
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2012

Optimization of WDM Optical Networks
Quazi R. Rahman
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Rahman, Quazi R., "Optimization of WDM Optical Networks" (2012). Electronic Theses and Dissertations. 5413.
https://scholar.uwindsor.ca/etd/5413

https://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F5413&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5413&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5413&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/5413?utm_source=scholar.uwindsor.ca%2Fetd%2F5413&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


OPTIMIZATION OF WDM OPTICAL
NETWORKS

By:

Quazi R Rahman

A Dissertation
Submitted to the Faculty of Graduate Studies

Through the School of Computer Science
in Partial Fulfillment of the Requirements for
The Degree of Doctor of Philosophy at the

University of Windsor
Windsor, Ontario, Canada

2012

Copyright c©2012 Quazi R Rahman
==========



Optimization of WDM Optical Networks
by

Quazi R Rahman

APPROVED BY:

Dr. Amiya Nayak, External Examiner
University of Ottawa

Dr. Richard Caron, External Reader
Department of Mathematics and Statistics

Dr. Jianguo Lu, Internal Reader
School of Computer Science

Dr. Arunita Jeakel, Internal Reader
School of Computer Sciencer

Dr. Yash Aneja, Advisor
School of Business

Dr. Subir Bandyopadhyay, Advisor
School of Computer Science

Dr. Joseph Casey, Chair of Defence
Department of Psychology

14 September 2012



Declaration of Co-Authorship /

Previous Publication

I Co-Authorship Declaration

Chapter 5, Section 5.2 of this dissertation incorporates the outcome of a joint re-

search undertaken in collaboration with Mr. Sujogya Banerjee and Mr. Sudheendra

Murthy under the supervision of professor Dr. Arunabha Sen of Arizona State

University, USA. For this part of the research, the key ideas, algorithm designs,

justifications of methodology and outline of experiments, were performed by the

author, and the contribution of coauthors was primarily through the provision of

experimental design, carry out the experiments, data analysis and interpretation.

I am aware of the University of Windsor Senate Policy on Authorship and I

certify that I have properly acknowledged the contribution of other researchers to

my thesis, and have obtained written permission from each of the co-authors to

include the above material in my thesis.

I certify that, with the above qualification, this thesis, and the research to which

it refers, is the product of my own work.

iii



II Declaration of Previous Publication

This thesis includes 4 original papers that have been previously published in peer

reviewed conferences as follows:

Thesis Chapter Publication title/full citation Publication status

A Branch, Price and Cut Approach for Optimal
Traffic Grooming in WDM Optical Networks;
Rahman, Q.; Bandyopadhyay, S.; Aneja, Y.;

Chapter 3 IEEE International Conf. on Communications, Published
June 2011, DOI: 10.1109/icc.2011.5962606.
Copyright c©2011, IEEE.
Reprinted with permission from IEEE.

Dynamic Lightpath Allocation in Translucent
WDM Optical Networks; Bandyopadhyay, S.;

Chapter 5 Rahman, Q.; Banerjee, S.; Murthy, S.; Sen, A.;
Section 5.2 IEEE International Conf. on Communications, Published

June 2009, DOI: 10.1109/ICC.2009.5198956.
Copyright c©2009, IEEE.
Reprinted with permission from IEEE.

Path protection in Translucent WDM Optical
Networks; Rahman, Q.; Bandyopadhyay, S.;

Chapter 5 Bari, A.; Jaekel, A.; Aneja, Y.; Distributed
Section 5.3 Computing and Networking, (LNCS), vol. 5935, Published

2010, DOI: 10.1007/978-3-642-11322-2 38.
Copyright c©2010, Springer Berlin/Heidelberg.
Reprinted with permission from Springer.

On Static RWA in Translucent Optical Networks
Rahman, Q.; Bandyopadhyay, S.; Aneja, Y.;

Chapter 5 IEEE Symposium on Computers and Comm., Published
Section 5.4 July 2012, DOI: 10.1109/ISCC.2012.6249288.

Copyright c©2012, IEEE.
Reprinted with permission from IEEE.

I certify that I have obtained a written permission from the copyright owner(s)

to include the above published material(s) in my thesis. I certify that the above

material describes work completed during my registration as graduate student at

the University of Windsor.

I declare that, to the best of my knowledge, my thesis does not infringe upon

anyones copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my the-

iv



sis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis.

I declare that this is a true copy of my thesis, including any final revisions,

as approved by my thesis committee and the Graduate Studies office, and that

this thesis has not been submitted for a higher degree to any other University or

Institution.

v



Abstract

Optical network, with its enormous data carrying capability, has become the obvious

choice for today’s high speed communication networks. Wavelength Division Multi-

plexing (WDM) technology and Traffic Grooming techniques enable us to efficiently

exploit the huge bandwidth capacity of optical fibers. Wide area translucent net-

works use sparse placement of regenerators to overcome the physical impairments

and wavelength constraints introduced by all optical (transparent) networks, and

achieve a performance level close to fully switched (opaque) networks at a much

lesser network cost.

In this dissertation we discuss our research on several issues on the optimal design

of optical networks, including optimal traffic grooming in WDM optical networks,

optimal regenerator placement problem (RRP) in translucent networks, dynamic

lightpath allocation and dynamic survivable lightpath allocation in translucent net-

works and static lightpath allocation in translucent networks. With extensive sim-

ulation experiments, we have established the effectiveness and efficiencies of our

proposed algorithms.
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v : a vertex of a path intersection graph.

V X
R : set of vertexes in the extended reachability graph.

VP : set of vertexes in the path intersection graph.

wq
ij : a constant defined as follows

wq
ij =





1 if an existing lightpath uses channel q on edge i → j,

0 otherwise.

W k
q : a binary variable for the new lightpath (primary lightpath) for dynamic

(dynamic survivable) RWA, defined as follows:

W k
q =





1 if the kth segment of the new lightpath

(primary lightpath) uses channel q,

0 otherwise.
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Wv : the set of colors to color vertex v of GP .

W : the set of the set of colors {Wv : v ∈ VP}.

Wgq
p : a binary variable defined as follows

Wgq
p =





1 if the new primary lightpath uses channel q in the

gth route of the source-destination pair p,

0 otherwise.

x : a node in the optical network.

Xk
ij : a binary variable for the new lightpath (primary lightpath) for dynamic

(dynamic survivable) RWA, defined as follows:

Xk
ij =





1 if the kth segment of the new lightpath

(primary lightpath) uses edge i → j

0 otherwise.

Xg
p : a binary variable defined as follows:

Xg
p =





1 if the gth pre-computed route is selected to realize the segment

of the new primary lightpath corresponding to the

source-destination pair p ∈ P ,

0 otherwise.

−→
xk : the column vector of variables, containing nk elements xk

1, xk
2, . . ., xk

nk .

xi
s : the ith slack variable.

xi
a : the ith artificial variable corresponding to i-th lifting constraint.

−→xB : the vector corresponding to the variables in the basis.

yk: an integer variable for lightpath k ∈ K, denoting the minimum number

of segments needed for lightpath k.
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Y k
ij : a binary variable for the new backup lightpath defined as follows:

Y k
ij =





1 if the kth segment of the new backup

lightpath uses the edge i → j

0 otherwise.

Yg
p : a binary variable defined as follows:

Yg
p =





1 if the gth pre-computed route is selected to realize the segment

of the new backup lightpath corresponding to the

source-destination pair p ∈ P ,

0 otherwise.

−→y : a vector containing the values of simplex multipliers.

z : global objective value of the feasible integer solution.

zi : objective value of the feasible integer solution of the ith subproblem.

zq
ij : a constant defined as follows

zq
ij =





1 if an existing backup lightpath uses

channel q on edge i → j,

0 otherwise.

Zk
q : a binary variable for the new backup lightpath, defined as follows:

Zk
q =





1 if the kth segment of the new backup

lightpath uses channel q,

0 otherwise.

Zgq
p : a binary variable for the new backup lightpath, defined as follows

Zgq
p =





1 if the new backup lightpath uses channel q in the gth route

of the source-destination pair p,

0 otherwise.
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αpg
ij : a constant defined as follows:

αpg
ij =





1 if the gth route of the source-destination pair p

includes physical edge i → j,

0 otherwise.

αk : the simplex multiplier, corresponding to the commodity k.

βi : a binary variable for each node i ∈ N in the physical topology, such that

βi =





1, if node i is made a regenerator node,

0, otherwise.

βk
i : a binary variable for each commodity k ∈ K and each node i ∈ N in the

physical topology, such that

βk
i =





1, if commodity k is regenerated at node i,

0, otherwise.

−→
β ∗ : a vector for the objective variable values from an optimal solution.

−→
β i : a vector for the objective variable LP solution values of the ith subprob-

lem.

ηg
p : the set of available channel numbers that can be used to set up a new

primary lightpath using the route g of the source-destination pair p.

γk
l : a non-negative continuous variable for the new backup path whose values

are restricted by the constrains, such that

γk
lh =





1 if the new backup path in its segment k

shares both an edge and a channel number with

the hth segment of lth existing backup path,

0 otherwise.

xxvi



δi : a constant for node i ∈ EN , defined as follows:

δi =





1 if the ith node is a 3R regenerator node,

0 otherwise.

κph
qg : a constant defined as follows:

κph
qg =





1 if the gth route of the source-destination pair p and the hth

route of the source-destination pair q share some edge(s),

0 otherwise.

λgl
ph : a non-negative continuous variable for the new backup lightpath whose

values are restricted by the constrains, such that

λgl
ph =





1 if the gth route for the source-destination pair p shares an

edge with the segment h of the lth backup lightpath,

and the channel number Zgq
p matches with ωl

p,

0 otherwise.

Λmax : congestion of the network, defined by the total amount of traffic flow-

ing through the edge carrying the maximum traffic.

Ψmax : congestion of the network, defined by the number of lightpaths flowing

through the edge carrying the maximum number of lightpaths.

µjk
i : the ith element of the jth chain of commodity k so that

µjk
i =





Υk if edge i is in chain j of commodity k,

0 otherwise.

ξk
h : The constraint coefficient of commodity k in lifting constraint h.

πj : the simplex multiplier, corresponding to the logical edge j, 1 ≤ j ≤ m.

℘(S, D) : the shortest path, in the logical topology, from S to D.

ρh : the simplex multiplier corresponding to lifting constraint h, 1 ≤ h ≤ H.
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σk
ij : the weight of edge i when considering chain j for commodity k, defined

as:

σk
ij =





1, if chain j for commodity k uses edge i,

0, otherwise.

Υk : required amount of data communication for commodity k ∈ K using

OC-n notation.

φjk
hi : a weight for edge i in jth chain for the commodity k, corresponding to

lifting constraint h defined as:

φjk
hi =





ξk
h if edge i = eh,

0 otherwise.

ωl
p : channel number used by the lth existing backup lightpath in segment (or

source-destination pair) p.

Ω : A set of all DSNs.
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Chapter 1

Introduction

1.1 Optical Networks

For the past couple of decades we are observing an exponential growth of

telecommunication network, which is mostly driven by an ever-increasing user

demands for new applications as well as continuous advancements in the tech-

nologies involved. With the introduction of optical networks, where optical

fibers, with their huge bandwidth capacity, serve as the data communication

medium, today’s telecommunication networks can easily handle the unprece-

dented bandwidth demand of the modern day communications [3].

The potential data carrying capacity of a single optical fiber is nearly 50

Terabits per second (Tbps) [3]. Introduction of wavelength division multi-

plexing (WDM) technology can efficiently exploit this huge bandwidth capac-

ity of optical fibers. With WDM technology, multiple optical signals can be

transmitted, simultaneously and independently, using non-overlapping carrier

wavelengths over a single fiber, each at a rate of a few Giga bits per second,

which significantly increases the usable bandwidth of an optical fiber [93].
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A WDM optical network consists of a set of end-nodes (any device that

produces or consumes data traffic can be an end-node) each equipped with

optical devices, such as optical transmitters and receivers, wavelength routers

(also known as optical cross-connects (OXC)), optical add/drop multiplexers

(OADM) etc, and which are interconnected by a set of optical fibers. This

configuration defines the physical topology [57] of an optical network.

A logical topology [57] may be defined over a physical topology by estab-

lishing lightpaths between the end-nodes [49]. A lightpath is a point-to-point

connection, at the optical level, that allows a transmitter at a source node to

communicate with a receiver at a destination node using encoded optical sig-

nals [62]. A lightpath is allowed to pass through any set of intermediate nodes,

as necessary, using optical cross connects (OXCs). If a WDM network has no

wavelength converter an optical device that can change the carrier wavelength

of an optical signal) at any end-node, a lightpath must use the same carrier

wavelength on all links that it traverses [40]. This is known as the wavelength

continuity constraint [11]. Due to the limitations of the related technologies

and the costs involved, most networks today enforce the wavelength continuity

constraint. Once the logical topology has been achieved by establishing nec-

essary lightpaths, the physical topology is irrelevant for determining a traffic

routing strategy to handle the traffic demands between end-nodes.

The design of a logical topology involves determining the set of lightpaths

needed to meet the traffic demands between pairs of end nodes, appropriate

routing of the lightpaths over the physical topology (known as the Routing and

Wavelength Assignment (RWA)) and the proper routing of traffic demands

over the logical topology. For a given physical topology of a network and

the set of lightpaths to be established, the RWA problem is to select, for
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each connection, a suitable path and a carrier wavelength among the many

possible choices, so that no two lightpaths sharing a link are assigned the

same wavelength [52].

1.2 Impairments in Optical Networks

A modern day optical network may have 100’s, even 1000’s of kilometers long

optical fibers connecting individual nodes. (For the rest of this dissertation, we

will use the terms “node” and “end-node” interchangeably). Optical signals

passing through such long haul or extra long haul fibers can only travel up

to a certain distance retaining their characteristics. In a wide-area backbone

optical network, spanning a large geographical area, all end-to-end connec-

tions, using current technology, cannot be established entirely in the optical

domain. Factors, such as optical noise, chromatic dispersion, nonlinear ef-

fects, polarization mode dispersion (PMD) and crosstalk cause the quality of

an optical signal to degrade as it propagates through such fibers [70, 73]. An

optical network is called a transparent network, if all the lightpaths in the net-

work always remain in the optical domain from their respective sources to the

corresponding destinations. In an opaque network, each lightpath must un-

dergo optical-electronic-optical conversion in every intermediate node it passes

through. The notion of translucent networks, introduced by Ramamurthy et

al. in [86,87], have features of both transparent and opaque networks.

1.2.1 Translucent Networks

The distance an optical signal can propagate, before its quality degrades below

a threshold level that necessitates the restoration of the signal, is called the
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optical reach, which typically ranges from 800 to 3000 kilometers [13]. To

establish any communication path beyond the optical reach, it is necessary to

reamplify, reshape and retime the optical signal, which is often called the 3R-

regeneration [27,70]. In a translucent network, the optical signal is regenerated

at the regeneration points (typically a selected subset of the network nodes are

capable of signal regeneration), so that the signal may be communicated over

long distances. A lightpath established for communication between a source

node to a destination node that involves one or more stages of regeneration,

are often called a translucent lightpath.

1.3 Motivation

When designing optimal WDM optical networks, one popular approach is to

use multi-commodity network flow programming (MCNF) [1] using Linear Pro-

grams (LP) or Mixed Integer Linear Programs (MILP). Such LP or MILP

formulations are typically solved using some commercially available mathe-

matical optimization tool, such as the CPLEX [36]. It is well-known [82] that,

in general, the number of integer variables in a MILP is crucially important,

since the time needed to solve the formulation increases, in general, exponen-

tially with the increase of the number of integer variables. As a consequence,

most MILP’s for designing optical networks work only for small networks and

designers have to use heuristics for larger networks where the margin of error

is typically unknown. In many cases, these heuristic approaches are validated

only through simulation experiments.

Within the Operations Research (OR) community, integer programming,

using cutting plane and branch and bound techniques, have been widely in-
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vestigated [7, 44]. Many interesting and practical problems possess special

structures and exploiting such special structures gives the greatest chance of

success with large problems [7]. It has been observed that, by tailoring the

algorithm to the special structures of such problems, it may be possible to

solve problems involving a very large number of integer variables [82].

We have identified many important problems in WDM network design (e.g.,

regenerator placement in translucent networks, route and wavelength Assign-

ment (RWA) in transparent as well as translucent networks, traffic grooming

in transparent networks) where the techniques for solving Integer Linear pro-

grams, such as, Branch and Cut or Branch Price and Cut [82] may be used

to take advantage of the special properties of these problems. With appropri-

ate adaptations, the use of the techniques leads to significant improvements

in the time required to find an optimum solution, compared to traditional

mathematical optimizations using MCNF programming.

1.4 Problems Addressed in This Dissertation

The objective of this dissertation is to present new and efficient algorithms and

heuristics to optimally solve the following design problems in WDM optical

networks.

1.4.1 Optimal Traffic Grooming in WDM Networks

A single lightpath [3, 58] typically supports data rates between 2.5 to 10 gi-

gabits per second, depending on the technology used. Individual requests for

data communication are at much lower rates, typically a few megabits per sec-

ond. Therefore, to ensure effective resource utilization, it is essential to share
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the capacity of a lightpath among several low-speed requests. Traffic Groom-

ing [24, 34, 37, 38, 97–100] in WDM optical networks is defined as a family of

techniques for combining a number of low-speed traffic streams from users, so

that the high capacity lightpaths may be used as efficiently as possible. Static

traffic grooming [97] is used when the traffic requests are known in advance

and do not change significantly over relatively long periods of time. In this

case, it is reasonable to spend a considerable time to determine an optimal

grooming strategy.

There are two models for traffic grooming - the non-bifurcated and the bi-

furcated model [3]. In the non-bifurcated (bifurcated) model, the data stream

corresponding to any given request is communicated using a single (one or

more) logical path(s) from the source of the data stream to its destination. If

a bifurcated model is used, routing on a logical topology requires only an LP

formulation which can be easily handled [3] using any commercial mathemat-

ical programming packages such as the CPLEX. If the non-bifurcated model

is used, the additional requirement that each request has to be routed on the

logical topology using exactly one logical path means that a formulation for

routing over a logical topology has to involve binary variables. In other words,

solving an ILP formulation for the non-bifurcation model is more complex and

time-consuming. However, as pointed out in [81], bifurcation increases the

complexity and the cost of traffic reassembly, and may also introduce delay

jitter at the application layer. Many applications, especially real-time appli-

cations, require that their traffic be kept intact, i.e., without de-multiplexing

at the source, independent switching at intermediate nodes, and multiplexing

at the destination.

In static traffic grooming, the input to the problem includes the logical
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topology of the WDM network, relevant network parameters (e.g., the capacity

of each lightpath) and a list of requests for data communication. The goal is

to determine, if possible, a traffic grooming strategy, so that all the requests

for data communication can be handled.

1.4.2 Optimal Regenerator Placement in Translucent Networks

The Regenerator Placement Problem (RPP) for translucent networks, identifies

a minimum number of nodes in a given network topology which should have

3R regenerating capacity so that any source node can communicate with any

destination node [12, 14, 68, 70–73, 86, 95]. This problem is important, since

regenerators are expensive and an optimum solution of the problem helps

reduce the cost of a translucent WDM network.

In RPP, the input to the problem includes the physical topology of the

WDM network, relevant network parameters e.g., the lengths of individual

optical fibers connecting two nodes and optical reach for the network. The

goal is to determine the minimum number and the locations of the nodes that

should have 3R-regeneration capability, so that it is possible to establish a

lightpath (either transparent or translucent) between every node-pair in the

network.

1.4.3 Optimal Lightpath Allocation in Translucent Networks

Lightpath allocation strategies can be classified into two broad categories.

Dynamic lightpath allocation is appropriate when the pattern of data commu-

nication requests is not known and connections must be set up on demand.

Static lightpath allocation is used when the data communication requests are
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known in advance and do not change significantly over relatively long periods

of time. The Routing with Regenerator Problem (RRP) uses dynamic light-

path allocation to optimally route a new request for communication using a

minimum number of 3R regenerators [4,85,87]. Solving the RRP is important,

since each regenerator represents a significant resource of the network and it

is useful to set up new lightpaths using minimum resources.

In this thesis we have investigated the following optimal lightpath allocation

problems in translucent networks:

• Dynamic lightpath allocation (DLA),

• Dynamic survivable lightpath allocation (DSLA), and

• Static lightpath allocation (SLA).

The DLA and the DSLA runs only after the RPP problem has been solved,

so that the locations of the regenerators are known. The goal of DLA is to

determine, if possible, a route from the source to the destination of the new re-

quest, so that a lightpath (either transparent or translucent) can be established

from the source to the destination, and appropriate carrier wavelength(s) can

be assigned for the lightpath.

The objective of DSLA is similar to that of DLA except that, instead of

finding one route from the source to the destination of the new request, this

formulation determines two fiber-disjoint routes from the source to the desti-

nation, so that two lightpaths can be deployed (or ready to be deployed) for

each request, one is to serve as the primary (working) lightpath, and the other

is to serve as the backup (reserved) lightpath, ready to be used if the primary

lightpath fails due to any fault (most often due to a link failure resulting from
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a broken fiber) in the network.

The input to both the DLA and the DSLA problems include the source

and the destination of the new request for communication, the physical topol-

ogy of the network with relevant network parameters, e.g., the locations of

the regenerator nodes, the lengths of the individual optical fibers connecting

pairs of nodes, the number of carrier wavelengths supported by each fiber,

the optical reach for the network. The input also includes details of all the

existing lightpaths in the network, when the new request for communication

is processed.

When solving the SLA, the locations of the regenerators are not known.

The goal of the SLA problem is to i) identify the locations of the regenerator

nodes to minimize the total number of regenerations required, considering

all the lightpaths to be deployed, ii) the routes of all the lightpaths through

the physical topology, and iii) and assign the carrier wavelength(s) for each

lightpath. The input to the static lightpath allocation problem includes the

physical topology of the network with relevant network parameters e.g., the

lengths of individual optical fibers connecting two nodes, the umber of carrier

wavelengths supported by each fiber, the optical reach for the network and a

list of requests for data communication.

1.5 Solution Outline and Contributions

1.5.1 A Branch, Price and Cut Approach for Optimal Traffic Groom-

ing

We have studied the problem of finding an optimal solution of the non-bifurcated,

static traffic grooming problem. To find an optimal solution, conventionally
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the problem is formulated as an Binary Integer Linear Program (BILP). We

have used a technique for solving ILP’s, called the Branch, Price and Cut

(BPC) [82] algorithm, using the arc-chain representation to solve this prob-

lem. We have shown that our approach has the following advantages:

• our formulation for the problem, where we repeatedly solve a LP, uses

a significantly smaller basis size, so that each iteration of the simplex

process [18] runs faster than formulations based on standard network

flow techniques,

• the representation satisfies the requirements of the Generalized Upper

Bounding [18], which can be exploited to further expedite the simplex

algorithm,

• most of the variables in our LP automatically assume a binary value, so

that we have to carry out branching relatively infrequently,

• it is possible to develop a very efficient pricing policy, so that the entering

column can be found quickly,

• it is possible to restrict the search space significantly by using additional

cutting planes based on the concept of lifting constraints [82].

The net result is an ILP formulation that produces optimal results much

faster than conventional formulations. This is clearly supported by the exper-

imental results we have presented in Section 3.5.
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1.5.2 A Branch and Cut Approach for Optimal Regenerator Place-

ment

To solve the RPP problem, we have presented two Mixed Integer Linear Pro-

grams (MILP). The first one is a compact MILP formulation based on stan-

dard network flow programming techniques using the node-arc formulation.

To the maximum extent possible, we have replaced binary variables by con-

tinuous variables, with requisite constraints so that these continuous variables

are constrained to have a value of 0 or 1 only. This made the formulation

faster. This formulation is simple to implement and can be readily solved by

a commercial solver, such as the CPLEX [36] to produce optimal solutions for

small and medium size networks within a reasonable amount of time. The

second formulation is interesting, since it efficiently solves the RPP problem

optimally for relatively larger networks. Here we have used a branch-and-cut

approach [45] to solve the RPP problem. The formulation has an exponential

number of constraints, known only implicitly. However, our experiments re-

veal that we only need a relatively small number of such constraints, so that

the basis size is, in general, quite small and the LP relaxations can be solved

very quickly. Experimental results (Section 4.4) clearly show our branch and

cut formulation can handle large networks beyond the capacity of conventional

MILP’s.

1.5.3 Optimal Lightpath Allocation

In [67], an important restrictive property of RRP was identified, which was

not been taken into account in any earlier algorithm for RRP. We have taken

account of this property in our algorithms for DLA and DSLA. We have also
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identified some special characteristics of static lightpath provisioning in trans-

lucent networks that have not been reported earlier.

1.5.3.1 Dynamic Lightpath Allocation

We have presented an ILP formulation to solve DLA in translucent optical net-

works that works within a reasonable time with small networks. This serves

as a benchmark for our second approach for larger networks. Our second

approach is based on the A* algorithm [32], and uses an admissible heuris-

tic. This produces near-optimal solutions in a fraction of the time needed for

optimal solutions.

1.5.3.2 Dynamic Survivable Lightpath Allocation

We have presented two ILP formulations for DSLA. The formulations are,

to some extent, similar to the formulation for DLA. These formulations use

the concept of shared path protection [88]. The first one is an formulation

that finds the optimal solutions after an exhaustive search. Due to the large

number of binary variables, this formulation works only with small networks.

For larger networks we have proposed the second formulation which reduces

the search space significantly and works much faster. One problem with the

second formulation is that, due to the reduced search space, it occasionally

fails to find a solution, even when a feasible solution exists.

1.5.3.3 Static Lightpath Allocation

We have proposed an ILP formulation for SLA, which finds an optimal solution

to the problem. For larger networks we have proposed a two-step heuristic.
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The first step of the heuristic uses another ILP to determine a preliminary

route for each lightpath to be set up. The second step uses a search algorithm,

that takes the preliminary route as its input and solves the RWA problem

where the actual route used by a lightpath is allowed to differ from the pre-

liminary route, if needed. Our proposed heuristic can produce “near optimal”

solutions using only a fraction of the time needed to obtain an optimal solution.

1.6 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2 we have reviewed

basic concepts of WDM optical networks, traffic grooming, wide area optical

networks, translucent optical networks and some Operations Research (OR)

techniques which we have used in our investigation. We have presented our

work on optimal traffic grooming in Chapter 3. In Chapter 4 we have pre-

sented our research on optimal regenerator placement in translucent optical

networks. Chapter 5 include our works on lightpath allocation in translucent

networks. We have concluded this thesis, with our suggestions for future works,

in Chapter 6.
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Chapter 2

Review on Related Topics

This chapter reviews topics relevant to the research reported in this thesis

including

• WDM optical networks

• Operations Research (OR) techniques for solving Integer Linear Problems

useful for WDM network design.

2.1 WDM Optical Networks

A single optical fiber has a potential bandwidth of nearly 50 Terabits per sec-

ond (Tbps), which is about four orders of magnitude higher than the currently

achievable electronic processing speed of a few gigabits per second (Gbps) [3].

Because of this limitation of the speed of electronic processing, it is not pos-

sible to exploit the entire bandwidth of optical fibers by using only one high

capacity optical signal/fiber, and it is desirable to find an effective technology

that can efficiently exploit the huge potential bandwidth capacity of optical



2 Review on Related Topics 15

fibers. The emergence of wavelength division multiplexing (WDM) technol-

ogy has provided a practical solution to meeting this challenge. With WDM

technology, multiple optical signals, using different carrier wavelengths, can be

transmitted simultaneously and independently over a single fiber, with each

signal carrying data at a rate of a few gigabits per second (Gbps). WDM tech-

nology has become popular, since it significantly increases the usable band-

width of an optical fiber [93]. In WDM optical network, a lightpath is defined

as an all-optical connection from one end-node to another, used to carry data

in the form of encoded optical signals. Such a lightpath always starts from

an end-node, traverses a number of fibers and router/end-nodes, and ends in

another end-node.

In the following sections we have discussed some of the fundamental optical

devices and technologies that are used in WDM optical networks.

2.1.1 Optical Fibers

Optical fibers are long, thin strands of glass arranged in bundles called optical

cables and are used to transmit optical signals over long distances. An optical

fiber consists of a cylindrical core of silica (Figure 2.1), with a higher refractive

index, surrounded by cylindrical cladding, also of silica, with a lower refractive

index [3]. The idea of optical communication using a fiber is that, if an optical

signal passing through an optical medium with a higher refractive index, say

µ1, meets another optical medium with a lower refractive index, say µ2, at an

angle greater than the critical angle sin−1µ2/µ1, total internal reflection takes

place where the signal is entirely reflected back into the denser medium [3].

Optical signal propagates through the core of the fiber using a series of such

total internal reflections (Figure 2.2).
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Figure 2.1: Cross-section of an optical fiber

Figure 2.2: Propagation of optical signal using total internal reflection

The data transmission capacity (or bandwidth) of a fiber is strongly de-

pendent on the length and the quality of the fiber. The longer a fiber or the

lesser the quality, the lower is the achievable transmission rate [10]. We will

discussed later that the transmission rate of an optical fiber also depends on

other physical properties of the optical fibers as well as the optical devices

used.

2.1.2 WDM Technology

Wavelength division multiplexing (WDM) is an optical multiplexing technol-

ogy used to efficiently exploit the huge bandwidth capacity of the optical

fibers. It is conceptually similar to frequency modulation (FM) technique that

is being used in radio communication systems for over a century. The basic
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principle is to divide the huge bandwidth of an optical fiber into a number of

non-overlapping sub-bands or optical channels1 and transmit multiple optical

signals simultaneously and independently in different optical channels over a

single fiber [3].

The attenuation of an optical signal propagating through a fiber is ac-

ceptably low (around 0.2 dB/km) in the wavelength band of 1260 to 1675

nanometers (nm). One is centered at 1300 nanometers (nm) and the other at

1500 nm. Within these intervals, the band from wavelengths 1530 to 1565 nm

is called the C-band (conventional band) and is widely being used for optical

communication in WDM networks [93].

Using WDM technology, a single optical fiber can carry a number of op-

tical signals. The range of wavelengths allowed for each signal must be non-

overlapping. It is convenient to visualize the available bandwidth of an optical

fiber (such as the C-band) as a set of ranges of wavelengths or, as they are

usually called, channels. Each signal is allotted a distinct channel such that

each channel has the sufficient bandwidth to accommodate the modulated sig-

nal. In order to avoid any interference between different signals, each channel

is separated from its neighboring channels by a certain minimum bandwidth

called channel spacing (Figure 2.3). Typically, a channel bandwidth of 10 GHz

and a channel spacing of 100 GHz are currently being used. This means that

the C-band can accommodate up to 80 channels, each having a bandwidth

of 10 GHz. Shorter channel spacing (25 GHz) will lead to as many as 200

channels in the C-band alone.
1The term “channel” is interchangeably used with carrier wavelength in optical network com-

munity.
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Figure 2.3: Signal bandwidth and channel spacing (modified from [58]).

2.1.3 Optical Add-Drop Multiplexers (OADM)

An optical add-drop multiplexer (OADM) is a device used for multiplexing

and routing different channels of optical signals into or out of an optical fiber

in a WDM network system (Figure 2.4). The word “add” here refers to the

capability of the device to add one or more new optical signals using an unused

channel to an existing set of WDM signals, each using a different channel, and

the word “drop” refers to the capability to drop (i.e., remove) one or more

optical signals received by the device as inputs.

Figure 2.4: Schematic diagram of an OADM

A traditional OADM consists of three stages: an optical demultiplexer,
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an optical multiplexer and a method of reconfiguring the paths between the

optical demultiplexer, the optical multiplexer and a set of ports for adding and

dropping signals. The optical demultiplexer separates the signals on the input

fiber, using different wavelengths and directs them to the optical multiplexer or

to the drop ports as it has been configured. The optical multiplexer combines

the incoming optical signals, which are not routed to the drop ports, with the

signals received at the add ports, onto a single output fiber.

2.1.4 Wavelength Routers (λ Routers)

Wavelength routers (Figure 2.5) - which are also called λ (Lambda) routers, or

more frequently an Optical Cross-Connects (OXC ) - are normally positioned at

any end-node or network junction points or router nodes. In an OXC, optical

signals from an incoming fiber are first demultiplexed, then the demultiplexed

wavelengths are switched by optical switching modules. After switching, the

optical signals are multiplexed onto an outgoing fiber by optical multiplexers.

The whole process is carried out without going through any O-E-O conversion.

Figure 2.5: Wavelength Router (Optical Cross Connect)
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2.1.5 Optical Transmitters and Receivers

An optical transmitter is a device that accepts an electronic signal as its input,

processes this signal, and uses it to modulate an optoelectronic device, such

as an LED or an injection laser diode, to produce an optical signal capable

of being transmitted via an optical transmission medium [29]. An optical

receiver is a device that accepts an optical signal as its input, processes this

signal through an electro-optical device to convert it into an electronic signal

to be further processed by electronic devices.

Electronic

Domain
Optical

Domain

Figure 2.6: Optical Transceivers (modified from [77]).

Fiber optic transceivers (Figure 2.6) include both a transmitter and a re-

ceiver in the same component. These are arranged in parallel so that they

can operate independently of each other. Both the receiver and the trans-

mitter have their own circuitry so that they can handle transmissions in both

directions.

2.1.6 Wavelength Converters

In general, a lightpath operates on the same channel across all the fiber links it

traverses, in which case the lightpath is said to satisfy the wavelength continuity
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constraint [11]. Wavelength converters are devices used at the router nodes of

WDM or DWDM networks such that a lightpath traveling through multiple

fiber links can be assigned different wavelength channels in different links.

Using wavelength converters in a network is expensive, but it can eliminate

the wavelength continuity constraint of a lightpath so that, in a network with

wavelength converters at each node, a lightpath may be assigned different

channels on successive fibers used in its route, which greatly reduces number

of required channel in a fiber.

2.1.7 Physical Topology

The physical topology of a network depicts the physical architecture of a net-

work including the relative positions of the end-nodes, router nodes and the

optical fibers interconnecting these nodes. An end-node in a WDM network

is typically a computer in the network where data for communication is either

generated or received. A router node in a WDM network is a node containing

an OXC, that has the capacity to route data from different incoming fibers to

different outgoing fibers. A simplified representation of the physical topology

of a 4-node network with 3 lightpaths (Figure 2.7(a)) is modeled as a graph

(Figure 2.7(b)) where each end node (or router node) in the network is repre-

sented as a vertex in the graph and each fiber optic link between two nodes is

represented as an edge [59]. Each fiber link is usually bi-directional, so that

the graph is undirected.
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(a) Network with 3 lightpaths. (b) Physical topology.

Figure 2.7: A 4-node network and corresponding physical topology.

2.1.8 Logical Topology

A logical topology describes the communication capabilities of a WDM net-

work at the optical level and is modeled by a directed graph. Each vertex in

the graph corresponds to an end-node in the physical topology and, if there

is a lightpath from end-node x to end-node y, there is an edge x → y in the

graph [59] (also known as a logical edge). An example of a logical topology of

a 4-node network (Figure 2.7(a)) having 3 lightpaths from node 1 to 2, 2 to 4

and 1 to 3 is shown in Figure 2.8.

Figure 2.8: Logical topology of a 4-node network.
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2.1.9 Traffic Grooming

Each lightpath in a WDM network can carry data at a rate between 2.5

Gbps to 10 Gbps, depending on the technology used. Currently, Dense-WDM

(DWDM) technology can already achieve up to 320 wavelengths per fiber [83],

with each wavelength carrying 40Gbps [5], for a total transmission capacity of

up to 12.8 Terabits per sec (Tbps). Traffic Grooming in WDM can be defined

as a family of techniques for combining a number of low-speed traffic streams

from users, so that the high capacity of each lightpath may be used as effi-

ciently as possible. Traffic grooming minimizes the network cost in terms of

transceivers and optical switches [3].

Traffic grooming is composed of a rich set of problems, including net-

work planning, topology design, and dynamic circuit provisioning [74]. Traffic

grooming strategies can be classified into two broad categories - static traffic

grooming [97] and dynamic traffic grooming [100]. Static grooming is used

when the traffic requests are known in advance and the traffic pattern does

not change significantly over relatively long periods of time. In this case, it is

reasonable to spend a considerable amount of time to determine an optimal

grooming strategy. Dynamic grooming is appropriate when the traffic pattern

of user requests is not known in advance, and connections must be set up

on arrival of a request. The traffic grooming problem based on static traffic

demands is essentially an optimization problem. The problem may be viewed

differently from different perspectives. One perspective is that, for a given

traffic demand, the design has to satisfy all traffic requests as well as minimize

the total network cost. The other problem is that, for a given set of resources

and traffic demands, maximize the network throughput, i.e., the total amount

Optimization of WDM Optical Networks Quazi R Rahman



2 Review on Related Topics 24

of traffic that is successfully carried by the network [92]. In recent years, there

has been an increasing amount of research activity on the traffic grooming

problem, both in the academia and in the industry.

Traffic grooming can use either the bifurcated model or the non-bifurcated

model [24]. In the non-bifurcated model, each data stream for a user is com-

municated, using a single logical path from the source of the data stream to its

destination. In the bifurcated model, each user data stream is communicated

using one or more logical path(s) from the source of the data stream to its

destination. In other words, in the non-bifurcated model, whenever there is a

user request for communication from a source end-node to a destination end-

node, the data stream corresponding to request becomes part of the payload

of each lightpath in the selected logical path. This model has been adopted

in [26, 33, 88]. In the bifurcated model, the data stream, corresponding to

any user request for data communication, is allowed to split into an arbitrary

number of data streams at any intermediate point, where the resulting data

streams, each having a lower data communication rate than that of the re-

quest, is carried by a logical path from source to destination. This process of

splitting may occur multiple times as needed. The bifurcated model allows

more efficient use of network resources but the non-bifurcated model has a

number of technological advantages [88].

When developing a traffic grooming strategy, an important objective is to

minimize the amount of network resources used. The congestion of a logical

topology is defined as the total amount of traffic carried by the lightpath that

carries the maximum traffic. A typical objective for non-bifurcated traffic

grooming is as follows:
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Given a logical topology of a network and a set of requests for data

communication, find the route, over the logical topology, for the traffic

corresponding to each request for data communication, such that the

congestion of the network is as low as possible.

The traffic grooming problem has been extensively studied by the research

community. Authors in [16] have developed heuristic algorithms for traffic

grooming in unidirectional SONET/WDM ring networks. Algorithms for traf-

fic grooming in WDM networks to reduce the cost of transceivers appear in [42].

A new framework for computing bounds for the problem of traffic grooming in

WDM ring topologies is discussed in [24]. The authors in [78] proposed a new

capacity correlation model to compute the blocking performance on a multi-

hop single wavelength path for grooming traffic in WDM mesh network. [79]

studied the performance of dynamic grooming policies for establishing low-

rate dependable connections in WDM mesh networks. In [98], the authors

proposed a new generic graph model to solve the problem of traffic groom-

ing in heterogeneous WDM mesh networks, using various grooming policies

and traffic-request-selection schemes. Various problems faced for grooming

dynamic traffics in WDM optical networks to minimize the network cost have

been identified in [23]. In [84] the problem of dynamic traffic grooming in

WDM mesh networks has been addressed, by first designing a preliminary

static logical topology, based on estimated traffic loads, and then routing each

client call, arriving dynamically, on the established logical topology. Two

exact formulations for employing backup multiplexing and dedicated backup

reservation with minimizing the number of primary path sharing a link for

enabling traffic grooming capability in the design of survivable WDM mesh
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networks have been proposed in [26]. In [35] the authors proposed protection

for multi-granular optical networks against near-simultaneous dual-failures us-

ing capacity re-provisioning. In his book [74], the author provided a detailed

coverage of survivability and traffic grooming in WDM optical networks. Three

approaches for grooming a connection request with shared protection based

on generic grooming node architecture for survivable traffic grooming have

been proposed in [51]. A dependable traffic grooming algorithm implement-

ing shared path protection in WDM mesh networks appears in [83]. Three

efficient heuristic grooming algorithms considering both dedicated and shared

path protection at the connection level have been discussed in [89]. In [75],

the authors proposed a quasi-optimal method to obtain the solution of the

non-bifurcated generalized dedicated protection (IGDP) problem. They have

formulated the IGDP problem and introduced different SRLG scenarios to

serve as the input of the routing problem. A fast and efficient meta-heuristic

algorithm, based on Bacterial Evolutionary Algorithm, has also been intro-

duced to find a minimum cost non-bifurcated generalized dedicated protection

solution. Based on an auxiliary graph, the authors in [46] have formulated

the problem of network virtualization over WDM networks as a MILP to solve

both node mapping and link mapping (traffic grooming) optimally. Based

on a grooming graph, they have proposed two greedy heuristics to solve the

node-mapping and link-mapping sub-problems separately.

2.1.9.1 Traffic Matrix

Traffic Matrix specifies the amount of traffic (data communication request),

using some convenient unit to represent data transmission rates, to be trans-

mitted between each pair of nodes in the network [23]. In general, the data
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Table 2.1: An example of a traffic matrix

Nodes 1 2 3 4
3xOC-3 3xOC-3

1 0 1xOC-6 2xOC-6 1xOC-6
1xOC-12 1xOC-24

2 0 0 1xOC-12 1xOC-3
1xOC-24 1xOC-12

3 12xOC-3 1xOC-24 0 1xOC-3
1xOC-6 1xOC-6

1xOC-3
4 5xOC-6 1xOC-6 1xOC-6 0

1xOC-12 1xOC-24

communication rate is expressed in OC − n notation2, where OC − 1 is equal

to 51.8 Mbps. If there are N nodes in a network, the corresponding traffic

matrix is an N ×N matrix and denoted by T = {tsd}, where tsd is the traffic

request from node s to node d (Table 2.1).

2.1.10 Routing and Wavelength Assignment (RWA)

The logical topology in a WDM optical network is defined using a set of logical

edges or lightpaths. To establish a lightpath, it is important to find a suitable

route for it in the physical topology and assign a channel to it for every fiber

in its route. Given a physical topology and a set of connection requests, the

problem of setting up of lightpaths and assigning channels to each of these

lightpaths is known as Routing and Wavelength Assignment (RWA) problem

[92]. In a network where no wavelength converter is available, a lightpath must

2Data communication rate can also be expressed as the fraction of the capacity of a lightpath.
It can also be expressed by the actual data rate as n Mbps or n Gbps.
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be assigned the same channel on all the fiber links it traverses, satisfying the

wavelength continuity constraint. In networks with full wavelength converters

at each node, the channel used by a lightpath may vary from one fiber to

another.

The RWA problem is usually considered under two alternative traffic mod-

els. When the set of connection requests is known in advance (for example,

given in the form of a traffic matrix) the problem is referred to as static RWA,

while when the connection requests arrive at random times and are served one

by one, the problem is referred to as dynamic RWA.

2.1.11 Fault Management in WDM Optical Networks

As WDM optical networks are becoming more and more popular for today’s

fast telecommunication networks and the internet, the demand for a fault free

or fully fault tolerant network system is also increasing. Since a huge amount

of data can travel at a tremendous speed through the fibers of the optical

networks, even a momentary interruption of any component of the network

system can cause the loss of a large amount of data.

As optical networks are being rapidly deployed on a global scale, which

involves millions of kilometers of optical fibers and thousands of other network

components, protecting a network from different types of faults and failures

have become particularly important.

In a WDM network, failure may occur in any component of the network.

This includes link failures, node failures, channel failures and/or software fail-

ures. Link failure is the most common type of fault where the fiber constituting

a link between two nodes in the network does not permit data transmission.

Since a single fiber can carry 100 or more lightpaths, and each lightpath can
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carry data at the rate of 2.5 Gbps to 10 Gbps, even a brief disruption of this

traffic is a serious matter [3].

2.1.11.1 Fault Management Techniques

There are two major techniques that are in use to handle link failures in optical

networks:

1. Protection based techniques.

2. Restoration based techniques.

Protection-based techniques are based on the provisioning of backup paths

to recover from a failure [55]. During the period of establishing lightpaths,

network resources are kept reserved, such that, when a failure occurs, data

can be rerouted around the affected links/lightpaths. In a traditional path

protection scheme, if a logical edge is established from node i to node j, then

resources for two lightpaths are actually reserved. The first one, called the

primary lightpath, carries the data under normal fault-free conditions and the

second one, called the backup lightpath, which is link-disjoint with respect

to the primary lightpath, carries data only when the primary lightpath fails.

Whether only the primary lightpath or both the primary and the backup

lightpaths would be established, depends upon the network policy. In case

of a network failure, such as a broken link on the primary path from node i

to node j, the primary lightpath from node i to node j is disrupted. In this

situation the data from node i to node j are sent through the corresponding

backup lightpath. Since a primary lightpath and the corresponding backup

lightpath are link-disjoint, there will always be a valid lightpath from node i

to node j, for any single link failure scenario. This approach is more efficient
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in respect of response time, but the drawback of this approach is that the

resources allocated to the backup paths remain idle, and are wasted under

normal conditions.

Restoration-based techniques, on the other hand, dynamically search for

the spare capacity in the network to establish new lightpaths in order to re-

store the affected services after a network failure is detected [56]. There is

no allocation of resources for backup paths at design time. Such techniques

are more efficient in terms of resource utilization. However, restoration takes

longer time than protection to restore services (since backup paths are not

known in advance) and there is no guarantee that all the affected lightpaths

can be restored. In summary, both protection and restoration schemes require

the setting up or the creation of new lightpaths, when a fault is detected.

2.1.12 Physical Layer Impairments in Optical Networks

The existence of physical limitations (impairments) of fibers and optical com-

ponents significantly affect the quality of transmission (QoT) and limit the

distance an optical signal can travel before its quality degrades to an un-

acceptable level. These impairments include amplified spontaneous emission

noise (ASE), chromatic dispersion (CD), polarization mode dispersion (PMD),

filter concatenation(FC) etc., and they are generally termed as the linear im-

pairments.

There are other impairments that also affect the quality of transmission

(QoT) and are termed as the non-linear impairments, such as self-phase mod-

ulation (SPM), cross-phase modulation (XPM), four-wave-mixing (FWM).

[17,58].

Linear impairments affect each of the wavelengths or optical channel in-
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dividually. These impairments are dependent upon the quality of the optical

devices and the distance along the fibers used by an optical signal. On the

other hand, nonlinear impairments cause disturbance and interference between

adjacent optical channels [2] in the same optical fiber. These impairments also

cause interference between signals using the same channel on different fibers

passing through an optical device. The severity of these impairments de-

pend upon the WDM technology used, the number of optical devices it passes

through, the proximity of the other channels carrying signals and the num-

ber of signals passing through a device using the same channel on different

incoming/outputgoing fibers.

Taking into consideration all the linear and nonlinear impairments, when

designing WDM networks, considerably complicates the problem. To simplify

the problem, the concept of optical reach allows designers to consider the linear

impairments affecting the quality of transmission (QoT) of an optical signal.

The optical reach is defined as the distance an optical signal can travel before

its quality degrades below a threshold level due to the effects of all the linear

impairments. An optical signal that has to be communicated over a distance

more than the optical reach, must be regenerated at some node in its path

before it exceeds the optical reach limit.

2.1.13 Wide Area Optical Networks

With the evolution of technology, optical networks have become wide area

networks reaching almost every corner of the globe. A modern day optical

network may have fibers connecting individual nodes which are thousands of

kilometers apart. To establish any communication path beyond the optical

reach, which typically ranges from 800 to 3000 kilometers [13], it is necessary
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to reamplify, reshape and retime the optical signal to restore its quality. These

three processes to cleanup and rectify the optical signals are often jointly called

as the 3R regeneration [27].

3R regeneration of optical signal using Optical-Electronic-Optical (O-E-

O) conversion is the most popular and mature technique available [86]. The

fundamental principle of O-E-O regeneration is to convert an optical signal

into the electronic format first, so that the time and shape can be restored,

and then use the electronic signal to modulate an optical laser to generate a

new optical signal.

Re-amplification is usually done by optical amplifiers. Amplification is not

dependent on the bit-rate or the data format, and multiple WDM channels can

be amplified simultaneously. However, crosstalk is also amplified and noise is

added. WDM channels have to be regenerated individually for the other two

regenerations. Re-shaping enables suppression of noise and crosstalk. Re-

timing requires an optical clock and a suitable architecture of the regenerator

to perform a clocked decision function [64].

Besides the O-E-O technique, it is also possible to carry out 3R regener-

ation in the all-optical domain without converting an optical signal into an

electronic signal. The advantage of all-optical 3R regeneration is its bit-rate

transparency, without a bottleneck from electronic modulation. However, the

all-optical 3R regeneration technique is not yet mature and is still very expen-

sive [86].

Optical networks may be divided into three basic categories depending

upon the concentration and location of 3R regenerating nodes, such as, opaque

(also called fully-switched), transparent (also called all-optical) and translucent

networks [54].
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2.1.13.1 Opaque Networks

In an opaque optical network, a signal from a transmitting node to a receiving

node undergoes optical-electronic-optical (O-E-O) conversion to employ 3R

regeneration in each intermediate node it passes through [88] (Figure 2.9).

Hence in opaque optical network, a single optical hop of a lightpath never

spans more than one physical fiber link in the network [88]. Opaque networks

with large numbers of nodes tend to be more expensive in terms of time and

money as each O-E-O conversion needed for 3R regeneration increases the

delay and each 3R regeneration device has a cost associated with it [48,60].

Fibers

OEO Nodes

Fibers

OEO Nodes

Figure 2.9: An opaque optical network

2.1.13.2 Transparent Networks

In a transparent optical network, no signal goes through any O-E-O conversion

in any intermediate node in the path from its source to its destination. Signals

remain in optical domain from respective source to destination. Though the

problems of opaque networks can be overcome in transparent networks, these

types of networks are not suitable for today’s long haul or ultra long haul

networks as optical signals can travel only a limited distances without any

type of regeneration (Figure (2.10)).
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Figure 2.10: A transparent optical network

2.1.14 Translucent Networks

To overcome the shortcomings of both transparent and opaque networks, the

notion of translucent networks was first proposed in [54]. In a translucent

network, 3R regenerators are sparsely distributed among a subset of all the

nodes of the network (Figure 2.11). Signals are allowed to traverse through

the fibers along their respective paths, as far as possible, before its quality falls

below a threshold level, at which point only, the signals are subjected to 3R

regeneration to restore their quality. This reduces the cost of regenerations as

only a few nodes have to have 3R regeneration facilities. On the other hand,

a signal can travel a long distance as it may be regenerated when needed,

making it possible for the network to be as wide as necessary. In [54] there is a

comparative study of the performances of translucent, opaque and transparent

networks. It was shown that translucent networks perform better than both

of the other types of networks with similar network parameters.

2.1.14.1 Translucent Lightpath

A lightpath in a translucent network [54], that goes through at least one 3R

regeneration, is often called a translucent lightpath. A translucent lightpath

starts from a source node, say S, uses a path S → x1 → x2 → · · · → xp →
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Figure 2.11: A translucent optical network

Rk → · · · → Rp → · · · → Rq → · · · → D and ends at the destination node

D. Each of the paths S → · · · → Rk, Rk → · · · → Rp, . . ., Rq → · · · → D

has a length that does not exceed the optical reach r and Rk, Rp, · · · , Rq are

regenerator nodes where the incoming signal undergoes 3R regeneration. It is

convenient to view a translucent lightpath as a concatenation of components

where each component is a transparent lightpath. Each transparent lightpath

component is often called a segment. A translucent lightpath from S to D,

using two regenerators R1 and R2, and three segments are shown in Figure

2.12. In general, in a translucent lightpath from S to D, the first segment

is from S to some regenerator (R1 in Figure 2.12), the last segment is from

a regenerator (R2 in Figure 2.12) to D and the remaining segments are from

one regenerator to another (in Figure 2.12, there is only one such segment,

from R1 to R2). We assume that all-optical wavelength converters are not

available, so that the wavelength continuity constraint [3] must be satisfied for

each segment.

2.1.15 Designing Translucent Networks

The following two problems in designing translucent networks have received

significant attentions [12,14,68,70–72,85–88,90,95]:
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Figure 2.12: A translucent lightpath

• The Regenerator Placement Problem (RPP) [12,14,68,70–73,86,95]

• The Routing with Regenerators Problem (RRP) [4, 85,87].

The two problems are defined as follows:

Regenerator Placement Problem: Given a physical topology, find the min-

imum number of regenerator nodes and their locations, so that, for each

node in the network can communicate with every other node, using either

a transparent or a translucent lightpath.

Routing with Regenerators Problem: Given a network topology with se-

lected nodes having 3R regeneration capability, and the details of the

lightpaths already in existence, find an “optimal route” to establish a

lightpath, in response to a new request for communication, using a min-

imum number of 3R regenerators.

An example of a long haul network with distances between the nodes in km

is shown in figure 2.13. If the optical reach is 2000 km, it is clear that an optical

signal from node A cannot reach node D without 3R-regeneration. However,

communication between A and D can be established by placing a regenerator

either at B or C. It may be verified that a minimum of 2 regenerators are
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needed for this network and one solution is to place these regenerators at nodes

B and D. When designing a translucent network, the RPP problem must be

solved before tackling the RRP problem.

 

A 

G 

F 

B C D E 
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1500 1500 

1800 

1000 

1500 

Figure 2.13: Long haul optical network with distances between the nodes in km.

Both the RPP and the RRP are NP-complete [66]. Many researchers have

proposed integer linear programs (ILP) for both the problems that can find

optimal solutions within a reasonable amount time only for networks with

relatively small number of end-nodes. To find “near optimal solutions” fairly

quickly and for larger networks, researchers have suggested a number of heuris-

tics.

2.1.15.1 Regenerator Placement Problem

Regenerator placement problem has been studied extensively [12,14,28,66–68,

70–73,86,95]. In [27] the authors studied two strategies for designing a Trans-

lucent Wide Area Network (TWAN). In the first strategy, each node was a

potential candidate to have regeneration capability. A lightpath is allowed to

traverse as many links as possible until there too much noise accumulated, and

a regenerator was allocated to clean up the signal. In the second strategy the

network is divided into several regions which they called the islands of trans-
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parency. A lightpath connecting two nodes within an island remains in the

optical domain. A lightpath connecting nodes in different islands may or may

not go through regeneration at the border nodes (which they call hub nodes)

depending upon the quality of the signals. In [95] the authors investigate the

dimensioning problems for the placement of regenerators in an optical trans-

port network to provide signal-quality guaranteed connections. The authors

have developed algorithms to use the regenerators in an efficient manner effec-

tively reducing the network blocking probability. The authors in [65] evaluated

the regenerator allocation strategies in order to compensate for signal degra-

dation in all-optical networks. They have pointed out that the transmission

impairments are modeled in a cumulative way with respect to path length and

the number of traversed nodes. The authors formulated mathematical pro-

grams in order to minimize the number of required transponders and fibers.

In [47] the authors compared unavailability of port relating to translucent and

opaque optical networks.

In [12], the authors have used the connected dominating set (CDS) ap-

proach to overcome most of the shortcomings of the routing-based approach

to the RPP by earlier researchers. The authors of the paper [14] have intro-

duced a new game theoretic formulation for the design and routing of resilient

translucent networks that considerably decreases the optimization time and

provides near optimal solutions. They have also presented an ILP model to

be used as a reference to evaluate the game theoretic algorithm performances.

Both of their formulations include pre-calculation of primary and link-disjoint

protection paths and take into account the system maximal optical reach dis-

tance. In [71], the authors proposed a network dimensioning method that al-

locates a minimum number of 3R regenerators to optimum locations to build
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a cost-effective translucent optical network by combining the advantages of

link-based and path-based design approaches.

The authors of the paper [53] proposed a combined approach of regenera-

tor placement based on the estimated signal degradation along the links and

nodes and constraint-based routing (CBR) to set up paths according to the

demands. Their approach of combined regenerator placement and routing,

both based on physical degradation effects, significantly decreases the network

blocking probability. The authors of [63] proposed three novel solutions for

distributing shared regenerator information. The RPP problem has been iden-

tified as an NP-complete problem [67]. A procedure has been outlined in [67],

using the concept of Labeled Connected Dominating Sets (LCDS), to solve the

RPP problem. This approach removes the possibility of an invalid path that

could be produced by the procedure in [12]. The authors in [28] presented

a theoretical framework to deal with the RPP problems including polyno-

mial time algorithms and approximation algorithms. In [66] The authors have

studied both the regenerator placement and routing problems and presented

complexity results for them. They have shown that the RPP can be effectively

solved using an approximation algorithm for the minimum connected domi-

nated set problem. They have also pointed out that the algorithm presented

for the solution of RPP in the paper [28] may sometimes produce invalid so-

lutions. They have shown that the RRP can be formulated as a Minimum

Path Concatenation (MPC) problem and have provided the NP-completeness

proof of the MPC problem. The paper [15] developed a graph transformation

procedure that simplifies the RPP problem equivalent to the maximum leaf

spanning tree problem. They have developed a problem reduction procedure,

three heuristics, and a post-optimizer for the RPP.
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2.1.15.2 Routing with Regenerators Problem

Since all-optical wavelength converters are not widely used, it is normally

assumed that each segment of a translucent lightpath satisfies the wavelength

continuity constraint. The carrier wavelength (or equivalently the channel

used) by a translucent wavelength may very well change at the regeneration

points, so that different segments constituting a translucent lightpath may

have different channel numbers assigned to them.

The authors of [90] studied the Routing and Wavelength Assignment (RWA)

problem and considered the need for 3R regeneration when the optical reach

for the signal (which they called transparent length) is exceeded. The authors

proposed a regeneration node selection algorithm called Max-spare. This algo-

rithm was compared with a Greedy algorithm in conjunction with two routing

algorithms, one of which favors the routes with fewer lightpaths sharing the

links in the routes, while the other favors the routes with the shorter lengths.

In [72] the authors compared two routing strategies considering restoration

based network survivability. One of which considers the segment-based restora-

tion scheme, where the transparent path segments between opaque nodes are

considered as the entities to be protected. The other strategy considers the

conventional schemes where the single spans or entire end-to-end paths are pro-

tected. They also presented an algorithm that can determine the placement of

minimum number opaque nodes to ensure that every node can communicate

with every other node. The authors of the paper [88] addressed the problem of

survivable lightpath provisioning in WDM networks, taking into consideration

optical-layer protection and some realistic optical signal quality constraints.

Their algorithm established a pair of link-disjoint lightpaths for each connec-
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tion, given a fixed network topology with a number of sparsely placed O-E-O

modules and a set of connection requests. In [85] a suite of dynamic routing

schemes were proposed, using dynamic allocation, advertisement and discovery

of regeneration resources to support sharing transmitters and receivers between

regeneration and access functions. A study of translucent wavelength routed

optical network, addressing both the regenerator placement and wavelength

routing problems under sparse regeneration in translucent networks appears

in [86]. In [94], the authors have adopted the distributed routing policy based

on Ant Colony optimized algorithm to efficiently solve the RWA problem in

optical networks.

2.2 Some Useful Operations Research (OR) Techniques

In general, optimizing optical networks problems are viewed as the Multi-

Commodity Network Flow (MCNF) problems [1]. Solving MCNF problems

typically involves Integer Linear Programs (ILP) or Mixed Integer Linear Pro-

grams (MILP). It is well known that the number of integer variables in a

MILP is critically important in determining the time needed to solve the for-

mulation [50]. Most of the MILPs for designing optical networks need binary

variables and can find solutions within a reasonable amount of time for rela-

tively smaller networks. For larger networks heuristics are mostly used.

Integer programming, using cutting plane and branch and bound tech-

niques have been investigated very widely within the Operations Research

(OR) community [30]. It is recognized that many interesting and practical

problems have special structures; and exploitations of such special structures

give the maximum opportunity of success with large problems [30]. Unfor-
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tunately, the diversity of special structures of these problems is such that

procedures that work well on one MILP problem are quite likely to do poorly

in another. It has been observed that solving problems involving a very large

number of integer variables is often possible by tailoring the algorithm to

the special structures of such problems. The following sections include brief

overviews of the OR techniques used in the investigations reported in this

thesis.

2.2.1 Branch and Bound Algorithm

Branch and bound (BB or B&B) is a general algorithm for finding optimal

solutions of various optimization problems [19,82]. It consists of a systematic

enumeration of all candidate solutions, where large subsets of fruitless candi-

dates are discarded en masse, by using upper and lower estimated bounds of

the quantity being optimized.

A branch-and-bound algorithm requires two tools [9]. The first one is a

splitting procedure that, given a set S of candidate solutions, returns two

or more smaller sets whose union covers S. This step is called branching,

since its recursive application defines a tree structure (the search tree) whose

nodes are the subsets of S. When the integer values are binary, the algorithm

uses a divide-and-conquer strategy to partition the solution space into two

subproblems and then recursively solves each subproblem.

Another tool is a procedure that computes the upper and the lower bounds

for the minimum (or maximum) value, within a given subset of S. This step

is called bounding. The key idea of the BB algorithm is that, in the case of

minimization problem, if the lower bound for some node A, in the subtree

being explored, is greater than the upper bound for the tree, then node A
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may be safely discarded from the search. This step is called pruning, and is

usually implemented by maintaining a global variable m (shared among all

nodes of the tree) that records the minimum upper bound seen among all the

subproblems examined so far. Any node whose lower bound is greater than m

can be safely discarded. The reverse is followed for a maximization problem.

Algorithm 1 gives an overview of the Branch and Bound algorithm for the

minimization of a Binary Integer Linear Problem (BILP). In this algorithm, P i

is the current subproblem under consideration.
−→
β ∗ is the incumbent optimal

solution.
−→
β i is the current LP solution value for problem P i. z∗ is the global

objective value. zi is the objective value for the current solution of P i.

Algorithm 1 Branch and Bound Algorithm (Minimize)
Input: Initial problem formulation P 0

Output: Incumbent optimal solution
−→
β ∗

1: List ← {P 0}
2: z∗ ←∞
3: while (List 6= ∅) do
4: P i ← choose problem from list(List)
5: (zi,

−→
β i) ← solve LP relaxation(P i)

6: if (P i is not feasible) || (zi ≥ z∗) then
7: fathom(P i)
8: else if (all values in

−→
β i are integers) then

9: (z∗,
−→
β ∗) ← (zi,

−→
β i)

10: fathom(P i)
11: else
12: (P i

1, P
i
2) ← branch(P i)

13: List ← List ∪ {P i
1} ∪ {P i

2}
14: end if
15: end while
16: return

−→
β ∗
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2.2.2 Branch and Price

A branch and price algorithm is a branch and bound algorithm and is useful

when the number of binary variables in an MILP is very large compared to the

number of constraints. In such cases, the columns of the constraints are defined

implicitly. While solving the relaxed LP, if a column is not present in the cur-

rent basis, then the corresponding variable is implicitly taken to have a value

of zero. The process of dynamically generating variables whose values should

be non-zero is called pricing. Hence, LP-based branch and bound algorithms

in which the variables are generated dynamically are known as branch and

price algorithms [7,20]. When using the branch and price technique, each LP

relaxation is solved initially with only a small subset of the variables present.

These variables correspond to the columns in the initial feasible solution. To

find an optimal solution the pricing problem is solved, to try to identify a col-

umn to enter the basis. If such a column is found, the LP is re-optimized. Such

columns and corresponding variables may be generated using, for example, the

implicit column generation technique in the Dantzig-Wolfe decomposition [21].

2.2.3 Branch and Cut

A branch and Cut algorithm is also a branch and bound algorithm in which

the cutting planes are generated as the branch and bound algorithm proceeds

[7]. Here each cutting plane is a valid inequality defined by the requirement

of binary variables. In the LP-based branch and bound, efficiency depends

substantially on the tightness of the relaxations, that is, how close is the LP-

optimal value to the IP-integer optimal value. The LP relaxations can be

tightened by adding globally valid inequalities, i.e., those that are valid for the
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original feasible set [82]. The goal is to prune the branch and bound tree as

much as possible. With additional constraints resulting from the “cut” phase,

when evaluating a node in the node queue, the size of the LP to be solved may

increase significantly. In other words, there is a trade-off - with many cuts,

solving the LP is slower but potentially may lead to solving fewer LP’s.

The method solves the linear program without the integer constraint using

the regular simplex algorithm [18]. When an optimal solution is obtained,

and this solution has a non-integer value for a variable that is supposed to

be integer, a cutting plane algorithm is used to find further linear constraints

which are satisfied by all feasible integer points but violated by the current

fractional solution [50]. If such an inequality is found, it is added to the linear

program, such that resolving it will yield a different solution which is hopefully

“less fractional”. This process is repeated until either an integer solution is

found (which is then known to be optimal) or until no more cutting planes are

found.

The function “CPXsetcutcallbackfunc” from CPLEX callable library [36]

is used to set and modify the user-written callback function to add cuts. The

user-written callback is called by CPLEX during MILP branch and cut for ev-

ery node in the solution tree that has an LP optimal solution with an objective

value below the global upper bound but which does have an integer solution.

Cuts that are added at a node remain part of all the subsequent subproblems.

Once cuts are added the current subproblem is re-solved and re-evaluated. If

the new LP solution is still does not have an integer solution and the objective

value is below the upper bound, the cut callback is called again.
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2.2.4 Branch, Price and Cut

A branch, price and cut (BPC) algorithm is a combination of all three algo-

rithms described before. This algorithm is especially useful to solve problems

with large number of variables as well as, large number of constraints to satisfy.

The algorithm starts with a small set of columns corresponding to the vari-

ables as well as, a small set of constraints corresponding to those variables.

As the algorithm proceeds, new (entering) columns are added replacing old

(leaving) columns. At the same time new valid constraints corresponding to

the binary variables are also added.

2.2.5 Knapsack Problem

The classic knapsack problem3 is the unbounded problem of filling a knapsack

of volume V taking items from n piles of items. For all i, the ith pile of items

contains an infinite number of identical items, each with a weight of wi and

volume vi. We are allowed to pick any number of items from each pile without

exceeding the total volume V of the knapsack. The objective is select items so

that the total weight of the knapsack, once it is filled, is as much as possible.

The Integer Linear Program formulation for the problem may be written

as follows:

maximize w1 · x1 + w2 · x2 + . . . + wn · xn (2.1)

subject to

v1 · x1 + v2 · x2 + . . . + vn · xn ≤ V (2.2)

3Summarized from http://www.ifors.ms.unimelb.edu.au/tutorial/knapsack/index.html
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x1, x2, . . . , xn ∈ {0, 1, . . .} (2.3)

Our interest is in the so-called “0-1 knapsack problem” in which the vari-

ables have a value of either 0 or 1. In other words, we are allowed to pick at

most one item from each pile and the problem is to find which items should

be placed in the knapsack so that the weight of the knapsack is as large as

possible. To handle this, constraint (2.3) has to be modified as follows:

x1, x2, . . . , xn ∈ {0, 1} (2.4)

2.2.5.1 0-1 Knapsack Inequalities

In order to find out inequalities defined by the requirements of integer variables,

0-1 knapsack inequalities are useful. Given a constraint,
∑n

j=1 aj · xj ≤ b

where xj ∈ 0, 1 for all j, the goal is to find a cut which is “strongest”, in

the sense that the inequality gives the most stringent possible restriction on

possible combinations of values of x1, x2, . . . , xn. The following definitions

and techniques are taken from [82]. The discussions are for the constraint
∑n

j=1 aj · xj ≤ b in the original LP and we will use N to denote the set

{1, 2, . . . , n}.

Definition 1:

A set C ⊆ N is a cover if
∑

j∈C aj > b.

Definition 2:

A set C ⊆ N is a minimal cover if C is a cover and there is no j ∈ C such

that C − {j} is a cover.

Definition 3:
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If set C ⊆ N is a cover,
∑

j∈C xj ≤ |C| − 1 is a valid inequality.

Starting with a minimal cover C and the corresponding inequality defined

above, details of an algorithm to determine a valid facet defining inequality is

available in [82].

2.2.6 Arc-chain Representation

Most mathematical formulations using Multi-commodity Network Flow (MCNF)

uses the node-arc representation [1], where many of the constraints are spec-

ified for each node in the network. For many interesting problems (e.g.,

minimum-cost multi-commodity network flow) the basis size, using the node-

arc formulation, can grow rapidly with the size of the network. For a large

network, this can become a serious problem, limiting the size of the network

that can be handled.

There is an alternate representation for network flow problems in the oper-

ations research community called the arc-chain representation [3]. A chain [8]

for a given commodity k from source Sk to destination Dk is defined as a se-

quence of edges (called arcs in [80]) representing a path [(Sk = i0 → i1), (i1 →
i2), . . . , (ip−1 → ip = Dk)] in the network from Sk to Dk. In this representa-

tion, a column in the basis either corresponds to some slack variable or to one

of the paths used by some commodity k.

In a network represented by graph G = (N, E), where N is a set of nodes

and E is the set of edges of the network, a chain may be represented by a

vector of |E| 1’s and 0’s, so that, if the ith element in the chain is 1 (0), the

ith edge does (does not) appear in the chain, for all i ∈ E. In general, in

a multi-commodity flow problem, for each commodity k ∈ K, there may be

many chains in the network since commodity k may use more than one path
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from its source to its destination.

One major advantage of the arc-chain representation is that, for many

problems, the basis size, especially for a large network, can be much smaller

than the node-arc representation.

To illustrate the concept, following example has been taken from [3] (slightly

modified). In this example
−→
Ck

j represents the jth chain of the kth commodity

– a vector of 1’s and 0’s.

 
B 

D 

C A 

1 2 

3 

4 

5 

6 

Figure 2.14: A network with four nodes

Figure 2.14 shows a simple network topology with four end nodes and six

edges. Each edge is assigned a number from 1 to 6 as shown. This network

carries two commodities K1 and K2. The source and destination for commod-

ity K1 (K2) is A (D) and B (C). There are two paths in this network for

commodity K1. The first path consists of the edge A → B and the second

path is A → D → B. The chain
−→
C1

1 , representing the first path, is vector

[1, 0, 0, 0, 0, 0] since the edge A → B has been assigned edge number 1. Sim-

ilarly, the chain
−→
C1

2 , corresponding to the second path [A → D → B], is the

vector [0, 0, 0, 1, 1, 0]. Commodity K2 has two paths so that the chains
−→
C2

1 and
−→
C2

2 are vectors [0, 0, 0, 0, 0, 1] and [0, 1, 0, 0, 1, 0].

A network having m edges and |K| commodities may be represented by an
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arc-chain incidence matrix AC. If there are n̂k chains for the kth commodity,

∀k, 1 ≤ k ≤ |K|, AC is an m × n̂ matrix where n̂ = n̂1 + n̂2 + . . . + n̂|K| is

the total number of chains for all commodities. Each chain of a commodity

corresponds to a column in matrix AC so that the first n̂1 columns of AC

correspond to chains for commodity K1, the next n̂2 columns correspond to

chains for commodity K2, and so on.

The arc-chain matrix AC, in the case of the network shown in Figure 2.14

with two commodities K1 and K2 is shown below.

AC =




1 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

0 1 0 1

0 0 1 0




In this example, the rows of arc-chain matrix AC corresponds to the edges

1, 2, . . . , 6 of the network. Columns 1 and 2 (3 and 4) correspond to the chains

for commodity K1 (K2).
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Chapter 3

Optimal Traffic Grooming in

WDM Networks

3.1 Introduction

In WDM optical networks, traffic grooming technique is used to combine a

number of low-speed traffic streams from users to send over a single lightpath,

so that the high capacity of the lightpath may be used as efficiently as possible.

Efficient traffic grooming strategy can not only minimize the network costs in

terms of transceivers and optical switches [3], but also can increase the network

throughput i.e., the total amount of traffic successfully carried by the network

with given set of network resources [92].

Traffic grooming strategies can be classified into two broad categories -

static traffic grooming [97] and dynamic traffic grooming [100]. Static groom-

ing is used when the traffic requests are known in advance and do not change

significantly over relatively long periods of time. In this case, it is reasonable

to spend a considerable time to determine an optimal grooming strategy. Dy-
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namic grooming is appropriate when the pattern of user requests is not known

and connections must be set up on request. Both the static and the dynamic

traffic grooming can be divided into two models. One is known as the bifur-

cated traffic grooming, where traffic requests are allowed to be split and sent

through multiple paths from its source to its destination. The other is called

the non-bifurcated traffic grooming, where a traffic request is sent through

a single path from source to destination. In this chapter we have presented

our work on optimal non-bifurcated traffic grooming in WDM optical network

considering the static grooming strategy.

We will use the term congestion to denote the maximum of the total amount

of data using a particular lightpath. The objective of our algorithm is to de-

termine a non-bifurcated traffic grooming strategy, such that the congestion is

as low as possible. The advantages of having a minimum value of congestion

in a network, when carrying out traffic grooming, are well known [3]. It is con-

venient to view the problem of traffic grooming for minimum congestion as a

multi-commodity network flow programming (MCNF) [1] problem, where each

traffic request between a source-destination pair (Sk, Dk) for the traffic groom-

ing problem corresponds to a distinct commodity k, to be shipped from the

source Sk to the destination Dk. Conventionally, to find an optimal solution

to this problem, it is formulated as a MCNF problem, specified as an Binary

Integer Linear Program (BILP). Solving a BILP with a large number of binary

variables is time consuming, since the time required to solve such problems,

typically, increases exponentially with the number of binary variables [50].

We propose to use a recent technique, for solving certain ILPs, called

Branch, Price and Cut (BPC) [82] to solve our problem. Experimental re-

sults (Section 3.5) show that our proposed BPC algorithm can solve larger
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instances of the problem, and is significantly faster than solving it with con-

ventional node-arc formulation.

In Section 3.2, we have used a conventional BILP using the node-arc formu-

lation. In Section 3.3 we have proposed an arc-chain formulation. In Section

3.4 we have shown how we may apply BPC, using the arc-chain formulation,

to obtain optimal solutions to the non-bifurcated traffic grooming problem

more efficiently. In Section 3.5 we have shown how the performances of our

BPC formulation compares to the performances using formulation described

in Section 3.2.

3.2 An ILP for Non-bifurcated Traffic Grooming

In the formulation below we have used the following symbols. N is the set of

all nodes in the network. EL is the set of all logical edges (lightpaths) in the

network. K is the set of all commodities or traffic requests. Υk is the amount

of traffic for commodity k ∈ K. F k
ij is a binary variable denoting the flow

of commodity k on the logical edge (i, j) ∈ EL. If F k
ij = 1(0) it means the

commodity k uses (does not use) the lightpath (i, j). We have used Λmax to

denote the congestion of the network.

The ILP formulation to minimize Λmax, the congestion, when carrying out

traffic grooming in WDM networks can be given as:

minimize Λmax (3.1)

subject to:
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∑

j:(i,j)∈EL

F k
ij −

∑

j:(j,i)∈EL

F k
ji =





1 if i = Sk,

−1 if i = Dk,

0 otherwise.

(3.2)

Equation (3.2) must be satisfied ∀k ∈ K, ∀i ∈ N .

∑

k∈K

Υk · F k
ij ≤ Λmax,∀(i, j), (i, j) ∈ EL (3.3)

F k
ij = {0, 1} (3.4)

3.2.1 Justification for the ILP Formulation

Equation (3.2) is a standard network flow conservation equation. Equation

(3.3) corresponds to logical edge (i, j), for all edge (i, j) ∈ EL in the logical

topology. Υk contributes to the amount of data on logical edge (i, j), only

if the commodity k uses the edge (i, j) (i.e., F k
ij = 1). The left hand side of

equation (3.3) is the total flow on edge (i, j), considering all the commodities.

This total flow on logical edge (i, j) must be less than or equal to the Λmax.

Since the objective is to minimize Λmax, this constraint means that Λmax will

be set to the maximum value, considering all edges, of the total amount of

data carried by any edge. When the ILP terminates, the flows on different

logical edges will be such that the value of Λmax is as low as possible.

Equation (3.4) states that the variable F k
ij is a binary variable.

The time needed to solve this formulation grows rapidly with the number

of nodes in the network. In general, the time complexity of an ILP is O(2N),

where N is the number of binary variables. If the number of end-nodes in a
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network is n, then the potential number of commodities K is O(n2). Since the

number of logical edges from or to an end-node is determined by the number

of optical transceivers in the node, the number of logical edges (lightpaths)

m is O(n). Therefore, the number of binary variables F k
ij in the problem is

O(n3), which clearly explains how quickly the problem becomes intractable

with a modest increase of the number of nodes in the network.

3.3 Traffic Grooming using Arc-chain Formulation

Non-bifurcated traffic grooming using the arc-chain formulation may be done

as follows:

minimize Λmax (3.5)

Subject to:

∑

k∈K

nk∑
j=1

µjk
i · uk

j ≤ Λmax,∀i, 1 ≤ i ≤ m (3.6)

nk∑
j=1

uk
j = 1, ∀k ∈ K. (3.7)

uk
j = {0, 1}, ∀k ∈ K, ∀j, 1 ≤ j ≤ nk. (3.8)

In the above formulation, K is the set of all commodities. nk is the number

of all possible chains for commodity k. m denotes the number of logical edges

in the logical topology. If the jth chain for commodity k includes edge i, then

we define µjk
i = Υk, otherwise µjk

i = 0. Binary variable uk
j is the flow of
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commodity k using the jth chain for this commodity. If commodity k uses its

chain j, uk
j = 1, otherwise uk

j = 0. µjk
i represents the amount of traffic for

commodity k ∈ K through the logical edge i, 1 ≤ i ≤ m.

Our goal is to minimize the network congestion Λmax. Equation (3.7) and

(3.8) ensures that among all nk chains, commodity k uses only one chain

implementing non-bifurcated traffic grooming.

It is clear that the total number of columns in the above formulation is

n1 + n2 + . . . + n|K|. Since nk for any k ∈ K may be exponential, the number

of binary variables can be exponential too.

3.4 Traffic Grooming using Branch, Price and Cut

To solve this traffic grooming problem efficiently, in our Branch, Price and Cut

(BPC) algorithm, we first solve the relaxed LP. This amounts to allowing the

traffic corresponding to each commodity to split into multiple streams, each

using a different path from the source of the commodity to the corresponding

destination. In other words, the relaxed LP corresponds to a bifurcated traffic

grooming problem by allowing uk
j to become a continuous variable. Then as

the algorithm proceeds, we gradually impose restrictions on each commodity,

to reduce its ability to use multiple paths. Eventually we force each commodity

to use a single path from its source to its destination, giving us the desired

non-bifurcated traffic grooming solution.

We have given a high-level description of the Branch, Price and Cut (BPC)

algorithm in Algorithm 2 below. The idea in Algorithm 2 is to repeatedly apply

the bounding phase (which includes solving a LP, using an efficient pricing

strategy and a cut-generation step) followed by the branching phase.
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Within the bounding phase, in the cut-geneation step, we generate lifting

constraints to represent valid inequalities for the convex hull of integer solu-

tions and add them to the linear description of the current subproblem and its

descendants. Branching restricts the number of end-nodes where bifurcation

of specified commodities is allowed. Each branch puts restrictions on the edges

that can be used by a specified commodity, so that we gradually move from

bifurcated traffic grooming to non-bifurcated traffic grooming.

In Algorithm 2, LT refers to the supplied logical topology over which we

have to carry out all data communication. LT is defined as a set of directed

logical edges, each edge (s, t) denoting a lightpath from s to t. RDC denotes

the set of requests for data communication, each request specifying the source

and the destination of the request and the data communication rate, using the

OC-n notation. To get the process started, we solve the relaxed LP. We need

an initial basis Binit giving a feasible solution that is, in general, non-optimal.

Our LP solver (described in Section 3.4.1) gives an optimal basis Bopt which,

in general, uses bifurcated traffic grooming. Corresponding to each basis Bopt,

we can compute a solution using only a single column for each commodity (i.e.,

using non-bifurcated traffic grooming) which we call Bscs. Each such ”single

column solution” provides an upper bound to the optimal solution value. We

will use L (U) to denote the lower (upper) bound of the value of the congestion

obtained from Bopt (Bscs).

Algorithm 2 starts with Binit, gets a value of L (U) from Bopt (Bscs) after

computing the optimal basis, using our LP solver. In general, as we progress

using repeated bounding, cut-generation and branching, the lower bound in-

creases and the upper bound decreases. The process terminates when they

coincide. The BPC gradually restricts the search space for the formulation,

Optimization of WDM Optical Networks Quazi R Rahman



3 Optimal Traffic Grooming in WDM Networks 58

Algorithm 2 BPC for traffic grooming
1: Binit ← find initial feasible solution(LT,RDC)
2: Bopt ← arc chain solver(Binit)
3: (L,U) ← find congestions(Bopt)
4: if L = U then
5: exit(done)
6: end if
7: insert into priority queue(Bopt)
8: solution found ← FALSE
9: while (priority queue 6= ∅ & solution found = FALSE) do

10: B0
opt ← remove first from priority queue()

11: if (L0 < U) then
12: (B1, B2) ← apply branching(B0

opt)
13: for j = 1 to 2 do
14: Bj

opt ← arc chain solver(Bj)
15: (Lj , U j) ← find congestions(Bj

opt)
16: U ← minimum of(U,U j)
17: if (Lj = U) then
18: solution found ← TRUE
19: else if (Lj < U) then
20: insert into priority queue(Bj

opt)
21: end if
22: end for
23: end if
24: end while
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so that when the process terminates, each commodity is carried by exactly

one chain. Functions arc chain solver (apply branching) of Algorithm 2 are

described in Section 3.4.1. The remaining functions are straight-forward and

self explanatory.

3.4.1 An LP for Bifurcated Traffic Grooming

We note that the inequalities in (1.2) for an edge (i, j) ∈ EL:

∑

k∈K

ΥkF k
ij ≤ Λmax

are 0-1 knapsack inequalities. A set C is called a cover if
∑

k∈C

Υk > Λmax, and

is called minimal if for any proper subset C ′ of C,
∑

k∈C′
Υk ≤ Λmax. Such a

minimal cover gives rise to a valid “cover inequality”:
∑

k∈K

F k
ij ≤ |C|−1. Cover

inequalities can be “lifted” to obtain “lifted cover inequalities” which, when

added to the formulation (1.1) to (1,4), can strengthen it [6, 7].

Let an optimal solution to the relaxed LP for the ILP in Section (1.3), has

a commodity, say commodity k, which uses more than one chain to send the

required flow Υk. Then it is easy to reroute flows among these chains so that

either, at least one of the edges in these chain is saturated (i.e its flow equals

Λmax), or only one chain can carry the entire flow Υk.

The cover inequalities, arising out of each saturated edge, are then lifted,

adapting an approach given in [82]. If a particular traffic grooming strategy

has H saturated edges, we will have H lifting constraints, where the hth lifting

constraint corresponds to saturated edge eh and has the form
∑

k∈K

ξk
h ·uk ≤ Lh,

where uk is the flow of commodity k on edge eh.
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The arc-chain formulation given below is an LP that considers all commodi-

ties that the network has to support and gives the optimal choice of chains

for each commodity and the corresponding flows on each chain so that the

total traffic Λmax carried by the logical edge carrying the maximum traffic

is as low as possible. In Step 2 of Algorithm 2, the output obtained by the

arc chain solver gives the optimal bifurcated traffic grooming, so that each

commodity, in general, is carried by more than one chain.

minimize Λmax (3.9)

subject to:

∑

k∈K

nk∑
j=1

`jk
h · uk

j ≤ Lh,∀h, 1 ≤ h ≤ H (3.10)

∑

k∈K

nk∑
j=1

µjk
i · uk

j ≤ Λmax,∀i, 1 ≤ i ≤ m (3.11)

nk∑
j=1

uk
j = 1, ∀k ∈ K (3.12)

0 ≤ uk
j ≤ 1 (3.13)

In the above equations, `jk
h refers to the coefficient for lifting constraint

h of the jth chain for commodity k and is defined to be `jk
h = ξk

h if edge eh

appears in chain j of commodity k; 0 otherwise. µjk
i represents the entry for

commodity k for edge i in its jth chain. The value of µjk
i = Υk, if the edge

i is in the jth chain for commodity k; otherwise µjk
i = 0. uk

j is the flow of
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commodity k using the jth chain for this commodity.

3.4.1.1 Justification for the LP Formulation

The objective of the LP is to minimize Λmax, the congestion. Equation (3.10) is

to take care of the cutting step of the Branch, Price and Cut (BPC) algorithm

using the lifting constraints.

Equation (3.11) corresponds to edge i, for all edge i, 1 ≤ i ≤ m in the logical

topology. Chain j of commodity k contributes to the amount of data on edge

i only if edge i appears in this chain (i.e., µjk
i 6= 0). If so, µjk

i · uk
j = Υk · uk

j is

the amount of commodity k in chain j that contributes to the total amount

of data flowing on edge i. The left hand side of equation (3.11) is the total

flow on edge i, considering all chains of all commodities. This total flow on

logical edge i must be less than or equal to the Λmax. Since the objective is to

minimize Λmax, this constraint means that Λmax will be set to the maximum

value, considering all edges, of the total amount of data carried by any edge.

When the LP terminates, the flows on different chains will be such that the

value of Λmax is as low as possible.

Equation (3.12) corresponds to commodity k, and specifies that the sum

of all the flows on the chains used for commodity k, must be equal to 1. This

equation ensures that the user requirements for commodity k are all satisfied.

3.4.2 Advantages of the Arc-Chain Representation

This formulation has the following important advantages:

1. The arc chain representation of the problem requires a basis of size (H +

m + |K|). In a n node network, (H + m) has size O(n) and |K| has
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size O(n2), since we expect most, if not all, pairs of end-nodes will have

some communication with each other. This may be compared with the

basis size of O(n3) in the case of a standard node-arc representation using

conventional network flow programming [3].

2. This arc chain representation satisfies the structure for the Generalized

Upper Bounding [18], so that, after proper permutations of the rows and

the columns, the basis B can be expressed as

B =


 R S

T I




Matrices R,S and T will have sizes (H + m)× (H + m), (H + m)× |K|
and |K| × (H + m) respectively. Every column of T has at most one

entry of 1 and all remaining entries are 0’s and I denotes an identity

matrix of size |K| × |K| [3]. We can avoid inverting the whole basis and

need only invert a matrix of size (H + m) at each step of the revised

simplex algorithm [18]. This makes the LP much faster, which has a

major repercussion on the execution time of our algorithm, where the

LP optimization has to be carried out numerous times.

3. At most m commodities may require multiple chains in the optimized

basis for the relaxed LP. Since m, the number of logical edges is O(n)

and |K|, the number of commodities is O(n2), m << |K|. This property

is very important, since it establishes that the number of commodities

in the relaxed LP requiring multiple chains is very small. This expedites

the branching process significantly.
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4. This representation makes it easy to apply a branching rule (3.4.4) ap-

propriate for the problem.

3.4.3 The Pricing Policy

The pricing policy determines how we obtain an entering column efficiently.

As outlined in [18], the standard approach in the revised simplex method when

optimizing a LP of the form A·x = b is to find, if possible, an entering column

by

• computing the simplex multipliers −→y = −→cBB−1, where −→cB is a vector of

cost coefficients and B−1 is the inverse of the basis B.

• finding, if possible, a column
−→Ap in the constraints matrix A, such that

−→y · −→Ap > cp, where cp is the cost associated with the column p.

In the pricing step of BPC, our objective is to identify, if possible, a column
−→Ap, by examining a relatively small number of possible entering columns. This

is particularly important, since the number of possible paths from a given

source of a commodity to its corresponding destination is, in general, very

large. Each of these paths represents part of a potential entering column.

To handle this problem, it is possible to adapt Tomlin’s approach for solv-

ing minimum cost multi-commodity flow problems [80]. Instead of explicitly

storing the constraints, as done in an LP solver, Tomlin’s approach implicitly

keeps track of the constraints and generates a chain, only when it is established

that the chain should be part of the column entering the basis.

The central idea is that, in each iteration, the algorithm checks only one

potential chain per commodity. For each commodity, the algorithm checks only
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the shortest chain from the source to the destination of that commodity, after

assigning an appropriate value as the “distance” of each logical edge. Such

a shortest chain may be created, on the fly, using, for instance, Djikstra’s

algorithm [1, 22]. The method then checks if the chain satisfies the condition

−→y · −→Ap > cp to be part of an entering column. If so, the algorithm creates

the entering column using the shortest chain. The details of the algorithm,

tailored for the routing problem, are given below.

In this discussions, we will refer to the pth column
−→Ap of the constraints

matrix A. This constraints matrix will never be explicitly generated or stored.

However we will refer to A in the following discussions.

We note that, Equation (3.10) ((3.11)) are inequalities and each of the H

(m) constraints specified in Equation (3.10) ((3.11)) will have an associated

slack variable. We will use xh
s (x

H+i
s ) to represent the slack variable corre-

sponding to the hth (ith) constraint specified in Equation (3.10) ((3.11)), for

all h, 1 ≤ h ≤ H (i, 1 ≤ i ≤ m).

Further, we will use ρ1, ρ2, . . . , ρH to denote the first H simplex multi-

pliers (the first H elements of vector −→y ), corresponding to the H saturated

edges e1, e2, . . . eH of the network, for which H lifting constraints have been

determined.

We will use π1, π2, . . . , πm to denote the next m simplex multipliers (ele-

ments H + 1, H + 2, . . . , H + m of vector −→y ), corresponding to the m log-

ical edges of the network. The remaining |K| simplex multipliers (elements

H + m + 1, H + m + 2, . . . , H + m + |K| of vector −→y ), correspond to the |K|
commodities and will be denoted by α1, α2, . . . , α|K|.

Theorem 1 a) If ρh > 0, for any h, 1 ≤ h ≤ H, slack variable xh
s is a
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candidate to enter the basis.

b) If πi > 0, for any i, 1 ≤ i ≤ m, slack variable xH+i
s is a candidate to enter

the basis.

c) If, for chain j, 1 ≤ j ≤ nk of commodity k ∈ K,
H∑

h=1

(−ρh)·`jk
h +

m∑
i=1

(−πi)µ
k
ij <

αk, then the variable uk
j , corresponding to the chain

−→
Ck

j , is a candidate to

enter the basis.

Proof: a) Let p be the column corresponding to the hth slack variable xh
s . The

cost coefficient for any slack variable is 0, so cp = 0, and the vector
−→Ap consists

of 0’s except in position h. Therefore, for xh
s ,
−→y · −→Ap − cp = ρh. Since ρh is

positive, xh
s is a candidate to enter the basis.

b) The proof is similar to that given above.

c) Let column
−→Ap, corresponding to chain j of commodity k, be a po-

tential entering column. This column has the value `jk
h in position h, for all

h, 1 ≤ h ≤ H, the value µk
ij in position H + i, for all i, 1 ≤ i ≤ m. The

remaining |K| positions are all 0’s except for a 1 in position H + m + k. Since

the cost of this column cp = 0, −→y · −→Ap − cp =
H∑

h=1

ρh · `jk
h +

m∑
i=1

πi · µk
ij + αk.

This is a potential entering column if
H∑

h=1

ρh · `jk
h +

m∑
i=1

πi · µk
ij + αk > 0, so

that
H∑

h=1

(−ρh) · `jk
h +

m∑
i=1

(−πi) · µk
ij < αk.

Theorem 1 may be used for identifying, if possible, a column to enter the

basis. If any ρh or any πi is positive, the corresponding slack variable can be

entered into the basis and the process terminates. Otherwise, we have to test

if a chain for commodity k can be part of an entering column, for some k ∈ K.
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To do this we first construct, for commodity k, a digraph Gk
L = (N, EL), where

N is the set of end-nodes of the network and EL is the set of all directed edges

(s, t) such that there is a lightpath from s to t. The number of edges in Gk
L

is m. We assign a length
H∑

h=1

(−ρh) · φjk
hi + (−πi) · Υk to edge i, for all edge

i, 1 ≤ i ≤ m. The value of φjk
hi = ξk

h, if edge i is the saturated edge eh for

which we have determined the hth lifting constraint; otherwise φjk
hi = 0.

Since all values of ρh and πi are negative, the lengths of all edges are

non-negative. Each path from source Sk to destination Dk of commodity k

corresponds to a chain for commodity k, and hence part of a potential entering

column for commodity k.

Theorem 2 If the length of the shortest path from Sk to Dk is not less than

αk, no chain for commodity k can be part of an entering column.

Proof: One way to characterize the jth chain for commodity k is to de-

fine a variable σk
ij with the value 1(0) if the jth chain for commodity k in-

cludes (does not include) the edge i. Using this notation and the assign-

ment of lengths mentioned above, the length of any path from Sk to Dk is
m∑

i=1

(
H∑

h=1

(−ρh) · φjk
hi + (−πi) ·Υk

)
·σk

ij. We note that φjk
hi ·σk

ij = ξk
h, if for some

edge i, the edge i = eh, so that the chain passes through edge eh. Otherwise,

φjk
hi · σk

ij = 0. It is easy to see that
m∑

i=1

(
H∑

h=1

(−ρh) · φjk
hi + (−πi) ·Υk

)
· σk

ij =

(
H∑

h=1

(−ρh) · `jk
h +

m∑
i=1

(−πi)µ
k
ij

)
. If this length is not less than αk, this chain

does not satisfy the condition given in Theorem 1 and may not be used to

create the entering column. If this path is the shortest path from Sk to Dk,

then the length of all other paths are also not less than αk.
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Since the length of any edge i, 1 ≤ i ≤ m is guaranteed to be 0 or positive,

finding the shortest path for each commodity can be done very efficiently using

well-known techniques, such as Dijkstra’s algorithm [1,22]. Let Sk (Dk) be the

source (destination) of commodity k and let ℘(Sk, Dk) be the shortest path

(for commodity k) from Sk to Dk. This shortest path ℘(Sk, Dk) corresponds

to some chain, say the jth chain
−→
Ck

j . Then, the length of the shortest path is

=
m∑

i=1

(
H∑

h=1

(−ρh) · φjk
hi + (−πi) ·Υk

)
· σk

ij. If this length is less than αk,
−→
Ck

j is

a valid chain to enter the basis. In this case, the path ℘(Sk, Dk), found by the

shortest-path algorithm, immediately gives the chain
−→
Ck

j . We can immediately

compute the first H +m elements in the entering column from ℘(Sk, Dk). The

remaining |K| elements in the entering column are all 0’s, except in position

k, where there is a 1.

To summarize, our pricing policy is to first check if a column corresponding

to a slack variable can be an entering column. Otherwise, considering each

commodity k ∈ K, one by one, we apply Theorem 2 to see if we can find an

entering column.

The following steps use Theorem 1 to determine a column to enter the

basis:

Step 1) Repeat Step 2 for all lifting constraint h, 1 ≤ h ≤ H.

Step 2) If ρh > 0, create an entering column corresponding to slack variable

xh
s and stop.

Step 3) Repeat Step 4 for all edge i, 1 ≤ i ≤ m.

Step 4) If πi > 0, create an entering column corresponding to slack variable

xH+i
s and stop.
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Step 5) Repeat Steps 6–8 for all commodity k ∈ K.

Step 6) Assign length
H∑

h=1

(−ρh) · φjk
hi + (−πi) · Υk to edge i, in the logical

topology for all i, 1 ≤ i ≤ m.

Step 7) Find the shortest path ℘(Sk, Dk) from Sk to Dk.

Step 8) If the length of the path ℘(Sk, Dk) < αk, create the entering column

from the path ℘(SkDk) of commodity k, and stop.

Step 9) No entering column exists. Stop.

This algorithm does not include any step to enter the column corresponding

to Λmax. The initial feasible solution automatically inserts Λmax in the basis.

Once Λmax is in the basis, it is never a candidate for leaving the basis. The

process for finding the leaving column involves the standard ratio test of a

revised simplex algorithm [18] and is omitted.

3.4.4 The Branching Strategy

We now describe the branching strategy, using the algorithm below:

Step 1) If no commodity uses multiple chains, no further branching is needed.

Step 2) Pick a commodity requiring multiple chains. Let this be commodity

k, for some k ∈ K, having source Sk and destination Dk. All these

chains have the same source Sk and destination Dk.

Step 3) Starting from the first node Sk, examine successive nodes in all the

chains for commodity k and find the last node which is identical for all

the chains. Let this node be xp. Let Sp denote the edges from xp and let
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S1
p(S2

p) denote the set of edges {(xp → x1), (xp → x2), . . . , (xp → xr)}
({(xp → xr+1), (xp → xr+2), . . . , (xp → xr+s)}) of r (s) edges from xk

which are (are not) used by the chains carrying commodity k.

Step 4) Partition the set of edges in S1
p into sets of edges P0 and P1, such

that the difference between the total flows of commodity k on the edges

in P0 and the total flows of commodity k on the edges in P1 is as small

as possible.

Step 5) Include in P1 (P2) half (remaining half) of the edges in S2
p.
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Figure 3.1: An example showing how branching can be used for the traffic grooming
problem
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Example:

In Fig 3.1, commodity k has a speed requirement of OC − 25, starts from

node 5 an ends at node 12, so that Sk is 5 and Dk is 12. For commodity k,

there are four chains using the following paths:

1. 5 → 15 → 8 → 12 carrying flow at OC − 10,

2. 5 → 15 → 2 → 6 → 12 carrying flow at OC − 2,

3. 5 → 15 → 2 → 11 → 12 carrying flow at OC − 4,

4. 5 → 15 → 19 → 17 → 12 carrying flow at OC − 9.

All four chains start from 5 and use the edges 5 → 15. Set S1
p = {15 → 2, 15 →

8, 15 → 19} and the total flows on edges 15 → 2, 15 → 8, 15 → 19 are OC−6,

OC − 10 and OC − 9 respectively. Since none of these chains use the edges

15 → 1 and 15 → 18, set S2
p = {15 → 1, 15 → 18}. In this case, after Step 4,

set P0 = {15 → 8} and set P1 = {15 → 2, 15 → 19}. Since there are two edges

in S2
p, in Step 5, any one of them may be included in P0 and the other one in

P1 so that one possible solution, after Step 5, is P0 = {15 → 8, 15 → 18} and

set P1 = {15 → 2, 15 → 19, 15 → 1}.
The branching strategy defines S to be the set of all possible non-bifurcated

traffic grooming solutions and S0(S1) to be the set of possible non-bifurcated

traffic grooming solutions where the single chain for commodity k uses one of

the edges in set P0 (P1).

3.5 Experimental Results

In our experiments we find that, as the size of the problem (as measured

by the number of nodes and the number of requests for data communication)
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grows, the time to solve an ILP for the non-bifurcated traffic grooming problem

grows rapidly and the problem quickly becomes intractable. We have shown

that BPC can solve this problem quite efficiently.

For our experiments, we have considered three well-known networks - the

14 node NSFNET backbone network, the 21 node ARPA-2 network and the

24 node USANET backbone network [69]. We have randomly generated log-

ical topologies for each of these networks. The numbers of transmitters and

receivers at each node were randomly selected from 2 to 4.

We set the total numbers of traffic requests to 1000, 1500, 2000, 2500 and

3000 for each of the networks. For a particular network, when considering a

specific value of the total number of traffic requests, we randomly assigned

the requests to different node-pairs in the network with uniform probability.

The size of the requests varied from OC-1 to OC-24 considering OC-n nota-

tion used for data communication rate [3]. For a specific value of the total

number of traffic requests, we randomly generated 10 sets of requests. The

results presented in this section represent the average values of the 10 sets of

experiments.

The main objective of our experiments was to calculate the execution time

required by our BPC algorithm to optimally route all the requests over the

network, such that the overall network congestion is minimized using the non-

bifurcated traffic grooming. We have compared the results of our algorithm

with that of standard node-arc formulation, solved using CPLEX version 11.1

[36]. We have implemented our BPC algorithm using C programming language

and ran the program on a Sun Fire X2200 M2 Server [76].

Figure 3.2 compares the execution time needed using BPC and the time

required using the CPLEX solver for different traffic sizes in NFSNET network.
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Average Execution Time for NSFNET
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Figure 3.2: Comparison of execution time required by BPC and CPLEX on different
size requests.
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Figure 3.3: Comparison of execution time required by BPC and CPLEX on different
size requests.

Figure 3.3 compares the execution time needed for ARPA-2 network, and

Figure 3.4 compares the execution time needed for USANET network.

Figure 3.5 shows the graphs representing the percentage of execution time

needed by BPC over CPLEX for all the three networks. The figure clearly

shows that, for all the cases we have considered, BPC only took, on an average,

between 10% to less than 20% of time required by the CPLEX. It also shows
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Average Execution Time for USANET

0

2000

4000

6000

8000

1000 1500 2000 2500 3000

Number of Requests

E
xe

cu
tio

n
 T

im
e

 (
se

c) BPC

CPLEX

Figure 3.4: Comparison of execution time required by BPC and CPLEX on different
size requests.
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Figure 3.5: Percentage of execution time required by BPC over CPLEX for different
size of requests and for different networks.

that, for each network, as the number of requests increases, BPC becomes

more and more efficient compared to the CPLEX.

The figures clearly indicates that our algorithm outperforms the CPLEX

solver in all the cases. As expected, the execution time using CPLEX increases

exponentially with the increase of the number of traffic requests as well as the

size of the network, whereas the increase of execution time using our algorithm
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is nearly linear. In fact, we have identified one case with 24 node USANET

network and only 1000 requests, where the CPLEX solver failed to produce

any solution after running for more than 24 hours, at which point we decided

to stop the process and considered it as a failure. With the same data set our

algorithm produced a solution with optimal congestion value in just 5215.01

sec (approx. 87 min). In all the cases where both BPC and CPLEX could

solve the problems, they produced the same optimal congestion values for the

networks.
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Chapter 4

Optimal Regenerator Placement

in Translucent Networks

4.1 Introduction

In a translucent optical network (reviewed in Section 2.1.14), in order to enable

every node-pair to communicate with each other, a selected number of nodes

need to be capable of 3R-regeneration (reviewed in Section 2.1.13) of incoming

optical signals. The problem of identifying a minimum number of nodes in a

given network which should have 3R regenerating capacity, so that each node

can communicate with any other node in the network, is known in the literature

as the Regenerator Placement Problem (RPP).

To model an optical network we use a graph G = (N,E), where N repre-

sents the set of nodes of the network and E represents the set of edges, where

each edge (i, j) ∈ E represents a bi-directional fiber between node i and node

j. Each edge (i, j) ∈ E also has a label dij, denoting the length of the fiber

from i to j.
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We may view the RPP problem as a network flow problem where we treat

the problem of communicating from a source S to a destination D as a problem

of shipping a distinct commodity from S to D. We start by considering every

possible ordered source-destination pair (S, D) in the network and our goal

is to send one unit of the commodity corresponding to (S, D) from S to D.

If the minimum distance from node S to node D is less than or equal to the

optical reach r, no regeneration is needed for the commodity. In other words,

the issue of regenerator placement is irrelevant for such commodities and, in

order to reduce the size of the problem, our discussions below assume that such

commodities are not included while solving the RPP problem. Furthermore,

if we can find a route for a commodity from S to D, then the reverse of the

same route may be used for the commodity from D to S. Therefore we may

simplify the RPP problem further by considering only the commodity for node

pair (S, D), if S < D.

For each commodity we need to consider, our formulations have to select

a path and place regenerators on such path, so that

• the path for the commodity has at least one regenerator,

• the distance from the source of the commodity to the first regenerator

node in the path ≤ r,

• the distance from the last regenerator node in the path to the destination

of the commodity ≤ r,

• the distance from any regenerator node to the next regenerator in the

path ≤ r.

After the RPP has been solved and the regenerators are in place, given any
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source-destination pair (S,D), there exists at least one route from S to D, so

that a viable optical connection can be established from S to D, using this

route, which may involve 0 or more 3R regenerator nodes.

In this chapter we present two Mixed Integer Linear Programs (MILP)

to optimally solve the RPP for translucent networks. The first formulation

(FRM-1) is based on standard network flow programming techniques. This

formulation can be readily solved by any commercially available mathemati-

cal solver, such as the CPLEX [36], and works for relatively small networks

(networks having up to 35 nodes). The second formulation (FRM-2) is much

stronger, since it efficiently solves the RPP problem for relatively larg networks

(we have solved 140 node networks in less than 2000 seconds, on an average).

We have proposed a branch-and-cut (reviewed in Section 2.2.3) approach to

solve this problem. The formulation has an exponential number of constraints,

known only implicitly. However, our experiments reveal that we only need a

relatively small number of such constraints, so that the basis size is, in general,

quite small and the LP relaxations can be solved very quickly.

The concept of the reachability graph [66] is useful in our formulations. We

construct the reachability graph GR = (N,ER) from the graph G = (N, E)

representing a network, by defining ER as follows. An edge (S, D) is in ER,

iff the shortest distance from S to D does not exceed the optical reach r. A

node-pair {(S, D) : S < D}, such that there is no edge from S to D in the

reachability graph, is a commodity that we have to consider in solving RPP. It

is known that the minimum connected dominating set (MCDS) of the nodes

in the reachability graph GR gives the smallest number of regenerators needed

for the graph G [66].

The rest of the chapter is organized as follows. In Section 4.2 we have pre-

Optimization of WDM Optical Networks Quazi R Rahman



4 Optimal Regenerator Placement in Translucent Networks 78

sented a compact node-arc formulation. In Section 4.3 we have presented our

branch and cut formulation. In Section 4.4 we have presented the experimental

results using the formulations FRM-1 and FRM-2.

4.2 A Compact Formulation to Solve the RPP

In this section we present FRM-1, a Mixed Integer Linear Program (MILP)

formulation to optimally solve the RPP problem using Multi Commodity Net-

work Flow (MCNF) techniques using node-arc representation.

The idea used in this formulation is to define flow-balance constraints [1]

for each commodity of interest and determine a path for each commodity in

the reachabilty graph. We use a regenerator at each intermediate node in the

path for the commodity. The objective of the formulation is to minimize the

number of nodes with 3R regeneration capability and can be given as:

minimize
∑
j∈N

βj (4.1)

subject to:

∑

j:(i,j)∈ER

fk
ij −

∑

j:(j,i)∈ER

fk
ji =





1 if i = Sk,

−1 if i = Dk,

0 otherwise.

(4.2)

Equation (4.2) must be satisfied ∀k ∈ K, ∀i ∈ N .

βj ≥
∑

i:(i,j)∈ER

fk
ij : ∀k ∈ K, ∀j ∈ N |j 6= Dk. (4.3)
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βj = {0, 1} : ∀j ∈ N. (4.4)

In the above formulation βj is a binary variable for each node j ∈ N in the

physical topology. If the node j is chosen to be a regenerator node, βj = 1,

otherwise βj = 0. K denotes the set of all commodities that we need to

consider. fk
ij represents the flow for commodity k ∈ K on edge (i, j) ∈ ER so

that, if the commodity k (or a part of it) uses the edge (i, j), fk
ij > 0, otherwise

fk
ij = 0. fk

ij is a continuous variable.

4.2.1 Justification for the Compact Formulation

Equation (4.2) is a standard network flow conservation equation. Equation

(4.3) ensures that a commodity k ∈ K can only use an edge (i, j) ∈ ER in the

reachability graph if, either the node j is its destination node (j = Dk), or the

node j is a regenerator node (βj = 1). Since our objective is to minimize the

number of regenerator nodes, equations (4.2), (4.3) and the objective function

means that the formulation finds a path (or a number of paths) for each

commodity, such that the total number of intermediate nodes, considering all

the paths used by all the commodities, is minimum. Clearly this solves the

RPP.

We used continuous variables fk
ij for the flow variables. This reduces the

number of integer variables and decreases the time needed to solve the for-

mulation. We note the implication that we are allowing the use of multiple

paths to communicate each commodity from its source to its destination. We

can select any one of the paths used by commodity k ∈ K and discard all the

other paths without increasing the number of regenerators in the network.
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This formulation can be directly given to any commercially available math-

ematical optimization tool like CPLEX for finding an optimal solution and can

generate a solution within a reasonable time with the small and medium sized

networks (networks having up to 35 nodes).

4.3 RPP using Branch and Cut Algorithm

To find optimal solutions for the RPP problems for large translucent networks,

in this section we propose a branch-and-cut algorithm. This formulation has,

in general, an exponential number of constraints, known only implicitly. For

that reason, this formulation cannot be solved directly by CPLEX. However,

the formulation may be implemented by interacting with the CPLEX solver,

using the control callbacks from the CPLEX callable library [36].

To explain our proposed formulation let us consider followings. As we have

mentioned in section 4.1 that we consider only those communication requests

as a commodity where the lightpath between the nodes needs at least one

regeneration. Let us define a set of all nodes as the Disconnecting Set of

Nodes (DSN) out of which at least one node must be a regenerator node to

establish communication between a given source node and a destination node.

Definition 1 A set D ⊂ N is a disconnecting set of nodes (DSN), if at least

one of the nodes in D must be made a regenerator node for a feasible solution

of the RPP problem.

For a given network, there could be an exponential number of such discon-

necting set of nodes (DSNs).

Example: Let us consider the reachability graph for a six node network
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1

2 4

3 5

6

Figure 4.1: Reachability graph for a 6 node network

as shown in the Figure 4.1. Following our discussion in Section 4.1 the com-

modities that need to be considered are: K1 = (1,4), K2 = (1,6), K3 = (2,5),

K4 = (2,6), K5 = (3,4) and K6 = (3,6). Some disconnecting sets of nodes

(DSN) are:

• {2, 3, 5}

• {1, 3, 4}

• {1, 2, 5}

• {4, 5, 6}

• {1, 3, 4, 6}

• {4, 5}

4.3.1 An ILP Formulation to Solve the RPP

As before, we assume that we are given a reachability graph GR = (N,ER).

Let K be the set of commodities we need to consider according to Section 4.1,

where each commodity is specified by the corresponding source-destination

pair. RPP can be solved using the following binary linear integer program

(BILP):
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minimize
∑
j∈N

βj (4.5)

subject to:
∑

j∈D
βj ≥ 1 : ∀D ∈ Ω (4.6)

βj = {0, 1} : j ∈ N (4.7)

In this formulation βj is, as before, a binary variable corresponding to node

j ∈ N . If node j is selected to be a regenerator node, βj = 1, otherwise βj = 0.

D is defined to be a disconnecting set of nodes (DSN). Ω is the set of all DSN’s.

As before, our objective is to minimize the number of regenerator nodes.

Equation (4.6) ensures that at least one node in each DSN D must be a regen-

erator node. Equation (4.6) must be satisfied ∀D ∈ Ω.

Lemma 1 Any solution satisfying constraints (4.6) and (4.7) is a feasible

solution for the regenerator placement problem.

Proof: Let there be a solution that satisfies all the constraints of the above

BILP but is not a feasible solution for the RPP. In other words, at least one

pair of nodes (S, D) can not communicate with each other, when we have

regenerators placed at node i, if the value of βi = 1 in the current solution.

Starting with node s, we can identify the set R of all nodes v, such that S can

communicate with v. Clearly D /∈ R. Let D be the set of all nodes i in R,

which currently have βi = 0. In order that S may communicate with D, one

or more of the nodes in D must be equipped with a regenerator. Clearly D is a

DSN and must have been included in constraint (4.6). This is a contradiction.
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Since the number of elements in Ω is exponential, this formulation has an

exponential number of constraints of type (4.6). Specifying such a formulation

to CPLEX for any non-trivial network, or solving a large integer problem with

an exponential number of constraints, is, in general, not feasible.

As pointed out in Section 4.2, when the RPP is solved, for each commodity

of interest, all interior nodes in the selected path from the source to the desti-

nation in the reachability graph must be regenerator nodes. We now transform

the problem, so that, instead of paths through the reachability graph, we con-

sider paths through a capacitated [1], directed graph, which we will call the

extended reachability graph. Our objective is that, instead of saying that the

path from the source to the destination should pass through regenerator nodes

(ie., is allowed to pass through node i if βi = 1), we want to say that the path

should pass through edges with some appropriate capacity. Given a reachabil-

ity graph GR and the values of βi, i ∈ N , βi ∈ {0, 1}, we define the extended

reachability graph GX
R = (V X

R , EX
R ) as follows:

• for each node u ∈ N , two nodes u1, u2 in V X
R ,

• for each edge u, v ∈ ER, two directed arcs u2 → v1, v2 → u1 in EX
R , each

having an infinite capacity,

• for each node u ∈ N , a directed arc u1 99K u2 in EX
R , with a capacity of

βu.

We will use → and 99K to distinguish between these two types of directed

arcs.
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As an example, Figure 4.2.b shows the extended reachability graph corre-

sponding to the reachability graph shown in Figure 4.2.a.

 

a. Reachability graph b. Extended reachability graph 
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Figure 4.2: Extended reachability graph created from reachability graph

If commodity k has a route Sk → a1 → a2 → . . . → ap → Dk in the

reachability graph GR, then commodity k has a route Sk2 → a1
1 99K a2

1 →
a1

2 99K a2
2 → . . . → a1

p 99K a2
p → Dk1 in the extended reachability graph GX

R .

Similarly, given a path through the extended reachability graph, it is easy

to find the corresponding path through the reachability graph. The flow of

commodity k, on the path Sk2 → a1
1 99K a2

1 → a1
2 99K a2

2 → . . . → a1
p 99K a2

p →
Dk1, is limited by minimum(βa1 , βa2 , . . . , βap). Since all β values are binary,

the value of minimum(βa1 , βa2 , . . . , βap) is either 0 or 1. If this value is 0, it

means that there cannot be any flow from Sk2 to Dk1 in GX
R using the route

Sk2 → a1
1 99K a2

1 → a1
2 99K a2

2 → . . . → a1
p 99K a2

p → Dk1. In other words, in

GR, all interior nodes in the route Sk → a1 → a2 → . . . → ap → Dk from Sk

to Dk are not regenerator nodes.

Lemma 2 In a valid solution for the RPP, any cut [1] in GX
R for any com-

modity must have a capacity of 1 or more.

Proof: When RPP is solved, let a cut in GX
R for commodity k have a capacity

of less than 1. Since all β values are binary when RPP is solved, the capacity
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of this cut is 0, and hence the maximum flow for this commodity is 0. This

means there is no route from the source Sk to the destination Dk, where all

interior nodes are regenerator nodes. Thus Sk cannot communicate with Dk,

contradicting the statement that RPP is solved.

We note that the converse (i.e., if all cuts have a capacity of 1 or more, we

have an optimal solution to the RPP) is not true. If all cuts have a capacity

of 1 or more, we have a situation where every node can communicate with

every other node but the total number of regenerator nodes is, in general, not

minimum.

To lay the foundations for the branch and cut scheme outlined in Section

4.3.2 below, we now consider a situation where we solve a BILP, F new, with

the same objective function as the BILP above where we have not included all

the DSN’s in Ω, when constructing the constraints. It is quite possible that

the solution to F new will not correspond to a solution to the RPP, since some

constraints are missing. We consider a situation where for some commodity

k, node Sk cannot communicate with Dk. This means that there is no path

from Sk to Dk, where all interior nodes are regenerator nodes.

Lemma 3 Node Sk cannot communicate with Dk, for some commodity k, iff

the min-cut in GX
R for commodity k has a capacity less than 1.

Proof: The “if” part of the lemma is simply a restatement of Lemma 2 and

the proof follows directly. Suppose Sk can not communicate with Dk, then

there is no path from Sk to Dk with all interior nodes as regenerator nodes.

Hence max-flow from Sk to Dk = 0. Result follows, since max-flow equals to

min-cut.
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Lemma 4 The set of nodes {i : (Sk, i) ∈ ER} is a DSN.

Lemma 5 If the max-flow for commodity k in graph GX
R is less than 1, the

min-cut in GX
R for commodity k identifies a DSN.

We note that if all commodities have a min-cut of 1 or more, it means that,

even though all DSN’s are not included in forming the constraints, we have a

valid solution for the RPP problem. This is a crucial observation that we have

used below.

4.3.2 A branch and Cut Scheme to Solve the RPP

The branch-and-cut scheme given below gives an efficient way to solve RPP

problem. It is based on the standard branch and bound algorithm [44], sum-

marized in Section 2.2.3, that essentially solves a series of relaxed LP subprob-

lems [36].

The idea is that we start the process by specifying an ILP with the same

objective function we used in Section 4.3.1, but with constraints corresponding

to a small number of DSN’s that may be generated quickly. CPLEX solves

the LP corresponding to the ILP using its normal procedure, by relaxing the

binary variables βi, i ∈ N , so that they have continuous values, as part of

the branch and bound algorithm (described in Section 2.2.1). The callback

feature of CPLEX allows us to interrupt the branch and bound process, when

some events of interest take place. Using this feature, before branching (Step

13 of Algorithm 1 given in Section 2.2.1) we take control to add additional

cuts. After including these additional constraints, CPLEX resumes and solves

the LP once again. We carry out this process of adding constraints (called

“adding user cuts” using callback functions from CPLEX callable library).

Optimization of WDM Optical Networks Quazi R Rahman



4 Optimal Regenerator Placement in Translucent Networks 87

This process is repeated as long as we discover new DSN’s. Algorithm 3 gives

an overview of our branch and cut process.

Algorithm 3 Branch and Cut Algorithm for the RPP
Input: Initial problem formulation P 0

Output: Incumbent optimal solution
−→
β ∗

1: List ← {P 0}
2: z∗ ←∞
3: while (List 6= ∅) do
4: P i ← choose problem from list(List)
5: notDone ← true
6: fathom current problem ← false
7: while (notDone) do
8: (zi,

−→
β i) ← solve LP relaxation(P i)

9: if (P i is not feasible) || (zi ≥ z∗) then
10: fathom current problem ← true
11: notDone ← false

12: else if (all values in
−→
β i are integers) then

13: if (valid RPP (
−→
β i)) then

14: (z∗,
−→
β ∗) ← (zi,

−→
β i)

15: else if (violated cuts available with
−→
β i) then

16: add user cuts to P i

17: else
18: fathom current problem ← true
19: notDone ← false
20: end if
21: else if (violated cuts available with

−→
β i) then

22: add user cuts to P i

23: else
24: notDone ← false
25: end if
26: end while
27: if (fathom current problem = false) then
28: (P i

1, P
i
2) ← branch(P i)

29: List ← List ∪ {P i
1} ∪ {P i

2}
30: end if
31: end while
32: return

−→
β ∗

Algorithm 3 runs until it either finds an optimal RPP solution, or the
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list of all candidate subproblems is exhausted. The algorithm keeps track of

the best objective value z∗ found so far and
−→
β ∗, the corresponding values

of the variables. To start the process, our program finds an initial problem

formulation (P 0) and gives it to CPLEX in Step 1. This formulation is the

same as that in Section 4.3.1 and contains one DSN for each commodity k ∈ K

of interest, computed using Lemma 4.

We carry out the branch and cut algorithm using the while loop (Step 3

to Step 31). In these steps, CPLEX solves all the candidate subproblems until

the solution tree is empty and corresponds to the steps 3 - 15 of Algorithm 1 in

Section 2.2.1. Following its normal procedure, CPLEX chooses a subproblem

P i to solve, from the list of candidate subproblems (Step 4). Steps 7 - 26

denotes another while loop. In Step 8 CPLEX finds the objective value zi,

and the values of the variables
−→
β i, corresponding to the solution of the relaxed

LP. In Steps 9-25, we have to consider the following cases:

1. If the LP is infeasible or its objective value is greater than or equal to the

best objective value z∗ found so far, CPLEX discards the formulation P i

by setting the variable fathom current problem equal to true and exits

the while loop.

2. If the solution to P i happens to be an integer solution (i.e., all values in
−→
β i are integers), we check, using Lemma 3, if the solution is a valid RPP

solution (Step 13). If it is a valid RPP solution, we have found a better

solution than the best we found so far and we replace the best objective

value (incumbent values) z∗(
−→
β ∗) found so far by the current objective

value (incumbent values) zi(
−→
β i) (Step 14).

3. If the integer solution is not a valid RPP solution, this means that,
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at least for one k ∈ K, Sk cannot communicate with Dk. For this

case, the max-flow from Sk to Dk is less than 1. Lemma 5 indicates

that the corresponding min-cut gives us a DSN that is not satisfied by

the current solution. For all commodities k ∈ K, such that Sk cannot

communicate with Dk, we add the DSN generated using Lemma 5 in

Step 16. If no cut is found CPLEX discards the formulation by setting

fathom current problem equal to true and exit the while loop.

4. If, on the other hand, the solution to P i is a fractional solution (i.e., at

least one value in
−→
β i is not an integer), using the same CPLEX callback

feature for adding user cuts, our program checks if any violated cut is

available for any commodity with the current values in
−→
β i (Step 21).

A simple way to identify the violated cuts is to apply Lemma 5 and find

a min-cut for each commodity. If the capacity of this cut is less than 1,

the DSN corresponding to the minimum cut is not satisfied by
−→
β i. Any

polynomial time algorithm for max-flow [1] can find these violated cuts

quite efficiently.

If cuts are found, we add them to the formulation (Step 22) and CPLEX

goes back to the beginning of the while loop (in Steps 7-26) and solves

the LP again. If no cut is found, CPLEX exits this while loop.

Once out of this inner while loop, CPLEX checks the value of fathom current problem

(Step 27). If it is true, it abandons further processing of problem P i (called

fathoming in the OR literature). Otherwise, CPLEX splits the current problem

P i into two subproblems P i
1 and P i

2 (Step 28) and adds both the subproblems

to List (Step 29). We repeat Steps 3 - 31 as long as there are candidate sub-

problem(s) in List. Once List is empty, CPLEX returns with the incumbent
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optimal solution
−→
β ∗, which is the optimal RPP solution.

Example: Let us consider the reachability graph for the six node network

shown in Figure 4.1. Following our discussion in Section 4.1 the commodities

that need to be considered are: K1 = (1,4), K2 = (1,6), K3 = (2,5), K4 =

(2,6), K5 = (3,4), K6 = (3,6), and K7 = (5,6).

To start the process, we find a small set of constraints, one for each com-

modity using Lemma 4. From the graph we can easily identify those constraints

as:

• β2 + β3 + β5 >= 1, (DSN for K1)

• β2 + β3 + β5 >= 1, (DSN for K2)

• β1 + β3 + β4 >= 1, (DSN for K3)

• β1 + β3 + β4 >= 1, (DSN for K4)

• β1 + β2 + β5 >= 1, (DSN for K5)

• β1 + β2 + β5 >= 1, (DSN for K6)

The redundant constrains from the above problem can be removed without

any loss of generality:

• β2 + β3 + β5 >= 1 (DSN for K1 and K2)

• β1 + β3 + β4 >= 1 (DSN for K3 and K4)

• β1 + β2 + β5 >= 1 (DSN for K5 and K6)

One integer solution of this problem is β2 = 1 and β3 = 1. But this solution

is not a valid RPP solution, as the max-flow for commodities K2, K4, K6 and
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K7 are all 0’s. To get a valid RPP solution we must find some violated cuts

and add them to the current problem and solve the problem once again. Using

max-flow algorithm we find the following additional cuts:

• β4 + β5 >= 1, (DSN for K2)

• β1 + β4 + β5 >= 1, (DSN for K4 and K6)

Adding these additional cuts the problem becomes:

• β2 + β3 + β5 >= 1

• β1 + β3 + β4 >= 1

• β1 + β2 + β5 >= 1

• β4 + β5 >= 1

• β1 + β4 + β5 >= 1

If we ignore the redundant (or loose) constraints, the new problem becomes:

• β2 + β3 + β5 >= 1

• β1 + β3 + β4 >= 1

• β1 + β2 + β5 >= 1

• β4 + β5 >= 1

One optimal integer solution for this problem is β2 = 1 and β4 = 1, which

is a valid RPP solution.
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4.4 Experimental Results

For our experiments, we have considered different randomly generated topolo-

gies. For comparing the performance of our formulation FRM-2 using the

Branch-and-Cut approach (Section 4.3), with that of our compact formulation

FRM-1 (Section 4.2), we have generated a number of 15, 20, 25, 30 and 35

node networks, and have run both formulations1. For evaluating the perfor-

mance of the formulation FRM-2 for medium and large sized networks, we

have generated networks with 40, 60, 80, 100, 120 and 140 nodes. For a given

size of the network, we have generated 3 categories of networks, which we

have called the low, medium and high “density” networks. We have measured

the density of a network by the average number of edges for each node. For

networks containing 60 nodes or less, for low density (medium density, high

density) networks, we have randomly chosen the degree of each node to lie in

the range from 2 to 3 (3 to 5, and 4 to 7 respectively). For networks containing

80 nodes and more, we have randomly chosen the degree of each node to lie

in the range 4 to 5, 5 to 7, and 6 to 9 for a low, a medium and a high density

network respectively.

If there is an edge between nodes x and y, we have randomly selected the

length of the fiber connecting x and y to lie in the range 800 to 2800 km. We

have selected the optical reach r to be 3000 km.

For our first set of experiments to compare the performances of FRM-1 and

FRM-2, for each category of networks with sizes from 15-node to 35-node, we

have randomly generated 10 sets of physical topologies and the results reported

in this paper represent the average values of those 10 sets of physical topologies.

1We were limited to networks with 35 or fewer nodes, since the formulation FRM-1 takes an
unacceptable amount of time to solve if the network has more than 35 nodes.
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For our second set of experiments to evaluate the performance of FRM-2,

for each category of networks with sizes from 40-node to 140-node, we have

randomly generated 5 sets of physical topologies and the results reported in this

paper represent the average values of those 5 sets of physical topologies. We

have carried out the experiments on a Sun Fire X2200 M2 Server machine [76].

We have presented two tables (Table (4.1) and Table (4.2)), as well as

two graphs (Figure (4.3) and Figure (4.4)) to demonstrate our experimental

results. In column 3 and 4 of both tables, we have shown, respectively, the

average number of edges (|E|) in the physical topology and the average number

of commodities (|K|), for different network densities.

Table (4.1) illustrates, along with other data, a comparison of the average

execution time (given in seconds) needed to solve the RPP problem using the

formulations FRM-1 and FRM-2 (column 7 and coulmn 8, respectively), for

different network sizes and for different network densities. The results show

that the formulation FRM-1 needs considerably more time than formulation

FRM-2 to solve a given problem - ranging, on an average, from approximately 9

times more for 15-node, low-density network to 2150 times more for 35-node,

high-density network. The dramatic improvement in the execution time of

FRM-2, compared to FRM-1, particularly for larger networks, is remarkable.

Table (4.2) illustrates, along with other data, a comparison of the average

execution time (given in seconds) needed to solve the RPP problem using the

formulation FRM-2 (column 7) for different network sizes and for different

network densities.

The average number of regenerators, determined using the heuristic in [31]

and shown in column 5 of Table 4.1 and Table 4.2, is more than the optimum

value shown in column 6 of Table 4.1 and Table 4.2, in all the cases. This shows
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Table 4.1: Comparing average execution time using FRM-1 and FRM-2

Average # of Average Solution

Network Network Average # of Regenerators Time (sec)

Size Density Edges Commodities Heuristic Optimal FRM-1 FRM-2

Low 38.0 79.0 6.4 6.1 0.18 0.02

15 Medium 59.0 57.8 3.1 2.8 0.14 0.01

High 78.6 35.2 2.0 1.9 0.08 0.01

Low 49.4 155.5 9.1 8.8 1.33 0.11

20 Medium 78.4 125.7 4.5 4.0 1.10 0.03

High 96.6 94.5 2.7 2.2 0.67 0.02

Low 62.2 254.1 11.5 11.0 32.22 0.26

25 Medium 95.8 219.1 6.5 5.3 11.77 0.07

High 134.2 171.7 3.5 3.0 6.78 0.02

Low 75.2 379.5 14.0 12.8 158.29 0.47

30 Medium 119.8 325.7 6.6 5.7 139.10 0.16

High 162.0 272.2 4.5 3.8 39.68 0.05

Low 87.8 530.5 16.1 15.1 515.62 1.66

35 Medium 137.8 473.6 7.7 6.6 427.19 0.27

High 185.4 405.6 5.8 4.6 430.35 0.20

the need to use an optimal algorithm, rather than a heuristic, to minimize the

cost of regenerators.
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Figure 4.3: Comparing average execution time for medium density networks

Figure (4.3) shows the comparison of average execution time using FRM-1
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Table 4.2: Average execution time for large networks using FRM-2

Average # of Average Solution

Network Network Average # of Regenerators Time (sec)

Size Density Edges Commodities Heuristic Optimal FRM-2

Low 100.0 709.4 18.8 17.4 3.32

40 Medium 159.6 640.4 9.2 7.8 0.61

High 218.0 565.6 6.8 5.2 0.13

Low 151.6 1655.0 29.0 27.4 70.27

60 Medium 244.0 1558.0 13.8 11.0 9.95

High 323.6 1398.8 8.4 6.6 1.28

Low 359.2 2825.0 16.6 13.4 232.58

80 Medium 478.8 2595.6 11.0 8.4 35.73

High 589.2 2407.4 8.0 6.4 4.51

Low 450.8 4505.2 21.4 15.8 582.72

100 Medium 592.0 4256.0 13.4 11.0 77.73

High 743.2 4003.8 11.4 7.8 11.50

Low 770.4 4505.2 15.0 11.8 740.17

120 Medium 957.2 4256.0 11.0 8.2 96.58

High 1142.4 4003.8 9.0 6.4 15.94

Low 905.6 4505.2 18.4 11.8 1853.53

140 Medium 1117.6 4256.0 13.8 8.2 224.74

High 1328.8 4003.8 10.4 6.4 44.33

and FRM-2 for different sized networks with medium density.

FRM-2 Execution Time for Large Networks
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Figure 4.4: Illustrating FRM-2 execution time for large networks
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Figure (4.4) shows the average execution time needed using FRM-2 for

larged sized networks with different network densities.
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Chapter 5

Optimal Lightpath Allocation in

Translucent Networks

5.1 Introduction

In a translucent optical network (reviewed in Section 2.1.14), in order to enable

every node-pair to communicate with each other, a selected number of nodes

need to be capable of 3R-regeneration (reviewed in Section 2.1.13) of incoming

optical signals. The number and the locations of 3R-regenerator nodes are

determined by solving the Regenerator Placement Problem (RPP) (Chapter

4).

Once the locations of the regenerator nodes are known, the objective of the

Routing with Regenerators Problem (RRP) is to compute a path between a

given source node S to a given destination node D for a data communication

request from node S to node D, using as few regenerators as possible [85,87],

so that a lightpath can be established from S to D.

Since the regeneration devices are scarce and the process results in in-
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creased delays, using fewest possible regenerators is an important objective in

translucent lightpath allocation in translucent networks. Since O-E-O conver-

sion takes place at regenerators, wavelength conversion is available for free at

the regenerators. We assume that all-optical wavelength converters are not

available, so that the wavelength continuity constraint [3] must be satisfied for

each segment. As discussed in Section 2.1.14.1 the transparent sections of a

translucent lightpath are often called segments.

In this chapter we have presented three formulations in our investigations

on solving RWA problem in translucent optical networks. The first formulation

(we call it DLA for Dynamic Lightpath Allocation) is to solve the problem of

dynamic lightpath allocation. The second formulation (we call it DSLA for

Dynamic Survivable Lightpath Allocation) augments the first formulation by

adding shared path protection [88]. The third one (we call it SLA for Static

Lightpath Allocation) is to solve the problem of static lightpath allocation in

translucent optical networks.

An example of a long haul network with distances between the nodes in

kilometers is shown in Figure 5.1. If the optical reach is r = 2000 km, an

optical signal from node A cannot reach node H without regeneration. For

communication between A and H, if there is a regenerator at D, a translucent

lightpath (P = A → B → C → D → F → G → B → C → H) with two

segments (S1 = A → B → C → D) and (S2 = D → F → G → B → C → H)

can be established.

Property 1: If a translucent lightpath involves two segments, Sa and Sb

that have one or more common fiber(s), the same wavelength cannot be used

for both segments Sa and Sb [67].

For instance, in Figure 5.1, the segments S1 and S2 of the translucent
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lightpath P have the common fiber B → C. If a channel q ∈ Q is available

on all the fibers in the network, when processing a request for communication

from A to H, the channel q cannot be used for both segments S1 and S2.

700500 500 1500

1200

100

50 50

A B

G

C D

F

H

E

Figure 5.1: A simple translucent network with fiber lengths in km

This property of translucent networks was first identified in [67]. To the

best of our knowledge, this property has not been taken into account in any ear-

lier algorithms for translucent network design. As a result, earlier algorithms

for routing in translucent networks may give an invalid route and wavelength

if segments have common fiber(s). We have incorporated this important prop-

erty of translucent optical network and showed how this restriction may be

taken into account while solving the RRP problem.

In Section 5.2 we have presented our formulation DLA for solving RRP

for dynamic lightpath allocation in translucent networks. In Section 5.3 we

have presented our formulation DSLA for solving RRP for dynamic survivable

lightpath allocation in translucent networks. We have presented our formula-

tion SLA for solving the problem of static lightpath allocation in translucent

networks in Section 5.4.
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5.2 RRP for Dynamic Lightpath Allocation

In this section we describe our formulation DLA for dynamic lightpath al-

location. We have shown how Property 1 may be taken into account when

solving the RRP problem. We have studied the problem of dynamic lightpath

allocation to establish a lightpath from some node S to some other node D in

the presence of other lightpaths (translucent or transparent), set up earlier in

response to previous requests for communication. We have taken account of

Property 1 in

• proposing an Integer Linear Program (ILP) which gives an optimal path

for a translucent lightpath using a minimum number of regenerators,

• proposing an efficient heuristic to compute the path with a minimum

number of regenerators for large networks.

5.2.1 DLA: An ILP Formulation for Optimal Solution

This ILP formulation determines a route with the minimum number of regen-

erators needed to set up from a given source to given destination for a new

request of data communication. In this formulation, it is necessary to specify

an upper limit on the value of s, the maximum allowable number of segments

in a translucent lightpath. This may be determined by the number of regen-

erators in the network or by the acceptable limits on the delay and the Bit

Error Rates (BER) [87].

In this formulation, the symbol r denotes the optical reach of the network.

N is the set of all end nodes in the netwok. Here δi is a constant, related

to a node i ∈ N , defined as follows. If node i is a regenerator node, δi = 1,

otherwise δi = 0. We have used a constant s to denote the maximum allowable
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number of segments in a translucent lightpath. E is the set of all pairs (i, j)

of nodes such that i → j is an edge in the physical topology, representing an

optical fiber from node i to node j. The length of edge i → j is the constant

dij. Q is the set of available channels in each fiber.We have used wq
ij, a constant

for channel q ∈ Q on the fiber i → j. If channel q is already used by an existing

lightpath in edge i → j, wq
ij = 1, otherwise wq

ij = 0.

Xk
ij denotes a binary variable for each edge i → j in the physical topology

and for each segment k, 1 ≤ k ≤ s, such that, if edge i → j is used by the new

lightpath in its kth segment, Xk
ij = 1, otherwise Xk

ij = 0. W k
q denotes another

binary variable for each channel q in a segment k such that, if channel q is

allotted to the new lightpath in its kth segment, W k
q = 1, otherwise W k

q = 0.

The formulation is given as:

minimize
s∑

k=1

∑

(i,j)∈E

δi ·Xk
ij (5.1)

subject to:

1. Satisfy the flow balance equations.

∑

j:(S,j)∈E

X1
Sj = 1;

s∑

k=1

∑

j:(j,S)∈E

Xk
jS = 0; (5.2)

s∑

k=1

∑

j:(j,D)∈E

Xk
jD = 1;

s∑

k=1

∑

j:(D,j)∈E

Xk
Dj = 0; (5.3)

∑

j:(i,j)∈E

Xk
ij −

∑

j:(j,i)∈E

Xk
ji = 0; ∀i ∈ N : δi = 0,

∀k, 1 ≤ k ≤ s.

(5.4)
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∑

j:(i,j)∈E

Xk+1
ij −

∑

j:(j,i)∈E

Xk
ji = 0; ∀i ∈ N : δi = 1,

∀k, 1 ≤ k ≤ s.

(5.5)

2. The length of a segment cannot exceed the optical reach r.

∑

j:(i,j)∈E

Xk
ij · dij ≤ r; ∀k, 1 ≤ k ≤ s. (5.6)

3. Each segment of the translucent lightpath must have exactly one channel

number assigned to it.

∑
q∈Q

W k
q = 1; ∀k, 1 ≤ k ≤ s. (5.7)

4. The channel number assigned to a segment of the new lightpath must

be free (not being used by any existing lightpath), on each fiber in the

segment.

wq
ij ·Xk

ij + W k
q ≤ 1; ∀(i, j) ∈ E,

∀k, 1 ≤ k ≤ s,

∀q ∈ Q.

(5.8)

5. If two segments share a fiber, they must be assigned distinct channel

numbers.

Xk
ij + X l

ij + W k
q + W l

q ≤ 3; ∀(i, j) ∈ E,

∀k, l, 1 ≤ k, l ≤ s,

∀q ∈ Q.

(5.9)
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5.2.1.1 Justification for the Formulation DLA

The objective of our formulation is to minimize the overall number of regener-

ator nodes used by the new translucent lightpath from source S to destination

D. Equation (5.1) ensures our objective by minimizing number of edges where

the starting node is a regenerator node, for all the segments needed for the

lightpath.

The flow balance equations for every segment of the lightpaths are stated

in the equations (5.2) through (5.5). In equation (5.4), δi = 0 means that the

node i does not have any capability for 3R regeneration. In equation (5.5),

δi = 1 means that the node i is a 3R regenerator node and, when a lightpath

passes through such a regenerator node, the segment number starting from

this regenerator node increases by 1.

Equation (5.6) ensures that no segment of the new translucent lightpath

has a length exceeding the optical reach r. The purpose of equation (5.7) is to

ensure that each segment of the lightpath is assigned exactly one wavelength

channel. Equation (5.8) ensures that a new lightpath can only use an unused

channel in any segment. In equation (5.8), if wq
ij is 1, an existing lightpath is

using channel q ∈ Q in the edge i → j. If the new lightpath uses the same

edge in any segment, then it cannot use the channel q when traversing through

that segment.

As we have specified in Property 1, a translucent lightpath is permitted

to have cycles in its physical routing with the restriction that whenever two

segments of a lightpath share a fiber, they must be assigned distinct channel

numbers. Equation (5.9) enforces this restriction as follows:

If both Xk
ij = 1 and X l

ij = 1, it means that the new lightpath is using edge
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i → j in two of its segments k and l. In that case if W k
q is 1 that is, if the

lightpath uses channel q in segment k, then W l
q must be 0, that is the lightpath

must not use the same channel q in segment l, or vice versa.

5.2.2 A Heuristic for Dynamic Lightpath Allocation

The formulation DLA that we have presented in Section 5.2.1 gives us an

optimal solution for dynamic lightpath allocation scenario for translucent net-

works. DLA works reasonably fast for networks having a small number of

end-nodes. For a sufficiently large network, DLA may takes hours to allocate

a single lightpath, which is unacceptable in a dynamic environment, where a

request must be served within a few milliseconds.

In this section we propose a fast heuristic that can handle large-sized net-

works and that can produce near optimal solution with a fraction of the time

needed for an optimal solution.

In this heuristic, we have used the term path intersection graph to denote

a graph GP = (VP,EP), where each vertex in VP represents a path through

the optical network that may be used to set up a transparent lightpath. If p

and q are two vertices in VP, there will be an edge, in EP, between p and q,

iff the paths, corresponding to p and q, share one or more physical edge(s).

We have established, through extensive simulations with dynamic call arrivals,

the effectiveness of the heuristic by measuring the call blocking probabilities.

We have also demonstrated the relative impact of different choices of network

resources, such as (i) the number of regenerators, (ii) the optical reach of the

regenerators and (iii) the number of wavelengths, on the network performance,

measured in terms of the call blocking probability.

In our heuristic, we have used the following symbols in addition to the
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symbols used for the ILP formulation in Section 5.2.1. Here Pxy denotes the

set of pre-computed paths from node x to node y, S denotes a set of states

that need to be explored1, NS a newly created state, C is a set of outgoing

paths from the current node. Qij represents the set of channels still available

on edge i → j. Wv is the set of colors to color vertex v of GP. W is the set of

the set of colors {Wv : v ∈ VP}.
The objective of the heuristic outlined below is to establish, if possible, a

translucent lightpath, using a minimum number of regenerators. The heuristic

assumes that necessary regenerators have been already deployed in the net-

work. This heuristic has used a simple scheme of considering a fixed number of

routes when establishing a transparent lightpath [3,91]. Our primary objective

was to show how to handle the problem of overlapping segments discussed in

Section 5.2. This heuristic is based on the “central agent” approach [3] where

an end-node of the network is designated as the site where the heuristic will be

executed. A request for a communication from S to D has to be communicated

from S to the site where the heuristic will be executed and, if the heuristic

succeeds in establishing a route for the translucent lightpath, messages have to

be communicated to the routers and the 3R regenerators in the path, followed

by a time lag sufficient to set up the routers and the 3R regenerators before

communication can start from S.

The performance of the heuristic below is based on global information and

therefore gives a lower bound on the performance which is useful for calibrating

any distributed heuristic based on a similar approach. The site where the

1Each state in the state-space for the problem consists of the triple (x,P,GP ) where x is either
the source node S or a regenerator node in the network currently being explored, P is the set of
transparent paths, each with a total length ≤ r, used by the search to reach node x starting from
the source node S and GP is the path intersection graph corresponding to P.
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heuristic is executed has access to a database containing:

1. the set Pxy of m (or fewer, if all m paths cannot be found) paths, for all

regenerator node pairs (x, y) where the total length of each path ≤ r.

2. the set of channels, Qpq, currently available on each fiber p → q in the

network.

3. the distance dij between all pairs of end-nodes.

4. a list of all nodes capable of 3R regeneration.

Each path in Pxy is a potential candidate for setting up a transparent

lightpath from x to y, where x could be the source node or a regenerator

node int he network and y could be a regenerator node or the destination

node. Given a path of length ≤ r, say x → u → · · · → v → y, the values of

Qxu, · · · , Qvy allow us to determine the set of channel numbers that may be

used to set up a new transparent lightpath from x to y.

The heuristic uses A∗, a well-known best-first search [61]. In the heuristic,

each state in the state-space for the problem consists of the triple (x, P, GP )

where x is a node in the network, P is the set of transparent paths used by the

search to reach node x starting from node S and GP is the path intersection

graph corresponding to P. Here the cost of a translucent lightpath is the

number of regenerators needed in the path used by the lightpath. Given a

state (x, P, GP ), the cost to reach node x from node S is |P|−1. The heuristic

estimate of the cost (number of regenerations needed) to reach D from the

regenerator node x. If the shortest path2 from x to D involves the edges

2We have calculated the shortest path between a node-pair (x, y) using Dijksta’s shortest path
algorithm [22]
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x → u → v → · · · → w → z → D, then the shortest distance from x to D

can be given as dxD = dxu + duv + · · · + dwz + dzD. Since dxD is the shortest

path from x to D, the minimum number of regenerator needed to set up a

translucent lightpath from x to D must be ddxD/re. The actual number of

regenerators will, of course, by the path ultimately selected from x to D and

the length of that path can not be than dxD. This establishes that ddxD/re
can not exceed the actual cost of regenerators from x to D and hence this is

an admissible heuristic.

A state (x, P, GP ) is valid if it may be used to set up a translucent lightpath

from S to x. Let a vertex v ∈ GP correspond to the path p = u → v → · · · →
y → z. The set of channel numbers that may be used to set up a transparent

lightpath from u to z, using path p, may be viewed as the set of colors Wv

to color vertex v of the path intersection graph GP = (VP,EP). If two nodes

u, v ∈ VP are adjacent in GP , it means that the paths corresponding to u and

v share one or more fiber (s). In this situation, to satisfy the property given in

Section 1, transparent lightpaths using the paths through the optical network,

corresponding to u and v, cannot be assigned the same channel number. We

have used a list coloring algorithm [39], with Wv as the list of colors for vertex

v to color graph GP . If the coloring algorithm succeeds, every path in P may

be used to set up a transparent lightpath, using the channel number obtained

using the coloring algorithm, and the state (x, P, GP ) is valid. Only essential

points of the heuristic are included in Algorithm 4.

In Algorithm 5, we have described the function createNewStates(C,P,GP ).

The remaining functions in Algorithms 4 and 5 are informally described below.

removeBest(S): This function takes a set of states S and returns the state

X = (x,P,GP ), X ∈ S with the lowest estimated value of the number of
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Algorithm 4 Dynamic lightpath allocation from S to D

1: S← (S, {}, ({}, {}))
2: while S 6= {} do
3: (x,P,GP ) ← removeBest(S)
4: if x = D then
5: return (P,GP )
6: else
7: if dxD ≤ r then
8: C ← PxD ∪ pathsToRegenerators(x)
9: else

10: C ← pathsToRegenerators(x)
11: end if
12: NS ← createNewStates(C,P,GP )
13: S← S ∪NS
14: end if
15: end while

Algorithm 5 createNewStates(C,P,GP )
1: NS ← {}
2: for each pathp ∈ C do
3: Gnew

P ← augmentGraphByPath(p,GP )
4: Pnew ← P ∪ {p}
5: for each node v ∈ VPnew do
6: Wv ← assignListColors(v)
7: end for
8: if listColor(Gnew

P ,W) then
9: NS ← NS ∪ (lastNode(p),Pnew,Gnew

P )
10: end if
11: end for
12: return NS
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regenerators needed to reach node D from node S. The function removes the

state X from S as well.

pathsToRegenerators(x): This function takes a node x of the network

and returns the set of pre-computed paths from x to all regenerators that are

within the optical reach of x.

augmentGraphByPath(p,GP ): This function takes a path p in the network

from some node x and the path intersection graph GP = (VP,EP) correspond-

ing to the paths used to go from S to x. The function returns a graph Gnew
P

by adding, to GP , a new vertex v corresponding to path p and requisite new

edges between v and the nodes in VP.

assignListColors(v): This function takes vertex v of the path intersection

graph GP = (VP,EP) (which corresponds to some path in the network with a

total length ≤ r) and returns the set of channel numbers that are not used on

any of the edges in the path. This set is used to define Wv that can be used

to color vertex v.

listColor(GP ,W): This function takes a path intersection graph GP =

(VP,EP) and, for each vertex v ∈ VP, a set of colors Wv. The function returns

true, if it can successfully use a list coloring algorithm to assign a color from

Wv to vertex v, ∀v ∈ VP.
lastNode(p): This function takes a transparent path p through the optical

network and returns the last node in p.
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5.2.3 Experimental Results

We conducted two sets of experiments3 to study the efficacy of our heuristics

on many realistic networks of varying sizes, namely, ARPANET(20 nodes, 32

links), LATA ‘X’(28, 47) and USANET(53,68) [41]. The link distances in these

networks were randomly chosen between 1 and 1000 km with equal probability.

In the first set of experiments, the design parameters we considered were (i) the

number of pre-computed paths between regenerators (ii) the traffic load on the

network (iii) the number of regenerators in the network and (iv) optical reach

distance. We studied the effect of these design parameters on the call blocking

probability for a dynamic call scenario. We dynamically generated 10,000 calls.

Each call i was a tuple (si, ti, ai, di) where si, ti are the source and destination

of the call respectively, ai is the arrival time and di is the duration of the call.

We assumed that the call arrival process followed the Poisson distribution and

the call durations had exponential holding time. We define the traffic load

in the network to be the multiple of the call arrival rate and the average call

holding time. We varied the traffic load by changing the arrival rate and the

average call holding time. In all these experiments, we selected the nodes with

regeneration capabilities randomly with uniform probability.

Figure 5.2 shows the effect of the number of pre-computed paths main-

tained by the heuristic on the call blocking probability. In this experiment, we

assumed that the number of wavelengths available on each link was 8 and the

traffic load to be 50 erlangs 4. For the different networks, Figure 5.2 shows

3The actual experiments were conducted by the other group at Arizona State University. My
contribution was to develop the algorithms, ILP formulations DLA and the heuristic [4].

4Erlang is a dimensionless unit of network traffic, named after the Danish telephone engineer
A. K. Erlang, and is given by the equation E = λh, where E is the erlang, λ represents the call
(request) arrival rate and h is the average call holding time [25].
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Figure 5.2: Effect of varying the number of pre-computed paths considered

that the maximum improvement, in terms of the call blocking probability can

be achieved by maintaining 5 pre-computed paths (if exists) between every

pair of regenerators. The improvement in the call blocking probability is not

significant beyond 5 pre-computed paths. Correspondingly, in the subsequent

experiments, we selected the upper limit on the number of pre-computed paths

to be 5. In other words, if there are 5 or more paths for a source S to a destina-

tion D, we selected the 5 shortest paths from the source to the destination. It

is quite possible that we do not have 5 paths from a source S to a destination

D. In that case we selected all the paths from S to D. For all the networks,

the heuristic completed within 5 seconds, when number of paths was 5 or less

and took 2 minutes or less when the number of paths was more than 5.

Figure 5.3 and Figure 5.4 show the effect of varying traffic load on the call

blocking probability for different values of the number of wavelengths per link

in the LATA ‘X’ and in the ARPANET networks respectively. Here the traffic

loads were varied from 0 to 50 erlangs in steps of 5 erlangs. The call blocking

probabilities were measured for 4, 8, 12 and 16 wavelengths per link in the
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Figure 5.3: Traffic load vs. call blocking probability for LATA ‘X’
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Figure 5.4: Traffic load vs. call blocking probability for ARPANET
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Figure 5.5: Number of regenerator vs. call blocking probability for ARPANET

networks. The value of r was set to be 1000 km and approximately 33% of

nodes were randomly selected as regenerators. As expected, at higher loads,

increasing the number of wavelengths significantly reduces the call blocking

probability.

Figure 5.5 shows the effect of the number of regenerator nodes in the

ARPANET network on the call blocking probability for traffic load = 50 er-

langs and optical reach distance = 1000 km. It is interesting to observe that

increasing the number of wavelengths per link in the network has a higher

impact on the call blocking probability than increasing the number of regen-

erators in the network. For instance, doubling the number of regenerators

from 6 to 12 marginally reduces the call blocking probability from 0.515 to

0.458, whereas doubling the number of wavelengths from 4 to 8 reduces the

call blocking probability from 0.515 to 0.286 in ARPANET.

Figure 5.6 shows the effect of varying the value of the optical reach on the

call blocking probability for the ARPANET network with traffic load = 50
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Figure 5.6: Optical reach vs. blocking probability for ARPANET

erlangs and 6 regenerators. From the figures, we can observe that increasing

the optical reach, while keeping the number of regenerator node same, has

marginal benefit in terms of reducing the call blocking probability. These

tradeoffs between the different design parameters can be effectively used by a

network designer to select the right set of additional resources to improve the

network performance.

In the second set of experiments, our goal was to compare the number of

regenerators on the path produced by the heuristic with that of the optimal

solution found by solving DLA. The experiments were conducted on 3 different

networks - COST-SMALL5, ARPANET and LATA ‘X’. The ILP was solved

using CPLEX-10 optimizer [36].

The results of these experiments are shown in Figure 5.7. The numbers

over the bars indicate the total execution time in seconds taken by the heuristic

and ILP to compute the end-to-end paths for all node pairs. When computing

5COST-SMALL network consists of 11 nodes and 22 edges. USANET results are omitted since
the ILP did not produce optimal solution even after a significant amount of time.
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Figure 5.7: Average number of regenerators computed by the heuristic and DLA for
different networks

the average number of regenerators, only those node pairs were considered for

which the heuristics found a solution. It is evident from the results that the

heuristics produce near-optimal solutions in a fraction of the time needed to

find the optimal solutions, even for medium-size networks. Also, for the LATA

‘X’ network, the heuristic failed to find a path, even when such a path existed

(as shown in the optimal results) for a total 11 source-destination pairs out of

338 source-destination paths.

5.3 RRP for Dynamic Survivable Lightpath Allocation

Schemes to handle faults in optical networks [35, 74, 79, 96] have received a

lot of attention. Any lightpath allocation scheme for optical networks that

implements any system of protecting a lightpath from a fault in the network is

known as survivable lightpath allocation scheme. Shared path protection [88]

is a popular scheme due to its efficient use of resources and relatively fast

recovery time. In dynamic lightpath allocation using shared path protection,
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in response to a request for communication, provisions have to be made for

two lightpaths - a primary lightpath and a backup lightpath which are fiber-

disjoint. If two primary paths are edge-disjoint, the corresponding backup

paths are allowed to share one or more fiber(s) as well as the channel number.

Our objective is to use a minimum number of regenerators in the new pri-

mary and backup lightpaths. We consider two Integer Linear Program (ILP)

formulations to address the Routing with Regenerator Problem, with shared

path protection, taking Property 1 (as describe in section 5.2) into consid-

eration. The first formulation (we call it DSLA-1 for Dynamic Survivable

Lightpath Allocation formulation 1) gives us optimal solutions but it might

be time consuming while the second formulation (we call it DSLA-2 for Dy-

namic Survivable Lightpath Allocation formulation 2) produces near-optimal

solutions very fast.

In both formulations DSLA-1 and DSLA-2, we assume that a number of

requests for communication have been already processed. If a translucent light-

path enters a node with 3R regenerator capability, it does not necessarily mean

that the lightpath has to use 3R regeneration at that node. Each successful

request for communication results in i) a route and wavelength assignment

for a primary and a backup translucent lightpath, ii) the deployment of the

primary lightpath and iii) depending on the network policy, either the reser-

vation of the resources for, or the deployment of, the backup lightpath, to be

used if there is a fault affecting the primary lightpath. When a communication

is over, all resources for the corresponding primary and the backup lightpath

will be released for handling future requests for communication. There is a

database containing, for each ongoing communication, information about the

primary lightpath and the resources reserved for the backup lightpath. This
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database is used by both formulations DSLA-1 and DSLA-2 when processing

a new request for a communication, say, from S to D. The objective of both

DSLA-1 and DSLA-2 is to determine, if possible, the route of the primary

(backup) translucent lightpath from S to D, and the channel number allo-

cated to each segment of the primary (backup) lightpath. The total number

of 3R regenerators used by the primary and the backup translucent lightpath

should be as small as possible.

Formulation DSLA-1 given below considers all possible paths from S to D

and will succeed if it is possible to set up a primary and a backup translucent

lightpath from S to D. For fast processing, in formulation DSLA-2, the search

space has been restricted to some extent, so that it may occasionally fail, even

if a valid primary and a backup translucent lightpath from S to D exists.

5.3.1 DSLA-1: An ILP Formulation for Optimal Solution

The constants in DSLA-1 describe the network and the lightpaths that have

been deployed already to support existing requests for communication. The

network has a set N of nodes, with a set E of edges, with each edge (i, j) ∈ E

representing a fiber, capable of carrying |Q| channels. M denotes a large pos-

itive number. The maximum possible number of segments in the translucent

lightpath from S to D will be a specified constant s, determined by the up-

per limit of acceptable Bit Error Rate (BER) and the communication delay.

The distance of edge (i, j) ∈ E will be dij. L denotes the total number of

communications currently in progress. The channel number allocated to the

kth segment of the lth existing backup lightpath (1 ≤ l ≤ L) will be ωl
k. Here

δi, wq
ij, zq

ij, al
ij, blk

ij denote constants as follows. If node i is a 3R regenerator,

δi = 1; otherwise δi = 0. If an existing primary (backup) lightpath uses chan-

Optimization of WDM Optical Networks Quazi R Rahman



5 Optimal Lightpath Allocation in Translucent Networks 118

nel q on edge (i, j), wq
ij(z

q
ij) = 1; otherwise wq

ij(z
q
ij) = 0. If the lth existing

primary lightpath, (1 ≤ l ≤ L), uses edge (i, j), al
ij = 1; otherwise al

ij = 0. If

segment k of the lth backup lightpath, (1 ≤ l ≤ L), uses edge (i, j), blk
ij = 1;

otherwise blk
ij = 0.

W k
q , Zk

q , Xk
ij, Y k

ij are binary variables. If segment k of the new primary

(backup) lightpath uses channel q, W k
q (Zk

q ) = 1; otherwise W k
q (Zk

q ) = 0. If

segment k of the new primary (backup) lightpath uses edge (i, j), Xk
ij(Y

k
ij ) = 1;

otherwise Xk
ij(Y

k
ij ) = 0. γk

lh denotes a non-negative continuous variable for the

new backup path, whose values are restricted by the constraints, such that

γk
lh = 1, if segment k of the new backup path shares an edge and a channel

number used by segment h of the lth existing backup path; otherwise γk
lh = 0.

The objective of DSLA-1 is to minimize a composite function involving

the total number of regenerators in the new primary and the new backup

lightpaths, and the total number of channels in the new primary and the new

backup lightpaths. By making M sufficiently large, in equation (5.10), we

ensure that the first priority is to minimize the number of regenerators and

the second priority is to minimize the total number of physical links used in

the new primary and the new backup lightpaths.

The formulation is given as:

minimize M ·
s∑

k=1

∑

(ij)∈E

(δi ·Xk
ij + δi · Y k

ij ) +
s∑

k=1

(Xk
ij + Y k

ij ) (5.10)

subject to:

1. Satisfy the flow balance equations for both the new primary lightpath and

the new backup lightpath and ensure that the segment number following

a regenerator node is 1 more than the segment number preceding the
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regenerator node.

∑

j:(S,j)∈E

X1
Sj = 1;

s∑

k=1

∑

j:(j,S)∈E

Xk
jS = 0; (5.11)

∑

j:(S,j)∈E

Y 1
Sj = 1;

s∑

k=1

∑

j:(j,S)∈E

Y k
jS = 0; (5.12)

s∑

k=1

∑

j:(D,j)∈E

Xk
Dj = 0;

s∑

k=1

∑

j:(j,D)∈E

Xk
jD = 1; (5.13)

s∑

k=1

∑

j:(D,j)∈E

Y k
Dj = 0;

s∑

k=1

∑

j:(j,D)∈E

Y k
jD = 1; (5.14)

∑

j:(ij)∈E

Xk
ij −

∑

j:(ji)∈E

Xk
ji = 0; ∀i ∈ N : δi = 0,

∀k, 1 ≤ k ≤ s.

(5.15)

∑

j:(ij)∈E

Xk+1
ij −

∑

j:(ji)∈E

Xk
ji = 0; ∀i ∈ N : δi = 1,

∀k, 1 ≤ k ≤ s.

(5.16)

∑

j:(ij)∈E

Y k
ij −

∑

j:(ji)∈E

Y k
ji = 0; ∀i ∈ N : δi = 0,

∀k, 1 ≤ k ≤ s.

(5.17)

∑

j:(ij)∈E

Y k+1
ij −

∑

j:(ji)∈E

Y k
ji = 0; ∀i ∈ N : δi = 1,

∀k, 1 ≤ k ≤ s.

(5.18)

2. The length of any segment of the new primary lightpath or the new
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backup lightpath cannot exceed the optical reach r.

∑

(ij)∈E

Xk
ij · dij ≤ r; ∀k, 1 ≤ k ≤ s. (5.19)

∑

(ij)∈E

Y k
ij · dij ≤ r; ∀k, 1 ≤ k ≤ s. (5.20)

3. Each segment of the new primary lightpath or the new backup lightpath

must have exactly one channel number assigned to it.

∑
q∈Q

W k
q = 1; ∀k, 1 ≤ k ≤ s. (5.21)

∑
q∈Q

Zk
q = 1; ∀k, 1 ≤ k ≤ s. (5.22)

4. The new primary lightpath must not share an edge with the new backup

lightpath.

Xk
ij + Y h

ij ≤ 1; ∀(i, j) ∈ E,

∀k, h, 1 ≤ k, h ≤ s.

(5.23)

5. The channel number assigned to each segment of the new primary light-

path must not be in use by any existing lightpath (primary or backup),

on each fiber in the segment.

wq
ij ·Xk

ij + W k
q ≤ 1; ∀(i, j) ∈ E,

∀k, 1 ≤ k ≤ s,

∀q ∈ Q.

(5.24)
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zq
ij ·Xk

ij + W k
q ≤ 1; ∀(i, j) ∈ E,

∀k, 1 ≤ k ≤ s,

∀q ∈ Q.

(5.25)

6. The new backup lightpath, in any fiber in its path, can not share a

channel number that is being used by any existing primary lightpath.

wq
ij · Y k

ij + Zk
q ≤ 1; ∀(i, j) ∈ E,

∀k, 1 ≤ k ≤ s,

∀q ∈ Q.

(5.26)

7. The new backup lightpath may share a channel number with another

existing backup lightpath only if the corresponding existing primary

lightpath and the new primary lightpath are edge-disjoint. Equations

(5.27), (5.28) and (5.29) ensure that, for all k, h, 1 ≤ k, h ≤ s and for all

l, 1 ≤ l ≤ L, the continuous variable γk
lh has a value 1 if and only if the

kth segment of the new backup lightpath shares some edge (i, j) as well

as the channel number with the hth segment of the lth existing backup

lightpath; otherwise γk
lh has a value 0.

Zk
ωl

h
+ Y k

ij − γk
lh ≤ 1; ∀(i, j) ∈ E : blh

ij = 1,

∀k, h, 1 ≤ k, h ≤ s,

∀l, 1 ≤ l ≤ L.

(5.27)
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γk
lh − Zk

ωl
h
≤ 0; ∀k, h, 1 ≤ k, h ≤ s,

∀l, 1 ≤ l ≤ L.

(5.28)

γk
lh −

∑

(ij):blh
ij =1

Y k
ij ≤ 0; ∀(i, j) ∈ E,

∀k, h, 1 ≤ k, h ≤ s,

∀l, 1 ≤ l ≤ L.

(5.29)

al
ij + Xk

ij + γk
lh ≤ 2; ∀(i, j) ∈ E,

∀k, h1 ≤ k, h ≤ s,

∀l, 1 ≤ l ≤ L.

(5.30)

8. If two segments of the new lightpath (primary or backup) share a fiber,

they must be assigned distinct channel numbers. As shown in Figure

5.1, a translucent lightpath may have cycles and this constraint ensures

that, whenever two segments of a lightpath share a fiber, they must be

assigned distinct channel numbers. Equations (5.31) and (5.32) enforce

this restriction for the primary lightpath and the backup lightpath re-

spectively.

Xk
ij + Xh

ij + W k
q + W h

q ≤ 3; ∀(i, j) ∈ E,

∀k, h, 1 ≤ k, h ≤ s : k 6= h,

∀q ∈ Q.

(5.31)
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Y k
ij + Y h

ij + Zk
q + Zh

q ≤ 3; ∀(i, j) ∈ E,

∀k, h, 1 ≤ k, h ≤ s : k 6= h,

∀q ∈ Q.

(5.32)

5.3.1.1 Justification for the Formulation DSLA-1

The objective of the formulation DSLA-1 is to:

1. Minimize the number of regenerators needed to set up a translucent log-

ical edge from any source S to any destination D. Corresponding to

this logical edge from S to D a primary lightpath will be deployed and

resources for a backup lightpath will be reserved.

2. Minimize the number of physical links through which these lightpaths

would be established.

Our objective is to minimize a composite function involving the total num-

ber of regenerators in the primary and backup lightpath, and the number of

channel also in the primary and backup lightpaths. By making M sufficiently

large we ensure in the equation (5.10) that the number of regenerators are

minimized first and then the number of physical links are minimized.

The flow balance equations for every segment of primary and backup light-

paths are stated in the equations (5.11) through (5.18). In equations (5.15)

and (5.17), δi = 0 means that the node i does not have any capability for 3R

regeneration. In equations (5.16) and (5.18), δi = 1 means that the node i is a

3R regenerator node and, when a lightpath passes through such a regenerator

node, its segment number increases by 1.
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Equations (5.19) and (5.20) ensure that the total length of any segment of

a translucent lightpath (primary or backup) cannot exceed the optical reach

r. The purpose of equations (5.21) and (5.22) is to ensure that each segment

of a lightpath is assigned exactly one wavelength channel. Equation (5.23)

ensures that the new primary path must be edge-disjoint with respect to its

backup path. If the primary path uses an edge i → j in its physical route

then the corresponding backup path is restricted from using the same edge.

Equations (5.24) and (5.25) ensure that a new primary lightpath can only use

an unused channel in any segment. In equation (5.24), if wq
ij is 1, an existing

primary path is using a channel q in the edge i → j. If the new primary path

uses the same edge in any segment, then it cannot use the channel q in that

segment. Equation (5.25) is for a similar situation with an existing backup

path. Similarly, equation (5.26) ensures that the new backup path cannot

share a channel in any segment with an existing primary path.

Equations (5.27) through (5.30) need some explanations. If, in segment k,

the new backup lightpath uses a channel number that has been already used

by segment h of the existing lth backup path, Zk
ωl

h
= 1. Then (5.28) indicates

that γk
lh ≤ 1. Now, if an edge (i, j), that has been used by segment h of the

lth existing backup lightpath (i.e., blh
ij = 1), is also shared by the new backup

lightpath in some segment k, then Y k
ij = 1. The purpose of (5.27) is to state

that, in this situation, γk
lh ≥ 1, so that the only value of γk

lh that satisfies both

(5.27) and (5.28) is γk
lh = 1.

If segment k of the new backup lightpath does not share any edge used

by segment h of the existing lth backup lightpath, equation (5.29) states that

γk
lh ≤ 0. Since all variables must be greater than or equal to 0, γk

lh must be 0.

Now if the same segment k of the new backup lightpath also does not share the
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same channel number as used by segment h of the lth backup path, Zk
ωl

h
= 0. In

this situation, (5.27) states that γk
lh ≥ 0. Since (5.29) states that γk

lh ≤ 0, the

only solution that satisfies both (5.27) and (5.29), in this situation, is γk
lh = 0.

In summary, the equations (5.27), (5.28) and (5.29) ensure that, for all k,

1 ≤ k ≤ s and for all l 1 ≤ l ≤ L, the continuous variable γk
lh has a value 1 if

and only if

• the new backup lightpath in its kth segment, shares some edge i → j

in the physical topology with the hth segment of the lth existing backup

lightpath and

• the new backup lightpath in the same kth segment shares a channel num-

ber with the hth segment of the lth existing backup lightpath.

Otherwise γk
lh has a value 0.

If the lth existing primary lightpath uses edge (i, j), the constant al
ij = 1.

Equation (5.30) ensures that, if al
ij = 1, then either Xk

ij or γk
lh must be equal

to 0.

As we have specified earlier, a translucent lightpath is permitted to have

cycles in its physical route, with the restriction that, whenever two segments

of a lightpath share a fiber, they must be assigned distinct channel numbers.

Equations (5.31) and (5.32) enforce this restriction for the primary and the

backup lightpaths respectively.

As we have already mentioned, if a translucent lightpath enters a node

with 3R regenerator capability, it does not necessarily mean that we have

to use 3R regeneration at that node. To achieve this, each node with 3R

regeneration capability should be viewed as a virtual pair of nodes - one with

3R regeneration facility and one without. Both nodes in this virtual pair shares
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the same input and output fibers. It may be verified that if a lightpath enters

a node with 3R regenerator capability and does not need 3R regeneration, in

the solution computed by our formulation, the lightpath will enter the node

in the virtual pair with no facility for 3R regeneration.

5.3.2 DSLA-2: A Fast ILP Formulation

In formulation DSLA-2, the idea is to limit the search for the routes for any

segment of the primary (backup) lightpath to pre-determined edge-disjoint

paths. For every pair (x, y) of nodes, such that it is possible to go from x to

y without exceeding the optical reach r, using at least 2 edge-disjoint paths,

we pre-compute, if possible, m edge-disjoint paths from x to y. Here m is a

small number, fixed in advance. If m edge-disjoint paths from x to y do not

exist, we pre-compute as many edge-disjoint paths from x to y as possible.

We will use R to denote the set of all such pre-computed paths. For the rest

of this section, we will use the abbreviation PSTP (for Pre-computed Set of

Transparent Paths) to refer m pre-computed edge-disjoint transparent paths

between a node-pair.

In response to a new request, to establish a new pair of lightpaths (one

primary and one backup) from the source node S to the destination node D

of the request, one of the following two situations may arise.

1. We may find a PSTP from S to D in the set of all PSTP’s, R.

2. We may not find a PSTP from S to D in the set R.

For the first situation, formulation DSLA-2 has just to select two routes

from the PSTP from S to D, one for the primary lightpath and another for
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the backup lightpath. Both these lightpaths would be transparent lightpaths

that do not need any regeneration.

The second situation is a little complicated. In this case, since we do not

have a PSTP from S to D in R, the pair of lightpaths (primary and backup)

to be established from S to D must be translucent lightpaths, each involving

one or more regenerator node(s). Following the observations in Section ??,

DSLA-2 first selects a subset P of PSTP’s from the set R, which we may call

the set of PSTP’s of interest. PSTP’s in P will be those PSTP’s which are a)

from S to a regenerator, b) from one regenerator to another regenerator, and

c) from a regenerator to D. For each PSTP x ⇒ y in P, x will be either the

source node S or any regenerator node, and y will be either the destination

node D or any other regenerator node.

Each PSTP x ⇒ y in P will serve as a variable in our formulation DSLA-2.

Both the new primary lightpath and the new backup lightpath from S to D

uses the same PSTP’s S ⇒ Rk ⇒ Rp ⇒ . . . ⇒ Rq ⇒ D, involving the same

regenerators Rk, Rp, . . . , Rq. Once a route from S to D is determined, each

PSTP x ⇒ y in the route will correspond to a segment in the primary as well

as a segment in the backup lightpath. DSLA-2 will select two routes from

PSTP x ⇒ y – one for a segment of the new primary lightpath and another

for a segment for the new backup lightpath.

In DSLA-2, in addition to the symbols used in DSLA-1, we will use ng
p

to denote the number of fibers in the gth route of PSTP p. The starting

(terminating) node of PSTP p will be specified by s(p)(t(p)). Here Ap, Wgq
p ,

Zgq
p , Xg

p, Yg
p denote binary variables. If the PSTP p is selected to handle the

new request for communication, Ap = 1; otherwise Ap = 0. If the gth pre-

computed route is selected to realize the segment of the new primary (backup)
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lightpath corresponding to PSTP p ∈ P, Xg
p(Yg

p) = 1; otherwise Xg
p(Yg

p) = 0.

If the new primary(backup) lightpath uses channel q in the gth route of PSTP

p, Wgq
p (Zgq

p ) = 1; otherwise Wgq
p (Zgq

p ) = 0.

In formulation DSLA-2, αpg
ij , κph

qg , ηg
p , θg

p, blh
ij are constants. If the gth route

of PSTP p includes physical edge (i, j), αpg
ij = 1; otherwise αpg

ij = 0. If the hth

route of PSTP p and the gth route of PSTP q share some edge(s), κph
qg = 1;

otherwise κph
qg = 0. The set of available channel numbers that can be used

to set up a new primary lightpath using the route g of PSTP p is ηg
p . The

set of channel numbers used by the existing primary lightpaths using one or

more edges in route g of PSTP p will be denoted by θg
p. The channel number

used by the lth existing backup lightpath in PSTP p will be denoted by ωl
p.

Here λgl
ph denotes a non-negative continuous variable for the new backup path,

whose values are restricted by the constraints, such that, if the gth route for

PSTP p shares an edge with the segment h of the lth backup lightpath, and

the channel number Zgq
p matches with ωl

p then λgl
ph = 1; otherwise λgl

ph = 0.

If the segment h of the lth existing backup lightpath uses edge (i, j), blh
ij = 1;

otherwise blh
ij = 0.

The formulation is given as:

minimize M ·
∑

p∈P
Ap +

∑

p∈P
(

m∑

g1=1

ng1

p · Xg1

p +
m∑

g2=1

ng2

p · Yg2

p ) (5.33)

subject to:

1. Each PSTP, selected to handle the new request for communication, must
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satisfy the flow balance equations.

∑

p:s(p)=i

Ap −
∑

p:t(p)=i

Ap =





1 if i = S,

−1 if i = D,

0 otherwise.

(5.34)

2. For each PSTP, selected to handle the new request for communication,

there must exist, through the physical topology, one route for the corre-

sponding segment of the primary lightpath, and one route for the corre-

sponding segment of the backup lightpath

m∑
g=1

Xg
p = Ap : ∀p ∈ P. (5.35)

m∑
g=1

Yg
p = Ap : ∀p ∈ P. (5.36)

3. The primary lightpath segment, corresponding to each selected PSTP,

must be assigned exactly one channel number, not used by any existing

primary or backup lightpath that shares any fiber in the path used by

the new segment.

∑

q:q∈ηg
p

Wgq
p = Xg

p : ∀p ∈ P,

∀g, 1 ≤ g ≤ m.

(5.37)

4. The backup lightpath segment, corresponding to each selected PSTP,

must not use a channel number assigned to an existing primary lightpath
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that shares any fiber in the path used by the new segment.

∑

q:q /∈θg
p

Zgq
p = Yg

p : ∀p ∈ P,

∀g, 1 ≤ g ≤ m.

(5.38)

5. The route used by each segment of the new primary lightpath must be

edge-disjoint with respect to the route used by each segment of the new

backup lightpath.

Xg1

p1 + Yg2

p2 ≤ 1 : κp1,g1

p2,g2 = 1,

∀p1, p2 ∈ P,

∀g1, g2, 1 ≤ g1, g2 ≤ m.

(5.39)

6. A segment of the new backup lightpath may share a channel as well as

a fiber with a segment of an existing backup lightpath, only if the new

primary lightpath is edge-disjoint with respect to the primary lightpath

corresponding to that existing backup lightpath. In a way very similar

to equations (5.27) - (5.29) of formulation DSLA-1, equations (5.40) -

(5.42) ensure that the continuous variable λgl
ph has a value 1, if and only

if the gth pre-computed route for segment p of the new backup lightpath

shares some edge (i, j) as well as the channel number that are also used

by segment h of the lth existing backup lightpath; otherwise, λgl
ph has a

value 0. Whenever λgl
ph = 1, equation (5.43) ensures that the new primary

lightpath does not share any edge in the physical topology with the lth

existing primary lightpath.
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Zgωl
h

p + blh
ij · αpg

ij · Yg
p − λgl

ph ≤ 1 : ∀g, 1 ≤ g ≤ m,

∀p, h ∈ P,

∀l, 1 ≤ l ≤ L.

(5.40)

λgl
ph − Z

gωl
h

p ≤ 0 : ∀g, 1 ≤ g ≤ m,

∀p, h ∈ P,

∀l, 1 ≤ l ≤ L.

(5.41)

λgl
ph −

∑

ij:blh
ij =1

αpg
ij · Yg

p ≤ 0 : ∀g, 1 ≤ g ≤ m,

∀p, h ∈ P,

∀l, 1 ≤ l ≤ L.

(5.42)

al
ij + αpg

ij · Xg
p + λkl

th ≤ 2 : ∀p, t, h ∈ P,

∀g, k, 1 ≤ g, k ≤ m,

∀l, 1 ≤ l ≤ L.

(5.43)

7. If the routes used by any pair of segments of the new primary (backup)

share a fiber, the pair of primary (backup) segments must be assigned

distinct channel numbers.

Wg1q
p1 +Wg2q

p2 ≤ 1 : ∀q ∈ Q,

κp1g1

p2g2 = 1,

∀p1, p2 ∈ P,

∀g1, g2, 1 ≤ g1, g2 ≤ m.

(5.44)
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Zg1q
p1 + Zg2q

p2 ≤ 1 : ∀q ∈ Q,

κp1g1

p2g2 = 1,

∀p1, p2 ∈ P,

∀g1, g2, 1 ≤ g1, g2 ≤ m.

(5.45)

5.3.2.1 Justification for the Formulation DSLA-2

The objective function of DSLA-2 denotes the same function used in DSLA-

1 but uses a slightly different formula due to the way we have formulated

DSLA-2. The objective function is a composite function, involving the total

number of regenerators in the primary and the backup lightpaths, and the

number of channels in the primary and backup lightpaths. By making M

sufficiently large, we ensure in equation (5.33) that the number of regenerators

are minimized first and then the number of physical links are minimized.

Most of the equations in formulation DSLA-2 are self descriptive and the

explanations are very similar to the corresponding equations in formulation

DSLA-1. Equations (5.40) through (5.43) needs some clarifications. These

equations correctly compute the value of λg,l
p,h. If λg,l

p,h = 1, then the new primary

lightpath must be edge disjoint with respect to the lth existing lightpath. If

segment p of the new backup lightpath uses route g and a channel number

that has been already used by segment h of the lth existing backup lightpath,

then Zg,ωl
h

p = 1. In that case, equation (5.41) indicates that λg,l
p,h ≤ 1. If edge

(i, j) appears in segment h of existing lth backup lightpath, bl,h
ij = 1. If edge

i, j) also appears in the gth route of the node pair p, αpg
ij = 1. If segment p of

the new backup lightpath uses route g, Yg
p = 1. Equation (5.40) states that,
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in this situation, λg,l
p,h ≥ 1. The only value of λg,l

p,h that satisfies both (5.40) and

(5.41), in this case, is λg,l
p,h = 1.

If, on the other hand, the new backup path does not share any edge as used

by the lth backup path in any segment, equation (5.42) states that λg,l
p,h ≤ 0.

Since all variables must be greater than or equal to 0, λg,l
p,h must be 0. If

segment p of the new backup path does not share the same channel number

used by segment h of the lth backup path, Zg,ωl
h

p = 0. In this situation, equation

(5.40) states that λg,l
p,h ≥ 0. Since (5.42) states that λg,l

p,h ≤ 0, the only solution

that satisfies both (5.40) and (5.42), is λg,l
p,h = 0.

In summary, the equations (5.40), (5.41) and (5.42) ensure that, for all

g, 1 ≤ g ≤ m and for all p, h ∈ P and for all l, 1 ≤ l ≤ L, the continuous

variable λg,l
p,h has a value 1 if and only if

• the new backup lightpath in its gth route of the segment p, shares some

edge (i, j) in the physical topology that is also used by the lth existing

backup lightpath in its segment h and

• the new backup lightpath in the same gth route of the segment p, shares

a channel number that is also used by the lth existing backup lightpath

in its segment h.

Otherwise λg,l
p,h has a value 0.

If the lth existing primary lightpath uses the edge (i, j), the constant al
ij =

1. Equation (5.43) ensures that, if al
ij = 1, then either αpg

ij ·Xg
p or λg,l

p,h must be

equal to 0.

As stated earlier, a translucent lightpath is permitted to have cycles in its

physical routing with the restriction that whenever two segments of a lightpath

share a fiber, they must be assigned distinct channel numbers. Equations
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(5.44) and (5.45) enforce this restriction for the primary lightpath and the

backup lightpath respectively.

5.3.3 Experimental Results

For experiments, we have considered five randomly generated different sizes

of networks, with 8, 16, 24, 32 and 40 nodes respectively. We have randomly

assigned the number of incoming and outgoing fibers at each node of a network

from 3 to 5. We have randomly selected the length of the fiber between any two

directly connected nodes between 100 to 1000 km. We have selected the optical

reach r to be 1000 km. We have chosen the number of wavelength channels

on the fibers to be 8. For each size of a network that we have considered,

we randomly generated 5 sets of topologies. The results shown here are the

average values of data from those 5 sets.

To compare the performances of DSLA-1 and DSLA-2, we have carried out

the experiments for various network densities, such as, 10, 20, 30, 40 and 50

erlangs. We have conducted our simulations for 500 iterations for each value

of the size the network and for each network density, where the requests for

data communication arrived at a random rate and had a random holding time.

For the simulations with DSLA-2, we pre-computed three edge-disjoint

shortest paths, if possible, through the physical topology between each pair

of nodes that does not require a regenerator node. For any given pair of such

nodes, if three edge-disjoint paths could not be found, we selected two edge-

disjoint shortest paths between the pair, i.e., 2 ≤ m ≤ 3. The experiments

were carried out on a Sun Fire X2200 M2 Server [76], using ILOG CPLEX

version 11.1 [36].

Figure 5.8 compares the percentage of blocked requests using DSLA-1 and
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Figure 5.8: Blocking probabilities using DSLA-1 and DSLA-2 for 40-node networks.
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Figure 5.9: Individual lightpath deployment time using DSLA-1 and DSLA-2 for
40-node networks.

DSLA-2 for a 40-node network at different erlang values. As expected, the

percentage of blocked requests is higher with DSLA-2. DSLA-1 searches more

routes and is often able to find a solution, where DSLA-2 fails. The figure

also shows that, although the blocking probability with DSLA-2 is higher, it

is well within the acceptable limits (less than 5% for 50 erlangs). However,

DSLA-2 can produce results much faster than the DSLA-1 (on an average
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24-node Networks
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Figure 5.10: Number of regenerators required by DSLA-1 and DSLA-2 for 24-node
networks.
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Figure 5.11: Average lightpath deployment time using DSLA-1 and DSLA-2 for
different networks.

100 times faster). The comparison of the execution time, using a logarithmic

scale, is shown in Figure 5.9 for 40-node networks. The figure shows that,

given a network topology, the time needed to search for a path and deploying

a lightpath does not vary significantly with the congestion of the network,

which is what we have expected. We have observed almost identical results

for other networks as well.

Optimization of WDM Optical Networks Quazi R Rahman



5 Optimal Lightpath Allocation in Translucent Networks 137

0

1

2

3

4

5

6

8 16 24 32 40

Network Size

A
v
e

. 
B

lo
c
k
in

g
 P

ro
b

a
b

ili
ty

 (
%

) DSLA-1

DSLA-2

Figure 5.12: Average blocking probability using DSLA-1 and DSLA-2 for different
networks.

In Figure 5.10, we have compared the number of regenerators used by the

two formulations for 24-node networks, for the same set of successful requests.

As expected, the number of regenerators required to establish a lightpath (both

primary and backup) does not vary significantly with traffic congestion in the

network. However, as shown in Figure 5.10, DSLA-1 requires less regenerators

than DSLA-2 in all cases.

Figure 5.11 compares the average time required to establish lightpaths in

different size networks using DSLA-1 and DSLA-2. The figure clearly shows

that DSLA-2 can deploy a lightpath much faster than DSLA-1. For all the

cases DSLA-2 needs, in an average, less then 100 ms, whereas DSLA-1 needs

around 10,000 ms. In the case of dynamic lightpath allocation, it is very

important to obtain a solution very quickly. Therefore, if the performance is

acceptable, DSLA-2 can be effectively used to meet the requirements of the

dynamic environment.

Figure 5.12 shows the average blocking probability using DSLA-1 and
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DSLA-2 for networks of different size. As expected, the blocking probabil-

ity using DSLA-2 is always higher than with DSLA-1. However, the figure

also shows that the blocking probability of DSLA-2 is well within the accept-

able limits (less than 5%). With such efficient performance in terms of time

required, we expect that this small increase in the blocking probability will be

acceptable to the industry.

5.4 Static Lightpath Allocation in Translucent Networks

The RPP and RRP problems studied by the research community primarily deal

with dynamic lightpath allocation [3] and typically do not take into account

the fact that the number of channels on a fiber is limited. We have studied

static lightpath allocation [3] in translucent networks and have pointed out

that this problem is significantly different from the RRP and RPP problems

that have been studied.

An example of a long haul network with distances between the nodes in km

is shown in figure 5.13. If the optical reach is 2000 km, it is clear that an optical

signal from node A cannot reach node D without 3R-regeneration. However,

communication between A and D can be established by placing a regenerator

either at B or C. It may be verified that a minimum of 2 regenerators are

needed for this network so that every node can communicate with every other

node node in the network. One solution is to place these regenerators at nodes

B and D. When designing a translucent network, the RPP problem must be

solved before tackling the problem of lightpath allocation.

In order to regenerate an optical signal we need, at a minimum, a receiver

and a transmitter [86]. The simplified model for determining the “cost” of
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Figure 5.13: A wide area translucent network with distances between the nodes in
km.

regeneration at any given node having 3R regeneration facility is the cost

of a receiver and the cost of a transmitter, for each lightpath undergoing

regeneration at that node6. Let the network shown in Figure 5.13 have an

optical reach of 2000 km. The regenerators are at nodes B and D, as prescribed

by any standard RPP algorithm. We consider the problem of establishing three

lightpaths i) from A to E, ii) from B to E, and iii) from G to E. The following

situations illustrate the limitations of standard RRP and RPP when carrying

out static lightpath allocation in this network:

Situation 1: Let each fiber in the network accommodate two channels,

c1 and c2. If we use the RRP approach [4, 67, 85, 87], the lightpath A to E

must undergo regeneration at nodes B and D, and use the route A → B →
C → D → E. Similarly, the lightpath from B to E (G to E) must undergo

regeneration at node D and use the route B → C → D → E (G → D → E).

As all three routes share the edge D → E, this is an invalid solution, since

the edge D → E allows only two channels. However the network is capable

of supporting these three lightpaths, if we place an additional regenerator at

node F and, for the lightpath from A to E, use the route A → F → E, instead

6For static RWA, fixed frequency transmitters and receivers offer the most economic solution.
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of the route A → B → C → D → E.

Situation 2: Let each fiber in the network support three channels, c1,

c2 and c3. It would now be possible to use route A → B → C → D → E

(B → C → D → E, and G → D → E) for the lightpath from A to E

(respectively C to E, and G to E) and use the scheme of placing regenerators

shown in Figure 5.13. The total number of lightpaths undergoing regeneration

at node B (D) is 1 (3), so that the cost for regeneration is 1+3 = 4. However,

this cost for regeneration may be reduced to 3 if the lightpath from A to E

undergoes regeneration at node C instead of nodes B and D.

In summary the design objective for static RWA should be the minimization

of the total number of regenerations that the lightpaths need to undergo, rather

than the minimization of the number of nodes having regeneration facility.

In order to determine, for each k ∈ K, a feasible RWA for a translucent

lightpath from Sk to Dk, our algorithm must find i) the actual route through

the physical topology, to be used by the translucent lightpath from Sk to Dk,

ii) the node(s) on the route from Sk to Dk where the lightpath has to undergo

regeneration, and iii) the channel to be used for each segment of the lightpath.

In our first approach we have used an Integer Linear Program (ILP) for-

mulation (we called it SLA for Static Lightpath Allocation), which finds an

optimal solution to the problem. For larger networks we have proposed a

two-step heuristic. The first step of the heuristic uses another Integer Linear

Program formulation (we called it ILPH for ILP for Heuristic), to determine

a preliminary route for each lightpath to be set up. The second step uses a

search algorithm, that takes as its input, the preliminary route obtained in

Step 1, and solves the RWA problem where the actual route used by a light-

path will differ from the preliminary route determined in Step 1, if channel
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assignment on any segment on the preliminary route is not possible.

For SLA (ILPH), the process of finding a route (preliminary route) for a

lightpath k ∈ K, may be viewed as equivalent to a multi-commodity network

flow problem over the physical topology, where a single unit of commodity

k ∈ K, distinct from all other commodities, is being shipped from Sk to Dk

using a non-bifurcated route. As such, for the rest of this chapter, we will use

the words lightpath and commodity interchangeably.

5.4.1 SLA: An ILP Formulation for Optimal Solution

In the ILP formulation for the optimal static lightpath allocation (SLA) in

translucent networks, we have used the following symbols. Here N denotes

the set of all end-nodes in the physical network. E denotes the set of all pairs

(i, j) such that there is a directed edge i → j from node i to node j in the

physical topology, representing a fiber from node i to node j. The physical

topology is represented by a graph G, such that G = {N,E}. K is the set

of source-destination pairs (Sk, Dk) of all lightpaths for which RWA is to be

carried out. Q represents the set of channels on each fiber. The optical reach

of the network is denoted by r. Sk (Dk) denotes the source (destination) node

for commodity k ∈ K. The length of the physical edge (i, j) ∈ E is dij. ϕk
ij is

a binary flow variable for each commodity k ∈ K over an edge (i, j) ∈ E in the

physical topology. Commodity k uses edge i → j, ϕk
ij = 1, otherwise ϕk

ij = 0.

βk
i is a binary variable for each node i ∈ N . If commodity (lightpath) k is

regenerated at node i, βk
i = 1, otherwise βk

i = 0. wkq
ij denotes a binary variable

for each channel q ∈ Q, each commodity k ∈ K and each edge (i, j) ∈ E, such

that, if commodity k uses channel q on edge (i, j), wkq
ij = 1, otherwise wkq

ij = 0.

M is a large integer number.
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Here vk
i is a continuous variable for each node i ∈ N in the physical topology

and each commodity k ∈ K. The value of vk
i is restricted by the following

constraint. If there is a physical edge between node i and node j, such that

i → j ∈ E and the nodes i and j are on the route used by the commodity

k, the value of vk
j depends upon the value of vk

i and the distance dij between

node i and node j, and is given by vk
j = vk

i + dij, provided that j 6= Sk and

βk
j = 0. If j = Sk or βk

j = 1, then vk
j = 0.

The formulation is given as:

minimize
∑

k∈K

∑
i∈N

M · βk
i +

∑

k∈K

∑

(i,j)∈E

ϕk
ij (5.46)

subject to:

1. Each edge selected for a commodity must satisfy the flow balance equa-

tions.

∑

j:(i,j)∈E

ϕk
ij −

∑

j:(j,i)∈E

ϕk
ji =





1 if i = Sk,

−1 if i = Dk,

0 otherwise.

(5.47)

Constraint (5.47) must be satisfied ∀i ∈ N and ∀k ∈ K.

2. The route corresponding to a commodity cannot contain a cycle.

∑

i:(i,j)∈E

ϕk
ij ≤ 1; ∀j ∈ N, ∀k ∈ K (5.48)

3. The length of the fibers along the route of a transparent segment cannot

exceed the optical reach r of the network.
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vk
i + dijϕ

k
ij − r(1− ϕk

ij + βk
i ) ≤ vk

j ; ∀(i, j) ∈ E, ∀k ∈ K (5.49)

vk
i + dijϕ

k
ij ≤ r; ∀(i, j) ∈ E, ∀k ∈ K (5.50)

0 ≤ vk
j ≤ r(1− βk

i ); ∀j ∈ N, ∀k ∈ K (5.51)

vk
Sk = 0; ∀k ∈ K (5.52)

4. Each commodity must use only one distinct channel on each fiber in its

path and a given channel can be allocated to at most one commodity.

∑
q∈Q

wkq
ij = ϕk

ij; ∀(i, j) ∈ E, ∀k ∈ K (5.53)

∑

k∈K

wkq
ij ≤ 1; ∀(i, j) ∈ E, ∀q ∈ Q (5.54)

5. The number of lightpaths using an edge cannot exceed the number of

channels on a fiber.

∑

k∈K

ϕk
ij ≤ |Q|; ∀(i, j) ∈ E (5.55)

6. Each transparent segment must satisfy the wavelength continuity con-

straint.
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∑

i:(i,j)∈E

wkq
ij + βk

i ≥
∑

i:(j,i)∈E

wkq
ji ; (5.56)

∑

i:(i,j)∈E

wkq
ij − βk

i ≤
∑

i:(j,i)∈E

wkq
ji ; (5.57)

Both constraints (5.56) and (5.57) must be satisfied ∀j ∈ N such that,

j 6= Sk, j 6= Dk, ∀k ∈ K and ∀q ∈ Q.

5.4.1.1 Justification for the Formulation SLA

Our objective for the SLA formulation is to minimize a composite function that

has two components – i) the total number of regenerations, and ii) the total

number of edges, used by all the lightpaths. Here M is a suitably selected large

integer, so that the first component always dominates the second. This means

that the primary objective is to minimize the total number of regenerations

needed, and the secondary objective is to reduce the total number of edges

used, by the lightpaths. Equation (5.47) is the standard flow conservation

requirements used in network flow programming [1]. Equation (5.48) ensures

that a lightpath does not pass through a node more than once, preventing any

possible cycle in the route.

Equations (5.49), (5.50), (5.51) and (5.52) ensure that, if node j lies on the

path of the lightpath corresponding to k, then,

1. if j is not a regenerator,

• vk
j gives the length of the route from the last regenerator before node

j (or from the source node Sk, if there is no such regenerator before

j), to j.
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• the value of vk
j never exceeds the optical reach r.

2. if j is a regenerator node (i.e βk
i = 1), or j is the source node Sk, then

vk
j = 0.

To achieve these requirements, these equations, if needed, force the value

of βk
i to be 1, so that the lightpath undergoes regeneration at node j. If, in

equation (5.49), ϕk
ij = 0, meaning that the lightpath k has not used the edge

i → j, equation (5.49) becomes vk
i − r(1 + βk

i ) ≤ vk
j – a redundant constraint.

If, the lightpath k has used the edge i → j, then ϕk
ij = 1 and the equation

(5.49) becomes vk
i + dij − r · βk

i ≤ vk
j . Since we are minimizing the sum of

the values of βk
i , the solver forces βk

i = 0, if possible. If the solver can make

βk
i = 0, then vk

i + dij ≤ vk
j . In view of equation (5.50), the solver uses the

minimum value of vk
j . In other words, if the solver can make βk

i = 0, vk
j is

forced to be vk
i +dij. When the solver is forced to make βk

i = 1, then equation

(5.51) ensures that vk
j = 0, and equation (5.49) becomes vk

i + dij − r ≤ 0 - a

redundant constraint.

The LHS of equation (5.53) gives the total number of channels allotted to

commodity k on edge i → j. This total is 1 (0) if the lightpath corresponding

to k uses (does not use) edge i → j. In other words, equation (5.53) ensures

that each lightpath is assigned exactly only one channel on each edge in its

path and, if a lightpath does not use an edge, no channel is allotted to it on

that edge. Equation (5.54) ensures that a channel q ∈ Q on any edge (i, j) ∈ E

is assigned to at most one lightpath. Equation (5.55) ensures that the total

number of lightpaths through any edge never exceeds the total number of

channels on an edge.

If the lightpath corresponding to k has not undergone regeneration at node
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j, βk
i = 0, so that equations (5.56) and (5.57) boil down to

∑

i:(i,j)∈E

wkq
ij =

∑

i:(j,i)∈E

wkq
ji . The value of

∑

i:(i,j)∈E

wkq
ij


 ∑

i:(j,i)∈E

wkq
ji


 is 1 only if the lightpath

entering (leaving) node j uses channel q. In this case, equations (5.56) and

(5.57) ensure that the channel assigned to lightpath k, when it enters j, is the

same as the channel assigned to it when it leaves j. If, on the other hand, βk
i =

1 (in other words, the lightpath corresponding to k has undergone regeneration

at node j), then both equations (5.56) and (5.57) are trivially satisfied, so that

the value of
∑

i:(j,i)∈E

wkq
ji is independent of the value of

∑

i:(i,j)∈E

wkq
ij .

5.4.2 A Heuristic for Static Lightpath Allocation

Algorithm (6) gives an overview for our proposed heuristic to solve the Static

Lightpath Allocation problem for large translucent networks. In this algorithm

we have used the symbol Es to represent the set of physical edges (Es ⊆ E)

that constitutes a segment of a translucent lightpath, having a total length

≤ r. The channel used in a segment is denoted by q ∈ Q.

In Step 1 of Algorithm 6, we use function find preferred routes to com-

pute list routes - a list of the preliminary routes from source Sk to destination

Dk, for all k ∈ K. We choose these preliminary routes, so that the maximum

number of routes sharing an edge (i, j) ∈ E is as small as possible. We have

used an ILP formulation (ILPH), described in Section 5.4.3 to solve this prob-

lem.

In Step 2, we sort the list of all the routes in some pre-defined order. We

have deployed the lightpaths corresponding to the source destination pairs in

K sequentially, by selecting elements in K in some order. We have studied
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Algorithm 6 Heuristic for RWA in translucent networks.
Input: Physical topology G, set of lightpaths K
Output: RWA for the set of lightpaths K
1: list routes ← find preferred routes(G,K)
2: sort list routes
3: while (route ← get next route(list routes)) 6= ∅ do
4: while (Es ← get segment(route)) 6= ∅ do
5: q ← assign channel(Es)
6: if q 6= 0 then
7: route ← update route(Es, q)
8: else
9: (new Es, q) ← search A∗(Es)

10: route ← update route(new Es, q)
11: end if
12: end while
13: end while

different orders (e.g., the longest-route-first, the shortest-route-first or random

selection of routes) and have observed that, deploying the lightpaths in the

order of longest-route-first, in general, gives the best performance. This is due

to the fact that a longer lightpath is likely to need a free channel for more

edges in its route, which may not be available if the shorter lightpaths are

already established. This observation is in line with [43].

Steps 3 - 12 are repeated for all routes in list routes, in order to deploy

a lightpath for each k ∈ K. In Step 3, function get next route returns, if

possible, the next route in list routes. If all routes in list routes have been

already considered, the function returns ∅. A typical route returned by this

function is from source Sk to destination Dk, for some k ∈ K. Such a route,

traversing, say e edges, has the form (Sk = x0 → x1 → . . . → xp → xp+1 →
. . . xe−1 → xe = Dk), where xi ∈ N, ∀i, 1 ≤ i ≤ e.

Steps 4 - 11 are repeated as long as all the segments have not been identi-

fied for the current route, say from Sk to Dk. When we execute Step 4, route
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denotes the part of the route from Sk to Dk for which we have not identified

all the viable segments. For instance, let the segments from Sk to some node

xt on the route Sk = x0 → x1 → . . . → xt−1 → xt → xt+1 → . . . → xe = Dk

be identified already. The remaining part of the route from Sk to Dk is

xt → xt+1 → . . . → xp → xp+1 → . . . xe−1 → xe = Dk. In Step 4, func-

tion get segment tentatively identifies the first segment, by determining the

furthest possible location of the first regenerator on route. We note that there

is no guarantee that this is a viable segment, since a valid channel assignment

is not guaranteed for this segment. Function get segment returns the route

starting with the first node of the current route and terminating with the node

denoting the location of the first regenerator. The function get segment iden-

tifies node xp, such that the length of the route from xt to xp (xp+1) is less

than or equal to (greater than) the optical reach r. Node xp is the location

of the next regenerator, if the route from xt to xp can be a viable segment.

Function get segment returns the route xt → xt+1 → . . . → xp. There is a

special case where the length of the route from xt up to xe = Dk is less than

or equal to r. In this special case, no regenerator is needed and the function

returns the route xt → xt+1 → . . . xe−1 → xe = Dk. After determining the last

segment in the route from Sk to Dk, if the function is called again, it returns

∅.
In Step 5, the idea is to attempt a channel assignment to every edge in

Es to check whether Es, determined in Step 4, represents a viable segment.

Function assign channel assigns, if possible, a channel q for Es such that, for

each edge on Es, the channel q is not used by any lightpath deployed so far. If

assign channel is successful it returns the selected channel number, otherwise

it returns 0. If assign channel is successful (i.e., q 6= 0 in Step 6), then we

Optimization of WDM Optical Networks Quazi R Rahman



5 Optimal Lightpath Allocation in Translucent Networks 149

carry out Step 7; otherwise we carry out Step 9, followed by Step 10.

In Step 7, function update route updates a database with the information

describing the segment, including the channel number q, assigned to the seg-

ment, the route corresponding to Es and, if the node is not the destination

Dk, mark the last node of the segment as a regenerator node for this lightpath.

In Step 9, we use search A∗, a best first search using the A∗ algorithm [32],

to identify new Es - a viable segment starting from xt and terminating at the

furthest node xe lying on Es, for which a channel q can be assigned. We note

that the route from xt to xe has no relation to the route in Es from xt to xp.

In search A∗, we are searching for the shortest path from xt to xp for which a

valid channel assignment can be done. Our heuristic cost from any node, say

n ∈ N to xp is the length of the shortest path from n to xp, which we have

computed in a separate step, using the Djikstra’s algorithm [1] before using

Algorithm 1. Since this heuristic cost is less than or equal to the actual cost

of any path from n to xp, the heuristic is an admissible heuristic and will find

the “best” path to xp, if such a path exists. When heuristic search terminates,

either we have reached xp using a path for which a channel assignment can be

done, or no such path exists. Step 10 is just like Step 7, using new Es and the

corresponding channel q.

5.4.3 ILPH: An ILP Formulation used in the Heuristic

The ILP formulation for the function find preferred routes can be given as

follows:

minimize Ψmax +
∑

k∈K

yk (5.58)
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subject to:

1. Each edge selected for a lightpath must satisfy the flow balance equations.

∑

j:(i,j)∈E

ϕk
ij −

∑

j:(j,i)∈E

ϕk
ji =





1 if i = Sk,

−1 if i = Dk,

0 otherwise.

(5.59)

Constraint (5.59) must be satisfied ∀i ∈ N and ∀k ∈ K.

2. The route corresponding to a lightpath cannot contain a cycle.

∑

i:(i,j)∈E

ϕk
ij ≤ 1 : ∀j ∈ N, ∀k ∈ K (5.60)

3. Ψmax cannot exceed the number of channels per fiber.

Ψmax ≤ |Q| (5.61)

4. The number of lightpaths through an edge must be less than or equal to

Ψmax.

∑

k∈K

ϕk
ij ≤ Ψmax : ∀(i, j) ∈ E. (5.62)

5. Determine the number of regenerators yk needed for the lightpath k ∈ K.

yk ≥ b(
∑

(i,j)∈E

ϕk
ij · dij)/rc : ∀k ∈ K. (5.63)

Optimization of WDM Optical Networks Quazi R Rahman



5 Optimal Lightpath Allocation in Translucent Networks 151

In the above formulation we have used the following notations in excess

to some of the notations explained in Section 5.4.1. Here Ψmax denotes the

congestion of the network, defined by the number of lightpaths flowing through

the edge carrying the maximum number of lightpaths. yk is an integer variable

for commodity k ∈ K, denoting the minimum number of segments needed for

commodity k.

5.4.3.1 Justification for the Formulation ILPH

Our objective for ILPH formulation is to find initial routes for all the lightpaths

to be deployed. To achieve the objective, the formulation tries to minimize a

composite function that has two components. The first component minimizes

the overall congestion of the network. The second component tries to select a

route for the lightpath such that the estimated number of regenerators needed

for the lightpath, is minimized.

Equation (5.59) is the standard flow conservation requirements used in

network flow programming [1]. Equation (5.60) ensures that a lightpath can

not visit a node more than once, preventing any possible cycle in the route.

Equation (5.61) ensures that the congestion of the network, which is the total

number of lightpaths in an edge or edges, cannot be more than the number of

wavelength channels per fiber. Equation (5.62) ensures that the total number

of lightpaths in any edge is always less than or equal to the congestion Ψmax.

Equation (5.63) calculates the estimated minimum number of regenerators

needed for each lightpath. For a lightpath k ∈ K, it sums up the lengths dij of

all the edges for which ϕk
ij = 1, divide the total distance by the optical reach

r and takes the floor value.
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5.4.4 Experimental Results

To compare the performance of the heuristic in Section 5.4.2 to the ILP for-

mulation SLA in Section 5.4.1, we have generated a number of networks, with

sizes ranging from 8 to 14 and have run both formulations7. To study the

performance of the heuristic for medium and large sized networks, we have

generated networks with the number of nodes ranging from 20 to 100 nodes.

We have randomly chosen the degree of each node to lie in the range 2 to 4 (2

to 5) for networks with 14 nodes or less (20 nodes or more). For networks with

14 nodes or less (20 nodes or more), we have selected the number of channels

in each fiber to be 12 (16). If a node-pair is connected by a fiber, we have

randomly selected the length of the fiber to lie in the range 400 to 1800 km.

We used r = 2000 km.

To study the effect of varying the total number of commodities handled

by a network, we have grouped the number of commodities handled by a net-

work into 3 categories and have called them low, medium and high densities.

For low (medium, and high) density networks, we have chosen the number of

commodities to be 2 (3, and 4) times of the number of nodes in the network.

For each size of the networks we studied, we have randomly generated 5 sets

of physical topologies. For each density (low, medium or high) we have ran-

domly generated 5 sets of commodities, each set consisting of the requisite

number of randomly generated source destination pairs. The results reported

in this paper represent the average values of those 75 sets data for each size of

networks. We have carried out the experiments on a Sun Fire X2200 M2 [76].

Table 5.1 shows a comparison of times needed to solve the SLA formulation

7Larger networks takes an unacceptable amount of time using SLA.
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Table 5.1: Comparison of SLA and Heuristic Performances

Network Commodities Regenerations Channels Solution Time (sec)
Size SLA Heuristic SLA Heuristic SLA Heuristic

16 7.8 8.5 29.4 31.2 7.153 0.378
8 24 12.0 12.8 44.2 46.9 18.799 0.366

32 15.9 17.5 58.6 63.0 70.504 0.406
20 9.9 10.2 39.2 41.0 26.452 0.294

10 30 15.9 16.8 59.6 62.9 103.527 0.310
40 19.2 20.6 78.0 81.9 236.580 0.351
24 14.6 14.8 52.5 54.5 594.598 0.331

12 36 21.1 22.5 76.9 79.4 1131.423 0.315
48 30.4 31.1 104.7 106.9 315.331 0.349
28 21.0 22.2 64.7 66.7 506.788 0.318

14 42 30.3 34.3 100.7 102.2 411.371 0.359
56 40.8 44.9 131.6 135.2 1856.786 0.388

Table 5.2: Heuristics Results for Large Networks

Network Commodities Regenerations Channels Solution
Size Used Used Time (sec)

40 26.5 97.8 0.462
20 60 38.9 144.7 0.540

80 52.7 195 0.635
80 88.6 247.6 1.156

40 120 135.2 378.1 1.644
160 178.8 501.0 2.370
120 160.4 427.1 2.723

60 180 237.0 631.7 5.325
240 318.6 841.5 23.360
160 245.7 602.6 5.948

80 240 373.4 901.1 34.720
320 496.9 1201.8 158.525
200 317.6 799.3 8.507

100 300 477.8 1203.6 102.650
400 638.2 1592.8 235.506
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Percentage of Variances in Heuristics from SLA
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Figure 5.14: Percentage of variances of outputs using Heuristic and SLA

to the time needed for solving using the heuristic, for networks of sizes 8, 10,

12 and 14 nodes. It also shows the average numbers of regenerations and

the average number edges per lightpath used by the SLA and the heuristic.

Columns 1 (2) in Table 5.1 shows |N | (|K|), the size of the network (the

number of commodities).

Table 5.2 shows, for medium and large sized networks, the same parameters

as Table 5.1 when the heuristic is used.

Figure 5.14 shows how well our heuristic works by depicting the percentage

of variances of the results obtained by the heuristic compared to the optimal

results. We find that this variance decreases monotonically, as the size of the

network increases. We conclude that our heuristic can produce “near optimal”

solutions using only a fraction of the time needed to obtain an optimal solution

using SLA.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

In this Ph.D. dissertation, we have presented novel algorithms to find optimal

solutions for different design problems in wide area optical networks with large

numbers of end nodes. We have investigated, applied and adapted some of the

modern Operations Research (OR) techniques that are popular in the OR

community for solving large mixed integer linear problems.

We have reported our works on three major aspects of optimal design of

WDM optical network, such as:

• Optimal traffic grooming in WDM optical networks,

• Optimal regenerator placement in translucent networks, and

• Optimal lightpath allocation in translucent networks.

For optimal lightpath allocation in translucent optical networks, we have

reported our three separate works, namely,

• Dynamic lightpath allocation in translucent networks,
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• Dynamic survivable lightpath allocation in translucent networks, and

• Static lightpath allocation in translucent networks.

For optimal traffic grooming problem we have implemented branch, price

and cut algorithm using arc-chain formulation. For optimal regenerator place-

ment problem we have implemented branch and cut algorithm for large net-

works. For smaller networks we have presented a compact node-arc formula-

tion to solve the problem. In our algorithms for dynamic lightpath allocation

and dynamic survivable lightpath allocation, we have incorporate an important

property for translucent networks that have been identified in [?] (discussed in

section 5.1). Algorithms without incorporating this property might produce

invalid solutions for the problem.

We have pointed out some special characteristics of static lightpath alloca-

tion problem in translucent networks. We have presented an ILP formulation,

as well as, an efficient heuristic, to solve the problem.

With extensive simulation experiments, we have proved the effectiveness

and efficiencies of all of our proposed algorithms.

6.2 Future Works

Until recently, only the linear impairments are considered, in terms of op-

tical reach, during RWA in WDM networks. However, in practice the optical

signals are subjected to non-linear effects also. A lightpath established only

considering the linear impairments may not have acceptable BER values due

to the nonlinear effects. Further, the BER value of a lightpath which was

originally acceptable, may deteriorate to an unacceptable level after a new
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lightpath has been established, due to non-linear effects of the new lightpath

(e.g., inter-channel interferences and leakages in the optical switches).

Recently researchers are developing algorithms that consider the effects of

non-linear physical impairments along with linear physical impairments during

RWA in WDM optical networks. This type of approach is known as physical

layer impairment aware RWA (PLIA-RWA) or simply impairment aware RWA

(IA-RWA) [17]. However, when considering IA-RWA algorithms, researchers

have suggested that it is useful to categorize the PLIs into those that affect a

lightpath individually (Case 1) and those that are generated by the interference

among lightpaths (Case 2) [17].

The interdependence between the physical and the network layers makes

the RWA problem in the presence of impairments a cross-layer optimization

problem [17]. An important distinction is how the IA-RWA algorithms define

the interaction between the networking and the physical layers and if they

jointly optimize the solutions over these two layers. Because of some particu-

lar interference-related impairments, routing decisions made for one lightpath

affect and are affected by the decisions made for other lightpaths. This inter-

ference is particularly difficult to formulate in offline IA-RWA where there are

no already established connections and the utilization of the lightpaths are the

variables of the problem. It is because of this difficulty that the offline IA-RWA

algorithms proposed to date do not handle interference-related impairments.

In the future, we want to implement the techniques we developed during

my Ph.D. research, for optimal design of optical networks, such as, optimal IA-

RWA, optimal IA-RPP and optimal IA-Traffic Grooming in WDM translucent

optical networks.
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D. Naddef and M. Jünger, Eds. Springer, Berlin, 2001, pp. 223–260.

[46] S. Z. S. Lei, C. Vadrevu, and B. Mukherjee, “Network virtualization over

wdm networks,” in International Conference on Advanced Networks and

Telecommunication Systems (ANTS), 2011, pp. 1 – 3.

[47] A. Morea and I. B. Heard, “Availability of translucent networks based on

WSS nodes, comparison with opaque networks,” in Transparent Optical

Networks, 2006 International Conference on, vol. 4, June 2006, pp. 43 –

47.

[48] A. Morea, H. Nakajima, L. Chacon, E. L. Rouzic, B. Decocq, and J.-P.

Sebille, “Impact of the reach of WDM systems and traffic volume on the

network resources and cost of translucent optical transport networks,”

in Transparent Optical Networks, 2004. Proceedings of 6th International

Conference on, vol. 1, July 2004, pp. 65 – 68.

[49] A. Narula-Tam, E. Modiano, and A. Brzezinski, “Physical topology de-

sign for survivable routing of logical rings in WDM-based networks,”

in IEEE GLOBECOM Global Telecommunications Conference, vol. 5,

December 2003, pp. 2552 – 2557.

[50] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Opti-

mization. John Wiley and Sons, 1988.

[51] C. Ou, K. Zhu, H. Zang, L. H. Sahasrabuddhe, and B. Mukherjee, “Traf-

fic grooming for survivable WDM networks — shared protection,” IEEE

Optimization of WDM Optical Networks Quazi R Rahman



Bibliography 173

Journal on Selected Areas in Communications, vol. 21, no. 9, pp. 1367–

1383, November 2003.

[52] A. E. Ozdaglar and D. P. Bertsekas, “Routing and wavelength assign-

ment in optical networks,” in IEEE/ACM Transactions on Networking,

vol. 11, no. 2, April 2003, pp. 259 – 272.

[53] S. Pachnicke, T. Paschenda, and P. M. Krummrich, “Physical impair-

ment based regenerator placement and routing in translucent optical

networks,” in Optical Fiber communication/National Fiber Optic Engi-

neers Conference, OFC/NFOEC 2008, Conference on, February 2008,

pp. 1 – 3.

[54] B. Ramamurthy, H. Feng, D. Datta, J. P. Heritage, and B. Mukher-

jee, “Transparent vs. opaque vs. translucent wavelength-routed optical

networks,” in Optical Fiber Communication Conference (OFC/IOOC),

Technical Digest, vol. 1, February 1999, pp. 59 – 61.

[55] S. Ramamurthy and B. Mukherjee, “Survivable WDM mesh networks

part I - protection,” in IEEE International Conference on Computer

and Communications (INFOCOM), vol. 2, March 1999, pp. 744–751.

[56] ——, “Survivable WDM mesh networks part II - restoration,” in IEEE

International Conference on Communications, vol. 3, 1999, pp. 2023 –

2030.

[57] R. Ramaswami and K. N. Sivarajan, “Design of logical topologies for

wavelength-routed optical networks,” IEEE Journal on Selected Areas

in Communications, vol. 14, no. 5, pp. 840–851, June 1996.

Optimization of WDM Optical Networks Quazi R Rahman



Bibliography 174

[58] ——, Optical Networks: A Practical Perspective. Morgan Kaufmann

Publishers, 2002.

[59] G. Rouskas and R. Dutta, Optical WDM Networks: Principles and Prac-

tice. Kluwer, 2000, ch. Design of Logical Topologies for Wavelength

Routed Networks, pp. 79–102.

[60] S. Rumley and C. Gaumier, “Cost aware design of translucent WDM

transport networks,” in International Conference on Transparent Optical

Networks, ICTON ’09, June 2009, pp. 1 – 4.

[61] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.

Prentice Hall, 1995.

[62] L. Sahasrabuddhe, S. Ramamurthy, and B. Mukherjee, “Fault manage-

ment in IP-over-WDM networks: WDM protection versus IP restora-

tion,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 1,

pp. 21–33, January 2002.

[63] N. Sambo, N. Andriolli, A. Giorgetti, F. Cugini, L. Valcarenghi, and

P. Castoldi, “Distributing shared regenerator information in gmpls-

controlled translucent networks,” in Communications Letters, IEEE,

vol. 12, no. 6, June 2008, pp. 462 – 464.

[64] B. Sartorius, “3r regeneration for all-optical networks,” in 3rd Interna-

tional Conference on Transparent Optical Networks, June 2001, pp. 333

– 337.

Optimization of WDM Optical Networks Quazi R Rahman



Bibliography 175

[65] M. Scheffel, “Regenerator allocation strategies for optical transparency

domains considering transmission limitations,” in IEEE International

Conference on Communications, vol. 3, May 2005, pp. 1771 – 1776.

[66] A. Sen, S. Banerjee, P. Ghosh, S. Murthy, and H. Ngo, “On regenerator

placement and routing problems in optical networks,” in ACM/SPAA,

June 2010.

[67] A. Sen, S. Murthy, and S. Bandyopadhyay, “On sparse placement of

regenerator nodes in translucent optical network,” in Global Telecom-

munications Conference, (IEEE/GLOBECOM), 2008, pp. 1–6.

[68] G. Shen, W. D. Grover, T. H. Cheng, and S. K. Bose, “Sparse placement

of electronic switchoing nodes for low blocking in translucent optical

networks,” OSA Journal of Optical Networks, vol. 1, 2002.

[69] G. Shen, W. D. Grover, T. H. Cheng, and S. K. Bosh, “Sparse placement

of electronic switching nodes for low blocking in translucent optical net-

works,” OSA Journal of Optical Networking, vol. 1, no. 12, December

2002.

[70] G. Shen and R. S. Tucker, “Translucent optical networks: the way for-

ward,” IEEE Communications Magazine, vol. 45, 2007.

[71] N. Shinomiya, T. Hoshida, Y. Akiyama, H. Nakashima, and T. Terahara,

“Hybrid link/path-based design for translucent photonic network dimen-

sioning,” Journal of Lightwave Technology, vol. 5, no. 10, pp. 2931–2941,

October 2007.

Optimization of WDM Optical Networks Quazi R Rahman



Bibliography 176

[72] J. Simmons, “On determining the optimal optical reach for a long-haul

network,” Journal of Lightwave Technology, vol. 23, March 2005.

[73] ——, “Network design in realistic all-optical backbone networks,” IEEE

Communications Magazine, vol. 44, 2006.

[74] A. K. Somani, Survivability and Traffic Grooming in WDM Optical Net-

works. Cambridge University Press, February 2006.

[75] P. Soproni, P. Babarczi, J. Tapolcai, T. Cinkler, and H. Pin-Han, “A

meta-heuristic approach for non-bifurcated dedicated protection in wdm

optical networks,” in International Workshop on the Design of Reliable

Communication Networks (DRCN), 2011, pp. 110 – 117.

[76] “Sun Fire X2200 M2 Server,” Documentation available online at:

http://www.sun.com/servers/x64/x2200/.

[77] “Fiber Optic Transceivers,” Information available online at:

http://www.thefoa.org/tech/ref/appln/transceiver.html.

[78] S. Thiagarajan and A. K. Somani, “A capacity correlation model for

wdm networks with constrained grooming capabilities,” in IEEE Inter-

national Conference on Communications, vol. 5, June 2001, pp. 1592 –

1596.

[79] ——, “Traffic grooming for survivable WDM mesh networks,” in Opti-

Comm 2001, Optical Networking and Communications, vol. 4599, Au-

gust 2001, pp. 54–65.

[80] J. A. Tomlin, “Minimum-cost multicommodity network flows,” Opera-

tions Research, vol. 14, no. 1, pp. 45–51, January-February 1966.

Optimization of WDM Optical Networks Quazi R Rahman



Bibliography 177

[81] R. ul Mustafa and A. E. Kamal, “Design and provisioning of WDM

networks with multicast traffic grooming,” IEEE Journal on Selected

Areas in Communications, vol. 24, no. 4, pp. 37–53, April 2006.

[82] L. A. Wolsey, Integer Programming. John Wiley and Sons, 1998.

[83] B. Xiang, S. Wang, and L. Li, “A traffic grooming algorithm based

on shared protection in WDM mesh networks,” in Parallel and Dis-

tributed Computing, Applications and Technologies, 2003. Proceedings

of the Fourth International Conference on, August 2003, pp. 254 – 258.

[84] C. Xin, B. Wang, X. Cao, and J. Li, “Logical topology design for dy-

namic traffic grooming in wdm optical networks,” Journal of Lightwave

Technology, vol. 24, no. 6, pp. 2267 – 2275, June 2006.

[85] X. Yang and B. Ramamurthy, “Dynamic routing in translucent WDM

optical networks: The intradomain case,” Journal of Lightwave Technol-

ogy, vol. 23, no. 3, pp. 955–971, March 2005.

[86] ——, “Sparse regeneration in translucent wavelength routed optical net-

works: architecture, network design and wavelength routing,” Photonic

network communications, vol. 10, 2005.

[87] ——, “Dynamic routing in translucent WDM optical networks: the in-

terdomanin case,” Journal of Lightwave Technology, vol. 23, March 2005.

[88] X. Yang, L. Shen, and B. Ramamurthy, “Survivable lightpath provision-

ing in WDM mesh networks under shared path protection and signal

quality constraints,” Lightwave Technology, Journal of, vol. 23, no. 4,

pp. 1556 – 1567, April 2005.

Optimization of WDM Optical Networks Quazi R Rahman



Bibliography 178

[89] W. Yao and B. Ramamurthy, “Survivable traffic grooming with path

protection at the connection level in WDM mesh networks,” in Interna-

tional Conference on Broadband Networks (BroadNets), October 2004,

pp. 310–319.

[90] Y. Ye, T. H. Cheng, and C. Lu, “Routing and wavelength assignment

algorithms for translucent optical networks,” Optics Communications,

vol. 229, no. 1 - 6, pp. 233 – 239, January 2004.

[91] H. Zang, J. P. Jue, and B. Mukherjee, “A review of routing and wave-

length assignment approaches for wavelength-routed optical WDM net-

works,” SPIE Opt. Net. Mag., vol. 1, no. 1, January 2000.

[92] J. Zhang and B. Mukherjee, “A review of fault management in WDM

mesh networks: Basic concepts and research challenges,” IEEE Network,

vol. 18, no. 2, pp. 41–48, March-April 2004.

[93] J. Zheng and H. T. Mouftah, Optical WDM Networks: Concepts and

Design Principles. John Wiley & Sons, 2004.

[94] Y. Zheng, W. Gu, S. Huang, and P. Zhang, “An ant-based research

on rwa in optical networks,” in International Conference on Electronic

Computer Technology, 2009, pp. 73 – 76.

[95] B. Zhou, S. R. Pramod, and H. T. Mouftah, “Adaptive ber-assured rout-

ing in translucent optical networks,” in Workshop on High Performance

Switching and Routing, 2004, pp. 209–213.

[96] D. Zhou and S. Subramaniam, “Survivability in optical networks,” in

IEEE Network, Nov-Dec 2000, pp. 16 – 23.

Optimization of WDM Optical Networks Quazi R Rahman



Bibliography 179

[97] K. Zhu and B. Mukherjee, “Traffic grooming in an optical WDM mesh

network,” IEEE Journal on Selected Areas in Communications, vol. 20,

no. 1, pp. 122–133, January 2002.

[98] ——, “A review of traffic grooming in WDM optical networks: Archi-

tectures and challenges,” Optical Networks Magazine, vol. 4, no. 2, pp.

55–64, March 2003.

[99] K. Zhu, H. Zang, and B. Mukherjee, “A comprehensive study on next-

generation optical grooming switches,” IEEE Journal on Selected Areas

in Communications, vol. 21, no. 7, pp. 1173–1186, September 2003.

[100] K. Zhu, H. Zhu, and B. Mukherjee, Traffic Grooming in Optical WDM

Mesh Networks. Springer, 2005.

Optimization of WDM Optical Networks Quazi R Rahman



Vita Auctoris

Quazi Reshadur Rahman was born in 1955 in Joypurhat, Bangladesh. He

passed the Secondary School Certificate examination in 1970 from Kalai High

School, Joypurhat, Bangladesh. In 1972, he passed the Higher Secondary

Certificate examination from Azizul Haque College, Bogra, Bangladesh. From

there he went to Bangladesh University of Engineering and Technology, Dhaka,

Bangladesh, where he obtained B.Sc. in Electrical Engineering degree in 1978.

He obtained M.S. in Computer Science from The City College of New York,

USA in 1997. He obtained M.Sc. in Computer Science degree form the Univer-

sity of Windsor, Ontario in 2008. He is currently a candidate for the Doctoral

degree in Computer Science at the University of Windsor, Ontario and hopes

to graduate in Summer 2012.


	University of Windsor
	Scholarship at UWindsor
	2012

	Optimization of WDM Optical Networks
	Quazi R. Rahman
	Recommended Citation


	tmp.1442852647.pdf.tPG1f

