
Washington University in St. Louis
Washington University Open Scholarship
Engineering and Applied Science Theses &
Dissertations Engineering and Applied Science

Summer 8-15-2015

Online Modeling and Tuning of Parallel Stream
Processing Systems
Jonathan Curtis Beard
Washington University in St. Louis

Follow this and additional works at: http://openscholarship.wustl.edu/eng_etds

Part of the Engineering Commons

This Dissertation is brought to you for free and open access by the Engineering and Applied Science at Washington University Open Scholarship. It has
been accepted for inclusion in Engineering and Applied Science Theses & Dissertations by an authorized administrator of Washington University Open
Scholarship. For more information, please contact digital@wumail.wustl.edu.

Recommended Citation
Beard, Jonathan Curtis, "Online Modeling and Tuning of Parallel Stream Processing Systems" (2015). Engineering and Applied Science
Theses & Dissertations. 125.
http://openscholarship.wustl.edu/eng_etds/125

http://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Feng_etds%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/eng?utm_source=openscholarship.wustl.edu%2Feng_etds%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=openscholarship.wustl.edu%2Feng_etds%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/eng_etds/125?utm_source=openscholarship.wustl.edu%2Feng_etds%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

School of Engineering and Applied Science
Department of Computer Science and Engineering

Dissertation Examination Committee:
Roger Dean Chamberlain, Chair

Jeremy Buhler
Ron Cytron
Roch Guerin
Jenine Harris
Juan Pantano
Robert B. Pless

Online Modeling and Tuning of Parallel Stream Processing Systems
by

Jonathan Curtis Beard

A dissertation presented to the
Graduate School of Arts and Sciences

of Washington University in
partial fulfillment of the

requirements for the degree
of Doctor of Philosophy

August 2015
Saint Louis, Missouri

c© 2015, Jonathan Curtis Beard

Table of Contents

List of Figures . v

List of Tables . viii

Acknowledgements . ix

Abstract . xi

Chapter 1: Introduction . 1
1.1 Industry Trends . 2
1.2 Paradigm Flux . 3
1.3 Turning Streams into Torrents . 5
1.4 Contribution and Structure . 8

Chapter 2: Background and Related Works 10
2.1 Stream Processing . 10
2.2 Modeling . 12
2.3 Instrumentation . 14
2.4 Online Modeling & Performance Tuning . 15
2.5 Dynamic Adaptation . 16

Chapter 3: RaftLib Streaming Library . 18
3.1 Design considerations . 20
3.2 RaftLib description . 21

3.2.1 RaftLib as a research platform . 24
3.2.2 Authoring streaming applications . 29

3.3 Benchmarking . 33
3.4 Concluding Remarks and What Follows . 37

Chapter 4: Modeling Streaming Applications 38
4.1 Introduction . 38

4.1.1 Description . 39
4.1.2 Sharing Models . 45
4.1.3 Modeling Assumptions . 45
4.1.4 Example . 46

ii

4.2 Model Evaluation Approach . 48
4.2.1 Tools . 48
4.2.2 Hardware . 48
4.2.3 Empirical Testing . 49
4.2.4 Selecting Compute Resources and Mapping Application Kernels . . . 49
4.2.5 Synthetic Benchmarks . 50
4.2.6 Real Applications . 51

4.3 Results . 51
4.3.1 Processor Sharing Model . 51
4.3.2 The Flow Model . 52
4.3.3 The Queueing Model . 54

4.4 Conclusions . 56

Chapter 5: Best Case Execution Time Variation 57
5.1 Methodology . 60

5.1.1 Synthetic Workload . 60
5.1.2 Hardware, Software, and Data Collection 61
5.1.3 Distribution . 64
5.1.4 Parameterization and definition of mLevy 67

5.2 Results . 69
5.3 Conclusions . 72

Chapter 6: Dynamic Instrumentation . 75
6.1 Introduction . 75
6.2 Instrumentation Considerations . 79

6.2.1 Throughput . 82
6.2.2 Queue Occupancy . 82

6.3 Service Rate . 83
6.3.1 Online Service Rate Heuristic . 85
6.3.2 Sampling Period Determination . 85
6.3.3 Service Rate Heuristic . 86

6.4 Evaluation . 92
6.4.1 Infrastructure . 92

6.5 Applications . 92
6.5.1 Matrix Multiply . 93
6.5.2 Rabin-Karp String Search . 94

6.6 Validation . 94
6.7 Conclusions . 99

Chapter 7: Model Selection . 101
7.1 Stochastic Models and Streaming Applications 103
7.2 Stochastic Queueing Model Selection . 104

7.2.1 Methodology . 104

iii

7.2.2 Support Vector Machine . 105
7.2.3 Data Collection & Hardware . 107
7.2.4 SVM and Training . 109
7.2.5 Artificial Neural Network (ANN) . 113

7.3 Conclusions & Future Work . 114

Chapter 8: Online Tuning: Putting It All Together 117
8.1 Online Modeling of Streaming Systems . 117

8.1.1 Why is online tuning important? . 119
8.1.2 Adaption Types . 119
8.1.3 Evaluation Methodology . 121
8.1.4 Adaption Results . 121

8.2 Conclusions . 124

Chapter 9: Conclusions and Future Work 125
9.1 Conclusions . 125
9.2 Future Work . 127

References . 130

Vita . 146

iv

List of Figures

Figure 3.1: Simple streaming example . 19

Figure 3.2: RaftLib sum kernel example . 23

Figure 3.3: RaftLib sum application mapping example 24

Figure 3.4: RaftLib scheduler options . 26

Figure 3.5: Importance of properly sized buffers 27

Figure 3.6: RaftLib syntax for C++ container interaction 31

Figure 3.7: RaftLib foreach construct . 32

Figure 3.8: RaftLib lambda kernel syntax . 33

Figure 3.9: RaftLib string matching topology . 34

Figure 3.10: Aho-Corasick string matching algorithm 34

Figure 3.11: RaftLib performance by thread count 36

Figure 4.1: JPEG encode topology . 40

Figure 4.2: Stages of flow model transformation 40

Figure 4.3: Example application topology . 46

Figure 4.4: Application mapping . 46

Figure 4.5: Traditional service rate characterization 47

Figure 4.6: Flow modeling step by step . 47

Figure 4.7: Completed solutions to flow model 47

v

Figure 4.8: Offline service rate characterization 49

Figure 4.9: DES application topology . 51

Figure 4.10: Percent error for sharing model . 52

Figure 4.11: Synthetic app % error for gain/loss flow model 53

Figure 4.12: JPEG encode % error for gain/loss flow model 53

Figure 4.13: DES encrypt % error for gain/loss flow model 53

Figure 4.14: Synthetic app buffer capacity % error 54

Figure 4.15: JPEG encode buffer capacity % error 55

Figure 4.16: DES encrypt buffer capacity % error 55

Figure 5.1: Histogram of execution variation . 58

Figure 5.2: Simplifying distributional assumptions 59

Figure 5.3: Memory access variances . 63

Figure 5.4: Timer variance . 64

Figure 5.5: Timer latency . 65

Figure 5.6: mLevy QQ-plots grouped by process 71

Figure 5.7: KL divergence for model selection . 72

Figure 6.1: Non-blocking service rate intuition 77

Figure 6.2: Non-blocked periods in highly utilized queue 78

Figure 6.3: Two server streaming system . 79

Figure 6.4: Instrumentation monitor arrangement 80

Figure 6.5: Timing across NUMA nodes . 81

Figure 6.6: Stability of time frame . 82

Figure 6.7: Probability of observing non-blocking read 84

vi

Figure 6.8: Direct observations of service rate . 87

Figure 6.9: Initial filtered observations of non-blocked service rate 89

Figure 6.10: Convergence of stable non-blocking service rates 90

Figure 6.11: Estimating the point of convergence 91

Figure 6.12: Instrumentation of shifting distributions 91

Figure 6.13: Matrix multiply example . 93

Figure 6.14: Rabin-Karp example . 94

Figure 6.15: Histogram of micro-benchmark instrumentation 95

Figure 6.16: Micro-benchmark shifting distribution results 96

Figure 6.17: Detection of both phases . 97

Figure 6.18: Matrix multiply instrumentation . 98

Figure 6.19: Rabin-Karp instrumentation results 99

Figure 7.1: Fingerprinting of computer systems 102

Figure 7.2: Simple micro-benchmark . 103

Figure 7.3: Machine learning feature cloud . 106

Figure 7.4: Classification by error category . 110

Figure 7.5: Classification rate by queue utilization (ρ) 111

Figure 7.6: Neural network results . 115

Figure 8.1: Complete enumeration of RaftLib application 122

Figure 8.2: Peak performance zoom-in . 123

Figure 8.3: Parallelization event monitor control actions 123

Figure 8.4: Queue sizing event monitor control actions 123

vii

List of Tables

Table 3.1: Benchmarking hardware summary for RaftLib 35

Table 4.1: Flow and queueing model terminology 41

Table 4.2: Benchmarking hardware summary for flow model 49

Table 5.1: Distribution parameters . 61

Table 5.2: Hardware summary for Levy distribution data collection 62

Table 5.3: Goodness of fit . 65

Table 5.4: Correlation between target predictors 68

Table 6.1: Queueing nomenclature . 84

Table 6.2: Approximation nomenclature . 85

Table 6.3: Benchmarking hardware summary for instrumentation 92

Table 7.1: Hardware summary for ML benchmarking 108

Table 7.2: Classification for real applications . 112

Table 7.3: Example trained with too little data 112

Table 7.4: Non-steady state predictions . 113

viii

Acknowledgements

Any great accomplishment is rarely the act of a single person, this one is no exception. I

was fortunate to receive a little help from those who have traveled the path before me and

enjoy the company of some great companions along the way. I would like to thank you all by

name, but my allotted space is quite finite. Thank you, despite your collective anonymity,

your contributions are no less appreciated.

I would like to thank Roger Chamberlain for his patience, mentorship, and friendship over

the last few years. I would also like to thank Robert Pless for his advice throughout this

process, and for yanking my application from the department to which I originally applied. I

would undoubtedly not be here if it were not for him. I would also like to thank Ron Cytron

and David Rubenstein for their mentorship and encouragement over the years.

It would be negligent of me to not thank my colleagues who have befriended me along

the way: Meenal Kulkarni, Michael Hall, Adina Stoica, Peng Li, Hongtao Sun, Steve Cole,

Dan Lazewatsky, David Ferry, David Lu, and countless others. I can’t acknowledge friends

without thanking my very good friends Joe Wingbermuehle and Sara Melnick, who spent

countless hours listening to me babble within the confines of my office. We shared many

successes and failures, neither will soon be forgotten.

Lastly I want thank the office staff for their help, humor, and friendly reminders: Madeline

Hawkins, Kelli Eckman, Jayme Moehle, Lauren Huffman, Myrna Harbison, and Sharon

Matlock. Thank you all.

Jonathan Curtis Beard

Washington University in Saint Louis

August 2015

ix

Dedicated to my family, Kate and Aiden.

x

ABSTRACT OF THE DISSERTATION

Online Modeling and Tuning of Parallel Stream Processing Systems
by

Jonathan Curtis Beard
Doctor of Philosophy in Computer Science
Washington University in St. Louis, 2015
Professor Roger Dean Chamberlain, Chair

Writing performant computer programs is hard. Code for high performance applications is

profiled, tweaked, and re-factored for months specifically for the hardware for which it is to

run. Consumer application code doesn’t get the benefit of endless massaging that benefits

high performance code, even though heterogeneous processor environments are beginning to

resemble those in more performance oriented arenas. This thesis offers a path to performant,

parallel code (through stream processing) which is tuned online and automatically adapts

to the environment it is given. This approach has the potential to reduce the tuning costs

associated with high performance code and brings the benefit of performance tuning to

consumer applications where otherwise it would be cost prohibitive. This thesis introduces a

stream processing library and multiple techniques to enable its online modeling and tuning.

Stream processing (also termed data-flow programming) is a compute paradigm that views an

application as a set of logical kernels connected via communications links or streams. Stream

processing is increasingly used by computational-x and x-informatics fields (e.g., biology, as-

trophysics) where the focus is on safe and fast parallelization of specific big-data applications.

A major advantage of stream processing is that it enables parallelization without necessitat-

ing manual end-user management of non-deterministic behavior often characteristic of more

traditional parallel processing methods. Many big-data and high performance applications

involve high throughput processing, necessitating usage of many parallel compute kernels on

xi

several compute cores. Optimizing the orchestration of kernels has been the focus of much

theoretical and empirical modeling work.

Purely theoretical parallel programming models can fail when the assumptions implicit

within the model are mis-matched with reality (i.e., the model is incorrectly applied). Often

it is unclear if the assumptions are actually being met, even when verified under controlled

conditions. Full empirical optimization solves this problem by extensively searching the

range of likely configurations under native operating conditions. This, however, is expen-

sive in both time and energy. For large, massively parallel systems, even deciding which

modeling paradigm to use is often prohibitively expensive and unfortunately transient (with

workload and hardware). In an ideal world, a parallel run-time will re-optimize an appli-

cation continuously to match its environment, with little additional overhead. This work

presents methods aimed at doing just that through low overhead instrumentation, modeling,

and optimization. Online optimization provides a good trade-off between static optimization

and online heuristics. To enable online optimization, modeling decisions must be fast and

relatively accurate.

Online modeling and optimization of a stream processing system first requires the exis-

tence of a stream processing framework that is amenable to the intended type of dynamic

manipulation. To fill this void, we developed the RaftLib C++ template library, which

enables usage of the stream processing paradigm for C++ applications (it is the run-time

which is the basis of almost all the work within this dissertation). An application topol-

ogy is specified by the user, however almost everything else is optimizable by the run-time.

RaftLib takes advantage of the knowledge gained during the design of several prior streaming

languages (notably Auto-Pipe). The resultant framework enables online migration of tasks,

auto-parallelization, online buffer-reallocation, and other useful dynamic behaviors that were

not available in many previous stream processing systems. Several benchmark applications

xii

have been designed to assess the performance gains through our approaches and compare

performance to other leading stream processing frameworks.

Information is essential to any modeling task, to that end a low-overhead instrumentation

framework has been developed which is both dynamic and adaptive. Discovering a fast

and relatively optimal configuration for a stream processing application often necessitates

solving for buffer sizes within a finite capacity queueing network. We show that a general-

ized gain/loss network flow model can bootstrap the process under certain conditions. Any

modeling effort, requires that a model be selected; often a highly manual task, involving

many expensive operations. This dissertation demonstrates that machine learning methods

(such as a support vector machine) can successfully select models at run-time for a stream-

ing application. The full set of approaches are incorporated into the open source RaftLib

framework.

xiii

Chapter 1

Introduction

Gordon Moore conjectured that the number of transistors on a computer chip would double

every 18 months[157]. This became known as “Moore’s Law,” which up until recently has

been assumed to imply that computing power will roughly double every two years [169].

Increasing frequency and subsequently pipeline depth of processors led the charge to increase

computing performance until the start of the 21st century. Diminishing returns due to power

limitations has led to the end of this trend. The next (and current) driver of performance

is attributed to continuing miniaturization of feature sizes enabling more compute cores to

be placed on a chip. Increasing the number of cores on a chip means higher performance

for parallel applications, but it also means more power is needed per unit area. With high

density compute cores comes the need to dissipate heat efficiently. This problem is known

as the “Power Wall” [69]. Yet another limitation, termed the “Memory Wall,” came about

because memory access times (i.e., latency and throughput) have stagnated while compute

power has doubled roughly every two years [200]. Engineers and scientists saw these trends,

often long before they were named. Solutions vary widely, from bigger general purpose

processors and specialized cores to highly distributed “cloud” computing.

General purpose multi-core processors are excellent at multi-purpose computation, however

increasingly more efficient special purpose processors are used for targeted computational

tasks, examples include: General Purpose Graphics Processors (GPGPUs) [147], the Xeon

Phi [98], customized embedded processors [174] and Field Programmable Gate Arrays (FP-

GAs) [50]. Most commercially available general purpose processors are actually systems

on a chip (or more commonly SoC). Within a SoC multiple sub-processors are found on a

chip network, often co-located with multiple memory layers. Systems that include multi-

ple types of processors are generally termed “heterogeneous.” This term can be used for

1

systems composed of multiple processor types and SoC solutions (within this work we will

use the later rather than the former version). Almost all of these systems are capable of

some sort of heterogeneous parallel processing (i.e., executing cooperative code on multiple

types of resources concurrently). Increasingly architectures are distributed, even at the SoC

level (see compute near memory technologies [80]). At a macro level distributed computa-

tion is now mainstream, spawning consumer friendly buzz words like “cloud-computing” and

“internet-of-things.” How do we effectively program heterogeneous and distributed systems?

In multiple instruction set architectures, byte orders, network types, protocols and a dizzying

array of other such terms must come together to form a coherent computing platform on

which an end user can compute seamlessly.

1.1 Industry Trends

The era of “big-data” is here to stay. Indeed, what is considered “big-data” today will

undoubtedly pale in comparison to what will face us in the coming decades. By-in-large the

data we have drives innovation, either directly or indirectly. How innovators process that

data will directly reflect the rate of innovation in society. The processing of “big-data” is

fundamentally changing the way we live. No longer do we have to drive around for hours for

the right adapter or the perfect red shirt, search engines have scoured the web for matches

to what we want and quickly show us the prices for each. The programmers of big-data

applications are often not computer scientists. They are stock analysts, physicists, etc.

Their code works but not nearly as well as well modeled code could. A second group of

people spend months (even years) re-factoring applications every time a new supercomputer

or HPC cluster is built. Both classes of user could benefit from dynamically adaptive code.

If automatically tuned code could perform within a fraction of manually tuned code, then

many would benefit. HPC users could save millions of dollars in labor costs. Analytics

providers could have faster, more actionable data. Even novice programmers could have

more efficient programs.

The vast majority of processing cores in the world today are not large desktop-class cores,

but smaller, more energy efficient mobile ones. These devices are in our pockets, our watches,

and our glasses. The Internet-of-Things revolution has only just begun, with it the need to

quickly process “small-data” streams created by these devices (note: small is relative to true

2

big-data loads which are currently above the terabyte range in many cases[133]). Users want

image recognition, voice recognition and many other computationally intensive tasks that

are far out of reach with the power levels available to mobile units. The solution is simple:

compress and ship the necessary data to processors near the edge of the network. This

creates an interesting problem, very similar to the aforementioned heterogeneous compute

one. A run-time must find a compute configuration that minimizes latency and maximizes

throughput for individual users. The data must be streamed from the user and the processed

meta-data streamed back very quickly.

1.2 Paradigm Flux

Effectively programming high performance applications for heterogeneous architectures is

currently the domain of expert programmers. One of the best programming paradigms to

tackle heterogeneous distributed systems is a very old one: stream processing. Why are the

current approaches to programming not effective at managing these systems? Specifying

computation has gone from languages specified by human modulated switch positions to

vibrant written languages of many types. As the designers of all these languages are (we

expect) all human, it is only natural that they are largely sequential in their semantics.

Humans spend much of their early brain development learning to focus on a single specific

strand of thought, logically maneuvering from one task to the next. Many current and

popular languages are excellent for expressing this type of paradigm: C, Java, C++, to

name but a few.

Extracting parallelism from sequential code is typically done at the compiler and hardware

layers[85, 146, 189]. Modern compilers can perform loop unrolling, blocking and insert

single instruction multiple data (SIMD) instructions which can perform vector operations

in fewer clock cycles than equivalent single arithmetic operation instructions. Hardware

can view dependencies within the instruction window and issue multiple instructions whose

dependencies are already met, these are re-assembled to restore the illusion that they were

executed in serial. The hardware-only approaches are generally limited to a few processors

on shared memory architectures, while compiler based approaches have been shown to scale

with stencil computations it remains to be seen if they can scale to multi-node distributed

computation [57, 85]. While shared memory architectures have been shown to scale, the

3

performance is generally poor when expanding past a few hundred nodes (even for advanced

non-uniform memory access machines [144]). It remains to be seen if newer inter-connect

technologies can handle larger distributed shared uniform memory networks.

Explicit user threading is one approach to extract more parallelism from an application,

however it is best left to experts who know how to manage non-deterministic behavior in-

herent with concurrent execution [122]. Approaches such as OpenMP [45] reduce the need

to handle threads directly, however they have another issue that limits their performance on

large heterogeneous hardware: split/join parallelism. Streaming systems explicitly enable

pipelined and task parallelism; tasks can execute as soon as the required resources are avail-

able. More distributed approaches such as MPI have done quite well in high-performance

and general computation. The code bases underlying most MPI systems are quite optimized

through decades of development. MPI programs are often hard to read, and difficult to

debug. MPI for high performance computing must also be tuned for each new generation

of processor and interconnect combination, this often takes months to years for the types of

large scale simulation code used within HPC. MPI also doesn’t adapt well to heterogeneous

systems where a distant piece of code can’t always query an accelerator for a particular piece

of data that it needs (or ensure its proximity within the network).

Anyone who has had the experience of management, or operations planning, or any other

related field that requires utilizing multiple independent resources knows that scheduling

parallel independent tasks is often difficult. It is often far easier to give workers completely

independent tasks to work on and coordinate synchronization events when they are complete.

This is often wasteful if one worker finishes before the other, however with a steady state

of continuous work this happens infrequently. The other possibility is to take some tasks

originally assigned to another individual and give them to the free worker (this has been given

the term “work-stealing” in computer science [5], although earlier usage of “load-balancing”

algorithms that are extremely similar are found in the operations research literature [59]).

Assembling these workers into a collective unit gives rise to the classic “job-shop” problem

where queueing behavior is observed (more on this later). Stream processing is a paradigm

that embodies this thought process.

Stream processing (also termed data-flow programming) is a compute paradigm that views

an application as a set of compute kernels connected via communications links or “streams.”

Each compute kernel is like an independent worker, performing a relatively sequential task

4

(perhaps however with instruction level parallelism) on a finite (but unknown quantity)

of streaming data (it is often convenient to think of this stream as infinite with a multi-

phase distribution). Streaming languages and libraries include RaftLib [25, 159] (my own),

StreamIt [187], S-Net [84], and others. Stream processing is increasingly used by multi-

disciplinary fields with names such as computational-x and x-informatics (e.g., biology, astro-

physics) where the focus is on safe and fast parallelization of a specific application [130, 190].

With non-expert programmers in mind, intuitive linguistic semantics are quite important to

parallel systems. Linguistically, stream processing systems can take many forms. Tradi-

tionally programmers assemble building blocks of “kernel” compute units. With RaftLib

(described in Chapter 3) I took a mixed approach, attempting to balance C++ style seman-

tics with the more traditional building block approach.

1.3 Turning Streams into Torrents

Many “big-data” applications involve real-time or latency sensitive processing, necessitating

usage of many parallel kernels on several compute cores. Optimizing the orchestration of ker-

nels has been the focus of much theoretical and empirical work [19, 20, 23, 124, 148]. Purely

theoretical parallel programming models can fail when the assumptions implicit within the

model are mis-matched with reality (i.e., the model is incorrectly applied). Full empirical

optimization solves this problem by extensively searching the range of configurations under

native conditions, this however is expensive in both time and energy. This dissertation fo-

cuses on the middle ground; how to quickly apply theory and knows when to fall back to

tried and true empirical evaluation.

Many largely theoretical stream processing optimizations focus on synchronous data flow

with fixed input and output buffers. By synchronous flow, we assume that there is always

only one item removed from the input queue and one item sent to the output queue (and each

item is typically the same size). Clearly synchrony and fixed buffers heavily limit the design

space over which one can optimize. When these conditions are met, then optimizations can

take place statically. What happens when these conditions are not met? Applications such

as image processing over the entire web (say picking out red shirts or toasters with associ-

ated reviews) are bursty in data-flow and present non-identical workloads to the processors

searching them. Clearly a dynamic approach is desirable to optimize this traffic.

5

The optimization and tuning of stream processing applications on anything other than a

single core platform must start with a k-way partitioning of the streaming graph onto each

core. Once the k-way partition is made, each compute kernel must be scheduled to run on

each core. Multiple strategies exist for partitioning, even some with provable performance

bounds (for synchronous data flow applications). Mapping full applications to diverse sets

of hardware requires a multi-objective k-way partitioning. One of the key objectives within

streaming graph partitioning is to reduce the movement of data and maximize re-use of

cache-lines. The partitioning problem itself is provably NP-Hard [76] (although certain

special cases can simplify it greatly).

Aside from managing the placement of compute kernels at partitioning, changing the na-

ture of the buffers themselves or even changing the degree of parallelism within the graph

can improve or worsen communications costs within the application. Managing communi-

cations links within a parallel streaming system is analogous to optimizing a finite capacity

queueing network. Optimizing a streaming application is often most efficiently done using a

combination of stochastic queueing and other performance models. Performance models of

complex systems are often computationally intensive [63], hard to validate, and error prone.

As systems progress from the relatively simple (single processor) to the extremely complex

(k non-uniform processors) they become extremely hard to model and therefore optimize.

Essentially a “Modeling Wall” is reached. With increasing complexity, comes increased mod-

eling cost. What we propose to break this wall is an adaptive process that utilizes online,

dynamic optimization. Selecting models by hand for an online tuning process is clearly im-

practical, humans are too slow too make effective decisions. Deciding what to model and

how must be done by algorithm. This dissertation demonstrates that, for the stream pro-

cessing paradigm, machine learning techniques can be effective at online performance model

selection for a target application and platform.

Parallel processing systems and stream processing systems in particular must adapt to chang-

ing environments. Cloud computing is largely supplanting dedicated high performance com-

pute clusters. The workloads that parallel systems must manage are also not static, they

change from one execution to the next and within a single execution. We demonstrate that

a modified Levy distribution can approximate the distribution of the “best-case” execution

time variation for an application running on a multi-core processor. This demonstrated that

multiple types of hardware (x86, ARM, PowerPC) and schedulers exhibit a quantifiable and

regular noise pattern that can be used to accept or reject performance models. We also

6

demonstrate that two differing machine learning (ML) techniques, Support Vector Machine

(SVM) and an Artificial Neural Network (ANN), can distinguish similar patterns which can

be used to reliably classify stochastic queueing models into two categories “use” and “don’t

use.” The ML process takes the place of someone trained to utilize stochastic models and

performs the same selection work in microseconds instead of minutes. This enables fast

online model selection, making dynamic optimization and re-optimization possible.

In order for online modeling to be practical, while still viewing each kernel as a “black-

box,” instrumentation is required to provide data to the modeling system. For streaming

systems some metrics of interest are: queue occupancy, process distribution, non-blocking

service rate, to name but a few. A very real risk is that the monitoring used to inform

dynamic change utilizes more compute power and bandwidth than the computation itself.

In order to minimize the overall effect of instrumentation, we develop a series of techniques

to measure (and where necessary approximate) the values of interest with little overhead.

Instrumentation combined with analytic models and machine learning techniques described

in this dissertation can enable adaptive monitoring of the streaming system and placement of

instrumentation only where necessary (e.g., the variables of interest have a high probability of

changing, or there is a high probability that the model used to build the system is incorrect).

As an example, if a tandem queue is operating at a low utilization then most basic queueing

models can be used to give a very stable result. Systems operating outside of this low-

utilization range require more information to make a good estimate of buffer size. To quote

Rumsfeld “There are known unknowns. That is to say there are things that we now know

we don’t know. But there are also unknown unknowns.” [163] This dissertation shows that

we can instrument for the known unknowns and adaptively target some of the unknown

unknowns without inadvertently influencing the behavior of the application.

Online modeling of streaming systems involves many pieces (machine learning), adaptive ef-

ficient instrumentation, and a good starting partition. This dissertation takes each of these

pieces and puts them together to produce applications that are performant and straightfor-

ward. Easier to use modeling tools such as the one described within this work, enable novice

users to write relatively performant distributed parallel streaming applications for today’s

modern hardware.

7

1.4 Contribution and Structure

This dissertation makes the following contributions to the online modeling and execution of

stream processing systems:

1. We developed the RaftLib stream processing library for C++ [25]. RaftLib is built

as a template library, enabling end users to utilize the robust C++ standard library

along with RaftLibs streaming / data-flow parallel framework. It is designed to be

both a research vehicle and a productivity tool for parallel programmers. RaftLib sup-

ports dynamic queue optimization, automatic parallelization, real-time low overhead

performance monitoring, heuristically optimized partitioning, and online modeling of

performance (through techniques described in this work).

2. Finding an application topology mapping that maximizes throughput on a given set

of hardware is a hard problem. We show that with a few modifications, a generalized

gain/loss maximum flow model is appropriate to model the throughput of a queueing

network [20, 19] under certain conditions.

3. We show that an appropriately modified Levy distribution (to ensure finite support)

can approximate a lower bound on the distribution of the variation expected from a

process executing on modern multi-core hardware. The modified Levy distribution is

reparameterized in terms of the target modeling application so that it can be used

without expensive model fitting. This distribution we call mLevy. We go on to show

how mLevy can be used to accept or reject a queueing model based [21].

4. Many models commonly used for streaming applications require some idea of the non-

blocking service rate (i.e., how fast a compute kernel is able to execute in isolation.

Many of the models discussed within this dissertation require it. We give a technique

that approximates the non-blocking service rate while the application is executing with

extremely low overhead. We also give an implementation of this technique within the

RaftLib streaming framework [22].

5. Many methods are available to assess when a model can be trusted (i.e., where is the

error within a given model). Generally these methods are used by a human, guided by

intuition and based on the overall problem structure. Many cases are easy to find, such

as when assumptions used to derive a model are broken (e.g., exponential inter-arrival

8

and service time distributions for a M/M/1 queueing model). Having a human in the

loop isn’t fast enough to adapt while an application is executing. We show that two

differing machine learning methods can take a fingerprint, consisting of hardware and

application features, to decide if a model is to be trusted or not. We show that this

method is effective when utilizing both Support Vector Machines and Artificial Neural

Networks [23, 24].

6. What can be done at run-time to optimize the execution of an application? Often

is is the only time a streaming application can be optimized. What can be done

when modeling assumptions turn out to be false during execution? We show that

using an initial mapping and partition as a starting point, local search with the aid

of our online modeling techniques and instrumentation can effectively optimize the

application with little additional overhead (often within a very high percentage of

optimal, see Chapter 8).

In the following chapters I’ll delve deeper into the background for this work, describe the

RaftLib C++ streaming library, several modeling techniques, a distribution to describe min-

imal execution time variation, dynamic instrumentation, and machine learning for online

model selection. The final chapter will put all these elements together and describe how

they coalesce to make a state of the art streaming framework. Lastly we’ll conclude by

discussing future directions, and where we believe the future of parallel processing will lead.

9

Chapter 2

Background and Related Works

The background and related works of others for the contributions contained within this thesis

is quite deep and must obviously be truncated at some point. In this chapter we will quickly

go through the necessary background, history and related works for each contribution in

their order of presentation. We will outline the differences from prior techniques to those

presented here, if necessary (or expedient) bits of background information have been included

within the appropriate chapters, this chapter is intended to be a bit more comprehensive.

2.1 Stream Processing

The concept behind stream processing is a very simple one. By connecting compute kernels

via buffers so that each compute kernel can compute independently, a model to construct

parallel applications emerges. It naturally arises from the job shop [96] (or assembly line

model) common to modern factories throughout the world. The first data flow language is

believed to be credited to Jack Dennis [60]. A highly cited early summary by David Culler [56]

provides a brief overview of both data flow hardware and the stream processing paradigm.

Since Culler’s synopsis there has been an explosion of data flow hardware, languages, and

libraries both academic and commercial. Before data-flow languages or stream processing,

data-flow was the domain of hardware.

Much work has been done in the field of data-flow hardware. It is largely tangential to this

work, however many of the modeling techniques apply to software stream processing systems

as well. Early hardware in this field is described by Papadopoulos [151]. The most notable

hardware to date has been produced through the Imagine streaming engine project from

10

Stanford University [106]. True data-flow processors have not gained commodity acceptance

for various reasons, however the basic concept of non-Von Neumann data-flow architectures

remains promising for performance, energy, and general efficiency reasons. The most recent

example of a data-flow architecture combines the low latency Von Neumann architecture

with a high throughput data-flow processor, dynamically sending instructions to each as

necessary [146]. Our work, both Auto-Pipe and our successor RaftLib (see Chapter 3)

execute the data-flow model on top of the Von Neumann abstraction. Linguistically and

conceptually stream processing languages, models, and techniques are generally transferable

from Von Neumann architectures to data-flow ones. The stream processing paradigm (data-

flow) is also ideal for exploiting massively parallel computation due to many salient features

discussed within Chapter 3. Next we will discuss the multitude of recent notable stream

processing languages (both academic and commercial).

Brook [35] is a language designed for streaming processing on GPUs. StreamIt [187] is a

streaming language and compiler based on the synchronous data-flow model. Google Cloud

Dataflow [155] is another proprietary stream processing system. Storm [181] and Samza [164]

are open-source streaming platforms that are focused on message-based data processing.

RaftLib and the other truly “streaming” languages differ from these in that they use point

to point communication instead of centralized brokers to distribute data. A central broker

makes providing fault tolerance simpler, however it also stifles many opportunities for opti-

mization available to traditional streaming systems. Another potential disadvantage is that

queueing behavior within the backing store could require infinite storage when consumers

cannot keep up with the volume of data [111]. Blocking and decentralized control of classic

streaming systems enable throttling at a local level eliminating the potential for an infinitely

sized data broker.

Many of the full languages and frameworks have until recently been suited only to “niche”

applications, often with steep learning curves. RaftLib’s advantage over them is that a

C++ template library is easy to integrate with legacy code, enabling more general usage.

ScalaPipe [198] and StreamJIT [28] are two similar language extensions for streaming pro-

cessing with Scala and a Java front-ends, respectively. Other C++ parallelization template

libraries include Threading Building Blocks [162] and Concurrency Collections [110], which

are both Intel products. RaftLib differs from the last two in that it aims to provide a fully

integrated, distributed, and dynamically optimized stream parallel platform.

11

2.2 Modeling

Streaming applications can be thought of as a series of queues and servers. Each compute

kernel is a server which draws data from a queue. The background needed for most of the

queueing models utilized within this thesis are given by Kleinrock [109], although they are

also covered in more recent texts such as [88, 179]. Notation for many of these models comes

from the classic work of Kendall [103]. Necessary explanations are included as needed within

the text. Work by Dor et al. [64] shows that simple queueing networks can accurately model

the performance of a heterogeneous streaming application. Many earlier works, including

Schweitzer [172], demonstrated that maximum throughput can be determined analytically

for a finite-capacity open queueing network. These works have shown that queueing networks

can be used for modeling throughput, however they often assume that the queueing capacity

is known. Lancaster et al. [117] showed that virtual queues have many of the same properties

as a single abstract queue and associated server. The model presented in Chapter 4 solves

for maximum throughput assuming unbounded buffering capacity and then follows with an

analysis to capacitate them.

One of the primary themes throughout this work is buffer allocation. Determining the cor-

rect size of buffers within an open queueing network has been the subject of much research

over the past half century (see Cruz et al. [55], for a summary of applications or Smith

and MacGregor [177] for M/G/1/K approaches). A general summary on the buffer al-

location problem (or BAP, as it is often abbreviated) including its hardness in general is

described by Anantharam [9]. Simulation methods to solve the general cases are common,

some highly cited examples are [8, 152]. There are also analytic approaches for probabilis-

tic upper bounds, the easy to derive M/M/1 is given by Kleinrock [109] for single stations

and methods to find the allocation for some networks are given by Neuts [143]. There are

also “rule-of-thumb” methods such as those given by Anantharam and Ganesh [10]. One

thing that each of these methods has in common is that they require characterization of the

distribution of each process (often including multiple central moments). These methods are

often expensive in their computation, especially the simulation approaches, which are not

suitable for time sensitive online modeling tasks. Our buffer allocation techniques differ from

these previous approaches in that we focus on simple models (often separable) that can be

executed quickly and give a good enough approximation for relatively high performance.

12

Queueing networks have a close relationship with flow networks. Recent work by Boudec [121]

considers not individual jobs on a network but flows of jobs within a network. Work

by Pourbabai [156] utilizes a maximum flow model to solve a queuing network with side

constraints. Unlike the target of these works, most real applications have data-flow rout-

ing requirements that are critical to the correctness of the application. For example, the

RGB2YCbCr module in Figure 4.1 takes in a stream of RGB data and outputs three sep-

arate streams of Y, Cb and Cr data. A typical formulation of the maximum flow problem,

assume that any path from source to sink can be taken. That is they assign maximum flow

to a graph without regard to application imposed data distribution requirements. Using a

standard maximum flow model with no further constraints might result in all the data being

sent along the Y channel but none to the Cb and Cr channels. The flow model described in

Chapter 4 places volume constraints on each out edge that are derived directly from data

routing requirements of the underlying application. This is distinct from the previous work

of Pourbabai [156] in that we have added routing constraints so that this method is usable

for compute applications.

Many applications exhibit some form of data filtering, that is they change the form of the

data from that which is originally received. Two ways in which applications can change

data include: increasing or decreasing the volume of data (e.g., a basic block that calculates

matrix eigenvalues might take in a grid of data and output a short vector of values) or

changing the width of the individual data elements (e.g., expanding a single unsigned byte

to a 64-bit floating point value). Filtering presents an interesting problem for standard

maximum flow algorithms [71, 73]. Work by Jewell [99] outlined algorithms for calculating a

maximum flow of a network with gain or loss. Using the theoretical work of Jewell the flow

model utilized in Chapter 4 is a generalized gain/loss flow network with a fixed branching

probability at each out-edge. Chapter 4 uses the gain loss foundations of Jewell [99] directly

(with optimizations due to Goldberg et al. [81] and later work by Goldfarb et al. [82]), as

they are relative optimal. The distinction of this work is that it is the first to use this type

of model applied to an open queueing network and streaming systems. A slightly tangential

use of flow models within performance engineering is for multi-processor scheduling [180].

More advanced methods of modeling behavior of applications on shared resources have been

used and shown to be relatively effective [39, 180]. Contrary to these complex models, the

methods outlined in Chapter 4 demonstrate that simple models can be as effective as the

former complex ones for certain classes of applications.

13

2.3 Instrumentation

At its core, Chapter 6 is about low-overhead instrumentation of software systems. The same

techniques could also be used for co-designed hardware/software systems. Many others have

produced low overhead instrumentation systems. Amongst the earliest type of performance

oriented instrumentation tools were call graph tools such as gprof [83]. Other instrumen-

tation tools such as TAU [175] provide low overhead instrumentation and visualization for

MPI style systems. What these tools don’t provide is a mechanism for reporting performance

during execution (which our system does). The TimeTrial performance monitor [116], which

Chapter 6 describes an extension of, laid the groundwork for real time monitoring for stream-

ing systems.

Modern stream processing systems such as RaftLib (see Chapter 3) can dynamically re-

optimize in response to changing conditions (workload and/or computing environment). To

re-optimize buffer allocations there are generally two choices, either branch and bound search

or analytic queueing model. Branch and bound search has the disadvantage of requiring mul-

tiple allocations and re-allocations until a semi-optimal buffer size is found. Analytic queuing

models are highly desirable for this purpose since they can divine a buffer size directly, es-

chewing many unnecessary buffer re-allocations. Compute kernel mean service rates are, at

a minimum, typically required for these types of models. Utilizing these models dynamically

therefore requires dynamic instrumentation. Tools such as DTrace [38], Pin [132], and even

analysis tools such as Valgrind [141] can provide certain levels of dynamic information on

executing threads. Other, more modern performance monitoring tools of note are Para-

dyn [137] and Scalasca [78]. These toolkits provide a multitude of information for parallel

systems, however not quite the same type of information that our instrumentation provides.

They’ve pioneered things like trace compression for instrumentation, however we’re inter-

ested in eliminating traces all together by using the data in real time then throwing it away.

Another way our approaches differ from the aforementioned ones is that we are specifically

targeting methods for estimating online service rate in a low overhead manner, as opposed

to being a general purpose instrumentation toolkit.

Work by Lancaster et al. [118] laid out logic that could ostensibly make online service rate

determination possible. They suggest measuring the throughput into a kernel when there

is sufficient data available within it’s input queue(s) and no back-pressure from its output

queue(s). This logic works well for FPGA-based systems where hardware is controlled by

14

the developer. For multi-core systems, however, this logic breaks down, for several reasons

which are enumerated within this section. The need for low overhead online service rate

determination motivates this work.

The work of Lancaster et al. [42, 118] assumes that the measurements of a non-blocked service

rate are all equal (i.e., the full service rate is observed at every sample point). In reality,

modern parallel system conspire against this logic with delays due to NUMA, coherence,

etc. making observations gleaned from this logic unusable (due to many factors, discussed

in detail within Chapter 6). This work is distinct from these previous works, while we

marginally extend the logic, in Chapter 6 a technique is described to approximate the non-

blocking service rate while an application is executing (online), enabling optimizations not

possible using previous techniques.

2.4 Online Modeling & Performance Tuning

There has been considerable work investigating the efficient execution of streaming appli-

cations, both on traditional multi-cores and on heterogeneous compute platforms, from the

early work on dedicated data flow engines [61], to the synchronous data flow model [123].

Lancaster et al. [116, 117] have built low-impact performance monitors for streaming com-

putations, and Padmanabhan et al. [148, 149, 150] have shown how to efficiently search the

design space given a model that connects tuning parameters to application performance.

Beard and Chamberlain [19] showed how to approximate flow through a streaming applica-

tion efficiently. RaftLib intends to leverage and expand upon the above work as it seeks to

efficiently execute streaming applications.

In order to dynamically “tune” RaftLib, online instrumentation is required. Much previous

work has been done in this area as well, although not as much for streaming systems. Tools

such as DTrace [38], Pin [132], and even analysis tools such as Valgrind [141] can provide

certain levels of dynamic information on executing threads. The approach taken by RaftLib

differs from the aforementioned ones in that we are estimating the service rate while the

application is executing and the instrumentation can be turned on and off as needs dictate.

In order to tune an application, models are typically used. When do we trust the model?

When to use and not to use a performance model has been studied extensively [88, 97, 179].

15

Model selection and validation in general has also been studied quite heavily over the last

century [30]. Multiple related fields from Operations Research [119] to agriculture [77] all

rely on models and their subsequent validation. Most of the methods in the aforementioned

resources rely on either physically observing or simulating a model in order to validate it.

For most applications, this is quite expensive (in terms of time and labor). Validation of

simulation models has also been covered quite well by the works of Sargent [167, 168]. The

methods described in Chapter 7 differ in that they are not meant to be perfect validation,

rather a highly probable and fast result.

2.5 Dynamic Adaptation

Dynamically adapting to changes in the environment for software systems is not a new

concept, in and of itself. There have been several realizations of this idea. One of the

most notable are “hot-spot” compilers which re-compile segments of code based upon its

relative frequency of execution and other cost factors. One such scheme is the Jalapeño

JVM [14]. There is also the classic Sun Microsystems developed hotspot compiler [142].

Before hotspot compilation was a very similar concept, iterative compilation [108], which

searches the design space of instruction sequences to find the best sequence for a target

architecture. These systems make code changes, our code changes are limited in nature.

They are not intended (in general) to extract more parallelism from code, we do. They are

also designed to work with intermediate byte-code (save for the earlier iterative compilation

works) which gives a JVM based adaption the benefit of having essentially an original source

to re-compile at will to a given architecture. What these systems don’t necessarily take into

account is the performance of threads within a system and attempt to optimize the whole,

this is where our work distinguishes itself.

Other forms of adaption take the form of compile time static adjustments to code. The

most notable example is the ATLAS BLAS package [196]. Several others have developed

statistical methods to reduce the search space for this type of offline search for optimal

library code [32, 194]. How this work differs from these is that we focus no on optimizing

the generation of code itself, but tuning the topology so that the parallel execution itself is

performant.

16

Other forms of adaptation take place dynamically for fault tolerance reasons. There are both

active and passive forms of fault tolerance [18, 31, 93, 173] , as well as hybrid approaches [203].

While fault tolerance is a necessary trait of a high performance distributed system, it is out

of scope. This work makes no claims that ensure fault tolerance as these methods do, we

aim to provide performance tolerance.

17

Chapter 3

RaftLib Streaming Library

Decries touting the end of frequency scaling and the inevitability of a massively multi-core

future are frequently found in current literature [69]. Equally prescient are the numerous

papers with potential solutions to programming multi-core architectures [13, 125, 154, 201].

One of the more promising programming modalities to date is a very old one: stream pro-

cessing [60, 135] (the term “stream processing” is also used by some to refer to online data

processing [40, 70]). Until recently it has garnered little attention, we hope to help change

that by enabling performant and automatically tuned stream processing within the highly

popular C++ language.

Stream processing is a compute paradigm that views an application as a set of compute

kernels (also sometimes termed “filters” [187]) connected by communication links that deliver

data streams. Each compute kernel is typically programmed as a sequentially executing unit.

Each stream is a first-in, first-out (FIFO) queue whose exact allocation and construction is

dependent upon the link type (and largely transparent to the user). Sequential kernels are

assembled into applications that can execute in parallel. Figure 3.1 is an example of a simple

streaming sum application, which takes in two streams of numbers, adds each pair, and then

writes the result to an outbound data stream.

A salient feature of streaming processing is the compartmentalization of state within each

compute kernel [3], which simplifies parallelization logic for the run-time [61] as well as the

programming API (compared to standard parallelization methods [4]). Stream processing

has two immediate advantages: 1) it enables a programmer to think sequentially about

individual pieces of a program while composing a larger program that can be executed in

parallel, 2) a streaming run-time can reason about each kernel individually while optimiz-

ing globally [148]. Moreover, stream processing has the fortunate side effect of encouraging

18

source

source

sum print

Figure 3.1: Simple streaming application example with four compute kernels of three dis-
tinct types. From left to right: the two source kernels each provide a number stream, the
“sum” kernel adds pairs of numbers and the last kernel prints the result. Each kernel acts
independently, sharing data via communications streams depicted as arrows.

developers to compartmentalize and separate programs into logical partitions. Logical par-

titioning is also beneficial for the optimization and tuning process.

In addition to simpler logic, stream processing also enables easier heterogeneous and dis-

tributed computation. A compute kernel could have individual implementations that target

an FPGA and a multi-core running within the same application, known as “heterogeneous

computation” or “hybrid computing” [43]. As long as the inputs and outputs are matching,

the application will run correctly regardless of which resource a kernel is scheduled to execute

on. Brook [35], Auto-Pipe [72], GPU-Chariot [74], and ScalaPipe [198] are examples of such

systems. Stream processing also naturally lends itself to distributed (network) processing,

where network links simply become part of the stream.

Despite the promising features of stream processing, there are hurdles that affect program-

mers’ decision to use the paradigm. One hurdle to adoption is communication cost. There are

many potential solutions to reducing communications cost such as shared stack space/private

stack combinations which facilitate fast lock-free inter-thread communication and the more

traditional (albeit difficult) optimization of FIFOs through queueing network models (this

work focuses primarily on the later). Substantive solutions to reducing communications cost

are hampered by the sheer difficulty of fully tuning a general parallel application. Opti-

mizing the communications cost requires a graph-partition with multiple objectives which

is NP-hard for the general case [76]. Much work has been done in the VLSI community for

the similar problem of optimal chip layout. A second hurdle is simply the bulk of legacy

code and the requirement on the part of most streaming frameworks that applications be

re-authored or substantially modified to conform [136]. The most popular languages for the

past two decades have been C, C++ and Java [188] (each designed for a sequential mode of

19

execution). One way to reach a tipping point towards acceptance of stream processing is to

conform to one of these languages, and that is the path that we chose.

RaftLib [159] is a C++ template library aimed at enabling safe and fast stream processing.

By leveraging the power of C++ templates, RaftLib can be incorporated with a few function

calls and the linking of one additional library. It is completely self container, only a C++

compiler is needed. RaftLib aims to transparently parallelize an application, while mini-

mizing re-factoring for legacy code. RaftLib is an online auto-tuned streaming system. As

such it tries to maximize throughput of the application by: adaptively scheduling compute

kernels, providing low overhead instrumentation to the run-time so it can make informed

decisions, and selecting when to model and how to model each part of the streaming system.

RaftLib dynamically optimizes the streaming system in a multitude of ways, drawing on

research from past works described within Chapter 2 and the work within this dissertation.

Machine learning techniques (Chapter 7) are used to model buffers within the streaming

graph and select progressively more appropriate buffer sizes while the application is exe-

cuting. The framework incorporates low overhead instrumentation which can be turned on

and off dynamically to monitor such metrics as queue occupancy, non-blocking service rate,

and utilization. All of these pieces put together make a highly usable and adaptive stream

parallel system which is integrable with legacy C++ code.

3.1 Design considerations

Several properties of streaming applications that must be exploited or overcome by streaming

systems have been noted by others. The stream access pattern is often that of a sliding win-

dow [186], which should be accommodated efficiently. RaftLib accommodates this through a

peek range function. Streaming systems, both long running and otherwise, often must deal

with behavior that differs from the steady state [186, 126] (see also Chapter 5). Non-steady

state behavior is often also observed with data-dependent behavior, resulting in very dy-

namic I/O rates (behavior also observed in [186]). This dynamic behavior, either at start-up

or elsewhere during execution, makes the analysis and optimization of streaming systems a

slightly more difficult prospect, however it is not insurmountable. We will demonstrate em-

pirically how RaftLib handles dynamic rates through a text search application at the end of

this chapter. For example, text search has the property that while the input volume is often

20

fixed, the downstream data volume varies dramatically with algorithms, which heuristically

skip, as does the output (pattern matches). Kernel developers, as should be the case, focus

on producing the most efficient algorithm possible for a given kernel. Despite this, kernels

can become bottlenecks within the streaming system. RaftLib dynamically monitors the

system to eliminate the bottlenecks where possible.

At one time it was thought that end users were probably best at resource assignment [58],

whereas automated algorithms were often better at partitioning an application into compute

kernels (synonymous to the hardware-software co-design problem discussed in [12]). Anec-

dotal evidence suggests that the opposite is often true. Programmers are typically very good

at choosing algorithms to implement within kernels, however they have either too little or

too much information to consider when deciding where to place a computation and how to

allocate memory for communications links. There is simply too much information which

changes too quickly for a human to comprehend in real-time. The placement of each kernel

changes not only the throughput but also the latency of the overall application. In addition,

it is often possible to replicate kernels (executing them in parallel) without altering the ap-

plication semantics [127]. RaftLib exploits this ability to blend pipeline and data parallelism

as well.

3.2 RaftLib description

Writing parallel code traditionally has been the domain of experts. The complexity of tra-

ditional parallel code decreases productivity which can increase development costs [90]. The

streaming compute paradigm generally, and RaftLib specifically, enables the programmer to

compose sequential code and execute not only in parallel but distributed parallel (networked

nodes) using the same code.

RaftLib has a number of useful innovations as both a research platform and a program-

mer productivity tool. As a research platform, it is first and foremost easily extensible;

modularized so that individual aspects can be explored without a full system re-write. It

enables multiple modes of exploration: 1) how to effectively integrate pipeline parallelism

with standard threaded and/or sequential code, 2) how to reduce monitoring overhead, 3)

how best to algorithmically map compute kernels to resources, 4) how to model streaming

applications quickly so that results are relevant during execution. It is also fully open source

21

and publicly accessible [159]. As a productivity tool it is easily integrable with legacy C++

code. It allows a programmer to parallelize code in both task and pipelined fashions.

We introduce RaftLib via the following example application. The sum kernel from Figure 3.1

is an example of a kernel written in a sequential manner (code shown in Figure 3.2). It

is authored by extending a base class: raft::kernel. Each kernel communicates with the

outside world through communications “ports.” The base kernel object defines input and

output port user accessible objects. These are inherited by sub-classes of raft::kernel.

Port container objects can contain any type of port. Each port itself has the behavior of a

FIFO queue. The constructor function of the sum kernel adds the ports. In this example,

two input ports are added of type A & B as well as an output port of type C. Each port

gets a unique name which is used by the run-time and the user. The real work of the kernel

is performed in the run() function which is called by the scheduler. The code within this

section can be thought of as a “main” function of the kernel. Input and output ports can

access data via a multitude of intuitive methods from within the run() function. Accessing

a port is safe, free from data race and other issues that often plague traditional parallel

code [15]. Figure 3.3 shows the full application topology from Figure 3.1 assembled in code.

Assembling the topology is akin to connecting a series of actors, each sequential in an of

themselves but executing independently. Each call to the link function connects the specified

ports from the source and destination kernels. The function call returns a structure with

references to the linked source and destination kernels for re-use by the programmer if needed.

The run-time itself brings the parallel power to these sequential actors.

Once the kernel “actors” are assembled into a full application, the run-time starts to work

parallelizing the application with the exe() function call. This feat is performed by mapping

kernels to appropriate resources, sizing buffers, selecting the appropriate algorithm when

more than one exists, scheduling kernels for execution, and tuning any remaining performance

impacting run-time parameters.

Scheduling, mapping, and queueing behavior are each important to efficient, high-performance

execution. RaftLib is intended to facilitate empirical investigation within each of these ar-

eas. RaftLib implements a simple but effective scheduler that is straightforward to substitute

with new algorithms. Similarly, the modular mapping algorithms used in RaftLib can easily

be altered for comparative study. Each communication link between compute kernels ex-

hibit queueing behavior. RaftLib serves as a platform for optimizing the queueing network,

22

template< typename A, typename B, typename C > class sum : public raft::kernel

{

public:

sum() : raft::kernel()

{

input. template addPort< A >("input_a");

input. template addPort< B >("input_b");

output.template addPort< C >("sum");

}

virtual raft::kstatus run()

{

A a;

B b;

input["input_a"].pop(a);

input["input_b"].pop(b);

auto c(output["sum"].template allocate_s< C >());

(*c) = a + b;

return(raft::proceed);

}

};

Figure 3.2: A simple example of a sum kernel which takes two numbers in via input a and
input b, adds them, and outputs them via the sum stream. The allocate s call returns
an object which releases the allocated memory to the downstream kernel with the call of its
destructor as it exits the stack frame.

not only statically but dynamically. RaftLib supports continuous optimization of a host of

run-time settable parameters.

There are many factors that have led to the design of RaftLib. Chief amongst them is the

desire to have a fully open source framework to explore how best to integrate stream pro-

cessing with legacy code. Secondly it serves as an experimental platform for investigating

optimized deployment and optimization of stream processing systems. In the following sec-

tions we discuss why we need the features included in the library, the science and engineering

behind them and some examples of how those features are executed by the user. This will

be followed by benchmarking a text searching application against other leading parallel text

search applications.

23

const std::size_t count(100000);

using ex_t = std::int64_t;

using gen = raft::random_variate< ex_t, raft::sequential >;

using sum = sum< ex_t, ex_t, ex_t >;

auto linked_kernels(map.link(kernel::make< gen >(1, count),

kernel::make< sum >(), "input_a"));

map.link(kernel::make< gen >(1, count),

&linked_kernels.getDst(), "input_b");

map.link(&linked_kernels.getDst(), kernel::make< print< std::int64_t ,’\n’> >());

map.exe();

Figure 3.3: Example of a streaming application map for a “sum” application (topology given
in Figure 3.1). Two random number generators are instantiated, each of which sends a stream
of numbers to the sum kernel which sends the sum to a print kernel. The call to link()

returns a struct (linked kernels) with references to the kernels used within the link()

function call (linked kernels.getSrc() and linked kernels.getDst() respectively) so
that they may be referenced in subsequent link calls.

3.2.1 RaftLib as a research platform

As a research platform, RaftLib is designed to enable the investigation of a number of

questions that impact the performance of streaming applications. We will address a number

of these questions in the paragraphs below, with a focus not on the answer to the research

question, but instead on how RaftLib facilitates the investigation.

We start with the ability to blend pipeline parallelism with data parallelism. Some appli-

cations require data to be processed in order, others are okay with data that is processed

out of order, yet others can process the data out of order and re-order at some later time.

RaftLib accommodates all of the above paradigms. Streams that can be processed out of

order are ideal candidates for the run-time to automatically parallelize. Li et al. [127] de-

scribe algorithms for replicating kernels in a pipelined environment, both for homogeneous

compute resources and for heterogeneous compute resources. Parallelization decisions can

also be guided empirically through low-overhead instrumentation described below.

Automatic parallelization of candidate kernels is accomplished by analyzing the graph for

segments that can be replicated preserving the application’s semantics (indicated by the user

specifying out of order processing at link time with the appropriate template parameter). As

part of the graph analysis process, single entry single exit [100] segments are identified (with

24

respect to user indicated out of order links) and indexed as potential parallelization points.

Split and reduce adapters are inserted where needed. Custom split/reduce objects can be

created by the user by extending the default split/reduce objects. Split data distribution

can be done in many ways, and the run-time attempts to select the best amongst round-

robin and least-utilized strategies (queue utilization used to direct data flow to less utilized

servers). As with all of the specific mechanisms that we will discuss, each of these approaches

is designed to be easily swapped out for alternatives, enabling empirical comparative study

between approaches.

Given an application topology to execute, the kernels need to be assigned to specific compute

resources and scheduled for execution. Scheduling of compute kernels within a streaming

application has been the subject of much research. Conceptually it has two parts, initial

resource assignment or “mapping” of kernels to compute resources and then scheduling

the kernels. The abstract layout of the RaftLib scheduler is depicted in Figure 3.4. The

problem of partitioning and mapping a streaming application to compute resources is nearly

identical however to the decades old problem of partitioning and mapping a circuit. The

graph partitioning problem itself is NP-hard in general, however several heuristics have

been developed that are quite good. Derivatives of the Kernighan-Lin algorithm [104] are

used for the initial partition. The heuristic originally developed within their seminal work

to minimize communications cost between graph partitions and maximize within partition

communication is ideal for improving data-locality when scheduling. RaftLib uses a multi-

partitioning strategy for the initial placement from the work of Sanchez [166] to maximize

within core and minimize between core communications. An online global scheduler (one of

many which can be used as a tuning knob) has the option of using the OS scheduler (one

thread per kernel), round-robin, work-stealing and cache-weighted work stealing. Cache-

weighted work stealing simply adds a weight to encourage the scheduler to steal across cores

only if the utilization advantage gained by stealing is greater than a given threshold. Local,

within-thread schedulers can also be used although the best scheme for an optimal local

scheduler has still to be researched. Currently a simple, but effective, round robin policy is

used.

As illustrated in Figure 3.5, the allocated size of each queue of a streaming application can

have a significant impact on performance (the data from the figure is drawn from a matrix

multiply application, performance based on overall execution time). One would assume

perhaps that simply selecting a very large buffer might be the best choice, however as shown

25

Reschedule

Scheduler

Thread 1

Threadi

Threadn

Partitioner

Application

Kernel

}Optional

Figure 3.4: The RaftLib scheduler is designed to allow testing and evaluation of multiple
schedulers. A basic graph partitioner clusters the graph to minimize communications be-
tween cores and maximize caching. Once partitioned, compute kernels are sent to executing
threads. The threads themselves have a scheduler which decides which kernels to execute.
Optionally the thread can send a kernel back to a “global” scheduler to load balance the
application.

the upper confidence interval begins to increase after about eight megabytes. Queueing

models are often the fastest way to estimate an approximate queue size, however service

rates and their distributions must be determined, which is hard to do during execution. In

general, two options are available for determining how large of a buffer to allocate: branch

and bound search or analytic modeling. Branch and bound searching has the advantage

of being extremely simple, and eventually finds some reasonable condition. If the queue is

destined to be of infinite size, a simple engineering solution presents itself in the form of a

buffer cap. Model based solutions are also often straightforward to calculate (assuming an

appropriate model can be selected), if the conditions are right for considering each queue

individually (e.g., the queueing network is of product form).

While treating compute kernels as a “black” box, queue sizing approaches must accommodate

program correctness. If a kernel asks to receive five items and the buffer size is only allocated

for two, the program cannot continue. RaftLib deals with this by detecting this condition

with a monitoring thread, updated every δ ← 10 µs. When conditions dictate that the FIFO

needs to be resized, it is done using lock-free exclusion and only under certain conditions (to

maximize resizing efficiency). The resizing operation is most efficiently accomplished when

the read position is less than the write pointer (i.e., the queue or ring-buffer is in a non-

wrapped position). There are multiple conditions that could trigger a resize and they differ

depending on the end of the queue under consideration. On the side writing to the queue, if

the write process is blocked for a time period of 3× δ then the queue is resized. On the read

side, if the reading compute kernel requests more items than the queue has available then

26

Figure 3.5: Queue sizes for a matrix multiply application, shown for an individual queue (all
queues sized equally). The dots indicate the mean of each observation (each observation is
a summary of 1k executions). The red and green lines indicate the 95th and 5th percentiles
respectively. The execution time increases slowly with buffer sizes ≥ 8 MB, as well as
becoming far more varied.

the queue is tagged for resizing. Temporary storage is provided on the receiver end to ensure

the request is fulfilled as well as ensure that conditions for fast resizing are met. Further

queueing optimizations are discussed in detail below and within subsequent chapters.

In addition to modeling individual pieces of the application (i.e., branch and bound search,

etc.), RaftLib also can model the throughput of the entire application. Chapter 4 demon-

strates the use of flow models to estimate the overall throughput of a streaming application.

This procedure requires estimates of the non-blocking service rate of each compute kernel

within the streaming system (techniques to do just that are described in Chapter 6). The

flow-model approximation procedure can be combined with other well known optimization

techniques such as simulated annealing or analytic decomposition [148, 149, 150] to contin-

ually optimize long-running high throughput streaming applications.

Performance monitoring is critical to selection of algorithms within an application. It is also

central to the automated tuning and modeling that is part of RaftLib. As such the user has

access to monitor useful things, such as queue size and current kernel configuration, as they

are updated by the run-time. In addition to these, more exciting statistics such as mean

queue occupancy, service rate (both instantaneous and time averaged), throughput, and

27

queue occupancy histograms are available. The data collection process itself is optimized to

reduce overhead and has been the subject of much research [116, 117] (see also Chapter 6).

Streaming systems can be modeled as queueing networks [120, 64, 19, 23]. Similar phenomena

are observed in fork-join networks [17], supply chain management optimization [176] and

operations optimization [202]. Each stream within the system is a buffer (which are modeled

as queues). Sizes of buffers within the application can have a notable effect on application

performance. Specifying buffers that are too small will create bottlenecks where otherwise

none would exist. Conversely selecting buffer sizes that are arbitrarily large can decrease

overall performance (through ancillary effects such as: more page-ins, cache over-runs, etc.).

The effects of buffer sizing are shown empirically in Figure 3.5. RaftLib takes scheduling of

compute kernels, allocation of buffers (queues), and resource mapping out of the user’s hands.

Once a compute mapping is defined, the run-time (through heuristics, machine learning,

and/or mathematical modeling) attempts to keep the application performing optimally.

The queueing network that is a streaming application can be tuned via a stochastic queueing

model. Doing so, however, often requires information, such as the service rate of each kernel,

not typically available at run time (online). Stochastic models are desirable because they

are much faster than the alternatives, e.g., branch-and-bound search, which require many

memory reallocations. Complicating matters for online tuning of buffer size, many analytic

methods used to require an understanding of the underlying service process distribution,

not just it’s mean. Both service rate and process distribution can be extremely difficult to

determine online without affecting the behavior of the application (i.e., degrading application

performance). In Chapter 6, we show that a heuristic approach can determine the service rate

with relatively high accuracy and very low overhead. RaftLib incorporates this approach.

One often overlooked benefit of stream processing from the programmer perspective is that

data “streams” can be contiguous in memory. Vectorized mathematical operations are a stal-

wart feature of high performance computation. RaftLib templates support auto-vectorization

of mathematical operations directly on ports, inserting vectorized (SIMD) code where oth-

erwise the compiler itself could not. Since templates are laid out at compile time, there is

little extra overhead compared to hand coded SIMD operations, and since the operations

occur directly from the port’s memory there is no additional copy needed. In addition to

vectorization, pre-fetching can also be improved by way of stream processing. Regularity of

access (reads and writes to streams) can be improved via pre-fetch instructions. Currently

28

RaftLib pre-fetches elements on range operations, future work might extend this further.

Processor architecture and topology dependent cache hints can improve performance over

the processors’ built in pre-fetch logic.

The “share-nothing” mantra of stream processing might introduce extra overhead, however

it enables fairly easy programming of massively parallel systems. Each compute kernel

can be easily duplicated on the same system, on different hardware across network links

or even on GPGPU systems. As a research vehicle, RaftLib enables the study of stream

processing communication and compute kernel placement. As a productivity tool, we are

more interested in how few lines of code it takes to produce a result. Mentioned but not

described has been the distributed nature of RaftLib. The capability to use TCP connections

for many systems is clunky at best. With RaftLib there is no difference between a distributed

and a non-distributed program from the perspective of the developer. A separate system

called “oar” is a mesh of network clients that continually feed system information to each

other. This information is provided to RaftLib in order to continuously optimize and monitor

Raft kernels executing on multiple systems. The “oar” system also provides a means to

remotely compile and execute kernels so that a user can have a simple compile and forget

experience. Future work will see the full and complete integration of both TCP links and

GPGPU kernels.

3.2.2 Authoring streaming applications

Next we consider the authoring of applications. We’ll show some code segments to see

how little code is needed to write a parallel algorithm and how familiar it can be to C++

programmers.

RaftLib views each compute kernel as a black-box at the level of a port interface. Once ports

are defined by the user (or the runtime), the only observability that the run-time has is the

interaction of the algorithm implementation inside the compute kernel with those ports. A

new compute kernel is defined by extending raft::kernel as in Figure 3.2. Ports are the

only means through which the kernel can access data from incoming or write to outgoing data

“streams.” Programmers building a kernel have a plethora of options to access streams from

within the kernel. Figure 3.2 shows the simplest method (pop) to get data from the input

stream, which is a return object that gives the user a reference to the head of the incoming

29

queue (for variables a & b). A reference to the output queue is given by the allocate s

function. When cs exits the calling scope, it is released to the outgoing queue. The return

object from the allocate s call (assigned to c) has associated signals accessible through

the sig variable. There are multiple calls to perform push and pop style operations, each

embodies some type of copy semantic (either zero copy or single copy), all provide a means to

send or receive synchronous signals. There are also range operator equivalents for accessing

more than one element. Synchronized signaling is implemented so that downstream kernels

will receive the signal at the same time the corresponding data element is received (useful

for things like end of file signals). Asynchronous signaling (i.e., immediately available to

downstream kernels) is also available. Future implementations will utilize the asynchronous

signaling pathway for global exception handling.

Arranging compute kernels into an application is one of the core functionalities of a stream

processing system. RaftLib has an imperative mode of kernel connection via the link func-

tion. The link function call has the effect of assigning one output port of a given compute

kernel to the input port of another compute kernel. A map object is defined in the raft

namespace of which the link function is a member. Figure 3.3 shows our simple exam-

ple application which takes two random number generating kernels, adds pairs of random

numbers using the sum kernel and prints them.

When the user runs the exe() function of map object, the graph is first checked to ensure it

is fully connected, then type checking is performed across each link. Before a link allocation

type is selected (POSIX shared memory, heap allocated memory or TCP link), and each

kernel is mapped to a resource. This could be pinning the thread or heavyweight process to

a compute core, mapping the kernel to another compute node over a distributed system or

even potentially a GPGPU. Once the link allocation types are selected, the run-time selects

the narrowest convertible type for each link type and casts the types at each endpoint. Future

versions could incorporate link data compression as well, further improving the cache-able

data. Once memory is allocated for each link, a thread continuously monitors all the queues

within the system and reallocates them as needed (either larger or smaller) to improve

performance (either through branching up or instantaneous jumps in size through models

selected by the process described in Chapter 7).

30

Streaming applications are often ideally suited for long running, data intensive applications

such as big data processing or real-time data analytics. The conditions for these applica-

tions often change during the execution of a single run. Algorithms frequently use different

optimizations based on differing inputs (e.g., sparse matrix vs. dense matrix multiply). The

application can often benefit from additional resources or differing types of algorithms within

the application to eliminate bottlenecks as they emerge. RaftLib gives the user the ability to

specify synonymous kernel groupings that the run-time can swap out to optimize the com-

putation. These can be kernels that are implemented for multiple hardware types, or can be

differing algorithms. For instance, a version of the UNIX utility grep could be implemented

with multiple search algorithms. Some of these algorithms require differing pieces, however

they can all be expressed as a “search” kernel with common input and output ports.

Integration with legacy C++ code is one of our goals. As such, it is imperative that RaftLib

work seamlessly with the C++ standard library functions. Figure 3.6 shows how a C++

container can be used directly as an input queue to a streaming graph, in parallel if out

of order processing is allowed. Just as easily, a single value could be read in. Output

integration is simple as well, standard library containers can receive the output of queues,

or reduce streams to a single value through accumulation and reduction.

using ex_t = std::uint32_t;

/** data source & receiver container **/

std::vector< ex_t > v,o;

ex_t i(0);

/** fill container **/

auto func([&](){ return(i++); });

while(i < 1000){ v.emplace_back(func()); }

/** read from one kernel and write to another **/

map.link(kernel::make< read_each< std::uint32_t > >(v.begin(), v.end()),

kernel::make< write_each< std::uint32_t > >(std::back_inserter(o)));

/** data is now copied to ’o’ **/

Figure 3.6: Syntax for reading and writing to C++ standard library containers from
raft::kernel objects. The read each and write each kernels are reading and writing on
independent threads.

Copying of data is often an issue as well within stream processing systems. RaftLib pro-

vides a for each kernel (Figure 3.7), which has behavior distinct from the write each and

read each kernels. The for each takes a pointer value and uses its memory space directly

as a queue for downstream compute kernels. This is essentially a zero copy and enabling

31

int *arr = { 0, ..., N };

int val = 0;

auto &kernels(

map.link(kernel::make< for_each< int > >(arr, arr_length),

kernel::make< some_kernel< int > >()));

map.link(&kernels.getDst(),

kernel::make< reduce< int, func /* reduct function */ > >(val));

/** val now has the result **/

Figure 3.7: Example of the for each kernel, which is similar to the C++ standard library
for each function. The data from the given array is divided amongst the output queues
using zero copy, minimizing data extraneous data movement.

behavior from a “streaming” application similar to that of an OpenMP [45] parallelized loop.

Unlike the C++ standard library for each, the RaftLib version provides an index to indi-

cate position within the array for the start position. This enables the compute kernel reading

the array to calculate the position within it. When this kernel is executed, it appears as a

kernel only momentarily, essentially providing a data source for the downstream compute

kernels to read. This kernel can also function as a splitting kernel, if needed it can arbitrate

splitting of the statically allocated data chunks and partition them to newly cloned compute

kernels.

Code verbosity is often an issue. Readily available in C++ is the declaration of a class or

a template, when often what is wanted is the ability to pass a simple function and have

it executed by the called function. Newer languages and C++11 have met this demand

with lambda functions. RaftLib brings lambda compute kernels, which give the user the

ability to declare a fully functional, independent kernel while freeing him/her from the cruft

that would normally accompany such a declaration. Figure 3.8 demonstrates the syntax for

a single output random number generator. The closure type of the lambda operator also

allows for usage of the static keyword to maintain state within the function [52]. These

kernels can be duplicated and distributed, however they do induce one complication if the

user decides to capture external values by reference instead of by value, undefined behavior

may result if the kernel is duplicated; especially across a TCP link (an issue we intend to

resolve in subsequent versions of RaftLib).

32

using ex_t = std::uint32_t;

map.link(/** instantiate lambda kernel as source **/

kernel::make< lambdak< ex_t > >(0, 1, [](Port &input, Port &output)

{

auto out(output["0"].template allocate_s< ex_t >());

(*out) = rand();

} /** end lambda kernel **/) /** end make **/,

/** instantiate print kernel as destination **/

kernel::make< print< ex_t, ‘\n’ > >());

Figure 3.8: Syntax for lambda kernel. The user specifies port types as template parameters
to the kernel, in this example std::uint32 t. If a single type is provided as a template
parameter, then all ports for this lambda kernel are assumed to have this type. If more
than one template parameter is used, then the number of types must match the number
of ports given by the first and second function parameters (input and output port count,
respectively). The number of input ports is zero and the number of output ports is one for
this example. Ports are named sequentially starting with zero. The third parameter is a
lambda function which is called repeatedly by the runtime.

3.3 Benchmarking

Text search is used in a variety of applications. We will focus on the exact string matching

problem which has been studied extensively. The stalwart of string matching applications

(both exact and inexact) is the GNU version of the grep utility. It has been developed

and optimized for 20+ years resulting in excellent single threaded exact string matching

performance (∼ 1.2 GB/s) on our test machine (see Table 3.1). To parallelize GNU grep,

the GNU Parallel [184] utility is used to spread computation across one through 16 cores.

Two differing text search algorithms will be tested and parallelized with RaftLib. One will

utilize the Aho-Corasick [7] string matching algorithm which is quite good for multiple string

patterns. The other will use the Boyer-Moore-Horspool algorithm [92] which is often much

faster for single pattern matching. The realized application topology for both string matching

algorithms implemented with RaftLib are conceptually similar to Figure 3.9, however the

file read exists as an independent kernel only momentarily as a notional data source since

the run-time utilizes zero copy, and the file is directly read into the in-bound queues of each

match kernel.

Figure 3.10 shows code necessary to generate the application topology used to express both

string matching algorithms using RaftLib. Not shown is the code to handle arguments,

33

Match

Read File,

Distribute

Match

Match Reduce

1

i

n

Figure 3.9: String matching stream topology for both Boyer-Moore-Horspool and Aho-
Corasick algorithms. The first compute kernel (at left) reads the file and distributes the
data. The second kernel labeled Match uses one or the other algorithms to find string
matches within the streaming corpus. The matches are then streamed to the last kernel (at
right) which combines them into a single data structure.

using strsearch = raft::search< raft::ahocorasick >;

std::vector< hit_t > total_hits;

auto kern_start(map.link< raft::out >(kernel::make< filereader >(file, offset),

kernel::make< strsearch >(search_term)));

map.link< raft::out >(&kern_start.getDst(),

kernel::make<

write_each< match_t > >(

std::back_inserter(total_hits)));

Figure 3.10: Implementation of the string matching application topology using RaftLib.
The actual search kernel is instantiated by making a search kernel. The exact algorithm
is chosen by specifying the desired algorithm as a template parameter to select the correct
template specialization.

setup, etc. Note that there is no special action required to parallelize the algorithm. The

filereader kernel takes the file name, it distributes the data from the file to each string

matching kernel. The programmer can express the algorithm without having to worry about

parallelizing it. The programmer simply focuses on the sequential algorithm. Traditional

approaches to parallelization require the programmer to have knowledge of locks, synchro-

nization, and often cache protocols to safely express a parallel algorithm. Even more exciting

is that when using RaftLib, the same code can be run on multi-cores in a distributed network

without the programmer having to do anything differently. The partitioner decides where

to run which piece of the application and the online scheduler can make decisions to tune

performance dynamically.

34

For comparison we contrast the performance of our implementations of Aho-Corasick and

Boyer-Moore-Horspool against the GNU grep utility and a text matching application im-

plemented using the Boyer-Moore algorithm implemented in Scala running on the popular

Apache Spark framework. We’ll use a single hardware platform with multiple cores and a

Linux operating system (see Table 3.1).

We use version 2.20 of the GNU grep utility. In order to parallelize GNU grep, the GNU

Parallel [184] application is used (version 2014.10.22), with the default settings. RaftLib (and

all other applications/benchmarks used) is compiled using GNU GCC 4.8 with compiler flags

“-Ofast.” For this set of experiments, the maximum parallelism is capped to the number of

cores available on the target machine. A RAM disk is used to store the text corpus to ensure

that disk IO is not a limiting factor. The corpus to search is sourced from the post history

of a popular programming site [178] which is ∼ 40 GB in size. The file is cut to 30 GB

before searching. This cut is simply to afford the string matching algorithms the luxury of

having physical memory equal to the entire corpus if required (although in practice none of

the applications required near this amount). All timing is performed using the GNU time

utility (version 1.7) except the Spark application, which uses its own timing utility.

Table 3.1: Summary of Benchmarking Hardware.

Processor Cores RAM OS Version
Intel Xeon E5-2650 16 64 GB Linux 2.6.32

Figure 3.11 shows the throughput (in GB/s) for all of the tested string matching applications,

varying the utilized cores from one through 16. The performance of the GNU grep utility

when single threaded is quite impressive. It handily beats all the other algorithms for

single core performance (when not using GNU Parallel, as shown in the figure). Perfectly

parallelized (assuming linear speedup) the GNU grep application could be capable of ∼
16 GB/s. When parallelized with GNU Parallel however, that is not the case.

The performance of Apache Spark when given multiple cores is quite good. The speed-

up is almost linear from a single core though 16 cores. The Aho-Corasick string matching

algorithm using RaftLib performs almost as well, topping out at ∼ 1.5 GB/s to Apache

Spark’s ∼ 2.8 GB/s. RaftLib has the ability to quickly swap out algorithms during execution,

this was disabled for this benchmark so we could more easily compare specific algorithms.

Manually changing the algorithm RaftLib used to Boyer-Moore-Horspool, the performance

35

Figure 3.11: This figure shows the performance of each string matching application in GB/s
by utilized cores. This is calculated using a 30 GB corpus searched on the hardware from
Table 3.1. The green diamonds represent the GNU Parallel parallelized GNU grep. The
red triangles represent Apache Spark. The blue circles and gold squares represent the Aho-
Corasick and Boyer-Moore-Horspool text search algorithms, respectively, parallelized using
RaftLib.

improved drastically. The speed-up from one through 10 cores is now linear, with the 30 GB

file searched in ∼ 4.1 s which gives it close to 8 GB/s throughput.

Overall the performance of the RaftLib Aho-Corasick string matching algorithm is quite

comparable to the one implemented using the popular Apache Spark framework. The

Boyer-Moore-Horspool however outperforms all the other algorithms tested. The change

in performance when swapping algorithms indicates that the algorithm itself (Aho-Corasick)

was the bottleneck. Once that bottleneck is removed we found that the memory system

itself becomes the bottleneck. Future work with cache aware scheduling and pipeline pre-

fetch could perhaps improve performance further by reducing memory latency. All in all the

performance of RaftLib is quite good, comparable with one of the best current distributed

processing frameworks (Apache Spark) and far better than the popular parallelizing utility

GNU Parallel.

36

3.4 Concluding Remarks and What Follows

RaftLib has many features that enable a user to integrate fast and safe streaming execution

within legacy C++ code. It provides interfaces similar to those found in the C++ standard

library, which we hope will enable users to pick up how to use the library at a faster pace.

We’ve also shown new ways to describe compute kernels, such as the “lambda” kernels which

eliminates much of the “boiler-plate” code necessary to describe a full C++ class or template.

What we’ve also described is a framework for massively parallel execution that is simple to

use. The same code that executes locally can execute distributively with the integration of

the “oar” network framework. No programming changes are necessary. This differs greatly

from many current open source distributed programming frameworks.

What we’ve done with the RaftLib framework is lay a foundation for future research. How

best to integrate stream processing with sequential computation is still an open question.

Pragma methods such as OpenMP for loop parallelization work well for parallelizing loops,

however they’re far from ideal as programmers must fully understand how to use the avail-

able options in order to get the most out of OpenMP. RaftLib promises similar levels of

parallelism that are automatically optimized by the run-time. Current and past works have

demonstrated the viability of low-overhead instrumentation of vital online metrics such as

non-blocking service rate and queue occupancy. Things like fast automatic model selec-

tion (e.g., Chapter 7), scheduling, and environmental adaptation must be researched and

perfected in order for systems such as these to fully exploit the myriad of computational

resources available today (multi-cores, vector processors, GPGPUs, etc.).

The RaftLib framework provides a platform for safe and fast parallel streaming execution

within the C++ language. It serves as a productivity tool and a research vehicle for exploring

integration and optimization issues. Despite the slow adoption rate of stream processing, we

hope that the utilization of a widely used existing language (C++) serves as a catalyst to gain

more than a niche user base. The subsequent chapters lay out the technologies necessary

to make RaftLib possible, starting with techniques to quickly model the throughput of a

potential streaming topology and hardware mapping.

37

Chapter 4

Modeling Streaming Applications

4.1 Introduction

In search of ever higher performance, computer architectures have diversified to include

a wide variety of heterogeneous hardware such as traditional multi-core processors, field-

programmable gate arrays (FPGAs) and general purpose graphics processing units (GPG-

PUs). Even on a single die, multiple processor types are often present (e.g., ARM’s big.LITTLE [87]

and Xilinx’s Zynq [54] platforms). Presented with multiple architectural platforms on which

to run an application, developers need reliable and fast models to predict performance. One

performance metric of interest to many “big-data” applications is overall throughput. This

chapter explores a set of analytic models that are both computationally simple and widely

applicable to applications that are formulated as directed acyclic graphs (i.e. they can be

considered to be in the streaming data paradigm). Validation is performed across multi-

ple heterogeneous resources, a pair of real streaming applications and multiple synthetic

streaming applications.

Given a set of compute resources and a streaming application, how does an application

developer model the overall throughput of the application for a specific hardware mapping?

How does a developer determine the size of buffers to allocate based on a target (obtainable)

throughput? For example, if an application developer is tasked with developing a streaming

JPEG encode application as shown in Figure 4.1, how is that developer going to assign (map)

the compute kernels to the available resources? There are several choices, every kernel labeled

with SW (compiled software) can be mapped to a general multi-core processor, and those

labeled with HW (synthesized hardware) can be mapped to an FPGA. The most obvious,

albeit time consuming, approach is simply to do an exhaustive empirical measurement of

38

all possible combinations and chose the best performing one. An alternative approach is

to develop a model that reflects the changes in performance that result from alternative

mappings, and search over the model space to yield a mapping. When a model of performance

is combined with a partitioning algorithm like the ones pioneered by Kernighan-Lin [104] and

later Sanchis [166], exhaustive search might not be needed. This alternative approach has

the potential to be much faster than exhaustive empirical search. However, the quality of the

final result is strongly influenced by the effectiveness of the model. The model’s predictions

should reasonably correspond to the actual application performance for this approach to be

effective.

Performance models for multi-core and heterogeneous systems in general are nothing new.

Various approaches exist in practice that use everything from execution histories [16] to

the roofline model [197] to help decide how to place a compute kernel and how to modify

it for maximum performance. This chapter focuses on the use of analytic performance

models to analyze the obtainable overall throughput and the necessary buffering to obtain

it. The technique used to model throughput is computationally efficient, with a polynomial

time solution [82]. What follows in this chapter is a presentation of a computationally

simple hybrid maximum flow / queueing network model that incorporates multiple hardware

sharing models. The use of simple sharing models in no way bars or makes an claim to the

compatibility of more complex sharing models, they are just not the subject of this chapter

so the simplest ones available are chosen. Experimental results in Section 4.3 validate the

proposed modeling approach concomitant with individual results for the resource sharing

models.

4.1.1 Description

Given the throughput capacity into and out of each compute kernel within an application and

the throughput achievable by each communications link, the model presented here calculates

maximum data flow through the overall network. Using a constrained generalized maximum

flow network the model determines maximum flow through an application topology given

a set of constraints. Utilizing an M/M/1 queuing model, it also estimates the minimum

required buffering capacity for each communication edge within the application. What fol-

lows is a description of the path from streaming application topology to flow network model,

including a queueing network model. Model notation is summarized in Table 4.1.

39

Read RGB
 (SW)

RGB2yCbCr
 (SW or HW)

DCT
 (SW)

DCT
 (SW)

DCT
 (SW)

Zig-Zag
 (SW)

Zig-Zag
 (SW)

Zig-Zag
 (SW)

Huffman Encode
 (SW)

Huffman Encode
 (SW)

Huffman Encode
 (SW)

Write File
 (SW)

Figure 4.1: Application topology for JPEG encode [94] expressed as a streaming application.
The SW and HW in parenthesis indicate an implementation is available on a multi-core
processor and/or FPGA respectively.

V
1

V
2s t

(a) Initial application graph GA with two
compute kernels V1 and V2, a data source s,
and a data sink t

V
1

V
2

V
1,2

s t

(b) Addition of a communications vertex
(V1,2) to GA between compute kernel vertices
V1 and V2

V
1 ts

V
3

V
2

(c) The queueing network GQ that arises from
the topology depicted in Figure 4.2b

V1 V2

V3

s t

C(sV1) C(V2t)

C(V3V2)C(V1V3)

(d) The overall flow graph GF with capacities
C at each edge

Figure 4.2: Stages of transition from application graph, to queueing network to flow model.

40

Notation Description
Vi vertex i−−→
ViVj an edge between vertices i and j
µ(Vi) service rate at vertex i (in Bytes/s)
µs(Vi) shared service rate at vertex i (in Bytes/s)
λ(Vi) arrival rate to queue for vertex i (in Bytes/s)
ρ(Vi) utilization of server at vertex Vi

R(
−−→
ViVj) fraction of data outbound from Vi routed across

−−→
ViVj

γ(Vi) gain function across vertex Vi

C(
−−→
ViVj) flow capacity of edge

−−→
ViVj (in Bytes/s)

Γ overall throughput (in Bytes/s)

f(
−−→
ViVj) flow along edge

−−→
ViVj (in Bytes/s)

φ constraint on ρ
K(Vi) estimated buffering capacity associated with vertex Vi (in Bytes)

Table 4.1: The above notation is used to describe the model (where noted, the terminology
is applicable to the queueing network, flow graph or both).

An application graph topology GA (Figure 4.2a) is a connected directed graph consisting of

each compute kernel within an application as a vertex Vi and every data-flow dependency

(communications link) as an edge
−−→
ViVj. An application topology also defines a (pseudo-)

data source s and sink t as start and end nodes. Since application topologies can have more

than one actual data source and sink, the model inserts the node s with outbound links to all

application kernels that do not yet have inbound edges and inserts the node t with inbound

edges from all application kernels that do not yet have outbound edges. Nodes s and t are

modeled has having infinite capacity so as to not influence the throughput achievable in the

network.

The model views every communications link as a distinct resource with its own service rate.

To model this behavior the application topology (GA) is transformed by adding additional

vertices for each communications link as shown in Figure 4.2b. The transformed application

topology of Figure 4.2b can be directly modeled as a queueing network. The queueing

network is defined as the directed graph GQ (Figure 4.2c). Every application kernel is a

queue and server pair in GQ. Every communications link between compute kernels is also a

queue and server pair inGQ. As illustrated in Figure 4.2c, the nodes modeling communication

links in the modified application graph have been renamed so as to simplify the notation.

Each communications link could conceivably be reasoned about as being comprised of many

41

sub-queues, however in this work an overall “virtual queue” subsuming the sub-queues will

be assumed [117]. Formally GQ is defined by the 4-tuple:

GQ = (VQ, EQ, s ∈ VQ, t ∈ VQ)

where s is the source node and t is the termination (sink) node.

In a queueing network the two main parameters that characterize the performance of the

network are λ(Vi), the arrival rate of data at node Vi, and µ(Vi), the service rate at node Vi.

For nodes in VQ that represent compute kernels, their service rates are measured empirically,

by either detaching the kernel from the application and measuring it in isolation or via the

online approximation techniques outlined in Chapter 6. A compute kernel when detached

from its queueing network is simply a single queue and server (the queue representing a

data source). That single queue is assumed to have an infinite supply of data giving it

non-blocking read behavior. Its outbound data port is assumed to always be empty such

that outbound writes are also non-blocking. At equilibrium with no gain or loss a server’s

µ(Vi) is equal to its aggregate data ingest rate (with units of Bytes/s). The service rates

of nodes in VQ that represent communication links can be determined multiple ways: from

the literature, hardware simulation or estimated using empirical measurement. The arrival

rates λ(Vi) will be derived from the flow model described below.

A flow graph is defined as a directed acyclic graph GF (Figure 4.2d) where each server in the

queueing network (Figure 4.2c) is represented as a vertex. GF is constructed from GQ by

removing the queues on each edge
−−→
ViVj ∈ GQ. This is reasonable since the queueing model

represented here is actually a case of an open Jacksonian network [95, 96]. Formally the flow

graph is defined as a 7-tuple:

GF = (VF , EF , s, t, C, γ, R)

VF = VQ, EF = EQ

where C : EF → ℜ+ represents the flow capacity of each edge (determined as described

below), and γ : VF → ℜ+ represents the data volume gain or loss associated with each node.

It is defined as the ratio of the mean data volume out of a node relative to the mean data

volume in. If γ < 1 then there is data loss in the node (e.g., data compression) and if γ > 1

there is gain in the node (e.g., data expansion). For nodes that represent compute kernels,

42

these values will be determined empirically, and for nodes that represent communication

links, γ = 1. For nodes with more than one outbound edge, R : EF → (0, 1] represents the

routing fraction associated with each outbound edge
−−→
ViVj of node Vi. For nodes Vi with only

one outbound edge
−−→
ViVj, R(

−−→
ViVj) = 1.

Given µ(Vi), γ(Vi), and R(
−−→
ViVj) for each vertex and edge, the capacity C associated with

each edge can be computed using Equation (4.1).

C(
−−→
ViVj) = µ(Vi)× γ(Vi)×R(

−−→
ViVj) (4.1)

Each edge in a flow graph is constrained by the capacity C(
−−→
ViVj). Note that the above makes

the implicit assumption that each compute kernel has been mapped to a dedicated compute

resource. This will be extended to reflect resource sharing in the section below.

To calculate the maximum stable throughput the model maximizes Γ (the overall throughput

through the application) and f (the flow at every edge within the graph) subject to the

following constraints:

∑

j(i,j)∈EF

f(
−−→
ViVj)−

∑

j(j,i)∈EF

f(
−−→
VjVi) =

+ i = s

0 i = circulation

− i = t

(4.2)

γ(
−−→
ViVj) =

1

γ(
−−→
VjVi)

(4.3)

f(
−−→
ViVj) ≤ C(

−−→
ViVj) (4.4)

f(
−−→
ViVj)∑N

x=1 f(
−−→
ViVx)

= R(
−−→
ViVj) (4.5)

Equation 4.2 states that flow must be conserved across all edges and that the only edges with

positive or negative flow can be the s and t. Gain or loss as shown in Equation 4.3 is also

conserved (application of the gain/loss approach to queueing networks is one contribution

of this work). As in a standard maximum flow model, flow must be less than or equal to the

capacity as shown in Equation 4.4. To maintain correct data routing, Equation 4.5 ensures

43

that the volumes are maintained across each edge (another contribution of this work over

prior methods).

To bound queue size, the model can be further constrained by ensuring a smaller ρ = λ/µ

at each queueing station. This corresponds to maximizing Γ with the following additional

constraint:

ρ(Vi) ≤ φ (4.6)

For the results presented in this chapter, φ is set to 0.99998, however it could be any value

≤ 1. If equal to 1, then there will not be a queue size bound on the bottleneck node(s) (save

for the special case of deterministic servers) since servers with non-deterministic processes

modulating them having a utilization ≥ 1 result in an infinite queue length. A serendipitous

property of the flow model is that ρ is implicitly constrained to 1, so reducing the rate is a

simple pass through the graph. We also assume that the processes of each server modulating

the arrival and service processes have a distribution with finite variance (i.e., infinite variance

that could result in an infinite queue length is not allowed). The existence of un-bounded

queues within the network does not preclude the usage of this modeling technique elsewhere

within the network.

Once maximal values of f(
−−→
ViVj) have been calculated for every

−−→
ViVj ∈ EF , these values can

be used within the queueing model to determine the necessary buffering for the system at

the calculated flow.

Our hypothesis is that the M/M/1 model gives an upper estimate of the queue occupancy,

since we expect the actual service time distributions to have a lower coefficient of variation

than an exponential distribution. An estimation of the buffering necessary at each queue is

determined by solving for the queue occupancy K at a probability PK that is close to zero

as in Equation 4.7.

K(Vi) =
log(PK

1−ρ(Vi)
)

log(ρ(Vi))
− 1

where PK = 10−7

(4.7)

The extent to which the assumptions made for the M/M/1 model hold true will be investi-

gated in Section 4.3.

44

4.1.2 Sharing Models

Sharing of resources and resource contention is a function of several parameters. Schedulers

are often involved, either from the operating system or built into the hardware. A resource

such as an FPGA is typically not shared in time, but shared as a function of area. Diversity

in the underlying behavior of sharing across platforms drives the complexity and specificity of

sharing models. The models presented here are specific by necessity but intentionally simple.

There is an associated noise with multi-core sharing (discussed in Chapter 7), however it is

assumed within this simple model that the noise is insignificant.

For multi-core processors the sharing model is simply the service rate for a compute kernel

executing in isolation divided by the number of kernels running on the same processor core

(Equation 4.8).

µs(Vi) = µ(Vi)/n, n = # processes (4.8)

FPGAs are assumed to be share-able in area, but not temporally (although the concept

of temporal sharing exists [170]). The sharing equation (Equation 4.9) reflects that by

giving each compute kernel mapped to an FPGA its full µ until all available gates are

exhausted (e.g., requiring more gates than physically exist on the device is considered an

invalid configuration, and not considered).

µs(Vi) = µ(Vi)× ai (4.9)

where ai = 1 if
∑N

i=1 Areai ≤ Available Area , else ai = 0.

The Virtex-4 FPGAs used for empirical measurements given within this chapter communi-

cate with multi-core processors over a PCI-X bus. The sharing model for this reflects a fair

sharing policy on the part of the controller until the bandwidth limit is reached.

µs(Vi) = µ(Vi)/n, n = # communication links sharing bus (4.10)

4.1.3 Modeling Assumptions

The model presented above makes the following assumptions about the applications, graph

topology and underlying hardware:

45

A

B C

D

Application Topology

SW

SW

SW or HW

Figure 4.3: Example application
topology

D

A

B C

AB AC

BD CD

Mapped Flow Topology

C

P

U

0

Memory

Controller
PCI-X

Bus
FPGA 0

Figure 4.4: A mapping of the applica-
tion topology in Figure 4.3

1. The application is assumed to in equilibrium: The streaming computation paradigm is

typically used in application domains that require high-throughput, high volume com-

putation. On initial start-up and termination non-steady state behavior is exhibited,

however during the majority of the execution steady state behavior is typical.

2. The data volume into and out of each edge is measurable on the compute kernel in

isolation (i.e., separated from the rest of the application topology.

3. Only non-blocking behavior exists: All compute nodes (servers) are allowed to process

data as soon as it is present on its queue.

4. Data routing is independent of the state of the system: External signals don’t drive a

server to remove items from a queue, nor do they influence R(
−−→
ViVj).

5. All compute kernels are work conserving: When two compute kernels are mapped to

the same resource, the work that is done by the compute kernel does not decrease.

4.1.4 Example

The approach (illustrated in Figures 4.3 to 4.7) begins with a streaming application whose

data-flow topology is acyclic. It takes empirical measurements of each compute kernel

through each in-edge and out-edge. The model uses these unshared, unconstrained mea-

surements to calculate mean service rate µ, routing fraction R, and gain γ, associated with

each kernel. These metrics are used in the generalized maximum flow model to calculate a

maximum flow for the data-flow topology on a specific set of resources. The flows predicted

46

AC

CD

α(VAC VC) = 40 MB/s

β(VC VCD) = 40 MB/s

C

S

T

µ = 40 MB/s
µs = 13.33 MB/s

R(VC VCD) = 1.0
γ(VC)= 1.0
C(VC VCD) = 13.33 MB/s

Figure 4.5: In order to measure the unshared throughput of compute kernel ‘C’, the kernel
is taken out of its application network and given artificial data sources S and T for each in-
and out-edge. The dotted lines show the edges where kernel ‘C’ would have connected in the
application which are replaced by the solid lines from S and T . For this kernel the measured
input rate for the edge α is 40 MB/s and the measured output rate at edge β is 40 MB/s.
The routing fraction is 1.0 as there is only one out-edge and gain (γ) is also 1.0 since there
is no gain or loss of data at this compute kernel. The output link capacity C is 13.33 MB/s
after application of the sharing model in Equation 4.8.

AB

C(VA VAB) = 20 MB/s

B

BD

D

C

AC

CD

A

µ = 40 MB/s
µs = 13.33 MB/s

µ = 150 MB/s
µs = 150 MB/s

µ = 90 MB/s
µs = 30 MB/s

µ = 80 MB/s
µs = 26.7 MB/s

C(VA VAC) = 10 MB/s

C(VAC VC) = 900 MB/sC(VAB VB) = 438.5 MB/s

C(VCD VD) = 900 MB/sC(VBD VD) = 438.5 MB/s

C(VC VCD) = 13.33 MB/sC(VB VBD) = 150 MB/s

s

t

C(VD t) = ∞

C(s VA) = ∞

µ = 877 MB/s
µs = 438.5 MB/s

µ = 877 MB/s
µs = 438.5 MB/s

µ = 900 MB/s

µ = 900 MB/s

R(VA VAB) = 2/3
R(VA VAC) = 1/3

Figure 4.6: A complete flow graph from
the application and mapping in Figure 4.4

f(S VA)

f(VAVAB)

f(VAVAC)

f(VABVB)

f(VACVC)

f(VBVBD)

f(VCVCD)

f(VBDVD)

f(VCDVD)

f(VDT)

26.7 MB/s

17.84 MB/s

8.92 MB/s

17.84 MB/s

8.92 MB/s

17.84 MB/s

8.92 MB/s

17.84 MB/s

8.92 MB/s

26.7 MB/s

Flow Solution

Figure 4.7: Solution to flow model in
Figure 4.6

47

by the flow model are used directly in the M/M/1 queueing model to calculate necessary

buffering capacity.

4.2 Model Evaluation Approach

In order to evaluate the model, two approaches are taken. First a pair of real applications are

used: a JPEG encode application implemented to the ISO specification (and decomposed as

shown in Figure 4.1) and a DES encrypt application. Second, a set of synthetic applications

are generated using a widely used topology generator [62].

For each application, both real and synthetic, random mappings of application kernels to

compute resources are generated and run on the hardware enumerated in Table 4.2. The

subsections below describe the tools, hardware, and methods used to evaluate the modeling

approach.

4.2.1 Tools

The Auto-Pipe development environment [72] is used for all experiments within this chapter.

Auto-Pipe supports streaming data applications deployed on heterogeneous compute plat-

forms. In order to make accurate measurements of queue occupancies and edge throughput,

the TimeTrial [115] low-impact performance monitor is used. All applications and compute

kernels (both real and synthetic) are expressed in combinations of C and VHDL and compiled

with the GNU C compiler or synthesized with Synopsys Synplify Premier DP respectively.

4.2.2 Hardware

There are two distinct hardware platforms used for empirical testing. Each platform is

referred to by the heading shown in Table 4.2.

48

Table 4.2: Hardware used for empirical measurement

Name Machine 1 Machine 2
CPU 12 x 2.4GHz AMD Opteron 4 x 3.1GHz Intel Xeon E3
FPGA 2 x Virtex-4 LX100 None
RAM 32GB DDR2 8GB DDR3

Figure 4.8: Solid lines with dots indicate where TimeTrial measures throughput along an
edge of an application

4.2.3 Empirical Testing

As detailed in Section 4.1.1, the model needs measurements of each compute kernel running

on its assigned hardware as input. To accomplish this each compute kernel is instantiated in

isolation and a test bench is produced by a test harness that provides high volume input to

each input edge and consumes all data on each output edge. Throughput is measured using

the TimeTrial measuring system and recorded. These measurements are designated α and

β and are shown in Figure 4.8.

4.2.4 Selecting Compute Resources and Mapping Application Ker-

nels

For a given application each compute kernel can be run on many potential resources. This

is true for both the real and synthetic applications. Given a set of resources from Table 4.2,

a subset (potentially all of them) must be selected for each run (Ω), this is done with a

uniform random selection. Once the resource set Ω is selected, an application’s compute

kernels must be mapped to it. To map application kernels to Ω a random compute kernel

(drawn uniformly from the set of kernels) is selected and assigned to ω ∈ Ω (again, drawn

uniformly from Ω). This process continues until each resource in Ω has one compute kernel

mapped to it. The mapping algorithm then assigns compute kernels to resources by randomly

49

walking the in- and out-edges of previously mapped compute kernels until all compute kernels

are mapped. A constraint checking algorithm checks user provided constraints on resources

while mapping to ensure that the finished kernel/hardware mapping will compile/synthesize

and run (e.g., ensuring that the FPGA is not over-utilized). This process is intended not to

generate optimal mappings, but rather to generate a range of reasonable mappings for the

purpose of assessing the model.

4.2.5 Synthetic Benchmarks

Whenever the verification of a model is based principally on empirical evidence, a primary

consideration is the extent to which the test sets used are truly representative of the overall

universe of possibilities. That concern is addressed here through the use of several syn-

thetically generated benchmarks. In order to produce synthetic applications, topologies are

generated using the Task Graphs for Free (TGFF) tool [62].

During the topology generation process, the following parameters were used to control TGFF:

1. The number of compute kernels (nodes) in the application topology ranges from 1 to

80 with a uniform distribution.

2. The in-degree and out-degree of nodes is varied from 1 to 4, again uniformly distributed.

Sources and sinks have only out- and in-edges respectively.

Once topologies are generate using TGFF, a test harness generates synthetic applications

using the Auto-Pipe framework with the following parameters:

1. Mean execution time is set to 20 µs ± 10%. Execution time varies dynamically with

an exponential distribution.

2. Input data volume for a vertex is statically set with a value chosen between 1 and 64

data bytes. The volume is distributed uniformly.

3. Edges in the graph are constrained so that data volumes are matched between in and

out edges.

50

File Read
 (SW)

Expansion
 (SW)

Block Encrypt
 (SW)

Block Encrypt
 (SW)

File Write
 (SW)

Figure 4.9: Application topology for the DES encryption algorithm expressed as a streaming
application. All compute kernels are implemented in software.

4.2.6 Real Applications

The JPEG encode application as shown in Figure 4.1 is implemented according to the specifi-

cations in [94]. The DES encrypt application depicted in Figure 4.9 is implemented according

to FIPS (46-3) standard published by NIST. The topology of each application is specified in

the X language [72] which serves as input for the test harness. The harness takes the pre-

coded compute kernel implementations and maps them to hardware resources in the same

manner as the synthetic applications mentioned above.

4.3 Results

4.3.1 Processor Sharing Model

Under the processor sharing model (Section 4.1.2), when multiple compute kernels are

mapped to a processor core, µ(Vi) is de-rated according to the number of kernels shar-

ing a given core. A test application designed to run multiple processes on a single core is

used to validate this model. Each process is synchronized to start concurrently with all the

other processes within a single experiment (i.e., if 30 processes then all 30 processes are

launched together). Each process runs 2 minutes according to the system wall-clock. Each

time quantum is consumed by looping for 200 no-op instructions and incrementing a register

51

Multi-level Queue Batch Round Robin

Figure 4.10: Percent error for processor sharing model from Equation 4.8 with three different
scheduling algorithms (Multi-level queue, batch and round robin). All metrics are over 1
through 40 processes on one processor core. Model predicts executions per second. Error is
calculated as (observed flow−modeled flow)

modeled flow
. R2 values for each scheduler are .999854, .999952, and

.766693 for multi-level queue, batch, and round robin respectively.

counter. Tests were run on both machines listed in Table 4.2. Three different scheduling

algorithms (multi-level queue, batch and round robin) were chosen as they are representative

of most modern systems [183].

In Figure 4.10 the processor sharing model validation percent error distribution is shown for

the predicted executions per second. The overall model vs. observed fit is quite good. As

expected the round robin scheduler resulted in more variation than the other two scheduling

algorithms due to fixed quantum sizing. The fairest schedulers that closely match the as-

sumptions the model makes are the multi-level queue and the batch scheduler. In the work

that follows we constrain all experimentation to the multi-level queue scheduler.

4.3.2 The Flow Model

Validation of the flow model proceeds using the set of applications described in Section 4.2.

Forty synthetic applications with 3 through 82 compute nodes were tested on Machine 1 (see

Table 4.2). The results of flow predictions for each edge versus empirically measured flow

are shown in Figure 4.11. Linear regression of the model and measured synthetic application

results gives an R2 value of .9999. The distribution of JPEG encode and DES encrypt

application data is very similar to that of the synthetically generated graphs as shown in

Figures 4.12 and 4.13.

52

Synthetic Applications

Figure 4.11: Percent error for gain/loss flow model for the synthetic application set, calcu-

lated as (observed flow−modeled flow)
modeled flow

. Kernels executed on FPGA and multi-core CPUs.

JPEG Encode

Figure 4.12: Percent error for gain/loss flow model for the JPEG encode application, calcu-

lated as (observed flow−modeled flow)
modeled flow

.

DES Encrypt

Figure 4.13: Percent error for gain/loss flow model for the DES encrypt application, calcu-

lated as (observed flow−modeled flow)
modeled flow

.

53

Synthetic Applications

Figure 4.14: Synthetic application error for measured queue maximum occupancy vs. mod-
eled queue maximum capacity. For all synthetic applications measured the modeled capacity
is always greater. Empirically this shows that for this set of applications the M/M/1 queue-
ing model provides a loose upper bound on buffering capacity.

Not shown is where the flow model can fail. Firstly, if any of the assumptions are violated,

this model’s results cannot be trusted. Second, as the number of processes on a single core

increases, the error inherent in the simple model does as well. In our experiments we observed

a strong correspondence between increasing percent error and the number of processes per

core. Future work will investigate this relationship and perhaps explore the effectiveness of

more complex sharing models.

4.3.3 The Queueing Model

The results for the synthetic, JPEG, and DES applications for an upper bound on queueing

capacity are shown in Figures 4.14 , 4.15, and 4.16. These figures confirm that our model

is conservative for estimating buffering capacity allocations. The modeling assumption is

exponentially distributed arrival rates and service rates, while real service distributions are

typically closer to deterministic (i.e., have a much lower coefficient of variation than an

exponential), even if not fully deterministic. It is this distinction that yields conservative

estimates for buffer requirements.

54

JPEG Encode

Figure 4.15: JPEG encode error for measured queue maximum occupancy vs. modeled queue
maximum capacity. Three mappings are used across hardware and software.

DES Encrypt

Figure 4.16: DES encrypt error for measured queue maximum occupancy vs. modeled queue
maximum capacity. Four mappings are used on Machine 1, hardware on-chip encryption is
not used.

55

4.4 Conclusions

With reconfigurable hardware, multi-core chips, general purpose graphics processors and

other resources to choose from; application designers have a very difficult set of choices when

selecting the best hardware for an application. A metric that is of particular interest to

“big-data” applications is throughput. The analytic model presented in this chapter aims

to provide an easy to use method for application developers to find the throughput for an

application on a particular set of hardware resources while placing a conservative upper

bound on queueing capacity necessary.

The model was tested using several synthetically generated applications, a JPEG encode

application and a DES encrypt application. The empirical measurements show how the

model performs under several conditions and how it can be used to solve for throughputs

that are typically within 10% of reality and frequently much closer. This is quite impressive

for a set of models that are explicitly trying to stay simple. A unique feature of the model

presented is that it can be used across hardware and software platforms.

This chapter’s evaluation primarily focused on offline optimization of streaming systems.

Three hurdles prevented online optimization. The first hurdle, that of a computationally

efficient model to explore the throughput of potential configurations was largely solved by

the techniques laid out in this chapter. The next major hurdle is getting information while

the application is executing, without destroying the performance characteristics that we

expect of a well-running application. The last hurdle is how to trust a model for a hardware

/ software combination once we have enough information to use them.

While the flow model predictions were largely good, the subsequent queue occupancy pre-

dictions were often quite poor, drastically overestimating the necessary buffering. The tech-

niques in the following chapters will describe methods to improve upon the understanding

of how to apply these models and improve upon when they can be applied (online vs. stati-

cally).

56

Chapter 5

Best Case Execution Time Variation

Understanding the performance of software systems is often accomplished with the help of

stochastic queueing models. As demonstrated within the previous chapter, these models

don’t always work as expected. The nominal assumptions verified within a controlled en-

vironment are not always transferable to real systems. The simple act of observation the

behavior itself can change the observed behavior. One assumption directly influencing the

performance of most queueing models is the execution time (service time) of each compute

kernel and its distribution. Complete knowledge of the distribution (especially the worst case

behavior) is generally futile for multi-core shared systems. Yet understanding it, however

incompletely, is critical to selecting proper model formulations. Finding such a pattern also

hints at the possibility of using automated pattern recognition to determine when and where

such behavior could interfere with a modeling effort. When understanding complex phenom-

ena, it is often the practice to find a useful bound. We contend that the minimal expected

execution time variation of a system, or best case execution time variation (BCETV), is such

a bound. By forecasting BCETV for a particular software and hardware combination, we

hope to improve the a priori knowledge of a models’ applicability. This chapter introduces

the use of the mLevy distribution (derived from a Levy distribution) for characterizing the

BCETV of short execution, compute bound kernels. A closed form expression for the proba-

bility density function, as well as its first and second moments are derived. The distributional

assumptions and model are evaluated via empirical evaluation. Lastly, it is shown how this

analytic distribution can be used when combined with other techniques to accept or reject

a queueing model.

Several references simply assume that the distribution of a series of execution times should

be Gaussian [97]. Other works (e.g., [134]) have shown some examples of successive execution

57

Figure 5.1: Histogram of the discrete PDF for a simple “no-op” workload execution time
absolute error (light blue bars) in µs plotted against the PDFs of a fitted Gaussian distribu-
tion (green line), a Gumbel distribution (blue line) and the mLevy distribution (red line).
Visually it is easy to see that our mLevy distribution is the best fit for this data set.

times that are not Gaussian with any high probability. Other phenomena such as worst case

execution time have been modeled with the Gumbel distribution [67]. Empirically measured

execution time noise for a minimal workload of “no-op” instructions (the difference between

the nominal and measured execution times, plotted in Figure 5.1) exhibits a heavily skewed

distribution. Simply assuming a Gaussian distribution (green line) overestimates the mass

of one tail while underestimating the other. A Gumbel distribution (blue line) is arguably

even worse. Some might posit that a Gamma distribution is a good fit, however the support

exists only for x ≥ 0 which fits neither reality or our use case as a noise model. Shifting the

distribution is an option, however there is a better way. The mLevy distribution (red line,

exact modifications to be discussed) is plotted against the same data, visually it is the best

fit to the observed data.

Many performance models require details of the inner workings of the target processor [68].

When empirical evaluation is performed, often the results obtained are still uncertain. How

well did the empirical evaluation sample the distribution of execution times? Even when

detailed knowledge is assumed, or empirical evaluation is performed, there is still uncer-

tainty in the values obtained. Causes of this execution time uncertainty can include cache

behavior, interrupts, scheduling uncertainty as well as countless other factors. Distributional

uncertainty can lead to poor stochastic model performance. Instead of focusing on the worst

or even average case, our approach focuses on the best case and what this bound can do

for the model decision making process. As an example, Figure 5.2a shows the distribution

58

(a) Exponential distribution (λ = .5)
(b) Exponential distribution (λ = .5) with
additive Gaussian noise

Figure 5.2: Stochastic models often make simplifying distributional assumptions about the
modeled system. One common assumption is that of a Poisson arrival process (i.e., exponen-
tially distributed inter-arrival times). This assumption is often violated by the “noise” that
the hardware, operating system and environment impose upon the application. Figure 5.2a
shows a nominal exponential distribution, while Figure 5.2b shows an example of a more
realistic distribution containing Gaussian noise.

that a simple M/M/k queueing model assumes for its inter-arrival distribution whereas Fig-

ure 5.2b might be closer to reality given a noisy system. One application of BCETV is to

estimate how close a models’ input assumptions will line up with reality assuming a best

case variance. This could allow quick rejection of models whose assumptions are violated

even in the best case.

BCETV is the minimum variation (error relative to the mean) which can be expected from

any single observation of execution time. We assert that the minimal “no-op” workload can

be used as a proxy for determining BCETV for short execution, compute bound kernels.

In principle, these workloads should be quite deterministic in execution time, but clearly

are not. We will show that the distribution of BCETV experienced by these workloads

represents a reasonable lower bound “noise” model for nominal execution time. Utilizing

empirical data, the Levy distribution is first truncated for finite support then redefined in

terms of system parameters (i.e., processes per core and nominal execution time) to make it

the mLevy. Evidence is provided that the mLevy distribution is a good match for BCETV,

especially as the number of processes per core grows.

59

5.1 Methodology

The motivation to use a Levy distribution to model the best case execution time variation

(BCETV) came from empirical observation. To be of use for modeling purposes however,

several transformations must occur resulting in a modified distribution which we call mLevy.

Ultimately we justify that decision by comparing model predictions to experimental observa-

tions. To that end we start by describing the process through which these data are collected.

This is followed by the description of the mLevy distribution that we propose to use, and

how to parameterize it.

5.1.1 Synthetic Workload

Our focus is the uncertainty in execution time of a running process due to factors other than

the process itself. As such, we use an intentionally simple nominal workload so that the

observed variation is due not to the application itself, but to other system related factors

(e.g., operating system, hardware, etc.). Our nominal workload is the execution of a fixed

number of null operations or “no-op” instructions [160]. Aside from no instructions at all,

we assume that a null operation is the least taxing instruction. It follows from this logic

that a series of null operations should present the most consistent execution time out of any

real executable instruction sequence.

One aspect under study is how changing the nominal workload time changes the observed

variation in actual execution times. In order to produce a workload of “no-op” instructions

that is calibrated to a specific nominal execution time we use sequences of instructions of

various lengths which are timed and then used as input for regression to produce an equation

for the number of instructions to use for each nominal execution time. Calibration timing is

performed while the timed process is assigned to a single core and executing with no other

processes.

In theory any duration of workload could be created using this method, however in practice

the file sizes become prohibitively large proportionate with the frequency of the proces-

sor and the desired running time (e.g., Platform A from Table 5.2 requires approximately

10 million“no-op” instructions for each second of execution time). Other approaches that

60

reduce the file size could be used such as looping over a calibrated number of “no-op” instruc-

tions, however we’ve chosen to use the simpler aforementioned approach because it reduces

the possibility of variation due to other factors, such as branching. Our method also assumes

that cache pre-fetching will eliminate virtually all instruction cache misses which should then

have no appreciable effect on the actual run time (which was verified for the experimental

hardware through instrumentation). One concern with huge numbers of instructions is that

translation lookaside buffer (TLB) misses might increase the observed variation. With TLB

misses we would expect an increase in the overall observed variation with longer duration

executions with a random pattern (dependent on other processes operating on the same core,

TLB algorithm, etc.). As we will show below, this is not the case; more variation is observed

for short execution times.

5.1.2 Hardware, Software, and Data Collection

To enable empirical data collection, a test harness was created that executes the synthetic

“no-op” workloads while varying numbers of processes per core, nominal execution times, and

execution platforms. As the synthetic workload processes are executing, the parameters in

Table 5.1 are collected. In order to reduce the possibility that results gleaned from this study

might be an artifact of a particular hardware platform or operating system, two different

platforms are used as shown in Table 5.2 (two of platform A and seven of platform B).

All platforms support a version of the Linux completely fair scheduler [129] which will be

exclusively used during data collection.

Table 5.1: Experimental Parameters

Parameter Symbol
Nominal Execution Time tN
Processes per Core p

Voluntary Context Swaps v
Non-Voluntary Context Swaps nv

Actual Execution Time tA
Execution Time Noise (tA − tN) ∆

Each data point collected consists of the dimensions outlined in Table 5.1. Nominal execution

times vary from 0.25µs through 3.7ms with observations at an interval of 0.25µs throughout

the range. The number of workload processes per core varies from 1 through 20 processes.

61

Table 5.2: Hardware and Operating Systems

Label Processor Operating System
A Intel E3 1220 Fedora 19, Linux Kernel v. 3.10.10
B 2 x AMD Opteron 2431 CentOS 5.9, Linux Kernel v. 3.0.27

Each sharing and nominal execution time pair is executed 1000 times to ensure a good

distribution sample. The synthetic workloads are run on one of two of platform A or on one

of seven of platform B from Table 5.2. In total 100+ million observations are made. Two

factors limited the range of viable execution times: the lower bound on timer resolution (see

below) and the memory needed to generate workloads of longer lengths (disk to store and

physical memory to compile).

Generated data is divided into two sets. The first, a “training” set (of size 106) is segregated

using uniform random sampling. The rest of the data is used for model evaluation and will

be referred to as the “evaluation” set. We specifically want to judge the applicability of this

noise model to multiple hardware types and operating systems using the same scheduler.

There has been much discussion about the best and most accurate way to time a section of

code [34]. There are many methods including processor cycle counters and operating system

“wall-clock” time. Given our reliance on empirical data for modeling and evaluation we feel

it is important to cover how our timing measurements are made. In many cases, the use

of a simple time stamp counter is effective assuming that the process will never migrate

to another core. Another issue to consider is frequency scaling which can lead to wildly

inaccurate timings when utilizing the processor cycle counter. To alleviate some of those

concerns and provide a relatively universal timing interface we developed a system timer

thread that utilizes the x86 time stamp counter instruction on a single reference core to

update a user space timer. When a process or thread requests the current time, an in-lined

function copies the current time struct which has two time references and it compares the

two times. If they are the same then the calling code can be sure that the time has been fully

updated and the function returns, if not the code loops until the values match. Frequency

scaling is turned off for the time update thread.

This timing method has several advantages: (1) it is entirely in user space, (2) it is lock-free,

and (3) it is monotonic even when the timed thread is shifted to a new core. Two concerns

with this approach stem from the copying operation. How long does it take to copy the

62

0 10 20 30 40 50
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Avg. ns per copy

P
rH

o
b

sL

Figure 5.3: Smooth histogram of 106 data points each representing timed averages of 500
copy operations, first on the same NUMA node (red line) and then across different NUMA
nodes (blue line). The performance of a copy on the same NUMA node seems to be much
more consistent.

timer struct on a target system and what happens when there are multiple Non-uniform

Memory Access (NUMA) nodes [113]? To test the latter of these concerns a benchmark

was constructed to ascertain how long a copy operation takes when the copy is from the

same NUMA node as the calling process and when the timer thread and requester thread

are on differing NUMA nodes. The results of this are shown in Figure 5.3 for platform B

from Table 5.2. What we’ve found is that reading memory allocated on a NUMA node other

than the one closest to the time requesting process the access times can vary somewhat.

Another related issue is cache line invalidation. Invalidates sent to cache lines storing the

clock structure, and subsequent updates can add even more timing variation. To eliminate

both issues, all subsequent experiments within this chapter use a single NUMA node (same

socket with shared cache).

A common problem with highly accurate timing via software is determining what is ground

truth. Short of an external atomic clock, there are only varying degrees of truth. In order to

determine the precision and accuracy of our measurements, a standardized workload is cre-

ated with a series of “no-op” instructions of varying lengths. Each “no-op” length is timed

using either the x86 rdtsc instruction or the POSIX.1-2001 clock gettime() function.

Figure 5.4 shows the inter-quartile range (25th to 75th percentiles) difference of each timing

measurement as a function of the length of the “no-op” instruction sequence, This plot in-

forms us about the stability of the two timing methods. The system call to clock gettime()

63

0 100 000 200 000 300 000 400 000 500 000
0

50

100

150

no-op Count

In
te

rq
u
a
rt

il
e

R
a
n
g
e
Hn

sL

clock_gettimeHL rdtsc

Figure 5.4: Interquartile range difference (IQRD = 75th− 25th) in nanoseconds for the times
measured for each set of “no-op” instructions (number instructions listed on x-axis). Each
instruction length was executed 106× for each method. The IQR gives a visual representation
to the stability of measurements for these two timing methods.

is more stable than the rdtsc instruction, especially for these small workloads. A hypoth-

esis as to why it is more stable is that the measurement of actual workload time is small

relative to the time it takes to perform a system call. To test this theory the timing meth-

ods themselves are timed by executing five hundred of each method (either the rdtsc x86

instruction or the clock gettime() function) and using the average execution time of all

five hundred to extrapolate the time to execute a single instruction. In this experiment the

rdtsc instruction is used as the reference timer on platform A from Table 5.2. As expected

(and shown in Figure 5.5) the system call to clock gettime() takes almost 3× as long

on average compared to the x86 rdtsc instruction. For this reason, we exclusively use the

rdtsc instruction for all empirical timing measurements in this work.

5.1.3 Distribution

Figure 5.1 provides a qualitative indication that a Levy distribution makes a good choice for

modeling the noise present in execution times of a nominally fixed minimal workload (the

proxy for BCETV). Quantitatively Table 5.3 summarizes the p-values for each distribution

(higher is better), the table shows the minimum, maximum and mean values. The Levy

distribution is the only distribution with greater than 10% of the data having a p-value ≥ .01.

64

clock_gettimeHL rdtsc

50

100

150

200

250

In
sn

.
E

x
ec

u
ti

o
n

T
im

e
Hn

sL

Figure 5.5: Box and whisker plot showing a speed comparison of the rdtsc x86 assem-
bly instruction compared to a clock gettime() call to the Linux real-time clock. The
rdtsc instruction’s 25th− 75th percentiles are almost identical at the nanosecond scale. The
clock gettime() function overall takes much more time (approximately 3×).

Table 5.3: Summary of Anderson-Darling Goodness of Fit Test

Distribution Min 10th 50th 90th Max Mean
Gaussian Distribution 0 1.17× 10−15 1.68× 10−14 3.0× 10−5 .719 .002
Levy Distribution 0 2.11× 10−15 2.15× 10−14 .038 .803 .025

Gumbel Distribution 0 8.93× 10−16 1.97× 10−14 6.39× 10−06 .357 .002
Cauchy Distribution 0 3.89× 10−16 1.34× 10−14 .002 .771 .009

Realized execution time is the sum of a nominal (mean) execution time and a noise term.

If the nominal execution time is represented by a random variable N , and the noise is

represented by a random variable V , then the realized execution time R ∼ N + V . The

goal of this work is to find a distribution to represent a lower bound for V which we term

BCETV.

The Levy distribution [145] has a closed form probability density function (PDF, shown

in Equation (5.1)), however in general it has no defined moments. Observations from the

empirical data lead to a solution. Whereas the tail of the Levy distribution is infinite,

the noise present within the real execution times is finite. The support for the empirical

distribution, not surprisingly, is correlated with both the nominal length of execution and

the number of processes assigned to a single compute core. This leads to the consideration

of a Levy distribution that is truncated at a point represented by a new parameter Ω. The

truncated Levy distribution is first defined using the truncation method of Equation (5.2)

65

as Equation (5.3) where F (·) is the CDF of the PDF denoted by f(·). (Note: erfc(x) is the
complement of the Error Function, 1−erf(x), and Ei is the exponential integral function [2].)

In order to make the equations more concise, w = β
2(α−Ω)

and z = β
2(x−α)

.

fL(x;α, β) =
e−z (2z)3/2√

2πβ
(5.1)

fmL(x;α, β,Ω) =
fL(x;α, β)

FL(Ω;α, β)− FL(−∞;α, β)
(5.2)

fmL(x;α, β,Ω) =

√
βe−z

√
2π(x− α)3/2

(
erfc
√−w

) (5.3)

Restricting the use of the truncated Levy distribution, mL, to x ≤ Ω and x > α leads to

a closed form expression of the mean as shown in Equation (5.4). Lastly, a variance is also

defined as Equation (5.5).

µmL[α, β,Ω] =
βΓ
(
−1

2
,−w

)

2
√
πerfc

(√−w
) + α (5.4)

σ2
mL[α, β,Ω] =

(α− Ω)2

(
E 5

2

(−w)

(√
2πβ3/2erfc(

√
−w)+3(Ω−α)3/2

(

4ew−3E 5
2

(−w)

))

√
Ω−α

+ 4(α− Ω)e2w

)

2πβerfc2
(√−w

)

(5.5)

Our next task is to determine an appropriate parametrization of the truncated Levy distri-

bution. We accomplish this task by fitting it to empirical measurements. The “training”

data to be fit to, are sorted into groups Wp,tN which are indexed by the number of processes

66

sharing a core, p, and the nominal execution time, tN (see Equation (5.6a)). Within each

group, the execution time noise is computed for each observation as in Equation (5.6b).

Wp,tN =
⋃

i

obsi ∈ p, tN (5.6a)

∆ = tA − tN (5.6b)

Separately for each group W , Maximum Likelihood (ML) techniques are used to find the

best parameters for a number of distributions, including the truncated Levy distribution

that we are proposing. The quality of the distributions’ fit to the empirical data is judged

via an Anderson-Darling [11] goodness of fit test as shown in Table 5.3 (chosen because

of the weight given to the tails of the distributions compared to other tests such as the

Kolmogorov-Smirnov test [41]).

5.1.4 Parameterization and definition of mLevy

While the ML techniques used above can yield a parameterization for the truncated Levy

distribution that is well matched to the data, in general ML techniques are quite computa-

tionally expensive and also require substantial support to be effective. An alternative is to

redefine the truncated Levy distribution parameters, α, β, and Ω, in terms of a subset of the

parameters in Table 5.4. This is the path we chose, which results in the mLevy distribution.

The exact derivation and parameter selection is described in detail below.

The selection of parameters from Table 5.4 is reduced based on the intuition that the nominal

execution time and number of processes sharing a core will have the largest impact on

the true execution time. Given the design of the minimal compute kernel, it is expected

(and confirmed) that there are zero voluntary context swaps allowing the variable to be

discarded. A Pearson correlation coefficient between the target variables and the training

data (Table 5.4) quantifies the intuition about the remaining parameters.

Table 5.4 summarizes the correlations within the training set between the execution time

noise, ∆, and the other parameters. For the entire training set there is a weak correlation

67

Table 5.4: Correlation Between Target Predictors

nv tN p
∆ .508 .771 -.0056

between the number of processes sharing a core and the execution time noise. There is a

strong correlation between the nominal execution time and the noise. Not shown is the

co-variance between the non-voluntary context swaps and the number of processes per core

which implies a lack of independence. The models considered therefore consist only of the

two independent parameters p and tN .

Using simple linear regression to find coefficients for p and tN that best fit the parameters

for α, β and Ω found by ML, the relationships in Equation (5.7) are found with the following

assumptions: p ∈ Z ∧ p > 1 and tN ∈ R ∧ tN > 0. To redefine the truncated Levy

distribution as defined in Equation 5.3 to the mLevy distribution, several constraints must

be added, namely: Equation (5.7a) is expected to have a negative range for the entire domain,

Equation (5.7b) is positive for the entire domain and Equation (5.7c) is greater than α for

the entire domain. A limitation of these equations is the range of data used to create them.

It is expected that α will not continue to decrease as tN → ∞ and the β,Ω parameters

probably have limitations as well; however these equations are supported through the range

of data specified in Section 5.1.2.

α = 4.75× 10−9p− 0.220tN (5.7a)

β = 4.19× 10−10p+ 0.007tN (5.7b)

Ω = 3.19× 10−6p+ 0.742tN (5.7c)

Using Equations (5.7), which predict α, β and Ω based on p and tN , the PDF and mean of the

mLevy distribution can now be described in terms of p and tN as shown in Equations (5.8)

and (5.9), respectively. The variance of Equation (5.8) is a straightforward algebraic manip-

ulation of Equation (5.5).

68

(5.8)fmL(x; p, tN) =
8.2× 10−6(

√
1p+ 1.6× 107tN)e

0.044p+6.98×10
5tN

p−4.6×107tN−2.1×108x

(−4.8× 10−9p+ 0.22tN + x)3/2erfc
(√

0.003 − 0.003p
p+3.02×105tN

)

µmL[p, tN] =
(1.2× 10−10p+ 0.002tN)Γ

(
−1

2
, 0.003− 0.003p

p+3.02×105tN

)

erfc
(√

0.003,− 0.003p
p+3.02×105tN

) + 4.8× 10−9p− 0.22tN

(5.9)

5.2 Results

How well does the mLevy distribution approximate the actual BCETV observed while exe-

cuting a nominally deterministic compute bound kernel? We will focus our evaluation on the

PDF expressed in terms of processor sharing, p, and nominal execution time, tN , presented

above as Equation (5.8).

The Anderson-Darling (AD) goodness of fit test of Table 5.3 is, frankly, not very promising.

Yet, we already know from Table 5.3 that the truncated Levy is the best out of the listed

distributions used to model the training data. It is not at all surprising that our overall

p-value when using AD is not very high ranging from 0 to 0.73. What is welcome news is

that AD is not the only metric available, as it is relatively ineffective at identifying portions

of the parameter space that have a good vs. a poor fit.

A second measure of how well the mLevy distribution fits empirical data is how well the

moments match. When comparing the mean of the empirical data sets to that predicted

by Equation (5.9), the differences are effectively below our ability to differentiate based on

the techniques described in Section 5.1.2 (i.e., the difference is ≪ 10−12s). Comparing the

variance for the mLevy vs. the empirical measurements results in an r-squared value of

0.69, which indicates a reasonable degree of correlation between model and data, though the

alignment between the two is clearly not perfect.

While the above quantitative assessment of the mLevy distribution’s match with empirical

observation make it clear that the model is not perfect, we must keep in mind the fact that

69

modelers can often exploit individual models that are far from perfect. Given prior use of

models that are much more divergent from reality than our proposed mLevy distribution,

there is the real potential for benefit from the ability to use a distribution that more closely

matches empirical measurement than previous models.

We continue the assessment of how well the mLevy distribution characterizes the noise

in observed execution times by presenting QQ-plots for three distributions relative to the

empirical data (see Figure 5.6). The first column of plots is the mLevy distribution of

Equation (5.8), the second column is a Gaussian distribution, and the third column is a

Cauchy distribution. The latter two distributions are parameterized by fitting to the data

using ML techniques. For each distribution, 4 distinct QQ-plots are shown, separating

the processor sharing variable, p, into quartiles. The first (top) row represents the range

1 ≤ p ≤ 5, the second row represents the range 6 ≤ p ≤ 10, the third row represents the

range 11 ≤ p ≤ 15, and the fourth (bottom) row represents the range 16 ≤ p ≤ 20.

First consider the results in Figure 5.6(g) and (j), which include the mLevy distribution and

significant processor sharing. The model and the empirical data align well, the best evidence

yet that the mLevy is a good execution time noise model. Next consider the results in

Figure 5.6(a) and (d), which include the mLevy distribution and little processor sharing. In

this case, there is reasonably good alignment at the low end of the range, but the empirical

data has slightly less variation than the model at the high end of the range. Finally, note that

the alignment between model and empirical data is noticeably worse for both the Gaussian

and the Cauchy distributions across the entire range of p.

From the above we conclude that the mLevy distribution is a relatively good proxy for

BCETV. The distribution of BCETV can in turn be used in many ways. To demonstrate

the utility of BCETV, we explore the mean queue occupancy (MQO) of a single queue sys-

tem when noise is added (as in Figure 5.2). The single queue system operates as two threads

with one way communication that is designed to have an exponential inter-arrival and service

time distribution (i.e., workload is dependent upon an exponential random number source).

A simple model for MQO is the M/M/1 queueing model, it expects the inter-arrival times

to be exponentially distributed. We posit that the farther from this distribution the actual

system is, the greater the model’s predictions will differ from empirical reality. The Kullback-

Leibler (KL) divergence [112] is an information theoretic measure of the divergence between

70

Figure 5.6: QQ-plots comparing empirical data (vertical axis) to the analytic distributions
(horizontal axis) for the mLevy, Gaussian, and Cauchy distributions. The dashed line shows
the ideal response.

71

Figure 5.7: The y-axis shows the median KL divergence between the M/M/1’s expected
exponential inter-arrival distribution and the lower bound predicted by convolving the ex-
ponential distribution with Equation 5.8. The x-axis is the percent difference between the
mean queue occupancy predicted by an M/M/1 model and the actual measurements from
a single queue system designed to have a perfectly exponential workload. The lowest KL
divergence (green bar) is associated with more accurate predictions.

two distributions (zero being a perfect match). We are interested in how far the noised dis-

tribution (expected reality) as predicted by the convolution of the exponential distribution

and Equation 5.8 differs from that expected by the M/M/1 MQO model. With a divergence

of zero we should expect to find a very close match between modeled and experimental

MQO. At higher divergences (the exact amount is an open question given the information

theoretic metric) we don’t expect the M/M/1 model to be very accurate. Figure 5.7 is a

summary of median KL divergences (y-axis) separated by percent model accuracy (calcu-

lated as |modeled MQO−measured MQO|
measured MQO

× 100, x-axis) for 6, 000+ separate executions of the single

queue system described above on the platforms shown in Table 5.2. It shows that lower

KL divergence (green bar) between the expected exponential and that convolved with the

BCETV distribution, is associated with more accurate MQO predictions. This implies that

BCETV can be used as a predictor for model rejection (at least with a Markovian arrival

process, and perhaps others).

5.3 Conclusions

This chapter demonstrated a noise model (based on the mLevy distribution) that appears

to work far better than a simple Gaussian assumption, in fact far better than multiple other

72

distributions that have been used by others. It has been shown to work for at least two dif-

fering platform types (see Table 5.2) using the same fair scheduling algorithm. We’ve derived

the expressions for the PDF and the first two moments of the truncated Levy distribution

that has finite support. Through empirical data collection, a model is derived that can be

used to parameterize the truncated Levy distribution without resorting to computationally

expensive parameter fitting. Using this model to redefine the truncated Levy distribution

results in the mLevy distribution which is defined in terms of the number of processes per

core and the expected execution time per firing.

In Figure 5.6 we showed how well the quantiles of the mLevy distribution match to the

quantiles of the empirical data. We’ve also noted that the fit between the model and empirical

data gets better as more processes are added per core. This is in keeping with our original

assumption that a single process on a single core should exhibit its native distribution, in our

case purely deterministic, or close to the nominal mean, tN . The models demonstrated here

are only validated over the range of empirical data that we’ve collected. For future work,

we would like to extend the parameter estimators for p > 20 and higher nominal execution

times tN . This Chapter also assumes that each workload being modeled is homogeneous.

An unbalanced workload (where one thread has higher service requirements than another),

might experience slightly greater or lesser variation. In cases where the workloads under

consideration are not correlated (i.e., no dependent execution) the total of the expected

service times can be used with the mLevy and the fraction for each sub-workload could be

used. This remains to be seen and has yet to be verified. For threads with similar service

times, this limitation should not be an issue.

One concern with our approach is also one of its strengths, that it is based on wide empirical

sampling. Is this noise model really applicable to multiple hardware types, or were our choices

simply judicious? Could other parameters in addition to nominal execution time, tN , and

the number of processes per core, p, provide a better estimate on other platforms (e.g.,

alternative instruction sets). One potential application of this noise model is as a minimal

expected noise for all workloads since the “no-op” loop itself is a minimal workload and

therefore an approximate lower-bound on any real compute operation (with the limitations

and assumptions discussed previously).

Before moving on to more advanced methods to accept or reject models for applications, one

more critical piece is needed. If our modeling process is to be done while the application

73

is executing then we need a method to approximate the non-blocking service rate of each

kernel within a streaming system while it is executing. The next chapter will cover exactly

what is meant by non-blocking service rate, other instrumentation methods and describe

their implementation within the open source RaftLib framework (see Chapter 3).

74

Chapter 6

Dynamic Instrumentation

6.1 Introduction

Stream processing is a compute paradigm that promises safe and efficient parallelism. Mod-

ern big-data problems are often well suited for stream processing’s throughput-oriented na-

ture. Many small-data jobs, such as streaming images from a cellular phone are also well

suited to stream processing. What both of these types of applications have in common is that

their workloads are often very dynamic. This can be due to many factors such as: memory

bandwidth utilization, functional unit usage, cache utilization, etc. Tuning the parameters

of the application such as the number of parallel executing kernels, sizes of buffers between

compute resources, location of buffer in non-uniform memory access systems, location of

parallel executing compute kernels, and many others can drastically improve (or worsen if

done poorly) the performance of long running computational tasks (short running tasks will

likely see execution time increase due to the added overhead of dynamic adaptation). Most

current techniques at instrumentation for streaming systems are either static, adapted from

other types of systems (e.g., MPI), or are ad-hoc. This chapter describes our approach to

dynamic instrumentation for stream processing systems; not only is it designed to be low

overhead, but it can be turned on and off during execution.

Stream processing stitches together multiple compute kernels into a coherent single appli-

cation. The efficiency of the resultant application is largely dependent on the ability of the

runtime to manage data movement and locality of processing. All possible care is typically

taken by library and language authors to minimize the actual copying of data from one

kernel to the next and maximize cache line re-use with the end goal of minimizing what

is frequently the most expensive part of a streaming computation: data movement (most

75

expensive in terms of energy [27, 105] and time [200]). If the memory management unit

energy is also considered this estimate grows even further. By managing buffer allocations

efficiently we can cut energy usage. Going further, by managing the precise size and place-

ment of buffers we can increase the utilization of each DRAM firing. In order to optimize

buffer size and placement, models are needed. In order to do this while an application is

running we also need efficient instrumentation to feed these models.

Most techniques to optimize communications links in streaming applications use queue-

ing network models or network flow models. Ubiquitous to many of these models is the

non-blocking service rate of each compute kernel. Classic approaches assume a stationary

distribution. This carries the assumption that both the workload presented to the compute

kernel and its environment are stable over time. One only has to look at the variety of

data presented to any common application to realize that the assumption of a persistent

homogeneous workload is naive. With the popularity of cloud computing we also have to

assume that the environment an application is executing in can change at a moments notice,

therefore we must build applications that can be resilient to perturbations in their execution

environment. In this chapter we take a control-theoretic approach that assumes that there

will be steady state behavior over some small fixed interval over-which actionable data can

be collected and meaningful solutions fed back into the system.

Statistics such as mean queue occupancy, and even occupancy histograms are relatively easy

to collect. Conceptually it is also simple to consider these as “dynamic” statistics, being able

to be collected in realtime. The engineering difficulty collecting these statistics efficiently is

data movement, which careful collection and compression has largely solved [116, 132, 139,

141]. These statistics are excellent measures for learning when an application is stressed, and

where high queue utilization can point to bottlenecks within the streaming system. These

statistics are not enough, however, to effectively model future behaviors of the system. Nor

are they sufficient for many modeling purposes.

The contribution of this chapter is a method that enables online service rate approximation.

The service rate, plainly defined, is how fast a compute kernel can process data. Queueing

literature typically calls this the service rate (literally rate of servicing jobs or data). What is

really interesting is how fast each compute kernel can process in isolation, data regardless of

what is going on up or downstream. Picture an assembly line with three workers (convenient

stick figure representation shown in Figure 6.1). Each worker can only perform work on jobs

76

There’s no place

to put my stars!

A

Figure 6.1: Factory workers in a row must wait till there is space to put their finished items
(stars) before moving on to another star. Observing the middle worker, eventually the last
one removes enough items from the bin and the middle worker is able to process stars over
the period labeled “A.” It is this period that leads to an online estimation of non-blocking
service rate.

as they appear in their work queue (shown to the workers left). Each worker can also only

perform work if there is a place to put work once it is complete (i.e., the outbound queue,

shown to the workers right, must have room). How can we determine the rate at which the

middle worker can process jobs, without being limited by the processing rates of the first

and last workers in the line. This is exactly what we want to find out, and it is aptly named

the non-blocking service rate since it is the rate where the middle worker isn’t stopped or

blocked by anyone. The key observation is that there are brief moments available when

this condition exists, as in Figure 6.1, we want to observe the condition labeled A when the

middle worker has room to put his stars. To show that this condition exists, even at the

speeds with which modern computers execute, Figure 6.2 shows a simulation for a queue with

a high utilization. The blue line (interpolated from discrete observations) represents queue

occupancy, the red line overlay indicates the condition where the process modulating the

arrival rate can be observed making non-blocking writes to the queue. This information is

useful for several modeling and tuning tasks: feeding analytic queueing models, flow models

and for making parallelization decisions.

77

Figure 6.2: Figure 6.1 shows, at a macro scale, the situation that gives rise to the opportunity
to observe non-blocked reads and writes while the application is executing. This figure shows
those opportunities in red overlaid on a simulated M/M/1 queue separated from a Jaksonion
network [95]. The arrival rate to this queue is 9.99 MB/s, the departure rate is 10 MB/s,
resulting in a utilization ρ of .999.

An example of a simple streaming application that will be used throughout this chapter is

shown in Figure 6.3. The kernel labeled as “A” produces output which is “streamed” to

kernel “B” over the communication link labeled “Stream.” These communication links are

directed (one way). Strict stream processing semantics dictate that all of the state necessary

for each kernel to operate is compartmentalized within that kernel, the only communication

allowed utilizes the stream. State compartmentalization and subsequent one-way transmittal

of state via streaming comes with increased communications between kernels. Increased

communication comes with multiple costs depending on the application: increased latency,

decreased throughput, higher energy usage. No matter what the cost function is, minimizing

its result often involves optimizing the streams (queues and subsequent buffers) connecting

individual compute kernels. The buffers forming the streams of the application can be

viewed as a queueing network [19, 120]. It is this network that we want to optimize while

the application is executing.

What follows is a brief description of the instrumentation within the RaftLib framework

followed by the key contribution of this chapter which is low-overhead service rate determi-

nation.

78

Kernel A Kernel BStream

BStreamA

Figure 6.3: The simple streaming application at top has two compute Kernels A & B with
a single stream connecting them. The corresponding queueing network is a single server B
with a single queue fed by the arrival process generated by Kernel A.

6.2 Instrumentation Considerations

The simple act of observing a rate can change the behavior being observed. This phenom-

ena is more obvious with large real world observations (e.g., observing animal behavior),

however it is equally true for micro ones. Data observation might not make the data run

away, however each observation requires non-zero perturbation to record it (e.g., a copy from

the incremented register at some interval). Alternatively, saving every event under obser-

vation can quickly overwhelm the hardware and operating system. Trace files, even when

compressed, can grow rapidly. Determining the service rate with trace data in a stream-

ing fashion (saving none of it) might be possible, however it still increases traffic within

the memory subsystem which is less than desirable in high performance applications. Con-

comitant to reducing communications overhead associated with monitoring is moving any

computation associated with that instrumentation out of the application’s critical path. To

accomplish this, our instrumentation scheme (implemented within RaftLib) uses a separate

monitoring thread. The reduction in overhead to the critical computation path comes at a

cost: an increase in sensitivity due to timing precision and the probability of noise within

any observations.

Figure 6.4 depicts the arrangement of the instrumentation system under consideration at

a high level. A simplified streaming application with only two kernels is shown, connected

by a single stream. Each kernel is depicted as executing on an independent thread. A

monitor (depicted as an eye), performs all the instrumentation work, it executes on an

independent thread as well. Each of these threads is scheduled by the streaming run-time

and the operating system (either user space fiber threads or POSIX-compliant kernel threads,

details of scheduling are discussed in Chapter 3). Each of these threads also could execute

on independent processor cores or a single multiplexed core. Each abstraction layer has the

79

potential to impart noise on any observations made by the monitor, the methods proposed

here must deal with and operate in spite of this complexity.

processor

core

processor

core

Kernel Thread

Monitor Thread

Kernel Thread

processor

core

OS Scheduler

Kernel A Kernel BStream

Figure 6.4: High level depiction of the abstraction layers coalesced around a simple streaming
application with two compute kernels. An independent monitor thread serves to instrument
the queue. Both the kernel threads and monitor threads are subject to the runtime and
operating system (OS) scheduler.

As a result of the reliance on observing one the queue from another thread, accurate timing

is absolutely necessary. It should be obvious that any variations in the denominator for

things like rate calculations can have a skewing effect. The distributional characterization

of best case execution time variation from Chapter 4 demonstrated that even nominally

deterministic executions exhibit some non-deterministic behavior. This distribution is used

as a minimum floor for our expected variation when executing on multi-core hardware. To

get close to this minimal noise floor the timer is executed continuously on a real time thread

which writes to shared memory. Another confounding factor on many multi-core machines

that must be mitigated, is that of writing to multiple NUMA nodes. Even many non-explicit

NUMA machines present NUMA-like behavior in the form of differing L3 latencies, these

can also skew timing measurements if extreme accuracy is needed.

Figure 6.5, a duplicate of that from Chapter 4 shows the difference in latency of accesses

to a shared timer region on NUMA machines with just two architectures. The risk in this

case is slowing the critical path of the code being timed. To minimize this a timer struct

is allocated on each NUMA node which is shared by threads executing on their respective

80

nodes. This shifts the latency burden to the timer updating thread and not to the critical

path. This also has the added advantage of the same latency being experienced by all timed

threads and not just one making the effects easier to de-noise when required. The rest of

the timer mechanism is identical to that described in Chapter 4.

0 10 20 30 40 50
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Avg. ns per copy

P
rH

o
b

sL

Figure 6.5: Smooth histogram of 106 data points each representing timed averages of 500
copy operations, first on the same NUMA node (red line) and then across different NUMA
nodes (blue line). The performance of a copy on the same NUMA node seems to be much
more consistent.

The period of observation (T) for the monitor thread is just as critical as an accurate time

reference. Noise from the system and timing mechanism dominate for very small values of

T making observations unusable [36]. The key observation from Chapter 4 with respect

to noise is that some workload durations are less noisy (more repeatable) than others. The

stable point changes based on the hardware, operating system, scheduler, and countless other

factors. In Chapter 4 we examined but a small subset. Analytic derivation of the perfect

sampling period is an exercise in futility, however a branch and bound search can find an

acceptable T quickly enough. Figure 6.6 shows how much T varies through back to back

samples as the length T is increased from very small (starting with the resolution of the

timer) to very large. For detailed information on average timer latencies, see Chapter 4.

81

Figure 6.6: Observations of T variation using the timing mechanism of [21]. The @ symbol
represents the minimum resolution of the timing mechanism (∼ 300 ns for this example),
subsequent box and whisker observations are the indicated multiple of @. The trend indicates
that wider time frames (up to the approximate time quanta for the scheduler) give more
stable values of T .

6.2.1 Throughput

The overall throughput of an application and the throughput at each link within an appli-

cation is of great interest to application developers. It doesn’t have quite the same power

as the non-blocking service rate, but it is still quite useful. Once T is fixed, it is trivial

to sample the number of writes into and reads out of a given queue. Using an iteratively

updated mean, the throughput can be averaged over the execution of a program. Once a

sufficiently stable throughput is calculated it is straightforward to zero the sum of reads or

writes and the respective observation count and begin anew.

6.2.2 Queue Occupancy

The mean queue occupancy is also quite easy to calculate by sampling the size of the queue

periodically over N periods. The mean queue occupancy is just the quotient of the sum

of observed occupancies and N . Capturing more detailed data such as histograms of the

queue occupancies are covered by techniques such as those developed within the TimeTrial

framework of Lancaster et al. [115].

82

6.3 Service Rate

To minimize overall impact, the data necessary to estimate the service rate is split between

the queue itself and the monitor thread, and is moved only when absolutely necessary. As

depicted in Figure 6.4, the queue itself is now visible to three distinct threads: the monitor

thread and the producer/consumer threads at either terminus of the queue. The only logic

to consider within the queue itself is that necessary to tell the monitor thread if it has

blocked and that necessary to increment a item counter as items are read from or written

to the queue. The monitor thread reads these variables written by the run-time controlling

the queue (work is actually performed by the producer or consumer threads). The monitor

thread also resets or zeros the counter (which will be called tc from this point forward)

and blocking boolean kept by the queue. In a non-locking (also non-atomic) operation,

the monitor thread copies and zeros tc (the reader should consider the implications of the

non-atomic copy and zero briefly). This mechanism has the advantage of being quite fast,

however there are implications which must be dealt with.

The monitor thread samples at a fixed interval of time T which is the sampling period.

When the monitor thread samples tc and the blocking boolean, it has no way of knowing

if the server at either end only performed complete executions or partial ones. The only

thing it can be certain of is that the data read are non-blocking if the boolean value is set

appropriately. This means that tc can represent something less than the actual service rate.

Also contained within the tc are data not-representative of average behavior; these include

(list not exhaustive): caching effects, interrupts, memory contention, faults, etc.

The monitoring thread scheme samples at a fixed interval of time T which provides a rel-

atively stable and monotonically increasing time reference with an average latency on the

systems tested of approximately 50−300 ns across all cores (includes latency for back to back

x86 rdtsc instruction as well as serializing assembly instruction, e.g., mfence). Despite the

luxury of a stable time reference, another trend complicates matters for the sampling of tc.

As the service time decreases, the probability of observing a non-blocking queue transaction

decreases as well.

Central to accurate estimation of service rate is observing non-blocking reads and writes

by the server. While executing, the probability of observing a non-blocked read or write

to a queue in general is very low, especially so for the edge cases of very high utilization

83

Table 6.1: Nomenclature used for queueing equations.

Symbol Description
µs mean service rate
ρ server utilization
C capacity of output queue
T sampling period of monitor
k items needed by server during T

and very low utilization. The equations below (a modification of the equations given by

Kleinrock [109]) give the probability distribution for the simplified case where each server’s

process is Poisson, each data element is a single job, each job is the same size, and only a

single in-bound and out-bound queue are considered (also known as an M/M/1 [103] queue;

Table 6.1 lists variable definitions).

k = ⌈µsT ⌉
Prread(T, ρ, µs) = ρk

Prwrite(T,C, ρ, µs) =

1− ρC−k+1 C ≥ µsT

0 C < µsT

Figure 6.7: The probability (y-axis) of observing a non-blocking read given the observation
period T (x-axis) in seconds. In general the faster the server or greater throughput the lower
the probability of observing a non-blocking read from the queue.

In order to improve those odds there are some mechanisms that the run-time can imple-

ment. Given a full out-bound queue, resizing the queue provides a brief window over which

to observe fully non-blocking behavior. Given an empty in-bound queue there are three

84

implementable actions: (1) increasing the number in-bound servers feeding more arrivals to

the queue, (2) changing execution hardware of the up-stream server can have the same effect

as the aforementioned approach, (3) adjusting the scheduling frequency before observing full

service rate in order to fill the in-bound queue. The benefits and implementations of these

will be discussed after describing the theory behind the service rate approximation.

6.3.1 Online Service Rate Heuristic

Online estimation of service rate requires four basic steps: fixing a stable sampling period T ,

sampling only the correct states (expounded upon below), reducing and de-noising the data,

then estimating the non-blocking service rate. The system has a finite number of states which

are useful in estimating the non-blocking service rate. The most obvious states to ignore are

those where the in-bound or out-bound queue is blocked (see Lancaster et al. [42, 118]). The

others, as mentioned in Section 6.3, are data unrepresentative of the non-blocking service

rate. Symbols used in this section are summarized in Table 6.2.

Table 6.2: Nomenclature used for Section 6.6.

Symbol Description
T sampling period
tc sum of non-blocking reads during T
S windowed set of items tc
S ′ Gaussian filtered set of S
q 95th quantile of S ′

q̄ population averaged q
d bytes per data item

6.3.2 Sampling Period Determination

Each queue within a streaming application has its own monitor thread. As such, each T

is queue specific, since each instrumented queue is in a slightly differing environment. An

initial requirement is a stable time reference across all utilized cores. The timing method

described in the previous section is employed. (our specific implementation uses the x86

rdtsc instruction combined with the manufacturer recommended fence instruction (one of

mfence or lfence), but any sufficiently high resolution time reference could be used). This

85

provides a stable and monotonically increasing time reference whose latency on our test

systems is approximately 50 − 300 ns across the cores. Despite a relatively stable time

reference, two trends complicate matters. First, as service time decreases, the probability of

observing a non-blocking queue transaction decreases as well. Second, noise from the system

and timing mechanism dominate for very small values of T making observations unusable.

Modern computing systems introduce some level of noise into the measurements [21]. Choos-

ing a longer sampling period (T) reduces the impact of the noise. We wish, however, to

observe kernel executions that are unimpeded by their environment (no blocking due to up-

stream or downstream effects). This goal stands in juxtaposition to noise reduction since

shorter sampling periods increase the probability of observing non-blocked periods of execu-

tion.

Figure 6.6 shows how the empirically observed sampling period varies with desired sampling

period, T , starting with the minimum latency (∼ 300 ns) of back to back timing requests

then iterating over multiples of that latency. The monitor thread tries to find the largest

time period T (moving to the right in Figure 6.6) while minimizing observed queue blockage

during the period. As is expected, the noise is less significant compared to the period as

T increases. The implementation within RaftLib lengthens the period if: 1) no blockage

occurred on the in-bound or out-bound buffer (with respect to a kernel) within the last k

periods and (2) the realized period of the monitor was within ǫ of the current T over the last

j periods (i.e., T was stable). Failure to meet these conditions results in the failure of our

method i.e., we conclude that our approach will not result in sable service rate monitoring.

6.3.3 Service Rate Heuristic

Once a stable T has been determined, the next step is estimating the online service rate

without having to store the entire data trace of all queueing transactions. The head and

tail of each queue store counts of non-blocking transactions, tc, as well as the size of each

item copied, d. The transaction count, tc, requires very little overhead since it is simply

a counter. The item size is typically constant for any given queue. The instrumentation

thread samples tc from the head and tail every T seconds. There are many factors that

can slow down a kernel in the context of a full execution, only a few can make it appear to

execute faster (see Figure 6.8), these factors will have to be dealt with in order to accurately

86

Figure 6.8: Direct observations of the service rate, using the logic of [42], for a nominally
fixed rate micro-benchmark kernel. The x-axis is the increasing observation index with time,
the y-axis represents the actual data rate observed at each sample point. The red dashed
line is the nominal service rate.

estimate the service rate. To do this we will use an estimate of the maximum, well-behaved

tc to estimate the service rate of interest. (well-behaved is articulated below). For simplicity,

the discussion that follows will consider only actions that occur at the head of the queue

with the understanding that equivalent actions can occur at the tail as well.

Algorithm 1 summarizes the process described below. This description presumes an imple-

mentation of a streaming mean and standard deviation (see Chan et al. [44] andWelford [195])

through the updateStats(), updateMeanQ() and resetStats() methods. The mechanics of

the QConverged() function are described later. Within the description the reader should

note that unlike graphics applications, padding is not used for the filter so that the filter

radii is width 2× radius smaller than the data window.

While sampling tc, the timing thread creates a list S, ordered by entry time (implemented as

a first-in first-out queue). S is maintained as a sliding window of size w. If S is of sufficient

size, it is expected that the set S tends toward a Gaussian distribution (N (µS, σS)), as it is

a list of sums of non-blocking transactions. S, however contains many data elements that

are not necessarily indicative of non-blocking service rates. These elements arise from the

following conditions: (1) the monitor thread observed only a partial firing of the server (i.e.,

the server had the capability to remove j items from the queue but only < j items were

evident when retrieving tc); (2) the monitor thread clears the queue’s current value of tc

during a firing (i.e., the counter maintaining tc is non-locking because locking it introduces

87

stream← tc;
output← output stream;
S ← {};
while True do

tccurrent ← pop(stream);
S ′ ← {};
for i← gaussradius, i < |window|−gaussradius,i++ do

val ← Dot(S[i− gaussradius;;i+ gaussradius],GaussianFilter);
push(S ′, val);

end
µS′ ←Mean(S ′);
σS′ ←StandardDeviation(S ′);
q ←NQuantileFunction(µS′ , σS′ , .95);
updateStats(q); if QConverged() then

push(output, getMeanQ());
resetStats();

end

end
Algorithm 1: Service rate heuristic.

delay); (3) outlier conditions as discussed in the introduction to this Section which are not

indicative of normal behavior.

Filters are frequently used in signal processing applications to de-noise data sets. In general,

a filter is a convolution between two distributions so that the response is a combination of

both functions. The underlying distribution of S without outliers tends towards a Gaussian,

therefore a Gaussian discrete filter is used to shape the data in S so that it is sufficiently

well-behaved (de-noised) for estimating the maximum. The filtered data make up the set S ′.

Equation 6.2 describes the kernel, where x← [−2, 2] is the index with respect to the center.

Through experimentation, a radius of two was selected as providing the best balance of fast

computation and smoothing effect.

GaussianFilterKernel(x)← e−
x2

2√
2π

(6.2)

Once filtered, S ′ is used to estimate the maximum. Since we must still account for outliers,

rather than explicitly use the maximum, we estimate the maximum via the 95th quantile of

S ′. This is a reasonable approximation given that: once filtered, S ′ even more closely has

88

a Gaussian distribution than S and a quantile is more robust to outliers than the sample

maximum. Operationally, we use the sample mean, µ̂S′ , and standard deviation, σ̂S′ , to

estimate N (µS′ , σS′), and the quantile is of course

q = µ̂S′ + 1.64485 σ̂S′ . (6.3)

Direct utilization of q is sufficient for some purposes, however it is only valid for the time

period comprising the window over which it was collected p ← T × w. Subsequent sets S ′
i

update µS′ and σS′ resulting in frequent new values (e.g., Figure 6.9). Stability is gained by

using the streaming mean of successive values of qi (as shown in Figure 6.9). Where q̄ is the

averaged, estimated maximum non-blocking transaction count tc, assuming only one queue

for simplicity, the service rate is simply q̄×d
T
. This, however also assumes that the underlying

distribution generating tc is at least stable over the observation period. As with all online

estimates, q̄ becomes more stable with more observations (e.g., Figure 6.10).

Figure 6.9: Plot of the values of q with increasing time. Each value of q is the result of a
computation of Equation 6.3. The dashed line across the y-axis represents the set or expected
service rate.

Convergence of q̄ to a “stable” value is expected after a sufficiently large number of obser-

vations. In practice, with µs-level sampling, convergence is rarely an issue. Determining

when q̄ is stable is accomplished by observing σ of q̄. Minimizing the standard deviation

is equivalent to minimizing the error of q̄. With a finite number of samples, it is unlikely

that σ(q̄) will ever equal to zero, however observing the rate of change of the error term to

a given tolerance is roughly equivalent to minimizing the error of the approximation given

the conditions for weak convergence by Lyapunov [33]. To accomplish this in a streaming

89

Figure 6.10: An example of convergence of q̄ with increasing time. Data is from a single
queue tandem server micro-benchmark, observing the departure rate from the queue to the
server with the set service rate marked as a dashed line.

manner, a similar approach to that taken previously is used with differing filters to approxi-

mate the relative rate of change over the window. A discrete Gaussian filter with a radius of

one is followed by a Laplacian filter with discretized values (in practice, one combined filter

is used). This type of filter is widely used in image edge detection. Here, we are utilizing to

minimize the standard deviation; essentially the filter gives a quantitative metric for the rate

of change of surrounding values. The kernel is given in Equation 6.4 with x ← [−1, 1] and
σ ← 1

2
. The minimum and maximum of the filtered σ(q̄) are kept over a window w ← 16

where convergence is judged by these values all being within some tolerance (ours is set to

5× 10−7).

LaplacianGaussian(x)← x2e−
x2

2σ2

√
2πσ5

− e−
x2

2σ2

√
2πσ3

(6.4)

An example of a stable and converged q̄ is shown in Figure 6.11, where the data plot is of

the dual filtered σ(q̄) and the vertical line is the point of convergence. The time scale on the

x-axis is the same as that of Figure 6.10 so that the stability point on Figure 6.11 matches

that of Figure 6.10.

Once convergence is achieved, it is a simple matter to restart the process described above,

and begin the search again. Figure 6.12 shows a sample run where the average service

rates are known (solid blue y-axis grid lines). The x-axis grid lines (dashed vertical lines)

90

Figure 6.11: Plot of the filtered standard deviation of q̄, the point of convergence is indicated
by the vertical dashed line.

show points of convergence to stable solutions after subsequent restarts of the approximation

algorithm.

Changes in q̄ are assumed to mean a change in the process distribution governing tc.

Figure 6.12: Example of q̄ capturing two distinct service rates during execution of a micro-
benchmark. The instrumentation captures the departure rate from a single queue to a
compute kernel.

91

6.4 Evaluation

6.4.1 Infrastructure

The hardware used for all empirical evaluation is listed in Table 6.3. All code is compiled

with the “-O2” compiler flag using the GNU GCC compiler (version 4.8.3).

In order to assess our method over a wide range of conditions, a simple micro-benchmark

consisting of two threads connected by a lock-free queue is used. This is the same topol-

ogy illustrated in Figure 6.3. Each thread consists of a while loop that consumes a fixed

amount of time in order to simulate work with a known service rate. The amount of work,

or service-rate, is generated using a random number generator sourced from the GNU Sci-

entific Library [75]. The service rates of kernels within the micro-benchmark are limited

to approximately ∼ 8 MB/s due to the overhead of the random number generator and the

size of the output item (8 bytes). Service time distributions are set as either exponential or

deterministic. Parameterization of the distributions is selected using a pseudorandom num-

ber source. The exact parameterization range and distribution are noted where applicable

within the results section.

Table 6.3: Summary of hardware used for empirical evaluation

Platform Processor OS Main Memory
1 2 × AMD Opteron 6136 Linux 2.6.32 64 GB
2 2 × Intel E5-2650 Linux 2.6.32 64 GB
3 2 × Intel Xeon X5472 Darwin 13.4.0 32 GB
4 2 × Six-Core AMD Opteron 2435 Linux 3.10.37 32 GB
5 Intel Xeon CPU E3-1225 Linux 3.13.9 8 GB

The streaming framework used is the RaftLib C++ template library (see Chapter 3).

6.5 Applications

In addition to the micro-benchmarks described above, two full streaming applications are also

explored. The first, matrix multiply, is a synchronous data flow application that is expected

to have relatively stable service rates. The second is a string search application that has

92

variable rates. Ground truth service rates for each kernel are determined by executing each

kernel offline and measuring the rates individually using a large resident memory data source

(constructed for each kernel) and ignoring the write pointers so that it simulates an infinite

output buffer.

6.5.1 Matrix Multiply

Matrix multiplication is central to many computing tasks. Implemented here is a simple

dense matrix multiply (C = AB) where the multiplication of matrices A and B are broken

into multiple dot-product operations. The dot-product operation is executed as a compute

kernel with the matrix rows and columns streamed to it. This kernel can be duplicated n

times (see Figure 6.13). The result is then streamed to a reducer kernel (at right) which

re-forms the output matrix C. This application differs from the micro-benchmarks in that

it uses real data read from disk and performs multiple operations on it. As with the micro-

benchmarks, it has the advantage of having a continuous output stream from both the matrix

read and dot-product operations.

The data set used for the matrix multiply is a 10, 000 × 10, 000 matrix of single precision

floating point numbers produced by a uniform random number generator.

Read

Matrix

Dot

Product

Dot

Product
Reduce

Dot

Product

1

i

n

Figure 6.13: Matrix multiply application. The first kernel reads both matrices to be mul-
tiplied and streams the data to an arbitrary (n) number of dot product kernels. The final
kernel reduces the input from the dot to a multiplied matrix.

93

6.5.2 Rabin-Karp String Search

The Rabin-Karp [101] algorithm is classically used to search a text for a set of patterns. It

utilizes a “rolling hash” function to efficiently recompute the hash of the text being searched

as it is streamed in. The implementation divides the text to be searched with an overlap of

m− 1 (for a pattern length of m), so that a match at the end of one pattern will not result

in a duplicate match on the next segment. The output of the rolling hash function is the

byte position within the text of the match. The output of the rolling hash kernel is variable

(dependent on the number of matches), for model selection testing purposes the input data

will be specially constructed in order to produce a regular steady state output. The next

kernel verifies the match from the rolling hash to ensure hash collisions don’t cause spurious

matches. The verification matching kernel can be duplicated up to j times. The final kernel

simply reduces the output from the verification kernel(s), returning the byte position of each

match (see Figure 6.14). The corpus consists of 2 GB of the string, “foobar.”

Rolling
Hash

Read File,
Distribute

Rolling
Hash

Rolling
Hash

Reduce

Verify
Match

Verify
Match

1

j

i

n

1

Figure 6.14: Rabin-Karp matching algorithm. The first compute kernel (at left) reads the
file to be searched, hashes the patterns to search and distributes the data to n “rolling-hash”
kernel(s). Next are j, j ≤ n verification kernel(s) to guard against matches due to hash
collision. The final kernel (at right) is a reducer which consolidates all the results.

6.6 Validation

The methods that we have described are designed to enable online service rate determination.

Just how well do these methods work in real systems while they are executing? In order

to evaluate this quantitatively, several sets of micro-benchmarks and real applications are

instrumented to determine the mean service rate of a given server. We start with two sets

94

of micro-benchmarks, the first having a stationary distribution (with a fixed mean) and the

second having a bi-modal distribution that shifts its mean halfway through its execution.

Each micro-benchmark is constructed with the configuration depicted in Figure 6.3 and

executed with a fixed arrival process distribution. The service rate of Kernel B is varied for

each execution of the micro-benchmark from (0.8 MB/s→ ∼8 MB/s). The results comprise

1800 executions in total. The departure rate from the queue is instrumented to observe

the service rate of Kernel B. The goal is to find the service rate of this kernel without a

priori knowledge of the actual rate (which we are setting for this controlled experiment).

Figure 6.15 is a histogram of the percent difference between the service rate estimated via

our method and the “set” filtered rate.

Figure 6.15: Histogram of the probability of estimating the service rate of Kernel B from
Figure 6.3. Each execution is a data point, with the percent difference calculated as
((observed rate−set rate)

set rate
) × 100. Not plotted are four outliers to right of the plotted data which

are greater than 1000% difference, which is not unexpected given the probabilistic nature of
our heuristic.

We see in this histogram that generally the correspondence between estimated service rate

and ideal service rate is reasonably good. We expect divergence since these rates are deter-

mined while the application is executing, not the full execution time average rate. When it

errs, the estimate is typically low, which is consistent with previous empirical data, in which

actual realized execution times are typically longer than nominal 5. The majority of the

results are within 20% of nominal in any case. The computational environment of any given

kernel can change from moment to moment. We simulate environment change by moving

the mean of the distribution halfway through execution of Kernel B (with reference to the

95

Figure 6.16: Depiction of the ideal (drawn from empirical data) of the instrumentation’s
ability to estimate the service rate while the application is executing. Each dot represents
the converged service rate estimate (y-axis). The top and bottom dashed lines represent the
first and second phases as verified by manual measurement in isolation.

number of data elements sent). We are interested in whether our instrumentation can detect

this change, potentially enabling many online optimizations. An example with a wide switch

in service rate is shown in Figure 6.16 where the first phase is at ∼2.66 MB/s and the second

is much lower at ∼1 MB/s. Not all examples are so clear cut.

In order to classify the dual phase results into categories, a percent difference (20%) from

the manually determined rates for each phase is used. Approximately 14.7% of the data

had nominal service rate shifts that were known to be less than the 20% criteria specified.

Figure 6.17 shows the effectiveness of our technique in categorizing the distinct execution

phases of the micro-benchmarks. The rightmost graph shows the categorizations for low ρ,

and the leftmost graph shows the categorizations for high ρ. Here, we make two observations.

First, the system correctly detects both phases more effectively in high utilization conditions,

which are the conditions under which correct classification is likely to be more important.

Second, the classification errors that are made are all conservative. That is, it is correctly

detecting the final condition of the kernel, indicative of a conservative settling period for

rate estimation.

It is well understood that a server with sufficient data on it’s input queue should be able to

proceed with processing (assuming no other complicating factors). Therefore one trend that

we expect to see is an improvement in the approximation for higher server utilizations. In

96

Figure 6.17: Data from a dual-phase micro-benchmark that generates two distinct service
rate phases separated by server utilization, ρ, and then by correct classification at each phase
(as “Neither,” “A,” “B,” or “Both”), which represent the heuristic finding none, only the
first phase, only the second phase or both, respectively.

addition, servers that are more highly utilized typically have a much more profound impact

on the performance of the application as a whole (e.g., they are dramatically more likely to

be throughput bottlenecks in the overall data flow).

Overall, the heuristic did quite well. Looking at the single phase data, only four of the

micro-benchmark results were extremely off. The dual phase data were also fairly good,

the heuristic failed to find either phase in only 0.24% of the instances. The real test of

any instrumentation is how well it can handle situations beyond those that are carefully

controlled. The only variable that is within the users’ control is that of data set selection.

Notably these applications are not limited to the slower service rates of the micro-benchmark

applications but are dependent on the mechanics of the application. The matrix multiply

application is executed on platform 2 from Table 6.3 with the number of parallel dot-products

set to five. Only the reduce kernel is instrumented (see Figure 6.13) as the dot-products

would be rather easy given the high data rates inherent in transmitting an entire row by

copy. The ground-truth service rate realized by each queue (the total service rate being a

combination of rates from each input-queue) are determined by the method described in

Section 6.5.1. Overall the results are not quite as clean as those of the microbenchmark,

but that is expected given the chosen kernel has an extremely low ρ. A majority (63%) are

97

within the range of measurements observed during manual estimation removing each kernel

from the system and manually measuring data rates at each input port).

Figure 6.18: Plot of the trace for the instrumented partial service rate of the reduce kernel
(the full rate being the sum of all rates for each in-bound queue, assuming PASTA [88]). The
manually determined rate for this experimental setup ranged from 0.05 MB/s to 0.43 MB/s.
Overall, a majority of the results ∼63% are within this range.

Similar to the results for the matrix-multiply application, the results for the Rabin-Karp ap-

plication are also relatively good (recall that these are rates taken at points over the course

of execution). The application is executed on platform 2 from Table 6.3 with the number of

matching kernels fixed at four and the number of verification kernels fixed to two. Figure 6.19

shows the online service rate by convergence point each data point represents a converged

estimate of the service rate (potentially multiple convergences for a single application exe-

cution). Instrumented is a single queue arriving to the verify block from the hash kernel.

Again, we’ve intentionally picked a case where the ρ is very low, which is very difficult for

the instrumentation to find a non-blocking read from the queue. In total, only ∼ 35% of

estimates are within the range observed when manually measuring service rate, although

most of the data points are fairly close. This highlights the limitations of our approach. If

the non-blocking reads are not observed then the rate simply cannot be determined with too

much accuracy.

Low overhead instrumentation should be exactly that, low overhead. This means that there

should be little, if any, impact on the execution of the application itself. Low impact also

means that the system executing both the application and instrumentation should see as little

increase in overhead as possible. Given that our system utilizes a separate monitor thread,

98

Figure 6.19: Plot of the converged estimates of service rate for a single queue within the
Rabin-Karp string matching application. The utilization of this server is less than 0.1 mean-
ing that the queue is almost always empty which leads to less opportunity for recording
non-blocking reads from the queue.

this could be a concern. Using the single queue micro-benchmark, the impact was measured

with instrumentation and without instrumentation. Using the GNU time command over

dozens of executions, the average impact is only 1 - 2%. Impact to the system overall was

equally minimal, load average increased only a small amount (by 0.1 on average).

6.7 Conclusions

We demonstrate an algorithm for approximating the online service rate of kernels in a stream-

ing system. In streaming systems that exhibit filtering, the heuristic presented here can also

be used to detect non-blocking departure rates which can inform a runtime of routing deci-

sions made by the kernel as well as the amount of filtering currently exhibited. Overall our

methodology works quite well. When the heuristic fails, it usually fails knowingly (e.g., no

convergence is reached or non-blocking reads were not observed, methods for determining

failure are examined in Chapter 7). The first task, before falling back to a state where service

rate is not used is to try the strategies enumerated to improve the probability of successful

approximation.

99

It has been validated using micro-benchmarks and two full streaming applications. While

evidence has been shown for the estimation of the service rate’s central moment and its

variance, efficient methods also exist for streaming computation of higher moments [153].

Using the method of moments along with some simple classification, it should be clear

that online distribution selection can be performed using the techniques described within

this work as a basis, then extending them to include higher moment estimation. RaftLib

currently supports the methods described here. Future work, and extensions to RaftLib’s

instrumentation system, will include higher moment estimation.

Parallelization decisions can easily benefit from the information that this method provides.

Instead of relying on static (compile time) information, decisions can now be made with

up-to-date data improving optimality of the execution. Related, but not shown here, is the

ability of this process to instrument streams entering or exiting a TCP stack. It is assumed

that there should be no difference in monitoring user-space queues feeding data into a TCP

link. An open question is exactly how best to synchronize the ingress and egress transaction

data.

In conclusion, we’ve demonstrated a probabilistic heuristic that under most conditions can

estimate the service rate of compute kernels executing within a streaming system while that

application is executing. It has been demonstrated to be effective using micro-benchmarks

and two full applications. The next chapter examines some methods to perform online

stochastic model selection for stream processing systems. Using these methods, we also

show that when our instrumentation unknowingly fails, that a properly trained statistical

model can tell us.

100

Chapter 7

Model Selection

When do you trust a model is a fundamental question. With modern computing systems,

there are countless abstraction layers between what is observed and what we think we are

modeling. Choices must be made in the modeling process, one of the most important is

finding the right abstraction level to model a phenomena. Ignoring intermediate layers of

abstraction, however means that assumptions are being made which may or may not be

met. More disconcerting are assumptions that were never considered, but should have been.

Chapter 4 describes a network flow model which works quite well for the applications tested.

Chapter 4 also described the application of some very simple queueing models, through

careful offline testing, all the modeling assumptions were verified. What actually happened

was less than stellar performance because the environment changed at run-time. What we

want is a way to tell when these types of events are probable. Even more useful would be

a way to divine this while an application is executing (or online). This chapter discusses

the application of two machine learning techniques: Artificial Neural Networks (ANN) and

Support Vector Machines (SVM), for the purpose of assessing the usability of performance

models.

Machine learning methods are great at predicting patterns, indeed another name for the field

is pattern recognition. What patterns can our ML processes hope to find within the data?

To find this pattern we launched an almost exhaustive search. We focused on finding a noise

pattern that was repeatable, predictable, and useful for prediction. Furthermore, we decided

to focus on an easier target than predicting the worst case deviations, and focus on the best

possible case for noise within a compute system. After tilting at dozens of windmills, our

quest was successful. Chapter 4 describes this noise distribution, its application and how it

can be used to predict a priori if a particular stochastic queueing model can be applied.

101

M/M/1

M/M/1

Classifier

Apply the

Model

Figure 7.1: In order to automatically tune systems, models must be selected to estimate
performance. In this chapter, we show that characteristics extracted from computer systems,
and the applications running on them can be combined to create a “fingerprint” which is
classified as belonging to one model class or another.

The modified Levy distribution described late in Chapter 4, is shown to be a good approx-

imation of the best case execution time variation. This is the best case, the least noise we

can expect from a given system. We also demonstrated how it could be used to accept or

reject a queueing model using Kulback-Leibler divergence. This is, however, expensive for

non-normal distributions. Chapter 7 looks at ways to improve our understanding of where

we can and cannot use a model by “finger-printing” compute systems with features that are

extracted from the target system. These fingerprints are used to train a machine learning

process to decide which model to use. We posit that with online tuning, there are simply

too many parameters to consider when attempting to model a modern computer system

fast enough to return actionable results, so we turn to pattern recognition and automated

classification. Figure 7.1 shows the process at a high level, the following sections will delve

deeper.

102

7.1 Stochastic Models and Streaming Applications

Successful application of a stochastic queueing model often requires knowledge of many

factors that are unknowable without extensive application and hardware characterization.

Extensive characterization, is quite expensive (both in time and effort) when considering

streaming applications of any appreciable size (or even standard applications [107]). Com-

plicating matters further is that each streaming application could require that multiple mod-

els be selected in order to fully model its performance; each with its own assumptions and

parameters that must be quantified before use. Even when modeling assumptions are veri-

fied offline, often they are broken by unpredictable behavior (as was the case in Chapter 4)

that can occur during execution. This chapter introduces a machine learning method for

classifying the reliability of stochastic queueing models for stream processing systems.

Kernel A Kernel BStream

BStreamA

Figure 7.2: The top image is an example of a simple streaming system with two compute
kernels (labeled A & B). The bottom image is the resulting queue with arrival process A
(emanating from compute kernel A) and server B. For more complex systems this becomes
a queueing network.

Streams allocated within a streaming application can be modeled as a stochastic queue-

ing network for which there are well understood relationships between input arrival rates,

computational service rates, queue occupancies, etc., in the steady state. Some streaming

systems can even re-allocate buffers during execution to tune the size based on the environ-

ment. Each resizing operation takes precious time, so model based approaches are preferred.

Hand selection of performance models for these applications is clearly impractical (hundreds

of queues, each with a unique environment). Offline modeling attempts are often thwarted

by dynamic characteristics present within the system that were not included in the model.

This chapter outlines what is perhaps an easier route. Utilizing features easily extracted

from a system along with a streaming approximation of non-blocking service rate to form a

unique system fingerprint, we show that two differing machine learning mechanisms: Sup-

port Vector Machine (SVM) and Artificial Neural Networks (ANN) can identify where a

103

model can and cannot be used. First the main case of identifying where a stochastic model

can and cannot be used is examined. Second, we examine the trustworthiness of the online

service rate instrumentation described in Chapter 6. Results are shown that demonstrate

that both machine learning methods are generalizable to multiple operating systems and

hardware types.

7.2 Stochastic Queueing Model Selection

7.2.1 Methodology

For most stream processing systems (including RaftLib) the queues between compute kernels

are directly implied as a result of application construction. The stochastic mean queue

occupancy models under consideration are intended for systems at steady state. In order to

have some form of steady state, consider only a brief moment of time. It is assumed that

most systems will have at least a small moment of steady state followed by a shift. Integrated

over time this might appear to be a non-steady state, but zooming into a small window of

time reveals more stable behavior. Applications whose behavior is too erratic to have any

steady state behavior over any period of time are not good candidates for these models or

this method.

Figure 7.3 illustrates the set of features which are used to train our machine learning mod-

els. One of the most important features used within our models is the service rate of the

up and downstream kernels. Methods to divine service rates are discussed at length within

Chapter 6. Architectural features of a specific platform such as cache size are used as fea-

tures, all can be obtained with very low overhead (and often statically). All of our features

can be found using either literature search or directly by querying the hardware. Platforms

where this information is unknown are avoided, however a surfeit of such platforms exists

(see Table 7.1). Processor specific performance counters (from open source tools such as

PAPI [139]) could have been used, and this is left to future work. It is quite possible that

additional features could improve specificity or generalizability. Working under the assump-

tion that accurate determination of service rate distribution (through moment matching or

104

other methods) is typically expensive and should be avoided for real-time application con-

trol, it is not used to train our models (we do show that giving the SVM the approximate

distribution as well improves accuracy greatly).

Implicit within most stochastic queueing models (save for the circumstance of a deterministic

queue) is that ρ < 1 to obtain a finite queue. It is expected that either ML process should

be able to find this relationship based upon the training process. It is shown in Section 7.2.4

that this is indeed the case. If deciding on a queueing model were as simple as selecting one

class for ρ ≥ 1 and another for ρ < 1 then the methods described in this chapter would be

relatively inconsequential. However we also assume that the ML process is not explicitly told

what the actual service process distributions are of the compute kernels modulating data

arrival and service so this relationship is not quite so binary. It is also shown in the results

that training the SVM with broader distributions slightly decreases the overall classification

accuracy while increasing the generalizability of the trained SVM. It is assumed that a similar

relationship holds for the ANN approach.

Once trained, the parameters are supplied to a machine learning process (either SVM or

ANN) which will label each parameter combination as being “usable” or “not” for the

stochastic queuing model (in our case the M/D/1 and M/M/1 models) for which the ML

process is trained. The results for both the SVM and ANN are evaluated based on fre-

quency of Type 1 and Type 2 errors. The worst case for our selection process is positively

identifying a model for a particular queue for which it wasn’t suited. In this case we use a

model erroneously and tune to false specifications. On the other end of the spectrum are

false negatives, where we reject a model. In the worst case for this scenario, the fall back of

branch and bound search in many cases can be used. False positives should be driven to a

minimum. A few false negatives are acceptable. First we’ll cover the hardware and software

techniques utilized to produce a fingerprint for classification, followed by discussion of the

support vector machine, then the artificial neural network.

7.2.2 Support Vector Machine

A SVM is a method to separate a multi-dimensional set of data into two classes by a sep-

arating hyperplane. It works by maximizing the margin between the hyperplane and the

support vectors closest to the plane. The theory behind these are covered by relevant texts

105

Figure 7.3: Word cloud depicting features used for machine learning process with the font
size representing the significance of the feature as determined by [49].

on the subject [53, 191]. An SVM labels an observation with a learned class label based on

the solution to Equation (7.1) [29, 51] (the dual form is given, e is a vector of ones of length l,

Q is an l× l matrix defined by Qi,j ← yiyjK(xi, xj) K is a kernel function, specific symbolic

names match those of [46]). A common parameter selected to optimize the performance of

the SVM is the penalty parameter, C, discussed further in Section 7.2.4.

min
α

1

2
α

TQα− eTα

subject to 0 ≤ αi ≤ C, i = 1, . . . , l,
(7.1)

K(x, y) = e−γ||x−y||2 , y > 0. (7.2)

A Radial Basis Function (RBF, [171], Equation (7.2)) is used to map attributes to fea-

tures. The parameter γ is optimized separately in order to maximize the performance of the

SVM/Kernel combination. In order to train and test the SVM a set of micro-benchmarks

and full benchmark streaming applications (described below) are used. All are authored

using the RaftLib library in C++ and compiled using g++ using the -O1 optimization flag.

A micro-benchmark (with the topology shown in Figure 7.2) has the advantage of a user

specified service distribution for both compute kernels A and B. A synthetic workload for

each compute kernel is composed of a simple busy-wait loop whose looping is dependent on

a random number generator (either Exponential, Gaussian, Deterministic, or a mixture of

multiple random distributions are produced). Simple workloads similar to those used within

the real applications also constitute up to 5% of the micro-benchmark loop workloads. Data

106

exiting the servers are limited to one 8-byte item per firing. A dense matrix multiply and

Rabin-Karp string search application are used as described in Chapter 6.

7.2.3 Data Collection & Hardware

Using benchmarking the applications enumerated above, we were able to collect a variety of

features from each platform using a myriad of methods ranging from system calls through

architecture-specific methods. Service rate is also used, which is approximated online via

methods described in Chapter 6. The number of features which coalesce to form a fingerprint

prohibit their complete enumeration, however some of the more pertinent ones include:

service rate, instruction set architecture, cache hierarchy sizes, operating system (OS) and

version, scheduler, and main memory available (further enumerated in Figure 7.3).

To collect mean queue occupancy, a separate monitor thread is used for each queue to sample

the occupancy over the course of the application. For both real and synthetic applications,

the service times of micro-benchmark compute kernels are verified via monitoring the arrival

and departure rate of data from each kernel with a non-blocking infinite queue (implemented

by ignoring the read and write pointers) in addition to the online measurements (double

verification). All timing is performed using the POSIX.1-2001 clock gettime() function

with a real time system clock using the setup described in Chapter 6. The CPU time stamp

counter could have also been used, however the system call is more portable across the varied

architecture types used during testing.

Relying on measurements from only one hardware type or operating system would undoubt-

edly bias any classification algorithm. To reduce the chance of bias for one particular plat-

form, empirical data are collected from platforms with the processors and operating systems

listed in Table 7.1. For all tests either the Linux or Apple OS X versions of the completely

fair scheduler are used. To unbias the results further, task parallel sections of each appli-

cation are replicated varying numbers of times (up to 2x the number of physical processor

cores available). Application kernels are run “un-pinned.” That is, the compute core which

each executes on is assigned by the operating system and not by the user (although the core

from which timing is determined is “pinned”. Presumably more stable queueing model clas-

sification could be obtained by “pinning” each compute kernel to dedicated cores, however

107

Table 7.1: Summary of processor types and operating systems used for both the micro-
benchmark and application data collection.

Platform Processor Type OS Kernel Version
P1 Intel Xeon CPU E5-2650 Linux 2.6.32
P2 Quad-Core AMD Opteron 2376 Linux 2.6.32
P3 Intel Xeon X5472 Darwin (OS X) 13.1.0
P4 Dual-Core AMD Opteron 2218 Linux 2.6.32
P5 ARM1176JZF-S Linux 3.10.37
P6 Dual-Core AMD Opteron 2222 SE Linux 3.0.27
P7 IBM Power PC 970 Linux 3.13.0
P8 Six-Core AMD Opteron 2431 Linux 3.0.27
P9 Intel Xeon E5345 Linux 2.6.32
P10 Intel Xeon CPU E3-1225 Linux 3.13.9
P11 Dual Core AMD Opteron 875 Linux 2.6.32
P12 AMD Opteron 6136 Linux 2.6.32
P13 ARM Cortex-A9 Linux 3.3.0
P14 Intel Core i5 M540 Darwin (OS X) 13.1.0
P15 AMD Opteron 6272 Linux 2.6.32
P16 Six-Core AMD Opteron 2435 Linux 3.0.27
P17 Dual Core AMD Opteron 280 Linux 2.6.32
P18 Quad-Core AMD Opteron 2387 Linux 2.6.32
P19 Dual-Core AMD Opteron 2220 Linux 2.6.32
P20 Dual-Core AMD Opteron 8214 Linux 2.6.32

this is not a realistic environment for many platforms which have no provision for locking a

thread to a particular core.

Micro-benchmark data are collected from all of the platforms in Table 7.1, Matrix multiply

and Rabin-Karp Search data are collected from platforms 2, 8, 10, and 15. In all, approx-

imately 45,000 observations were made for the micro-benchmark application. This data is

divided using a uniform random process into two sets with a 20/80 split. The set with 20% of

the data is used for training the ML method and the 80% is set aside as a testing set. To give

an idea of the range with which the ML methods are trained, the micro-benchmark train-

ing set has the following specifications: approximately 8,200 observations, server utilization

ranges from close to zero to greater than one and distributions vary widely (a randomized

mix of Gaussian, deterministic, and the model’s expected exponential distribution as well

as some mixture distributions). For each of the other two applications, the SVM trained

exclusively on the training micro-benchmark data (same training set as above) is used.

108

7.2.4 SVM and Training

Before the SVM can be trained as to which set of attributes to assign to a class, a label must

be provided. The two classes, “use” and “don’t use” are encoded as a binary one and zero

respectively. The SVM is trained to identify one stochastic model at a time (i.e., either “use”

or “don’t use” for M/M/1 or M/D/1 but not both at the same time). In order to label the

data-set as to which queueing model to use, a fixed difference is used. If the actual observed

queue occupancy is within n ← 5 items, then the model is deemed acceptable otherwise

false. A percentage based function for l shows a similar trend. After sampled mean queue

occupancy is used for labeling purposes, it is removed from the data set presented to the

SVM.

Feature selection is a very hot topic of research [86]. There are several methods that could

be used including (but not limited to) Pearson correlation coefficients, Fisher information

criterion score [49], Kolmogorov-Smirnov statistic [47]. Our selected feature set has a to-

tal of 35 linearly independent variables. The rest of the features exhibit weak non-linear

dependence between variables. Extensive cross-validation followed by evaluating the Fisher

information criterion score showed that the training data relied extensively on 67 of our

candidate features. Most notably the variables that indicated the type of processor, operat-

ing system kernel version and cache size ranked highest followed closely by amount of main

memory and total number of processes on the system. During the training phase we noted

that despite the Fisher information criteria results, the additional 9 features provided a sig-

nificant increase in correct classification, therefore all 76 are used as opposed to the reduced

set selected via statistical feature selection.

For all data sets (and all attributes contained in each set) the values are linearly scaled in

the range [−1000, 1000] (see [185]). This causes a slight loss of information, however it does

prevent extreme values from biasing the training process and reduces the precision necessary

for the representation. Once all the data are scaled, there are a few SVM specific parameters

that must be optimized in order to maximize classification performance (γ and C). We use

a branch and bound search for the best parameters for both the RBF Kernel (γ ← 4) and

for the penalty parameter (C ← 32768). The branch and bound search is performed by

training and cross-validating the SVM using various values of γ and C for the training data

set discussed above. The SVM framework utilized in this work is sourced from LIBSVM [46].

109

SVM Results

To evaluate how effective a SVM is for model reliability classification we’ll compare the class

label predicted by the SVM compared to that of ground truth as determined by the labeling

process. If the queueing model is usable and the predicted class is “use” then we have a true

positive (TP). Consequently the rest of the error types true negative (TN), false positive

(FP) and false negative (FN) follow this pattern.

The micro-benchmark data (Microtest) consists of queues whose servers have widely vary-

ing distributions and server utilizations. As enumerated in Figure 7.4, the SVM correctly

predicts (TP or TN) 88.1% of the test instances for the M/M/1 model and 83.4% for

the M/D/1 model. Overall these results are quite good compared to manual selection [19].

Not only do these results improve upon manual mean queue occupancy predictions, they are

actually faster since the user doesn’t have to evaluate the service time and arrival process

distributions, and they can be done online while the application is executing.

Figure 7.4: Summary of overall classification rate by error category. In general the correct
classification is quite high TP + TN > 83% in all cases.

Server utilization (ρ) is a classic and simple test to divine if a mean queue length model is

suitable. At high ρ it is assumed that the M/M/1 and M/D/1 models can diverge widely

from reality. It is therefore assumed that our SVM should be able to discern this intuition

from its training without being given the logic via human intervention. Figure 7.5 shows a

box and whisker plot for the error types separated by ρ. As expected the middle ρ ranges

offer the most true positive results. Also expected is the correlation between high ρ and true

negatives. Slightly unexpected was the relationship between ρ and false positives.

Directly addressing the performance and confidence of the SVM is the probability of class

assignment. Given the high numbers of TP and TN it would be useful to know how confident

110

Figure 7.5: Summary of true positive (TP), true negative (TN), false positive (FP), false
negative (FN) classifications for the M/M/1 (left) and M/D/1 (right) queueing models for
the microbenchmark’s single queue by server utilization ρ demonstrating empirically that
the SVM can recognize the instability of these models at high ρ.

the SVM is in placing each of these feature sets into a category. Probability estimates are not

directly provided by the SVM, however there are a variety of methods which can generate

a probability of class assignment [199]. We use the median class assignment probability for

each error category as it is a bit more robust to outliers than the mean. For the M/M/1

model we have the following median probabilities: TP = 99.5%, TN = 99.9%, FP = 62.4%

and FN = 99.8%. The last number must be taken with caution given that there are only 79

observations in the FN category for M/M/1. For the M/M/1 FP it is good to see that these

were low probability classifications on average, perhaps with more training and refinement

these might be reduced. For the M/D/1 classification, probabilities mirror those of the

M/M/1: TP=95.9%, TN=95.8%, FP=50.9%, FN=85.3%. The same qualification applies

to the M/D/1 trained SVM for the FN probabilities as the FN category only contains 39

examples. Calculating probabilities is expensive relative to simply training the SVM and

using it. It could however lead to a way to reduce the number of false positives. Placing a

limit of p = .65 for positive classification reduces false positives by an additional 95% for the

micro-benchmark data. Post processing based on probability has the benefit of moving this

method from slightly conservative to very conservative if high precision is required, albeit at

a slight increase in computational cost.

The full application results are consistent with those of the micro-benchmark applications.

Each application is run with a varying number of compute kernels with its queue occupancies

sampled. Table 7.2 breaks the application results into categories by model and application.

Due to the processor configuration and high data rates with this application all examples

are tested with a high server utilization. One trend that is not surprising is the lack of

111

true positives within Table 7.2. The application as designed has very high throughput,

consequently all servers are highly utilized. In these cases (ρ close to 1), it is expected that

neither of these models is usable. As is the case for the micro-benchmark data, the overall

correct classification rates are high for both applications and models tested.

Table 7.2: % SVM classification rate for application data.

Application Model TP TN FP FN Correct Classification
Matrix Multiply M/M/1 17.1% 75.2% 5.4% 2.4% 92.3%
Matrix Multiply M/D/1 5.4% 83.9% 4.6% 6.1% 89.3%
Rabin-Karp M/M/1 0.0% 86.0% 14.0% 0.0% 86.0%
Rabin-Karp M/D/1 0.0% 87.4% 12.6% 0.0% 87.4%

One potential pitfall of this method is the training process. What would happen if the model

is trained with too few distributions and configurations. To test this a set of the training data

from a single distribution (the exponential) is labeled in order to train another SVM explicitly

for the M/M/1 model. We then apply this to two differing test sets. The first is data drawn

from an exponential distribution and the second is data drawn from many distributions

(training data is excluded from all test sets). The resulting classification rates are shown in

Table 7.3. Two trends are apparent: specifically training with a single distribution increases

the accuracy when attempting to classify for only the distribution for which the model was

trained, and conversely lack of training diversity increases the frequency of false positives

when attempting use the SVM to classify models with distributional assumptions that it have

not been trained for. Unlike the false positives seen in prior sets, these are high confidence

predictions that post processing for classification probability will not significantly improve.

One thing is clear, training with as many service rate distributions as possible and as many

configurations tends to improve the generalizability of the SVM for our application.

Table 7.3: % for SVM predictions with SVM trained only with servers having an exponential
distribution and tested as indicated.

Dist. # obs. Model TP TN FP FN Correct Classification
exp. 3249 M/M/1 53.0% 31.2% 15.7% 0.1% 84.2%
many 6297 M/M/1 55.8% 0.0% 44.2% 0.0% 55.8%

Our method is currently only applicable online to queues with sufficient local steady state

behavior for the instrumentation in Chapter 6 to converge or to applications will well char-

acterized steady state workloads. To show what happens when a local steady state is not

reached we will use the Rabin-Karp string searching kernel and change the packet to be

112

extremely large proportionate to the size of the data set. This results in fewer data packets

sent from the source kernel to the “rolling-hash” kernel and no steady state. The result-

ing observed queue occupancies are much lower than what is calculated by either queueing

model. Applying an M/M/1 mean queue occupancy model to this application will still re-

sult in a queue which is sized for the mean potential occupancy. Table 7.4 shows the result

of attempting to evaluate the SVM against a queue that has not reached steady state. As

a consequence of the streaming streaming service rate approximation method, it is know-

able when the application has reached at least a local steady state and this condition can

generally be avoided.

Table 7.4: % for SVM evaluated against a Rabin-Karp string search algorithm that has not
reached steady state.

Model #obs TP TN FP FN Correct Classification
M/M/1 120 21.6% 41.5% 20.7% 16.2% 63.1%
M/D/1 120 11.1% 44.4% 44.4% 0.0% 55.5%

7.2.5 Artificial Neural Network (ANN)

An artificial neural network is a method of using a collection of nodes (mathematical func-

tions) which inter-connect to mimic what is thought to be the functioning of a biological

neural network [26]. ANN(s) have been used extensively in pattern recognition of all types,

and once trained have often been more effective at finding patterns than the previously men-

tioned SVM approach [102]. The other advantage of an ANN is that they are very amenable

to development in hardware [48], and as such might present an avenue for extremely low

overhead decision making if said hardware is ever incorporated into main stream SoCs.

Due to the complexity of the ANN’s under consideration, it is relatively difficult to describe

the network fully in concrete terms, however here are the relevant specs for our model: 76

surface nodes, 2 hidden layers of 228 nodes each, and two output nodes (one for each class).

Our activation function (for both stochastic models) is a linear rectifier function (a.k.a., the

softplus function [66]). The L1 and L2 regularizers are 0 and .1 respectively.

113

ANN and Training

Given the success of the SVM, what we really want to show is that the ANN is at least

equivalent to the SVM for this application, and that the results garnered from the SVM

approach aren’t simply some artifact of the experimental setup. The ANN is trained from

the same microbenchmark data pool as the SVM. The data are re-partitioned using a uniform

random process into training and testing sets. The training set contains 20% of the data

whereas the testing set contains the rest. Once partitioned, numerical data are scaled to a

range of [−1000, 1000], just as the SVM data.

ANN Results

Figure 7.6 shows classification accuracy for our neural network for the two stochastic models.

The overall accuracy for the ANN trained for the M/M/1 model is 80.8%, whereas the

M/D/1 sits at approximately 79.2%. Neither of these results is quite as good as that of

the SVM, however much time can be spent optimizing the parameters and error functions

of the neural net (as well as the activation functions) which was not taken in our case. The

SVM our ANN is compared to had been highly optimized for it’s expected task (optimized

parameters, not over-trained).

What is surprising with the ANN are the relatively high numbers of false positives for both

types of stochastic model. For the Neural Network to be truly effective, these would have

to be diminished. False negatives are an okay condition, the end result of which is a slightly

longer but conservative optimization process. False positives could lead to a mis-allocated

buffer, resulting in sub-optimal performance, mis-managed resources or both.

7.3 Conclusions & Future Work

We have shown a working example of the use of a SVM to classify a stochastic queuing

model’s reliability for a particular queue within a streaming application that is usable online.

This same concept was tried again with a differing classification approach, an artificial neural

network. Both methods worked quite well, and once trained are fast to classify their targets.

114

Figure 7.6: Overall the neural network results are quite good considering they were not
extensively tuned. NOTE: ‘TP’ = True Positive, ‘FP’ = False Positive, and the rest follow.
Also note that the training and testing sets for both are not over the same hardware sets
since each training and testing process uses randomly selected training and hold out sets.

Both methods enable fast online modeling and re-optimization of stream processing systems

(with the caveat that the ANN is slightly worse with more false positives). Across multiple

hardware types, operating systems, and applications we’ve shown that hardware and software

fingerprints can be used to classify the reliability of a stochastic queueing model.

This work chose to largely ignore the actual distribution of each compute kernel. What

would happen if we knew the underlying distribution of the service and arrival process for

each compute kernel in the system? Manually determining the distributions of each compute

kernel and retraining the SVM with this knowledge for the M/M/1 model we arrive at a

96.6% correct classification rate. This works just as well for the M/D/1 model where we

observed 96.4% of the queues being correctly classified as either “use” or “don’t use.” It

should be noted that in neither case was the SVM given knowledge that the model it was

receiving was for one distribution or another. One obvious path for future work is faster and

lower overhead process distribution estimation. Mathematically this can be done with the

method of moments, what is left is an engineering challenge.

Empirical data could also be seen as a weakness of our approach since it is obviously finite

in its coverage of the combinatorial plethora of possible configurations. We trained our SVM

and ANN using as wide a variety of configurations as possible, however the permutations of

possible application configurations are quite high. Other combinations of applications could

provide slightly differing results. Our choices of attributes is limited to what the hardware

and operating system could provide. Omniscient knowledge of the system would obviously

115

be helpful, it is possible that future platforms will provide more robust identification and

monitoring features which could improve the training and classification process.

In conclusion we have demonstrated an automated way to classify the reliability of stochastic

queueing models for streaming systems. We have shown that it can be done, and that in

many cases it works quite well for the applications and configurations tested.

116

Chapter 8

Online Tuning: Putting It All

Together

Throughout the course of this dissertation we’ve shown several methods that enable online

tuning of stream processing systems. Specifically we’ve looked at allocating buffers within a

streaming system. We’ve shown methods to approximate the throughput through a queueing

network using network flow models. We came up with a new closed form distribution to

model the best case execution time (service time) variation, and demonstrated how to apply

that variation to deciding whether or not to use a particular stochastic queueing model. Next

we gave techniques that enable low overhead service rate determination while an application

is executing and in the last chapter it was shown that several machine learning techniques

can successfully determine when a model is or is not reliable using fingerprints extracted

from the system. In this chapter we will conclude by applying several of the techniques

elaborated on in other chapters, comparing RaftLib’s adaptive behavior to an optimal found

through complete enumeration.

8.1 Online Modeling of Streaming Systems

The one certainty in life besides death is change. Things will change around us, whether

that be the whether or more drastic phenomena. This is true for applications that we run

on computers. The beautiful abstractions that we’ve built our computational houses upon

invite change. Much of it is hidden, dynamic, and some of it relatively random. What we

want are robust applications that can roll with the punches that they receive; gracefully

reacting and adapting to the bumps that they encounter. That is the main point of our

117

online modeling efforts, online modeling so that our run-time can make the best decisions

for our applications as possible with as little overhead as possible. We’ll show that our online

efforts can come close to the results produced by complete enumeration of the design space.

I’ve mentioned that environments change for applications. In the next few paragraphs I’ll

outline some of the environmental stimuli, why they’re important, and a few real examples as

to why they matter. I’ll give a few reasons behind why these are not fleeting examples, but

ones that will continue and multiply as technology advances. Lastly I’ll give a few examples

as to how RaftLib can adapt based on the technologies that we’ve developed within this

thesis.

Increasingly architectures have multiple types of functional units. The big.LITTLE architec-

ture from ARM, and the shared floating point unit architecture of AMD are but two notable

examples. These carry with them the promise of power savings and efficiency but they also

present challenges for streaming applications. Namely that the apparent service rates for

each kernel can change based on contention for the floating point units (AMD architecture)

or if the kernel is migrated (involuntarily) from a robust A57 to a more efficient A53 compute

core (ARM architecture). These two examples aren’t some fleeting trend, these heteroge-

neous architectures are arriving from multiple vendors in response to tighter budgets and

energy efficiency requirements. Similar to this is dynamic voltage frequency scaling (DVFS)

which can change performance characteristics of a core, which in turn changes the apparent

service rate. DVFS is common to almost every modern multi-core processor.

Changes in workload within a system are common. On cloud systems this is the norm, clus-

ters are not producing unless they are computing. With each scheduled job on a system the

amount of compute time available to each thread (assuming fair scheduling) is lessened. This

results in an effective lessening of the service rate for the kernel that experiences a smaller

time quanta each time it is scheduled. The same behavior applies to other finite resources

as well such as physical memory, cache lines (which can be polluted by other processes) and

even things like load/store queues can become bottlenecks. Freeing up memory for other

tasks, as well as providing adequate buffering capacity within each queue is critical to the

performance of the application (smaller queues decrease the memory footprint, increasing

cache utilization whereas larger buffers can improve throughput).

118

8.1.1 Why is online tuning important?

Workload characterization is hard [37]. The characterization takes time, it is expensive

and it is critical to the current state of the art tuning methods [63]. Characterizations

are unfortunately ephemeral, valid only for the architecture on which the application was

characterized. Moving from one architecture to another requires more characterization. The

expense doesn’t stop at re-characterization, it is also in re-factoring. Once the applications

are characterized, a code re-write is often in order to take advantage of new hardware. The

vision of RaftLib is to create a tuning system that enables a programmer to write kernels

once (focusing only on the kernel) then optimize the parallel network as much as possible

once written. No offline characterization is needed, the user simply hits go and given enough

time the runtime adapts to the hardware it is given.

8.1.2 Adaption Types

RaftLib is a multi-dimensional adapter. It can adapt by changing buffer sizes (up or down),

modify placement of compute kernels, and duplicate compute kernels while executing. In

this subsection I’ll discuss the highlights of each and brief methodology for those techniques

not explicitly highlighted in other sections so that the results shown will have context.

Multiple buffers exist within a streaming application (whether explicit or implicit), queueing

behavior naturally results from the interaction of multiple asynchronous threads/kernels.

Each buffer has some optimal sizing that will allow the sender and receiver to execute at

some optimal performance (for some definition of optimality, and with the performance

gains arising from reduced blocking which occurs with bursty transmissions). RaftLib uses

branch and bound search and model based techniques to find an approximately optimal

buffer while the application is executing, not just once but continually until the application

is finished executing. RaftLib adapts buffers through a combined monitoring effort. Queues

are monitored for mean occupancy, if it is above k percent for n observations then the queue

is resized. If service rate information is unavailable, then a branching approach is taken as

the default. Conversely if queues are over-provisioned the opposite action is taken and the

queue is downsized. If service rate information is available, then a SVM is utilized to choose

a model. If either model is available then we select the fastest to compute (determined via

static profiling and saved as a profile for each machine when RaftLib is setup). If no model

119

is usable, then the fallback is again branch and bound. There is of course an engineering

limit imposed on the buffers, which is set to avoid impossible memory allocations (i.e., above

user limits, or above that allowed by virtual and physical memory) which for our adaptation

experiments is set to 16 MB.

The duplication of compute resources is determined independently (separably) from buffer

sizing. This simplifies the solution and exposition considerably (in reality duplication and

sizing are inextricably linked, and the independent solution to duplication leads to an au-

tomatic correction of the buffer capacity, i.e., buffers that were once always full now have a

lesser arrival rate). Not being the primary subject of this thesis, the logic for duplication is

quite simple. If the service rate monitoring is available for the downstream kernel, then it

is used, otherwise indirect measures such as queue occupancy are used. If the queues down-

stream are 50% full for k monitoring cycles then the upstream kernel is duplicated if the

run-time determines that it is duplicable. If service rate information is available (i.e. turned

on and recently converged) then a flow model analysis tells the runtime if any additional

gains can be made through duplication.

Obviously duplication might result in a run-time wanting to move the kernel to a new proces-

sor. The following is only applicable to operating systems which allow thread “pinning” such

as Linux/Unix variants. Assigning kernels to processors is a partitioning problem, discussed

in Chapter 3. I’ve largely side-stepped the partitioning problem since in and of itself, is a

large, rich subject. RaftLib uses a very simplistic partitioning scheme based on minimizing

the communications distance between nodes (partition provided by the Scotch partitioning

framework). The partition Scotch returns maps which kernels are assigned to each com-

pute core. This however is only done offline (for the initial partition). Partitioning using

this method is rather slow compared to the time in which we have to make an assignment

decision, therefore when duplicating and assigning only neighboring cores are considered.

Online duplication decisions are based on flow model results, with the theoretical duplicate

core placed in the flow model as having an identical service rate to its clone (with appropri-

ate sharing model applied as described in Chapter 4). Movement of extant kernels is also

possible, however the logic that determines core assignment is biased against moving. In

our experiments the bias is set at a 15% probability of moving based on a uniform random

number generator. This is a simple engineering solution to reduce the probability of frequent

core migrations, which would otherwise have a deleterious effect on cache utilization.

120

8.1.3 Evaluation Methodology

The hardware used for all empirical evaluation is listed in Table 6.3. All code is compiled

with the “-O2” compiler flag using the Clang compiler (version 3.5). For test applications, we

will use the Boyer-Moore-Horspool string searching algorithm (fully described in Chapter 3).

Both have the desired characteristic in that they can produce very high throughput rates in

string search and workloads that are variable depending on the composition of the corpus

being searched. The corpus searched is the set of all posts from a popular programming help

site [178] (data set is cut to exactly 23 GB).

In order to judge how well our online adaptation works, we need a baseline for the application

on the specified hardware. To do this a complete enumeration is done with the following

limits:

1. number of threads is limited to the number of cores on each machine

2. buffer size for each buffer is capped to 4096 elements of each type, the step size is 16

3. core selection for each thread is selected by a uniform random process

.

8.1.4 Adaption Results

Figure 8.1 shows the baseline for a fairly complete enumeration 1 − 14 cores (note: 1 core

masked for interrupts not used and one core was reserved for receiving timing data and

handling I/O calls to the OS so as not to disturb the measurements). Complete enumeration

found the highest throughput of 10.93 GB/s with no statistically significant gain moving from

10 threads to 11. Zooming in on the tail of Figure 8.1, the step pattern of the larger graph

is seen very clearly. this is the increment in thread count, with the slow curve representing

the increase in buffer size. The buffer size for this throughput varied between 3088 and

4096 elements whereas the placement favored the string searching kernels being very close to

the data source and the reducer being further away which is what would be expected from

cooperative caching.

121

Figure 8.1: Complete enumeration of the Boyer-Moore-Horspool string search (with the
caveats enumerated in the text). The min execution time (lower dotted line) is found at
2.105 s, the max at 14.790 s (upper dotted line) representing a maximum throughput for the
data set size of 10.93 GB/s and minimum of 1.55 GB/s.

The enumeration result represents a slight improvement in the performance from the earlier

benchmarking in Chapter 3 of RaftLib’s dynamic adaptation, in fact this shows that for this

platform, RaftLib is able achieve 73% of fully optimal throughput. These earlier experi-

ments, however left the kernels “un-pinned” and did not allow auto-parallelization since a

comparison against Apache Spark was the goal (per thread performance). It is expected that

starting with a reduced level of parallelism and increasing it will hurt performance, while

starting with a relatively optimal partition and keeping close to it will improve it.

The results of RaftLib dynamically adapting (starting with only three compute kernels at the

beginning of execution) and scaling up to 11 matching kernels (along with the data source

and join kernels, cloning events shown in timeline in Figure 8.3) are fairly good overall.

Queue sizing events are likewise plotted on a timeline in Figure 8.4, resultant queue sizes

fell in the range 2880 elements through 64128 while starting at a uniform 64 elements per

queue. The overall execution time for this example is 2.92 s which results in a throughput

with this data-set of 7.96 GB/s. This is 72% of optimal throughput which is quite good

considering the topology started off identical to the 1.55 GB/s topology timed as part of

the complete enumeration. The auto-parallelization of kernels, at least in this limited case,

only decreased performance by 1% compared to the statically parallel execution of the same

algorithm described in Chapter 3. It is highly probable (given the probabilities of lock

contention for adding, and allocating new kernels), that more overhead could be associate

with larger graphs.

122

Figure 8.2: Zoomed in tail of Figure 8.1 showing the long flat step between thread counts.
At each thread count increase there is a precipitous drop followed by a slow curving increase
as buffer sizes are increased and performance improves gradually. The last drop is followed
by a no improvement with increased thread counts for this particular architecture.

Figure 8.3: Parallel event monitor thread, which is responsible for duplication and core
assignment, recorded 11 total kernel duplication events. Most were quite early on, but by
4 ms the parallelism level is unchanged, even though the monitor thread is still running and
monitoring the system

Figure 8.4: Queue resizing events for optimal run of Boyer-Moore-Horspool, queue sizes
ranged from 2880 elements through 64128 elements. After the end of the timeline, the
monitor thread is still running but no further resizing events were recorded

123

Outside of this exemplar, multiple executions of RaftLib optimized Boyer-Moore-Horspool

fell in the range of 2.92 s through 4.24 s.

8.2 Conclusions

In this chapter we demonstrated that the technologies described in previous chapters can

work together to form a coherent, adaptive system. The instrumentation, modeling, model

selection, and run-time complement each other. We showed that RaftLib can adapt to within

28% of optimal, completely while executing. Searching for the optimal configuration (despite

limiting the available knobs) took just over a week (executing each configuration 100 x to

ensure statistically sound time averages). While empirical and subject to the whimsies of

probability, this is definitely a success.

124

Chapter 9

Conclusions and Future Work

In this thesis we described a new stream processing library (RaftLib) which enables integra-

tion of classic stream processing within legacy C++ environments. With this library came

the promise of an auto-tuned execution on multi-core processor cores. To live up to this

promise we explored techniques for fast and “accurate-enough” modeling. In this section

we summarize the contributions of each chapter, discuss how they fit together, and lastly

conclude with a section on where future work may lie.

9.1 Conclusions

In Chapter 1 we promised a streaming system that could be tuned without any user interven-

tion save for authoring, compiling, and executing. In Chapter 3 we described the streaming

framework, some implementation details, and a benchmark comparing it to another leading

streaming frameworks. Overall, RaftLib compared quite favorably in performance. Leading

up to that performance, however, were many models, methods and techniques that were left

to subsequent chapters. First, some models needed to describe the performance (throughput)

of streaming applications had to be developed (see Chapter 4).

In Chapter 4 we described an extension of techniques first described in Operations Research

literature (the use of flow models to approximate throughput through a queueing network).

Our primary contribution was the extension of these prior works by utilizing a gain/loss flow

model and our unique contribution was the addition of routing constraints which requires one

additional pass through the graph to arrive at an appropriate throughput. We demonstrated

through empirical evaluation that our method does indeed work well, however we found our

125

estimates of buffer capacity wanting. The estimates were generally sufficient to maintain

maximum throughput, however they were generally huge. This wastes much space and after

a point begins to stifle performance. In other cases the buffers were too small, which also

restricts performance as blocking increases. To remedy this we began to dissect what went

wrong in Chapter 5.

The worst case execution time problem has been studied for decades (see Chapters 2 and 5

for discussion). We chose to focus on the variation in the best case execution time, which

we hoped would lead to a pattern which could be used to forecast if our characterizations

made offline would hold in a dynamic online environment (see Chapter 5). We found that

a Levy distribution fit the pattern quite well, however it also has infinite support (and no

defined moments in general). To remedy this we defined a truncation based on millions of

empirical execution observations. We further re-defined the distribution in terms of threads

assigned per core and the expected service time of each thread assigned. This redefinition

led to the mlevy distribution, which is usable without expensive parameter fitting. We

also demonstrated that the mLevy can be used to accept or reject a queueing model with

offline analysis. This analysis, however was quite expensive. With the end goal being online

modeling and tuning, faster methods are needed. First however, we needed some idea of

the non-blocking service rate for each compute kernel. To do this we need to developed new

instrumentation techniques.

In Chapter 6 we describe a way to approximate the non-blocking service rate of each kernel

within a streaming system while the application is executing (online). We show that in many

cases it is possible to get quite accurate estimates, and in the cases where convergence is

impossible we suggest multiple techniques that can improve the estimates. Another contri-

bution of this approach, over prior ones is that the instrumentation itself can be turned on

and off dynamically, which when combined with control optimizations could reduce overhead

even further. In addition to a mean and variance (which are provided via our instrumen-

tation) it is also possible to estimate higher moments (now an engineering effort). With

higher moments, the run-time can estimate the process distribution while executing. With a

method to divine service rates in an online manner, now we need a faster method than those

used in Chapter 5 to accept or reject performance models as usable. To do this we turned

to machine learning.

126

The pattern of variation discovered in Chapter 5 was used with a metric called KL-divergence

to assess at what point the distribution expected by the queueing model diverged too much

from the distribution observed dynamically during execution. This method is extremely

slow. Machine learning methods are very good at finding patterns and at classification when

a pattern exists (such a pattern is suggested by Chapter 5). Using both support vector

machine and neural network models, we demonstrated that machine learning approaches

(when trained offline on a plethora of data) could indeed identify when a performance model

is appropriately used. These methods are fairly quick to execute and classify (offline trained

model used for online classification). The support vector machine approach (being the most

accurate of the methods assessed) is incorporated into the RaftLib framework.

In Chapter 3 we ended with a set of benchmark experiments that demonstrated the perfor-

mance of RaftLib using a range of thread counts against other popular frameworks. These

experiments disabled thread-pinning and also auto-parallelization (so that we could compare

exact thread to thread performance vs. the other frameworks). In Chapter 8 we put ev-

erything together. We start by executing an application that looks like a tandem queueing

network, which quickly expands to absorb available computing power, moves the threads

to locally optimal positions, and adjusts queue sizes for maximum throughput using model

based calculations and bounding search as a fall-back methodology. Not surprisingly, the

performance was slightly less than that shown in Chapter 3 (where the thread counts are se-

lected for RaftLib), however it is 72% of optimal performance (determined through complete

enumeration of the design space), and 50% in the worst outlier case. This is quite good for

a system that tunes itself, with sub-second decisions and no human interaction other than

authoring, compiling, and executing.

9.2 Future Work

This dissertation described some methods that reduce the cost of re-factoring and tuning

performant parallel code. The attained tuning levels are excellent for a first start, however

they are nowhere near the 99% of optimal performance attainment that a high performance

computing center would expect. Not to trivialize the accomplishments enumerated in the

previous section, but there are many research avenues that could potentially improve this

number. First is optimizing the control loops so that the overhead of performing online

127

optimization can be reduced further. Second, integrating cache aware buffer allocations, and

more optimal pre-fetching could improve performance. Third, improvements in language

semantics that enable the compiler to make better optimization choices about where to

place data could go a step towards improving the online optimization process before we ever

get online.

Most modern systems (both commodity and special purpose) are non-uniform in processor

type and memory access (also known as heterogeneous systems). Extracting performance

from heterogeneous systems requires deep understanding of the interactions between hard-

ware and software. Extracting performance is accomplished in two very different ways based

on the user type. Advanced users require control, they have oracle knowledge of the applica-

tion, and they want to use it. Novice users on the other hand often abuse advanced features

to their detriment. Given the proliferation of massively parallel, heterogeneous hardware

I would like to target the novice / intermediate level programmer with better languages

for more efficient parallel programming. Looking past legacy code, I think there are better

modalities on the horizon. How do we quantify which is the best? As a scientist I want

to quantify what makes a language or programming modality “good.” Currently decisions

about language/library semantics, and indeed adoption are largely aesthetically based (in-

cluding those within RaftLib). I want to explore other things like crowd sourcing to quantify

the “best” semantic constructs based upon some criteria (e.g., intuitiveness). Another av-

enue of research is complete language construction via crowd sourcing. New linguistic designs

have the advantage of a clean slate design. How should parallel execution be specified (if at

all)?

We’ve talked about buffer allocations within this dissertation as having a fixed size from

moment to moment. How about compressed buffers? Much has been done on memory com-

pression research, but very little on buffer compression in performance sensitive streaming

applications. An interesting research question is if you can combine an online model based

approach to determine if buffer compression is useful and when it is not. Can compressed

buffers improve memory performance by reducing the overall amount of traffic? Concomi-

tant to compression is reduction in memory traffic. Advances in compute near memory [80]

have the potential to reduce memory traffic by making contiguous otherwise unwieldy ac-

cess strides (e.g., convolutions and graph analytics). Giving these types of operations more

efficient memory footprints might improve the adoption of stream processing for more than

just classically streaming workloads.

128

While we’ve taken great pains to validate each portion of this work through empirical eval-

uation, any empirical validation is subject to change with differences in hardware/software

systems. Future work might be to expand the training selection for our models to include

more hardware types, scheduler types, and operating systems. In addition to more training,

another addition from the work done in Chapter 7 could be to perform full model selection

based on a set of models instead of simply assessing reliability.

129

References

[1] Marwen Abbes, Foutse Khomh, Y-G Guéhéneuc, and Giuliano Antoniol. An empirical
study of the impact of two antipatterns, blob and spaghetti code, on program com-
prehension. In 15th European Conference on Software Maintenance and Reengineering
(CSMR), pages 181–190. IEEE, 2011.

[2] Milton Abramowitz and Irene A Stegun. Handbook of Mathematical Functions: with
Formulas, Graphs, and Mathematical Tables. Courier Dover Publications, 2012.

[3] William B. Ackerman. Data flow languages. Computer, 15(2):15–25, 1982.

[4] Vikram Adve, Alan Carle, Elana Granston, Seema Hiranandani, Ken Kennedy, Charles
Koelbel, Ulrich Kremer, John Mellor-Crummey, Scott Warren, and Chau-Wen Tseng.
Requirements for data-parallel programming environments. Technical report, DTIC
Document, 1994.

[5] Anant Agarwal, Beng-Hong Lim, David Kranz, and John Kubiatowicz. April: a pro-
cessor architecture for multiprocessing. In Computer Architecture, 1990. Proceedings.,
17th Annual International Symposium on, pages 104–114. IEEE, 1990.

[6] Kunal Agrawal, Jeremy Fineman, and Jordyn Maglalang. Cache-conscious scheduling
of streaming pipelines on parallel machines with private caches. In To appear in the
Proceedings of the IEEE International Conference on High Performance Computing
(HiPC), December 2014.

[7] Alfred V Aho and Margaret J Corasick. Efficient string matching: an aid to biblio-
graphic search. Communications of the ACM, 18(6):333–340, 1975.

[8] G Alon, Dirk P Kroese, Tal Raviv, and Reuven Y Rubinstein. Application of the cross-
entropy method to the buffer allocation problem in a simulation-based environment.
Annals of Operations Research, 134(1):137–151, 2005.

[9] Venkat Anantharam. The optimal buffer allocation problem. Information Theory,
IEEE Transactions on, 35(4):721–725, 1989.

[10] Venkat Anantharam and Ayalvadi J. Ganesh. Correctness within a constant of an
optimal buffer allocation rule of thumb. Information Theory, IEEE Transactions on,
40(3):871–882, 1994.

130

[11] Ted W Anderson and David A Darling. Asymptotic theory of certain” goodness of fit”
criteria based on stochastic processes. The Annals of Mathematical Statistics, pages
193–212, 1952.

[12] Péter Arató, Sándor Juhász, Zoltán Ádám Mann, András Orbán, and Dávid Papp.
Hardware-software partitioning in embedded system design. In IEEE International
Symposium on Intelligent Signal Processing, pages 197–202. IEEE, 2003.

[13] Dorian C Arnold, Henri Casanova, and Jack Dongarra. Innovations of the NetSolve
grid computing system. Concurrency and Computation: Practice and Experience,
14(13-15):1457–1479, 2002.

[14] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F. Sweeney.
Adaptive optimization in the jalapeño jvm. SIGPLAN Not., 35(10):47–65, Oc-
tober 2000.

[15] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt Keutzer, John
Kubiatowicz, Nelson Morgan, David Patterson, Koushik Sen, John Wawrzynek, David
Wessel, and Katherine Yelick. A view of the parallel computing landscape. Commu-
nications of the ACM, 52(10):56–67, 2009.

[16] C. Augonnet, S. Thibault, and R. Namyst. Automatic calibration of performance
models on heterogeneous multicore architectures. In Proc. of Euro-Par 2009–Parallel
Processing Workshops, pages 56–65, 2010.

[17] François Baccelli and Zhen Liu. On the stability condition of a precedence-based
queueing discipline. Advances in Applied Probability, pages 883–898, 1989.

[18] Magdalena Balazinska, Hari Balakrishnan, Samuel R Madden, and Michael Stone-
braker. Fault-tolerance in the borealis distributed stream processing system. ACM
Transactions on Database Systems (TODS), 33(1):3, 2008.

[19] Jonathan C. Beard and Roger D. Chamberlain. Analysis of a simple approach to mod-
eling performance for streaming data applications. In Proc. of IEEE Int’l Symposium
on Modeling, Analysis and Simulation of Computer and Telecommunication Systems,
pages 345–349, August 2013.

[20] Jonathan C. Beard and Roger D. Chamberlain. Use of simple analytic performance
models of streaming data applications deployed on diverse architectures. In Proc. of
Int’l Symp. on Performance Analysis of Systems and Software, pages 138–139, April
2013.

[21] Jonathan C. Beard and Roger D. Chamberlain. Use of a Levy distribution for modeling
best case execution time variation. In A. Horváth and K. Wolter, editors, Computer
Performance Engineering, volume 8721 of Lecture Notes in Computer Science, pages
74–88. Springer International Publishing, September 2014.

131

[22] Jonathan C. Beard and Roger D. Chamberlain. Run time approximation of non-
blocking service rates for streaming systems. In Proceedings of the 17th IEEE Interna-
tional Conference on High Performance and Communications, pages 792–797. IEEE,
August 2015.

[23] Jonathan C. Beard, Cooper Epstein, and Roger D. Chamberlain. Automated reliability
classification of queueing models for streaming computation using support vector ma-
chines. In Proceedings of the 6th ACM/SPEC international conference on Performance
engineering, ICPE ’15, New York, NY, USA, January 2015. ACM.

[24] Jonathan C. Beard, Cooper Epstein, and RogerD. Chamberlain. Online automated
reliability classification of queueing models for streaming processing using support
vector machines. In Jesper Larsson Trff, Sascha Hunold, and Francesco Versaci, edi-
tors, Euro-Par 2015: Parallel Processing, volume 9233 of Lecture Notes in Computer
Science, pages 82–93. Springer Berlin Heidelberg, 2015.

[25] Jonathan C. Beard, Peng Li, and Roger D. Chamberlain. Raftlib: A C++ template
library for high performance stream parallel processing. In Proceedings of Programming
Models and Applications on Multicores and Manycores, PMAM’15, New York, NY,
USA, February 2015. ACM.

[26] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

[27] Shekhar Borkar. Exascale computing a fact or a fiction?, May 2013. Keynote Speech,
27th International Parallel & Distributed Processing Symposium.

[28] Jeffrey Bosboom, Sumanaruban Rajadurai, Weng-Fai Wong, and Saman Amarasinghe.
StreamJIT: A commensal compiler for high-performance stream programming. In Proc.
of ACM International Conference on Object Oriented Programming Systems Languages
& Applications, pages 177–195. ACM, 2014.

[29] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm
for optimal margin classifiers. In Proc. of 5th Workshop on Computational Learning
Theory, pages 144–152, 1992.

[30] George EP Box and Norman Richard Draper. Empirical model-building and response
surfaces, volume 424. Wiley New York, 1987.

[31] Gert Brettlecker, Heiko Schuldt, and Hans-Jörg Schek. Efficient and coordinated check-
pointing for reliable distributed data stream management. In Advances in Databases
and Information Systems, pages 296–312. Springer, 2006.

[32] Eric A Brewer. High-level optimization via automated statistical modeling. In ACM
SIGPLAN Notices, volume 30, pages 80–91. ACM, 1995.

[33] Bruce M Brown et al. Martingale central limit theorems. The Annals of Mathematical
Statistics, 42(1):59–66, 1971.

132

[34] Randal Bryant and David Richard O’Hallaron. Computer Systems: A Programmer’s
Perspective. Prentice Hall, 2003.

[35] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan.
Brook for GPUs: Stream computing on graphics hardware. ACM Trans. on Graphics,
23(3):777–786, 2004.

[36] JA Cadzow and HR Martens. Discrete-Time and Computer Control Systems. Engle-
wood Cliffs: Prentice-Hall, 1970.

[37] Maria Calzarossa and Giuseppe Serazzi. Workload characterization: A survey. Pro-
ceedings of the IEEE, 81(8):1136–1150, 1993.

[38] Bryan Cantrill, Michael W Shapiro, Adam H Leventhal, et al. Dynamic instrumenta-
tion of production systems. In USENIX Annual Technical Conference, General Track,
pages 15–28, 2004.

[39] T.L. Casavant and J.G. Kuhl. A taxonomy of scheduling in general-purpose distributed
computing systems. IEEE Trans. on Software Engineering, 14(2):141–154, 1988.

[40] Amit Chakrabarti, Graham Cormode, and Andrew McGregor. Robust lower bounds
for communication and stream computation. In Proc. of 40th ACM Symposium on
Theory of Computing, pages 641–650. ACM, 2008.

[41] IM Chakravarty, JD Roy, and RG Laha. Handbook of Methods of Applied Statistics.
McGraw-Hill, 1967.

[42] Roger D. Chamberlain and Joseph M. Lancaster. Better languages for more effec-
tive designing. In Proc. of Int’l Conf. on Engineering of Reconfigurable Systems &
Algorithms, July 2010.

[43] Roger D. Chamberlain, Joseph M. Lancaster, and Ron K. Cytron. Visions for appli-
cation development on hybrid computing systems. Parallel Comput., 34(4-5):201–216,
May 2008.

[44] Tony F Chan, Gene H Golub, and Randall J LeVeque. Algorithms for computing
the sample variance: Analysis and recommendations. The American Statistician,
37(3):242–247, 1983.

[45] Rohit Chandra. Parallel Programming in OpenMP. Morgan Kaufmann, 2001.

[46] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011.

[47] Olivier Chapelle, Vladimir Vapnik, Olivier Bousquet, and Sayan Mukherjee. Choosing
multiple parameters for support vector machines. Machine Learning, 46(1-3):131–159,
2002.

133

[48] Tianshi Chen, Shijin Zhang, Shaoli Liu, Zidong Du, Tao Luo, Yuan Gao, Junjie Liu,
Dongsheng Wang, Chengyong Wu, Ninghui Sun, et al. A small-footprint accelerator
for large-scale neural networks. ACM Transactions on Computer Systems (TOCS),
33(2):6, 2015.

[49] Yi-Wei Chen and Chih-Jen Lin. Combining SVMs with various feature selection strate-
gies. In Feature Extraction, pages 315–324. Springer, 2006.

[50] Katherine Compton and Scott Hauck. Reconfigurable computing: a survey of systems
and software. ACM Computing Surveys (csuR), 34(2):171–210, 2002.

[51] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

[52] Working Draft, Standard for Programming Language C++. http://goo.gl/JIOjsU.
Accessed Ocbober 2014.

[53] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines
and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge,
UK, 2000.

[54] Louise H Crockett, Ross A Elliot, Martin A Enderwitz, and Robert W Stewart. The
Zynq Book: Embedded Processing with the Arm Cortex-A9 on the Xilinx Zynq-7000
All Programmable Soc. Strathclyde Academic Media, 2014.

[55] Frederico RB Cruz, Anderson Ribeiro Duarte, and Tom Van Woensel. Buffer alloca-
tion in general single-server queueing networks. Computers & Operations Research,
35(11):3581–3598, 2008.

[56] David E Culler. Dataflow architectures. Technical report, DTIC Document, 1986.

[57] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan Carter,
Leonid Oliker, David Patterson, John Shalf, and Katherine Yelick. Stencil computation
optimization and auto-tuning on state-of-the-art multicore architectures. In Proceed-
ings of the 2008 ACM/IEEE conference on Supercomputing, page 4. IEEE Press, 2008.

[58] G De Michell and Rajesh K Gupta. Hardware/software co-design. Proceedings of the
IEEE, 85(3):349–365, 1997.

[59] Richard H Deane and Colin L Moodie. A dispatching methodology for balancing
workload assignments in a job shop production facility. AIIE Transactions, 4(4):277–
283, 1972.

[60] Jack B Dennis. First version of a data flow procedure language. In Programming
Symposium, pages 362–376. Springer, 1974.

[61] Jack Bonnell Dennis. Data flow supercomputers. Computer, 13(11):48–56, 1980.

134

[62] R.P. Dick et al. TGFF: Task graphs for free. In Proc. of 6th Int’l Workshop on
Hardware/Software Codesign, pages 97–101, 1998.

[63] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J.C. Andre, D. Barkai,
J.Y. Berthou, T. Boku, B. Braunschweig, et al. The International Exascale Software
Project Roadmap. International Journal of High Performance Computing Applica-
tions, 25(1):3–60, 2011.

[64] Rahav Dor, Joseph M. Lancaster, Mark A. Franklin, Jeremy Buhler, and Roger D.
Chamberlain. Using queuing theory to model streaming applications. In Proc. of 2010
Symposium on Application Accelerators in High Performance Computing, July 2010.

[65] Rahav Dor, Joseph M. Lancaster, Mark A. Franklin, Jeremy Buhler, and Roger D.
Chamberlain. Using queuing theory to model streaming applications. In Proc. of
Symp. on Application Accelerators in High Performance Computing, July 2010.

[66] Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia.
Incorporating second-order functional knowledge for better option pricing. Advances
in Neural Information Processing Systems, pages 472–478, 2001.

[67] Stewart Edgar and Alan Burns. Statistical analysis of WCET for scheduling. In Proc.
of 22nd IEEE Real-Time Systems Symposium, pages 215–224, 2001.

[68] Jakob Engblom and Andreas Ermedahl. Pipeline timing analysis using a trace-driven
simulator. In Proc. of 6th Int’l Conf. on Real-Time Computing Systems and Applica-
tions, pages 88–95, 1999.

[69] H. Esmaeilzadeh, E. Blem, R. St Amant, K. Sankaralingam, and D. Burger. Dark
silicon and the end of multicore scaling. In Proc. of 38th Int’l Symp. on Computer
Architecture, pages 365–376, 2011.

[70] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian
Zhang. Graph distances in the streaming model: The value of space. In Proc. of
16th ACM-SIAM Symposium on Discrete Algorithms, pages 745–754, Philadelphia,
PA, USA, 2005. SIAM.

[71] LR Ford and DR Fulkerson. Flows in Networks. Princeton University Press, Princeton,
New Jersey, USA, 1962.

[72] M.A. Franklin, E.J. Tyson, J. Buckley, P. Crowley, and J. Maschmeyer. Auto-Pipe
and the X language: A pipeline design tool and description language. In Proc. of Int’l
Parallel and Distributed Processing Symp., April 2006.

[73] D.R. Fulkerson and G.B. Dantzig. Computation of maximal flows in networks. Naval
Research Logistics Quarterly, 2(4):277–283, 1955.

135

[74] INO Fumihiko, Shinta Nakagawa, and Kenichi Hagihara. GPU-Chariot: A program-
ming framework for stream applications running on multi-GPU systems. IEICE Trans-
actions on Information and Systems, 96(12):2604–2616, 2013.

[75] M. Galassi, B. Gough, G. Jungman, J. Theiler, J. Davies, M. Booth, and F. Rossi. The
GNU scientific library reference manual, 2007. URL http://www. gnu. org/software/gsl.

[76] Michael R. Garey and David S. Johnson. Computers and Intractability, volume 174.
Freeman San Francisco, CA, 1979.

[77] Hugh G Gauch Jr. Model selection and validation for yield trials with interaction.
Biometrics, pages 705–715, 1988.

[78] Markus Geimer, Felix Wolf, Brian JNWylie, Erika Ábrahám, Daniel Becker, and Bernd
Mohr. The scalasca performance toolset architecture. Concurrency and Computation:
Practice and Experience, 22(6):702–719, 2010.

[79] GNU. grep. http://www.gnu.org/software/grep/. Accessed Ocbober 2014.

[80] Maya Gokhale, Bill Holmes, and Ken Iobst. Processing in memory: The terasys
massively parallel pim array. Computer, 28(4):23–31, 1995.

[81] A.V. Goldberg, S.A. Plotkin, and É. Tardos. Combinatorial algorithms for the general-
ized circulation problem. In Proc. of 29th Symp. on Foundations of Computer Science,
pages 432–443, 1988.

[82] D. Goldfarb, Z. Jin, and J.B. Orlin. Polynomial-time highest-gain augmenting path al-
gorithms for the generalized circulation problem. Mathematics of Operations Research,
22(4):793–802, 1997.

[83] Susan L Graham, Peter B Kessler, and Marshall K Mckusick. gprof: A call graph
execution profiler. ACM Sigplan Notices, 17(6):120–126, 1982.

[84] Clemens Grelck, Sven-Bodo Scholz, and Alex Shafarenko. S-Net: A typed stream
processing language. In Proc. of 18th Int’l Symp. on Implementation and Application
of Functional Languages, pages 81–97, 2006.

[85] Manish Gupta and Prithviraj Banerjee. Demonstration of automatic data partitioning
techniques for parallelizing compilers on multicomputers. Parallel and Distributed
Systems, IEEE Transactions on, 3(2):179–193, 1992.

[86] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection.
The Journal of Machine Learning Research, 3:1157–1182, 2003.

[87] Marcus Hähnel and Hermann Härtig. Heterogeneity by the numbers: A study of the
odroid xu+ e big. little platform. In Proceedings of the 6th USENIX conference on
Power-Aware Computing and Systems, pages 3–3. USENIX Association, 2014.

136

[88] Mor Harchol-Balter. Performance Modeling and Design of Computer Systems: Queue-
ing Theory in Action. Cambridge University Press, Cambridge, UK, 2013.

[89] Wim Heirman, Trevor Carlson, and Lieven Eeckhout. Sniper: scalable and accu-
rate parallel multi-core simulation. In 8th International Summer School on Advanced
Computer Architecture and Compilation for High-Performance and Embedded Systems
(ACACES-2012), pages 91–94. High-Performance and Embedded Architecture and
Compilation Network of Excellence (HiPEAC), 2012.

[90] Lorin Hochstein, Jeffrey Carver, Forrest Shull, Sima Asgari, Victor Basili, Jeffrey K
Hollingsworth, and Marvin V Zelkowitz. Parallel programmer productivity: A case
study of novice parallel programmers. In Proc. of ACM/IEEE Supercomputing Con-
ference, pages 35–35. IEEE, 2005.

[91] Urs Hölzle. Adaptive optimization for SELF: reconciling high performance with ex-
ploratory programming. PhD thesis, Stanford University, 1995.

[92] R Nigel Horspool. Practical fast searching in strings. Software: Practice and Experi-
ence, 10(6):501–506, 1980.

[93] Jeong-Hyon Hwang, Ying Xing, Ugur Çetintemel, and Stan Zdonik. A cooperative,
self-configuring high-availability solution for stream processing. In Data Engineering,
2007. ICDE 2007. IEEE 23rd International Conference on, pages 176–185. IEEE, 2007.

[94] International Telegraph and Telephone Consultative Committee et al. Information
technology-digital compression and coding of continuous-tone still images-requirements
and guidelines. Rec. T, 81, 1992.

[95] J.R. Jackson. Networks of waiting lines. Operations Research, 5(4):518–521, 1957.

[96] J.R. Jackson. Jobshop-like queueing systems. Management Science, 10(1):131–142,
1963.

[97] Raj Jain. The Art of Computer Systems Performance Analysis. John Wiley & Sons,
1991.

[98] J. Jeffers and J. Reinders. Intel Xeon Phi Coprocessor High-Performance Programming.
Elsevier Science, 2013.

[99] W.S. Jewell. Optimal flow through networks with gains. Operations Research, pages
476–499, 1962.

[100] Richard Johnson, David Pearson, and Keshav Pingali. The program structure tree:
Computing control regions in linear time. In ACM SigPlan Notices, volume 29, pages
171–185. ACM, 1994.

137

[101] Richard M Karp and Michael O Rabin. Efficient randomized pattern-matching algo-
rithms. IBM Journal of Research and Development, 31(2):249–260, 1987.

[102] David A Kelly. Neural networks for handwriting recognition. In Aerospace Sensing,
pages 143–154. International Society for Optics and Photonics, 1992.

[103] M.G. Kendall and W.R. Buckland. A Dictionary of Statistical Terms. Edinburgh and
London: Published for the International Statistical Institute by Oliver & Boyd, Ltd.,
1957.

[104] Brian W Kernighan and Shen Lin. An efficient heuristic procedure for partitioning
graphs. Bell system technical journal, 49(2):291–307, 1970.

[105] Gokcen Kestor, Roberto Gioiosa, Darren J Kerbyson, and Adolfy Hoisie. Quantifying
the energy cost of data movement in scientific applications. In 2013 IEEE international
symposium on workload characterization (IISWC), May 2013.

[106] Brucek Khailany, William J Dally, Ujval J Kapasi, Peter Mattson, Jinyung Namkoong,
John D Owens, Brian Towles, Andrew Chang, and Scott Rixner. Imagine: Media
processing with streams. IEEE Micro, 21(2):35–46, Mar 2001.

[107] Arijit Khan, Xifeng Yan, Shu Tao, and Nikos Anerousis. Workload characterization
and prediction in the cloud: A multiple time series approach. In Network Operations
and Management Symposium (NOMS), 2012 IEEE, pages 1287–1294. IEEE, 2012.

[108] Toru Kisuki, P Knijnenburg, M OBoyle, and H Wijshoff. Iterative compilation in
program optimization. In Proc. CPC10 (Compilers for Parallel Computers), pages
35–44. Citeseer, 2000.

[109] L. Kleinrock. Queueing Systems. Volume 1: Theory. Wiley-Interscience, 1975.

[110] Kathleen Knobe and CD Offner. Compiling to tstreams, a new model of parallel
computation. Technical report, Technical report, 2005.

[111] Jay Kreps. Benchmarking Apache Kafka: 2 Million Writes Per Second (On Three
Cheap Machines). http://goo.gl/OtztI4. Accessed September 2014.

[112] Solomon Kullback and Richard A Leibler. On information and sufficiency. The Annals
of Mathematical Statistics, pages 79–86, 1951.

[113] Christoph Lameter. NUMA (Non-Uniform Memory Access): An overview. Queue,
11(7):40:40–40:51, July 2013.

[114] Christopher Lameter. Shoot first and stop the OS noise. In Proceedings of the Linux
Symposium, July 2009.

138

[115] Joseph M. Lancaster et al. TimeTrial: A low-impact performance profiler for streaming
data applications. In Proc. of Int’l Conf. on Application-specific Systems, Architectures
and Processors, pages 69–76, September 2011.

[116] Joseph M. Lancaster, E. F. Berkley Shands, Jeremy D. Buhler, and Roger D. Chamber-
lain. TimeTrial: A low-impact performance profiler for streaming data applications. In
Proc. IEEE Int’l Conf. on Application-specific Systems, Architectures and Processors,
September 2011.

[117] Joseph M. Lancaster, Joseph G. Wingbermuehle, Jonathan C. Beard, and Roger D.
Chamberlain. Crossing boundaries in TimeTrial: Monitoring communications across
architecturally diverse computing platforms. In Proc. 9th IEEE/IFIP Int’l Conf. Em-
bedded and Ubiquitous Computing, pages 280–287, October 2011.

[118] Joseph M. Lancaster, Joseph G. Wingbermuehle, and Roger D. Chamberlain. Asking
for performance: Exploiting developer intuition to guide instrumentation with Time-
Trial. In Proc. 13th Int’l Conf. High Performance Computing and Communications,
pages 321–330, September 2011.

[119] Maurice Landry, Jean-Louis Malouin, and Muhittin Oral. Model validation in opera-
tions research. European Journal of Operational Research, 14(3):207–220, 1983.

[120] Stephen S. Lavenberg. A perspective on queueing models of computer performance.
Performance Evaluation, 10(1):53–76, 1989.

[121] J.Y. Le Boudec and P. Thiran. Network Calculus: A Theory of Deterministic Queuing
Systems for the Internet. Springer-Verlag, 2001.

[122] Edward A Lee. The problem with threads. Computer, 39(5):33–42, 2006.

[123] Edward A. Lee and David G. Messerschmitt. Synchronous data flow. Proc. IEEE,
75(9), 1987.

[124] Hongsik Lee, Dong Nguyen, and Jongeun Lee. Optimizing stream program perfor-
mance on cgra-based systems. In Proceedings of the 52nd Annual Design Automation
Conference, page 110. ACM, 2015.

[125] Charles E Leiserson. The Cilk++ concurrency platform. The Journal of Supercom-
puting, 51(3):244–257, 2010.

[126] Peng Li, Kunal Agrawal, Jeremy Buhler, and Roger D. Chamberlain. Deadlock avoid-
ance for streaming computations with filtering. In ACM Symp. on Parallelism in
Algorithms and Architectures, jun 2010.

[127] Peng Li, Kunal Agrawal, Jeremy Buhler, and Roger D. Chamberlain. Adding data
parallelism to streaming pipelines for throughput optimization. In Proc. of IEEE Int’l
Conf. on High Performance Computing, 2013.

139

[128] Peng Li, Jonathan Beard, and Jeremy Buhler. Deadlock-free buffer configuration for
stream computing. In Proceedings of the Sixth International Workshop on Program-
ming Models and Applications for Multicores and Manycores, pages 164–169. ACM,
2015.

[129] Tong Li, Dan Baumberger, and Scott Hahn. Efficient and scalable multiprocessor fair
scheduling using distributed weighted round-robin. ACM SIGPLAN Notices, 44(4):65,
2009.

[130] Weiguo Liu, B. Schmidt, G. Voss, and W. Muller-Wittig. Streaming algorithms for
biological sequence alignment on GPUs. IEEE Trans. on Parallel and Distributed
Systems, 18(9):1270–1281, Sept 2007.

[131] Scott Lloyd and Maya Gokhale. In-memory data rearrangement for irregular, data-
intensive computing. Computer, 48(8):18–25, Aug 2015.

[132] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instrumentation. ACM Sigplan No-
tices, 40(6):190–200, 2005.

[133] J. Manyika, McKinsey Global Institute, M. Chui, B. Brown, J. Bughin, R. Dobbs,
C. Roxburgh, and A.H. Byers. Big Data: The Next Frontier for Innovation, Competi-
tion, and Productivity. McKinsey Global Institute, 2011.

[134] Abdelhafid Mazouz, S-A-A Touati, and Denis Barthou. Study of variations of na-
tive program execution times on multi-core architectures. In Proc. of Int’l Conf. on
Complex, Intelligent and Software Intensive Systems, pages 919–924, 2010.

[135] James R McGraw. Data-flow computing: the VAL language. ACM Transactions on
Programming Languages and Systems, 4(1):44–82, 1982.

[136] Leo A Meyerovich and Ariel S Rabkin. Empirical analysis of programming language
adoption. In Proc. of ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, pages 1–18. ACM, 2013.

[137] Barton P Miller, Mark D Callaghan, Jonathan M Cargille, Jeffrey K Hollingsworth,
R Bruce Irvin, Karen L Karavanic, Krishna Kunchithapadam, and Tia Newhall. The
paradyn parallel performance measurement tool. Computer, 28(11):37–46, 1995.

[138] Helmuth Moltke. Militärische werke, volume 3. ES Mittler und sohn, 1893.

[139] Philip J Mucci, Shirley Browne, Christine Deane, and George Ho. Papi: A portable in-
terface to hardware performance counters. In Proceedings of the Department of Defense
HPCMP Users Group Conference, pages 7–10, 1999.

140

[140] Brad A Myers. Separating application code from toolkits: eliminating the spaghetti of
call-backs. In Proc. of 4th ACM Symposium on User Interface Software and Technology,
pages 211–220. ACM, 1991.

[141] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dy-
namic binary instrumentation. ACM Sigplan Notices, 42(6):89–100, 2007.

[142] Sun Developer Network. The java hotspot performance engine architecture. Sun
Microsystem, 2007.

[143] Marcel F. Neuts. Matrix-Geometric Solutions in Stochastic Models: An Algorithmic
Approach. John Hopkins Univ. Press, 1981.

[144] Bill Nitzberg and Virginia Lo. Distributed shared memory: A survey of issues and
algorithms. Distributed Shared Memory-Concepts and Systems, pages 42–50, 1991.

[145] John Nolan. Stable Distributions: Models for Heavy-tailed Data. Birkhauser, 2003.

[146] Tony Nowatzki, Vinay Gangadhar, and Karthikeyan Sankaralingam. Exploring the
potential of heterogeneous von neumann/dataflow execution models. In Proceedings of
the 42nd Annual International Symposium on Computer Architecture, pages 298–310.
ACM, 2015.

[147] John D Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger, Aaron E
Lefohn, and Timothy J Purcell. A survey of general-purpose computation on graphics
hardware. In Computer Graphics Forum, volume 26, pages 80–113. Wiley Online
Library, 2007.

[148] Shobana Padmanabhan, Yixin Chen, and Roger D. Chamberlain. Optimal design-space
exploration of streaming applications. In Proc. IEEE Int’l Conf. Application-specific
Systems, Architectures and Processors, pages 227–230, September 2011.

[149] Shobana Padmanabhan, Yixin Chen, and Roger D. Chamberlain. Convexity in non-
convex optimizations of streaming applications. In Proc. of 18th IEEE Int’l Conf. on
Parallel and Distributed Systems, pages 668–675, December 2012.

[150] Shobana Padmanabhan, Yixin Chen, and Roger D. Chamberlain. Unchaining in
design-space optimization of streaming applications. In Proc. of Workshop on Data-
Flow Execution Models for Extreme Scale Computing, September 2013.

[151] Gregory Michael Papadopoulos. Implementation of a general purpose dataflow multi-
processor. PhD thesis, Massachusetts Institute of Technology, 1988.

[152] Shyam Parekh and Jean Walrand. A quick simulation method for excessive backlogs
in networks of queues. Automatic Control, IEEE Transactions on, 34(1):54–66, 1989.

141

[153] Philippe Pébay. Formulas for robust, one-pass parallel computation of covariances and
arbitrary-order statistical moments. Sandia Report SAND2008-6212, Sandia National
Laboratories, 2008.

[154] Oliver Pell and Oskar Mencer. Surviving the end of frequency scaling with reconfig-
urable dataflow computing. ACM SIGARCH Computer Architecture News, 39(4):60–
65, 2011.

[155] F Perry. Sneak peek: Google cloud dataflow, a cloud-native data processing ser-
vice. URL: http://googlecloudplatform. blogspot. com/2014/06/sneak-peek-googlecloud-
dataflow-a-cloud-native-dataprocessing-service. html, 2014.

[156] B. Pourbabai, JPC Blanc, and FA Van der Duyn Schouten. Optimizing flow rates in
a queueing network with side constraints. European Journal of Operational Research,
88(3):586–591, 1996.

[157] I PRESENT. Cramming more components onto integrated circuits. Readings in com-
puter architecture, page 56, 2000.

[158] Peter Puschner and Alan Burns. Guest editorial: A review of worst-case execution-time
analysis. Real-Time Systems, 18(2):115–128, 2000.

[159] RaftLib. http://www.raftlib.io. Accessed August 2015.

[160] A. Ralston, E.D. Reilly, and D. Hemmendinger. Encyclopedia of Computer Science.
John Wiley and Sons Ltd., Chichester, UK, 2003.

[161] Colin R. Reeves, editor. Modern Heuristic Techniques for Combinatorial Problems.
John Wiley & Sons, Inc., New York, NY, USA, 1993.

[162] James Reinders. Intel Threading Building Blocks: Outfitting C++ For Multi-core
Processor Parallelism. O’Reilly Media, Inc., 2007.

[163] Secretary Rumsfeld Press Conference at NATO Headquarters, Brussels, Belgium.
http://www.defense.gov/Transcripts/Transcript.aspx?TranscriptID=3490, 2002.

[164] Samza. http://samza.incubator.apache.org. Accessed November 2014.

[165] Daniel Sanchez and Christos Kozyrakis. Zsim: fast and accurate microarchitectural
simulation of thousand-core systems. In ACM SIGARCH Computer Architecture News,
volume 41, pages 475–486. ACM, 2013.

[166] Laura A Sanchis. Multiple-way network partitioning. Computers, IEEE Transactions
on, 38(1):62–81, 1989.

[167] Robert G Sargent. Validation of simulation models. In Proceedings of the 11th confer-
ence on Winter simulation-Volume 2, pages 497–503. IEEE Press, 1979.

142

[168] Robert G Sargent. Verification and validation of simulation models. In Proceedings of
the 37th conference on Winter simulation, pages 130–143. winter simulation conference,
2005.

[169] Robert R Schaller. Moore’s law: past, present and future. IEEE Spectrum, 34(6):52–59,
1997.

[170] Graham Schelle, Jamison Collins, Ethan Schuchman, Perrry Wang, Xiang Zou, Gau-
tham Chinya, Ralf Plate, Thorsten Mattner, Franz Olbrich, Per Hammarlund, et al.
Intel nehalem processor core made fpga synthesizable. In Proceedings of the 18th an-
nual ACM/SIGDA international symposium on Field programmable gate arrays, pages
3–12. ACM, 2010.

[171] Bernhard Schölkopf and Alexander J Smola. Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA,
2002.

[172] P.J. Schweitzer. Maximum throughput in finite-capacity open queueing networks with
product-form solutions. Management Science, pages 217–223, 1977.

[173] Mehul A Shah, Joseph M Hellerstein, and Eric Brewer. Highly available, fault-tolerant,
parallel dataflows. In Proceedings of the 2004 ACM SIGMOD international conference
on Management of data, pages 827–838. ACM, 2004.

[174] J. Shalf, D. Quinlan, and C. Janssen. Rethinking hardware-software codesign for
exascale systems. Computer, 44(11):22–30, 2011.

[175] Sameer S Shende and Allen D Malony. The TAU parallel performance system. Inter-
national Journal of High Performance Computing Applications, 20(2):287–311, 2006.

[176] David Simchi-Levi. Designing and managing the supply chain. Mcgraw-Hill College,
2005.

[177] J MacGregor Smith. Properties and performance modelling of finite buffer m/g/1/k
networks. Computers & Operations Research, 38(4):740–754, 2011.

[178] Stack Exchange Data Dump. http://goo.gl/PBgYvwz. Accessed November 2014.

[179] William J Stewart. Probability, Markov Chains, Queues, and Simulation: The Math-
ematical Basis of Performance Modeling. Princeton University Press, Princeton, NJ,
2009.

[180] H.S. Stone. Multiprocessor scheduling with the aid of network flow algorithms. IEEE
Trans. on Software Engineering, 3(1):85–93, 1977.

[181] Storm: Distributed and fault-tolerant realtime computation.
https://storm.apache.org. Accessed November 2014.

143

[182] Harold H Szu and Ralph L Hartley. Nonconvex optimization by fast simulated anneal-
ing. Proceedings of the IEEE, 75(11):1538–1540, 1987.

[183] A.S. Tanenbaum. Modern Operating Systems. Prentice Hall, 2007.

[184] O. Tange. Gnu parallel - the command-line power tool. ;login: The USENIX Magazine,
36(1):42–47, Feb 2011.

[185] David MJ Tax and Robert PW Duin. Support vector data description. Machine
Learning, 54(1):45–66, 2004.

[186] William Thies and Saman Amarasinghe. An empirical characterization of stream pro-
grams and its implications for language and compiler design. In Proc. of 19th In-
ternational Conference on Parallel Architectures and Compilation Techniques, pages
365–376. ACM, 2010.

[187] William Thies, Michal Karczmarek, and Saman Amarasinghe. StreamIt: A language
for streaming applications. In R. Horspool, editor, Proc. of Int’l Conf. on Com-
piler Construction, volume 2304 of Lecture Notes in Computer Science, pages 49–84.
Springer International Publishing, 2002.

[188] TIOBE Programming Community index. http://goo.gl/7oPQ94. Accessed Ocbober
2014.

[189] Robert M Tomasulo. An efficient algorithm for exploiting multiple arithmetic units.
IBM Journal of research and Development, 11(1):25–33, 1967.

[190] Eric J. Tyson, James Buckley, Mark A. Franklin, and Roger D. Chamberlain. Ac-
celeration of atmospheric Cherenkov telescope signal processing to real-time speed
with the Auto-Pipe design system. Nuclear Inst. and Methods in Physics Research A,
585(2):474–479, October 2008.

[191] Vladimir Naumovich Vapnik and Vlamimir Vapnik. Statistical Learning Theory, vol-
ume 2. John Wiley & Sons, New York, NY, 1998.

[192] John Villasenor and William H Mangione-Smith. Configurable computing. Scientific
American, 276(6):54–9, 1997.

[193] Francois-Marie Arouet Voltaire. Candide. 1759. Trans, by H. Morley. London: George
Routledge, 1991.

[194] Richard Vuduc, James W Demmel, and Jeff Bilmes. Statistical models for automatic
performance tuning. In Computational ScienceICCS 2001, pages 117–126. Springer,
2001.

[195] BP Welford. Note on a method for calculating corrected sums of squares and products.
Technometrics, 4(3):419–420, 1962.

144

[196] R Clint Whaley, Antoine Petitet, and Jack J Dongarra. Automated empirical opti-
mizations of software and the atlas project. Parallel Computing, 27(1):3–35, 2001.

[197] S. Williams, A. Waterman, and D. Patterson. Roofline: an insightful visual perfor-
mance model for multicore architectures. Communications of the ACM, 52(4):65–76,
2009.

[198] Joseph G. Wingbermuehle, Roger D. Chamberlain, and Ron K. Cytron. ScalaPipe:
A streaming application generator. In Proc. Symp. on Application Accelerators in
High-Performance Computing, July 2012.

[199] Ting-Fan Wu, Chih-Jen Lin, and Ruby C Weng. Probability estimates for multi-class
classification by pairwise coupling. The Journal of Machine Learning Research, 5:975–
1005, 2004.

[200] Wm A Wulf and Sally A McKee. Hitting the memory wall: implications of the obvious.
ACM SIGARCH Computer Architecture News, 23(1):20–24, 1995.

[201] Kathy Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben Liblit, Arvind Kr-
ishnamurthy, Paul Hilfinger, Susan Graham, David Gay, Phil Colella, and Alex Aiken.
Titanium: a high-performance Java dialect. Concurrency: Practice and Experience,
10(11-13):825–836, 1998.

[202] Mehmet Mutlu Yenisey. A flow-network approach for equilibrium of material require-
ments planning. International journal of production economics, 102(2):317–332, 2006.

[203] Zhe Zhang, Yu Gu, Fan Ye, Hao Yang, Minkyong Kim, Hui Lei, and Zhen Liu. A hybrid
approach to high availability in stream processing systems. In Distributed Computing
Systems (ICDCS), 2010 IEEE 30th International Conference on, pages 138–148. IEEE,
2010.

145

Vita

Jonathan Curtis Beard

Degrees Ph.D. Computer Science

Washington University in St. Louis

August 2015

M.S. Bioinformatics

The Johns Hopkins University

May 2010

B.S. Biological Sciences

Louisiana State University

December 2005

B.A. International Studies, Central Asian Focus

Louisiana State University

December 2005

Professional

Societies

Association for Computing Machines

Institute of Electrical and Electronics Engineers Computer Society

Upsilon Pi Epsilon

Publications Joseph M. Lancaster, Joseph G.Wingbermuehle, Jonathan C. Beard,

and Roger D. Chamberlain. Crossing boundaries in TimeTrial: Mon-

itoring Communications Across Architecturally Diverse Computing

Platforms. In the Proceedings of the 9th IEEE/IFIP International

Conference on Embedded and Ubiquitous Computing, pages 280-287,

October 2011

Jonathan C. Beard and Roger D. Chamberlain. Use of Simple

Analytic Performance Models of Streaming Data Applications De-

ployed on Diverse Architectures. In the Proceedings of the 2013

International Symposium on the Performance Analysis of Systems

and Software, pages 138-139, April 2013

146

Jonathan C. Beard and Roger D. Chamberlain. Analysis of a

Simple Approach to Modeling Performance for Streaming Data Ap-

plications. In Proceedings of the 21st IEEE International Symposium

on Modeling, Analysis and Simulation of Computer and Telecommu-

nication Systems, pages 345-349, August 2013

Jonathan C. Beard and Roger D. Chamberlain. Use of a Levy

Distribution for Modeling Best Case Execution Time Variation. In

Computer Performance Engineering, Volume 8721 of Lecture Notes

in Computer Science, pages 74-88. A. Horvàth and K. Wolter, edi-

tors, Springer International Publishing, September 2014

Jonathan C. Beard, Cooper Epstein, and Roger D. Chamberlain.

Automated Reliability Classification of Queueing Models for Stream-

ing Computation Using Support Vector Machines. In the Proceed-

ings of the 6th ACM/SPEC International Conference on Performance

Engineering, ICPE 15, New York, NY, USA, pages 325-328, January

2015. ACM

Jonathan C. Beard, Peng Li, and Roger D. Chamberlain. Raftlib:

A C++ Template Library for High Performance Stream Parallel Pro-

cessing. In the Proceedings of the Sixth International Workshop on

Programming Models and Applications for Multicores and Many-

cores, PMAM‘15. New York, NY, USA, pages 96-105, February 2015.

ACM

Peng Li, Jonathan Beard, and Jeremy Buhler. Deadlock-free Buffer

Configuration for Stream Computing. In the Proceedings of the Sixth

International Workshop on Programming Models and Applications

for Multicores and Manycores, PMAM‘15. New York, NY, USA,

pages 164-169, February 2015, ACM

Jonathan C. Beard and Roger D. Chamberlain. Runtime Approx-

imation of Non-blocking Service Rates for Streaming Systems. In

the Proceedings of the 17th IEEE International Conference on High

Performance and Communications, pages 792-797, August 2015

Jonathan C. Beard, Cooper Epstein, and Roger D. Chamberlain.

Online Automated Reliability Classification of Queueing Models for

147

Streaming Processing using Support Vector Machines. In the Pro-

ceedings of the 21st International European Conference on Paral-

lel and Distributed Computing, Euro-Par‘15, Volume 9233 of Lec-

ture Notes in Computer Science, pages 82-93. Jesper Larsson Träff,

Sascha Hunold, and Francesco Versaci, editors. Springer Berlin Hei-

delberg, August 2015

August 2015

148

	Washington University in St. Louis
	Washington University Open Scholarship
	Summer 8-15-2015

	Online Modeling and Tuning of Parallel Stream Processing Systems
	Jonathan Curtis Beard
	Recommended Citation

	List of Figures
	List of Tables
	Acknowledgements
	Abstract
	Chapter Introduction
	Industry Trends
	Paradigm Flux
	Turning Streams into Torrents
	Contribution and Structure

	Chapter Background and Related Works
	Stream Processing
	Modeling
	Instrumentation
	Online Modeling & Performance Tuning
	Dynamic Adaptation

	Chapter RaftLib Streaming Library
	Design considerations
	RaftLib description
	RaftLib as a research platform
	Authoring streaming applications

	Benchmarking
	Concluding Remarks and What Follows

	Chapter Modeling Streaming Applications
	Introduction
	Description
	Sharing Models
	Modeling Assumptions
	Example

	Model Evaluation Approach
	Tools
	Hardware
	Empirical Testing
	Selecting Compute Resources and Mapping Application Kernels
	Synthetic Benchmarks
	Real Applications

	Results
	Processor Sharing Model
	The Flow Model
	The Queueing Model

	Conclusions

	Chapter Best Case Execution Time Variation
	Methodology
	Synthetic Workload
	Hardware, Software, and Data Collection
	Distribution
	Parameterization and definition of mLevy

	Results
	Conclusions

	Chapter Dynamic Instrumentation
	Introduction
	Instrumentation Considerations
	Throughput
	Queue Occupancy

	Service Rate
	Online Service Rate Heuristic
	Sampling Period Determination
	Service Rate Heuristic

	Evaluation
	Infrastructure

	Applications
	Matrix Multiply
	Rabin-Karp String Search

	Validation
	Conclusions

	Chapter Model Selection
	Stochastic Models and Streaming Applications
	Stochastic Queueing Model Selection
	Methodology
	Support Vector Machine
	Data Collection & Hardware
	SVM and Training
	Artificial Neural Network (ANN)

	Conclusions & Future Work

	Chapter Online Tuning: Putting It All Together
	Online Modeling of Streaming Systems
	Why is online tuning important?
	Adaption Types
	Evaluation Methodology
	Adaption Results

	Conclusions

	Chapter Conclusions and Future Work
	Conclusions
	Future Work

	References
	Vita

