
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2011

An Improved Clustering based Monte Carlo
Localization approach for Cooperative Multi-robot
Localization
Guanghui Luo
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Luo, Guanghui, "An Improved Clustering based Monte Carlo Localization approach for Cooperative Multi-robot Localization"
(2011). Electronic Theses and Dissertations. 329.
https://scholar.uwindsor.ca/etd/329

https://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/329?utm_source=scholar.uwindsor.ca%2Fetd%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


 

An Improved Clustering based Monte Carlo Localization 

Approach for Cooperative Multi-robot Localization 
 

 

 

 

by 

Guanghui Luo 

A Thesis 
Submitted to the Faculty of Graduate Studies  

through Computer Science 
in Partial Fulfillment of the Requirements for 

the Degree of Master of Science at the 

University of Windsor 

Windsor, Ontario, Canada 

2011 

©   2011 Guanghui Luo 



II 

 

 

DECLARATION OF ORIGINALITY 

 

I hereby certify that I am the sole author of this thesis and that no part of this thesis 

has been published or submitted for publication. 

 

I certify that, to the best of my knowledge, my thesis does not infringe upon 

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques, 

quotations, or any other material from the work of other people included in my thesis, 

published or otherwise, are fully acknowledged in accordance with the standard 

referencing practices. Furthermore, to the extent that I have included copyrighted material 

that surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act, 

I certify that I have obtained a written permission from the copyright owner(s) to include 

such material(s) in my thesis and have included copies of such copyright clearances to my 

appendix.  

 

I declare that this is a true copy of my thesis, including any final revisions, as 

approved by my thesis committee and the Graduate Studies office, and that this thesis has 

not been submitted for a higher degree to any other University or Institution. 

 

 

 

 

 

 

 

 

 

 

 

 



III 

 

 

ABSTRACT 

 
This thesis describes an approach for cooperative multi-robot localization based on 

probabilistic method (Monte Carlo Localization) used in assistant robots which are 

capable of sensing and communicating one with another. In our approach, each of the 

robots maintains its own clustering based MCL algorithm, and communicates with each 

other whenever it detects another robot. We develop a new information exchange 

mechanism, which makes use of the information extracted from the clustering component, 

to synchronize the beliefs of detected robots. By avoiding unnecessary information 

exchange whenever detection occurs through a belief comparison, our approach can solve 

the delayed integration problem to improve the effectiveness and efficiency of multi-robot 

localization. This approach has been tested in both real and simulated environments. 

Compared with single robot localization, the experimental results demonstrate that our 

approach can notably improve the performance, especially when the environments are 

highly symmetric. 

 

Keywords: multi-robot, localization, Monte Carlo, belief, clustering 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IV 

 

 

DEDICATION 

 

This thesis is dedicated to my families who have supported me all the way since 

the beginning of my studies with patience, understanding, and love. 

 

Also, this thesis is dedicated to those lovely people who gave me so many 

unforgettable memories. 

 

 

 

 

 

 

 

 

 

 

 

 

 



V 

 

 

ACKNOWLEDGEMENTS 

 

First and foremost, I would like to heartily thank my supervisor, Dr. Dan Wu, a 

respectable, responsible and resourceful scholar, who has provided me with valuable 

guidance in every stage of the writing of this thesis. Without his endless help, this thesis 

would not have been possible. 

 

I also would like to thank my internal reader, Dr. Imran Ahmad, my external 

reader, Dr. Huapeng Wu, and my thesis committee chair, Dr.Yung Tsin for spending their 

time in reviewing this thesis and giving me all the valuable comments. 

 

As well as, a special thanks to Dr. Angela Sodan, who gave me professionally 

knowledge during the past two years of master’s study. I have benefited so much from her 

courses and constant encouragement. The sudden passing of her really saddens me. I will 

always miss her. My sincere sympathies go to her family and friends. 

 

Finally, I would like to extend my sincere thanks to Chong Fu, Yuefeng Wang, 

and many other friends helping me in solving many difficult problems. 

 

 

 



VI 

 

 

TABLE OF CONTENTS 

DECLARATION OF ORIGINALITY .......................................................................... II 

ABSTRACT ..................................................................................................................... III 

DEDICATION ................................................................................................................. IV 

ACKNOWLEDGEMENTS ............................................................................................. V 

LIST OF TABLES ....................................................................................................... VIII 

LIST OF FIGURES ........................................................................................................ IX 

1. INTRODUCTION ......................................................................................................... 1 

2. BACKGROUND KNOWLEDGE ............................................................................... 5 

2.1 Uncertainty in Robotics .......................................................................................... 5 

2.2 Probabilistic Robotics ............................................................................................. 6 

2.2.1 State .............................................................................................................. 6 

2.2.2 Environment Interaction ............................................................................... 8 

2.2.3 Probabilistic Generative Laws ...................................................................... 9 

2.2.4 Belief ........................................................................................................... 10 

2.2.5 Bayes Filter ................................................................................................. 11 

2.3 Mobile Robot Localization ................................................................................... 13 

2.3.1 Categories of Localization Problems .......................................................... 14 

2.3.2 Localization Algorithms ............................................................................. 15 

2.3.3 Monte Carlo Localization ........................................................................... 16 

2.3.4 Multi-Robot Localization ........................................................................... 26 

3. A CLUSTERING BASED MCL APPROACH FOR COOPERATIVE 
MULTI-ROBOT LOCALIZATION ............................................................................. 28 

3.1 Motivation ............................................................................................................ 28 

3.2 Clustering Algorithm ............................................................................................ 29 

3.2.1 Introduction of Clustering ........................................................................... 29 

3.2.2 Details of BSAS algorithm ......................................................................... 31 

3.2.3 Information extracted from clustering ........................................................ 33 

3.3 Proposed Approach .............................................................................................. 34 



VII 

 

3.3.1 Problem statements ..................................................................................... 34 

3.3.2 Details of proposed method ........................................................................ 38 

4. IMPLEMENTATION AND EXPERIMENTAL RESULTS .................................. 51 

4.1 Implementation Details ........................................................................................ 51 

4.1.1 Hardware Platform ...................................................................................... 51 

4.1.2 Programming Environment ........................................................................ 55 

4.2 Experiments Results ............................................................................................. 57 

4.2.1 Experiments using real robot ...................................................................... 58 

4.2.2 Simulation Experiments .............................................................................. 67 

5. CONCLUSION AND FUTURE WORK .................................................................. 80 

5.1 Conclusion ............................................................................................................ 80 

5.2 Future work .......................................................................................................... 81 

BIBLIOGRAPHY ........................................................................................................... 83 

Appendix A: Results of Experiments ............................................................................ 86 

Raw Data of Experiments using iRobot Create .......................................................... 86 

Raw Data of Simulated Experiments ......................................................................... 94 

VITA AUCTORIS ........................................................................................................ 106 

 

 

 

 

 

 

 

 

 

 

 



VIII 

 

LIST OF TABLES 

 

Table 2.1: The Bayes Filter algorithm [19]. ................................................................................... 12 

Table 2.2: The Particle Filter algorithm [19]. ................................................................................. 18 

Table 2.3: The Monte Carlo Localization algorithm [19]. .............................................................. 19 

Table 2.4: The sample odometry motion model algorithm [22]. .................................................... 21 

Table 2.5: Low variance resampling for the particle filter [22]. ..................................................... 24 

 

Table 3.1: The Basic Sequential Algorithm Scheme (BSAS) [21]. ................................................ 32 

Table 3.2: The clustering based MCL approach for cooperative multi-robot localization. ............ 39 

Table 3.3: The process of information exchange. ........................................................................... 48 

 

Table 4.1: Results of experiments of single mobile robot localization using Create in four 

environments. ................................................................................................................ 62 

Table 4.2: Results of experiments of cooperative multi-robot localization using Create in four 

environments. ................................................................................................................ 65 

Table 4.3: Comparison Multi-robot localization with Single robot localization by using Create. . 66 

Table 4.4: Results of simulated experiments of single mobile robot localization in four environments.

....................................................................................................................................... 71 

Table 4.5: Results of simulated experiments of multi-robot localization in four environments. .... 76 

Table 4.6: Comparison Multi-robot localization with Single robot localization in simulated 

experiments. .................................................................................................................. 76 

Table 4.7: Comparison of multi-robot localization under two values of � (70% and 80%) using our 

proposed approach in four simulated environments. ..................................................... 78 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



IX 

 

LIST OF FIGURES 

 

Figure 2.1: The dynamic Bayes network that characterizes the evolution of control, states and 

measurements [19]. ...................................................................................................... 10 

Figure 2.2: Graphical model of mobile robot localization [19]. ..................................................... 13 

Figure 2.3: The odometry motion model [22]. ............................................................................... 20 

Figure 2.4: Sampling from the odometry motion model, each diagram shows 500 samples [22]. 22 

Figure 2.5: Sampling approximation of the position belief for a non-sensing robot [22]. ............. 22 

Figure 2.6: Example of global localization using MCL in an office environment [19].................. 25 

 

Figure 3.1: Representatives of different shape of clusters [21]. ..................................................... 31 

Figure 3.2: The Status variable diagram......................................................................................... 36 

Figure 3.3: The first situation of detection without information exchange. ................................... 42 

Figure 3.4: The second situation of detection without information exchange. ............................... 44 

Figure 3.5: One example of detection with information exchange. ............................................... 46 

Figure 3.6: One example of information exchange with the direction of robot A refines robot B. 49 

 

Figure 4.1: Location of Create sensors [23]. .................................................................................. 53 

Figure 4.2: Create ROI state diagram [23]. .................................................................................... 56 

Figure 4.3: Two iRobot Create using in our experiments. The left Create is with black label, while the 

right one is regular Create. .......................................................................................... 58 

Figure 4.4: Four experimental environments of single mobile robot localization.......................... 59 

Figure 4.5: Example of single mobile robot localization in symmetric environment. ................... 61 

Figure 4.6: Example of cooperative multi-robot localization in asymmetric environment with obstacle. 

Red particles represent the belief of Create with black label, while the yellow particles 

represent the belief of regular Create........................................................................... 64 

Figure 4.7: Four simulation environments of single mobile robot localization. ............................. 68 

Figure 4.8: Example of simulation experiment of single mobile robot localization in asymmetric 

environment. ................................................................................................................ 70 

Figure 4.9: Example of simulation experiment of multi-robot localization in symmetric environment 

with obstacle. ............................................................................................................... 74 



1 

 

 

CHAPTER 1 

INTRODUCTION 
 

Mobile robot localization, the process of determining the position and orientation 

(pose) of a robot within its operating environment from sensor readings, is a prerequisite 

for subsequent high level navigation tasks. It has been seen as one of the fundamental 

problems in mobile robotics [11]. The most widely studied localization problems are: 

Local localization (position tracking), the most simple localization problem, which is to 

compensate incremental errors in a robot’s motion under the assumption that the initial 

position is known as prior, and the more challenge one is global localization, in which 

robots are required to estimate their pose by local and incomplete observed information 

under the condition of uncertain initial position [14]. Robots need to handle multiple, 

distinct hypothesis due to the global uncertainty. 

 

During the past two decades, much work has focused on single robot global 

localization and many probabilistic approaches have been applied with remarkable 

success, such as Grid-based approaches [1,21], Monte Carlo Localization (MCL) [9,11], 

and multi-hypothesis approaches [3,22]. The key idea of these probabilistic approaches is 

to represent the uncertainty of a robot’s pose by using probability distributions over the 

whole space of robot’s possible poses instead of relying on a single best guess [19]. 

Among these probabilistic approaches, Monte Carlo Localization, approximated Bayes 

Filters using random samples for posterior estimation, achieves a great success for global 

localization in a highly robust and efficient way. 

 

However, in the latest years, more and more researchers are interested in using 

multiple mobile robots to improve efficiency and robustness in performing tasks. 



2 

 

Knowing their global positions is also of great importance in multi-robot system. 

Compared to single robot system, multi-robot system has some obvious advantages. For 

example, sharing sensor information collected from different robots will increase the 

robustness of the localization algorithm for each robot. Another advantage is the 

capability of exchanging their pose information with each other can gain more reference 

information for localization from their geometric relationship. Moreover, the possibility 

of heterogeneous group of robots equipped with different sensing devices can achieve 

more comprehensive environment description [11].  

 

A relatively simple approach for multi-robot localization is to estimate their 

positions independently. Each robot relies on its own resources rather than combining the 

experiences from different entities of the team. Nonetheless, an alternative approach, 

named Cooperative Localization whereby the members of a team of robots estimate one 

another’s position, can obtain better localization performance. So a lot of estimation 

algorithms focused on fusion of information from multiple robots have been proposed 

such as Extended Kalman Filter (EKF) [16,17], Maximum Likelihood Estimation (MLE) 

[2], and Particle Filters [7]. Most of EKF-based and MLE-based approaches require a 

fusion center to process all the information communication, which makes them 

susceptible to single-point failures. In addition, applications of these centralized 

approaches are limited to small group of robots due to high cost of computation and 

communication. The Particle Filters approach proposed in [7] is based on Markov 

localization, which can approximate a wide range of belief functions in real-time 

implementation because of its probabilistic nature. The “detection models” enable robots 

with the ability of recognizing each other. These detection models are used to synchronize 

the individual robots’ beliefs whenever detection occurs so that to reduce the uncertainty 

of both robots during localization. However, this approach suffers from the problem of 

delayed integration, which means the instant updating beliefs of both detected robots may 



3 

 

not contribute positively to the localization process if both beliefs are with highly 

uncertainty.  

 

In this thesis, we propose an efficient probabilistic approach for cooperative 

multi-robot localization in indoor environments. Our approach is based on Monte Carlo 

localization that has been applied with great practical success to single robot localization. 

The robots, capable of sensing and exchanging information one with another, localize 

themselves by maintaining their own belief functions which are the clustering based MCL 

algorithm. Our new developed information exchange mechanism is employed to 

synchronize each robot’s belief whenever one robot detects another in order to speed up 

the localization process with higher accuracy. Our proposed approach can prevent the 

localization from suffering the problem of delayed integration by comparing beliefs of 

both robots at each time of detection to avoid unnecessary information exchange. We 

utilize the information extracted from clustering component that analysis the distribution 

of whole particle set to quantify robot’s belief and transfer information across different 

robots. In addition, by analyzing how concentrated the particles are, the robot can carry 

the notion of whether it has been localized or not by itself instead of incorporating human 

observers. In our proposed approach, robots themselves are implicitly used as landmarks 

rather than only external landmarks, therefore, can further facilitate the localization 

process. Experimental results, carried out in both real and simulated environments using 

two robots, demonstrate that our proposed approach can significantly reduce the 

uncertainty compared with single robot localization.    

 

In addition to the introduction chapter, there are four chapters in this thesis. Chapter 

2 introduces the materials on which our proposed approach is based, including 

probabilistic robotics, uncertainty, and mobile robot localization in both single robot and 

multi-robot system. The details of our proposed approach are discussed in chapter 3. In 



4 

 

chapter 4 we present the information of implementation and experiments in both real and 

simulated environments. The evaluations of our proposed approach are followed by the 

experimental results’ comparison with single robot localization. Finally, the conclusion 

and future work are given in chapter 5. 

 

 

 

 

 

 

 

 

 

 

 

 
 



5 

 

 

CHAPTER 2 

BACKGROUND KNOWLEDGE 
 

This chapter will give the background knowledge that supports the proposed 

methods. Firstly, we will go through the idea of probabilistic robotics. Then we focus on 

the problem of single mobile robot localization. The detail of the algorithm named Monte 

Carlo Localization algorithm will be explained, which is also the core of the proposed 

approach. Finally, we will review some related works on cooperative multi-robot 

localization. 

 

2.1 Uncertainty in Robotics   

     

Robotics is the science of perceiving and manipulating the physical world through 

computer controlled devices; examples of successful robotics systems include mobile 

platforms for planetary explorations, industrial robotics arms in assembly lines, cars that 

travel by themselves, and so on [19]. For a robot, it usually consists of the four main 

components: (1) a physical body, so it can exist in the real world; (2) sensor, so it can 

sense the environment; (3) effectors and actuators, so it can act; (4) a controller, so it can 

be autonomous [12]. 

 

To do tasks in the real world, robot has to accommodate many uncertainties [19], 

which are caused by a number of factors. Firstly, the environments of the robot are 

usually unpredictable especially in the highly dynamic environments such as highways 

and offices. Secondly the sensors are limited in what they can perceive, such as range and 

resolution limitations. Thirdly the motor used for the robot actuation is unpredictable. 



6 

 

Control noise and mechanical failure always cause uncertainty. Fourthly, the software of 

the robot may also create uncertainty, since the internal models of the physical world are 

approximate and partial. Finally algorithmic approximations are other factor that arise the 

uncertainty. In real-time systems, accuracy sometimes has to be sacrificed in order to 

achieve timely response. 

 

As robotics systems have been widely used in the world around us and became more 

and more important, uncertainty is the major issue for the design of robot systems. How 

to manage the uncertainty is the first step towards the robust robot systems. 

 

2.2 Probabilistic Robotics   

 

Probabilistic robotics is a relatively new approach to address the uncertainty problem 

existing in robot’s perception and action. The main concept of probabilistic robotics is to 

represent uncertainty using probability theory.   

 

2.2.1 State 

 

In probabilistic robotics, the environment is a dynamical system that consists of 

internal state. Robot can perceive the information about its environment through sensors, 

and the robot can also affect the environment through its actuators. Since the enormous of 

uncertainty exists, robot needs to maintain an internal belief about the state of its 

environment. The state is defined as the collection of all aspects of the robot and its 

environment that can impact the future. It has been categorized into two groups. State 

variable that change along with time is called dynamic state, such as walking people 

around the robot. In contrast those states that tend to stay static or no changing at all are 



7 

 

called static state, such as the location of walls in buildings. The variables of robot itself, 

such as its pose, velocity, are also involved in state.  

 

Typically variables describe the state of a robot includes: (1) robot’s pose, which is 

specified by a two-dimensional coordinate and heading direction; (2) in robot 

manipulation, the pose includes variables for the configuration of the robot’s actuators, 

which are usually referred to as kinematics state; (3) robot’s velocity and the velocities of 

its joints are often referred to as dynamic state; (4) the location and features of 

surrounding objects in the environment are also considered as state variables. An object 

may be a desk or a box, and features may be the visual perception such as color or texture; 

(5) locations and velocities of moving objects and people may be state variables too. 

Since the list of potential state variables is endless, robot environments can be described 

using hundreds of and thousands of state variables depending on the requirement of the 

granularity of environment description.   

 

A state is called complete if the current state is the best predicator of the future, 

which means there is no other knowledge of past states, measurements, or controls can 

help to refine the future prediction. But in practice it is impossible to find a complete state 

for any robot systems. A complete state not only contains all aspects of the environment 

that may influence the future, but also the variables of robot itself. Sometimes there is no 

chance to reach all these information. 

 

In this thesis, state is denoted �; the state at time t is denoted ��, and time is discrete. 

So that all states over time can be described at discrete time steps � � 0, 1, 2, 3 �. 

 

 

 



8 

 

2.2.2 Environment Interaction 

 

As the environment is a dynamic system represented by state, which includes the 

robot itself, the robot can affect the state in two ways: Environment sensor measurements 

and Control actions. In the first type of interaction, the robot can obtain the state 

information through its sensors, such as taking a camera image, laser range scanning. The 

result of these kinds of perception is called a measurement. One feature of this kind of 

interaction is that the information obtained by sensor measurement usually represent the 

state moments ago due to some delay. In the second type of interaction, the robot can 

affect the state of its environment through its actuators. For example, the robot moves to a 

new location and manipulates objects in the environment. Such action will change the 

state of the environment. Since the environment usually changes, we assume the robot 

always performs a control action, even if the robot does not move any of its actuators. In 

practice, these two types of environment interaction are performed continuously and 

concurrently by the robot. 

 

According to the two types of interaction the robot hypothetically carries a record of 

all past sensor measurements and control actions, which is referred to as the measurement 

data and control data. Measurement data describe a momentary state of the environment. 

Normally it is under the assumption that the robot takes exactly one measurement at one 

time. So the measurement data at time t will be denoted as �. And the notation ��: �� 

= ��, ����, ����, �, �� denotes the measurement data obtained from time �� to 

time ��. Control data provides information about the change of state in the environment. 

One typical example is the velocity of a robot. The alternative source of control data is 

odometer. Even though they are sensors that measure the revolution of robot’s wheels, 

they are treated as control data because the measure of which describe the effect of a 

control action. Control data will be denoted as ��. In the same way with measurement 



9 

 

data, the notation ���: ��� = ���, �����, �����, �, ��� denote the control data from 

time �� to time ��. 

 

Both measurement and control are very important in a robotic system, but they are 

with different functions. The measurement tends to increase the robot’s knowledge 

through carrying the state information about its environment. On the contrary, control 

action tends to produce a loss of knowledge because of the notion of uncertainty that is 

caused by the motors and the stochasticity of robot environment. 

 

2.2.3 Probabilistic Generative Laws 

 

The evolution of state is given by the probabilistic laws [19]. According to the 

definition of state, the state �� is conditioned on all past states, measurements, and 

controls, it can be described by a probability distribution from this form: 

����|��:���, �:���, ��:��. And here we assume the sequence of environment interactions is 

that a measurement � is followed by a control action ��. Notice that a complete state 

means it is the best predicator for the future. In particular, ���� is a sufficient summary 

of all previous measurements and controls up to time � � 1. And only the current control 

data �� can influence the previous expression if we are given the complete state ����. 

So the expression has the following equality: ����|��:���, �:���, ��:�� �  ����|����, ���. 

The property used in this expression is called conditional independence, which means if 

we know the conditioning variables, such as the ����, ��, then the certain variables, here 

is ��, are independent of other variables �:��� and ��:���. Likewise, the conditional 

independence also works for the process of modelling the measurements if ��  is 

complete: ���|��:�, �:���, ��:�� �  ���|���. Here the complete state �� is sufficient to 

predict the measurement � , which means all other variables, such as all past 

measurements, controls, and past states, are irrelevant. 



10 

 

The probability ����|����, ��� is called state transition probability or motion model. 

It shows how state �� evolves over time conditioned on the controls ��. The probability 

���|��� is called measurement probability or measurement model, which specifies how 

measurements  is generated from state �. The dynamical system of the robot and its 

environment is presented by the combination of motion model and measurement model. 

Figure 2.1 illustrates the evolution of states and measurements. The state �� 

stochastically depends on the previous state ���� and the control ��. The measurement 

� stochastically depends on the state ��. This model shown in Figure 2.1 is also known 

as hidden Markov model or dynamic Bayes network.  

 

 

 

Figure 2.1: The dynamic Bayes network that characterizes the evolution of control, states and 

measurements [19]. 

 

 

2.2.4 Belief 

 

Another important concept in probabilistic robotics is belief, which is used to reflect 

the robot’s internal knowledge about the state of the environment [19]. However the state 

usually cannot be measured directly, the robot must infer its pose from the data collected. 

The way to represent belief in probabilistic robotics is through conditional probability 



11 

 

distributions. The density value is assigned to each possible state hypothesis with regards 

to the true state by belief distribution. The expression of belief over state �� at time t is 

������� �  ����|�:�, ��:��. It is a posterior probability over states conditioned on all the 

past control data and all the past measurement data. This expression represents the 

posterior probability including incorporating the most recent measurement data �, but 

occasionally a probability distribution without incorporating the measurement data � 

called prediction is proven to be useful, which is denoted as  

����������� �  ����|�:���, ��:��. It reflects the prediction of the state �� on the previous 

state ���� before incorporating the measurement at time t. In the next we need to 

calculate the ������� from ����������� by incorporating �, which is called measurement 

update. 

 

2.2.5 Bayes Filter 

 

Bayes Filter algorithm is the most general algorithm used for belief calculating. The 

fundamental components in Bayes Filter algorithm are the two conditional probabilities 

we mentioned above: motion model and measurement model. This algorithm calculates 

the belief distribution based on control data and measurement data. Table 2.1 is the 

pseudo code of the basic Bayes Filter algorithm. From the pseudo code, we can find that 

Bayes filter is a recursive algorithm. In one iteration the belief ������� is calculated 

from the previous belief ���������. The inputs are the belief at time � � 1, the most 

recent control data ��, and the most recent measurement data �. It outputs the belief 

������� at time t. The calculating process can be divided into two steps: prediction (line 3) 

and measurement update (line 4). 

 

In prediction phase, it processes the control model, which calculates the prediction 

belief ����������� before incorporating the measurement at time �. It is obtained by the 



12 

 

integral of the product of two probability distributions: the prior assigned to the previous 

state posterior ���� , and the probability that control data ��  may induce a state 

transition from the all the hypothesis states at time � � 1 to time �. In the measurement 

update phase, it multiply the prediction belief ����������� by the probability of measurement 

model ���|��� that the measurement data � may be observed at state ��. The constant 

� is used to normalize the resulting product, since it may not integrate to 1. Finally line 6 

returns the normalized belief �������. 

 

 

 

 

 

 

Table 2.1: The Bayes Filter algorithm [19].  

 

As the Bayes filter algorithm calculates the belief recursively, it demands an initial 

belief ������� at time t � 0. If the initial state �� is given, then ������� is initialized 

with all probability concentrated on a point of the given value of ��, and zeroizes 

anywhere else. If the initial state �� is unknown, then we use a uniform distribution over 

all possible value of �� to represent �������. If the initial state �� is partially known, a 

non-uniform distribution could be used.  

 

In probabilistic robotics, many different implementations of Bayes filter algorithm 

vary in different assumptions of the measurement probability, the state transition 

probability, and the distribution of belief. Throughout the whole thesis, we calculate the 

belief distribution under the Markov assumption, which postulates that past and future 

data are independent if the current state �� is known. It means no past measurement or 

control data would provide us additional information to the stochastic evolution of future 

1:    Algorithm Bayes_Filter (bel�x#���, u#, z#): 

2:       for all x# do 

3:          bel�����x#� �  & p�x# |u#, x#��� bel�x#���dx#�� 

4:          bel�x#� �  η p�z# |x#� bel�����x#� 

5:       endfor 

6:       return bel�x#� 



13 

 

states if we knew the current belief �������. 

 

2.3 Mobile Robot Localization   

 

Mobile robot localization is the problem of determining the pose of a robot relative 

to a given map of the environment [19]. It is an instance of general localization problem, 

and Bayes filter algorithm is widely used in this position estimate. Mobile robot 

localization is the most important problem in robotics system, since all tasks and 

navigations are started from knowing the pose of the robot or the location of objects that 

need to be manipulated. Normally a robot cannot perceive its pose directly relative to the 

global coordinate system. Instead, its pose information can be inferred from the 

measurement data and control data given the map of the environment. A graphical model 

of mobile robot localization problem is given by Figure 2.2. The shaded nodes represent 

given information including the measurement data , the control data �, and the given 

map of the environment. The goal is to estimate its position, which is represented by the 

white nodes. 

 

 

Figure 2.2: Graphical model of mobile robot localization [19].  



14 

 

2.3.1 Categories of Localization Problems 

 

The mobile robot localization problem can be divided into many types according to 

the nature of the environment and the initial knowledge that a robot may have relative to 

the given map. Here we give a brief introduction of the taxonomy of localization 

problems. 

 

The first class of the localization problems is categorized by the different types of 

initial knowledge of a robot. Under this class, two kinds of localization problems have 

been widely studied: local localization (position tracking) and global localization. The 

former one is the simplest one since the initial pose of the robot is given and then the 

problem is to compensate the incremental noise in robot’s odometry. Notice that the noise 

is usually assumed to be small, and the uncertainty is local and confined to the area where 

is closed to the true location of the robot. In this case, the uncertainty can be modelled by 

a unimodal distribution like Gaussian. The latter one is more difficult since the robot is 

not been told its initial pose, instead it has to determine it from scratch. One variant of the 

global localization is called kidnapped robot problem where the robot might be kidnapped 

during the operation and taken to somewhere in its environment without notified. It is 

even more difficult because even the most state-of-the-art localization algorithms will fail 

to locate sometimes. Therefore the ability to recover from failures is the sign of truly 

autonomous robots.  

 

The second class is categorized by the property of environment. Environment can be 

static or dynamic. Static environment means only the robot can move in this environment 

while all other objects remain stationary. On the contrary, in dynamic environment not 

only the robot itself, the locations of other objects or configurations will change over time. 

Examples of the changes are people, movable furniture, or animals. Localization in 



15 

 

dynamic environment is more difficult due to the burden of dealing with those changing 

states in the environment. 

 

The third class is characterized by the localization algorithm pertaining to whether or 

not the algorithm itself controls the motion of the robot: passive localization and active 

localization. In passive localization, the algorithm only observes the robot operating, and 

does not control the motion to facilitate the localization. Usually the robot will move 

randomly. In active localization, the algorithm always controls the robot motion to 

achieve the goal of minimizing the localization errors. Obviously, active localization 

approaches outperform passive ones in yielding better results. 

 

The last class of the localization problem is related to the number of robots involved: 

single-robot localization and multi-robot localization. The former one is most studied in 

recent years. There is no communication problem in this case due to only one robot is 

considered and all data is integrated only in one robot platform. In multi-robot 

localization, more than one robot is involved. The problem comes in how to represent the 

multiple belief system and the communication between them.  

 

In this thesis, we focus on the global passive localization for multi-robot in the static 

environment.  

 

2.3.2 Localization Algorithms 

 

As we mentioned before the processing of localization is the first step of almost all 

robotics systems, many probabilistic approaches have been developed to address the 

various problems in localization, especially for single robot localization. The most 

commonly used algorithms are Kalman filter-based localization, Multi-hypothesis 



16 

 

tracking filter, Grid localization and Monte Carlo localization. The Kalman filter-based 

localization algorithms are based on the assumption that the uncertainty in the robot’s 

pose can be represented by a unimodal Gaussian distribution. In addition they take 

advantage of a range of restrictive assumptions for example Gaussian distribution noise 

and Gaussian distributed initial uncertainty. Therefore Kalman filter-based approaches 

work exceedingly well for position tracking problem. On the other hand the Kalman 

filter-based approaches are not suitable for global localization which needs to represent 

the uncertainty in multi-modal distribution. To overcome this limitation, Multi-hypothesis 

tracking filters have been introduced to solve the global localization by representing the 

uncertainty using multiple Gaussians, which is mixture of normal distributions, but with a 

high burden of computation. Grid localization approaches use a histogram filter to 

represent the posterior belief over a grid decomposition of the pose space [21]. The 

posterior belief for each grid is given by piecewise constant functions. These grid based 

algorithms are capable of solving the global localization problems and non Gaussian 

probability distribution. Nevertheless, uncertainty representing in this way will face a 

trade-off between accuracy and computational efficiency. The more number of evenly 

spaced grids means the smaller approximation error, but require higher computational 

complexity. Monte Carlo localization is an alternative approach for global localization 

problem with reasonable cost of computational complexity. Our proposed approach is 

based on the Monte Carlo localization, and we will give details in the following section. 

 

2.3.3 Monte Carlo Localization 

 

Monte Carlo Localization (MCL) is one of the latest and commonly used 

probabilistic approaches to single robot localization. MCL is an implementation of Bayes 

Filter. Instead of describing the probability density function itself, MCL represents 

uncertainty by maintaining a set of samples that are randomly drawn from the probability 



17 

 

density [19]. It is applicable to both local and global localization problems.  

 

The filter representing posteriors by finitely many samples is known as particle filter 

[19]. Each particle drawn according to the posterior distribution represents a possible 

pose of the robot. Table 2.2 shows the particle filter algorithm. It possesses three steps: 

sampling, importance weighting and resampling. The inputs are the particle set *���, 

together with the most recent control data �� and the most recent measurement data �. 

In the first step (line 3), a hypothetical sample set *�
+,- is generated based on the state 

transition probability p(��, *���
+,- ) for time t. The importance weighting step shows in line 

4, the importance factors .�
+,- for each particle are calculated using the probability model 

of sensor measurement p(�| *�
+,-). These importance factors are used to incorporate the 

measurement � into the particle set. Then in the last step (from line 7 to line 10), it 

draws with replacement / particles from the temporary set *�
+,-. The probability of 

drawing each particle is given by its importance weight. The resulting sample set is with 

the same size to the original sample set. Since the resampling step refocuses the particles 

to regions in the state space with high posterior probability, it has the effect that the more 

the number of particles falls in a region of the state space the more likely that region 

represents the true state. Through recursively computing the three steps, it focuses the 

computational resources of the filter algorithm to regions in the state space where they 

matter the most [19]. 

 

 

 

 

 

 

 



18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.2: The Particle Filter algorithm [19].  

 

The posterior distribution representing in this way has the following advantages: 

Firstly, particle filters is a nonparametric approach. Therefore it can represent a much 

broader space of distributions than the previous parametric algorithms, for example, 

Gaussians. Secondly, particle filters can model nonlinear transformations of random 

variables, and it can handle multi-modal densities which have been widely used in global 

localization. Thirdly, compared to grid localization, particle filters only focus the 

computational resources on the possible poses rather than keeping all the grids status. 

Finally, the implementation of particle filters is very easy.      

 

Table 2.3 depicts the basic MCL algorithm from the particle filter. The motion model 

and measurement model here is corresponding to the state transition probabilistic model 

and sensor measurement probabilistic model in particle filter respectively. The basic MCL 

algorithm represents the posterior belief bel�x#� by a sample set of N total particles 

X# � 2x#
+�-, x#

+�-, � , x#
+3-4. The inputs of MCL algorithm are the previous particle set X#��, 

control data u#, measurement data z#, and the given map m of the environment. Line 1 

initializes the particle set *�� and *�. And then for each particle, line 3 do sampling from 

Algorithm Particle Filter (67�8, 97, :7):               
 1:   *t = *t = ;                                        
2:   for n =1 to N do                                     

 3:     sample *�
+,- ～ p(�� , *���

+,- )                        

 4:     .�
+,- = p(�| *�

+,-)                                  

 5:     *t  = *t + < *�
+,-, .�

+,->                           
 6:   endfor                                            

 7:   for n = 1 to N do                                            

 8:     draw < with probability = .�
+<-                             

 9:     add ��
+>- to *t                                                        

10:   endfor                                                               

11:   Return *t                



19 

 

the motion model, line 4 calculates the importance weight of that particle from the 

measurement model. From line 7 to line 10, is the resampling phase. The algorithm draws 

with replacement / particles from the temporary set *��. The probability of drawing 

each particle is given by its importance weight. Finally, return the posterior particle set 

*�, which contained the particles that with higher importance weights. Noticed that, if 

MCL finishes successfully, most particles are concentrated on one small region which 

represents the location of robot, but there is not such a stop condition in the basic MCL 

algorithm, which means the recursive algorithm will been executing during the robot’s 

whole life.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.3: The Monte Carlo Localization algorithm [19].  

 

As MCL algorithm is the basic component of our proposed approach, each robot 

perform MCL to model its own belief to the external environment. We will explain the 

detailed implementations of the three steps of MCL which is motion model, measurement 

model and the resampling algorithm. 

 

 

Algorithm MCL (67�8, 97, :7, ?)                    
 1:   *t = *t = ;                                          
2:   for n =1 to N do                                        

 3:     *�
+,- = sample_motion_model (�� , *���

+,- )                

 4:     .�
+,- = measurement_model (�,  *�

+,-, @)               

 5:     *t  = *t + < *�
+,-, .�

+,->                               
 6:   endfor                                              

 7:   for n = 1 to N do                                              

 8:     draw < with probability = .�
+<-                          

 9:     add ��
+>- to *t                                                          

10:   endfor                                                               

11:   Return *t               



20 

 

(a) Motion Model 

 

Motion model or the probabilistic kinematic model plays an essential role in the state 

transition probability ����|����, ���, which is the sampling phase of MCL. The outcome 

of robot’s motion is uncertain due to control noise or unmodeled effects. Thus, a posterior 

probability is needed to represent robots’ operation. 

 

Robot’s motion is the calculus describing the effect of control actions on the 

configuration of a robot [22]. The configuration is described by a two dimensional 

coordinates and its angular orientation, which is referred as �AB���, C, D� relative to its 

external planar environment. Then the state transition probability ����|����, ��� can be 

explained in this way: Both ��  and ����  are robot’s poses, and ��  is a motion 

command. The posterior distribution �� is the outcome of executing a motion �� at 

����. In this thesis, we choose odometry model to represent the probabilistic motion 

model, which is ��. The odometry motion model is usually obtained by integrating wheel 

encoder information. It is specified by a rotation, followed by a translation and then a 

second rotation in time interval � � � 1, �- shown in Figure 2.3.  

 

 
Figure 2.3: The odometry motion model [22]. 

 



21 

 

Notice that any drift or slippage will cause error to the posterior distribution. 

Therefore these noises should be appropriately modeled. A sampling approach that 

calculates probability ����|����, ���, named sample_motion_model_odometry, is shown 

in Table 2.4. The two inputs are initial pose ���� and an odometry data ��, and output a 

randomly guessed poses �� distributed according to ����|����, ���. Lines 1 to 3 recover 

the odometry data from sensor readings. Lines 4 to 6 calculate the motion with noises. 

Four error parameters are used to control the noises. The parameters α� and αF specify 

the noise in rotation. The parameters α� and αG specify the noise in robots’ translation. 

Lines 7 to 10 return a random poses ��. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.4: The sample odometry motion model algorithm [22]. 

 

Figure 2.4 shows examples for different values of the error parameters from the 

odometry motion model. Figure 2.4(a) is a typical one. Figure 2.4(b) and (c) show 

unusually large value of transition error and rotation error, respectively. Figure 2.5 is an 

example of the odometry motion model “in action” by superimposing sample sets from 

Algorithm sample_motion_model_odometry (97, H7�8):                   
                                                                  
 1:  δJK#� � atan2�y�O � y�, x�O � x�� � θ�                                                       

2:  δ#JQRS �  T�x� � x�O�� U �y� � y�O��                                                       
 3:  δJK#� �  θ�O � θ� � δJK#�                                                  

                                                                              

 4:  δVJK#� �  δJK#� �  sample�α�δ�
JK#� U α�δ�

#JQRS�                                            

 5:  δV#JQRS �  δ#JQRS �  sample�αGδ�
#JQRS U αFδ�

JK#�  U αFδ�
JK#��                                                

 6:  δVJK#� �  δJK#� � sample�α�δ�
JK#� U α�δ�

#JQRS�                               
                                                                              

 7:  xO � x U δVtrans cos �θ U  δVrot1�                                                  

 8:  yO � y U  δVtrans sin �θ U  δVrot1�                                                           

 9:  θO �  θ U   δVrot1 U δVrot2                                                                                             

                                                                                                           

10:  return x# � �xO, yO, θO�\                                             



22 

 

multiple time steps. The robots’ motion follows the solid line, the particles distributed at 

different time steps show the robots’ belief. The uncertainty grows quickly as the robot 

does not sense its external environment. 

 

 
Figure 2.4: Sampling from the odometry motion model, each diagram shows 500 samples [22]. 

 

 
Figure 2.5: Sampling approximation of the position belief for a non-sensing robot [22]. 

 

(b) Measurement Model 

 

The second phase of MCL is importance weighting, which is also call measurement 



23 

 

update. The corresponding model is called measurement model, denoted as ���|���. It 

describes the formation process by which sensor measurements are generated in the 

physical world [22]. Many different sensors are used in robots, such as tactile sensors, 

range sensors, and cameras. The specifics of the model depend on the sensors used in 

robots. The details of all the sensors equipped on the robot used in our experiments will 

be given in chapter 4. Here we just discuss the sensors used in measurement model: 

bumper sensors, wall sensor, and infrared sensor. The first two types of sensors are uses to 

detect the landmarks such as wall or any other obstacles in the environment. If any of 

these sensors return a positive value then we will assign high probability (high weight) to 

particles who are around walls and obstacles, and low probability to the rest of particles. 

The weighted particles are then used in the resampling phase. The infrared sensor is used 

to detect other robots. We put a virtual wall (a standard Infrared remote transmitter) on the 

top of each robot. If one robot’s infrared sensor (virtual wall sensor) returns a positive 

value, it will consider it has detected another robot. Then according to our proposed 

approach, it will come to a decision of whether to allow an information exchange happen.  

 

(c) Resampling algorithm 

 

The last phase of MCL is resampling or importance sampling. The algorithm used 

for resampling is called low variance sampling shown in Table 3.5. Instead of choosing 

] random numbers and selecting those particles that corresponds to these random 

numbers, this algorithm computes a single random number and selects samples according 

to this number but still with a probability proportional to the sample weight [22]. A 

random number ̂ is drawn from the interval +0; ]��-, where ] is the number of 

samples to be drawn at time �. The algorithm selects particles by repeatedly adding fixed 

amount ]�� to ^ and by choosing the particle that corresponds to the resulting number. 

The while loop calculates the sum ` of resulting number, and checks whether < is the 



24 

 

index of the first particle such that the corresponding sum of weights exceeds ̀ . Then 

the first particle satisfies this condition will be selected. Finally return *��  with ] 

particles. It is very efficient since sampling ] particles requires a�]� time. 

 

 

 

 

 

 

 

 

 

 

 

Table 2.5: Low variance resampling for the particle filter [22]. 

 

Figure 2.6 shows an example of global localization using MCL in an office 

environment. The robot is equipped with the sensor of laser range finder. In Figure 2.6(a), 

at the beginning of global localization all particles are randomly drawn from the uniform 

distribution over the space. In Figure 2.6(b) shows the distribution of particles after the 

robot moving approximately 1 meter, we can see all particles are concentrated on two 

locations due to the symmetry of the environment. In Figure 2.6(c) only one possible 

location left, since the ambiguity is breaking by entering one specific room.   

 

Algorithm Low_variance_sampler (67, b7):                                       
 1:  *�� �  ;                                                                      

2:  ^ � ^c@d�0; ]���                                                   

3:  e �  .�
+�-                                                         

 4:  < �  1                                                                     

5:  for f � 1 to ] do                                     

 6:     ` � ^ U �f � 1� ·  ]��                                                

 7:     while ` h e                                   

 8:        < � < U 1                                                        

 9:        e � e U  .�
+<-                                                          

10:      endwhile                                                         

11:      add ��
+>- to *��                                                  

12:   endfor                                                                  

13:   return *��                                            



25 

 

 
(a) 

 
(b) 

 
(c) 

Figure 2.6: Example of global localization using MCL in an office environment. (a)Global uncertainties in 

the beginning, all particles are uniformly distributed. (b)After moving approximately 1 meter, most particles 

are concentrated on two possible locations due to environment symmetry. (c)After entering one room, the 

ambiguity is resolved; all particles are concentrated on the true pose of the robot [19]. 



26 

 

2.3.4 Multi-Robot Localization 

 

Recently, many robotic applications require that robots work cooperatively in order 

to perform a certain task [17]. Knowing their global positions is the first step in 

multi-robot system, therefore, a lot of research work start to focus on multi-robot 

localization. The key idea of multi-robot localization is to integrate measurements taken 

at different platforms, so that each robot can benefit from data gathered by robots other 

than itself. There are some existing approaches addressing the problem of integrating the 

sensor information from multiple robots: 

 

One early cooperative positioning technique with multiple robots proposed by 

Kurazume and Nagata [15] is known as “portable beacons”. The basic idea underlying 

this technique is that each robot repeats move-and-stop actions and serves as a landmark 

for the other robots. A group of robots is divided into two teams. At each time instant, one 

team is in motion, while the other remains stationary and acts as a landmark. Although 

this motion scheme can efficiently reduce the positioning error by maintaining knowledge 

of their positions, the shortcoming is also obvious: it constraints the robots’ motion in the 

way of allowing only a part of the entire group of robots to move at a certain time instant. 

Consequently, this approach will dramatically slow down the overall localization speed.  

 

An EKF-based approach to cooperative multi-robot localization was introduced by 

Roumeliotis [20]. This approach allows all robots in the group to move simultaneously, 

and to propagate their state and covariance estimates independently by decomposing the 

centralized EKF-based cooperative localization into N communicating filters. However, 

during each update cycle, all robots need to communicate with each other and update the 

covariance matrix for all pose estimates. This induces a computational cost of a�/��, 

where / is the number of robots in the team, for processing each relative position 



27 

 

measurement. Considering the total number of robot-to-robot measurements per cycle can 

be as high as N�/ � 1�, the overall processing cost becomes a�/F� [8]. The main 

drawback is that the high cost of computation and communication limits this approach to 

small robot teams in real-time operation. 

 

Fox and Burgard [7] have proposed a different implementation of cooperative 

multi-robot localization schema which extends the Monte Carlo Localization algorithm. 

The sample-based version of Markov localization enables localizing mobile robots in an 

any-time fashion. This approach avoids the curse of dimensionality (for N robots, one 

must maintain a 3/  dimensional distribution) by factoring the distribution into N 

separate components (one for each robot). Each robot in the system maintains a 

probability distribution describing its own pose based on odometry data and environment 

sensing. When one robot detects another, the “detection model” is used to synchronize the 

individual robots’ beliefs, thereby introducing additional probabilistic constrains which 

ties one robot belief to another robot’s belief functions to reduce the uncertainty. In order 

to synchronize two sample sets drawn randomly by two detected robots, they transform 

sample sets into density functions using density trees [6] which can integrate information 

from other robots into a robot’s belief more straightforwardly in response to the detection 

and the belief of the detect robot. One limitation of this approach is that the information 

exchange between two detected robots cannot ensure it is always benefit the localization 

process since the belief refining happens immediately whenever detection occurs. For 

example, if the beliefs of both detected robots are highly uncertain, the current belief 

refining will not speed up the localization.  

 

 

 

 



28 

 

 

CHAPTER 3 

A CLUSTERING BASED MCL APPROACH FOR 

COOPERATIVE MULTI-ROBOT LOCALIZATION 
 

3.1 Motivation 

 

As discussed in chapter 2, many researchers have paid much attention in cooperative 

multi-robot localization. They all improve the performance either in the aspect of 

efficiency or accuracy. However, there are some limitations existing in previous 

approaches. The mover and observer schema in [15] slows down the localization speed 

due to the restriction of only one robot of a team allowed to move in a time. The proposed 

method in [20] cannot extend to large group of robots due to high cost of computation and 

communication. Another approach for collaborative multi-robot localization which is 

based on MCL [7] suffers from the problem of delayed information exchange, which 

means robots refine their belief instantly whenever two robots encounter with each other 

regardless of whether a update will benefit the localization process or not.  

 

As to the basic component of our proposed approach, which is MCL algorithm, 

many algorithms extending the basic MCL have been presented recently, such as adaptive 

samples based MCL approach [5], mixture of particle sets based MCL approach [19], 

reverse MCL approach [11] et cetera. All of these approaches pay attention in improving 

the accuracy and efficiency of the algorithm. A clustering based MCL algorithm for single 

mobile robot localization proposed in [6] focuses on the purpose of how to let the robot 

itself know it has been successfully localized. The motivation of their approach is that 

human beings can easily know the progress of localization from the distribution of 



29 

 

particles, whereas the robots cannot observe this information directly by the algorithm. 

Almost all extended MCL approaches inherited this limitation from the basic MCL 

algorithm. However, the clustering based MCL approach could monitor the stage of 

localization in real time through employing a clustering component to analyze the 

distribution of particles so that to help robot to carry the notion of the progress of 

localization. In other words the information extracted from the clustering component 

could provide the mathematical information of the uncertainty. Inspired by it, we propose 

a clustering based MCL for cooperative multi-robot localization through expanding the 

clustering component to communication between robots. Our approach aims to deal with 

the problem of delayed information exchange, and still keep the advantage of helping the 

robot to be aware of the progress of localization. 

 

3.2 Clustering Algorithm 

 

3.2.1 Introduction of Clustering 

 

Clustering is the assignment of a set of observations into subsets (called clusters) so 

that observations in the same cluster are similar in some sense. And the cluster is defined 

as “continuous regions of this space containing a relatively high density of points, 

separated from other high density regions by regions of relatively low density of points” 

in [4], which is similar to the observations in MCL. After robot moving and perceiving 

for a certain time, particles will focus on a few different places of the giving map. Those 

different locations contained many particles could be considered as different clusters. 

Those particles contained in the same cluster are similar to each other in representing the 

estimated pose of the robot. In the other hand, those particles within different clusters are 

dissimilar to each other in pose estimate. In [21] they have defined the clustering in a 



30 

 

mathematical way: * is the data set, contained vectors 

 

                    * � 2��, ��, � �i4. 

 

Then the m-clustering of *, which is the partition of * into f clusters: j�, � jk 

while the following three conditions are satisfied:  

 

� j�  l  ;, < � 1, � , f 

� m j>
k
>n� � * 

� j>  o  jp �  ;, < l q, <, q � 1, � , f 

 

The three conditions means there is at least one cluster. No cluster is empty, and the 

union of all clusters contain the whole data set, but with no duplicated vectors existed in 

two clusters. The effect of clustering is that the vectors contained in the same cluster are 

more similar to each other and less similar to the vectors of other clusters [21]. 

 

In order to decide which clusters should be combined, or where a cluster should be 

split, a measure of dissimilarity between particles or clusters is required, which is called 

proximity measure or distance measure. The shape of clusters will vary in different 

proximity measure. As in our experiments all the poses is represented by a two 

dimensional coordinate system, it’s effective for us to choose the Euclidean distance 

measure d��, C� �  ∑ T��> �  C>��  as our proximity measure. Hence the distance 

between two particles s>  and sp  is calculated by the formula 

dts> , spu �  ∑ T��> �  �p�� U  �C> �  Cp��. As to the distance between a particle s> and a 

cluster jv contained a certain number of particles, two steps we need. Firstly we need to 

choose a representative for that cluster jv, and then the distance d�s> , jv� is measured 

as the proximity between particle s> and the representative. Figure 3.1 shows three most 



31 

 

commonly used representatives for different shape of clusters: point representative for 

compact cluster, hyperplane representative for linear cluster, and hyperspherical 

representative for hyperspherical cluster. In the context of MCL, compact cluster is the 

one we mostly encountered, thus we choose the point representative to represent a cluster, 

which is the mean point calculated by skwx, �  �
i

∑ s> , / is the number of particles 

contained in that cluster. 

    

 
Figure 3.1: Representatives of different shape of clusters. (a) Point representative for compact cluster. (b) 

Hyperplane representative for linear cluster. (c) Hyperspherical representative for hyperspherical cluster 

[21]. 

 

3.2.2 Details of BSAS algorithm 

 

Various clustering algorithms, such as sequential algorithms, hierarchical clustering 

algorithms, and clustering algorithms based on cost function optimization, have been 

applied in dealing with different clustering problems. Notice that different combination of 

proximity measure and a clustering algorithm will produce different results. As we 

already known, the real time calculation required in probabilistic robotics drive us to pay 

attention to the computational complexity. The efficiency is also one of the most 

important factors for us to choose the clustering algorithm. Therefore we choose one 

sequential algorithm called Basic Sequential Algorithm Scheme (BSAS) [15,21] because it 

is a fast method and quite straightforward. In addition, it is suitable for producing 



32 

 

compact shape of clusters. 

The BSAS has following features: All the vectors (particles in our proposed 

approach) are presented to the algorithm only once, which means the time complexity for 

this algorithm is a�/�. The number of clusters is not need to be known as prior. New 

clusters are produced as the algorithm evolves. The sequence of particles that been 

presented to the algorithm matters the clustering results. Different ordering may lead to 

totally different number of clusters and the clusters themselves will also differ. Another 

important feature is that the user defined threshold strongly affects the number of clusters. 

Either too big or too small will cause unnecessary problems in the experiments. Thus the 

choice of threshold is highly recommended based on the interpretation the expert or the 

experiment experience provides. Table 3.1 shows the BSAS written in pseudo code. 

 

 

 

 

 

 

 

 

Table 3.1: The Basic Sequential Algorithm Scheme (BSAS) [21]. 

 

The BSAS algorithm takes the whole particle set *��>, … �i� that need to be 

clustered and the user defined threshold of dissimilarity D as input. Line 1 initialize the 

first cluster, which contains the first particle �� presented to the algorithm. From line 2 

to line 9 it is a large for loop sequentially going through all the rest particles. The 

dissimilarity measures between current particle and every existing cluster is calculated in 

order to find a minimum one in line 3. From line 4 to line 8, if the minimum measure 

calculated in line 3 is greater than D, a new cluster that containing current particle will be 

Algorithm BSAS (6�Hz, … H{�, |):                                       
 1:  f � 1, jk � 2��4                                                        

2:   for i =2 to N do                                                        
 3:     find j}: d��> , jv� � f<@�~ p ~kd��> , jp�                                      

 4:           if d��> , jv� h  D then                                          

 5:                  f � f U 1，jk � 2�>4                                     
 6:        else                                                           

 7:            jv �  jv o 2�>4, update its representative                                       

 8:         endif                                                           

 9:    endfor                                                                       



33 

 

created. Otherwise, the considered particle will be assigned to the existing cluster which 

has the minimum dissimilarity measure to it. And update its representative of this cluster.  

 

3.2.3 Information extracted from clustering 

 

In this section we will discuss the outputs of BSAS algorithm and the corresponding 

meaning to our proposed approach. Four important variables that can be extracted from 

BSAS algorithm are: @�, �AB��c�, � , c,�, @kx�, and �kx�.  

 

Firstly, the variable @� is the number of clusters. It indicates how many clusters 

exist at current time of clustering. Each cluster contains a certain number of particles. The 

second variable �AB��c�, � , c,�  is an array which indicates the pose of the 

representative of each cluster. Each pose can be considered as one possible location of 

robot. This information is used in process of information exchange explained in 3.3.2. 

The third variable @kx� indicates the number of particles contained in the cluster which 

has the largest number of particles compared to other clusters. The last one �kx�, 

calculated from @kx� , is the percentage of @kx�  in the whole particle set. The 

percentage number is a more intuitive way that refers to the size of the largest cluster than 

@kx� as it is independent to the total number of particles. It also can represent the level 

of certainty about where it is, since the distribution of particles has the effect that the 

more number of particles fall in a region, the more likely it represent the true pose of 

robot. 

 

The most important variable is �kx�, which plays an essential role in our proposed 

approach. It serves two purposes: It helps to indicate the progress of localization. For 

example, if p�Q� exceed a predefined threshold such as 80%, then the robot will stop to 

indicate it has been localized by itself and its pose is the representative of the considered 



34 

 

cluster. On the other hand, if p�Q� is equal to zero, it means there is no cluster exist 

anymore and the robot fails to localize itself. The second purpose is to be used as an 

indicator of the level of certainty used in the process of detection of robot discussed in 

3.3.2. For instance, if p�_�Q� � 60% and p�_�Q� � 25%, they represent the percentage 

of the largest cluster of robot A and B respectively. Then we consider that robot A has 60% 

of certainty about where it is, while robot B only has 25% of certainty about its location. 

By comparing the level of certainty of both detected robots, it could decide the direction 

of information exchange. 

 

3.3 Proposed Approach 

 

After introducing the clustering component, in this section, we present the proposed 

approach, which is the clustering based MCL for cooperative multi-robot localization 

algorithm. 

 

3.3.1 Problem statements 

 

As we mentioned before, our approach makes use of the information derived from 

clustering component for communication, and we could deal with the delayed information 

exchange problem. Here we state the strategy of how we tackle the problem.  

 

The delayed information exchange problem means robots exchange their internal 

beliefs to update their pose estimates instantly whenever they detect each other, however, 

this schema could not ensure it will always benefit their pose estimates. It would be better 

to delay the information exchange especially when both detected robots are with higher 

uncertainty to their poses at the time of detection. In our approach, this problem comes in 



35 

 

two situations: The first one is that both detected robots are with blurry knowledge of 

their positions. This kind of situation always happens in the beginning of the localization 

due to both robots have not yet detected any landmarks for updating their internal beliefs 

(landmark for our experiments could be either an obstacle or a wall or a well localized 

robot). The second situation is that the detection happens right after one information 

exchange in the last detection, and within the period of time between two detections there 

is no detection of any landmarks by both robots. Since the internal beliefs have been 

exchanged at the last detection, if there is no detection of any landmarks the knowledge of 

its pose will stay in the same level, or become even worse due to the noises happened in 

robot’s motion. In this consideration, the information exchange will not help the robots to 

refine their pose estimate. Therefore, our proposed approach tries to prevent the 

localization process from suffering the delayed information exchange problem.  

 

In order to overcome this problem, one Boolean type status variable used to indicate 

the current state of landmark detection is needed for each robot, and the initial status of 

all robots will be set to false. By introducing this status variable, all robots can only have 

two states during the whole life of localization: The status variable value is false, which 

means there is no landmark has been detected by the considered robot yet or the robot has 

already exchanged its belief with another one. In the former case, the robot is always with 

highly uncertainty about its pose. The latter case is used to avoid the exchanging of same 

level of beliefs. The other situation is the status variable value is true, where a robot has 

already detected a landmark in the environment or the robot has already been localized. 

Detection of landmark will help a robot to refine its internal belief relative to the 

environment. Thus under this situation a robot will be more sure about where it is. When 

any robot has finished its localization process, the status variable will always be true, and 

then it will be used as a fixed landmark for other robot.  



36 

 

 
Figure 3.2: The Status variable diagram. 

 

Figure 3.2 shows the relationships between two Boolean type values of status 

variable of each robot. Initially, each status variable is set to be “False”. During the whole 

time of localization, once a robot has detected any landmark, its status variable will be set 

to “True”, and once a robot has exchanged its belief with another robot, the status variable 

will be set to “False”. If one robot has finished its localization, the Boolean value will 

always stay in “True”. 

 

With the help of status variable, robots are capable of monitoring their behaviour 

after detecting landmarks and other robots. Based on this capability, our strategy for 

dealing with the delayed information exchange problem manages the detection of two 

robots in two groups: 

 

(a) In the first group, both status variables of two detected robots are false. This 

group includes two situations: The first one is both robots have not detected any 

landmarks yet. Here we can assume that the internal beliefs of both robots about their 

poses relative to the environment could be very blurry. Our approach just skips the 

information exchanging at current detection time since the blurry knowledge will not 

benefit the localization process or the contribution is too small and should be ignored. The 



37 

 

second situation is both robots have already exchanged their beliefs at last detection, and 

no landmarks have been observed by both robots yet at current detection time. As 

mentioned above, without a newly observation of landmarks the level of uncertainty will 

almost stay in the same level or even worse. Normally there is no need to exchange the 

same information again. Therefore our approach does not allow the information 

exchanging under this kind of situations. 

 

(b) In the second group, there is at least one status variable value is true or both are 

true. Since perceiving a landmark helps robot to gather more information about its 

environment so that could help in its pose estimate, we consider it as necessary to 

exchange their internal beliefs to refine the pose estimate in both situations, which are 

only one robot has detected a landmark or both robots have detected landmarks. The idea 

of refining belief is to use the robot’s belief which is with higher certainty about where it 

is to refine the other with lower knowledge about its pose and hence it requires a 

comparison of the level of certainties about their locations. In order to quantify the belief, 

our approach makes use of the variable �kx� extracted from the clustering component. 

Through comparing of �kx� of both robots we can find which one is with higher 

certainty about its position. And then our approach uses the information of the robot with 

higher certainty to help the one with lower certainty to refine its pose estimate. If they are 

with the same level of certainty, then we consider it as no need to exchange their 

information since usually same level of certainty will not produce useful results after 

refining. 

 

Through this above strategy our approach could ensure the information exchange 

always benefit the localization process. Therefore our approach can increase the 

effectiveness and efficiency of multi-robot localization via an appropriate information 

exchange mechanism. 



38 

 

3.3.2 Details of proposed method 

 

In this section before presenting our complete proposed approach, we firstly state the 

following assumptions: 

 

(a) The number of robot is two, which is sufficient to test our proposed approach in 

both real robots experiment and simulation. Both robots are running on a 2-D flat 

platform. Each robot executes its own belief functions to model its own uncertainty. 

 

(b) Each robot is equipped with the same sensors including wheel encoder sensors, 

bump sensors, and infrared sensors. All the collected information is used to update its 

own pose estimate. 

 

(c) Each robot is capable of exchanging data with another via Bluetooth enabled 

device. The communication time is very short and can be ignored. 

 

Our proposed approach written in pseudo code is shown in Table 3.2. The clustering 

component has been introduced into basic MCL algorithm. By analyzing the information 

extracted from clustering component, we propose a new information exchange 

mechanism for the communication between robots, which only allow an information 

exchange happen whenever it will contribute positively to the localization process. 

 

 

 

 

 

 



39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.2: The clustering based MCL approach for cooperative multi-robot localization. 

 

Our proposed approach consists of three parts. In part 1, each robot maintains its 

own belief function which is the MCL plus BSAS algorithm. The basic MCL is used to 

model its own uncertainty. The generated particle set is then applied to the BSAS 

algorithm which is the clustering component. By doing so, our approach could monitor 

Algorithm Clustering based MCL for multi-robot                          
  Part 1:                                                                          

 Initially, each robot executes its own MCL+BSAS function to monitor its own pose estimate 

and cluster information.                                                                 

If the degree of certainty �kx� exceeds a predefined threshold �, the considering robot 

will stop to indicate it has been localized and return its location to be used as landmark for 

other robots.                                                                         

                                                                                 

  Part 2:                                                                            

When one robot detects another:                                                       

(a) If the values of both detected robots’ status variables are false, there is no 

information exchange;                                                             

                                                                              

(b) Else there is one robot’s status variable is true or both of them are true, then do belief 

comparison:                                                     

If they are not with the same degree of certainty, do information exchange which 

use the one with higher certainty to help the other one to refine its pose 

estimate;                                                                 

   Else there is no information exchange;                                                                                        

                                                                                  

  Part 3:                                                                         

 Process of information exchange:                                                      

(a) After determining the exchange direction, a predefined distance threshold � is used 

to help in refining process:                                                         

  Those clusters of the robot with lower certainty, whoever is within the range of 

predefined distance threshold � to any clusters of the robot with higher 

certainty, will be kept;                                                           

(b) Return a new set of clusters which will focus on the more possible locations of the 

robot;                                                                       

(c) Uniformly resample N total particles within the newly returned set of clusters;                              

                                                                            



40 

 

the localization process of each robot on real time, such as the number of clusters that the 

considered robot has, the locations of these clusters, the possibility of each cluster 

represent the true location of the robot. If the percentage of the cluster contained the 

largest number of particles which is �kx� exceeds the predefined threshold � (two 

values are used in our experiments, 70% or 80%), then the considered robot will stop to 

indicate it has been well localized, and return the pose of representative of the cluster 

contained largest number of particles to be used as a landmark for the other robot. If 

�kx� is equal to 0, which means there is no cluster exist at the current time, then the 

robot will stop to indicate it failed to localize itself. The ability that recognizing whether a 

robot has been well localized or not by itself significantly improves its robustness and 

autonomy.  

 

As we said the core idea of multi-robot localization is to let the robot benefit from 

information collected by others, therefore the interactions between robots is the essential 

part of our proposed approach. With the help of detection, robot can perceive other one, 

and then exchange their information with each other through Bluetooth enabled devices. 

In the absence of detection, each robot maintains its belief function independently 

specified in part 1. Now we come to the cooperative phase. Firstly in part 2 our proposed 

approach manages the behaviour of both detected robots in a principled way in order to 

dealing with the delayed information exchange problem. The behaviour is mainly to 

determine whether to allow an information exchange or not, and the direction of 

information exchange with the help of one important status variable described in the last 

section. In the following we give some examples to illustrate the two groups of the events 

while detection happens: 

 

(a) In the first group, the values of both detected robots’ status variables are false. 

Two situations will cause this happen. Normally the first situation occurs in the first time 



41 

 

of detection since both robots have not perceived any of the landmarks yet (the initial 

value of the status variable is set to be false). As we are dealing with global localization 

using MCL, all particles will be uniformly distributed all over the state space to model the 

global uncertainty. If there is no observation of any of landmarks to help robot to update 

its knowledge about the giving environment, the uncertainty will still stay in a relatively 

high level. Thus the exchange of their beliefs will not benefit the localization process. 

Figure 3.3 is a visual perception of this situation. Both robot A (red circle) and robot B 

(blue circle) are running on the same environment with a rectangle shape. Each black dot 

is a representative of one cluster which contains a certain number of particles. Figure 

3.3(a) represents the current internal belief of robot A, while Figure 3.3(b) represents the 

internal belief of robot B at the same time. We can see if there is no detection of any 

landmarks, the beliefs of both robots are highly uncertain even though they move around 

for a while. At this level of uncertainty, the exchange of information will only increase the 

computational burden without any help to the localization process. Therefore we do not 

allow an exchange of information happen in this situation. 

 

 

(a) 

 



42 

 

 

(b) 

Figure 3.3: The first situation of detection without information exchange. (a) The current belief of robot A 

(red circle) represented by a set of clusters (small black dot); (b) The current belief of robot B (blue circle) 

represented by a set of clusters (small black dot). Both robots are running in the same environment and the 

gray rectangle is an obstacle. 

 

The second situation is that the current detection happens right after one information 

exchanging at last detection, and without any detection of landmarks by both robots 

within this time period. In this situation, the internal beliefs of both robots have been 

exchange in an early time. If no landmark has been perceived by one of them to update 

their internal beliefs, we consider it as unnecessary to exchange the same level or even 

worse of uncertainty. Figure 3.4 illustrates this situation in the same environment with 

previous situation. Figure 3.4(a) and (b) represent the beliefs of robot A and robot B 

respectively after an information exchange at the last detection. Both status variables have 

been set to false. After moving for a few seconds, they detect each other again without 

perceiving any landmarks. Figure 3.4(c) and (d) shows the current beliefs of robot A and 

robot B. As noises occur during the robots’ motion, the beliefs of both robots become 

more and more uncertain. An information exchange in this situation will not further 

benefit the localization process than the last time of information exchange. Therefore, we 

consider it as no need to do the information exchange. 

 



43 

 

 

(a) 

 

(b) 

 

 

(c) 

 



44 

 

 

(d) 

Figure 3.4: The second situation of detection without information exchange. (a) The belief of robot A (red 

circle) represented by a set of clusters (small black dot) after information exchanging at last detection; (b) 

The belief of robot B (blue circle) represented by a set of clusters (small black dot) after information 

exchanging at last detection. (c) The belief of robot A at current detection. (d) The belief of robot B at 

current detection. 

 

 

(b) In the second group of detection, there is at least one of detected robots’ status 

variable is true, or both of them are true. Since any detection of landmarks will help robot 

to refine its pose estimate, we consider it as necessary to exchange their information no 

matter it is the situation of one robot has detected landmarks or both robots have detected 

landmarks. As we described the strategy before, the idea of refining process is to use the 

belief of robot with higher certainty about where it is to help the other one with lower 

certainty. Then determining the direction of information exchange requires a way to 

evaluate the degree of certainty. Our approach use the information extracted from 

clustering component to quantify the degree of certainty. In this thesis, we only take 

�kx�, the percentage of cluster that contains the largest number of particles, as the degree 

of certainty according to the major feature of the resampling phase of MCL algorithm 

described as the more number of particles fall in a region of space the more likely it is the 

true pose of the robot. Thus, �kx� is sufficient to evaluate the degree of certainty, and 

then direction of information exchange could be easily determined by a comparison of 

�kx�. For instance, ��_kx� and ��_kx� represent the uncertainty of robot A and B. 



45 

 

When detection happens, the direction of information exchange will be one of the 

following three cases: 

 

1. If ��_kx� h  ��_kx�, which means robot A is more certain about where it is 

than robot B, so robot A will use its belief to help robot B to refine its pose 

estimate; 

 

2. If ��_kx� h  ��_kx�, which means robot B is more certain about where it is 

than robot A, so robot B will use its belief to help robot A to refine its pose 

estimate; 

 

3. If ��_kx� �  ��_kx�, which means robot A and robot B are with the same 

degree of certainty, there is no information exchange between robots. This 

situation however rarely happens. 

 

Figure 3.5 illustrates one example of detection under the situation of both robots 

have perceived some landmarks, and robot A is more certain about its pose than robot B. 

Figure 3.5(a) shows the current belief of robot A, and Figure 3.5(b) shows the current 

belief of robot B. Since this time of detection satisfies all constraints of information 

exchange, robot A uses its belief to refine the belief of robot B. Figure 3.5(c) shows the 

newly returned set of clusters of robot B after refining. The detailed process of 

information exchange will be given in the next paragraph. As a result, the localization 

process of robot B is accelerated.  

 



46 

 

 

(a) 

 

 
(b) 

 
(c) 

Figure 3.5: One example of detection with information exchange. (a) The current belief of robot A (red 

circle) represented by a set of clusters (small black dot); (b) The current belief of robot B (blue circle) 

represented by a set of clusters (small black dot). (c) The new set of clusters of robot B after refining. 

 

 



47 

 

Here we discuss the part 3 of our proposed approach which is the detailed process of 

information exchange. As we mentioned above, each particle or cluster represents one 

possible position of robot. If two robots detect with each other, their estimated poses 

which are particles or the representatives of clusters should be within a certain distance. 

Our proposed approach makes use of this geometric relationship to build a mechanism for 

information exchange. Table 3.3 shows the pseudo code of the process of information 

exchange. It takes both sets of clusters of robot A and B, and the predefined threshold 

distance � as inputs. The direction of information exchange has been determined by the 

rule that using the belief of robot with higher certainty to refine the one with lower 

certainty in part 2 of our proposed approach, thus, here we have two cases: Robot A 

refines robot B, if A is more certain about where it is (from line 1 to 10); robot B refines 

robot A, if B is more certain about its pose (from line 12 to 21). In case 1, line 2 initializes 

a new set of cluster C�
O . From line 3 to line 8, it is a for loop going through all clusters of 

robot B. Line 4 calculates the distance between the current cluster of robot B and all 

clusters of robot A to find the minimum one, if the minimum distance is smaller than the 

threshold �, then add it to the set of cluster C�
O . Line 10 uniformly resamples the total 

number of particles within the newly returned set of cluster C�
O . The process of case 2 is 

the same with case 1 but with different direction of information exchange. 

 

 

 

 

 

 

 

 

 



48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.3: The process of information exchange. 

 

Figure 3.6 is an example of information exchange with the direction of robot A 

refine robot B. Robot A and B are running on the same environment with a rectangular 

shape. Figure 3.6(a) shows the beliefs of both detected robots represented by two sets of 

clusters, red dots represent the clusters of robot A, while blue dots represent the clusters 

of robot B. The direction of current information exchange is robot A refines robot B. We 

can see the clusters of robot B, which are within the distance of threshold � to any 

clusters of robot A, will be kept as reasonable pose estimate that can be detected by robot 

A. Figure 3.6(b) shows the newly returned set of clusters of robot B, now those clusters 

which are meaningless to the current detection have been deleted in order to achieve the 

goal of accelerating of localization process. 

Information exchange (����8, � , ���, ����8, � , ���, �):                                       
 1:  Case 1:  Robot A refines Robot B                                                    

2:    C�
O �  ;                                                      

3:    for i =1 to n do                                                        
 4:      find d��> , j�� � f<@�~ p ~kd��> , jp�                                      

5:        if dt�> , jpu �  �  then                                     

 6:              add �> to C�
O                                            

 7:        endif                                                              

 8:    endfor                                                            

 9:    return j�
O                                                             

10:    uniformly resample particles within j�
O                                            

11:                                                                   

12:  Case 2: Robot B refines Robot A                                                     

13:    C�
O �  ;                                                          

14:    for i =1 to m do                                                     
15:      find d�c> , j�� � f<@�~ p ~,d��> , jp�                                                                        

16:       if dtc> , jpu �  �  then                                             

17:         add c> to C�
O                                               

18:       endif                                                               

19:    endfor                                                                 

20:    return C�
O                                                              

21:    uniformly resample particles within C�
O                                    



49 

 

 

(a) 

 

 
(b) 

Figure 3.6: One example of information exchange with the direction of robot A refines robot B. (a) The 

current belief of robot A represented by a set of clusters (red dot), the current belief of robot B represented 

by a set of clusters (blue dot); (b) The newly returned set of clusters of robot B after information exchange. 

 

One of the most important points in the process of information exchange is how to 

select an appropriate threshold as the geometric distance �  between two detected 

estimated poses (we use the representatives of clusters in our approach). The selection of 



50 

 

threshold � highly depends on the setup of detection by robots. Either too large or too 

small of threshold � will significantly affect the performance of localization. The larger 

number of threshold � is, the less the robots will benefit from cluster refining since 

many meaningless estimated poses cannot be deleted. The effect of increasing the 

threshold � will appear in the increasing time for localization. On the other hand, the 

smaller number of threshold � is, the more likely it will remove some important clusters 

relative to the current detection so that will increase the failure rate. The selection of 

threshold � for different experiments will be given in chapter 4 according to the type of 

detection technique. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 

 

 
CHAPTER 4  

IMPLEMENTATION AND EXPERIMENTAL 

RESULTS 
 

In this chapter, the details of the implementation of our experiment including 

hardware platform and software platform will be described firstly. Then the experiments 

results in both real and simulated environments will be presented. 

 

4.1 Implementation Details 

 

4.1.1 Hardware Platform 

 

The hardware platform we used is the robot called iRobot Create which is an 

affordable mobile robot for educators, students and developers created by iRobot 

Corporation. The iRobot Corporation is founded from 1990. It has made some of the 

world’s most important robots in two main fields: iRobot Home Robots and iRobot 

Government & Industrial Robots. In 2009 iRobot generated approximately $299 million 

in revenue and employed more than 500 of the robot industry’s top professionals, 

including mechanical, electrical and software engineers and related support staff [12]. 

iRobot Create is preassembled and ready-to-use off the shelf, and relatively inexpensive. 

Another advantage is users can write custom software using a variety of methods that take 

advantage of the robot’s “streaming sensor data” mode for more control of the robot, 

furthermore users can write programs for completely autonomous behaviour. The iRobot 

Create premium development package including Create programming robot, command 

module, advanced power battery system, virtual walls, standard remote and self charging 



52 

 

home base with fast charger only costs $299 and the Create programming robot only sells 

$129.                                         

                                                                                                                                         

In this section, we will give the detail information about the Create in order to make 

our program to control it as comprehensive as possible. Three main sections structure the 

Create: 

 

Sensor front: It includes all sensors equipped in Create such as bump, wall, cliff 

sensors, and home base contacts. All these sensors are mounted on the movable front 

bumper. This design is suitable for forward travelling. All sensors could easily sense any 

contact and absorb shock to minimize damage. 

 

Motor middle: The drive motors and battery are designed in the center. The triangle 

location of wheels makes Create moving stably. The carry-on battery allows Create 

capable of long time running.  

 

Cargo bay: The cargo bay connector is placed in the middle of the front part of the 

cargo bay. It contains 25 labelled pins that can allow users to attach electronics and other 

peripheral devices such as additional sensors, lights, or motors to the iRobot Create.  

 



53 

 

 
Figure 4.1: Location of Create sensors [23].  

 

Sensors are very important components for an autonomous robot. All the locations of 

sensors of a Create is shown in Figure 4.1. For navigating, Create relies on its mechanical 

bump sensors, infrared wall sensors. For detecting dangerous conditions, it has infrared 

cliff detectors and wheel drop sensors. In our experiments we use three major groups of 

sensors: 

 

Bump Sensors: There are two bump sensors in the front, located at 11 o’clock and 1 

o’clock positions. When spring-loaded front bumper moves to activate one or both of 

these sensors, each sensor works as optical interrupter, which has a simple LED and 

photodetector pair: the LED shines and the photodetector detects the absence of the light 

and changes an electrical signal. In the case of Create’s bump sensor, the interrupter is a 

small plastic arm connected to the bumper. 

 

Infrared Sensors: The Create was equipped with six infrared sensors. All of them 

are located in the front bumper. Four of them are cliff sensors, which are facing down to 

the ground. Another one is wall sensor that faces to the right. These five sensors work 



54 

 

much like the bump sensor. Each sensor has one LED emitter and a photodetector looking 

for the LED’s light. The difference is that they are detecting the reflected light of the 

LEDs other than detecting the direct light of those interrupt-based sensors. Cliff sensors 

are looking for the light reflected from the floor, and the wall sensor is looking for the 

light from walls. The last infrared sensor is the remote control/virtual wall/docking station 

sensor that is placed at 12 o’clock position on the front bumper. It is with a small round 

shape and has 360-degree lens that enables it to receive signals from any orientation. We 

use its capability of sensing virtual wall to perceive another robot in our experiments. 

 

Internal Sensor: The three main internal sensors are wheel encoder sensors, wheel 

drop sensors, and power measurement sensors. The wheel encoder sensors provide us the 

information of travelling distance and rotating angle values by the optical interrupter 

sensor on the wheels. The distance value is calculated from counting the number of beam 

interruptions caused from the toothed interrupter disc. The angle value is obtained from 

an odometrical difference way. Each wheel has a directly distance sensor, and the angle 

value in the sensor data is calculated from the different travelled distance by each wheel. 

This difference describes a rotation around the center point between the two wheels. The 

wheel drop sensors are implemented with standard micro-switches, which are used to 

detect the state of the wheels. When the wheels are drops means Create is in some dire 

situation and should stop its current task. The power measurements sensors are used to 

estimate and present capacity of the battery. 

 

Another important device of Create has to be mentioned is the BAM wireless 

accessory. The BAM wireless accessory provide us the capability of connecting and 

communicating with Create through Bluetooth enabled devices like computers. It’s the 

most flexible method of communication. The effective connect range is 100 meters, and 

the connection quality decreases slowly over distance. 



55 

 

4.1.2 Programming Environment 

 

The build-in serial protocol allowing us to connect and control a Create from a 

Bluetooth enabled devices is called Roomba Open Interface or ROI. It provides an 

electronic interface and a software interface that can control the Create’s behaviour and 

monitor its sensors. The electronic interface of ROI is a DB-25 connector located in the 

Cargo Bay for Create used in our experiments, which is connecting hardware and 

electronic for sensors and actuators. The software interface provides us many useful 

commands, such as demo commands, driving commands, song commands, sensor 

commands, cargo bay connector commands, and scripting commands, to control Create’s 

behaviour. 

 

The Create’s internals is almost transparent to the users through the ROI. It abstracts 

many useful functions to let the operating of Create become much easier. Much of the 

low-level hard work is bypassed via the use of ROI, instead those work such as dealing 

with the motors and sensors has been taken care of inside Create itself. It has five 

operating modes: Off, on, Passive, Safe and Full. Each mode reflects one kind of 

behaviour of Create and one kind of response to subsequent ROI commands. 

 

Off: Create responds to no commands over the ROI. Either turning on the Power 

button or toggling the DD hardware line it will be in “On” mode. 

  

On: In this mode, Create is awake and is able to operate via its button or remote 

control. Sending a START command is the only way it can out of this state. 

 

Passive: A START command can let Create turn into this mode from “ON” mode. In 

this mode, no control of Create is allowed through ROI, but we could read the 



56 

 

information of sensors, and the buttons work as usual. This mode is used to monitor the 

initial state of Create that is going to its business. Usually sending any CONTROL 

command over ROI can make it enters the “Safe” mode. 

 

Safe: Receiving CONTROL command from “Passive” mode or the SAFE command 

from “Full” mode. In this mode, Create can be full controlled over ROI with several 

build-in safety exceptions: any detection of cliff and wheel drops, or the charger is 

plugged in and powered. Encountering any of this safety conditions Create will stop and 

turn into “Passive” mode. 

 

Full: Create will switch to “Full” mode through sending a FULL command in the 

“Safe” mode. In this mode the safety exceptions no longer exist anymore, we could get 

full control of Create. Sending a SAFE command could switch it into “Safe” mode. 

Either a ROI command or external events can change the mode of the Create. The 

relationships of five ROI states are shown in Figure 4.2. 

 

 
Figure 4.2: Create ROI state diagram [23]. 

 



57 

 

All the ROI commands are varying number of data bytes. It is rudimentary and 

quickly gets tiresome. The RoombaComm API can help users to control Create a lot 

easier, which is an encapsulation of the ROI binary commands into a more easy-to-use 

Java class. It is a more human-readable code, and it can let users to create more complex 

behaviours of Create based on the “primitives” of ROI commands. The RoombaComm 

API is compatible with any operating system that RXTX (serial and parallel I/O libraries 

supporting Sun’s CommAPI) supports including Windows, Linux, and Mac OS [23]. 

 

The programming language we used to code is Java, and the environment we used to 

program is Eclipse. Java is currently one of the most popular programming languages, 

and it is a general-purpose, concurrent, class-based, object-oriented language that is 

specifically designed to have as few implementation dependencies as possible. Eclipse is 

a multi-language software development environment comprising an integrated 

development environment (IDE) and an extensible plug-in system. It allows users to write 

graphical programs, and is written mostly in Java and supports RoombaComm API and 

all other Java Class.  

 

4.2 Experiments Results 

 

Our approach will be tested on both real and simulated robots. In both real and 

simulated robot experiments, we firstly tested the performance of single mobile robot 

localization, and then applied our approach to multi-robot localization. Three important 

results: the time for localization t(s), the successful rate �, and the error distance d, will 

be collected in every experiment. Finally we compare these characteristic results of 

multi-robot localization with single robot localization, and aim to verify that how much 

our approach can improve the localization quality.  



58 

 

4.2.1 Experiments using real robot  

 

In the real robot experiments, two iRobot Create are used to test our proposed 

approach shown in Figure 4.3. We firstly implement the case of single mobile robot 

localization in four different environments. And then we implement the case of 

multi-robot localization using proposed approach in the same environments used in single 

mobile robot localization. The comparison of the results of these two cases will be shown 

and to see whether our proposed approach can benefit the localization process. 

 

 

Figure 4.3: Two iRobot Create using in our experiments. The left Create is with black label, while the right 

one is regular Create. 

 

(a) Experiments of Single mobile Robot Localization 

 

The four different environments for single mobile robot localization are shown in 

Figure 4.4. These environments are featured as follow: symmetric environment (Figure 

4.4(a)), asymmetric environment (Figure 4.4(b)), symmetric environment with obstacle 

(Figure 4.4(c)), and asymmetric environment with obstacle (Figure 4.4 (d)). We place one 

Create in each environment to perform global localization by using MCL+BSAS 

framework. The path of Create is set to turn left 120° when it bumps to the wall or 



59 

 

obstacle, otherwise keep going forward until the localization is finished. The total number 

of particles used to represent the belief of Create is 5000. The dissimilarity measure 

threshold D is set to 17cm which is the radius of Create. Therefore the shape of each 

cluster will be the same size as Create. Threshold � is set to 70%, which means if the 

number of particles contained in the largest cluster is equal or larger than 70% of total, the 

Create will stop to indicate it has been localized. We repeat each experiment 50 times to 

track three important characteristic results: the localization time �(s), the successful rate 

�, and the error distance d(cm) when localization succeeded(in real robot experiments, 

we consider localization is successful if the distance between the final pose of Create and 

the result pose of localization process is smaller than the diameter of Create 34cm).  

 

 
(a)                                         (b) 

 
               (c)                                    (d) 

Figure 4.4: Four experimental environments of single mobile robot localization. (a) A rectangle field with 

the shape of 300cm�150cm; (b) Two rectangle fields, the shape of the left one is 150cm�150cm, the shape 

of the right one is 150cm�100cm; (c) A rectangle field with the shape of 300cm�150cm, and an obstacle 

with the shape of 31.5cm�19.5cm placed in the field; (d) Two rectangle fields, the shape of the left one is 

150cm�150cm, the shape of the right one is 150cm�100cm, and an obstacle with the shape of 

31.5cm�19.5cm placed in the field. 



60 

 

Figure 4.5 shows an example of single mobile robot localization tested in the 

symmetric environment (Figure 4.4(a)) with size 300cm�150cm. Normally the traditional 

MCL algorithm will fail to localize itself in this kind of environment due to particles will 

keep concentrating on some symmetric positions, and there is barely chance to solve the 

problem of geometric symmetry by perceiving information from this kind of external 

environment. However, the MCL+BSAS framework have a chance to deal with it through 

analyzing the number of particles contained by each cluster. Although particles may 

concentrate on some symmetric positions, the largest cluster still has a chance to reach the 

predefined threshold �. Then the representative of the largest cluster will be the estimated 

position of Create. Sometimes it will fail as well in indicating a false position to the 

Create. In this experiment Create starts with global uncertainty, and all particles are 

spread all over the map according to the uniformly distribution shown in Figure 4.5(a). 

After running 18 seconds, Figure 4.5(b) shows all particles spread on two large portions 

due to geometric symmetry. In Figure 4.5(c), the symmetric problem still has not been 

solved as all particles concentrate on two positions. However, the largest cluster reaches 

73.78% at the time of 267 second, which is larger than the threshold �, the process stops 

and indicates Create has been localized in the position of the pose of representative of the 

largest cluster. In this example, the localization is successful as the distance between the 

final pose of Create and the pose of the largest cluster is smaller than 34cm.   

 

 
(a) 



61 

 

 

(b) 

 

 
 (c) 

Figure 4.5: Example of single mobile robot localization in symmetric environment. (a) Globally uncertainty, 

all particles are uniformly distributed at the beginning; (b) After 18 seconds, particles are spread on two 

large portions due to geometric symmetry; (c) Finally the largest cluster reaches the threshold � and 

Create is localized at the pose of the representative of the largest cluster. 

 

Table 4.1 shows all the results of single mobile robot localization using iRobot 

Create in four different environments. We can see the longest average time taking for 

localization is 230.88 seconds, which is case of the Create localizing itself in symmetric 

environment. The problem of geometric symmetry not only affects the localization time, 

but also brings the lowest successful rate, which is 42%, due to it may fail in indicating a 

false position. This problem is easily solved in the other three environments which have 

features to break the geometric symmetry. The best results show in the case of 

asymmetric environment with obstacle since it has the most distinguishable features to 



62 

 

help the Create to localize itself. The average localization time is only 74.38 seconds, 

approximately one third of the longest one, and the successful rate reaches 90%, which is 

more than two times of the worst case. The cases of localization in asymmetric 

environment and symmetric environment with obstacle also shorten the localization time 

and increase the successful rate in a large extent than the symmetric one, which are: 81.6 

seconds and 84%, 92.62 seconds and 80%, respectively. As to the average error distance, 

calculated by the distance between the true position of Create and the pose of 

representative of the largest cluster, the results for each case are: 12.86cm, 13.93cm, 

13.4cm, and 14.11cm. They are all smaller than the radius of Create which means those 

localizations are successful. 

 

Table 4.1: Results of experiments of single mobile robot localization using Create in four environments. 

 
Single mobile robot localization using Create (�=70%) 

Environment Average localization 
time 7(s) 

Successful 
rate � 

Average error distance 
�(cm) 

Symmetric 230.88 
 

42% 12.86 

Asymmetric 81.6 
 

84% 13.93 

Symmetric with 
obstacle 

92.62 80% 13.4 

Asymmetric with 
obstacle 

74.38 90% 14.11 

 

(b) Experiments of Cooperative Multi-Robot Localization 

 

In this case of experiments, two Create are used to test our proposed approach in the 

same environments shown in Figure 4.4. These two Create perform global localization 

and they are capable of exchanging information with each other to refine their pose 

estimate when detection happens. The total number of particles for each Create is also 



63 

 

5000. The threshold � used in the process of information exchange is set to be 60cm 

since the setup of detection is determined by the range of infrared signals emitted by 

Virtual wall sensor. The other predefined thresholds are the same with the previous 

experiments: dissimilarity threshold D is set to be 17cm, and threshold � is also set to 

70%. The path of both Create is set to turn left 120° when it bumps to the wall or 

obstacle or another Create, otherwise keep going forward until the localization is finished. 

We repeat each experiment 50 times to track three characteristic results: the localization 

time � (s), the successful rate � , and the error distance d (cm) when localization 

succeeded. 

 

Figure 4.6 shows an example of cooperative multi-robot localization in asymmetric 

environments with an obstacle. The red particle set in the left part of the window 

represents the belief of the Create with black label, while the yellow particle set in the 

right part of the window represents the belief of the other regular Create. Figure 4.6(a) 

shows the global uncertainty represented by uniformly distributed particles at the 

beginning. Detection happens in Figure 4.6(b), the Create with black label is more certain 

about where it is since the largest cluster contains 55% of total particles which is higher 

than the other one 44.8%. Both Create have just bumped to the wall and updated their 

beliefs about its external environment. According to our proposed approach they satisfy 

the constraints to exchange their information to refine the regular Create’s belief. The 

detailed refining process is given in chapter 3. Figure 4.6(c) shows a new particle set of 

the regular Create after refining. We can see the cluster number has been reduced from 8 

to 2, and all particles focus on the more possible position of the regular Create. Therefore, 

our proposed method can achieve the goal of accelerating the localization process. Figure 

4.6(d) demonstrates that both Create have localized themselves successfully through our 

proposed approach. 

 



64 

 

 
(a) 

 

 (b) 

 
 (c) 

 
 (d) 

Figure 4.6: Example of cooperative multi-robot localization in asymmetric environment with obstacle. Red 

particles represent the belief of Create with black label, while the yellow particles represent the belief of 

regular Create. (a) Globally uncertainty, two particle sets are uniformly distributed at the beginning; (b) One 

detection happens, the belief of Create with black label is more certain than the regular one; (c) The Create 

with black label uses its belief to help the regular one to refine its belief; (d) Finally, both Create have 

successfully localized themselves. 



65 

 

The results of all cases of cooperative multi-robot localization using two Create are 

shown in Table 4.2. All three tracing results (�, �, c@d d) here are the average number of 

both Create for each case. The average localization time in symmetric environment is 

144.04s, while others are only 60.73s, 69.54s, and 51.76s in asymmetric environment, 

symmetric environment with obstacle and asymmetric environment with obstacle 

respectively. The successful rate for each environment is 72%, 86%, 84%, and 91%. 

These results also illustrate that the more symmetric the environment is, the longer time 

they need to localize themselves, and the easier they might fail to localize themselves. As 

to the average error distance d here, 13.3cm, 14.585cm, 14.35cm and 15.075cm for each 

environment, all of them are even smaller than the radius of Create. All these tracing 

results of multi-robot localization illustrate that our proposed approach could work very 

well for cooperative multi-robot system. 

 

Table 4.2: Results of experiments of cooperative multi-robot localization using Create in four 

environments. 

 

Multi-robot localization using Create (�=70%) 

Environment Average localization 
time 7(s) 

Successful 
rate � 

Average error distance 
�(cm) 

Symmetric 144.04 
 

72% 13.3 

Asymmetric 60.73 
 

86% 14.585 

Symmetric with 
obstacle 

69.54 84% 14.35 

Asymmetric with 
obstacle 

51.76 91% 15.075 

 

Table 4.3 summarizes the comparison results of multi-robot localization with single 

robot localization by using two Create. The results demonstrate that compare to the 

experiment of single robot localization, our proposed approach applied in multi-robot 

localization not only reduces the time for localization, but also increase the successful rate 



66 

 

for each robot. We can see without the help of detection of other Create and exchange 

information between them the time for single robot localization in symmetric 

environment is 230.88s, and the successful rate is only 42%. With the help of another 

Create, the results show significant improvement, which reduce the time for localization 

by 37.6% to 144.04s in average of two Create, and increase the successful rate by 30% to 

72%. The large improvement of time saving also shows in the other three environments, 

which are 25.6%, 24.9%, and 30.4% respectively. However our proposed approach can 

only increase the successful rates by relatively small ranges, which are 2%, 4%, and 1% 

in asymmetric environment, symmetric environment with obstacle, and asymmetric 

environment with obstacle respectively.  This is because these three environments are 

very distinctive and can easily deal with geometric symmetry problem, and single Create 

can also achieve high successful rate. In summary, our proposed approach can 

significantly shorten the time for localization in both symmetric environment and featured 

environments compare with single robot localization. As to the successful rate, it depends 

on the type of environments. The improvement is obviously while localizing in 

symmetric environments. 

 

Table 4.3: Comparison Multi-robot localization with Single robot localization by using Create. 

Comparison Multi-robot localization with Single robot localization using Create 

Environment � =70% 
Average 

localization 
time(s) 

Time 
saving 

(%) 

Successful 
rate � 

Increasing 
of 

successful 
rate 

Symmetric 
Single robot 230.88 

37.6% 
42% 

30% 
Multi-robot 144.04 72% 

Asymmetric 
Single robot 81.6 

25.6% 
84% 

2% 
Multi-robot 60.73 86% 

Symmetric 
with obstacle 

Single robot 92.62 
24.9% 

80% 
4% 

Multi-robot 69.54 84% 
Asymmetric 
with obstacle 

Single robot 74.38 
30.4% 

90% 
1% 

Multi-robot 51.76 91% 

 



67 

 

4.2.2 Simulation Experiments 

 

The simulation experiments are also implemented in four different environments: 

symmetric environment, asymmetric environment, symmetric environment with external 

obstacle, and asymmetric environment with external obstacle. Both single mobile robot 

localization and multi-robot localization have been tested under these four environments. 

Then we will further study the parameter �, and we try different values to see how it can 

affect the results of localization. As to the other two important parameters D and �, they 

tend to be determined by the hardware using in the experiment, thus we only interest in 

testing parameter �. 

 

(a) Experiments of Single mobile Robot Localization 

 

Single robot global localization using MCL+BSAS framework is implemented in 

four different simulated environments shown in Figure 4.7. The total number of particles 

used to represent the belief of each robot is 5000. The dissimilarity measure threshold D 

is set to be 60 pixels (3 times of the radius of robot), and threshold � is set to 70%. We 

repeat each experiment 50 times to track three important characteristic results: the 

localization time �(s), the successful rate � , and the error distance d (pixel) when 

localization succeeded(in simulated experiments, we consider localization is successful if 

the distance between the final pose of Create and the result pose of localization process is 

smaller than 40pixel). 

 



68 

 

           

                     (a)                                     (b) 

 

           

             (c)                                     (d) 

Figure 4.7: Four simulation environments of single mobile robot localization. (a) A rectangle field with the 

shape of 600�300pixel; (b) Two rectangle fields, the shape of the left one is 300�300pixel, the shape of the 

right one is 300�200pixel; (c) A rectangle field with the shape of 600�300pixel, and a gray rectangle 

obstacle with the shape of 50�50pixel placed in the field; (d) Two rectangle fields, the shape of the left one 

is 300�300pixel, the shape of the right one is 300�200pixel, and a gray rectangle obstacle with the shape 

of 50�50pixel placed in the field. The blue circle represents the robot. 

 

The four environments vary either in the shape or the external obstacles. In Figure 

4.7(a), the environment is totally symmetric. It could be assumed that it is the most 

challenging one for single robot system to locate itself. On the other hand, the 

environments of Figure 4.7(b), (c), (d) have the characteristics of, asymmetric shape, 

external obstacle, and asymmetric shape with external obstacle, respectively. These 

different features would help the robot to locate itself easily and quickly. In each 

environment, a robot is to locate itself starting from globally uncertainty. When robot hit 

the wall or obstacle, it will turn left 120°, otherwise go forward until localization finished. 

We captured one example of the global localization of single mobile robot in the 



69 

 

environment of Figure 4.7(b) as an example shown in Figure 4.8. This asymmetric 

environment consists of a left rectangle with size 300�300 pixel and a right rectangle 

with size 300�200 pixel. In Figure 4.8(a), at the beginning all particles are uniformly 

distributed all over the environment due to the global uncertainty. The clustering results 

are shown in the text box. At current time, there are 44 clusters, and the largest cluster 

contains 5.1% particles of total. After 18 seconds, Figure 4.8(b) shows that the robot is 

more certain about where it is since most particles are concentrated on four possible 

positions. The clustering information shows 18 clusters exist, and the largest cluster has 

24.16% particles of total. Since �kx� is still lower than �, the localization process will 

keep going until it reach the threshold. Finally, at the time of 26 seconds, almost all 

particles are centered on the true position of robot in Figure 4.8(c). We can see �kx� is 

71.48% which is higher than the threshold 70%, and only 4 clusters left at this time. The 

robot will believe it has been successfully localized and the localization process should 

stop. The representative of the largest cluster indicates the location of the robot.  

 

 

(a) 



70 

 

 

(b) 

 

(c) 

Figure 4.8: Example of simulation experiment of single mobile robot localization in asymmetric 

environment. (a) Globally uncertainty, all particles are uniformly distributed at the beginning; (b) After 18 

seconds, particles are concentrated on four possible positions; (c) Finally all particles are concentrated on 

the true position of the robot. 

 

The tracing results of experiments under four different environments are shown in 

Table 4.4, included average localization time t(s), the successful rate ε, and average 

error distance d(pixel) when localization succeeded. We try 50 times of each experiment 

and take the average result under threshold η is 70%. As we can see from Table 4.4, the 

worst results show in the experiments under symmetric environments, compared with the 

other three environments: asymmetric environment, symmetric environment with obstacle, 



71 

 

and asymmetric environment with obstacle. The average localization time is 368.02 

seconds in the symmetric environment while others are only 31.4s, 33.24s, and 28.74s, 

respectively. The reason of the extremely long time for localization in the symmetric 

environment is all particles will concentrate on many areas which have the feature of 

geometric symmetry. Therefore, the largest cluster is hard to reach the threshold 70%. Not 

only the time for localization is almost 14 times of others, but also the successful rate ε 

is extremely low, which is only 44%. Most of the error cases showed that the localization 

failed in indicating the false pose of the robot. The chance of the largest cluster being the 

one in the symmetric position is very high in symmetric environment, however, this 

problem has been easily minimized in featured environments, as we can see the 

successful rate ε are 86% for asymmetric one, 84% for the one of symmetric with 

obstacle, and the highest number 92% for the one of asymmetric with obstacle. Another 

important criterion of our method is the error distance. As we can see the average error 

distance d for experiments in these four environments are 8.95 pixels, 10.23 pixels, 

12.29 pixels, and 12.78 pixels. All of them are smaller than the radius of robot, and 

compare to the size of environments these results demonstrate that our approach could 

locate the robot within a small error distance. 

 

Table 4.4: Results of simulated experiments of single mobile robot localization in four environments. 
 

Simulated Single mobile robot localization (�=70%) 

Environment Average localization 
time 7(s) 

Successful 
rate � 

Average error distance 
�(pixel) 

Symmetric 368.02 
 

44% 8.95 

Asymmetric 31.4 
 

86% 10.23 

Symmetric with 
obstacle 

33.24 84% 12.29 

Asymmetric with 
obstacle 

28.74 92% 12.78 

 



 

(b) Experiments of 

 

In this group of simulation experiments, 

the same environments shown in Figure 4.

global localization instead of single robot. The total number of particles is also 5000. 

threshold  is set to 120 pixels

using Create. The other prede

localization experiments: dissimilarity threshold 

is also set to 70%. We repeat 50 times to track 

time (s), the successful rate 

succeeded. 

 

Since the processes of localization in the four different shape of environments are 

very similar to each other, we here only capture one 

symmetric environment with

environment is with the rectangle shape of 600

pixel placing in it.  

 

72 

Experiments of Cooperative Multi-Robot Localization

In this group of simulation experiments, the proposed approach is implemented in 

the same environments shown in Figure 4.7, but two robots are used together to perform 

global localization instead of single robot. The total number of particles is also 5000. 

is set to 120 pixels which is the same setup of detection with experiments 

he other predefined thresholds are the same with the previous

experiments: dissimilarity threshold  is set to be 60 pixels,

e repeat 50 times to track three characteristic results:

, the successful rate , and the error distance (pixel) when localization 

Since the processes of localization in the four different shape of environments are 

very similar to each other, we here only capture one typical run of the locali

with obstacle which is the environment shown in Figure 4.

environment is with the rectangle shape of 600300 pixel and a rectangle 

(a) 

Localization 

the proposed approach is implemented in 

, but two robots are used together to perform 

global localization instead of single robot. The total number of particles is also 5000. The 

setup of detection with experiments 

fined thresholds are the same with the previous single robot 

, and threshold  

three characteristic results: the localization 

(pixel) when localization 

Since the processes of localization in the four different shape of environments are 

of the localization in the 

environment shown in Figure 4.9. This 

pixel and a rectangle obstacle 50 50 

 



73 

 

 

(b) 

 

 

(c) 

 

 

(d) 

 



74 

 

 

(e) 

 

(f) 

Figure 4.9: Example of simulation experiment of multi-robot localization in symmetric environment with 

obstacle. (a) Globally uncertainty, two particle sets are uniformly distributed at the beginning; (b) One 

detection happens, the belief of robot in blue is more certain than the black one; (c) The robot in black uses 

the belief of blue one to refine its belief; (d) Another detection happens when robot in blue is already 

localized; (e) The robot in black uses the belief of blue one to refine its belief again; (f) Finally, robot in 

black is localized. 

 

Two robots (blue and black) are used to perform global localization in the same 

environment. They are capable of exchanging their beliefs, which are their clustering 

information, to benefit the localization process. Figure 4.9(a) shows the global uncertainty 

at the beginning. Two particle sets are spread over the environment (red spots represent 

the belief of robot in blue, and yellow spots represent the belief of robot in black). In 

Figure 4.9(b), two robots are within a certain range that can be detected with each other. 

At this time, the robot in blue is more certain about where it is, since the clustering results 



75 

 

show that two clusters exist in the current time, and the largest cluster contains 52% 

particles of total, which is higher than the black one. The largest cluster of robot in black 

only has 15% particles of total, and the total number of clusters is 24. And both of them 

have just detected the wall to update their beliefs which satisfy the constraints to 

exchange their clustering information. Therefore the belief of robot in blue is exchanged 

to the black one to help it refine its pose estimation. Figure 4.9(c) shows the refining 

results. As we can see now only 15 clusters left instead of the previous 24 clusters. And 

these 15 clusters are centred on the positions with relatively higher possibility that can 

represent the true location of the robot. Figure 4.9(d) and (e) show another case of 

detection. This time robot in blue has already been localized. It is used as an obstacle to 

help robot in black to refine its belief. We can see the geometric symmetry is successfully 

solved in this current detection. Figure 4.9(f) shows both robots have successfully 

localized themselves through proposed approach. 

 

 Table 4.5 shows the tracing results of multi-robot’s experiments in four 

environments shown in Figure 4.7. All three tracing results (�, �, c@d d) here are the 

average of both robots. The average localization time in symmetric environment is 

109.56s, while others are only 22.485s, 24.25s, and 19.65s in asymmetric environment, 

symmetric environment with obstacle and asymmetric environment with obstacle 

respectively. The successful rate for each environment is 76%, 89%, 88%, and 93%. 

These results also illustrate that the more symmetric the environment is, the longer time 

they need to localize themselves, and the easier they might fail to localize themselves. As 

to the average error distance d here, 9.925 pixels, 11.975 pixels, 13.06 pixels and 14.7 

pixels for each environment, all of them are smaller than the radius of robot. All these 

tracing results of multi-robot’s simulation illustrate that our proposed approach could 

work very well for cooperative multi-robot system. 

 



76 

 

 

Table 4.5: Results of simulated experiments of multi-robot localization in four environments. 

Simulated Multi-robot localization (�=70%) 
Environment Average localization 

time of two robots 
7(s) 

Average 
Successful 

rate � 

Average error 
distance of two robots 

�(pixel) 
Symmetric 109.56 

 
76% 9.925 

Asymmetric 22.485 
 

89% 11.975 

Symmetric with 
obstacle 

24.25 88% 13.06 

Asymmetric with 
obstacle 

19.65 93% 14.7 

 

 

Table 4.6: Comparison Multi-robot localization with Single robot localization in simulated experiments. 

Comparison Multi-robot localization with Single robot localization 

Environment � =70% 

Average 
localization 
time of two 
robots 7(s) 

Time 
saving 

(%) 

Average 
Successful 

rate � 

Increasing 
of 

successful 
rate 

Symmetric 
Single robot 368.02 

70.6% 
44% 

32% 
Multi-robot 109.56 76% 

Asymmetric 
Single robot 31.4 

28.3% 
86% 

3% 
Multi-robot 22.485 89% 

Symmetric 
with obstacle 

Single robot 33.24 
27% 

84% 
4% 

Multi-robot 24.25 88% 
Asymmetric 
with obstacle 

Single robot 28.74 
31.6% 

92% 
1% 

Multi-robot 19.65 93% 

 

Table 4.6 shows the comparison results of Multi-robot localization with Single robot 

localization in simulated environment. The results demonstrate that our proposed 

approach applied in multi-robot localization benefit from exchanging information 

gathered by other robot other than itself. The improvements demonstrate two results: the 

time for localization and the successful rate for each robot. For example, with the help of 



77 

 

another robot, the time for localization is reduced by 70.6% in symmetric environment, 

by 28.3% in asymmetric environment, by 27% in symmetric environment with obstacle, 

and by 31.6% in asymmetric environment with obstacle. As to the successful rate, the 

largest increasing rate 32% shows in symmetric environment, and the other three are 3%, 

4%, and 1% respectively.  

 

(c) Study of parameter � 

 

In this group of experiments, we focus on the parameter η. As we mentioned the 

value of η determines the stop point of each robot’s localization which is specified by 

the minimum percentage of total particles contained in the largest cluster. It is not only 

used for terminating the localization process, but also used as a sign of to what extent the 

robot will believe it has been well localized. We apply our proposed approach in four 

simulated environments shown in Figure 4.7 under a different value of η, which is set to 

be 80%, to see how it can affect the performance. 

 

The other parameters are the same with the previous experiments: dissimilarity 

threshold D is set to be 60 pixels, threshold � is set to 120 pixels, and the total number 

of particles is 5000. We repeat each experiment 50 times and compare the results with the 

previous cases while � is equal to 70%. Table 4.7 summarizes the comparison results.  

 

 

 

 

 

 

 



78 

 

Table 4.7: Comparison of multi-robot localization under two values of � (70% and 80%) using our 

proposed approach in four simulated environments. 

Comparison of Multi-robot localization under two values of �  

Environment 
Multi 
robot 

Average 
localization 
time of two 
robots 7(s) 

Time 
increasing 

(%) 

Average 
Successful 

rate � 

Increasing 
of 

successful 
rate 

Average 
error 

distance of 
two robots 

�(pixel) 

Symmetric 
ηηηη=70% 109.56 

18.1% 
76% 

2% 
9.925 

ηηηη=80% 129.41 78% 9.025 

Asymmetric 
ηηηη=70% 22.485 

14.5% 
89% 

3% 
11.975 

ηηηη=80% 25.75 92% 10.06 
Symmetric 

with obstacle 
ηηηη=70% 24.25 

16.9% 
88% 

4% 
13.06 

ηηηη=80% 28.36 92% 11.38 
Asymmetric 
with obstacle 

ηηηη=70% 19.65 
8.5% 

93% 
1% 

14.695 
ηηηη=80% 21.33 94% 13.195 

 

We can see from Table 4.7, compare to the experimental results under � is 70% in 

four environments, both average localization time and successful rate show different 

degrees of growth in the cases of � is 80%. The relatively larger increasing is shown in 

localization time, which is increased by 18.1% in symmetric environment, by 14.5% in 

asymmetric environment, by 16.9% in symmetric environment with obstacle, and by 8.5% 

in asymmetric environment with obstacle. But in contrast the increasing degree of 

successful rate is very small, which is only 2%, 3%, 4%, and 1%, respectively. The results 

show that a larger value of � will take more time to succeed because it requires more 

information about its external environment to let more particles fall in the largest cluster 

until it reach the stop point. In the mean time, the fact that more particles fall in the 

largest cluster indicates more likely the pose of representative of this cluster represents 

the true pose of the robot, in other words, it means higher successful rate or effectiveness. 

However, here comes a trade-off between efficiency and successful rate of robot’s 

localization controlled by parameter �. If � is too big, it will take significantly longer 

time to localize itself while achieving a relatively small increasing of successful rate. On 

the other hand, if � is too small, despite the reduction of localization time, it will be 



79 

 

useless without guaranteeing the successful rate. Therefore, choosing an appropriate value 

of � depends on the specific demands of different applications. As to the values of 

average error distances of two robots, decreasing with the range from 0 to 2 pixels show 

in all cases. This is because along with the increasing of localization time, robot has more 

chance to perceive the external environment to update its pose estimate so that it will 

increase the accuracy of localization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



80 

 

 

CHAPTER 5 

CONCLUSION AND FUTURE WORK  
 

5.1 Conclusion 

 

Cooperative multi-robot localization utilizes the abilities of sensing and 

communicating one with another to estimate the poses of robots relative to a given map of 

the environment. In this thesis, we propose a clustering based MCL for cooperative 

multi-robot localization, in which each robot maintains its own clustering based MCL 

algorithm, and communicates with each other whenever it detects another robot. We 

develop a new information exchange mechanism, which makes use of the information 

extracted from the clustering component, to synchronize the beliefs of detected robots. 

This mechanism can deal with the delayed integration problem by avoiding unnecessary 

information exchange whenever detection occurs through the belief comparison. By 

doing so only those information exchanges that will benefit the localization process are 

allowed in our approach, to achieve improving the effectiveness and efficiency of 

multi-robot localization. In addition, unlike many other centralized cooperative 

localization approaches, the characteristic of without fusion center and the instant 

communication between two detected robots allow our proposed approach to be 

potentially scaled to large group of robots and to high speed of operation. Moreover, 

robots themselves are implicitly used as landmarks rather than only external landmarks to 

achieve the objective of benefitting the localization process. 

 

Compared with single robot localization, experimental results performed in both real 

and simulated environments demonstrate that our proposed approach applied in 



81 

 

cooperative multi-robot localization can improve the performance, especially when they 

are localized in highly symmetric environments.  

 

5.2 Future work 

 

In future work, there are some limitations that deserve further improving. 

Failure of MCL: Our proposed approach inherits some limitations of MCL. It can 

fail in indicating wrong location if the map is symmetrical, or no particles around the true 

location of robot known as deprivation problem. Our current approach cannot verify 

whether the outcome is the correct location of robot. In the future work, we will do more 

measurements either by adding more powerful and accurate sensors (laser range sensors 

and camera) or by more motion control to verify whether the outcome location is the true 

pose of robot. 

 

Active localization: The path setting of robots in current approach is simply passive. 

Robot’s navigation does not aim to facilitate the localization process. Thus, one future 

work could be focused on designing a more robust way of movement based on already 

gathered information to achieve speeding up the localization process. 

 

Scalability of robots: Current approach can only address two robots’ cooperative 

localization because of the limitation of identifying individual robots. The real robots 

used in our experiments only equip with virtual wall sensor for sensing the infrared 

signals. If more than two robots meet together, our approach could not distinguish which 

two robots are detected with each other. This problem can be solved by adding camera 

sensors and attaching different labels to each robot. Another important point for 

scalability is that the status variable for detecting landmarks of each robot mentioned in 

chapter 3, it should be change to array type variables which can indicate status of all 



82 

 

possible pair of robots in order to deal with the situation: if two robots have already 

exchanged their beliefs with each other, both of them still can exchange information with 

other robots before they detect any landmarks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



83 

 

BIBLIOGRAPHY 

 

[1] A, Howard, M, J Mataric, and G, S Sukhatme. Cooperative relative localization for 
mobile robot teams: An ego-centric approach. In Proc. of The naval Reasearch 
Laboratory Workshop on Multi-Robot Systems (2003), 65-95. 
 

[2] A, Howard, M, J Mataric, and G, S Sukhatme. Localization for mobile robot teams 
using maximum likelihood estimation. In Proc. of the IEEE/RSJ International 
Conference on Intelligent Robots and Systems (Sept.30-Oct.5 2002), 434-439. 
 

[3] A, Gasparri, S, Panzieri, F, Pascucci, and G, Ulivi. A Hybrid Active Global 
Localization Algorithm for Mobile Robots. International Conference on Robotics 
and Automation (April 2007), 10-14. 
 

[4] B, Everitt, S, Landau, and M, Leese. Cluster Analysis. Arnold Publisher, 2001. 
 

[5] D, Fox. Adapting the Sample Size in Particle Filters Through KLD-Sampling. The 
International Journal of Robotics Research., vol.22, no.12 (2003), 985-1003. 
 

[6] D, Wu, J, Chen, and Y, Wang. Bring Consciousness to Mobile Robot Being localized. 
Proceedings of the 2009 IEEE International Conference on Robotics and 
Biomimetics (741-746 2009). 
 

[7] D, Koller and R, Fratkina. Using learning for approximation in stochastic processes. 
In Proc. of the International Conference on Machine Learning (ICML) (1998), 
287-295. 
 

[8] D, Fox, W, Burgard, H, Kruppa, and S, Thrun. A Probabilistic Approach to 
Collaborative Multi-robot Localization. Autonomous Robots on Heterogeneous 
Multi-Robot System, vol.8, no.3 (June 2000), 325-344. 
 

[9] Esha, D Nerurkar, Stergios, I Roumeliotis, and Agostino, Martinelli. Distributed 
Maximum A Posteriori Estimation for Multi-robot Cooperative Localization. IEEE 
International Conference on Robotics and Automation (May 12-17 2009), 
1402-1409. 
 

 



84 

 

 

[10] F, Dellaert, D, Fox, W, Burgard, and S, Thrun. Monte Carlo Localization for Mobile 
Robots. IEEE International Conference on Robotics and Automation (ICRA) (1999), 
1322-1328. 
 

 

[11] H, Hose and H, L Akin. The Reverse Monte Carlo localization algorithm. Robotics 
and Autonomous Systems (2007), 480-489. 
 

[12] http://www.irobot.com/sp.cfm?pageid=74. 
 

[13] J, Liu, K, Yuan, W, Zou, and Q, Yang. Monte Carlo Multi-Robot Localization Based 
on Grid Cells and Characteristic. Proc of the 2005 IEEE/ASME International 
Conference on Advanced Intelligent Mechatronics, vol.8, no.3 (July 2005), 24-28. 
 

[14] Maja, J Mataric. The robotics primer. The MIT Press, 2007. 
 

[15] P, Trahanias and E, Scordalakis. An efficient sequential clustering method. Pattern 
Recognition, vol.22(4) (1989), 449-453. 
 

[16] R, Luo, H, Min, M, Li, and Q, Huang. A Method for Active Global Localization in 
Multi-robot System. International Journal of Advanced Robotic Systems, vol.5, no.3 
(2008). 
 

[17] R, Kurazume, S, Nagata, and S, Hirose. Cooperative positioning with multiple 
robots. In Proc. 1994 IEEE Int. Conf. Robotics and Automation, vol.2 (May 8-13 
1994), 1250-1257. 
 

[18] S, I Roumeliotis. Robust mobile robot localization: from single-robot uncertainties to 
multi-robot interdependencies. Los Angeles,CA, 2000. 
 

[19] S, Thrun, D, Fox, and W, Burgard. Monte carlo localization with mixture proposal 
distribution. Proceedings of the AAAI National Conference on Artifical Intelligence 
(2000), 859-865. 
 

[20] S, I Roumeliotis and G, A Bekey. Distributed multi-robot localization. IEEE 
Transactions on Robotics and Automation, vol.18, no.5 (October 2002), 781-795. 
 

[21] S, Theodoridis and K, Koutroumbas. Pattern Recognition. Academic Press, 2006. 



85 

 

 

[22] S, Thrun, W, Burgard, and D, Fox. Probabilistic Robotics. MIT Press, 2006. 
 

[23] T, E Kurt. Hacking Roomba. WILEY Press, 2006. 
 

[24] W, Burgard, D, Fox, D, Hennig, and T, Schmidt. Estimation the absolute position of 
a mobile robot using position probability grids. Proc. AAAI-96 (1996). 
 

[25] X, Zhang, X, Chen, J, Li, and X, Li. Vision-based Monte Carlo-Kalman Localization 
in a Known Dynamic Environment. Control, Automation, Robotics and Vision, 
ICARCV 06, 9th International Conference , vol. 5-8 (December 2006), 1-7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



86 

 

Appendix A: Results of Experiments  

Raw Data of Experiments using iRobot Create 

 

Localization Time(s) Error Localization Error Distance(cm)

1 283 fail 591

2 72   15

3 349 fail 320

4 458 fail 0

5 89 fail 533

6 245 10

7 287 fail 521

8 353 fail 0

9 155 15

10 77 19

11 96 fail 5

12 254 10

13 249 fail 9

14 304 fail 0

15 86 15

16 339 fail 145

17 154 14

18 355 fail 0

19 432 fail 0

20 213 18

21 122 10

22 88 16

23 430 fail 0

24 394 fail 0

25 106 9

26 128 5

27 302 fail 142

28 267 fail 194

29 96 11

30 91 15

31 230 fail 213

32 402 fail 0

33 125 13

34 443 fail 0

35 235 fail 565

36 223 fail 604

37 91 16

38 262 fail 512

39 255 fail 578

40 204 7

41 167 13

42 321 fail 358

43 94 19

44 213 fail 287

45 446 fail 0

46 118 12

47 233 fail 621

48 215 fail 345

49 148 8

50 245 fail 532

Average time t Successful Rate ԑ Average Error Distance d

230.88 42% 12.86

Single robot localization in symmetric environment using Create (� = 70%)



87 

 

 

Localization Time (s) Error Localization Error Distance (cm)

1 50 18

2 60 15

3 82 fail 326

4 57 10

5 61 21

6 98 fail 490

7 82 9

8 122 23

9 59 31

10 102 fail 237

11 89 21

12 67 13

13 92 4

14 87 fail 523

15 81 14

16 58 11

17 90 21

18 86 6

19 79 12

20 105 5

21 93 21

22 59 16

23 87 16

24 110 fail 569

25 54 15

26 88 6

27 92 13

28 121 11

29 76 4

30 87 21

31 81 15

32 92 13

33 59 14

34 63 13

35 75 fail 321

36 79 18

37 81 fail 238

38 92 14

39 78 13

40 82 21

41 92 7

42 71 12

43 112 21

44 96 14

45 82 8

46 66 fail 420

47 53 16

48 81 12

49 79 13

50 92 4

Average time t Successful Rate ԑ Average error distance d

81.6 84% 13.93

Single robot localization in asymmetric environment using iRobot Create (� = 70%)



88 

 

 

Localization Time(s) Error Localization Error Distance(cm)

1 49 10

2 132 5

3 120 17

4 109 fail 521

5 71 22

6 49 9

7 63 8

8 63 13

9 77 fail 233

10 86 18

11 55 fail 134

12 154 21

13 57 10

14 133 15

15 120 13

16 125 5

17 65 3

18 130 fail 0

19 79 18

20 123 fail 281

21 64 22

22 59 18

23 125 14

24 133 19

25 79 3

26 90 4

27 128 13

28 112 fail 546

29 131 8

30 58 19

31 98 15

32 54 fail 522

33 94 14

34 69 6

35 107 25

36 122 13

37 79 10

38 96 18

39 67 22

40 71 fail 636

41 102 14

42 72 17

43 66 8

44 59 8

45 162 18

46 54 fail 245

47 69 fail 573

48 156 21

49 61 5

50 134 15

Average time t Successful Rate ԑ Average Error Distance d

92.62 80% 13.4

Single robot localization in symmetric environment with obstacle using iRobot Create (� = 70%)



89 

 

 

Localization Time(s) Error Localization Error Distance(cm)

1 71 fail 327

2 64 13

3 60 5

4 47 20

5 89 14

6 57 15

7 101 21

8 67 14

9 82 9

10 66 fail 120

11 69 20

12 72 15

13 94 13

14 121 23

15 50 9

16 67 21

17 55 28

18 72 13

19 83 10

20 82 17

21 59 5

22 71 13

23 103 fail 423

24 58 6

25 63 14

26 82 19

27 78 14

28 72 15

29 49 10

30 59 21

31 64 14

32 89 20

33 62 fail 233

34 89 13

35 73 11

36 77 4

37 53 14

38 69 18

39 82 14

40 83 8

41 79 11

42 56 13

43 77 10

44 84 18

45 113 13

46 102 fail 539

47 89 14

48 58 11

49 82 20

50 75 12

Average time t Successful Rate ԑ Average error distance d

74.38 90% 14.11

Single robot localization in asymmetric environment using iRobot Create (� = 70%)



90 

 

 

Robot_A Robot_B Robot_A Robot_B Robot_A Robot_B

1 90 81 11 5

2 164 158 fail fail 589 612

3 160 187 fail 5 567

4 143 131 fail 294 19

5 159 134 12 13

6 121 152 4 8

7 95 112 fail 10 150

8 168 174 14 13

9 192 180 fail 298 14

10 165 177 19 20

11 142 165 4 2

12 86 89 fail fail 435 523

13 143 149 fail 6 120

14 135 130 11 14

15 145 153 14 15

16 183 173 fail 239 13

17 170 166 fail 154 14

18 165 159 14 19

19 155 159 16 7

20 110 108 22 16

21 129 121 fail fail 467 502

22 188 170 fail 13 533

23 97 102 16 14

24 132 144 fail 432 2

25 164 165 4 23

26 130 140 fail 11 527

27 143 154 21 7

28 176 160 fail 238 14

29 159 172 12 14

30 87 108 fail fail 98 344

31 140 144 10 18

32 132 140 19 5

33 170 155 fail 278 11

34 187 166 10 12

35 150 143 fail 7 612

36 132 136 fail 21 520

37 135 148 17 19

38 150 140 fail 603 14

39 137 128 17 10

40 87 96 fail 19 554

41 148 145 20 14

42 133 140 9 12

43 159 166 15 17

44 160 157 fail fail 282 367

45 112 105 fail 602 21

46 154 142 14 18

47 150 179 21 20

48 143 149 6 8

49 132 139 fail 624 14

50 163 143 17 18

143.4 144.68 70% 74% 13.17 13.43

Multi-robot localization in symmetric environment using iRobot Create (� = 70%)

Successful Rate ԑ Average error distance d

Localization Time(s) Error Localization Error Distance(cm)

Average time t



91 

 

 

Robot_A Robot_B Robot_A Robot_B Robot_A Robot_B

1 55 62 15 12

2 36 41 14 14

3 63 70 fail 358 5

4 64 68 9 17

5 67 69 18 9

6 71 75 fail 22 248

7 60 68 21 12

8 63 60 14 22

9 58 54 16 10

10 50 53 fail fail 134 98

11 48 49 8 14

12 69 72 11 19

13 52 59 18 21

14 71 66 fail 636 9

15 62 72 15 12

16 59 62 16 20

17 72 61 fail 15 389

18 59 52 19 14

19 45 50 12 15

20 64 70 fail 20 213

21 71 75 14 14

22 70 72 2 9

23 45 40 9 20

24 55 61 15 14

25 66 69 21 10

26 60 64 14 19

27 44 39 15 14

28 63 68 16 19

29 56 48 fail 18 528

30 71 66 18 14

31 39 44 fail 442 18

32 49 54 14 16

33 60 65 0 19

34 68 59 14 15

35 70 62 15 6

36 70 64 17 15

37 75 79 8 12

38 72 77 15 19

39 68 72 fail 18 338

40 64 67 20 15

41 65 69 14 18

42 69 75 fail fail 538 182

43 41 45 15 20

44 64 68 fail 601 15

45 59 63 14 0

46 35 40 9 12

47 68 69 12 21

48 66 62 22 14

49 56 58 fail 342 20

50 49 50 14 16

59.92 61.54 86% 86% 14.56 14.63

Localization Time(s) Error Localization Error Distance(cm)

Multi-robot localization in asymmetric environment using iRobot Create (ԑ = 70%)

Average time t Successful Rate ԑ Average error distance d



92 

 

 

Robot_A Robot_B Robot_A Robot_B Robot_A Robot_B

1 65 71 fail 204 5

2 87 82 13 8

3 72 74 13 15

4 64 60 fail 6 642

5 53 50 15 20

6 72 79 fail 541 17

7 71 74 14 19

8 69 74 10 22

9 84 79 fail 622 20

10 59 63 20 14

11 66 67 18 18

12 72 79 17 10

13 50 55 fail 5 539

14 72 77 18 8

15 80 84 13 19

16 82 76 9 24

17 78 72 fail 17 247

18 56 61 10 12

19 62 65 fail 389 5

20 74 82 fail 21 128

21 81 90 11 14

22 88 95 fail 332 14

23 78 67 18 15

24 65 60 14 17

25 58 50 12 19

26 57 59 8 20

27 62 66 10 14

28 62 57 18 11

29 59 64 fail 19 520

30 72 78 20 10

31 72 66 5 12

32 71 74 11 14

33 58 62 18 18

34 66 61 fail fail 602 437

35 52 64 14 20

36 55 59 fail 255 14

37 88 90 15 17

38 81 87 18 19

39 75 79 17 10

40 62 70 10 11

41 77 61 8 14

42 72 80 15 7

43 80 72 fail 11 223

44 77 79 14 18

45 58 61 15 14

46 62 66 20 17

47 77 71 18 14

48 54 64 fail 18 189

49 65 71 fail 472 10

50 66 69 19 12

68.76 70.32 84% 84% 14.17 14.55

Average time t Successful Rate ԑ Average error distance d

Localization Time(s) Error Localization Error Distance(cm)

Multi-robot localization in symmetric environment with obstacle using iRobot Create (ԑ = 70%)



93 

 

 

Robot_A Robot_B Robot_A Robot_B Robot_A Robot_B

1 45 50 10 15

2 65 62 14 14

3 52 54 8 19

4 44 48 15 19

5 34 31 fail 16 634

6 38 44 14 14

7 72 66 10 13

8 52 58 11 20

9 63 70 fail 522 12

10 59 50 21 15

11 45 47 22 6

12 55 58 18 14

13 65 62 fail 165 10

14 50 52 15 13

15 62 66 14 14

16 68 59 19 15

17 58 52 9 5

18 52 45 11 22

19 42 44 22 10

20 54 62 19 21

21 51 60 15 15

22 66 71 24 14

23 59 48 8 9

24 50 47 0 18

25 38 30 14 15

26 37 39 22 14

27 42 44 15 0

28 53 57 fail fail 225 436

29 39 44 9 22

30 51 56 16 19

31 52 48 14 14

32 51 54 10 9

33 38 42 11 18

34 66 60 21 24

35 33 44 fail 16 504

36 35 39 18 12

37 62 68 fail 552 16

38 63 67 14 10

39 55 58 15 21

40 42 50 8 20

41 55 50 fail 20 613

42 52 58 14 19

43 60 51 15 15

44 55 58 24 24

45 36 40 15 8

46 42 44 fail 160 28

47 44 49 18 24

48 64 62 14 15

49 45 51 24 5

50 47 49 19 12

51.16 52.36 90% 92% 15.13 15.02

Localization Time(s) Error Localization Error Distance(cm)

Multi-robot localization in asymmetric environment with obstacle using iRobot Create (� = 70%)

Average time t Successful Rate ԑ Average error distance d



94 

 

Raw Data of Simulated Experiments  

 

Localization Time(s) Error Localization Error Distance(pixel)

1 313 fail 431

2 34 5

3 189 3

4 204 fail 336

5 234 fail 532

6 49 fail 503

7 544 fail 443

8 251 19

9 44 7

10 455 fail 537

11 410 fail 581

12 337 fail 342

13 39 12

14 98 15

15 780 8

16 289 fail 387

17 302 fail 443

18 1089 fail 507

19 69 0

20 147 fail 287

21 684 fail 412

22 127 13

23 305 fail 219

24 438 5

25 209 9

26 749 fail 554

27 34 fail 523

28 57 7

29 330 2

30 1407 fail 306

31 95 fail 489

32 39 5

33 892 8

34 309 fail 307

35 49 fail 471

36 24 fail 533

37 532 20

38 890 fail 549

39 640 fail 521

40 120 7

41 447 11

42 632 16

43 439 fail 507

44 332 2

45 872 fail 551

46 45 18

47 1082 fail 512

48 33 fail 290

49 27 5

50 685 fail 529

Average time t Successful Rate ԑ Average Error Distance d

368.02 44% 8.95

Simulated single robot localization in symmetric environment (� = 70%)



95 

 

 

 

Localization Time(s) Error Localization Error Distance(pixel)

1 30 3

2 36 9

3 24 9

4 33 3

5 23 10

6 50 13

7 40 3

8 35 4

9 33 fail 0

10 32 0

11 28 21

12 43 3

13 35 5

14 16 20

15 31 15

16 29 4

17 25 fail 62

18 30 6

19 48 2

20 39 25

21 70 14

22 19 21

23 25 8

24 35 fail 95

25 24 1

26 37 12

27 29 5

28 41 fail 0

29 30 20

30 17 6

31 25 fail 126

32 22 11

33 36 9

34 17 13

35 20 4

36 26 7

37 14 15

38 21 15

39 20 20

40 26 8

41 16 20

42 29 5

43 41 10

44 56 fail 172

45 55 17

46 36 21

47 14 fail 70

48 47 11

49 36 3

50 26 9

Average time t Successful Rate ԑ Average Error Distance d

31.4 86% 10.23

Simulated single robot localization in asymmetric environment (� = 70%)



96 

 

 

 

Localization Time(s) Error Localization Error Distance(pixel)

1 23 15

2 33 13

3 45 0

4 38 6

5 25 19

6 38 11

7 56 4

8 33 11

9 22 2

10 39 19

11 43 4

12 26 fail 94

13 41 13

14 22 fail 103

15 43 7

16 33 22

17 27 8

18 23 16

19 39 9

20 21 fail 156

21 43 14

22 19 fail 618

23 24 23

24 43 20

25 33 11

26 41 11

27 13 fail 603

28 29 19

29 30 11

30 43 6

31 36 25

32 23 fail 605

33 32 7

34 23 18

35 39 14

36 40 5

37 27 16

38 42 11

39 27 1

40 57 13

41 38 6

42 36 26

43 23 fail 440

44 34 15

45 36 22

46 42 14

47 29 3

48 15 9

49 38 17

50 37 fail 134

Average time t Successful Rate ԑ Average Error Distance d

33.24 84% 12.29

Simulated single robot localization in symmetric environment with obstacle (� = 70%)



97 

 

 

Localization Time(s) Error Localization Error Distance(pixel)

1 29 4

2 24 7

3 19 26

4 25 fail 102

5 29 3

6 37 4

7 35 10

8 34 13

9 62 11

10 19 17

11 26 13

12 37 7

13 29 19

14 31 fail 112

15 26 9

16 32 16

17 25 20

18 19 17

19 33 21

20 22 7

21 36 17

22 40 7

23 26 fail 541

24 36 14

25 32 23

26 26 5

27 40 13

28 31 17

29 32 9

30 27 16

31 17 18

32 30 8

33 33 21

34 29 20

35 18 3

36 26 14

37 22 6

38 24 5

39 19 fail 135

40 22 24

41 16 6

42 27 11

43 43 13

44 23 17

45 18 21

46 34 16

47 28 3

48 25 6

49 30 16

50 34 15

Average time t Successful Rate ԑ Average Error Distance d

28.74 92% 12.78

Simulated single robot localization in asymmetric environment with obstacle (� = 70%)



98 

 

 

Robot_A Robot_B Robot_A Robot_B Robot_A Robot_B

1 71 155 1 11

2 167 83 12 10

3 39 81 9 3

4 104 23 fail 5 351

5 65 34 10 3

6 34 36 fail 642 6

7 304 23 fail fail 282 0

8 171 515 9 5

9 13 25 fail 600 4

10 14 59 23 9

11 496 24 14 19

12 42 100 4 23

13 68 17 fail 11 287

14 121 116 fail fail 183 178

15 21 25 14 8

16 122 415 10 6

17 19 26 fail fail 370 599

18 51 90 fail 3 640

19 205 182 fail 358 2

20 41 20 5 11

21 67 106 23 5

22 342 147 14 11

23 174 152 fail 365 6

24 116 329 11 9

25 57 50 fail 343 22

26 137 128 2 7

27 172 169 fail 329 4

28 267 183 fail 6 622

29 212 21 fail 637 18

30 35 35 6 14

31 58 80 14 22

32 203 179 fail 10 641

33 85 89 fail 4 135

34 132 125 fail 344 23

35 129 87 23 11

36 263 234 6 19

37 71 68 3 7

38 112 110 fail 320 4

39 62 161 fail 463 8

40 125 136 3 12

41 106 178 9 14

42 19 17 5 5

43 39 30 3 4

44 81 90 23 2

45 108 88 3 23

46 54 50 23 4

47 81 88 21 6

48 151 20 8 11

49 21 10 fail 5 0

50 41 59 fail 9 192

113.76 105.36 74% 78% 9.84 10.03

Simulated multi-robot localization in symmetric environment (� = 70%)

Localization Time(s) Error Localization Error Distance(pixel)

Average time t Successful Rate ԑ Average Error Distance d



99 

 

 

Robot_A Robot_B Robot_A Robot_B Robot_A Robot_B

1 50 30 7 11

2 29 22 9 18

3 23 22 13 17

4 21 15 19 14

5 24 11 10 8

6 10 31 fail 531 20

7 31 33 12 14

8 22 29 23 11

9 13 27 12 22

10 30 25 10 18

11 25 26 fail 16 93

12 27 26 6 13

13 17 18 9 20

14 20 11 fail 17 0

15 16 17 fail 0 30

16 28 29 9 9

17 26 27 10 15

18 28 27 19 10

19 14 20 22 18

20 17 11 2 8

21 17 28 16 8

22 34 32 9 10

23 14 17 17 3

24 14 31 8 14

25 13 23 fail 10 101

26 26 22 5 4

27 28 27 13 9

28 16 27 21 7

29 22 13 6 14

30 14 16 14 5

31 25 16 12 19

32 23 27 0 1

33 26 31 11 8

34 20 25 23 4

35 26 23 fail 79 20

36 27 25 2 3

37 23 27 0 11

38 27 28 11 18

39 15 30 fail 10 245

40 26 11 21 9

41 26 18 13 14

42 27 27 6 11

43 8 16 16 5

44 22 27 fail 0 9

45 13 23 fail 19 0

46 28 28 9 3

47 16 23 fail fail 98 125

48 26 24 11 21

49 25 12 7 13

50 26 13 18 14

22.48 22.94 90% 88% 11.84 12.11

Localization Time(s) Error Localization Error Distance(pixel)

Simulated multi-robot localization in asymmetric environment (� = 70%)

Average time t Successful Rate ԑ Average Error Distance d



100 

 

 

Robot_A Robot_B Robot_A Robot_B Robot_A Robot_B

1 33 18 9 5

2 30 27 1 12

3 24 17 fail fail 128 175

4 16 30 6 11

5 46 34 15 17

6 32 24 fail 201 18

7 14 14 8 24

8 48 22 16 10

9 27 18 20 1

10 33 29 4 6

11 16 30 12 21

12 29 35 19 18

13 21 38 2 11

14 25 27 fail 11 0

15 14 33 20 17

16 33 16 23 8

17 18 37 8 17

18 15 23 9 20

19 17 27 17 18

20 24 24 4 5

21 14 40 11 7

22 12 18 5 13

23 13 20 fail 9 621

24 42 18 18 1

25 17 34 29 16

26 13 22 14 18

27 11 13 12 4

28 39 29 7 25

29 22 23 fail 13 104

30 18 41 17 19

31 22 16 12 17

32 27 14 fail 0 21

33 36 43 4 3

34 13 17 fail 628 10

35 37 39 18 22

36 16 22 17 3

37 30 33 20 15

38 12 10 15 8

39 25 32 17 19

40 18 27 fail 184 3

41 28 13 fail 3 521

42 22 25 7 18

43 14 24 19 9

44 16 18 17 17

45 39 24 21 18

46 32 13 18 21

47 14 13 fail 507 10

48 21 24 11 12

49 34 15 fail 19 593

50 13 37 22 3

23.7 24.8 88% 88% 13.16 12.98

Average time t Successful Rate ԑ Average Error Distance d

Localization Time(s) Error Localization Error Distance(pixel)

Simulated multi-robot localization in symmetric environment with obstacle (� = 70%)



101 

 

 

Robot_A Robot_B Robot_A Robot_B Robot_A Robot_B

1 23 23 5 12

2 23 26 12 17

3 25 22 5 24

4 19 28 14 14

5 15 20 fail fail 307 434

6 24 16 27 25

7 19 29 6 17

8 21 23 15 14

9 17 11 14 9

10 15 20 12 14

11 29 12 13 24

12 19 22 34 6

13 18 26 fail 9 287

14 29 28 19 12

15 25 28 fail 0 21

16 19 18 9 6

17 23 29 21 15

18 27 16 18 20

19 24 23 5 12

20 11 24 22 4

21 20 13 12 12

22 20 17 24 25

23 9 10 21 8

24 19 21 22 16

25 21 8 4 8

26 27 28 6 2

27 29 29 13 12

28 16 9 8 18

29 13 22 21 9

30 12 19 23 26

31 24 27 14 13

32 22 26 17 6

33 22 23 22 18

34 11 16 14 23

35 24 22 11 10

36 21 21 8 16

37 13 9 fail 25 502

38 18 22 8 22

39 21 10 17 11

40 12 19 12 6

41 11 18 fail 0 18

42 21 21 25 27

43 12 23 14 7

44 22 22 21 24

45 15 11 6 22

46 10 12 14 16

47 24 20 20 6

48 13 18 13 5

49 25 20 4 24

50 22 11 fail 12 398

19.48 19.82 94% 92% 14.70 14.70

Average time t Successful Rate ԑ Average Error Distance d

Localization Time(s) Error Localization Error Distance(pixel)

Simulated multi-robot localization in asymmetric environment with obstacle (� = 70%)



102 

 

 

Robot_A Robot_B Robot_A Robot_B Robot_A Robot_B

1 96 17 1 5

2 34 29 8 6

3 14 41 24 21

4 69 151 fail 537 3

5 195 13 fail 3 0

6 177 159 6 14

7 44 84 22 9

8 76 55 fail 320 9

9 155 305 7 11

10 16 67 3 8

11 233 196 17 1

12 37 14 fail 13 0

13 34 53 5 20

14 387 86 fail 455 3

15 298 109 fail 557 2

16 276 267 fail 16 457

17 102 125 18 13

18 55 38 1 7

19 19 99 4 9

20 60 78 fail 2 456

21 150 157 7 4

22 37 360 fail 12 0

23 316 56 fail 11 644

24 21 53 6 2

25 144 125 fail fail 595 393

26 36 190 4 7

27 166 130 fail 641 15

28 233 154 9 4

29 16 21 7 18

30 318 81 18 6

31 276 280 fail 597 6

32 35 40 fail 14 0

33 31 56 11 5

34 185 61 9 15

35 80 85 1 14

36 298 153 fail 7 0

37 66 59 fail 334 18

38 217 257 6 9

39 110 391 fail 2 632

40 14 21 fail 238 14

41 291 169 1 5

42 14 141 13 10

43 54 36 2 14

44 126 104 3 6

45 273 367 8 10

46 341 43 fail fail 287 389

47 84 208 fail 9 241

48 109 60 4 22

49 85 122 16 12

50 316 156 12 4

136.38 122.44 80% 76% 8.55 9.5

Simulated multi-robot localization in symmetric environment (� = 80%)

Average time t Successful Rate ԑ Average Error Distance d

Localization Time(s) Error Localization Error Distance(pixel)



103 

 

 

Robot_A Robot_B Robot_A Robot_B Robot_A Robot_B

1 31 32 7 7

2 31 26 9 13

3 28 31 9 4

4 30 43 4 22

5 16 25 2 11

6 32 32 12 16

7 28 32 fail 98 7

8 28 13 12 2

9 30 20 3 20

10 54 22 8 3

11 27 16 10 8

12 18 32 fail 26 114

13 33 28 12 9

14 22 52 18 9

15 26 32 11 12

16 23 27 fail 0 20

17 27 24 7 12

18 29 27 9 11

19 27 27 8 16

20 29 31 12 5

21 19 20 21 17

22 18 19 11 18

23 26 25 5 13

24 24 9 fail 18 117

25 27 30 14 14

26 17 13 fail 98 21

27 27 33 21 5

28 18 28 11 8

29 25 31 12 5

30 25 26 8 12

31 28 29 11 2

32 13 29 23 12

33 12 25 1 3

34 29 32 9 9

35 31 28 10 4

36 28 20 14 22

37 27 26 8 13

38 26 14 fail 9 0

39 18 17 13 16

40 29 17 10 18

41 18 31 18 7

42 22 30 fail 0 10

43 33 31 6 4

44 21 31 fail 15 112

45 30 29 1 5

46 11 25 13 15

47 30 27 8 5

48 16 13 13 3

49 24 22 1 14

50 26 26 10 0

25.34 26.16 92% 92% 10.72 10.48

Simulated multi-robot localization in asymmetric environment (� = 80%)

Average time t Successful Rate ԑ Average Error Distance d

Localization Time(s) Error Localization Error Distance(pixel)



104 

 

 

Robot_A Robot_B Robot_A Robot_B Robot_A Robot_B

1 22 15 6 4

2 39 45 12 19

3 33 20 8 6

4 41 16 5 16

5 16 15 20 7

6 41 20 13 11

7 20 27 9 19

8 28 30 16 2

9 18 21 fail 318 9

10 28 20 3 15

11 12 17 8 3

12 26 20 16 12

13 14 19 4 20

14 16 21 16 7

15 23 34 11 6

16 30 27 6 17

17 46 50 14 1

18 19 49 6 10

19 34 22 fail 14 497

20 41 52 fail 340 11

21 17 33 17 20

22 18 19 3 0

23 35 13 20 7

24 31 21 6 13

25 19 20 3 21

26 21 25 fail 282 12

27 20 12 fail 17 300

28 30 11 1 3

29 44 42 12 14

30 34 37 20 8

31 17 33 2 4

32 48 39 19 12

33 35 45 fail 20 304

34 47 43 7 8

35 25 33 23 17

36 33 31 fail 305 20

37 41 37 16 2

38 32 25 1 15

39 23 56 17 21

40 22 25 3 5

41 28 25 22 18

42 26 30 fail 17 467

43 23 43 4 21

44 15 16 23 17

45 36 18 11 10

46 62 53 4 12

47 25 28 17 4

48 21 19 9 11

49 18 25 15 6

50 22 24 14 21

28.3 28.42 92% 92% 11.52 11.24

Simulated multi-robot localization in symmetric environment with obstacle (� = 80%)

Average time t Successful Rate ԑ Average Error Distance d

Localization Time(s) Error Localization Error Distance(pixel)



105 

 

 

Robot_A Robot_B Robot_A Robot_B Robot_A Robot_B

1 16 25 15 17

2 10 23 17 3

3 22 21 6 18

4 13 33 5 10

5 13 40 fail 24 405

6 11 13 18 8

7 34 22 fail 357 8

8 21 25 10 22

9 15 31 15 19

10 12 21 2 18

11 15 20 5 22

12 22 18 23 13

13 23 21 fail 18 531

14 23 17 9 20

15 14 22 26 10

16 20 18 15 20

17 17 15 3 8

18 19 21 28 6

19 21 23 5 21

20 24 16 22 5

21 17 21 14 6

22 33 28 fail 482 21

23 19 17 23 27

24 21 21 13 17

25 24 13 2 18

26 25 22 13 11

27 14 24 1 9

28 16 22 22 5

29 13 18 16 14

30 22 24 10 17

31 24 17 7 4

32 21 28 19 23

33 16 21 22 10

34 16 18 14 17

35 22 15 fail 6 377

36 28 19 3 3

37 24 24 12 19

38 21 20 15 2

39 31 29 22 11

40 35 34 17 22

41 28 24 14 19

42 19 23 8 14

43 26 19 12 3

44 16 28 14 18

45 25 28 21 4

46 23 21 18 13

47 26 24 1 22

48 28 19 fail 407 5

49 16 18 3 13

50 19 16 15 2

20.66 22 94% 94% 13.26 13.13

Simulated multi-robot localization in asymmetric environment with obstacle (� = 80%)

Average time t Successful Rate ԑ Average Error Distance d

Localization Time(s) Error Localization Error Distance(pixel)



106 

 

VITA AUCTORIS 

 

NAME:               Guanghui Luo 

PLACE OF BIRTH:     Guangxi, China 

YEAR OF BIRTH:      1985 

EDUCATION:         Northeastern University at Qinhuangdao, Hebei, China 

                     2004-2008 Bachelor; 

                     University of Windsor, Windsor, Ontario 

                     2008-2011 Master. 

 


	University of Windsor
	Scholarship at UWindsor
	2011

	An Improved Clustering based Monte Carlo Localization approach for Cooperative Multi-robot Localization
	Guanghui Luo
	Recommended Citation


	Microsoft Word - $ASQ96007_supp_undefined_56C2F4FE-7CAD-11E0-A005-1736F0E6BF1D.docx

