of the first approaches that build web wrappers manually (Hammer et al., 1997). In 

this approach, a wrapper takes a specification file as input that declaratively states by 

programmers, where the data to extract is located on the pages and how the data should 

be grouped into objects. Since manual approaches are not scope of this thesis, we do not 

discuss more details. Reader interested may refer to Minerva (Crescenzi and Meca, 

1998), WEBOQL (Arocena and Mendelzon, 1998), W4F ( Saiiuguet and Azavant, 2001) 

and XWRAP (Liu et al., 2000). 
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1.3.3.2 Supervised IE System 

 

Supervised systems extract data by using a set of web pages labeled with examples and 

generate wrapper. As an example, the extraction rule for the book title is shown in Figure 

5, which contains words “Book”, “Name”, and “</b>”, and immediately followed by the 

word “<b>”. The title consists of at most two words that were labeled as “nn” or “nns” by 

the POS tagger is specified by the “Filler pattern”. User provides an initial set of labeled 

examples and the system may require additional pages for the user to label. Instead of 

programmers, the user can be trained the system to reduce the cost of wrapper generation,  

 

 

 

 

Figure 5 : Labeled training example 

Such systems are RAPIER (Califf et al., 1998), WHISK (Soderland, 1999), SRV 

(Kushmerick et al., 1997) and STALKER (Muslea et al., 1999). The methods of this 

approach use machine learning techniques to learn and construct wrappers from human 

labeled examples.  

 

 

Figure 6: SRV rule. 

Extraction rule of Book Title: 

Pre-filter pattern Filter pattern  Post-filter pattern 

(1) Word: Book list: len: 2  Word:<b> 

(2)Word: Name Tag: [nn, nns] 

(3) Word: </b> 

Extraction rule of rating 

Length(=1) 

Every (numeric true) 

Every(in_list true) 
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The supervised system SRV (Kushmerick et al., 1997).  is a top-down relational 

algorithm that generates single-slot extraction rules. It considers IE as a kind of 

classification problem. First, it tokens the input documents and all substrings of 

continuous tokens such as text fragments are labeled as either positive examples or 

negative examples. SRV generates rule which are logic rules that based on a set of token-

oriented features or predicates. These features are two types: simple and relational. A 

simple feature describes a function that maps a token with some discrete value such as 

length, character type (e.g., numeric), orthography (e.g., capitalized) and part of speech 

(e.g., verb). A relational feature maps a token to another token, for example, the 

contextual tokens of the input tokens. The learning algorithm works as FOIL, starting 

with entire set of examples and adds predicates greedily to cover as many positive 

examples and as few negative examples as possible. Supervised approaches are not scope 

of this thesis. Reader interested refer to RAPIER (Califf et al., 1998), WHISK 

(Soderland, 1999) and STALKER (Muslea et al., 1999). 

1.3.3.3 Semi-supervised IE systems  

 

Semi-supervised system accepts a rough example from users to generate extraction rule. 

Semi-supervised IE systems include IEPAD (Chang et al., 2001), OLERA (Chang et al., 

2004) and THRESHER (Hogue and Karger, 200). In this approach, the user uses GUI to 

specify the extraction targets because no extraction targets are specified for such systems 

after the learning phase. User’s supervision is involved in this approach. The IEPAD 

(Chang et al., 2001) is one of the first semi-supervised IE systems that generalize 

extraction patterns using unlabeled web. It does not require any labeled training page and 

it requires only post effort from the user to choose the target pattern and indicate the data 
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to be extracted. This method developed based on the observation is that if a web page 

contains multiple data records to be extracted, they are often rendered regularly using the 

same template for good visualization. IEPAD generate wrappers by discovering repetitive 

patterns. IEPAD discovers repetitive patterns in a web page using a data structure called 

PAT tree which is a binary suffix tree. The suffix tree only records the exact match for 

suffixes, IEPAD aligns multiple strings which start from each occurrence of a repeat and 

end before the start of next occurrence by applying center star algorithm. Semi-

supervised approaches are not scope of this project. Reader interested refer to IEPAD 

(Chang et al., 2001), OLERA (Chang et al., 2004) and THRESHER (Hogue and karger, 

2005). 

1.3.3.4 Unsupervised IE Systems  

 

The labeled training examples are not required in unsupervised IE systems. It extracts 

information from the web by training the system with example. It also does not have any 

user interactions to generate a wrapper. Unsupervised IE systems include RoadRunner 

(Crescenzi et al., 2001), EXALG (Arasu and Garcis-Molina, 2003), DeLa ( Wang and 

Lochovsky, 2003) and DEPTA (Zhai and Liu, 2005). The RoadRunner and EXALG 

solve page-level extraction task, while DeLa and DEPTA are related to record-level 

extraction task. The difference between supervised and unsupervised system is that the 

extraction targets are specified by the users in supervised system and the data that is used 

to generate the page or non-tag texts in data-rich regions of the input page is defined as 

extraction target. In this approach the schema is choose by the users. Since all data are 

not needed, the user needs to do the post-processing work to select relevant data and give 

each piece of data a proper name. Methods in this category are related to automatic 
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pattern discovery. The main advantages of these methods include methods do not require 

separate training, validation and application phases (Breuel, 2003). And these methods 

can be divided into two categories including based on string matching and based on 

HTML tree matching. It has been shown that automatic pattern discovery methods based 

on HTML tree matching are outer perform than the string matching approaches 

(Yeonjung, 2007). We describe technical details of the above approaches in section 2. 

1.4 Document Object Model 

The Document Object Model (DOM) is an application programming interface (API) for 

well-formed XML documents and valid HTML documents (Marini, 2002). The logical 

structure of XML or HTML documents is described by DOM and also defines the way a 

document is accessed and manipulated. XML represents many different kinds of 

information that may be stored in diverse systems and presents this data as documents, 

and the DOM may be used to manage this data. With the Document Object Model, it is 

possible to represent a HTML file as documents, navigate their structure, and add, 

modify, or delete elements and content. The elements of an HTML or XML document 

can be accessed, changed, deleted, or added using the Document Object Model. The 

HTML DOM represents an HTML document as a tree-structure. The tree structure is 

viewed as a node-tree and all nodes can be accessed through the tree. The contents of 

node tree can be modified or deleted, and new elements can be created. The node tree is 

shown in figure 7, the set of nodes, and the connections between them. The root node is 

the starting point and branches out to the text nodes at the lowest level of the tree. The 

nodes in the node tree consists a hierarchical relationship to each other. The relationship  

http://www.w3.org/TR/DOM-Level-2-Core/glossary.html#dt-API
http://www.w3.org/TR/DOM-Level-2-Core/glossary.html#dt-XML
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<html> 

     <head> 

         <title>My Title</title> 

     </head> 

    <body> 

        <a href =” “>My link</a> 

        <h1>My header</h1> 

   </body> 

< /html> 

Document

Root Element:
<html>

Element:
<head>

Element:
<title>

Text:
“My title”

Text:
“My header”

Text:
“My Link”

Attribute:
“href”

Element:
<a>

Element:
<h1>

Element:
<body>

 

Figure 7: (a) Sample HTML file and (b) Graphical representation of sample HTML file 

is described using the terms parent, child, and sibling. Parent nodes have children node 

and Children on the same level are called siblings. The top node of node tree is called the 

root. Every node has exactly one parent node except the root node. A node can be 

contained any number of children. A leaf node does not have children. Siblings are nodes 

which reside under the same parent. Figure 8 is shown the parent-child relationship.  

Figure 8: Graphical representation of parent-child relation of the DOM tree 

 

Root element
<html>

Element
<head>

Element
<body>

Parent node

First child

Last child

Next 
sibling

Previous sibling
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1.5 Finite Automata 

 

Finite automata is a mathematical model which is a combination of 5 tuples (Q, q0, A, ∑, 

) (Cormen, 2009), where Q represents a finite set of states, the start state is q0 Q, A  

Q is a distinguished set of accepting states, ∑ is a finite input alphabet,  represents a 

function from Q x ∑ into Q, called the transition function. The finite automaton starts 

with state q0 and it visits to the next state by reading input string one at a time. For 

example, if the location of the automata is in state q and reads input character “a”, it 

moves from state q to state (q, a) by making a transition. The generated finite state 

machine M accepts an input string if it reached at final state. Otherwise input is rejected. 

A finite automata M defines a function called  (finite state function) from ∑ to Q such 

that (w) is reached at the state M after reading the string “w”. Thus, the finite automata 

M accepts a string w if and only if (w) A. The function  scan input string recursively 

by using transition function. Finite automata are two types include deterministic finite 

automata (DFA) and non-deterministic finite automata (NFA). These are described below 

1.5.1 Deterministic finite automata 

 

A deterministic finite state automaton (DFA), also known as deterministic finite state 

machine that accepts or rejects finite strings of symbols (Cormen, 2009). It produces a 

unique computation of the automaton for each input string. The word 'Deterministic' 

refers to the uniqueness of the computation. The states of DFA are fixed and state can be 

visited one state at a time. An example of deterministic finite state automata is shown in 

Figure 9, where q0 is the initial state and final state. 
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Figure 9: Deterministic finite automata 

Figure 9 illustrates a deterministic finite automaton using state diagram. In the 

automaton, there are three states: q0, q1, and q2 denoted by circles. The automaton takes 

0s and 1s as input. For each state, there is a transition arrow leading out to a next state for 

both 0 and 1. A DFA jumps deterministically from a state to another by following the 

transition arrow by reading input symbol. For example, if the automaton is currently in 

state q0 and current input symbol is 1 then it deterministically jumps to state q1. A DFA 

has a start state which is denoted graphically by an arrow coming in from nowhere where 

computations begin, and a set of accept states  which is denoted graphically by a double 

circle which help define when a computation is successful. 

http://en.wikipedia.org/wiki/State_diagram
http://en.wikipedia.org/wiki/Set_(mathematics)
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1.5.2 Non-deterministic finite Automata 

 

A non-deterministic finite automaton (NFA) is a finite state machine where from each 

state using a input symbol the automaton may jump into several possible next states 

(Cormen, 2009). The difference between deterministic finite automaton (DFA) and non-

deterministic finite automata is that next possible state is uniquely determined in DFA but 

not in NFA. Although the DFA and NFA are not similar by definition, a NFA can be 

translated to equivalent DFA using power set construction, which means that the 

constructed DFA and the NFA recognize the same formal language. Both of them 

recognize only regular languages. 

 

Figure 10 : Non deterministic finite automata 

A non-deterministic finite automaton is shown in Figure 10 using state diagram. Here q0 

is the initial state and q1 is the final sate. It is non-deterministic because the state q0 has 

more than one state to move. For every NFA, there is a deterministic finite 

automaton (DFA) can be found that accepts the same language. Therefore it is possible to 

convert an existing NFA into a DFA for the purpose of implementing a simpler machine. 

http://en.wikipedia.org/wiki/Finite_state_machine
http://en.wikipedia.org/wiki/Deterministic_finite_automaton
http://en.wikipedia.org/wiki/Powerset_construction
http://en.wikipedia.org/wiki/Formal_language
http://en.wikipedia.org/wiki/Regular_languages
http://en.wikipedia.org/wiki/State_diagram
http://en.wikipedia.org/wiki/Deterministic_finite_automaton
http://en.wikipedia.org/wiki/Deterministic_finite_automaton
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1.5.3 Regular Expression 

 

A regular expression provides a concise and flexible means to specify and 

recognize strings of text, such as particular characters, words, or patterns of characters. 

The regular expression can be considered as compact notation for describing string. The 

regular expression follows some rules, which are given below: 

•  (Epsilon) is a regular expression that denotes {}, the set containing empty 

string. 

• If 'a' is a symbol in , then 'a' is a regular expression that denotes {a}, the set 

containing the string a. 

• Suppose q and r are regular expressions denoting the language L(q) and L(r), then  

– (q) | (r) is a regular expression denoting L (q) L(r). 

– (q)(r) is regular expression denoting L (q)  L(r). 

– (q) * is a regular expression denoting (L (q) )*. 

– (q) is a regular expression denoting L (q).  

1.6 Modeling Web Documents As Objects For Automatic Web Content 

Extraction 

 

Annoni and Ezeife (2009) proposed a framework called OWebMiner which presents web 

document as object-oriented web data model to represent web data as web content and 

web presentation objects. The proposed framework is able to mine complex and 

structured data as well as simple and unstructured data in a unified way. They identified 

http://en.wikipedia.org/wiki/String_(computer_science)
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three main zones of a web document as instances of specialized classes include 

HeaderZone,  BodyZone and FooterZone. They state that two types of objects exist in 

these zone including web content objects and web presentation objects. They classified 

the web content into six categories among them four have sub-content type including text 

element, image element, form element, plug-in element, separator element and structure 

element. Text element has two sub content-types including raw text and list text. Raw 

text has three sub content types including title, label, and paragraph. List text has two 

sub-content types including ordered list and definition list. Image element has two sub-

contents like image and map. Form element has three sub content types which are form 

select, form input and form text area. The authors classified the web presentation object 

into six categories which are banner, menu, interaction, legal information, record and 

bulk. Their proposed algorithm takes a set of HTML files as input. The algorithm works 

in two sub algorithms. In the first part, it extracts web presentation object and web 

content object sequentially. And in the second part, it stores the extracted objects into the 

database. The first part of this algorithm is divided into three steps. In the first step, a 

DOM tree is generated from the HTML file using DOM parser. In the second step, web 

zones are identified on the web document from the DOM tree. In the third step, web 

content object and web presentation objects are extracted. In this algorithm, block level 

tag include table, division, heading, list, form, block quotation, paragraph and address 

and non block level tag  include anchor, citation, image, object, span, script are 

considered to extracted object. Two search approaches used in OWebMiner to explore 

the DOM tree. Depth-first search is executed through block-level tag until it finds non 
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block level tag. Breadth-first search is executed to parse non block level tag. We discuss 

technical details of their approach in section 2. 

1.7 Mining Web Document Objects with Non-deterministic Finite 

Automata 

 

Mutsuddy and Ezeife (2010), Ezeife and Mutsuddy (2013) proposed a system for 

extraction and mining of structured web contents based on object-oriented data model. 

Their work extended the work of Annoni and Ezeife (2009). They developed the 

architecture called WebOMiner using object oriented model for extraction and mining of 

web contents. They introduced an approach of generating and using non deterministic 

finite state automata for mining web content objects. They defined data block and data 

regions to ensure consistency between related data.  They addressed to relate HTML tag 

attribute information with related contents to ensure identification of contents, to assign 

objects and other information together. They defined schema matching to unify similar 

contents from different web site. They identified noise contents in data blocks and 

prevent them entering into database table. They also implemented and materialize object-

oriented data model for web content and extract heterogeneous related web content 

together. They defined a mining algorithm that identifies data block and generates non-

deterministic finite state automata based wrapper for extraction of related contents. They 

classified all data blocks of a web page according to their type and check minimum 

occurrence count based on observed pattern to ensure data consistency before entering 

them into database. For example, minimum occurrence count for a ‘list’ content can be 3, 

which means that to be accepted as list tuple record in the DOM tree it should have at 

least 3 consecutive elements in its block. Their proposed WebOMiner system is an 
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automatic object oriented web content extraction and mining system for integrating, 

mining heterogeneous contents that are also derived, historical and complex for deeper 

knowledge discovery. The WebOMiner extracts information from a given web page 

including data records (e.g. product image, product brand, product id, short description 

and price of the product), navigation information (e.g. link URL, link id or name), 

advertisement (e.g. product advertised, image, URL links to related website). After 

extraction, WebOMiner stores this information into database for comparative mining and 

querying. Their proposed approach contains four modules include Crawler Module, 

Cleaner Module, Content Extractor Module and Miner Module. The proposed crawler 

module crawls the WWW to find targeted web page given as input. This module creates a 

mirror of original web document after streaming the entire web document including tags, 

texts and image contents. The comments are discarded from the HTML document by this 

module. The cleaner module converts the generated HTML file to well formed by 

inserting the missing tag, removing inline tag ( e.g. <br/>, <ht/>), insert missing “/” at the 

end of unclosed <image> tag, clean up unnecessary decorative tags. The content extractor 

module creates DOM tree from HTML page and contents are extracted from the DOM 

tree in this module. This module assigns respective class object type as per pre-defined 

object class to the content. It also puts objects into Array List after setting information 

into objects. Data regions and data blocks are identified by this module and it segments 

the respective data of a data block from other data blocks by using separator objects. This 

module also generates Seed NFA pattern for data blocks. It stores identical tuples after 

extracting objects of all tuples by matching with the refined NFA. It stores the objects 

into the database after checking the accepted minimum occurrence count for all tuple 
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categories (e.g., for list, form, product, text etc. tuples). We describe technical details of 

this approach in section 2. 

 

 

Figure 11: Architecture of WebOMiner 

The shortcoming of this approach is that although this method uses an NFA algorithm for 

identifying tuples of web objects, the mechanism for using NFA algorithm for automatic 

identification of different content types is not fully integrated in the current system. Also, 

their NFA is built based on manual observation of ten different B2C web pages for 

identifying content types from content list. They use manually generated database schema 

for storing content into database. The authors didn’t mention how the “ɛ” transition or 

ambiguity was handled. That means the authors didn’t mention how the NFA were used 
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for identifying tuple without convert it to DFA. In this approach, the database schema 

generation is manual process which is labor intensive and not efficient. The authors 

didn’t define schema integration for different domain specific website. 

1.8 Thesis problem statement 

 

This thesis addresses the limitation of WebOMiner (Mutsuddy and Ezeife, 2010; Ezeife 

and Mutsuddy, 2013) which are given below: 

1. The mechanism for using NFA algorithm for automatic identification of different 

content types is not fully integrated in the current system. 

2. Existing NFA is built for identifying content types based on manual observation 

of ten different B2C web pages. 

3. The “ɛ” transition or ambiguity of NFA was not handled. 

4. In the current system, the database schema generation is manual process which is 

labor intensive and not efficient. 

5. Current system does not define schema integration for different domain specific 

website. 

1.9 Thesis Contribution 

 

In this research we developed an algorithm that extends the WebOMiner (Mutsuddy and 

Ezeife, 2010; Ezeife and Mutsuddy, 2013).  

1. Our proposed algorithm finds the frequent pattern matching structure from DOM 

tree of the HTML page. It iteratively continues the discovery process to find all 
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matching structure to discover repeated objects (list, product, text etc.) in the 

page. Finally, RE (regular expression) is formed from the discovered pattern 

structure and NFA wrappers are generalized from RE. Our proposed framework 

handles the “ɛ” transition by converting NFA to DFA (deterministic finite 

automata) and produces DFA to the miner module of the WebOMiner to identify 

objects tuple from the list of objects. 

2. Our proposed algorithm also generates database schema automatically to store 

different types of web content objects (list, text, product etc.) into the database. 

Database schema is generated using generated regular expression based on the 

frequent pattern matching structure exists on the DOM tree of the list web page.  

3. Since different B2C web source follows different sequence pattern to represent 

content object. Our algorithm generalizes DFA from different web sources. 

 

1.10 Outline of thesis proposal 

 

The remainder of the thesis is organized as follows: 

Chapter 2: Related literature in the area is presented.  We have identified problems which 

are related to the problem studied in this thesis. We categorized these problems in three 

sections and each section explains the related work done in these problems and surveys 

the various solutions proposed. Different works are compared in this section and we tried 

to identify the advantages and disadvantages of the approaches. 
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Chapter 3: Detailed discussion of the problem addressed and new algorithms are 

proposed 

Chapter 4: Explain performance analysis and the experiments conducted in detail. 

Chapter 5: Concludes this thesis by explaining the work done. The contribution of this 

thesis is explained in this section. An outline of future work is provided in this chapter. 
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CHAPTER 2- Related work 

 

In this chapter, we survey the literature related to the shortcoming addressed in this thesis 

include web content mining and how to bring web content from different web sites into a 

unique format. There are several studies has been made on web content mining. They are 

categorized into four categories: manual approach, supervised approach, semi-supervised 

and unsupervised approach. Supervised or manual approach uses wrapper which is 

generated using a set of web pages labeled with examples of the data to be extracted. 

Wrapper generation requires a set of data extraction rules which are generated manually 

from labeled pages. Manual labeling of pages is labor intensive and time consuming 

because different templates exist in different sources. Semi-supervised approach accepts 

a rough training example from user and generates extraction rule. Unsupervised or 

automatic approach generates wrapper without much user interaction. Since unsupervised 

approach performs better than other three, we only consider unsupervised approaches in 

this section. And our thesis extends the work of Mutsuddy and Ezeife (2010), Ezeife and 

Mutsuddy (2013) which is an unsupervised approach. We present previous studies which 

are broadly related to unsupervised or automatic web content mining. We categorized 

these techniques based on the techniques for data area identification and record 

segmentation including comparison-based, grammar-based and separator-based.  

2.1 Comparison Based Approaches 

 

These approaches find commonalities and identify records by comparing page fragments. 

MDR (Liu et al., 2003) is a comparison based approach that relies on string edit distance. 
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Another comparison based approach called DEPTA (Zhai and Liu, 2005; Zhai and Liu, 

2006) which uses a tree edit distance. NET (Liu and Zhai, 2005) uses a tree edit distance 

as well but collapses shared subtrees. We describe technical details of these approaches in 

the following section. 

2.1.1 MDR: Mining web records from web page 

 

Liu et al. (2003) addressed the problem of mining data records in web page using the 

existing approaches. They identified three types of existing approaches include manual, 

supervised learning and automatic techniques. They mentioned that manual approach is 

not useful for large number of pages, supervised techniques need training data which are 

prepared manually and for that reason it requires substantial human effort. They also 

mentioned that existing automatic approach provides unsatisfactory result due to their 

poor performance. The authors propose a new approach called MDR which is based on 

two observations. Firstly, a group of data records form a contiguous region of a page and 

within the data region the data records have similar tag tree structure. Secondly, the data 

records of a data region have the same parent node. The proposed technique works on 

three steps. In the first step, it builds a tag tree with HTML tag of the source page. For 

example, a tag tree of HTML page is shown in Figure 12. In the second step, it mines 

every data region that contains data records. In this step, first it mines generalized nodes 

which form a data region based on two properties include the nodes all have the same 

parent and the nodes are adjacent. For example, Figure 12 presents two generalized nodes 

where the first 5 TR nodes of the TBODY consist by the first data region and second the 

data region contains rest of the TR nodes. The proposed algorithm identifies the data 
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region by string comparison between generalized nodes. For example, Figure 13 

represents an artificial tag tree to explain different kinds of generalize nodes and data 

region. The generalized node is represented by the shaded area. The nodes 5 and 6  

HTML

HEAD
BODY

TABLE
TABLE P

TBODY

TRTR TR TR TR TR
TR TR TR TR TR

TD

TD TD TD TD

TD TD TD TD TD

TD TD TD TD

TD TD
TD

TD

DATA
RECORD 1

DATA
RECORD 2  

Figure 12: A tag tree representation of a HTML page 

formed the data region labeled 1 and their length is 1. The nodes 8, 9 and 10 formed the 

data region labeled 2 and their length is 1. The pairs of nodes (14, 15), (16, 17) and 

(18,19) formed the data region labeled 3 and their length is 2. These generalized nodes 

formed the data region based on the edit distance properties which is that the normalized 

edit distance between adjacent generalized nodes is less than fixed thresholds. 

1

9

3 42

98765 10

11 12

13 14 15 16 17 18 19 20

Region 1 Region 2

Region 3  

 

Figure 13: Artificial tag tree 
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To identify the data region, the proposed mining algorithm finds the first generalized 

node of a data region and it is possible when starting from each node sequentially. For 

example, node 8 is the first node of data region 2 in Figure 13. It also needs to find the 

number of components that a generalized node contains. For example, each generalized 

node of data region 2 has one component in Figure 13. The algorithm finds the tag nodes 

or components does a generalized node in each data region have by doing one node, two 

node combination, ….., K node combination. It starts from each node and perform all 1-

node string comparisons, all 2-node string comparisons and so on. Then the comparisons 

result is used to identify each data region. The comparison process is shown in Figure 14, 

where it contains 10 nodes with the parent node p. The algorithm starts from each node 

and continues with all possible combinations of component nodes. The following string 

comparisons are computed: 

 (1,2), (3,4), (4,5), (5,6), (6,7), (7,8), (8,9), (9,10) 

 (1-2,3-4), (3-4,5-6), (5-6,7-8), (7-8,9-10) 

 (1-2-3, 4-5-6), (4-5-6, 7-8-9) 

p

5 6 7 8 9 104321

 

Figure 14: Comparison and combination of node 
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The pair node (1, 2) describes that tag string of node 1 is compared with tag string of 

node 2. The tag string includes all the tags of the sub-tree of the node. For example, the 

tag string for the second TR node (Figure 12) of TBODY is <TR TD TD………..TD 

TD>. Here, the substring of sub-tree below the second TD nodes is denoted by “….”. The 

pair node (1-2, 3-4) describes the comparison between the combined tag string of node 1, 

2 and combined tag string node 3, 4. After doing all the string comparisons, the MDR 

algorithm identifies each data region by finding its generalized node. Basically, the 

algorithm finds similar children node combinations to identify candidate generalized 

nodes and data region of the patent node by using the string comparison results at each 

parent node. After that MDR identifies the data records in each region. MDR identifies 

data records based on the assumption is that if a generalized node is the combination of 

two or more data records then these data records contain similar tag strings. The authors 

claim that the proposed method which is able to extract web data automatically. Also 

their proposed method able to discover non-contiguous data records which didn’t handle 

with existing system because the proposed method is developed based on nested structure 

and presentation feature of web pages. The authors conducted an experiment of their 

proposed approach with 18 pages from OMNI’s web site and a large number of other 

pages from different domain like books, travel, software, auctions, jobs, shopping and 

search engine result. They also used a number of training pages to build their system and 

identify their default edit distance threshold. The authors obtained the result from their 

experiment is that MDR has 99.88% recall and 100% precision where other system 

OMINI and IEPAD only have a recall of 39%. They also mentioned that some data 

records which are consider correct for OMINI and IEPAD, if these data are not consider 
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as correct then the recall of OMINI and IPEAD reduce to 38.3% and 29% respectively. In 

that case the precision value they obtain is that 56% for OMINI and 67% for IEPAD. The 

authors claim that their approach doesn’t need any human effort and it mines data records 

in a page automatically. They also claim that their algorithm able to extract non-

contiguous data records. The shortcoming of this approach is that MDR is designed to 

handle tables tag only. It failed to extract data from web page which contains records that 

have complex and nested structure. Reis et al. (2004) described that the limitation of this 

approach is that the proposed algorithm works each time in a single page, so it does not 

compare the page trees. Although achieving good results, the algorithm only works with 

multi-record pages and therefore cannot be applied to on-line news page, that are almost 

exclusively single-record pages. Miao et al. (2009) identified the limitation of this 

approach is that it does not handle nested data objects. 

2.1.2 DEPTA: Web data extraction based on partial tree alignment 

 

Zhai and Liu (2005) addressed the problem of data record extraction from web page. 

They state that the machine learning approach is time consuming and needs human effort 

because it requires manually labeling of many examples from each web site for data 

extraction and this approach is not able to expand to cope with large number of pages. 

They also found that existing automatic approaches related to pattern discovery are 

developed based on many assumptions and provide inaccurate results. The authors 

propose a new architecture for automatic data extraction from web pages. The proposed 

architecture is called DEPTA. It has three steps to extract data automatically. In the first 

step, the method builds a HTML tag tree using visual information. The observation 

behind this step is that each HTML element made with start tag, optional attribute, 

http://dl.acm.org/citation.cfm?id=1060761
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optional embedded HTML content and an end tag, is rendered as a rectangle in a web 

browser. The DEPTA builds tag tree based on the nested rectangle. For doing this, it uses 

embedded parsing and rendering engine of a browser to find the 4 boundaries of the 

rectangle of each HTML element and then it checks whether one rectangle is contained 

inside another rectangle by detect the containment relationship within the rectangles. For 

example, Figure 15 represents the HTML code on the left which is a table with two rows 

and right side represents the boundary coordinated produced by the browser for each 

HTML element shown in the right side. 

 
 

Figure 15: A HTML code segment and boundary coordinates 

The tag tree is shown in Figure 16 is build based on the visual information which is the 

sequence of opening tag and also done by the containment check. After building the tag 

tree DEPTA mines data region in a page that contain similar data records. The DEPTA 

identifies the data region using string comparison between generalized nodes. For 

example, Figure 17 represents an artificial tag tree to explain different kinds of generalize 

nodes and data region. The generalized node represents by the shaded area. The Nodes 5 

and 6 formed data region labeled 1 and their length is 1. The nodes 8, 9 and 10 formed 

the data region labeled 2 and their length is 1. The pair of nodes (14, 15), (16, 17) and 
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(18, 19) from the data region labeled 3 and their length is 2. These generalized node 

formed the data region based on the edit distance properties which is that the normalized 

table

tr tr

td td td td
 

Figure 16: Tag tree for HTML code in Figure 15 

edit distance between adjacent generalized nodes is less than fixed thresholds. To identify 

the data region, the mining algorithm finds the first generalized node of a data region. 

And it is possible when starting from each node sequentially. For example node 8 is the 

first node of data region 2 in figure 17. 

1

9

3 42

98765 10

11 12

13 14 15 16 17 18 19 20

Region 1 Region 2

Region 3
 

Figure 17: Artificial tag tree 
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It also needs to find the number of components that a generalized node contains. DEPTA 

identifies data records from generalized node after all the data regions are identified. 

DEPTA used the same technique as MDR to identify the contiguous and non-contiguous 

data records. After identifying the data records, DEPTA extracts data from data records 

using partial tree alignment technique.  
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Figure 18: Iterative tree alignment with two iterations 

DEPTA grows a seed (tag) tree denoted by Ts to align multiple tag trees. The seed tree Ts 

initially picked based on the maximum number of data fields. Figure 18 represents an 

example how the seed tree Ts is build. At first, the algorithm of DEPTA finds the tree that 

contains most data item. In the Figure 18, T1 is the seed tree. After that T2 and T3 are 

aligned with Ts to generate the unaligned tree. Then DEPTA do the tree matching and by 
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using the matrix results it finds all the matched pairs. It is found that Ts and T2 has one 

match node b where node n, c, k and g are not matched to Ts. Now DEPTA attempt to 

insert them into Ts to satisfy the partial tree alignment requirement. But it is found that 

none of the n, c, k and g in T2 can be inserted into Ts due to the unique location. Then T2  

is inserted into R which means that these nodes need to be further process. When DEPTA 

compares T3 with Ts and it finds unmatched nodes c, h and k can be inserted into Ts. For 

that reason T3 doesn’t need to insert into R. After completion this step R is picked to 

process again. R only contain node of T2 and it is matched with the Ts in the next step. 

For complete the matching process every node of T2 are matched or inserted. At the end 

DPETA follows the alignment procedure to produce the data item from each tree. Each 

un-matched data will generate a single column itself, if there are any unmatched nodes 

with data still available. The authors performed an experiment in which they tested their 

method with 49 different web sites which consists 72 pages. These pages are collected 

randomly. They compared the step-1 of DEPATA with MDR. In their previous work, 

they checked the performance of the MDR compare to other existing system and proved 

that MDR perform well better than those systems. In this approach, the authors proved 

the performance of the DEPA is better than MDR. They obtained that the precision and 

recall of DEPTA is 99.82% and 98.27% respectively for step 1 where recall and precision 

of MDR is 86.64% and 97.10%. They also obtain that the precision and recall of DEPTA 

is 99.68% and 98.18% respectively for step 2. The authors claim that DEPTA can 

segment data records and extract data from web page very accurately. They also claim 

that new version of MDR which is MDR-2 is able to handle nested date records due to 

nested similarity comparison. They also claim that the partial tree alignment technique is 
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able to align data items in nested record. The authors also claim that more robust tree can 

be build by using visual information. And it is possible to find more accurate data region 

with the help of visual information. The shortcoming of this approach is that DEPTA did 

not consider semantic label in data extraction where they only use tree regularities. 

DEPTA failed to extract nested data records. Another limitation of DEPTA is that it is 

only for list page that contains multiple data records.  Senellart et al. (2008) mentioned 

that this approach is less accurate than supervised approach. 

2.1.3 Net: A system for extracting web data from flat and nested data records 

 

Liu and Zhai (2005) addressed the problem in extracting data from web page. They 

identified the problem of wrapper generation for data extraction from web. They 

mentioned that wrapper generation requires a set of data extraction rule which are 

generated from manually labeled page. But manually labeling is related to labor intensive 

and time consuming because different page uses different template and for this reason 

manual labeling has drawbacks for the large amount of pages. The authors proposed an 

approach for data extraction which is based on tree edit distance and visual cues. They 

design their algorithm to traverse the tree from post order (bottom-up) to extract nested 

data record since nested data records are found at a lower level on repeating pattern. They 

define a method called Traverse() to traverse the tree and it traverse the tree with the 

depth is greater than or equal to 3 because the authors observation is that tree with depth 

2 or 1 do not contain any data record. They also define a method called Match() to match 

two child subtree of Node. They also define a sub-method called TreeMatch() to match 

two child subtree under node and it applied on every pair on child nodes to ensure every 
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data matches are captured. The method AlignAndLink() align and links matched data 

items. The method TreeMatch() finds the repeated pattern from list of data record by 

using restricted tree matching algorithm called simple tree matching (STM). For 

example, A = <RA, A1, A2,…, Am> and B=<RB, B1, B2,…, Bn> be two trees, with the root 

RA and RB respectively. And Ai, Bj are the i
th

 and j
th

 first-level sub-trees of A and B 

respectively. The algorithm identifies maximum matching between A and B is MA,B+1, 

when RA and RB match . In the simple_Tree_Matching algorithm, first it compares the 

roots of A and B. After that the algorithm recursively finds the maximum matching 

between first-level sub-trees of A and B if the roots match and used W matrix to save it. 

Based on the W matrix the algorithm finds the number of pairs in a maximum matching 

between two trees A and B by using a dynamic programming scheme. The authors 

applied visual based condition to make sure that A and B has no visual conflict. For 

example, trees are unlikely to match based on the visual information, if the width of A is 

much larger than that of B. These rules perform better in match results and also 

computation is reduced significantly. 
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Figure 19: (X) Tree matching and aligning and (Y) Aligned data nodes under in N1 
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The aligned data items are then linked directionally where an earlier data item will point 

to its next matching data item. Figure 19 gives an example, a terminal (data item) node is 

represented by ti, and a tag node is represented by Nj. Since the algorithm follows post-

order traversal, at the level N4-N5, t2-t4 and t3-t5 are matched and they are aligned and 

linked. It is found that N4 and N5 are data records of N2 as nested and t6 is optional. The 

method TreeMatch() will only match N4 subtree and N6 subtree  at the level of N2- N3. It 

is found that t2- t8 and t3- t9 are linked and t1 and t7 are also linked as they match (Figure. 

19). Since N5 has the same structure as N4, the subtree at N5 is omitted in Figure 19(Y) 

and N4 is marked with a “*”. In Figure 19, as it is turned into a prototype data record by 

enPrototypes(). The node t6 is inserted into N4 as an optional node, denoted by “?”. A 

standard/typical data record containing the complete structure so far is represented by 

prototypes. The linked data items are inserted into the table using PutDataInTables() 

(Figure 20). A table is a linked list of one dimensional array, which represents columns. 

All linked data items are put in the same column. If an item is being pointed to by another 

item in an earlier column then a new row is started. 

t2

t3

t3

t5 t6

N4

N5

Data table

 

Figure 20: Data table for N4 and N5 

For example, for node N2 in Figure 19, the method putDataInTables() produces the 

DataTable in Figure 20. For node N1 in Figure 19, it produces the DataTable in Figure 
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21.  The method produces prototypes after putting data into tables. The tree structure 

followed by GenPrototypes() based on the first data record (e.g., N4 in Figure 20) and tree 

paths which represents optional items not in the first data record are inserted, but in other 

data records. The optional items occupy some columns that do not have data items in the 

first data record and for that reason they are deleted from the table. In the example of 

Figure 21, an optional item t6
?
 is added to N4 which gives * N4 (the prototype). In Figure 

21, it is found that t6
?
  is attached to *N4. 

t1

t7

t2

t8

t3

t6

N2

N3

Data table

T6?

 
Figure 21: Data table for N2 and N3 

The shortcoming of this approach is that Net proposed a greedy approach based on 

similarity match. It employs expensive approach due to bottom-up traversal with edit 

distance comparison. It requires full scan from bottom to root. Net does the all-pair tree 

comparisons within its children during each visit of a node in the traversal. Alim et al. 

(2009) describes the limitation of Net is that wrappers generated by NET are not efficient 

though because the programmers have to find the reference point and the absolute tag 

path of the targeted data content manually. This requires one wrapper for each web site 

since different sites follow different templates. The effects are increased time 

consumption and effort from the programmer. 
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2.2 Separator-based approach 

In this approach, a tools searches for tags, tag-sequences or trees as separators to segment 

a data area into records. This approach was taken by early tools, namely BYU-Tool 

(Embly et al., 1999) and Omini (Buttler et al., 2001), but much more recent by ViNTs 

(Zhao et al., 2005), OWebMiner (Annoni and Ezeife, 2009) and WebOMiner (Mutsuddy 

and Ezeife, 2010; Ezeife and Mutsuddy 2013) 

2.2.1 BYU-Tool: Conceptual-Model-based data extraction from multiple-record 

pages 

 

Embly et al. (1999) addressed the problem of unstructured data on the web which makes 

the searching difficult and database querying impossible. They identified that most of the 

web data is unstructured and traditional query language can’t be used for query. The 

authors proposed a new approach which is based on manually constructed domain-

specific ontology. Their proposed model also relies on structural encoding properties. 

This model is considered as a fully automated and parameterized by domain specific 

ontology. The ontology which is used in this model is based on concept, relationship and 

specialization relations where concepts are either lexical or non-lexical, relationship 

between concepts have optional participation constraints and the specialization 

relationships allow to specify the concept as specialization of other concepts. In this 

model, each concept is associated with a data frame to link ontology concepts with 

proceed documents. A regular expression is contained by the data frame to describe all 

possible encoding concept instances in lexical concept. A normalization rule is applied to 

extract the instance in a normalized form. The data frame is used to describe the context 

keywords in both lexical and non-lexical concepts which indicate the presence of a 
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corresponding object instance. The authors conducted two experiments. In the first 

experiment, the ontology is applied to a limited corpus of test obituaries from two 

different sources. They conducted the second experiment of greater quantitative and 

qualitative scope in order to demonstrate the robustness of the approach and the general 

applicability of this ontology. They collected a new corpus of obituaries which 

exemplified wider variability in style and content for the second experiment. As a test 

data they took 38 obituaries from a web page provided by the Salt Lake Tribune and 90 

obituaries from a web page provided by the Arizona daily star. In the result they found 

that the average recall is 90% and the average 75% precision for names and average 95% 

precision elsewhere was a pleasant surprise. The authors claim that the model describe 

fully automates wrapper generation for web documents that are rich in data, narrow in 

ontological breadth and have multiple records in single page. They mentioned seven 

items as future work include finding and classifying web pages of interest for a given 

application ontology using an ontological approach, enhancing the approach for 

unstructured record identification, indentifying records of interest both within a page or 

on a set of related pages using the application ontology, improving the model to identify 

attribute-value pairs and construct database tuples, adding richer data conversion to the 

data frames, inferred data as well as extracted data can be inserted into the database by 

providing a means to do inference and use more extensive quality metrics. The limitation 

of this approach is that it requires human effort because ontology for different domains 

must be constructed manually by an expert. 
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2.2.2 OMINI: A fully automated extraction system for the world wide web 

 

Buttler et al. (2001) addressed the problem of information extraction from web using 

wrapper. They mentioned that programmer needs to understand the specific presentation 

layout or specific content web page to construct the wrapper and it is labor intensive and 

error prone because web site information are changed very frequently. They also 

mentioned that it is hard to maintain additional or new content into the existing 

integration framework. The authors propose a new approach called OMINI which is a 

fully automatic object extraction system. The OMINI uses tree structure to parse the web 

pages. It performs the object extraction from web pages into two stages. In the first stage, 

the location of interest object contained by the smallest subtree is searched by the subtree 

extraction algorithm. In the second stage, it finds the correct object separator tags. Both 

the stages perform their task automatically. OMINI uses the standard derivation (SD) 

technique, repeating pattern heuristics (RP) for minimal subtree extraction and object 

boundary identification which is also used by Embly et al. (1999). The system OMINI 

takes a URL as input and returns extracted list of objects from the given web page as 

output. The OMINI works on three phases include preparing web document for 

extraction, locating objects of interest in a web page and extracting objects of interest in a 

page. In the first phase, it prepares the web document for extraction by taking URL from 

end user or an application and performs the tasks including fetch web site of the given 

URL from the remote site. It makes the web document well formed by using the syntactic 

normalization algorithm and converting the web document into tag tree representation 

based on the nested structure of start and end tags. In the second phase, OMINI locates 

objects of interest in a web page and does this part into two steps. In the first step, it 



 

45 

 

extracts the object-rich subtree which is the minimal subtree that contains all the objects. 

In the second step, it extracts object separator which finds the object separator tag that 

separates the objects. For example, given a web document, object discovery phase 

identifies the primary content region from the document which is converted to the tag 

tree. The target of the object rich subtree discovery is to locate the object of interest 

contained by the minimal subtree of T. Here the objects means which need to be 

extracted in the search result which is presented in the web document by the twelve tables 

at the right side of the tree. Here the subtree heuristic obtain the tag node 

HTML[1].body[2].form[4] which is minimal subtree that contains all the news objects of 

interest. In the object separator extraction phase, OMINI uses a set of individual 

algorithms include standard deviation heuristic (SD) which measures the standard 

deviation in the distance between two consecutive occurrences of a candidate tag and 

based on their standard deviation it ranks the list of candidate tag in ascending order, the 

repeating pattern heuristic (RP) which counts the number of occurrences of all pairs of 

candidate tag that have no text in between by choosing the object separator. The 

identifiable path separator tag heuristic (IPS) which ranks the candidate tags of the 

chosen subtree according to the list of system supplied IPS tag( most commonly used 

object separator tags for different types of subtrees in web document), sibling tag 

heuristic (SB) which counts the pairs of tags that are immediate sibling in a tag tree and 

partial path heuristic (PP) which lists the paths from a node to all other reachable nodes 

and counts the number of occurrences of each path. Each of them independently 

identifies a ranked list of object separator automatically to decide how to separate data 

objects from each other. After finding the object separator, OMINI extracts the object of 
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interest in a page. And it is two steps processing include candidate object construction 

and object extraction refinement. The objects are extracted from the raw text data of the 

web document in the process of candidate object construction. Object separator which is 

extracted in phase 2 is used in this process by choosing the objects needed to be extracted 

from the components of the chosen subtree.  At the end, the objects that do not conform 

to the set of minimum criteria are eliminated in the process of object extraction 

refinement. This process is involved to remove those objects that are not are the same 

structure like objects that are missing a common set of tags or objects that have too many 

unique tags. Also the objects that are too big or too small are removed in this process. 

The authors conducted a series of experiments over 2000 web pages from 50 popular web 

sites. They first generated a random list of 100 words from the standard unix dictionary to 

retrieve the pages automatically. After that they fed each word into a search from of the 

50 web sites. They discarded the page with no result after retrieving the page. They used 

manual approach for the static web page which do not have search interface. They 

conducted the experiment with all local version of the page to ignore overload web sites 

to obtain consistent result overtime. The authors obtain the result where a recall ratio in 

the range of 93%-98% and precision ratio of 100% in these experiment. They also 

compare their result with Embley et al. (1999) where the heuristics only achieved a 

success rate of only 59% and the success rate of author’s approach is 93%. The authors 

claim that their approach is fully automated to extract object from web. They mentioned 

that they have interest to include the automation of evaluation process and incorporation 

of evaluation feed-back refinement of object extraction in the future. Also they have a 

plan to do the integration with query optimization and semantic interoperability software 
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system in future. The limitation of this approach is that the author did not address how to 

precisely locate the data object instances in the separated parts and how to extract them 

by their specific structure. The separator contains only one HTML tag which is 

insufficient. Wang and Lochovsky (2003) described the limitation of OMINI is that this 

approach only good for segmenting web pages into parts, possibly containing data object 

instances. Liu et al. (2003) identified the limitation of this approach is that this model 

performs poorly on some web pages, the description of one data objects may intertwine 

with the descriptions of some other objects.  

2.2.3 ViNTs: Fully automatic wrapper generation for search engine 

 

Zhao et al. (2005) addressed the problem of manually generating program that extracts 

record from dynamically generated search result pages due to the response of submitted 

query in search engine. They state that manually approach is costly, time-consuming and 

impractical. They identified that search engines require manual maintenance of the 

extraction program due to frequently changing their result display format. They also state 

that it is time consuming to construct a wrapper manually for each search engine if an 

approach aims to connect to hundreds of thousands of search engines. The authors 

propose the new approach called VINTs. The main focus of this approach is wrapper 

generation. First, it identifies some candidate result record from each sample result page 

by analyzing the types such as link or text and the position of all the rendering boxes. 

Then it builds some initial wrapper based on these records and a hypothesis about the 

general format of the SRR wrapper. After that generated wrappers are refined to indentify 

the boundaries which separate different types of records. In the next step, VINTs uses 

additional visual feature to select most promising wrapper for the result page from the 
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refined wrapper. In the final step, the generated wrappers are integrated to produce the 

final wrapper for the search engine. The VINTs describes the block as a sequence of 

content line types and indentations. The content line types contain the link which is basic 

types, text, link-text, the head variants link-head, text-head, and link-text-head and the 

types hr-line and blank. The distance of the starting point of the line from the left hand 

side of the screen is measured by the indentations. At first, ViNTs compares two blocks 

by computing the sequence of line types and the sequence of identifications. The 

normalization of the both sequences is done separately. ViNTs uses the technique called 

modified shape code of a block which generates from subtracting the minimum positions 

in the sequence from all occurring position which is the normalized position sequence. 

Three distance measures on these sequence is applied by ViNTs include type distance, 

shape distance and the position distance. ViNTs arranges the blocks into candidate group 

after dividing the lines of page into blocks such as the grouped blocks are similar 

according to the three distance measure. ViNTs also builds individual wrapper based on a 

common result template for search result.  

R# Tag path 

1 <HTML>C<HEAD>S<BODY>C<IMG>S<CENTER>S 

<HR>S<B>S<HR>S<DL>C<DT>C<STRONG>C 

2 <HTML>C<HEAD>S<BODY>C<IMG>S<CENTER>S 

<HR>S<B>S<HR>S<DL>S<DL>C<DT>C<STRONG>C 

3 <HTML>C<HEAD>S<BODY>C<IMG>S<CENTER>S 

<HR>S<B>S<HR>S<DL>S<DL>S<DL>C<DT>C 

<STRONG>C 

4 <HTML>C<HEAD>S<BODY>C<IMG>S<CENTER>S 

<HR>S<B>S<HR>S<DL>S<DL>S<DL>S 

<DL>C<DT>C<STRONG>C 

Figure 22: Tag path extracted from web document 

 

The VINTs generates initial wrapper with the tag path of the records in each sub-groups 

and the hypothesis about the format of the wrapper (prefix (X) (separator1 | 
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seperator2|…))[min, max]). There is a possibility that different initial wrapper or no 

initial wrapper can be generated from the different sub group. In this step, prefix and the 

separators are identified. The parameter min and max is indentified in the next step which 

is refinement step. Figure 22 is used to describe this step. First it finds the maximum 

common prefix PRE of all input tag paths. In the running example, PRE 

=<HTML>C<HEAD>S<BODY>C<IMG>S<CENTER>S<HR>S<B>S<HR>S<DL>S. 

It can be different from the needed wrapper. There is a possibility that PRE contain the 

correct prefix and also additional path node at the end. By removing PRE from tag path it 

is possible to indentify the addition path node at the end. For example, Let Pi = path (ri) – 

PRE and then compute Diffi= pi+1-pi where pi is a suffix of pi+1. The separator can be 

indentified when the differences are the same. In the running example Diff= <DL>S is 

the separator. After that all the occurrences of Diff are removed from PRE.  Here PRE1 is 

the new PRE and E is the last node of PRE1. Now additional separator is identified by 

comparing the Diff and E and it is checked that is there any Diff occurs before E. The 

path node E is indentified as a new separator when both the conditions are satisfied and E 

also removed from PRE1. This process continues until new separator is identified and the 

remaining tag path of PRE1 is the prefix of initial wrapper. In the running example, only 

one separator is identified and the final prefix is <HTML> C<HEAD>S <BODY>C 

<IMG>S<CENTER>S<HR>S<B>S<HR>S. There are three cases are identified if the 

Diffs are different. Case 1: There is no common suffix of the Diffs and then the process 

of wrapper generation fails and process terminated. Case 2: There is a common suffix but 

it doesn’t have multiple occurrences in any Diffs and then suffix is the separator which is 

identical to any of the Diffs and subtract from PRE. The remaining PRE is the prefix for 
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initial wrapper. Case 3: Some Diffs contain common suffixes which have multiple 

occurrences. Then each Diffs are expanded by taking the structure of the child nodes of 

the nodes in the Diffs into consideration. The expanded Diffs are used in the second case 

to indentify the separators. The wrapper building process fails if the separator not found. 

From the above two step, for the running example the initial wrapper is 

<HTML>C<HEAD> S<BODY>C<IMG>S <CENTER>S<HR>S<B>S<HR>S(X<DL> 

[0,∞], where X is a wild card. The initial wrapper is used to extract all matching records 

from the result page. If it can successfully extract record then the wrapper is accepted 

from refinement step. If it fails to extract record then the wrapper is incorrect. Then the 

node in the separator is expanded by their child node in step 2 to find a new separator. If 

the new wrapper is found then the initial wrapper is revised and above process is 

repeated. The wrapper building process fails if the new wrapper cannot be accepted or a 

new separator not found. A tag path is matched by the template as common prefix, 

leading to the data area and contains a number of separators to segment the data area into 

records. ViNTs choses the final wrapper based on four criteria include the relevant data 

areas is large, resides in the middle of the page, contains a large number of records and 

contains records with a large number of characters. The authors used a commercial tool 

ICEbrowser for result page rendering and tag tree construction. They used Pentium 4 

with 1.7GH PC to generate wrapper for a search engine with 5 sample result pages and 1 

no-result page. And the wrapper is build in 3 to 7 seconds. The authors tested ViNTs with 

three data sets. Data set 1 has 4types of 100 search engine include education, 

government, medical and general. Data set 2 has 100 search engines which are collected 

from profusion.com and these are not included in data set 1. For these two data sets, there 
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are 10 queries are submitted and 10 first result pages are collected manually. They used a 

non-existent term as a query for collecting no-result page for each search engine. They 

used data set 3 which is obtained from Omini testbed and it is a collection of more than 

2000 web pages from 50 web sites. The author obtained that ViNTs able to generate very 

high quality wrappers with the precision and recall close to 100% on data set 1 and close 

to 98% on data set 2. The authors identified the reason of 2% decrease performance due 

to the failure of ViNts on 2 search engines in date set 2. The authors claim that their 

approach is fully automated and this technique can be achieved considerably higher 

extraction accuracy than that of the state of art web information extraction systems. They 

also claim that their approach implicitly employs a method on search result records on 

current search engines to extract these records. The authors mentioned that they have plan 

to improve ViNTs by utilizing additional visual features to further reduce the reliance on 

HTML tag structure. The limitation of VINTs is that it will fail to separate horizontally 

arranging data records which will require vertical separator due to fact that it only 

supplies horizontal separator. Other limitation is that at least four data record have to be 

present in a web page for wrapper building. Zheng et al. (2007) describe about the 

limitation of ViNTs is that since this approach based on visual layout information, it is 

difficult to identify visual information without any assumptions about the target domain.  

The visual feature used in ViNTs are only limited to the content shape-related features 

and it is used to identify the regularities between search records. For this reason, ViNTs 

depends on structural similarities and must generate wrapper for each search engine. 
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2.2.4 OWebMiner: Modeling web documents as objects for automatic web content 

extraction 

 

Annoni and Ezeife (2009) identified three main problems in existing data mining 

approaches from web documents include existing systems failed to focus web search on 

either web document presentation or content or both, there is no unique framework which 

able to mine each web object based on their structure type e.g., unstructured, loosely or 

strictly structured and existing approaches are domain dependent and time consuming 

process. In this paper, the authors proposed a framework which presents we document as 

object-oriented web data model to represent web data as web content and web 

presentation objects to solve the above problems. The proposed framework is able to 

mine complex and structure data as well as simple and unstructured data in a unified way. 

They observed that <h1> or <a> tag in HTML is more meaningful than <pre> tag which 

used for pre-formatted text. The authors defined three main zones of a web document as 

instances of specialized classes include HeaderZone, BodyZone and FootZone. They 

state that two types of objects are exists in these zone include web content objects and 

web presentation objects. The authors classified the web content into six categories 

among them four have sub-content type include text element, image element, form 

element, plug-in element, separator element and structure element. The text element has 

two sub content-types include raw text and list text. A raw text has three sub-content 

types include title, label and paragraph. A list text has two sub-content types include 

ordered list and definition list. Image element has two sub-content types like image and 

map. Form element has three sub content types which are form select, form input and 

form text area. The authors classified the web presentation object into six categories 
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which are banner, menu, interaction, legal information, record and bulk. In the first step, 

DOM tree of a web document is generated from the HTML file using DOM parser. In the 

second step, web zones are indentified on the web document from the DOM tree (Figure 

24). In the third step, web content object and web presentation objects are extracted. In 

this algorithm, block level tag (e.g., table, division, heading, list, form, block quotation, 

paragraph and address) and non block level tag (e.g., anchor, citation, image, object, 

span, script) are considered to extract object. Two search approaches are used in 

OWebMiner to explore the DOM tree (Figure 24). The depth-first search is executed 

through block-level tag until it finding non block level tag. The breadth-first search 

executed to parse non block level tag. In the web content extraction process, the authors 

define an algorithm which identified web zone from web document. It takes a web 

document DOM tree (Figure 24) as input and returns an array which contains web zone 

of the web document. The string comparison technique is used to parse tag sets. The 

authors identify two tag series called series 1 and series 2 in the web. Series 1 is the set of 

five or more <a> or <area> sibling nodes. And series 2 is the series which include the 

keywords ‘copyright’, “private policy”, “about our company”. In the proposed algorithm 

series 1 and series 2 are searched to identify the web zone objects. The authors also 

developed sub algorithm of OWebMiner called PresWebObjectScan() and 

ContWebObjectScan() to extract web presentation object and web content object 

repectviely. The method PreswebObjectScan() extract object such as “Menu”, 

“LegalInformation” etc. whereas ContWebObjectScan() extract object such as 

“TextElement”, “Definitation List”, “pluginserver” etc. Annoni and Ezeife’s (2009) main 

algorithm OWebMiner() is given in Figure 23: 
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Figure 23: OWebMiner() algorithm (Annoni and Ezeife, 2009) 

The input of their proposed algorithm (Figure 23) is a set of webpages (WDHTMLFile). 

The Line (1) of the algorithm will extract all the content and presentation objects for each 

WDHTMLFile into two separate object arrays according to their DOM hierarchical 

dependencies. The web objects  are stored into database by line (2). Line (3) will mine 

the extracted contents from the database. They also developed sub-algorithm (1) of their 

main algorithms OWebMiner() called PresWebObjectScan() and ContWebObjectScan(). 

The method ContWebObjectScan() uses array data structure ContentObjectArray[] to 

store content objects. The process starts with the root of DOM Tree node 

“<html>”(Figure 24). When it finds the series-1, it calls the method 

ProcessContentSibling() to start extraction process of content objects and continue until it 

hits series 2.  The method ProcessContentSibling() takes DOM Tree (Figure 24) as input, 

A pointer called “TTag” which indicate current tag to process in DOM Tree. The 

algorithm uses depth-first search to traverse DOM tree block-level tags until it hits non-

block level tag and reset “TTag” pointer to represent current processing tag. It processes 

all it’s siblings into an array called “tagArray”, when depth-first search hits a non-block 

level tag. For all non-block level tags in “tagArray”, the algorithm then associates a 

Algorithm: OWebMiner() 

Input: A set of HTML files (WDHTMLFile) of web documents. 

Output: A set of patterns of objects. 

Begin 

         For each WDHTMLFile 

1. Extract web presentation objects and content objects  

sequentially with respect to their hierarchical dependencies. 

2. Store the object hierarchies into a database table  

         endFor 

        3. Mine patterns lying within objects 

end 
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content object to tag value. Otherwise it recursively calls itself to advance “TTag” 

pointer. The ContentObjectArray[] contains all content objects from body zone of web 

page. The authors stop at this point in their paper and left the remaining mining from the 

content object array as future work. The authors claim that their proposed object-oriented 

web data model able to distinguish content from presentation aspects of data e.g. title, 

label, image etc. They also claim that their algorithm able to extract objects e.g. title, 

label, image etc. from any given web document of any web application and it is domain 

independent. The authors also claim that their proposed framework is based on object-

oriented approach which mines a web document as a set of object by extracting both the 

content and presentation views of web documents. The limitation of their framework is 

that it doesn’t evaluate all the HTML tag because their observation is that all the tag in 

HTML are not meaningful. There are several limitations in this approach. This approach 

doesn’t identify the data block and data region. It is important to identify data region and 

data block to extract web objects. Their approach based on “vision based context 

structure” and this is useful when using browser rendering engine. But for automatic 

extraction process without use of web browser, co-ordinate location of any feature is not 

possible. Their proposed algorithm did not address the use of separator element for 

identification of data block and data region. Their approach did not define the object 

classes, size of object classes, object class hierarchy, object class dependencies and 

functionalities of object class. They only classify the web content elements but did not 

associate object types with content, nor discuss how to control the creation of expensive 

objects. They did not address the issue of preventing noisy data entry into database table.  
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Figure 24: DOM tree representation of positive page from "bestbuy.com" 
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2.2.5 WebOMiner: Towards Comparative Web Content Mining using Object 

Oriented Model. 

 

Mutsuddy and Ezeife (2010), Ezeife and Mutsuddy(2013) proposed a system for 

extracting and mining of structured web contents based on object-oriented data model. 

They developed the architecture called WebOMiner using object oriented model for 

extracting and mining of web contents. They introduced an approach of generating and 

using automata for mining web content objects. They define data block and data region to 

ensure consistency between related data.  They addressed to relate HTML tag attribute 

information with related contents to ensure identification of content, to assign objects and 

other information together. They also defined object class hierarchies according to the 

problem domain and defined schema matching to unify similar contents from different 

web sites. They identified noisy contents in data blocks and prevent from them entering 

into database table. They also implemented and materialized object-oriented data model 

for web content and extract heterogeneous related web content together. They defined a 

mining algorithm that identify data block, generates non-deterministic finite automata 

based wrapper for extraction of related contents. They classified all data blocks of a web 

page according to their type and check minimum support to ensure data consistency 

before entering them into database. Their proposed WebOMiner system is an automatic 

object oriented web content extraction and mining system for integrating, mining 

heterogeneous contents that are also derived, historical and complex for deeper 

knowledge discovery. WebOMiner extracts information from a given web page includes 

data records (e.g., product image, product brand, product id, short description and price 

of the product), navigation information (e.g., link URL, link id or name), advertisement 
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(e.g., product advertised, image, URL links to related website). After extraction, 

WebOMiner stored this information into database for comparative mining and querying. 

Figure 25 is shown the main algorithm of WebOMiner. 

  

 

 

 

 

 

 

Figure 25: Main algorithm of WebOMiner 

 

Their proposed approach contains four modules include crawler module, cleaner module, 

content extractor module and miner module. The proposed crawler module crawls the 

WWW given as input to find targeted web page. This module creates a mirror of original 

web document after streaming the entire web document including tags, texts and image 

contents. The comments are removed from the HTML document by this module. The 

cleaner module converts the downloaded HTML file well formed by inserting the missing 

tag, removing inline tag ( e.g., <br/>, <ht/>), insert missing “/” at the end of unclosed 

<image> tag, clean up unnecessary decorative tags. The content extractor module 

converts HTML page into DOM tree and extracts contents from the DOM tree. This 

Algorithm Main 

      Input:          Set of HTML files (WDHTMLFile) of web documents. 

      Output:       Set of patterns of objects. 

      Variable:    ContentObjectArray[].  

 

Begin 

         For each WDHTMLFile 

A.     Call SiteMapGenerator() to crawl and extract webpage into local directory  from 

WWW.       

              B.      Call tagSoup.html() to clean-up HTML code.          

              C.      Call WebOMiner.BuildDOMTree() to create DOM tree of refined HTML file and 

extract web content objects sequentially from DOM Tree. Store objects in 

ContentObjectArray[].      

D.  Call MineContentObject.IdentifyTuple() to identify data records and classify 

records   according to   their pattern.    

E.  Call CreateDBTable() to store data records into a database table 

        endFor        

 

              F.     Mine for knowledge discovery within extracted contents.  

End 
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module indentifies respective class object type as per pre-defined object class to the 

content. Also puts objects into Array List after setting information into objects. Data 

regions and data block are identified by this module and it segment the respective data of 

a data block from other data block by using separator objects. This module also generates 

seed NFA pattern for data blocks. It stores identical tuples after extracting objects of all 

tuples by matching with the refined NFA. It stores the objects into the database after 

checking the minimum support for all tuples categories.  The shortcoming of this 

approach is that this method uses NFA for identifying tuples of web objects. But how the 

NFA is built, it is not defined by the author. And the NFA contains “ɛ” transition, but the 

author didn’t mention how the “ɛ” transitions were handled. That means the author didn’t 

mention how the NFA were used for identifying tuple without convert it to DFA. In this 

approach, the database schema generation is manual process which is labor intensive and 

time consuming. The author didn’t define about schema integration of different domain 

specific website. 

2.3 Grammar-based approach 

RoadRunner (Crescenzi et al., 2001) and DeLa (Wang and Lochovsky 2003) describe the 

common structure shared by, respectively, different pages or different subtrees within the 

same page by inferring a grammar. Data fields in the grammar are used to identify the 

data to be extracted. 

2.3.1 RoadRunner: Towards Automatic Data Extraction From Data-Intensive Web 

Site. 

 

Crescenzi, Mecca and Merialdo (2001) begin by stating that there is no existing 

architecture that generate wrapper automatic for data extraction from web. They state that 
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since the amount of information in the web growing very fast, it is not easy task to access 

and manipulate these data through manually generated wrapper. The authors proposed an 

approach called ROADRUNNER which infers a grammar describe the common structure 

shared by, respectively, different pages or different subtrees within the same page. With 

this approach, each HTML page tokenizes and summarizes each text spawn into a single 

token.  Initially, ROADRUNNER takes a page to generate initial wrapper and using this 

wrapper it parse the other sample pages. By doing this, it assumes that static and 

irrelevant data are indentified by similarities and dynamically generated and relevant data 

are identified by dissimilarities. ROADRUNNER generalizes the wrapper and generates 

a union free regular expression (UFRE) when each mismatch found during parsing the 

sample page. The relevant data fields identified with the UFRE. The algorithm considers 

two types of mismatch include text mismatch and tag mismatch. Text mismatch occurs 

when two text tokens are compared and return different text. In that case, 

ROADRUNNER assumes that text field contains a database field. The tag mismatch 

occurs when two different type tokens are compared. In that case, ROADRUNNER 

assumes that either an iterated or optional pattern causes the mismatch. ROADRUNNER 

identifies iteration by assuming that repeated pattern ended by the last common tag and 

that is the mismatch tag starts the pattern. ROADRUNNER searches for candidate pattern 

by using this assumption and try to match two successive instances of the assumed 

pattern recursively. ROADRUNNER identifies an optional pattern by assuming if any 

mismatch tag appears either in the wrapper or in the sample page, it can be skipped until 

a matching tag appear. ROADRUNNER generates a number of candidate patterns by 

using this assumption. Data area identification and record segmentation process done in a 
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single step by the ROADRUNNER. It infers a grammar which contains the 

corresponding information implicitly, instead of explicitly identifying a data area or 

record delimiters and the data exists in the record is not align and labeled. When 

ROADRUNNER generates candidate, that time it also identifies the starting or ending tag 

of iterated patterns and searches through the wrapper and parse page for a matching 

instance of the ending tag. The parse page is searched for the mismatching tag from the 

wrapper to identify potential optional patterns. If any occurrence found, then the 

algorithm generates a candidate pattern. In the same time, the wrapper is searched for the 

mismatch tag of the sample page and generates the candidate pattern. ROADRUNNER 

uses backward moving manner to match the candidate pattern for evaluating the 

candidate pattern iteration. For do this, the algorithm first compares the last matching tag 

with the ending tag. After that it compares the tag followed by the ending tag and the last 

matching tag and so forth. The backward matching process is the recursive process. 

Finally, the wrapper is generalized and the parsing process is ended. ROADRUNNER 

uses AND-OR tree for efficient searching of the candidates. In this process, for parsing 

the given page all the non-recursive mismatch must be resolved first and that time it 

generates an AND node. And it generates an OR node at the time of tag mismatch to 

choose the candidate patterns for iterative and optional pattern. The authors performed an 

experiment of their proposed algorithm on real HTML sites. They developed a prototype 

using java. They used JTidy to clean HTML sources, fix errors and convert the code to 

XHTML, and also build the DOM tree. They used Intel Pentium III processor working at 

450MHz, with 128 Mbytes of RAM, running Linux (kernel 2.2) and Sun Java Java 

Development kit 1.3 to conduct their experiment. The authors provided two tables to 
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display the results. They listed the result of independent experiment with table A and 

with table B, the authors compared their result with other extraction systems include 

Wien and stalker. In table A they listed the result of class which is a short description of 

each class, (#w) number of wrapper created by the system, (#s) number of samples 

matching each wrapper, (extr) outcome of the data extraction process and schema which 

include (nest) level of nesting, (pod) number of attribute, (opt) number of optional. The 

element exits in table B include web sites and number of samples, target schema, (pcd) 

number of attributes, (nest) level of nesting ,(opt) if the page contain option element, if 

the attribute may occur different order (ord), results based on computing time of the three 

system, WINE and STALKER refer to CPU time which is required for learning. The 

authors claim that the proposed approach generate wrapper fully automatically. The 

generated wrapper is template independent which means that it doesn’t depend on any 

prior knowledge of the target pages and their content. Also it doesn’t require any user 

interaction. The author also claim that their approach is not restricted to flat record and it 

is able to handle nested structure. The authors also claim that ROADRUNNER can be 

work without prior knowledge about structure of the page. They state that 

ROADRUNNER needs lower time to learn the wrapper than WINE and STALKER and 

also able to handle nested structure. There are several limitations to the ROADRUNNER 

approach. This approach is based on the assumption is that the input page is generated by 

the template. But this assumption is not valid for the web site that contains HTML tag 

within data values. For example, if a web page contains several text paragraphs with <P> 

and <i> tag inside, ROADRUNNER will either fail to discover any template, or produce 

a wrong template. Arasu et al. (2003) describe the limitation of ROADRUNNER is that it 



 

63 

 

assumes that the “grammar” of the template used to generate the pages is union-free. This 

is equivalent to the assumption that there are no disjunctions in the input schema. The 

authors of ROADRUNNER themselves have pointed in (Crescenzi et al., 2001) that this 

assumption does not hold for many collections of pages. Moreover, as the experimental 

results in (Crescenzi et al., 2001) suggest, ROADRUNNER might fail to produce any 

output if there are disjunctions in the input schema. Arasu et al.(2003) also identifies the 

limitation of ROADRUNNER is that when it discovers that the current template does not 

generate an input page, it performs a complicated heuristic search involving 

“backtracking” for a new template. This search is exponential in the size of the schema of 

the pages. It is, therefore, not clear how ROADRUNNER would scale to web page 

collections with a large and complex schema. 

2.3.2 DeLa: Data extraction and label assignment for Web database. 

 

Wang and Lochovsky (2003) addressed the problem of automatic data extraction from 

web and assigning data with meaningful label.  The authors state that existing approaches 

based on assumption either that schema information provided from web site or the 

relational schema specified by the user. The authors identified the problem is that it is not 

guaranteed either that schema information always provided by the web site or every user 

have experience with the database to define the schema. Also current approaches require 

human effort which is not efficient in manually providing the label of the extracted data. 

The authors identified that wrapper generation requires the data-rich section which is 

relevant data for extraction need to be identified and a pattern that represents structure the 

data objects in data rich section need to be constructed. To solve the first problem the 
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authors proposed the algorithm called data-rich section extraction (DSE) which identify 

the data–rich section in HTML pages. To solve the second problem, the author proposed 

a new concept called C-repeated pattern which identify plain or repeated nested data 

structure in HTML pages. The authors observed that web site consist similar structure to 

organize their content such as the location of advertisement and navigational menus. The 

authors employ DSE (data-rich Section Extraction) algorithm based on this observation. 

The DSE algorithm compares two data-rich pages from same web site to identify data-

rich section. The basic idea of this algorithm is that it removes the common sections and 

identifies the remaining ones as data rich section after compare two pages from the same 

web site. The comparison algorithm used document object model (DOM) to represent the 

layout of the HTML pages. A depth-first order is used to traverse the DOM trees and 

compare them node-by-node from the root to the leaves. If two internal nodes from two 

trees are similar then the algorithm goes one level down to match their children from the 

leftmost to rightmost one. If the leaf nodes are similar then they removed from the trees. 

The algorithm returns to their parent and compare the other children if the nodes are not 

similar. The parent node will be removed if all of their children have been removed. The 

Figure 26 represents an example of token sequence and its token suffix tree. Square with 

a number represents the leaf that indicates the starting token position if the suffix. Circle 

with a number represents each internal node with a number that the position of the token 

where its children differ. Same parent nodes are sharing by the sibling node which put in 

alphabetical order. The substring between two token positions of the two nodes has 

shown as label of each edge between two internal nodes. The token which is internal 

node of the suffix starting from the leaf node has shown as label of each edge between  
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Iteration 2: S=<P><A>text</A><A>text</A>text</P><P>  <A>text</A>text</P>$

1

1
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5 3
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4 2

2 8 1

7

1 10 6 12

3 9 5 11

<P><A>text</A><text></P>
text <A>text</A>text</P> </A>text</P>

</P>

</A>text</P>

</P>

<P>
<P>

<P> <P>
$ $ $ $

$$ <P><P>

 
Figure 26: C-repeated pattern 

one internal node and one leaf node. For example, <A>text</A> is the edge label 

between node a and b. It is the substring which starts from the first token up to, but not 

including the fourth token. The string “<A>text</A>text</P><P>” can be build by 

adding the edge label from the root to node which is the unique prefix that indicate the 

fifth suffix sting “<A>text</A>text</P><P><A>text</A>text</P>. To discover C-

repeated patterns, internal node’s path label and their prefixes in the token suffix tree 

works as a candidate. If any two of its occurrences are adjacent then it is a C-repeated 

pattern for each candidate repeated pattern. It occurs when the distance between the two 

starting positions is equal to the pattern length. The structure of the suffix tree is simple 

based on the occurrence retrieval if each repeated pattern. In case of repeated pattern P, it 

is possible to find the highest internal node in the tree. For Example, <A>text</A> is a 

repeated pattern in the Figure 26. Because node b is an internal node and the pattern 

contained by its path label which is prefix.   
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Figure 27: An example of a pattern tree 

The pattern with starting position 2, 5 and 11 exists three times in the sequence which is 

indicated by its leaf node c, e and f. This is a C-repeated pattern since its occurrences are 

adjacent (5-2=3). After discovering the C-repeated pattern, the proposed algorithm 

discovers the nested structures from the string sequence of the HTML pages. In that case, 

hierarchical pattern tree is used to handle this task. For example, after discovering the 

pattern <A>text</A>, it masks the occurrence from S2 to S4 and form a new sequence in 

the Figure 27. A new suffix tree is build based on new sequence and search for new C-

repeated pattern “<P><A>text</A></P>”. At the end, a regular expression 

“<P>(<A>text</A>)*</P> is generated from these two iteration which represents the 

structure for the two data objects. Here “*” indicate object appears zero or more time. 

Pattern generated by the iterative discovery process form a hierarchical relationship. 

Because some pattern’s discovery is dependent on some other pattern’s discovery. For 
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example, discovery of pattern “<P><A>text</A></P> depend on discovery of pattern 

<A>text</A>. It is also possible that some discovered pattern is independent of each 

other. For example, in the string “text<IMG>text<IMG>text<IMG>text<IMG> 

text<P>text<P>”, the pattern text<IMG> is not dependent on the pattern text<P> and vise 

versa. Both the dependence and independence of the C-repeated pattern can be presented 

by using a Pattern tree. The Above Figure 27 represents a pattern tree where token of the 

HTML sequence is represented by each character. In the string 

“ABACCABBAABBACCC”, token is represented by each character and two data 

objects in this string is (AB*A)*C covered by the structure. The character “*” means the 

substring may appear zero or more times. To reduce the complexity, the authors employ 

heuristics to filter out patterns that cross pairs of HTML tags. And to prune some 

branches of the pattern tree they used three rules. The advantage of this approach is that it 

can automatically generates regular expression wrapper to extract data objects and able to 

restore the retrieve data into a table. The proposed approach is able to assign meaningful 

label to the data attributes and can extract nested data from HTML pages. The limitation 

of this approach is that since DELA able to generalize optional and alternative pattern 

only after extracting all candidate patterns, it might miss optional and alternative 

structure which are nested inside a repetitive structure. Zhai and Liu (2005) describes 

about the limitation of DELA is that it needs to use multiple pages (which are assumed to 

be given) that contain similar data records from the same site to find patterns or 

grammars from the pages to extract data records. Assuming the availability of multiple 

pages containing similar data records is a serious limitation. Miao et al. (2009) identifies 

one limitation of DELA is that it is not robust against optional data inserted into records. 
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CHAPTER 3 - Web content mining using non-deterministic finite state automata 

 

As discussed in section 2.2.5, WebOMiner (Mutsuddy and Ezeife, 2010), Ezeife and 

Mutsuddy, 2013) used non deterministic finite state automata based algorithm for 

extraction and mining structured web content data.  We studied the approach of 

WebOMiner and found that this method uses an NFA algorithm for identifying tuples of 

web objects, the mechanism for using NFA algorithm for automatic identification of 

different content types is not fully integrated in the current system. Also, they generate 

NFA for identifying content based on manual observation of product schema from ten 

B2C web sites which is not efficient and use manually generated database schema to 

store extracted contents into database. We propose an architecture that generates finite 

state automata automatically for content mining and it also generates data warehouse 

schema automatically. This thesis develops the architecture for web content mining. It 

extends and modifies necessary algorithm from WebOMiner. This thesis addresses the 

following limitations of WebOMiner.  

3.1 Problem Addressed 

 

1. WebOMiner used non deterministic finite automate (NFA) for mining different 

types of web content. But the mechanism for using NFA algorithm for automatic 

identification of different content types is not fully integrated in the current 

system. For example, they manually discovered ten representations database 

structure of product list page from different B2C web site. They built product 

NFA manually based on this structure. This thesis solves the limitation of 



 

69 

 

WebOMiner by generating NFA from the frequent pattern extracted from DOM 

tree of the web page.  

2. WebOMiner used NFA for content mining without converting it to DFA. Because 

in NFA, the states are not fixed and state can be visited more than one state at a 

time. But in DFA, the states are fixed and state can be visited one state at a time. 

So, NFA needs to be converted into DFA for better efficiency. This thesis solves 

this shortcoming by converting the NFA to DFA by handling ```` transition of 

NFA. 

3. The process of database schema generation in WebOMiner  is manual and it is not 

efficient. The schema of the web can be extract from web page and it can be used 

to generate database schema automatically. This thesis solves this limitation of 

WebOMiner by generating the database schema using extracted pattern of 

different content from DOM tree of the web page. 

4. WebOMiner extended ContentWebObjectScan algorithm (Annoni and Ezeife, 

2009) to extract product information (e.g. image, brand, text, product number, 

price).  The information is extracted based on the value of “id” attribute of the 

HTML tag (Ex. div, tr etc.). For example, they assumed that price content will be 

tagged with the HTML tag (Ex. div, tr etc.) and this tag will contain attribute “id” 

with the value “price” (ex. id = “price”). This process is not generic and for that 

reason WebOMiner  failed to extract content information (e.g., price, title etc) 

from every B2C web site since the value of the attribute are not same for every 

B2C web site. 
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We discuss about our approach to solve the above limitations in the following sub-section 

of this chapter as: in section 3.2, we have discussed about different web content objects. 

In section 3.3, we have discussed about the challenges to solve the above limitations. In 

section 3.4, we have discussed the thesis problem domain and approach to solution, 

section 3.5, we have presented the mining technique. In section 3.6, we have presented 

our proposed architecture and algorithm. 

3.2 Web content objects 

 

WebOMiner (Mutsuddy and Ezeife, 2010; Ezeife and Mutsuddy, 2013) uses four content 

types to extract from web page include text content, image content, form content and 

plug-in content. Each content type are described below: 

3.2.1 Image content 

Image contents are embedded into the web documents with the <image> or <map> tag.  

It contains simple picture which refer to a physical image document of any physical 

location. For example, the HTML tag “<img src= “//photo/car.jpg”/>” means that the 

image “car.jpg” is embedded into the HTML document and its physical location is 

“photo” folder. Some web page embeds image with the <map> tag to define the mapping 

of the image.  For example, client side mapping uses <map> tag where server side 

mapping uses <ismap> tag. 

3.2.2 Text content 

Text content resides in the leaf level of the DOM tree of the HTML document. There are 

two types of text content include raw text and list text. The raw text exists in the web 

page with or without alignment where the list text exists in order or unorder form. 
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3.2.3 Form content 

 

Form content are used to get information from user such as user selection, user’s 

feedback, orders through internet etc. Form contents are embedded into web page using 

<form> tag and different input formats are used to gather the information. For example, 

the tag <textarea> is used to get any command or textual information from user, the tag 

<select> is used for user’s selection from a list of choice and the tag <input> is used for 

one or multiple choice from user. 

3.2.4 Plug-in content 

 

The plug-in contents are generated dynamically by server side database or automated 

calculation by the function or programs. Two types of program generates the plug-in in 

the web page include client side program and server side program. The client side 

programs are vulnerable because the controlling computer functions or programs are 

embedded into the web page. Server-side program generates the dynamic contents 

because it interacts with another program at server. The visual basics, PHP codes and 

HTML embedded CGI are the example of plug-in contents. 

 

3.3 Challenges to solve the problem 

 

Web content mining from different domain (e.g., B2C, Research, library etc) is an 

important problem in web data mining. A web page from specific domain contains 

different types web contents like product, list, text etc.  Given a web page, the problem is 

to identify the different type web content and store them into the database. Since web 



 

72 

 

page from different domain contain different types of information based on their 

attribute, so their schema should be different. So it is another problem to generate the 

database schema base on the schema of web content objects. For example, web page from 

“bestbuy.com” contains product information like computer, tv etc. and it contains the 

product attribute object like title, image, price, model no. etc.  And a page from 

“CompUSA.com” contains information about a product with the attribute like title, 

image, brand and price. We observe that, two different B2C web sites have two different 

schemas. So, we need a general schema that can be used to store data from these web 

sites. Also, “acm.com” is a web site from research domain. If we want to extract 

information about a journal paper from “acm.com”, we have to handle with different 

schema of web content. Because a journal paper has the schema like title, author(s) name, 

year of publication, abstract, etc. The database requires different schema to save this web 

content. Though both the web sites has common web contents objects like List, Text, 

noise etc.  

The above problem clearly identifies the need for finite state automata that identifies 

different types of objects from given web page and generates database schema 

automatically. We propose a framework called FA (finite automata) generator to solve 

the above problem. It has five modules include pattern extractor module, RE (regular 

expression) generator module, NFA generator module, DFA generator module and 

Schema generator module. The proposed framework generates DFA for WebOMiner to 

identify tuple and generate database schema. The architecture of our proposed framework 

is shown in Figure 28. 
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Figure 28: Architecture of FA generator 

 

3.4 Problem domain 

In this thesis, we have tried to extract content from list page (discussed in section1.1.3) of 

domain specific web sites. The list page from domain specific web site (e.g., B2C, 

library) is considered a data rich page.  Our observation about the list page is that a list 

page contains brief list of all or specific types of product (e.g., tv or computer in B2C 

web site, book in library web site, journal or conference in ACM/IEEE).  Since different 

web site contains different product schema, so our target is to generate non-determinitic 

finite automata based on the different content type (e.g., list, text, product) to identify 
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different tuple from content object array that contains extracted content from a list page. 

Also generate data warehouse schema based on the extracted unified pattern. 

3.4.1 Extract pattern of content 

 

In this thesis, we consider to extract web contents from list web page of different domain 

(B2C, Library, Research etc.). The List web page contains list of information about 

product, journal, book etc. For example, Figure 29(a) represents a list page from B2C 

domain specific web site “Bestbuy.com” and Figure 29(b) represents a list page from 

research domain specific website “acm.org”.  

  

   (a)     (b) 

Figure 29: (a) List web page from "bestbuy.com" and (b) List web page from "acm.com" 
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We observed that, the list page of every domain specific web site is generated using their 

own template. Also list page contains data objects (information about a product or a 

journal, list, text etc.) that follows similar format. The structures of data objects appear 

repeatedly if the list page contains data object instance that is more than one. For 

example, Figure 29 illustrates two list pages from “Bestbuy.com” and “acm.org”. Both of 

the pages contain multiple list objects, product objects, text objects, form objects etc. 

These objects appear with their own format. For example, list object appears with their 

attributes such as link, text and product object has attributes like image, title, model, text, 

price etc. Repeated contents in semi structured documents are usually prominent and 

easily raise a reader’s attention. Most Web data-extraction systems (Arasu et al. 2003; 

Chang et al. 2001; Crescenzi et al. 2001) assume that repeated contents are important and 

should be extracted. For example, in Figure 29(a), all monitors have similar formats and 

most parts of their HTML codes are repeated, like those in the Figure 30. 

 
Figure 30: Product pattern encoded by HTML tag 

Our target is to extract the frequent pattern of the content that exists in the web page. For 

example, the product content occurs frequently with their attributes (e.g., image, title, 

model, price etc.) in the web page. To generate a data warehouse with the content, it is 

required to extract different pattern of content from web page. 
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3.4.2 Regular expression (RE) generation  

 

In this thesis, our goal is to generate non-deterministic finite automata to identify 

different content types from a content list to store content into the data warehouse. Also 

we need a unified data warehouse schema to store content with different structure into 

data warehouse. The NFA can be generated from regular expression. In this thesis, we try 

to generate regular expression from extracted frequent pattern from web pages. For 

example, from the above frequent pattern of the “bestbuy.com” web page (Figure 30), the 

following regular expression need to be generated (Figure 31):    

(<titile><image>*<brand><text>*<num><price>) 

Figure 31: RE generated from extracted pattern 

Since different B2C web sites consist of different patterns for the presentation, so the 

pattern does not match between them. For example, the RE generated from 

“futureshop.com” is given below (Figure 32): 

(<image><title>*<num><brand><text>*<price>) 

Figure 32: RE generated from "futureshop.ca" 

If the existing RE and the current RE differs, then it is required to merge them and 

generates a unified RE. For example, a unified RE is given below (Figure 33): 

((<image>|<Title>)*(<num>|<brand>)*<text>*<price>) 

Figure 33: Unified RE 
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But if the current pattern is from different domain then the module only generates the RE 

for that domain. For example, RE generated from “ACM” web site is given below: 

(<Title><Author><published> <year><reference>) 

Figure 34: RE generated from "acm.com" 

 

3.4.3 NFA generation 

 

In this thesis, we use the non-deterministic finite automata to identify different tuple from 

tuple list. We generate NFA using the generated regular expression from frequent pattern 

extracted from different web site. In this process an NFA is constructed first from a 

regular expression. To construct an NFA from regular expression (RE), we use 

Thompson’s construction algorithm.  This method constructs a NFA from components of 

regular expression and using ε-transitions. The ε transitions act as “glue or mortar” for 

the subcomponent NFA’s. An ε-transition adds nothing since concatenation with the 

empty string leaves a regular expression unchanged. A Nondeterministic Finite Automata 

(NFA) has a transition diagram with possibly more than one edge for a symbol that has a 

start state and an accepting state. The NFA has an accepting state for the symbol. For 

example, Figure 35 represents the generated NFA from the unified RE 

(((<image>|<Title>)*(<num>|<brand>)*<text>*<price>)). 
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Figure 35: Generated RE is converted to NFA 

3.4.4 DFA generation 

 

In this thesis, we also use DFA to identify tuple from tuple list. DFA works more 

efficiently for tuple identification DFA is generated from NFA by removing - transition 

from NFA and DFA doesn’t have any repeated labels on outgoing edges. 

Q1Q1

Q1, Q2Q1, Q2

Q3,Q4Q3,Q4

Q2,Q5,Q11Q2,Q5,Q11

Q4,Q5,Q11Q4,Q5,Q11

Q6,Q7,Q10Q6,Q7,Q10

Q8,Q9,Q10Q8,Q9,Q10

Q10,Q11Q10,Q11

<image>

<title>

<title>

<image>

<num>

<brand>

brand>

<num>

<brand>

<num>

<price>

<price>

<price> <price>

                                                   Figure 36: Generated NFA is converted to DFA 



 

79 

 

We need a finite state machine that is a deterministic finite automaton (DFA) so that each 

state has one unique edge for an input alphabet element. So that for tuple identification 

there is no ambiguity.  

3.5 Proposed “WebOMiner-2” Architecture and Algorithm 

 

In this thesis, we modified the architecture called WebOMiner proposed by Mutsuddy 

and Ezeife (2010), Ezeife and Mutsuddy (2013). We named it “WebOminer-2” which is 

shown in Figure 37.  

 

Figure 37: Architecture of WebOMiner-2 

We modified the miner module of WebOMiner (Figure 11, page 24). The NFA generator 

(Figure 11) of miner module generates non deterministic finite automata to identify tuple 
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(product, list, text) from the tuple list. And NFA is generated based on ten representation 

of product structure which were discovered manually. Also database schema of product, 

list, text are created manually in WebOMiner.  

 

 

 

 

 

 

 

 

 

Figure 38: Main algorithm of WebOMiner-2 

WebOMiner-2 contains four modules include crawler module, cleaner module, content 

extractor module and miner module. The crawler module crawls the URL given as input 

to find targeted web page. This module creates a mirror of original web document after 

streaming the entire web document including tags, texts and image contents. The 

comments are removed from the HTML document by this module. The cleaner module 

converts the downloaded HTML file well formed by inserting the missing tag, removing 

inline tag ( e.g., <br/>, <ht/>), insert missing “/” at the end of unclosed <image> tag, 

clean up unnecessary decorative tags. The content extractor module converts HTML page 

Algorithm Main 

      Input:          Set of HTML files (WDHTMLFile) of web documents. 

      Output:       Extracted content from web page is stored into database 

      Variable:    ContentObjectArray[].  

 

Begin 

         For each WDHTMLFile 

A.     Call SiteMapGenerator(url ) to crawl the url and download the webpage

 into local directory  from the url.     

  

              B.      Call HTMLCLEANER( downloaded HTML file ) to clean-up HTML code          

to make it well formed   

        

              C.      Call WebOMiner.BuildDOMTree(WDHTML file) to create DOM tree of 

refined HTML file and extract web content objects sequentially from DOM 

Tree. Store objects in ContentObjectArray[].      

D.  Call MineContentObject.IdentifyTuple()  use NFA/DFA to identify data 

records and classify records   according to  their pattern    

E.  Call CreateDBTable() to store data records into a database table 

        endFor        

 

              F.     Mine for knowledge discovery within extracted contents. /* pending to develop 

*/ 

End 
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into DOM tree and extracts contents from the DOM tree. This module indentifies 

respective class object type as per pre-defined object class to the content. Also puts 

objects into Array List after setting information into objects. Data regions and data block 

are identified by this module and it segment the respective data of a data block from other 

data block by using separator objects. This module also generates finite state automata 

from extracted pattern exists in the DOM tree of the web page. First, the extracted pattern 

is converted to regular expression using RE generator module. Then the generated RE is 

converted to NFA using NFA generator module. After that the generated NFA is 

converted to DFA by handling the “” (epsilon) transition. Also this module generates 

data warehouse schema using generated regular expression. We actually modified the 

miner module of WebOMiner which generates NFA from the frequent pattern of different 

objects (product, list, text etc.) which is extracted from the DOM tree of HTML page. We 

named our framework as “FA Generator”. The miner module of WebOMiner-2 calls the 

“FA generator” to generate NFA and data warehouse schema. 

Our proposed architecture has five modules include PatternExtractor module, 

Regenerator module, NFAgenerator module, DFAgenerator module and Database 

schema generator.  The pattern extractor module takes a set of HTML page as input. It 

iteratively processes one page at a time and finds the frequent pattern of different content 

exits in each web page. It produces the frequent pattern of different content as input of 

the RE generator module. The RE generator module takes the frequent pattern of 

different content as input and generate the regular expression after analyzing it. The RE 

generator module produces the regular expression as input for NFA generator module. 

The NFA generator module converts the generated regular expression using the 
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Thomson’s construction algorithm. The generated NFA is converted to DFA by the DFA 

generator module. The DFA generator module handles the “” (epsilon) transition using 

subset construction algorithm. The schema generator module generates the database 

schema automatically using the content attributes from the generated regular expression. 

These modules are called sequentially. 

 

 

 

 

 

 

 

 

 

Figure 39: Main algorithm of FA generator 

In the following section, we will explain each module and will discuss how our algorithm 

works. 

3.5.1 PatternExtractor Module 

 

The purpose of this module is to read the cleaned (well formed) HTML file (or files) of 

different domain and extract pattern of different objects like (list, product, text etc.).  At 

first, the tags (div,table, tr, td, ul, li) are parsed from HTML file and saved into a file. We 

considered these tags because these tags are used to embed the content in the web page 

and these tags define a division or a section in HTML document. After that each tag 

Algorithm: FA Generator 

 Input: Set of cleaned HTML files of Web documents 

 Output: Generate DFA to identify tuple and create database schema 

Begin 

1. Call PatternExtractor(cleaned HTML file) to extract frequent pattern from 

webpage 

2. Call REGenarator(Extracted pattern) to generate regular expression from 

extracted pattern 

3. Call NFAGenerator(generated RE) to generate NFA from regular 

expression 

5. Call DFA Generator(generated NFA) to generate DFA from NFA 

6. Call SchemaGenerator(RE) to generate schema into database. 

End 
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occurrence are computed to find the frequent pattern of the different contents. The idea 

behind this, if any content exists more than once, then its structure is repeated. That 

means the tag which creates the structure of the content will be repeated. 

 

 

 

 

Figure 40: Algorithm PatternExtractor 

PatternExtractor module contains two main methods called parseHTML() and 

PatternExtractor(). The parseHTML() method parse all the div/table/tr/td tag from the 

HTML file.  For our running example HTML page, parse() method parse “div” tag and 

save it to “temp.xml” file. In Line 1 of ParseHTML() algorithm creates FileReader object 

“fstream” by passing cleaned HTML file as parameter. The FileWriter object “fwstream” 

is created in Line 2 by passing “temp.xml” as parameter. 

 

 

 

 

 

 

 

 

 

Figure 41: Algorithm parseHTML 

Algorithm: PatternExtractor 

Input: Cleaned HTML file 

Output: return frequent pattern of different objects (product, list, text etc) 

Begin 

 1.Call parseHTML(HTML file) - Parse the HTML file to find the div/table/tr/td  . 

2. Call PatternExtractor(“temp.xml”, “occurrence.data”) – count every tag occurrence  

from “temp.xml” and save it to “occurrence.data” file 

End 

 

Algorithm : parseHtml(Cleand HTMLfile) 

Input: Cleaned HTML file  

Variable: String lineread 

     FileWriter fwstream 

     FileReader fsstream 

 

Output: return a XML file that contains div/td/tr/table tag with class attributes 

 

Begin 

1. Create FileReader object “fstream” by passing cleaned HTML file as parameter 

2. Create FileWriter object “fwstream” by passing “temp.xml” file as parameter 

3. Create BufferReader object  “in” by passing FileReader object as parameter 

4. Create  BufferWriter object “out” by passing FileWritreObject as parameter 

 

5     Do 

6 Read line from file  

7 If ( Line read contains div/table/tr/td tag) 

8  write  this line into file “temp.xml” 

9 While(end of file) 

10  return “temp.xml” 

End 

  

 



 

84 

 

Line 3 and 4 creates BufferReader and BufferWriter objects “in” and “out” respectively. 

From line 5 to 9, there is a loop that reads each line from “Cleaned HTML file” and 

checks that if this line contains any div/table/tr/td. If the condition satisfies, then the read 

“line” is written to “temp.xml” file. Line 9 return “temp.xml” file to PatternExtractor 

algorithm.  For our running example HTML page, ParseHTML() reads “HTML” as a first 

line of the file. This line doesn’t satisfy the conditional statement. So, the loop reads the 

next line which is “body” tag.  It also doesn’t match with the conditional statement. 

When the loop reads the third line of the HTML file which contains “div” tag, and this 

line is written to “temp.xml” because this line satisfied with the conditional statement. 

Thus the loop reads every line until end of the HTML source file and create “temp.xml” 

file with the tag div/table/tr/td.  Figure 42 displays the snapshot of “temp.xml” file. 

 

 

 

 

 

 

 

 

 

 

Figure 42: Snapshot of “temp.xml” file 

After writing the div/table/tr/td tag from cleaned HTML file to “temp.xml” file, the 

method tagOccurenc() of pattern extractor module find the every tag occurrence and store 

<divitemscope="itemscope"itemtype="http://schema.org/SearchResultsPage"class="ABLH"> 

<div> 

<div> 

<div><!----></div> 

<divclass="admon"data-arrowdirection="up"data-offsettop="35"data-offsetleft="100"><!----

></div> 

<divclass="hdr-wrap"> 

<divclass="hdr"> 

<div> 

<div><ahref="http://www.bestbuy.com/site/olspage.jsp?id=pcat17005&amp;type=page&amp;pag

eId=pcmcat193400050017&amp;pageType=category&amp;_DARGS=/site/en_US/global/nav/ols

minicart.jsp_A&amp;_DAV="><spanclass="cart-icon">Cart</span><spanclass="cart-

items"><strong>0Items</strong></span></a></div> 

<div> 

……. 

<divclass="clearer"/> 

<div/> 

<divstyle="background:#fff;"class="b52"> 

<div> 

<div> 
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this information into “occurenceCount.data” file. In this step, it reads each line from 

“temp.xml” file and passes it to “occurenceCount()” function. OccurrenceCount() takes 

each line as a parameter and return its occurrence. For example, “<div class=hrproduct”> 

line read from “temp.xml” file and passes it to occurenceCount() as a parameter.  The 

“temp.xml” file also passes reference of “occurrence.data” to occurenceCount() method. 

OccurrenceCount() method accept these parameter and scans the occurrence of  “<div 

class=hrproduct”> in “temp.xml” and finds its occurrences in “temp.xml” and return it. 

Line 1 and 2 of this algorithm creates FileReader and FileWriter object by passing 

“temp.xml” and “Occurrence.data” respectively as parameter. Line 4 and 5 creates 

BufferReader and BufferWriter object respectively. The object of arraylist is created in 

line 3. An integer type variable “count” is declared in line 6. There is a loop from line  7 

to line 13 which read each line from “temp.xml” file and passes it to occurenceCount() 

with the file “temp.xml” file to find the occurrence each tag line. When the method 

occurenceCount() method return the occurrence of the line, then the occurred line and its 

count saved to “occurrence.data” file. 

 

 

 

 

 

 

 

Figure 43: Algorithm tagOccurence() 

Algorithm: tagOccurence() 

Input: Line read from “temp.xml” file and “temp.xml” file 

Output: Return the occurrence of each line of “teml.xml” file. 

Begin 

1. Create FileReader object by passing “temp.xml” as parameter  

2. Create FileWriter object by passing “occurrence.data” file as parameter 

3. Create a ArrayList to store each line from “temp.xml” 

4. Create BufferReader object “in” 

5. Create BufferWriter object “out” 

6. Declare  a integer type variable count to store the occurrence of each line 

7.Do 

 8. Reach each line from “temp.xml” 

9. Pass this line to occurenceCount() as parameter. OccurrenceCount() return count of 

line 

 10 If arraylist doesn’t contains this line 

 11.  add this line to arraylist 

 12.   write this line and its occurrence count into “occurrence.data” 

 13. while(end of “temp.xml”)  

End 
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For our running example, tagOccurence() method reads the “temp.xml”(Figure 42) . 

When it reads the first line from “temp.xml” file which is “<divitemscope="itemscope" 

itemtype= "http://schema.org/SearchResultsPage"class="ABLH">” and passes it to 

occurenceCount() method. The occurrenceCount() method checks it’s occurrence in 

“temp.xml” file and if it’s occurrence is not more than one, then this line is ignored to 

save in “occurrence.data” file. After that it reads second line from “temp.xml” file which 

is “<div>”. The occurenceCount() finds its occurrence 23 time. Since it’s occurrence is 

more than one, so this line and its occurrence is saved to “occurrence.data” file. And this 

way tagOccurrence() finds each line occurrence of “temp.xml” file until end of file and 

save this information to “occurrence.data” file. Figure 44 displays a snapshot of 

“occurrence.data” file. 

 

 

 

 

 

 

 

 

 

Figure 44: Snapshot of “occurrence.data” 

The occurenceCount (Readline,”temp.xml) method accept string type variable “readline” 

which contains line from “temp.xml” file and reference of “temp.xml” as parameter. Line 

<div> 23 

<divclass="clearer"/> 23 

<div/> 4 

<divclass="hproduct"itemscope="itemscope"itemtype="http://schema.org/Product"> 15 

<divclass="image-col"> 15 

<divclass="compareButton"> 15 

<divclass="info-side"> 15 

<divitemprop="offers"itemscope="itemscope"itemtype="http://schema.org/Offer"> 14 

<divclass="puck"></div> 15 

<divclass="info-main"> 15 

<divclass="attributes"> 15 

<divclass="description"itemprop="description"><b>BestBuyExclusive</b></div> 9 

<divclass="rating"> 15 

<divclass="availHolder"> 15 

<divclass="tooltip-wrapper"data-tooltip-pos="right"data-tooltip-xpos="305"data-tooltip-ypos="-8"> 15 

<divclass="tooltip-header">ShippingandAvailability</div> 15 

<divclass="tooltip-contents"> 16 

<divclass="clearer"></div> 15 

<divclass="hr"><hr/></div> 14 

<divclass="ftr-sec"> 7 
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1 creates scanner object. A arraylist object is created in Line 2. A matcher object is 

created in Line 3. Line 4 creates a pattern object. Line 6 to 14 is a loop that checks each 

line occurrence in “temp.xml” file. Line 15 return the count number to tagOccurence() 

which is line occurrence. For our running example, while the second line “<div>” of 

“temp.xml” pass to occurenceCount() with “temp.xml” file. The occurenceCount() finds 

that there are 23 occurrences of “<div>” in “temp.xml”. And it returns counter 23 to the 

method tagOccurence. Thus OccurenceCont() finds each line occurrence and return it. 

 

 

 

 

 

 

 

 

 

Figure 45 : Algorithm OccurenceCount() 

3.5.2 Regular Expression Generator 

 

The next module is regular expression generator module. The input of this module is the 

“occurrenceCount.data” file and the cleaned HTML file. At first, generateRE() method 

converts the cleaned HTML file into a DOM tree by passing the file into parse() method 

of DocumentBuilder object. It also creates “Xpath” object instance. The “Xpath” object is 

used to extract the specified node from the DOM tree of source HTML file. 

Algorithm: OccurenceCount() 

 Input: Line read from “temp.xml” and reference of “temp.xml” 

 Output: return the counter which contain each line occurrence in “temp.xml” 

 

Begin 

 1. Create an object of Scanner class 

 2. Create an object of arrayList class 

 3. Create an object of pattern class 

 4.  Create an object of Matcher class 

 5. Do 

 6.  read the line from “temp.xml” 

 7.  create matcher object by passing reading line as parameter 

 8.  check find() method of matcher object is satisfied 

 9.  increment count 

 10. While(end of file) 

 

 11. return count  

 

End 
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GenerateRE() method reads line from “occurenceCount.data” file and checks that this 

line contains any div/table/td/tr/li/ul tag with class attributes. If it finds any, then this line 

pass to compile() method “Xpath” object to extract all the nodes from DOM which are 

matched with the class attributes. For example, First line of “occurrenceCount.data” file 

is “<div> 23”, since this div tag doesn’t contain any class attribute, so it is ignored to 

pass. The second line is “<div class=”clearer”> 23”. Since this line contains class 

attribute, so it passes to compile method. The compile method() returns nodes which is 

saved to object instance of NodeList. The length of nodelist is counted using method 

length() and save to a variable called “numofNode”. The node length of next line also 

counted and compare with previous node length. If both the length are matched, then first 

element of current node is picked to traverse. While traversing each tag are checked to 

find the object attributes like (image, model, title, price etc.). For our running example, 

while the 3
rd

 line of “occurrenceCount.data” is read and passes it to compile() method. 

The Comiple() method returns its nodelist which length is 15. And while the 4
th

 line is 

read and its nodelist length found as 15. Then both the lengths found as matched. After 

that, the first element from nodelist of current line read ( 4
th

 line) is traversed to find the 

existing attributes. Here we consider tocompare length of nodelist between two line 

which has similar occurenec count in “occurrenceCount.data” file. Because if the product 

block is repeated in the HTML page, then its tags are repeated same number of times. 

Line 1 of generateRE() method creates the DOM tree of HTML file. Line 2 of this 

algorithm creates Xpath object instance. There is a loop between lines 3 to line 26 which 

reads every line from “occurrenceCount.data” file. When loop traverses each node of 

DOM tree, it also traverses the child of the nodes.  For our running example, at first 
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iteration it scans first line of “occurrenceCount.data” which is “<div>23”. It means that 

“<div>” tag is repeated 23 times in the HTML file. The conditional statement checks that 

does this line contain any class attributes. So, the loop iterates to next line from 

“occurrenceCount.data” which is “<divclass=”clearer”/>”. Since this line contains a class 

attributes so this line is processed by the conditional statement block. First, it extracts the 

value of class attributes and it creates a “path” string object with the value of class 

(path=”//div[@class=”clearer”] ). This “path” variable passes to compile method “xpath” 

object “expr”.  The evaluate() method of “XpathExpression” extract all the nodes from 

the DOM tree which is matched with “class=clearer” embedded with “div” tag and save 

this result set to NodeList object. The length of the nodelist is extracted using getLength() 

and this value is saved to variable “numberofnodes”. There is a integer variable called 

“previousnumberofNodes” keeps record of node last visited and compared with 

“numberofnodes”. Initially the value of “previousnumberofnode” set to “0”. During first 

iteration, the value of number of nodes is 23 and “previousnumberofnodes” is 0. Since 

value of these two variables doesn’t match, so conditional block is not processed. The 

loop iterator reads next line which is “<div/>4”. This line is ignored to process because it 

doesn’t contain any “class” attributes. The loop iterator reads the fourth line of 

“occurrence.data” file which is “<divclass=’hpproduct’itemoscope=’itemscope’ 

itemtype=’http://schema.org/offer”>15”. This time “path” variable set as “//div[@class= 

hpproduct]” where “hpproduct” is the value of class attribute of the current line read from 

“occurrence.data”. And this time compile() extracts all the nodes from DOM tree which 

are matched with the variable “path”. The length of Nodes is computed and saved it to 

“mumberofnodes”(15). The previous node length saved to “previousnumber- 
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ofnodes”(38). Since the length of current node and previous node doesn’t match, 

conditional statement will not process. Then loop iterator reads next line from 

“occurrenceCount.data” which is “<divclass=img-col>”. The length of this node is 15 

which is matched with previous node. Now the current node is traversed in the 

conditional statement block. The node is traversed through it’s child nodes. For our 

running example, current node contains two child nodes including <a> and <div>. The 

<a> tag has one child node including <img> tag. And the <div> tag has three child nodes 

including “<script>”, <input> and <a> tag. Successive iteration scans regular expression 

of product block (image, price, title, Model, SKU). We set some criterion for support in 

for identifying attributes of product which are given below: 

Image: We consider that product block contains “image” attribute if there exists an 

“<img> tag in product block. For our running example, as shown in Figure 46, the node 

<div class=”image-col”> has child nodes including “<a>” and “<div>”. The first child 

node “<a>” has child node called <img>. Algorithm REGenerator() generates regular 

expression as (image) or (image*) [if more than one image found in the block]. 

 

 

 

 

 

 

 

Figure 46 : “<img>” tag in product block. 
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Title: Every product block contains header and it is embedded with a “<a>” tag. The 

“<a>” tag contains some attributes and “href” is one of them. The header contains brand 

name of the product. If the “<a>” tag has “href” attributes and the value of “href” 

contains the brand name that exists in the header, we consider it a product title. For our 

running example, as shown in Figure 47 is shown the source code of the product block. 

We noticed that <div class=info-main> node has child nodes and <h3> is one of them. 

The <h3> node contains child node <a> which has child as text “Insignia-32” Class-

LCD-720-60Hz-HDTV”. This text is shown as header in the product block.  

 

 

 

 

 

 

 

Figure 47: Source code of product header 

The product header contains “Insignia” as product brand. And “href” is the attribute of 

<a> tag. Here the value of “href” contains “Insignia” and we consider it as “title” of  the 

product. 

Price:  We consider that the product block contains product attribute if there exists a 

node which has attribute class with the value “price”. For our running example, Figure 48 

is shown the source code of the product block. The node <div class=info-side> has child 

nodes including <div>, <h4>, <div>, <ul>, and <img>. The first child is <div> tag and it 

has child nodes <link>, <span> and <h4>. The last child of <div> is <h4> which has 
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class attributes and its value contains string “price”. While traversing DOM tree, if our 

algorithm finds a node with attribute value is “price”, it will be consider as “price” 

attribute of the product and generates RE with “price”. 

 

 

 

 

 

  

Figure 48: “price” information in product block source code 

Brand: We consider that product block contains “Model” attribute, if there exists a node 

with attribute value “model”. For our running example, as shown in figure 49, the node 

“< div class = attributes>” has child nodes <h5> . The node <h5> has child node 

<strong> which contains attribute “itemprop” with the value “brand”. While traversing 

the DOM tree, REGenerator() algorithm consider it as “brand attribute of the product and 

generates RE with “model”. 

 

 

 

 

 

 

 

Figure 49: “brand” attribute in product block source code 
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ProdNumber: We consider that product block contains “prodNum” attributes If there 

exists a node with attribute which has value as string “SKU”. For our running example, 

as shown in figure 50, the node node “< div class = attributes>” has child nodes <h5> . 

The node <h5> has child node <strong> which contains attribute “class” with the value 

“SKU”. While traversing the DOM tree, REGenerator() algorithm consider it as 

“ProdNum” attribute of the product and generates RE with “ProdNum”. 

 

 

 

 

 

 

Figure 50: “ProdNum” attribute in Product block source code 

By traversing the DOM tree, The algorithm  reGenerator() generates regular expression 

from different B2C web site which are given below: 

B2C web site Generated RE 

Bestbuy.com (title,image,prodNum,brand,price) 

FutureShop.ca (title,image,prodNum,” “, price) 

CompuUsa.com (title,image,brand,prodNum,price) 

Walmart.ca ( title,image,brand,” “,price) 

Walmart.com (title,image,” “,” “, price) 

Target.com (image,title,prodNum,brand,price 

Sears.com (image,title,prodNum,” “,price) 

Tigerdirect.com (image,title,brand,prodNum,price) 

Thesource.ca (Image,title,brand,” “,price) 

Ebay.com (image,title,” “,” “,price) 

Table 1: Generated regular expression from different B2C Website. 

 



 

94 

 

After generating regular expression from different B2C web site, algorithm generateRE() 

unifies the regular expressions to generate non-deterministic finite automata from it. 

From the above regular expressions, generateRE() unified the following RE: 

(( img|Title)(title|image)(brand|prodNum)(prodNum|Brand)(price) ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 51: Algorithm generateRE() 

Algorithm: generateRE() 

Input: Reference of “occurence.data” file which contains tag occurrence in HTML file. 

Output: Return pattern of different object (product,list,text etc.) 

 

Begin 

1 . Create DocumentBuilder Factory object instance– to convert the HTML file into DOM tree 

 2.  Create Xpath object instance – xpath used to find specific node from DOM tree 

 

 3.do 

4.  Create NodeList object instance by setting object return from method getChildNodes() of 

node object 

5.  Declare a variable String type “pattern” 

6.  Get the nodename from Node object instance 

 

  7. If node name is “Span” 

  8. Get the childnodes of Node object 

  9 Get the value of first child 

  10. If value match with String “model” 

  11.  Pattern += “model”   

 12. Else if node name is “a” 

 13. Create NodeList object to get all the child from instance of Node object 

 14. Create String object to same node value from 1
st
 object from the list 

 15. Tokenize the value string using String Tokenizer 

 16. if node name is ‘href’ 

 17. if(node value contains the value of firsttoken) 

 18.   Pattern+= ‘title’ 

 19else if attributes of node name is “class” 

 20.  if(child node name is ‘img”) 

 21.  pattern += image 

22.  get the attributes of nodes and set those to NameNode Map objects instance 

23.  For each attributes  

24. get the item from NameNodemap Object instance and save it to Node object instance 

25. If node value is “price” 

  Pattern += price 

26 while(end of “occurrence.data”) 

End 
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3.5.3 NFAGenerator Module 

 

The input of this module is the unified regular expression which is generated by the 

REGenerator module. This module generates the NFA to identify tuple from tuple list. 

This method contains two method called generateNFA() and identifyTuple(). 

 

 

 

 

 

 

Figure 52: Algorithm NFAGnerator() 

This module implemented Thompson’s construction algorithm to generate the NFA from 

regular expression. Thomson’s construction builds NFA for each term of regular 

expression and combines them with “”. Line 1 of this module calls method 

generateNFA() which accepts regular expression as input. This method used NFA objects 

to build the NFA from regular expression. The NFA object has some properties including 

initial and final state, size and transition_table. It also has some behaviors including 

is_legal_state(state s), add_transition(int from, int to, String input ), shift_state(int shift) , 

fill_shift(NFA nfa), append_empty_state() and show_NFA().  The method 

is_legal_state(state s) checks the validity of the state. The range of the state should be 0 

to size-1. The method add_trans(int from, int to, String input) insert input into two 

dimension array called transiotion_table. The method shit_state(int shift) creates a new 

empty transition table with the new size, copy all the transition to the new table and 

Algorithm: NFAGenerator 

Input: Regular expression, which is generated by Regenerator module 

Output: Generate NFA and identify different types of tuple from tuple list using NFA. 

 

Begin 

1. Call generateNFA(regular expression) – to generate the NFA based on regular 

expression 

2. Call identifyTuple(tuple pattern) -  to identify tuple from the tuple list. 

End 
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update the NFA properties. The method append_empty_state() append a new row and 

column to the NFA. The class GeneratesNFA has some behaviors to build the NFA from 

regular expression including generateBasicNFA(String input), generateAlterNFA( NFA 

nfa1, NFA nfa2), generateConcatNFA(NFA nfa1, NFA nfa2) and generateStarNFA(NFA 

nfa).  The method generateBasicNFA(String input) generates basic NFA with single 

input. The method generateAlterNFA(NFA nfa1, NFA nfa2) generates an alternation of 

nfa1 and nfa2. The new generated nfa will contain all the states from nfa1 and nfa2 in 

addition new initial state and final state. The initial state comes first, then comes states of 

nfa1, states of nfa2`s comes after state of nfa1`s and at the end comes new final state. 

This method uses the behavior of NFA including shift_state() to make room for new 

initial state, fill_state() to make room in new nfa, add_transition() to set new initial state 

and the transition from it, append_empty_state() to make up state for new final state, 

add_trand() to set new final state.  

The method generateConcatNFA(NFA nfa1, NFA nfa2) generates a concatenation of 

nfa1 and nfa2. It first generates nfa1 and then nfa2. In this case, nfa2`s initial state 

replaces with nfa1`s final state. This task is done by the NFA behavior shift_state(). The 

method new_nfa(nfa2) of NFA generates a new nfa and initialize it with the shifted nfa2.  

In this case, new nfa formed by the states of nfa1`s. The initial state of nfa2`s is 

overwritten by the initial state of nfa1`s. This way nfa1 and nfa2 merge automatically 

which transform nfa2`s initial state from nfa1`s final state.  

For our running example, generated regular expression (shown in figure : ) is the input of 

algorithm GenerateNFA(). Line 1 tokenizes the “regex”( img (price|title) 

(title|model|price) (model|prodnum|Proddesc) (prodNum|price) ) based on empty space (“ 
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“), open bracket “(“, close bracket “)” and or “|”. Line 2-6 within a loop that creates a 

string “states” with the unique state from “regex” (e.g. “img, price, title, model, 

prodNum, ProdDesc” is created from the above “regex”).  Line 7 tokenizes the string 

“states”.  Line 8-10 form a loop that generates NFA for  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 53: Algorithm GenerateNFA() 

Algorithm: GenerateNFA(regex) 

Input: generated regular expression in Regenerator() module. 

Output: generatedNFA 

 

Begin 

 

 1. Tokenize the “regex” using StringTokeinzer object  

 2. Do 

 3. State = extract token from string tokenizer object 

 4. check for duplicate state 

 5.   create string “states” with unique state 

 6.while(hasmore token) 

 

 7. Tokenize “states” using stringTokenizer object 

 8.do 

9. generate NFA for each individual attribute (e.g. “img”, “model”, 

“title”, ) exists int the regex. 

10.whille(hasmoretoken) 

 

11. Tokenize the “regex” using string Tokenize object 

12. do 

13 generate NFA for each alternation 

14. increment counter; 

15.while(has more token) 

 

16.Tokenize “regex” using StringTokenizer object 

17.do 

18 generate final NFA by doing concatenation between each state. 

19 increment value of I; 

20. while (i<counter) 

 

 

End  
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each state exists in the string “states”.  Line 9 is doing this using  “generateBasicNFA()”. 

In this step, individual NFA are created for img , model, title, prodnum, prodDesc, price. 

Each NFA has it’s own initial state and final state. This task is done by method called 

“generateBasicNFA()”. Line 11 tokenizes string “regex” using string tokenizer object 

based on “(“  and “)”. Line 12-15 form a loop to generate NFA for each alternation. For 

our running example, after tokenize 

 

 

 

 

 

 

 

Figure 54:Snapshot of generated NFA of each attribute 

“regex” there are four alternations exists in string tokenize object including “price|title”, 

“title|model|price” , “model|prodnum|ProdDesc” and “prodNum|price”. Line 11-15 

generates the four alternation NFA. For example, the algorithm first generates the NFA 

for “price|title”. It first tokenize the string based on “|” character and extract two 

attributes which are “price” and“title”. 

After that it merge “price” NFA and “title” NFA and generate NFA that is called 

alternation NFA of “price|title”. It this case, NFA is build with two individual NFA 

“price” and “title” and additional initial state and final state. The initial and final states 

connect with “price” NFA and “title” NFA with “” transition. Figure 59 is shown the 

structural view of alternation NFA generation. Line 12-15 also generates three other 
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model title ProdNum
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alternation NFA including “title|model|price”, “model|prodnum|ProdDesc” and 

“prodNum|price”. This task is done by the method called “generateAlterNFA()”. 

 

 

 

 

 

Figure 55: Structural view of alternation NFA of “(title|image)” 

Line 17-20 do the concatenation between individual NFA and alternation NFA and 

generate unified NFA. In this case, initial state of nfa2 and final state of nfa1 is 

overlapped. This task is done by the method called generateConcatNFA(). 
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Figure 56 : Generated NFA 

3.5.4 DFA generator 

In this module, we implement “subset construction” algorithm to convert NFA to DFA to 

handle “” transition.  The idea of Subset Construction is to build a DFA that keeps track 
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title 

image 

 
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where the NFA can be. Each state in this DFA stands for a set of states the NFA can be in 

after some transition. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 57: Algorithm Subset construction 

The algorithm starts by generating the initial state for the DFA. An initial state of DFA is 

really the NFA's initial state plus all the states reachable by eps() transitions from it, the 

DFA initial state is the eps-closure of the NFA's initial state. A state is "marked" when 

all the transitions from it were visited. A state is added to the final states of the DFA if 

the set it represents contains the NFA's final state. The rest of the algorithm is a simple 

iterative graph search. Transitions are added to the DFA transition table for each symbol 

in the alphabet of the regex. So the DFA transition actually represents a transition to 

the eps-closure in each case. A DFA state represents a set of states the NFA can be in 

after a transition.  For our running example, The algorithm “subset construction” takes 

Algorithm: subset-construction 

inputs: N - NFA 

output: D - DFA 

Begin 

  1. add eps-closure(N.start) to dfa_states, unmarked 

   2.D.start = eps-closure(N.start) 

   

  3. while there is an unmarked state T in dfa_states do 

     4. mark(T) 

  

     5. if T contains a final state of N 

       6. add T to D.final 

  

    7.  foreach input symbol i in N.inputs 

       8.  U = eps-closure(N.move(T, i)) 

       9.  if U is not in dfa_states 

         10.  add U to dfa_states, unmarked 

   

      11. D.trans_table(T, i) = U 

  end 
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generated NFA(shown in fig 56) as input.  The function “eps-closure” returns the states 

of N which are reachable from T (state set) by “” transition. First state T are added to the 

output. Then each states are checked for “”  transition and the state with this transition 

are added to the output. The process proceeds iteratively until no more states can be 

reachable with “” only. For example, When “eps-closure” visit state q2 , it return state { 

q2 , q5, q11 }. Because the state “q2”  have transition into these states with “” transition. 

And the function move(T,A) return information about which states in NFA are reachable 

from T with input set “A”. This function traverse the state set T and looks for transition 

on the given input and returning the state that can be reached. It doesn’t consider “” 

transition as input. The algorithm “subset construction” maintains a transition table to 

generate the DFA.  

State/input (img) * (title) * (Prodnum) * (brand) * (price)* 

Q0 Q1, 

Q2 

Q3, 

Q4 
   

Q1, Q2  Q2, 

Q5, 

Q11, 

   

Q3, Q4 Q4, 

Q5, 

Q11 

    

Q2,Q5, 

Q11 
  Q6,Q7, 

Q10 

Q6,Q7, 

Q10 
 

Q4,Q5, 

Q11 
  Q6,Q7, 

Q10 

Q8,Q9, 

Q10 
 

Q6,Q7, 

Q10 
   Q6,Q7, 

Q10 
 

Q8,Q9, 

Q10 
  Q8,Q9, 

Q10 
 Q11, Q10 

Q11, 

Q10 
    Q11, Q10 

 
Table 2:Transition table of DFA 

The main idea of “subset construction” algorithm is that it removes the “” transition 

from NFA. And eliminate the state that has two outcomes to go to other state. It reform 
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the NFA by converting it to finite state automata which has set of state with one possible 

outcome. The generated DFA is shown in figure 60.  

Q1Q1

Q1, Q2Q1, Q2

Q3,Q4Q3,Q4

Q2,Q5,Q11Q2,Q5,Q11

Q4,Q5,Q11Q4,Q5,Q11

Q6,Q7,Q10Q6,Q7,Q10

Q8,Q9,Q10Q8,Q9,Q10

Q10,Q11Q10,Q11

<image>

<title>

<title>

<image>

<num>

<brand>

brand>

<num>

<brand>

<num>

<price>

<price>

<price> <price>

 

Figure 58: Generated DFA 

The DFA generator module has function called “DFA simulation” that accepts or rejects 

the input string. This function is used by the “tuple classifer” module of “WebOMiner-2”. 

The tuple classifier module extracts the web content pattern from “contentObjectArray” 

and call function “DFA simulation” to verify the pattern with the generated DFA. If the 

pattern match with the DFA , the function return “accept”. Otherwise return “reject”. The 

“DFA simulation” algorithm is shown in Figure 59. 
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Figure 59: Algorithm DFA simulation 

 

3.5.5 DatabaseSchema generator 

 

This module generates the database schema automatically using the unified RE that is 

generated by Regenerator module. This module takes unified RE string as input. First it 

call the connect() method to connect to the database. Then it calls the generateSchema() 

method to generate the schema based on the unified RE string which is passed into as a 

parameter. 

 

 

 

 

 

Figure 60 : Algorithm SchemaGenerator() 

Algorithm dfa-simulate 

inputs: D - DFA, I – Input string as content type 

output: identified or not identified 

Begin 

1. x = start state of  D 

2. y = get next input character from I 

   

3. while not end of I do 

  4.   x = state reached with input i from state s 

  5. y= get next input character from I 

  6.    end 

 

  7.    if x is a final state 

  8.    return (identified) 

   9.    else 

   10    return (not identified) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm: DatabaseSchema generator 

 Input: Object “Pattern” extracted in pattern extracted module 

 Output: Create database Schema 

Begin 

 1. Call connect() – to create the connection with the databse 

 2. Call generateSchema(unified RE)- to create the database schema into the database. 

End 
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The “generateSchema()” method accepts the unified RE String 

<Image,image,title,model,ProdNumeber,price,price> as a parameter. Then it uses 

StringTokenizer object to tokenize the string. Then it creates the prepare statement object 

to create the database schema. It sets the column type based on the token. For example, 

when it scans the token “image” it set the column type as “bolb”, for the other token it 

sets data type as “Char” or “varchar”. With the above pattern, it generates the prepared 

statement which is given below: 

String Schema= “Create table Product (id number, company_name, image1 bolb, image2 

bolb, title char(50), Prod_Number char(15), Price1 char(5), Price2 Char(2)); 

After creating the “schema” string, it passes to the preparedStatement() method of 

Connection object.  Then executedUpdate() method of connection is called to create the 

schema into the database. The generateSchema() method first checks the existing schema  

in the data warehouse. For this, it first fetches the existing schema of a specific object 

(e.g. product) from the database. Then it compares the schema with the pattern. If it finds 

any additional attribute then it update the database schema by adding the additional 

attribute as a column to the existing schema.  
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CHAPTER- 4 Evaluation of WebOMiner-2 System 

The implementation phase of our algorithm has been completed and need some 

modification to make our system more scalable and robust. Since pattern recognition and 

generation of regular expression using finite automata is a new approach to data mining, 

a valid comparison in performances with other techniques do not exists. 

Further improvement is needed to generate finite state automata from other domain 

contexts.  The Crawler module of WebOMiner-2 needs further improvements to identify 

positive list pages (e.g. Figure 02) automatically. The miner module also needs 

improvements to extract information from detail pages that contain more information 

about the product (e.g. product specification).  

4.1 Strength of WebOMiner-2 

 

In this thesis, we developed a system called WebOMiner-2 which is a novel approach for 

web content mining using the object-oriented model. We developed an unsupervised 

system for web content mining using non-deterministic finite state automata.  Existing 

web content extracting systems use the unsupervised, the supervised, and the semi-

supervised approaches. The supervised and manual approaches use wrapper which is a 

set of web pages, labeled with examples of the data to be extracted. Wrapper generation 

requires a set of data extraction rules which are generated manually from labeled pages. 

Manual labeling of pages is labor intensive and time consuming because different 

templates exist in different sources. The semi-supervised approach accepts a rough 

training example from user and generates extraction rules. The unsupervised or the 

automatic approach generates wrappers without much user interaction. Since 
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WebOMiner-2 system is an automatic web content data extraction system, we  compare 

our system with other unsupervised or automatic systems. The comparative analysis is 

given below: 

Existing unsupervised approaches are able to extract only textual contents from the web. 

Most of them consider extracting product information from list pages and some of them 

extract information from the search engine results. These systems do not consider 

extracting heterogeneous web content like image or any other multimedia contents from 

the web page. Our WebOMiner-2 system able to extract heterogeneous data because the 

tag attributes are analyzed during the DOM tree traversal. Therefore images are identified 

effectively from the data block. 

The unsupervised system MDR (Liu et al., 2003) is developed based on two 

observations. The first observation is that a group of data records form a contiguous 

region of a page. The second observation is that the data records have similar tag tree 

structure within the data region and the data records of a data region have the same parent 

node. The MDR is designed to handle web pages which generated by <table> tags. It 

failed to extract the data from the web pages which contain records that have complex 

and nested structures. The MDR works each time in a single page, so it does not compare 

the page trees. Although it achieving good results, the algorithm only works with multi-

record pages and therefore cannot be applied to on-line news pages, that are almost 

exclusively single-record pages. In our WebOMiner-2 system we used the observations 

for data record identification. Our observation is that all objects of a data record are 

adjacent in a DOM sub-tree and each data record is separated from the others. Therefore, 

the DOM tree contains a single parent node which represents the sub-tree of an entire 
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data record.  This parent node is identified by our system for each data record.  Our 

system is unsupervised and is automatic because it does not depend on the browser 

rendering engine. 

The DEPTA (Zhai and Liu, 2005) did not consider semantic label in data extraction 

where they only use tree structure. The DEPTA failed to extract nested data records. Our 

system able to extract nested data records because it traverses each node of the DOM tree 

and extract each record from the data block. The DEPTA use excel table to store 

extracted web content data. Excel table cannot be considered as a functional database 

because it is a data grid. The DEPTA stores similar tag encoded contents into same excel 

columns.  Our system is able to generate a database schema automatically to store the 

extracted web content from each web page. Because it is able to identify the content type 

during the traverse of the DOM tree and extracts the pattern of the content to generate the 

database schema to hold the content information into the database. 

The NET (Liu and Zhai, 2005) proposed a greedy approach based on similarity match. It 

employs an expensive approach due to a bottom-up traversal with edit distance 

comparison. It requires a full scan from bottom to root. The NET does the all-pair tree 

comparisons within its children during each visit of a node in the traversal. The Wrapper 

generated by NET is not efficient though because the programmers have to find the 

reference point and the absolute tag path of the targeted data content manually. This 

requires one wrapper for each web site since different sites follow different templates and 

it is labor intensive and time consuming. Our system does not depend on any templates 

and it does not employ an expensive approach because it is top to bottom traversal 

approach. 
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The limitation of OMINI (Buttler et al., 2001) is that it doesn’t address how to precisely 

locate the data object instances in the separated parts and how to extract them by their 

specific structures. The separator contains only one HTML tag which is insufficient. The 

OMINI is good for segmenting web pages into parts, possibly containing data object 

instances. OMINI performs poorly on some web pages, the description of one data 

objects may intertwine with the descriptions of some other objects. On the other hand, 

WEBOMINER-2 is able to extract data from all regions from body zone include list, 

product, text, advertisement etc. Our system generates a NFA from regular expression of 

different objects existing in the web page. This NFA is used to identify different object 

from object list.  

The VINTs(Zhao et al., 2005) fails to separate horizontally arranging data records which 

will require vertical separators due to fact that VINTs only supplies horizontal separator. 

The VINTs needs at least four data record exist in a web page for wrapper building. Since 

VINTs is based on visual layout information, it is difficult to identify visual information 

without any assumptions about the target domain.  The visual feature used in VINTs are 

only limited to the content shape-related features and it is used to identify the regularities 

between search records. For this reason, VINTs depends on structural similarities and 

must generate a wrapper for each search engine. Our system is able to extract the web 

content from both horizontally and vertically arranging data records because it doesn’t 

depend on horizontal or vertical separator. It traverses the DOM tree and extracts each 

data record from the each node. Since our system doesn’t generate any wrapper, our 

system doesn’t require any training web page. Our system able to extract web contents 

from web page by identifying the data type while extracting. 
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4.2 Empirical evaluation:  

 

This thesis developed an architecture which is a combination of 5 modules and generates 

finite automata by processing the web content and generates data warehouse schema. The 

empirical evaluation of our system is done by the experiment with 5 website including 

“bestbuy.com”, “bestbuy.ca”, “futureshop.ca”,”compUSA.com” and “walmart.com”. We 

run our system on a 64 bit operating system at Interl® core™ i3-2350 CPU @2.30 GHz 

4GB RAM Toshiba machine for each these web sites for empirical evaluation of our 

system. We use the standard precision and recall measures to evaluate the results of our 

system. Precision is measured as average in percentage for the number of correct data 

retrieved, divided by the total number of data retrieved by the system. Recall is measured 

as average in percentage for the total number of correct data retrieved divided by the total 

number of existing data in the web document. The results of the retrieval by our 

WebOMiner-2 system is tabulated in Table 3 below: 

 

Website 

Data records Data record 

extraction 

WebOMiner 

Data record Extraction 

WebOMiner-2 
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ct 
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Homedepot.com 12 11 5 0 28 16 0 0 12 28 0 0 0 

Shopxscargo.com 16 15 4 2 37 21 0 0 16 37 0 0 0 

Target.com 9 10 3 1 23 14 0 0 9 23 0 0 0 

Sears.com 13 8 2 0 23 21 0 2 0 21 0 2 0 

Factorydirect.com 15 12 4 0 31 30 0 1 0 30 0 1 0 

Bestbuy.com 12 10 3 1 26 14 0 0 12 26 0 0 0 

Recall 69.1%  98.3%  

Precision 100%  100%  

Table 3: Experimental results is showing extraction of record from web pages. 
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4.3 Experimental Results 

 

The purpose of our experiment is to measure the performance of WebOMiner-2 for data 

record extraction. The Table 3 shows small scale experiment results as performance 

measure for our WebOMiner-2 system. We compare our system with WebOMiner. We 

have taken one page per web site for experiments. These are the six different B2C web 

site which didn’t choose to generate the NFA for WebOMiner (The WebOMiner system 

generates NFA based on manual observation of ten different B2C web sites).  The 

number of “Data record” column shows different type of data records (product, list, text, 

noise) exist in those page. The Total column shown total number of data records for each 

pages. The column “correct” means that the system able to identify the contents correctly. 

For example, WebOMiner extracts 16 contents correctly from 28 contents from 

“HomeDepot.com”. The column “failed” means that the system is failed to identify 

contents. For example, WebOMiner failed to identify 12 product contents. The column 

“wrong” means that the system wrongly identified the contents. The column “missing” 

means that the contents are missing due to different structure. For those pages 

WebOMiner-2 system is able to identify data records correctly. But the WebOMiner 

failed to extract product data information from four web site (homedepot.com, 

shopxscargo.com, target.com and bestbuy.com). Because NFA generated by WebOMiner failed 

to identify the product tuple from these web page. There are no wrong data records are 

extracted because our system is not based on the prediction. It missed 3 data records out 

of total 168 data records in all six web pages from different websites. From the above 

table we found that WebOMiner-2 performs better than WebOMiner in data record 

extraction. 
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 We observed the reason for missing attributes. All of those missing are in List type data 

records and because of mixing object type in data tuple. The WebOMiner defines a List 

data tuple as a set of (<link> <text>) pair and there should be at least 3-pairs in the tuple 

to be qualified as List tuple. But those missing tuples are pair of <image> and <text> and 

therefore did not satisfy the criteria.   

CHAPTER 5 - Conclusion and Future Work 

This thesis extends work of Mutsuddy and Ezeife (2010), Ezeife and Mutsuddy(2013) to 

generate finite automata to mine related content from specific domain context. We 

modified the NFA generator module of WebOMiner to generate finite automata from 

regular expression which generated from repeated pattern of web content. Our algorithm 

able to generate database schema automatically using automata pattern. We named our 

architecture as WebOMiner-2. Our architecture has 5-modules includes pattern extractor, 

regular expression generator, NFA generator, DFA generator and schema generator. We 

developed algorithms to extract pattern of different objects (product, list, text, etc.) from 

HTML page. The pattern extractor module extracts repeated pattern from web page. The 

regular expression generator module generates regular expression using pattern extracted 

in pattern extractor module. The NFA generator module implements thompson’s 

construction algorithm to built NFA from regular expression. We implemented subset 

construction algorithm to convert NFA into DFA. We modified the WebOMiner 

architecture to mine different contents from web page using finite automata. We also 

developed “Schema generator” module that generates database schema into the database 

based on pattern extracted from web page. 
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5.1 Future Work  

 

The generation of regular expression from repeated pattern of web content and Pattern 

recognition using finite state automata is a new approach in data mining. So, this 

approach has many scopes for improvement.  Our proposed approach able to generate 

finite automata of related contents from specific domain context. Further improvement is 

needed to generate finite automata from other domain context.  The Crawler module of 

WebOMiner-2 needs further improvement to identify positive list page (e.g., Figure 02) 

automatically. The miner module also needs improvement to extract information from 

detail page that contains more information about the product (e.g. product specification).  
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