University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations

2011

An Interactive Approach of Ontology-based
Requirement Elicitation for Software
Customization

Xieshen Zhang
University of Windsor

Follow this and additional works at: https://scholaruwindsor.ca/etd

Recommended Citation

Zhang, Xieshen, "An Interactive Approach of Ontology-based Requirement Elicitation for Software Customization" (2011). Electronic
Theses and Dissertations. 347.
https://scholaruwindsor.ca/etd/347

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please

contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/347?utm_source=scholar.uwindsor.ca%2Fetd%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

An Interactive Approach of Ontology-based Requirement Elicitation

for Software Customization

by

Xieshen Zhang

A Thesis
Submitted to the Faculty of Graduate Studies
through Computer Science
in Partial Fulfillment of the Requirements for
the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2011

© 2011 Xieshen Zhang

An Interactive Approach of Ontology-based Requirement Elicitation

for Software Customization

by

Xieshen Zhang

APPROVED BY:

Dr. G. Bhandari
Odette School of Business

Dr. A. Mukhopadhyay
School of Computer Science

Dr. X. Yuan, Advisor
School of Computer Science

Dr. D. Wu, Chair of Defense

School of Computer Science

May 04, 2011

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this
thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon
anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,
quotations, or any other material from the work of other people included in my thesis,
published or otherwise, are fully acknowledged in accordance with the standard
referencing practices. Furthermore, to the extent that I have included copyrighted
material that surpasses the bounds of fair dealing within the meaning of the Canada
Copyright Act, I certify that I have obtained a written permission from the copyright
owner(s) to include such material(s) in my thesis and have included copies of such
copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as
approved by my thesis committee and the Graduate Studies office, and that this thesis has

not been submitted for a higher degree to any other University or Institution.

il

ABSTRACT

Software product lines allow reusing a collection of related software engineering
assets to develop custom-made high quality software with reduced time and cost. In this
thesis, an interactive approach of requirement elicitation for software customization is
presented. It first adopts an ontology-based requirement model to represent the
commonalities and variabilities among a group of related requirement artefacts. The
development of a dialogue system further enables users to interactively customize
software products by means of text-based dialogue. While the ontology model directs the
dialogue system to perform requirement elicitation, its instantiation is accomplished with
the support of decomposition-based requirement refinement in Service-Oriented
Architecture. Besides the design details, a case study is presented to demonstrate how
customizing an online book shopping system could be achieved with interactive
requirement elicitation. Finally, the reliability and efficiency of the proposed method are

evaluated with experimental comparison.

v

DEDICATION

This thesis is dedicated to my dear parents and brother for their endless love and support.

ACKNOWLEDGEMENTS

First, I would like to express my deep and sincere gratitude to my supervisor Dr.
Xiaobu Yuan for the continuous support to my study and research, for his patience,
motivation, and wide knowledge. I could not have imagined accomplishing the thesis
without his guidance.

I am also heartily thankful to Dr. Asish Mukhopadhyay and Dr. Gokul Bhandari,
whose insightful comments and encouragement inspired me throughout the work.

Finally, I would like to thank my friends Xiewei and Yifeng. Their long-term

emotional support gave me the courage to carry on.

Vi

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY ...ootiiiiiiiiiieieeiieie ettt il
ABSTRACT ...ttt ettt st ettt b et e be ettt sbe et see e b ennes v
DEDICATION ..ottt ettt ettt et sttt st sbe et bttt st esbe e \%
ACKNOWLEDGEMENTSoooiiiiiiieteee ettt vi
INTRODUCGTION ..ottt ettt ettt steesae st eteesee st enaeeneensesseenseeneenns 1
L1 INOAUCTION ...ttt ettt 1

1.2 Problem Statement............coouiiiiiiiiiiiee e 1

1.3 CONIIDULION. ..ottt et et e 2

1.4 Structure of the TheSIS......coooiiiiiiiiii e 3
SOFTWARE PRODUCT LINE AND SERVICE-ORIENTED ARCHITECTURE 4
2.1 Software Product LINe........ccccocieiiiiiiiiiiiieieiiesceeeeeeeee e 4

2.2 Service-Oriented ATChItECtUIEc..eevviiieiieeiieeeiie e 5
INTERACTIVE REQUIREMENT ENGINEERINGccccociiiiiiiiiieiecieieeeee e 8
3.1 Interactive Requirement ENgINEEring........cccceevvveviiiieiiieeiiieeiie e 8

3.2 DIAloZUE SYSEEM..ccuiiiiiiieeiiie ettt ettt ettt e e et e s 9

3.3 Knowledge-based Requirement Engineering...........cccoeevvevieeviecieenneennennenn, 13

34 ONEOLOZY cntieiiieiiieiieee ettt ettt ettt et et eebaeeaee e 14
341 OVEIVIEW .ttt sttt ettt ettt et 14

3.4.2 Ontology for Requirement Engineering............coccevuevveneeicnenieneennenn 17

343 Ontology for SOA ..o s 18
PROPOSED ONTOLOGY-BASED REQUIREMENT MODELcccccceoviiiiiieiinne. 21
4.1 INErOAUCTION ..ttt ettt 21

I 010117 o £ PRPPR 21

4.3 ReEIAtIONSNIPS ..vieiiieiiiieiieiie ettt ettt ettt ennaea 23

A4 RUIES .ot e 28

4.5 Ontology INStantiationcccueevuieriieiiienieeie ettt 29
PROPOSED REQUIREMENT ELICITATION METHODc.cccoovieiieiieieeeieeee 32
TS S 6312 (016 10161 5) 1 USRS 32

5.2 Structure of the Proposed Dialogue System..........ccccceeviieeiiiiniiienieeeieee. 32

5.3 Process of Requirement Elicitationccccceeviiiviiieniiieniiecieccee e 33
5.3.1 Machine-directed Requirement Elicitationccceceeevvierienieeneennn. 34

5.3.2 User Requirement CustOmizationcceeeeerieerieenieeieeniienieeneeeeans 37

5.4 Output of Requirement EICTtationcccooveviriininiineiienecicecieseeieee 37
541 OUtPUL OVETVIEW ..utiiiiiiiiieiieeiie ettt ettt ettt s nee e 37

542 Output GENETAtION......eceiuvieetiieetieeeiieerreeeieeeetteesreeessaeessaeesseeessseeenns 39

5.5 Considerations for System Implementationc.ccceeecveeevieenciieenieesiee e, 43
IMPLEMENTATION AND CASE STUDY ..ottt 45
5.6 IMPlementation........ccccueiiiiiiiiiie et 45

5.7 CaSE STUAY ..eouviiiiiieiieee et 49

S5.7.1 CaSE OVEIVIEW ...uvvieeiiieiieeeiieeeieeeeiteeeetreesseeesseeesaseeesseessaeesseeessseeanns 49

5.7.2 Bo0K LOCAtING SETVICE......ccivereiuiieeiiieeiieeeiieeeieeeeieeesireesveeesaeeeenaee s 50
COMPARISON ANALY SIS ..ottt ettt ee s 58
Tl INEOAUCTION ..ttt sttt sttt ne s 58

7.2 Problem Instance GENErationccoceeruerierieeienieieniieie et 58

7.3 Experiment with the Proposed Methodccccoooiiiiiiiiiiiiniiii 60

7.4 Experiment with the Undirected Methodccccooeeiiniiiiiiininiiniiceee 61

7.5 Results and ANALYSIS.....c.eeeciieiiuieeeiie ettt 62
CONCLUSION AND FUTURE WORKcccoiiiiiiiieiieiestee et 66
8.l CONCIUSION ...ttt ettt st 66

8.2 FUUIE WOTK ..ottt 66
REFERENCES ...ttt ettt ettt ettt et st e e eneas 68
APPENDICES ...ttt sttt sttt 73
The Complete Requirement Model for the Case Studycccceeevieniiiiiiiiiniine 73
VITA AUCTORIS ...ttt sttt ettt e s e s e eneenseeneas 78

viii

CHAPTER I
INTRODUCTION

1.1 Introduction

Software product line (SPL) engineering is a paradigm to develop software
applications with reusable software assets, which are tailored to individual customers'
needs [1]. By reusing software engineering artefacts (e.g. software components) rather
than developing them from scratch, software systems are expected to be customized,
while the costs can be effectively cut down. Meanwhile, with the same primary goal of
software reuse, Service-Oriented Architecture (SOA) separates system functionalities
into loosely coupled and reusable services that communicate with each other via
autonomous messages [2]. Although SPL and SOA differ, as different software
engineering paradigms, in many respects, they actually complement each other [3]. By
reusing services, and adopting SOA-based methods in SPL engineering, especially the
Semantic Web Service techniques (e.g. automatic service discovery and composition) [4],
the goal of automating software development could be achieved. Furthermore, the main
focus of SPL engineering will then shift from repetitive system design and
implementation to functionalities (i.e. services) customization.

On the other hand, in order to actualize completely automated SPL engineering,
an approach is required for guiding human-machine interaction in software products
customization. However, managing the complexity and variability of product features
inherent in software product lines is very challenging [5]. In addition, a supporting tool

for directing the automatic and interactive product customization is still lacking [6].

1.2 Problem Statement

A solution to automatic requirement elicitation is critical for the realization of

automated SPL. While an increasing number of publications in SOA have addressed the

problem of automatic system implementation, few studies investigate the automation of
requirement engineering.

To automate the requirement engineering process, first of all, a supporting tool for
human-machine interaction is required, which is used to conduct the communications
during requirement elicitation. Meanwhile, it must be capable of managing the
knowledge related to SPL requirement engineering, thus the knowledge could be
naturally presented to users. Furthermore, the tool should be able to generate
service-oriented outputs for the automation of system implementation.

On the other hand, knowledge for automatic requirement elicitation is supposed
to be presented in formats understandable to machines. In other words, a semantic way to
represent the knowledge is required. Moreover, as a knowledge engineering solution to
SPL engineering, it must be suitable to describe the common and variable features of
requirement engineering artefacts of software systems that are given. Since the major
challenge rooted in requirement engineering lies in maintaining the completeness and
consistency of requirement products, it is necessary to tackle them properly. Last but not
the least, an approach to express the knowledge about human-machine interaction should

be investigated.

1.3 Contribution

To facilitate the realization of automated SOA-based SPL, this thesis presents a
dialogue-based interactive approach for guiding software product customization. An
abstract ontology-based requirement model, which represents the knowledge of the
product features as well as their business logic, is developed. Besides, a frame-based
dialogue system [7] is designed based on the knowledge model. It helps elicit users'
requirements and then outputs service-oriented system description for the implementation
of the candidate applications.

Though not mentioned in the thesis title, the proposed approach is designed

2

specifically for customizing SOA applications. In other words, it first guides users to
order the services they need, and then generate corresponding service descriptions for

automatic service discovery and composition.

1.4 Structure of the Thesis

The rest of the thesis is structured as follows. Chapter II presents the introduction
to SPL and SOA, while Chapter III outlines the work related to interactive requirement
engineering. The ontology model is proposed and explained in Chapter IV. Chapter V
reports the proposed dialogue system and the interactive requirement elicitation method,
followed by Chapter VI within which the implementation of the dialogue system and a
case study is presented. Chapter VII demonstrates a group of experimental comparisons
between the proposed machine-directed interactive requirement elicitation method and an
undirected method, and the results are also analyzed in this chapter. Finally, conclusion

and future work are discussed in Chapter VIIL

CHAPTER 1II

SOFTWARE PRODUCT LINE AND SERVICE-ORIENTED ARCHITECTURE

2.1 Software Product Line

The key idea of SPL engineering is gathering, analyzing and reusing the software
engineering artefacts of closely related software systems. These reusable artefacts
provide development options in each software engineering stage. Consequently, the
software development activities will mainly focus on system customization rather than
creation.

To develop an application with SPL framework, there are two processes: domain
engineering and application engineering [1]. During domain engineering process, the
commonalities and variabilities of the reusable artefacts are defined. Vertical tractability
links are established between artefacts of different software engineering phases. In the
application engineering stage, applications are developed. The variabilities that bind to
the candidate application are identified. Then based on these common and variable
artefacts, the development of the application is carried out.

In SPL, the products of the domain engineering process are supposed to be reused.
So the price of developing a new application is mainly charged at the application
engineering stage. By customizing rather than creating, the application engineering is
cost-effective compared to traditional software engineering approaches. Therefore, as
long as the domain engineering process is controllable, SPL can effectively reduce cost,
time and human effort in software engineering.

Nonetheless, Rabiser et~al. [6] point out that, compared to the effort spending on
developing and modeling the software product lines, little support is available for
enhancing their utilization in practice,. Without effective approaches to utilize the
product lines, particularly the automated approaches, SPL could not be widely accepted
in industry. In other words, they will be of more academic value than practical value. In

[6], Rabiser et~al. turther define 6 requirements for facilitating the application of product
4

lines in practice:

B Automated and interactive variability resolution

B Adaptability and extensibility

B Application requirements management support

B Flexible and user-specific visualizations of variability

® End-user guidance

B Project management support

The idea of interactive requirement elicitation is inspired by these suggestions.
With an automated and interactive solution to requirement elicitation, the variability of
application requirements can be automatically managed and interactively elicited. The
by-product of a requirement knowledge base further enables applying the product lines
adaptively and extensively. Consequently, an approach to improve the practical value of

SPL is suggested.

2.2 Service-Oriented Architecture

Since SOA captures many best practices from previous software engineering
experiences, and makes business systems more flexible and reusable, it has gained an
increasing popularity in industry as well as academic communities in the past decade.
Technically speaking, SOA represents a model in which the software systems are
decomposed into loosely coupled units of functionalities (i.e. services), while each of
these units must be autonomous, reusable, discoverable, and is able to communicate with
other units via autonomous messages [2]. Thus the units could be distributed, and
collaborate through message exchange.

Typically, there are three roles involved in SOA engineering: provider, broker and
requestor (Fig. 2.1). Service provider develops services and publishes the services by
registering the service descriptions as well as corresponding access information in service

broker’s depository. Service requestor then tries to find the services by consulting the

5

service broker. Service broker matches requestor’s demands with the services registered
in the depository, and return the appropriate service access information to the requestor.
Later on, requestor visits and retrieves the provider’s services according to the access
information. Therefore, to access certain services, the requestor must first discover the
services from broker’s registry, and then bind to the provider so as to invoke and

compose, if necessary, the services.

Service
Broker
Locate Publish
Service Bind Service
Requestor Provider

Fig. 2.1: Model of SOA

Service discovery is the process of finding appropriate services from brokers’
registry. Traditionally, UDDI mechanism is applied in publishing, matching and
discovering services. However, it only defines a set of syntactic search criteria. Matching
on semantic level is not supported, which results in unwanted feedbacks. Inspired by the
development of Semantic Web, the idea of Semantic Web Service comes out. Semantic
Web Service approaches offer semantics to web services. Consequently, they are
self-describable and machine-processable, and the discovery of these services is more
promising. [8] presents an Semantic Web Service solution as well as a list of its
applications in addressing the problem of matchmaking-based automatic service
discovery.

Moreover, in this thesis, a method which is the inversion of service composition

is adopted for the domain engineering of SPL. In other words, the functionalities of SOA

6

systems are analyzed by decomposition. Then results of the decomposition are further
used to instantiate the proposed ontology-based requirement model.

Service composition is very significant in SOA engineering. The implementation
of a complex web service often involves the invocation of other services. However,
services are distributed. Their collaboration relies on exchanging autonomous messages.
Therefore, the syntax as well as semantics of the messages, particularly the order of their
exchanges, should be defined explicitly [9]. Message exchange in SOA is called service
composition. Service composition represents the process of combining certain services’
functionalities to implement a composite service’s functionalities [10]. It can be
performed by composing either primitive or composite services [10]. In this thesis,
composite services are decomposed into less complex services, in order to obtain the
knowledge related to systems’ functionalities and business logic.

In addition, nowadays, people are also working on automating the service
composition process. Semantic Web Service plus Al planning methodologies suggests
approaches to solve this problem. In spite of lacking a comprehensive solution,
successful improvement has been achieved [8].

Automatic service discovery and composition are critical to the realization of
automated SPL. While the interactive requirement elicitation method proposed in this
thesis is expected to automate the requirement engineering process, automated SOA

methods are the best solutions to the automation of system implementation so far.

CHAPTER III
INTERACTIVE REQUIREMENT ENGINEERING

3.1 Interactive Requirement Engineering

In conventional software engineering, computers are treated simply as impersonal
machines providing functions, objects or models, while their personality and
characterization are neglected. In [11], Knaus states: "In the eyes of the software
developer, computer behaves more like a human with extreme skills and obedience. " He
further asserts that an interactive software engineering paradigm, which redistributes
computers’ responsibilities, can overcome the long-term software development and
maintenance issues rooted in conventional programming paradigms. In addition, by
defining a metaphor for the computer, building a concept model as a programming
paradigm and designing an appropriate user interface, it is possible to find such an
interactive paradigm.

Though Knaus promises a bright future, little progress has been made. The task of
software engineering is very complicated. It is very challenging to redefine computers’
responsibilities. Machines cannot deal with the complexity of a specific software
component. Meanwhile, to build a concept model requires much effort from both
software engineering and human-computer interaction. Thus how to build the interactive
software engineering paradigm is still a question. Fortunately, some inspiring ideas came
out in recent studies. SOA encapsulates software functionalities into loosely coupled
services, which helps the machine software engineers get rid of the lower-level
complexity and simplify their jobs. On the other hand, with SPL paradigm, their
responsibilities are further specified as managing the variable software engineering
artefacts. Therefore, in interactive software engineering, machines can play the role in
directing users to select the reusable software assets and implementing the candidate

application by composing the ordered services.

Since a relatively concrete specification to the machines’ responsibilities in
interactive software engineering is now available, this thesis further proposes a
requirement elicitation approach for SOA-based SPL engineering as a programming
model for realizing the interactive requirement engineering. A frame-based dialogue
system is applied as the interaction interface. Work related to dialogue systems will be

presented in the next section.

3.2 Dialogue System

Dialogue systems are a kind of computer systems designed to communicate with
human beings, extracting and analyzing information from their dialogue-based
expressions, so as to accomplish certain tasks (e.g. exchanging information and providing
services) in relatively natural manners. Language is the most efficient way for human
beings to exchange information between each other. Most human communications in
history are based on dialogues. Thus dialogue system provides a more natural,

comfortable and convenient way for human-machine interaction.

Input —— | Fusion

Dialogue
Manager

Output |[#——— Fission |d——

Fig. 3.1: Structure of dialogue system

Typically, a dialogue system consists of six components (Fig. 3.1): Input, Fusion,

Dialogue Manager, Knowledge Base, Fission and Output [7].

Input:

Handle different modes of inputs.

Fusion:

Extract, recognize, interpret, and fuse information from different modes of
inputs.

Dialogue Manager:

Control the flow of the dialogue by deciding how the system should respond
to the inputs [12].

Knowledge Base:

Manage information like dialogue history, task knowledge, general dialogue
knowledge, domain specific knowledge and user information.

Fission:

Transform the responses to different modes of outputs.

Output:

Handle the outputs.

The core components of a dialogue system are dialogue manager and knowledge

base. Dialogue managers can be classified into four categories [7]:

Finite-state and frame-based:

Finite state-based dialogue managers are the simplest dialogue managers. The
dialogue structure is represented in the form of state transition network, and
the dialogue control is system-driven and all the system’s utterances are
predetermined [7]. As an extension of finite state-based dialogue managers,
frame-based models simulate the approach of form filling, which allows
some degree of flexibility. In this thesis, a frame-based dialogue system is

developed for conducting requirement elicitation interactively.

10

Information state and the probabilistic based:

For the information state-based approaches, a group of states are predefined,
and the state of the dialogue will be changed dynamically according to
certain interaction strategies. Some probabilistic techniques (e.g. partially
observable Markov decision process) are applied to manage the transition
strategies.

Plan based:

Plan-based dialogue managers are based on the plan-based theories of
communicative action and dialogue [2]. They are more complex than the
previous dialogue managers.

Collaborative agent based:

Collaborative agent-based approaches try to capture the motivation behind a
dialogue and the mechanisms of dialogue itself. As a result, managers based
on these approaches contribute to the most complicated dialogue systems,

which allow very high level of flexibility.

For the knowledge source in dialogue system, typically there are five different

models of knowledge [13]:

Dialogue Model:

Dialogue Model holds the general information about the construction of a
dialogue, which is used to control the dialogue. Grammar-based modeling
and Plan-based modeling are two main approaches to model the knowledge
for Dialogue Model.

Dialogue History:

Dialogue History records the history of the dialogue. It is used for dialogue
control, disambiguation of context dependent utterances, and context

sensitive interpretation [13].

11

Domain Model:

Domain Model holds the domain knowledge that will be referred to in the
conversations. Knowledge in Domain Model is mainly used to guide the
semantic interpretation of user’s utterances, find the relevant items and
relations that are under discussing, supply default responses and son on [13].
Domain Model usually contains the structure of the domain and comprises a
subset of the general world knowledge. Its simplification is Conceptual
Model, which represents the conceptual relationships between the objects in
the domain [13]. Often, Conceptual Model alone is enough for the domain
knowledge of the dialogue system.

Task Model:

Task Model, which often consists of a hierarchical representation structure,
describes how the system’s communicative and other tasks should be carried
out [13].

User Model:

User Model represents the user’s goal and plans, capabilities, attitudes,

knowledge and belief [13].

In this thesis, the knowledge base of the proposed dialogue system contains
domain knowledge of requirement elicitation and the task knowledge for guiding users to
customize a specific type of software applications.

In addition to the structure, by considering the source of information which
determines the interaction, tasks of dialogue systems can be classified into four

categories [14]:

Slot-filling task:

The user has his goal and has the information about accomplishing the task.

12

B Database search task:

The user has his goal but needs to retrieve information for completing the
task.

B Explanation task:

The user doesn’t have or has little knowledge about the task.

B More complex tasks:

The task is a combination of the other three tasks.

In the proposed method, a slot-based dialogue system is adopted, and requirement
elicitation is modeled as a group of slot-filling tasks. These tasks will be performed
according to the knowledge related to requirement engineering, which is built in
knowledge base of the dialogue system. Work related to knowledge-based requirement

engineering will be introduced in the next section.

3.3 Knowledge-based Requirement Engineering

Requirement engineering is recognized as the most critical stage of the entire
software development process [15]. Typically, over 40% of errors in a software project
are from requirement engineering, while they need 10 more times of costs to repair than
other errors [16].

Conventional process-based or scenario-based requirement engineering methods
predefine a group of processes and their corresponding guidelines. Accordingly, the
requirement engineering activities and deliverables are carried out following the
guidelines [17]. However, it is very often that when the processes are ongoing, some
important information is not yet available. So, engineers have to repeat the processes,
which results in project delay and additional cost [18].

Unlike traditional process-driven requirement engineering, knowledge-driven
requirement engineering, as a novel requirement engineering paradigm, is conducted

under the guidance of domain knowledge. Hence, information hidden in the domain can

13

be retrieved without much help from domain experts. The information is further used to
guide the traditional requirement engineering process. As a result, the validity,
completeness as well as consistency of requirement engineering product are maintained.
Moreover, changes to the software development project will be detected and predicted in
an early stage, and fewer waste efforts will be made. Finally, the outcome of the project
is expected to be more mature and complete, while rework can be dramatically reduced
[18].
Furthermore, among the group of knowledge-driven requirement engineering
methods, ontology-based requirement engineering is very popular. It [19]:
B Provides formal representation for both requirement documents and
knowledge.
B Describes the problem domain with varying degrees of formalization and
expressiveness.
B [s well suited as an evolutionary approach.
B [s used to support requirements management and improve the traceability of
requirement artefacts.
Thus it outperforms other traditional knowledge-based approaches [19]. By now,
a number of ontology-based requirement engineering approaches have been proposed.

Detailed introduction will be presented in the next section.

3.4 Ontology
3.4.1 Overview

In theory, an ontology is a formal, explicit specification of a shared
conceptualization [20]. In other words, ontology is used to represent the common

knowledge within a domain.

14

The reasons to develop an ontology can be roughly classified into five categories
[21]:

® To share common understanding of the structure of information among

people or software agents

B To enable reuse of domain knowledge

B To make domain assumptions explicit

B To separate domain knowledge from the operational knowledge

® To analyze domain knowledge

They are all closely related to domain knowledge representation. Generally, an
ontology provides a shared vocabulary, which can be used to model a domain or a task.
Here, modeling means constructing the concepts, objects as well as their properties and
relations that exist in the domain or in the solution to the task [22].

Conventionally, knowledge engineering methods, like propositional logic,
predicate logic and other rule-based methods, mainly investigate topics like logic,
knowledge representation, search, and so on [23]. They focus on how to solve the
problem rather than the knowledge itself. So the resulting knowledge is often implicit
and difficult to be maintained, shared or reused. On the contrary, the main concern of
ontology is the contents of knowledge and approaches to accumulate it. It builds the
foundation for common knowledge.

Moreover, roughly speaking, ontology consists of task ontology, which
characterizes the computational architecture of a knowledge-based system for certain
tasks, and domain ontology, which characterizes the knowledge of a specific task domain
[23].

To develop an ontology, typically, includes the following steps [21]:

1. Define classes (concepts in the domain) in the ontology

2. Arrange the classes in a taxonomic (subclass-superclass) hierarchy

15

3. Define slots (properties of classes and instances) and describing allowed

values for these slots

4. Fill in instances

5. Fill in the values for slots of the instances

If all the classes, slots, instances and their relationships are properly defined, the
ontology for knowledge of a task or a domain is created.

There are many important benefits in applying ontology. First of all, the
knowledge is formal, explicit and shared, which means the knowledge is accessible to
everyone. With ontology, the common standards of a domain can be established by the
experts. People with different background will have opportunities to acquire the
knowledge without much professional training. Meanwhile, the taxonomy-based
representation is very concise and straight-forward, which decreases ambiguities and
errors. Finally, ontologies are machine-oriented. Some of the ontology languages are
XML-based, which can be easily shared among different machines. So, currently,
ontology is one of the most popular and powerful knowledge engineering methods
widely applied in different applications.

In this thesis, Web Ontology Language (OWL) [24], one of the most successful
ontology languages recommended by W3C, is adopted. OWL uses XML syntax and is
partially mapped to Description Logic, which is a subset of Predicate Logic. Thus OWL
provides users with various inference capabilities. Actually, the realization of some OWL
reasoners is based on tableau algorithms, which is an algorithm for Description Logic
reasoning. OWL consists of three sublanguages: OWL Lite, OWL DL and OWL Full.
OWL Full is the most expressive among the three. But there is not any reasoners
supporting its inference. In contrary, while promising the decidability, the expressiveness
of OWL DL and OWL Lite is sacrificed [25]. Thus Semantic Web Rule Language
(SWRL) [26], which supplements OWL DL and OWL Lite with Horn-like rules, was
proposed. The DL-safe version of SWRL is also decidable [25].

16

Moreover, as explained above, ontology has mechanism to describe implicit
knowledge. In fact, methods for retrieving the implicit knowledge are based on ontology
reasoning. Some of these approaches are derived from Description Logic reasoning. For
example, OWL DL is based on SH/Q Description Logic. Thus algorithms for Description
Logic reasoning, such as tableau algorithms, can be used to infer with OWL DL ontology.
Furthermore, many stable reasoners are available for OWL DL reasoning. For example,
Protégé, an OWL ontology development platform, provides interfaces for plugging in
reasoners like Pellet, FaCT++, Jena and RACER. In this thesis, Pellet is used for
ontology reasoning. It supports reasoning with both OWL DL and the DL-safe version of

SWRL.

3.4.2 Ontology for Requirement Engineering

As discussed in section 3.3, ontology-base requirement elicitation is a popular
topic nowadays. However, there is a long history of applying ontology for requirement
engineering. The very first research effort dedicated to utilizing ontologies in the
requirement engineering can be dated back to the early 1980s [25]. Since then, a number
of ontology-based requirement engineering approaches have been studied, developed and
proposed. Among the most notable publications, [27] introduces an ontology-based
requirement model that facilitates detecting incompleteness and inconsistency of
requirement artefacts, measuring the quality of requirement engineering, and predicting
potential changes in later software engineering phases. A very complete group of
requirement engineering related ontological relationships is defined in the model. In [28],
a minimum model for describing requirement knowledge is presented. Goal, quality
constraint and softgoal are proposed as the fundamental ontology concepts in
requirement engineering. In addition, a framework for ontology-based requirements
elicitation is introduced in [29]. Types of functional requirements as well as their

relationships which facilitate requirement elicitation are outlined in the ontology model.

17

Meanwhile, [15] presents a well-structured ontology-based requirement model called
SoftWiki, which is capable of capturing and managing the requirement engineering
artefacts for all stages of system development.
Although all the approaches introduced above make great contribution to
ontology-based requirement engineering, they are not suitable for representing
requirement knowledge for automated SPL. [27] places its emphasis on artefacts
verification, while the model proposed in [28] is more theoretical than practical. Besides,
the objective of the method from [29] is to ease the communication between requirement
engineers and clients in requirement elicitation. Similarly, SoftWiki [15] is developed for
supporting the collaboration of all stakeholders in all software engineering stages.
Actually, contributions from most ontology-based requirement engineering
studies fall into the following three categories:
B [mproving the quality of the requirement engineering artefacts (e.g. [27], [29],
[30D).

B Defining a shared understanding among engineers and clients (e.g. [31], [32],
[33]).

B Developing new knowledge-based requirement engineering methods (e.g.
[34], [35], [36]).

Issues critical to the realization of SOA-based automated SPL, like providing
automatic guidance for product customization and generating service-oriented system

specification, are not well covered by these approaches.

3.4.3 Ontology for SOA

As mentioned in Chapter II, the idea of Semantic Web Service is proposed for
automating SOA system implementation activities. Different from Feature Driven
Development [37] and Model-Driven Achitecture [38], where system functionalities are

mapped to system features and platform-independent models, SOA encapsulates

18

application functionalities into loosely coupled services. Thus, instead of designing and
realizing the features or models, software applications can be implemented by
discovering, composing and invoking the services in SOA. Moreover, Semantic Web
Service methods further specify the web service descriptions on the semantic level, thus
suggest solutions for automatic service discovery and composition [4].

Semantic Web Service approaches are also based on ontology. Currently, there are
mainly three ontologies developed for Semantic Web Service: Web Service Modeling
Ontology (WSMO) [39], Semantic Markup for Web Services (OWL-S) [40] and SOA
Ontology [20].

B WSMO is a conceptual model related to Semantic Web Service. It supports

the Semantic Web Service deployment and interoperation.

B OWL-S is also an ontology for describing Semantic Web Service. It enables
automatically discover, invoke, compose, and monitor web services under
specified constraints.

B "SOA Ontology defines the concepts, terminology and semantics of SOA in
both business and technical terms" [41]. It creates a foundation for facilitate
SOA understanding, SOA related communication, and SOA system modeling.
Meanwhile, it potentially, contributes to model-driven SOA implementation
[41].

The first two ontologies are relatively low-level. They are techniques for

describing concrete Semantic Web Services.

In this thesis, OWL-S is applied. OWL-S is based on the ontology language OWL.
It is an ontology of services that makes automatic service discovery and composition
possible [40]. The instances of its class ServiceProfile describe the characteristics of the
services which are used to match clients’ requests, while information for service
composition is contained in instances of the class ServiceModel. When discovering the

services, the requestors’ ServiceProfiles will be matched automatically with service

19

providers’ ServiceProfiles through semantic capability matching [42]. If the matching
succeeds, the desired services are found. Then the ServiceModels, associated with the
discovered services, will carry information about the process of composing and invoking
the services. So by reasoning the knowledge contained in ServiceModels, automatic
service composition will be performed and the desired functionalities can be obtained [8].
On the other hand, although OWL-S provides descriptions for web service functionalities,
it has few mechanisms for non-functional service description [43]. Fortunately, [43]
proposes a quality extension for OWL-S to offset this drawback. It inherits from the class
ServiceParameter defined in OWL-S, which is designed for extending OWL-S with

more specific service descriptions.

20

CHAPTER IV
PROPOSED ONTOLOGY-BASED REQUIREMENT MODEL

4.1 Introduction

This chapter reports the ontology-based requirement model. Different from the
ontology-based requirement engineering methods discussed in Chapter III, the model
developed in this research integrates the requirement engineering knowledge with
service-oriented knowledge. While the key concepts and relationships proposed in [27]
and [28] are kept for maintaining the completeness and consistency of the product
requirements, a service-oriented decomposition approach is applied for instantiating the
modeling, as well as organizing the commonalities and variabilities in SPL. Furthermore,
information for directing requirement elicitation, such as ranks of the requirements, is
also expressed in the ontology model. Therefore, knowledge contained in the model is
expected to guide the automatic product customization and facilitate generating
service-oriented system specification for system implementation.

In this chapter, construction of the ontology-based requirement model (Fig. 4.1) is
presented according to the ontology engineering steps proposed in [21]. First, concepts of
the model are defined. Second, relationships describing the taxonomic hierarchy of the
ontology are outlined. Third, as supplement to OWL ontology, this chapter proposes a

group of SWRL rules for the model. Finally, instantiation of the ontology is discussed.

4.2 Concepts

The concepts of the model are illustrated in Fig. 4.1 with class diagram notations.
In the domain of requirement elicitation, according to their different roles, Requirements
can mainly be classified into three categories: Function, Quality and Softgoal. Meanwhile,
Rank is used to represent the importance of the requirements with respect to the entire

product software. Besides, the proposed ontology model also contains concepts to

21

describe detailed information about a requirement, which offers helps to clients’

evaluation.
I1 I1 11
1 <> 0..% 1<> 0..% 1 <> 0..%

Function v - Quality Softgoal

1 0..%

I I I
VI
OtherInfo ; 41> Rank
1 v LS
[Bl :I
IV L _> equlrement III
A A
VII
Fig. 4.1: The proposed ontology-based requirement model
]

Requirement: An instance of Requirement is a system feature can be ordered
by users. There are three types of Requirement:. Function, Quality and
Softgoal.

Function: An instance of Function represents a functionality that users can
order. It may be a primitive function offered by the product software or a
composition of several primitive functions. From the service-oriented point
of view, a function is actually a service. In this research, functions are
organized in forest-like structure, where composite functions decompose into
less complex composite functions or primitive functions.

Quality: An instance of Quality is a non-functional constraint imposed on a
function. Mainly, they are used to further specify a functionality. Therefore, a
quality instance is always related to a particular function. A quality cannot be
chosen if the corresponding function is dropped. Besides, a quality can also

be further specified with sub-qualities in a decomposition tree.

22

B Sofigoal: Instances of Softgoal are also non-functional constraints. However,
instead of imposing on a particular function, they describe the global
environment within which the product software system works. They are often
very abstract, and may be related to a subset of the candidate functions and
qualities, but all selected requirements must submit to them. Similar to
instances of Quality, softgoals can also decompose into sub-softgoals.

B Rank: Instances of Rank represent the importance of the requirements with
respect to the potential system. On the other hand, they also specify the
evaluation order of the requirements in the requirement elicitation process.

B Otherlnfo: Concepts generalized from OtherInfo may be general requirement
engineering related concepts (e.g. stakeholders) or specific concepts within a
domain. Instances of them are used to describe detailed information about the
requirements. Users can request such relevant information when evaluating

the requirements.

4.3 Relationships

REQ = FUN u QUAw SOF

I. generalize(REQ,x), x € {IFUN,QUA,SOF'}

II. decompose(x,y), xeR, ye R, Re {FUN,QUA,SOF}
III. rely(x,y), xe REQ, y € REQ

IV. contradict(x,y), xe REQ, y € REQ

V. associate(x,y), xe FUN, ye QUA

VI hasRank(x,r), x € REQ, y € RANK

VIL. invalid(x,y), x€ REQ, y € REQ

Fig. 4.2: Notation for the relationships
The relationships between the concepts are depicted in Fig. 4.1, and their
notations are outlined in Fig. 4.2. In the proposed method, these relationships not only

enable checking the consistency and completeness of the customized requirements, but

23

also facilitate machines to direct the requirement elicitation.

L.

IL.

Generalize:

An instance of Function, Quality or Softgoal is also an instance of
Requirement. Generalize represents the IS-A relationship.

Decompose:

Requirement x decomposes into less complex requirement y of the same
type. y describes part of x’s characteristics or is a more detailed alternate
to x. x is called the parent, while y is called the child of x.

A requirement can decompose into zero children; otherwise it must
decompose into at least two children. A child has at most one parent.
Logically, a requirement cannot decompose into more complex
requirements (e.g. its parent or the parent of its parent). Thus the
decompose relationship forms decomposition trees. In practice, it is
possible that a requirement participates in the decompositions of several
more complex requirements. However, if a requirement is allowed to have
two parents, when it is picked up during requirement elicitation, the
composition that the requirement is supposed to join in the product
software will be unknown. Hence, in this case, two copies of the
requirement are required for participating in the two decompositions.
When functions decompose into sub-functions, the parent functions
represent functionalities that are the results of their children’s composition
(i.e. service composition). In other words, a parent implies a composition
strategy rather than any concrete functionalities. Only the leaves in a
function decomposition tree are primitive functionalities. Besides, it is not
necessary to select a composition strategy if one only needs some
primitive functionalities.

In a quality or softgoal decomposition tree, the children denote

24

I1I.

refinements to the parent. So logically, it actually doesn’t make any
difference to have a parent quality directly replaced by its children in an
instantiated ontology model. The decomposition relationship only eases
the requirement elicitation interaction or the ontology instantiation work.
Rely:

The realization of requirement x relies on the implementation of
requirement y. If x is ordered by the clients, y must also be selected;
otherwise the resulting system will not function properly.

So Rely describes the completeness of the requirement elicitation product.
In addition, when a requirement relies on two other requirements, this
implies it needs them both. In practice, it is possible that the requirement
only requires one of them. In this case, two copies of the same
requirement are created and a Contradict relationship is established
between them; then each of the two copies relies on one of the two
required requirements.

A parent function relying on its children or children of its children implies
the composition strategy requires the involvement of the corresponding
children. If a child function relies on its parent or parent of its parent, this
indicates the child function is designed deliberately for the composition.
Normally, a function relying on another function means the input of one
function is the output of the other function.

When a parent quality or softgoal relies on its children, it means the
children are essential to the parent constraint. In this research, children
qualities and softgoals are supposed to rely on their parents. This promises
that during the requirement elicitation process, children qualities and
softgoals will not be explored if their parents are abandoned.

Qualities and softgoals may rely on functions. This suggests realization of

25

IV.

the constraints requires the implementation of some functions. Functions
may also need some quality or softgoal constraints to function properly.
Moreover, if a function relies on a quality, it also relies on the function
associated with this quality constraint.

Contradict:

Requirement x contradicts requirement y. Requirement x and requirement
y are not supposed to simultaneously realized in the product software.
Contradict describes the consistency of the elicited requirements. This
relationship is symmetric and non-reflective. A requirement cannot
contradict its children, parent or the requirements it relies on. A function
should not contradict the quality constraints associated with it.

Normally, if two requirements play the same role in the candidate
application, which means they represent the same functionality or
constraint, there is a Contradict relationship between them. In addition, if
two requirements cannot be met simultaneously in the product software,
they contradict each other.

Associate:

Function x is associated with quality constraint y. y is a quality constraint
that can be imposed on function x.

As a quality cannot be realized on the customized software if its
associated function is not implemented. Associate relationship also
implies the quality constraint relies on its corresponding function.
Moreover, with the same problem and solution as Decompose relationship,
two functions are not supposed to be associated with the same quality.

If a composite function is associated with a quality, this suggests the
quality constraint is imposed on the composition rather than any primitive

functionalities. Constraints for primitive functionalities should be directly

26

VL

VIIL

related to the concrete functions. Moreover, as children qualities are
refinements to their parents, if a function is associated with a parent
quality, it is also associated with the corresponding children qualities.
Therefore, if an Associate relationship is explicitly defined between a
function and a quality, the function is associated with the entire quality
decomposition sub-tree which is rooted on the quality. Meanwhile, the
parent of the root quality, if there is one, is not supposed to have Associate
relationship with any functions.

hasRank:

Requirement x has a rank of . A requirement can have exactly one rank.
During the requirement elicitation process, requirements with higher ranks
will be offered to users for evaluation before those with lower ranks.
Hence, if a requirement has strong influence on the candidate application
or other requirements, it should be assigned with a high rank. Besides, the
parent requirements should always have higher ranks than their children.
If several requirements are closely related and supposed to be evaluated
one after another, they should be of the same rank.

Furthermore, requirements of the highest rank are treated as essential
requirements. They represent the common features of the SPL artefacts.
As a result, they will be picked mandatorily before the evaluation of any
other non-essential requirements. In addition, no requirement should
contradict essential requirements.

Invalid:

There is an invalid relationship between requirement x and requirement y.
Invalid relationships are used to denote the invalidity in the instantiated
ontology model. It is applied with rules, and can be generalized into types

of more specified Invalid relationships. Types of invalidity will be

27

4.4 Rules

Fig. 4.3 illustrates the group of SWRL rules applied in the research. They adopt
horn-like presentation. By reasoning with these rules, implicit knowledge for requirement

elicitation and ontology instantiation can be retrieved. Followings are the explanations to

the rules.
1.
1.
1ii.
1v.
V.

Vi.

Vil.

presented in the next section.

1. contradict(x, x) = invalid(x, x)

1. decompose(x,x)=>invalid(x, x)

ni. rely(x, y) nreb(y,z) = reb(x,z)

1v. contradict(x,y) = contradict(y, x)
contradict(x, y) nrely(x,y) = invalid(x, y)

vi. contradict(x,y) A decompose(x,y) = invalid(x, y)

Vil

Viil.

1X.
X.
X1.

Xi1.

Xiil.

X1V.

XV.

XVi.

contradict(x, y) n associate(x, y) = invalid(x, y)

decompose(x, y) A decompose(y, x) = invalid(x, y)

decompose(x, y) n decompose(y,z) = decompose(x, z)
decompose(x, y) n decompose(z, y) = invalid(x, y) ninvalid(z, y)
associate(x, y) A associate(z, y) = invalid(x, y) ninvalid(z, y)
decompose(x,yynxe RAaye RARe {QUA,SOF} = reh(y, x)
associate(x, y) = rely(y, x)

rely(x, y) ncontradict(y, z) = contradict(x, z)

decompose(x, y) A associate(z, x) = associate(z,y)

contradict(x, y) n hasRank(x,r) nr = TopRank = invalid(x, y)

Fig. 4.3: Rules for the proposed ontology model

Contradict relationship is non-reflective.

Decompose relationship is non-reflective.

Rely relationship is transitive.

Contradict relationship is symmetric.

Contradict relationship and Rely relationship are disjointed.
Contradict relationship and Decompose relationship are disjointed.

Contradict relationship and Associate relationship are disjointed.
28

viil. Decompose relationship is asymmetric.

iX. Decompose relationship is transitive.
X. Decompose relationship is inverse-functional.
X1. Associate relationship is inverse-functional.

xii. Children qualities and softgoals rely on their parents

xiii. A quality relies on its corresponding function.

xiv. If requirement x relies on requirement y, x contradicts the requirements

that y contradicts.

xv. If function z is associated with quality x, z is associated with x’s children.

xvi. Requirements cannot contradict top rank requirements.

In fact, rules i-xi can be expressed with OWL elements. However, some of them
cannot be reasoned with available reasonors. Even if reasoners can deal with them, the
invalid relationships will not be explicitly pointed out by the reasoners. Thus rules are
applied here.

Rules iii, iv, xiii and xiv reflect the nature of the relevant relationships, while
rules xii is used to facilitate the requirement elicitation process.

Besides, rules 1, ii, v, vi, vii, viii, iX, X, xi, xv and xvi are used to verify the
validity of an instantiated requirement model. During requirement elicitation, the
explicitly defined Decompose and Associate relationships determine the order of
requirement evaluation. Therefore, rule xv is not activated in requirement elicitation
process. Moreover, rule ix contradicts rule x, and it also violates the decomposition tree
structure. But rule ix facilitates discovering the invalidity that parents cannot contradict
the children of their children. Hence, it is applied but not activated together with rule x or

in requirement elicitation process.

4.5 Ontology Instantiation

Instantiating the ontology model is actually the domain engineering process in

29

SPL engineering.

Before instantiating the ontology model for a specific type of software systems,
the requirement engineers must analyze this type of service-oriented applications.
Decompose these systems into primitive services and find out the commonalities and

variabilities. Then they can instantiate the model according to the following procedure

!

Gdentify the root functiongD C/erify the validity of the instantiatiorD

presented in Fig. 4.4.

G)ecompose the function9 (Specify detailed information for each requriement)

(Ideﬂtlf\/ the aSSOCiated qUa“tieS) Gssign ranks to the requiremerﬂs)

Qdentify the softgoa19 Cdentify the Contradict relationship9

Cdentify the Rely relationship9

Fig. 4.4: Procedure of instantiating the ontology model

1. Identify the main functions which are roots of the decomposition trees.

2. For each of the roots, if it represents certain composition strategies, identify
the children that contribute to the composition. Then establish the Decompose
relationship between the parent and children. If the children are also
decomposable, repeat this decomposition process, until all primitive functions
are discovered.

3. Find the corresponding quality constraints that can be imposed on the
functions. Organize the qualities with decomposition trees. As all the qualities
constraints contained in a decomposition sub-tree are related with the same

function, establish an Associate relationship between the corresponding

30

function and the root of the sub-tree. Associate relationships between children
and the corresponding function are not supposed to be explicated defined. In
requirement elicitation process, when a function is picked by users, its
associated qualities will be pre-evaluated immediately. However, the children
qualities are expected to be explored in a later stage.

4. Identify the softgoals, and decompose them if necessary.

5. Establish the Rely relationship for the requirements.

6. Establish the Contradict relationships.

7. Identify the essential requirements, and assign ranks to the requirements with
respect to their importance and expected positions in the elicitation process.

8. Specify the detailed descriptions for each requirement. Bind each requirement
with the corresponding service description which will be used in generating
the service-oriented output. Details will be discussed in Chapter V.

9. Verify the validity of the instantiated ontology model. Make modifications if
necessary. Moreover, the generally acknowledged facts, like requirement
which could not decompose into exactly one child, should also be checked
manually.

Then a valid instance of the ontology model is built. Typically, for a type of

medium-sized software systems like online book shopping service, there will be dozens
of requirements and more than a hundred relationships created in the instantiated

ontology model.

31

CHAPTER V
PROPOSED REQUIREMENT ELICITATION METHOD

5.1 Introduction

A frame-based dialogue system is developed in this thesis, which takes the
instantiated ontology model as knowledge base. It is applied to elicit users’ demands
through human-machine interaction. Though to maintain the completeness and
consistency of the customized requirements is very complicated and requires ontology
reasoning, interactions for requirement elicitation are actually a group of slot-filling tasks.
Questions such as whether users need a specific requirement will be proposed by the
machine, and users will respond with their decisions on the very requirement. Therefore,
users know what they are going to do and how it is going to be done, which means the
requirement elicitation process can be modeled as a set of slot-filling subtasks, while the
utterances, slots as well as value options for each slot will be retrieved from the
knowledge base, hence a framed-based dialogue system is capable of handling the
interactions for requirement elicitation, in spite of its limited communication ability.

In this chapter, the structure of the dialogue system, the requirement elicitation

process and the output of the elicitation will be discussed.

5.2 Structure of the Proposed Dialogue System

The frame-based dialogue system designed in this research consists of four
components: interface, I/O controller, dialogue manager and knowledge base (Fig. 5.1).

The dialogue interface is text-based. It displays machine generated utterances and
provides one slot for users to fill in. Typically, the utterances will be questions like
"Would you like to select the requirement ...?". Users are expected to answer "Yes" or
"No". Then the users’ response will be passed onto the I/O controller. It will try to match

the input with a set of predetermined information. If the matching fails, an utterance that

32

asks users to correct their response will be generated by the I/O controller, sent to the
interface and get displayed as the output of current interaction. Otherwise, the input will
be converted into format processable to machines and passed onto the dialogue manager.
The dialogue manager then knows users’ decision on the requirement currently being
evaluated. It will consult the ontology knowledge base with the decision, and customize
the requirements based on the related requirement knowledge as well as the input. After
that, an output will be generated by the dialogue manager according to the result of the
customization and sent to the I/O controller. The I/O controller will convert the output
into natural language and have it displayed by the interface, which will initiate the next

round of interaction.

Input

i : Ontology
Dialogue 1/0 Dialogue
Interface Controller Manager Knogvalse(;ige

Output]

Fig. 5.1: Structure of the proposed dialogue system

5.3 Process of Requirement Elicitation

Before the commencement of requirement elicitation, the implicit knowledge (e.g.
indirect relationships) contained in the instantiated ontology model will be extracted by
reasoning.

The requirement elicitation process (Fig. 5.2) is divided into two stages. First,
requirement elicitation will be conducted under the guidance of machine. Then users will
have chances to change their decisions made in the first stage and further customize the

product software.

33

|

< Identify the implicit knowledge with reasoning >

< Perform requirement elicitation under machine's guidance >

< Customize the requirements freely by users >

®

Fig. 5.2: Process of interactive requirement elicitation

5.3.1 Machine-directed Requirement Elicitation

During the first stage, each requirement will be offered to users for evaluation in
turns. At the beginning, all essential requirements will be picked automatically without
being evaluated. Then the functions will be evaluated, and the evaluation of qualities will
follow. Finally, the softgoals will be customized. Among the requirements of the same
category, one with higher rank will be evaluated before those with lower ranks.

Fig. 5.3 presents the pseudo code for evaluating the requirements. When
evaluating a requirement, there could be four cases.

1. If a requirement R is essential to the system, actions for selecting the

requirement will be performed.

2. If the requirement R is non-essential and pre-selected, actions for selecting a

requirement will be performed. These actions include call selectRequirement
to have R selected; call preSelectRequirement to have the requirements that R
relies on pre-selected; call preDropRequirement to have the requirements that

R contradicts pre-dropped; call preEvaluateRequirement to have the
34

requirements that R decomposes into pre-evaluated; and if R is a function, call
preEvaluateRequirement to have the qualities that R is associated with

pre-evaluated.

1. FOR each requirement R to be evaluated

2. IF R is essential to the system THEN

3. CALL PerformRequirementSelecting with R

4. ELSE IF R is pre-selected THEN

5. CALL PerformRequirementSelecting with R

6. ELSE IF R is pre-dropped THEN

7. CALL PerformRequirementDropping with R

8. ELSE

9. CALL evaluateRequirement with R

10. IF R is to be selected THEN

11. CALL PerformRequirementSelecting with R
12. ELSE

13. CALL PerformRequirementDropping with R
14. END IF

15. END IF

16. END FOR

17. PerformRequirementSelection with R

18. CALL selectRequirement with R

19. CALL preSelectRequirement with the requirements R relies on

20. CALL preDropRequirement with the requirements R contradicts

21. CALL preEvaluateRequirement with the requirements R decomposes into
22. IF R is a function THEN

23, CALL preEvaluateRequirement with the qualities R is associated with
24, END IF

25. PerformRequirementDropping with R
26. CALL dropRequirement with R
27. CALL preDropRequirement with the requirements that relies on R

Fig. 5.3: Pseudo code for requirement evaluation process

3. If the requirement R is non-essential and pre-dropped, action for dropping a
requirement will be performed. These actions include call dropRequirement to
have R dropped and call preDropRequirement to have the requirements that
rely on R pre-dropped.

4. If the requirement R is non-essential and has not been pre-selected or
pre-dropped, evaluateRequirement will be called to have R evaluated by users.

Then if users choose to select R, actions for selecting a requirement will be

35

performed. Otherwise, actions for dropping a requirement will be performed.

Followings are the explanations to the subroutines used in the pseudo code.

B gselectRequirement will put the requirement to a set to have it labelled as
"selected" if it is unlabelled.

B droptRequirement will put the requirement to a set to have it labelled as
"dropped" if it is unlabelled.

B cvaluationRequirement will present the requirement to wusers through
dialogue interface. Users can choose to select or drop the requirement, or
request detailed description to the requirement before making the decision.

B preSelectRequirement will put the requirement to a set to have it labelled as
"pre-selected" if it is unlabelled.

B preDropRequirement will put the requirement to a set to have it labelled as
"pre-dropped" if it is unlabelled.

B preEvaluateRequirement will first call evaluateRequirement to have the
requirement evaluated if it haven’t been evaluated yet. Then based on users’
choice, preSelectRequirement or preDropRequirement will be called.
Moreover, if the requirement is to be pre-selected, pre-select the requirements
it relies on, and pre-drop the requirements contradicting it. Otherwise,
pre-drop the requirements relying on it.

During the requirement elicitation process, all requirements will be expanded at
most once (in pre-evaluation or in formal evaluation). Here, expanding a requirement
means retrieving the detailed information of the requirement. Besides, each Decompose
and Associate relationship will be visited at most once by the parents. Each Rely and
Contradict relationship will be visited at most twice by the two involved requirements.
Therefore, let V' be the number of requirement instances in the ontology and E be the

number of the four relationships. Then the complexity of the algorithm is O(V+E).

36

5.3.2 User Requirement Customization

During the second stage, users can order the machine to select or drop an arbitrary
requirement. In other words, they can change their decisions made in the first stage. If a
selected requirement is to be dropped, the selected requirements that rely on it will also
be dropped. If a dropped requirement is to be selected, the selected requirements that
contradict it will be dropped and the dropped requirements that it relies on will be
selected. Therefore, the completeness and consistency of the customization are

maintained all over the two stages.

5.4 Output of Requirement Elicitation

5.4.1 Output Overview

To build software with SOA methods, the services must first be discovered. Thus
the output of the requirement elicitation process is a set of service descriptions which can

be used to discover the services satisfying the selected requirements.

Precondition

hasPreconsition

hasOutput hasResult

servicePqrameter

\

ServiceParameter

Fig. 5.4: Selected classes and properties in OWL-S functionality description

In this research, OWL-S is used to describe the services. OWL-S makes use of an
instance of ServiceProfile to represent the information needed to discover a service.

ServiceProfile has four functionality related properties: haslnput, hasOutput,

37

hasPrecondition and hasResult. They associate an instance of ServiceProfile with
respective instances of Input, Output, Precondition and Result. And an instance of Input,
Output, Precondition and Result would respectively represent: the information the
service requires to work, the message the service returns, the condition within which the
service executes properly and the effects as well as outputs of the service execution.
Quality constraints to services are not explicitly defined in OWL-S. The
extension proposed in [43] is used to describe the qualities and softgoals. In this
extension, Quality Property which is generalized from OWL-S class ServiceParameter
is used to represent a constraint. For those measurable qualities, instances of Attribute,
inherited from Quality Property, can be used to express them as well as their metrics.
For those abstract constraints (e.g. softgoals), Quality Model, which connects
Quality Property via property defined by, can be used to specify their standards.
Instances of ServiceProfile are associated with instances of Quality Property through

property serviceParamter.

presents haslnput :
‘—@oeProfile L oo Serwoe‘l?fb|
h: ut
servioeParaietf' Py ServiceOutput

OWL-S Sarh oePara@ serviceParameterName -
~,458&1[&@&&;11'4
refined_into l
definition e e,
Quamy_Pr@&L Quality_Model
equivalent_to d
Extension defined_by

S
Attribute) Standard)_Name g

measured_by

name formula

o —
Metrics
datatype Lnt.
o——=

Fig. 5.5: OWL-S quality extension proposed in [43]

So for each requirement, it is related with a piece of service discovery

38

information: either functionalities represented with Imput, Output, Precondition and
Result, or quality constraints represented by Quality Property. Converting requirements
into service descriptions is actually to combine the information that belongs to the
selected requirements. As requirements are organized in decomposition trees, the selected
requirements also form a group of selected sub-trees. The integration process can be

carried out in a way of merging nodes in the selected sub-trees.

5.4.2 Output Generation

The output generation process (Fig. 5.6) is divided into four phases.

l

<Retrieve the selected primitive functions)

(Merge primitive sibling functions

(Merge primitive functions to their parents>

Yes
If there are mergeable functions

No

(Attach the quality constraints to the corresponding function roots>

(Attach the softgoals to the selected function roots)

!

Fig. 5.6: Procedure of generating service description

1. Retrieve the selected primitive functions. Normally, primitive functions have

information about input and output of the service. If there is a Rely

39

relationship between two selected sibling primitive functions, it implies that
some inputs of one primitive function are from the outputs of the other
function. Then those relevant inputs and outputs are not necessarily to be
expressed in the service description. So merge the two siblings with algorithm

outlined in Fig. 5.7.

1. //Let f1 and f2 be the selected siblings

2. [/Letflrelyonf2

3. //Let f3 be the result of the merge

4, CREATE function f3

5. FOR each f2’s input, precondition or result

6. IF f3 doesn’t have it THEN

i Attach it to f3’s inputs, preconditions or results
8. END IF

9) END FOR

10. FOR each f1’ output, precondition or result

11. IF f3 doesn’t have it THEN

12: Attach it to f3’s outputs, preconditions or results
13: END IF

14. END FOR

15. FOR each f2's output

16. IF the output is not an input of f1

17. AND f3 doesn’t have it

18. THEN

19. Attach it to f3's outputs

20. END IF

21. ENDFOR

22. FOR each f1's input

23. IF the input is not an output of f2

24. AND f3 doesn’t have it

25; THEN

26. Attach it to f3’s inputs

27: END IF

28. END FOR

29. Establish Decompose relationship between f1, f2’s parent and f3
30. FOR each Rely relationship fI and f2 participate in

39! IF the relationship is not between f1 and f2

32. AND it involves another requirement r4

33. THEN

34, Establish the same relationship between f3 and r4
35: END IF

36. ENDFOR

37. Remove f1 and f2 from the selected requirement set
38. Put f3 to the selected requirement set

Fig. 5.7: Pseudo code for merging siblings
40

The algorithm first creates a new function. Then attach inputs, outputs,
preconditions and results of the two siblings to the new function, and
removing the unnecessary inputs and outputs. Establish the same Decompose
and Rely relationships that the two siblings participate in for the new function,
while the relationships between the two siblings should be eliminated. Then
replace the two siblings with the new function in the corresponding selected
sub-tree.

Repeat the sibling merging process until no more primitive siblings can be
merged any more.

Merge the primitive children functions into their parents in the selected
function sub-trees. Composite functions usually don’t contain information
about input or output. Since they represent composition strategies, they are
associated with preconditions and results. The children should be merged to
their parents so as to make descriptions for the compositions complete. The
algorithm for merging children into parent is presented in Fig. 5.8.

The algorithm first attaches the child’s inputs, outputs, preconditions and
results to the parent. Then establish the same Rely relationships that the child
participates in for the parent, and remove the child from selected requirement
set.

It is possible that a parent function is selected but none of its primitive
children is selected. If this happens and no other requirements rely on the
parent function, it is supposed that users don’t really need this function.
Hence, it will be removed as if it has never been selected. If some selected
requirements rely on it, it cannot be removed directly. In this case, there will
be some default primitive functional descriptions predefined for the composite
function. With these descriptions, the composite function can be treated as a

primitive function.

41

After primitive children are merged into their parents, the merged parent
forms new “primitive” functions. It is also possible that the new primitive
functions rely on some of their siblings. In this case, run the merging sibling
algorithm for them. Repeat merging the new primitive children into parents

until only the roots of the selected sub-trees are left.

1. //Let p1 be the selected parent

2. //Let c2 be the selected child

3. FOR each ¢2's input, output, precondition or result

4. IF p1 doesn’t have it THEN

5. Attach it to p1’s inputs, outputs, preconditions or results
6. END IF

7. END FOR

8. FOR each Rely relationship €2 participates

9. IF the relationship is not between p1 and ¢2

10. AND it involves another requirement r3

11. THEN

12. Establish the same relationship between p1 and r3
13. END IF

14. END FOR

15. Remove ¢2 from the selected requirement set

Fig. 5.8: Pseudo code for merging child into parent

3. Attach the selected leaf qualities to the corresponding function roots. Parent
qualities don’t represent any concrete constraints, so they don’t carry any
service related information. For each leaf quality, first find the selected
function that is associated with it. Then further trace the root of selected
sub-tree which contains the function. Attach the service information carried
by the leaf quality to the root’s service description. If a parent quality is
selected but none of its children is selected, the same solution for function
will be applied to handle it.

4. Attach the selected leaf softgoals to the function roots. Parent softgoals also
don’t carry service related information. Attach the leaf softgoals’ information
to all the selected function roots. If a parent softgoal is selected but none of its

children is selected, the same solution for function and quality will be applied.

42

Finally, the integrated service descriptions (i.e. the OWL-S files), carried by the
roots of the selected function sub-trees, form the output of the requirement elicitation.
When the service for a root function is discovered, descriptions to the primitive services,
on which the root is built, are also carried by this service’s specification. Therefore, when
generating the output, service information for the primitive functions is merged into the
root functions’ descriptions, and there is no need to describe the primitive functions
separately. On the other hand, merging service descriptions into root functions is optional.
Users may choose to have the quality and softgoal constraints attached on the primitive
functions directly, and then discover and evaluate the selected primitive functions
separately. As a result, instead of applying the service compositions offered by the

service providers, they can define the service composition strategies on their own.

5.5 Considerations for System Implementation

Implementation of service-oriented systems involves two stages: service
discovery and service composition. Solutions to automatic service discovery and
composition with OWL-S are discussed in [8]. A brief overview is presented in this
section.

Different from UDDI, which supports keyword based service discovery, OWL-S
can describe the semantics of the services. With semantic capability matching, limitations
of syntactic service matching can be overcome, and service discovery will be more
intelligent. Basically, there are two types of service capability presentation: one is to use
an extensive class hierarchy to specify the detailed functionalities; the other is to define
the state transformation resulted from the execution of the service. OWL-S supports both
presentations [42], which means capability matchmaking with OWL-S is more promising.
Besides, plenty of matching as well as other service discovery algorithms have been
proposed in literature for automating OWL-S based service discovery (refer to [8] for the

list of algorithms). Therefore, with the OWL-S based requirement elicitation outputs,

43

appropriate services can be found automatically.

When OWL-S based services are discovered, their compositions should be
performed in order to provide the requested functionalities. In OWL-S, the composition
is described with instances of ServiceModel which will be retrieved when the services are
discovered. Each ServiceModel actually represents process models of composing and
executing the corresponding service. The process models can be used to construct generic
procedures and plans for implementing the functionalities. Several AI planning
techniques have been proposed for automatic OWL-S based service composition [8].
Although most of the approaches are not mature enough and further work for realizing
automatic OWL-S service composition is still needed, automated composition for
OWL-S based information-gathering services can already be performed [42].

By now, the complete process from requirement elicitation to system realization
has been presented. With an SPL approach, the service-oriented software is ordered and
expected to be implemented automatically. Furthermore, by directly interacting with the
text-based dialogue system developed in this thesis, users can properly customize the

expected software product without producing any errors.

44

CHAPTER VI
IMPLEMENTATION AND CASE STUDY

5.6 Implementation

The dialogue system was developed in Java 6.0 on x86 platform with Windows
operating system. Eclipse IDE (3.6) was used to facilitate coding and debugging.

Fig. 6.1 depicts the interface of the dialogue system. It is divided into three parts.
The utterances generated by the dialogue manager are displayed in the upper left textbox.
Users can type their response in the lower left textbox. Meanwhile, the three lists on the
right side contain the selected, dropped and to-be-evaluated requirements respectively.

The ontology is built with Protégé ontology editor (4.2), and Pellet (2.2.2) is
applied as the ontology reasoner. Pellet supports reasoning with both OWL DL and
DL-safe SWRL. The version of OWL language adopted in the thesis is 1.1.

il
Applet
W: Due to the decision on the reguirernent"Get |2l ocate a book |Surt hooks in a list Get detailed info of a book|
detailed info of a book”, & group of functional Get reference to abook |Advanced search Get publication info
;ergug';?;’;;y?g"‘g:::_g:;&”;gzelg]:; requirement, Pick a book from a book li Get contents
’ (Get a list of relevant book! Exact match
ok Search relevant books Broad match

Search in book keywords
M: Due to the decision an the requirement " Get
detailed info of 2 book”, the requirement " Get
contents" need to he evaluated. Would you like to
choose the functional requirement "Get
contents"? [YES, MO, DETAILS]

Llyes

hl: Are yau sure you want to pick this requirement
"Get contents"? [YES, M)

Uyes

M: Due to the decision on the requirement "Get
detailed info of & book”, the requirement "Get
puhlication infa" need to be evaluated. YWoaould you
like to choaose the functional requirement "Get
publication info"? [YES, MO, DETAILS]

L«]

Submit Cancel P I [T] I b

Applet started.

Fig. 6.1: Interface of the proposed dialogue system

The concepts, object relationships, data relationships, rules and instances of the

45

requirement model created with Protégé editor are shown below. Fig. 6.2 illustrates the

concepts for the ontology-based ontology model, while the relationships between these

concepts are presented in Fig. 6.3.

In Fig. 6.4, the group of data relationships

describing the concepts with primitive data types is created. Meanwhile, the SWRL rules

designed for the requirement model are given in Fig. 6.5, followed by Fig. 6.6, where

instances for the case study, which will be discussed in the next section, are constructed

with the ontology model.

Bl InteractiveRE (http://www. semanticweb. org/ontologies/InteractiveRE. oxl) — [E:\Study\paper\thesis\TnteractiveRE owl] == x|
File Edt Ontologies Reasoner Tools Refactor Tabs View Window Help
<l [@ (hitp:fvww sema o owl) | & |
[Active Ontology | Entties | Classes | Object Properties | Data Properties | Individuals | OWLViz | DL Query | Rules
[Class hirarchy | Class hisrarchy (inferred) | Annotations | Usage
ﬂ ﬂ E Annotations
v-®Thing pent
©Rank "Requirement'**PlainLiteral
V-~ Requirement
~~@Function
-~ @ Quality Description: Reguirement LECE
- @ softgoal Equivalent classes [~
© stakeholder
©system @ (Function
or Quality
or Softgoal)

and (hasRankOf some Rank)

and (hasRankOf only Rank)
and Of only

and (contradictWith only Requirement)

and (relyBy only Requirement)

and (relyOn only Requirement)
and (hasRankOf exactly 1 Rank)
and (hasOWLSDespOf some string)

and (hasOWLSDespOf only string)

and (inconsistentWith only Requirement)

and (hasReqDetailedExpOf some string)

and (hasReqDetailedExpOf only string)
and (hasOWLSDespOf exactly 1 string)
and (hasReqDetailedExpOf exactly 1 string)

)

il

To use the reasaner click Reasoner-=Start Reasaner Show Inferences

Fig. 6.2: Classes created for the proposed ontology model

46

Inuncuveu (http: semanticweb. org/ontologies/InteractiveRE. owl) — :\Study\paper\thesis\InteractiveRE = ﬂ[_)g

File Edt Ontologies Reasoner Tools Refactor Tabs View Window Help

<> |®ImeradiveRE(hﬂp!N\rwwsemam\CWeb.arg/omologmsl\meraemreFEowl) -‘ n‘ |

Active Ortology | Entities | Classes | Object Properties

¥ mstopObjectProperty Annotations
m=associateBy label
m=associateWith “contradictwithPlainLiteral
m=contradictWith
v-m=decomposeBy
| -"=decomposeByFun | Functional Domains (intersection) [«
mmdecomposeByQua -
. mmdecomposeBySoft || Inverse functional © Requirement
v-mudecomposeinto] Transtive
- mmdecomposelntoFun Syl Ranges{intamectian)
-mmdecomposelintoQua ©Requirement
-mmdecomposelntoSoft [Asymmetric
==hasRankOf] Reflexive Equivalent object properties

®=hasStakeholderOf
nconsistentWith
m=relyBy

==relyon

Irreflexive

per properties

mutopObjectProperty
Inverse propeties

Disjoint properties
mmassociateWith
w=relyon m
m=associateBy
w=relyBy

b2

To use the reasoner click Reasoner-=Start Reasoner Show Inferences

Fig. 6.3: Object properties created for the proposed ontology model

B InteractiveRE (http:/ anticweb. org/ontologies/InteractiveRE. owl) — [E:\Study\paper\thesis\InteractiveRE. owl]

File Edt Ortologies Reasoner Tools Refactor Tabs View Window Help

@ > |® iveRE (Fitp: vy orglor owl) v‘ m‘ |
[Active Ontology | Entties | Classes | Object Properties. | Data Properties | Individuals | OWLViz | DL Query | Rules |

[& =6 IW
@@ I'E Annatations: hasReqDespOf

v-mstopDataProperty Annaaflans

"= hasOWLSDespOf label

®=hasRankDespOf "hasReqDespOf*PlainLiteral
®=hasRankLevelOf
#=hasReqDespOf
mhasReqDetailedExpOf
#=hasStakeholderDespOf
==hasSystemDespOf

== hasSystemReqURIOF

O

Description: b

Functional Domains (intersection)

© Requirement

Ranges

@ string
Equivalent properties
Super properties

Disjoint properties

To use the reasoner click Reasoner->Start Reasoner Show Inferences

Fig. 6.4: Data properties created for the proposed ontology model

47

InteractiveBE (http:/, b. org/ontologies/InteractiveRE. owl) — \Study\paper\thesis\Int,

File Edt Ontologies Reasoner Tools Refactor Tabs View Window Help

@ &> | [© InteractiveRE (ritp i

Active Ortology | Etities | Classes | Object Properties | Data Properties | Individuals | OWLViz | DL Query | Rules

semarticweh orglontologiesArteractiveRE owl) vl 8 l ‘

R

Rules

Function(?f3), Quality(?q1), Quality(?q2), iateWith(?f3, 2q1), d p (2q1,792) > iateWith(?f3, 2q2)

Requirement(?r1), Requirement(?r2), contradictWith(?r1, ?r2) > contradictWith(?r2, 2r1)

Requirement(?r1), Requirement(?r2), associateWith(?r1, ?r2), contradictWith(?r1, ?r2) - i i With(?r1, ?r2)

Requirement(?r), contradictWith(?r, 2r) - i i ith(?r, 2r)

Function(?f), Quality(?q), iateWith(?f, 2q) -> relyon(?q, ?f)

Requirement(?r1), Requirement(?r2), Requirement(?r3), contradictWith(?r2, ?r3), relyOn(?r1, ?r2) > contradictWith(?r1, ?r3)
goal(?s1), Softgoal(?s2), p 251, 252) > relyon(?s2, ?s1)

Rank(?k), Requirement(?r1), Requirement(?r2), contradictWith(?r1, ?r2), Of(?r1, 7K), evelOf(?k, 1) >

inconsistentWith(?r1, ?r2)

Requirement(?r1), Requirement(?r2), Requirement(?r3), associateWith(?r1, ?r2), associateWith(?r3, ?r2) -> inconsistentWith(?r1, 2r2),
inconsistentWith(?r3, ?r2)

Requirement(?r1), Requirement(?r2), decomp (2r1, 2r2), decomp ?r2,7r1) > i istentWith(?r1, 7r2)

Requirement(?r), d p (2r, 2r) > i (2r, ?r)

Requirement(?r1), Requirement(?r2), contradictWith(?r1, ?r2), relyon(?r1, ?r2) - inconsistentWith(?r1, ?r2)
Requirement(?r1), Requirement(?r2), contradictWith(?r1, 2r2), d p (2r1, 2r2) > i istentWith(?r1, 2r2)
Quality(?q1), Quality(?q2), decomposelnto(?q1, ?q2) -> relyOn(?q2, 7q1)

Requirement(?r1), Requirement(?r2), Requirement(?r3), decomp (?r1, ?r2), decomp (2r2, 2r3) > p (2r1,
2r3)
Requirement(?r1), Requirement(?r2), Requirement(?r3), decomp (2r1,2r2), d p (213, 2r2) > i i With(?r1,

?r2), inconsistentWith(?r3, ?r2)

Requirement(?r1), Requirement(?r2), Requirement(?r3), relyon(?r1, ?r2), relyon(?r2, ?r3) -> relyon(?r1, ?r3)

To use the reasoner click Reasoner->Start Reasoner] Show Inferences

Fig. 6.5: Rules created for the proposed ontology model

g/ ontologies/InteractiveRE/BookShopping. ovl) — [E:\workspace\In: . \Inte -10f x|
File Edit Ontologies Reasoner Tools Refactor Tabs View Window Help

EO ‘@ ing (it £

[Active Ortology | Entties | Classes | Object Properties | Data Properties | Indivicuals | OWLYiz | DL Query | Rules

[Memberslist | Members list (inferred) | [Annotations | Usage

(5 cweb orglontologiesinteractiveREBookShapping ol - m‘]

Members ch Annotation:
mm |ﬂ . A ch label

- " AP
v-@Thing ¢ GetAListOfRelevantBooks ‘AdvancedSearch"PlainLiteral

! izRank. ¢ GetContents
“R;iﬂ:\i;'i‘;:t # GetDetailedInfoOfABook
®Qualty ¢ GetPublicationinfo Tynes Object RpEny asaiions =
®5oftgoal ¢ GetReferenceToABook @ Function ==hasRankOf Ranks
- @ Stakeholder # LocateABook m=hasStakeholderOf
© System ¢ PickABookFromAList Aamendtuiduals OnlineBookStoreCu
searchinBookKeywords stomer
¢ searchRelevantBooks ifturastilmitddusle
4 sortBooksInAList DS ity sk ns
==hasReqDespOf

"Advanced search"
=hasReqDetailedExp
of
"\InteractiveRE\Ex
planation\BookSho
pping\AdvancedSe
arch" —
"=hasOWLSDespOf
"\InteractiveRE\Ser
viceDescription\Bo
ing\Ad

To use the reasoner click Reasoner-=Start Reasoner [V Show Inferences

Fig. 6.6: Instances created with the proposed ontology model

48

5.7 Case Study

5.7.1 Case Overview

An online book shopping system is used as a case study in this research. The
structure of a typical but simplified online book shopping system is illustrated in Fig. 6.7.
There are basically four modules: book locating, cart management, account management
and order placing. Book locating module is responsible for book searching and retrieving
book information; cart management module provides a list where users can save the
references of the books they want to buy; account management module manages users’
personal, delivery and payment information; order placing module gathers information
such as shopping list, payment, delivery, and total price, and helps users to place the
order. It is assumed that account management is not necessary for an online book
shopping system. Users can specify necessary information for each purchase without

having it saved in the online bookstore.

Logage Book Manage Cart Place Order
Specify Payment

| Specify Delivery
Get Book Info | [-
Calculate Price

Generate

Shopping List Confirm Order

Manage Account
J
Login/Logout

Account Setting

Add Payment

Add Delivery

Book Shopping

il

Fig. 6.7: Functionalities of an online book shopping system

The requirement model was instantiated for the entire book shopping system
(refer to Appendix A). There are totally 52 functions, 6 qualities and 2 softgoals. For the

relationships, there are 48 Decomposes, 102 Relys, 6 Contradicts and 6 Associates. 1t is

49

too complicated to explain all the details. In this thesis, process of customizing the book

locating module with the proposed approach is presented in details as the case study.

5.7.2 Book Locating Service

1. Function Decomposition

First, the ontology model is instantiated with requirements of the book locating
module. Basically, book locating module provides two functionalities: get reference to a
book and get detailed information about a book. Details of a book may include the
publication information, the contents, sample chapters and so on. Here publication
information and contents are used as examples. In addition, in order to get the reference
of a book, the most common method is search. Search will return a list of relevant books,
so users need to point out the very book from the list. In addition, to facilitate users in
finding the book among a list of books, sorting could be applied. Thus getting a list of
books may contain two sub-processes: search a book and sort the search results.
Furthermore, there are two ways of book searching. One is to match user inputs with the
predefined keywords of the books. The other is advanced composite search. Users may
provide detailed information such as authors and publication to narrow down the search
domain. There are two levels of keywords matching: broad match and exact match. Exact
match tries to return the results that are most relevant to the inputs, while broad match
allows returning something appearing similar to the inputs but not exactly related to the
inputs. On the other hand, broad match may return something unexpected but interesting.
Thus they are two different levels of search quality constraints, and mutually exclusive.

Now, book locating is fully decomposed into primitive functions and quality
constraints. Followings are descriptions to each of the functions.

B Search in book keywords: input — phrases (from users); output — a list of

relevant books and a list of references to the books

50

B Advanced search: input — the fields to be matched and phrases for each field
(from users); output — a list of relevant books and a list of references to the
books

B Search relevant books: input — (from sub-functions); output — (from
sub-functions)

B Sort books in a list: input — the sorting order (from users) and a list of book
references (from Search relevant books); output — a list of relevant books and
a list of references to the books

B Get a list of relevant books: input — (from sub-functions); output — (from
sub-functions)

B Pick a book from a list: input — book index in the list (from users) and a list
of book references (from Get list of relevant books); output — a reference to a
book

B Get reference to a book: input — (from sub-functions); output — (from
sub-functions)

B Get publication info: input — a reference to a book (from Get reference to a
book); output — publication information of a book

B Get contents: input — a reference to a book (from Get reference to a book);
output — contents of a book

B Get detailed info of a book: input — (from sub-functions); output — (from
sub-functions)

B Jocate a book: input — (from sub-functions); output — (from sub-functions)

2. Ontology Instantiation
Fig. 6.8 presents the instantiated ontology model.
Broad match and Exact match are mutually exclusive, so there is a Contradict

relationship between them. They are quality constraints for Search in book keywords. As

51

a result, they are related with Search in book keywords via Associate relationship.
Meanwhile, Search in book keywords is essential to Search relevant books; Search
relevant books is essential to Get a list of relevant books; Get a list of relevant books and
Pick a book from a list are essential to Get reference to a book; Get reference to a book is
essential to Locate a book. Thus there are Rely relationships pointing from the parents to
the children. In addition, Sort books in a list relies on the output of Search relevant books;
Pick a book from a list relies on the output of Get a list of relevant books; Get detailed
info of a book relies on the output of Get reference to a book. So there are Rely
relationships between each pair. Meanwhile, Pick a book from a list can only contribute
to Get reference to a book; Get reference to a book can only contribute to Locate a book.

As a result, there are Rely relationships from the two children to the two parents.

Locate a
=, book

\
Get referencd_ Get detailed
to a book [info of a book

LN SN

£ ; Get
;ﬁ?;;;;#ﬁ;nﬂi ;;gﬁ : ??25 publication Get contents
i info

VLN

Search < Sort books

relevant book in a list
\ / \
N

1 1

[

i —Cooo-o-co-ccccComoco—oocoooooood { '

1 1
ank 1: Locate a book
ank 2: Get reference to a book
ank 3: Get a list of books, Pick a book from a list
ank 4: Search relevant books, Sort books in a list
ank 5: Search in book keywords, Advanced search
ank 6: Get detailed info of a book
ank 7: Get publication info, Get contents
ank 8: Broad match, Exact match

Fig. 6.8: Requirement model instantiated with book locating service

52

Ranks of the requirements are also shown in Fig. 6.8. As the core of Locate a
book is to get the reference of the book, requirements describing Get reference to a book
are expected to be evaluated first. Thus Get detailed info of a book as well as its children

has a relatively low rank.

3. Requirement Elicitation

When the ontology model is ready, requirement elicitation can be performed. The
sample utterances between users and machine are presented in Fig. 6.9 - 6.15. In this case,
users need the software system to retrieve detailed information about a book. So they
only want to search a book with exact matching and retrieve all the available information
about the book.

In Fig. 6.9, users are first welcomed and informed that the essential requirement
Locate a book is selected mandatorily. Then the two sub-requirements Get reference to a
book and Get detailed info of a book should be pre-evaluated. But Get reference to a
book is relied by Locate a book. Thus it has already been pre-selected, and its
pre-evaluation is skipped. Get detailed info of a book is pre-evaluated, but users need
more explanation to it. After the users know the role of Get detailed info of a book in the
system to be built, they select it.

Fig.6.10 shows the evaluation of Get reference to a book as well as its two
children. As Rely relationship is transitive, they are all relied by Locate a book, and have
been pre-selected. In Fig. 6.11, Search relevant books and Sort books in a list are
evaluated. Then it’s the turn to evaluate requirement Search in book keywords and to
pre-evaluate its two associated quality constraints. During this process, the users input
some information that the machine cannot handle (Fig. 6.12). Then the machine notifies
the users to correct their response. With the interaction presented in Fig. 6.13 — Fig. 6.15,
users pick the functions and quality constraints they need. After that they are not willing

to change their decisions, and the requirement elicitation process is finished.

53

M: Welcome to use the interactive

software customization tool. M: Functionality “Get reference to

M: Functionality “Locate a book” is a book™ has already been selected
essential. It will be picked. [OK]

U: OK

M: Functionality “Get detailed info

of a book” is a sub-requirement of

due to the decision on “Locate a
book”. [OK]

U: OK

M: Functionality “Get a list of

" ocate a book”. Do you need it? relevant books” has already been

[YES, NO, EXPLAIN]

U: EXPLAIN

M: When you input the ID of a
book, “Get detailed info of a book”

selected due to the decision on
“Locate a book”. [OK]

U: OK

M: Functionality “Sort books in a
returns detailed information about list™ is a sub-requirement of “Get a
list of relevant books”. Do you
need it? [YES, NO, EXPLAIN]

U:NO

M: Functionality “Pick a book from

a list” has already been selected

the book, like publication info and
contents. It has sub-requirements
.. [OK]

U: OK

M: Do you need “Get detailed info

of a book”? [YES, NO, EXPLAIN] due to the decision on “Locate a

U- YES book”. [OK]
U: OK
Fig. 6.9: Dialogue utterances Fig. 6.10: Dialogue utterances
for customizing book locating for customizing book locating
service (part 1) service (part 2)

M: Functionality “Search relevant
books” has already been selected
due to the decision on “Locate a
book”. [OK]

U: OK

M: Functionality “Advance search”
is a sub-requirement of “Search
relevant books”. Do you need it?
[YES, NO, EXPLAIN]

U: NO

M: Functionality “Sort books in a
list” is abandoned due to your
previous decisions. [OK]

U: OK.

Fig. 6.11: Dialogue utterances
for customizing book locating
service (part 3)

54

M: Functionality “Search in book
keywords” has already been
selected due to the decision on
“Locate a book”. [OK]

U: OK

M: Quality constraint “Broad
match” is related to “Search in
book keywords". Do you need it?
[YES, NO, EXPLAIN]

U: What

M: Your response cannot be
recognized. Please answer with the
suggested responses. [OK]

U: OK

M: Quality constraint “Broad
match” is related to “Search in
book keywords". Do you need it?
[YES, NO, EXPLAIN]

U EXPLAIN

M: When you search a book, not
only books with keywords exactly
like your inputs will be returned,
but books with keywords similar to
your inputs will also be returned. If
you choose constraint “Broad
match”, guality constraint “Exact
match” cannot be selected. ... [OK]
U: OK

Fig. 6.12: Dialogue utterances
for customizing book locating

service (part 4)

55

M: Do you need “Broad match”?
[YES, NO, EXPLAIN]

U: NO

M: Quality constraint “Exact
match” is related to “Search in
book keywords”. Do you need it?
[YES, NO, EXPLAIN]

U: YES

M: Functionality “Advanced
search” is abandoned due to your
previous decisions. [OK]

U: OK

Fig. 6.13: Dialogue utterances
for customizing book locating

service (part 5)

M: Functionality “Get detailed info
of a book” is selected due to your
previous decisions. [OK]

U: OK

M: Functionality “Get publication
info” is a sub-requirement of “Get
detailed info of a book”. Do you
need it? [YES, NO, EXPLAIN]

U: YES

M: Functionality “Get contents” is
a sub-requirement of “Get detailed
info of a book”. Do you need it?
[YES, NO, EXPLAIN]

U: YES

M: Functionality “Get publication
info” is selected due to your
previous decisions. [OK]

U: OK

M: Functionality “Get contents” is
selected due to your previous
decisions. [OK]

U: OK

M: Quality constraint “Broad
match” is abandoned due to your
previous decisions. [OK]

U: OK

M: Quality constraint “Exact
match” is selected due to your
previous decisions. [OK]

U: OK

M: All the requirements have been
evaluated. Would you like to make
any changes? [ADD, REMOVE, NOJ
U: NO

M: The customization process is
complete. Thank you for your

cooperation.

Fig. 6.14: Dialogue utterances Fig. 6.15: Dialogue utterances
for customizing book locating for customizing book locating
service (part 6) service (part 7)

4. Output Generation

Finally, requirements Search in book keywords, Search relevant books, Get a list
of relevant books, Pick a book from a list, Get reference to a book, Get publication info,
Get contents, Get detailed info of a book, Locate a book and Exact match are selected.

Then the output will be generated in the way of merging the sub-tree rooted on
Get reference to a book, which includes the sibling merging between Get a list of
relevant books and Pick a book from a list, and merging Get publication info, Get
contents into Get detailed info of a book. As a result, there will be three functions left:
Get reference to a book, Get detailed info of a book and Locate a book. Because Get

detailed info of a book relies on the output of Get reference to a book, they will be

56

merged to form a new function, which will immediately merged into Locate a book.
Finally, quality Exact match will be attached directly to Locate a book. The output
BookShoppingProfile.owl looks like the OWL-S document presented in Fig. 6.16. The
instances of inputs, outputs and qualities are defined in documents
BookShoppingProcess.owl and BookShoppingQuality.owl. They are imported by the
profile document.

Now, with this OWL-S description, services are expected to be discovered by
semantic capability matching. Then the composition and execution of the services will be
performed based on the corresponding service composition information offered by the

service providers.

£?xml version="1.6" encoding="UTF-8"7>

<rdf:RDF zmlns:rdf="http://www.w3.org/1999/82/22-rdf-syntaz-nsi”
¥mlns:profile=""http://ww.daml.org/servicesfowl-s/1.2/Profile . owltt”
Zmlns:owl=""http://www w3 .org/2002/07 /fowlit">

<owl:0Ontology vdf:-about=""">
<owl:imports rdf:resource="http://www.daml.org/servicesfouvl-s/1.2/Profile.owl" />
<owl:imports rdf:resource=""http://ww . w3.org/1999/82/22-rdf-syntax-ns"/>
<owl:imports rdf:resource="ttp://uwwu.wld.org/20802/87 /0wl />
<owl:imports rdf:resource="http://uww.semanticweb.org/ontologies/
InteractiveRE/BookShoppingProcess.owl™ />
{owl:imports rdf:resource="http://uww.semanticweb.org/ontologies/
InteractiveRE/BookShoppingQuality.owl™ />
<Ffowl:Ontology>

{profile:Profile rdf:ID=""Locate_ a book">
{profile:textDescription>Locate a book</profile:textDescription>

{profile:has_process ref:resource="http://ww.semanticweb.orgfontologies/
InteractiveRE/BookShoppingProcess.owl#locateABookProcess™ />

{profile:hasInput rdf:resource="http://www.semanticweb.org/ontologies/
InteractiveRE/BookShoppingProcess.owl#iPhrasesFromlUser Input™ />

{profile:hasInput rdf:resource="http://www.semanticweb.orgfontologies/
InteractiveRE/BookShoppingProcess.owl#BookIndexInTheList™ />

{profile:hasOutput rdf:resource="http://wwu.semanticweb.orgs/ontologies/
InteractiveRE/BookShoppingProcess. owl#ilist0fRelevantBooks" />

{profile:hasOutput rdf:resource="http://wwu.semanticweb.org/ontologies/
InteractiveRE/BookShoppingProcess.owl#BookContents™ />

{profile:hasOutput rdf:resource="http:/fwuwu.semanticweb.org/ontologies/
InteractiveRE/BookShoppingProcess.owl#iBookPublicationInfo™ />

{profile:serviceParameter rdf:resource="http://wuww.semanticweb.org/ontologies/
InteractiveRE/BookShoppingQuality.owl#ExactMatch” />

{/profile:Profile>
</rdf :RDF>

Fig. 6.16: The output service description (BookShoppingProfile.owl)
57

CHAPTER VII
COMPARISON ANALYSIS

7.1 Introduction

In the proposed approach, implicit knowledge hidden in the ontology model is
retrieved to direct the requirement elicitation process. Meanwhile, the approach adopts a
strategy that always maintains the completeness and consistency of the elicitation results.
When a requirement is selected, all other requirements on which it relies will be selected,
and those that contradict it will be removed. When a requirement is dropped, the
requirements that rely on it will also be dropped. On the other hand, without the implicit
knowledge and guidance, people normally have to resolve the incompleteness and
inconsistency step by step. In this thesis, simulation experiments were conducted to

compare the performance of the proposed method with the undirected method.

7.2 Problem Instance Generation

To generate a problem instance is to construct a requirement decomposition forest.
A subset of the requirements contained in the trees will be chosen as the expected
requirements.

In this research, problem instances are generated randomly. Functions, qualities
and softgoals are not differentiated. They are all treated simply as requirements. When
constructing a problem instance, the number of requirements » and the number of Rely,
Contradict relationships m to be generated are two input parameters for the problem
instance.

The algorithm for generating a decomposition forest with » nodes is presented in
Fig. 7.1. First, when creating the ith node, a random integer j ranging from [0, i-1] is
generated. j decides the position of the forest to add the ith node. If it is zero, create the

ith node as a root. Otherwise, the ith node is attached as a child of the previous generated

58

jth nodes. If the jth node is a leaf, when the ith node is attached to it, the (i+1)th node is
also attached to it. This is because a requirement is not supposed to decompose into only
one child. If the jth node is not a leaf, only the ith node is attached to it. If it is the turn to
create the nth node, as there are no more nodes available, it cannot be attached to a leaf.
It can be created as a root or attached to a non-leaf node as a child. Then the
decomposition forest is generated, and it is assumed that the rank to the ith node is i.

Thus parent always has a higher rank than its children.

1. //Let n be the number of requirements to be generated

2. i — 1

3. WHILEi<=n

4, j = arandom number from [0, i)

5. IF j==0THEN

6. Create the ith requirement as a root

7. i — i+l

8. ELSE IF the jth requirement is not a leaf THEN

9. Create the ith requirement as a child of the jth requirement
10. i — i+l

11. ELSEIFi!=n

12. Create the ith requirement as a child of the jth requirement
13. Create the (i+1)th requirement also as a child of the jth requirement
14. i~ i+2

15. END IF

16. END WHILE

Fig. 7.1: Pseudo code for constructing decomposition forest

After that, the m Rely and Contradict relationships should be generated. Each
time, two nodes are randomly picked from the forest, and Rely or Contradict is randomly
picked as the candidate relationship between them. The validity of the forest will be
checked with ontology reasoning after the candidate relationship is attached to the forest.
If the candidate relationship is valid and is not a duplicated relationship, generate the next
relationship. Otherwise, remove the candidate relationship from the forest, and generate a
new one.

When m valid and non-duplicated relationships are generated, the problem

instance is generated. A subset of the » requirements will be randomly chosen as the

59

requirements that users expect to select. This subset of requirements will be shuffled in a
list. The requirement with a lower index in the list is assumed to have a higher expected
priority, which means it is more demanded. It is often true that this subset of
requirements are not consistent or complete with each other. Users are supposed to give
preference to requirements with higher expected priorities, which means they will give
up an expected requirement if it contradicts requirements with higher expected priorities.
With this guideline, users will try to take fewer rounds of interaction to accomplish the
tasks and select as many of the expected requirements as possible, while keeping the

selected requirements complete and consistent with each other.

7.3 Experiment with the Proposed Method

The proposed approach is designed to evaluate the requirements one by one, from
the highest rank to the lowest rank. In the experiments, users that are simulated were to
evaluate the requirements. When evaluating a requirement, if it is not expected, users will
go through the expected requirements from the highest expected priority to the lowest. If
the requirement being evaluated is relied by an expected requirement while it doesn’t
contradict expected requirements with higher expected priority, it will be selected.
Otherwise, it will be dropped. If the requirement is expected, go through the expected
requirements from the highest expected priority to itself. If it doesn’t contradict the
requirements with higher expected priority, select it, otherwise drop it. As is explained in
Chapter IV, selecting or dropping a requirement with the proposed approach will cause
all the relevant requirements to be handled accordingly.

After all the requirements have been selected or dropped, the simulated users will
double check their decisions. Every selected unexpected requirement will be checked if
they are relied by any selected expected requirements. It is possible that the expected
requirement which relies on an unexpected requirement will be dropped after selection of

the corresponding unexpected requirement. If no more selected expected requirement

60

relies on an unexpected requirement, the unexpected requirement will be removed. When
all unnecessary unexpected requirements have been removed, the unselected expected
requirements will be checked from the highest expected priority to the lowest expected
priority. If an expected requirement doesn’t contradict any selected requirements, it will
be selected. After all the expected requirements have been rechecked, the users finish the
requirement elicitation.

To evaluate the performance of the proposed approach, one round of interaction
will be charged for each requirement evaluation, and each time users change their mind

on a requirement, it will take one round of interaction to have it handled.

7.4 Experiment with the Undirected Method

For the undirected approach, the simulated users don’t take care of the
completeness or consistency issues initially. Instead, they will first tell the machine the
requirements they want. Suppose there are k expected requirements. Then it will take &
rounds of interaction to have the k requirements ordered.

After that, users will try to maintain the completeness and consistency. However,
they only know the explicitly defined relationships and don’t have the implicit
knowledge. They will go through the selected requirements from the highest expected
priority to the lowest. If an expected requirement relies on some other requirements,
users will order machine to select these unselected required requirements, and these
requirements will be treated as of the same expected priority as the corresponding
expected requirement. If an expected requirement contradicts some selected requirements
with lower expected priority, these requirements will be dropped. Whenever any changes
are made, users will recheck all the currently selected requirements from the highest
expected priority to the lowest expected priority. Every time users want to make some
changes for a requirement, one round of interaction will be charged. When no more

incompleteness or inconsistency exists among the selected requirements, the elicitation

61

process is complete. Otherwise, if the amount of interaction excess 10 times of the total
number of requirements in the problem instance, users will give up. As a result, the

iteration of experiment is unsuccessful.

7.5 Results and Analysis

Experiments were programmed in Java 6.0 with Eclipse 3.6 and performed on
x86, Windows platform.

Experiments were separated into three groups. The first group fixes the number of
relationships m to be 20, and varies the number of requirements » from 10 to 100, with
an increment of 10. The second group fixes » to be 50, while increases m from 10 to 100,
and the interval of each increase is 10. The third group changes »n together with m, from
(10, 10) to (100, 100). Each time, both of the two inputs were raised by 10.

Besides, for each input pair, 25 iterations of experiments were performed. In each
iteration, a new problem instance was generated, and both methods were applied to solve
it. As the proposed method promises the completeness and consistency, the number of
iterations in which the undirected approach can successfully produce complete and
consistent requirements was recorded. Those iterations of experiments are called
successful iterations. Among the successful iterations, the numbers of interactions
charged with both methods are compared. Moreover, the numbers of expected
requirement selected by both methods are compared. Among those iterations where equal
amount of expected requirements were selected, the amount of unexpected requirements
selected by both approaches were compared.

Table 7.1, Table 7.2 and Table 7.3 respectively present results of the three groups

of experiments.

62

A B C

10/ 20 0]-

20/ 20 11 27.3% 5 0 0 0
30/20 8 28.8% 2 0 1 0
40/ 20 15 32.9% 5 0 1 0
50/ 20 16 51.1% 4 1 1 0
60/ 20 21 58.9% 3 0 0 0
70/ 20 18 73.5% 3 0 0 0
80/20 18 66.4% 1 0 0 0
90/ 20 22 77.9% 6 0 0 0
100 / 20 19 73.5% 1 0 0 0

Table 7.1: Results for the first group of experiments (7:m=10:20-100:20)

A B C
50/ 10 22 80.9% 2 0 0 0
50/ 20 16 50.5% 3 1 2 0
50/ 30 5 30.2% 3 0] 0] 0
50/ 40 5] 6.8% 2 3 0 0
50/50 2 6.4% 2 0 0 0
50/ 60 2 0.0% 1 1 0 0
50/70 0]-
50/ 80 0]-
50/90 0]-
50 /100 0]-

Table 7.2: Results for the second group of experiments (r:m=50:10-50:100)

A B C
10/ 10 12 58.3% 5 1 0 1
20/ 20 8 0.0% 4 1 1 0
30/30 8 5.9% 2 1 0 1
40/ 40 5 11.5% 1 2 1 0
50/50 0f-
60 / 60 3 6.8% 0 1 2 0
70/ 70 0f-
80/ 80 0]-
90 /90 0f-
100 / 100 0f-

Table 7.3: Results for the third group of experiments (r:m=10:10-100:100)

Followings are explanations to the columns.

63

® Column A: number of requirements / number of relationships
B Column B: number of successful iterations performed by the undirected
method
B Column C: average percentage of more interactions the proposed method was
charges compared to the undirected method (the percentage is calculated in
this way: (number of interactions the proposed method was charged —
number of interactions the undirected method was charged) /number of
interactions the undirected method was charged>100%)
B Column D: number of successful iterations in which the proposed method
selected more expected requirements
B Column E: number of successful iterations in which the undirected method
selected more expected requirements
B Column F: number of successful iterations in which the proposed method
selected equal number of expected requirements as the undirected method
and fewer unexpected requirements
B Column G: number of successful iterations in which the undirected method
selected equal number of expected requirements as the proposed method and
fewer unexpected requirements
From all the results, it can be observed that the undirected approach could not
promise to produce complete and consistent results, while the proposed approach is
designed to overcome this problem. In the best cases, within 22 out of 25 iterations, valid
results could be generated by the undirected method. Moreover, in a considerable amount
of successful iterations, the proposed method had more expected requirements selected.
On the other hand, most of the requirements were evaluated at least once by the proposed
approach, while the undirected approach only concerns the expected requirements. Thus
the proposed approach often requires more rounds of interaction.

In the first group of requirements, when » increased and m was kept unchanged,

64

the undirected approach performed better and better. It took fewer and fewer rounds of
interactions to complete the tasks while its success rate grew very fast. Meanwhile, the
proposed method was never defeated. There were always some successful iterations
within which the proposed method obtained more expected requirements.

For the second group of requirements, when m grew and » was fixed,
performance of the undirected method decreased dramatically. When there were more
than 40 relationships, it could hardly generate any valid result. What is worth mentioning
is that, while the proposed method could easily defeat the undirected method, in the rare
cases of successful iterations, undirected method found more expected requirements.
Mainly, this result was due to the simulation strategy rather than the proposed elicitation
method. The simulated user always tries to obtain the expected requirement with the
highest expected priority. Sometimes, the most demanded requirement is obtained but
other expected requirements are neglected.

In the third group, even if n and m were raised with the same pace, the
performance of the undirected approach decreased very fast as the complexity of the
problem increased. Meanwhile, the distance between the amount of interactions the
proposed method requires and the amount of interactions the undirected approach needs
was shortened when the problem was complicated.

In conclusion, these experiments show that requirement elicitation is not an easy
task. Without implicit knowledge and proper guidance, it is almost impossible to get a
valid and expected result. However, the method proposed in this thesis can successfully
help to solve this problem. Though, it always needs certain amount of interactions, this is
the price necessary for accomplishing the task. Besides, when the problem gets tougher,

the price is not as remarkable as before.

65

CHAPTER VIII
CONCLUSION AND FUTURE WORK

8.1 Conclusion

Aiming at realizing automated SPL with service-oriented methods, an approach to
interactive requirement elicitation is proposed in this thesis. It adopts ontology to
represent the requirement engineering related knowledge, which directs a slot-filling
dialogue system to communicate with clients. With this method, users are capable to
customize the application requirements that satisfy their demands by interacting with
machines, while the completeness and consistency of the customization is ensured. The
ordered requirements will further be converted into OWL-S based service descriptions
for system implementation. A case study is presented in this thesis to prove the feasibility
of the proposed method, while simulation experiments were conducted to verify its
efficiency and reliability.

On the other hand, though this thesis made an effort to achieve automated
requirement elicitation, the proposed requirement model is still preliminary and
light-weighted. Since the model is static, it cannot be applied in dynamic environment.
Moreover, in order to avoid additional complexity, not all requirement engineering
related ontological relationships are directly described. Finally, the reported requirement
elicitation approach only supports customizing requirements based on the knowledge that
machine owns. Users cannot order anything unknown to the machine, which is not

always the case in practice.

8.2 Future Work

For the future works, first, in order to implement automated SPL, approaches
related to automatic application implementation, such as automatic service discovery,

composition and delivery, will be further explored. Meanwhile, it is necessary to have the

66

ontology model optimized (e.g. improve its expressiveness, and extend it with domain
properties). In addition, analysis about methods other than OWL-S for utilizing the
requirement elicitation results and describing abstract information (e.g. softgoals) is also
worth performing. Last but not the least, topics about enriching the experience of
human-computer interaction in requirement engineering are very interesting. Related

studies (e.g. visualize the interactive requirement elicitation) will be conducted in future.

67

REFERENCES

[1] K. Pohl, G. Bockle, and F. van der Linden, Software Product Line Engineering:
Foundations, Principles, and Techniques. Berlin: Springer, 2005.

[2] T. Erl, Service-Oriented Architecture: Concepts, Technology, and Design. Upper
Saddle River, NJ: Prentice Hall PRT, 2005.

[3] A. Helferich, et al., "Software Product Lines, Service-Oriented Architecture and
Frameworks: Worlds Apart or Ideal Partners?" in Proceedings of the 2nd
International Conference on Trends in Enterprise Application Architecture, 2006, pp.
187-201.

[4] S. A. Mcllraith, T. C. Son, and H. Zeng, "Semantic Web Services," IEEE Intelligent
Systems, 16(2), 46-53, 2001.

[5] H. Gomaa and M. E. Shin, "Automated Software Product Line Engineering and
Product Derivation," in Proceedings of the 40th Annual Hawaii International
Conference on System Sciences, 2007, pp. 285.

[6] R. Rabiser, P. Griinbacher, and D. Dhungana, "Requirements for Product Derivation
Support: Results from a Systematic Literature Review and an Expert Survey,"
Information and Software Technology, 52(3), 324-346, 2010.

[7] T. H. Bui, "Multimodal Dialogue Management: State of the Art," Centre for
Telematics and Information Technology, University of Twente, Enschede,
Netherlands, Tech. Rep. TR-CTIT-06-01, 2006.

[8] D. Martin, et al., "Bringing Semantics to Web Services with OWL-S," World Wide
Web, 10(3), 243-277, 2007.

[9] B. Srivastava and J. Kohler, "Web Service Composition: Current Solutions and Open
Problems," in Proceedings of the 13th International Conference on Automated
Planning and Scheduling, 2003. Available: CiteSeer, http://citeseerx.ist.psu.edu.

[10] S. Dustdar and W. Schreiner, "A Survey on Web Services Composition,"

International Journal of Web and Grid Services, 1(1), 1-30, 2005.
68

[11] C. Y. Knaus, "Feature - Interaction design for software engineering: Boost into
programming future," Interactions, 15(4), 71-74, 2008.

[12] A. Flycht-Eriksson and A. Jonsson, "Dialogue and Domain Knowledge Management
in Dialogue Systems," in Proceedings of the st SIGdial Workshop on Discourse and
Dialogue, 2000, pp. 121-130.

[13] A. Flycht-Eriksson, "A Survey of Knowledge Sources in Dialogue Systems,"
Electronic Transactions on Artificial Intelligence, 3(D), 5-32, 1999.

[14] M. Araki, et al., "A Dialogue Library for Task-Oriented Spoken Dialogue Systems,"
in Proceedings of the IJCAI Workshop on Knowledge and Reasoning in Practical
Dialogue Systems, 1999, pp. 1-7.

[15] T. Riechert, et al., "Towards Semantic based Requirements Engineering," in
Proceedings of the 7th International Conference on Knowledge Management, 2007,
pp. 144-151.

[16] C. I. Lin and C. Ho, "A Generic Ontology-Based Approach for Requirement
Analysis and its Application in Network Management Software," Artificial
Intelligence for Engineering Design, Analysis and Manufacturing, 13(1), 37-61,
1999.

[17] M. Kossmann, "Ontology-Driven Requirements Engineering with Reference to the
Aerospace Industry," in Proceedings of the 2nd International Conference on the
Applications of Digital Information and Web Technologies, 2009, pp. 95-103.

[18] M. Kossmann, "Ontology-Driven Requirements Engineering: Building the
OntoREM Meta Model," in Proceedings of the 3rd International Conference on
Information and Communication Technologies: From Theory to Applications, 2008,
pp. 1-6.

[19] H. J. Happel and S. Seedorf, "Applications of Ontologies in Software Engineering,"
in Proceedings of the 2nd Workshop on Semantic Web Enabled Software

Engineering, 2006. Available: CiteSeer, http://citeseerx.ist.psu.edu.

69

[20] T. R. Gruber, "A Translation Approach to Portable Ontology Specifications,"
Knowledge Acquisition, 5(2), 199-220, 1993.

[21] N. F. Noy and D. L. McGuinness, "Ontology Development 101: A Guide to
Creating Your First Ontology," Stanford Knowledge Systems Laboratory, Tech. Rep.
KSL-01-05, 2001.

[22] F. Arvidsson and A. Flycht-Eriksson, "Ontologies L" 2008. [Online]. Available:
http://www.ida.liu.se/~janma/SemWeb/Slides/ontologies1.pdf.

[23] R. Mizoguchi, "Tutorial on Ontological Engineering," 2004. [Online]. Available:
http://www.ei.sanken.osaka-u.ac.jp/japanese/tutorial-j.html.

[24] D. L. McGuinness and F. van Harmelen, "OWL Web Ontology Language
Overview," 2004. [Online]. Available: http://www.w3.org/TR/owl-features.

[25] G. Dobson and P. Sawyer, "Revisiting Ontology-Based Requirements Engineering
in the Age of the Semantic Web," in Proceedings of the International Seminar on
Dependable Requirements Engineering of Computerised Systems at NPPs, 2006.
Available: CiteSeer, http://citeseerx.ist.psu.edu.

[26] 1. Horrocks, et al., "SWRL: A Semantic Web Rule Language Combining OWL and
RuleML," 2004. [Online]. Available: http://www.w3.org/Submission/SWRL.

[27] H. Kaiya and M. Saeki, "Ontology Based Requirements Analysis: Lightweight
Semantic Processing Approach," in Proceedings of the 5th International Conference
on Quality Software, 2005, pp. 223-230.

[28] 1. Jureta, J. Mylopoulos, and S. Faulkner, "Revisiting the Core Ontology and
Problem in Requirements Engineering," in Proceedings of the 16th IEEE
International Requirements Engineering Conference, 2008, pp. 71-80.

[29] D. V. Dzung and A. Ohnishi, "Ontology-Based Reasoning in Requirements
Elicitation," in Proceedings of the 7th IEEE International Conference on Software

Engineering and Formal Methods, 2009, pp. 263-272.

70

[30] P. Kroha, R. Janetzko, and J. E. Labra, "Ontologies in Checking for Inconsistency of
Requirements Specification," in Proceedings of the 3rd International Conference on
Advances in Semantic Processing, 2009, pp. 32-37.

[31] I. Omoronyia, et al., "A Domain Ontology Building Process for Guiding
Requirements Elicitation," in Proceedings of the 16th International Working
Conference on Requirements Engineering: Foundation for Software Quality, 2010,
pp- 188-202.

[32] T. H. Al Balushi, et al., "ElicitO: A Quality Ontology-Guided NFR Elicitation
Tool," in Proceedings of the 13th International Working Conference on
Requirements Engineering: Foundation for Software Quality, 2007, pp. 262-276.

[33] R. Roy, et al, "Design Requirements Management Using an Ontological
Framework," CIRP Annals: Manufacturing Technology, 54(1), 109-112, 2005.

[34] J. Lin, M. S. Fox and T. Bilgic, "A Requirement Ontology for Engineering Design,"
Concurrent Engineering: Research and Applications, 4(3), 279-291, 1996.

[35] M. Shibaoka, H. Kaiya and M. Saeki, "GOORE: Goal-Oriented and Ontology
Driven Requirements Elicitation Method," in Proceedings of the 2007 Conference on
Advances in Conceptual Modeling: Foundations and Applications, 2007, pp.
225-234.

[36] K. Jarosla, "Passing from Requirements Specification to Class Model Using
Application Domain Ontology," in Proceedings of the 2nd International Conference
on Information Technology, 2010, pp. 129-132.

[37] S. R. Palmer and J. M. Felsing, A Practical Guide to Feature-Driven Development.
Upper Saddle River, NJ: Prentice Hall, 2002.

[38] A. Brown, "An introduction to Model Driven Architecture, " 2004. [Online].
Available: http://www.ibm.com.

[39] D. Roman, et al., "Web Service Modeling Ontology," Applied Ontology, 1(1),
77-106, 2005.

71

[40] D. Martin, et al., "OWL-S: Semantic Markup for Web Services," 2004. [Online].
Available: http://www.w3.org/Submission/OWL-S.

[41] C. Harding, "SOA Ontology Draft 2.0, 2008. [Online]. Available:
http://www.opengroup.org/projects/soa-ontology/doc.tpl?gdid=16940.

[42] D. Martin, et al., "Bringing Semantics to Web Services: The OWL-S Approach," in
Proceedings of the Ist International Workshop on Semantic Web Services and Web
Process Composition, 2004, pp. 26-42.

[43] S. Jean, et al., "An Extension of OWL-S with Quality Standards," in Proceedings of
the 4th IEEE International Conference on Research Challenges in Information

Science, 2010, pp. 483-494.

72

APPENDICES

APPENDIX A

The Complete Requirement Model for the Case Study

The following figure illustrates the complete ontology-based requirement model
instantiated with the case study of online book shopping service. The figure is divided
into four parts. The magnified figures for Part I, Part II, Part III and Part IV are presented

on page 74, 75, 76 and 77 respectively.

-

—
E
il
¥
fa 5
ig e -
Y
L ik 2
Ay L r
i oo
i i5s L
A it [is
e — &
yad
HEH
-5 242
] is EE;:
T e
2y 1.
S 2§
i i e
AfF—lfg L_&l
B _
— gbu
iy i
ER ﬁ
8
1y
N HE
iq K
£ ;
8)

Create an
[(2gRecmt

/f l‘;f"“""if’ L _Jl age S
e
|

accomt by Logring
in

(21)

Get reference to a

Fi
1

Loginan
accomt

Service loation |

210

)

o Ll |

BTN SNy

(£13

Y

¥

—

jususeuey (25)

EREIgLEle) = R L

— >

LITImoas aSeIaay

Ny,
Py

..‘

jumweSeiey (28

WNoD2e I0T
AjTaoas YE I

f +5)

| T TR0 S0TATISS

l’
I

L18)
UD1EU 1DEXY

U 1BU PEeTg

SHoo 1I6g -

yoTeas (J) SpronAa Y Hooq
\ PR Y UT P AT g
ISIT ® gmmu Sio0q }URASTAI

yoreag (G)

SIIa3UoD mwu_ T MH%HH. d FN\WE B WIS
ay =0 .Humwﬂﬂﬁnmu Wooq v oIl [

Hoe0Q B IO OJUT

.
—

sHooq w:nhw@wh
Fo ISIT B 329

7

BOTTEIEP 33D
L)

sqooq e o3 E
aouaIoJog 198

(T} yoog
B 21RO

74

[ENREY] SNy

21BN TED

(e

R B =H5ouy) Hm:.:mnmi _ B 2o
(FT 22Tz T
LT JEWLTe JUT WS T JEULL JUT TR101 2L
JuauAed 385 ATAATTID 125 leTNoTED
9Ty
BT I3p.ao JTapIo c.wn:u
TUE WITFLDN) Io Areuuns 339
-
(0 = alk
=1 ue aseTd
i
FSTT oD

on

Surddoys 2 3249

1517 Surddor]s
UT W=1T UE HoTd

1517 Butddoys
(6) UT w21 ®

Ol ISUDIIFAT 129

}IES WOIT (8)
Hooq B 2A0W3Y

\

b

f

1l BaTddoys
(T} B 2ETRUE|

1AED OH_H &)
Jooq ® PPY

A

——

(5]

SIUDIIND 139

Hooq
paTI

75

LZ suoT1do (A7)
ATAATTED
Fo 1STT ' 329

L
EBOUUMH(/

- e UTSoT

o300 (97
ATaaTTAP
=RE=F el =}

52
U TIBRLIOTU T

ATAATTAD 28eLmR]

EUTIRATY oy ur (123

A EﬂouUnnmmu = Qwﬂwomwn SUTSEE0T AQ FUOO0E
B 0} 20URISTAI 139 e B O} 20URIAIAI 129

i
hﬁwmwﬂngm_mu_ 22) BUTjEaID ur BUTSECT
. ﬁﬁﬁﬂmﬁ — AQ JLIOoOE == A JUNOooER
e S5200% e 553207020
L~ (6T

1NGooE U IO
UOTIBUIS UL 124

mﬁwgouun
uR S5300Y

A
\
(2 b gTafaton) - [T
I3sN B 3BBUEY \.\\\ 1aes Burddotys
I : J{\.|.\.\ = TeucsIad aZRLRY
L hY I
a3 TAIAS aotad sooq tm T~ Lo
) e
21RINOTED 1B TED ~ - o
=19 Y

WINoooE I0F
A1TMN0 25 2ERI2AY

puouseiey (2E) Jumus e LB
JUNODOE JI0F
Al Tmoas YyI1g

F T T T T
| aoua .12 JaId |
: 2EETEURT 32 |
M e = = m—
e !
d (35)

| uotieoe 1 21ATED
|

e e e e

S

76

T (0) SUSTIA0E) Pstiastag I It g
e 1USUAE t L
u_..mﬂm.uﬁo._.nnnm 70 1STT © 389 =R R Jo ISTT B 1329 =
\w wN (927 -
(62 ueT1ddEE) o T35 uoTido L£IZATIEp ® uo T1dol 9z e 7300 97
uotide juRwied e juawied e 0] aoUSIATaI 139 ATRATTEP ATSATTP
0} IoUAIITIT 120] B Ss0usy B ppy B aaA0USg E PPy
= (GZ))
et EEOHC_W WO TIRUIGTOIT LS 1gheete) =
pmwed ofvuey ATAATTID aSEUR]| WO T RWTS]
mclrr puswded (28] fialuibgs wﬁ:ﬁmnnmmmu
IeF A}TON0AS aZeIlaay — IoF ArTamnsas YyEIg

¥ _‘
] —_— -) L gTels
\ P IZsn B s

\

| P
1 f A
LIO T LRI JUIT woTydo LT3 UOT} PUIOTUL o1y delS T a1 ETY —_——]

JuawAE d Em.%.mm% hwﬂbﬂmﬁ ' TOAT 1= S TAIIE 2o1Id Hooq

T2 AT) B 25001 ,Hm;.nm (ST B m_mn.voﬂu 3BT TED al1emnorED

(2T

F
(PT) 2 TIHZT)
o TR UL FUT O T JRULTO JULT 230} I3
juawied 1ag AIaAT 2D 125 S1EINoTED
2L = A _

77

NAME

PLACE OF BIRTH

YEAR OF BIRTH

EDUCATION

VITA AUCTORIS

Xieshen Zhang

Wujiang, Jiangsu, China

1984

Shanghai Jiao Tong University

2003-2007 B.Eng.

78

	University of Windsor
	Scholarship at UWindsor
	2011

	An Interactive Approach of Ontology-based Requirement Elicitation for Software Customization
	Xieshen Zhang
	Recommended Citation

	Master Thesis (Xieshen Zhang).pdf

