
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2012

Mining Multiple Web Sources Using Non-
Deterministic Finite State Automata
Mohammad Harun-Or-Rashid

Follow this and additional works at: https://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Harun-Or-Rashid, Mohammad, "Mining Multiple Web Sources Using Non-Deterministic Finite State Automata " (2012). Electronic
Theses and Dissertations. 4814.
https://scholar.uwindsor.ca/etd/4814

https://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F4814&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4814&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4814&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/4814?utm_source=scholar.uwindsor.ca%2Fetd%2F4814&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Mining Multiple Web Sources Using Non-Deterministic

Finite State Automata

By

Mohammad Harun-Or-rashid

A Thesis

Submitted to the Faculty of Graduate Studies

Through Computer Science

in Partial Fulfillment of the Requirements for

the Degree of Master of Science

 at the University of Windsor

Windsor, Ontario, Canada

2012

© 2012 Mohammad Harun-Or-Rashid

Mining Multiple Web Sources Using Non-Deterministic

Finite State Automata

by

Mohammad Harun-Or-Rashid

APPROVED BY:

__

Dr. Ronald Barron

Department of Mathematics and Statistics

__

Dr. Subir Bandyopadyhay

School of Computer Science

__

Dr. Christie Ezeife, Advisor

School of Computer Science

__

Dr. Ziad Kobti, Chair of Defense

School of Computer Science

 14
th

 September, 2012

iii

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this thesis

has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted material

that surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act,

I certify that I have obtained a written permission from the copyright owner(s) to include

such material(s) in my thesis and have included copies of such copyright clearances to my

appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis has

not been submitted for a higher degree to any other University or Institution.

iv

ABSTRACT

Existing web content extracting systems use unsupervised, supervised, and semi-

supervised approaches. The WebOMiner system is an automatic web content data

extraction system which models a specific Business to Customer (B2C) web site such as

“bestbuy.com” using object oriented database schema. WebOMiner system extracts

different web page content types like product, list, text using non deterministic finite

automaton (NFA) generated manually.

This thesis extends the automatic web content data extraction techniques proposed in the

WebOMiner system to handle multiple web sites and generate integrated data warehouse

automatically. We develop the WebOMiner-2 which generates NFA of specific domain

classes from regular expressions extracted from web page DOM trees’ frequent patterns.

Our algorithm can also handle NFA epsilon() transition and convert it to deterministic

finite automata (DFA) to identify different content tuples from list of tuples. Experimental

results show that our system is highly effective and performs the content extraction task

with 100% precision and 98.35% recall value.

Keywords: Web mining, regular expression, non deterministic finite automata, B2C,

frequent pattern, deterministic finite automata, regular expression, DOM tree, Web

schema.

v

DEDICATION

This thesis is dedicated to my parents and family, for their support and encouragement

throughout my graduate studies.

This work also desiccated to Dr. C.I. Ezeife for her support, appreciation and generosity

during my graduate career.

vi

ACKNOWLEDGEMENTS

I would like to thank all those people who made this thesis possible and an unforgettable

experience for me. First of all, I would like to express my deepest sense of gratitude to my

supervisor Dr. Christie Ezeife who offered her continuous advice and encouragement

throughout the course of this thesis. I thank her for the systematic guidance and great

effort she put into my thesis. I am thankful to Dr. Christie Ezeife also for research

assistantship support and encouragement whenever I was in need.

I would like to express my very sincere gratitude to my internal reader Dr. Subir

Bandyopadyhay and external reader Dr. Ronald Barron for the support to make this thesis

possible. I acknowledge my gratitude to my committee chairman Dr. Ziad Kobti for the

absolute support for the thesis.

I am thankful to my colleagues Sabbir Ahmed, Yanal Ahmed, Tamanna Mumu and

Gunjon Soni for the help and support and their technical assistance to my thesis.

vii

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY ... iii

ABSTRACT ... iv

DEDICATION ... v

LIST OF TABLES .. x

LIST OF FIGURES ... xi

CHAPTER 1 - Introduction ...1

1.1 Information Extraction...3

1.1.1 Types of web page ..3

1.1.1.1 Unstructured pages ...3

1.1.1.2 Structured/semi-structured web page ...4

1.1.1.3 List page: ..5

1.2 Data types in data warehouse ...7

1.2.1 Historical data: ..7

1.2.2 Derived Data: ...7

1.2.3 Metadata: ...8

1.3 Application of Information Extraction ..8

1.3.1 Wrapper..8

1.3.2 Traditional Information Extraction versus Web Information Extraction ...9

1.3.3 Applications of web information extraction ... 10

1.3.3.1 Manually-Constructed IE Systems .. 11

1.3.3.2 Supervised IE System .. 12

1.3.3.3 Semi-supervised IE systems .. 13

1.3.3.4 Unsupervised IE Systems .. 14

1.4 Document Object Model ... 15

1.5 Finite Automata .. 17

1.5.1 Deterministic finite automata ... 17

1.5.2 Non-deterministic finite Automata ... 19

viii

1.5.3 Regular Expression .. 20

1.6 Modeling Web Documents As Objects For Automatic Web Content Extraction 20

1.7 Mining Web Document Objects with Non-deterministic Finite Automata ... 22

1.8 Thesis problem statement ... 25

1.9 Thesis Contribution .. 25

1.10 Outline of thesis proposal ... 26

CHAPTER 2- Related work .. 28

2.1 Comparison Based Approaches .. 28

2.1.1 MDR: Mining web records from web page .. 29

2.1.2 DEPTA: Web data extraction based on partial tree alignment .. 33

2.1.3 Net: A system for extracting web data from flat and nested data records .. 38

2.2 Separator-based approach .. 42

2.2.1 BYU-Tool: Conceptual-Model-based data extraction from multiple-record pages 42

2.2.2 OMINI: A fully automated extraction system for the world wide web ... 44

2.2.3 ViNTs: Fully automatic wrapper generation for search engine ... 47

2.2.4 OWebMiner: Modeling web documents as objects for automatic web content extraction 52

2.2.5 WebOMiner: Towards Comparative Web Content Mining using Object Oriented Model. 57

2.3 Grammar-based approach .. 59

2.3.1 RoadRunner: Towards Automatic Data Extraction From Data-Intensive Web Site. 59

2.3.2 DeLa: Data extraction and label assignment for Web database. ... 63

CHAPTER 3 - Web content mining using non-deterministic finite state automata 68

3.1 Problem Addressed ... 68

3.2 Web content objects ... 70

3.2.1 Image content ... 70

3.2.2 Text content .. 70

3.2.3 Form content .. 71

3.2.4 Plug-in content ... 71

3.3 Challenges to solve the problem ... 71

3.4Problem domain ... 71

3.4.1 Extract pattern of content .. 74

3.4.2 Regular expression (RE) generation .. 76

3.4.3 NFA generation .. 77

ix

3.4.4 DFA generation ... 78

3.5 Proposed “WebOMiner-2” Architecture and Algorithm .. 79

3.5.1 PatternExtractor Module ... 82

3.5.2 Regular Expression Generator .. 87

3.5.3 NFAGenerator Module .. 95

3.5.4 DFA generator ... 99

3.5.5 DatabaseSchema generator ... 103

CHAPTER- 4 Evaluation of WebOMiner-2 System .. 105

4.1 Strength of WebOMiner-2 ... 105

4.2 Empirical evaluation: .. 109

4.3 Experimental Results ... 110

CHAPTER 5 - Conclusion and Future Work .. 111

5.1 Future Work .. 112

REFERENCES ... 113

VITA AUCTORIS ... 119

x

LIST OF TABLES

Table 1: Generated regular expression from different B2C Website.. 93

Table 2:Transition table of DFA .. 101

Table 3: Experimental results is showing extraction of record from web pages. ... 109

xi

LIST OF FIGURES

Figure 1: An unstructured web page (wikipedia.com) ... 4

Figure 2: A structured web page (bestbuy.com) ... 5

Figure 3:Result page generated by google search engine(google.com) ... 6

Figure 4: A general view of Information extraction System ... 10

Figure 5 : Labeled training example .. 12

Figure 6: SRV rule. ... 12

Figure 7: (a) Sample HTML file and (b) Graphical representation of sample HTML file 16

Figure 8: Graphical representation of parent-child relation of the DOM tree .. 16

Figure 9: Deterministic finite automata ... 18

Figure 10 : Non deterministic finite automata ... 19

Figure 11: Architecture of WebOMiner ... 24

Figure 12: A tag tree representation of a HTML page ... 30

Figure 13: Artificial tag tree .. 30

Figure 14: Comparison and combination of node .. 31

Figure 15: A HTML code segment and boundary coordinates... 34

Figure 16: Tag tree for HTML code in Figure 15 .. 35

Figure 17: Artificial tag tree .. 35

Figure 18: Iterative tree alignment with two iterations .. 36

Figure 19: (X) Tree matching and aligning and (Y) Aligned data nodes under in N1 39

Figure 20: Data table for N4 and N5 ... 40

Figure 21: Data table for N2 and N3 ... 41

Figure 22: Tag path extracted from web document .. 48

Figure 23: OWebMiner() algorithm (Annoni and Ezeife, 2009) .. 54

Figure 24: DOM tree representation of positive page from "bestbuy.com" ... 56

Figure 25: Main algorithm of WebOMiner .. 58

xii

Figure 26: C-repeated pattern .. 65

Figure 27: An example of a pattern tree ... 66

Figure 28: Architecture of FA generator ... 73

Figure 29: (a) List web page from "bestbuy.com" and (b) List web page from "acm.com" 74

Figure 30: Product pattern encoded by HTML tag .. 75

Figure 31: RE generated from extracted pattern ... 76

Figure 32: RE generated from "futureshop.ca" .. 76

Figure 33: Unified RE .. 76

Figure 34: RE generated from "acm.com" ... 77

Figure 35: Generated RE is converted to NFA .. 78

Figure 36: Generated NFA is converted to DFA .. 78

Figure 37: Architecture of WebOMiner-2 .. 79

Figure 38: Main algorithm of WebOMiner-2 ... 80

Figure 39: Main algorithm of FA generator .. 82

Figure 40: Algorithm PatternExtractor .. 83

Figure 41: Algorithm parseHTML ... 83

Figure 42: Snapshot of “temp.xml” file ... 84

Figure 43: Algorithm tagOccurence() .. 85

Figure 44: Snapshot of “occurrence.data” .. 86

Figure 45 : Algorithm OccurenceCount() .. 87

Figure 46 : “” tag in product block. ... 90

Figure 47: Source code of product header ... 91

Figure 48: “price” information in product block source code... 92

Figure 49: “brand” attribute in product block source code .. 92

Figure 50: “ProdNum” attribute in Product block source code .. 93

Figure 51: Algorithm generateRE() ... 94

Figure 52: Algorithm NFAGnerator() .. 95

Figure 53: Algorithm GenerateNFA() .. 97

xiii

Figure 54:Snapshot of generated NFA of each attribute .. 98

Figure 55: Structural view of alternation NFA of “(title|image)” ... 99

Figure 56 : Generated NFA .. 99

Figure 57: Algorithm Subset construction .. 100

Figure 58: Generated DFA .. 102

Figure 59: Algorithm DFA simulation ... 103

Figure 60 : Algorithm SchemaGenerator() .. 103

1

CHAPTER 1 - Introduction

The World-wide-web has become the source of a huge amount of information on the

internet due to explosive growth and popularity (Embley et al., 1999). Day by day

internet users are also increasing. There are different kinds of users including customers,

retailers, service companies, etc. They use the web for gathering detailed information.

And these are displayed by different web sites which are in heterogeneous formats. By

collecting and organizing this information, it is possible to produce metadata for many

applications. It is beneficial to create a huge collection of historical and derived data on

the products from different domains (business to Customer, research, library, etc.). These

historical and derived data could be used for different purposes such as shopping

comparisons, detecting user intention and further knowledge discovery. For example,

there is a huge number of online stores (B2C) selling their products through internet. It is

hard for customers to retrieve, analyze and compare products or their prices from online

stores. In order to get a product with the special attribute (for example: 56” LCD TV) and

lowest cost compared to other similar products, a user has to go through all the online

stores, which takes a lot of time. Annoni and Ezeife (2009) proposed an approach called

OWebMiner that represents web content as objects. They identified six object types

which include text, list, image, form, separator and structure. Mutsuddy and Ezeife

(2010), Ezeife and Mutsuddy (2013) proposed an approach called WebOMiner that is an

automatic web content data extraction technique which models web sites of a specific

domain as object oriented database schemas. For Business to Customer (B2C) web sites

such as "Bestbuy.com”, “Futureshop.com” ,"CompUSA.com", the WebOMiner system

is able to extract different types of web page contents like product, list, text and

2

advertisement information from multiple sources using content non-deterministic finite

automaton (NFA) it generated.

In this thesis, we study the problem of extracting information from web pages of different

domains (B2C, research, library etc.). The WebOMiner (Mutsuddy and Ezeife, 2010;

Ezeife and Mutsuddy, 2013) extracts web contents from B2C web sites. It uses NFA to

identify tuple from list of tuple that extracted from web pages DOM tree. There is still

need for automatic NFA generation for the object oriented schema for each web site or

data sources. Other shortcoming of their work is that they didn’t handle ambiguity and

epsilon () transition of NFA. This thesis extends the automatic web content data

extraction techniques proposed in the WebOMiner system. Our proposed approach is able

to generate automatic source database schema NFA of domain classes from frequent

patterns extracted from web pages DOM trees. By converting NFA into deterministic

finite automata (DFA), our algorithm handles ambiguity and epsilon () transition and

able to identify different tuples from list of tuples. Our proposed approach is also able to

generate integrated data warehouse schema automatically by using regular expression

generated from frequent pattern extracted.

In the following sections of this chapter, we introduce the problem of information

extraction from the web. The information extraction problem is discussed in detail in

section 1.1, section 1.2 describes data type, section 1.3 explains the information

extraction problem in the context of e-commerce, section 1.4 describes document object

model, section 1.5 explains finite automata, section 1.6 explains the idea of object-

oriented web content extraction, section 1.7 defines the problem statement of this thesis.

3

The contributions of this thesis are briefly explained in section 1.8. We conclude the

chapter with the organization of this thesis in section 1.9.

1.1 Information Extraction

Information extraction (IE) is defined by Peshkin and Preffer (2003) as the task of filling

in template information from previously unseen text which belongs to a pre-defined

domain. Lerman et al. (2004) identify that IE task is defined by its input and its extraction

target whereas input can be categorized into two types, namely unstructured document

and semi-structured document. The main goal of information extraction is to extract

information automatically from data source such as entities, relationships between

entities and attributes describing entities from structured and semi-structured documents.

This information can be stored into the database for further knowledge discovery,

shopping comparisons and detecting user intentions. In this thesis, we consider

information extraction from semi-structured documents that are present on the web.

1.1.1 Types of web page

The World-wide-web can be called a vast repository of information. Data stored on the

web can be accessible by the user through search form or dynamically generated web

page. The World-wide-web consists of huge amounts of web pages which represent

different products (Buttler et al., 2001). Two different types of web pages can be

distinguished.

1.1.1.1 Unstructured pages: Also called free-text documents, unstructured pages are

written in natural languages. There is no predefine template can be found, and only

4

information extraction (IE) techniques can be applied with a certain degree of confidence.

For example, figure 1 represents an unstructured web page from “Wikipedia.org” which

contains only text and there is no template.

Figure 1: An unstructured web page (wikipedia.com)

1.1.1.2 Structured/semi-structured web page: Structured/Semi-structured pages are

normally obtained from a structured data source, e.g., a database, and data are published

together with information on structure. The extraction of information is accomplished

using techniques based on wrapper generation, rule generation and automatic approaches.

Most of the web document formed by structured data such as text, image, hyperlink,

structured record such as list, table, and database generated content. This type of web

page generated by a program that access structured data in a local database and embeds

5

them in a HTML template. For example, Figure 2 represents a structured/semi-structured

web page which is a product list page from “Bestbuy.com”.

Figure 2: A structured web page (bestbuy.com)

1.1.1.3 List page: List pages are web pages that contain several structured records.

Generally, online stores display their different products with list pages. The data record

of list pages is important to create a historical and derived data warehouse with the

extracted data from it. For example, Figure 2 represents a list page from “Bestbuy.com”.

There are two types of list pages, vertically labeled list page and horizontally labeled list

pages. Another type of list pages called result page produced by search engines with a

user query which is presented as a list or a table on an automatically generated page. For

example, Figure 3 represents a web result page which is generated by google search

engine. These list pages are called dynamic web pages because they are generated by

6

using their own template. The template is generated using html tag. There is a query

working in the backend to fill the template and display data in the browser.

Figure 3:Result page generated by google search engine(google.com)

When a page is generated using a template, a common structure which is created with

html tag can be found in the source code of the page. For example, on a page displaying

10 laptops from different brands and prices, their presentation structures are the same

through the entire page. This structure can be assumed as a schema of the product.

Different domain specific web sites use different structures to display their products. For

example, the structure of a B2C web site is different from the structure of a library web

site. So, it is a big challenge to create a historical and derived data warehouse with

different domain specific web sites.

7

1.2 Data types in data warehouse

1.2.1 Historical data: Historical data is the data from previous time periods, in contrast

to current data (Singhal and Seborg, 2001). It is used for comparisons to previous periods

and trend analysis. The past information about a company can be extracted using

historical data, and it can be used to help forecast the company’s future, for example,

“Given a product type and business name, output all promotion price offered by the

business within last 10 years”. This query extracts all the information about the product

until today’s date. And from it user can get idea about the promotional trend of this

product. Using historical data, we are able to extract information about a specific trend

about the sale price of a product which is sold by a B2C company. For example,

“Bestbuy.com” offers promotion on their product once a month. If we have a database

with historical database we are able to find the trend of the promotional price of any

particular product. The advantage is that user can decide about the right time to buy a

product.

1.2.2 Derived Data: Derived data types are those that are defined in terms of other data

types, called base types (Botzer and Etzion, 1996). Derived data types contain attributes,

element or mixed content. They exist in data warehouse as built-in or user-derived. Base

types can be derived data types or primitive types. Restriction facets and extension are

used to create derived data types. A table exists in database can have derived columns,

which values are computed, based on the values of other table columns. It is called

a derived table, if all columns are derived. Derived data exists in the database as

aggregates such as count, sum, average, minimum, maximum which can be computed

from web content data. For example, “What is the average number of laptop on sale each

8

month or how many times a company offer promotion on their product each year”. By

getting these two results user can get the idea about the promotional trend of a business to

a particular product.

1.2.3 Metadata: Metadata is structured information that describes an information

resource and makes it easier to retrieve, use, or manage an information resource (Mize

and Habermann, 2010). Metadata is often known as information about information or

data about data. How the data is formatted and how and when and by whom a particular

set of data was collected, is described by metadata. Metadata helps to understanding

information stored in data warehouses. The telephone book is an example of metadata

that we are very familiar with, where we search for a telephone number using name or

location. Another example of metadata is the catalogue in a library, where we search for

information using "Subject", "Title" and "Author".

1.3 Application of Information Extraction

In recent years, a large number of architecture has been proposed for extracting

information from web pages. Three approaches are used, which are unsupervised

(automatic), supervised (manual) and semi-supervised. In this section we describe

different applications used in information extraction from web pages.

1.3.1 Wrapper

The process of information extraction uses a program which is called extractor or

wrapper (Adleberg, 1998). The information integration system considers a wrapper as a

component which has a single uniform query interface to access multiple information

http://www.webopedia.com/TERM/D/data_Warehouse.html

9

sources. An information source (e.g., database server, web server) is wrapped by a

program and the integration system able to access that source without changing its core

mechanism. When the web server is considered as information source, then, the wrapper

uses HTTP protocols to query the web server to collect the resulting pages, extract

content from HTML documents, and after that integrates with other data sources.

Wrappers are used in information extraction from web sites and consist of a series of

rules and some codes to apply those rules and are specific to a source. Some examples of

existing wrappers are WIEN (Kushmerick et al., 1997), SOFTMEALY (Hsu and Dung

1998) STALKER Muslea et al., 1999) etc.

1.3.2 Traditional Information Extraction versus Web Information Extraction

Information extraction from web is different from traditional information extraction (IE)

(Appelt and Israel, 1999). In traditional IE, data are extracted from totally unstructured

free texts that are written in natural language. But information extraction from web

processes structured data which are online documents and the server-side application

program generates it automatically. Usually, Web IE task is performed by machine

learning approach (Soderland, 1999), pattern or rule mining techniques (Chang and Lui,

2001; Wang and Lochovsky, 2002; Chang et al., 2003) to extract the data from different

sources.

10

Figure 4: A general view of Information extraction System

1.3.3 Applications of web information extraction

The wrapper Induction (WI) generates wrapper (Wang and Lochovsky, 2002) or

information extraction (IE) systems (Kushmerick et al., 1997). Wrapper works as pattern

matching procedure (e.g., a form of finite-state machine) which depends on a set of

extraction rules. A wrapper generated by wrapper induction is used to extract the

information from target resources. In the earlier system, wrapper generation was manual

process where programmer was involved in writing extraction rule whereas later systems

are automatic rule generalization process based on machine learning. In wrapper

induction process, user writes extraction rules manually to labeling target extraction data.

Current wrapper induction systems are created with unlabeled training example. The

wrapper induction system can be categorized into four groups, include manually-

constructed IE system (Hammer et al.,1997;Crescenzi and Mecca,1998; Arocena and

Mendelzon, 1999; Liu et al.,2000; Saiiuguet and Azavant, 2001), supervised IE Systems

(kushmerick et al., 1997;Califf and Mooney.,1998; Muslea et al., 1999; Soderland, 1999),

Wrapper

Induction

system

WRAPPER

TEST

PAGE
GUI

Un-labeled

Training

Web page

GUI
Labeled

Web

pages

Extracted data

USER

 USER

Un-supervised

Semi-supervised

supervised

USER

11

Semi-supervised IE Systems(Chang and Lui.,2001; Chang and Kuo,2004; Hogue and

Karger, 2005), and unsupervised IE Systems (Arasu and Gracis-Molina,2003; Wang and

Lochovsky 2003; Zhai and Liu, 2005).

1.3.3.1 Manually-Constructed IE Systems

In manually-constructed IE system, user creates wrapper program using general

programming language like Perl or special-designed language for each web site. This

approach is considered as time consuming and labor intensive procedure because it

requires the user to have strong computer and programming background. Some existing

systems are TSIMMIS (Hammer et al., 1997), Minerva (Crescenzi and Meca, 1998),

WEBOQL (Arocena and Mendelzon, 1998), W4F (Saiiuguet and Azavant, 2001) and

XWRAP (Liu et al., 2000). Methods in this approach simplify the construction of data

extraction system by using some languages. In this approach the user are involved with

manually construct data records pattern for the extraction target. For example, TSIMMIS

is one of the first approaches that build web wrappers manually (Hammer et al., 1997). In

this approach, a wrapper takes a specification file as input that declaratively states by

programmers, where the data to extract is located on the pages and how the data should

be grouped into objects. Since manual approaches are not scope of this thesis, we do not

discuss more details. Reader interested may refer to Minerva (Crescenzi and Meca,

1998), WEBOQL (Arocena and Mendelzon, 1998), W4F (Saiiuguet and Azavant, 2001)

and XWRAP (Liu et al., 2000).

12

1.3.3.2 Supervised IE System

Supervised systems extract data by using a set of web pages labeled with examples and

generate wrapper. As an example, the extraction rule for the book title is shown in Figure

5, which contains words “Book”, “Name”, and “”, and immediately followed by the

word “”. The title consists of at most two words that were labeled as “nn” or “nns” by

the POS tagger is specified by the “Filler pattern”. User provides an initial set of labeled

examples and the system may require additional pages for the user to label. Instead of

programmers, the user can be trained the system to reduce the cost of wrapper generation,

Figure 5 : Labeled training example

Such systems are RAPIER (Califf et al., 1998), WHISK (Soderland, 1999), SRV

(Kushmerick et al., 1997) and STALKER (Muslea et al., 1999). The methods of this

approach use machine learning techniques to learn and construct wrappers from human

labeled examples.

Figure 6: SRV rule.

Extraction rule of Book Title:

Pre-filter pattern Filter pattern Post-filter pattern

(1) Word: Book list: len: 2 Word:

(2)Word: Name Tag: [nn, nns]

(3) Word:

Extraction rule of rating

Length(=1)

Every (numeric true)

Every(in_list true)

13

The supervised system SRV (Kushmerick et al., 1997). is a top-down relational

algorithm that generates single-slot extraction rules. It considers IE as a kind of

classification problem. First, it tokens the input documents and all substrings of

continuous tokens such as text fragments are labeled as either positive examples or

negative examples. SRV generates rule which are logic rules that based on a set of token-

oriented features or predicates. These features are two types: simple and relational. A

simple feature describes a function that maps a token with some discrete value such as

length, character type (e.g., numeric), orthography (e.g., capitalized) and part of speech

(e.g., verb). A relational feature maps a token to another token, for example, the

contextual tokens of the input tokens. The learning algorithm works as FOIL, starting

with entire set of examples and adds predicates greedily to cover as many positive

examples and as few negative examples as possible. Supervised approaches are not scope

of this thesis. Reader interested refer to RAPIER (Califf et al., 1998), WHISK

(Soderland, 1999) and STALKER (Muslea et al., 1999).

1.3.3.3 Semi-supervised IE systems

Semi-supervised system accepts a rough example from users to generate extraction rule.

Semi-supervised IE systems include IEPAD (Chang et al., 2001), OLERA (Chang et al.,

2004) and THRESHER (Hogue and Karger, 200). In this approach, the user uses GUI to

specify the extraction targets because no extraction targets are specified for such systems

after the learning phase. User’s supervision is involved in this approach. The IEPAD

(Chang et al., 2001) is one of the first semi-supervised IE systems that generalize

extraction patterns using unlabeled web. It does not require any labeled training page and

it requires only post effort from the user to choose the target pattern and indicate the data

14

to be extracted. This method developed based on the observation is that if a web page

contains multiple data records to be extracted, they are often rendered regularly using the

same template for good visualization. IEPAD generate wrappers by discovering repetitive

patterns. IEPAD discovers repetitive patterns in a web page using a data structure called

PAT tree which is a binary suffix tree. The suffix tree only records the exact match for

suffixes, IEPAD aligns multiple strings which start from each occurrence of a repeat and

end before the start of next occurrence by applying center star algorithm. Semi-

supervised approaches are not scope of this project. Reader interested refer to IEPAD

(Chang et al., 2001), OLERA (Chang et al., 2004) and THRESHER (Hogue and karger,

2005).

1.3.3.4 Unsupervised IE Systems

The labeled training examples are not required in unsupervised IE systems. It extracts

information from the web by training the system with example. It also does not have any

user interactions to generate a wrapper. Unsupervised IE systems include RoadRunner

(Crescenzi et al., 2001), EXALG (Arasu and Garcis-Molina, 2003), DeLa (Wang and

Lochovsky, 2003) and DEPTA (Zhai and Liu, 2005). The RoadRunner and EXALG

solve page-level extraction task, while DeLa and DEPTA are related to record-level

extraction task. The difference between supervised and unsupervised system is that the

extraction targets are specified by the users in supervised system and the data that is used

to generate the page or non-tag texts in data-rich regions of the input page is defined as

extraction target. In this approach the schema is choose by the users. Since all data are

not needed, the user needs to do the post-processing work to select relevant data and give

each piece of data a proper name. Methods in this category are related to automatic

15

pattern discovery. The main advantages of these methods include methods do not require

separate training, validation and application phases (Breuel, 2003). And these methods

can be divided into two categories including based on string matching and based on

HTML tree matching. It has been shown that automatic pattern discovery methods based

on HTML tree matching are outer perform than the string matching approaches

(Yeonjung, 2007). We describe technical details of the above approaches in section 2.

1.4 Document Object Model

The Document Object Model (DOM) is an application programming interface (API) for

well-formed XML documents and valid HTML documents (Marini, 2002). The logical

structure of XML or HTML documents is described by DOM and also defines the way a

document is accessed and manipulated. XML represents many different kinds of

information that may be stored in diverse systems and presents this data as documents,

and the DOM may be used to manage this data. With the Document Object Model, it is

possible to represent a HTML file as documents, navigate their structure, and add,

modify, or delete elements and content. The elements of an HTML or XML document

can be accessed, changed, deleted, or added using the Document Object Model. The

HTML DOM represents an HTML document as a tree-structure. The tree structure is

viewed as a node-tree and all nodes can be accessed through the tree. The contents of

node tree can be modified or deleted, and new elements can be created. The node tree is

shown in figure 7, the set of nodes, and the connections between them. The root node is

the starting point and branches out to the text nodes at the lowest level of the tree. The

nodes in the node tree consists a hierarchical relationship to each other. The relationship

http://www.w3.org/TR/DOM-Level-2-Core/glossary.html#dt-API
http://www.w3.org/TR/DOM-Level-2-Core/glossary.html#dt-XML

16

<html>

 <head>

 <title>My Title</title>

 </head>

 <body>

 My link

 <h1>My header</h1>

 </body>

< /html>

Document

Root Element:
<html>

Element:
<head>

Element:
<title>

Text:
“My title”

Text:
“My header”

Text:
“My Link”

Attribute:
“href”

Element:
<a>

Element:
<h1>

Element:
<body>

Figure 7: (a) Sample HTML file and (b) Graphical representation of sample HTML file

is described using the terms parent, child, and sibling. Parent nodes have children node

and Children on the same level are called siblings. The top node of node tree is called the

root. Every node has exactly one parent node except the root node. A node can be

contained any number of children. A leaf node does not have children. Siblings are nodes

which reside under the same parent. Figure 8 is shown the parent-child relationship.

Figure 8: Graphical representation of parent-child relation of the DOM tree

Root element
<html>

Element
<head>

Element
<body>

Parent node

First child

Last child

Next
sibling

Previous sibling

17

1.5 Finite Automata

Finite automata is a mathematical model which is a combination of 5 tuples (Q, q0, A, ∑,

) (Cormen, 2009), where Q represents a finite set of states, the start state is q0 Q, A 

Q is a distinguished set of accepting states, ∑ is a finite input alphabet,  represents a

function from Q x ∑ into Q, called the transition function. The finite automaton starts

with state q0 and it visits to the next state by reading input string one at a time. For

example, if the location of the automata is in state q and reads input character “a”, it

moves from state q to state (q, a) by making a transition. The generated finite state

machine M accepts an input string if it reached at final state. Otherwise input is rejected.

A finite automata M defines a function called  (finite state function) from ∑ to Q such

that (w) is reached at the state M after reading the string “w”. Thus, the finite automata

M accepts a string w if and only if (w) A. The function  scan input string recursively

by using transition function. Finite automata are two types include deterministic finite

automata (DFA) and non-deterministic finite automata (NFA). These are described below

1.5.1 Deterministic finite automata

A deterministic finite state automaton (DFA), also known as deterministic finite state

machine that accepts or rejects finite strings of symbols (Cormen, 2009). It produces a

unique computation of the automaton for each input string. The word 'Deterministic'

refers to the uniqueness of the computation. The states of DFA are fixed and state can be

visited one state at a time. An example of deterministic finite state automata is shown in

Figure 9, where q0 is the initial state and final state.

18

Figure 9: Deterministic finite automata

Figure 9 illustrates a deterministic finite automaton using state diagram. In the

automaton, there are three states: q0, q1, and q2 denoted by circles. The automaton takes

0s and 1s as input. For each state, there is a transition arrow leading out to a next state for

both 0 and 1. A DFA jumps deterministically from a state to another by following the

transition arrow by reading input symbol. For example, if the automaton is currently in

state q0 and current input symbol is 1 then it deterministically jumps to state q1. A DFA

has a start state which is denoted graphically by an arrow coming in from nowhere where

computations begin, and a set of accept states which is denoted graphically by a double

circle which help define when a computation is successful.

http://en.wikipedia.org/wiki/State_diagram
http://en.wikipedia.org/wiki/Set_(mathematics)

19

1.5.2 Non-deterministic finite Automata

A non-deterministic finite automaton (NFA) is a finite state machine where from each

state using a input symbol the automaton may jump into several possible next states

(Cormen, 2009). The difference between deterministic finite automaton (DFA) and non-

deterministic finite automata is that next possible state is uniquely determined in DFA but

not in NFA. Although the DFA and NFA are not similar by definition, a NFA can be

translated to equivalent DFA using power set construction, which means that the

constructed DFA and the NFA recognize the same formal language. Both of them

recognize only regular languages.

Figure 10 : Non deterministic finite automata

A non-deterministic finite automaton is shown in Figure 10 using state diagram. Here q0

is the initial state and q1 is the final sate. It is non-deterministic because the state q0 has

more than one state to move. For every NFA, there is a deterministic finite

automaton (DFA) can be found that accepts the same language. Therefore it is possible to

convert an existing NFA into a DFA for the purpose of implementing a simpler machine.

http://en.wikipedia.org/wiki/Finite_state_machine
http://en.wikipedia.org/wiki/Deterministic_finite_automaton
http://en.wikipedia.org/wiki/Powerset_construction
http://en.wikipedia.org/wiki/Formal_language
http://en.wikipedia.org/wiki/Regular_languages
http://en.wikipedia.org/wiki/State_diagram
http://en.wikipedia.org/wiki/Deterministic_finite_automaton
http://en.wikipedia.org/wiki/Deterministic_finite_automaton

20

1.5.3 Regular Expression

A regular expression provides a concise and flexible means to specify and

recognize strings of text, such as particular characters, words, or patterns of characters.

The regular expression can be considered as compact notation for describing string. The

regular expression follows some rules, which are given below:

•  (Epsilon) is a regular expression that denotes {}, the set containing empty

string.

• If 'a' is a symbol in , then 'a' is a regular expression that denotes {a}, the set

containing the string a.

• Suppose q and r are regular expressions denoting the language L(q) and L(r), then

– (q) | (r) is a regular expression denoting L (q) L(r).

– (q)(r) is regular expression denoting L (q)  L(r).

– (q) * is a regular expression denoting (L (q))*.

– (q) is a regular expression denoting L (q).

1.6 Modeling Web Documents As Objects For Automatic Web Content

Extraction

Annoni and Ezeife (2009) proposed a framework called OWebMiner which presents web

document as object-oriented web data model to represent web data as web content and

web presentation objects. The proposed framework is able to mine complex and

structured data as well as simple and unstructured data in a unified way. They identified

http://en.wikipedia.org/wiki/String_(computer_science)

21

three main zones of a web document as instances of specialized classes include

HeaderZone, BodyZone and FooterZone. They state that two types of objects exist in

these zone including web content objects and web presentation objects. They classified

the web content into six categories among them four have sub-content type including text

element, image element, form element, plug-in element, separator element and structure

element. Text element has two sub content-types including raw text and list text. Raw

text has three sub content types including title, label, and paragraph. List text has two

sub-content types including ordered list and definition list. Image element has two sub-

contents like image and map. Form element has three sub content types which are form

select, form input and form text area. The authors classified the web presentation object

into six categories which are banner, menu, interaction, legal information, record and

bulk. Their proposed algorithm takes a set of HTML files as input. The algorithm works

in two sub algorithms. In the first part, it extracts web presentation object and web

content object sequentially. And in the second part, it stores the extracted objects into the

database. The first part of this algorithm is divided into three steps. In the first step, a

DOM tree is generated from the HTML file using DOM parser. In the second step, web

zones are identified on the web document from the DOM tree. In the third step, web

content object and web presentation objects are extracted. In this algorithm, block level

tag include table, division, heading, list, form, block quotation, paragraph and address

and non block level tag include anchor, citation, image, object, span, script are

considered to extracted object. Two search approaches used in OWebMiner to explore

the DOM tree. Depth-first search is executed through block-level tag until it finds non

22

block level tag. Breadth-first search is executed to parse non block level tag. We discuss

technical details of their approach in section 2.

1.7 Mining Web Document Objects with Non-deterministic Finite

Automata

Mutsuddy and Ezeife (2010), Ezeife and Mutsuddy (2013) proposed a system for

extraction and mining of structured web contents based on object-oriented data model.

Their work extended the work of Annoni and Ezeife (2009). They developed the

architecture called WebOMiner using object oriented model for extraction and mining of

web contents. They introduced an approach of generating and using non deterministic

finite state automata for mining web content objects. They defined data block and data

regions to ensure consistency between related data. They addressed to relate HTML tag

attribute information with related contents to ensure identification of contents, to assign

objects and other information together. They defined schema matching to unify similar

contents from different web site. They identified noise contents in data blocks and

prevent them entering into database table. They also implemented and materialize object-

oriented data model for web content and extract heterogeneous related web content

together. They defined a mining algorithm that identifies data block and generates non-

deterministic finite state automata based wrapper for extraction of related contents. They

classified all data blocks of a web page according to their type and check minimum

occurrence count based on observed pattern to ensure data consistency before entering

them into database. For example, minimum occurrence count for a ‘list’ content can be 3,

which means that to be accepted as list tuple record in the DOM tree it should have at

least 3 consecutive elements in its block. Their proposed WebOMiner system is an

23

automatic object oriented web content extraction and mining system for integrating,

mining heterogeneous contents that are also derived, historical and complex for deeper

knowledge discovery. The WebOMiner extracts information from a given web page

including data records (e.g. product image, product brand, product id, short description

and price of the product), navigation information (e.g. link URL, link id or name),

advertisement (e.g. product advertised, image, URL links to related website). After

extraction, WebOMiner stores this information into database for comparative mining and

querying. Their proposed approach contains four modules include Crawler Module,

Cleaner Module, Content Extractor Module and Miner Module. The proposed crawler

module crawls the WWW to find targeted web page given as input. This module creates a

mirror of original web document after streaming the entire web document including tags,

texts and image contents. The comments are discarded from the HTML document by this

module. The cleaner module converts the generated HTML file to well formed by

inserting the missing tag, removing inline tag (e.g.
, <ht/>), insert missing “/” at the

end of unclosed <image> tag, clean up unnecessary decorative tags. The content extractor

module creates DOM tree from HTML page and contents are extracted from the DOM

tree in this module. This module assigns respective class object type as per pre-defined

object class to the content. It also puts objects into Array List after setting information

into objects. Data regions and data blocks are identified by this module and it segments

the respective data of a data block from other data blocks by using separator objects. This

module also generates Seed NFA pattern for data blocks. It stores identical tuples after

extracting objects of all tuples by matching with the refined NFA. It stores the objects

into the database after checking the accepted minimum occurrence count for all tuple

24

categories (e.g., for list, form, product, text etc. tuples). We describe technical details of

this approach in section 2.

Figure 11: Architecture of WebOMiner

The shortcoming of this approach is that although this method uses an NFA algorithm for

identifying tuples of web objects, the mechanism for using NFA algorithm for automatic

identification of different content types is not fully integrated in the current system. Also,

their NFA is built based on manual observation of ten different B2C web pages for

identifying content types from content list. They use manually generated database schema

for storing content into database. The authors didn’t mention how the “ɛ” transition or

ambiguity was handled. That means the authors didn’t mention how the NFA were used

25

for identifying tuple without convert it to DFA. In this approach, the database schema

generation is manual process which is labor intensive and not efficient. The authors

didn’t define schema integration for different domain specific website.

1.8 Thesis problem statement

This thesis addresses the limitation of WebOMiner (Mutsuddy and Ezeife, 2010; Ezeife

and Mutsuddy, 2013) which are given below:

1. The mechanism for using NFA algorithm for automatic identification of different

content types is not fully integrated in the current system.

2. Existing NFA is built for identifying content types based on manual observation

of ten different B2C web pages.

3. The “ɛ” transition or ambiguity of NFA was not handled.

4. In the current system, the database schema generation is manual process which is

labor intensive and not efficient.

5. Current system does not define schema integration for different domain specific

website.

1.9 Thesis Contribution

In this research we developed an algorithm that extends the WebOMiner (Mutsuddy and

Ezeife, 2010; Ezeife and Mutsuddy, 2013).

1. Our proposed algorithm finds the frequent pattern matching structure from DOM

tree of the HTML page. It iteratively continues the discovery process to find all

26

matching structure to discover repeated objects (list, product, text etc.) in the

page. Finally, RE (regular expression) is formed from the discovered pattern

structure and NFA wrappers are generalized from RE. Our proposed framework

handles the “ɛ” transition by converting NFA to DFA (deterministic finite

automata) and produces DFA to the miner module of the WebOMiner to identify

objects tuple from the list of objects.

2. Our proposed algorithm also generates database schema automatically to store

different types of web content objects (list, text, product etc.) into the database.

Database schema is generated using generated regular expression based on the

frequent pattern matching structure exists on the DOM tree of the list web page.

3. Since different B2C web source follows different sequence pattern to represent

content object. Our algorithm generalizes DFA from different web sources.

1.10 Outline of thesis proposal

The remainder of the thesis is organized as follows:

Chapter 2: Related literature in the area is presented. We have identified problems which

are related to the problem studied in this thesis. We categorized these problems in three

sections and each section explains the related work done in these problems and surveys

the various solutions proposed. Different works are compared in this section and we tried

to identify the advantages and disadvantages of the approaches.

27

Chapter 3: Detailed discussion of the problem addressed and new algorithms are

proposed

Chapter 4: Explain performance analysis and the experiments conducted in detail.

Chapter 5: Concludes this thesis by explaining the work done. The contribution of this

thesis is explained in this section. An outline of future work is provided in this chapter.

28

CHAPTER 2- Related work

In this chapter, we survey the literature related to the shortcoming addressed in this thesis

include web content mining and how to bring web content from different web sites into a

unique format. There are several studies has been made on web content mining. They are

categorized into four categories: manual approach, supervised approach, semi-supervised

and unsupervised approach. Supervised or manual approach uses wrapper which is

generated using a set of web pages labeled with examples of the data to be extracted.

Wrapper generation requires a set of data extraction rules which are generated manually

from labeled pages. Manual labeling of pages is labor intensive and time consuming

because different templates exist in different sources. Semi-supervised approach accepts

a rough training example from user and generates extraction rule. Unsupervised or

automatic approach generates wrapper without much user interaction. Since unsupervised

approach performs better than other three, we only consider unsupervised approaches in

this section. And our thesis extends the work of Mutsuddy and Ezeife (2010), Ezeife and

Mutsuddy (2013) which is an unsupervised approach. We present previous studies which

are broadly related to unsupervised or automatic web content mining. We categorized

these techniques based on the techniques for data area identification and record

segmentation including comparison-based, grammar-based and separator-based.

2.1 Comparison Based Approaches

These approaches find commonalities and identify records by comparing page fragments.

MDR (Liu et al., 2003) is a comparison based approach that relies on string edit distance.

29

Another comparison based approach called DEPTA (Zhai and Liu, 2005; Zhai and Liu,

2006) which uses a tree edit distance. NET (Liu and Zhai, 2005) uses a tree edit distance

as well but collapses shared subtrees. We describe technical details of these approaches in

the following section.

2.1.1 MDR: Mining web records from web page

Liu et al. (2003) addressed the problem of mining data records in web page using the

existing approaches. They identified three types of existing approaches include manual,

supervised learning and automatic techniques. They mentioned that manual approach is

not useful for large number of pages, supervised techniques need training data which are

prepared manually and for that reason it requires substantial human effort. They also

mentioned that existing automatic approach provides unsatisfactory result due to their

poor performance. The authors propose a new approach called MDR which is based on

two observations. Firstly, a group of data records form a contiguous region of a page and

within the data region the data records have similar tag tree structure. Secondly, the data

records of a data region have the same parent node. The proposed technique works on

three steps. In the first step, it builds a tag tree with HTML tag of the source page. For

example, a tag tree of HTML page is shown in Figure 12. In the second step, it mines

every data region that contains data records. In this step, first it mines generalized nodes

which form a data region based on two properties include the nodes all have the same

parent and the nodes are adjacent. For example, Figure 12 presents two generalized nodes

where the first 5 TR nodes of the TBODY consist by the first data region and second the

data region contains rest of the TR nodes. The proposed algorithm identifies the data

30

region by string comparison between generalized nodes. For example, Figure 13

represents an artificial tag tree to explain different kinds of generalize nodes and data

region. The generalized node is represented by the shaded area. The nodes 5 and 6

HTML

HEAD
BODY

TABLE
TABLE P

TBODY

TRTR TR TR TR TR
TR TR TR TR TR

TD

TD TD TD TD

TD TD TD TD TD

TD TD TD TD

TD TD
TD

TD

DATA
RECORD 1

DATA
RECORD 2

Figure 12: A tag tree representation of a HTML page

formed the data region labeled 1 and their length is 1. The nodes 8, 9 and 10 formed the

data region labeled 2 and their length is 1. The pairs of nodes (14, 15), (16, 17) and

(18,19) formed the data region labeled 3 and their length is 2. These generalized nodes

formed the data region based on the edit distance properties which is that the normalized

edit distance between adjacent generalized nodes is less than fixed thresholds.

1

9

3 42

98765 10

11 12

13 14 15 16 17 18 19 20

Region 1 Region 2

Region 3

Figure 13: Artificial tag tree

31

To identify the data region, the proposed mining algorithm finds the first generalized

node of a data region and it is possible when starting from each node sequentially. For

example, node 8 is the first node of data region 2 in Figure 13. It also needs to find the

number of components that a generalized node contains. For example, each generalized

node of data region 2 has one component in Figure 13. The algorithm finds the tag nodes

or components does a generalized node in each data region have by doing one node, two

node combination, ….., K node combination. It starts from each node and perform all 1-

node string comparisons, all 2-node string comparisons and so on. Then the comparisons

result is used to identify each data region. The comparison process is shown in Figure 14,

where it contains 10 nodes with the parent node p. The algorithm starts from each node

and continues with all possible combinations of component nodes. The following string

comparisons are computed:

 (1,2), (3,4), (4,5), (5,6), (6,7), (7,8), (8,9), (9,10)

 (1-2,3-4), (3-4,5-6), (5-6,7-8), (7-8,9-10)

 (1-2-3, 4-5-6), (4-5-6, 7-8-9)

p

5 6 7 8 9 104321

Figure 14: Comparison and combination of node

32

The pair node (1, 2) describes that tag string of node 1 is compared with tag string of

node 2. The tag string includes all the tags of the sub-tree of the node. For example, the

tag string for the second TR node (Figure 12) of TBODY is <TR TD TD………..TD

TD>. Here, the substring of sub-tree below the second TD nodes is denoted by “….”. The

pair node (1-2, 3-4) describes the comparison between the combined tag string of node 1,

2 and combined tag string node 3, 4. After doing all the string comparisons, the MDR

algorithm identifies each data region by finding its generalized node. Basically, the

algorithm finds similar children node combinations to identify candidate generalized

nodes and data region of the patent node by using the string comparison results at each

parent node. After that MDR identifies the data records in each region. MDR identifies

data records based on the assumption is that if a generalized node is the combination of

two or more data records then these data records contain similar tag strings. The authors

claim that the proposed method which is able to extract web data automatically. Also

their proposed method able to discover non-contiguous data records which didn’t handle

with existing system because the proposed method is developed based on nested structure

and presentation feature of web pages. The authors conducted an experiment of their

proposed approach with 18 pages from OMNI’s web site and a large number of other

pages from different domain like books, travel, software, auctions, jobs, shopping and

search engine result. They also used a number of training pages to build their system and

identify their default edit distance threshold. The authors obtained the result from their

experiment is that MDR has 99.88% recall and 100% precision where other system

OMINI and IEPAD only have a recall of 39%. They also mentioned that some data

records which are consider correct for OMINI and IEPAD, if these data are not consider

33

as correct then the recall of OMINI and IPEAD reduce to 38.3% and 29% respectively. In

that case the precision value they obtain is that 56% for OMINI and 67% for IEPAD. The

authors claim that their approach doesn’t need any human effort and it mines data records

in a page automatically. They also claim that their algorithm able to extract non-

contiguous data records. The shortcoming of this approach is that MDR is designed to

handle tables tag only. It failed to extract data from web page which contains records that

have complex and nested structure. Reis et al. (2004) described that the limitation of this

approach is that the proposed algorithm works each time in a single page, so it does not

compare the page trees. Although achieving good results, the algorithm only works with

multi-record pages and therefore cannot be applied to on-line news page, that are almost

exclusively single-record pages. Miao et al. (2009) identified the limitation of this

approach is that it does not handle nested data objects.

2.1.2 DEPTA: Web data extraction based on partial tree alignment

Zhai and Liu (2005) addressed the problem of data record extraction from web page.

They state that the machine learning approach is time consuming and needs human effort

because it requires manually labeling of many examples from each web site for data

extraction and this approach is not able to expand to cope with large number of pages.

They also found that existing automatic approaches related to pattern discovery are

developed based on many assumptions and provide inaccurate results. The authors

propose a new architecture for automatic data extraction from web pages. The proposed

architecture is called DEPTA. It has three steps to extract data automatically. In the first

step, the method builds a HTML tag tree using visual information. The observation

behind this step is that each HTML element made with start tag, optional attribute,

http://dl.acm.org/citation.cfm?id=1060761

34

optional embedded HTML content and an end tag, is rendered as a rectangle in a web

browser. The DEPTA builds tag tree based on the nested rectangle. For doing this, it uses

embedded parsing and rendering engine of a browser to find the 4 boundaries of the

rectangle of each HTML element and then it checks whether one rectangle is contained

inside another rectangle by detect the containment relationship within the rectangles. For

example, Figure 15 represents the HTML code on the left which is a table with two rows

and right side represents the boundary coordinated produced by the browser for each

HTML element shown in the right side.

Figure 15: A HTML code segment and boundary coordinates

The tag tree is shown in Figure 16 is build based on the visual information which is the

sequence of opening tag and also done by the containment check. After building the tag

tree DEPTA mines data region in a page that contain similar data records. The DEPTA

identifies the data region using string comparison between generalized nodes. For

example, Figure 17 represents an artificial tag tree to explain different kinds of generalize

nodes and data region. The generalized node represents by the shaded area. The Nodes 5

and 6 formed data region labeled 1 and their length is 1. The nodes 8, 9 and 10 formed

the data region labeled 2 and their length is 1. The pair of nodes (14, 15), (16, 17) and

35

(18, 19) from the data region labeled 3 and their length is 2. These generalized node

formed the data region based on the edit distance properties which is that the normalized

table

tr tr

td td td td

Figure 16: Tag tree for HTML code in Figure 15

edit distance between adjacent generalized nodes is less than fixed thresholds. To identify

the data region, the mining algorithm finds the first generalized node of a data region.

And it is possible when starting from each node sequentially. For example node 8 is the

first node of data region 2 in figure 17.

1

9

3 42

98765 10

11 12

13 14 15 16 17 18 19 20

Region 1 Region 2

Region 3

Figure 17: Artificial tag tree

36

It also needs to find the number of components that a generalized node contains. DEPTA

identifies data records from generalized node after all the data regions are identified.

DEPTA used the same technique as MDR to identify the contiguous and non-contiguous

data records. After identifying the data records, DEPTA extracts data from data records

using partial tree alignment technique.

p

x b d
….

TS=T1

Initial Set S

p

b n c k g

T2

p

x b d
….

TS

Initial Set S

p

b n c k g

T2

p

b C d h k

T3

No node inserted

p

x b c….

New TS

d h k

C, h and k inserted

S=R3 and R
Contains only

T2

p

b n c…. d h kx g

Figure 18: Iterative tree alignment with two iterations

DEPTA grows a seed (tag) tree denoted by Ts to align multiple tag trees. The seed tree Ts

initially picked based on the maximum number of data fields. Figure 18 represents an

example how the seed tree Ts is build. At first, the algorithm of DEPTA finds the tree that

contains most data item. In the Figure 18, T1 is the seed tree. After that T2 and T3 are

aligned with Ts to generate the unaligned tree. Then DEPTA do the tree matching and by

37

using the matrix results it finds all the matched pairs. It is found that Ts and T2 has one

match node b where node n, c, k and g are not matched to Ts. Now DEPTA attempt to

insert them into Ts to satisfy the partial tree alignment requirement. But it is found that

none of the n, c, k and g in T2 can be inserted into Ts due to the unique location. Then T2

is inserted into R which means that these nodes need to be further process. When DEPTA

compares T3 with Ts and it finds unmatched nodes c, h and k can be inserted into Ts. For

that reason T3 doesn’t need to insert into R. After completion this step R is picked to

process again. R only contain node of T2 and it is matched with the Ts in the next step.

For complete the matching process every node of T2 are matched or inserted. At the end

DPETA follows the alignment procedure to produce the data item from each tree. Each

un-matched data will generate a single column itself, if there are any unmatched nodes

with data still available. The authors performed an experiment in which they tested their

method with 49 different web sites which consists 72 pages. These pages are collected

randomly. They compared the step-1 of DEPATA with MDR. In their previous work,

they checked the performance of the MDR compare to other existing system and proved

that MDR perform well better than those systems. In this approach, the authors proved

the performance of the DEPA is better than MDR. They obtained that the precision and

recall of DEPTA is 99.82% and 98.27% respectively for step 1 where recall and precision

of MDR is 86.64% and 97.10%. They also obtain that the precision and recall of DEPTA

is 99.68% and 98.18% respectively for step 2. The authors claim that DEPTA can

segment data records and extract data from web page very accurately. They also claim

that new version of MDR which is MDR-2 is able to handle nested date records due to

nested similarity comparison. They also claim that the partial tree alignment technique is

38

able to align data items in nested record. The authors also claim that more robust tree can

be build by using visual information. And it is possible to find more accurate data region

with the help of visual information. The shortcoming of this approach is that DEPTA did

not consider semantic label in data extraction where they only use tree regularities.

DEPTA failed to extract nested data records. Another limitation of DEPTA is that it is

only for list page that contains multiple data records. Senellart et al. (2008) mentioned

that this approach is less accurate than supervised approach.

2.1.3 Net: A system for extracting web data from flat and nested data records

Liu and Zhai (2005) addressed the problem in extracting data from web page. They

identified the problem of wrapper generation for data extraction from web. They

mentioned that wrapper generation requires a set of data extraction rule which are

generated from manually labeled page. But manually labeling is related to labor intensive

and time consuming because different page uses different template and for this reason

manual labeling has drawbacks for the large amount of pages. The authors proposed an

approach for data extraction which is based on tree edit distance and visual cues. They

design their algorithm to traverse the tree from post order (bottom-up) to extract nested

data record since nested data records are found at a lower level on repeating pattern. They

define a method called Traverse() to traverse the tree and it traverse the tree with the

depth is greater than or equal to 3 because the authors observation is that tree with depth

2 or 1 do not contain any data record. They also define a method called Match() to match

two child subtree of Node. They also define a sub-method called TreeMatch() to match

two child subtree under node and it applied on every pair on child nodes to ensure every

39

data matches are captured. The method AlignAndLink() align and links matched data

items. The method TreeMatch() finds the repeated pattern from list of data record by

using restricted tree matching algorithm called simple tree matching (STM). For

example, A = <RA, A1, A2,…, Am> and B=<RB, B1, B2,…, Bn> be two trees, with the root

RA and RB respectively. And Ai, Bj are the i
th

 and j
th

 first-level sub-trees of A and B

respectively. The algorithm identifies maximum matching between A and B is MA,B+1,

when RA and RB match . In the simple_Tree_Matching algorithm, first it compares the

roots of A and B. After that the algorithm recursively finds the maximum matching

between first-level sub-trees of A and B if the roots match and used W matrix to save it.

Based on the W matrix the algorithm finds the number of pairs in a maximum matching

between two trees A and B by using a dynamic programming scheme. The authors

applied visual based condition to make sure that A and B has no visual conflict. For

example, trees are unlikely to match based on the visual information, if the width of A is

much larger than that of B. These rules perform better in match results and also

computation is reduced significantly.

t2 t3 t4 t5 t6

t7

t8 t9

N1

N2 N3

t1 N4 N5 N6

t2 t3 t6

t7

t8 t9

N1

N2 N3

t1 N4 N6*

X
Y

Figure 19: (X) Tree matching and aligning and (Y) Aligned data nodes under in N1

40

The aligned data items are then linked directionally where an earlier data item will point

to its next matching data item. Figure 19 gives an example, a terminal (data item) node is

represented by ti, and a tag node is represented by Nj. Since the algorithm follows post-

order traversal, at the level N4-N5, t2-t4 and t3-t5 are matched and they are aligned and

linked. It is found that N4 and N5 are data records of N2 as nested and t6 is optional. The

method TreeMatch() will only match N4 subtree and N6 subtree at the level of N2- N3. It

is found that t2- t8 and t3- t9 are linked and t1 and t7 are also linked as they match (Figure.

19). Since N5 has the same structure as N4, the subtree at N5 is omitted in Figure 19(Y)

and N4 is marked with a “*”. In Figure 19, as it is turned into a prototype data record by

enPrototypes(). The node t6 is inserted into N4 as an optional node, denoted by “?”. A

standard/typical data record containing the complete structure so far is represented by

prototypes. The linked data items are inserted into the table using PutDataInTables()

(Figure 20). A table is a linked list of one dimensional array, which represents columns.

All linked data items are put in the same column. If an item is being pointed to by another

item in an earlier column then a new row is started.

t2

t3

t3

t5 t6

N4

N5

Data table

Figure 20: Data table for N4 and N5

For example, for node N2 in Figure 19, the method putDataInTables() produces the

DataTable in Figure 20. For node N1 in Figure 19, it produces the DataTable in Figure

41

21. The method produces prototypes after putting data into tables. The tree structure

followed by GenPrototypes() based on the first data record (e.g., N4 in Figure 20) and tree

paths which represents optional items not in the first data record are inserted, but in other

data records. The optional items occupy some columns that do not have data items in the

first data record and for that reason they are deleted from the table. In the example of

Figure 21, an optional item t6
?
 is added to N4 which gives * N4 (the prototype). In Figure

21, it is found that t6
?
 is attached to *N4.

t1

t7

t2

t8

t3

t6

N2

N3

Data table

T6?

Figure 21: Data table for N2 and N3

The shortcoming of this approach is that Net proposed a greedy approach based on

similarity match. It employs expensive approach due to bottom-up traversal with edit

distance comparison. It requires full scan from bottom to root. Net does the all-pair tree

comparisons within its children during each visit of a node in the traversal. Alim et al.

(2009) describes the limitation of Net is that wrappers generated by NET are not efficient

though because the programmers have to find the reference point and the absolute tag

path of the targeted data content manually. This requires one wrapper for each web site

since different sites follow different templates. The effects are increased time

consumption and effort from the programmer.

42

2.2 Separator-based approach

In this approach, a tools searches for tags, tag-sequences or trees as separators to segment

a data area into records. This approach was taken by early tools, namely BYU-Tool

(Embly et al., 1999) and Omini (Buttler et al., 2001), but much more recent by ViNTs

(Zhao et al., 2005), OWebMiner (Annoni and Ezeife, 2009) and WebOMiner (Mutsuddy

and Ezeife, 2010; Ezeife and Mutsuddy 2013)

2.2.1 BYU-Tool: Conceptual-Model-based data extraction from multiple-record

pages

Embly et al. (1999) addressed the problem of unstructured data on the web which makes

the searching difficult and database querying impossible. They identified that most of the

web data is unstructured and traditional query language can’t be used for query. The

authors proposed a new approach which is based on manually constructed domain-

specific ontology. Their proposed model also relies on structural encoding properties.

This model is considered as a fully automated and parameterized by domain specific

ontology. The ontology which is used in this model is based on concept, relationship and

specialization relations where concepts are either lexical or non-lexical, relationship

between concepts have optional participation constraints and the specialization

relationships allow to specify the concept as specialization of other concepts. In this

model, each concept is associated with a data frame to link ontology concepts with

proceed documents. A regular expression is contained by the data frame to describe all

possible encoding concept instances in lexical concept. A normalization rule is applied to

extract the instance in a normalized form. The data frame is used to describe the context

keywords in both lexical and non-lexical concepts which indicate the presence of a

43

corresponding object instance. The authors conducted two experiments. In the first

experiment, the ontology is applied to a limited corpus of test obituaries from two

different sources. They conducted the second experiment of greater quantitative and

qualitative scope in order to demonstrate the robustness of the approach and the general

applicability of this ontology. They collected a new corpus of obituaries which

exemplified wider variability in style and content for the second experiment. As a test

data they took 38 obituaries from a web page provided by the Salt Lake Tribune and 90

obituaries from a web page provided by the Arizona daily star. In the result they found

that the average recall is 90% and the average 75% precision for names and average 95%

precision elsewhere was a pleasant surprise. The authors claim that the model describe

fully automates wrapper generation for web documents that are rich in data, narrow in

ontological breadth and have multiple records in single page. They mentioned seven

items as future work include finding and classifying web pages of interest for a given

application ontology using an ontological approach, enhancing the approach for

unstructured record identification, indentifying records of interest both within a page or

on a set of related pages using the application ontology, improving the model to identify

attribute-value pairs and construct database tuples, adding richer data conversion to the

data frames, inferred data as well as extracted data can be inserted into the database by

providing a means to do inference and use more extensive quality metrics. The limitation

of this approach is that it requires human effort because ontology for different domains

must be constructed manually by an expert.

44

2.2.2 OMINI: A fully automated extraction system for the world wide web

Buttler et al. (2001) addressed the problem of information extraction from web using

wrapper. They mentioned that programmer needs to understand the specific presentation

layout or specific content web page to construct the wrapper and it is labor intensive and

error prone because web site information are changed very frequently. They also

mentioned that it is hard to maintain additional or new content into the existing

integration framework. The authors propose a new approach called OMINI which is a

fully automatic object extraction system. The OMINI uses tree structure to parse the web

pages. It performs the object extraction from web pages into two stages. In the first stage,

the location of interest object contained by the smallest subtree is searched by the subtree

extraction algorithm. In the second stage, it finds the correct object separator tags. Both

the stages perform their task automatically. OMINI uses the standard derivation (SD)

technique, repeating pattern heuristics (RP) for minimal subtree extraction and object

boundary identification which is also used by Embly et al. (1999). The system OMINI

takes a URL as input and returns extracted list of objects from the given web page as

output. The OMINI works on three phases include preparing web document for

extraction, locating objects of interest in a web page and extracting objects of interest in a

page. In the first phase, it prepares the web document for extraction by taking URL from

end user or an application and performs the tasks including fetch web site of the given

URL from the remote site. It makes the web document well formed by using the syntactic

normalization algorithm and converting the web document into tag tree representation

based on the nested structure of start and end tags. In the second phase, OMINI locates

objects of interest in a web page and does this part into two steps. In the first step, it

45

extracts the object-rich subtree which is the minimal subtree that contains all the objects.

In the second step, it extracts object separator which finds the object separator tag that

separates the objects. For example, given a web document, object discovery phase

identifies the primary content region from the document which is converted to the tag

tree. The target of the object rich subtree discovery is to locate the object of interest

contained by the minimal subtree of T. Here the objects means which need to be

extracted in the search result which is presented in the web document by the twelve tables

at the right side of the tree. Here the subtree heuristic obtain the tag node

HTML[1].body[2].form[4] which is minimal subtree that contains all the news objects of

interest. In the object separator extraction phase, OMINI uses a set of individual

algorithms include standard deviation heuristic (SD) which measures the standard

deviation in the distance between two consecutive occurrences of a candidate tag and

based on their standard deviation it ranks the list of candidate tag in ascending order, the

repeating pattern heuristic (RP) which counts the number of occurrences of all pairs of

candidate tag that have no text in between by choosing the object separator. The

identifiable path separator tag heuristic (IPS) which ranks the candidate tags of the

chosen subtree according to the list of system supplied IPS tag(most commonly used

object separator tags for different types of subtrees in web document), sibling tag

heuristic (SB) which counts the pairs of tags that are immediate sibling in a tag tree and

partial path heuristic (PP) which lists the paths from a node to all other reachable nodes

and counts the number of occurrences of each path. Each of them independently

identifies a ranked list of object separator automatically to decide how to separate data

objects from each other. After finding the object separator, OMINI extracts the object of

46

interest in a page. And it is two steps processing include candidate object construction

and object extraction refinement. The objects are extracted from the raw text data of the

web document in the process of candidate object construction. Object separator which is

extracted in phase 2 is used in this process by choosing the objects needed to be extracted

from the components of the chosen subtree. At the end, the objects that do not conform

to the set of minimum criteria are eliminated in the process of object extraction

refinement. This process is involved to remove those objects that are not are the same

structure like objects that are missing a common set of tags or objects that have too many

unique tags. Also the objects that are too big or too small are removed in this process.

The authors conducted a series of experiments over 2000 web pages from 50 popular web

sites. They first generated a random list of 100 words from the standard unix dictionary to

retrieve the pages automatically. After that they fed each word into a search from of the

50 web sites. They discarded the page with no result after retrieving the page. They used

manual approach for the static web page which do not have search interface. They

conducted the experiment with all local version of the page to ignore overload web sites

to obtain consistent result overtime. The authors obtain the result where a recall ratio in

the range of 93%-98% and precision ratio of 100% in these experiment. They also

compare their result with Embley et al. (1999) where the heuristics only achieved a

success rate of only 59% and the success rate of author’s approach is 93%. The authors

claim that their approach is fully automated to extract object from web. They mentioned

that they have interest to include the automation of evaluation process and incorporation

of evaluation feed-back refinement of object extraction in the future. Also they have a

plan to do the integration with query optimization and semantic interoperability software

47

system in future. The limitation of this approach is that the author did not address how to

precisely locate the data object instances in the separated parts and how to extract them

by their specific structure. The separator contains only one HTML tag which is

insufficient. Wang and Lochovsky (2003) described the limitation of OMINI is that this

approach only good for segmenting web pages into parts, possibly containing data object

instances. Liu et al. (2003) identified the limitation of this approach is that this model

performs poorly on some web pages, the description of one data objects may intertwine

with the descriptions of some other objects.

2.2.3 ViNTs: Fully automatic wrapper generation for search engine

Zhao et al. (2005) addressed the problem of manually generating program that extracts

record from dynamically generated search result pages due to the response of submitted

query in search engine. They state that manually approach is costly, time-consuming and

impractical. They identified that search engines require manual maintenance of the

extraction program due to frequently changing their result display format. They also state

that it is time consuming to construct a wrapper manually for each search engine if an

approach aims to connect to hundreds of thousands of search engines. The authors

propose the new approach called VINTs. The main focus of this approach is wrapper

generation. First, it identifies some candidate result record from each sample result page

by analyzing the types such as link or text and the position of all the rendering boxes.

Then it builds some initial wrapper based on these records and a hypothesis about the

general format of the SRR wrapper. After that generated wrappers are refined to indentify

the boundaries which separate different types of records. In the next step, VINTs uses

additional visual feature to select most promising wrapper for the result page from the

48

refined wrapper. In the final step, the generated wrappers are integrated to produce the

final wrapper for the search engine. The VINTs describes the block as a sequence of

content line types and indentations. The content line types contain the link which is basic

types, text, link-text, the head variants link-head, text-head, and link-text-head and the

types hr-line and blank. The distance of the starting point of the line from the left hand

side of the screen is measured by the indentations. At first, ViNTs compares two blocks

by computing the sequence of line types and the sequence of identifications. The

normalization of the both sequences is done separately. ViNTs uses the technique called

modified shape code of a block which generates from subtracting the minimum positions

in the sequence from all occurring position which is the normalized position sequence.

Three distance measures on these sequence is applied by ViNTs include type distance,

shape distance and the position distance. ViNTs arranges the blocks into candidate group

after dividing the lines of page into blocks such as the grouped blocks are similar

according to the three distance measure. ViNTs also builds individual wrapper based on a

common result template for search result.

R# Tag path

1 <HTML>C<HEAD>S<BODY>CS<CENTER>S

<HR>SS<HR>S<DL>C<DT>CC

2 <HTML>C<HEAD>S<BODY>CS<CENTER>S

<HR>SS<HR>S<DL>S<DL>C<DT>CC

3 <HTML>C<HEAD>S<BODY>CS<CENTER>S

<HR>SS<HR>S<DL>S<DL>S<DL>C<DT>C

C

4 <HTML>C<HEAD>S<BODY>CS<CENTER>S

<HR>SS<HR>S<DL>S<DL>S<DL>S

<DL>C<DT>CC

Figure 22: Tag path extracted from web document

The VINTs generates initial wrapper with the tag path of the records in each sub-groups

and the hypothesis about the format of the wrapper (prefix (X) (separator1 |

49

seperator2|…))[min, max]). There is a possibility that different initial wrapper or no

initial wrapper can be generated from the different sub group. In this step, prefix and the

separators are identified. The parameter min and max is indentified in the next step which

is refinement step. Figure 22 is used to describe this step. First it finds the maximum

common prefix PRE of all input tag paths. In the running example, PRE

=<HTML>C<HEAD>S<BODY>CS<CENTER>S<HR>SS<HR>S<DL>S.

It can be different from the needed wrapper. There is a possibility that PRE contain the

correct prefix and also additional path node at the end. By removing PRE from tag path it

is possible to indentify the addition path node at the end. For example, Let Pi = path (ri) –

PRE and then compute Diffi= pi+1-pi where pi is a suffix of pi+1. The separator can be

indentified when the differences are the same. In the running example Diff= <DL>S is

the separator. After that all the occurrences of Diff are removed from PRE. Here PRE1 is

the new PRE and E is the last node of PRE1. Now additional separator is identified by

comparing the Diff and E and it is checked that is there any Diff occurs before E. The

path node E is indentified as a new separator when both the conditions are satisfied and E

also removed from PRE1. This process continues until new separator is identified and the

remaining tag path of PRE1 is the prefix of initial wrapper. In the running example, only

one separator is identified and the final prefix is <HTML> C<HEAD>S <BODY>C

S<CENTER>S<HR>SS<HR>S. There are three cases are identified if the

Diffs are different. Case 1: There is no common suffix of the Diffs and then the process

of wrapper generation fails and process terminated. Case 2: There is a common suffix but

it doesn’t have multiple occurrences in any Diffs and then suffix is the separator which is

identical to any of the Diffs and subtract from PRE. The remaining PRE is the prefix for

50

initial wrapper. Case 3: Some Diffs contain common suffixes which have multiple

occurrences. Then each Diffs are expanded by taking the structure of the child nodes of

the nodes in the Diffs into consideration. The expanded Diffs are used in the second case

to indentify the separators. The wrapper building process fails if the separator not found.

From the above two step, for the running example the initial wrapper is

<HTML>C<HEAD> S<BODY>CS <CENTER>S<HR>SS<HR>S(X<DL>

[0,∞], where X is a wild card. The initial wrapper is used to extract all matching records

from the result page. If it can successfully extract record then the wrapper is accepted

from refinement step. If it fails to extract record then the wrapper is incorrect. Then the

node in the separator is expanded by their child node in step 2 to find a new separator. If

the new wrapper is found then the initial wrapper is revised and above process is

repeated. The wrapper building process fails if the new wrapper cannot be accepted or a

new separator not found. A tag path is matched by the template as common prefix,

leading to the data area and contains a number of separators to segment the data area into

records. ViNTs choses the final wrapper based on four criteria include the relevant data

areas is large, resides in the middle of the page, contains a large number of records and

contains records with a large number of characters. The authors used a commercial tool

ICEbrowser for result page rendering and tag tree construction. They used Pentium 4

with 1.7GH PC to generate wrapper for a search engine with 5 sample result pages and 1

no-result page. And the wrapper is build in 3 to 7 seconds. The authors tested ViNTs with

three data sets. Data set 1 has 4types of 100 search engine include education,

government, medical and general. Data set 2 has 100 search engines which are collected

from profusion.com and these are not included in data set 1. For these two data sets, there

51

are 10 queries are submitted and 10 first result pages are collected manually. They used a

non-existent term as a query for collecting no-result page for each search engine. They

used data set 3 which is obtained from Omini testbed and it is a collection of more than

2000 web pages from 50 web sites. The author obtained that ViNTs able to generate very

high quality wrappers with the precision and recall close to 100% on data set 1 and close

to 98% on data set 2. The authors identified the reason of 2% decrease performance due

to the failure of ViNts on 2 search engines in date set 2. The authors claim that their

approach is fully automated and this technique can be achieved considerably higher

extraction accuracy than that of the state of art web information extraction systems. They

also claim that their approach implicitly employs a method on search result records on

current search engines to extract these records. The authors mentioned that they have plan

to improve ViNTs by utilizing additional visual features to further reduce the reliance on

HTML tag structure. The limitation of VINTs is that it will fail to separate horizontally

arranging data records which will require vertical separator due to fact that it only

supplies horizontal separator. Other limitation is that at least four data record have to be

present in a web page for wrapper building. Zheng et al. (2007) describe about the

limitation of ViNTs is that since this approach based on visual layout information, it is

difficult to identify visual information without any assumptions about the target domain.

The visual feature used in ViNTs are only limited to the content shape-related features

and it is used to identify the regularities between search records. For this reason, ViNTs

depends on structural similarities and must generate wrapper for each search engine.

52

2.2.4 OWebMiner: Modeling web documents as objects for automatic web content

extraction

Annoni and Ezeife (2009) identified three main problems in existing data mining

approaches from web documents include existing systems failed to focus web search on

either web document presentation or content or both, there is no unique framework which

able to mine each web object based on their structure type e.g., unstructured, loosely or

strictly structured and existing approaches are domain dependent and time consuming

process. In this paper, the authors proposed a framework which presents we document as

object-oriented web data model to represent web data as web content and web

presentation objects to solve the above problems. The proposed framework is able to

mine complex and structure data as well as simple and unstructured data in a unified way.

They observed that <h1> or <a> tag in HTML is more meaningful than <pre> tag which

used for pre-formatted text. The authors defined three main zones of a web document as

instances of specialized classes include HeaderZone, BodyZone and FootZone. They

state that two types of objects are exists in these zone include web content objects and

web presentation objects. The authors classified the web content into six categories

among them four have sub-content type include text element, image element, form

element, plug-in element, separator element and structure element. The text element has

two sub content-types include raw text and list text. A raw text has three sub-content

types include title, label and paragraph. A list text has two sub-content types include

ordered list and definition list. Image element has two sub-content types like image and

map. Form element has three sub content types which are form select, form input and

form text area. The authors classified the web presentation object into six categories

53

which are banner, menu, interaction, legal information, record and bulk. In the first step,

DOM tree of a web document is generated from the HTML file using DOM parser. In the

second step, web zones are indentified on the web document from the DOM tree (Figure

24). In the third step, web content object and web presentation objects are extracted. In

this algorithm, block level tag (e.g., table, division, heading, list, form, block quotation,

paragraph and address) and non block level tag (e.g., anchor, citation, image, object,

span, script) are considered to extract object. Two search approaches are used in

OWebMiner to explore the DOM tree (Figure 24). The depth-first search is executed

through block-level tag until it finding non block level tag. The breadth-first search

executed to parse non block level tag. In the web content extraction process, the authors

define an algorithm which identified web zone from web document. It takes a web

document DOM tree (Figure 24) as input and returns an array which contains web zone

of the web document. The string comparison technique is used to parse tag sets. The

authors identify two tag series called series 1 and series 2 in the web. Series 1 is the set of

five or more <a> or <area> sibling nodes. And series 2 is the series which include the

keywords ‘copyright’, “private policy”, “about our company”. In the proposed algorithm

series 1 and series 2 are searched to identify the web zone objects. The authors also

developed sub algorithm of OWebMiner called PresWebObjectScan() and

ContWebObjectScan() to extract web presentation object and web content object

repectviely. The method PreswebObjectScan() extract object such as “Menu”,

“LegalInformation” etc. whereas ContWebObjectScan() extract object such as

“TextElement”, “Definitation List”, “pluginserver” etc. Annoni and Ezeife’s (2009) main

algorithm OWebMiner() is given in Figure 23:

54

Figure 23: OWebMiner() algorithm (Annoni and Ezeife, 2009)

The input of their proposed algorithm (Figure 23) is a set of webpages (WDHTMLFile).

The Line (1) of the algorithm will extract all the content and presentation objects for each

WDHTMLFile into two separate object arrays according to their DOM hierarchical

dependencies. The web objects are stored into database by line (2). Line (3) will mine

the extracted contents from the database. They also developed sub-algorithm (1) of their

main algorithms OWebMiner() called PresWebObjectScan() and ContWebObjectScan().

The method ContWebObjectScan() uses array data structure ContentObjectArray[] to

store content objects. The process starts with the root of DOM Tree node

“<html>”(Figure 24). When it finds the series-1, it calls the method

ProcessContentSibling() to start extraction process of content objects and continue until it

hits series 2. The method ProcessContentSibling() takes DOM Tree (Figure 24) as input,

A pointer called “TTag” which indicate current tag to process in DOM Tree. The

algorithm uses depth-first search to traverse DOM tree block-level tags until it hits non-

block level tag and reset “TTag” pointer to represent current processing tag. It processes

all it’s siblings into an array called “tagArray”, when depth-first search hits a non-block

level tag. For all non-block level tags in “tagArray”, the algorithm then associates a

Algorithm: OWebMiner()

Input: A set of HTML files (WDHTMLFile) of web documents.

Output: A set of patterns of objects.

Begin

 For each WDHTMLFile

1. Extract web presentation objects and content objects

sequentially with respect to their hierarchical dependencies.

2. Store the object hierarchies into a database table

 endFor

 3. Mine patterns lying within objects

end

55

content object to tag value. Otherwise it recursively calls itself to advance “TTag”

pointer. The ContentObjectArray[] contains all content objects from body zone of web

page. The authors stop at this point in their paper and left the remaining mining from the

content object array as future work. The authors claim that their proposed object-oriented

web data model able to distinguish content from presentation aspects of data e.g. title,

label, image etc. They also claim that their algorithm able to extract objects e.g. title,

label, image etc. from any given web document of any web application and it is domain

independent. The authors also claim that their proposed framework is based on object-

oriented approach which mines a web document as a set of object by extracting both the

content and presentation views of web documents. The limitation of their framework is

that it doesn’t evaluate all the HTML tag because their observation is that all the tag in

HTML are not meaningful. There are several limitations in this approach. This approach

doesn’t identify the data block and data region. It is important to identify data region and

data block to extract web objects. Their approach based on “vision based context

structure” and this is useful when using browser rendering engine. But for automatic

extraction process without use of web browser, co-ordinate location of any feature is not

possible. Their proposed algorithm did not address the use of separator element for

identification of data block and data region. Their approach did not define the object

classes, size of object classes, object class hierarchy, object class dependencies and

functionalities of object class. They only classify the web content elements but did not

associate object types with content, nor discuss how to control the creation of expensive

objects. They did not address the issue of preventing noisy data entry into database table.

56

Figure 24: DOM tree representation of positive page from "bestbuy.com"

Series 1

Header

zone

Series 2

Body

zone

Series 3

Footer

zone

57

2.2.5 WebOMiner: Towards Comparative Web Content Mining using Object

Oriented Model.

Mutsuddy and Ezeife (2010), Ezeife and Mutsuddy(2013) proposed a system for

extracting and mining of structured web contents based on object-oriented data model.

They developed the architecture called WebOMiner using object oriented model for

extracting and mining of web contents. They introduced an approach of generating and

using automata for mining web content objects. They define data block and data region to

ensure consistency between related data. They addressed to relate HTML tag attribute

information with related contents to ensure identification of content, to assign objects and

other information together. They also defined object class hierarchies according to the

problem domain and defined schema matching to unify similar contents from different

web sites. They identified noisy contents in data blocks and prevent from them entering

into database table. They also implemented and materialized object-oriented data model

for web content and extract heterogeneous related web content together. They defined a

mining algorithm that identify data block, generates non-deterministic finite automata

based wrapper for extraction of related contents. They classified all data blocks of a web

page according to their type and check minimum support to ensure data consistency

before entering them into database. Their proposed WebOMiner system is an automatic

object oriented web content extraction and mining system for integrating, mining

heterogeneous contents that are also derived, historical and complex for deeper

knowledge discovery. WebOMiner extracts information from a given web page includes

data records (e.g., product image, product brand, product id, short description and price

of the product), navigation information (e.g., link URL, link id or name), advertisement

58

(e.g., product advertised, image, URL links to related website). After extraction,

WebOMiner stored this information into database for comparative mining and querying.

Figure 25 is shown the main algorithm of WebOMiner.

Figure 25: Main algorithm of WebOMiner

Their proposed approach contains four modules include crawler module, cleaner module,

content extractor module and miner module. The proposed crawler module crawls the

WWW given as input to find targeted web page. This module creates a mirror of original

web document after streaming the entire web document including tags, texts and image

contents. The comments are removed from the HTML document by this module. The

cleaner module converts the downloaded HTML file well formed by inserting the missing

tag, removing inline tag (e.g.,
, <ht/>), insert missing “/” at the end of unclosed

<image> tag, clean up unnecessary decorative tags. The content extractor module

converts HTML page into DOM tree and extracts contents from the DOM tree. This

Algorithm Main

 Input: Set of HTML files (WDHTMLFile) of web documents.

 Output: Set of patterns of objects.

 Variable: ContentObjectArray[].

Begin

 For each WDHTMLFile

A. Call SiteMapGenerator() to crawl and extract webpage into local directory from

WWW.

 B. Call tagSoup.html() to clean-up HTML code.

 C. Call WebOMiner.BuildDOMTree() to create DOM tree of refined HTML file and

extract web content objects sequentially from DOM Tree. Store objects in

ContentObjectArray[].

D. Call MineContentObject.IdentifyTuple() to identify data records and classify

records according to their pattern.

E. Call CreateDBTable() to store data records into a database table

 endFor

 F. Mine for knowledge discovery within extracted contents.

End

59

module indentifies respective class object type as per pre-defined object class to the

content. Also puts objects into Array List after setting information into objects. Data

regions and data block are identified by this module and it segment the respective data of

a data block from other data block by using separator objects. This module also generates

seed NFA pattern for data blocks. It stores identical tuples after extracting objects of all

tuples by matching with the refined NFA. It stores the objects into the database after

checking the minimum support for all tuples categories. The shortcoming of this

approach is that this method uses NFA for identifying tuples of web objects. But how the

NFA is built, it is not defined by the author. And the NFA contains “ɛ” transition, but the

author didn’t mention how the “ɛ” transitions were handled. That means the author didn’t

mention how the NFA were used for identifying tuple without convert it to DFA. In this

approach, the database schema generation is manual process which is labor intensive and

time consuming. The author didn’t define about schema integration of different domain

specific website.

2.3 Grammar-based approach

RoadRunner (Crescenzi et al., 2001) and DeLa (Wang and Lochovsky 2003) describe the

common structure shared by, respectively, different pages or different subtrees within the

same page by inferring a grammar. Data fields in the grammar are used to identify the

data to be extracted.

2.3.1 RoadRunner: Towards Automatic Data Extraction From Data-Intensive Web

Site.

Crescenzi, Mecca and Merialdo (2001) begin by stating that there is no existing

architecture that generate wrapper automatic for data extraction from web. They state that

60

since the amount of information in the web growing very fast, it is not easy task to access

and manipulate these data through manually generated wrapper. The authors proposed an

approach called ROADRUNNER which infers a grammar describe the common structure

shared by, respectively, different pages or different subtrees within the same page. With

this approach, each HTML page tokenizes and summarizes each text spawn into a single

token. Initially, ROADRUNNER takes a page to generate initial wrapper and using this

wrapper it parse the other sample pages. By doing this, it assumes that static and

irrelevant data are indentified by similarities and dynamically generated and relevant data

are identified by dissimilarities. ROADRUNNER generalizes the wrapper and generates

a union free regular expression (UFRE) when each mismatch found during parsing the

sample page. The relevant data fields identified with the UFRE. The algorithm considers

two types of mismatch include text mismatch and tag mismatch. Text mismatch occurs

when two text tokens are compared and return different text. In that case,

ROADRUNNER assumes that text field contains a database field. The tag mismatch

occurs when two different type tokens are compared. In that case, ROADRUNNER

assumes that either an iterated or optional pattern causes the mismatch. ROADRUNNER

identifies iteration by assuming that repeated pattern ended by the last common tag and

that is the mismatch tag starts the pattern. ROADRUNNER searches for candidate pattern

by using this assumption and try to match two successive instances of the assumed

pattern recursively. ROADRUNNER identifies an optional pattern by assuming if any

mismatch tag appears either in the wrapper or in the sample page, it can be skipped until

a matching tag appear. ROADRUNNER generates a number of candidate patterns by

using this assumption. Data area identification and record segmentation process done in a

61

single step by the ROADRUNNER. It infers a grammar which contains the

corresponding information implicitly, instead of explicitly identifying a data area or

record delimiters and the data exists in the record is not align and labeled. When

ROADRUNNER generates candidate, that time it also identifies the starting or ending tag

of iterated patterns and searches through the wrapper and parse page for a matching

instance of the ending tag. The parse page is searched for the mismatching tag from the

wrapper to identify potential optional patterns. If any occurrence found, then the

algorithm generates a candidate pattern. In the same time, the wrapper is searched for the

mismatch tag of the sample page and generates the candidate pattern. ROADRUNNER

uses backward moving manner to match the candidate pattern for evaluating the

candidate pattern iteration. For do this, the algorithm first compares the last matching tag

with the ending tag. After that it compares the tag followed by the ending tag and the last

matching tag and so forth. The backward matching process is the recursive process.

Finally, the wrapper is generalized and the parsing process is ended. ROADRUNNER

uses AND-OR tree for efficient searching of the candidates. In this process, for parsing

the given page all the non-recursive mismatch must be resolved first and that time it

generates an AND node. And it generates an OR node at the time of tag mismatch to

choose the candidate patterns for iterative and optional pattern. The authors performed an

experiment of their proposed algorithm on real HTML sites. They developed a prototype

using java. They used JTidy to clean HTML sources, fix errors and convert the code to

XHTML, and also build the DOM tree. They used Intel Pentium III processor working at

450MHz, with 128 Mbytes of RAM, running Linux (kernel 2.2) and Sun Java Java

Development kit 1.3 to conduct their experiment. The authors provided two tables to

62

display the results. They listed the result of independent experiment with table A and

with table B, the authors compared their result with other extraction systems include

Wien and stalker. In table A they listed the result of class which is a short description of

each class, (#w) number of wrapper created by the system, (#s) number of samples

matching each wrapper, (extr) outcome of the data extraction process and schema which

include (nest) level of nesting, (pod) number of attribute, (opt) number of optional. The

element exits in table B include web sites and number of samples, target schema, (pcd)

number of attributes, (nest) level of nesting ,(opt) if the page contain option element, if

the attribute may occur different order (ord), results based on computing time of the three

system, WINE and STALKER refer to CPU time which is required for learning. The

authors claim that the proposed approach generate wrapper fully automatically. The

generated wrapper is template independent which means that it doesn’t depend on any

prior knowledge of the target pages and their content. Also it doesn’t require any user

interaction. The author also claim that their approach is not restricted to flat record and it

is able to handle nested structure. The authors also claim that ROADRUNNER can be

work without prior knowledge about structure of the page. They state that

ROADRUNNER needs lower time to learn the wrapper than WINE and STALKER and

also able to handle nested structure. There are several limitations to the ROADRUNNER

approach. This approach is based on the assumption is that the input page is generated by

the template. But this assumption is not valid for the web site that contains HTML tag

within data values. For example, if a web page contains several text paragraphs with <P>

and <i> tag inside, ROADRUNNER will either fail to discover any template, or produce

a wrong template. Arasu et al. (2003) describe the limitation of ROADRUNNER is that it

63

assumes that the “grammar” of the template used to generate the pages is union-free. This

is equivalent to the assumption that there are no disjunctions in the input schema. The

authors of ROADRUNNER themselves have pointed in (Crescenzi et al., 2001) that this

assumption does not hold for many collections of pages. Moreover, as the experimental

results in (Crescenzi et al., 2001) suggest, ROADRUNNER might fail to produce any

output if there are disjunctions in the input schema. Arasu et al.(2003) also identifies the

limitation of ROADRUNNER is that when it discovers that the current template does not

generate an input page, it performs a complicated heuristic search involving

“backtracking” for a new template. This search is exponential in the size of the schema of

the pages. It is, therefore, not clear how ROADRUNNER would scale to web page

collections with a large and complex schema.

2.3.2 DeLa: Data extraction and label assignment for Web database.

Wang and Lochovsky (2003) addressed the problem of automatic data extraction from

web and assigning data with meaningful label. The authors state that existing approaches

based on assumption either that schema information provided from web site or the

relational schema specified by the user. The authors identified the problem is that it is not

guaranteed either that schema information always provided by the web site or every user

have experience with the database to define the schema. Also current approaches require

human effort which is not efficient in manually providing the label of the extracted data.

The authors identified that wrapper generation requires the data-rich section which is

relevant data for extraction need to be identified and a pattern that represents structure the

data objects in data rich section need to be constructed. To solve the first problem the

64

authors proposed the algorithm called data-rich section extraction (DSE) which identify

the data–rich section in HTML pages. To solve the second problem, the author proposed

a new concept called C-repeated pattern which identify plain or repeated nested data

structure in HTML pages. The authors observed that web site consist similar structure to

organize their content such as the location of advertisement and navigational menus. The

authors employ DSE (data-rich Section Extraction) algorithm based on this observation.

The DSE algorithm compares two data-rich pages from same web site to identify data-

rich section. The basic idea of this algorithm is that it removes the common sections and

identifies the remaining ones as data rich section after compare two pages from the same

web site. The comparison algorithm used document object model (DOM) to represent the

layout of the HTML pages. A depth-first order is used to traverse the DOM trees and

compare them node-by-node from the root to the leaves. If two internal nodes from two

trees are similar then the algorithm goes one level down to match their children from the

leftmost to rightmost one. If the leaf nodes are similar then they removed from the trees.

The algorithm returns to their parent and compare the other children if the nodes are not

similar. The parent node will be removed if all of their children have been removed. The

Figure 26 represents an example of token sequence and its token suffix tree. Square with

a number represents the leaf that indicates the starting token position if the suffix. Circle

with a number represents each internal node with a number that the position of the token

where its children differ. Same parent nodes are sharing by the sibling node which put in

alphabetical order. The substring between two token positions of the two nodes has

shown as label of each edge between two internal nodes. The token which is internal

node of the suffix starting from the leaf node has shown as label of each edge between

65

Iteration 2: S=<P><A>text<A>texttext</P><P> <A>texttext</P>$

1

1

2

5 3

6

7

4 2

2 8 1

7

1 10 6 12

3 9 5 11

<P><A>text<text></P>
text <A>texttext</P> text</P>

</P>

text</P>

</P>

<P>
<P>

<P> <P>
$ $ $ $

$$ <P><P>

Figure 26: C-repeated pattern

one internal node and one leaf node. For example, <A>text is the edge label

between node a and b. It is the substring which starts from the first token up to, but not

including the fourth token. The string “<A>texttext</P><P>” can be build by

adding the edge label from the root to node which is the unique prefix that indicate the

fifth suffix sting “<A>texttext</P><P><A>texttext</P>. To discover C-

repeated patterns, internal node’s path label and their prefixes in the token suffix tree

works as a candidate. If any two of its occurrences are adjacent then it is a C-repeated

pattern for each candidate repeated pattern. It occurs when the distance between the two

starting positions is equal to the pattern length. The structure of the suffix tree is simple

based on the occurrence retrieval if each repeated pattern. In case of repeated pattern P, it

is possible to find the highest internal node in the tree. For Example, <A>text is a

repeated pattern in the Figure 26. Because node b is an internal node and the pattern

contained by its path label which is prefix.

66

S= A B A C C A B B A A B B A C C C

A B B A

B

C

A B* A C

C B

B A B B A

(A B* A)* C C C

(A B* A)* C*

A B* A

(A B* A)* C*

(A B* A)* C C

C

(A B* A)* C* (A B* A)* C* (A B* A)* C*

B

(A B* A)* C*

A B* A

B

P1 P2
P3

P4
P5 P6 P7

P8 P9

P10
P11

P12 P13 P14

By rule 2

By Rule 1

By Rule 1

Figure 27: An example of a pattern tree

The pattern with starting position 2, 5 and 11 exists three times in the sequence which is

indicated by its leaf node c, e and f. This is a C-repeated pattern since its occurrences are

adjacent (5-2=3). After discovering the C-repeated pattern, the proposed algorithm

discovers the nested structures from the string sequence of the HTML pages. In that case,

hierarchical pattern tree is used to handle this task. For example, after discovering the

pattern <A>text, it masks the occurrence from S2 to S4 and form a new sequence in

the Figure 27. A new suffix tree is build based on new sequence and search for new C-

repeated pattern “<P><A>text</P>”. At the end, a regular expression

“<P>(<A>text)*</P> is generated from these two iteration which represents the

structure for the two data objects. Here “*” indicate object appears zero or more time.

Pattern generated by the iterative discovery process form a hierarchical relationship.

Because some pattern’s discovery is dependent on some other pattern’s discovery. For

67

example, discovery of pattern “<P><A>text</P> depend on discovery of pattern

<A>text. It is also possible that some discovered pattern is independent of each

other. For example, in the string “texttexttexttext

text<P>text<P>”, the pattern text is not dependent on the pattern text<P> and vise

versa. Both the dependence and independence of the C-repeated pattern can be presented

by using a Pattern tree. The Above Figure 27 represents a pattern tree where token of the

HTML sequence is represented by each character. In the string

“ABACCABBAABBACCC”, token is represented by each character and two data

objects in this string is (AB*A)*C covered by the structure. The character “*” means the

substring may appear zero or more times. To reduce the complexity, the authors employ

heuristics to filter out patterns that cross pairs of HTML tags. And to prune some

branches of the pattern tree they used three rules. The advantage of this approach is that it

can automatically generates regular expression wrapper to extract data objects and able to

restore the retrieve data into a table. The proposed approach is able to assign meaningful

label to the data attributes and can extract nested data from HTML pages. The limitation

of this approach is that since DELA able to generalize optional and alternative pattern

only after extracting all candidate patterns, it might miss optional and alternative

structure which are nested inside a repetitive structure. Zhai and Liu (2005) describes

about the limitation of DELA is that it needs to use multiple pages (which are assumed to

be given) that contain similar data records from the same site to find patterns or

grammars from the pages to extract data records. Assuming the availability of multiple

pages containing similar data records is a serious limitation. Miao et al. (2009) identifies

one limitation of DELA is that it is not robust against optional data inserted into records.

68

CHAPTER 3 - Web content mining using non-deterministic finite state automata

As discussed in section 2.2.5, WebOMiner (Mutsuddy and Ezeife, 2010), Ezeife and

Mutsuddy, 2013) used non deterministic finite state automata based algorithm for

extraction and mining structured web content data. We studied the approach of

WebOMiner and found that this method uses an NFA algorithm for identifying tuples of

web objects, the mechanism for using NFA algorithm for automatic identification of

different content types is not fully integrated in the current system. Also, they generate

NFA for identifying content based on manual observation of product schema from ten

B2C web sites which is not efficient and use manually generated database schema to

store extracted contents into database. We propose an architecture that generates finite

state automata automatically for content mining and it also generates data warehouse

schema automatically. This thesis develops the architecture for web content mining. It

extends and modifies necessary algorithm from WebOMiner. This thesis addresses the

following limitations of WebOMiner.

3.1 Problem Addressed

1. WebOMiner used non deterministic finite automate (NFA) for mining different

types of web content. But the mechanism for using NFA algorithm for automatic

identification of different content types is not fully integrated in the current

system. For example, they manually discovered ten representations database

structure of product list page from different B2C web site. They built product

NFA manually based on this structure. This thesis solves the limitation of

69

WebOMiner by generating NFA from the frequent pattern extracted from DOM

tree of the web page.

2. WebOMiner used NFA for content mining without converting it to DFA. Because

in NFA, the states are not fixed and state can be visited more than one state at a

time. But in DFA, the states are fixed and state can be visited one state at a time.

So, NFA needs to be converted into DFA for better efficiency. This thesis solves

this shortcoming by converting the NFA to DFA by handling ```` transition of

NFA.

3. The process of database schema generation in WebOMiner is manual and it is not

efficient. The schema of the web can be extract from web page and it can be used

to generate database schema automatically. This thesis solves this limitation of

WebOMiner by generating the database schema using extracted pattern of

different content from DOM tree of the web page.

4. WebOMiner extended ContentWebObjectScan algorithm (Annoni and Ezeife,

2009) to extract product information (e.g. image, brand, text, product number,

price). The information is extracted based on the value of “id” attribute of the

HTML tag (Ex. div, tr etc.). For example, they assumed that price content will be

tagged with the HTML tag (Ex. div, tr etc.) and this tag will contain attribute “id”

with the value “price” (ex. id = “price”). This process is not generic and for that

reason WebOMiner failed to extract content information (e.g., price, title etc)

from every B2C web site since the value of the attribute are not same for every

B2C web site.

70

We discuss about our approach to solve the above limitations in the following sub-section

of this chapter as: in section 3.2, we have discussed about different web content objects.

In section 3.3, we have discussed about the challenges to solve the above limitations. In

section 3.4, we have discussed the thesis problem domain and approach to solution,

section 3.5, we have presented the mining technique. In section 3.6, we have presented

our proposed architecture and algorithm.

3.2 Web content objects

WebOMiner (Mutsuddy and Ezeife, 2010; Ezeife and Mutsuddy, 2013) uses four content

types to extract from web page include text content, image content, form content and

plug-in content. Each content type are described below:

3.2.1 Image content

Image contents are embedded into the web documents with the <image> or <map> tag.

It contains simple picture which refer to a physical image document of any physical

location. For example, the HTML tag “” means that the

image “car.jpg” is embedded into the HTML document and its physical location is

“photo” folder. Some web page embeds image with the <map> tag to define the mapping

of the image. For example, client side mapping uses <map> tag where server side

mapping uses <ismap> tag.

3.2.2 Text content

Text content resides in the leaf level of the DOM tree of the HTML document. There are

two types of text content include raw text and list text. The raw text exists in the web

page with or without alignment where the list text exists in order or unorder form.

71

3.2.3 Form content

Form content are used to get information from user such as user selection, user’s

feedback, orders through internet etc. Form contents are embedded into web page using

<form> tag and different input formats are used to gather the information. For example,

the tag <textarea> is used to get any command or textual information from user, the tag

<select> is used for user’s selection from a list of choice and the tag <input> is used for

one or multiple choice from user.

3.2.4 Plug-in content

The plug-in contents are generated dynamically by server side database or automated

calculation by the function or programs. Two types of program generates the plug-in in

the web page include client side program and server side program. The client side

programs are vulnerable because the controlling computer functions or programs are

embedded into the web page. Server-side program generates the dynamic contents

because it interacts with another program at server. The visual basics, PHP codes and

HTML embedded CGI are the example of plug-in contents.

3.3 Challenges to solve the problem

Web content mining from different domain (e.g., B2C, Research, library etc) is an

important problem in web data mining. A web page from specific domain contains

different types web contents like product, list, text etc. Given a web page, the problem is

to identify the different type web content and store them into the database. Since web

72

page from different domain contain different types of information based on their

attribute, so their schema should be different. So it is another problem to generate the

database schema base on the schema of web content objects. For example, web page from

“bestbuy.com” contains product information like computer, tv etc. and it contains the

product attribute object like title, image, price, model no. etc. And a page from

“CompUSA.com” contains information about a product with the attribute like title,

image, brand and price. We observe that, two different B2C web sites have two different

schemas. So, we need a general schema that can be used to store data from these web

sites. Also, “acm.com” is a web site from research domain. If we want to extract

information about a journal paper from “acm.com”, we have to handle with different

schema of web content. Because a journal paper has the schema like title, author(s) name,

year of publication, abstract, etc. The database requires different schema to save this web

content. Though both the web sites has common web contents objects like List, Text,

noise etc.

The above problem clearly identifies the need for finite state automata that identifies

different types of objects from given web page and generates database schema

automatically. We propose a framework called FA (finite automata) generator to solve

the above problem. It has five modules include pattern extractor module, RE (regular

expression) generator module, NFA generator module, DFA generator module and

Schema generator module. The proposed framework generates DFA for WebOMiner to

identify tuple and generate database schema. The architecture of our proposed framework

is shown in Figure 28.

73

Figure 28: Architecture of FA generator

3.4 Problem domain

In this thesis, we have tried to extract content from list page (discussed in section1.1.3) of

domain specific web sites. The list page from domain specific web site (e.g., B2C,

library) is considered a data rich page. Our observation about the list page is that a list

page contains brief list of all or specific types of product (e.g., tv or computer in B2C

web site, book in library web site, journal or conference in ACM/IEEE). Since different

web site contains different product schema, so our target is to generate non-determinitic

finite automata based on the different content type (e.g., list, text, product) to identify

74

different tuple from content object array that contains extracted content from a list page.

Also generate data warehouse schema based on the extracted unified pattern.

3.4.1 Extract pattern of content

In this thesis, we consider to extract web contents from list web page of different domain

(B2C, Library, Research etc.). The List web page contains list of information about

product, journal, book etc. For example, Figure 29(a) represents a list page from B2C

domain specific web site “Bestbuy.com” and Figure 29(b) represents a list page from

research domain specific website “acm.org”.

 (a) (b)

Figure 29: (a) List web page from "bestbuy.com" and (b) List web page from "acm.com"

75

We observed that, the list page of every domain specific web site is generated using their

own template. Also list page contains data objects (information about a product or a

journal, list, text etc.) that follows similar format. The structures of data objects appear

repeatedly if the list page contains data object instance that is more than one. For

example, Figure 29 illustrates two list pages from “Bestbuy.com” and “acm.org”. Both of

the pages contain multiple list objects, product objects, text objects, form objects etc.

These objects appear with their own format. For example, list object appears with their

attributes such as link, text and product object has attributes like image, title, model, text,

price etc. Repeated contents in semi structured documents are usually prominent and

easily raise a reader’s attention. Most Web data-extraction systems (Arasu et al. 2003;

Chang et al. 2001; Crescenzi et al. 2001) assume that repeated contents are important and

should be extracted. For example, in Figure 29(a), all monitors have similar formats and

most parts of their HTML codes are repeated, like those in the Figure 30.

Figure 30: Product pattern encoded by HTML tag

Our target is to extract the frequent pattern of the content that exists in the web page. For

example, the product content occurs frequently with their attributes (e.g., image, title,

model, price etc.) in the web page. To generate a data warehouse with the content, it is

required to extract different pattern of content from web page.

76

3.4.2 Regular expression (RE) generation

In this thesis, our goal is to generate non-deterministic finite automata to identify

different content types from a content list to store content into the data warehouse. Also

we need a unified data warehouse schema to store content with different structure into

data warehouse. The NFA can be generated from regular expression. In this thesis, we try

to generate regular expression from extracted frequent pattern from web pages. For

example, from the above frequent pattern of the “bestbuy.com” web page (Figure 30), the

following regular expression need to be generated (Figure 31):

(<titile><image>*<brand><text>*<num><price>)

Figure 31: RE generated from extracted pattern

Since different B2C web sites consist of different patterns for the presentation, so the

pattern does not match between them. For example, the RE generated from

“futureshop.com” is given below (Figure 32):

(<image><title>*<num><brand><text>*<price>)

Figure 32: RE generated from "futureshop.ca"

If the existing RE and the current RE differs, then it is required to merge them and

generates a unified RE. For example, a unified RE is given below (Figure 33):

((<image>|<Title>)*(<num>|<brand>)*<text>*<price>)

Figure 33: Unified RE

77

But if the current pattern is from different domain then the module only generates the RE

for that domain. For example, RE generated from “ACM” web site is given below:

(<Title><Author><published> <year><reference>)

Figure 34: RE generated from "acm.com"

3.4.3 NFA generation

In this thesis, we use the non-deterministic finite automata to identify different tuple from

tuple list. We generate NFA using the generated regular expression from frequent pattern

extracted from different web site. In this process an NFA is constructed first from a

regular expression. To construct an NFA from regular expression (RE), we use

Thompson’s construction algorithm. This method constructs a NFA from components of

regular expression and using ε-transitions. The ε transitions act as “glue or mortar” for

the subcomponent NFA’s. An ε-transition adds nothing since concatenation with the

empty string leaves a regular expression unchanged. A Nondeterministic Finite Automata

(NFA) has a transition diagram with possibly more than one edge for a symbol that has a

start state and an accepting state. The NFA has an accepting state for the symbol. For

example, Figure 35 represents the generated NFA from the unified RE

(((<image>|<Title>)*(<num>|<brand>)*<text>*<price>)).

78

q2

q1 q7

q8

q9

q10

q12 q13

q3

q5

q6q0

<image>

<title>

<title>

<image>

<num>

<brand>

<brand>

<num>

<Price>













Figure 35: Generated RE is converted to NFA

3.4.4 DFA generation

In this thesis, we also use DFA to identify tuple from tuple list. DFA works more

efficiently for tuple identification DFA is generated from NFA by removing - transition

from NFA and DFA doesn’t have any repeated labels on outgoing edges.

Q1Q1

Q1, Q2Q1, Q2

Q3,Q4Q3,Q4

Q2,Q5,Q11Q2,Q5,Q11

Q4,Q5,Q11Q4,Q5,Q11

Q6,Q7,Q10Q6,Q7,Q10

Q8,Q9,Q10Q8,Q9,Q10

Q10,Q11Q10,Q11

<image>

<title>

<title>

<image>

<num>

<brand>

brand>

<num>

<brand>

<num>

<price>

<price>

<price> <price>

 Figure 36: Generated NFA is converted to DFA

79

We need a finite state machine that is a deterministic finite automaton (DFA) so that each

state has one unique edge for an input alphabet element. So that for tuple identification

there is no ambiguity.

3.5 Proposed “WebOMiner-2” Architecture and Algorithm

In this thesis, we modified the architecture called WebOMiner proposed by Mutsuddy

and Ezeife (2010), Ezeife and Mutsuddy (2013). We named it “WebOminer-2” which is

shown in Figure 37.

Figure 37: Architecture of WebOMiner-2

We modified the miner module of WebOMiner (Figure 11, page 24). The NFA generator

(Figure 11) of miner module generates non deterministic finite automata to identify tuple

80

(product, list, text) from the tuple list. And NFA is generated based on ten representation

of product structure which were discovered manually. Also database schema of product,

list, text are created manually in WebOMiner.

Figure 38: Main algorithm of WebOMiner-2

WebOMiner-2 contains four modules include crawler module, cleaner module, content

extractor module and miner module. The crawler module crawls the URL given as input

to find targeted web page. This module creates a mirror of original web document after

streaming the entire web document including tags, texts and image contents. The

comments are removed from the HTML document by this module. The cleaner module

converts the downloaded HTML file well formed by inserting the missing tag, removing

inline tag (e.g.,
, <ht/>), insert missing “/” at the end of unclosed <image> tag,

clean up unnecessary decorative tags. The content extractor module converts HTML page

Algorithm Main

 Input: Set of HTML files (WDHTMLFile) of web documents.

 Output: Extracted content from web page is stored into database

 Variable: ContentObjectArray[].

Begin

 For each WDHTMLFile

A. Call SiteMapGenerator(url) to crawl the url and download the webpage

 into local directory from the url.

 B. Call HTMLCLEANER(downloaded HTML file) to clean-up HTML code

to make it well formed

 C. Call WebOMiner.BuildDOMTree(WDHTML file) to create DOM tree of

refined HTML file and extract web content objects sequentially from DOM

Tree. Store objects in ContentObjectArray[].

D. Call MineContentObject.IdentifyTuple() use NFA/DFA to identify data

records and classify records according to their pattern

E. Call CreateDBTable() to store data records into a database table

 endFor

 F. Mine for knowledge discovery within extracted contents. /* pending to develop

*/

End

81

into DOM tree and extracts contents from the DOM tree. This module indentifies

respective class object type as per pre-defined object class to the content. Also puts

objects into Array List after setting information into objects. Data regions and data block

are identified by this module and it segment the respective data of a data block from other

data block by using separator objects. This module also generates finite state automata

from extracted pattern exists in the DOM tree of the web page. First, the extracted pattern

is converted to regular expression using RE generator module. Then the generated RE is

converted to NFA using NFA generator module. After that the generated NFA is

converted to DFA by handling the “” (epsilon) transition. Also this module generates

data warehouse schema using generated regular expression. We actually modified the

miner module of WebOMiner which generates NFA from the frequent pattern of different

objects (product, list, text etc.) which is extracted from the DOM tree of HTML page. We

named our framework as “FA Generator”. The miner module of WebOMiner-2 calls the

“FA generator” to generate NFA and data warehouse schema.

Our proposed architecture has five modules include PatternExtractor module,

Regenerator module, NFAgenerator module, DFAgenerator module and Database

schema generator. The pattern extractor module takes a set of HTML page as input. It

iteratively processes one page at a time and finds the frequent pattern of different content

exits in each web page. It produces the frequent pattern of different content as input of

the RE generator module. The RE generator module takes the frequent pattern of

different content as input and generate the regular expression after analyzing it. The RE

generator module produces the regular expression as input for NFA generator module.

The NFA generator module converts the generated regular expression using the

82

Thomson’s construction algorithm. The generated NFA is converted to DFA by the DFA

generator module. The DFA generator module handles the “” (epsilon) transition using

subset construction algorithm. The schema generator module generates the database

schema automatically using the content attributes from the generated regular expression.

These modules are called sequentially.

Figure 39: Main algorithm of FA generator

In the following section, we will explain each module and will discuss how our algorithm

works.

3.5.1 PatternExtractor Module

The purpose of this module is to read the cleaned (well formed) HTML file (or files) of

different domain and extract pattern of different objects like (list, product, text etc.). At

first, the tags (div,table, tr, td, ul, li) are parsed from HTML file and saved into a file. We

considered these tags because these tags are used to embed the content in the web page

and these tags define a division or a section in HTML document. After that each tag

Algorithm: FA Generator

 Input: Set of cleaned HTML files of Web documents

 Output: Generate DFA to identify tuple and create database schema

Begin

1. Call PatternExtractor(cleaned HTML file) to extract frequent pattern from

webpage

2. Call REGenarator(Extracted pattern) to generate regular expression from

extracted pattern

3. Call NFAGenerator(generated RE) to generate NFA from regular

expression

5. Call DFA Generator(generated NFA) to generate DFA from NFA

6. Call SchemaGenerator(RE) to generate schema into database.

End

83

occurrence are computed to find the frequent pattern of the different contents. The idea

behind this, if any content exists more than once, then its structure is repeated. That

means the tag which creates the structure of the content will be repeated.

Figure 40: Algorithm PatternExtractor

PatternExtractor module contains two main methods called parseHTML() and

PatternExtractor(). The parseHTML() method parse all the div/table/tr/td tag from the

HTML file. For our running example HTML page, parse() method parse “div” tag and

save it to “temp.xml” file. In Line 1 of ParseHTML() algorithm creates FileReader object

“fstream” by passing cleaned HTML file as parameter. The FileWriter object “fwstream”

is created in Line 2 by passing “temp.xml” as parameter.

Figure 41: Algorithm parseHTML

Algorithm: PatternExtractor

Input: Cleaned HTML file

Output: return frequent pattern of different objects (product, list, text etc)

Begin

 1.Call parseHTML(HTML file) - Parse the HTML file to find the div/table/tr/td .

2. Call PatternExtractor(“temp.xml”, “occurrence.data”) – count every tag occurrence

from “temp.xml” and save it to “occurrence.data” file

End

Algorithm : parseHtml(Cleand HTMLfile)

Input: Cleaned HTML file

Variable: String lineread

 FileWriter fwstream

 FileReader fsstream

Output: return a XML file that contains div/td/tr/table tag with class attributes

Begin

1. Create FileReader object “fstream” by passing cleaned HTML file as parameter

2. Create FileWriter object “fwstream” by passing “temp.xml” file as parameter

3. Create BufferReader object “in” by passing FileReader object as parameter

4. Create BufferWriter object “out” by passing FileWritreObject as parameter

5 Do

6 Read line from file

7 If (Line read contains div/table/tr/td tag)

8 write this line into file “temp.xml”

9 While(end of file)

10 return “temp.xml”

End

84

Line 3 and 4 creates BufferReader and BufferWriter objects “in” and “out” respectively.

From line 5 to 9, there is a loop that reads each line from “Cleaned HTML file” and

checks that if this line contains any div/table/tr/td. If the condition satisfies, then the read

“line” is written to “temp.xml” file. Line 9 return “temp.xml” file to PatternExtractor

algorithm. For our running example HTML page, ParseHTML() reads “HTML” as a first

line of the file. This line doesn’t satisfy the conditional statement. So, the loop reads the

next line which is “body” tag. It also doesn’t match with the conditional statement.

When the loop reads the third line of the HTML file which contains “div” tag, and this

line is written to “temp.xml” because this line satisfied with the conditional statement.

Thus the loop reads every line until end of the HTML source file and create “temp.xml”

file with the tag div/table/tr/td. Figure 42 displays the snapshot of “temp.xml” file.

Figure 42: Snapshot of “temp.xml” file

After writing the div/table/tr/td tag from cleaned HTML file to “temp.xml” file, the

method tagOccurenc() of pattern extractor module find the every tag occurrence and store

<divitemscope="itemscope"itemtype="http://schema.org/SearchResultsPage"class="ABLH">

<div>

<div>

<div><!----></div>

<divclass="admon"data-arrowdirection="up"data-offsettop="35"data-offsetleft="100"><!----

></div>

<divclass="hdr-wrap">

<divclass="hdr">

<div>

<div><ahref="http://www.bestbuy.com/site/olspage.jsp?id=pcat17005&type=page&pag

eId=pcmcat193400050017&pageType=category&_DARGS=/site/en_US/global/nav/ols

minicart.jsp_A&_DAV="><spanclass="cart-icon">Cart<spanclass="cart-

items">0Items</div>

<div>

…….

<divclass="clearer"/>

<div/>

<divstyle="background:#fff;"class="b52">

<div>

<div>

85

this information into “occurenceCount.data” file. In this step, it reads each line from

“temp.xml” file and passes it to “occurenceCount()” function. OccurrenceCount() takes

each line as a parameter and return its occurrence. For example, “<div class=hrproduct”>

line read from “temp.xml” file and passes it to occurenceCount() as a parameter. The

“temp.xml” file also passes reference of “occurrence.data” to occurenceCount() method.

OccurrenceCount() method accept these parameter and scans the occurrence of “<div

class=hrproduct”> in “temp.xml” and finds its occurrences in “temp.xml” and return it.

Line 1 and 2 of this algorithm creates FileReader and FileWriter object by passing

“temp.xml” and “Occurrence.data” respectively as parameter. Line 4 and 5 creates

BufferReader and BufferWriter object respectively. The object of arraylist is created in

line 3. An integer type variable “count” is declared in line 6. There is a loop from line 7

to line 13 which read each line from “temp.xml” file and passes it to occurenceCount()

with the file “temp.xml” file to find the occurrence each tag line. When the method

occurenceCount() method return the occurrence of the line, then the occurred line and its

count saved to “occurrence.data” file.

Figure 43: Algorithm tagOccurence()

Algorithm: tagOccurence()

Input: Line read from “temp.xml” file and “temp.xml” file

Output: Return the occurrence of each line of “teml.xml” file.

Begin

1. Create FileReader object by passing “temp.xml” as parameter

2. Create FileWriter object by passing “occurrence.data” file as parameter

3. Create a ArrayList to store each line from “temp.xml”

4. Create BufferReader object “in”

5. Create BufferWriter object “out”

6. Declare a integer type variable count to store the occurrence of each line

7.Do

 8. Reach each line from “temp.xml”

9. Pass this line to occurenceCount() as parameter. OccurrenceCount() return count of

line

 10 If arraylist doesn’t contains this line

 11. add this line to arraylist

 12. write this line and its occurrence count into “occurrence.data”

 13. while(end of “temp.xml”)

End

86

For our running example, tagOccurence() method reads the “temp.xml”(Figure 42) .

When it reads the first line from “temp.xml” file which is “<divitemscope="itemscope"

itemtype= "http://schema.org/SearchResultsPage"class="ABLH">” and passes it to

occurenceCount() method. The occurrenceCount() method checks it’s occurrence in

“temp.xml” file and if it’s occurrence is not more than one, then this line is ignored to

save in “occurrence.data” file. After that it reads second line from “temp.xml” file which

is “<div>”. The occurenceCount() finds its occurrence 23 time. Since it’s occurrence is

more than one, so this line and its occurrence is saved to “occurrence.data” file. And this

way tagOccurrence() finds each line occurrence of “temp.xml” file until end of file and

save this information to “occurrence.data” file. Figure 44 displays a snapshot of

“occurrence.data” file.

Figure 44: Snapshot of “occurrence.data”

The occurenceCount (Readline,”temp.xml) method accept string type variable “readline”

which contains line from “temp.xml” file and reference of “temp.xml” as parameter. Line

<div> 23

<divclass="clearer"/> 23

<div/> 4

<divclass="hproduct"itemscope="itemscope"itemtype="http://schema.org/Product"> 15

<divclass="image-col"> 15

<divclass="compareButton"> 15

<divclass="info-side"> 15

<divitemprop="offers"itemscope="itemscope"itemtype="http://schema.org/Offer"> 14

<divclass="puck"></div> 15

<divclass="info-main"> 15

<divclass="attributes"> 15

<divclass="description"itemprop="description">BestBuyExclusive</div> 9

<divclass="rating"> 15

<divclass="availHolder"> 15

<divclass="tooltip-wrapper"data-tooltip-pos="right"data-tooltip-xpos="305"data-tooltip-ypos="-8"> 15

<divclass="tooltip-header">ShippingandAvailability</div> 15

<divclass="tooltip-contents"> 16

<divclass="clearer"></div> 15

<divclass="hr"><hr/></div> 14

<divclass="ftr-sec"> 7

87

1 creates scanner object. A arraylist object is created in Line 2. A matcher object is

created in Line 3. Line 4 creates a pattern object. Line 6 to 14 is a loop that checks each

line occurrence in “temp.xml” file. Line 15 return the count number to tagOccurence()

which is line occurrence. For our running example, while the second line “<div>” of

“temp.xml” pass to occurenceCount() with “temp.xml” file. The occurenceCount() finds

that there are 23 occurrences of “<div>” in “temp.xml”. And it returns counter 23 to the

method tagOccurence. Thus OccurenceCont() finds each line occurrence and return it.

Figure 45 : Algorithm OccurenceCount()

3.5.2 Regular Expression Generator

The next module is regular expression generator module. The input of this module is the

“occurrenceCount.data” file and the cleaned HTML file. At first, generateRE() method

converts the cleaned HTML file into a DOM tree by passing the file into parse() method

of DocumentBuilder object. It also creates “Xpath” object instance. The “Xpath” object is

used to extract the specified node from the DOM tree of source HTML file.

Algorithm: OccurenceCount()

 Input: Line read from “temp.xml” and reference of “temp.xml”

 Output: return the counter which contain each line occurrence in “temp.xml”

Begin

 1. Create an object of Scanner class

 2. Create an object of arrayList class

 3. Create an object of pattern class

 4. Create an object of Matcher class

 5. Do

 6. read the line from “temp.xml”

 7. create matcher object by passing reading line as parameter

 8. check find() method of matcher object is satisfied

 9. increment count

 10. While(end of file)

 11. return count

End

88

GenerateRE() method reads line from “occurenceCount.data” file and checks that this

line contains any div/table/td/tr/li/ul tag with class attributes. If it finds any, then this line

pass to compile() method “Xpath” object to extract all the nodes from DOM which are

matched with the class attributes. For example, First line of “occurrenceCount.data” file

is “<div> 23”, since this div tag doesn’t contain any class attribute, so it is ignored to

pass. The second line is “<div class=”clearer”> 23”. Since this line contains class

attribute, so it passes to compile method. The compile method() returns nodes which is

saved to object instance of NodeList. The length of nodelist is counted using method

length() and save to a variable called “numofNode”. The node length of next line also

counted and compare with previous node length. If both the length are matched, then first

element of current node is picked to traverse. While traversing each tag are checked to

find the object attributes like (image, model, title, price etc.). For our running example,

while the 3
rd

 line of “occurrenceCount.data” is read and passes it to compile() method.

The Comiple() method returns its nodelist which length is 15. And while the 4
th

 line is

read and its nodelist length found as 15. Then both the lengths found as matched. After

that, the first element from nodelist of current line read (4
th

 line) is traversed to find the

existing attributes. Here we consider tocompare length of nodelist between two line

which has similar occurenec count in “occurrenceCount.data” file. Because if the product

block is repeated in the HTML page, then its tags are repeated same number of times.

Line 1 of generateRE() method creates the DOM tree of HTML file. Line 2 of this

algorithm creates Xpath object instance. There is a loop between lines 3 to line 26 which

reads every line from “occurrenceCount.data” file. When loop traverses each node of

DOM tree, it also traverses the child of the nodes. For our running example, at first

89

iteration it scans first line of “occurrenceCount.data” which is “<div>23”. It means that

“<div>” tag is repeated 23 times in the HTML file. The conditional statement checks that

does this line contain any class attributes. So, the loop iterates to next line from

“occurrenceCount.data” which is “<divclass=”clearer”/>”. Since this line contains a class

attributes so this line is processed by the conditional statement block. First, it extracts the

value of class attributes and it creates a “path” string object with the value of class

(path=”//div[@class=”clearer”]). This “path” variable passes to compile method “xpath”

object “expr”. The evaluate() method of “XpathExpression” extract all the nodes from

the DOM tree which is matched with “class=clearer” embedded with “div” tag and save

this result set to NodeList object. The length of the nodelist is extracted using getLength()

and this value is saved to variable “numberofnodes”. There is a integer variable called

“previousnumberofNodes” keeps record of node last visited and compared with

“numberofnodes”. Initially the value of “previousnumberofnode” set to “0”. During first

iteration, the value of number of nodes is 23 and “previousnumberofnodes” is 0. Since

value of these two variables doesn’t match, so conditional block is not processed. The

loop iterator reads next line which is “<div/>4”. This line is ignored to process because it

doesn’t contain any “class” attributes. The loop iterator reads the fourth line of

“occurrence.data” file which is “<divclass=’hpproduct’itemoscope=’itemscope’

itemtype=’http://schema.org/offer”>15”. This time “path” variable set as “//div[@class=

hpproduct]” where “hpproduct” is the value of class attribute of the current line read from

“occurrence.data”. And this time compile() extracts all the nodes from DOM tree which

are matched with the variable “path”. The length of Nodes is computed and saved it to

“mumberofnodes”(15). The previous node length saved to “previousnumber-

90

ofnodes”(38). Since the length of current node and previous node doesn’t match,

conditional statement will not process. Then loop iterator reads next line from

“occurrenceCount.data” which is “<divclass=img-col>”. The length of this node is 15

which is matched with previous node. Now the current node is traversed in the

conditional statement block. The node is traversed through it’s child nodes. For our

running example, current node contains two child nodes including <a> and <div>. The

<a> tag has one child node including tag. And the <div> tag has three child nodes

including “<script>”, <input> and <a> tag. Successive iteration scans regular expression

of product block (image, price, title, Model, SKU). We set some criterion for support in

for identifying attributes of product which are given below:

Image: We consider that product block contains “image” attribute if there exists an

“ tag in product block. For our running example, as shown in Figure 46, the node

<div class=”image-col”> has child nodes including “<a>” and “<div>”. The first child

node “<a>” has child node called . Algorithm REGenerator() generates regular

expression as (image) or (image*) [if more than one image found in the block].

Figure 46 : “” tag in product block.

91

Title: Every product block contains header and it is embedded with a “<a>” tag. The

“<a>” tag contains some attributes and “href” is one of them. The header contains brand

name of the product. If the “<a>” tag has “href” attributes and the value of “href”

contains the brand name that exists in the header, we consider it a product title. For our

running example, as shown in Figure 47 is shown the source code of the product block.

We noticed that <div class=info-main> node has child nodes and <h3> is one of them.

The <h3> node contains child node <a> which has child as text “Insignia-32” Class-

LCD-720-60Hz-HDTV”. This text is shown as header in the product block.

Figure 47: Source code of product header

The product header contains “Insignia” as product brand. And “href” is the attribute of

<a> tag. Here the value of “href” contains “Insignia” and we consider it as “title” of the

product.

Price: We consider that the product block contains product attribute if there exists a

node which has attribute class with the value “price”. For our running example, Figure 48

is shown the source code of the product block. The node <div class=info-side> has child

nodes including <div>, <h4>, <div>, , and . The first child is <div> tag and it

has child nodes <link>, and <h4>. The last child of <div> is <h4> which has

92

class attributes and its value contains string “price”. While traversing DOM tree, if our

algorithm finds a node with attribute value is “price”, it will be consider as “price”

attribute of the product and generates RE with “price”.

Figure 48: “price” information in product block source code

Brand: We consider that product block contains “Model” attribute, if there exists a node

with attribute value “model”. For our running example, as shown in figure 49, the node

“< div class = attributes>” has child nodes <h5> . The node <h5> has child node

 which contains attribute “itemprop” with the value “brand”. While traversing

the DOM tree, REGenerator() algorithm consider it as “brand attribute of the product and

generates RE with “model”.

Figure 49: “brand” attribute in product block source code

93

ProdNumber: We consider that product block contains “prodNum” attributes If there

exists a node with attribute which has value as string “SKU”. For our running example,

as shown in figure 50, the node node “< div class = attributes>” has child nodes <h5> .

The node <h5> has child node which contains attribute “class” with the value

“SKU”. While traversing the DOM tree, REGenerator() algorithm consider it as

“ProdNum” attribute of the product and generates RE with “ProdNum”.

Figure 50: “ProdNum” attribute in Product block source code

By traversing the DOM tree, The algorithm reGenerator() generates regular expression

from different B2C web site which are given below:

B2C web site Generated RE

Bestbuy.com (title,image,prodNum,brand,price)

FutureShop.ca (title,image,prodNum,” “, price)

CompuUsa.com (title,image,brand,prodNum,price)

Walmart.ca (title,image,brand,” “,price)

Walmart.com (title,image,” “,” “, price)

Target.com (image,title,prodNum,brand,price

Sears.com (image,title,prodNum,” “,price)

Tigerdirect.com (image,title,brand,prodNum,price)

Thesource.ca (Image,title,brand,” “,price)

Ebay.com (image,title,” “,” “,price)

Table 1: Generated regular expression from different B2C Website.

94

After generating regular expression from different B2C web site, algorithm generateRE()

unifies the regular expressions to generate non-deterministic finite automata from it.

From the above regular expressions, generateRE() unified the following RE:

((img|Title)(title|image)(brand|prodNum)(prodNum|Brand)(price))

Figure 51: Algorithm generateRE()

Algorithm: generateRE()

Input: Reference of “occurence.data” file which contains tag occurrence in HTML file.

Output: Return pattern of different object (product,list,text etc.)

Begin

1 . Create DocumentBuilder Factory object instance– to convert the HTML file into DOM tree

 2. Create Xpath object instance – xpath used to find specific node from DOM tree

 3.do

4. Create NodeList object instance by setting object return from method getChildNodes() of

node object

5. Declare a variable String type “pattern”

6. Get the nodename from Node object instance

 7. If node name is “Span”

 8. Get the childnodes of Node object

 9 Get the value of first child

 10. If value match with String “model”

 11. Pattern += “model”

 12. Else if node name is “a”

 13. Create NodeList object to get all the child from instance of Node object

 14. Create String object to same node value from 1
st
 object from the list

 15. Tokenize the value string using String Tokenizer

 16. if node name is ‘href’

 17. if(node value contains the value of firsttoken)

 18. Pattern+= ‘title’

 19else if attributes of node name is “class”

 20. if(child node name is ‘img”)

 21. pattern += image

22. get the attributes of nodes and set those to NameNode Map objects instance

23. For each attributes

24. get the item from NameNodemap Object instance and save it to Node object instance

25. If node value is “price”

 Pattern += price

26 while(end of “occurrence.data”)

End

95

3.5.3 NFAGenerator Module

The input of this module is the unified regular expression which is generated by the

REGenerator module. This module generates the NFA to identify tuple from tuple list.

This method contains two method called generateNFA() and identifyTuple().

Figure 52: Algorithm NFAGnerator()

This module implemented Thompson’s construction algorithm to generate the NFA from

regular expression. Thomson’s construction builds NFA for each term of regular

expression and combines them with “”. Line 1 of this module calls method

generateNFA() which accepts regular expression as input. This method used NFA objects

to build the NFA from regular expression. The NFA object has some properties including

initial and final state, size and transition_table. It also has some behaviors including

is_legal_state(state s), add_transition(int from, int to, String input), shift_state(int shift) ,

fill_shift(NFA nfa), append_empty_state() and show_NFA(). The method

is_legal_state(state s) checks the validity of the state. The range of the state should be 0

to size-1. The method add_trans(int from, int to, String input) insert input into two

dimension array called transiotion_table. The method shit_state(int shift) creates a new

empty transition table with the new size, copy all the transition to the new table and

Algorithm: NFAGenerator

Input: Regular expression, which is generated by Regenerator module

Output: Generate NFA and identify different types of tuple from tuple list using NFA.

Begin

1. Call generateNFA(regular expression) – to generate the NFA based on regular

expression

2. Call identifyTuple(tuple pattern) - to identify tuple from the tuple list.

End

96

update the NFA properties. The method append_empty_state() append a new row and

column to the NFA. The class GeneratesNFA has some behaviors to build the NFA from

regular expression including generateBasicNFA(String input), generateAlterNFA(NFA

nfa1, NFA nfa2), generateConcatNFA(NFA nfa1, NFA nfa2) and generateStarNFA(NFA

nfa). The method generateBasicNFA(String input) generates basic NFA with single

input. The method generateAlterNFA(NFA nfa1, NFA nfa2) generates an alternation of

nfa1 and nfa2. The new generated nfa will contain all the states from nfa1 and nfa2 in

addition new initial state and final state. The initial state comes first, then comes states of

nfa1, states of nfa2`s comes after state of nfa1`s and at the end comes new final state.

This method uses the behavior of NFA including shift_state() to make room for new

initial state, fill_state() to make room in new nfa, add_transition() to set new initial state

and the transition from it, append_empty_state() to make up state for new final state,

add_trand() to set new final state.

The method generateConcatNFA(NFA nfa1, NFA nfa2) generates a concatenation of

nfa1 and nfa2. It first generates nfa1 and then nfa2. In this case, nfa2`s initial state

replaces with nfa1`s final state. This task is done by the NFA behavior shift_state(). The

method new_nfa(nfa2) of NFA generates a new nfa and initialize it with the shifted nfa2.

In this case, new nfa formed by the states of nfa1`s. The initial state of nfa2`s is

overwritten by the initial state of nfa1`s. This way nfa1 and nfa2 merge automatically

which transform nfa2`s initial state from nfa1`s final state.

For our running example, generated regular expression (shown in figure :) is the input of

algorithm GenerateNFA(). Line 1 tokenizes the “regex”(img (price|title)

(title|model|price) (model|prodnum|Proddesc) (prodNum|price)) based on empty space (“

97

“), open bracket “(“, close bracket “)” and or “|”. Line 2-6 within a loop that creates a

string “states” with the unique state from “regex” (e.g. “img, price, title, model,

prodNum, ProdDesc” is created from the above “regex”). Line 7 tokenizes the string

“states”. Line 8-10 form a loop that generates NFA for

Figure 53: Algorithm GenerateNFA()

Algorithm: GenerateNFA(regex)

Input: generated regular expression in Regenerator() module.

Output: generatedNFA

Begin

 1. Tokenize the “regex” using StringTokeinzer object

 2. Do

 3. State = extract token from string tokenizer object

 4. check for duplicate state

 5. create string “states” with unique state

 6.while(hasmore token)

 7. Tokenize “states” using stringTokenizer object

 8.do

9. generate NFA for each individual attribute (e.g. “img”, “model”,

“title”,) exists int the regex.

10.whille(hasmoretoken)

11. Tokenize the “regex” using string Tokenize object

12. do

13 generate NFA for each alternation

14. increment counter;

15.while(has more token)

16.Tokenize “regex” using StringTokenizer object

17.do

18 generate final NFA by doing concatenation between each state.

19 increment value of I;

20. while (i<counter)

End

98

each state exists in the string “states”. Line 9 is doing this using “generateBasicNFA()”.

In this step, individual NFA are created for img , model, title, prodnum, prodDesc, price.

Each NFA has it’s own initial state and final state. This task is done by method called

“generateBasicNFA()”. Line 11 tokenizes string “regex” using string tokenizer object

based on “(“ and “)”. Line 12-15 form a loop to generate NFA for each alternation. For

our running example, after tokenize

Figure 54:Snapshot of generated NFA of each attribute

“regex” there are four alternations exists in string tokenize object including “price|title”,

“title|model|price” , “model|prodnum|ProdDesc” and “prodNum|price”. Line 11-15

generates the four alternation NFA. For example, the algorithm first generates the NFA

for “price|title”. It first tokenize the string based on “|” character and extract two

attributes which are “price” and“title”.

After that it merge “price” NFA and “title” NFA and generate NFA that is called

alternation NFA of “price|title”. It this case, NFA is build with two individual NFA

“price” and “title” and additional initial state and final state. The initial and final states

connect with “price” NFA and “title” NFA with “” transition. Figure 59 is shown the

structural view of alternation NFA generation. Line 12-15 also generates three other

img

model title ProdNum

m

ProdDes

c

Price

99

alternation NFA including “title|model|price”, “model|prodnum|ProdDesc” and

“prodNum|price”. This task is done by the method called “generateAlterNFA()”.

Figure 55: Structural view of alternation NFA of “(title|image)”

Line 17-20 do the concatenation between individual NFA and alternation NFA and

generate unified NFA. In this case, initial state of nfa2 and final state of nfa1 is

overlapped. This task is done by the method called generateConcatNFA().

q2

q1 q7

q8

q9

q10

q12 q13

q3

q5

q6q0

<image>

<title>

<title>

<image>

<num>

<brand>

<brand>

<num>

<Price>













Figure 56 : Generated NFA

3.5.4 DFA generator

In this module, we implement “subset construction” algorithm to convert NFA to DFA to

handle “” transition. The idea of Subset Construction is to build a DFA that keeps track





title

image





100

where the NFA can be. Each state in this DFA stands for a set of states the NFA can be in

after some transition.

Figure 57: Algorithm Subset construction

The algorithm starts by generating the initial state for the DFA. An initial state of DFA is

really the NFA's initial state plus all the states reachable by eps() transitions from it, the

DFA initial state is the eps-closure of the NFA's initial state. A state is "marked" when

all the transitions from it were visited. A state is added to the final states of the DFA if

the set it represents contains the NFA's final state. The rest of the algorithm is a simple

iterative graph search. Transitions are added to the DFA transition table for each symbol

in the alphabet of the regex. So the DFA transition actually represents a transition to

the eps-closure in each case. A DFA state represents a set of states the NFA can be in

after a transition. For our running example, The algorithm “subset construction” takes

Algorithm: subset-construction

inputs: N - NFA

output: D - DFA

Begin

 1. add eps-closure(N.start) to dfa_states, unmarked

 2.D.start = eps-closure(N.start)

 3. while there is an unmarked state T in dfa_states do

 4. mark(T)

 5. if T contains a final state of N

 6. add T to D.final

 7. foreach input symbol i in N.inputs

 8. U = eps-closure(N.move(T, i))

 9. if U is not in dfa_states

 10. add U to dfa_states, unmarked

 11. D.trans_table(T, i) = U

 end

101

generated NFA(shown in fig 56) as input. The function “eps-closure” returns the states

of N which are reachable from T (state set) by “” transition. First state T are added to the

output. Then each states are checked for “” transition and the state with this transition

are added to the output. The process proceeds iteratively until no more states can be

reachable with “” only. For example, When “eps-closure” visit state q2 , it return state {

q2 , q5, q11 }. Because the state “q2” have transition into these states with “” transition.

And the function move(T,A) return information about which states in NFA are reachable

from T with input set “A”. This function traverse the state set T and looks for transition

on the given input and returning the state that can be reached. It doesn’t consider “”

transition as input. The algorithm “subset construction” maintains a transition table to

generate the DFA.

State/input (img) * (title) * (Prodnum) * (brand) * (price)*

Q0 Q1,

Q2

Q3,

Q4
  

Q1, Q2  Q2,

Q5,

Q11,

  

Q3, Q4 Q4,

Q5,

Q11

   

Q2,Q5,

Q11
  Q6,Q7,

Q10

Q6,Q7,

Q10


Q4,Q5,

Q11
  Q6,Q7,

Q10

Q8,Q9,

Q10


Q6,Q7,

Q10
   Q6,Q7,

Q10


Q8,Q9,

Q10
  Q8,Q9,

Q10
 Q11, Q10

Q11,

Q10
    Q11, Q10

Table 2:Transition table of DFA

The main idea of “subset construction” algorithm is that it removes the “” transition

from NFA. And eliminate the state that has two outcomes to go to other state. It reform

102

the NFA by converting it to finite state automata which has set of state with one possible

outcome. The generated DFA is shown in figure 60.

Q1Q1

Q1, Q2Q1, Q2

Q3,Q4Q3,Q4

Q2,Q5,Q11Q2,Q5,Q11

Q4,Q5,Q11Q4,Q5,Q11

Q6,Q7,Q10Q6,Q7,Q10

Q8,Q9,Q10Q8,Q9,Q10

Q10,Q11Q10,Q11

<image>

<title>

<title>

<image>

<num>

<brand>

brand>

<num>

<brand>

<num>

<price>

<price>

<price> <price>

Figure 58: Generated DFA

The DFA generator module has function called “DFA simulation” that accepts or rejects

the input string. This function is used by the “tuple classifer” module of “WebOMiner-2”.

The tuple classifier module extracts the web content pattern from “contentObjectArray”

and call function “DFA simulation” to verify the pattern with the generated DFA. If the

pattern match with the DFA , the function return “accept”. Otherwise return “reject”. The

“DFA simulation” algorithm is shown in Figure 59.

103

Figure 59: Algorithm DFA simulation

3.5.5 DatabaseSchema generator

This module generates the database schema automatically using the unified RE that is

generated by Regenerator module. This module takes unified RE string as input. First it

call the connect() method to connect to the database. Then it calls the generateSchema()

method to generate the schema based on the unified RE string which is passed into as a

parameter.

Figure 60 : Algorithm SchemaGenerator()

Algorithm dfa-simulate

inputs: D - DFA, I – Input string as content type

output: identified or not identified

Begin

1. x = start state of D

2. y = get next input character from I

3. while not end of I do

 4. x = state reached with input i from state s

 5. y= get next input character from I

 6. end

 7. if x is a final state

 8. return (identified)

 9. else

 10 return (not identified)

Algorithm: DatabaseSchema generator

 Input: Object “Pattern” extracted in pattern extracted module

 Output: Create database Schema

Begin

 1. Call connect() – to create the connection with the databse

 2. Call generateSchema(unified RE)- to create the database schema into the database.

End

104

The “generateSchema()” method accepts the unified RE String

<Image,image,title,model,ProdNumeber,price,price> as a parameter. Then it uses

StringTokenizer object to tokenize the string. Then it creates the prepare statement object

to create the database schema. It sets the column type based on the token. For example,

when it scans the token “image” it set the column type as “bolb”, for the other token it

sets data type as “Char” or “varchar”. With the above pattern, it generates the prepared

statement which is given below:

String Schema= “Create table Product (id number, company_name, image1 bolb, image2

bolb, title char(50), Prod_Number char(15), Price1 char(5), Price2 Char(2));

After creating the “schema” string, it passes to the preparedStatement() method of

Connection object. Then executedUpdate() method of connection is called to create the

schema into the database. The generateSchema() method first checks the existing schema

in the data warehouse. For this, it first fetches the existing schema of a specific object

(e.g. product) from the database. Then it compares the schema with the pattern. If it finds

any additional attribute then it update the database schema by adding the additional

attribute as a column to the existing schema.

105

CHAPTER- 4 Evaluation of WebOMiner-2 System

The implementation phase of our algorithm has been completed and need some

modification to make our system more scalable and robust. Since pattern recognition and

generation of regular expression using finite automata is a new approach to data mining,

a valid comparison in performances with other techniques do not exists.

Further improvement is needed to generate finite state automata from other domain

contexts. The Crawler module of WebOMiner-2 needs further improvements to identify

positive list pages (e.g. Figure 02) automatically. The miner module also needs

improvements to extract information from detail pages that contain more information

about the product (e.g. product specification).

4.1 Strength of WebOMiner-2

In this thesis, we developed a system called WebOMiner-2 which is a novel approach for

web content mining using the object-oriented model. We developed an unsupervised

system for web content mining using non-deterministic finite state automata. Existing

web content extracting systems use the unsupervised, the supervised, and the semi-

supervised approaches. The supervised and manual approaches use wrapper which is a

set of web pages, labeled with examples of the data to be extracted. Wrapper generation

requires a set of data extraction rules which are generated manually from labeled pages.

Manual labeling of pages is labor intensive and time consuming because different

templates exist in different sources. The semi-supervised approach accepts a rough

training example from user and generates extraction rules. The unsupervised or the

automatic approach generates wrappers without much user interaction. Since

106

WebOMiner-2 system is an automatic web content data extraction system, we compare

our system with other unsupervised or automatic systems. The comparative analysis is

given below:

Existing unsupervised approaches are able to extract only textual contents from the web.

Most of them consider extracting product information from list pages and some of them

extract information from the search engine results. These systems do not consider

extracting heterogeneous web content like image or any other multimedia contents from

the web page. Our WebOMiner-2 system able to extract heterogeneous data because the

tag attributes are analyzed during the DOM tree traversal. Therefore images are identified

effectively from the data block.

The unsupervised system MDR (Liu et al., 2003) is developed based on two

observations. The first observation is that a group of data records form a contiguous

region of a page. The second observation is that the data records have similar tag tree

structure within the data region and the data records of a data region have the same parent

node. The MDR is designed to handle web pages which generated by <table> tags. It

failed to extract the data from the web pages which contain records that have complex

and nested structures. The MDR works each time in a single page, so it does not compare

the page trees. Although it achieving good results, the algorithm only works with multi-

record pages and therefore cannot be applied to on-line news pages, that are almost

exclusively single-record pages. In our WebOMiner-2 system we used the observations

for data record identification. Our observation is that all objects of a data record are

adjacent in a DOM sub-tree and each data record is separated from the others. Therefore,

the DOM tree contains a single parent node which represents the sub-tree of an entire

107

data record. This parent node is identified by our system for each data record. Our

system is unsupervised and is automatic because it does not depend on the browser

rendering engine.

The DEPTA (Zhai and Liu, 2005) did not consider semantic label in data extraction

where they only use tree structure. The DEPTA failed to extract nested data records. Our

system able to extract nested data records because it traverses each node of the DOM tree

and extract each record from the data block. The DEPTA use excel table to store

extracted web content data. Excel table cannot be considered as a functional database

because it is a data grid. The DEPTA stores similar tag encoded contents into same excel

columns. Our system is able to generate a database schema automatically to store the

extracted web content from each web page. Because it is able to identify the content type

during the traverse of the DOM tree and extracts the pattern of the content to generate the

database schema to hold the content information into the database.

The NET (Liu and Zhai, 2005) proposed a greedy approach based on similarity match. It

employs an expensive approach due to a bottom-up traversal with edit distance

comparison. It requires a full scan from bottom to root. The NET does the all-pair tree

comparisons within its children during each visit of a node in the traversal. The Wrapper

generated by NET is not efficient though because the programmers have to find the

reference point and the absolute tag path of the targeted data content manually. This

requires one wrapper for each web site since different sites follow different templates and

it is labor intensive and time consuming. Our system does not depend on any templates

and it does not employ an expensive approach because it is top to bottom traversal

approach.

108

The limitation of OMINI (Buttler et al., 2001) is that it doesn’t address how to precisely

locate the data object instances in the separated parts and how to extract them by their

specific structures. The separator contains only one HTML tag which is insufficient. The

OMINI is good for segmenting web pages into parts, possibly containing data object

instances. OMINI performs poorly on some web pages, the description of one data

objects may intertwine with the descriptions of some other objects. On the other hand,

WEBOMINER-2 is able to extract data from all regions from body zone include list,

product, text, advertisement etc. Our system generates a NFA from regular expression of

different objects existing in the web page. This NFA is used to identify different object

from object list.

The VINTs(Zhao et al., 2005) fails to separate horizontally arranging data records which

will require vertical separators due to fact that VINTs only supplies horizontal separator.

The VINTs needs at least four data record exist in a web page for wrapper building. Since

VINTs is based on visual layout information, it is difficult to identify visual information

without any assumptions about the target domain. The visual feature used in VINTs are

only limited to the content shape-related features and it is used to identify the regularities

between search records. For this reason, VINTs depends on structural similarities and

must generate a wrapper for each search engine. Our system is able to extract the web

content from both horizontally and vertically arranging data records because it doesn’t

depend on horizontal or vertical separator. It traverses the DOM tree and extracts each

data record from the each node. Since our system doesn’t generate any wrapper, our

system doesn’t require any training web page. Our system able to extract web contents

from web page by identifying the data type while extracting.

109

4.2 Empirical evaluation:

This thesis developed an architecture which is a combination of 5 modules and generates

finite automata by processing the web content and generates data warehouse schema. The

empirical evaluation of our system is done by the experiment with 5 website including

“bestbuy.com”, “bestbuy.ca”, “futureshop.ca”,”compUSA.com” and “walmart.com”. We

run our system on a 64 bit operating system at Interl® core™ i3-2350 CPU @2.30 GHz

4GB RAM Toshiba machine for each these web sites for empirical evaluation of our

system. We use the standard precision and recall measures to evaluate the results of our

system. Precision is measured as average in percentage for the number of correct data

retrieved, divided by the total number of data retrieved by the system. Recall is measured

as average in percentage for the total number of correct data retrieved divided by the total

number of existing data in the web document. The results of the retrieval by our

WebOMiner-2 system is tabulated in Table 3 below:

Website

Data records Data record

extraction

WebOMiner

Data record Extraction

WebOMiner-2

P
ro

d
u

ct

L
ist

N
o

ise

T
ex

t

T
o

ta
l

C
o

rr
ec

t

W
ro

n
g

M
issin

g

F
a

iled

C
o

rr
ec

t

W
ro

n
g

M
issin

g

F
a

iled

Homedepot.com 12 11 5 0 28 16 0 0 12 28 0 0 0

Shopxscargo.com 16 15 4 2 37 21 0 0 16 37 0 0 0

Target.com 9 10 3 1 23 14 0 0 9 23 0 0 0

Sears.com 13 8 2 0 23 21 0 2 0 21 0 2 0

Factorydirect.com 15 12 4 0 31 30 0 1 0 30 0 1 0

Bestbuy.com 12 10 3 1 26 14 0 0 12 26 0 0 0

Recall 69.1% 98.3%

Precision 100% 100%

Table 3: Experimental results is showing extraction of record from web pages.

110

4.3 Experimental Results

The purpose of our experiment is to measure the performance of WebOMiner-2 for data

record extraction. The Table 3 shows small scale experiment results as performance

measure for our WebOMiner-2 system. We compare our system with WebOMiner. We

have taken one page per web site for experiments. These are the six different B2C web

site which didn’t choose to generate the NFA for WebOMiner (The WebOMiner system

generates NFA based on manual observation of ten different B2C web sites). The

number of “Data record” column shows different type of data records (product, list, text,

noise) exist in those page. The Total column shown total number of data records for each

pages. The column “correct” means that the system able to identify the contents correctly.

For example, WebOMiner extracts 16 contents correctly from 28 contents from

“HomeDepot.com”. The column “failed” means that the system is failed to identify

contents. For example, WebOMiner failed to identify 12 product contents. The column

“wrong” means that the system wrongly identified the contents. The column “missing”

means that the contents are missing due to different structure. For those pages

WebOMiner-2 system is able to identify data records correctly. But the WebOMiner

failed to extract product data information from four web site (homedepot.com,

shopxscargo.com, target.com and bestbuy.com). Because NFA generated by WebOMiner failed

to identify the product tuple from these web page. There are no wrong data records are

extracted because our system is not based on the prediction. It missed 3 data records out

of total 168 data records in all six web pages from different websites. From the above

table we found that WebOMiner-2 performs better than WebOMiner in data record

extraction.

111

 We observed the reason for missing attributes. All of those missing are in List type data

records and because of mixing object type in data tuple. The WebOMiner defines a List

data tuple as a set of (<link> <text>) pair and there should be at least 3-pairs in the tuple

to be qualified as List tuple. But those missing tuples are pair of <image> and <text> and

therefore did not satisfy the criteria.

CHAPTER 5 - Conclusion and Future Work

This thesis extends work of Mutsuddy and Ezeife (2010), Ezeife and Mutsuddy(2013) to

generate finite automata to mine related content from specific domain context. We

modified the NFA generator module of WebOMiner to generate finite automata from

regular expression which generated from repeated pattern of web content. Our algorithm

able to generate database schema automatically using automata pattern. We named our

architecture as WebOMiner-2. Our architecture has 5-modules includes pattern extractor,

regular expression generator, NFA generator, DFA generator and schema generator. We

developed algorithms to extract pattern of different objects (product, list, text, etc.) from

HTML page. The pattern extractor module extracts repeated pattern from web page. The

regular expression generator module generates regular expression using pattern extracted

in pattern extractor module. The NFA generator module implements thompson’s

construction algorithm to built NFA from regular expression. We implemented subset

construction algorithm to convert NFA into DFA. We modified the WebOMiner

architecture to mine different contents from web page using finite automata. We also

developed “Schema generator” module that generates database schema into the database

based on pattern extracted from web page.

112

5.1 Future Work

The generation of regular expression from repeated pattern of web content and Pattern

recognition using finite state automata is a new approach in data mining. So, this

approach has many scopes for improvement. Our proposed approach able to generate

finite automata of related contents from specific domain context. Further improvement is

needed to generate finite automata from other domain context. The Crawler module of

WebOMiner-2 needs further improvement to identify positive list page (e.g., Figure 02)

automatically. The miner module also needs improvement to extract information from

detail page that contains more information about the product (e.g. product specification).

113

REFERENCES

1. Alim, S., Abdul-Rahman, R., Neagu, D., Ridley, M. 2009. Data retrieval from

online social network profiles for social engineering applications. Internet

Technology and Secured Transactions, 2009. ICITST 2009. International

Conference for , Vol., No., pp.1-5, 9-12 Nov. 2009.

2. Arasu, A. and Garcia-Molina, H. 2003. Extracting structured data from web

pages. In proceedings of the ACM SIGMOD International Conference on

Management of Data. 337-348.

3. Annoni, E. and Ezeife, C.I. 2009. Modeling web documents as objects for

automatic web content extraction. In proceedings of the ACM/LNCS sponsored

11
th

 International Conference on Enterprise Information Systems (ICEIS 09), pp.

91- 100, May 6-10, Milan, Italy.

4. Arocena, G.O. and Mendelzon, A.O. 1998. WebOQL: Restructuring documents,

databases, and webs. Proceedings of the 14th IEEE International Conference on

Data Engineering (ICDE), pp. 24-33, Orlando, Florida

5. Appelt, D.E. and Israel, D. J. 1999. Introduction to information extraction

technology. A Tutorial Prepared for IJCAI-99.

6. Algur S.P. and Hiremath, P. S.2006. Extraction of flat and nested data records

from web pages. In AusDM ’06: Proceedings of the fifth Australasian conference

on Data mining and analystics. Australian Computer Society, Inc., pp. 163–168.

Darlinghurst, Australia

7. Adelberg, B. 1998. NoDoSE: A tool for semi automatically extracting structured

and semi-structured data from text documents. SIGMOD Record, Vol. 27, No. 2,

pp. 283-294,

8. Buttler, D., Liu, L., and Pu, C. 2001. A fully automated extraction system for the

World Wide Web. Distributed Computing Systems, 2001. 21st International

Conference on. , Vol., No., pp.361-370, Apr 2001.

9. Botzer, D.; Etzion, O. 1996. Optimization of materialization strategies for derived

data elements. Knowledge and Data Engineering, IEEE Transactions on , Vol.8,

No.2, pp.260-272, Apr 1996.

10. Breuel, T.M. 2003. Information extraction from HTML documents by structural

matching. Proceedings of the 2nd International Workshop on Web Document

Analysis (WDA2003) PARC, Inc.,Palo Alto, CA, USA.

http://cs.uwindsor.ca/~cezeife/iceis09.pdf
http://cs.uwindsor.ca/~cezeife/iceis09.pdf

114

11. Chang, C., Kayed, M., Girgis M.R. and Shaalan, K.F. 2006. A Survey of Web

Information Extraction Systems. IEEE TKDE, Vol 18, No. 10, pp.1411-1428,
 Oct. 2006.

12. Chang, C.H., and Lui, S.C. 2001. IEPAD: Information Extraction Based on

Pattern Discovery. Proceedings of the 10th Int’l Conf. World Wide Web

(WWW), pp. 223-231, 2001.

13. Chang, S.C., Hsu, C.N., and Lui, S.C. 2003. Automatic Information Extraction

from Semi-structured Web Pages by Pattern Discovery. Decision Support

Systems J., Vol. 35, No. 1, pp. 129-147, 2003.

14. Chang, C.H. and Kuo, S.C. 2004. OLERA: A semi-supervised approach for web

data extraction with visual support. IEEE Intelligent Systems, 19(6):56-64, 2004.

15. Califf, M. and Mooney, R. 1999. Relational learning of pattern-match rules for

information extraction. In Proceedings of the sixteenth national conference on

Artificial intelligence and the eleventh Innovative applications of artificial

intelligence conference innovative applications of artificial intelligence (AAAI

'99/IAAI '99). American Association for Artificial Intelligence, pp328-334. Menlo

Park, CA, USA.

16. Crescenzi, V. and Mecca, G. 1998. Grammars have exceptions. Information

Systems, 23(8): 539-565, 1998.

17. Crescenzi, V. and Mecca, G. 2004. Automatic Information Extraction from Large

Websites. Journal of the ACM 51, 5, 731-779.

18. Liu, L., Pu, C., and Han, W. 2000. XWRAP: An XML-Enabled Wrapper

Construction System for Web Information Sources. Proceedings of the 16th

IEEE International Conference on Data Engineering (ICDE), San Diego,

California, pp. 611-621, 2000.

19. Crescenzi, V., Mecca, G., and Merialdo, P. 2001. ROADRUNNER: Towards

automatic data extraction from large web sites. In Proceedings of the 2001

International Conference on Very Large Data Bases, pp. 109–118.

20. Embley, D., Campbell, D., Jiang, Y., Liddle, S., Lonsdale, D., Ng, Y.-K., and

Smith, R.1999. Conceptual-model-based data extraction from multiple-record

web pages. Journal on Data & Knowledge Engineering 31, 3, pp. 227-251.

21. Ezeife, C.I. and Mutsuddy, T. 2013. Towards Comparative Mining of Web

Document Objects with NFA: WebOMiner System, to appear in the International

Journal of Data Warehousing and Mining (IJDWM), a 2013 volume.

115

22. Hammer, J., McHugh, J. and Garcia-Molina, H. 1997. Semi structured data: the

TSIMMIS experience. In Proceedings of the 1st East-European Symposium on

Advances in Databases and Information Systems (ADBIS), pp. 1-8, 1997, St.

Petersburg, Russia.

23. Hogue, A. and Karger, D., 2005. Thresher: automating the unwrapping of

semantic content from the world wide web. Proceedings of the 14th International

Conference on World Wide Web (WWW), pp. 86-95, 2005,Japan.

24. Hsu,C.N. and Dung,M.T. 1998. Generating finite-state transducers for semi-

structured data extraction from the Web. Information Systems, Volume 23, Issue

8, Pages 521-538, December 1998.

25. Hong, J. L., Siew, E.-G., and Egerton, S. 2010. Information extraction for search

engines using fast heuristics. Data and Knowledge Engineering 69, 169-196.

26. Kayed, M. and Chang, C.H. 2010. FiVaTech: Page-Level Web Data Extraction

from Template Pages. IEEE Transactions on Knowledge and Data Engineering

22, 2, pp.249-263.

27. Kushmerick, N., Weld, D., and Doorenbos, R. 1997. Wrapper induction for

information extraction. Proceedings of the Fifteenth International Conference on

Artificial Intelligence (IJCAI), pp. 729-735, 1997.

28. Lerman, K., Getoor, L., Minton, S., and Knoblock, C. 2004. Using the structure

of Web sites for automatic segmentation of tables. In Proceedings of the 2004

ACM SIGMOD international conference on Management of data (SIGMOD '04).

ACM, pp.119-130. 2004, New York, NY, USA.

29. Liu, B., Grossman, R., and Zhai, Y. 2003. Mining data Records in web pages. In

Proceeding of the 9
th

 ACM SIGKDD conference on Knowledge Discovery and

Data Mining. 601-605.

30. Liu, B. and Zhai, Y. 2005. NET: A system for extracting web data from flat and

nested data records. In Proceeding of the 6
th

 conference on Web Information

Systems Engineering, pp. 487-495.

31. Liu, W., Meng, X., and Meng, W. 2010. ViDE: A vision-based approach for deep

web data Extraction. IEEE Transactions on Knowledge and Data Engineering 22,

3, 447-459.

32. Liu, L., Pu, C., and Han, W. 2000. XWRAP: an XML-enabled wrapper

construction system for web information sources. Data Engineering, 2000.

Proceedings 16th international conference on , Vol., No., pp.611-621, 2000.

116

33. Lo, L., Ng, V. T.Y., Ng, P., and Chan, S. C. 2006. Automatic Template Detection

for Structured Web Pages. In Proceedings 10
th

 international conference on

Computer Supported Cooperative Work in Design. vol., no., pp.1-6, 3-5 May

2006.

34. Muslea, I., Minton, S., and Knoblock, C. 1999. A hierarchical approach to

wrapper induction. Proceedings of the Third International Conference on

Autonomous Agents (AA-99), pp. 190-197,Seattle,Washington,USA, 1999.

35. Marini, J. 2002. The Document Object Model, Processing Structured Documents,

McGraw-Hill.

36. Mize, J. and Habermann, R.T. 2010. Automating metadata for dynamic

datasets. OCEANS 2010, pp.1-6, 20-23 Sept. 2010.

37. Miao, G., Tatemura, J., Hsiung, W., Sawires, A., and Moser, L.E. 2009.

Extracting data records from the web using tag path clustering. In Proceedings of

the 18th international conference on world wide web (WWW '09). ACM, pp. 981-

990, New York, NY, USA.

38. Mutsuddy T., and Ezeife C., I. 2010. Towards comparative web content mining

using object oriented model. Unpublished M.Sc., University of Windsor, ON,

Canada

39. Peshkin, L., and Pfeffer, A. 2003. Bayesian information extraction network. In

IJCAI’ 03: Proceedings of the 18th international joint conference on Artificial

intelligence, pages 421–426,Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 2003.

40. Reis, D.C., Golgher, P.B., Silva, A.S., and Laender. A.S. 2004. Automatic web

news extraction using tree edit distance. In Proceedings of the 13th international

conference on World Wide Web (WWW '04). ACM, 502-511. New York, NY,

USA.

41. Singhal, A., Seborg, D.E. 2001. Matching patterns from historical data using

PCA and distance similarity factors. American Control Conference, 2001.

Proceedings of the 2001 , Vol.2, No., pp.1759-1764 vol.2, 2001.

42. Saiiuguet, A. and Azavant, F. 2001. Building intelligent Web applications using

lightweight wrappers. Data and Knowledge Engineering 36(3), pp. 283-316,

2001.

43. Simon, K. and Lausen, G. 2005. ViPER: Augmenting Automatic Information

Extraction with visual Perceptions. In Proceedings 14th ACM Conference on

Information and Knowledge Management, pp. 381-388.

117

44. Senellart, P., Mittal, A., Muschick, D., Gilleron, R., and Tommasi, M. 2008.

Automatic wrapper induction from hidden-web sources with domain knowledge.

In Proceedings of the 10th ACM workshop on Web information and data

management (WIDM '08). ACM, pages 9-16, New York, NY, USA.

45. Soderland, S.1999. Learning information extraction rules for semi-structured and

free text. Journal of Machine Learning, 34(1-3): pages. 233-272, 1999.

46. Su, W.,Wang, J., and Lochovsky, F. H. 2009. ODE: Ontology-Assisted Data

Extraction. ACM Transactions on Database Systems Vol.34,No. 2, pp. 12:1-

12:35, July,2009.

47. Wang, J., and Lochovsky, F.H., 2002. Data-rich section extraction from HTML

pages. In Proceedings of the 3
rd

 Conference on Web Information Systems

Engineering. Pages 313-322.

48. Wang, J., and Lochovsky, F.H. 2002. Wrapper Induction Based on Nested

Pattern Discovery. Technical Report HKUST-CS-27-02, Dept. of Computer

Science, Hong Kong, Univ. of Science & Technology, 2002.

49. Wang, J. and Lochovsky, F. H. 2003. Data extraction and label assignment for

Web databases, Proceedings of the Twelfth International Conference on World

Wide Web (WWW), pp. 187-196, 2003. Budapest, Hungary.

50. Wu, B., Cheng, X., Wang, Y., Guo, Y., and Song, L. 2009. Simultaneous

product attribute name and value extraction from web pages. In Proceedings of

the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence

and Intelligent Agent Technology, pages 295–298, 2009.

51. Yeonjung, K., Jeahyun, P., Taehwan, K., dan Joongmin, C. 2007. Web

information extraction by HTML tree edit distance matching. In Proceedings of

the International Conference on Convergence Information Technology

(ICCIT.2007), pp. 2455-2460, 2007,Washington, DC, US.

52. Zhai, Y. and Liu, B. 2005. Web Data Extraction Based on Partial Tree

Alignment. In Proceedings of the 14
th

 International World Wide Web Conference

on World Wide Web (WWW '05). ACM, pages 76-85. York, NY, USA.

53. Zhai, Y. and Liu, B. 2006. Structured Data Extraction from the Web Based on

Partial Tree Alignment. IEEE Transactions on Knowledge and Data Engineering

Vol. 18, No.12, pp.1614-1628.

54. Zheng, S., Song, R., and Wen., J. 2007. Template-independent news extraction

based on visual consistency. In AAAI’07, volume 22, pages 1507–1513, 2007.

118

55. Zhao, H., Meng, W., Wu, Z., Raghavan, V., and Yu, C. 2005. Fully Automatic

WrapperGeneration For Search Engines. In Proceedings 14
th

 International World

Wide Web Conference, pages 66-75.

119

VITA AUCTORIS

NAME: Mohammad Harun-or-Rashid

PLACE OF BIRTH:

Dhaka,Bangladesh

YEAR OF BIRTH:

1978

EDUCATION:

Dhaka City College, Dhaka, Bangladesh,

1995

University of Windsor, B.Sc., Windsor,

ON, 2004

University of Windsor, M.Sc., Windsor,

ON, 2012

	University of Windsor
	Scholarship at UWindsor
	2012

	Mining Multiple Web Sources Using Non-Deterministic Finite State Automata
	Mohammad Harun-Or-Rashid
	Recommended Citation

	tmp.1375811285.pdf.X7lVn

