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Abstract

Mobile robot localization is one of the most important problems in robotics
research. Localization is the process of a robot finding out its location given a map of
its environment. Knowing its location is a necessary prerequisite for many other
robotic tasks. A number of successful localization solutions have been proposed,
among them, the well-known and popular Monte Carlo Localization (MCL) method.
However, in all these methods, the robot itself does not carry a notion whether it has
or has not been localized, and the success or failure of localization is judged by
normally a human operator of the robot. In this paper, we put forth a novel method to
bring consciousness to a mobile robot so that the robot can judge by itself whether it
has been localized or not without any intervention from human operator. In addition,
the robot is capable to notice the change between global localization and position
tracking, hence, adjusting itself based on the status of localization. A mobile robot
with consciousness being localized is obviously more autonomous and intelligent than

one without.

Keywords: single-robot, localization, Monte Carlo, belief, cluster



Dedication

I dedicate this thesis to my parents. Without their patience, understanding, support,

and most of all love, the completion of this work would not have been possible.



Acknowledgements

I would like to express my gratitude to all those who gave me the possibility to
complete this thesis. I am deeply indebted to my supervisor, Dr. Dan Wu, who
provided me with fundamental advices, stimulating suggestions and long lasting
patience helping me in all the time of research and writing of this thesis. The
completion of this work would not have been possible without his support, hard work

and endless efforts.

I want to thank my external reader, Dr. Jonathan Wu, my internal reader, Dr.
Alioune Ngom, and my thesis committee chair, Dr. Jessica Chen for spending their
time on reviewing this thesis and for all their help, support, interest, and valuable

hints.

My friends helped me solve many difficult problems during my research. I want

to thank all of them.

vi



TABLE OF CONTENTS

AUTHOR’S DECLARATION OF ORIGINALITY .ccoccecccoecosssocsosoesasosoesasssoe iii
ABSTRACT cccotcuocossassosssesssssssssssosssossesssssssssssossssssssssssssssssssssssssssssssssssss v
DEDICATION. . ccoecocoesesscsasossssassssssesossasessssassssssasassssasassasasassassssssasassssnsa v
ACKNOWLEDGEMENTS. . cccce0000000000000000000000000000000000000000000000000808000s00000 Vi
LIST OF TABLES.....ccccocceoococscssscasessssascssosassssasassssasassssassssssassssasassssasssss IX
LIST OF FIGURES.....ccoc0c0e00000000000000000000000000000000000000000000a0000000000000000000000 X
1 INTRODUCTION.  cccccecocomsessesesssossassssssossesassssssassssssassssasassesassssasassssasas 1
0 L 0] 5 17 3 ) 4 USSP 2

1.2 CONIIDULIONS ..vieiiiieeiiieeiieeeiie et eiee et e et e et e e aveeeeasaeeeseeesaeeesaeeennseeennnes 5

L3 OULINE ittt ettt e st e e et e e e e aneeenneas 7

2 BACKGROUND KNOWLEDGE....cccc0s0000000000000000000000000000000000000000000000000 8
2.1 Uncertainty in RODOTICS .......oeuiiiiiiiieiiieiieeieeiteee et 8

2.2 ProbabilistiC RODOTICS ......cc.eieiiiiiieiieciiieiiece e 9
B B 1 USSR 10

2.2.2 Robot Environment INteraction .............cceeeveevieenieeniienieeniieeieeiee e 11

2.2.3 BEIET ... 13

2.2.4 Probabilistic Generative Laws ........c.ccccveieiiiieeiiieeiie e 13

2.2.5 The Bayes Filter AlgOrithm ..........cccoccieiiieiiiiiiiiieeie e 14

2.3 Mobile Robot Localization ............cc.eevuieriieiiienieeiienie ettt 16
2.3.1 Categories of Localization Problems.............ccccceeeviieniiieniiieniieenee 17

2.3.2 Map Representation ...........cccveeeuieeiienieeiieiieeieesiee et eiee e sve e 19

2.3.3 Related WOTKS ......ocviiiiieiieciieeieeeee et 20

2.3.4 Monte Carlo Localization ...........cccocueeerieeeiiieeiieeciie e 21

3 THE COMBINED MCL-CLUSTERING ALGORITHM....cccccceoccecoeoesococse 26
3.1 Motivation of Our Method.........c..coociiiiiiiiiiieeieeeeee e 26

3.2 The Proposed Method..........cc.ooiiiiiiiiiiiieie e 27
3.2.1 Problem Statement.........c.eeevieriieriieeiiienie ettt et 27

3.2.2 Stages of LocaliZation...........ceecuveeeiuiieiiieeciieeeiee e e 28

3.2.3 Description of the Proposed Method ...........ccceeviiiiiiniiiiiiniieiee 29

3.3 Selection of Appropriate Cluster Algorithm ...........ccceeeiieriiiiiiniiieieieees 30
3.3.1 Introduction of CIUSETING........c.ceerviiieiiieeiiie e evee e 30



3.3.2 Proximity Measures and Representatives ..........ccceeeeeieenieeiienieeneeenne. 31

3.3.3 Categories of Clustering Algorithms ............ccceevieeiieniiienienieeieee 33

3.4 The Appropriate Clustering Algorithm: BSAS ........ccoooviieiiiiniieieeeeees 34

3.5 Details of the Proposed Method...........ccocieiiiiiiiiiiiiiiiieee e 37

4 IMPLEMENTATION AND EXPERIMENT RESULTS....cccccocce0eccesesssoesasss 39
4.1 Implementation DetailS..........cccueeeiiiieiiiiiiiece e 39
4.1.1 Hardware Platform...........cccoouieeiiiiieiiiecieecee et 39

4.1.2 Programming ENVIrONMENt..........ceveueeeriieeriieeriieeeiieeeiieeeieeesvee e ens 42

4.1.3 Implementations of MCL.........cccccooviiiiiiiiiniie e 45

4.2 Experimental RESUIS ........ccceooiiiiiiiiiiiiiiieee e 50
4.2.1 Experiments Using Real RODOLS ..........ccceeeiiiiiiiiiiniiiieeiceeeeee 51

4.2.2 Simulation ReSults ........cocooiiiiiiiiiiiie e 57

4.3 Discussion Of Orientation ...........cccueeeeiieeeieeeiiieeiieeecieeeeieeesreeeereeesareeenaseeens 63

4.4 Limitation of MCL in the EXperiment ...........ccccceeeiienieiciienienieeieeieeiee e 64

5 CONCLUSION AND FUTURE WORK .. .ouocce0ce0e000000000000000000000000000000000000 66
5.1 CONCIUSION ettt sttt s nes 66

5.2 FUtUre WOTK ...ooveiiiiice e 67
BIBLIOGRAPHY ...ccoeocioesssoscsssessssssessssssssossossssssossssssssssssssssssossssssosssss 69
VITAAUCTORIS. .c.ccococomoesocasosossasosossasossasassssassssssassssasassssassssssassssssassss 76

viii



LIST OF TABLES

2.1 The BAYes Filter. .......cooiiiiiiiieiii ettt et st 16
2.2 Monte Carlo LocaliZation. ........c.ccoceeiiriiiieniieieeesieee et 24
3.1 The Basic Sequential Algorithmic Scheme (BSAS). ......oooiiiiiiiieieeeeeeeeeeeeeee, 35
3.2 The combined MCL-Clustering algorithm. .........cccccoceeviiriininiininiiecceeeee, 38
4.1 Sample base odometry motion model algorithm. ...........ccoociiiiiiiiiiniiiie 48
4.2 Low variance sampler for particle filter. ..........ccccooviiiiiiiniiieiieniiceece e 50
4.3 The value of n¢, Nimax, Pmax at time 0s, 5s, 7s, 8s, 158, 19S. .iioviiieiiiieiieeieecieeeee 53
4.4 The value of ng, Nmax, Pmax at time Os, 14s, 23s, 28s, 32s, 92s, 1255, 128s. ...cueeeneeee. 56
4.5 The value of ng, Nmax, Pmax and error distance at time 0s, 2s, 5s, 7s, 8, 95. ..cccvvenneeee. 59

4.6 The value of n¢, Nnymax, Pmax and error distance at time 0s, 3s, 44s, 47s, 48s, 50s, 66s,

TO8, BZS. ettt sttt enees 62



LIST OF FIGURES

2.1 Robot interactions with envIronmMent. ..........ccceceeierierenienienienieneeeeee e 12
2.2 The evolution of states, measurements and CONtrOIS. ....ccccvvveveeiiivieeiiiiieeeeee e, 14
2.3 Graphical model of mobile robot localization. .............ccccceeeiiieiciiieiiie e, 17
2.4 Example maps used for robot localization. .............ccoecieiiiiiiiiiiiiiiiieeeeeeeee 20
2.5 Example of Monte Carlo 10calization. ............cccecvuievieiiiieniiiiiieie et 25
3.1 An example of two stages in MCL........c.ccociieiiiiiiieiieieeieeee e 27
3.2 An example of two stages 1N MCL........c..oooiiiiiiiieiicceecee e 28
3.3 An example of six stages in MCL.........cccoiiiiiiiiiiiie e 29
3.4 Several types of representatives for different clusters. ..........cocccvevveiiiieniieciienieeieeee. 33
4.1 Create RO STAte. .....ooouiiiiiiiieiieeiee ettt sttt 44
4.2 Probabilistic generation of robot Kinematic. ..........cceeevveeeiiieeiiieeiiee e 46
4.3 Odometry MOAEL. ....oooeiiiiiiecciee et e e e e e e e e rae e 47
4.4 Sampling from the odometry motion model. ...........cocevieriiiiniiiniiniiiiececee 48
4.5 Sampling approximation of the position belief for a non-sensing robot....................... 49

4.6 The robot true pose and distribution of particles during experiment tracking

WiIthOUt SENSOT TEAAINES ....eeeviiiiiiieeiiie ettt eeee et e e ste e et eeeaaeeeaaeesaaeesssaeesnseeennseens 52
4.7 The plots of corresponding Ne ANd Prax. «-«eeeveeerreermreerreeriieeniienieeieeseeesieeseeeseeeseeesseeenne 52
4.8 The robot true pose and distribution of particles during experiment global

JOCALIZALION . ...ttt ettt e et et e bt et et neeneas 55
4.9 The plots of corresponding Ng ANA Prax. +eeeeveeeerreeersreerirreenieeersreeesseessseeesseesssseesseeenns 55
4.10 The simulated robot pose and distribution of particles during experiment tracking

WIthOUt SENSOT TEAAINES ..evvieeiiiiieiiieetieeie ettt et ettt esaae et estaeeseesaseenseenens 58
4.11 The plots of corresponding ne, Nmax, Pmax aNd €rror diStance. ........c..eeveeveereveecveennenne. 59

4.12 The simulated robot pose and distribution of particles during experiment global

LOCALIZALION . ..ot e e e e e e e e et e e e e e e e e e e e e e e e aaeeeeeeeeee i aaaeeeeeeeenennaan 61
4.13 The plots of corresponding n¢, Nmax, Pmax and error distance. .........cccceeeeveerveeieennnnne. 61
4.14 The CASE ML TA1LS. eeittiieeeee et e e e e et e e e e e e e e eeeeaaeaeeas 65



Chapter 1

Introduction

In order to successfully navigate a mobile robot, the robot must know where it is
and then decide where to move. Not only a pre-requisite to many navigation tasks, but
also a fundamental problem to make a truly autonomous robot, the robot has to
determine its location as accurately as possible. Thus, mobile robot localization has
been acknowledged as one of the key issues in robotics [4]. Formally, the problem of
mobile robot localization, also known as position estimation problem, is to estimate
the pose of a robot given the map of the environment [26]. The pose of a mobile robot
normally is described by a two-dimensional planar coordinates augmented with its
angular orientation (X, y,0)’. There are two types of localization problems: local
localization and global localization. Local localization [1, 2, 7], namely position
tracking, calculates the current robot pose with the known initial position and heading
direction. It is the most simple localization problem and only needs to compensate the
error of dead-reckoning during movement. Local localization problem has been paid
by far a plenty of attention in the literature due to the robot initial pose can be known
as a prior. On the other hand, the global localization problem is a more challenging [6,
8, 9]. Most accurate and efficient approaches successfully employed by local
localization cannot handle the global localization problem. Global localization needs
to estimate the robot’s pose without prior knowledge of its initial pose, but through
sensors perceiving the outside physical world. These two types of localization
problems are not absolutely isolated. Global localization and position tracking are also

two different stages of localization which can be transformed from each other.

A lot of localization algorithms have been proposed to date. Typical examples
include Kalman filter [11, 12, 13, 14], Grid localization [15, 16, 17], Monte Carlo

localization [18, 19, 20] and some hybrid approaches [30, 39]. The Kalman filter
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technique is commonly used in local localization. The robot estimates its pose
continuously by counterbalancing the odometric error using the sensor data. Therefore,
if the initial pose is accurate and sensor error is small, the Kalman filter can provide
efficient, accurate, and continuous localization result. On the other hand, Grid
localization is widely used for the global localization. A typical approach used by grid
localization is to compute positional probabilities of all cells in the grid. Hence, Grid
based localization requires a large amount of computation time, and the accuracy of
localization depends on the cell size. Another popular global localization technique is
Monte Carlo localization (MCL). It is less computational expensive than Grid
localization because the probability computation is carried out only for the random
samples, whose number if normally is much smaller than the number of cells in a gird.
MCL often provides more accurate results than Grid localization because the samples
can take any pose regardless of the cell size. However, the efficiency and resolution of
MCL is lower than Kalman filter in local localization [26]. Some other hybrid
methods take a combination of either Grid localization and a Kalman filter, or a
Kalman filter and MCL. Utilizing merits of each method, these hybrid approaches

improve the efficiency of localization [39].

1.1 Motivation

Among many localization techniques, MCL has become a popular and valuable
tool in recent years. MCL takes a lot of obvious advantages than other localization
techniques [59]. In contrast to Kalman filter-based techniques which only work well
for unimodal distributions, MCL is able to represent multi-modal distributions and can
globally localize a robot. MCL is more accurate than Grid localization with a fixed
cell size. Moreover, it dramatically reduces amount of memory required compared to
Grid localization and it can integrate measurements at a considerably higher frequency.
Otherwise, easy to implement is also one of the bonus coming from MCL. The merits
of MCL attract much attention in literature. Recently, many researchers studied how

2



to reduce the computational time of MCL, and how to increase the accuracy of pose
estimation and deal with some inherent drawbacks of MCL, such as loss of diversity
[20, 22, 38]. In many research papers presenting the experimental results of the MCL
algorithms, the results are likely revealed in pictures in which the particles concentrate
around the robot positions to show the algorithm succeeded [26, 36, 39, 40]. Using
pictures to show the results takes certain advantage. According to the particle filter,
the pose of one random particle does not make any sense. Only the particle set
composed by a large number of particles approximates the correct posterior. It is hard
to know the localization result from a data array that lists all the location and
orientation of each particle. But showing every particle in a picture gives us an instant
sense about the distribution of particle set. Through this way, human beings can
quickly understand the localization is not successful when the particles are spread
through the environment and that particles concentrate successfully means the robot is
certain at a position. However, this information cannot be directly comprehended by
the robot. This line of reasoning put forth an interesting question: How does the robot
know whether it has been successfully localized? Within the framework of MCL, this
amounts to ask if a robot knows whether the particles are concentrated. Imagine a
robot equipped with a color camera is operating in a square room with four land marks
at the corner, initialized with uniform distribution of particles. At the beginning, the
mean of particles is placed at the center of the room, which is far from the robot true
position. After the first marker detection, nearly all particles are drawn toward closing
to the robot, so is the mean of particles. After several more detections, the particles are
clustered around the true robot position. At this stage of localization, the robot can
merely track its position indicated by the mean of particles. The key point of
successful localization in this scenario is the robot can know the particles become
clustered around the true robot position, and then start position tracking. Moreover, if
we simply define a few different outcomes of running MCL algorithm, such as the
robot is globally uncertain, the belief of robot is concentrated around several possible

locations or the robot’s belief is centered on correct pose, can a robot distinguish from
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these different localization outcomes? If the robot can know the stages changing from
the global localization to local localization, the robot is able to choose a localization
technique which is more accurate and efficient but may can only be used in position
tracking, such as Kalman filter techniques, instead of the previous one, such as MCL,
used in global localization. Therefore, according to the stages of localization, the robot

is able to adjust itself getting efficiency.

In recent years, most papers related to MCL focus on improving the accuracy and
efficiency of the algorithm or extending MCL to different robot platforms, such as
multi-robot localization. In the new probabilistic approach to collaborative multi-robot
localization proposed by Fox and Thrun [60], after the two robots detected each other,
the robot within highly uncertain can obtain location information from the internal
beliefs of the other robot which is confident about its position. One measure of
performance in their experiment is the average time that the robot takes to find out
where it is. To determine the stop condition that robot has successful localized itself, it
is assumed the termination is achieved if the localization error falls below 1.5 meters.
The error is measured by averaging over the distance of all particles from a reference
position. The reference positions are points at the robot’s trajectory estimated by
measuring the starting position of each run and performing position tracking oft-line
using MCL. However, computing the estimation error at the reference positions to tell
the robot has successfully localized itself takes the assumption that the true locations
of the robot are known during localization. In fact, the ground truth for these reference
points is not available in real time. In their method, it is simulated by a particle filter
with very large number of particles (far more than actually needed) performing
position tracking. Another method improving the efficiency of MCL is adapting the
sample size in particle filters through KLD-sampling proposed by Fox [32]. The
efficiency of particle filters is increased by a statistical approach adapting the size of
sample sets during the estimation process. The approximation error introduced by the

sample-based representation of the particle filter is bound by the Kullback-Leibler

4



distance. The adaptation approach chooses a small number of particles if the density
represented by particles is centered at a small part of the navigation space, and it
chooses a large number of particles if the localization uncertainty is high. When the
particles converge to the robot’s current pose, the number of particles is reduced. At
first glance, they adaptively changed the number of particles when the localization
stage changed from global localization to position tracking. But the adaptive number
of particles cannot offer exact information to explicitly distinguish different stages of
localization and it is hard to say how many particles means the robot successfully
localized itself. They focused on adjusting the number of particles in order to enhance
the efficiency of particle filter. The distinction of different stages of localization and
the terminating condition of particle filter are not given. In several other existing
works [37, 38, 41], giving mobile robot consciousness about being localized in real
time has not been paid too much attention as well. The problem of when the robot is
considered by itself as successfully localized is not fully explored. For example, when
the Monte Carlo Localization is applied on the robot mini-rover with low-cost IR
sensors [40], correct localization is assumed when all the particles are contained inside
the area covered by the robot. This approach can be only used in simulation since the
true position of robot is also assumed to be known in real time. But knowing ground

truth in global localization is impossible for a real robot.

1.2 Contributions

This thesis is only concerned on the problem of Monte Carlo localization in
indoor environments, particularly in small-scale room with robot equipped with
low-cost sensors. In this thesis, we propose a novel approach to notice the robot when
the position of robot is successfully determined in global localization and help the
robot distinguish from different stages during localization time. Our framework is
based on Monte Carlo Localization, which maintains a set of samples to represent
uncertainty, yet can not explicitly offer numeric probability density values itself. In
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order to obtain the distributed information of particles from a macro view, particles
are not only treated individually as a single point in our method, but also the
concentrated particles are analyzed as a whole entity. Based on checking the relative
location of particles, the robot can know whether it is in a localization stage that most
particles are located around one point, or that the robot is still global uncertain. It
offers a chance the robot can make a choice keeping on global localizing itself or
starting position tracking and navigating to the target, or even adjusting itself to get
better localization result. By analyzing how concentrated particles are, the robot can
know the process of localization instead of that a human being stares at the screen to
see whether the particles get together. In this way, the robot is more intelligent since it
takes the work of human. Otherwise, our method provides an approach to express
localization outcomes in a numerical way. The result of localization can be showed in
pictures along with description of numeric values to explain or compare to other
localization result. In addition, what we do is trying to bring consciousness to mobile
robots. For human beings, a lot of everyday activity is automatically controlled, that is
the detailed control of joints is unconscious. When we are walking under ordinary
conditions, we don’t notice the control of lifting or dropping down feet. But when the
environment changed or under some conditions, such as dizzy, our control of our
actions becomes very conscious and deliberate. If a hollow confronted in front of us
on the road while we are walking, our brain will start to intervene the action to avoid
falling into the hollow [46]. The same situation can be viewed in mobile robots. In
regular, Monte Carlo localization automatically helps the robot localize itself. But
when the effect of localization reaches to a predefined level or sensors fail to return
correct data, our approach bring consciousness to the robot that can know the change.
For example, in position tracking, the mean of particles can tell the robot where it is.
But if the sensors are broken when the robot is navigating, the false sensor readings
may result particles move dispersedly. In this case, the location information obtained
from the mean of particle set becomes incorrect. To avoid the false believing of

location, through using our method the robot will be aware about the exception
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occurred.

1.3 Outline

This remainder of the thesis is organized as follows.

Chapter 2: Background knowledge. This chapter is focused on the materials
that the proposed approach is based on. First, we will introduce the major stumbling
block uncertainty in robotics and provide a comprehensive overview of probabilistic
robotics. And then the description of basic probabilistic concepts, formal model of
robot environment interaction and the recursive algorithm for state estimation Bayes
filter will be given. As the Monte Carlo localization is the fundament of the proposed

method, it is specifically emphasized later.

Chapter 3: The combined MCL-Clustering algorithm. The proposed method,
combined MCL-Clustering, is presented in detail in this chapter. First are the
statement of the problem and the general description of our method, and then followed

by which clustering algorithm is chose and how to combine it with MCL.

Chapter 4: Implementation and experiment results. Two types of experiments
in different environment are designed to verify the performance of the proposed
approach. One is tracking without perception and the other is global localization. The
detailed information of the implementation and the experimental results will be
resolved. These experimental results will confirm how successful our proposed

method is.

Chapter 5: Conclusion and future work. The conclusion of the thesis is brought

in this final chapter, and a frame of future work is presented.



Chapter 2

Background Knowledge

This chapter provides the background knowledge which the proposed method is
based on. First, we will articulate the basic idea of probabilistic robotics, followed by
the problem of mobile robot localization. Then, Monte Carlo localization (MCL)
algorithm is explained since it is one of the most important probabilistic algorithms

for mobile robot localization and also the foundation of the proposed method.

2.1 Uncertainty in Robotics

Robotics is the science of developing techniques for robot perceiving information
on environment through sensors and manipulate through physical devices [26].
Robotics systems have become an increasingly important part of human society.
Commonly seen robotic systems include mobile robots for the Mar exploration,
industrial robotic arms in assembly factory and robots used for search and rescue [47].
These systems have successfully provided a huge number of labor-saving devices and
have at times released humans from doing boring and dangerous jobs such as painting
cars or checking suspicious packages in public place. If the robot can be as intelligent
as humans, the impact would be dramatically enormous. Imagine all the cars that are
safely travelling by themselves on the road decreasing the numbers of traffic accidents,
automatic mobile robot groups searching lost people in desert or checking radioactive
materials under ocean, or service robots in hospital assisting patients. To accomplish
these real world robotic applications, robots have been challenged to be capable to

handle a variety of uncertainties which exist in physical world.

Several factors contribute to the robot’s uncertainty [24]. Robot environments are

inherently unpredictable, such as office and private home which are highly dynamic



and particularly the uncertainty is high for proximity of people. And sensors of robot
are short of what they can perceive. Physical mechanism limits the resolution and
range of a sensor. Robot actuation which involves motors is also unpredictable.
Effects like control failure and mechanical noise bring uncertainty. Uncertainty may
also come from the software controlling the robot. Models used in software are
abstractions of the outside world. All models of the outside world are approximate.
The environment can only be partially modeled. Uncertainty is further caused by
approximations of robotic algorithms. Accuracy and response time are always the two
sides that resist each other. Many popular robotic algorithms sacrificed accuracy in
order to achieve speedy response. Researchers have developed a series of paradigms
for robot design, but these frameworks are not robust enough when the robot faces
sensor and model limitations [26]. As robots are entering into human life more closely,
uncertainty in robots has become a major issue for designing capable real world robot

systems.

2.2 Probabilistic Robotics

The probabilistic robotics is a relatively new approach to robotics which
addresses the problem of uncertainty in robot perception and action. The core idea in
probabilistic robotics is to use calculus of probability theory to represent uncertainty
explicitly [24]. Unlike the previous approaches relying on a single best guess of what
might be the case, probabilistic algorithms describe the robot and the environment
using random variable. In particular, there are two basic models involved in
probabilistic robotics: perception, the way sensor is processed, and action, the way
robot behaviors. By doing so, probabilistic robotics provides a great way to
accommodate the uncertainty that comes from most robot practice. As a result, they

perform excellently in the face of uncertainty.

Programming robots probabilistically has a lot of benefits and has already reached
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a great success in the field of robotics [24]. Using techniques in probabilistic robotics,
a robot does better and is more robust than the one that does not carry a notion of its
own uncertainty. Largely ignoring the problem of uncertainty and assuming a full and
accurate model of the robot and the environment can be given does not work
appropriately. In fact, certain probabilistic approaches are nowadays the only known
working solutions to difficult robot estimation problems, such as kidnapped robot
problem. Additionally, probabilistic algorithms do not have strong requirements on
the accurate models of robot and environment than many classical planning
algorithms. And finally, probabilistic algorithms are broadly applicable to nearly
every robot problem