
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2012

A Petri-Net Based Approach of Software
Visualization for Software Customization
Vida Sadri
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Sadri, Vida, "A Petri-Net Based Approach of Software Visualization for Software Customization" (2012). Electronic Theses and
Dissertations. 5409.
https://scholar.uwindsor.ca/etd/5409

https://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F5409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/5409?utm_source=scholar.uwindsor.ca%2Fetd%2F5409&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

A Petri-Net Based Approach of Software Visualization for Software
Customization

by

Vida Sadri

A Thesis
Submitted to the Faculty of Graduate Studies

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the
University of Windsor

Windsor, ON, Canada

2012

© 2012 Vida Sadri

A Petri-Net Based Approach of Software Visualization for Software Customization

by

Vida Sadri

APPROVED BY:

__
External Reader

Dr. Gokul Bhandari
Odette School of Business

__
Internal Reader
Dr. Luis Rueda

School of Computer Science

__
Advisors

Dr. Jessica Chen
Dr. Xiaobou Yuan

School of Computer Science

__
Chair of Defense

Dr. Boubakeur Boufama
School of Computer Science

iii

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis has

not been submitted for a higher degree to any other University or Institution.

iv

ABSTRACT

Different from the traditional approach of software development from scratch,

Software Product Line (SPL) allows software customization. When further supported by

Service-Oriented Architecture (SOA), SPL offers unprecedented advantages for reusing

software artifacts in mass customization of software applications, leading to radically

reduced time, cost, and effort of software development. Accordingly, an interactive

dialogue-based system for ontology-based requirement elicitation has been developed

previously, in our research group, by Zhang [19].

This thesis works on enhancement of the prior work by introducing software

visualization to the process of interactive requirement elicitation. A research was

conducted for choosing the most suitable visualization method for the existing text-based

software. For this purpose, a layered structure for SOA visualization with support of Petri

Nets is chosen. Accordingly, this method was implemented and a usability study was

done to validate improvements in comprehension of the end-user in visualized version

comparing to the previous version of requirement elicitation system.

v

DEDICATION

To my beloved parents for their unconditional love and support.

vi

ACKNOWLEDGEMENTS

My ultimate gratitude goes to my supervisors, Dr. Xiaobu Yuan and Dr. Jessica

Chen, for their continuous advise and support throughout my thesis. Their insightful

feedback and instructions made it possible for me to accomplish this work.

I would like to acknowledge Dr. Luis Rueda and Dr. Gokoul Bhandari whose

suggestions and recommendations greatly improved the quality of this work.

My special thanks goes to my parents and my family for their patience and love

they provided to me during all times.

I express my deep appreciation to my friend Navid, for his encouragement,

motivation and moral support he provided during all stages of my higher education. He

made this work so meaningful to me.

Many thanks to my good friends Ahmad Tavakoli and Ali Karaki for their

valuable and helpful ideas on this work.

I would like to thank students of Computer Science and Business departments

who participated in the study of my thesis. I am deeply grateful for the time and effort

they spent on the test.

vii

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY .. iii

ABSTRACT ... iv

DEDICATION ...v

ACKNOWLEDGEMENTS ... vi

LIST OF TABLES ... ix

LIST OF FIGURES ...x

CHAPTER

I. INTRODUCTION ... 1
1.1. Introduction ...1
1.2. Problem Statement ..2
1.3. Contribution ...3
1.4. Structure of the Thesis ...4

II. SOFTWARE CUSTOMIZATION .. 5
2.1. Software Product Line ...5
2.2. Service Oriented Architecture ...6
2.3. Integration ...7
2.4. Requirement Elicitation ...9

III. SOFTWARE VISUALIZATION .. 15
3.1. Software Visualization ..15
3.2. Software visualization techniques analysis17
3.3. Petri-Nets ...20

IV. PROPOSED PETRI-NET BASED SOA VISUALIZATION
METHOD ... 23

4.1. Introduction ...23
4.2. The structure of the proposed method ...24
4.3. Modified Algorithm ..26

V. IMPLEMENTATION AND USABILITY STUDY 32
5.1. Implementation ..32

viii

5.2. Usability Study ..33
5.3.Proposed Usability testing Method .. 37

VI. RESULTS ... 39
6.1. Briefing ..39
6.2. Requested Tasks ..40
6.3. Scores ..42
6.4. Time ...43
6.5. Questionnarie ...44
6.5.1. Learnability ..44
6.5.1.1 Easiness ..44
6.5.1.2 Undrestandability ...45
6.5.2. Efficiency ...47
6.5.3. Error-rate ..48
6.5.4. User Satisfaction ...51
6.6. Necessity ...52
6.7. Problems ..53
6.8. Overall Opinion ...56

VII. CONCLUSION AND FUTURE WORK .. 60
7.1. Conclusion ...60
7.2. Future Work ..61

APPENDICES ... 62
Appendix A ...62

Appendix A1 ..63
Appendix A2 ..64

Appendix B ...65
Appendix B1 ..65
Appendix B2 ..66

REFERENCES ...67

VITA AUCTORIS ...73

ix

LIST OF TABLES

1. Comparison of different workflow visualization techniques19

2. Distribution of participants in the test according to their academic level39

3. Statistical parameters for the sample populations ..42

4. Easiness and understanding points for different groups ..47

5. Average results for Text-based and visualized interfaces57

6. Average results for all measured parameters for Comp. and Business students ...58

x

LIST OF FIGURES

1. Requirement model instantiated with book locating service14

2. An example of a Petri net ...21

3. Different routings in Petri nets ...22

4. Architecture of the modified system ..24

5. The text-based user interface ...26

6. The enhanced text-based system with the graphical interface27

7. The modified pseudo code of the system ...30

8. Comparison of average Easiness point to average Score45

9. Comparison of Easiness point to the estimated Understandability point46

10. Comparison of Efficiency between different groups ...48

11. Comparison of users’ actual error-rate with claimed relation of users’ error-

making and interface ..50

12. User overall satisfaction of the system for different groups51

13. Necessity (percentage) of visualization according to users (graphical group)53

14. Percentage of users that acknowledged problems (a, b and c) for text-based

system ..54

15. Percentage of users that acknowledged problems (a, b and c) for graphical

system ...55

16. Overall participants’ ideas about the whole idea of SDP and SPL57

1

CHAPTER I

INTRODUCTION

1.1. Introduction

In software development process there is a need to cut down the cost, effort and

market of software products. The size and complexity of software systems are increasing

day by day and it is essential that the developed software be flexible enough to adapt to

market changes and new technologies [1]. Therefore, improving reusability and hence

quality will increase the productivity of software teams and reduce the time and cost to

market new software products. Product assembly from components, reducing labour

intensive tasks with automation setting up the software product lines and supply chains

and standardizing the interfaces, architectures and processes can bring the software

industry to a much higher productivity [2]. This can be done by Software Product Line,

which produces a set of distinct but similar products, and Service Oriented Architecture,

which solve the integration and interoperability problems, together. They both promise

the development of flexible, cost-effective and reusable software systems [3].

On the other hand, to make the process of software development less complex and

more understandable for software developers it is essential to use some tools for

supporting the tasks which are included in software development process specially for the

most curtail phase which is the requirement elicitation phase. One possible aspect for

such a support is Software Visualization (SV). Recently so many software visualization

techniques and tools are available but it is critical to choose the most suitable one for a

suitable activity in software development process to do the most effective visualization

for a specific software system [4].

2

1.2. Problem Statement

It is discussed in many papers [1, 2, 5, 6, 7], that when SOA concept is used in

Software Product Line, it will make a mass customization of software application by

reusing software artefacts which can be very beneficial, specially time-wise and effort-

wise. Based on this fact, beforehand, an interactive text-based dialogue interface has been

developed in our research group [19], which interacts with the user who wants to do

software development, in natural language and does the requirement elicitation process

automatically based on the ontology behind it. The ontology represents the knowledge of

the product features as well as their business logic. It represents the commonalities and

variabilities among a group of related artefacts and in this way it directs the dialogue

system to perform requirement elicitation [19].

The problem here is, the mentioned idea seems beneficial in theory but it is not

proved that its usage in industry can be advantageous or not. It is needed to be evaluated

in practice on different real users, to be formally certified as an applicable, usable

technique.

On the other hand, the text-based dialogue system can be enhanced. The software

developer needs to have an overall overview of the system that the text-based system

lacks in having this feature. Also, the user needs to know what steps are already done and

what steps are left. Reading all long comments on the dialogue system and understating

all of them and keeping them all in mind in order to do software development can be a

tough and time consuming job. This process will need several activities such as reading,

reasoning and constructing mental models. Consequently, there is a need for a more

optimal solution.

As described earlier, software visualization can be noticeably beneficial when it is

3

used in different phases of the process of software development. Based on [31] graphical

representation of information comparing to other presentation methods consumes user’s

information-processing capabilities much more efficiently. If the graphic presentation is

used properly, it reduces the need for mental information recording and reorganization

and also it decreases the memory load. On the other hand, the interaction between human

and the machine would be much faster and simpler and on the whole appealing for the

users [31]. Therefore, different software visualization techniques should be studied and

the best one for this type of system should be chosen. The chosen, proposed method can

be implemented as an additional user-interface.

At the end, another evaluation should be conducted in order to justify the usability

of the visualized part of the project to prove if it really enhances the comprehension of

the system for the users and even advances in usability factors which are, learnability,

efficiency, error rate and user satisfaction should be investigated.

1.3. Contribution

This thesis, presents a visualized user-interface for the implemented dialogue-

based, interactive requirement elicitation system, with the purpose of enhancing the

understanding of the user of the dialogue system and reducing time, cost and effort spent

on working with the previous system and in overall increasing the usability of the system.

Because both dynamic flow and concurrency of the distributed services was aimed to be

illustrated in the graphical visualization, a two layered interface which shows both

services in one layer and the workflow of the system in another system have been chosen.

For visualizing the workflow layer, Petri-net, which is a very well known formalism for

modeling the behavior of concurrent systems [25], has been decided to be used as the

4

most suitable technique for designing the visualization of this type of system.

Both, previous text-based system and the proposed, implemented system with the

graphical user interface should be evaluated for justification of, first of all, if the

ontology-based requirement elicitation approach is acceptable by real users and second, if

the graphical user interface improves the usability of the previous text-based system.

Therefore, a usability study will be conducted at the end on real users to see if all the

expected benefits will be met or not.

1.4. Structure Of the Thesis

The structure of the remainder of this thesis is as follows. Chapter II is about

Software Customization, which SPL and SOA concepts will be discussed in detain in this

chapter. In Chapter III, Software Visualization will be discussed. Chapter IV will report

the proposed Petri Net visualization method followed by implantation and usability

testing and the results of the thesis in chapter V. The final chapter of this thesis puts this

project into perspective, by discussing the major results and their impact, and by

providing an outlook into future work.

5

CHAPTER II

SOFTWARE CUSTOMIZATION

2.1. Software Product Line

Traditionally, the software used to be applied on products was very small and

simple. In order to modify and produce a new product, it used to be much easier and

cheaper to copy, transport or replace the software than the hardware. The main focus of

generating a product was on the hardware and software did not used to play a key role in

product generation [8].

However, now, software plays a very critical role in any system. The reason for

that is the flexibility of software in modifying the system and also software’s strength in

adding a new functionality to the system, which perhaps it would be difficult to be

performed without it and only by means of modifying the hardware. Therefore, in order

to make the system production’s process much more efficient, the concept of Software

Product Line Engineering will be addressed [8].

Software Product line is a paradigm to develop software applications and software

products, by building reusable parts and reusing them. For this purpose mass

customization is being used which means large production of goods with taking into

account the customer’s individual requirements. For this purpose, we should focus on

commonalities and differences in the applications (in terms of requirements, architecture,

components and test artifacts) of the product line to be modeled in a common way [8]. By

using SPL, some advantages can be gained such as reduction of development cost and

time, enhancement of quality, coping with evolution and complexity and etc [8].

Software Product Line Engineering Paradigm consists of two processes: Domain

6

Engineering and Application Engineering.

Domain Engineering establishes a platform and defines commonalities and

variabilities of the product line. Our main focus in this thesis is on domain engineering

process [8].

Application Engineering derives the application from the platform, which is built

by domain engineering [8].

Although lots of research has been conducted on benefits of using Software

Product Lines for software development and how to scope and define and develop

product lines but only few approaches and tools are available for product derivation and

the way utilize the product line [9].

 Another concept that currently gets a lot of attention in researches and in many

papers is brought with the concept of SPL is Service Oriented Architecture. In some

research papers [1, 2, 5, 6, 7] it is discussed about combining SPL and SOA together to

improve the practical value of SPL, to make the software development process more

efficient and to improve the quality of the developed software. It is believed that this

combination can decrease development costs and effort, improve time to market,

application customized to specific customers or market segment needs and competitive

advantages [1]. The reasons for these claims will be discussed later.

2.2. Service Oriented Architecture

“Service Oriented Architecture is an information technology architectural

approach that supports the creation of business processes from functional units defined as

services” [10].

Services are modules of business or application functionality. SOA consists of

7

services, which are shared and reusable on an IT network and they communicate with

each other. This communication can either be held by data passing between services or

by coordination of two or more services for doing a common activity [11].

The basic SOA is based on interaction between three software agents, which are

called service provider, service consumer and service registry. The three operations,

which are being conducted in this architecture, are find, bind and publish. Service

provider develops and publishes services’ descriptions and their access information in

service registry. Service requester tries to find the most suitable service in the service

registry and by means of available access information in service registry, will bind the

required service to the service provider to invoke required services [12]. SOA is both a

business strategy and a software architectural principle [39].

Service Oriented Architecture is a rapid, low cost and easy composition of

distributed applications, which is the best paradigm to minimize business environment

complexity and maximize the productivity [6].

The advantages of service orientation are loose coupling, abstraction and

reusability of business functionalities [13].

2.3. Integration

However, SOA lacks in supporting high customization and systematic planned

reuse. It means that it is possible to use certain services for software development but if

any changes happen to the order or participants of service composition services, which

are not designed to be highly customizable and reusable, would not support variability.

Thus SPL engineering, which basically has the principle of variability, customization and

systematic planned reuse, can be used to aid SOA for better functionality and achieve

8

these benefits [1]. Furthermore, the integration of SPL and SOA concepts give the ability

of reusing existing services instead of continuously developing them from scratch [44].

As a conclusion for this part the concepts of SPL and SOA are in no way mutually

exclusive and where they differ they act as each other’s complement [2].

9

2.4. Requirement Elicitation

Traditionally the process of software development used to have little or no

dependency on business processes. Programmers used to sit and write a code, which is

supposed to be useful. But this method will not be useful for the larger and more complex

systems. Therefore the system life cycle has been broken into smaller parts, which are

called phases. Requirement engineering is the earliest phase in this process, which is

typically proceeded by business planning [14].

“Requirements Engineering (RE) is the systematic process of developing

requirements through an iterative cooperative process of analyzing a problem,

documenting the resulting observations in a variety of representation formats, and

checking the accuracy of the understanding gained.” [15].

One of the essential tasks of RE during software engineering is Requirement

Elicitation. Researches show that a major cause of problems in software projects is

inadequate requirement engineering [8]. Consequently, the basic prerequisite of software

product line, which is a software developments paradigm, is requirement elicitation

process, which shows the commonalities and differences of the requirements [8].

There are different techniques that can be used for requirement elicitation. These

techniques are either conversational which is mainly conducted by interviews with two or

more people, observational which can be done by observing people when they are

carrying out their routine job, analytic which means exploring existing documentation or

knowledge gained from either conversation or observation and synthetic which is

combining conversation, observation and analytic methods into a single method. In

practice these techniques are not adequately applicable [16].

10

In [17] it is mentioned that useful, useable and desirable software products are

created using interaction design. Software developers do not benefit from interaction

design though. The tools that software developers use for developing are insufficient and

not appealing for them. Although the importance of using Human-Computer Interaction

(HCI) concept in Software Development Process (SDP) is not very clear for many

software developers, HCI experts have been tried to show that the integration between

these two, can cause better user satisfaction derived from a user-centered SDP [18].

However, conducting an interactive software engineering paradigm is still an issue.

One possible idea is to take advantage of both SOA and SPL concepts. SOA can

be used in order to makes it easier for the software engineers by introducing services as

loosely coupled software functionalities eliminating the lower-level complexity. On the

other hand SPL is useful for managing the variable software engineering. In interactive

software engineering, machines can be used to guide the users to select reusable software

assets and implementing the candidate application by composing the ordered services

[19].

The previous thesis from the same research group, which has been conducted by

Zhang [19], is titled as “An Interactive Approach of Ontology-Based Requirement

Elicitation”. In that project a requirement elicitation approach has been proposed for

SOA-based SPL engineering as a programming model for realizing the interactive

requirement engineering [19].

The proposed interactive model is a dialogue-based system, which interacts with

users in a natural language. The way dialogue system works is, it extracts and analyses

the expressions produce by human-beings users in order to accomplish a task and

11

generates an expression in a natural langue for the user accordingly. Therefore, dialogue

system can be a convenient way for human-machine interaction.

In the previous proposed dialogue system, slot-filling tasks is considered for the

requirement elicitation process, in which the user knows about the goals and has the

information about doing the task. These tasks will be done based on knowledge base of

the dialogue system. It is claimed in the previous proposed dialogue system that

ontology-based requirement engineering is the most popular technique among all the

other knowledge-driven requirement engineering techniques. Ontology represents the

common knowledge within a domain. It means that it provides shared vocabulary to

construct the concepts, objects and their properties and relations of a domain or a task,

which can cause common understanding of the structure of information between people

or software agents [40]. By using ontology, the common concepts of a domain can be

defined by experts and the knowledge can be used by people with any background and

without professional training [19].

To develop ontology, the concepts in the domain should be defined, and a

hierarchical order should be arranged between them. The slots and the allowed clauses

for those slots also should be defined. At the end the instances and the values for slots of

instances should be filled [41].

The model developed in the previous project, integrates the requirement

engineering knowledge with service-oriented knowledge. Since SOA encapsulates

application functionalities into loosely coupled services, software applications can be

implemented by discovering, composing and invoking services in SOA. The ontology of

services makes automatic service discovery and composition possible [42]. In ontology

12

there exists a class called ServiceProfile, which contains the characteristics of services

and is used to match with the client’s requests. It happens in this way that for the reason

of discovering services, the ServiceProfile of the requestor automatically will be matched

with the provider’s ServiceProfile through semantic capability matching [43] and if the

matching succeeds the desired services are found.

In the domain of requirement elicitation the requirements can be classified into

three categories of function, quality and softgoal. Each of these categories have different

roles in the system and also for all of them another factor called rank is defined which is

needed to direct the requirement elicitation process and is expressed in the ontology

model. Functions are the functionalities in the system that the user can order. Quality is a

non-functional constraint that imposed on a function. Softgoals are non-functional

constraints impose on the whole system environment. In between each of these three

types of requirements, some relationships exist such as generalize, decompose, rely,

contradict, associate, hasRank and invalid. These relationships will be discussed briefly

as follows [19]:

• Generalize relationship is defined to show that an instance of function, quality and

Softgoal is also an instance of requirement.

• When requirement ! decomposes to y, y is a less complex requirement of the

same type as x.

• Requirement x relies on requirement y it means that realization x relies on

implementation of y.

• When requirement x and requirement y contradict it means they are not supposed

to be realized with each other in the product software at the same time.

13

• Function x associates with quality y.

• HasRank relationship shows that requirement x has a unique rank r.

• Invalid relation ship shows that there is an invalid relationship between

requirements x and y.

For instantiating the ontology model, first all the these relationships should be

established between the available requirements and the following procedure will show

the instantiation of the ontology [19]:

1. The main functions which are the roots of the decomposition tree will be

identified

2. If any children of the root contribute to the composition with their parent, they

should be decomposed by the Decompose relationship and if the children of

children are also decomposable the same story should be repeated on them till

there is no composition between parents and children.

3. All the quality constraints should be found and the associate relationship

between children and the corresponding function should be established

4. Sofgoals should be identified and decomposed.

5. Rely and contradict relationships should be established

6. A rank should be assigned to each of the requirements based on their

importance.

Based on what has been discussed a graph as Figure 2.1 will be produced.

14

Figure 2.1. Requirement model instantiated with book locating service [19]

The way the interactive requirement elicitation works is a follows:

The requirements will be offered to the user one by one based on the rank is assigned to

them and the user should choose from them. If the requirement is essential it will be

picked automatically and regardless user’s opinion. The functions will be evaluated first

and after that all the qualities and evaluation of softgoals will be followed. All the

requirements will be met by the dialogue system. If the user decides to drop a

requirement the requirement which has the rely relation ship with that requirement will

be dropped as well. If a requirement decided to be picked by the user and another

requirement has the contradict relationship with that requirement will be dropped and the

requirement with the rely relationship will be picked as well [19].

15

CHAPTER III

SOFTWARE VISUALIZATION

3.1. Software Visualization

Software visualization means providing the image of existing software using

visual objects. Software visualization might visualize different aspects of the software,

such as software structure, components and even the runtime behavior of the software. It

is proven that appropriate visualization can significantly reduce the effort spent on

different phases of software development. By means of visualization, developers and

stakeholders can obtain an overall point of view of the software structure, software logic

or explain and communicate with the development process [4]. Generally, software

visualization is mainly used for program behavior exhibition, logical debugging and

performance debugging but it fundamentally is concerned with software comprehension

[20]. By providing a good graphical representation in order to visualize the software, a

better user understanding of the system can be more promising than textual representation

of the software [21].

By graphical presentation of information the capabilities of user’s information

processing would be utilized much more effectively than other presentation methods. If a

suitable graphical representation tool is chosen properly, there would be less need for

perceptual and mental information recording and it would reduces the memory loads. By

providing graphical interfaces, there would be a faster information transfer between

computer and people. Because it has been proven that symbols can be recognized and

classified faster and more precise than text by users. Also, because of its simplicity,

graphics will remain in casual users’ minds much easier. It also gives a better feeling of

16

control to users when they can see objects on the screen. In overall graphical

visualization can provide so many other benefits faster learning, faster use and problem

solving, more charming and etc. [31].

There are so many software visualization tools and techniques available [4].

Visualization techniques consist of collection of elements such as points, lines, shapes,

texts and textures which each of these elements illustrates an entity or an attribute from a

dataset, which is going to be visualized. In some cases more than one visualization

technique can be applied for a system [22].

Software visualization techniques can be categorized from motion perspective

into two groups of static and dynamic visualization. An example of static visualization is

view of the source code with colors [20]. Dynamic visualization is based on information

from the analysis of execution of a program [22] and the data generated at the runtime

such as data flow or control flow [20].

With regard to dimension, visualization can have either two or three dimensions.

Two-dimensional SV tools mainly involve graph or treelike representations, which may

contain many nodes and arcs [23]. For some systems with too much information to be

visualized, using two-dimensional technique may cause confusion. Therefore, in some

papers the need of extra spatial dimension is suggested, which may make it more possible

for the designer to describe more aspects of the system [23].

To choose the best visualization technique for the existing software, first of all,

the reason and goal of the visualization should be clear. Then the group of users and their

level of knowledge and experience with computer systems should be defined. Also, all

the existing objects and elements in the system and all the relationships between them

17

should be detected and it should be decided that what aspects of the system are going to

be presented. The usages and limitations of the existing system, which is going to be

visualized, should also be investigated [20]. On the other hand the current software

visualization techniques need to be evaluated. At the end the technique that mostly meet

the requirements of the system will be chosen and would be implemented.

3.2. Software Visualization Techniques Analysis

The main reason for this visualization is to make the text-based system

comprehensible for users. In this case, users would spend less time to have a more clear

and precise point of view of the system. It will happen in this way that instead of reading

the comments and memorizing the structure of the system, users will see the flow of the

system dynamically while working with the text-based system and have an overview of

the system in a big scale in front of them. The dialogue-based software is used in

requirement elicitation phase of software development process. Therefore the main group

of people who are going to take advantage of this visualization should be software

developers. However, it is a good idea to make it also easy for people with business

background to use this software in order to develop their required systems by themselves.

In this thesis, the main focus is to limit the visualization to the people with computer

background specially software developers. It is a difficult job to keep both groups with

diverse expectations from the system satisfied. The system has been tried to be designed

in a way that, working with it, be as easy as possible even for people with no specific

experience in working with computers. Usability testing will validate how useable the

system is. It will be discussed later.

18

Furthermore, since the system is SOA-based in many papers [1, 27, 28, 10, 29] it

is discussed that the appropriate approach for SOA visualization is a layered approach

because the concept of SOA has a layered structure. It is one of the SOA’s advantages

that multiple perspectives within an organization can be taken into account [30] since

basically SOA consists of both technical and functional aspects. Functional perspective is

mostly related to business people while technical perspective deals mostly with IT

people. In order to make it understandable for both groups of users, an SOA based system

should be visualized in a way to demonstrate both aspects. In the first layer, the flow of

the activities, which are being processed in the system, can be shown. The next layer can

visualize the services and the relationships between them. Even more layers such as

application layer which shows the implementation of the functionalities provided by

services in the service layer in more details, can be used depending on the level of

abstraction and the type of users [27].

Consequently, the required visualization method should be dynamic in order to

show the flow of the system. Also, because in some parts of the system some services

have the same rank to be evaluated the chosen visualization technique should be able to

show the concurrency and parallelism. Because SOA is used in this system, then it should

provide a layered design for visualization. For choosing the number of dimensions for the

system, both two and three-dimensional can be chosen depending on the level of details

needed to be illustrated. The main objects, which should be visualized, are few tasks such

as Evaluation, Pre-Evaluation, Picking (Yes) and Abandoning (No), that are repeatedly

being performed in the system. There is a flow in the system, which shows the order of

firing of the tasks in the system. This flow should be clearly presented to the users. Also

19

existing services, which are the very requirements that are going to be elicited, should be

depicted.

Many graphical visualization techniques exist that can depict the concept and the

workflow of the interactive requirement elicitation system. As it is mentioned, the

workflow process determines that which tasks need to be executed in which order and by

whom [26]. A list of some of the most popular and suitable techniques, which can be

used to visualize the workflow of software systems along with their advantages and

limitations, is shown in Table 3.1.

 Description Advantages Drawbacks

Flow Chart

Views the paths of a
code fragment [22]

Is a generic concept/
Applicable in every

programing
language [22]

Its representation lies in the
code abstraction [22]/ Does

not need explicit events.
Transition occurs

automatically upon
completion of activities [45].

State diagram

Illustrates process
states and

transitions among
the states [22].

Event-based / Gives
an abstract

description of the
behaviour of the

system [45].

Does not allow arcs to flow
from any number of states to

any number of states [49].

Activity diagram
Shows the overall

flow of control and
objects [46].

Supports iteration
and concurrency

[47].

They can get very big and
incomprehensible [48].

Petri nets

A graphical tool for
description and

analysis of
concurrent

processes [53].

Represents process
features such as

parallelism,
synchronisation and
conflicts [50]/ Very

powerful and
flexible for both

logical and
quantitative

modeling[51]/
Allow arcs to flow

from any number of
states [49]

The model is very flexible
but its flexibility results in
loss of focus for users who
are less interested in formal

analysis [52].

Table 3.1. Comparison of different workflow visualization techniques

20

After reviewing all the mentioned visualization techniques in table 3.1, it can be

concluded that the most suitable technique, which is both appropriate for visualizing the

workflow of the system as well as illustrating concurrency of the tasks, is petri net. In the

rest of this chapter more details about petri-nets will be addressed and different aspects of

applying it as a graphical visualization technique for the text-based system will be

discussed.

3.3. Petri Nets

“Petri nets are used to construct a formal model for a Graphical User Interface

(GUI). Petri net is a type of visual communication tool same as flow chart or other

software development diagrams but the main advantage of petri net is, it can be used to

analyze and simulate the concurrent and dynamic activities of systems” [24].

Petri nets are a very well known formalism technique for demonstrating the

workflow behavior of the system. Petri-net for the first time was presented by C.A.Petri

in 1962 and since then lots of researches focused on petri nets. The ability to clearly

represent the concurrency related concerns like parallelism, synchronization and etc. in a

graphical way is one of the best advantages of petri nets. [25].

Petri-net is a special type of directed graph with the initial marking !! and two

types of nodes called places and transition, which are illustrated by circles and rectangles

respectively. An arc will connect each place to a transition and each transition to a place.

A marking is assigned to each place demonstrates the number of tokens existing in that

place. If marking of a place is zero, it means that place is empty.

There are some rules, which are known as firing rues and are applicable to a petri-

net and change the marking of the petri-net. These rules are as follows:

21

1. A	 transition	 t	 is	 called	 enabled	 when	 there	 is	 at	 least	 one	 token	 in	 each	 input	

place	 p	 of	 t.	

2. An	 enabled	 transition	 t	 will	 be	 fired	 when	 its	 associated	 event	 occurs.	 	

3. The	 firing	 of	 enabled	 transition	 t	 removes	 one	 token	 from	 each	 input	 place	 p	

of	 t	 and	 adds	 one	 token	 to	 each	 output	 place	 p	 of	 t	 [24].	

A petri net is a 3-tuple <P, T, W> where:

• ! = {!1,!2,!3,… ,!"}	 is	 a	 finite	 set	 of	 places	

• ! = {!1, !2, !3,… , !"}	 is	 a	 finite	 set	 of	 transitions	

• ! ⊆ (! × !) ∪ (! × !)	 	 is	 a	 set	 of	 arcs	 from	 a	 place	 to	 a	 transition	 or	 from	 a	

transition	 to	 a	 place	 (flow	 relationship)	 [24].	

Figure 3.1 depicts a sample of Petri net.

Figure 3.1. An example of a Petri net [26]

Several reasons exist for using Petri nets for workflow modeling. Some of these

reasons are as follows:

• Formal semantics: Because the semantic of the Petri net has been defined

formally, a workflow process specified in terms of a petri net has a clear and

precise definition.

22

• Graphical nature: Because Petri net is a graphical language, it is very easy to

understand and very suitable to use as a visualization tool for communicating with

the end-users.

• Expressiveness: Petri net has got all the primitive requirements to model a

workflow process.

• Vendor independent: Petri net is a tool-independent framework for modeling and

analysing processes [26].

Some of the workflow routing constructs, which are needed to be represented in

this system, are sequential routing, parallel routing and conditional routing. In sequential

routing, tasks are executed sequentially if the execution of one task should happen after

execution of the previous task. In parallel routing two tasks should be executed at the

same time or in any order. In conditional routing, one task will be executed between two

or more alternatives. It depends on the decision made by the system [26]. All these

routings are shown in Figure 3.2.

Figure 3.2. Different routings in Petri nets [26]

23

CHAPTER IV

PROPOSED PETRI-NET BASED SOA VISUALIZATION METHOD

4.1. Introduction

Previously, in the prior work was conducted by Zhang [19] a dialogue-based

system was developed. It automates the requirement engineering process. It manages the

knowledge related to SPL requirement engineering by defining an ontology for the

system and also it generates service-oriented outputs for the automation of system

implementation. In this system some questions such as whether the user needs a specific

requirement is generated and the user will respond to these questions. At the end, based

on the services the user has ordered, the system generates a service discovery and

composition.

An improvement that can be applied on this dialogue-based system is graphical

visualization of the behavior of the system. A petri-net based SOA visualization is

presented in this thesis, which visualizes the dialogue-based interactive requirement

elicitation system. It is used for eliciting user’s requirements based on human-machine

interaction. As it is mentioned in the previous chapter, for SOA visualization, layered

approach can be the most promising for better understanding, because, it can illustrate the

structure and the concept of the SOA-based system much more precise.

For this reason, this proposed visualization method shows the

requirements/services on the background as the on the service layer and on the top of

them there is a petri-net, which shows the flow of the dialogue system which is on the

business layer. Because the visualization is decided to be two-dimensional the business

layer and the service layer overlaps. It is also possible to show the dependencies between

24

the services on the service layer. In order to apply this idea, this design should be altered

to a three-dimensional plan instead of a two-dimensional. But there is a risk of

complexity increment that can cause comprehension decline. The goal of this

visualization is to give the user, which is mainly a software developer, a better

understanding of the system under development in order to save time, energy and cost.

4.2. The Structure Of The Proposed Method

The visualization should somehow be included as a part of the dialogue system.

The frame-based dialogue system designed in the previous research consists of four

components: Interface, I/O controller, Dialogue manager and Knowledge base. The

visualization component will be added between interface and I/O controller Figure 4.1.

Figure 4.1. Architecture of the modified system

It works in this way that, the dialogue interface will display the questions

generated by the machine and the user will respond in the provided slot on the interface.

In the previous system the answer used to go directly to the I/O controller to be matched

Dialogue
Interface

 I/O
Controller

 Graphical
Visualization

 Dialogue
Manager

Ontology
Knowledge-
Base

25

with the predetermined answers in the system Figure 4.2. This time in the new system

with graphical user interface, the answer will be passed to the visualization component

and then to the I/O controller. It means that all the inputs and outputs of the system

should pass through the visualization component at least once. If the user’s answer

matches with the saved answer options in the system, it will pass to the next stage which

is the dialogue manager otherwise the user will be asked to enter the correct answer. The

user’s answer will be converted to the format processable for the machine and will be

passed to the dialogue manager. The dialogue manager will consult the ontology

knowledge base and will generate an answer subsequently. This answer will be passed to

the I/O controller and visualization components and the user can read the answer in the

dialogue interface and also observes the changes occur in the system on the graphical

interface. These changes will be shown by token moves and color changes in the petri-net

and background services.

26

Figure 4.2. The text-based user interface [19]

4.3. A Modified Algorithm

As is mentioned in previous section, there will be two user interfaces. One is text-

based and the other one is the graphical representation of what is happening in the

requirement elicitation process. As it is shown in Figure 4.3, all the services, which are

being used as the requirements of the software system, are being shown on the

background of the interface.

27

Figure 4.3. The enhanced text-based system with the graphical interface

This design meets the qualifications of the SOA visualization. Regarding to many

papers [27, 28, 10, 29], a suitable visualization for SOA systems is a layered design,

which in this case the graphical interface, demonstrates a somehow layered approach. It

has got two layers, which are service layer in the background, and business layer on the

top of service layer. Since the design decided to be two-dimensional, therefore these two

layers overlap. To emphasize what is happening in the visualization in the beginning, all

the services and the petri-net on the top are in a faded color. As the dialogue interface

goes on, the color of each service, which is being evaluated by the system or the user will

be highlighted. Based on the petri-net rules whenever a transition’s associated event

occurs that transition will fire. Thus, regarding dialogue manager’s decision a change in

color will happen to the petri-net and each fired transition and its input place and arc and

28

its output arc will turn to blue. In this way, the user can follow up the workflow of the

system and he will know which step he is in. So that, all the traversed path will be in blue

and all the remained paths will be faded. Similarly, all the selected or dropped services,

either by user’s decision or by ontology knowledge base will be turned to green or red

respectively after each picking or abundance. The pseudo code of this system is shown in

Figure 4.4. In this code, all the black lines are from the previous system and blue lines are

related to the enhancement done on the system by graphical visualization.

29

30

Figure 4.4. The modified pseudo code of the system

Here is the explanation of the above algorithm. The following cases may happen in the

system.

1. If requirement R is essential to the system, PerformRequirementSelecting will be

called.

2. Task t will be set as “Pick” in the graphical interface and requirement R in the

service layer will turn green.

3. If the requirement R is non-essential and pre-selected,

PerformRequiremnetSelecting will be called.

4. Tasks t will be labeled as “Evaluate”.

5. If the requirement R is non-essential and pre-dropped,

preformRequirementDropping will be called.

6. If the requirement R is non-essential and has not been pre-selected or pre-

dropped, evaluateRequirement will be called to have R evaluated by users. Then if

users choose to select R, actions for selecting a requirement will be performed.

Otherwise, actions for dropping a requirement will be performed. In the graphical

interface if the answer of the user is yes then task t will be labeled as “Yes” and

requirement R will turn green on the background. If the user drops the

31

requirement, the label of t will be set as “No” and the requirement on the

background will turn red.

• PerformRequirementSelecting contains SelectRequirement R, which makes R to

be selected in the system, PreSelectRequirement to pre-select the requirements

that relies on R, Pre-DropRequirement to pre-drop the requirements that

contradict with R and PreEvaluateRequirement to pre-evaluate the qualities that

associate with requirement R. In the graphical interface if the labeled task is

enabled, a token will move from the input place to the output place of the labeled

task. Then the task and its corresponding input place and arc and output arc will

turn blue.

• performRequirementDropping contains dropRequirement R, which abandons R

and preDrops the requirements that rely on R. In the graphical interface if the

labeled task is enabled, a token will move from the input place to the output place

of the labeled task. Then the task and its corresponding input place and arc and

output arc will turn blue.

32

CHPTER V

IMPLEMENTATION AND USABILITY STUDY

5.1. Implementation

In this thesis graphical interface implementation is done by Java 6.0 on Mac OS X

operating system. For coding and debugging Eclipse IDE (3.6) is being used. A GUI

simulator called “Rakiura JFern” which is a Java-based framework is used to design the

petri-net in the project.

The graphical visualization works along with the modified version of the text-

based system. The user should do software customization by interacting with the

dialogue-based system and checks the flow of the process in the graphical interface. The

whole system is shown in Figure 4.3. As it is illustrated, all the requirements are in some

rectangles in the background of the visualized system and the petri-net is on top of it. As

it is mentioned before, because this visualization is in the category of two-dimensional

visualization, then it seems that these two layers overlay.

Some of the features of the pervious text-based system have been changed based on some

standards in usability engineering. For example, because the answers consist of, “Yes”,

“No” or “OK”, three buttons are added instead of user typing a word in the dialogue

manager, in order to reduce the time and effort for typing and user can accomplish the

task only by clicking by the embedded buttons. Based on [31], button is convenient

operable control, which is used for frequently used actions that are specific to a window.

Another modification to the dialogue-based system was shortening the dialogues.

In [32] it is mentioned that dialogues should be relevant to the users and give them

exactly needed information. The previous dialogue-based system had some information

33

that was mostly suitable for software developers and not ordinary users. Even for

software developers there were so long, repetitive and not very useful. Therefore, the

dialogues were modified in a way to give the users the most brief and important and at

the same time complete information.

The graphical interface is added to the text-based system in order to show the user

the flow of the development process by the text-based system. The basic actions are done

in the ontology of the text-based system are evaluating, pre-evaluating, picking and

selecting or abandoning the services. Actions are represented by transitions. Whenever

each of these actions takes place, the transition related to that task will be fired and the

color of that transition and its input arc and place and its output arc will turn to blue. In

this way the flow of the system will be presented by color changing. Each picked

requirement in the system will turn to green and each abandoned one will turn to red as

soon as the dialogue-based system announces that respectively it has picked or

abandoned that service.

5.2. Usability Study

Usability is a quality characteristic, which evaluates some main attributes during

software development process. It is believed that usability attributes are some accurate

and measureable components of an abstract concept, which is usability [33]. These

attributes are:

• Learnability - How quickly and easily users can perform a productive work with a

new system and how easily they can remember the way the system operates after

not using the system for a while.

• Efficiency – The number of tasks can be done by the user in a specific time

34

interval.

• Reliability – The error rate using the system and time it takes to recover from the

errors.

• Satisfaction – The level of user satisfaction after working with the system.

The way that these attributes can be measured is by observing the users while they

are working with the system and have an interview with them after they accomplish a

task with the system [33].

In issues that human interacts with technology, the analytical research paradigm is

not sufficient. Therefore, empirical studies in software engineering are getting more

acceptable continuously [34]. Usability is about how the system interacts with the user

[35]. Usability engineering defines the final usability level and ensures that the software

under usability testing reaches that level [35].

Usability study can be done by different methods. These methods are divided in

two general groups as empirical and analytical methods. In the projects that human

interacts with machines empirical studies are very useful [34]. On the other hand

analytical studies can give early feedback about the design of the interactive system to

software testers. Analytic method consists of two classes of methods, which are usability

inspection and cognitive walkthroughs. Usability inspection, involves systematic

inspection of the design by means of some factors for a practical, good design.

One example of usability inspection method is heuristic evaluation, which is an

informal usability testing method. In this method based on general-purpose design

guidelines the evaluator, will inspect the proposed design in order to check whether the

usability principals have been followed in the design [36].

35

In [36] nine heuristics are proposed: simple and natural dialogue, speak the user’s

language, minimise user memory load, be consistent; provide feedback; provide clearly

marked exits; provide short cuts; good error messages, and prevent errors.

The other method, which is the cognitive walkthroughs uses more explicit, detailed

procedure and conducts a more work-based usability analysis by testing real users when

faced with the system. It analyses the quality of the interface in directing the user to

accomplish a task by asking three simple questions: Will the correct action be made

sufficiently evident to users?; Will users connect the correct action’s description with

what they are trying to achieve?; Will users interpret the system’s response to the chosen

action correctly?. Whenever there is a “no” answer to any of these questions, problems

may occur [36].

A usability engineering model presented by Gould and Lewis and is called

“famous rules”. These rules are: early focus on users, user participation in the design,

Coordination of the different parts of the interface, empirical user testing and iterative

revision of designs based on the test results [37].

For usability engineering there is a term called usability engineering life cycle,

which means not only how the current interface design is satisfying but also whether it is

modifiable for future interface. This life cycle has three stages as follows:

v Predesign	 stage:	

The main goal of this step is to know about the target user and the task he is going

to accomplish. The more it is done in this stage it would be more cost effective for the

whole testing, because most probably the number of changes that should be done in the

future will be reduced.

1. Early focus on the user: The first step in usability testing is to know about the user

36

and his exact needs from the system. For example, knowing about user’s work

experience, educational level, age, level of computer experience will help to

anticipate user’s problems and consequently will help to design a better interface

with considering user’s learning difficulties. Also, the weaknesses of the current

system should be found out. It should be clear that in the current system what

obstacles the user has on his way to achieve his goals, or what is making the user

to spend lots of time or makes the user uncomfortable with the system.

2. Setting usability goals: In usability testing, the four usability characteristics

should be met. Obviously for each system the priority of each characteristic

would be different. But on the whole because all of them are related, getting a

good result in any of them can be satisfying.

v Design stage:

The main goal of this phase is to reach a useable implementation that is suitable to

be released. For this reason first, based on the usability principles we have to provide a

prototype of the final system and then test the prototyped system with real users to make

sure the design will meet our goal.

3. User participation in the design.

4. Coordination of the different parts of the interface

5. Empirical user testing: This step is very beneficial and it has two basic forms. The

first one, which is mostly quantitative will check if the usability goal has been

achieved or not and the second one which is more qualitative, the reason of the

parts of the interface which are wrong and the amount of their wrongness will be

figured out. Different testing methods can be used in this step like user

37

observation while working with the system and asking questions from the user

about his experience with the system.

6. Iterative revision of design based on the test results: Based on the empirical

testing stage we can redesign the interface and again do the testing on the new

interface.

v Postdesign stage:

This stage is the follow up study of product use in the field. The same task, which

is done in design stage, which was revising the design and retesting it repeatedly, can be

done with the final product with considering the final product as a prototype of future

products [38].

5.3. Proposed Usability Testing Method

Based on what is discussed in usability section of this research, both analytical

and empirical testing has been conducted in this thesis. For analytical testing, a

combination of usability inspection and cognitive walkthroughs methods has been used

along with famous rules, as much as it was applicable and practicable with the available

feasibilities, in different phases of designing the system. The main focus was on meeting

usability attributes as much as possible in the design. The text-based system modified by

applying relevant principles in the heuristic evaluation checklist presented in the previous

section. The most related principles are simple and natural dialogues by shortening the

comments of the dialogue-based system, speaking the user’s language in the dialogues by

changing the dialogues in a way that non-software developers can understand the

concept, minimize the user’s memory load by adding provided requirements, picked

requirements and abandoned requirements titles on top of each section of kept

38

requirements in the dialogue-based interface (also, in the visualized interface, colors are

used for picked and abandoned services in order to reduce users memory load),

consistency already exists in the system by the same messages from the dialogue-based

system, the visualized interface provides feedback for the user by changing the color of

the nodes and keeps the user informed about what is happening in the system. For

usability inspection method, the dialogue-based system has already provided error

messages for the user when he types an irrelevant word or presses an irrelevant button,

for error prevention, dialogue based system gives the user options for the appropriate

response in brackets after each question. Even adding three buttons in the graphical

interface will prevent some typing errors in text-based system and cases less errors

happen. On the other hand the system is designed in a way to responses positively to all

the three questions in cognitive walkthrough method.

For the empirical testing, both systems has been tested by users from both, computer

science and business departments. A questionnaire was provided to the users for asking

their idea about the system for both improving the user interface usability and comparing

the modified system with the previous system. Also, in some special cases the idea of

some of the users with high experience in software development were asked and applied

to the system as much as applicable.

39

Chapter VI

RESULTS

Both text-based system and graphical interface system were subjected to usability

evaluation by two groups of users with varying levels of software development expertise.

The first group included 20 students with very little or no experience in software

development skills from business department. The second group consisted of 50

computer science students. It was assumed that in general, computer science students

have a higher experience in software development than business students, which are not

expected to have any experience with this field.

 Computer
Students

Business
Students

Text-
Based Visualized Text-

Based Visualized

Undergrad (1st yr) 1 1 1 0
Undergrad (2nd yr) 3 6 0 2
Undergrad (3rd yr) 3 1 3 3
Undergrad (4th yr) 2 2 4 6

Master’s 12 12 1 0
PhD 4 2 0 0

Table 6.1 – Distribution of participants in the test according to their academic level

6.1. Briefing

The order of the tasks that participants were asked to do is as follows. First, They

were asked to listen to a brief description of the differences between classic software

development process (SDP) and software product line (SPL), which were symbolized

with a very well known and simple concept of Lego. For this reason, few slides were

provided for the participants, and they were asked to compare the way a city can be built

by basic, cubic Lego pieces to make the city by pre-made Lego accessories such as doors,

windows, characters and vehicles. In the second way, instead of making each unit of the

40

city by putting basic building blocks one by one together, a city can be made using pre-

made pieces. This concept can be generalized to the concept of classic Software

Development Process versus Software Product Line. The users were explained that SDP

is like building a city with basic Lego pieces because in this process the code should be

written from scratch. On the other hand SPL can be the same as the process of

constructing the city with putting pre-made pieces of accessories together. Because SDP

is based on customization and reusing of existing software components [1], this

exemplification can be illustrative for participant with any level of knowledge about

computers and specifically software development.

6.2. Requested Task

After briefing, a task sheet had been handed to them, describing the task they

were requested to complete. The task sheets were different for the users who were testing

the text-based system and the users who ware testing the graphical interface one. In this

task sheet, the details of how each system functions, was described. The test they were

requested to complete was to choose only three requirements from 7 optional

requirements that the system offers to them. In both systems, the requirements, “Get

detailed info of a book”, “Sort books in a list”, “Advanced search”, “Exact match”,

“Broad match”, “Get publication info” and “Get contents” were the variable requirements

that the user was able to pick or abandon any of them based on his will.

In the task sheet [Appendices B1, B2], they were asked to pick only three of the services,

which give the online book shopping service the following abilities, 1. To sort the search

results, 2. To search for a book based on the exact word that is entered to the system and

3. To show the user the information about the contents of the book he has searched for.

41

These three descriptions are corresponding to three requirements “Sort books in a list”,

“Exact match” and “Get contents of a book” respectively.

The user was supposed to pick only these three requirements and abandon four

other variable ones. As there are only seven variable requirements, after the users

accomplished working with the system, a score out of 7 was given to each of them based

on the number of correct selections of the requested requirements, hence, each correct

picking and abandoning has one point of the total score. In this way the error-rate of the

system, which is one of the usability factors can be measured by subtracting the score

from the complete score, which in this case is 7.

The start time were recorded for each user once he/she started to work with the

system and the end time was noted as soon as the user was done with choosing all the

requested requirements and dropping the rest of the variable requirements. The duration

of the time the user spent to finish the tasks with the system was calculated in order to

investigate, on average, how long it takes for the users to finish the task. This time will be

needed to compute the efficiency of the system, which is about the number of the tasks

that can be done by the user in a time interval, and it is one of the main factors in

usability testing.

By having the score and time results of the study for both text-based system and

graphical system, these two systems can be compared from efficiency and error-rate

perspectives. In order to calculate other factors in usability study such as learnability,

efficiency and user satisfaction, the participants were asked to feel up a questionnaire

[Appendix A1, A2] and according to their answers, other usability factors will be

analysed.

42

6.3. Scores

A series of statistical tests have been done on the scores’ results based on a

similar study done in [54] about Software Visualization Tool through Usability Study. As

we encountered different mean scores for graphical interface group and text-based

interface group, which can be seen in Table 6.2, series of test had been conducted to

evaluate statistical significance of acquired results for. The Kolmogorov-Smirnov

Normality test was performed on the scores for graphical interface and text-based groups,

with respect to acquired p-value of 0.4254; there was no real evidence that the scores for

graphical interface and text-based system do not belong to the same continuous

distribution. Then we can assume that scores are normally distributed.

Consequently, the F-test had been conducted on the scores data for both groups.

The F-test test statistic, which is the two groups' variance ratio, has been calculated as

F=0.8351 with p equals to 0.5997. It can be concluded within the aforementioned level of

significance, that these groups come from distributions with the same variances. Having

assumed that the two groups belong to normal distribution and have equal variances

regarding to KS test and F-test results, t-test can be used to analyze the mean scores of

these two groups.

 Graphical
Interface

Text-Based
Interface

Mean 5.67 5.00
Standard Deviation 1.331 1.456

Variance 1.771 2.121
Table 6.2 – Statistical parameters for the sample populations

We performed the t-test on the data after validating that the two groups do not

have different variances. We were not able to verify the null hypothesis of t-test which is

that random samples are from normal distributions with equal means at the standard 5%

43

significance level, meaning that means of two score groups belonging to graphical

interface and text-based interface are statistically different.

In other words with acquired significance level p = 0.0494, so the chance that

means of these two groups are equal, is under 5% level of significance. The 95%

confidence interval for the test was acquired on interval of [0.0018,1.3315] difference

between the means.

6.4. Time

A similar study to what have been done on the score results and based on [54] and

[55], was done for the measured time of the graphical-based group comparing to text-

based group. For the time, chi-squared goodness of fit test have been undertaken to check

for normality of the sample distributions. The difference between maximum and

minimum of measured time for graphical-based group and text-based group is

respectively 8 and 9, hence 9 have been chosen as the number of bins for chi-square test.

The p-value or significance level for chi-square test for graphical is 0.0515 and for text-

based group is 0.1641. Both numbers satisfies the standard significance level of 5% and

means that null hypothesis of normality for these distributions can not be rejected at that

significance level.

Considering the results of the previous test, F-test has been done to study

variances of those groups, similar to the study done on the scores. At the same 5% level

of significance, variances of these two groups were not statistically different. Following

the F-test, we have done the Two sample t-test to analyse the means of the two groups for

time. With acquired p of 0.0034, the result was that we can reject the null hypothesis that

at 5% level there is no significant difference between the means of time of these two

44

groups. Also at 95% confidence interval, the difference between two means falls in the

interval between 0.6089 and 2.9368.

6.5. Questionnaire

The questions of the questionnaire were designed to address the main factors of

usability, which are learnability, efficiency, error rate and satisfaction. In this part of the

thesis each question and the purpose of designing them for evaluating each factor will be

discussed and all the results gained from the users’ opinions will be evaluated.

6.5.1. Learnability

The first two questions are aimed to evaluate learnability of the systems. As it is

mentioned before, learnability is about how fast and easy users can work with a new

system for the first time. This factor can address easiness of the system based on user’s

opinion as well as the user’s opinion about his/her understanding of the system.

6.5.1.1. Easiness

In the first question, users had been asked to rank the level of easiness of working

with the system based on their experience. The answer of the users to this question

represents their personal impression about their experience of working with the system.

The results of the first question for the text-based system are shown in Figure 6.2. It can

be seen that average easiness point for graphical interface group, which is 7.91 out of 10,

is higher than average point for the text-based group, which is 5.85. This is also

confirmed by the higher average score acquired from graphical interface group, that is

5.66 and is 0.66 higher than the average for text-based group 5.00.

In Figure 6.1, average easiness points and average scores have been categorized

for the business students and computer science students groups. On the whole, on average

45

both score and easiness given by the graphical interface group for both computer an

business students were higher than the score and the suggested easiness rank by all the

users from the text-based group. However, in the text-based system, although the average

score attained from computer science group, which is 5.28, is higher than business

students group’s score, which is 4.22, the business students gave a higher easiness point

than computer science students. This difference can either be related to the unequal

number of participants from each field or it can be because of difference in educational

background of participants that can give them various standards for defining easiness.

In case of graphical interface group, both the average score and average easiness

point for computer science student is higher than business students.

Figure 6.1 - Comparison of average Easiness point to average Score

To sum up, as it was expected the average easiness point given by the users for

the graphical interface group was higher than average point for the text-based group.

6.5.1.2 Understandability

Understandability is another factor that was being evaluated in this study. Users

were asked to rank their understanding of the system from 1 to 10. Since this point was

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

 Graphical	
Business	

 Graphical	
Computer	

 Text-‐based	
Business	

 Text-‐based	
Computer	

score	

Easiness	

46

given to the users by their own, we need to modify this rank based on how successful

they had done the tasks and how fast they finished the tasks. Therefore, the following

formula, which satisfies these needs, is suggested.

!"#$%&'("#)"* =
!"#$_!"#$ ×!"#$%

!"#$

 In this formula, score represents how successful users were in performing the

tasks. Therefore a high score shows the subject who had better performance (picked and

abandoned correct requirements in less time) had understood the systems better and

therefore his suggested score for his understanding is more valid and would have a higher

weight and vice versa.

In Figure 6.2 a comparison between Understandability and easiness values is

made. It can be seen that Understandability value, in graphical interface is higher than in

text-based interface for both user groups from computer department and business

department.

Figure 6.2 – Comparison of Easiness point to the estimated Understandability point

Also as it was mentioned before easiness factor for graphical interface is higher

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

 Text-‐based	
computer	

 	 Graphical	
computer	

 	 Text-‐based	
business	

 	 Graphical	
business	

Easiness	

Understandability	

47

than text-based interface. Since both easiness and Understandability for graphical

interface are higher than text-based interface, it can be conclude that learnability of

graphical interface is higher for both computer users and business users.

 Text-based
Computer

Graphical
Computer

Text-based
Business

Graphical
Business

Easiness 5.52 8.24 6.78 7.17
Understandablity 3.75 7.12 4.19 5.38

Table 6.3 – Easiness and understanding points for different groups

6.5.2. Efficiency

As it is mentioned before, efficiency factor represents number of tasks that can be

done by a user in a specific time unit. Thus efficiency can be calculated from dividing

score by the time users need to complete the tasks. It should be noted that score is

calculated based on number of tasks users had done successfully.

As it can be seen in Figure 6.4 that average of efficiency in graphical interface is

0.81 whereas in text-based interface average is 0.56. In other words, efficiency in

graphical interface is about %44 higher than efficiency in text-based interface which

means, in the same time unit, users can perform %44 more tasks correctly when users use

graphical interface instead of text-based interface.

48

Figure 6.3 – Comparison of Efficiency between different groups

In Figure 6.3, efficiency for different users based on their level of expertise in

computer issues, is categorized into four groups. By looking at the figure, it can be seen

that efficiency of the users who used graphical interface, no matter whether they were

from computer department or business department, is higher than users who used text-

based interface. In particular, efficiency of computer students who used graphical

interface is higher than other users.

By looking at this factor, we can conclude that having a graphical user interface

helps users work with the system faster and more accurately.

6.5.3. Error rate

The next usability factor that should be examined is error-rate. For evaluating the

error-rate of each system, the score of each participant should be considered. Since the

score was calculated out of seven, the error each user makes is the complement of the

score he got. Also, in the questionnaires there was a question that asked the participants

about their personal opinion that the error they have made, how much was related to the

design of the interface in the text-based interface. Besides, to prove how much the

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

 Graphical	
Business	

 Graphical	
Computer	

 Text-‐based	
Business	

 Text-‐based	
Computer	

EfRiciency	

49

visualization can be effective for the users in order not to make mistakes in the graphical

interface questionnaire their opinion was asked. With all the mentioned information, the

error-rate and users’ opinions about the reason of the error will be brought as follows.

The error-rate in the text-based system for the computer science students was 1.72

out of 7 while the same rate for the visualized interface was 0.94. It shows that for the

graphical interface, computer students made fewer errors than for the text-based system.

The same data in the text-based system for business students was 2.78 which is much

higher than both computer students groups and for the business students who tested

visualized interface it was 2.18 which is still higher than computer students results for

both systems but it shows that business students who worked with the visualized interface

had less error-rate than who worked with the text-based system. For overall comparison

between the error-rate of text-based system and the system with graphical interface, all

the students who used text-based system made more errors (with having the average

error-rate of 2.0) than the all the users who used graphical interface (with having the

average error-rate of 1.33).

Since the measurement scale in two questionnaires were different, first we should

make these two scales even. In the text-based questionnaire one question asks about the

relation between the design of the system and the error that the user makes. While in the

graphical interface questionnaire this question changes to the rate the user estimates that

the design of the interface prevents him from making mistakes. To make theses two data

alike, to be able to compare them with each other, we calculated the complement of the

rate the users gave to the graphical interface out of 10. For the text-based system, in

average computer students thought that with the rate of 6.88 out of 10 the error they made

50

was related to the way the system interface was designed. Business students on average

gave the score, 6.11 out of 10 to the relation of the way the system was designed and the

error they made. On the other hand, for the system with the graphical interface, prevented

error making with the rate of 8.16 out of 10 in the opinion of computer students, which

with the applied changes this number converts to 2.84. It means that the graphical

interface with the rate of 2.84 out of 10 directs users to make mistakes. Business users

gave the system with graphical interface, rate of 8 out of 10 for error prevention factor.

This rate changes to 3.00 out of 10 to mean the same as user error-making relation for

text-based interface. It means that 3 out of 10 it was the design of interface’s fault that the

user made mistakes, in business students’ opinions. To make all comparisons more clear

all the statistics mentioned above illustrated in Figure 6.4.

Figure 6.4 – Comparison of users’ actual error-rate with claimed relation of users’ error-

making and interface

Overall, the users of the text based system had 28.6% error-rate and believed that

the error they made was 67% related to the design of the system and users of the system

0	

1	

2	

3	

4	

5	

6	

7	

8	

 Text-‐Based	
Computer	

 	 Text-‐Based	
Business	

 	 Graphical	
Computer	

 	 Graphical	
Business	

Error	 Rate	

User	 errors	 and	 interface	
relation	

51

with the graphical interface had 19% error-rate and assumed that the visualization 81%

prevents them to make errors.

6.5.4. User Satisfaction

The last usability factor, which was evaluated in the study, was user satisfaction.

One of the questions in the questionnaires was considered to evaluate the overall

satisfaction of the user of working with each system. In this question, it was asked the

participants to score their overall satisfaction of the system out of 10. The results were as

follows.

The average score that the computer students gave to the text-based system was

6.22. This score, increases to 8.0 for the business students who worked with the same

system. For the system with graphical interface, computer students were 8.08 satisfied

while business students’ satisfaction level was 7.55. These discussed statistics can be

illustrated in a chart as shown in Figure 6.5. In overall all users of the text-based system

gave the score of 6.69 to their satisfaction of the system and users of the graphical

interface system determined their level of with the score 7.92 out of 10.

Figure 6.5 - User overall satisfaction of the system for different groups

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

 Text-‐Based	
Computer	

 	 Text-‐Based	
Business	

 Graphical	
Computer	

 	 Graphical	
Business	

User	 Satisfaction	

52

For the purpose of comparison between two systems, in overall the participants of

the visualized interface were more satisfied with this system than the users of text-based.

The only exception is the score of satisfaction of business students for these two systems.

On average, the score of user satisfaction for business students who worked with

the text-based system was higher than the business students who worked with the

graphical interface, but their standard deviation was also higher. It means that although

the number of business students with higher satisfaction than the graphical interface users

were higher, the ratio of users of the text-based system with lower satisfaction is also

higher than the graphical interface users.

In order to prove the claim that the chosen graphical interface enhances the

interface of the text-based system in different ways, other than the questions about

usability factors some other questions were added in the questionnaires such as users’

opinions about what changes can be done in each system and the necessity of

visualization for them and etc. These questions are going to be discussed as follows.

6.6. Necessity

One of the important questions was if the users think that the visualization is

necessary for the text-based system or not. This question was only asked of the students

who worked with the visualized system. Basically, this question can show that how users

found the visualization useful and informative. The answer options for this question were

“necessary” for the users who thought that it was helpful, “no difference” for the students

that do not look at the graphical interface and prefer to read the comments of the dialogue

interface and “not necessary” for the students that think that it can be confusing and

distracting. The results of this question were as follows.

53

72% of the computer students, 63% of business students, and on the whole 69.5%

of all students believed that this visualization is necessary for the system. 8% of computer

students and 27% of business students and on the whole 16.7% of all the students found

the visualization not useful enough and there was no difference for them for the

visualization to exist.

The percentage of computer students who found the visualization not necessary

and probably more confusing for working with the text-based system was 16% and this

number for business people was 9% and for all the students participated in testing the

system with graphical interface was 14%. Therefore, the majority of the students were

willing to have the visualization as a help for a better understanding and point of view of

the system.

Figure 6.6 – Necessity (percentage) of visualization according to users (graphical group)

6.7. Problems

In text-based questionnaire there is a multiple-choice question for the students

0	

10	

20	

30	

40	

50	

60	

70	

80	

	
Necessary	

 	 No	 difference	 	 Not	 necessary	

Computer	 students	

Business	 students	

All	 the	 participants	

54

who worked with this system, which gives the users the option to add their opinion about

the problems that the text-based system has. The three options which were very

noticeable based on the usability standards for designing user interface were given as

options to the users and they were also asked to add their own opinion if they find more

problems in the system. The three options were given to them were as follows:

a) The current state of the user is not clear

b) The comments are very long and not understandable enough

c) Interaction with the system is time consuming and not very convenient

Between these three choices, the percentage of computer students who selected

choice “a” was 80%. 60% agreed to choice “b” and 56% choice “c”. Between business

students, choice “a” was chosen by 55.5% of the participants, choice “b” by 33.3 % and

choice “c” by 44.4% of them. Figure 6.7 illustrates these percentages in a chart.

Figure 6.7 – Percentage of users that acknowledged problems (a, b and c) for text-based
system

Also the opinion of the users of the graphical interface was also asked about how

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

 a	 b	 c	

Computer	 students	

Business	 students	

55

the system can be improved. There existed two options for them to choose from and also

they could add any additional opinion.

The choices for this question were:

a) Having direct interaction with the visualized interface

b) Removing the comments

Between these two options the 84% computer students who were the users of the

graphical interface approved that they agree with option ”a” and 100% of the business

students had the tendency to directly interact with the graphical interface (Figure 6.7).

These ideas can be used for further enhancements of the next versions of the graphical

interface.

Figure 6.8- Percentage of users that acknowledged problems (a, b and c) for

graphical system

Some participants added their own idea about the system. Some of the added

comments where as follows:

∗ Text-based interface, Computer:

0	

20	

40	

60	

80	

100	

120	

 a	 b	 	 other	

Computer	 Students	 	

Business	 Students	 	

56

1. Vague comments.

2. Needs visual aid, lacks in control.

3. Confusing about which step I am in.

∗ Graphical interface, Computer:

1. Drag/Drop required

2. Add audio after each selection

3. Very exciting

∗ Graphical interface, Business

1. SPL idea is very advanced

6.8. Overall Opinion

There are two questions in both questionnaires that ask about the whole idea of

ontology-based interactive requirement elicitation. The purpose of this question is to find

out whether participants are content in overall with the idea of software customization

using software product line.

For this reason users are asked that based on the descriptions that has been given

to them before working with the systems, and also based on their experience with the

system and their previous experiences do they have any preference on choosing the

classical software development process or choosing the software product line. Also, they

are asked that how much they think that software product line can improve the software

development process.

On the whole, from 70 participants 67% of them claimed that using SPL could be

beneficial for software development.

57

In the last question in this category, overall opinion of the users about the system had

been asked from them. The users were asked to give a score from 1 to 10 to their

assumption of the level of improvement made by software product line to the software

development process. Average improvement point for graphical based interface is 7.83,

for the text-based group is 7.26 and for the whole population is 7.55. The details of this

part can be seen in Figure 6.9.

Figure 6.9- Overall participants’ ideas about the whole idea of SDP and SPL

Average results for the whole usability study are shown in Table 6.4. . As it had

been discussed earlier, in all the parameters including calculated parameters (time and

score) and user-stated parameters, graphical interface group acquired a better average.

 Text-Based Visualized
AVG STDV AVG STDV

Easiness 5.85 2.653 7.92 1.730
Understandable 6.94 2.014 8.11 1.304

Satisfaction 6.69 2.535 7.92 1.610
Error 6.68 2.293 2.89 1.879

Improvement 7.26 1.928 7.83 1.813
Time 9.41 2.743 7.64 2.113
Score 5.00 1.456 5.67 1.331

Error Rate 2.00 1.456 1.33 1.331

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

 Graphical	
Computer	

 	 Graphical	
Business	

 	 Text-‐based	
Computer	

 	 Text-‐based	
Business	

SDP	

SPL	

No	 idea	 	

58

Table 6.4 – Average results for Text-based and visualized interfaces

In Table 6.5, average results for users have been divided and shown based on their

academic background, which is either computer science or business field.

 Computer Students Business Students
Text-Based Visualized Text-Based Visualized

AVG STDV AVG STDV AVG STDV AVG STDV
Easiness 5.52 2.584 8.24 1.589 6.78 2.774 7.17 1.888

Understandable 6.92 1.956 8.36 1.114 7.00 2.291 7.55 1.572
Satisfaction 6.22 2.525 8.08 1.730 8.00 2.179 7.55 1.293

Error 6.88 2.068 2.84 1.886 6.11 2.892 3.00 1.949
Improvement 7.12 2.027 7.96 2.031 7.67 1.658 7.55 1.214

Time 10.24 2.505 7.96 2.354 7.11 2.028 6.91 1.221
Score 5.28 1.400 6.06 1.338 4.22 1.394 4.82 0.874

Error Rate 1.72 1.400 0.94 1.338 2.78 1.394 2.18 0.874
Table 6.5 – Average results for all measured parameters for Comp. and Business students

To sum up all the results collected from business and computer participants for

both text-based and graphical interfaces a brief description will be as follows.

Business users of the text-based system on the whole spent less time than all computer

users of both text-based and graphical interface to finish the test and had more errors than

all the other users of any groups. On the other hand their estimation on easiness and

understandability of the system was higher than computer users of text-based interface

estimates and they were more satisfied than computer users of the text-based system. It

can be concluded that the reason is either because of small number of participants in

business group or business participants’ misunderstanding in specific of the text-based.

On the whole, based on all the collected results from both computer and business groups,

it can be debated that the answers of computer students are more realistic, because all the

factors in computer groups answers matches with each other as it was expected at the

time of design of the system. It can be because participants with computer experience can

have more realistic exceptions of a user interface than people with no computer

59

background. Therefore, to make the system more suitable for business group more

changes have to be done and more analysis should be conducted.

60

CHAPTER VII

CONCLUSION AND FUTURE WORK

7.1. Conclusion

In this research, a study has been carried out to conclude when the chosen

graphical visualization technique and further enhancements apply on the previously

developed text-based requirement elicitation system, it gives better understanding to

users of the system and reduces the time and effort they need to spend on eliciting desired

requirements.

This research has been accomplished in a number of steps. Initially, the previous

text-based, interactive requirement elicitation system was studied and based on basic

concepts in design of that system the most suitable graphical interface from both

semantic and usability points of view has been designed and implemented. Furthermore,

a usability study was conducted on a group of students with different academic

backgrounds to justify that the proposed design can positively improve the usability of

the user interface.

The results of the study show that, in overall users had a positive opinion about

using both graphical-based and text-based interface. However, based on users opinions

on average all usability parameters, which are Learnability, Efficiency, Error-rate and

User satisfaction have been improved comparing to text-based interface system. Besides,

on average users of graphical interface had accomplished the same tasks faster and more

accurately than the users of the text-based system. On the whole the majority of the users

of both systems prefer Software Automation concept, which is the basis of both systems.

over the classical Software Development Process.

61

Since we found some contradictions in business users scores and their estimation

of easiness and their understanding of the system, it can be concluded that further

analysis is required. Also, from the beginning the system was designed for people with

some experience in software development, which normally business people are not

included in this group. Therefore, it was expected initially that the results of computer

students be more consistent than business students, which can be considered as a positive

outcome based on our primary goal.

7.2. Future Work

Despite the fact that the graphical visualization improved the usability and quality

of the user interface, the results of the usability study show that there is still a lot of space

for improvement. First of all, the interface can be designed in a way that users can have a

direct interaction with the graphical interface instead of indirect dialogue-based

communication. It would give the users a better feeling of control over the system. In

addition, different graphical interfaces can be designed for people with different

expectations and expertise in the field of software development. It can be as easy as drag

and drop for users with basic or no knowledge of computer or as sophisticated as a

layered three dimensional graphical interface which even be able to illustrates the details

about the relationships between services and system architecture.

62

APPENDICES

Appendix A

Questionnaires of the Usability Study

The following figures illustrate the questionnaires, which were required to be filled by the

participants after working with each of the implemented systems for the purpose of

usability investigation

63

Appendix A1

64

Appendix A2

65

Appendix B

Task sheet of the usability study

The following figures illustrate the task sheets, which were required to be read by the

participants before working with each of the implemented systems for the purpose of

usability investigation.

Appendix B1

Task sheet for the system with graphical Interface

66

Appendix B2
Task sheet for the system with text-based Interface

67

REFERENCES

[1] F. M. Medeiros, E. S. de Almeida, and S. R. de Lemos Meira, “Towards an
approach for service-oriented product line architectures”, In Proc. of the 3rd
international workshop on Service-Oriented Architectures and Software Product
Lines, 2009.

[2] Altintas, N. Ilker and Cetin, Semih and Dogru, Ali H., “Industrializing software
development: the "factory automation" way”, Springer-Verlag, pp 54-68, 2007.

[3] Kang, Dongsu and Baik, Doo-Kweon, “Bridging Software Product Lines and

Service-Oriented Architectures for Service Identification Using BPM and FM”,
IEEE Computer Society, pp. 755-759, 2010.

[4] S. Bassil and R. K. Keller., “Software visualization tools: Survey and analysis”, In

Proceedings IWPC 2001, pp. 7 – 17, 2001.

[5] J. Lee, D. Muthig, and M. Naab, “An approach for developing service oriented
product lines,” inSPLC ’08: 12th International Software Product Line Conference,
pp. 275–284, IEEE Computer Society, 2008

[6] D. Kang, C. yang Song, and D.-K. Baik, “A method of service identification for
product line,” in ICCIT ’08: 3rd International Conference on Convergence and
Hybrid Information Technology, vol. 2, pp. 1040– 1045, 2008.

[7] S. Trujillo, C. Kastner, and S. Apel, “Product Lines that Supply Other Product
Lines: A Service-Oriented Approach,” in SPLC Workshop: Service-Oriented
Architectures and Product Lines - What is the Connection?, Sep. 2007.

[8] K. Pohl, G. Böckle, and F. van der Linden, “Software Product Line
Engineering:Foundations, Principles, and Techniques”. Berlin: Springer, 2005.

[9] R. Rabiser, P. Grunbacher, and D. Dhungana. “Requirements for product

derivation support: Results from a systematic literature review and an expert
survey”, Information and Software Technology, 52(3), 2010.

[10] Zhang, L.-J. and Zhou, N. and Chee, Y.-M. and Jalaldeen, A. and Ponnalagu, K.
and Sindhgatta, R. R. and Arsanjani, A. and Bernardini, F. , “SOMA-ME: A

68

platform for the model-driven design of SOA solutions”, IBM Systems Journal,
Vol. 47, pp 397 – 413, 2008.

[11] Eric A. Marks, Michael Bell, “Service Oriented Architecture (SOA): A Planning

and Implementation Guide for Business and Technology”, Willey, 2006.

[12] Rolland, C., Kirsch-Pinheiro, M., Souveyet, C., “An Intentional Approach to
Service Engineering”, IEEE Transactions on Service Computing, Vol. 3 , pp.
292—305, 2010.

[13] Erl, T., “Service-oriented Architecture: Concepts, Technology, and Design”,
Prentice Hall PTR, Upper Saddle River, New Jersey, Munich, 2005.

[14] Goguen, J. & Linde, C., Techniques for Requirements Elicitation, 1st IEEE

International Symposium on Requirements Engineering, San Diego, pp. 152-
164, 1993.

[15] Paech B and Kohler K, “Usability Engineering integrated with Requirements

Engineering”, in Bridging the Gaps between Software Engineering and Human-
Computer Interaction, IEEE CS Press, 2003.

[16] Diaper, D., “Integrating HCI and Software Engineering Requirements Analysis”,

SIGCHI Bulletin 29, 1, 41-50, 1997

[17] C. Y. Knaus, ''Feature - Interaction design for software engineering: Boost into
programming future,'' Interactions, 15(4), 71-74, 2008.

[18] Sousa, K., Furtado, E., “RUPi—A unified process that integrates human-computer

interaction and software engineering”, In: Proceedings of the International
Conference on Software Engineering (ICSE), pp. 41– 48, 2003.

[19] Xieshen Zhang, “An Interactive Approach of Ontology-based Requirement

Elicitation for Software Customization”, M.S. thesis, CS. Dept., UWindsor,
Windsor, ON, 2011.

[20] Petre, M., and de Quincey, E., “A gentle overview of software visualization”,

The Computer Society of India Communications (CSIC) ,PPIG newsletter, 2006.

69

[21] TEYSEYRE, A. AND CAMPO, R. M., “An overview of 3d software

visualization”, IEEE TVCG, Vol.15, pp. 87–105, 2009.

[22] Juergen Rilling and S.P. Mudur, “3D visualization techniques to support slicing-
based program comprehension”, Computers & Graphics, Vol. 29, pp 311-
329, 2005.

[23] Gracanin, D., Matkovic, K., and Eltoweissy, M., “Software visualization’,
Innovations in Systems and Software Engineering”, A NASA Journal, Volume 1,
pp 221-230, 2005.

[24] LI, X., AND MUGRIDGE, R. 1994, “Petri net based graphical user interface
specification tool”, In Software Education Conference, 1994.

[25] Palanque Ph., Bastide R., “Petri net based Design of User-driven Interfaces

Using Interactive Cooperative Object Formalism”, In proceedings of 1st
Eurographics Workshop on Design, Specification and Verification of
Interactive Systems - F. Paterno (Ed.) - Carrara, Italy - 8-10 June.1994.

[26] W.M.P. van der Aalst, “The application of petri nets to workflow management,”
The Journal of Circuits, Systems and Computers, vol. 8, no. 1, pp. 21–66, 1998.

[27] Eicker, S. and Spies, T. and Kahl, C. “Software Visualization in the Context of

Service-Oriented Architectures”. Visualizing Software for Understanding and
Analysis, 2007. VISSOFT 2007, Vol. 0, pp. 108 -111, June 2007.

[28] C. Lin, S. Lu, Z. Lai, A. Chebotko, X. Fei, J. Hua, F. Fotouhi, “Service-oriented

Architecture for VIEW: A Visual Scientific Workflow Management System”,
Proc. of the International Conference on Services Computing (SCC), pp. 335–
342, 2008.

[29] Mansukhani, M., “Service oriented architecture—White Paper”. Hewlett-Packard
Corp., 2005.

[30] Eicker, S., Jung, R., Schwittek, W., Spies, T., “SOA Generic Views - In the Eye

70

of the Beholder”, IEEE Computer Society, pp. 479–486, 2008.

[31] GALITZ, W. O., “The Essential Guide to User Interface Design”, Wiley, 1997.

[32] Molich, R., and Nielsen, J., “Improving a human–computer dialogue”, Comm.
ACM, pp. 338-348, 1990

[33] E. Folmer, J. v. Gurp, and J. Bosch., “Scenario-Based Assessment of

SoftwarenArchitecture Usability”, In the Proceedings of Workshop on Bridging
the Gapsn Between Software Engineering and Human-Computer Interaction,
ICSE, 2003.

[34] P. Runeson and M. Host., “Guidelines for conducting and reporting case study
research in software engineering”, Empirical Software Engineering, 14(2), pp
131–164, 2009.

[35] X. Ferre, N. Juristo, H. Windl, L. Constantine, “Usability Basics for Software
Developers”, IEEE software, pp. 22–30, 2001.

[36] J. C. Campos and M. D. Harrison, “From HCI to Software Engineering and

back”. ICSE ',pp 49-56, 2003.

[37] Gould, J. D., C. Lewis, “Designing for usability: Key principles and what
designers think”, Comm. ACM, Vol.28(3), pp 300–311, 1985.

[38] Nielsen, J. , “The usability engineering life cycle”, IEEE Computer, Vol. 25(3),

pp12–22, 1992.

[39] DERLER, P. AND WEINREICH, R., “Models and Tools for SOA Governance.”,
International Conference on Trends in Enterprise Ed. Springer, 2006.

[40] F. Arvidsson and A. Flycht-Eriksson, ''Ontologies I,'' 2008. [Online]. Available:

http://www.ida.liu.se/~janma/SemWeb/Slides/ontologies1.pdf.

[41] N. F. Noy and D. L. McGuinness, ''Ontology Development 101: A Guide to
Creating Your First Ontology,'' Stanford Knowledge Systems Laboratory, Tech.
Rep. KSL-01-05, 2001.

71

[42] D. Martin, et al., ''OWL-S: Semantic Markup for Web Services,'' 2004. [Online].

Available: http://www.w3.org/Submission/OWL-S.

[43] D. Martin, et al., ''Bringing Semantics to Web Services: The OWL-S Approach,''
in Proceedings of the 1st International Workshop on Semantic Web Services and
Web Process Composition, 2004, pp. 26-42.

[44] Ribeiro, Heberth Braga G. and de Almeida, Eduardo Santana and de Lemos
Meira, Silvio R., “An approach for implementing core assets in service-oriented
product lines”, Proceedings of the 15th International Software Product Line
Conference, Vol. 2, pp. 17:1 -17:4, 2011.

[45] M. Samek. , “Practical UML Statecharts in C/C++Event-Driven Programming for
Embedded Systems”, Newnes, 2008.

[46] R. Lenz, K.A. Kuhn, “Towards a continuous evolution and adaptation of
information systems in healthcare”, Int. J. Med. Inform, Vol. 73, pp. 75–89, 2004.

[47] R. Bastos, D. Dubugras and A. Ruiz, B., “Extending UML Activity Diagram for
Workflow Modeling in Production Systems”, in 35th Annual Hawaii
International Conference on System Sciences, IEEE, 2002.

[48] J. Helldahl, U. Ashraf, “Use Case Explorer-A Use Case Tool”, M.S. thesis, CS
and Engineering Dept, Chalmers Univ. , Göteborg, Sweden, 2009.

[49] Amelia Ritahani Ismail, “FINAL QD On the Use of Modelling and Simulation for

Granuloma Formation”, M.S. thesis, CS Dept, York Univ., 2008.

[50] E. Villani, J.C. Pascal, P.E. Miyagi, R. Valette, “A Petri-net based object-oriented
approach for the modelling of hybrid productive systems”, Pergamon/Elsevier
Science, Vol. 68, pp. 1394-1418, 2005.

72

[51] Wakefield, R. R., “Application of Extended Stochastic Petri Nets to Simulation
and Modeling of Construction Systems”, Civil Engineering and Environmental
Systems, pp. 1-22 1998.

[52] L.Hardman, G. van Rossum, and D. Bulterman., “Structured multimedia
authoring”, In ACM, Multimedia’93. ACM Press, 1993.

[53] Sun, P., Wang, J., Li, X., Jiang, C., “Performance analysis of workflow model

with resource constraints”, In: Proceedings of the First International Multi
Symposiums on Computer and Computational Sciences, vol. 1, pp. 397–401,
2006.

[54] Marcus, A., Comorski, D., and Sergeyev, A., "Supporting the Evolution of a
Software Visualization Tool through Usability Studies", in Proceedings
International Workshop on Program Comprehension, St. Louis, MO, pp. 307-
316, 2005.

[55] Abdinnour-Helm, S.F., Chaparro, B.S. & Farmer, S.M., “Using the end-user

computing satisfaction (EUCS) instrument to measure satisfaction with a web
site”, Decision Sciences, Vol. 36, 341–364, 2005

73

VITA AUCTORIS

NAME Vida Sadri

PLACE OF BIRTH Tehran, Iran

YEAR OF BIRTH 1985

EDUCATION Bachelor of Computer Engineering,
Azad University, South Tehran Branch,
2004 - 20

	University of Windsor
	Scholarship at UWindsor
	2012

	A Petri-Net Based Approach of Software Visualization for Software Customization
	Vida Sadri
	Recommended Citation

	Master thesis

