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ABSTRACT 

Software product lines allow reusing a collection of related software engineering 

assets to develop custom-made high quality software with reduced time and cost. In this 

thesis, an interactive approach of requirement elicitation for software customization is 

presented. It first adopts an ontology-based requirement model to represent the 

commonalities and variabilities among a group of related requirement artefacts. The 

development of a dialogue system further enables users to interactively customize 

software products by means of text-based dialogue. While the ontology model directs the 

dialogue system to perform requirement elicitation, its instantiation is accomplished with 

the support of decomposition-based requirement refinement in Service-Oriented 

Architecture. Besides the design details, a case study is presented to demonstrate how 

customizing an online book shopping system could be achieved with interactive 

requirement elicitation. Finally, the reliability and efficiency of the proposed method are 

evaluated with experimental comparison.  
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CHAPTER I 

INTRODUCTION 

1.1 Introduction 

Software product line (SPL) engineering is a paradigm to develop software 

applications with reusable software assets, which are tailored to individual customers' 

needs [1]. By reusing software engineering artefacts (e.g. software components) rather 

than developing them from scratch, software systems are expected to be customized, 

while the costs can be effectively cut down. Meanwhile, with the same primary goal of 

software reuse, Service-Oriented Architecture (SOA) separates system functionalities 

into loosely coupled and reusable services that communicate with each other via 

autonomous messages [2]. Although SPL and SOA differ, as different software 

engineering paradigms, in many respects, they actually complement each other [3]. By 

reusing services, and adopting SOA-based methods in SPL engineering, especially the 

Semantic Web Service techniques (e.g. automatic service discovery and composition) [4], 

the goal of automating software development could be achieved. Furthermore, the main 

focus of SPL engineering will then shift from repetitive system design and 

implementation to functionalities (i.e. services) customization. 

On the other hand, in order to actualize completely automated SPL engineering, 

an approach is required for guiding human-machine interaction in software products 

customization. However, managing the complexity and variability of product features 

inherent in software product lines is very challenging [5]. In addition, a supporting tool 

for directing the automatic and interactive product customization is still lacking [6]. 

 

1.2 Problem Statement 

A solution to automatic requirement elicitation is critical for the realization of 

automated SPL. While an increasing number of publications in SOA have addressed the 
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problem of automatic system implementation, few studies investigate the automation of 

requirement engineering.  

To automate the requirement engineering process, first of all, a supporting tool for 

human-machine interaction is required, which is used to conduct the communications 

during requirement elicitation. Meanwhile, it must be capable of managing the 

knowledge related to SPL requirement engineering, thus the knowledge could be 

naturally presented to users. Furthermore, the tool should be able to generate 

service-oriented outputs for the automation of system implementation.  

On the other hand, knowledge for automatic requirement elicitation is supposed 

to be presented in formats understandable to machines. In other words, a semantic way to 

represent the knowledge is required. Moreover, as a knowledge engineering solution to 

SPL engineering, it must be suitable to describe the common and variable features of 

requirement engineering artefacts of software systems that are given. Since the major 

challenge rooted in requirement engineering lies in maintaining the completeness and 

consistency of requirement products, it is necessary to tackle them properly. Last but not 

the least, an approach to express the knowledge about human-machine interaction should 

be investigated. 

 

1.3 Contribution 

To facilitate the realization of automated SOA-based SPL, this thesis presents a 

dialogue-based interactive approach for guiding software product customization. An 

abstract ontology-based requirement model, which represents the knowledge of the 

product features as well as their business logic, is developed. Besides, a frame-based 

dialogue system [7] is designed based on the knowledge model. It helps elicit users' 

requirements and then outputs service-oriented system description for the implementation 

of the candidate applications. 

Though not mentioned in the thesis title, the proposed approach is designed 
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specifically for customizing SOA applications. In other words, it first guides users to 

order the services they need, and then generate corresponding service descriptions for 

automatic service discovery and composition.  

 

1.4 Structure of the Thesis 

The rest of the thesis is structured as follows. Chapter II presents the introduction 

to SPL and SOA, while Chapter III outlines the work related to interactive requirement 

engineering. The ontology model is proposed and explained in Chapter IV. Chapter V 

reports the proposed dialogue system and the interactive requirement elicitation method, 

followed by Chapter VI within which the implementation of the dialogue system and a 

case study is presented. Chapter VII demonstrates a group of experimental comparisons 

between the proposed machine-directed interactive requirement elicitation method and an 

undirected method, and the results are also analyzed in this chapter. Finally, conclusion 

and future work are discussed in Chapter VIII. 
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CHAPTER II 

SOFTWARE PRODUCT LINE AND SERVICE-ORIENTED ARCHITECTURE 

2.1 Software Product Line 

The key idea of SPL engineering is gathering, analyzing and reusing the software 

engineering artefacts of closely related software systems. These reusable artefacts 

provide development options in each software engineering stage. Consequently, the 

software development activities will mainly focus on system customization rather than 

creation. 

To develop an application with SPL framework, there are two processes: domain 

engineering and application engineering [1]. During domain engineering process, the 

commonalities and variabilities of the reusable artefacts are defined. Vertical tractability 

links are established between artefacts of different software engineering phases. In the 

application engineering stage, applications are developed. The variabilities that bind to 

the candidate application are identified. Then based on these common and variable 

artefacts, the development of the application is carried out. 

In SPL, the products of the domain engineering process are supposed to be reused. 

So the price of developing a new application is mainly charged at the application 

engineering stage. By customizing rather than creating, the application engineering is 

cost-effective compared to traditional software engineering approaches. Therefore, as 

long as the domain engineering process is controllable, SPL can effectively reduce cost, 

time and human effort in software engineering. 

Nonetheless, Rabiser et~al. [6] point out that, compared to the effort spending on 

developing and modeling the software product lines, little support is available for 

enhancing their utilization in practice,. Without effective approaches to utilize the 

product lines, particularly the automated approaches, SPL could not be widely accepted 

in industry. In other words, they will be of more academic value than practical value. In 

[6], Rabiser et~al. further define 6 requirements for facilitating the application of product 
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lines in practice:  

 Automated and interactive variability resolution 

 Adaptability and extensibility 

 Application requirements management support 

 Flexible and user-specific visualizations of variability 

 End-user guidance 

 Project management support 

The idea of interactive requirement elicitation is inspired by these suggestions. 

With an automated and interactive solution to requirement elicitation, the variability of 

application requirements can be automatically managed and interactively elicited. The 

by-product of a requirement knowledge base further enables applying the product lines 

adaptively and extensively. Consequently, an approach to improve the practical value of 

SPL is suggested. 

 

2.2 Service-Oriented Architecture 

Since SOA captures many best practices from previous software engineering 

experiences, and makes business systems more flexible and reusable, it has gained an 

increasing popularity in industry as well as academic communities in the past decade. 

Technically speaking, SOA represents a model in which the software systems are 

decomposed into loosely coupled units of functionalities (i.e. services), while each of 

these units must be autonomous, reusable, discoverable, and is able to communicate with 

other units via autonomous messages [2]. Thus the units could be distributed, and 

collaborate through message exchange. 

Typically, there are three roles involved in SOA engineering: provider, broker and 

requestor (Fig. 2.1). Service provider develops services and publishes the services by 

registering the service descriptions as well as corresponding access information in service 

broker’s depository. Service requestor then tries to find the services by consulting the 
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service broker. Service broker matches requestor’s demands with the services registered 

in the depository, and return the appropriate service access information to the requestor. 

Later on, requestor visits and retrieves the provider’s services according to the access 

information. Therefore, to access certain services, the requestor must first discover the 

services from broker’s registry, and then bind to the provider so as to invoke and 

compose, if necessary, the services. 

 

Fig. 2.1: Model of SOA 

Service discovery is the process of finding appropriate services from brokers’ 

registry. Traditionally, UDDI mechanism is applied in publishing, matching and 

discovering services. However, it only defines a set of syntactic search criteria. Matching 

on semantic level is not supported, which results in unwanted feedbacks. Inspired by the 

development of Semantic Web, the idea of Semantic Web Service comes out. Semantic 

Web Service approaches offer semantics to web services. Consequently, they are 

self-describable and machine-processable, and the discovery of these services is more 

promising. [8] presents an Semantic Web Service solution as well as a list of its 

applications in addressing the problem of matchmaking-based automatic service 

discovery.  

Moreover, in this thesis, a method which is the inversion of service composition 

is adopted for the domain engineering of SPL. In other words, the functionalities of SOA 
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systems are analyzed by decomposition. Then results of the decomposition are further 

used to instantiate the proposed ontology-based requirement model. 

Service composition is very significant in SOA engineering. The implementation 

of a complex web service often involves the invocation of other services. However, 

services are distributed. Their collaboration relies on exchanging autonomous messages. 

Therefore, the syntax as well as semantics of the messages, particularly the order of their 

exchanges, should be defined explicitly [9]. Message exchange in SOA is called service 

composition. Service composition represents the process of combining certain services’ 

functionalities to implement a composite service’s functionalities [10]. It can be 

performed by composing either primitive or composite services [10]. In this thesis, 

composite services are decomposed into less complex services, in order to obtain the 

knowledge related to systems’ functionalities and business logic. 

In addition, nowadays, people are also working on automating the service 

composition process. Semantic Web Service plus AI planning methodologies suggests 

approaches to solve this problem. In spite of lacking a comprehensive solution, 

successful improvement has been achieved [8]. 

Automatic service discovery and composition are critical to the realization of 

automated SPL. While the interactive requirement elicitation method proposed in this 

thesis is expected to automate the requirement engineering process, automated SOA 

methods are the best solutions to the automation of system implementation so far. 
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CHAPTER III 

INTERACTIVE REQUIREMENT ENGINEERING 

3.1 Interactive Requirement Engineering 

In conventional software engineering, computers are treated simply as impersonal 

machines providing functions, objects or models, while their personality and 

characterization are neglected. In [11], Knaus states: ''In the eyes of the software 

developer, computer behaves more like a human with extreme skills and obedience. '' He 

further asserts that an interactive software engineering paradigm, which redistributes 

computers’ responsibilities, can overcome the long-term software development and 

maintenance issues rooted in conventional programming paradigms. In addition, by 

defining a metaphor for the computer, building a concept model as a programming 

paradigm and designing an appropriate user interface, it is possible to find such an 

interactive paradigm. 

Though Knaus promises a bright future, little progress has been made. The task of 

software engineering is very complicated. It is very challenging to redefine computers’ 

responsibilities. Machines cannot deal with the complexity of a specific software 

component. Meanwhile, to build a concept model requires much effort from both 

software engineering and human-computer interaction. Thus how to build the interactive 

software engineering paradigm is still a question. Fortunately, some inspiring ideas came 

out in recent studies. SOA encapsulates software functionalities into loosely coupled 

services, which helps the machine software engineers get rid of the lower-level 

complexity and simplify their jobs. On the other hand, with SPL paradigm, their 

responsibilities are further specified as managing the variable software engineering 

artefacts. Therefore, in interactive software engineering, machines can play the role in 

directing users to select the reusable software assets and implementing the candidate 

application by composing the ordered services. 
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Since a relatively concrete specification to the machines’ responsibilities in 

interactive software engineering is now available, this thesis further proposes a 

requirement elicitation approach for SOA-based SPL engineering as a programming 

model for realizing the interactive requirement engineering. A frame-based dialogue 

system is applied as the interaction interface. Work related to dialogue systems will be 

presented in the next section. 

 

3.2 Dialogue System 

Dialogue systems are a kind of computer systems designed to communicate with 

human beings, extracting and analyzing information from their dialogue-based 

expressions, so as to accomplish certain tasks (e.g. exchanging information and providing 

services) in relatively natural manners. Language is the most efficient way for human 

beings to exchange information between each other. Most human communications in 

history are based on dialogues. Thus dialogue system provides a more natural, 

comfortable and convenient way for human-machine interaction. 

 

 

Fig. 3.1: Structure of dialogue system 
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Typically, a dialogue system consists of six components (Fig. 3.1): Input, Fusion, 

Dialogue Manager, Knowledge Base, Fission and Output [7]. 

 Input:  

Handle different modes of inputs. 

 Fusion:  

Extract, recognize, interpret, and fuse information from different modes of 

inputs. 

 Dialogue Manager:  

Control the flow of the dialogue by deciding how the system should respond 

to the inputs [12]. 

 Knowledge Base:  

Manage information like dialogue history, task knowledge, general dialogue 

knowledge, domain specific knowledge and user information. 

 Fission:  

Transform the responses to different modes of outputs. 

 Output:  

Handle the outputs. 

The core components of a dialogue system are dialogue manager and knowledge 

base. Dialogue managers can be classified into four categories [7]:  

 Finite-state and frame-based:  

Finite state-based dialogue managers are the simplest dialogue managers. The 

dialogue structure is represented in the form of state transition network, and 

the dialogue control is system-driven and all the system’s utterances are 

predetermined [7]. As an extension of finite state-based dialogue managers, 

frame-based models simulate the approach of form filling, which allows 

some degree of flexibility. In this thesis, a frame-based dialogue system is 

developed for conducting requirement elicitation interactively. 
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 Information state and the probabilistic based:  

For the information state-based approaches, a group of states are predefined, 

and the state of the dialogue will be changed dynamically according to 

certain interaction strategies. Some probabilistic techniques (e.g. partially 

observable Markov decision process) are applied to manage the transition 

strategies. 

 Plan based:  

Plan-based dialogue managers are based on the plan-based theories of 

communicative action and dialogue [2]. They are more complex than the 

previous dialogue managers. 

 Collaborative agent based:  

Collaborative agent-based approaches try to capture the motivation behind a 

dialogue and the mechanisms of dialogue itself. As a result, managers based 

on these approaches contribute to the most complicated dialogue systems, 

which allow very high level of flexibility. 

For the knowledge source in dialogue system, typically there are five different 

models of knowledge [13]:  

 Dialogue Model:  

Dialogue Model holds the general information about the construction of a 

dialogue, which is used to control the dialogue. Grammar-based modeling 

and Plan-based modeling are two main approaches to model the knowledge 

for Dialogue Model. 

 Dialogue History:  

Dialogue History records the history of the dialogue. It is used for dialogue 

control, disambiguation of context dependent utterances, and context 

sensitive interpretation [13]. 

 



 

12 
 

 Domain Model:  

Domain Model holds the domain knowledge that will be referred to in the 

conversations. Knowledge in Domain Model is mainly used to guide the 

semantic interpretation of user’s utterances, find the relevant items and 

relations that are under discussing, supply default responses and son on [13]. 

Domain Model usually contains the structure of the domain and comprises a 

subset of the general world knowledge. Its simplification is Conceptual 

Model, which represents the conceptual relationships between the objects in 

the domain [13]. Often, Conceptual Model alone is enough for the domain 

knowledge of the dialogue system. 

 Task Model:  

Task Model, which often consists of a hierarchical representation structure, 

describes how the system’s communicative and other tasks should be carried 

out [13]. 

 User Model:  

User Model represents the user’s goal and plans, capabilities, attitudes, 

knowledge and belief [13]. 

In this thesis, the knowledge base of the proposed dialogue system contains 

domain knowledge of requirement elicitation and the task knowledge for guiding users to 

customize a specific type of software applications. 

In addition to the structure, by considering the source of information which 

determines the interaction, tasks of dialogue systems can be classified into four 

categories [14]:  

 Slot-filling task: 

The user has his goal and has the information about accomplishing the task. 
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 Database search task: 

The user has his goal but needs to retrieve information for completing the 

task. 

 Explanation task: 

The user doesn’t have or has little knowledge about the task. 

 More complex tasks: 

The task is a combination of the other three tasks. 

In the proposed method, a slot-based dialogue system is adopted, and requirement 

elicitation is modeled as a group of slot-filling tasks. These tasks will be performed 

according to the knowledge related to requirement engineering, which is built in 

knowledge base of the dialogue system. Work related to knowledge-based requirement 

engineering will be introduced in the next section.  

 

3.3 Knowledge-based Requirement Engineering 

Requirement engineering is recognized as the most critical stage of the entire 

software development process [15]. Typically, over 40% of errors in a software project 

are from requirement engineering, while they need 10 more times of costs to repair than 

other errors [16]. 

Conventional process-based or scenario-based requirement engineering methods 

predefine a group of processes and their corresponding guidelines. Accordingly, the 

requirement engineering activities and deliverables are carried out following the 

guidelines [17]. However, it is very often that when the processes are ongoing, some 

important information is not yet available. So, engineers have to repeat the processes, 

which results in project delay and additional cost [18]. 

Unlike traditional process-driven requirement engineering, knowledge-driven 

requirement engineering, as a novel requirement engineering paradigm, is conducted 

under the guidance of domain knowledge. Hence, information hidden in the domain can 
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be retrieved without much help from domain experts. The information is further used to 

guide the traditional requirement engineering process. As a result, the validity, 

completeness as well as consistency of requirement engineering product are maintained. 

Moreover, changes to the software development project will be detected and predicted in 

an early stage, and fewer waste efforts will be made. Finally, the outcome of the project 

is expected to be more mature and complete, while rework can be dramatically reduced 

[18]. 

Furthermore, among the group of knowledge-driven requirement engineering 

methods, ontology-based requirement engineering is very popular. It [19]: 

 Provides formal representation for both requirement documents and 

knowledge. 

 Describes the problem domain with varying degrees of formalization and 

expressiveness. 

 Is well suited as an evolutionary approach.  

 Is used to support requirements management and improve the traceability of 

requirement artefacts.  

Thus it outperforms other traditional knowledge-based approaches [19]. By now, 

a number of ontology-based requirement engineering approaches have been proposed. 

Detailed introduction will be presented in the next section. 

 

3.4 Ontology 

3.4.1 Overview 

In theory, an ontology is a formal, explicit specification of a shared 

conceptualization [20]. In other words, ontology is used to represent the common 

knowledge within a domain.  
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The reasons to develop an ontology can be roughly classified into five categories 

[21]: 

 To share common understanding of the structure of information among 

people or software agents 

 To enable reuse of domain knowledge 

 To make domain assumptions explicit 

 To separate domain knowledge from the operational knowledge 

 To analyze domain knowledge 

They are all closely related to domain knowledge representation. Generally, an 

ontology provides a shared vocabulary, which can be used to model a domain or a task. 

Here modeling means constructing the concepts, objects as well as their properties and 

relations that exist in the domain or in the solution to the task [22]. 

Conventionally, knowledge engineering methods, like propositional logic, 

predicate logic and other rule-based methods, mainly investigate topics like logic, 

knowledge representation, search, and so on [23]. They focus on how to solve the 

problem rather than the knowledge itself. So the resulting knowledge is often implicit 

and difficult to be maintained, shared or reused. On the contrary, the main concern of 

ontology is the contents of knowledge and approaches to accumulate it. It builds the 

foundation for common knowledge. 

Moreover, roughly speaking, ontology consists of task ontology, which 

characterizes the computational architecture of a knowledge-based system for certain 

tasks, and domain ontology, which characterizes the knowledge of a specific task domain 

[23]. 

To develop an ontology, typically, includes the following steps [21]: 

1. Define classes (concepts in the domain) in the ontology 

2. Arrange the classes in a taxonomic (subclass-superclass) hierarchy 
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3. Define slots (properties of classes and instances) and describing allowed 

values for these slots 

4. Fill in instances 

5. Fill in the values for slots of the instances 

If all the classes, slots, instances and their relationships are properly defined, the 

ontology for knowledge of a task or a domain is created. 

There are many important benefits in applying ontology. First of all, the 

knowledge is formal, explicit and shared, which means the knowledge is accessible to 

everyone. With ontology, the common standards of a domain can be established by the 

experts. People with different background will have opportunities to acquire the 

knowledge without much professional training. Meanwhile, the taxonomy-based 

representation is very concise and straight-forward, which decreases ambiguities and 

errors. Finally, ontologies are machine-oriented. Some of the ontology languages are 

XML-based, which can be easily shared among different machines. So, currently, 

ontology is one of the most popular and powerful knowledge engineering methods 

widely applied in different applications. 

In this thesis, Web Ontology Language (OWL) [24], one of the most successful 

ontology languages recommended by W3C, is adopted. OWL uses XML syntax and is 

partially mapped to Description Logic, which is a subset of Predicate Logic. Thus OWL 

provides users with various inference capabilities. Actually, the realization of some OWL 

reasoners is based on tableau algorithms, which is an algorithm for Description Logic 

reasoning. OWL consists of three sublanguages: OWL Lite, OWL DL and OWL Full. 

OWL Full is the most expressive among the three. But there is not any reasoners 

supporting its inference. In contrary, while promising the decidability, the expressiveness 

of OWL DL and OWL Lite is sacrificed [25]. Thus Semantic Web Rule Language 

(SWRL) [26], which supplements OWL DL and OWL Lite with Horn-like rules, was 

proposed. The DL-safe version of SWRL is also decidable [25]. 
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Moreover, as explained above, ontology has mechanism to describe implicit 

knowledge. In fact, methods for retrieving the implicit knowledge are based on ontology 

reasoning. Some of these approaches are derived from Description Logic reasoning. For 

example, OWL DL is based on SHIQ Description Logic. Thus algorithms for Description 

Logic reasoning, such as tableau algorithms, can be used to infer with OWL DL ontology. 

Furthermore, many stable reasoners are available for OWL DL reasoning. For example, 

Protégé, an OWL ontology development platform, provides interfaces for plugging in 

reasoners like Pellet, FaCT++, Jena and RACER. In this thesis, Pellet is used for 

ontology reasoning. It supports reasoning with both OWL DL and the DL-safe version of 

SWRL. 

 

3.4.2 Ontology for Requirement Engineering 

As discussed in section 3.3, ontology-base requirement elicitation is a popular 

topic nowadays. However, there is a long history of applying ontology for requirement 

engineering. The very first research effort dedicated to utilizing ontologies in the 

requirement engineering can be dated back to the early 1980s [25]. Since then, a number 

of ontology-based requirement engineering approaches have been studied, developed and 

proposed. Among the most notable publications, [27] introduces an ontology-based 

requirement model that facilitates detecting incompleteness and inconsistency of 

requirement artefacts, measuring the quality of requirement engineering, and predicting 

potential changes in later software engineering phases. A very complete group of 

requirement engineering related ontological relationships is defined in the model. In [28], 

a minimum model for describing requirement knowledge is presented. Goal, quality 

constraint and softgoal are proposed as the fundamental ontology concepts in 

requirement engineering. In addition, a framework for ontology-based requirements 

elicitation is introduced in [29]. Types of functional requirements as well as their 

relationships which facilitate requirement elicitation are outlined in the ontology model. 
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Meanwhile, [15] presents a well-structured ontology-based requirement model called 

SoftWiki, which is capable of capturing and managing the requirement engineering 

artefacts for all stages of system development. 

Although all the approaches introduced above make great contribution to 

ontology-based requirement engineering, they are not suitable for representing 

requirement knowledge for automated SPL. [27] places its emphasis on artefacts 

verification, while the model proposed in [28] is more theoretical than practical. Besides, 

the objective of the method from [29] is to ease the communication between requirement 

engineers and clients in requirement elicitation. Similarly, SoftWiki [15] is developed for 

supporting the collaboration of all stakeholders in all software engineering stages.  

Actually, contributions from most ontology-based requirement engineering 

studies fall into the following three categories:  

 Improving the quality of the requirement engineering artefacts (e.g. [27], [29], 

[30]). 

 Defining a shared understanding among engineers and clients (e.g. [31], [32], 

[33]). 

 Developing new knowledge-based requirement engineering methods (e.g. 

[34], [35], [36]).  

Issues critical to the realization of SOA-based automated SPL, like providing 

automatic guidance for product customization and generating service-oriented system 

specification, are not well covered by these approaches. 

 

3.4.3 Ontology for SOA 

As mentioned in Chapter II, the idea of Semantic Web Service is proposed for 

automating SOA system implementation activities. Different from Feature Driven 

Development [37] and Model-Driven Achitecture [38], where system functionalities are 

mapped to system features and platform-independent models, SOA encapsulates 
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application functionalities into loosely coupled services. Thus, instead of designing and 

realizing the features or models, software applications can be implemented by 

discovering, composing and invoking the services in SOA. Moreover, Semantic Web 

Service methods further specify the web service descriptions on the semantic level, thus 

suggest solutions for automatic service discovery and composition [4]. 

Semantic Web Service approaches are also based on ontology. Currently, there are 

mainly three ontologies developed for Semantic Web Service: Web Service Modeling 

Ontology (WSMO) [39], Semantic Markup for Web Services (OWL-S) [40] and SOA 

Ontology [20]. 

 WSMO is a conceptual model related to Semantic Web Service. It supports 

the Semantic Web Service deployment and interoperation. 

 OWL-S is also an ontology for describing Semantic Web Service. It enables 

automatically discover, invoke, compose, and monitor web services under 

specified constraints. 

 ''SOA Ontology defines the concepts, terminology and semantics of SOA in 

both business and technical terms'' [41]. It creates a foundation for facilitate 

SOA understanding, SOA related communication, and SOA system modeling. 

Meanwhile, it potentially, contributes to model-driven SOA implementation 

[41]. 

The first two ontologies are relatively low-level. They are techniques for 

describing concrete Semantic Web Services. 

In this thesis, OWL-S is applied. OWL-S is based on the ontology language OWL. 

It is an ontology of services that makes automatic service discovery and composition 

possible [40]. The instances of its class ServiceProfile describe the characteristics of the 

services which are used to match clients’ requests, while information for service 

composition is contained in instances of the class ServiceModel. When discovering the 

services, the requestors’ ServiceProfiles will be matched automatically with service 
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providers’ ServiceProfiles through semantic capability matching [42]. If the matching 

succeeds, the desired services are found. Then the ServiceModels, associated with the 

discovered services, will carry information about the process of composing and invoking 

the services. So by reasoning the knowledge contained in ServiceModels, automatic 

service composition will be performed and the desired functionalities can be obtained [8]. 

On the other hand, although OWL-S provides descriptions for web service functionalities, 

it has few mechanisms for non-functional service description [43]. Fortunately, [43] 

proposes a quality extension for OWL-S to offset this drawback. It inherits from the class 

ServiceParameter defined in OWL-S, which is designed for extending OWL-S with 

more specific service descriptions.  
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CHAPTER IV 

PROPOSED ONTOLOGY-BASED REQUIREMENT MODEL 

4.1 Introduction 

This chapter reports the ontology-based requirement model. Different from the 

ontology-based requirement engineering methods discussed in Chapter III, the model 

developed in this research integrates the requirement engineering knowledge with 

service-oriented knowledge. While the key concepts and relationships proposed in [27] 

and [28] are kept for maintaining the completeness and consistency of the product 

requirements, a service-oriented decomposition approach is applied for instantiating the 

modeling, as well as organizing the commonalities and variabilities in SPL. Furthermore, 

information for directing requirement elicitation, such as ranks of the requirements, is 

also expressed in the ontology model. Therefore, knowledge contained in the model is 

expected to guide the automatic product customization and facilitate generating 

service-oriented system specification for system implementation.  

In this chapter, construction of the ontology-based requirement model (Fig. 4.1) is 

presented according to the ontology engineering steps proposed in [21]. First, concepts of 

the model are defined. Second, relationships describing the taxonomic hierarchy of the 

ontology are outlined. Third, as supplement to OWL ontology, this chapter proposes a 

group of SWRL rules for the model. Finally, instantiation of the ontology is discussed. 

 

4.2 Concepts 

The concepts of the model are illustrated in Fig. 4.1 with class diagram notations. 

In the domain of requirement elicitation, according to their different roles, Requirements 

can mainly be classified into three categories: Function, Quality and Softgoal. Meanwhile, 

Rank is used to represent the importance of the requirements with respect to the entire 

product software. Besides, the proposed ontology model also contains concepts to 
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describe detailed information about a requirement, which offers helps to clients’ 

evaluation. 

 

Fig. 4.1: The proposed ontology-based requirement model 

 Requirement: An instance of Requirement is a system feature can be ordered 

by users. There are three types of Requirement: Function, Quality and 

Softgoal. 

 Function: An instance of Function represents a functionality that users can 

order. It may be a primitive function offered by the product software or a 

composition of several primitive functions. From the service-oriented point 

of view, a function is actually a service. In this research, functions are 

organized in forest-like structure, where composite functions decompose into 

less complex composite functions or primitive functions. 

 Quality: An instance of Quality is a non-functional constraint imposed on a 

function. Mainly, they are used to further specify a functionality. Therefore, a 

quality instance is always related to a particular function. A quality cannot be 

chosen if the corresponding function is dropped. Besides, a quality can also 

be further specified with sub-qualities in a decomposition tree. 
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 Softgoal: Instances of Softgoal are also non-functional constraints. However, 

instead of imposing on a particular function, they describe the global 

environment within which the product software system works. They are often 

very abstract, and may be related to a subset of the candidate functions and 

qualities, but all selected requirements must submit to them. Similar to 

instances of Quality, softgoals can also decompose into sub-softgoals. 

 Rank: Instances of Rank represent the importance of the requirements with 

respect to the potential system. On the other hand, they also specify the 

evaluation order of the requirements in the requirement elicitation process. 

 OtherInfo: Concepts generalized from OtherInfo may be general requirement 

engineering related concepts (e.g. stakeholders) or specific concepts within a 

domain. Instances of them are used to describe detailed information about the 

requirements. Users can request such relevant information when evaluating 

the requirements. 

 

4.3 Relationships 

 

Fig. 4.2: Notation for the relationships 

The relationships between the concepts are depicted in Fig. 4.1, and their 

notations are outlined in Fig. 4.2. In the proposed method, these relationships not only 

enable checking the consistency and completeness of the customized requirements, but 
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also facilitate machines to direct the requirement elicitation. 

I. Generalize: 

An instance of Function, Quality or Softgoal is also an instance of 

Requirement. Generalize represents the IS-A relationship. 

II. Decompose: 

Requirement x decomposes into less complex requirement y of the same 

type. y describes part of x’s characteristics or is a more detailed alternate 

to x. x is called the parent, while y is called the child of x.  

A requirement can decompose into zero children; otherwise it must 

decompose into at least two children. A child has at most one parent. 

Logically, a requirement cannot decompose into more complex 

requirements (e.g. its parent or the parent of its parent). Thus the 

decompose relationship forms decomposition trees. In practice, it is 

possible that a requirement participates in the decompositions of several 

more complex requirements. However, if a requirement is allowed to have 

two parents, when it is picked up during requirement elicitation, the 

composition that the requirement is supposed to join in the product 

software will be unknown. Hence, in this case, two copies of the 

requirement are required for participating in the two decompositions. 

When functions decompose into sub-functions, the parent functions 

represent functionalities that are the results of their children’s composition 

(i.e. service composition). In other words, a parent implies a composition 

strategy rather than any concrete functionalities. Only the leaves in a 

function decomposition tree are primitive functionalities. Besides, it is not 

necessary to select a composition strategy if one only needs some 

primitive functionalities. 

In a quality or softgoal decomposition tree, the children denote 
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refinements to the parent. So logically, it actually doesn’t make any 

difference to have a parent quality directly replaced by its children in an 

instantiated ontology model. The decomposition relationship only eases 

the requirement elicitation interaction or the ontology instantiation work. 

III. Rely: 

The realization of requirement x relies on the implementation of 

requirement y. If x is ordered by the clients, y must also be selected; 

otherwise the resulting system will not function properly.  

So Rely describes the completeness of the requirement elicitation product. 

In addition, when a requirement relies on two other requirements, this 

implies it needs them both. In practice, it is possible that the requirement 

only requires one of them. In this case, two copies of the same 

requirement are created and a Contradict relationship is established 

between them; then each of the two copies relies on one of the two 

required requirements. 

A parent function relying on its children or children of its children implies 

the composition strategy requires the involvement of the corresponding 

children. If a child function relies on its parent or parent of its parent, this 

indicates the child function is designed deliberately for the composition. 

Normally, a function relying on another function means the input of one 

function is the output of the other function. 

When a parent quality or softgoal relies on its children, it means the 

children are essential to the parent constraint. In this research, children 

qualities and softgoals are supposed to rely on their parents. This promises 

that during the requirement elicitation process, children qualities and 

softgoals will not be explored if their parents are abandoned. 

Qualities and softgoals may rely on functions. This suggests realization of 
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the constraints requires the implementation of some functions. Functions 

may also need some quality or softgoal constraints to function properly. 

Moreover, if a function relies on a quality, it also relies on the function 

associated with this quality constraint. 

IV. Contradict: 

Requirement x contradicts requirement y. Requirement x and requirement 

y are not supposed to simultaneously realized in the product software.  

Contradict describes the consistency of the elicited requirements. This 

relationship is symmetric and non-reflective. A requirement cannot 

contradict its children, parent or the requirements it relies on. A function 

should not contradict the quality constraints associated with it. 

Normally, if two requirements play the same role in the candidate 

application, which means they represent the same functionality or 

constraint, there is a Contradict relationship between them. In addition, if 

two requirements cannot be met simultaneously in the product software, 

they contradict each other. 

V. Associate: 

Function x is associated with quality constraint y. y is a quality constraint 

that can be imposed on function x.  

As a quality cannot be realized on the customized software if its 

associated function is not implemented. Associate relationship also 

implies the quality constraint relies on its corresponding function. 

Moreover, with the same problem and solution as Decompose relationship, 

two functions are not supposed to be associated with the same quality. 

If a composite function is associated with a quality, this suggests the 

quality constraint is imposed on the composition rather than any primitive 

functionalities. Constraints for primitive functionalities should be directly 
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related to the concrete functions. Moreover, as children qualities are 

refinements to their parents, if a function is associated with a parent 

quality, it is also associated with the corresponding children qualities. 

Therefore, if an Associate relationship is explicitly defined between a 

function and a quality, the function is associated with the entire quality 

decomposition sub-tree which is rooted on the quality. Meanwhile, the 

parent of the root quality, if there is one, is not supposed to have Associate 

relationship with any functions. 

VI. hasRank: 

Requirement x has a rank of r. A requirement can have exactly one rank. 

During the requirement elicitation process, requirements with higher ranks 

will be offered to users for evaluation before those with lower ranks. 

Hence, if a requirement has strong influence on the candidate application 

or other requirements, it should be assigned with a high rank. Besides, the 

parent requirements should always have higher ranks than their children. 

If several requirements are closely related and supposed to be evaluated 

one after another, they should be of the same rank. 

Furthermore, requirements of the highest rank are treated as essential 

requirements. They represent the common features of the SPL artefacts. 

As a result, they will be picked mandatorily before the evaluation of any 

other non-essential requirements. In addition, no requirement should 

contradict essential requirements. 

VII. Invalid: 

There is an invalid relationship between requirement x and requirement y.  

Invalid relationships are used to denote the invalidity in the instantiated 

ontology model. It is applied with rules, and can be generalized into types 

of more specified Invalid relationships. Types of invalidity will be 
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presented in the next section. 

 

4.4 Rules 

  

Fig. 4.3: Rules for the proposed ontology model 

Fig. 4.3 illustrates the group of SWRL rules applied in the research. They adopt 

horn-like presentation. By reasoning with these rules, implicit knowledge for requirement 

elicitation and ontology instantiation can be retrieved. Followings are the explanations to 

the rules. 

i. Contradict relationship is non-reflective. 

ii. Decompose relationship is non-reflective. 

iii. Rely relationship is transitive. 

iv. Contradict relationship is symmetric. 

v. Contradict relationship and Rely relationship are disjointed. 

vi. Contradict relationship and Decompose relationship are disjointed. 

vii. Contradict relationship and Associate relationship are disjointed. 
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viii. Decompose relationship is asymmetric. 

ix. Decompose relationship is transitive. 

x. Decompose relationship is inverse-functional. 

xi. Associate relationship is inverse-functional. 

xii. Children qualities and softgoals rely on their parents 

xiii. A quality relies on its corresponding function. 

xiv. If requirement x relies on requirement y, x contradicts the requirements 

that y contradicts. 

xv. If function z is associated with quality x, z is associated with x’s children. 

xvi. Requirements cannot contradict top rank requirements. 

In fact, rules i-xi can be expressed with OWL elements. However, some of them 

cannot be reasoned with available reasonors. Even if reasoners can deal with them, the 

invalid relationships will not be explicitly pointed out by the reasoners. Thus rules are 

applied here. 

Rules iii, iv, xiii and xiv reflect the nature of the relevant relationships, while 

rules xii is used to facilitate the requirement elicitation process. 

Besides, rules i, ii, v, vi, vii, viii, ix, x, xi, xv and xvi are used to verify the 

validity of an instantiated requirement model. During requirement elicitation, the 

explicitly defined Decompose and Associate relationships determine the order of 

requirement evaluation. Therefore, rule xv is not activated in requirement elicitation 

process. Moreover, rule ix contradicts rule x, and it also violates the decomposition tree 

structure. But rule ix facilitates discovering the invalidity that parents cannot contradict 

the children of their children. Hence, it is applied but not activated together with rule x or 

in requirement elicitation process. 

 

4.5 Ontology Instantiation 

Instantiating the ontology model is actually the domain engineering process in 
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SPL engineering. 

Before instantiating the ontology model for a specific type of software systems, 

the requirement engineers must analyze this type of service-oriented applications. 

Decompose these systems into primitive services and find out the commonalities and 

variabilities. Then they can instantiate the model according to the following procedure 

presented in Fig. 4.4. 

 

Fig. 4.4: Procedure of instantiating the ontology model 

1. Identify the main functions which are roots of the decomposition trees. 

2. For each of the roots, if it represents certain composition strategies, identify 

the children that contribute to the composition. Then establish the Decompose 

relationship between the parent and children. If the children are also 

decomposable, repeat this decomposition process, until all primitive functions 

are discovered. 

3. Find the corresponding quality constraints that can be imposed on the 

functions. Organize the qualities with decomposition trees. As all the qualities 

constraints contained in a decomposition sub-tree are related with the same 

function, establish an Associate relationship between the corresponding 
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function and the root of the sub-tree. Associate relationships between children 

and the corresponding function are not supposed to be explicated defined. In 

requirement elicitation process, when a function is picked by users, its 

associated qualities will be pre-evaluated immediately. However, the children 

qualities are expected to be explored in a later stage. 

4. Identify the softgoals, and decompose them if necessary. 

5. Establish the Rely relationship for the requirements. 

6. Establish the Contradict relationships. 

7. Identify the essential requirements, and assign ranks to the requirements with 

respect to their importance and expected positions in the elicitation process. 

8. Specify the detailed descriptions for each requirement. Bind each requirement 

with the corresponding service description which will be used in generating 

the service-oriented output. Details will be discussed in Chapter V. 

9. Verify the validity of the instantiated ontology model. Make modifications if 

necessary. Moreover, the generally acknowledged facts, like requirement 

which could not decompose into exactly one child, should also be checked 

manually. 

Then a valid instance of the ontology model is built. Typically, for a type of 

medium-sized software systems like online book shopping service, there will be dozens 

of requirements and more than a hundred relationships created in the instantiated 

ontology model. 
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CHAPTER V 

PROPOSED REQUIREMENT ELICITATION METHOD 

5.1 Introduction 

A frame-based dialogue system is developed in this thesis, which takes the 

instantiated ontology model as knowledge base. It is applied to elicit users’ demands 

through human-machine interaction. Though to maintain the completeness and 

consistency of the customized requirements is very complicated and requires ontology 

reasoning, interactions for requirement elicitation are actually a group of slot-filling tasks. 

Questions such as whether users need a specific requirement will be proposed by the 

machine, and users will respond with their decisions on the very requirement. Therefore, 

users know what they are going to do and how it is going to be done, which means the 

requirement elicitation process can be modeled as a set of slot-filling subtasks, while the 

utterances, slots as well as value options for each slot will be retrieved from the 

knowledge base, hence a framed-based dialogue system is capable of handling the 

interactions for requirement elicitation, in spite of its limited communication ability. 

In this chapter, the structure of the dialogue system, the requirement elicitation 

process and the output of the elicitation will be discussed. 

 

5.2 Structure of the Proposed Dialogue System 

The frame-based dialogue system designed in this research consists of four 

components: interface, I/O controller, dialogue manager and knowledge base (Fig. 5.1). 

The dialogue interface is text-based. It displays machine generated utterances and 

provides one slot for users to fill in. Typically, the utterances will be questions like 

''Would you like to select the requirement …?''. Users are expected to answer ''Yes'' or 

''No''. Then the users’ response will be passed onto the I/O controller. It will try to match 

the input with a set of predetermined information. If the matching fails, an utterance that 
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asks users to correct their response will be generated by the I/O controller, sent to the 

interface and get displayed as the output of current interaction. Otherwise, the input will 

be converted into format processable to machines and passed onto the dialogue manager. 

The dialogue manager then knows users’ decision on the requirement currently being 

evaluated. It will consult the ontology knowledge base with the decision, and customize 

the requirements based on the related requirement knowledge as well as the input. After 

that, an output will be generated by the dialogue manager according to the result of the 

customization and sent to the I/O controller. The I/O controller will convert the output 

into natural language and have it displayed by the interface, which will initiate the next 

round of interaction. 

 

Fig. 5.1: Structure of the proposed dialogue system 

 

5.3 Process of Requirement Elicitation 

Before the commencement of requirement elicitation, the implicit knowledge (e.g. 

indirect relationships) contained in the instantiated ontology model will be extracted by 

reasoning. 

The requirement elicitation process (Fig. 5.2) is divided into two stages. First, 

requirement elicitation will be conducted under the guidance of machine. Then users will 

have chances to change their decisions made in the first stage and further customize the 

product software. 
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Fig. 5.2: Process of interactive requirement elicitation 

 

5.3.1 Machine-directed Requirement Elicitation 

During the first stage, each requirement will be offered to users for evaluation in 

turns. At the beginning, all essential requirements will be picked automatically without 

being evaluated. Then the functions will be evaluated, and the evaluation of qualities will 

follow. Finally, the softgoals will be customized. Among the requirements of the same 

category, one with higher rank will be evaluated before those with lower ranks. 

Fig. 5.3 presents the pseudo code for evaluating the requirements. When 

evaluating a requirement, there could be four cases. 

1. If a requirement R is essential to the system, actions for selecting the 

requirement will be performed. 

2. If the requirement R is non-essential and pre-selected, actions for selecting a 

requirement will be performed. These actions include call selectRequirement 

to have R selected; call preSelectRequirement to have the requirements that R 

relies on pre-selected; call preDropRequirement to have the requirements that 

R contradicts pre-dropped; call preEvaluateRequirement to have the 

Identify the implicit knowledge with reasoning

Perform requirement elicitation under machine's guidance

Customize the requirements freely by users
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requirements that R decomposes into pre-evaluated; and if R is a function, call 

preEvaluateRequirement to have the qualities that R is associated with 

pre-evaluated. 

 

Fig. 5.3: Pseudo code for requirement evaluation process 

3. If the requirement R is non-essential and pre-dropped, action for dropping a 

requirement will be performed. These actions include call dropRequirement to 

have R dropped and call preDropRequirement to have the requirements that 

rely on R pre-dropped. 

4. If the requirement R is non-essential and has not been pre-selected or 

pre-dropped, evaluateRequirement will be called to have R evaluated by users. 

Then if users choose to select R, actions for selecting a requirement will be 
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performed. Otherwise, actions for dropping a requirement will be performed. 

Followings are the explanations to the subroutines used in the pseudo code. 

 selectRequirement will put the requirement to a set to have it labelled as 

''selected'' if it is unlabelled. 

 droptRequirement will put the requirement to a set to have it labelled as 

''dropped'' if it is unlabelled. 

 evaluationRequirement will present the requirement to users through 

dialogue interface. Users can choose to select or drop the requirement, or 

request detailed description to the requirement before making the decision. 

 preSelectRequirement will put the requirement to a set to have it labelled as 

''pre-selected'' if it is unlabelled. 

 preDropRequirement will put the requirement to a set to have it labelled as 

''pre-dropped'' if it is unlabelled. 

 preEvaluateRequirement will first call evaluateRequirement to have the 

requirement evaluated if it haven’t been evaluated yet. Then based on users’ 

choice, preSelectRequirement or preDropRequirement will be called. 

Moreover, if the requirement is to be pre-selected, pre-select the requirements 

it relies on, and pre-drop the requirements contradicting it. Otherwise, 

pre-drop the requirements relying on it. 

During the requirement elicitation process, all requirements will be expanded at 

most once (in pre-evaluation or in formal evaluation). Here, expanding a requirement 

means retrieving the detailed information of the requirement. Besides, each Decompose 

and Associate relationship will be visited at most once by the parents. Each Rely and 

Contradict relationship will be visited at most twice by the two involved requirements. 

Therefore, let V be the number of requirement instances in the ontology and E be the 

number of the four relationships. Then the complexity of the algorithm is O(V+E). 
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5.3.2 User Requirement Customization 

During the second stage, users can order the machine to select or drop an arbitrary 

requirement. In other words, they can change their decisions made in the first stage. If a 

selected requirement is to be dropped, the selected requirements that rely on it will also 

be dropped. If a dropped requirement is to be selected, the selected requirements that 

contradict it will be dropped and the dropped requirements that it relies on will be 

selected. Therefore, the completeness and consistency of the customization are 

maintained all over the two stages. 

 

5.4 Output of Requirement Elicitation 

5.4.1 Output Overview 

To build software with SOA methods, the services must first be discovered. Thus 

the output of the requirement elicitation process is a set of service descriptions which can 

be used to discover the services satisfying the selected requirements. 

 

Fig. 5.4: Selected classes and properties in OWL-S functionality description 

In this research, OWL-S is used to describe the services. OWL-S makes use of an 

instance of ServiceProfile to represent the information needed to discover a service. 

ServiceProfile has four functionality related properties: hasInput, hasOutput, 
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hasPrecondition and hasResult. They associate an instance of ServiceProfile with 

respective instances of Input, Output, Precondition and Result. And an instance of Input, 

Output, Precondition and Result would respectively represent: the information the 

service requires to work, the message the service returns, the condition within which the 

service executes properly and the effects as well as outputs of the service execution. 

Quality constraints to services are not explicitly defined in OWL-S. The 

extension proposed in [43] is used to describe the qualities and softgoals. In this 

extension, Quality_Property which is generalized from OWL-S class ServiceParameter 

is used to represent a constraint. For those measurable qualities, instances of Attribute, 

inherited from Quality_Property, can be used to express them as well as their metrics. 

For those abstract constraints (e.g. softgoals), Quality_Model, which connects 

Quality_Property via property defined_by, can be used to specify their standards. 

Instances of ServiceProfile are associated with instances of Quality_Property through 

property serviceParamter. 

 

Fig. 5.5: OWL-S quality extension proposed in [43] 

So for each requirement, it is related with a piece of service discovery 
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information: either functionalities represented with Input, Output, Precondition and 

Result, or quality constraints represented by Quality_Property. Converting requirements 

into service descriptions is actually to combine the information that belongs to the 

selected requirements. As requirements are organized in decomposition trees, the selected 

requirements also form a group of selected sub-trees. The integration process can be 

carried out in a way of merging nodes in the selected sub-trees. 

 

5.4.2 Output Generation 

The output generation process (Fig. 5.6) is divided into four phases. 

 

Fig. 5.6: Procedure of generating service description 

1.  Retrieve the selected primitive functions. Normally, primitive functions have 

information about input and output of the service. If there is a Rely 

Retrieve the selected primitive functions

Attach the quality constraints to the corresponding function roots

Attach the softgoals to the selected function roots

Merge primitive functions to their parents

Merge primitive sibling functions

If there are mergeable functions
Yes

No
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relationship between two selected sibling primitive functions, it implies that 

some inputs of one primitive function are from the outputs of the other 

function. Then those relevant inputs and outputs are not necessarily to be 

expressed in the service description. So merge the two siblings with algorithm 

outlined in Fig. 5.7.  

 

Fig. 5.7: Pseudo code for merging siblings 
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The algorithm first creates a new function. Then attach inputs, outputs, 

preconditions and results of the two siblings to the new function, and 

removing the unnecessary inputs and outputs. Establish the same Decompose 

and Rely relationships that the two siblings participate in for the new function, 

while the relationships between the two siblings should be eliminated. Then 

replace the two siblings with the new function in the corresponding selected 

sub-tree.  

Repeat the sibling merging process until no more primitive siblings can be 

merged any more. 

2. Merge the primitive children functions into their parents in the selected 

function sub-trees. Composite functions usually don’t contain information 

about input or output. Since they represent composition strategies, they are 

associated with preconditions and results. The children should be merged to 

their parents so as to make descriptions for the compositions complete. The 

algorithm for merging children into parent is presented in Fig. 5.8.  

The algorithm first attaches the child’s inputs, outputs, preconditions and 

results to the parent. Then establish the same Rely relationships that the child 

participates in for the parent, and remove the child from selected requirement 

set.  

It is possible that a parent function is selected but none of its primitive 

children is selected. If this happens and no other requirements rely on the 

parent function, it is supposed that users don’t really need this function. 

Hence, it will be removed as if it has never been selected. If some selected 

requirements rely on it, it cannot be removed directly. In this case, there will 

be some default primitive functional descriptions predefined for the composite 

function. With these descriptions, the composite function can be treated as a 

primitive function.  
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After primitive children are merged into their parents, the merged parent 

forms new “primitive” functions. It is also possible that the new primitive 

functions rely on some of their siblings. In this case, run the merging sibling 

algorithm for them. Repeat merging the new primitive children into parents 

until only the roots of the selected sub-trees are left. 

 

Fig. 5.8: Pseudo code for merging child into parent 

3. Attach the selected leaf qualities to the corresponding function roots. Parent 

qualities don’t represent any concrete constraints, so they don’t carry any 

service related information. For each leaf quality, first find the selected 

function that is associated with it. Then further trace the root of selected 

sub-tree which contains the function. Attach the service information carried 

by the leaf quality to the root’s service description. If a parent quality is 

selected but none of its children is selected, the same solution for function 

will be applied to handle it. 

4. Attach the selected leaf softgoals to the function roots. Parent softgoals also 

don’t carry service related information. Attach the leaf softgoals’ information 

to all the selected function roots. If a parent softgoal is selected but none of its 

children is selected, the same solution for function and quality will be applied. 



 

43 
 

Finally, the integrated service descriptions (i.e. the OWL-S files), carried by the 

roots of the selected function sub-trees, form the output of the requirement elicitation. 

When the service for a root function is discovered, descriptions to the primitive services, 

on which the root is built, are also carried by this service’s specification. Therefore, when 

generating the output, service information for the primitive functions is merged into the 

root functions’ descriptions, and there is no need to describe the primitive functions 

separately. On the other hand, merging service descriptions into root functions is optional. 

Users may choose to have the quality and softgoal constraints attached on the primitive 

functions directly, and then discover and evaluate the selected primitive functions 

separately. As a result, instead of applying the service compositions offered by the 

service providers, they can define the service composition strategies on their own. 

 

5.5 Considerations for System Implementation 

Implementation of service-oriented systems involves two stages: service 

discovery and service composition. Solutions to automatic service discovery and 

composition with OWL-S are discussed in [8]. A brief overview is presented in this 

section. 

Different from UDDI, which supports keyword based service discovery, OWL-S 

can describe the semantics of the services. With semantic capability matching, limitations 

of syntactic service matching can be overcome, and service discovery will be more 

intelligent. Basically, there are two types of service capability presentation: one is to use 

an extensive class hierarchy to specify the detailed functionalities; the other is to define 

the state transformation resulted from the execution of the service. OWL-S supports both 

presentations [42], which means capability matchmaking with OWL-S is more promising. 

Besides, plenty of matching as well as other service discovery algorithms have been 

proposed in literature for automating OWL-S based service discovery (refer to [8] for the 

list of algorithms). Therefore, with the OWL-S based requirement elicitation outputs, 
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appropriate services can be found automatically. 

When OWL-S based services are discovered, their compositions should be 

performed in order to provide the requested functionalities. In OWL-S, the composition 

is described with instances of ServiceModel which will be retrieved when the services are 

discovered. Each ServiceModel actually represents process models of composing and 

executing the corresponding service. The process models can be used to construct generic 

procedures and plans for implementing the functionalities. Several AI planning 

techniques have been proposed for automatic OWL-S based service composition [8]. 

Although most of the approaches are not mature enough and further work for realizing 

automatic OWL-S service composition is still needed, automated composition for 

OWL-S based information-gathering services can already be performed [42]. 

By now, the complete process from requirement elicitation to system realization 

has been presented. With an SPL approach, the service-oriented software is ordered and 

expected to be implemented automatically. Furthermore, by directly interacting with the 

text-based dialogue system developed in this thesis, users can properly customize the 

expected software product without producing any errors. 
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CHAPTER VI 

IMPLEMENTATION AND CASE STUDY 

5.6 Implementation 

The dialogue system was developed in Java 6.0 on x86 platform with Windows 

operating system. Eclipse IDE (3.6) was used to facilitate coding and debugging. 

Fig. 6.1 depicts the interface of the dialogue system. It is divided into three parts. 

The utterances generated by the dialogue manager are displayed in the upper left textbox. 

Users can type their response in the lower left textbox. Meanwhile, the three lists on the 

right side contain the selected, dropped and to-be-evaluated requirements respectively. 

The ontology is built with Protégé ontology editor (4.2), and Pellet (2.2.2) is 

applied as the ontology reasoner. Pellet supports reasoning with both OWL DL and 

DL-safe SWRL. The version of OWL language adopted in the thesis is 1.1. 

 

Fig. 6.1: Interface of the proposed dialogue system 

The concepts, object relationships, data relationships, rules and instances of the 
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requirement model created with Protégé editor are shown below. Fig. 6.2 illustrates the 

concepts for the ontology-based ontology model, while the relationships between these 

concepts are presented in Fig. 6.3.  In Fig. 6.4, the group of data relationships 

describing the concepts with primitive data types is created. Meanwhile, the SWRL rules 

designed for the requirement model are given in Fig. 6.5, followed by Fig. 6.6, where 

instances for the case study, which will be discussed in the next section, are constructed 

with the ontology model. 

 

Fig. 6.2: Classes created for the proposed ontology model 
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Fig. 6.3: Object properties created for the proposed ontology model 

 

 

Fig. 6.4: Data properties created for the proposed ontology model 
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Fig. 6.5: Rules created for the proposed ontology model 

 

 

Fig. 6.6: Instances created with the proposed ontology model 
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5.7 Case Study 

5.7.1 Case Overview 

An online book shopping system is used as a case study in this research. The 

structure of a typical but simplified online book shopping system is illustrated in Fig. 6.7. 

There are basically four modules: book locating, cart management, account management 

and order placing. Book locating module is responsible for book searching and retrieving 

book information; cart management module provides a list where users can save the 

references of the books they want to buy; account management module manages users’ 

personal, delivery and payment information; order placing module gathers information 

such as shopping list, payment, delivery, and total price, and helps users to place the 

order. It is assumed that account management is not necessary for an online book 

shopping system. Users can specify necessary information for each purchase without 

having it saved in the online bookstore. 

 

Fig. 6.7: Functionalities of an online book shopping system 

The requirement model was instantiated for the entire book shopping system 

(refer to Appendix A). There are totally 52 functions, 6 qualities and 2 softgoals. For the 

relationships, there are 48 Decomposes, 102 Relys, 6 Contradicts and 6 Associates. It is 
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too complicated to explain all the details. In this thesis, process of customizing the book 

locating module with the proposed approach is presented in details as the case study. 

 

5.7.2 Book Locating Service 

1. Function Decomposition 

First, the ontology model is instantiated with requirements of the book locating 

module. Basically, book locating module provides two functionalities: get reference to a 

book and get detailed information about a book. Details of a book may include the 

publication information, the contents, sample chapters and so on. Here publication 

information and contents are used as examples. In addition, in order to get the reference 

of a book, the most common method is search. Search will return a list of relevant books, 

so users need to point out the very book from the list. In addition, to facilitate users in 

finding the book among a list of books, sorting could be applied. Thus getting a list of 

books may contain two sub-processes: search a book and sort the search results. 

Furthermore, there are two ways of book searching. One is to match user inputs with the 

predefined keywords of the books. The other is advanced composite search. Users may 

provide detailed information such as authors and publication to narrow down the search 

domain. There are two levels of keywords matching: broad match and exact match. Exact 

match tries to return the results that are most relevant to the inputs, while broad match 

allows returning something appearing similar to the inputs but not exactly related to the 

inputs. On the other hand, broad match may return something unexpected but interesting. 

Thus they are two different levels of search quality constraints, and mutually exclusive. 

Now, book locating is fully decomposed into primitive functions and quality 

constraints. Followings are descriptions to each of the functions. 

 Search in book keywords: input – phrases (from users); output – a list of 

relevant books and a list of references to the books 
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 Advanced search: input – the fields to be matched and phrases for each field 

(from users); output – a list of relevant books and a list of references to the 

books 

 Search relevant books: input – (from sub-functions); output – (from 

sub-functions) 

 Sort books in a list: input – the sorting order (from users) and a list of book 

references (from Search relevant books); output – a list of relevant books and 

a list of references to the books 

 Get a list of relevant books: input – (from sub-functions); output – (from 

sub-functions) 

 Pick a book from a list: input – book index in the list (from users) and a list 

of book references (from Get list of relevant books); output – a reference to a 

book 

 Get reference to a book: input – (from sub-functions); output – (from 

sub-functions) 

 Get publication info: input – a reference to a book (from Get reference to a 

book); output – publication information of a book 

 Get contents: input – a reference to a book (from Get reference to a book); 

output – contents of a book 

 Get detailed info of a book: input – (from sub-functions); output – (from 

sub-functions) 

 Locate a book: input – (from sub-functions); output – (from sub-functions) 

 

2. Ontology Instantiation 

Fig. 6.8 presents the instantiated ontology model. 

Broad match and Exact match are mutually exclusive, so there is a Contradict 

relationship between them. They are quality constraints for Search in book keywords. As 



 

52 
 

a result, they are related with Search in book keywords via Associate relationship. 

Meanwhile, Search in book keywords is essential to Search relevant books; Search 

relevant books is essential to Get a list of relevant books; Get a list of relevant books and 

Pick a book from a list are essential to Get reference to a book; Get reference to a book is 

essential to Locate a book. Thus there are Rely relationships pointing from the parents to 

the children. In addition, Sort books in a list relies on the output of Search relevant books; 

Pick a book from a list relies on the output of Get a list of relevant books; Get detailed 

info of a book relies on the output of Get reference to a book. So there are Rely 

relationships between each pair. Meanwhile, Pick a book from a list can only contribute 

to Get reference to a book; Get reference to a book can only contribute to Locate a book. 

As a result, there are Rely relationships from the two children to the two parents. 

 
Fig. 6.8: Requirement model instantiated with book locating service 
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Ranks of the requirements are also shown in Fig. 6.8. As the core of Locate a 

book is to get the reference of the book, requirements describing Get reference to a book 

are expected to be evaluated first. Thus Get detailed info of a book as well as its children 

has a relatively low rank. 

 

3. Requirement Elicitation 

When the ontology model is ready, requirement elicitation can be performed. The 

sample utterances between users and machine are presented in Fig. 6.9 - 6.15. In this case, 

users need the software system to retrieve detailed information about a book. So they 

only want to search a book with exact matching and retrieve all the available information 

about the book. 

In Fig. 6.9, users are first welcomed and informed that the essential requirement 

Locate a book is selected mandatorily. Then the two sub-requirements Get reference to a 

book and Get detailed info of a book should be pre-evaluated. But Get reference to a 

book is relied by Locate a book. Thus it has already been pre-selected, and its 

pre-evaluation is skipped. Get detailed info of a book is pre-evaluated, but users need 

more explanation to it. After the users know the role of Get detailed info of a book in the 

system to be built, they select it. 

Fig.6.10 shows the evaluation of Get reference to a book as well as its two 

children. As Rely relationship is transitive, they are all relied by Locate a book, and have 

been pre-selected. In Fig. 6.11, Search relevant books and Sort books in a list are 

evaluated. Then it’s the turn to evaluate requirement Search in book keywords and to 

pre-evaluate its two associated quality constraints. During this process, the users input 

some information that the machine cannot handle (Fig. 6.12). Then the machine notifies 

the users to correct their response. With the interaction presented in Fig. 6.13 – Fig. 6.15, 

users pick the functions and quality constraints they need. After that they are not willing 

to change their decisions, and the requirement elicitation process is finished. 
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Fig. 6.9: Dialogue utterances 
for customizing book locating 

service (part 1) 

Fig. 6.10: Dialogue utterances 
for customizing book locating 

service (part 2) 

Fig. 6.11: Dialogue utterances 
for customizing book locating 

service (part 3) 
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Fig. 6.12: Dialogue utterances 
for customizing book locating 

service (part 4) 

Fig. 6.13: Dialogue utterances 
for customizing book locating 

service (part 5) 
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4. Output Generation 

Finally, requirements Search in book keywords, Search relevant books, Get a list 

of relevant books, Pick a book from a list, Get reference to a book, Get publication info, 

Get contents, Get detailed info of a book, Locate a book and Exact match are selected. 

Then the output will be generated in the way of merging the sub-tree rooted on 

Get reference to a book, which includes the sibling merging between Get a list of 

relevant books and Pick a book from a list, and merging Get publication info, Get 

contents into Get detailed info of a book. As a result, there will be three functions left: 

Get reference to a book, Get detailed info of a book and Locate a book. Because Get 

detailed info of a book relies on the output of Get reference to a book, they will be 

Fig. 6.14: Dialogue utterances 
for customizing book locating 

service (part 6) 

Fig. 6.15: Dialogue utterances 
for customizing book locating 

service (part 7) 
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merged to form a new function, which will immediately merged into Locate a book. 

Finally, quality Exact match will be attached directly to Locate a book. The output 

BookShoppingProfile.owl looks like the OWL-S document presented in Fig. 6.16. The 

instances of inputs, outputs and qualities are defined in documents 

BookShoppingProcess.owl and BookShoppingQuality.owl. They are imported by the 

profile document. 

Now, with this OWL-S description, services are expected to be discovered by 

semantic capability matching. Then the composition and execution of the services will be 

performed based on the corresponding service composition information offered by the 

service providers. 

 

Fig. 6.16: The output service description (BookShoppingProfile.owl) 
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CHAPTER VII 

COMPARISON ANALYSIS 

7.1 Introduction 

In the proposed approach, implicit knowledge hidden in the ontology model is 

retrieved to direct the requirement elicitation process. Meanwhile, the approach adopts a 

strategy that always maintains the completeness and consistency of the elicitation results. 

When a requirement is selected, all other requirements on which it relies will be selected, 

and those that contradict it will be removed. When a requirement is dropped, the 

requirements that rely on it will also be dropped. On the other hand, without the implicit 

knowledge and guidance, people normally have to resolve the incompleteness and 

inconsistency step by step. In this thesis, simulation experiments were conducted to 

compare the performance of the proposed method with the undirected method. 

 

7.2 Problem Instance Generation 

To generate a problem instance is to construct a requirement decomposition forest. 

A subset of the requirements contained in the trees will be chosen as the expected 

requirements.  

In this research, problem instances are generated randomly. Functions, qualities 

and softgoals are not differentiated. They are all treated simply as requirements. When 

constructing a problem instance, the number of requirements n and the number of Rely, 

Contradict relationships m to be generated are two input parameters for the problem 

instance. 

The algorithm for generating a decomposition forest with n nodes is presented in 

Fig. 7.1. First, when creating the ith node, a random integer j ranging from [0, i-1] is 

generated. j decides the position of the forest to add the ith node. If it is zero, create the 

ith node as a root. Otherwise, the ith node is attached as a child of the previous generated 
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jth nodes. If the jth node is a leaf, when the ith node is attached to it, the (i+1)th node is 

also attached to it. This is because a requirement is not supposed to decompose into only 

one child. If the jth node is not a leaf, only the ith node is attached to it. If it is the turn to 

create the nth node, as there are no more nodes available, it cannot be attached to a leaf. 

It can be created as a root or attached to a non-leaf node as a child. Then the 

decomposition forest is generated, and it is assumed that the rank to the ith node is i. 

Thus parent always has a higher rank than its children. 

 

Fig. 7.1: Pseudo code for constructing decomposition forest 

After that, the m Rely and Contradict relationships should be generated. Each 

time, two nodes are randomly picked from the forest, and Rely or Contradict is randomly 

picked as the candidate relationship between them. The validity of the forest will be 

checked with ontology reasoning after the candidate relationship is attached to the forest. 

If the candidate relationship is valid and is not a duplicated relationship, generate the next 

relationship. Otherwise, remove the candidate relationship from the forest, and generate a 

new one. 

When m valid and non-duplicated relationships are generated, the problem 

instance is generated. A subset of the n requirements will be randomly chosen as the 
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requirements that users expect to select. This subset of requirements will be shuffled in a 

list. The requirement with a lower index in the list is assumed to have a higher expected 

priority, which means it is more demanded. It is often true that this subset of 

requirements are not consistent or complete with each other. Users are supposed to give 

preference to requirements with higher expected priorities, which means they will give 

up an expected requirement if it contradicts requirements with higher expected priorities. 

With this guideline, users will try to take fewer rounds of interaction to accomplish the 

tasks and select as many of the expected requirements as possible, while keeping the 

selected requirements complete and consistent with each other. 

 

7.3 Experiment with the Proposed Method 

The proposed approach is designed to evaluate the requirements one by one, from 

the highest rank to the lowest rank. In the experiments, users that are simulated were to 

evaluate the requirements. When evaluating a requirement, if it is not expected, users will 

go through the expected requirements from the highest expected priority to the lowest. If 

the requirement being evaluated is relied by an expected requirement while it doesn’t 

contradict expected requirements with higher expected priority, it will be selected. 

Otherwise, it will be dropped. If the requirement is expected, go through the expected 

requirements from the highest expected priority to itself. If it doesn’t contradict the 

requirements with higher expected priority, select it, otherwise drop it. As is explained in 

Chapter IV, selecting or dropping a requirement with the proposed approach will cause 

all the relevant requirements to be handled accordingly. 

After all the requirements have been selected or dropped, the simulated users will 

double check their decisions. Every selected unexpected requirement will be checked if 

they are relied by any selected expected requirements. It is possible that the expected 

requirement which relies on an unexpected requirement will be dropped after selection of 

the corresponding unexpected requirement. If no more selected expected requirement 
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relies on an unexpected requirement, the unexpected requirement will be removed. When 

all unnecessary unexpected requirements have been removed, the unselected expected 

requirements will be checked from the highest expected priority to the lowest expected 

priority. If an expected requirement doesn’t contradict any selected requirements, it will 

be selected. After all the expected requirements have been rechecked, the users finish the 

requirement elicitation. 

To evaluate the performance of the proposed approach, one round of interaction 

will be charged for each requirement evaluation, and each time users change their mind 

on a requirement, it will take one round of interaction to have it handled. 

 

7.4 Experiment with the Undirected Method 

For the undirected approach, the simulated users don’t take care of the 

completeness or consistency issues initially. Instead, they will first tell the machine the 

requirements they want. Suppose there are k expected requirements. Then it will take k 

rounds of interaction to have the k requirements ordered. 

After that, users will try to maintain the completeness and consistency. However, 

they only know the explicitly defined relationships and don’t have the implicit 

knowledge. They will go through the selected requirements from the highest expected 

priority to the lowest. If an expected requirement relies on some other requirements, 

users will order machine to select these unselected required requirements, and these 

requirements will be treated as of the same expected priority as the corresponding 

expected requirement. If an expected requirement contradicts some selected requirements 

with lower expected priority, these requirements will be dropped. Whenever any changes 

are made, users will recheck all the currently selected requirements from the highest 

expected priority to the lowest expected priority. Every time users want to make some 

changes for a requirement, one round of interaction will be charged. When no more 

incompleteness or inconsistency exists among the selected requirements, the elicitation 
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process is complete. Otherwise, if the amount of interaction excess 10 times of the total 

number of requirements in the problem instance, users will give up. As a result, the 

iteration of experiment is unsuccessful. 

 

7.5 Results and Analysis 

Experiments were programmed in Java 6.0 with Eclipse 3.6 and performed on 

x86, Windows platform. 

Experiments were separated into three groups. The first group fixes the number of 

relationships m to be 20, and varies the number of requirements n from 10 to 100, with 

an increment of 10. The second group fixes n to be 50, while increases m from 10 to 100, 

and the interval of each increase is 10. The third group changes n together with m, from 

(10, 10) to (100, 100). Each time, both of the two inputs were raised by 10. 

Besides, for each input pair, 25 iterations of experiments were performed. In each 

iteration, a new problem instance was generated, and both methods were applied to solve 

it. As the proposed method promises the completeness and consistency, the number of 

iterations in which the undirected approach can successfully produce complete and 

consistent requirements was recorded. Those iterations of experiments are called 

successful iterations. Among the successful iterations, the numbers of interactions 

charged with both methods are compared. Moreover, the numbers of expected 

requirement selected by both methods are compared. Among those iterations where equal 

amount of expected requirements were selected, the amount of unexpected requirements 

selected by both approaches were compared. 

Table 7.1, Table 7.2 and Table 7.3 respectively present results of the three groups 

of experiments. 
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Table 7.1: Results for the first group of experiments (n:m=10:20-100:20) 

 

 

Table 7.2: Results for the second group of experiments (n:m=50:10-50:100) 

 

 

Table 7.3: Results for the third group of experiments (n:m=10:10-100:100) 

Followings are explanations to the columns. 
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 Column A: number of requirements / number of relationships 

 Column B: number of successful iterations performed by the undirected 

method 

 Column C: average percentage of more interactions the proposed method was 

charges compared to the undirected method (the percentage is calculated in 

this way: number of interactions the proposed method was charged

number of interactions the undirected method was charged number of 

interactions the undirected method was charged×100%) 

 Column D: number of successful iterations in which the proposed method 

selected more expected requirements 

 Column E: number of successful iterations in which the undirected method 

selected more expected requirements 

 Column F: number of successful iterations in which the proposed method 

selected equal number of expected requirements as the undirected method 

and fewer unexpected requirements 

 Column G: number of successful iterations in which the undirected method 

selected equal number of expected requirements as the proposed method and 

fewer unexpected requirements 

From all the results, it can be observed that the undirected approach could not 

promise to produce complete and consistent results, while the proposed approach is 

designed to overcome this problem. In the best cases, within 22 out of 25 iterations, valid 

results could be generated by the undirected method. Moreover, in a considerable amount 

of successful iterations, the proposed method had more expected requirements selected. 

On the other hand, most of the requirements were evaluated at least once by the proposed 

approach, while the undirected approach only concerns the expected requirements. Thus 

the proposed approach often requires more rounds of interaction. 

In the first group of requirements, when n increased and m was kept unchanged, 
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the undirected approach performed better and better. It took fewer and fewer rounds of 

interactions to complete the tasks while its success rate grew very fast. Meanwhile, the 

proposed method was never defeated. There were always some successful iterations 

within which the proposed method obtained more expected requirements. 

For the second group of requirements, when m grew and n was fixed, 

performance of the undirected method decreased dramatically. When there were more 

than 40 relationships, it could hardly generate any valid result. What is worth mentioning 

is that, while the proposed method could easily defeat the undirected method, in the rare 

cases of successful iterations, undirected method found more expected requirements. 

Mainly, this result was due to the simulation strategy rather than the proposed elicitation 

method. The simulated user always tries to obtain the expected requirement with the 

highest expected priority. Sometimes, the most demanded requirement is obtained but 

other expected requirements are neglected.  

In the third group, even if n and m were raised with the same pace, the 

performance of the undirected approach decreased very fast as the complexity of the 

problem increased. Meanwhile, the distance between the amount of interactions the 

proposed method requires and the amount of interactions the undirected approach needs 

was shortened when the problem was complicated. 

In conclusion, these experiments show that requirement elicitation is not an easy 

task. Without implicit knowledge and proper guidance, it is almost impossible to get a 

valid and expected result. However, the method proposed in this thesis can successfully 

help to solve this problem. Though, it always needs certain amount of interactions, this is 

the price necessary for accomplishing the task. Besides, when the problem gets tougher, 

the price is not as remarkable as before. 
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CHAPTER VIII 

CONCLUSION AND FUTURE WORK 

8.1 Conclusion 

Aiming at realizing automated SPL with service-oriented methods, an approach to 

interactive requirement elicitation is proposed in this thesis. It adopts ontology to 

represent the requirement engineering related knowledge, which directs a slot-filling 

dialogue system to communicate with clients. With this method, users are capable to 

customize the application requirements that satisfy their demands by interacting with 

machines, while the completeness and consistency of the customization is ensured. The 

ordered requirements will further be converted into OWL-S based service descriptions 

for system implementation. A case study is presented in this thesis to prove the feasibility 

of the proposed method, while simulation experiments were conducted to verify its 

efficiency and reliability.  

On the other hand, though this thesis made an effort to achieve automated 

requirement elicitation, the proposed requirement model is still preliminary and 

light-weighted. Since the model is static, it cannot be applied in dynamic environment. 

Moreover, in order to avoid additional complexity, not all requirement engineering 

related ontological relationships are directly described. Finally, the reported requirement 

elicitation approach only supports customizing requirements based on the knowledge that 

machine owns. Users cannot order anything unknown to the machine, which is not 

always the case in practice. 

 

8.2 Future Work 

For the future works, first, in order to implement automated SPL, approaches 

related to automatic application implementation, such as automatic service discovery, 

composition and delivery, will be further explored. Meanwhile, it is necessary to have the 
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ontology model optimized (e.g. improve its expressiveness, and extend it with domain 

properties). In addition, analysis about methods other than OWL-S for utilizing the 

requirement elicitation results and describing abstract information (e.g. softgoals) is also 

worth performing. Last but not the least, topics about enriching the experience of 

human-computer interaction in requirement engineering are very interesting. Related 

studies (e.g. visualize the interactive requirement elicitation) will be conducted in future. 
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APPENDICES 

APPENDIX A 

The Complete Requirement Model for the Case Study 

The following figure illustrates the complete ontology-based requirement model 

instantiated with the case study of online book shopping service. The figure is divided 

into four parts. The magnified figures for Part I, Part II, Part III and Part IV are presented 

on page 74, 75, 76 and 77 respectively. 
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