
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2011

An Interactive Approach of Ontology-based
Requirement Elicitation for Software
Customization
Xieshen Zhang
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Zhang, Xieshen, "An Interactive Approach of Ontology-based Requirement Elicitation for Software Customization" (2011). Electronic
Theses and Dissertations. 347.
https://scholar.uwindsor.ca/etd/347

https://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/347?utm_source=scholar.uwindsor.ca%2Fetd%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

An Interactive Approach of Ontology-based Requirement Elicitation

for Software Customization

by

Xieshen Zhang

A Thesis
Submitted to the Faculty of Graduate Studies

through Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2011

© 2011 Xieshen Zhang

An Interactive Approach of Ontology-based Requirement Elicitation

for Software Customization

by

Xieshen Zhang

APPROVED BY:

__
Dr. G. Bhandari

Odette School of Business

__
Dr. A. Mukhopadhyay

School of Computer Science

__
Dr. X. Yuan, Advisor

School of Computer Science

__
Dr. D. Wu, Chair of Defense

School of Computer Science

May 04, 2011

iii

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis has

not been submitted for a higher degree to any other University or Institution.

iv

ABSTRACT

Software product lines allow reusing a collection of related software engineering

assets to develop custom-made high quality software with reduced time and cost. In this

thesis, an interactive approach of requirement elicitation for software customization is

presented. It first adopts an ontology-based requirement model to represent the

commonalities and variabilities among a group of related requirement artefacts. The

development of a dialogue system further enables users to interactively customize

software products by means of text-based dialogue. While the ontology model directs the

dialogue system to perform requirement elicitation, its instantiation is accomplished with

the support of decomposition-based requirement refinement in Service-Oriented

Architecture. Besides the design details, a case study is presented to demonstrate how

customizing an online book shopping system could be achieved with interactive

requirement elicitation. Finally, the reliability and efficiency of the proposed method are

evaluated with experimental comparison.

v

DEDICATION

This thesis is dedicated to my dear parents and brother for their endless love and support.

vi

ACKNOWLEDGEMENTS

First, I would like to express my deep and sincere gratitude to my supervisor Dr.

Xiaobu Yuan for the continuous support to my study and research, for his patience,

motivation, and wide knowledge. I could not have imagined accomplishing the thesis

without his guidance.

I am also heartily thankful to Dr. Asish Mukhopadhyay and Dr. Gokul Bhandari,

whose insightful comments and encouragement inspired me throughout the work.

Finally, I would like to thank my friends Xiewei and Yifeng. Their long-term

emotional support gave me the courage to carry on.

vii

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY .. iii
ABSTRACT ... iv
DEDICATION .. v
ACKNOWLEDGEMENTS ... vi
INTRODUCTION .. 1

1.1 Introduction ... 1
1.2 Problem Statement... 1
1.3 Contribution ... 2
1.4 Structure of the Thesis ... 3

SOFTWARE PRODUCT LINE AND SERVICE-ORIENTED ARCHITECTURE 4
2.1 Software Product Line ... 4
2.2 Service-Oriented Architecture ... 5

INTERACTIVE REQUIREMENT ENGINEERING .. 8
3.1 Interactive Requirement Engineering .. 8
3.2 Dialogue System .. 9
3.3 Knowledge-based Requirement Engineering .. 13
3.4 Ontology .. 14

3.4.1 Overview ... 14
3.4.2 Ontology for Requirement Engineering .. 17
3.4.3 Ontology for SOA ... 18

PROPOSED ONTOLOGY-BASED REQUIREMENT MODEL 21
4.1 Introduction ... 21
4.2 Concepts .. 21
4.3 Relationships ... 23
4.4 Rules .. 28
4.5 Ontology Instantiation ... 29

PROPOSED REQUIREMENT ELICITATION METHOD ... 32
5.1 Introduction ... 32
5.2 Structure of the Proposed Dialogue System .. 32
5.3 Process of Requirement Elicitation ... 33

5.3.1 Machine-directed Requirement Elicitation ... 34
5.3.2 User Requirement Customization ... 37

5.4 Output of Requirement Elicitation .. 37
5.4.1 Output Overview ... 37
5.4.2 Output Generation ... 39

5.5 Considerations for System Implementation .. 43
IMPLEMENTATION AND CASE STUDY ... 45

5.6 Implementation .. 45

viii

5.7 Case Study ... 49
5.7.1 Case Overview .. 49
5.7.2 Book Locating Service .. 50

COMPARISON ANALYSIS ... 58
7.1 Introduction ... 58
7.2 Problem Instance Generation .. 58
7.3 Experiment with the Proposed Method ... 60
7.4 Experiment with the Undirected Method .. 61
7.5 Results and Analysis .. 62

CONCLUSION AND FUTURE WORK .. 66
8.1 Conclusion ... 66
8.2 Future Work ... 66

REFERENCES ... 68
APPENDICES .. 73

The Complete Requirement Model for the Case Study ... 73
VITA AUCTORIS ... 78

1

CHAPTER I

INTRODUCTION

1.1 Introduction

Software product line (SPL) engineering is a paradigm to develop software

applications with reusable software assets, which are tailored to individual customers'

needs [1]. By reusing software engineering artefacts (e.g. software components) rather

than developing them from scratch, software systems are expected to be customized,

while the costs can be effectively cut down. Meanwhile, with the same primary goal of

software reuse, Service-Oriented Architecture (SOA) separates system functionalities

into loosely coupled and reusable services that communicate with each other via

autonomous messages [2]. Although SPL and SOA differ, as different software

engineering paradigms, in many respects, they actually complement each other [3]. By

reusing services, and adopting SOA-based methods in SPL engineering, especially the

Semantic Web Service techniques (e.g. automatic service discovery and composition) [4],

the goal of automating software development could be achieved. Furthermore, the main

focus of SPL engineering will then shift from repetitive system design and

implementation to functionalities (i.e. services) customization.

On the other hand, in order to actualize completely automated SPL engineering,

an approach is required for guiding human-machine interaction in software products

customization. However, managing the complexity and variability of product features

inherent in software product lines is very challenging [5]. In addition, a supporting tool

for directing the automatic and interactive product customization is still lacking [6].

1.2 Problem Statement

A solution to automatic requirement elicitation is critical for the realization of

automated SPL. While an increasing number of publications in SOA have addressed the

2

problem of automatic system implementation, few studies investigate the automation of

requirement engineering.

To automate the requirement engineering process, first of all, a supporting tool for

human-machine interaction is required, which is used to conduct the communications

during requirement elicitation. Meanwhile, it must be capable of managing the

knowledge related to SPL requirement engineering, thus the knowledge could be

naturally presented to users. Furthermore, the tool should be able to generate

service-oriented outputs for the automation of system implementation.

On the other hand, knowledge for automatic requirement elicitation is supposed

to be presented in formats understandable to machines. In other words, a semantic way to

represent the knowledge is required. Moreover, as a knowledge engineering solution to

SPL engineering, it must be suitable to describe the common and variable features of

requirement engineering artefacts of software systems that are given. Since the major

challenge rooted in requirement engineering lies in maintaining the completeness and

consistency of requirement products, it is necessary to tackle them properly. Last but not

the least, an approach to express the knowledge about human-machine interaction should

be investigated.

1.3 Contribution

To facilitate the realization of automated SOA-based SPL, this thesis presents a

dialogue-based interactive approach for guiding software product customization. An

abstract ontology-based requirement model, which represents the knowledge of the

product features as well as their business logic, is developed. Besides, a frame-based

dialogue system [7] is designed based on the knowledge model. It helps elicit users'

requirements and then outputs service-oriented system description for the implementation

of the candidate applications.

Though not mentioned in the thesis title, the proposed approach is designed

3

specifically for customizing SOA applications. In other words, it first guides users to

order the services they need, and then generate corresponding service descriptions for

automatic service discovery and composition.

1.4 Structure of the Thesis

The rest of the thesis is structured as follows. Chapter II presents the introduction

to SPL and SOA, while Chapter III outlines the work related to interactive requirement

engineering. The ontology model is proposed and explained in Chapter IV. Chapter V

reports the proposed dialogue system and the interactive requirement elicitation method,

followed by Chapter VI within which the implementation of the dialogue system and a

case study is presented. Chapter VII demonstrates a group of experimental comparisons

between the proposed machine-directed interactive requirement elicitation method and an

undirected method, and the results are also analyzed in this chapter. Finally, conclusion

and future work are discussed in Chapter VIII.

4

CHAPTER II

SOFTWARE PRODUCT LINE AND SERVICE-ORIENTED ARCHITECTURE

2.1 Software Product Line

The key idea of SPL engineering is gathering, analyzing and reusing the software

engineering artefacts of closely related software systems. These reusable artefacts

provide development options in each software engineering stage. Consequently, the

software development activities will mainly focus on system customization rather than

creation.

To develop an application with SPL framework, there are two processes: domain

engineering and application engineering [1]. During domain engineering process, the

commonalities and variabilities of the reusable artefacts are defined. Vertical tractability

links are established between artefacts of different software engineering phases. In the

application engineering stage, applications are developed. The variabilities that bind to

the candidate application are identified. Then based on these common and variable

artefacts, the development of the application is carried out.

In SPL, the products of the domain engineering process are supposed to be reused.

So the price of developing a new application is mainly charged at the application

engineering stage. By customizing rather than creating, the application engineering is

cost-effective compared to traditional software engineering approaches. Therefore, as

long as the domain engineering process is controllable, SPL can effectively reduce cost,

time and human effort in software engineering.

Nonetheless, Rabiser et~al. [6] point out that, compared to the effort spending on

developing and modeling the software product lines, little support is available for

enhancing their utilization in practice,. Without effective approaches to utilize the

product lines, particularly the automated approaches, SPL could not be widely accepted

in industry. In other words, they will be of more academic value than practical value. In

[6], Rabiser et~al. further define 6 requirements for facilitating the application of product

5

lines in practice:

 Automated and interactive variability resolution

 Adaptability and extensibility

 Application requirements management support

 Flexible and user-specific visualizations of variability

 End-user guidance

 Project management support

The idea of interactive requirement elicitation is inspired by these suggestions.

With an automated and interactive solution to requirement elicitation, the variability of

application requirements can be automatically managed and interactively elicited. The

by-product of a requirement knowledge base further enables applying the product lines

adaptively and extensively. Consequently, an approach to improve the practical value of

SPL is suggested.

2.2 Service-Oriented Architecture

Since SOA captures many best practices from previous software engineering

experiences, and makes business systems more flexible and reusable, it has gained an

increasing popularity in industry as well as academic communities in the past decade.

Technically speaking, SOA represents a model in which the software systems are

decomposed into loosely coupled units of functionalities (i.e. services), while each of

these units must be autonomous, reusable, discoverable, and is able to communicate with

other units via autonomous messages [2]. Thus the units could be distributed, and

collaborate through message exchange.

Typically, there are three roles involved in SOA engineering: provider, broker and

requestor (Fig. 2.1). Service provider develops services and publishes the services by

registering the service descriptions as well as corresponding access information in service

broker’s depository. Service requestor then tries to find the services by consulting the

6

service broker. Service broker matches requestor’s demands with the services registered

in the depository, and return the appropriate service access information to the requestor.

Later on, requestor visits and retrieves the provider’s services according to the access

information. Therefore, to access certain services, the requestor must first discover the

services from broker’s registry, and then bind to the provider so as to invoke and

compose, if necessary, the services.

Fig. 2.1: Model of SOA

Service discovery is the process of finding appropriate services from brokers’

registry. Traditionally, UDDI mechanism is applied in publishing, matching and

discovering services. However, it only defines a set of syntactic search criteria. Matching

on semantic level is not supported, which results in unwanted feedbacks. Inspired by the

development of Semantic Web, the idea of Semantic Web Service comes out. Semantic

Web Service approaches offer semantics to web services. Consequently, they are

self-describable and machine-processable, and the discovery of these services is more

promising. [8] presents an Semantic Web Service solution as well as a list of its

applications in addressing the problem of matchmaking-based automatic service

discovery.

Moreover, in this thesis, a method which is the inversion of service composition

is adopted for the domain engineering of SPL. In other words, the functionalities of SOA

7

systems are analyzed by decomposition. Then results of the decomposition are further

used to instantiate the proposed ontology-based requirement model.

Service composition is very significant in SOA engineering. The implementation

of a complex web service often involves the invocation of other services. However,

services are distributed. Their collaboration relies on exchanging autonomous messages.

Therefore, the syntax as well as semantics of the messages, particularly the order of their

exchanges, should be defined explicitly [9]. Message exchange in SOA is called service

composition. Service composition represents the process of combining certain services’

functionalities to implement a composite service’s functionalities [10]. It can be

performed by composing either primitive or composite services [10]. In this thesis,

composite services are decomposed into less complex services, in order to obtain the

knowledge related to systems’ functionalities and business logic.

In addition, nowadays, people are also working on automating the service

composition process. Semantic Web Service plus AI planning methodologies suggests

approaches to solve this problem. In spite of lacking a comprehensive solution,

successful improvement has been achieved [8].

Automatic service discovery and composition are critical to the realization of

automated SPL. While the interactive requirement elicitation method proposed in this

thesis is expected to automate the requirement engineering process, automated SOA

methods are the best solutions to the automation of system implementation so far.

8

CHAPTER III

INTERACTIVE REQUIREMENT ENGINEERING

3.1 Interactive Requirement Engineering

In conventional software engineering, computers are treated simply as impersonal

machines providing functions, objects or models, while their personality and

characterization are neglected. In [11], Knaus states: ''In the eyes of the software

developer, computer behaves more like a human with extreme skills and obedience. '' He

further asserts that an interactive software engineering paradigm, which redistributes

computers’ responsibilities, can overcome the long-term software development and

maintenance issues rooted in conventional programming paradigms. In addition, by

defining a metaphor for the computer, building a concept model as a programming

paradigm and designing an appropriate user interface, it is possible to find such an

interactive paradigm.

Though Knaus promises a bright future, little progress has been made. The task of

software engineering is very complicated. It is very challenging to redefine computers’

responsibilities. Machines cannot deal with the complexity of a specific software

component. Meanwhile, to build a concept model requires much effort from both

software engineering and human-computer interaction. Thus how to build the interactive

software engineering paradigm is still a question. Fortunately, some inspiring ideas came

out in recent studies. SOA encapsulates software functionalities into loosely coupled

services, which helps the machine software engineers get rid of the lower-level

complexity and simplify their jobs. On the other hand, with SPL paradigm, their

responsibilities are further specified as managing the variable software engineering

artefacts. Therefore, in interactive software engineering, machines can play the role in

directing users to select the reusable software assets and implementing the candidate

application by composing the ordered services.

9

Since a relatively concrete specification to the machines’ responsibilities in

interactive software engineering is now available, this thesis further proposes a

requirement elicitation approach for SOA-based SPL engineering as a programming

model for realizing the interactive requirement engineering. A frame-based dialogue

system is applied as the interaction interface. Work related to dialogue systems will be

presented in the next section.

3.2 Dialogue System

Dialogue systems are a kind of computer systems designed to communicate with

human beings, extracting and analyzing information from their dialogue-based

expressions, so as to accomplish certain tasks (e.g. exchanging information and providing

services) in relatively natural manners. Language is the most efficient way for human

beings to exchange information between each other. Most human communications in

history are based on dialogues. Thus dialogue system provides a more natural,

comfortable and convenient way for human-machine interaction.

Fig. 3.1: Structure of dialogue system

10

Typically, a dialogue system consists of six components (Fig. 3.1): Input, Fusion,

Dialogue Manager, Knowledge Base, Fission and Output [7].

 Input:

Handle different modes of inputs.

 Fusion:

Extract, recognize, interpret, and fuse information from different modes of

inputs.

 Dialogue Manager:

Control the flow of the dialogue by deciding how the system should respond

to the inputs [12].

 Knowledge Base:

Manage information like dialogue history, task knowledge, general dialogue

knowledge, domain specific knowledge and user information.

 Fission:

Transform the responses to different modes of outputs.

 Output:

Handle the outputs.

The core components of a dialogue system are dialogue manager and knowledge

base. Dialogue managers can be classified into four categories [7]:

 Finite-state and frame-based:

Finite state-based dialogue managers are the simplest dialogue managers. The

dialogue structure is represented in the form of state transition network, and

the dialogue control is system-driven and all the system’s utterances are

predetermined [7]. As an extension of finite state-based dialogue managers,

frame-based models simulate the approach of form filling, which allows

some degree of flexibility. In this thesis, a frame-based dialogue system is

developed for conducting requirement elicitation interactively.

11

 Information state and the probabilistic based:

For the information state-based approaches, a group of states are predefined,

and the state of the dialogue will be changed dynamically according to

certain interaction strategies. Some probabilistic techniques (e.g. partially

observable Markov decision process) are applied to manage the transition

strategies.

 Plan based:

Plan-based dialogue managers are based on the plan-based theories of

communicative action and dialogue [2]. They are more complex than the

previous dialogue managers.

 Collaborative agent based:

Collaborative agent-based approaches try to capture the motivation behind a

dialogue and the mechanisms of dialogue itself. As a result, managers based

on these approaches contribute to the most complicated dialogue systems,

which allow very high level of flexibility.

For the knowledge source in dialogue system, typically there are five different

models of knowledge [13]:

 Dialogue Model:

Dialogue Model holds the general information about the construction of a

dialogue, which is used to control the dialogue. Grammar-based modeling

and Plan-based modeling are two main approaches to model the knowledge

for Dialogue Model.

 Dialogue History:

Dialogue History records the history of the dialogue. It is used for dialogue

control, disambiguation of context dependent utterances, and context

sensitive interpretation [13].

12

 Domain Model:

Domain Model holds the domain knowledge that will be referred to in the

conversations. Knowledge in Domain Model is mainly used to guide the

semantic interpretation of user’s utterances, find the relevant items and

relations that are under discussing, supply default responses and son on [13].

Domain Model usually contains the structure of the domain and comprises a

subset of the general world knowledge. Its simplification is Conceptual

Model, which represents the conceptual relationships between the objects in

the domain [13]. Often, Conceptual Model alone is enough for the domain

knowledge of the dialogue system.

 Task Model:

Task Model, which often consists of a hierarchical representation structure,

describes how the system’s communicative and other tasks should be carried

out [13].

 User Model:

User Model represents the user’s goal and plans, capabilities, attitudes,

knowledge and belief [13].

In this thesis, the knowledge base of the proposed dialogue system contains

domain knowledge of requirement elicitation and the task knowledge for guiding users to

customize a specific type of software applications.

In addition to the structure, by considering the source of information which

determines the interaction, tasks of dialogue systems can be classified into four

categories [14]:

 Slot-filling task:

The user has his goal and has the information about accomplishing the task.

13

 Database search task:

The user has his goal but needs to retrieve information for completing the

task.

 Explanation task:

The user doesn’t have or has little knowledge about the task.

 More complex tasks:

The task is a combination of the other three tasks.

In the proposed method, a slot-based dialogue system is adopted, and requirement

elicitation is modeled as a group of slot-filling tasks. These tasks will be performed

according to the knowledge related to requirement engineering, which is built in

knowledge base of the dialogue system. Work related to knowledge-based requirement

engineering will be introduced in the next section.

3.3 Knowledge-based Requirement Engineering

Requirement engineering is recognized as the most critical stage of the entire

software development process [15]. Typically, over 40% of errors in a software project

are from requirement engineering, while they need 10 more times of costs to repair than

other errors [16].

Conventional process-based or scenario-based requirement engineering methods

predefine a group of processes and their corresponding guidelines. Accordingly, the

requirement engineering activities and deliverables are carried out following the

guidelines [17]. However, it is very often that when the processes are ongoing, some

important information is not yet available. So, engineers have to repeat the processes,

which results in project delay and additional cost [18].

Unlike traditional process-driven requirement engineering, knowledge-driven

requirement engineering, as a novel requirement engineering paradigm, is conducted

under the guidance of domain knowledge. Hence, information hidden in the domain can

14

be retrieved without much help from domain experts. The information is further used to

guide the traditional requirement engineering process. As a result, the validity,

completeness as well as consistency of requirement engineering product are maintained.

Moreover, changes to the software development project will be detected and predicted in

an early stage, and fewer waste efforts will be made. Finally, the outcome of the project

is expected to be more mature and complete, while rework can be dramatically reduced

[18].

Furthermore, among the group of knowledge-driven requirement engineering

methods, ontology-based requirement engineering is very popular. It [19]:

 Provides formal representation for both requirement documents and

knowledge.

 Describes the problem domain with varying degrees of formalization and

expressiveness.

 Is well suited as an evolutionary approach.

 Is used to support requirements management and improve the traceability of

requirement artefacts.

Thus it outperforms other traditional knowledge-based approaches [19]. By now,

a number of ontology-based requirement engineering approaches have been proposed.

Detailed introduction will be presented in the next section.

3.4 Ontology

3.4.1 Overview

In theory, an ontology is a formal, explicit specification of a shared

conceptualization [20]. In other words, ontology is used to represent the common

knowledge within a domain.

15

The reasons to develop an ontology can be roughly classified into five categories

[21]:

 To share common understanding of the structure of information among

people or software agents

 To enable reuse of domain knowledge

 To make domain assumptions explicit

 To separate domain knowledge from the operational knowledge

 To analyze domain knowledge

They are all closely related to domain knowledge representation. Generally, an

ontology provides a shared vocabulary, which can be used to model a domain or a task.

Here modeling means constructing the concepts, objects as well as their properties and

relations that exist in the domain or in the solution to the task [22].

Conventionally, knowledge engineering methods, like propositional logic,

predicate logic and other rule-based methods, mainly investigate topics like logic,

knowledge representation, search, and so on [23]. They focus on how to solve the

problem rather than the knowledge itself. So the resulting knowledge is often implicit

and difficult to be maintained, shared or reused. On the contrary, the main concern of

ontology is the contents of knowledge and approaches to accumulate it. It builds the

foundation for common knowledge.

Moreover, roughly speaking, ontology consists of task ontology, which

characterizes the computational architecture of a knowledge-based system for certain

tasks, and domain ontology, which characterizes the knowledge of a specific task domain

[23].

To develop an ontology, typically, includes the following steps [21]:

1. Define classes (concepts in the domain) in the ontology

2. Arrange the classes in a taxonomic (subclass-superclass) hierarchy

16

3. Define slots (properties of classes and instances) and describing allowed

values for these slots

4. Fill in instances

5. Fill in the values for slots of the instances

If all the classes, slots, instances and their relationships are properly defined, the

ontology for knowledge of a task or a domain is created.

There are many important benefits in applying ontology. First of all, the

knowledge is formal, explicit and shared, which means the knowledge is accessible to

everyone. With ontology, the common standards of a domain can be established by the

experts. People with different background will have opportunities to acquire the

knowledge without much professional training. Meanwhile, the taxonomy-based

representation is very concise and straight-forward, which decreases ambiguities and

errors. Finally, ontologies are machine-oriented. Some of the ontology languages are

XML-based, which can be easily shared among different machines. So, currently,

ontology is one of the most popular and powerful knowledge engineering methods

widely applied in different applications.

In this thesis, Web Ontology Language (OWL) [24], one of the most successful

ontology languages recommended by W3C, is adopted. OWL uses XML syntax and is

partially mapped to Description Logic, which is a subset of Predicate Logic. Thus OWL

provides users with various inference capabilities. Actually, the realization of some OWL

reasoners is based on tableau algorithms, which is an algorithm for Description Logic

reasoning. OWL consists of three sublanguages: OWL Lite, OWL DL and OWL Full.

OWL Full is the most expressive among the three. But there is not any reasoners

supporting its inference. In contrary, while promising the decidability, the expressiveness

of OWL DL and OWL Lite is sacrificed [25]. Thus Semantic Web Rule Language

(SWRL) [26], which supplements OWL DL and OWL Lite with Horn-like rules, was

proposed. The DL-safe version of SWRL is also decidable [25].

17

Moreover, as explained above, ontology has mechanism to describe implicit

knowledge. In fact, methods for retrieving the implicit knowledge are based on ontology

reasoning. Some of these approaches are derived from Description Logic reasoning. For

example, OWL DL is based on SHIQ Description Logic. Thus algorithms for Description

Logic reasoning, such as tableau algorithms, can be used to infer with OWL DL ontology.

Furthermore, many stable reasoners are available for OWL DL reasoning. For example,

Protégé, an OWL ontology development platform, provides interfaces for plugging in

reasoners like Pellet, FaCT++, Jena and RACER. In this thesis, Pellet is used for

ontology reasoning. It supports reasoning with both OWL DL and the DL-safe version of

SWRL.

3.4.2 Ontology for Requirement Engineering

As discussed in section 3.3, ontology-base requirement elicitation is a popular

topic nowadays. However, there is a long history of applying ontology for requirement

engineering. The very first research effort dedicated to utilizing ontologies in the

requirement engineering can be dated back to the early 1980s [25]. Since then, a number

of ontology-based requirement engineering approaches have been studied, developed and

proposed. Among the most notable publications, [27] introduces an ontology-based

requirement model that facilitates detecting incompleteness and inconsistency of

requirement artefacts, measuring the quality of requirement engineering, and predicting

potential changes in later software engineering phases. A very complete group of

requirement engineering related ontological relationships is defined in the model. In [28],

a minimum model for describing requirement knowledge is presented. Goal, quality

constraint and softgoal are proposed as the fundamental ontology concepts in

requirement engineering. In addition, a framework for ontology-based requirements

elicitation is introduced in [29]. Types of functional requirements as well as their

relationships which facilitate requirement elicitation are outlined in the ontology model.

18

Meanwhile, [15] presents a well-structured ontology-based requirement model called

SoftWiki, which is capable of capturing and managing the requirement engineering

artefacts for all stages of system development.

Although all the approaches introduced above make great contribution to

ontology-based requirement engineering, they are not suitable for representing

requirement knowledge for automated SPL. [27] places its emphasis on artefacts

verification, while the model proposed in [28] is more theoretical than practical. Besides,

the objective of the method from [29] is to ease the communication between requirement

engineers and clients in requirement elicitation. Similarly, SoftWiki [15] is developed for

supporting the collaboration of all stakeholders in all software engineering stages.

Actually, contributions from most ontology-based requirement engineering

studies fall into the following three categories:

 Improving the quality of the requirement engineering artefacts (e.g. [27], [29],

[30]).

 Defining a shared understanding among engineers and clients (e.g. [31], [32],

[33]).

 Developing new knowledge-based requirement engineering methods (e.g.

[34], [35], [36]).

Issues critical to the realization of SOA-based automated SPL, like providing

automatic guidance for product customization and generating service-oriented system

specification, are not well covered by these approaches.

3.4.3 Ontology for SOA

As mentioned in Chapter II, the idea of Semantic Web Service is proposed for

automating SOA system implementation activities. Different from Feature Driven

Development [37] and Model-Driven Achitecture [38], where system functionalities are

mapped to system features and platform-independent models, SOA encapsulates

19

application functionalities into loosely coupled services. Thus, instead of designing and

realizing the features or models, software applications can be implemented by

discovering, composing and invoking the services in SOA. Moreover, Semantic Web

Service methods further specify the web service descriptions on the semantic level, thus

suggest solutions for automatic service discovery and composition [4].

Semantic Web Service approaches are also based on ontology. Currently, there are

mainly three ontologies developed for Semantic Web Service: Web Service Modeling

Ontology (WSMO) [39], Semantic Markup for Web Services (OWL-S) [40] and SOA

Ontology [20].

 WSMO is a conceptual model related to Semantic Web Service. It supports

the Semantic Web Service deployment and interoperation.

 OWL-S is also an ontology for describing Semantic Web Service. It enables

automatically discover, invoke, compose, and monitor web services under

specified constraints.

 ''SOA Ontology defines the concepts, terminology and semantics of SOA in

both business and technical terms'' [41]. It creates a foundation for facilitate

SOA understanding, SOA related communication, and SOA system modeling.

Meanwhile, it potentially, contributes to model-driven SOA implementation

[41].

The first two ontologies are relatively low-level. They are techniques for

describing concrete Semantic Web Services.

In this thesis, OWL-S is applied. OWL-S is based on the ontology language OWL.

It is an ontology of services that makes automatic service discovery and composition

possible [40]. The instances of its class ServiceProfile describe the characteristics of the

services which are used to match clients’ requests, while information for service

composition is contained in instances of the class ServiceModel. When discovering the

services, the requestors’ ServiceProfiles will be matched automatically with service

20

providers’ ServiceProfiles through semantic capability matching [42]. If the matching

succeeds, the desired services are found. Then the ServiceModels, associated with the

discovered services, will carry information about the process of composing and invoking

the services. So by reasoning the knowledge contained in ServiceModels, automatic

service composition will be performed and the desired functionalities can be obtained [8].

On the other hand, although OWL-S provides descriptions for web service functionalities,

it has few mechanisms for non-functional service description [43]. Fortunately, [43]

proposes a quality extension for OWL-S to offset this drawback. It inherits from the class

ServiceParameter defined in OWL-S, which is designed for extending OWL-S with

more specific service descriptions.

21

CHAPTER IV

PROPOSED ONTOLOGY-BASED REQUIREMENT MODEL

4.1 Introduction

This chapter reports the ontology-based requirement model. Different from the

ontology-based requirement engineering methods discussed in Chapter III, the model

developed in this research integrates the requirement engineering knowledge with

service-oriented knowledge. While the key concepts and relationships proposed in [27]

and [28] are kept for maintaining the completeness and consistency of the product

requirements, a service-oriented decomposition approach is applied for instantiating the

modeling, as well as organizing the commonalities and variabilities in SPL. Furthermore,

information for directing requirement elicitation, such as ranks of the requirements, is

also expressed in the ontology model. Therefore, knowledge contained in the model is

expected to guide the automatic product customization and facilitate generating

service-oriented system specification for system implementation.

In this chapter, construction of the ontology-based requirement model (Fig. 4.1) is

presented according to the ontology engineering steps proposed in [21]. First, concepts of

the model are defined. Second, relationships describing the taxonomic hierarchy of the

ontology are outlined. Third, as supplement to OWL ontology, this chapter proposes a

group of SWRL rules for the model. Finally, instantiation of the ontology is discussed.

4.2 Concepts

The concepts of the model are illustrated in Fig. 4.1 with class diagram notations.

In the domain of requirement elicitation, according to their different roles, Requirements

can mainly be classified into three categories: Function, Quality and Softgoal. Meanwhile,

Rank is used to represent the importance of the requirements with respect to the entire

product software. Besides, the proposed ontology model also contains concepts to

22

describe detailed information about a requirement, which offers helps to clients’

evaluation.

Fig. 4.1: The proposed ontology-based requirement model

 Requirement: An instance of Requirement is a system feature can be ordered

by users. There are three types of Requirement: Function, Quality and

Softgoal.

 Function: An instance of Function represents a functionality that users can

order. It may be a primitive function offered by the product software or a

composition of several primitive functions. From the service-oriented point

of view, a function is actually a service. In this research, functions are

organized in forest-like structure, where composite functions decompose into

less complex composite functions or primitive functions.

 Quality: An instance of Quality is a non-functional constraint imposed on a

function. Mainly, they are used to further specify a functionality. Therefore, a

quality instance is always related to a particular function. A quality cannot be

chosen if the corresponding function is dropped. Besides, a quality can also

be further specified with sub-qualities in a decomposition tree.

23

 Softgoal: Instances of Softgoal are also non-functional constraints. However,

instead of imposing on a particular function, they describe the global

environment within which the product software system works. They are often

very abstract, and may be related to a subset of the candidate functions and

qualities, but all selected requirements must submit to them. Similar to

instances of Quality, softgoals can also decompose into sub-softgoals.

 Rank: Instances of Rank represent the importance of the requirements with

respect to the potential system. On the other hand, they also specify the

evaluation order of the requirements in the requirement elicitation process.

 OtherInfo: Concepts generalized from OtherInfo may be general requirement

engineering related concepts (e.g. stakeholders) or specific concepts within a

domain. Instances of them are used to describe detailed information about the

requirements. Users can request such relevant information when evaluating

the requirements.

4.3 Relationships

Fig. 4.2: Notation for the relationships

The relationships between the concepts are depicted in Fig. 4.1, and their

notations are outlined in Fig. 4.2. In the proposed method, these relationships not only

enable checking the consistency and completeness of the customized requirements, but

24

also facilitate machines to direct the requirement elicitation.

I. Generalize:

An instance of Function, Quality or Softgoal is also an instance of

Requirement. Generalize represents the IS-A relationship.

II. Decompose:

Requirement x decomposes into less complex requirement y of the same

type. y describes part of x’s characteristics or is a more detailed alternate

to x. x is called the parent, while y is called the child of x.

A requirement can decompose into zero children; otherwise it must

decompose into at least two children. A child has at most one parent.

Logically, a requirement cannot decompose into more complex

requirements (e.g. its parent or the parent of its parent). Thus the

decompose relationship forms decomposition trees. In practice, it is

possible that a requirement participates in the decompositions of several

more complex requirements. However, if a requirement is allowed to have

two parents, when it is picked up during requirement elicitation, the

composition that the requirement is supposed to join in the product

software will be unknown. Hence, in this case, two copies of the

requirement are required for participating in the two decompositions.

When functions decompose into sub-functions, the parent functions

represent functionalities that are the results of their children’s composition

(i.e. service composition). In other words, a parent implies a composition

strategy rather than any concrete functionalities. Only the leaves in a

function decomposition tree are primitive functionalities. Besides, it is not

necessary to select a composition strategy if one only needs some

primitive functionalities.

In a quality or softgoal decomposition tree, the children denote

25

refinements to the parent. So logically, it actually doesn’t make any

difference to have a parent quality directly replaced by its children in an

instantiated ontology model. The decomposition relationship only eases

the requirement elicitation interaction or the ontology instantiation work.

III. Rely:

The realization of requirement x relies on the implementation of

requirement y. If x is ordered by the clients, y must also be selected;

otherwise the resulting system will not function properly.

So Rely describes the completeness of the requirement elicitation product.

In addition, when a requirement relies on two other requirements, this

implies it needs them both. In practice, it is possible that the requirement

only requires one of them. In this case, two copies of the same

requirement are created and a Contradict relationship is established

between them; then each of the two copies relies on one of the two

required requirements.

A parent function relying on its children or children of its children implies

the composition strategy requires the involvement of the corresponding

children. If a child function relies on its parent or parent of its parent, this

indicates the child function is designed deliberately for the composition.

Normally, a function relying on another function means the input of one

function is the output of the other function.

When a parent quality or softgoal relies on its children, it means the

children are essential to the parent constraint. In this research, children

qualities and softgoals are supposed to rely on their parents. This promises

that during the requirement elicitation process, children qualities and

softgoals will not be explored if their parents are abandoned.

Qualities and softgoals may rely on functions. This suggests realization of

26

the constraints requires the implementation of some functions. Functions

may also need some quality or softgoal constraints to function properly.

Moreover, if a function relies on a quality, it also relies on the function

associated with this quality constraint.

IV. Contradict:

Requirement x contradicts requirement y. Requirement x and requirement

y are not supposed to simultaneously realized in the product software.

Contradict describes the consistency of the elicited requirements. This

relationship is symmetric and non-reflective. A requirement cannot

contradict its children, parent or the requirements it relies on. A function

should not contradict the quality constraints associated with it.

Normally, if two requirements play the same role in the candidate

application, which means they represent the same functionality or

constraint, there is a Contradict relationship between them. In addition, if

two requirements cannot be met simultaneously in the product software,

they contradict each other.

V. Associate:

Function x is associated with quality constraint y. y is a quality constraint

that can be imposed on function x.

As a quality cannot be realized on the customized software if its

associated function is not implemented. Associate relationship also

implies the quality constraint relies on its corresponding function.

Moreover, with the same problem and solution as Decompose relationship,

two functions are not supposed to be associated with the same quality.

If a composite function is associated with a quality, this suggests the

quality constraint is imposed on the composition rather than any primitive

functionalities. Constraints for primitive functionalities should be directly

27

related to the concrete functions. Moreover, as children qualities are

refinements to their parents, if a function is associated with a parent

quality, it is also associated with the corresponding children qualities.

Therefore, if an Associate relationship is explicitly defined between a

function and a quality, the function is associated with the entire quality

decomposition sub-tree which is rooted on the quality. Meanwhile, the

parent of the root quality, if there is one, is not supposed to have Associate

relationship with any functions.

VI. hasRank:

Requirement x has a rank of r. A requirement can have exactly one rank.

During the requirement elicitation process, requirements with higher ranks

will be offered to users for evaluation before those with lower ranks.

Hence, if a requirement has strong influence on the candidate application

or other requirements, it should be assigned with a high rank. Besides, the

parent requirements should always have higher ranks than their children.

If several requirements are closely related and supposed to be evaluated

one after another, they should be of the same rank.

Furthermore, requirements of the highest rank are treated as essential

requirements. They represent the common features of the SPL artefacts.

As a result, they will be picked mandatorily before the evaluation of any

other non-essential requirements. In addition, no requirement should

contradict essential requirements.

VII. Invalid:

There is an invalid relationship between requirement x and requirement y.

Invalid relationships are used to denote the invalidity in the instantiated

ontology model. It is applied with rules, and can be generalized into types

of more specified Invalid relationships. Types of invalidity will be

28

presented in the next section.

4.4 Rules

Fig. 4.3: Rules for the proposed ontology model

Fig. 4.3 illustrates the group of SWRL rules applied in the research. They adopt

horn-like presentation. By reasoning with these rules, implicit knowledge for requirement

elicitation and ontology instantiation can be retrieved. Followings are the explanations to

the rules.

i. Contradict relationship is non-reflective.

ii. Decompose relationship is non-reflective.

iii. Rely relationship is transitive.

iv. Contradict relationship is symmetric.

v. Contradict relationship and Rely relationship are disjointed.

vi. Contradict relationship and Decompose relationship are disjointed.

vii. Contradict relationship and Associate relationship are disjointed.

29

viii. Decompose relationship is asymmetric.

ix. Decompose relationship is transitive.

x. Decompose relationship is inverse-functional.

xi. Associate relationship is inverse-functional.

xii. Children qualities and softgoals rely on their parents

xiii. A quality relies on its corresponding function.

xiv. If requirement x relies on requirement y, x contradicts the requirements

that y contradicts.

xv. If function z is associated with quality x, z is associated with x’s children.

xvi. Requirements cannot contradict top rank requirements.

In fact, rules i-xi can be expressed with OWL elements. However, some of them

cannot be reasoned with available reasonors. Even if reasoners can deal with them, the

invalid relationships will not be explicitly pointed out by the reasoners. Thus rules are

applied here.

Rules iii, iv, xiii and xiv reflect the nature of the relevant relationships, while

rules xii is used to facilitate the requirement elicitation process.

Besides, rules i, ii, v, vi, vii, viii, ix, x, xi, xv and xvi are used to verify the

validity of an instantiated requirement model. During requirement elicitation, the

explicitly defined Decompose and Associate relationships determine the order of

requirement evaluation. Therefore, rule xv is not activated in requirement elicitation

process. Moreover, rule ix contradicts rule x, and it also violates the decomposition tree

structure. But rule ix facilitates discovering the invalidity that parents cannot contradict

the children of their children. Hence, it is applied but not activated together with rule x or

in requirement elicitation process.

4.5 Ontology Instantiation

Instantiating the ontology model is actually the domain engineering process in

30

SPL engineering.

Before instantiating the ontology model for a specific type of software systems,

the requirement engineers must analyze this type of service-oriented applications.

Decompose these systems into primitive services and find out the commonalities and

variabilities. Then they can instantiate the model according to the following procedure

presented in Fig. 4.4.

Fig. 4.4: Procedure of instantiating the ontology model

1. Identify the main functions which are roots of the decomposition trees.

2. For each of the roots, if it represents certain composition strategies, identify

the children that contribute to the composition. Then establish the Decompose

relationship between the parent and children. If the children are also

decomposable, repeat this decomposition process, until all primitive functions

are discovered.

3. Find the corresponding quality constraints that can be imposed on the

functions. Organize the qualities with decomposition trees. As all the qualities

constraints contained in a decomposition sub-tree are related with the same

function, establish an Associate relationship between the corresponding

31

function and the root of the sub-tree. Associate relationships between children

and the corresponding function are not supposed to be explicated defined. In

requirement elicitation process, when a function is picked by users, its

associated qualities will be pre-evaluated immediately. However, the children

qualities are expected to be explored in a later stage.

4. Identify the softgoals, and decompose them if necessary.

5. Establish the Rely relationship for the requirements.

6. Establish the Contradict relationships.

7. Identify the essential requirements, and assign ranks to the requirements with

respect to their importance and expected positions in the elicitation process.

8. Specify the detailed descriptions for each requirement. Bind each requirement

with the corresponding service description which will be used in generating

the service-oriented output. Details will be discussed in Chapter V.

9. Verify the validity of the instantiated ontology model. Make modifications if

necessary. Moreover, the generally acknowledged facts, like requirement

which could not decompose into exactly one child, should also be checked

manually.

Then a valid instance of the ontology model is built. Typically, for a type of

medium-sized software systems like online book shopping service, there will be dozens

of requirements and more than a hundred relationships created in the instantiated

ontology model.

32

CHAPTER V

PROPOSED REQUIREMENT ELICITATION METHOD

5.1 Introduction

A frame-based dialogue system is developed in this thesis, which takes the

instantiated ontology model as knowledge base. It is applied to elicit users’ demands

through human-machine interaction. Though to maintain the completeness and

consistency of the customized requirements is very complicated and requires ontology

reasoning, interactions for requirement elicitation are actually a group of slot-filling tasks.

Questions such as whether users need a specific requirement will be proposed by the

machine, and users will respond with their decisions on the very requirement. Therefore,

users know what they are going to do and how it is going to be done, which means the

requirement elicitation process can be modeled as a set of slot-filling subtasks, while the

utterances, slots as well as value options for each slot will be retrieved from the

knowledge base, hence a framed-based dialogue system is capable of handling the

interactions for requirement elicitation, in spite of its limited communication ability.

In this chapter, the structure of the dialogue system, the requirement elicitation

process and the output of the elicitation will be discussed.

5.2 Structure of the Proposed Dialogue System

The frame-based dialogue system designed in this research consists of four

components: interface, I/O controller, dialogue manager and knowledge base (Fig. 5.1).

The dialogue interface is text-based. It displays machine generated utterances and

provides one slot for users to fill in. Typically, the utterances will be questions like

''Would you like to select the requirement …?''. Users are expected to answer ''Yes'' or

''No''. Then the users’ response will be passed onto the I/O controller. It will try to match

the input with a set of predetermined information. If the matching fails, an utterance that

33

asks users to correct their response will be generated by the I/O controller, sent to the

interface and get displayed as the output of current interaction. Otherwise, the input will

be converted into format processable to machines and passed onto the dialogue manager.

The dialogue manager then knows users’ decision on the requirement currently being

evaluated. It will consult the ontology knowledge base with the decision, and customize

the requirements based on the related requirement knowledge as well as the input. After

that, an output will be generated by the dialogue manager according to the result of the

customization and sent to the I/O controller. The I/O controller will convert the output

into natural language and have it displayed by the interface, which will initiate the next

round of interaction.

Fig. 5.1: Structure of the proposed dialogue system

5.3 Process of Requirement Elicitation

Before the commencement of requirement elicitation, the implicit knowledge (e.g.

indirect relationships) contained in the instantiated ontology model will be extracted by

reasoning.

The requirement elicitation process (Fig. 5.2) is divided into two stages. First,

requirement elicitation will be conducted under the guidance of machine. Then users will

have chances to change their decisions made in the first stage and further customize the

product software.

34

Fig. 5.2: Process of interactive requirement elicitation

5.3.1 Machine-directed Requirement Elicitation

During the first stage, each requirement will be offered to users for evaluation in

turns. At the beginning, all essential requirements will be picked automatically without

being evaluated. Then the functions will be evaluated, and the evaluation of qualities will

follow. Finally, the softgoals will be customized. Among the requirements of the same

category, one with higher rank will be evaluated before those with lower ranks.

Fig. 5.3 presents the pseudo code for evaluating the requirements. When

evaluating a requirement, there could be four cases.

1. If a requirement R is essential to the system, actions for selecting the

requirement will be performed.

2. If the requirement R is non-essential and pre-selected, actions for selecting a

requirement will be performed. These actions include call selectRequirement

to have R selected; call preSelectRequirement to have the requirements that R

relies on pre-selected; call preDropRequirement to have the requirements that

R contradicts pre-dropped; call preEvaluateRequirement to have the

Identify the implicit knowledge with reasoning

Perform requirement elicitation under machine's guidance

Customize the requirements freely by users

35

requirements that R decomposes into pre-evaluated; and if R is a function, call

preEvaluateRequirement to have the qualities that R is associated with

pre-evaluated.

Fig. 5.3: Pseudo code for requirement evaluation process

3. If the requirement R is non-essential and pre-dropped, action for dropping a

requirement will be performed. These actions include call dropRequirement to

have R dropped and call preDropRequirement to have the requirements that

rely on R pre-dropped.

4. If the requirement R is non-essential and has not been pre-selected or

pre-dropped, evaluateRequirement will be called to have R evaluated by users.

Then if users choose to select R, actions for selecting a requirement will be

36

performed. Otherwise, actions for dropping a requirement will be performed.

Followings are the explanations to the subroutines used in the pseudo code.

 selectRequirement will put the requirement to a set to have it labelled as

''selected'' if it is unlabelled.

 droptRequirement will put the requirement to a set to have it labelled as

''dropped'' if it is unlabelled.

 evaluationRequirement will present the requirement to users through

dialogue interface. Users can choose to select or drop the requirement, or

request detailed description to the requirement before making the decision.

 preSelectRequirement will put the requirement to a set to have it labelled as

''pre-selected'' if it is unlabelled.

 preDropRequirement will put the requirement to a set to have it labelled as

''pre-dropped'' if it is unlabelled.

 preEvaluateRequirement will first call evaluateRequirement to have the

requirement evaluated if it haven’t been evaluated yet. Then based on users’

choice, preSelectRequirement or preDropRequirement will be called.

Moreover, if the requirement is to be pre-selected, pre-select the requirements

it relies on, and pre-drop the requirements contradicting it. Otherwise,

pre-drop the requirements relying on it.

During the requirement elicitation process, all requirements will be expanded at

most once (in pre-evaluation or in formal evaluation). Here, expanding a requirement

means retrieving the detailed information of the requirement. Besides, each Decompose

and Associate relationship will be visited at most once by the parents. Each Rely and

Contradict relationship will be visited at most twice by the two involved requirements.

Therefore, let V be the number of requirement instances in the ontology and E be the

number of the four relationships. Then the complexity of the algorithm is O(V+E).

37

5.3.2 User Requirement Customization

During the second stage, users can order the machine to select or drop an arbitrary

requirement. In other words, they can change their decisions made in the first stage. If a

selected requirement is to be dropped, the selected requirements that rely on it will also

be dropped. If a dropped requirement is to be selected, the selected requirements that

contradict it will be dropped and the dropped requirements that it relies on will be

selected. Therefore, the completeness and consistency of the customization are

maintained all over the two stages.

5.4 Output of Requirement Elicitation

5.4.1 Output Overview

To build software with SOA methods, the services must first be discovered. Thus

the output of the requirement elicitation process is a set of service descriptions which can

be used to discover the services satisfying the selected requirements.

Fig. 5.4: Selected classes and properties in OWL-S functionality description

In this research, OWL-S is used to describe the services. OWL-S makes use of an

instance of ServiceProfile to represent the information needed to discover a service.

ServiceProfile has four functionality related properties: hasInput, hasOutput,

38

hasPrecondition and hasResult. They associate an instance of ServiceProfile with

respective instances of Input, Output, Precondition and Result. And an instance of Input,

Output, Precondition and Result would respectively represent: the information the

service requires to work, the message the service returns, the condition within which the

service executes properly and the effects as well as outputs of the service execution.

Quality constraints to services are not explicitly defined in OWL-S. The

extension proposed in [43] is used to describe the qualities and softgoals. In this

extension, Quality_Property which is generalized from OWL-S class ServiceParameter

is used to represent a constraint. For those measurable qualities, instances of Attribute,

inherited from Quality_Property, can be used to express them as well as their metrics.

For those abstract constraints (e.g. softgoals), Quality_Model, which connects

Quality_Property via property defined_by, can be used to specify their standards.

Instances of ServiceProfile are associated with instances of Quality_Property through

property serviceParamter.

Fig. 5.5: OWL-S quality extension proposed in [43]

So for each requirement, it is related with a piece of service discovery

39

information: either functionalities represented with Input, Output, Precondition and

Result, or quality constraints represented by Quality_Property. Converting requirements

into service descriptions is actually to combine the information that belongs to the

selected requirements. As requirements are organized in decomposition trees, the selected

requirements also form a group of selected sub-trees. The integration process can be

carried out in a way of merging nodes in the selected sub-trees.

5.4.2 Output Generation

The output generation process (Fig. 5.6) is divided into four phases.

Fig. 5.6: Procedure of generating service description

1. Retrieve the selected primitive functions. Normally, primitive functions have

information about input and output of the service. If there is a Rely

Retrieve the selected primitive functions

Attach the quality constraints to the corresponding function roots

Attach the softgoals to the selected function roots

Merge primitive functions to their parents

Merge primitive sibling functions

If there are mergeable functions
Yes

No

40

relationship between two selected sibling primitive functions, it implies that

some inputs of one primitive function are from the outputs of the other

function. Then those relevant inputs and outputs are not necessarily to be

expressed in the service description. So merge the two siblings with algorithm

outlined in Fig. 5.7.

Fig. 5.7: Pseudo code for merging siblings

41

The algorithm first creates a new function. Then attach inputs, outputs,

preconditions and results of the two siblings to the new function, and

removing the unnecessary inputs and outputs. Establish the same Decompose

and Rely relationships that the two siblings participate in for the new function,

while the relationships between the two siblings should be eliminated. Then

replace the two siblings with the new function in the corresponding selected

sub-tree.

Repeat the sibling merging process until no more primitive siblings can be

merged any more.

2. Merge the primitive children functions into their parents in the selected

function sub-trees. Composite functions usually don’t contain information

about input or output. Since they represent composition strategies, they are

associated with preconditions and results. The children should be merged to

their parents so as to make descriptions for the compositions complete. The

algorithm for merging children into parent is presented in Fig. 5.8.

The algorithm first attaches the child’s inputs, outputs, preconditions and

results to the parent. Then establish the same Rely relationships that the child

participates in for the parent, and remove the child from selected requirement

set.

It is possible that a parent function is selected but none of its primitive

children is selected. If this happens and no other requirements rely on the

parent function, it is supposed that users don’t really need this function.

Hence, it will be removed as if it has never been selected. If some selected

requirements rely on it, it cannot be removed directly. In this case, there will

be some default primitive functional descriptions predefined for the composite

function. With these descriptions, the composite function can be treated as a

primitive function.

42

After primitive children are merged into their parents, the merged parent

forms new “primitive” functions. It is also possible that the new primitive

functions rely on some of their siblings. In this case, run the merging sibling

algorithm for them. Repeat merging the new primitive children into parents

until only the roots of the selected sub-trees are left.

Fig. 5.8: Pseudo code for merging child into parent

3. Attach the selected leaf qualities to the corresponding function roots. Parent

qualities don’t represent any concrete constraints, so they don’t carry any

service related information. For each leaf quality, first find the selected

function that is associated with it. Then further trace the root of selected

sub-tree which contains the function. Attach the service information carried

by the leaf quality to the root’s service description. If a parent quality is

selected but none of its children is selected, the same solution for function

will be applied to handle it.

4. Attach the selected leaf softgoals to the function roots. Parent softgoals also

don’t carry service related information. Attach the leaf softgoals’ information

to all the selected function roots. If a parent softgoal is selected but none of its

children is selected, the same solution for function and quality will be applied.

43

Finally, the integrated service descriptions (i.e. the OWL-S files), carried by the

roots of the selected function sub-trees, form the output of the requirement elicitation.

When the service for a root function is discovered, descriptions to the primitive services,

on which the root is built, are also carried by this service’s specification. Therefore, when

generating the output, service information for the primitive functions is merged into the

root functions’ descriptions, and there is no need to describe the primitive functions

separately. On the other hand, merging service descriptions into root functions is optional.

Users may choose to have the quality and softgoal constraints attached on the primitive

functions directly, and then discover and evaluate the selected primitive functions

separately. As a result, instead of applying the service compositions offered by the

service providers, they can define the service composition strategies on their own.

5.5 Considerations for System Implementation

Implementation of service-oriented systems involves two stages: service

discovery and service composition. Solutions to automatic service discovery and

composition with OWL-S are discussed in [8]. A brief overview is presented in this

section.

Different from UDDI, which supports keyword based service discovery, OWL-S

can describe the semantics of the services. With semantic capability matching, limitations

of syntactic service matching can be overcome, and service discovery will be more

intelligent. Basically, there are two types of service capability presentation: one is to use

an extensive class hierarchy to specify the detailed functionalities; the other is to define

the state transformation resulted from the execution of the service. OWL-S supports both

presentations [42], which means capability matchmaking with OWL-S is more promising.

Besides, plenty of matching as well as other service discovery algorithms have been

proposed in literature for automating OWL-S based service discovery (refer to [8] for the

list of algorithms). Therefore, with the OWL-S based requirement elicitation outputs,

44

appropriate services can be found automatically.

When OWL-S based services are discovered, their compositions should be

performed in order to provide the requested functionalities. In OWL-S, the composition

is described with instances of ServiceModel which will be retrieved when the services are

discovered. Each ServiceModel actually represents process models of composing and

executing the corresponding service. The process models can be used to construct generic

procedures and plans for implementing the functionalities. Several AI planning

techniques have been proposed for automatic OWL-S based service composition [8].

Although most of the approaches are not mature enough and further work for realizing

automatic OWL-S service composition is still needed, automated composition for

OWL-S based information-gathering services can already be performed [42].

By now, the complete process from requirement elicitation to system realization

has been presented. With an SPL approach, the service-oriented software is ordered and

expected to be implemented automatically. Furthermore, by directly interacting with the

text-based dialogue system developed in this thesis, users can properly customize the

expected software product without producing any errors.

45

CHAPTER VI

IMPLEMENTATION AND CASE STUDY

5.6 Implementation

The dialogue system was developed in Java 6.0 on x86 platform with Windows

operating system. Eclipse IDE (3.6) was used to facilitate coding and debugging.

Fig. 6.1 depicts the interface of the dialogue system. It is divided into three parts.

The utterances generated by the dialogue manager are displayed in the upper left textbox.

Users can type their response in the lower left textbox. Meanwhile, the three lists on the

right side contain the selected, dropped and to-be-evaluated requirements respectively.

The ontology is built with Protégé ontology editor (4.2), and Pellet (2.2.2) is

applied as the ontology reasoner. Pellet supports reasoning with both OWL DL and

DL-safe SWRL. The version of OWL language adopted in the thesis is 1.1.

Fig. 6.1: Interface of the proposed dialogue system

The concepts, object relationships, data relationships, rules and instances of the

46

requirement model created with Protégé editor are shown below. Fig. 6.2 illustrates the

concepts for the ontology-based ontology model, while the relationships between these

concepts are presented in Fig. 6.3. In Fig. 6.4, the group of data relationships

describing the concepts with primitive data types is created. Meanwhile, the SWRL rules

designed for the requirement model are given in Fig. 6.5, followed by Fig. 6.6, where

instances for the case study, which will be discussed in the next section, are constructed

with the ontology model.

Fig. 6.2: Classes created for the proposed ontology model

47

Fig. 6.3: Object properties created for the proposed ontology model

Fig. 6.4: Data properties created for the proposed ontology model

48

Fig. 6.5: Rules created for the proposed ontology model

Fig. 6.6: Instances created with the proposed ontology model

49

5.7 Case Study

5.7.1 Case Overview

An online book shopping system is used as a case study in this research. The

structure of a typical but simplified online book shopping system is illustrated in Fig. 6.7.

There are basically four modules: book locating, cart management, account management

and order placing. Book locating module is responsible for book searching and retrieving

book information; cart management module provides a list where users can save the

references of the books they want to buy; account management module manages users’

personal, delivery and payment information; order placing module gathers information

such as shopping list, payment, delivery, and total price, and helps users to place the

order. It is assumed that account management is not necessary for an online book

shopping system. Users can specify necessary information for each purchase without

having it saved in the online bookstore.

Fig. 6.7: Functionalities of an online book shopping system

The requirement model was instantiated for the entire book shopping system

(refer to Appendix A). There are totally 52 functions, 6 qualities and 2 softgoals. For the

relationships, there are 48 Decomposes, 102 Relys, 6 Contradicts and 6 Associates. It is

50

too complicated to explain all the details. In this thesis, process of customizing the book

locating module with the proposed approach is presented in details as the case study.

5.7.2 Book Locating Service

1. Function Decomposition

First, the ontology model is instantiated with requirements of the book locating

module. Basically, book locating module provides two functionalities: get reference to a

book and get detailed information about a book. Details of a book may include the

publication information, the contents, sample chapters and so on. Here publication

information and contents are used as examples. In addition, in order to get the reference

of a book, the most common method is search. Search will return a list of relevant books,

so users need to point out the very book from the list. In addition, to facilitate users in

finding the book among a list of books, sorting could be applied. Thus getting a list of

books may contain two sub-processes: search a book and sort the search results.

Furthermore, there are two ways of book searching. One is to match user inputs with the

predefined keywords of the books. The other is advanced composite search. Users may

provide detailed information such as authors and publication to narrow down the search

domain. There are two levels of keywords matching: broad match and exact match. Exact

match tries to return the results that are most relevant to the inputs, while broad match

allows returning something appearing similar to the inputs but not exactly related to the

inputs. On the other hand, broad match may return something unexpected but interesting.

Thus they are two different levels of search quality constraints, and mutually exclusive.

Now, book locating is fully decomposed into primitive functions and quality

constraints. Followings are descriptions to each of the functions.

 Search in book keywords: input – phrases (from users); output – a list of

relevant books and a list of references to the books

51

 Advanced search: input – the fields to be matched and phrases for each field

(from users); output – a list of relevant books and a list of references to the

books

 Search relevant books: input – (from sub-functions); output – (from

sub-functions)

 Sort books in a list: input – the sorting order (from users) and a list of book

references (from Search relevant books); output – a list of relevant books and

a list of references to the books

 Get a list of relevant books: input – (from sub-functions); output – (from

sub-functions)

 Pick a book from a list: input – book index in the list (from users) and a list

of book references (from Get list of relevant books); output – a reference to a

book

 Get reference to a book: input – (from sub-functions); output – (from

sub-functions)

 Get publication info: input – a reference to a book (from Get reference to a

book); output – publication information of a book

 Get contents: input – a reference to a book (from Get reference to a book);

output – contents of a book

 Get detailed info of a book: input – (from sub-functions); output – (from

sub-functions)

 Locate a book: input – (from sub-functions); output – (from sub-functions)

2. Ontology Instantiation

Fig. 6.8 presents the instantiated ontology model.

Broad match and Exact match are mutually exclusive, so there is a Contradict

relationship between them. They are quality constraints for Search in book keywords. As

52

a result, they are related with Search in book keywords via Associate relationship.

Meanwhile, Search in book keywords is essential to Search relevant books; Search

relevant books is essential to Get a list of relevant books; Get a list of relevant books and

Pick a book from a list are essential to Get reference to a book; Get reference to a book is

essential to Locate a book. Thus there are Rely relationships pointing from the parents to

the children. In addition, Sort books in a list relies on the output of Search relevant books;

Pick a book from a list relies on the output of Get a list of relevant books; Get detailed

info of a book relies on the output of Get reference to a book. So there are Rely

relationships between each pair. Meanwhile, Pick a book from a list can only contribute

to Get reference to a book; Get reference to a book can only contribute to Locate a book.

As a result, there are Rely relationships from the two children to the two parents.

Fig. 6.8: Requirement model instantiated with book locating service

53

Ranks of the requirements are also shown in Fig. 6.8. As the core of Locate a

book is to get the reference of the book, requirements describing Get reference to a book

are expected to be evaluated first. Thus Get detailed info of a book as well as its children

has a relatively low rank.

3. Requirement Elicitation

When the ontology model is ready, requirement elicitation can be performed. The

sample utterances between users and machine are presented in Fig. 6.9 - 6.15. In this case,

users need the software system to retrieve detailed information about a book. So they

only want to search a book with exact matching and retrieve all the available information

about the book.

In Fig. 6.9, users are first welcomed and informed that the essential requirement

Locate a book is selected mandatorily. Then the two sub-requirements Get reference to a

book and Get detailed info of a book should be pre-evaluated. But Get reference to a

book is relied by Locate a book. Thus it has already been pre-selected, and its

pre-evaluation is skipped. Get detailed info of a book is pre-evaluated, but users need

more explanation to it. After the users know the role of Get detailed info of a book in the

system to be built, they select it.

Fig.6.10 shows the evaluation of Get reference to a book as well as its two

children. As Rely relationship is transitive, they are all relied by Locate a book, and have

been pre-selected. In Fig. 6.11, Search relevant books and Sort books in a list are

evaluated. Then it’s the turn to evaluate requirement Search in book keywords and to

pre-evaluate its two associated quality constraints. During this process, the users input

some information that the machine cannot handle (Fig. 6.12). Then the machine notifies

the users to correct their response. With the interaction presented in Fig. 6.13 – Fig. 6.15,

users pick the functions and quality constraints they need. After that they are not willing

to change their decisions, and the requirement elicitation process is finished.

54

Fig. 6.9: Dialogue utterances
for customizing book locating

service (part 1)

Fig. 6.10: Dialogue utterances
for customizing book locating

service (part 2)

Fig. 6.11: Dialogue utterances
for customizing book locating

service (part 3)

55

Fig. 6.12: Dialogue utterances
for customizing book locating

service (part 4)

Fig. 6.13: Dialogue utterances
for customizing book locating

service (part 5)

56

4. Output Generation

Finally, requirements Search in book keywords, Search relevant books, Get a list

of relevant books, Pick a book from a list, Get reference to a book, Get publication info,

Get contents, Get detailed info of a book, Locate a book and Exact match are selected.

Then the output will be generated in the way of merging the sub-tree rooted on

Get reference to a book, which includes the sibling merging between Get a list of

relevant books and Pick a book from a list, and merging Get publication info, Get

contents into Get detailed info of a book. As a result, there will be three functions left:

Get reference to a book, Get detailed info of a book and Locate a book. Because Get

detailed info of a book relies on the output of Get reference to a book, they will be

Fig. 6.14: Dialogue utterances
for customizing book locating

service (part 6)

Fig. 6.15: Dialogue utterances
for customizing book locating

service (part 7)

57

merged to form a new function, which will immediately merged into Locate a book.

Finally, quality Exact match will be attached directly to Locate a book. The output

BookShoppingProfile.owl looks like the OWL-S document presented in Fig. 6.16. The

instances of inputs, outputs and qualities are defined in documents

BookShoppingProcess.owl and BookShoppingQuality.owl. They are imported by the

profile document.

Now, with this OWL-S description, services are expected to be discovered by

semantic capability matching. Then the composition and execution of the services will be

performed based on the corresponding service composition information offered by the

service providers.

Fig. 6.16: The output service description (BookShoppingProfile.owl)

58

CHAPTER VII

COMPARISON ANALYSIS

7.1 Introduction

In the proposed approach, implicit knowledge hidden in the ontology model is

retrieved to direct the requirement elicitation process. Meanwhile, the approach adopts a

strategy that always maintains the completeness and consistency of the elicitation results.

When a requirement is selected, all other requirements on which it relies will be selected,

and those that contradict it will be removed. When a requirement is dropped, the

requirements that rely on it will also be dropped. On the other hand, without the implicit

knowledge and guidance, people normally have to resolve the incompleteness and

inconsistency step by step. In this thesis, simulation experiments were conducted to

compare the performance of the proposed method with the undirected method.

7.2 Problem Instance Generation

To generate a problem instance is to construct a requirement decomposition forest.

A subset of the requirements contained in the trees will be chosen as the expected

requirements.

In this research, problem instances are generated randomly. Functions, qualities

and softgoals are not differentiated. They are all treated simply as requirements. When

constructing a problem instance, the number of requirements n and the number of Rely,

Contradict relationships m to be generated are two input parameters for the problem

instance.

The algorithm for generating a decomposition forest with n nodes is presented in

Fig. 7.1. First, when creating the ith node, a random integer j ranging from [0, i-1] is

generated. j decides the position of the forest to add the ith node. If it is zero, create the

ith node as a root. Otherwise, the ith node is attached as a child of the previous generated

59

jth nodes. If the jth node is a leaf, when the ith node is attached to it, the (i+1)th node is

also attached to it. This is because a requirement is not supposed to decompose into only

one child. If the jth node is not a leaf, only the ith node is attached to it. If it is the turn to

create the nth node, as there are no more nodes available, it cannot be attached to a leaf.

It can be created as a root or attached to a non-leaf node as a child. Then the

decomposition forest is generated, and it is assumed that the rank to the ith node is i.

Thus parent always has a higher rank than its children.

Fig. 7.1: Pseudo code for constructing decomposition forest

After that, the m Rely and Contradict relationships should be generated. Each

time, two nodes are randomly picked from the forest, and Rely or Contradict is randomly

picked as the candidate relationship between them. The validity of the forest will be

checked with ontology reasoning after the candidate relationship is attached to the forest.

If the candidate relationship is valid and is not a duplicated relationship, generate the next

relationship. Otherwise, remove the candidate relationship from the forest, and generate a

new one.

When m valid and non-duplicated relationships are generated, the problem

instance is generated. A subset of the n requirements will be randomly chosen as the

60

requirements that users expect to select. This subset of requirements will be shuffled in a

list. The requirement with a lower index in the list is assumed to have a higher expected

priority, which means it is more demanded. It is often true that this subset of

requirements are not consistent or complete with each other. Users are supposed to give

preference to requirements with higher expected priorities, which means they will give

up an expected requirement if it contradicts requirements with higher expected priorities.

With this guideline, users will try to take fewer rounds of interaction to accomplish the

tasks and select as many of the expected requirements as possible, while keeping the

selected requirements complete and consistent with each other.

7.3 Experiment with the Proposed Method

The proposed approach is designed to evaluate the requirements one by one, from

the highest rank to the lowest rank. In the experiments, users that are simulated were to

evaluate the requirements. When evaluating a requirement, if it is not expected, users will

go through the expected requirements from the highest expected priority to the lowest. If

the requirement being evaluated is relied by an expected requirement while it doesn’t

contradict expected requirements with higher expected priority, it will be selected.

Otherwise, it will be dropped. If the requirement is expected, go through the expected

requirements from the highest expected priority to itself. If it doesn’t contradict the

requirements with higher expected priority, select it, otherwise drop it. As is explained in

Chapter IV, selecting or dropping a requirement with the proposed approach will cause

all the relevant requirements to be handled accordingly.

After all the requirements have been selected or dropped, the simulated users will

double check their decisions. Every selected unexpected requirement will be checked if

they are relied by any selected expected requirements. It is possible that the expected

requirement which relies on an unexpected requirement will be dropped after selection of

the corresponding unexpected requirement. If no more selected expected requirement

61

relies on an unexpected requirement, the unexpected requirement will be removed. When

all unnecessary unexpected requirements have been removed, the unselected expected

requirements will be checked from the highest expected priority to the lowest expected

priority. If an expected requirement doesn’t contradict any selected requirements, it will

be selected. After all the expected requirements have been rechecked, the users finish the

requirement elicitation.

To evaluate the performance of the proposed approach, one round of interaction

will be charged for each requirement evaluation, and each time users change their mind

on a requirement, it will take one round of interaction to have it handled.

7.4 Experiment with the Undirected Method

For the undirected approach, the simulated users don’t take care of the

completeness or consistency issues initially. Instead, they will first tell the machine the

requirements they want. Suppose there are k expected requirements. Then it will take k

rounds of interaction to have the k requirements ordered.

After that, users will try to maintain the completeness and consistency. However,

they only know the explicitly defined relationships and don’t have the implicit

knowledge. They will go through the selected requirements from the highest expected

priority to the lowest. If an expected requirement relies on some other requirements,

users will order machine to select these unselected required requirements, and these

requirements will be treated as of the same expected priority as the corresponding

expected requirement. If an expected requirement contradicts some selected requirements

with lower expected priority, these requirements will be dropped. Whenever any changes

are made, users will recheck all the currently selected requirements from the highest

expected priority to the lowest expected priority. Every time users want to make some

changes for a requirement, one round of interaction will be charged. When no more

incompleteness or inconsistency exists among the selected requirements, the elicitation

62

process is complete. Otherwise, if the amount of interaction excess 10 times of the total

number of requirements in the problem instance, users will give up. As a result, the

iteration of experiment is unsuccessful.

7.5 Results and Analysis

Experiments were programmed in Java 6.0 with Eclipse 3.6 and performed on

x86, Windows platform.

Experiments were separated into three groups. The first group fixes the number of

relationships m to be 20, and varies the number of requirements n from 10 to 100, with

an increment of 10. The second group fixes n to be 50, while increases m from 10 to 100,

and the interval of each increase is 10. The third group changes n together with m, from

(10, 10) to (100, 100). Each time, both of the two inputs were raised by 10.

Besides, for each input pair, 25 iterations of experiments were performed. In each

iteration, a new problem instance was generated, and both methods were applied to solve

it. As the proposed method promises the completeness and consistency, the number of

iterations in which the undirected approach can successfully produce complete and

consistent requirements was recorded. Those iterations of experiments are called

successful iterations. Among the successful iterations, the numbers of interactions

charged with both methods are compared. Moreover, the numbers of expected

requirement selected by both methods are compared. Among those iterations where equal

amount of expected requirements were selected, the amount of unexpected requirements

selected by both approaches were compared.

Table 7.1, Table 7.2 and Table 7.3 respectively present results of the three groups

of experiments.

63

Table 7.1: Results for the first group of experiments (n:m=10:20-100:20)

Table 7.2: Results for the second group of experiments (n:m=50:10-50:100)

Table 7.3: Results for the third group of experiments (n:m=10:10-100:100)

Followings are explanations to the columns.

64

 Column A: number of requirements / number of relationships

 Column B: number of successful iterations performed by the undirected

method

 Column C: average percentage of more interactions the proposed method was

charges compared to the undirected method (the percentage is calculated in

this way: number of interactions the proposed method was charged

number of interactions the undirected method was charged number of

interactions the undirected method was charged×100%)

 Column D: number of successful iterations in which the proposed method

selected more expected requirements

 Column E: number of successful iterations in which the undirected method

selected more expected requirements

 Column F: number of successful iterations in which the proposed method

selected equal number of expected requirements as the undirected method

and fewer unexpected requirements

 Column G: number of successful iterations in which the undirected method

selected equal number of expected requirements as the proposed method and

fewer unexpected requirements

From all the results, it can be observed that the undirected approach could not

promise to produce complete and consistent results, while the proposed approach is

designed to overcome this problem. In the best cases, within 22 out of 25 iterations, valid

results could be generated by the undirected method. Moreover, in a considerable amount

of successful iterations, the proposed method had more expected requirements selected.

On the other hand, most of the requirements were evaluated at least once by the proposed

approach, while the undirected approach only concerns the expected requirements. Thus

the proposed approach often requires more rounds of interaction.

In the first group of requirements, when n increased and m was kept unchanged,

65

the undirected approach performed better and better. It took fewer and fewer rounds of

interactions to complete the tasks while its success rate grew very fast. Meanwhile, the

proposed method was never defeated. There were always some successful iterations

within which the proposed method obtained more expected requirements.

For the second group of requirements, when m grew and n was fixed,

performance of the undirected method decreased dramatically. When there were more

than 40 relationships, it could hardly generate any valid result. What is worth mentioning

is that, while the proposed method could easily defeat the undirected method, in the rare

cases of successful iterations, undirected method found more expected requirements.

Mainly, this result was due to the simulation strategy rather than the proposed elicitation

method. The simulated user always tries to obtain the expected requirement with the

highest expected priority. Sometimes, the most demanded requirement is obtained but

other expected requirements are neglected.

In the third group, even if n and m were raised with the same pace, the

performance of the undirected approach decreased very fast as the complexity of the

problem increased. Meanwhile, the distance between the amount of interactions the

proposed method requires and the amount of interactions the undirected approach needs

was shortened when the problem was complicated.

In conclusion, these experiments show that requirement elicitation is not an easy

task. Without implicit knowledge and proper guidance, it is almost impossible to get a

valid and expected result. However, the method proposed in this thesis can successfully

help to solve this problem. Though, it always needs certain amount of interactions, this is

the price necessary for accomplishing the task. Besides, when the problem gets tougher,

the price is not as remarkable as before.

66

CHAPTER VIII

CONCLUSION AND FUTURE WORK

8.1 Conclusion

Aiming at realizing automated SPL with service-oriented methods, an approach to

interactive requirement elicitation is proposed in this thesis. It adopts ontology to

represent the requirement engineering related knowledge, which directs a slot-filling

dialogue system to communicate with clients. With this method, users are capable to

customize the application requirements that satisfy their demands by interacting with

machines, while the completeness and consistency of the customization is ensured. The

ordered requirements will further be converted into OWL-S based service descriptions

for system implementation. A case study is presented in this thesis to prove the feasibility

of the proposed method, while simulation experiments were conducted to verify its

efficiency and reliability.

On the other hand, though this thesis made an effort to achieve automated

requirement elicitation, the proposed requirement model is still preliminary and

light-weighted. Since the model is static, it cannot be applied in dynamic environment.

Moreover, in order to avoid additional complexity, not all requirement engineering

related ontological relationships are directly described. Finally, the reported requirement

elicitation approach only supports customizing requirements based on the knowledge that

machine owns. Users cannot order anything unknown to the machine, which is not

always the case in practice.

8.2 Future Work

For the future works, first, in order to implement automated SPL, approaches

related to automatic application implementation, such as automatic service discovery,

composition and delivery, will be further explored. Meanwhile, it is necessary to have the

67

ontology model optimized (e.g. improve its expressiveness, and extend it with domain

properties). In addition, analysis about methods other than OWL-S for utilizing the

requirement elicitation results and describing abstract information (e.g. softgoals) is also

worth performing. Last but not the least, topics about enriching the experience of

human-computer interaction in requirement engineering are very interesting. Related

studies (e.g. visualize the interactive requirement elicitation) will be conducted in future.

68

REFERENCES

[1] K. Pohl, G. Böckle, and F. van der Linden, Software Product Line Engineering:

Foundations, Principles, and Techniques. Berlin: Springer, 2005.

[2] T. Erl, Service-Oriented Architecture: Concepts, Technology, and Design. Upper

Saddle River, NJ: Prentice Hall PRT, 2005.

[3] A. Helferich, et al., ''Software Product Lines, Service-Oriented Architecture and

Frameworks: Worlds Apart or Ideal Partners?'' in Proceedings of the 2nd

International Conference on Trends in Enterprise Application Architecture, 2006, pp.

187-201.

[4] S. A. McIlraith, T. C. Son, and H. Zeng, ''Semantic Web Services,'' IEEE Intelligent

Systems, 16(2), 46-53, 2001.

[5] H. Gomaa and M. E. Shin, ''Automated Software Product Line Engineering and

Product Derivation,'' in Proceedings of the 40th Annual Hawaii International

Conference on System Sciences, 2007, pp. 285.

[6] R. Rabiser, P. Grünbacher, and D. Dhungana, ''Requirements for Product Derivation

Support: Results from a Systematic Literature Review and an Expert Survey,''

Information and Software Technology, 52(3), 324-346, 2010.

[7] T. H. Bui, ''Multimodal Dialogue Management: State of the Art,'' Centre for

Telematics and Information Technology, University of Twente, Enschede,

Netherlands, Tech. Rep. TR-CTIT-06-01, 2006.

[8] D. Martin, et al., ''Bringing Semantics to Web Services with OWL-S,'' World Wide

Web, 10(3), 243-277, 2007.

[9] B. Srivastava and J. Köhler, ''Web Service Composition: Current Solutions and Open

Problems,'' in Proceedings of the 13th International Conference on Automated

Planning and Scheduling, 2003. Available: CiteSeer, http://citeseerx.ist.psu.edu.

[10] S. Dustdar and W. Schreiner, ''A Survey on Web Services Composition,''

International Journal of Web and Grid Services, 1(1), 1–30, 2005.

69

[11] C. Y. Knaus, ''Feature - Interaction design for software engineering: Boost into

programming future,'' Interactions, 15(4), 71-74, 2008.

[12] A. Flycht-Eriksson and A. Jönsson, ''Dialogue and Domain Knowledge Management

in Dialogue Systems,'' in Proceedings of the 1st SIGdial Workshop on Discourse and

Dialogue, 2000, pp. 121-130.

[13] A. Flycht-Eriksson, ''A Survey of Knowledge Sources in Dialogue Systems,''

Electronic Transactions on Artificial Intelligence, 3(D), 5-32, 1999.

[14] M. Araki, et al., ''A Dialogue Library for Task-Oriented Spoken Dialogue Systems,''

in Proceedings of the IJCAI Workshop on Knowledge and Reasoning in Practical

Dialogue Systems, 1999, pp. 1-7.

[15] T. Riechert, et al., ''Towards Semantic based Requirements Engineering,'' in

Proceedings of the 7th International Conference on Knowledge Management, 2007,

pp. 144-151.

[16] C. I. Lin and C. Ho, ''A Generic Ontology-Based Approach for Requirement

Analysis and its Application in Network Management Software,'' Artificial

Intelligence for Engineering Design, Analysis and Manufacturing, 13(1), 37-61,

1999.

[17] M. Kossmann, ''Ontology-Driven Requirements Engineering with Reference to the

Aerospace Industry,'' in Proceedings of the 2nd International Conference on the

Applications of Digital Information and Web Technologies, 2009, pp. 95-103.

[18] M. Kossmann, ''Ontology-Driven Requirements Engineering: Building the

OntoREM Meta Model,'' in Proceedings of the 3rd International Conference on

Information and Communication Technologies: From Theory to Applications, 2008,

pp. 1-6.

[19] H. J. Happel and S. Seedorf, ''Applications of Ontologies in Software Engineering,''

in Proceedings of the 2nd Workshop on Semantic Web Enabled Software

Engineering, 2006. Available: CiteSeer, http://citeseerx.ist.psu.edu.

70

[20] T. R. Gruber, ''A Translation Approach to Portable Ontology Specifications,''

Knowledge Acquisition, 5(2), 199-220, 1993.

[21] N. F. Noy and D. L. McGuinness, ''Ontology Development 101: A Guide to

Creating Your First Ontology,'' Stanford Knowledge Systems Laboratory, Tech. Rep.

KSL-01-05, 2001.

[22] F. Arvidsson and A. Flycht-Eriksson, ''Ontologies I,'' 2008. [Online]. Available:

http://www.ida.liu.se/~janma/SemWeb/Slides/ontologies1.pdf.

[23] R. Mizoguchi, ''Tutorial on Ontological Engineering,'' 2004. [Online]. Available:

http://www.ei.sanken.osaka-u.ac.jp/japanese/tutorial-j.html.

[24] D. L. McGuinness and F. van Harmelen, ''OWL Web Ontology Language

Overview,'' 2004. [Online]. Available: http://www.w3.org/TR/owl-features.

[25] G. Dobson and P. Sawyer, ''Revisiting Ontology-Based Requirements Engineering

in the Age of the Semantic Web,'' in Proceedings of the International Seminar on

Dependable Requirements Engineering of Computerised Systems at NPPs, 2006.

Available: CiteSeer, http://citeseerx.ist.psu.edu.

[26] I. Horrocks, et al., ''SWRL: A Semantic Web Rule Language Combining OWL and

RuleML,'' 2004. [Online]. Available: http://www.w3.org/Submission/SWRL.

[27] H. Kaiya and M. Saeki, ''Ontology Based Requirements Analysis: Lightweight

Semantic Processing Approach,'' in Proceedings of the 5th International Conference

on Quality Software, 2005, pp. 223-230.

[28] I. Jureta, J. Mylopoulos, and S. Faulkner, ''Revisiting the Core Ontology and

Problem in Requirements Engineering,'' in Proceedings of the 16th IEEE

International Requirements Engineering Conference, 2008, pp. 71-80.

[29] D. V. Dzung and A. Ohnishi, ''Ontology-Based Reasoning in Requirements

Elicitation,'' in Proceedings of the 7th IEEE International Conference on Software

Engineering and Formal Methods, 2009, pp. 263-272.

71

[30] P. Kroha, R. Janetzko, and J. E. Labra, ''Ontologies in Checking for Inconsistency of

Requirements Specification,'' in Proceedings of the 3rd International Conference on

Advances in Semantic Processing, 2009, pp. 32-37.

[31] I. Omoronyia, et al., ''A Domain Ontology Building Process for Guiding

Requirements Elicitation,'' in Proceedings of the 16th International Working

Conference on Requirements Engineering: Foundation for Software Quality, 2010,

pp. 188-202.

[32] T. H. Al Balushi, et al., ''ElicitO: A Quality Ontology-Guided NFR Elicitation

Tool,'' in Proceedings of the 13th International Working Conference on

Requirements Engineering: Foundation for Software Quality, 2007, pp. 262-276.

[33] R. Roy, et al., ''Design Requirements Management Using an Ontological

Framework,'' CIRP Annals: Manufacturing Technology, 54(1), 109-112, 2005.

[34] J. Lin, M. S. Fox and T. Bilgic, ''A Requirement Ontology for Engineering Design,''

Concurrent Engineering: Research and Applications, 4(3), 279-291, 1996.

[35] M. Shibaoka, H. Kaiya and M. Saeki, ''GOORE: Goal-Oriented and Ontology

Driven Requirements Elicitation Method,'' in Proceedings of the 2007 Conference on

Advances in Conceptual Modeling: Foundations and Applications, 2007, pp.

225-234.

[36] K. Jarosla, ''Passing from Requirements Specification to Class Model Using

Application Domain Ontology,'' in Proceedings of the 2nd International Conference

on Information Technology, 2010, pp. 129-132.

[37] S. R. Palmer and J. M. Felsing, A Practical Guide to Feature-Driven Development.

Upper Saddle River, NJ: Prentice Hall, 2002.

[38] A. Brown, ''An introduction to Model Driven Architecture, '' 2004. [Online].

Available: http://www.ibm.com.

[39] D. Roman, et al., ''Web Service Modeling Ontology,'' Applied Ontology, 1(1),

77-106, 2005.

72

[40] D. Martin, et al., ''OWL-S: Semantic Markup for Web Services,'' 2004. [Online].

Available: http://www.w3.org/Submission/OWL-S.

[41] C. Harding, ''SOA Ontology Draft 2.0,'' 2008. [Online]. Available:

http://www.opengroup.org/projects/soa-ontology/doc.tpl?gdid=16940.

[42] D. Martin, et al., ''Bringing Semantics to Web Services: The OWL-S Approach,'' in

Proceedings of the 1st International Workshop on Semantic Web Services and Web

Process Composition, 2004, pp. 26-42.

[43] S. Jean, et al., ''An Extension of OWL-S with Quality Standards,'' in Proceedings of

the 4th IEEE International Conference on Research Challenges in Information

Science, 2010, pp. 483-494.

73

APPENDICES

APPENDIX A

The Complete Requirement Model for the Case Study

The following figure illustrates the complete ontology-based requirement model

instantiated with the case study of online book shopping service. The figure is divided

into four parts. The magnified figures for Part I, Part II, Part III and Part IV are presented

on page 74, 75, 76 and 77 respectively.

74

75

76

77

78

VITA AUCTORIS

NAME Xieshen Zhang

PLACE OF BIRTH Wujiang, Jiangsu, China

YEAR OF BIRTH 1984

EDUCATION Shanghai Jiao Tong University

2003-2007 B.Eng.

	University of Windsor
	Scholarship at UWindsor
	2011

	An Interactive Approach of Ontology-based Requirement Elicitation for Software Customization
	Xieshen Zhang
	Recommended Citation

	Master Thesis (Xieshen Zhang).pdf

