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ABSTRACT 

 

Dialogue systems have been a rapidly growing area in both scientific research and 

commercial application since 1990s. They can be applied in various fields, such as business, 

healthcare and education, etc. Due to its complexity, the design and development of a dialogue 

system is time consuming and costly. It is highly desirable for a generic dialogue system, 

especially dialogue management that is independent of specific domains. Methods or architecture 

for domain independent dialogue systems have been proposed by previous research in literature, 

however each of them has its own limitations and none has been widely adopted. This paper 

presents a new approach, a task ontology model for domain independent dialogue management. 

An abstract task ontology model is developed and based on this model a generic dialogue 

manager is created. Knowledge about a specific task is modeled in its task ontology and retrieved 

by an ontology reasoning component situated in the dialogue manager. Thus the dialogue 

manager is task or domain independent. A dialogue system is developed based on the proposed 

method and experimented with two different tasks: the book borrowing and the online train ticket 

booking. The experiment results indicate that the dialogue system can be readily applied to tasks 

from different domains without any modification. This paper has implications on future research 

and development of domain independent dialogue systems. It also contributes to the knowledge 

and dialogue system reuse and will have impact on the application of dialogue systems in a wider 

range of areas. 
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CHAPTER 1   INTRODUCTION 

 

A computer system that is able to dialogue with human beings has been a research topic in 

Artificial Intelligence for many years. However, it is not until the past two decades or so, with 

the advancement of speech technology, language processing and dialogue modeling, that spoken 

dialogue systems have been developed and entered into commercial use. [1] In recent years, 

research on dialogue systems has been further extended to multimodal dialogue systems which 

support not only speech but also text, graphics, gestures and other user input modes as well as 

multimedia system output. A multimodal dialogue system typically consists of components that 

process input information and generate output message as well as a central piece of dialogue 

management that coordinates the entire system and controls the dialogue process. [2] 

 

1.1 PROBLEM STATEMENT 

Dialogue systems have had a wide range of applications, such as customer services, sales, 

technical support, personalized services and training in various fields, including healthcare, 

entertainment, government, education and business, etc. [3-4] It has great potential to many other 

fields as well. On the other hand, the design and development of a dialogue system requires the 

collaboration of both experts with domain knowledge and computer specialists on dialogue 

management systems. It is often time consuming and costly to develop a workable spoken or 

multimodal dialogue system. [2, 5] It is highly desirable to create a generic dialogue system, 

especially the dialogue management module which is independent of tasks from different 

domains. [6-7] 
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The majority of related research in literature focused on components other than the 

central dialogue management of a dialogue system. Only a few of them addressed the domain 

independent dialogue management. The first main approach is the agent-based architecture in 

which spoken dialogue agents are adopted to handle different domains. So adding or applying to 

a new domain means to construct a new spoken dialogue agent for that domain instead of 

rebuilding the entire system. [5, 8] The second approach is to create domain experts to control 

dialogue in each domain. The central module of the system selects the domain and controls the 

domain experts. [9] The third one is to adopt a service manager for each specific task. [10] All 

these methods separate what is used to deal with specific domains or tasks from other 

constituents of the dialogue management module. But the creation of the dialogue agent, domain 

expert or service manager for a particular task still requires the involvement and collaboration of 

both dialogue system developers and experts for specific domains. The most recent attempt is the 

task tree based dialogue management framework [11]. In this framework, a task or domain 

knowledge is modeled in a task tree, and then the dialogue plan is formed on the basis of the 

structure of the task tree. It allows domain experts to focus on the building of task tree while 

system specialists on the creation of dialogue systems. However, different tasks are presented by 

different task trees and a new dialogue plan would be created for any new task. So the 

development of a dialogue manager is still dependent on the task or domain.  

This thesis proposes a task ontology model for domain independent dialogue 

management. It intends to apply ontology and task model into the dialogue system design to 

accomplish the domain independent dialogue management. Ontology has been adopted in 

various dialogue systems. Besides Natural Language Processing, recent work on the application 

of ontology in dialogue systems mainly uses ontology as the knowledge source, such as the 
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ontology-driven dialogue system for agent training [12], the ontology-based framework for 

health counseling dialogue systems [13], the CookCoach dialogue system in which the ontology 

for cooking domain can be integrated in the dialogue system [14], and the ontology based 

requirement model for interactive requirement elicitation [15]. However each of them focuses on 

a particular domain and none supports domain independent dialogue systems.  

Knowledge of task modeling is also combined in the proposed model. The goal of a 

dialogue management system is to achieve a task [16]. A task, including its activities and their 

relationships can be represented by a task model [17]. A number of task model representations 

have been proposed, including HTA (Hierarchical Task Analysis), GOMS (Goals Operators 

Methods Selectors), GTA (Groupware Task Analysis) and CTT (ConcurTaskTree), etc. These 

models are mainly designed for task analysis rather than integrating to a dialogue system.   

In the proposed model, the knowledge of a specific task is modeled in its task ontology 

which is independent from dialogue control. An abstract task ontology is created and a generic 

dialogue manager is developed in which the abstract ontology is used to direct system interaction 

with users. Some techniques and concepts of task modeling are adopted in the ontology along 

with those new classes and relations created in the model. The abstract task ontology can be 

instantiated to task ontologies for tasks in different domains. Through the reasoning component 

which connects task ontologies, the generic dialogue manager can accomplish a particular task 

through interaction with users without any modification. Thus the design and development of 

dialogue management and dialogue systems are isolated from domain knowledge for a specific 

task; and the dialogue system can be applied to new areas directly. Two case studies on different 

tasks from different domains are conducted to test and demonstrate the effectiveness of the 

proposed method.  
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1.2 CONTRIBUTIONS 

This thesis has made the following contributions. It proposes a task ontology model which can be 

instantiated to task ontology for specific tasks. Based on the task ontology model, the structure of 

the dialogue manager is also modified to include a generic dialogue management component and 

an ontology reasoning component. The ontology reasoning component retrieves knowledge 

specific to a task from its task ontology. Thus the dialogue manager is task independent and a 

dialogue system based on it can apply to new tasks or modified existing tasks without any 

modification. Furthermore, the task ontology model contains a variety of types of relationships 

between tasks and their subtasks, including decomposition, sequential and alternative 

relationships and their properties. It also takes into account the context for a task completion 

which allows for handling more complicated tasks in a more flexible way compared to previous 

approaches.   

The proposed method promotes knowledge and dialogue system sharing and reuse among 

different domains. The adoption of ontology and the proposed task ontology model have 

implications on future research and development of domain independent dialogue systems. It 

also has impact on the application of dialogue systems in a wider range of areas. 

 

1.3 STRUCTURE OF THE THESIS 

This paper proposes an ontology task model to achieve domain independent dialogue 

management in a dialogue system. It is structured as follows. Chapter 2 overviews dialogue 

systems and various approaches to dialogue management. Chapter 3 describes previous work 

related to this thesis. Section 3.1 focuses on research on domain independent dialogue 

management. Section 3.2 introduces the concept of ontology, ontology languages and its 
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application in dialogue systems; and Section 3.3 discusses task models and their presentations.  

Chapter 4 illustrates the proposed method - the ontology-based task model and the modified 

dialogue manager based on the proposed model. Section 4.1 introduces the task ontology model 

and what are new about it compared with previous work. Section 4.2 details the proposed task 

ontology model, including the concepts, relationships and rules defined in the ontology and its 

instantiation. Section 4.3 presents the domain independent dialogue manager based on the task 

ontology model. Complexity analysis is also conducted. Chapter 5 is the implementation of the 

proposed method. Section 5.1 describes the abstract task ontology. Section 5.2 presents the 

implementation of the dialogue system based on the dialogue manager introduced in Section 4.3. 

Chapter 6 studies two application cases from different domains using proposed method. Section 

6.1 is about the library borrowing service; and Section 6.2 is the online train ticket booking 

service. Both sections include the construction of the task ontology for each task and 

demonstrate how the dialogue system works for different tasks. Chapter 7 draws conclusion and 

indicates future work. 

  



6 
 

CHAPTER 2    PRELIMINARY 

 

2.1 DIALOGUE SYSTEMS 

Dialogue is a conversation between two or more human beings or machines. [2] A dialogue 

system is a computer system which communicates with human users in a natural manner. 

Dialogue systems are involved in dialogue with human users to achieve specific tasks, so they 

are mainly task oriented. [16]  

The majority of the research focused on spoken dialogue systems that support spoken 

natural language. In recent years, it has been extended to multimodal dialogue systems which 

support text, audio, video and other modes for both user input and system output. [2] According 

to Bui [2], a typical multimodal dialogue system consists of the following modules: Input, Fusion, 

Dialogue Manager, Knowledge Base, Fission and Output. Among these components, the 

Dialogue Manager plays a key role in a dialogue system. Fig. 2.1 illustrates the architecture of a 

dialogue system.  

Text

Audio

Video

Pen

INPUTINPUT

Extraction

Recognition

Integration

FUSIONFUSION

Modality 
Selection

Reasoning

Output 
Generation

FISSIONFISSION

Text

Audio

Video

OUTPUTOUTPUT
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KNOWLEDGE 
SOURCE

......

 

Figure 2.1 Architecture of a Dialogue System 
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In a multimodal dialogue system, the Input module can handle different input modes, 

such as text, speech, pen, touch screen and gestures, etc.   

The Fusion module extracts, recognizes and integrates various modes of information 

from Input module, and then sends to Dialogue Manager. It may also consult with Knowledge 

Base. 

The Knowledge Base is used by Dialogue Manager, Fusion and Fission modules. It 

manages a number of types of knowledge, such as dialogue history, general dialogue knowledge, 

specific domain knowledge, and information about tasks and users.  

The Fission module is responsible for modality selection, reasoning and output 

coordination. It generates output information in different modes. 

The Output module is to present information from Fission module in various output 

modalities.  

The Dialogue Manager is the central management module for both spoken dialogue 

systems and multimodal dialogue systems. It coordinates with other components, such as Fusion, 

Fission and Knowledge Base. It also identifies user’s intention to help the system understand 

what the user really wants. It controls dialogue flow through deciding what to respond to user’s 

inputs. [18] 

 

2.2 DIALOGUE MANAGEMENT APPROACHES 

In the past two decades, a number of approaches have been proposed for dialogue management. 

Each approach has its own strengths and drawbacks. According to the methods used to control 

dialogue with users, these approaches can be classified into the following four categories: [1-2] 
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1) Finite state-based approach 

This approach is the most common and simplest dialogue management strategy. In a 

state-based dialogue system, the dialogue states and system utterances are predetermined 

and the dialogue is directed by the system through a set of predetermined sequence of 

questions. It is suitable for implementing simple dialogue system with well-structured 

tasks, but lacks of flexibility, naturalness and applicability to other domains.  

2) Frame-based approach 

Frame-based approach is an improvement to the finite state-based dialogue management. 

The system operates like a slot-filling task to gather predetermined set of information. 

Frame-based dialogue management allows some degree of mixed-initiative and multiple 

slot fillings, which is more flexible, efficient and natural compared with finite state-based 

approach. It is capable of handling recognition errors and misunderstandings during 

dialogue with users.   

3) Information state-based  and probabilistic approaches 

In information state-based dialogue management, a set of states are predefined and the 

dialogue state changes according to the update rules and dialogue strategies. As an 

extension to the information state-based approaches, the probabilistic dialogue 

management utilizes probabilistic techniques to try to improve the performance of 

dialogue management. [18] In this type of approaches, dialogue is modeled as a Markov 

Decision Process (MDP) [19-20] or a Partially Observable Markov Decision Process 

(POMDP) [21-23] to address the uncertainty in human computer interaction. Other 

methods, such as Bayesian Networks [24], Decision Networks [25] have been studied by 

researchers as well. 
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4) Plan-based or agent-based approaches 

Plan-based or agent-based approaches are based on plan-based theories of speech act and 

dialogue. [26-27] This type of dialogue management supports more complicated dialogue 

tasks than the above three approaches. Accordingly, it involves higher level of 

complexity.   

The first two types of approaches are the most commonly adopted methods in existing 

dialogue systems. A number of practical systems have been constructed based on them. The 

other approaches, including information state-based and probabilistic approaches as well as plan-

based or agent-based approaches are relatively complicated and need to be improved for 

practical use. In this thesis, a frame-based dialogue system is implemented to demonstrate how 

the domain independent dialogue management can be accomplished by the proposed method. 
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CHAPTER 3    RELATED WORK 

 

3.1 DOMAIN INDEPENDENT DIALOGUE MANAGEMENT 

A number of dialogue systems have been implemented using various dialogue control strategies, 

such as the Nuance automatic banking system [1], the Philip automatic train timetable 

information system [28], the Circuit-Fix-It Shop system [29], the E-form classified 

advertisements for used cars [30], Carnegie Mellon Communicator system [31], MATCH system 

for multimodal access to city help [32], Immersive Virtual Worlds [33], Virtual Music Center 

[34], Smartkom public telephone booths [27], and so on. These systems have been deployed in a 

variety of application areas, including customer services, technical support, personalized services, 

planning, problem solving and training in the fields of healthcare, entertainment, government, 

education and business, etc. [3] It is expected that dialogue systems would have a much wider 

application and acceptance in practical use in future. [7] 

On the other hand, it takes a lot of efforts to design and develop a workable dialogue 

system due to the system complexity. It often requires the collaboration of both experts with 

domain knowledge and computer specialists on dialogue management systems, which is 

expensive and time consuming. For a multimodal dialogue system, the building process becomes 

even more complicated. It is highly desirable to create a generic dialogue system, especially the 

dialogue management module which can be readily applied to tasks from different domains. [2, 

5-6]  

A number of research projects have targeted on domain independent dialogue systems in 

the past decade. Many of them focus on modules related to natural language processing, such as 

speech recognition or semantic representation, rather than dialogue management. Examples of 
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these projects include the domain independent spoken dialogue platform that uses key-phrase 

spotting technique based on combined language model [35], the two-layer architecture of 

semantic interpretation and domain reasoning for a multi-domain dialogue system [36], robust 

domain selection against out-of-grammar utterances for the multi-domain spoken dialogue 

system [37], and a multi-domain spoken dialogue system which is able to respond to user 

requests across multiple domains against speech recognition errors [38], etc.  

A series of generic architecture have been proposed aiming for the design of domain 

independent dialogue systems. In TRIPS project, Allen et al. [16] suggested a generic dialogue 

shell – a generic dialogue infrastructure for spoken dialogue system. In this framework, the main 

components of a spoken dialogue system, including speech recognition, natural language 

processing, response generation and dialogue management, are constructed in a way that can be 

adapted to new applications to other tasks or domains by specifying the domain and task 

operations.   Based on this framework, Allen et al. [39] further presented an architecture that 

separates linguistic and discourse knowledge from task and domain specific information. It 

clarifies the responsibilities of individual components and improves the system portability to new 

tasks and domains.  Bui [2] illustrated a module-based, general architecture of a multimodal 

dialogue system. It consists of modules for input processing, output generation and dialogue 

control. Each module has its own function and works together with other components under the 

coordination of the dialogue manager. However, the architecture does not address how to build a 

domain independent dialogue management module. It is a conceptual framework rather than a 

practical model. More work is needed under this framework in order to create a domain 

independent dialogue system.  
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Only a few studies focused on multi-domain or domain independent dialogue 

management. There are four major types of approaches in literature. The first is the agent-based 

architecture. Lin et al. [5] suggested a multi-agent architecture for multi-domain spoken dialogue 

systems. This architecture applies different Spoken Dialogue Agents (SDA) to handle different 

domains and a User Interface Agent (UIA) for users to access the correct SDA through a domain 

switching protocol. The SDAs are developed independently and then cooperate with one another 

to help achieve user’s multiple goals. The multi-agent architecture has been adopted by a number 

of multi-domain systems. [8] 

Another approach is to create a service manager for each specific task. [6, 10] The 

proposed dialogue system architecture consists of input/output manager, dialogue manager and 

service manager. The service manager handles all domain specific information.  

The third method adopts domain experts to support multi-domain dialogue management.  

Komatani et al. [38] use domain experts to control dialogues in each domain and a central 

module to select proper domain and control the domain experts in a multi-domain dialogue 

system. Lee et al. [40] introduces a multi-domain dialogue system using the example-based 

dialogue modeling framework and the domain spotting technique.  

The common problem of the abovementioned approaches is that they all need to develop 

a new piece of component, such as a new agent, a new service manager or a new domain expert 

when adding or adapting to a new task or domain in a dialogue system.  

The last approach to domain independent dialogue management is the agenda or task tree 

based generic dialog modeling [7]. In this approach, large tasks are decomposed into smaller and 

more easily handled subtasks [41-44]. The RavenClaw dialogue management framework is the 

most recent one based on this approach. [11] It contains a two-tier, plan-based architecture in 
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which domain-specific aspects of the dialog control logics are separated from domain 

independent ones. In this framework, a task or knowledge is modeled in a task tree; and then the 

dialogue plan for the particular task is formed based on its task tree. Different tasks will have 

different dialogue plans, so the dialogue management is still task specific.  

 

3.2 ONTOLOGY 

3.2.1 OVERVIEW 

According to Gruber [44], ontology is a formal, explicit specification of a shared 

conceptualization. A conceptualization is an abstract model of the world that is represented. In 

other words, ontology provides a shared vocabulary for representing knowledge of a task or a 

domain. It defines concepts, properties of each concept and constraints on their use within a 

domain.  

 People may have different goals to develop ontology, such as:  

1) To share common understanding of the structure of information among human beings or 

software 

2) To enable the reuse of domain knowledge 

3) To make assumptions on a domain explicit 

4) To separate domain knowledge from operational knowledge 

5) To analyse common knowledge within a domain [45] 

The main purpose of ontology is to support knowledge sharing and reuse. It can be used 

in a variety of areas, such as human communication, system interoperability and system 

engineering. 
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Ontology usually consists of the following components: concepts within a domain, 

properties of each concept, and relations or constraints between concepts or their properties, etc. 

According to Noy and McGuinness [45], there are a number of steps typical for ontology 

construction as follows:  

1) Defining classes representing the concepts of the domain that is being described  

2) Arranging the defined classes in a taxonomy or superclass-subclass relationship  

3) Defining the properties of classes and instances and the constraints on their values 

4) Filling in instances, their properties, and the values for each property. 

Once all classes, properties, instances and their relationships are properly defined, the 

ontology, either task ontology or domain ontology is developed.  

 

3.2.2 ONTOLOGY LANGUAGES 

Ontology is constructed by ontology languages. An ontology language usually introduces 

concepts and their properties, relationships and additional constraints. Ontology languages may 

be simple, frame-based or logic-based. [46] Simple ontology languages only have concepts and 

taxonomies. Frame-based ontology languages are more structural compared to simple ones and 

contain concepts and properties. Logic-based ontology languages are more sophisticated and 

expressive. It includes two common types. One is the First Order Logic based ontology language, 

such as Common Logic (Common Logic Standard, http://common-logic.org/), Cycl (the Syntax 

of Cycl, http://www.cyc.com/cycdoc/ref/cycl-syntax.html), and KIF (Knowledge Interchange 

Format, http://www.ksl.stanford.edu/knowledge-sharing/kif/). This type of language allows 

general predicates. Another type is the Description Logic based ontology language that describes 

knowledge in terms of concepts and their relations. This type of ontology languages has 

http://common-logic.org/
http://www.cyc.com/cycdoc/ref/cycl-syntax.html
http://www.ksl.stanford.edu/knowledge-sharing/kif/
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inference capability. In other words, it is possible to reason about knowledge in Description 

Logic based ontology languages, such as inference of implicit class membership, inference of 

implicit subclass and equivalence of classes, and check consistency by using a reasoner. 

Generally speaking, the richer a language is, the more inefficient it supports reasoning. 

Web Ontology Language (OWL), which is recommended by W3C, is one of the 

Description Logic based languages. [47] It is a Web standard for processing information on the 

Web. OWL is written in XML and designed to be interpreted by computers. There are three 

sublanguages of OWL: OWL Lite, OWL DL and OWL Full. Among them, OWL Full is the 

most expressive language, but no existing reasoner supports its inference. OWL Lite and OWL 

DL are decidable but their expressivity is sacrificed. [48] So a decidable language, the DL-safe 

Semantic Web Rule Language (SWRL) was proposed to supplement OWL DL and OWL Lite 

with Horn-like rules. [49]  

It is possible to infer implicit knowledge in an ontology through Description Logic 

reasoning. There are already many stable reasoners available for OWL DL reasoning, such as 

Pellet (http://clarkparsia.com/pellet/), FaCT++ (http://owl.man.ac.uk/factplusplus/), HermiT 

(http://hermit-reasoner.com/), Jena (http://jena.sourceforge.net/inference/) and RacerPro 

(http://www.franz.com/agraph/racer/). These reasoners can be plugged into the Protégé, an OWL 

ontology development platform (http://protege.stanford.edu/).  Pellet supports reasoning with 

OWL DL and SWRL DL-safe rules. In this thesis, Protégé will be adopted to construct ontology 

and Pellet for ontology reasoning. 

 

 

 

http://clarkparsia.com/pellet/
http://owl.man.ac.uk/factplusplus/
http://hermit-reasoner.com/
http://jena.sourceforge.net/inference/
http://www.franz.com/agraph/racer/
http://protege.stanford.edu/
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3.2.3 APPLICATION OF ONTOLOGY IN DIALOGUE SYSTEMS 

Ontology has been utilized for years for language interpretation and generation in natural 

language systems. Gatius and Gonzalez [50] presented a dialogue system that used ontology for 

improving the interaction between the system and the user, the processing of user’s interventions 

and the generation of system’s messages. This paper focuses on natural language processing. The 

ontology is used in input processing and output generation modules, not the dialogue 

management module in the dialogue system. Sonntag and Romanelli [51] presented an 

ontological syntactic structure of multimodal question answering results for Question and 

Answering systems. In this paper, ontology serves as a communication interface between natural 

language processing components. The study by Milward and Beveridge [52] indicated that 

ontological information can be used for dialogue clarification. In this study, the ontology is used 

to explore the distinctions between monologue and dialogue rather than to design a dialogue 

system.  

In dialogue systems, more recent work uses ontology to capture domain knowledge and 

to provide knowledge source for the system. Flycht-Eriksson and Jonsson [53] proposed an 

architecture of dialogue systems in which ontologies are applied for various tasks, including 

question analysis, dialogue interaction and information extraction. In the architecture, ontologies 

provide the shared knowledge sources for the cooperation of the two main parts of the dialogue 

systems: Interaction component and Information Processing component.  

Van Oijen et al. [12] presented an ontology-driven, goal-based dialogue system for agent 

training. In the system, ontologies are used for capturing domain knowledge and the knowledge 

of agent role. They provide a shared data set for concepts and their attributes exchanged between 
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agents. The use of ontology enables the tight coupling between the agents and the simulation and 

allows the reuse of agent ability.  

Bickmore et al. [13] proposed an ontology-based framework for health counselling 

dialogue systems. The framework implements an ontology of behaviour change concepts and a 

task model for the intervention of system and users. The ontology captures the knowledge in 

health behaviour change counselling. In this approach, the ontology and task model is 

disconnected and the ontology serves as domain ontology only.  

Pardal and Mamede [14] intended to extend a dialogue system to new knowledge 

domains by using ontologies. They created the Cookcoach dialogue system on the Carnegie 

Mellon University OLYMPUS framework [54] which incorporates the RAVENCLAW dialogue 

management [11]. An ontology, OntoChef was developed for the cooking domain. The 

OntoChef contains modules specifically for cooking domain, including actions, food, recipes, 

utensils, units and measure.  The Cookcoach supports different recipes; however the model only 

supports cooking domain.  

Zhang [15] proposed an ontology-based requirement model for interactive requirement 

elicitation. In this model, concepts, including function, quality and softgoal along with 

relationships among these concepts and rules are set up particularly for requirement elicitation. It 

is hardly to apply the model to tasks in other domains, such as book borrowing service or train 

ticket booking, etc. 

In order to make the POMDP based dialogue manager capable for practical dialogue 

systems, Young et al. [55] proposed the Hidden Information State (HIS) model. Ontology rules 

are adopted in the HIS model as task model of dialog scenario and represent groups of similar 
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belief states as partitions. The model uses tree structure to represent user goal. The tree structure 

is task specific. So do the ontology rules based on that. 

Heinroth et al. [56] created an adaptive spoken dialogue manager, OwlSpeaker which 

supports multitasking in a dialogue system. In OwlSpeaker, the Spoken Dialogue Ontologies 

(SDOs) are developed to model knowledge base for different domains. Each SDO contains the 

Speech and State subclasses and their individuals are arranged in tree like structure.  The 

OwlSpeak allows for switching among different interrelated tasks. However, the purpose of the 

paper is to support multitasking in a dialogue system, not to create domain independent dialogue 

system.  

None of the abovementioned work supports domain independent dialogue management. 

Different from previous approaches, this thesis develops a task ontology model which can 

separate domain knowledge from dialogue control in a dialogue system. So the dialogue 

management is independent of domain knowledge and the dialogue system based on the model is 

domain independent. 

 

3.3 TASK MODELS 

Task models describe the possible activities and their relationships in tasks. They are produced 

by task analysis which is the process to gather data about how people perform a task and to 

acquire an insight understanding of these data. [17]  

 Task models have been used in supporting the design of user interfaces and interactive 

systems. The main purposes of task models include: 

1) To help better understand the application domain 

2) To record the result of interdisciplinary discussion 
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3) To support effective design and usability evaluation 

4) To provide documentation and user support [57] 

Task analysis and modeling was first introduced in psychology. The Hierarchical Task 

Analysis (HTA) by Annet and Duncan [58] was the first important method proposed for task 

analysis and modeling. [17] Since then, task models have become more formal and a number of 

representations have been developed, including HTA, Goals Operators Methods Selectors 

(GOMS) [59], User Action Notation (UAN) [60], Groupware Task Analysis (GTA) [61], task 

world ontology [62] and ConcurTaskTrees (CTT) [57], etc.  

Among the representation methods for task models, HTA is the basis for many other 

methods. In HTA, tasks are described in terms of operations and plans. Operations are activities 

to reach a goal while plans are their conditions. Tasks are hierarchically decomposed into a series 

of subtasks, thus a task hierarchy is modeled. In HTA, goal hierarchy is not explicitly 

represented.  

GOMS represents tasks as well as their goals. This method was first presented by Card et 

al in 1983[59]. Since then, GOMS analysis has been one of the most widely known task analysis 

technique and many variants have been developed. [63] In GOMS, activities in a task are 

described in terms of Goals, Operators, Methods, and Selection rules. Goals are the states for 

users to pursue; and methods are possible ways to reach a goal. Operators describe the steps of a 

method. The selection rules are the criteria for a method. However, GOMS is mainly textual. It 

doesn’t consider user errors and the possibility of interruptions. GOMS represents only 

sequential tasks. 

UAN [60] is a user and task oriented notation describing user behavior for the user 

interface design.  UAN identified a number of temporal relationships among tasks, including: 
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sequence, waiting, repeated disjunction, order independence, interruptibility, one-way or mutual 

interleavability and concurrency. These relationships can be explicitly and precisely represented 

in UAN task descriptions. In UAN, tasks that cannot be decomposed are defined as basic tasks. 

The basic tasks are specified by user actions, system feedback and the state of the system. The 

main disadvantage of UAN is that it uses textual syntax and lacks of tool support. [17]  

GTA focuses on group users or organizations and their activities rather than single users. 

[61] In GTA, a task model contains three different aspects of the task world, including agents, 

work and situation. Agents refer to humans or systems that play different roles. Work is 

performed by tasks; and tasks can be identified at different levels of complexity, such as the unit 

task and the basic task. Unit tasks and basic tasks can be further decomposed into system actions 

or user actions. The situation of a task world includes the environment for the performance of a 

certain task and the description of the objects in the environment. The description of an object 

includes its structure and attributes.   

Welie [62] developed a task world ontology that describes concepts and their 

relationships based on GTA.  The ontology includes concepts of task, goal, role, agent and event. 

The task can be unit task or basic task. A unit task should consist of one or more basic tasks. 

These concepts have different relationships between each other, such as uses, triggers, plays, 

performed_by, has, subtask/subgoal, subrole, influence, responsible and used_by. It has been 

used for user interface design. The limitation of GTA along with task world ontology and other 

GTA variants is that they only support sequential tasks. The temporal relation between tasks 

cannot be precisely specified under this type of task model. 

ConcurTaskTrees (CTT) [57] resolves the problem of specification of time relation in 

GTA.  CTT is a graphical notation for the description of tasks and their relationships. It has 
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hierarchical structure and graphical syntax. CTT has a rich set of operators to specify the 

temporal relationships between tasks, including enabling, disabling, choice, concurrency, 

interruption, optionality and iteration, etc. The CTT associated tool, ConcurTaskTrees 

Environment (CTTE) [64] provides methods to describe single user as well as cooperative task 

models. So CTT is also an improvement to GOMS. 

 All abovementioned representations are used mainly as tools for task analysis. They are 

generally adopted to support the process of system design and do not contain sufficient and 

necessary information to automatically generate interactive systems. [65] In this paper, a task 

ontology model is proposed to integrate into the dialogue management system. The task ontology 

is used to automatically direct the dialogue process.    
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CHAPTER 4    PROPOSED METHOD 

 

4.1 INTRODUCTION 

This chapter presents an ontology-based task model for domain independent dialogue 

management systems. As stated in Section 3.1, the goal of a domain independent dialogue 

system is to separate the development of dialogue systems from knowledge specific to a task in a 

particular domain. In order to accomplish the goal, this paper proposes a new approach - a task 

ontology model for domain independent dialogue management. In this approach, an abstract task 

ontology model is developed. Based on this model, the dialogue manager is modified. 

Knowledge about a specific task is modeled in its task ontology through ontology instantiation of 

the abstract model.  Information in the task ontology can be retrieved by an ontology reasoning 

component situated within the dialogue manager. Thus the specific task or domain knowledge is 

isolated from the dialogue management in a dialogue system. The modified dialogue manger is 

task independent; and the dialogue system based on this method is domain independent and can 

be readily applied to new tasks or new domains.  

The proposed task ontology model is different from previous task modeling approaches 

discussed in Chapter 3. First, it combines knowledge of task modeling and ontology. In this 

model, ontology is used to represent concepts and their relationships in a task model; while 

graphical or textual representations are commonly adopted in previous task modeling approaches. 

Secondly, the proposed task ontology can be retrieved by dialogue systems directly. It is used to 

automatically control interaction with the user in a dialogue system; whereas previous task 

modeling methods are mainly used as tools for task analysis.  
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This model is expanded from the task world ontology by Welie [61]. The concepts of 

agent, object and task and their relationships in the task world ontology have been adopted in this 

model. However the task world ontology does not detail the decomposition of a task and the 

possible relationships among its subtasks. To overcome this problem, this model uses 

Hierarchical Task Analysis [17] method to decompose task into a set of subtasks. It adopts the 

concepts of basic task, unit task and their specifications of user action and system feedback from 

UAN [59] and CTT [56]. Some of the temporal relationships among tasks presented in UAN [59] 

and CTT [56], such as sequence and choice, are adapted and modeled into relations in the task 

ontology model as well. This model also develops concepts, relationships and properties which 

cannot be represented in previous task models but suitable for an ontology, such as disjoint 

relationship and data properties. The proposed task ontology model is detailed in Section 4.2. 

The construction of the ontology follows the steps described in the Section 3.2.1.  

How would the task ontology model be used in a dialogue manager to help accomplish 

the domain independence? Section 4.3 illustrates the structure of the generic dialogue manager 

based on the proposed task ontology model. It includes a generic dialogue management (DM) 

component and an ontology reasoning component. The ontology reasoning component is 

invoked by the generic DM. It retrieves task or domain knowledge from the task ontology and 

reasons to gather information from dialogue with users. The knowledge about a specific task is 

modeled in the task ontology. Thus the design and development of the generic DM and the 

ontology reasoning component is independent of specific tasks or domains.  
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4.2 PROPOSED TASK ONTOLOGY MODEL 

4. 2.1 CONCEPTS 

 

......

Task

Composite
Task

UnitTask BasicTask

UserAction

System
Operation

Choice

SC, NE

DI, FI DI, FI HAS

Object

Status

Agent

HAS HAS

US
PF

HASUSB
PFB

...... DI, FI

 

Figure 4.2 the proposed task ontology model 

 

The concepts in this task ontology model are illustrated in Fig. 4.2 with class and subclass 

diagram notations. Object and Agent represent the context in which a task is executed. Object is 

used by a task; and agent performs a task. Both Object and Agent have Status. Tasks are 

activities that help users to achieve their goal. There are three types of tasks: CompositeTask, 

UnitTask and BasicTask. BasicTask has UserAction and SystemOperation. The UserAction 

models the action users may take in a task; while SystemOperation is the operation that system 

would have. Some tasks may have Choice for users to choose and the selection users makes 

would guide the system to move forward. All concepts created in the task ontology model are 

described as follows: 
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1) Task: are activities to reach a certain goal. There are three types of task defined in this 

model: CompositeTask, UnitTask and BasicTask representing the different 

decomposition level in a task hierarchy.  

a) CompositeTask: is a task that users want to achieve his goal. CompositeTask is on the 

top level of task decomposition. It is further decomposed into one or more UnitTasks. 

b) UnitTask: is in the middle of task decomposition hierarchy. There can be one or more 

levels of UnitTask. UnitTask composes CompositeTask. It is also decomposed into 

one or more BasicTasks.  

c) BasicTask: is in the bottom of a task hierarchy. BasicTask composes UnitTask. It is 

atomic and includes UserAction and SystemOperation.  

2) Agent: can be humans or machines. Agent performs Task. 

3) Object: refers to physical or non-physical entities used by Task. 

4) Status: both Object and Agent have a status. The value of Status can be available or 

unavailable. 

5) Choice: are options that users may have in a task. What users choose will direct the next 

step the system takes. 

6) UserAction: refers to actions that users should take in order to fulfil a task. It applies only 

to BasicTask. 

7) SystemOperation: is an action done by system in a task. Similar to UserAction, it is only 

meaningful for BasicTask. 
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4.2.2 RELATIONSHIPS 

Task is usually represented as a tree-like task hierarchy. In a task tree, the most important 

relationships between tasks and their subtasks are: (1) supertask and subtask relationship: a task 

may decompose into several subtasks. This is modeled as DecomposeInto; (2) temporal 

relationship: the execution order of a set of tasks or subtasks. This is represented as First and 

Next; and (3) alternative relationship: for some tasks, only one of them would be executed to 

complete a super task. This kind of relationship is represented with hasChoice.  

 Besides hasChoice, two other “has” relationships are constructed in the task ontology 

model. One is hasUserAction. It is used to store information on what kind of actions users should 

take in order to complete a task. It only applies to BasicTask.  Another is hasSystemOperation. It 

is similar to the relationship hasUserAction which only applies to BasicTask. 

HasSystemOperation is used to store information on operations the system will take to complete 

a task.  

 The proposed model also considers the context for a task. The concepts Object and Agent 

are defined to represent the objects or tools a task needs and the humans or machines performing 

a task respectively. Their relationships with Task are represented with Uses, UsedBy, Performs 

and PerformedBy. The relationship hasStatus is developed to represent the Status of Object or 

Agent. 

These relationships are illustrated in Fig. 4.2. Their notations are listed as follows: 

SC: Subclass(x, y), x∈{ Task }, y∈{ CompositeTask , UnitTask, BasicTask } 

DI: DecomposeInto(x, y), x∈{CompositeTask}, y∈{ UnitTask } 

DI: DecomposeInto(x, y), x∈{UnitTask}, y∈{ BasicTask } 

FI: First(x, y), x∈{CompositeTask }, y∈{UnitTask} 
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FI: First(x, y), x∈{UnitTask}, y∈{BasicTask} 

NE: Next(x, y), x∈{Task}, y∈{Task} 

US: Uses(x, y), x∈{Task}, y∈{Object} 

USB: usedBy(x, y), x∈{Object}, y∈{Task} 

PF: Performs(x, y), x∈{Agent}, y∈{Task} 

PFB: performedBy(x, y), x∈{Task}, y∈{Agent} 

HAS: hasChoice(x, y), x∈{Task}, y∈{Choice} 

HAS: hasUserAction(x, y), x∈{BasicTask}, y∈{UserAction} 

HAS: hasSystemOperation(x, y), x∈{BasicTask}, y∈{SystemOperation} 

HAS: hasStatus(x, y), x∈{Object, Agent}, y∈{Status} 

 In OWL, concepts are constructed as classes and their relationships are represented by 

properties. There are two main types of properties: object properties and data properties. In the 

proposed task ontology model, the relationships of DI, FI, NE, US, USB, PF, and PFB are 

constructed as object properties and the HAS relationship is developed as data properties, 

including hasChoice, hasStatus, hasUserAction, hasSystemOperation.  

1) SC: is the superclass-subclass relationship. Task is the superclass. Its subclasses, 

CompositeTask, UnitTask and BasicTask represent different decomposition levels of a 

task. 

2) DI: DecomposeInto. CompositeTask is on the top of a task hierarchy. It can be 

decomposed into one or more UnitTask. UnitTask is in the middle of a task hierarchy 

which can be further decomposed into one or more BasicTask. 
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3) FI: is the first UnitTask containing in a CompositeTask decomposition or the first 

BasicTask in a UnitTask decomposition. It is used to define the execution order within a 

CompositeTask or UnitTask. 

4) NE: Next defines which is the next task or action the system will take after the current 

task is completed. Next, along with First represent the sequential relationships among 

tasks and subtasks. 

5) US: Task Uses Object. The completion of a certain task may depend on the Status of 

relevant objects. 

6) USB: Object is UsedBy Task.  

7) PF: Agent Performs Task. The Status of Agent may affect the execution of a certain task. 

8) PFB: Task is PerformedBy Agent. 

9) HAS: there are four types of HAS relationship, including hasStatus, hasChoice, 

hasUserAction and hasSystemOperation. They are constructed as data properties in the 

proposed model. The data property allows the task ontology to have values representing 

the status of an agent or an object, the options users have, the actions users should take, 

or the operations in system side in a task. 

a) hasStatus: represents the Status of Agent or Object. The value can be Available or 

Unavailable.  

b) hasChoice: a task may have choice. It represents options users may have in a task 

and what users choose directs the following actions the system would take. The 

value can be a list of options presenting to users. 
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c) hasUserAction: represents actions users should take in a task. It only applied to 

BasicTask. The value is a string of explanation to users. Depending on the size of 

information, the value could be a file. 

d) hasSystemOperation: represents operations system have in a task. It is only 

meaningful in a BasicTask. The value is a string of explanation to users. 

Depending on the size of information, the value could be a file. 

 

4.2.3 RULES 

The following SWRL rules are defined for the proposed task ontology model: 

1. DecomposeInto(x, x) is invalid 

The relationship DecomposeInto is irreflexive. 

2. DecomposeInto(x, y) → DecomposeInto(y, x) is invalid 

The relationship DecomposeInto is asymmetric. 

3. First(x, x) is invalid 

The relationship First is irreflexive. 

4. First(x, y) ∧ First (y, x) is invalid 

The relationship First is asymmetric. 

5. Next(x, y) ∧ Next (y, x) is invalid 

The relationship Next is asymmetric. 

6. Next (x, x) is invalid 

The relationship Next is irreflexive. 

7. CompositeTask(x) ∧ UnitTask(x) is invalid 

The subclasses of task: CompositeTask and UnitTask are disjoint with each other.  
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8. CompositeTask(x) ∧ BasicTask(x) is invalid 

The subclasses of task: CompositeTask and basicTask are disjoint with each other. 

9. UnitTask(x) ∧ BasicTask(x) is invalid 

The subclasses of task: UnitTask and basicTask are disjoint with each other. 

10. Task(x) ∧ Agent(x) is invalid 

The classes Task and Agent are disjoint with each other. 

11. Task(x) ∧ Object(x) is invalid 

The classes Task and Object are disjoint with each other. 

12. Agent(x) ∧ Object(x) is invalid 

The classes Agent and Object are disjoint with each other. 

13. Uses (x, y) → usedBy(y, x) 

Uses and usedBy are inverse object properties. 

14. Performs(x, y) →performedBy(y, x) 

Performs and performedBy are inverse object properties. 

15. Uses(x, y) →Uses(y, x) is invalid 

The relationship Uses is asymmetric. 

16. Uses(x, x) is invalid 

The relationship Uses is irreflexive. 

17. Performs(x, y) →Performs(y, x) is invalid 

The relationship Performs is asymmetric. 

18. Performs(x, x) is invalid 

The relationship Performs is irreflexive. 
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Once a task ontology is constructed, these rules can be used by an ontology reasoner to 

infer information that is not explicitly described in the ontology. The reasoner can help conduct 

consistency check as well as retrieve implicit knowledge. If an invalid relationship is built in an 

ontology, the reasoning process will help identify and fix the problem. 

Besides rules, other restrictions, including existential, universal and cardinality 

restrictions are also defined in the proposed task ontology model. They can be used by a reasoner 

for ontology inference and validation as well. The following restrictions are defined in the task 

ontology: 

1) UnitTask is equivalent to: 

Task and ((DecomposeInto some BasicTask) and (DecomposeInto min 1 BasicTask) and 

(First min 1 BasicTask)) 

UnitTask is Task that can be decomposed into at least one BasicTask and it has at least 

one BasicTask as its First object property. 

2) CompositeTask is equivalent to: 

Task and ((DecompostInto some UnitTask) and (DecomposeInto min 1 UnitTask) and 

(First min 1 UnitTask)) 

CompositeTask is Task that can be decomposed into at least one UnitTask; and it has at 

least one UnitTask  as its First object property. 

3) The domain for Uses is Task, and the Range is Object 

Task uses only Object. 

4) The domain for usedBy is Object, and the Range is Task  

Object is used only by Task. 

5) The domain for Performs is Agent, and the Range is Task  
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Agent performs only Task. 

6) The domain for performedBy is Task, and the Range is Agent  

Task is performed only by Agent. 

7) hasChoice min 2 Literal 

The data property hasChoice for a task has at least 2 cardinalities as its value.  

8) The domain for the data properties of has UserAction and hasSystemOperation is 

BasicTask 

Only BasicTask has the data properties of hasUserAction and hasSystemOperation. 

9) The domain for the data property hasChoice is Task 

Only Task has the data property hasChoice. 

10) The domain for the data property hasStatus is Agent or Object 

Only Agent or Object has the data property hasStatus. 

 

4.2.4 ONTOLOGY INSTANTIATION 

In this thesis, ontology instantiation is the task modeling process for specific tasks using 

proposed task ontology model.   

A specific task is commonly represented as a tree-like task hierarchy. First a task and its 

subtasks are identified and mapped as instances or members into the subclasses of 

CompositeTask, UnitTask and BasicTask according to their decomposition level in the task tree. 

Composite tasks are the most complex tasks which sit on the top level of the task tree. It is 

decomposed into a set of unit tasks. For complicated tasks, it is possible to have more than one 

level of unit tasks. The relationships between different levels of unit tasks are the same with ones 

between composite and unit task. The unit tasks are further decomposed into basic tasks which 
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are the leaves in the task tree. Then the relationships among these tasks and subtasks are 

determined and mapped into appropriate properties in the task ontology. Two main types of 

properties are adopted in the proposed task ontology model: one is the object property which 

links an individual to an individual; and another is the data property that links an individual to a 

data value. In this step the relationships between instances and proper data value should be 

identified and added into the ontology. DecomposeInto, Next and First are commonly used for 

the execution order of a task. The relationship hasChoice is used to represent different options 

for users to choose and the users’ selection would determine the next action the system will take. 

Thus different types of task flow, inlucing sequential tasks or alternative tasks can be represented 

in the task ontology model. 

 For some types of tasks, the context should be considered as well. The class Object is 

used to model the tools for a task or its subtasks. The availability of the tools is represented as 

status in the task ontology. Agent is used for human beings, machines or software applications 

which perform a task or its subtasks. Their status is also represented as hasStatus.  

 Once an ontology for a specific task is constructed, we can run an ontology reasoner to 

classify ontology to get inferred classes. Then the ontology will have inferred hierarchy as well 

as inserted hierarchy. The reasoning process will check consistency as well and indicate any 

inconsistency among individuals or their properties. Thus any problems that occur during the 

process can be identified. Once all errors are fixed, a valid ontology for the particular task is 

established. This task ontology will be used by the domain independent dialogue manager 

described in the following section to direct the dialogue process between the system and users. 
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4.3 THE DOMAIN INDEPENDENT DIALOGUE MANAGER 

 

 

Figure 4.3.1 the structure of the DM based on previous domain independent dialogue 

management approaches 

 

 

Figure 4.3.2 the structure of the modified DM based on the proposed method 

 

According to Section 3.1, previous approaches to the domain independent dialogue management 

separated the dialogue manager into a generic dialogue management component and a domain 

specific dialogue management component. See Fig. 4.3.1. Based on the proposed task ontology 

model in Section 4.2, the structure of the DM is modified to make the DM domain independent. 

An ontology reasoning component is added to the DM and replaces the domain specific dialogue 
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management component in previous approaches. It is able to retrieve domain specific knowledge 

from the task ontology. Fig. 4.3.2 illustrates the structure of the modified DM. It includes the 

Generic Dialogue Management and an ontology reasoning component. The ontology reasoning 

component is invoked by the Generic DM. In Fig. 4.3.2, only the task ontology is specific to a 

certain task; and all other components are independent of specific tasks or domains.  

Fig. 4.3.3 illustrates the dialogue management process of a dialogue system based on the 

modified dialogue manager. In the beginning of the dialogue, the user can select from a list of 

tasks available in a dialogue system. Once the user selects a particular task, the dialogue system 

will find the root of the task, the composite task. Then the system will start to go through the task 

tree till the entire task is completed.  

 

 

Figure 4.3.3 the dialogue management process in the modified DM 

 

User selects from a list of tasks

Find Composite Task

START

End

Loop: 
Find Next Basic Task
Perform Basic Task
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Fig. 4.3.4 is the pseudo code for the loop of finding next basic task and performing the 

basic task listed on Fig. 4.3.3.  

 

 

Figure 4.3.4 pseudo code of the dialogue management process 

  

The task tree is constructed in a way that a subtask will be visited at most once. If the 

subtask is a basic task, then its object property Next will be visited once and each of its two data 

properties – hasUseraction and hasSystemOperation will be expanded once. Visiting an object 

property means to find the subtask which is listed as the value of the property. Expanding a data 

property means to open the value and deliver to the user in an output modal. If the subtask is a 
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unit task or composite task, then the object property First will be visited once. Then we can 

evaluate the dialogue management process as follows. 

Let   : the number of Unit Task 

   : the number of Basic Task 

   :  expense visiting an object property 

   :  expense expanding a data property 

Then  Total amount of work done: 

 Before loop: a constant amount   

 After loop: a constant amount   

 Each time go through a loop: 

  for basic task:        

  for unit task:    

 In worst case, all subtasks will be visited once in the loop, so: 

 Total amount of time: (          +        )     ) 

 Time complexity: O (     ) 

Let             ) 

Then Time complexity: O ( ) 

So the time complexity is O ( ) in which   is the maximum of the total number of the basic 

tasks or the unit tasks within a task.  
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CHAPTER 5   IMPLEMENTATION 

 

The system implementation includes the creation of the abstract task ontology and the 

development of the dialogue system based on the proposed method. A task ontology can be 

created through the ontology instantiation of this abstract ontology when the dialogue system is 

applied to a particular task.  

 

5.1 ABSTRACT TASK ONTOLOGY 

Based on the proposed task ontology model described in Section 4.2, an abstract task ontology is 

created using Protégé 4.1. In the implementation, only 3 levels of task decomposition are 

considered. For more complicated tasks, the abstract task ontology can be easily expanded to 

contain multiple levels of unit tasks, such as UnitTask1, UnitTask2, etc. The relationships 

between different levels of unit tasks and between other classes are the same with those between 

composite tasks and unit tasks. All rules and restrictions in the ontology stay unchanged as well. 

Fig. 5.1.1 presents all concepts or classes developed in the task ontology, including Agent, 

Choice, Object, Status, SystemOperation, Task and UserAction. The subclasses of Task, such as 

CompositeTask, UnitTask and BasicTask are also included in the model.  
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Figure 5.1.1 Classes developed in the task ontology model 

  

All object properties which represent the various relationships among concepts created in 

the task ontology model are shown in Fig. 5.1.2. They include First, Next, DecomposeInto, 

Performs, PerformedBy, Uses and UsedBy.  The characteristics for each property are also built 

in the model, such as asymmetric, irreflexive, etc. 
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Figure 5.1.2 Object properties developed in the task ontology model 

  

The data type properties are adopted in the task ontology model as well, including 

hasChoice, hasStatus, hasSystemOperation and UserAction. See Fig. 5.1.3. Constraints on this 

type of properties are set up in the model. For example, the Domain of hasUserAction is 

BasicTask.  



41 
 

 

Figure 5.1.3 Data properties developed in the task ontology model 

 

 This abstract task ontology can be instantiated to task ontology for specific tasks. In this 

paper, ontologies for two tasks from different domains are constructed based on the abstract task 

ontology. One task is the book borrowing service; and another is the online train ticket booking. 

The Section 6.1 and 6.2 describe the two cases in details respectively.  
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5.2 THE DOMAIN INDEPENDENT DIALOGUE SYSTEM 

A domain independent dialogue system is developed based on proposed method described in 

Chapter 4.  The system consists of the proposed dialogue manager, an Input/Output controller 

and a dialogue interface. The dialogue manager connects with the dialogue interface via the 

Input/Output controller.  Fig. 5.21 illustrates the architecture of the dialogue system implemented 

in this thesis. 

 

Generic 
Dialogue 

Management

Ontology 
Reasoning 

Component

Dialogue Interface

Input/Output Controller

Task Ontology

Dialogue Manager  

Figure 5.2.1 Architecture of the dialogue system 

 

The dialogue manager adopts the frame-based dialogue management approach. It is used 

to control the interactions with human users to instruct users to achieve their goal. The dialogue 

process is modeled as a set of slot-filling tasks. The dialogue manager gathers predetermined 

information from user responses to fill in the slots. The predetermined information is stored in 
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the task ontology. The utterances generated by the dialogue manager, the slots and their value 

options are all retrieved from the task ontology. The dialogue manager controls the dialogue 

process based on information gathered from users’ responses and the ontology reasoning to 

guide users to complete a specific task. 

The dialogue interface is text-based which displays utterances generated by the dialogue 

system and provides one slot for users to fill in. The utterances are information about what users 

should do and what the tool he works with is going to do. The tool can be a machine or an 

application that helps users to accomplish a specific task, such as purchasing a train ticket or 

borrowing a book. In the train ticket purchasing task, the goal is to buy a ticket and the online 

train ticket booking program is the tool for users to achieve this goal. Typical system utterances 

will include the following two parts: one is the action that users are expected to take to get a 

particular subtask done; and another is the operation that the tool – in this case, the online train 

ticket booking program will have. For example, the dialogue system may display information 

like “You should enter the travel information including departure station, arrival station, 

departure date and returning date into the booking form” to instruct what users are expected to do 

in a certain step. In the meantime the information on the behaviour of booking program is also 

displayed to inform users what is going on in the booking program side. In this case, it would be 

“The system will search train schedules to find trains meeting your travel plan. After that, all 

available trains will be displayed for you to select”. Once user has done a particular subtask 

under the dialogue system’s instruction, he may fill in “Next” to move forward to get instructions 

on next step towards his goal.  

If there are options for users, all possible choices will be displayed on the interface for 

users to choose from. Users are expected to select one of them to fill in the slot. According to 
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users’ selection, the dialogue system will take the appropriate route to guide users to get the task 

done. In the train ticket booking example, the dialogue system will display the options of “Round 

Trip” and “One Way” for users to select the type of ticket he wants to buy. So the interface will 

display the utterance “What kind of ticket do you want to buy? Please select one from the 

following option: “Round Trip” or “One Way””. And users are expected to input either “Round 

Trip” or “One Way” to fill in the slot. Then the users’ response is passed to the Input/ Output 

controller which sends the information to the DM. The DM will determine the next step based on 

user response as well as information retrieved from the task ontology.  

The information of all utterances, slots and options for users comes from the task 

ontology for a specific task. The reasoning component of the dialogue manager will retrieve the 

appropriate information from the task ontology and control the dialogue process with users till 

the task is completed. The information generated by the dialogue manager will be sent to the 

Input/Output controller which allows the text message displayed on the dialogue interface. 

Different tasks will have different task ontology. Thus the dialogue system is capable of guiding 

users to complete various tasks from different domains through interactions with human users.  

The dialogue system is developed in Java 6.0 using eclipse IDE 3.7. The OWL API for 

OWL 2 and Pellet - the OWL 2 reasoner for Java are used in the implementation as well. Fig. 

5.2.2 is the flowchart of the dialogue system. Currently the task decomposition in the proposed 

task ontology model contains three levels. For more complicated tasks, extra levels can be 

introduced to the task decomposition. In that case, the model can be extended to more than three 

subclasses to the task class easily. Also, the dialogue system readily supports as many levels as 

needed. 
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Figure 5.2.2 Flowchart of the dialogue system 
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The Java GUI tool, WindowBuilder is adopted to create the dialogue interface with users. 

Fig 5.2.3 shows the interface of the dialogue system.  

 

Figure 5.2.3 Dialogue interface of the dialogue system 

 

The institution logo and project name can be added and displayed on the top of the 

window.  

The middle of the interface is a window used to display system utterances to users. The 

message is mainly retrieved from the task ontology for a certain task. If the size of the message is 

too large to display in one window, the scroll bar will show up on the right side allowing users to 

scroll down and up. 

Under this window, there is a smaller box for users to fill in their response. Whenever the 

dialogue system displays options to users, it will be set editable. And the focus of the interface is 
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also set on that box. Here two methods are provided: by number or by the name of the task. The 

input text is set as case insensitive which is convenient to users.  If users enter an invalid answer, 

an error message will be displayed besides the box to remind users to re-enter a valid one.  

In the bottom of the interface, there are four buttons: Previous, Next, Start Over and Exit 

for users to choose what they want. 

a) The Previous button allows users to go back to one or more steps as they like. 

b) The Next is the button for users to continue a task.  

c) Start Over: allowing users to start from the beginning at any time.  

d) Exit: users can exit any time.  

When necessary, some buttons are disabled. For example, in Fig. 5.2.3, the “Previous”  

button is disabled in this dialogue window because there is no previous step for current 

interaction. These features facilitate users to interact with the dialogue system effectively. 
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CHAPTER 6    CASE STUDY 

 

The dialogue system implemented in Chapter 5 is experimented with two tasks from different 

domains, one is the book borrowing service; and another is the online train ticket booking. Two 

task ontologies are constructed for them respectively through ontology instantiation of the 

abstract task ontology created in Section 5.1. The task ontologies provide knowledge about each 

task to the dialogue system, so the system can be used for the two tasks without any modification. 

In other words, the dialogue system is task or domain independent. The following sections, 

Section 6.1 and 6.2 describe the two cases in details respectively. 

 

6.1 BOOK BORROWING SERVICE 

6.1.1 TASK ONTOLOGY FOR BOOK BORROWING SERVICE 

 

BorrowBook

CheckUserInfo CheckBookInfo CheckOutBook

Scan
Barcode

Check
BookStatus

Scan
UserCard

Check
UserStatus

Select
LoanType

Confirm
BorrowInfo

Complete
Transaction

CompositeTask

UnitTask

BasicTask

 

Figure 6.1.1.1 Task decomposition tree for book borrowing service 

 

The task of book borrowing service can be decomposed into a set of subtasks of different 

hierarchical level. Fig. 6.1.1.1 illustrates the task decomposition hierarchy of the book borrowing 

service in a library. At the top level, BorrowBook is a CompositeTask. In the task ontology for 
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the book borrowing service, BorrowBook is an instance (or a member in Protégé) of the subclass 

CompositeTask. It can be decomposed into three UnitTasks, including CheckUserInfo, 

CheckBookInfo and CheckOutBook which are instances of the subclass UnitTask. Among these 

UnitTasks, CheckUserInfo is further decomposed into two BasicTasks: ScanUserCard and 

CheckUserStatus; CheckBookInfo is decomposed into ScanBarcode and CheckBookStatus; and 

CheckOutBook is decomposed into SelectLoanType, ConfirmBorrowInfo and 

CompleteTransaction. All the seven BasicTasks are in the bottom of the task hierarchy and built 

as the instances of the BasicTask in the task ontology.  

 

Figure 6.1.1.2 Instance of CompositeTask and its properties 
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Fig. 6.1.1.2 presents the instance of the CompositeTask, BorrowBook and its 

relationships with other instances. The relationships are represented as object properties in the 

ontology for this specific task, including: 

DecomposeInto CheckUserInfo 

DecomposeInto CheckBookInfo 

DecomposeInto CheckOutBook 

First CheckUserInfo 

 

Figure 6.1.1.3 Instances of UnitTask and their properties 
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Fig. 6.1.1.3 displays the instances of the UnitTask, including CheckUserInfo, 

CheckBookInfo and CheckOutBook. They have their own object properties. For example, the 

CheckOutBook has the following object properties: 

 DecomposeIntoSelectLoanType 

 DecomposeIntoConfirmBorrowInfo 

 DecomposeIntoCompleteTransaction 

 First SelectLoanType 

 

 

Figure 6.1.1.4 BasicTask and their properties 
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Instances of BasicTask and their properties are displayed in Fig. 6.1.1.4.  Take 

SelectLoanType as example. It contains both object and data properties. The object property is: 

 Next ConfirmBorrowInfo 

The data properties include: 

 hasUserAction “User should a loan period for the book if applicable” 

 hasSystemOperation “System will provide possible loan types and ask users to select a  

loan period” 

Those rules and constraints built in the abstract ontology model apply to this ontology 

automatically. The instantiated ontology for the book borrowing service is used in the dialogue 

system created in Chapter 5 to instruct users to complete the book borrowing task through 

interactions between the dialogue system and users. 
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6.1.2 DIALOGUE PROCESS FOR THE BOOK BORROWING SERVICE 

Once the book borrowing service is selected by users, the dialogue system starts retrieving 

information from the task ontology for this task and gathering information from users through 

interaction with them. Fig. 6.1.2.1 shows the dialogue interface for the subtask “Scan User Card”. 

It is the first basic task that instructs users’ action and explains the system operation. 

 

 

Figure 6.1.2.1 Dialogue interface for the subtask “Scan User Card” 

 

In the large display window, the task name “Scan User Card” comes from the current 

subtask name set up in the book borrowing task ontology. The instruction for users: “User should 

put his card under the scanner of the self-checkout machine” and the explanation of system 
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operations “The self-checkout machine waits for the user to scan his/her card” are the values of 

the data properties for this subtask stored in the book borrowing task ontology. When necessary, 

the library which adopts the dialogue system can change the data property value via the ontology 

editor directly. Also if there is a policy change or other changes affecting the subtasks for this 

service, the library can modified the task ontology themselves. There is no need for asking 

dialogue system developers to modify the code.  

Because users do not expect to enter an answer in this step, the box for users filling in 

their response is disabled. Instead, the “Next” is focused which is the button usually selected by a 

user in this step. Other buttons are enabled. Users can go back to the last step or more previous 

steps following the buttons. The current task may be interrupted for some reason, so users can 

click on Start Over or Exit at any time. 

Following the instructions by the dialogue system, all basic subtasks for this service will 

be completed, including Check User Status, Scan Book Barcode, Check Book Status, Select 

Loan Type, Confirm Borrow Info and Complete Transaction. When the entire task is completed, 

users have the options to start over or exit from the dialogue system. Fig. 6.1.2.2 is the dialogue 

interface after a task is finished. 
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Figure 6.1.2.2 Dialogue interface after a task is completed 

 

6.2 ONLINE TRAIN TICKET BOOKING SERVICE 

6.2.1 TASK ONTOLOGY FOR ONLINE TRAIN TICKET BOOKING SERVICE 

Compared with the book borrowing task in Section 6.1, the online train ticket booking task is 

more complicated. It contains not only sequential subtasks but also alternative subtasks. For 

alternative subtasks, users can make a choice among all options provided by the system. The 

selection by the users will determine the next subtask. The proposed task ontology model support 

this types of subtasks using the class Choice and the data property hasChoice. 
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TrainTicketBooking

EnterRoundTripTravelInfo

RoundTripTicket

OneWayTicket

SelectRoundTripTrain

EnterOneWayTravelInfo

SelectOneWayTrain

ReviewTicket
ReviewItineray

ConfirmItineray

ContactInfo
LoginProfile

EnterContactInfo

PassengerInfo
EnterPassengerInfo

SelectSeatPreference

MakePayment

SelectPaymentOption

EnterCardInfo

ConfirmTicketBooking

hasChoice

hasChoice

CompositeTask UnitTask BasicTask

RoundTrip

OneWay

HasProfile

NoProfile

 

 

Figure 6.2.1.1 TrainTicketBooking Task Decomposition 

  

Fig. 6.2.1.1 illustrated the task decomposition for the online train ticket booking task as 

follows: 

1) One CompositeTask instance: the TrainTicketBooking 

2) Six UnitTask instances:  

RoundTripTicket 

OneWayTicket 

ReviewTicket 

ContactInfo 

PassengerInfo 
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MakePayment.  

Among them, the RoundTripTicket and OneWayTicket are alternative tasks and which 

should be executed depends on users’ choice 

3) Thirteen BasicTask instances:  

EnterRoundTripTravelInfo 

SelectRoundTripTrain 

EnterOneWayTravelInfo 

SelectOneWayTrain 

ReviewItinerary 

ConfirmItinerary 

LoginProfile 

EnterContactInfo 

EnterPassengerInfo 

SelectSeatPreference 

SelectPaymentOption 

EnterCardInfo 

ConfirmTicketBooking 

These instances compose different UnitTasks. Among them, LoginProfile and 

EnterContactInfo are alternative tasks which will be executed depending on users’ 

selection. 
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Figure 6.2.1.2 CompositeTask in the TrainTicketBooking ontology 

 

Fig. 6.2.1.2 presents the CompositeTask instance and its object properties and data 

property as follows: 

DecomposeInto RoundTripTicket 

DecomposeInto OneWayTicket 

DecomposeInto ReviewTicket 

DecomposeInto ContactInfo 

DecomposeInto PassengerInfo 

DecomposeInto MakePayment 
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First RoundTripTicket 

First OneWayTicket 

 hasChoice “Please select the type of the ticket you want to book: 

RoundTripTicket 

OneWayTicket” 

 There are two First properties in the statements. If there are more than one First 

properties for an instance, the dialogue manager, more specifically the ontology reasoning 

component will check the hasChoice property to see the value of the options and ask users to 

select one from the possible options. The value of these options must be exactly the same with 

the subtasks (instances) they refers to. For other object properties, such as Next, the same rule 

applies. In the example we are discussing, the data property hasChoice contains two options 

“RoundTripTicket” and “OneWayTicket” which indicate the two UnitTask instances. Any of 

them selected by users will be the first subtask in the taskflow for the TrainTicketBooking task. 
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Figure 6.2.1.3 UnitTask instances in the TrainTicketBooking ontology 

 

Fig. 6.2.1.3 shows the UnitTask instances and their properties. Some of them have data 

properties as well as object properties, such as ContactInfo; whereas, others only have object 

properties, such as RoundTripTicket, OneWayTicket, ReviewTicket, PassengerInfo and 

MakePayment. Similar to the hasChoice property in the CompositeTask instance 

TrainTicketBooking, the UnitTask instance ContactInfo contains the options for users to select. 

If the user has a profile in the system already, s/he can choose LoginProfile; otherwise, s/he 

should choose EnterContactInfo to enter his/her contact information to the booking system. 
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Figure 6.2.1.4 BasicTask instances in the TrainTicketBooking ontology 

 

The BasicTask instances and their properties are shown in Fig, 6.2.1.4. They all have the 

data properties of hasUserAction and hasSystemOperation which indicate the action users should 

take and the operations in the system side in a particular BasicTask instance. Except 

ConfirmTicketBooking, all other instances have the object property Next. That is because 

ConfirmTicketBooking is the last subtask for the entire task. 
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6.2.2 DIALOGUE PROCESS FOR THE ONLINE TRAIN TICKET BOOKING SERVICE 

If the online train ticket booking task is selected by users, the dialogue system will retrieve the 

knowledge about this task from the train ticket booking task ontology. Fig. 6.2.2.1 is the dialogue 

interface presented to users for the first subtask in this task. 

 

 

Figure 6.2.2.1 Dialogue interface for the train ticket booking task 

 

In the larger window, two options are provided to users: Round Trip Ticket or One Way 

Ticket. Users can enter the number or the name of the task they want. The next subtask of the 
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dialogue system will be determined by users’ selection. In this example: either Round Trip 

Ticket or One Way Ticket. 

 

 

Figure 6.2.2.2 Dialogue interface for the enter round trip travel info task 

 

 If the round trip ticket is chosen by users, the system will start the subtask on round trip 

booking. The first BasicTask is the EnterRoundTripTravelInfo, so it will show up in the dialogue 

interface (see Fig. 6.2.2.2). Once users have completed this subtask, they should click on Next to 

continue. Then the dialogue system will instruct users to SelectRoundTripTrain which is the 
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subtask following the Enter Round Trip Travel Info. Fig. 6.2.2.3 is the dialogue interface for 

SelectRoundTripTrain. 

 

 

Figure 6.2.2.3 Dialogue interface for the select round trip train task 

 

In the first step, if users select the one way ticket, then the EnterOneWayTravelInfo will 

be displayed on the dialogue interface instead of the EnterRoundTripTravelInfo. Fig. 6.2.2.4 

shows the dialogue interface for the EnterOneWayTravelInfo task. 
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Figure 6.2.2.4 Dialogue interface for the enter one way travel info task 

 

 Following the EnterOneWayTravelInfo, the SelectOneWayTrain will be the next subtask. 

After either SelectRoundTripTrain or SelectOneWayTrain is finished, the ReviewIntinerary will 

be the next subtask to both. Users will see the dialogue interface shown in Fig. 6.2.2.5. 
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Figure 6.2.2.5 Dialogue interface for the review itinerary 

  

 Users can follow the instruction by the dialogue system to complete the entire task. The 

dialogue interface will provide options of Start Over and Exit for users to continue with other 

tasks, to repeat the current task or to exit from the dialogue system.  
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CHAPTER 7    CONCLUSION AND FUTURE WORK 

 

This thesis presents a new approach, the task ontology based dialogue management to achieve 

domain independent dialogue systems. A task ontology model is created combining knowledge 

and methods from the areas of ontology and task modeling. Knowledge about a certain task in a 

domain is modeled in its task ontology through ontology instantiation of the model. The structure 

of the dialogue manager is also modified to contain an ontology reasoning component retrieving 

task specific knowledge from the task ontology. So the task or domain knowledge is separated 

from the development of a dialogue system.  

 The task ontology model has been used to create task ontology for two tasks from 

different domains. Based on the model and the modified dialogue manager, a dialogue system 

has been developed and experimented with the two tasks. The experimentation demonstrates that 

the dialogue system is capable of handling different tasks. In other words, the dialogue system is 

task or domain independent. 

Dialogue systems have been used in many areas but all are limited to specific domains. 

On the other hand, the development and maintenance of a dialogue system is expensive. The 

method developed in this thesis would promote the knowledge reuse and sharing of dialogue 

systems and help reduce the development cost. Future work may investigate methods automating 

the task ontology construction to ease the ontology creation process for various tasks.  
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