
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2009

Aspect-Oriented Programming for Test Control
Siyuan Liu
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Liu, Siyuan, "Aspect-Oriented Programming for Test Control" (2009). Electronic Theses and Dissertations. 327.
https://scholar.uwindsor.ca/etd/327

https://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F327&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F327&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F327&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/327?utm_source=scholar.uwindsor.ca%2Fetd%2F327&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Aspect-Oriented Programming for Test Control

by

Siyuan Liu

A Thesis

 Submitted to the Faculty of Graduate Studies

through Computer Science

in Partial Fulfi llment of the Requirements for

the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2009

©2009 Siyuan Liu

Aspect-Oriented Programming for Test Control

by

Siyuan Liu

APPROVED BY:

Dr. Chunhong Chen, External Reader

Department of Electrical and Computer Engineering

Dr. Jianguo Lu, Internal Reader
School of Computer Science

Dr. Jessica Chen, Advisor
School of Computer Science

Dr. Alioune Ngom, Chair

School of Computer Science

2 September 2009

III

Declaration of Co-Authorship

I hereby declare that this thesis incorporates material that is result of joint research, as

follows:

This thesis also incorporates the outcome of a joint research under the supervision of

professor Dr. Jessica Chen. The collaboration is covered in Chapter 2, Chapter 5

and Chapter 6 of the thesis. In all cases, the key ideas, primary contributions,

experimental designs, data analysis and interpretation, were performed by the author,

and the contribution of co-authors was primarily through the provision of some key

ideas and constructive criticism.

 I am aware of the University of Windsor Senate Policy on Authorship and I

certify that I have properly acknowledged the contribution of other researchers to my

thesis, and have obtained written permission from each of the co-author(s) to include

the above material(s) in my thesis.

I certify that, with the above qualification, this thesis, and the research to which it

refers, is the product of my own work.

IV

Abstract

Distributed and multithreaded systems are usually much more complex to analyze or

test due to the nondeterminism involved. A possible approach to testing

nondeterministic systems is to direct the execution of the program under test to take a

certain path for each test, so that a unique output (or output sequence) can be observed.

Considering specification-based testing, we assume that a test case is given together

with a test constraint for directing the internal nondeterministic choices. To instruct

the program under test to execute according to a given test constraint, the program

under test needs to communicate with the tester. In this thesis, we propose to use the

features in Aspect-Oriented Programs to realize such communication. This solution

does not require the availability of the source code of the program under test.

Assuming that the program under test consists of a set of Java multithreaded

processes communicating with each other using sockets, we provide an automated

translation from a test constraint to a set of aspects using AspectJ.

Keywords: specification-based testing, distributed systems, nondeterminism, AspectJ.

V

Acknowledgements

This thesis work could not have been possible without the help of many people. First

and most important, I would like to take this opportunity to express my appreciation

to my supervisor, Dr. Jessica Chen. I am very thankful for her advice, patience and

encouragement. And thanks to her pleasantry while solving my questions which keeps

my interests through learning.

I would also like to thank my committee members, Dr. Jianguo Lu, Dr. Chunhong

Chen and Dr. Alioune Ngom for spending their precious time to read my thesis and

their comments, suggestions on this work.

Thanks also to my peers Yan Wang and Lihua Duan for their valuable advices and

helps.

VI

Table of Contents

Declaration of Co-Authorship... III

Abstract .. IV

Acknowledgements .. V

List of Figures ... VIII

1. Introduction .. 1

1.1 Reproducible Testing... 1

1.2 Major Issues.. 1

1.3 Objective .. 3

1.4 Thesis Structure .. 4

2. Reproducible Testing with Distributed Bakery Algorithm.. 5

2.1 Introduction to Software Testing and Testing Non-deterministic Systems 5

2.2 Distributed Bakery Algorithm .. 8

2.3 Reproducible Testing with Distributed Bakery Algorithm .. 12

3. Aspect Oriented Programming ... 17

3.1 Characteristic of AOP .. 17

3.2 A Simple Example of Using AspectJ .. 18

4. Related Work ... 21

4.1 AOP Used in Distributed Program Testing .. 21

4.2 Different Ways to Realize Reproducible Testing ... 22

4.2.1 Execution Replay of Nondeterministic Programs... 22

4.2.2 Specification-based Test Control over Events in Nondeterministic Programs....... 23

4.3 Proposed Approach ... 25

5. Testing Architecture.. 26

6. Test Specification ... 28

6.1 Test Case Specification.. 28

6.2 Test Constraints .. 31

6.2.1 The Checkpoints of Interest ... 32

6.2.2 Event Description and Test Constraint ... 33

7. Generating AspectJ Code from Test Constraints.. 37

8. Design and Implementation of Test Guide .. 41

8.1 Characteristic of Test Guide ... 41

VII

8.2 Data Structure of the Test Guide... 43

8.3 Algorithm of the Test Guide... 45

9. Conclusions and Future Work .. 49

Bibliography .. 50

Appendix A.. 53

Appendix B .. 56

Appendix C .. 58

Vita Auctoris .. 63

VIII

List of Figures

Figure 1: Code structure of the example: part 1……………………………10

Figure 2: Code structure of the example: part 2……………………………11

Figure 3: Two possible scenarios…………………………………………...….13

Figure 4: Testing Architecture…………………………………………………27

Figure 5: Scenarios with Test Guide………………………………..…………29

Figure 6: Scenarios with Test Guide…………………………………..………29

Figure 7: A Test Constraint file…………………………………………..……35

Figure 8: Generated AspectJ code for type 1 event……………………………38

Figure 9: Generated AspectJ code for type 3 event……………………………39

Figure 10: Example of generated AspectJ code…………………………..……40

Figure 11: sequential chart of e4…………………………………………….…42

Figure 12: sequential chart of e5…………………………………………….…43

Figure 13: Handling type 1 event named eName………………………………53

Figure 14: Handling type 3 event named eName………………………………46

Figure 15: sequential chart of {e5→e4}……………………………….….……47

Figure 16: sequential chart of {e5→e4}&{e10→e4}………………….………48

1

1. Introduction

1.1 Reproducible Testing

With the advances of modern computers and computer networks, distributed and/or

multithreaded software systems are becoming more and more popular. Improving

qualities of these systems is an important task we are facing. However, distributed and

multithreaded systems are very often much more complex to analyze or test due to the

nondeterminism involved. Unlike traditional sequential systems, an input sequence

given to the system may have several different execution paths depending on the

interactions among different threads in each process and/or different processes

possibly running on different machines across networks. Reproducible testing [5] is

one of the possible approaches to performing testing in such an environment. With

this approach, a test scenario consists of an external sequence of events (i.e. test case)

and some additional information. The test case describes the external input and the

observations, while the additional information, called test constraint, describes some

constraints on the execution paths, such as partial or total order of the execution of

some statements in the program. We introduce an additional process called test guide

into the testing procedure so that given a test scenario, the system under test (i.e. the

set of processes instantiated from the program under test) can be guided to take a

certain execution path based on the given input sequence and the test constraint. Then

the external observations can be compared with the desired ones.

1.2 Major Issues

There are three major issues related to this approach, in additional to the traditional

2

study on software testing: how to define test constraints, how to obtain test constraints,

how to realize guided testing.

 To define a test constraint, we can use a partial order among the internal events

which are defined on the checkpoints (i.e. program statements) of each process (see

[7]). Clearly, each test constraint determines a set of execution paths satisfying this

constraint. A test constraint may not be feasible. That is, the set of execution paths

satisfying a certain test constraint can be empty. How to determine that a given test

constraint is feasible is discussed in [8, 37] and how to select feasible test constraints

remains an interesting problem beyond the scope of the present work. Even though a

test constraint is feasible, it may not be proper, in the sense that there are at least two

execution paths that satisfy the constraint but lead to different outputs. How to

determine that a test constraint is proper and how to select proper test constraints so

that unique output can be guaranteed for reproducible testing are interesting issues

beyond the scope of the present work. In the following, we will only consider test

constraints that are feasible and proper.

To obtain a test constraint, there are two typical ways: one is to run the system

and record the total order of the checkpoints so that we can re-run the system with the

same order. This so-called replay control technique is especially useful for regression

testing. Another way is through the analysis of the requirement documents or design

documents. From these documents, we may derive some particular execution paths

that we are interested in. Very often, these are typical/representative scenarios in

which possible errors or bugs may reside. In the following, we assume that test

constraints are given.

To realize guided testing, we have two tasks to accomplish: one is to provide the

test guide, and the other is to establish the communication between the test guide and

3

the processes in the system under test, so that each process/thread can communicate

with the test guide at the desired checkpoints. With this added communication, the test

guide will be able to decide, according to the test constraint, whether a thread should

proceed, wait for other threads, or resume from waiting state, based on the overall test

constraint and the current status information of other threads either in this process or

in other processes. In this way, the execution is guided to take a desired path.

1.3 Objective

The test guide can be a generic tool that is developed once for all as long as its

communication protocol with any system under test is predefined. Such a tool was

developed using Java Remote Method Invocation (RMI) and reported in [4].

To establish the communication between the test guide and the processes in the

system under test, there are various ways: We can automatically insert auxiliary code

into the program under test, or alter the execution environment (such as Java Virtual

Machine for program under test writing in Java). In [4], it has been discussed a

method and related tool support for automatically inserting additional code into the

source code of any given Java program with Remote Method Invocation (RMI). In [9,

10], further discussions are given on how to introduce interceptors into different

middleware layers of Java RMI to realize the communication between the test guide

and the processes in the system under test. In this thesis, we present another solution

to realize such communication by making use of the features in Aspect-Oriented

Programs. We provide an automated translation from a test constraint to a set of

aspects using AspectJ. The translated AspectJ program is then woven into the program

under test. This solution does not require the availability of the source code of the

program under test as in [9], and it is not dependent on the specification and

4

implementation of Java runtime environment as in [4].

For most of the network applications, a distributed multithreaded system can be

considered as a set of processes executed simultaneously, with each process possibly

having several threads running concurrently. Different processes may run on the same

machine or on different machines. The communication among the processes can be

realized via CORBA, DCOM, RMI, stream sockets, (virtual) distributed shared

memory etc. In our present work, a system under test consists of a set of processes,

each running a Java program possibly with multithreading, communicating with each

other using stream socket.

1.4 Thesis Structure

The rest of the thesis is organized as follows. We first introduce in Chapter 2 the

distributed bakery algorithm whose implementation is used as a program under test.

Chapter 3 reviews some previous work in AOP for testing and automated reproducible

testing. In Chapter 4 we explain the mechanism and test architecture of our guided

testing. Chapter 5 gives the testing specification. We introduce our test case and

describe test checkpoints as events generated from test constraints. In Chapter 6, we

give a brief introduction to AspectJ, and then describe the translation from test

constraints to AspectJ code. Chapter 7 shows how test guide works to realize guided

tests. Chapter 8 concludes this thesis work and mentioned possible future works.

5

2. Reproducible Testing with Distributed

Bakery Algorithm

2.1 Introduction to Software Testing and Testing

Non-deterministic Systems

With respect to the context in which software testing intends to operate, to provide

stakeholders with information about the quality of the product or service becomes an

empirical investigation conducted by software testing. To let people understand the

risks of using the software product, software testing also provides an objective,

independent view to it. Software testing is the process of executing a program or

system with the intent of finding errors. Software testing can also be viewed as the

process of validating and verifying a software application, which verifies whether the

program meets the business and technical requirements.

Software testing can be carried out at any time in the software development

process depending on the testing method employed, while most of the test effort is

made when the requirements have already been defined or the coding process has

been finished.

Though testing cannot identify all the defects of software applications completely,

it compares the state and behavior of the application with the design oracles or

mechanisms so that it is easy to recognize a problem. These oracles may include

specifications, comparable products, inferences about intended or expected purpose,

user expectations, relevant standards or other criteria.

6

One major purpose for software testing is to detect software failures so that errors

may be uncovered and corrected. This is a non-trivial pursuit. Testing cannot show

whether a product works properly in all conditions but can only show the product’s

improper behavior under specific conditions. The scope of software testing often

includes examining the code as well as executing the code in various environments. It

exams whether the code does what it is supposed to do and does it properly.

Information derived from software testing can also be used to correct the defects of

the process by which software is developed.

Software testing methods are traditionally divided into black box testing and

white box testing. These are the two approaches to describe the point of view of a

designer when designing test cases.

Black box testing treats the software as a "black box"—without knowing any

internal implementation. There is no knowledge provided to the users about the

internal structure of the test object. Black box testing takes an external perspective of

the test object to derive test cases. These tests can be functional or non-functional, but

usually functional. The test designer selects from different inputs including both valid

ones and invalid ones to test the program and determines the correct output. Black

box testing methods include: equivalence partitioning, boundary value analysis,

all-pairs testing, fuzz testing, model-based testing, traceability matrix, exploratory

testing and specification-based testing.

Black box testing is applicable to all levels of software testing: unit testing,

integration testing, functional testing, system testing and acceptance testing. The

higher the level of testing we consider, the more complex the black box may become.

Advantages of black box testing include that it is efficient when used on large

systems, and that tester can be non-technical with no need of having detailed

7

functional knowledge of system. Disadvantages of black box testing include that test

cases are tough and challenging to design when there is no clear functional

specifications, and that it is very time consuming to identify all necessary inputs:

There are chances of missing important paths during testing.

Specification-based testing is a special case of black box testing. It is introduced

to test the functionality of software based on the applicable requirements. Thus, the

tester inputs data into the test object, and only sees the output from it. This level of

testing usually requires the tester to have the whole test cases. The tester then can

simply verify the output value for a given input, and judge whether it is the same

output as the expected value specified in the test case.

White box testing is possible when the tester has access to the internal data

structures including the code of the program under test.

Types of white box testing include (i) API (application programming interface)

testing which is the testing of the application using public and private APIs; (ii) Code

coverage which creates tests to satisfy some criteria of code coverage (e.g., to create

tests to make sure all statements in the program are executed at least once); (iii) fault

injection methods; (iv) mutation testing methods; and (v) static testing.

Testing Non-deterministic Systems

Distributed systems’ usages are more and more popular due to the well developed

networking and web support, from web banking system and transportation system to

large industrial system. The complexity of distributed and concurrent systems is

growing as well, from the heterogeneity in terms of the adopted hardware to the

nondeterminism which poses a great deal of difficulty in system analysis.

Concurrent programs and sequential programs behave differently. Executing a

concurrent program many times with a predefined input may lead to different

8

sequences of synchronization events and produce different results. This is because a

distributed and concurrent system usually has many different execution paths because

of the interactions among different processes with various kinds of process

cooperation and their different running speed, which finally leads to different

interleavings of the execution paths. As a result, testing turns out to be non-repeatable.

This nondeterministic behavior makes testing concurrent programs notoriously

difficult.

One approach to dealing with such difficulty is non-deterministic testing, which

run a program with a fixed sequence of inputs many times in hope that faults will be

exposed in one of these executions. This technique is called test replay.

Nondeterministic testing is the most widely used approach in practice due to its

simplicity. However, it is conducted in an ad hoc manner. To avoid this time

consuming and inefficient test, some research has focused on how to efficiently insert

noise makers (e.g. random delays) into selected locations of programs so that different

synchronization events are likely to be executed by repeated executions and thus

increase the chance of finding faults.

Another approach is to introduce a test guide and a series of test constraints. The

latter is used to define points of interests in a program to be tested. Extra codes are

inserted to the original program at these points to communicate with the test guide.

The test guide gets instruction from test constraints and automatically guides the test

via the communication with the processes.

2.2 Distributed Bakery Algorithm

Suppose that there are n distributed processes sharing a same resource e.g. a printer.

Each process has a critical section to access this shared resource. The n processes

9

should communicate among themselves so that no two processes enter their critical

sections simultaneously. Lamport's Distributed Bakery algorithm provides a general

solution to this problem where n processes communicate in a peer-to-peer manner. It

works in this way: Each process is given an integer id. Each process maintains a

current number which is initially set to zero.

When a process wishes to enter its critical section, it increases its current number

by one, and assigns its ticket number to be this current number, just like people take a

ticket number at a bakery store. Then it sends a request with its ticket number to all

other processes.

When a process receives a request from another process with a ticket number k, it

updates its current number to be k if k is bigger than its current number. Thus, the

current number a process maintains is what it knows so far the biggest ticket number

among all ticket numbers maintained by various processes. Note that it is possible that

two processes have different current numbers, e.g. a process A has increased its

current number to 4 but this number 4 has not yet arrived at process B so B's current

number is still 3. It is also possible that several processes (locally) pick up the same

ticket number.

A process A will send a reply to process B if one of the following three

conditions holds (i) A does not need to access its critical section now

(myTicketNum=0); (ii) B's ticket number is smaller than A's current number; (iii) B's

ticket number is equal to A's current number and B has smaller process id. A process

will enter its critical section only after it has received replies from all other processes,

i.e. it has the smallest ticket number and among all processes having the smallest

ticket number, it has the smallest process id. This guarantees the distributed mutual

exclusion to access the critical sections.

10

class DBakery {
private int myTicketNum = 0;
private int currentNum = 0;
private int replyCount = 0;
public void DBakery() {
accept requests for so cket connection from all processes with bigger id;

send requests for so cket connection to all processes with smaller id;
for each so cket of the connection with process pid
create a thread w ith name pid of class SocketThread and execute its run() method;
}
public void dBakeryAlgorithm() {
pickNum();
send requests with myTicketNum to all other processes to enter critical section;
replyCount = 0;
wait until replies from all other processes are received;
doCS();
myTicketNum = 0;

check req. queue: send replies to all processes whose requests have been deferred;
}
public void synchronized pickNum() {
currentNum++;
myTicketNum = currentNum;
}
public synchronized getCurrentNum() {
return currentNum;
}
public synchronized setCurrentNum(int i) {
currentNum = i;

}
public synchronized void addReply() {
replyCount++;
if (replyCount = MyProc.totalProcessNum -1)
notify that all replies are received
}
......
}

Figure 1: Code structure of the example: part 1

public class MyProg {
public static int processId, totalProcessNum;
public static void main(String[] args) {
change args[0] into an integer and assign it to MyProg.processI d;
change args[1] into an integer and assign it to MyProg.totalProcessNum;

DBakery d = new DBakery();
while (true) do {
receive a user’s command;
d.dBakeryAlgor ithm();
}
}
}
class SocketThread extends Thread {

private DBakery d;

11

public void SocketThread(String s, DBakery d) {
super(s);
this.d = d;
}
public void run() {

while (true) do {
receive a message from its so cket named s;
convert s into integer and assign it to pid;
if it is a request message, call handleRequest(receivedNumber, pid);
if it is a reply message, call d.addReply();
}
}
public void synchronized handleRequest(int n, int id) { int highNum = max(d.getCurrentNum(),
n); d.setCurrentNum(highNum);
if (d.getTicketNum()=0) or
(highNum > n) or (highNum = n and MyProg.processId > id)

send reply;
else
add this request to the request queue w ith (so cketName, id)
}
}

Figure 2: Code structure of the example: part 2

Figure 1 and 2 show the draft of a sample Java code for the distributed bakery

algorithm using sockets. Each process executing this piece of code is started

providing two arguments: the id of the current process processId, and the total number

of processes totalProcessNum. Suppose that there are two processes in the system

under test executing the program in Figure 1 and 2. The first process is started with

>java MyProg 1 2

showing that there are 2 processes in total and the current process id is 1. Similarly,

the second process is started with

>java MyProg 2 2

Each process executing MyProg has totalProcessNum number of threads: the

main thread, which is the initial thread created when MyProg is started, and

totalProcessNum -1 number of threads to handle the messages received from each of

the other processes.

In the main thread, we use object d to execute method doBakeryAlgorithm each

12

time the user gives an input command, e.g. to print a document, which is executed in a

critical section expressed by method doCS(). Before calling doCS(), this process first

picks up a ticket number by calling method pickNum() and waits until it has received

replies from all other process. After calling doCS(), it needs to send out the deferred

replies if there are any.

There are totalProcessNum -1 sockets for each process, one for each of the other

processes. For the socket of the connection with process pid, we use the string of pid

as the name of the socket as well as the name of the thread created for this socket.

Thus, thread named pid is dedicated to handle the messages received from process pid

using socket pid. There are two kinds of messages received: (i) requests from process

pid to enter its critical section; and (ii) replies from process pid to the previous

requests of the present process.

2.3 Reproducible Testing with Distributed Bakery

Algorithm

In the following part, we show the nondeterministic behavior of distributed bakery

algorithm. Suppose there are two processes with id 1 and 2 competing for the critical

section. Process 1 will receive a message from its user and enter its critical section to

print out A. Process 2 will receive a message from its user and enter its critical section

to print out B. Suppose also that the input is to send a user's message to B followed by

a user's message to A. When the two processes access the shared printer almost at the

same time, the printing order varies due to their coming order which can be

influenced by the internal scheduling of the machines. In fact, with the same input

given above, we may have the following two situations and nondeterministically

13

receive different output: AB or BA.

• Case 1: Process 1 enters critical section first.

• Case 2: Process 2 enters critical section first.

Figure 3 illustrates two scenarios with output AB and BA respectively. Initially,

currentNum in both process 1 and process 2 are 0. After receiving the user's input,

process 2 picks up number 1, and sends a request with number 1 to process 1. After

process 2 received user's input, process 1 also receives user's input.

In the first scenario (Figure 3(A)), process 1 picks up a number before the request

from process 2 arrives, and thus its ticket number is 1. When the request from

Figure 3 : Two possible scenarios

process 2 arrives, since the ticket number of process 1 and that of process 2 are both 1,

and process 1 has smaller id, the reply to process 2 is deferred until process 1 finished

its execution in its critical section. Thus, we have output A followed by B.

In the second scenario (Figure 3(B)), process 1 picks up a number after the

request from process 2 arrives, and thus its ticket number is 2. When the request from

process 2 arrives, since process 1 at this moment does not require the access to its

14

critical section (myTicketNum=0), it sends out reply without delay. On the contrary,

the request from process 1 is deferred until process 2 finished its execution in its

critical section. Thus, we have output B followed by A.

 Of course, there are also many other scenarios in which AB or BA are printed out.

There are three major scenarios for Case 1 and two major scenarios for Case 2.

Scenario 1:

• Process 1 and process 2 pick up a number simultaneously.

• Process 1 and process 2 send their number to each other.

• Process 1 and Process 2 wait until they receive a reply from the other.

• By comparison, both of the processes have the same number, but process 1 has a

smaller process ID which is 1, so process 2 is deferred.

• Process 2 replies to process 1.

• Process 1 receives the reply and then enters its critical section.

• Process 1 finishes critical section and replies to process 2.

• Process 2 receives the reply from process 1 and then enters its critical section.

Scenario 2:

• Process 1 picks a number first and sends it to process 2.

• Process 2 picks a number and sends it to process 1.

• Process 1 and Process 2 wait until they receive a reply from the other.

• By comparison, process 1 has a smaller ticket number, so process 2 is deferred.

• Process 2 replies to process 1.

• Process 1 receives the reply and enters its critical section.

• Process 1 finishes its critical section and replies to process 2.

• Process 2 receives the reply from process 1 and enters its critical section.

Scenario 3:

15

• Process 1 picks a number but not process 2.

• Process 1 sends the picked number to process 2.

• Process 1 wait until it receives a reply from process 2.

• Since Process 2 does not wish to enter critical section, it sends a reply back to

Process 1.

• Process 1 receives the reply and enters its critical section.

Case 2:

Scenario 1:

• Process 2 picks a number first then sends it to process 1.

• Process 1 picks a number then send it to process 2.

• Process 1 and Process 2 wait until they receive a reply the other one.

• By comparison, process 2 has a smaller ticket number, then process 1 is deferred.

• Process 1 replies process 2.

• Process 2 receives the reply then enters critical section.

• Process 2 finishes critical section then replies process 1.

• Process 1 receives the reply from process 2 then enters critical section.

Scenario 2:

• Process 2 picks a number but not process 1.

• Process 2 sends the picked number to process 1.

• Process 2 wait until it receives a reply from process 1.

• Since Process 1 does not wish to enter critical section, it sends a reply back to

Process 2.

• Process 2 receives the reply then enters critical section.

Of course, there are many other scenarios. The above two just show that

16

nondeterminism exists in lots of places during a distributed program execution which

leads to different execution paths.

While we may observe either AB or BA, the chance to observe output AB is very

low. We give more details about this in the next sections on how to carry out guided

testing in order to observe AB without repeating the test many times.

17

3. Aspect Oriented Programming

3.1 Characteristic of AOP

AOP is a programming paradigm which is an extension to Object-Oriented

Programming (OOP). It has improved certain areas where OOP fails. Object-Oriented

(OO) had a dramatic effect on how to develop software when it entered the

mainstream of software development. Developers could visualize systems as groups

of objects and the interaction between those objects. This allows them to form more

complicated systems and to develop them in less time than ever before. The only

problem with OOP is that the essential static model makes changes in requirements a

profound impact on development timelines.

Aspect-Oriented Programming (AOP) complements OO programming by

allowing the static OO model to be modified dynamically for creating a system which

can grow to meet new requirements. An application can adopt new characteristics as it

develops just like the state changes of objects in the real world during their lifecycles.

AOP allows dynamic modification of our static model to include the code

required to fulfill the requirements without having to modify the original static model.

Better still, we can keep this additional code in a single location in the aspect rather

than scattering it all across the existing model, as we would have to if we were using

OOP on its own.

AOP aims to solve these OOP problems by allowing crosscutting concerns to be

cleanly captured in one self-contained unit of code. It increases modularity by

enabling improved separation of concerns. In order to do so, we need to break down a

program into different parts. By providing abstractions that can be used to implement,

18

abstract and compose these concerns, all programming paradigms support some level

of encapsulation of concerns into separate, independent entities. But some concerns

called crosscutting concerns define these forms of implementation because they "cut

across" multiple abstractions in a program.

Concerns are implemented in AOP by using blocks of code called aspects.

Aspects contain a part called advice which are used to implement the crosscutting

concerns. The places where the advice should be applied to the OOP codes are called

joinpoints. A weaver is used to weave the AOP code with OOP code so the

appropriate advices can be inserted at the places within the OOP code specified by the

joinpoints. Typical examples of such crosscutting concerns implemented using AOP

are: security, synchronization and tracing.

3.2 A Simple Example of Using AspectJ

AspectJ is a simple and practical aspect-oriented extension to Java. With just a few

new constructs, AspectJ provides support of a range of crosscutting concerns for

modular implementation.

It is possible to define additional implementation to run at certain well-defined

points in the execution of the program due to dynamic crosscutting in AspectJ. It is

based on a small but powerful set of constructs: join points are well-defined points in

the program flow; Pointcut is a language construct to identify certain join points and

certain values at those join points; advice are method- like constructs used to specify

extended additional code to be executed at certain join points; and aspects are units of

modular crosscutting implementation, composed of pointcuts, advice, and ordinary

Java member declarations. Aspect can alter the behaviour of the base code (the

non-aspect part of a program) by applying advice (additional behaviour) over a

19

quantification of join points (points in the structure or execution of a program).

AspectJ is powerful, practical, and simple to use. The programs written using it

are easy to understand. Here we give a simple AspectJ example.

In this java program, the main method will call the greeting method in class

Hello, and the print out is simply a string of ―Hello!‖. With the additional AspectJ

code woven into it, the output will print a string of ―AOP>>‖ before the original

string ―Hello!‖. The combined output is ―AOP>> Hello!‖. Here the AspectJ code

defines a pointcut which is the calling of greeting method in class Hello. The advise

specified before this pointcut expresses that the output stream should print ―AOP>>‖

first. As a consequence, what the aspect does here is to print ―AOP>>‖ before the

calling of greeting method in class Hello.

public class Hello {

 void greeting(){

 System.out.println("Hello!");

 }

 public static void main(String[] args){

 new Hello().greeting();

 }

}

public aspect With {

 before() : call(void Hello.greeting()) {

 System.out.print(“AOP>> ");

 }

}

>ajc Hello.java With.aj

>java Hello

 AOP>> Hello!

In summary, AspectJ is defined as follows.

20

• Join points are well-defined points in the program flow and it is a place where

the aspect can join the executions.

• Pointcut is a language construct to identify certain join points

– e.g., call(void Hello.greeting())

• Advice is the code to be executed at certain join points

– e.g., before() : call(void Hello.greeting()) {

 System.out.print(―AOP>> "); }

• Aspect is a module containing pointcuts, advice, etc.

– e.g., public aspect With {

before(): call(void Hello.greeting())

{ System.out.print(―AOP>> "); } }

If there is any arguments in a method e.g. greeting(int i), the pointcut in the

corresponding aspect should be written with the arguments, e.g. call (void

Hello.greeting(..)).

21

4. Related Work

4.1 AOP Used in Distributed Program Testing

Hughes et al. addressed the problem regarding the difficulty and expense of testing.

Testing is a vital stage in the development cycle of any application but people often

neglect to perform it successfully [22]. Due to the co-ordination required, it is

especially serious for us to successfully test several distributed components

simultaneously in distributed applications. Thus a framework implemented using

Aspect-Oriented Programming and Reflection is proposed. It aims to ease the testing

of distributed systems and other varieties of systems which encounter similar

problems. The authors introduced the technique of automating the insertion/removal

of monitoring code, from which the proposed Aspect Testing Framework simplifies

the problem of testing complex distributed systems such as AGnuS. Furthermore, the

ability of easily adding, modifying and removing communication code makes the

tailoring of the communication to fit any monitoring interface easier. Thus, the time

required to thoroughly test complex distributed systems is significantly reduced by

facilitating the re-use of interface code.

The user can simply create a template using the tag <METHODNAME> to

generalize a method name in the joinpoint and then apply the proposed framework.

The framework will use the reflection API to examine the classes and present to the

user all the potential joinpoints. The programmer can then select the class, methods,

fields etc. to substitute the content of joinpoints with. Our work in testing is similar at

this point.

In aspect-oriented refactoring, Metsä et al. aimed at weaving test control points

22

into the system under test by using aspects to keep the original system design

oblivious to testing [28]. Aspects were intended to be used to carry out performance

profiling tasks, and control points for test execution, etc. Their purpose was to declare

system structures that could be used for injecting test code into the system by defining

testability pointcuts. Control points for test execution and monitoring were also

provided. Pointcuts can be structural, temporal, functional, or non-functional

implemented depending on the purpose of the test case. These pointcuts could be

derived from the client requirements, design constraints, and architectural

requirements.

Copty and Ur in 2003 examined the possibility of implementing the

instrumentation part of a multi- threaded testing tool using AOP [13]. They performed

a detailed examination of all the requirements we are interested in and checked their

satisfiability with AspectJ. However, as a drawback, how to define synchronization

blocks as places for instrumentation is not worked out with AspectJ.

4.2 Different Ways to Realize Reproducible Testing

4.2.1 Execution Replay of Nondeterministic Programs

In 1990, Leu et al. presented a class "control driven" [27]. It realizes execution

replay on distributed memory architectures which is a complement to the first

technique "control driven execution replay" proposed by Leblanc in the context of

shared memory architectures. In contrary to all other proposed approaches, their

technique is adapted to non-blocking primitives, and is not dependent on any form of

message passing communication.

Later on, Carver and Tai proposed a so called deterministic execution debugging

23

and testing to solving the problems caused by nondeterministic execution behavior [7].

They are the first people who introduced the idea of deterministic testing of

concurrent programs. They presented a language-based approach, and used examples

of semaphores and monitors to implement process synchronization in concurrent

programs to show their approach to developing synchronization-sequence replay tools

for concurrent programs. First, it collects the sequence of synchronization events of a

concurrent program by transforming it into a new program and executing the new one,

and then controls the execution of concurrent program by transforming it into

different programs that can replay the collected synchronization sequences.

Bates described a high- level debugging approach, Event-Based Behavioral

Abstraction (EBBA) [3]. His behavior-modeling algorithm is used to match actual

behavior to models of expected program behaviors and automates many behavior

analysis steps. In EBBA, the behavior is expressed as a sequence of events and the

relationship of different event types.

4.2.2 Specification-based Test Control over Events in

Nondeterministic Programs

The major issue in guided testing is to establish communications between test guide

and program under test.

Sohn et al. proposed a dynamic state-based reproducible testing approach for

component software in which each component can change the system state

nondeterministically during the concurrent execution in a Common Object Request

Broker Architecture (CORBA) environment [33]. In this approach, by inserting the

communication primitives before and after the concurrent statement on the original

program, it generates an extended program which is logically equivalent to the

24

original one. A replay controller for a given state sequence from a statechart-like

model of each component is used, which is designed to force the order of the extended

program’s execution based on the given state sequence.

Cai and Chen presented their work in test control methods for distributed

concurrent systems, and the frame work of their automated test control toolkit which

can help users to realize some particular execution paths desired [4]. In this approach,

artificially controlling the partial order of synchronization events in distributed

multithreaded programs was proposed. This framework is implemented in java and

adopts CORBA as its underlying middleware for communication among processes.

The authors designed a parser to automatically insert code into the original PUT to let

it communicate with a test controller, which controls the order of remote calls

according to monitor constraints. The extended PUT should request for permission

from the controllers whenever it makes a remote method call, although a monitor

constraint does not contain any events regarding remote method calls. This work

realized guided testing through controlling of some important synchronization events

derived from the test documents.

In order to inject the interceptors into the underlying middleware system, Chen and

Wang modified existing Java library for the control of remote calls and provided a

solution to intercept Java remote method calls and responses [9]. They implemented a

distributed testing environment, with some of the components residing with each

process in the AUT. Local test drivers and local path controllers are included in the

local testing components. They also used a centralized communicator to coordinate

among testing components and adopted Java RMI for the communications between

testing components. With the help of the interception service implemented by Java

RMI, they realized the control of the order over the input and the remote call events.

25

Furthermore, this work requires neither the availability of the program code nor the

test user’s knowledge to intrude into the underlying system as they discussed about

the AUT.

4.3 Proposed Approach

We gave the classification of reproducible testing approaches and Aspect-Oriented

Programming used in testing. Furthermore we will define the constraints manually

created to identify point of interests to be tested [3, 4, 7-9, 22, 27, 28, 33]. In this

work, we put the emphasis on approaches which make the test reproducible and

controllable. Our work does not require the availability of the program code, but it

needs user’s knowledge to fix feasible test constraints to avoid deadlock during the

control of the test. We provide an automated translation from a test constraint to a set

of aspects using AspectJ, The translated AspectJ program is then woven into the

program under test. The advantage of AspectJ is that it is simple and practical to use,

and it provides support of a range of crosscutting concerns for modular

implementation. Furthermore, AspectJ code can be written once for all, and

automatically woven into the code of any program under test.

 To realize guided test, a test guide is also built to guide a PUT to take a certain

path. The execution of the PUT is augmented by weaving additional AspectJ code

which realizes the communication between test guide and the PUT.

26

5. Testing Architecture

The structure of our testing method is shown in Figure 4. A test case is usually defined

as a sequence of input/output pairs. For simplicity, we consider here that each test

case is an input/output pair. An extension of the current work to handle sequences of

input/output pairs is straightforward. Each test case is associated with a test constraint

which describes a partial order among internal events, which refers to the execution of

a process at a checkpoint in the source code.

We assume that program under test, test case, and test constraints are given.

AspectJ code is automatically generated from the test constraint, and woven into the

given program under test, to form the extended program under test. The execution of

the extended program under test is augmented by the communication with the test

guide, which is written once for all. The test guide takes the test constraint as input to

make sure it is satisfied by properly delaying the communication with the processes in

the system under test. As we noted in the Introduction, we assume that the given test

constraint can uniquely determine one output, and this actual output is compared by a

test oracle with the expected one given in the test case.

27

Figure 4: Testing Architecture

28

6. Test Specification

6.1 Test Case Specification

In the distributed bakery example, we would like to make sure that output A comes

out before output B, and the test requirement we would like to satisfy can be

informally expressed as follows:

• (input) process 1 and 2 each requests once to enter its critical section;

• (test constraint)

– process 2 picks up a number before process 1 does;

– process 1 enters critical section before process 2 does.

• (expected output) the output is AB.

The most intuitive way to realize this test is to let process 2 ask the test guide for

permission to enter its critical section: the test guide will grant it permission if process

1 has already exited from its critical section. Figure 5(A1) shows such a scenario.

Note that the augmented communication between the test guide and the processes in

the system under test are given in dashed arrows. Here we have three augmented

messages added to scenario (A) (see Figure 3(A)):

• m1: after process 1 exited from its critical section, it sends a message to

acknowledge the test guide about it.

• m2: before process 2 enters its critical section, it sends a message to ask for

permission from the test guide.

• m3: the test guide sends a message to process 2 to grant it the permission.

Of course, the test guide will delay message m3 if it has not yet received message m1

29

 Figure 5 : Scenarios with test guide

Figure 6 : Scenarios with test guide

30

from process 1. In another word, the test guide will make sure that e1 → e3 where

―→‖ denotes the happen-before relation, and we use ei to denote the first occurrence

of the internal event of mi. More generally, a test guide will make sure that a given

test constraint is satisfied, where a test constraint is a partial order of the

happen-before relation among the internal events. Figure 5(A1) suggests that {e1 →

e3} might be used as a test constraint for the above test requirement for observing AB.

However, Figure 5(B1) shows another scenario when we cannot observe AB by

using {e1 → e3} as test constraint. This scenario is obtained by adding the three

messages to scenario (B) (see Figure 3(B)). Here, when process 2 asks for permission

to enter its critical section, the test guide has to delay its response until it has received

a message from process 1. Process 1, on the other hand, is waiting for the reply from

process 2 for its request to enter its critical section, which will not arrive until process

2 exits from its own critical section. Thus, we cannot observe output AB.

This example shows that not all test constraints are feasible. The fact that {e1 →

e3} is not a feasible solution suggests that process 2 should ask the test guide for

permission to proceed at an earlier checkpoint rather than right before entering its

critical section. Figure 6(A2) shows such a scenario which leads to a feasible test

constraint: {e5 → e6} where

• m4: before invoking method handleRequest(...), process 1 will send a message to the

test guide to ask for permission.

• m5: after process 1 completed method pickNum(), it sends a message to the test

guide to acknowledge about it.

• m6: the test guide sends a message to process 1 to grant it the permission to proceed

with handleRequest(...).

m5 → m6 makes sure that in process 1, pickNum() will be ca lled ahead of

31

handleRequest(). As a consequence, myTicketNum of process 1 has value 1 (instead

of 2) when process 1 sends a request to process 2 to enter its critical section. This is

essential for process 1 to enter its critical section ahead of process 2, and thus

produces output AB.

Another possible scenario is shown in Figure 6(A3), which leads to an alternative

test constraint: {e8 → e9} where

• m7: when process 1 received message m to request to print B with myTicketNum=1,

it will send a message to the test guide to ask for permission to proceed with the

received message.

• m8: after process 1 completed method pickNum(), it sends a message to the test

guide to acknowledge about it.

• m9: the test guide sends a message to process 1 to process the received message.

Similar to {e5 → e6}, {e8 → e9} is a feasible test constraint. The only difference

is that the permission request is sent upon the receipt of a message instead of upon the

invocation of a method to process the message.

6.2 Test Constraints

To realize the communication between the test guide and the processes in the system

under test, we need to (i) determine the checkpoints, i.e. the places in the program

under test, where the additional messages are needed; (ii) determine the messages

between the test guide and the processes of the system under test. In this section, we

give detailed explanations of these two issues. The formal description of test

constraints follows.

32

6.2.1 The Checkpoints of Interest

The checkpoints we are interested in are those that are essential to the

nondeterministic choices along an execution path that may cause different output.

Different outputs produced from a system with the same input is caused by the

different orders of accessing shared objects, which is in turn caused by different

execution speed among the threads and processes.

In addition to the order of accessing shared objects which is directly related to the

output, there are orders of the executions of some other statements, such as those for

process communication and thread cooperation, that are indirectly related to the

output.

Process communication can be either the lower-level send and receive operations

or the higher- level operations such as remote method invocations. When a remote

method is invoked at the caller’s side, there is a new thread implicitly used as a proxy

at the callee’s side to actually invoke the method. This implicitly used thread may also

access the shared objects. From the user’s viewpoint, the remote method invocation

can also be a checkpoint of interest, either at the caller’s side or at the callee’s side.

Process communication with send/receive operations as considered in our setting is

not strongly related to the uniqueness of the output. Users may however find it

convenient to use the send and receive operations as checkpoints.

Thread cooperation refers to the coordination among multiple threads using

wait/notify mechanism provided by various programming languages. When the

wait/notify mechanism is used, there is usually a condition involved, upon the truth

value of which the waiting thread would be notified. This condition itself is a shared

object between the waiting thread and the notifying thread. The access to this shared

33

object could be implicit.

In general, we allow users to use any checkpoint in the program under test as long

as it is a method invocation. Theoretically, this simplification does not reduce the

generality of the proposed method since all statements or blocks of statements can be

rewritten into a method. Practically however, we would like to release this restriction

to allow users to use any statement as a checkpoint. The extension of the present work

in this aspect is left for future work. In particular, with our current running prototype,

we exemplified how to use various methods provided by Java API (Abstract

Programming Interface) for thread synchronization, process communication, and

thread cooperation as checkpoints.

6.2.2 Event Description and Test Constraint

At the user-defined checkpoints, we would like to realize the desired communication

between the test guide and the processes in the system under test. There are three

typical kinds of messages we are interested in: (i) a permission request to the test

guide to invoke a method; (ii) a response from the test guide to a request; (iii) an

acknowledgement to the test guide for having completed a method invocation. The

last one is necessary to enable the test guide to send responses to other permission

requests.

An event is defined as an event name:event body pair. An event body is a tuple

<pid, tName, cName, mName, type, num> where:

• pid is the id of the current process. A same program can be executed by different

processes. We assume that when a process is started, a unique process id is given (e.g.

from the command line) and it is kept in a special static variable MyProg.processId

(simply written as processId below) which can be accessed anyway in the program.

34

• tName is the name of the current thread. We assume that thread names are all

explicitly given in the source code, and can be obtained by invoking

Thread.currentThread().getName() (simply written as getThreadName() below).

• cName is the class name of the method being invoked.

• mName is the name of the method being called. Considering operator overloading, a

method should be distinguished jointly by the method name and the types of its

parameters. Here we simply use method name to distinguish a method. An extension

of the current work to handle more sophisticated message definition is

straightforward.

• type has values 1, 2, 3, representing the types of the messages: type=1 specifies the

message as a permission request to the test guide to invoke a method; type=2 specifies

the message as a response from the test guide to the previous request; type=3 specifies

the message as an acknowledgement to the test guide for having completed a method

invocation.

• num is the number of appearances of this mName being called by thread tName in

process pid.

Special symbol ―*‖ is used in the case we are not interested in specifying a

particular element. For instance, a ―*‖ as a class name indicates that we are interested

in the specified method defined in any class.

With the above formalization, the previous example messages can be expressed

as:

• e1: (1, main, DBakery, doCS, 3, 1)

• e2: (2, main, DBakery, doCS, 1, 1)

• e3: (2, main, DBakery, doCS, 2, 1)

• e4: (1, 2, SocketThread, handleRequest, 1, 1)

35

• e5: (1, main, DBakery, pickNum, 3, 1)

• e6: (1, 2, SocketThread, handleRequest, 2, 1)

• e7: (1, 2, *, readLine, 1, 1)

• e8: (1, main, DBakery, pickNum, 3, 1)

• e9: (1, 2, *, readLine, 2, 1)

A test constraint is defined as a partial order of the happen-before relation among

a set of internal events. With the internal messages defined above, event e1 should

happen before event e2 can also be interpreted as e1 should be received before e2 is

sent, where e1 is the type 3 event sent to the test guide to acknowledge the completion

of e1, and e2 is the type 1 event sent to the test guide request to start e2. Thus, the

internal events can be defined as the sending/receiving of the corresponding internal

messages.

A test constraint file describes a partial order among a set of internal events. Both

the AspectJ generator and the test guide read this file to extract useful information. A

possible test constraint file for the distributed bakery example is given in Figure 7.

Figure 7: A test constraint file

Note that internal events of type 2 can be omitted from the specification since all

the related information is carried in the corresponding events of type 1 so that the test

guide can handle the response properly. In Figure 7, internal event e6 is omitted.

The AspectJ generator reads the first part of the test constraint file to get all the

event name and event body pairs. It does not read the second part of the file i.e. the

e4 : (1 , 2 , SocketThread, handleRequeset , 1 , 1)

e5 : (1 ,main,DBakery, pickNum, 3 , 1)

e5 → e4

36

happen-before relation among internal events. For each internal event, the

AJGenerator extracts the pid, tName, cName, mName, type, num tuple.

The test guide reads the second part of the test constraint file to understand the

required happen-before relationship among the specified events.

37

7. Generating AspectJ Code from Test

Constraints

For each internal event, the AJGenerator extracts the information of its event name,

process id, thread name, class name, method name, event type and num. The AspectJ

code is generated for the points of the execution where the specified method of the

specified class is invoked by the specified thread and process. Note that for the

communication with the test guide, only the event name is suffcient. For convenience,

the type of the event is sent together with the event name in our prototype

implementation.

For a type 1 event called eName with process id pid, thread name tName, class

name cName, method name mName, number of occurrences num, the generated

ApectJ code is shown in Figure 8. It automatically generates a unique joinpoint named

methodCall0 for any invocation of method mName which is defined in class cName.

An array named methodCalledTime[] is used to record the time of appearance of a

<pid, tid, cName, mName, type> tuple. According to this piece of code, during the

execution of the extended program under test, right before any invocation of method

mName in class cName, the current process and thread with a response

methodCalledTime[i] is checked. If the current process ID is pid, the current thread

name is tName, and the methodCalledTime[i] reaches num then event name eName,

together with the type 1 is sent to the test guide, and the execution is held, waiting for

response from the test guide. Here, in and out are the input and output stream

respectively for the socket connection with the test guide, which uses a predefined

listening channel to establish connections with the processes in the system under test.

38

Note that different processes and different threads will use different channels for

communication. Thus, the response from the test guide can be any message and it is

only read, not used.

For a type 3 event called eName with process id pid, thread name tName, class

name cName, method name mName, number of occurrences num, the generated

ApectJ code is shown in Figure 9. It is similar to the code for type 1 events except that

it sends out the acknowledgement message to the test guide without waiting for

response.

The code generated from the test constraint file in Figure 7 is given in Figure 10.

public pointcut methodCall0(): call(* *.mName(..)) && within(cName);

before(): methodCall0() {

try {

if (MyProg.processId==pid &&

Thread.currentThread().getName().equals(tName)) {

methodCalledTime[0]++;

if(methodCalledTime[0]==num){

kkSocket*0+ = new Socket(“chenpc06”,4111);

out[0] = new PrintWriter(kkSocket[0].getOutputStream(),true);

in*0+ = new BufferedReader(new InputStreamReader(kkSocket[0].getInputStream()));

out*0+.println(”1 eName”);

while ((in[0].readLine()) != null) {

break;

} }

} }

catch(Exception e) {}

}

Figure 8: Generated AspectJ code for type 1 event

public pointcut methodCall0(): execution(* *.mName(..)) && within(cName);

after(): methodCall0() {

39

try {

if (MyProg.processId==pid &&

Thread.currentThread().getName().equals(tName)) {

methodCalledTime[0]++;

if(methodCalledTime[0]==num){

kkSocket*0+ = new Socket(“chenpc06”,4111);

out[0] = new PrintWriter(kkSocket[0].getOutputStream(),true);

out*0+.println(”3 eName”);

} } }

catch(Exception e) {}

}

Figure 9: Generated AspectJ code for type 3 event

import java. io.*;

import java.net.*;

public aspect ControlSequ{

Socket[] kkSocket = new Socket[2];

PrintWriter[] out =new PrintWriter[2];

BufferedReader[] in =new BufferedReader[2];

int[] methodCalledTime = new int[2];

public pointcut methodCall0(): call(* *.handleRequest(..))&& within(SocketThread);

before(): methodCall0(){

try{

if(MyProg.processId==1){

if(Thread.currentThread().getName().equals("2")){

methodCalledTime[0]++;

if(methodCalledTime[0]==1){

kkSocket[0] = new Socket("chenpc06",4111);

out[0] = new PrintWriter(kkSocket[0].getOutputStream(),true);

in[0] = new BufferedReader(new InputStreamReader(kkSocket[0].getInputStream()));

out[0].println("1 e4");

while ((in[0].readLine()) != null)

{break;}

out[0].close();in[0].close();kkSocket[0].close();}}

}}

catch(Exception e){}

}

40

public pointcut methodCall1(): execution(* *.pickNo(..))&& within(DBakery);

after(): methodCall1(){

try{

if(MyProg.processId==1){

if(Thread.currentThread().getName().equals("main")){

methodCalledTime[1]++;

if(methodCalledTime[1]==1){

kkSocket[1] = new Socket("chenpc06",4111);

out[1] = new PrintWriter(kkSocket[1].getOutputStream(),true);

out[1].println("3 e5");

out[1].close();kkSocket[1].close();}

} } }

catch(Exception e){}

} }

Figure 10: Example of generated AspectJ code

41

8. Design and Implementation of Test Guide

8.1 Characteristic of Test Guide

Besides generating AspectJ code from test events, we also need a partial order relation

between those events, following which we could realize the guided test. We can

obtain this relation from the second part of the test constraint file. The test guide here

is used to direct the test. It functions quite straightforwardly: It reads the relation from

the constraint file and maintains two arrays. For each happen-before requirement e.g.

ei→ej, the former event ei is stored in the first array and the second one ej is stored in

the second array. Because there are so many relations, to avoid mixing them, each

relation is stored in the two arrays with the same index. For example, for e5→e4, e5

and e4 are stored in preEvent[i] and postEvent[i] separately with the same index i. An

array of boolean variable is also introduced to mark whether a preEvent has happened

in order to help decide whether a postEvent can be enabled. All test guide has to do is

to hold an postEvent until its preEvent has happened. Figure 13 and 14 illustrate how

the PUT communicates with the test guide with type 1 and type3 event respectively.

 In this thesis work, the prototype of the test guide we developed has multiple

threads. The test guide uses main thread to keep listening for requests for the channel

establishment at a predefined port. For each channel established, a new

communication thread is created to receive messages and to send back responses if

necessary. The test guide uses java stream socket for communication. The test

constraints are saved in a simple text file with simple format, as illustrated in Figure 7,

which makes the retrieval of test constraints very easy. The test guide gets information

from the second part of this constraint file.

42

The goal of developing such a test guide is to help software testers to use the

prototype to automatically control the execution of distributed multithreading

programs under given test constraints.

Type 1 event e4: (1, 2, SocketThread, handleRequest, 1, 1)

Figure 11: sequential chart of e4

Type 2 event e5: (1, main, DBakery, pickNum, 3, 1)

Process 1 Thread 2
weaved with AspectJ

Test Guide Test Guide Thread

send (“1 e4”)

send (“1 e4”)

signal

{while(!condition[0])
{sleep(1000);}
signal back;

43

Figure 12: sequential chart of e5

8.2 Data Structure of the Test Guide

There are two types of events as we mentioned in Chapter 7. Now we explain how to

handle these events using the test guide.

The class TestGuide first declares an integer to count the numbers of constraint

relations in the second part of the test constraint file. Then it declares 3 arrays of this

length. The first array, named preEvent of type string, is used to record the names of

the events appeared before the happen-before relation ―→‖. The second array, named

postEvent of type string, is used to save the names of the events appeared after the

happen-before relation ―→‖. For example, with e5→e4, e5 is saved in the array

preEvent[i], and e4 is saved in postEvent[i]. For each relation, the two events are

saved separately in preEvent and postEvent but with the same array index i. The third

array named ―condition‖ is of type Boolean. Its elements are set to false initially.

Process 1 Thread main
weaved with AspectJ

Test Guide Test Guide Thread

send (“3 e5”)

send (“3 e5”)

condition[0]=true;

44

The class TestGuideThread is a subclass of TestGuide which is used to handle

incoming messages from the aspect of PUT. If it receives a type 3 event, it will search

the array of preEvent to match the event name. If an event name is matched, the index

of that preEvent is recoded, and the element with the same index of array condition is

updated to true. If it receives a type 1 event, it will do the same thing as it receives a

type 3 event. But instead of updating that condition to true, it will keep checking that

condition until it becomes true. Then the TestGuideThread will signal back the

corresponding aspect of PUT via stream socket.

In general, the test guide keeps a list B of (eName, cond) pairs for all blocked

type 1 events, i.e. those events whose responses are held. Here eName is the name of

the event being blocked, and cond is a condition. Whenever eName is enabled, the

threads waiting on cond will be notified to send out corresponding responses. Based

on the information about which events have happened, the test guide decides whether

a request can be responded. cond will only be updated via type 3 events.

We give an example to show how our approach works in DBA. In the situation

mentioned in Figure 6(A2), when process 2 wishes to enter the critical section, it will

first pick a number, and then send the number with its pid to process 1. Process 1 will

assign a thread of class SocketThread to handle this received message. This event is

recognized by the AspectJ code weaved into process 1 as e4 which is the request to

call handleRequest method in SocketThread class by pid 1 thread 2 for the first time.

e4 is a type 1 event defined in the test constraints. AspectJ of current PUT will send

this event to TestGuide and block current PUT, waiting for response from TestGuide.

Since e5→e4 is required according to the test constraints file, TestGuide accepts the

connection of this aspect and assigns a thread of class TestGuideThread to handle the

message passed by this aspect. The TestGuideThread object will recognize this type 1

45

event automatically and keep it waiting. It will not send a signal back until the

message of e5 arrives. At this time, process 1 receives an order to enter the critical

section. It picks a number first. This is recognized by its aspect as event 5 which is the

accomplishment of executing pickNum method in DBakery class by pid 1 thread main

for the first time. e5 is a type 3 event defined in the test constraints. The aspect of

current PUT sends e5 to TestGuide but will not block current PUT because type 3

event is an acknowledgment. The TestGuide accepts the connection of this aspect and

assigns a thread of class TestGuideThread to handle the message passed by this aspect.

The TestGuideThread recognizes this type 3 event automatically and updates the

condition, which e4 is waiting for to become true. Then the TestGuideThread object

used to handle e4 signals the aspect which sent e4, and that aspect will no longer

block the PUT. Because process 1 picked a number before handling the request of

process 2, it will pick the same number as process 2 does. Though they have the same

number, process 1 has a smaller pid which means it has higher priority over process 2.

Process 1 will enter critical section first. Finally, output AB is generated.

A sequential chart showing how the test guide handles incoming events is given

in Figure 15.

8.3 Algorithm of the Test Guide

During the execution, it may happen a situation where one postEvent has two prevent

to correspond. To make sure that the test guide thread will not give back a signal

immediately after the cond of (eName’, cond) comes true, we use a counter named

countPreEvent. countPreEvent will count the number of the preEvent of a postEvent

before the TestGuideThread functions. Each cond of (eName’, cond) turned to true

will lead to countPreEvent--. TestGuideThread will not signal the extended PUT until

46

countPreEvent becomes 0. A sequential chart is showed in Figure 16 to illustrate this.

When a communication thread receives a type 1 event named eName, it works as

Figure 13 shows. When a communication thread receives a type 3 event named

eName, it works as Figure 14 shows. Here, we assume a test constraint file like this:

e4: (1, 2, SocketThread, handleRequest, 1, 1)

e5: (1, main, DBakery, pickNum, 3, 1)

e10: (2, main, DBakery, pickNum, 3, 1)

{e5→e4}&{e10→e4}

A counter countPreEvent is used to count the preEvent of e4. In this case,

countPreEvent is 2.

1: while (receive eName)

2: for all (eName’, cond) in list B do

3: if eName’ is enabled then

4: notify those threads waiting on cond

5: else

6: update list B and put current thread to waiting state

7: end if

8: end for

9: end while

Figure 13: Handling type 1 event named eName

1: while (receive eName)

2: for all (eName’, cond) in list B do

3: if eName’ is enabled then

4: notify those threads waiting on cond

5: end if

6: end for

7: end while

Figure 14: Handling type 3 event named eName

47

 Figure 15: sequential chart of {e5→e4}

while(!condition[0])
{sleep(1000);}
signal back;

Process 1 Thread
2 weaved with

AspectJ

Test
Guide

Test Guide
Thread

send (“1 e4”)

condition[0]=
true;

Process 1
Thread main

weaved with
AspectJ

send (“1 e4”)

send (“3 e5”)

signal

send (“3 e5”)

48

Figure 16: sequential chart of {e5→e4}&{e10→e4}

for(int

i=0;i<n;i++)
while(condition[i
]==false)
{sleep(1000);}
countPreEvent--;

if(countPreEvent
==0)
signal back;

Process 1
Thread 2
weaved
with
AspectJ

Test
Guide

Test Guide
Thread

send (“1 e4”)

Process 1
Thread main
weaved with
AspectJ

send (“1 e4”)

send (“3 e5”)

signal

send (“3 e5”)

Process 2
Thread
main
weaved
with
AspectJ

condition[0]=
true;

send (“3 e10”)

send (“3 e10”) condition[1]=
true;

49

9. Conclusions and Future Work

In this Thesis work, we have proposed an approach to automated reproducible testing

for distributed Java applications, via AspectJ. With AspectJ code weaved into the PUT,

we could easily gain control over certain point of interest without modifying the

original PUT. With a set of certain feasible test constraints, a generator AJgererator is

introduced to generate a corresponding AspectJ class which will be weaved into PUT.

Test guide also reads the relations from the test constraint file and saves the relations

for further judgment. The extended PUT and Test Guide communicate with each other

to generate a unique output.

 We have introduced test scenarios, and discussed the feasible scenarios. We also

overviewed the major functions of AspectJ and discussed how to generate AspectJ

code from test constraints and how test guide functions to realize guided test. We have

implemented this test guide and it runs well on the distributed bakery algorithm

example.

 Finally, we would like to mention that this AspectJ used in our work could only

generate a pointcut (point of interest to test) from a method : either before or after a

method call or execution. The communication we implemented between extended

PUT and test guide is through Java stream sockets. It remains interesting to design a

way to make any statements as checkpoints. Also, we are interested in extending this

work for PUT communicating with test guide in ways other than stream sockets.

50

Bibliography

[1] AspectJ. AspectJ WWW site. At URL http://www.eclipse.org/aspectj/.

[2] BANIASSAD, E. AND CLARKE, S. 2004. Theme: An Approach for Aspect-Oriented

Analysis and Design. Proceedings of the 26th International Conference on
Software Engineering. 158-167.

[3] BATES, P. 1995. Debugging heterogeneous distributed systems using event-based
models of behavior. ACM Transactions on Computer Systems. 13(1), 1-31.

[4] CAI, X. AND CHEN, J. 2000. Control of nondeterminism in testing distributed

multi- threaded programs. In Proc. of the 1st Asia-Pacific Conference on Quality
Software (APAQS 2000). 29–38.

[5] CARVER R. H. and TAI K. C., 1986. Reproducible testing of concurrent programs
based on shared variables. inProc. 6th Int. Conf. Distributed Computing Systems.
428-433.

[6] CARVER, R.H. AND TAI, K.C. 1998. Use of sequencing constraints for
specification-based testing of concurrent programs. IEEE Transactions on Software

Engineering. 24(6), 471-490.

[7] CARVER, R.H. AND TAI, K.C. 1991. Replay and testing for concurrent programs.
IEEE Software. 66-74.

[8] CARVER, R.H. AND TAI, K.C. 1991. Static Analysis of Concurrent Software for
Deriving Synchronization Constraints. Proc. IEEE Int’l Conf. Distributed

Computing Systems. 544–551.

[9] CHEN, J. AND WANG, K. 2003. Constructing a Reproducible Testing Environment
for Distributed Java Applications Quality Software, Proceedings Third

International Conference. 402- 409.

[10] CHEN, J. 2003. Building Test Constraints for Testing Middleware-Based

Distributed Systems. In Software Engineering and Middleware, Lecture Notes in
Computer Science. 2596, 216-232.

[11] CHOI, J.-D. AND SRINIVASAN, H. 1998. Deterministic replay of java

multithreaded applications. In Proceedings of the SIGMETRICS Symposium on
Parallel and Distributed Tools. 48 – 59.

[12] COOPER, R. AND MARZULLO, K. 1991. Consistent detection of global predicates.
SIGPLAN Notices. 167-174.

[13] COPTY, S. AND UR, S. 2005. Multi- threaded testing with AOP is easy, and it

finds bugs! In Proc. 11th International Euro-Par Conference, LNCS 3648. 740-749.

[14] COTTENIER, T., BERG, A. AND ELRAD, T. 2007. Joinpoint inference from

behavioral specification to implementation. In Proc. of the 21st European
Conference on Object-Oriented Programming (ECOOP). 4609, 476-500.

[15] DAMODARAM-KAMAL, S.K. AND FRANCIONI, J.M. 1993. Nondeterminacy:

Testing and debugging in message passing parallel programs. In ACM/ONR
Workshop on Parallel and Distributed Debugging, 118–128.

http://www.eclipse.org/aspectj/

51

[16] EDELSTEIN, O., FARCHI, E., NIR, Y., RATSABY, G. AND UR, S. 2002.
Multithreaded Java program test generation. IBM Systems Journal. 41(1), 111–125.

[17] FOW LER, R. AND LEBLANC, T. 1989. An Integrated Approach to Parallel
Program Debugging and Performance Analysis on Large-scale Multiprocessors.

SIGPLAN Notices. 24(1), 163 - 173.

[18] HANSEN, B. 1978. Reproducible Testing of Monitors, Software Practice and
Experience. 721-729.

[19] HAREL, D. AND GERY, E. 1997, Executable Object Modeling with Statecharts.
IEEE Computer. 30(7), 31–42.

[20] HARTMAN, A., KIRSHIN, A., AND NAGIN, K. 2002. A test execution environment
running abstract tests for distributed software. Proceedings of SEA. 448—453.

[21] HAVELUND, K. AND PRESSBURGER, T. 2000. Model checking java programs

using java pathfinder. International Journal on Software Tools for Technology
Transfer, STTT. 2(4), 366-381.

[22] HUGHES, D., GREENW OOD, P., AND BLAIR, L. 2003. Aspect Testing Framework.
FMOODS/DAIS Student Workshop.

[23] ITOH, E., FURUKAWA, Z., AND USHIJIMA, K. 1996. A prototype of a concurrent

behavior monitoring tool for testing concurrent programs. In Proc. of Asia-Pacific
Software Engineering Conference (APSEC'96). 345-354.

[24] KENKATESAN, S. AND DATHAN, B. 1995. Testing and debugging distributed
programs using global predicates. IEEE Transactions on Software Engineering.
21(2), 163-177.

[25] KICZALE, G., HILSDALE, E., HUGUNIN, J., KERSTEN, M., PALM, J., AND
GRISW OLD, W. G. 2001. An overview of AspectJ. Lecture Notes in Computer

Science. 2072, 327–355.

[26] LEBLANC, T. AND MELLOR, J. 1987. Debugging parallel programs with instant
replay. IEEE Transactions on Computers. 36(4), 471-482.

[27] LEU, E., SCHIPER, A., AND ZRAMDINI, A. 1990. Execution Replay on Distributed
Memory Architectures. IEEE Symposium on Parallel and Distributed Processing.

106–112.

[28] METSA, J., KATARA, M., AND MIKKONEN, T. 2008. Comparing Aspects with
Conventional Techniques for Increasing Testability. Software Testing, Verification

and Validation, 2008 1st International Conference. 387-395.

[29] METSA, J., KATARA, M., AND MIKKONEN, T. 2008. Testing Non-functional

Requirements with Aspects: An Industrial Case Study. In Proceedings of the
Seventh International Conference on Quality Software (QSIC 2007) IEEE
Computer Society. 5–14.

[30] OBERHUBER, M. 1995. Elimination of nondeterminacy for testing and debugging
parallel programs. In Mireille Ducassee, editor, Proceedings of 2nd Int. Workshop

on Automated and Algorithmic Debugging.

[31] PESONEN, J., KATARA, M., AND MIKKONEN, T. 2006. Production-testing of
embedded systems with aspects. In Hardware and Software, Verification and

Testing, LNCS. 3875, 90–102.

52

[32] SEBASTIAN BENZ. 2008. AspectT: Aspect-Oriented Test Case Instantiation.
Proceedings of the 7th international conference on Aspect-oriented software

development, ACM, SESSION: Aspects and generative programming. 1-12.

[33] SOHN, H., KUNG, D., AND HSIA, P. 1999. State-based reproducible testing for

CORBA applications. In Proc. of IEEE International Symposium on Software
Engineering for Parallel and Distributed Systems (PDSE'99). 24-35.

[34] SPEZIALETTI, M. 1989. A generalized approach to monitoring distributed

computations for event occurrences. Ph.D. Dissertation, Univ. Pittsburgh. 212.

[35] STOLLER, S.D. 2000. Model-checking multi- threaded distributed java programs.

In Proceedings of the 7th International SPIN Workshop on Model Checking. 224 –
244.

[36] STOLLER, S.D. 2002. Model-checking multi- threaded distributed Java programs.

International Journal on Software Tools for Technology Transfer. 4(1), 71–91.

[37] TAI K-C, CARVER R. H., OBAID E. E., 1991. Debugging Concurrent Ada

Programs by Deterministic Execution. IEEE Transactions on Software Engineering,
17(1), 45-63.

[38] WANG, Y., KING, G., AND WICKBURG, H. 1999. A method for built- in tests in
component-based software maintenance. In IEEE International Conference on
Software Maintenance and Reengineering. 186–189.

53

Appendix A

CODE OF TEST GUIDE & TEST GUIDE THREAD

import java.net.*;
import java.util.StringTokenizer;
import java.io.*;

public class TestGuide extends Thread{
 public static String[] preEvent,postEvent;
 public static boolean[] condition;
 public static int n;
 public static void main(String[] args) throws Exception {

 ServerSocket serverSocket = null;
 int portNum=4111;
 boolean listening = true;
 int i=0;
 String line;

 n=0;
 BufferedReader br = new BufferedReader(new FileReader("constraint.txt"));
 BufferedReader b = new BufferedReader(new FileReader("constraint.txt"));
 while((b.readLine())!= null)
 n++;
 b.close();
 preEvent=new String[n];
 postEvent=new String[n];
 condition=new boolean[n];
 while((line = br.readLine())!= null)
 {

 StringTokenizer st = new StringTokenizer(line,"{,},-,> ");
 preEvent[i] = st.nextToken();
 postEvent[i] = st.nextToken();
 condition[i]=false;
 i++;
 }
 br.close();

 try {
 serverSocket = new ServerSocket(portNum);
 } catch (IOException e) {
 System.err.println("Could not listen on port: 4111.");

 System.exit(-1);
 }

 while (listening)
 new TestGuideThread(serverSocket.accept()).start();

 serverSocket.close();
 }
}

54

import java.net.*;
import java.util.StringTokenizer;
import java.io.*;

public class TestGuideThread extends TestGuide {
 private Socket socket = null;

 public TestGuideThread(Socket socket) {
 this.socket = socket;
 }
 public void run() {

 try {
 PrintWriter out = new PrintWriter(socket.getOutputStream(), true);

BufferedReader in = new BufferedReader(new
InputStreamReader(socket.getInputStream()));

 String inputLine, eventName, type;
 int countPreEvent=0;

 while ((inputLine = in.readLine()) != null) {
 StringTokenizer st = new StringTokenizer(inputLine," ");
 type = st.nextToken();
 eventName = st.nextToken();
 for(int i=0;i<n;i++)
 if(postEvent[i].equals(eventName))
 countPreEvent++;
 if(type.equals("3")){
 for(int i=0;i<n;i++)
 {

 if(preEvent[i].equals(eventName))
 {
 condition[i]=true;
 System.out.println("condition true");
 }
 }}

 if(type.equals("1"))
 { for(int i=0;i<n;i++)
 {
 if(postEvent[i].equals(eventName))

 {
 while(!condition[i])
 {sleep(1000);
 System.out.println("waiting condition ");}
 countPreEvent--;// there might be 2 preEvent for one postEvent
 if(countPreEvent==0)
 out.println("Go");
 }
 }
 }
 }

 out.close();
 in.close();
 socket.close();

55

 } catch (Exception e) {
 e.printStackTrace();
 }

 }

}

56

Appendix B

CODE OF AJGENERATOR

import java.io.*;
import java.util.*;

public class AJgenerator {

 public static void main(String[] args) throws Exception{
 int n=0,c=1;
 String line,eventName,pid,tid,className,methodName,type,counter;
 String computerName="chenpc06",portNum="4111";
 BufferedReader br = new BufferedReader(new FileReader("event.txt"));
 BufferedReader b = new BufferedReader(new FileReader("constraint.txt"));
 while((b.readLine())!= null)
 c++;
 b.close();
 BufferedWriter bw = new BufferedWriter(new FileWriter("ControlSequ.aj"));

 bw.write(
 "import java.io.*;\n"+"import java.net.*;\n"+"public aspect ControlSequ{\n"+
 "Socket[] kkSocket = new Socket["+c+"];\n"+
 "PrintWriter[] out =new PrintWriter["+c+"];\n"+
 "BufferedReader[] in =new BufferedReader["+c+"];\n\n"+
 "int[] methodCalledTime = new int["+c+"];\n"
);

 while((line = br.readLine())!= null)
 {
 StringTokenizer st = new StringTokenizer(line,"(,/,,)");

 eventName = st.nextToken();
 pid = st.nextToken();
 tid = st.nextToken();
 className = st.nextToken();
 methodName = st.nextToken();
 type = st.nextToken();
 counter = st.nextToken();
 //Use string tokenizer to split event e1(tid,className,methodName,1)

 if(type.equals("1")){
 bw.write(

"public pointcut methodCall"+n+"():" +" call(*

*."+methodName+"(..)"+")"+
 "&& within("+className+");"+"\n"+
 "before(): methodCall"+n+"(){\n"+
 "try{\n");

 bw.write(

 "if(MyProg.processId=="+pid+"){\n"+
 "if(Thread.currentThread().getName().equals(\""+tid+"\")){\n"+

57

 "methodCalledTime["+n+"]++;\n"+
 "if(methodCalledTime["+n+"]=="+counter+"){\n"+

 "kkSocket["+n+"] = new
Socket(\""+computerName+"\","+portNum+");\n"+

"out["+n+"] = new
PrintWriter(kkSocket["+n+"].getOutputStream(),true);\n"+

"in["+n+"] = new BufferedReader(new
InputStreamReader(kkSocket["+n+"].getInputStream()));\n\n"+

 "out["+n+"].println(\"1 "+eventName+"\");\n"+
 "while ((in["+n+"].readLine()) != null)\n"+
 "{break;}\n"+
 "out["+n+"].close();"+
 "in["+n+"].close();"+
 "kkSocket["+n+"].close();"+
 "}}\n}}\ncatch(Exception e){}\n"+
 "}\n"
);}

 If(type.equals("3"))
 {bw.write(

"public pointcut methodCall"+n+"():" +" execution(*
*."+methodName+"(..)"+")"+

 "&& within("+className+");"+"\n"+
 "after(): methodCall"+n+"(){\n"+
 "try{\n"+
 "if(MyProg.processId=="+pid+"){\n"+
 "if(Thread.currentThread().getName().equals(\""+tid+"\")){\n"+
 "methodCalledTime["+n+"]++;\n"+
 "if(methodCalledTime["+n+"]=="+counter+"){\n"+

 "kkSocket["+n+"] = new
Socket(\""+computerName+"\","+portNum+");\n"+

"out["+n+"] = new
PrintWriter(kkSocket["+n+"].getOutputStream(),true);\n"+

 "out["+n+"].println(\"3 "+eventName+"\");\n"+
 "out["+n+"].close();"+
 "kkSocket["+n+"].close();"+
 "}\n}\n}\n}\n"+
 "catch(Exception e){}\n}\n\n"
);
 }

 n++;
 }
 bw.write("}\n");
 br.close();
 bw.close();
 }

}

58

Appendix C

CODE OF DISTRIBUTED BAKERY ALGORITHM

import java.io.IOException;
import java.io.PrintWriter;
import java.net.ServerSocket;
import java.net.Socket;

import java.net.UnknownHostException;

class DBakery extends Thread {

 ServerSocket serverSocket = null;
 boolean listening = true;
 public static int myTicketNum = 0;
 public static int currentNum = 0;
 public static int replyCount = 0;
 public static int deferedNumber = 0;
 public int totalProcessNum;

 public static int pid;
 public Socket[] sSocket;
 public PrintWriter[] out;
 public static PrintWriter[] deferedQueue;
 public static boolean NumPicked=false;
 public DBakery(){}
 public DBakery(int totalProcessNum,int id) throws IOException{

 pid = id;
 this.totalProcessNum = totalProcessNum;
 sSocket=new Socket[totalProcessNum];

 out=new PrintWriter[totalProcessNum];
 deferedQueue = new PrintWriter[totalProcessNum-1];
 try {
 serverSocket = new ServerSocket(5555+pid-1);
 } catch (IOException e) {
 System.err.println("Could not listen on port: 5555.");
 System.exit(-1);
 }

 for(int i=0;i<pid-1;i++)
 {
// send requests for socket connection to all processes with smaller id;

 try { sSocket[i] = new Socket("chenpc06", 5555+i);//chenpc06 is the name of this
PC
 out[i] = new PrintWriter(sSocket[i].getOutputStream(), true);
 } catch (UnknownHostException e) {
 System.err.print("Don't know about host: chenpc06");
 System.exit(1);}

 new SocketThread(sSocket[i],pid).start();
 // for each socket s, create a thread i of class SocketThread and execute its

59

run();
 }
 for(int j=pid-1;j<totalProcessNum-1;j++)
 new SocketThread(sSocket[j]=serverSocket.accept(),pid).start();
// accept requests for socket connection from all processes with bigger id;

 }
 public void dBakeryAlgorithm() throws Exception{

 pickNo();
 NumPicked=true;
 for(int i=0;i<pid-1;i++)
 out[i].println(myTicketNum+" "+pid);
 for(int i=pid-1;i<totalProcessNum-1;i++)
 {
 try {

 out[i] = new PrintWriter(sSocket[i].getOutputStream(), true);
 out[i].println(myTicketNum+" "+pid);
 } catch (UnknownHostException e) {
 System.err.print("Don't know about host: chenpc06");
 System.exit(1);
 } catch (IOException e) {
 System.err.print("Couldn't get I/O for the connection to: chenpc06");
 System.exit(1);
 }
 }

 // send requests with currentNum to all other processes in order to enter critical
section;
 replyCount = 0;
 // wait until replies from all other processes are received;
 while(replyCount != totalProcessNum -1)
 Thread.sleep(1000);

 doCriticalSection();

 replydefer();
 NumPicked=false;

 }

 public synchronized void pickNo() {
 myTicketNum = ++currentNum;
 }
 public static int getCurrentNum() {
 return currentNum;
 }
 public static synchronized void setCurrentNum(int i) {
 currentNum = i;
 }

 public synchronized int addReply() {
 replyCount++;
 if (replyCount == totalProcessNum -1)

60

 return 0;
 else return 1;
 }
 public synchronized void doCriticalSection()
 {System.out.println(pid+":"+Thread.currentThread().getName()+" is executing critical
section");

 }

 public static void replydefer()
 {System.out.println("deferedNumber: "+deferedNumber);
 for(int i=0;i<deferedNumber;i++)
 {deferedQueue[i].println("reply");
 }
 }

 public static synchronized void addDefer(PrintWriter defer)

 { deferedQueue[deferedNumber]=defer;
 deferedNumber++;
 System.out.println("deferedNumber: "+deferedNumber+" added");
 }
}

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;

import java.net.Socket;
import java.util.*;
class SocketThread extends DBakery {

 private int i ;
 private Socket socket = null;
 PrintWriter out = null;
 BufferedReader in = null;

 public static int pid;

 public SocketThread(){}
 public SocketThread(Socket socket,int id) {
 this.socket = socket;

 pid=id;
 }

 public void run() {

 try {
 out = new PrintWriter(socket.getOutputStream(), true);

 in = new BufferedReader(new InputStreamReader(socket.getInputStream()));

 String inputLine;

61

 while ((inputLine = in.readLine()) != null) {

 if (inputLine.equals("reply"))
 { System.out.println("received a reply");
 i = addReply();

 if(i==0)
 break;
 }
 else{
 StringTokenizer st = new StringTokenizer(inputLine," ");
 String ticketNum = st.nextToken();
 String id = st.nextToken();
 handleRequest(Integer.parseInt(ticketNum),Integer.parseInt(id));

 }
 }

 out.close();
 in.close();
 socket.close();

 } catch (IOException e) {
 e.printStackTrace();
 }

 }
 public void handleRequest(int n, int id) {

 System.out.println(pid+":"+Thread.currentThread().getName()+" in handleRequest");
 int highNum = Math.max(getCurrentNum(), n);
 setCurrentNum(highNum);
 //compare highNum and n,
 if (highNum > n || (highNum == n && pid > id))
 { out.println("reply");
 }
 else if(!NumPicked)
 {out.println("reply");}
 else //defer the reply -- keep the request in a deferred request queue;
 {

 try{
 addDefer(out); }
 catch(Exception e){}

 }
 }
 }

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class MyProg extends JFrame implements ActionListener{

 public static int processId;

62

 public static int totalProcessNum;
 public static DBakery d;
 JButton MyButton;
 JButton MyButton2;

public MyProg() {

 super("DBakery process-"+processId);
 Container c = getContentPane();
 c.setLayout(new FlowLayout());
 MyButton = new JButton("run dbakey");
 MyButton.addActionListener(this);
 MyButton2 = new JButton("quit");
 MyButton2.addActionListener(this);

 c.add(MyButton);
 c.add(MyButton2);
 setSize(240, 120);

 setVisible(true);
}
public void actionPerformed(ActionEvent e)
{try{
 if (e.getSource() == MyButton)
 d.dBakeryAlgorithm();
 else
 System.exit(1);
}catch(Exception ex){}

}

 public static void main(String[] args) throws Exception {
 processId = Integer.parseInt(args[0]);
 totalProcessNum = Integer.parseInt(args[1]);

 d = new DBakery(totalProcessNum,processId);

 MyProg m=new MyProg();

 }
}

63

Vita Auctoris

Siyuan Liu was born in 1985 in Hubei, China. He graduated from Wuhan University

of Technology, Wuhan, China in 2007, where he received a Bachelor’s degree in

Computer Science. He is currently a candidate for a Master’s degree in the School of

Computer Science at University of Windsor and expects to graduate in fall 2009.

	University of Windsor
	Scholarship at UWindsor
	2009

	Aspect-Oriented Programming for Test Control
	Siyuan Liu
	Recommended Citation

	Abstract

