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Abstract

Spatial variability in fuel moisture driven by changes in microclimate is an im-

portant bottom-up factor determining spatial wildfire behaviour, as fuel moisture

impacts fire intensity, severity, and spread probability. However, few studies have

examined how landscape scale patterns in near-surface microclimates impact fuel

moisture patterns. This study quantified patterns of near-surface atmospheric con-

ditions within a heterogeneous forested landscape, and determined how those pat-

terns impact the spatial variability of fuel moisture and fire danger across the land-

scape. Observations across a forested landscape demonstrated that, in general,

spatial variability in near-surface relative humidity and temperature was highest

during dry, clear-sky conditions. However, daytime relative humidity was an ex-

ception, being relatively homogenous across the landscape and only weakly related

to weather conditions. Canopy cover and above-canopy radiation load predicted

a significant portion of the spatial patterns in relative humidity and temperature.

Changes in canopy cover had the largest impact on near-surface conditions. Open

sites saw higher relative humidity, on average, due to nocturnal longwave cooling.

A novel fuel moisture model was presented that predicted between 76% and 93%

of the variance in observations from independent sites or time periods, which is an

improvement on a more complex model currently used operationally. This model

was combined with meteorological observations to quantify spatial patterns in fuel

moisture and potential fire danger across the landscape. Daytime fuel moisture and

potential fire danger exhibited low spatial variability, regardless of weather con-

ditions, and only 1-hour fuel moisture was related to canopy cover or radiation

load. Fuel moisture and potential fire danger were more variable at night and that

variability increased during cool, moist periods with low wind speeds. Patterns in
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fuel moisture and potential fire danger were dominated by differences in noctur-

nal longwave cooling due to changes in canopy cover. Open sites had lower daily

mean potential fire danger. When fire danger was extrapolated over a larger study

region, daytime conditions remained homogenous. Moreover, radiation load and

canopy cover did not have a large enough direct influence on daytime fuel moisture

to generate patches within the landscape that remain significantly wetter than the

surrounding landscape.
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Lay Summary

Fires play an important role in forests, and it is important to understand how fires

spread and how the severity and intensity of a fire changes across a forest. The goal

of this thesis was to determine how fuel moisture, which has a significant influence

on fire behaviour, changes across a forested landscape due to changes in aspect and

the density of the canopy. It was found that the density of the canopy had an impact

on fuel moisture. Open sites had wetter fuels and lower fire danger due to increased

cooling at night. Terrain aspect had a secondary impact on the moisture of smaller

fuel elements, but not on fire danger. In general, however, fuel moisture did not

vary substantially across the landscape during the afternoon, suggesting that aspect

and canopy density alone cannot create significant changes in fuel moisture across

the landscape.
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Chapter 1

Introduction

1.1 Motivation
Wildfire is a significant source of disturbance in many ecosystems and the spatial

patterns that fires leave on a landscape affect both ecosystem structure and ecosys-

tem function (McKenzie et al., 2011). For instance, the successional pathway of a

forested ecosystem following fire is strongly dependent on burn severity patterns.

Species richness and community composition are impacted by the size and severity

of burned patches (Turner et al., 1997). Patterns in post-fire seedling establishment

can be influenced by the location of stands of surviving mature trees that act as

seed sources (Pierce and Taylor, 2011), or by burn severity patterns in organic

soils (Johnstone and Chapin, 2006). The heterogeneity and connectivity of veg-

etation patterns resulting from fires are also important in creating suitable habitat

for fauna; a more heterogeneous landscape provides species with a larger range of

habitat conditions (Smith et al., 2000). Wildfire patterns also influence subsequent

fire activity (Parks et al., 2014).

Understanding the spatial behaviour of fires is important from a management

perspective, as accurate predictions of fire behaviour are crucial for protecting lives

and values at risk. As well, current management practices emphasize that reducing

suppression efforts and allowing more fires to burn will help achieve management

goals and create more resilient forests (Stephens and Ruth, 2005; Canadian Council

of Forest Ministers, 2005). Increasing our understanding of fire behaviour across
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the landscape will increase the confidence of fire managers to allow more fires to

burn (Collins et al., 2007). The planning and execution of prescribed fires and fuel

treatments would also benefit from an increased ability to predict the patterns and

ecological consequences of wildfires.

The spatial behaviour of wildfire across a landscape is dependent on the three

elements of the “fire triangle”: fuels, topography, and weather, all of which vary

at multiple scales (McKenzie et al., 2011). At the finer scales, fire patterns are

influenced by patterns in fuel type, fuel amount, and connectivity across different

slope aspects (Lertzman et al., 1998); the impact of slope steepness on fireline

intensity (Cohen and Deeming, 1985); and the influence of terrain on local wind

fields (Sharples, 2009).

A number of researchers have identified patterns in fuel moisture driven by

changes in microclimate across different slope aspects as an important bottom-up

factor determining spatial wildfire behaviour (e.g., Heyerdahl et al. 2001). It has

also been postulated that reduced wind speeds and radiation below dense forest

canopies lead to cool moist microclimates and wetter fuels (Collins et al., 2007). A

number of studies have pointed to variability in fuel moisture across the landscape

as a driver of burn severity patterns derived from satellite imagery (e.g., Holden

et al. 2009; Birch et al. 2015; Kane et al. 2015; Dillon et al. 2011). Spatial patterns

in fuel moisture may also alter fire spread probability. In the extreme case where

the landscape is homogeneously dry, a fire can spread unimpeded through a region.

However, in moderate fire weather conditions, particular areas of the landscape

may be dry enough to support fire spread while other areas are too wet, and in

this case the pattern of fuel moisture becomes important. If fuel moisture changes

gradually across the landscape, a fire will be more likely to spread across the drier

portion of the region, given ideal weather conditions and fuel types. Alternatively,

if the fuel moisture pattern is patchier, a fire will be less likely to move across the

entire landscape as patches of wet fuels will impede its progress (Miller and Urban,

2000; Littell and Gwozdz, 2011).

Patterns in microclimates impact fuel moisture directly though changes in radi-

ation, wind speed, cold air pooling, or soil moisture. They can also have an indirect

effect through their influence on vegetation density and composition. Cool, north-

facing slopes may have increased biomass in both the overstory and understory that
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decreases the amount of solar radiation and wind speed available to dry out surface

fuels (Zou et al., 2007; Birch et al., 2015). Increased vegetation may, in turn, in-

crease near-surface humidity through enhanced transpiration (Renaud et al., 2011;

Estes et al., 2012). Nyman et al. (2015b) demonstrated that the influence of aspect

on fuel moisture is significantly enhanced by the indirect influence of increased

vegetation, and deeper, wetter soils on cooler slopes. In this way the indirect ef-

fects and direct effects compound one another. However, this relationship between

the direct and indirect impact may be decoupled due to disturbance history, or in

wetter, energy-limited forests that often have homogeneous vegetation across dif-

ferent aspects (Ohmann and Spies, 1998). It would therefore be useful to decouple

these direct and indirect impacts of microclimate patterns on fuel moisture and

examine each factor in isolation.

That fuel moisture is a primary driver of wildfire patterns is a reasonable con-

clusion, considering that moisture has a strong influence on the energy released by

the propagating fire front (Rothermel, 1972) and the amount of forest floor duff

and larger fuel elements that are consumed (Sandberg, 1980, Knapp et al., 2005).

However, limited work has been done directly measuring patterns in fuel moisture

across forested landscapes, and many of the studies that are available have found

low variability, especially during dry periods (Whitehead et al., 2006; Estes et al.,

2012; Banwell et al., 2013; Gibos, 2010). As well, even though the literature often

cites microclimate as a primary driver of fuel moisture patterns, there are few stud-

ies that examine landscape scale patterns in microclimate with the explicit purpose

of determining how these patterns in near-surface conditions, in turn, influence fuel

moisture patterns. For instance, previous analyses have primarily focused on tem-

perature, rather than relative humidity, which is a primary driver of fuel moisture

(Viney, 1991).

Given that 1) patterns in fuel moisture are often considered to be a primary

driver of fire behaviour, 2) direct observations of fuel moisture variability are lim-

ited, and 3) few studies in microclimate variability are designed with fuel moisture

in mind, it would be worthwhile to examine, in detail, how microclimatic condi-

tions vary across forested landscapes, and how that variability translates into fuel

moisture patterns. In the following section, a brief literature review will summarize

the processes impacting fuel moisture, provide an overview of different approaches
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to fuel moisture modelling, and discuss how microclimates and fuel moisture may

vary across a forested landscape.

1.2 Literature review

1.2.1 Processes impacting fuel moisture

Dead fuel moisture content plays a significant role in determining the rate and

intensity of fire spread as the latent heat of vaporisation represents a significant

portion of the energy required to bring a fuel to ignition (Rothermel, 1972). Dead

surface fuels gain and lose moisture through a number of processes. Fuel elements

can gain moisture through the adsorption of water vapour from the surrounding

air by cell walls via molecular bonding, or through absorption, in which liquid

water is drawn into cavities within the fuels though capillary flow. Adsorption

can only raise moisture up to a “fibre saturation point” (around 30% of the dry

weight of the fuel), beyond which moisture must be gained through the absorption

of liquid water (Viney, 1991). When liquid water is introduced to a fuel element,

rapid absorption occurs within the first few hours, after which the absorption rate

decreases as the fuel reaches saturation, which can range anywhere from 150 to

400% of the dry weight of the fuel (Simard, 1968). Previous research suggests

that waxy resins on the surface of the elements can reduce moisture absorption.

As fuels decompose, this wax coating is lost, and the rate at which fuel elements

absorb moisture increases (Van Wagner, 1969). These processes will continually

move fuel moisture towards an equilibrium moisture content (EMC). The EMC

for a particular meteorological condition is the moisture content reached by a fuel

element if it is given enough time to come to an equilibrium with that condition.

Precipitation has an obvious impact on fuel moisture. However, the amount of

incident precipitation that is actually absorbed by fuel elements is dependent on

intensity and antecedent moisture (Nelson, 2000); precipitation will more readily

be absorbed by fuels if the rate of precipitation is low, and if the fuels are dry.

Condensation can also signficantly increase fuel moisture in the absence of pre-

cipitation (Viney, 1991). There is also evidence that surface fuels gain moisture

from underlying wet soils due to capillary draw (Hatton et al., 1988; Samran et al.,
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1995). Fuel elements lose moisture through gravitational drainage of liquid water

from larger pores and the evaporation of liquid water from the fuel surface and free

liquid water drawn to the surface via capillary forces. Evaporation of liquid water

is followed by the desorption of bound water from the cell walls (Viney, 1991).

Free liquid water within the cells and surfaces of the fuel elements is likely

present only during brief windows following precipitation, snowmelt or condensa-

tion (Van Wagner, 1979; Viney, 1991). As liquid water is quickly removed from the

fuel elements, the fibre saturation point is reached and adsorption and desorption

then become dominant and represent the primary method of moisture exchange

throughout the fire season. This transfer of water vapour to and from molecularly

bound water in the cell walls of fuel elements is thermodynamically different than

evaporation and condensation, as bound water within cellulose has a lower energy

state than liquid water (Skaar, 1988), i.e., it takes more energy to remove the water

from the fuel element.

1.2.2 Modelling fuel moisture

Numerous researchers have developed models for simulating fuel moisture (see

Viney (1991) and Matthews (2013) for reviews). These models can be divided

into two broad categories: empirical models and process-based models. Empirical

models are often generated by regressing measured fuel moisture content against

a suite of meteorological and site variables (e.g., McArthur 1962; Pook and Gill

1993; Marsden-Smedley and Catchpole 2001; Ferguson et al. 2002; Lin 2004;

Alves et al. 2009). Matthews (2013) reviewed the literature to determine predictors

of fuel moisture commonly used by these regression models. Relative humidity

was the most common predictor, followed by temperature.

A number of empirical models of EMC have been developed. Van Wagner

(1972) let different fuel types come to equilibrium with conditions precisely con-

trolled in a drying chamber. The author found that the EMC was a sigmoidal func-

tion of atmospheric relative humidity, and that the shape of the function changed

with temperature and fuel type. Importantly, fuel moisture exhibited a hysteresis

behaviour: the shape of the function also depended on whether the fuel was dry-

ing towards the EMC or getting wetter. Van Wagner (1972) fit a semi-empirical
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function to the data. This sigmoidal behaviour, along with the presence of hystere-

sis has been repeated in other studies (e.g., Anderson 1990b), and is a part of the

fuel moisture indices within the Canadian Fire Weather index system (Van Wagner,

1987). Nelson (1984) developed a semi-physical model for EMC based on ther-

modynamic arguments. At the core of the model is the assumption that the change

in the Gibbs free energy that occurs when liquid water becomes molecularly bound

within the cellulose of the fuel is an exponential function of the fuel moisture. Us-

ing this assumption, Nelson (1984) derived a sigmoidal EMC function similar to

what was found in previous empirical studies.

The EMC can be used to model actual fuel moisture using the differential equa-

tion:

dm
dt

=
me−m

τ
(1.1)

where m is the fuel moisture content given as a percentage of the dry weight, me

is the EMC, and τ is the response time of the fuel, which determines how quickly

the fuel approaches the EMC. This formulation has been used by a number of

researchers (e.g., Fosberg et al. 1981; Catchpole et al. 2001), is utilized by the

Canadian Fire Weather Index system (Van Wagner, 1987), and has recently been

integrated into a coupled fire-weather model (Vejmelka et al., 2016). Numerous

studies have measured the response time, τ , of various fuels and attempted to re-

late these drying rates to weather conditions (e.g. Anderson 1990a; Hille and den

Ouden 2005). Van Wagner (1979) demonstrated that the drying rate increases with

temperature and decreases with relative humidity, although that relationship is less

clear below 60% relative humidity. Van Wagner (1979) also found that the drying

rate increases with wind for low wind speeds (<2 km/h), but is relatively insensi-

tive to speeds above that threshold.

The Canadian Fire Weather Index system (Van Wagner, 1987) is used oper-

ationally in Canada and globally to estimate fire weather severity. At the core

of this system are three moisture indices: the Fine Fuel Moisture Code (FFMC),

the Duff Moisture (DMC) Code, and the Drought Code (DC). The FFMC repre-

sents small diameter surface litter, such as needles, cured grasses, and small twigs,

the DMC represents the layer of decomposing, loosely packed organic material,
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and the DC represents the moisture of the deep layer of compact organic material.

These indices are calculated using an accounting approach whereby yesterday’s

fuel moisture is increased though precipitation, or reduced via drying. The FWI

system uses the approach outlined in Equation 1.1, and the response time of the

fuel is smallest for the FFMC, and largest for the DC. In the case of the FFMC,

the drying rate calculation uses the relationships found by Van Wagner (1979) and

the EMC is a sigmoidal function of relative humidity. In contrast, the DMC has

a constant EMC of 20%, and the logarithm of the drying rate has a positive linear

relationship with temperature and the length of day, and is negatively related to

relative humidity. Daily moisture loss for the DC is estimated from temperature

only, using a empirical linear relationship.

A crucial component of the American National Fire Danger Rating System

(NFDRS) is the four fuel moisture variables: 1-hour, 10-hour, 100-hour, and 1000-

hour fuel moisture (Cohen and Deeming, 1985). These metrics were developed

to simulate the moisture of standardized fuel sticks of various sizes. They were

assumed to, in constant conditions, behave according to equation 1.1 and approach

the equilibrium moisture content, me, along an exponential curve defined by the

response time of the fuel, τ , which was independent of conditions, and increases

from 1 hour to 1000 hours.

Fuel moisture for the 1-hour and 10-hour fuel sizes are calculated using the

approach of Fosberg and Deeming (1971). The authors developed a differential

equation that related the change in moisture content with the trend in me over the

late morning and early afternoon. Using climatological data from a single study,

Fosberg and Deeming (1971) developed equations in which the mid-afternoon 1-

hour and 10-hour fuel moisture was a simple linear function of the mid-afternoon

me. It is important to note that these two metrics are not related to precipitation.

For the 100-hour and 1000-hour fuels the NFDRS follows the procedure outlined

by Fosberg et al. (1981) whereby the change in moisture from some initial value is

directly related to the difference between that initial moisture content and the me,

and τ . For the 100-hour fuel, the day’s moisture content is calculated using the pre-

vious day’s value and the average me for the last 24 hours, while for the 1000-hour

fuel the moisture content from seven days ago is used along with the me averaged

over the last week. The influence of precipitation is included by increasing me by

7



an amount dependent on precipitation amount.

Nelson (2000) developed a sophisticated model for simulating the moisture of

standardized fuel sticks as an alternative to the relatively simple approach used

previously in the NFDRS. This model is used operationally by a number of fire

management agencies. It simulates the energy and moisture exchange at the surface

as well as the transport of moisture and heat within the interior of the stick. The

model uses a linearised energy budget in which net longwave radiation is estimated

as a function of the difference between the stick temperature and the apparent sky

temperature.

1.2.3 Spatial variability of microclimate and fuel moisture at the
landscape scale

All of the processes influencing fuel moisture will vary spatially at a host of dif-

ferent scales. For instance, fuel moisture is heavily influenced by near-surface

temperature and humidity, which can vary significantly in complex terrain. Tem-

peratures generally decrease with altitude due to adiabatic cooling (Barry, 2008)

and increase with increasing radiation load (Geiger, 1965; Barry, 2008). A number

of studies have examined the influence of terrain on surface conditions and fuel

moisture. Hayes (1941) found that, in the absence of a canopy, fuel moisture was

always higher on north slopes. However, Gibos (2010) found no significant differ-

ence between a north and south aspect under dense canopy. Nyman et al. (2015a)

found that, in both dry or wet forests where canopy is either homogeneously dense

or open, aspect had little effect on fuel moisture, as radiation was either consistently

low, or high across sites. Aspect had the largest impact in a forest with moderate

canopy cover. Sullivan and Matthews (2012) used a model validated on field data

to simulate differences in fuel moisture across different aspects. They found that

differences in modelled fuel moisture mainly occurred during the morning on steep

slopes due to lower morning sun angles. Holden and Jolly (2011) used empirical

relationships between terrain indices and weather observations to model fire dan-

ger across complex terrain. Their analysis indicated that south facing slopes had

drier fuels, due, in part, to increased radiation.

Stand structure can have a significant influence on near-surface microclimates

during the fire season. Near-surface temperatures are often lower than above canopy
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conditions during the day and warmer at night (Fridley, 2009). Wind speeds dimin-

ish with increased canopy cover (Oke, 1990). However, significant evaporation can

occur when large eddies penetrate the canopy and ventilate the surface with rela-

tively warm or dry air (Denmead and Bradley, 1985). The presence of a signifi-

cant understory will enhance both the decreased ventilation and decreased moisture

deficit directly above the forest floor. Within the understory, moisture levels are of-

ten near saturation and wind speeds can be close to zero (Oke, 1990). As well,

net radiation levels are obviously controlled by canopy and understory structure.

Studies examining the influence of canopy cover on temperature have found that,

overall, a forest canopy acts to reduce diurnal variability in temperature by reduc-

ing incoming solar radiation and nocturnal radiative cooling (Chen et al., 1999).

The influence of canopy cover on relative humidity is partly driven by tempera-

ture variability. Compared to open sites, cooler daytime conditions below dense

canopies lead to higher relative humidity while relative humidity is lower at night

when nocturnal cooling is reduced (Chen et al., 1993; Renaud et al., 2011). How-

ever, this effect is more modest and less consistent than for temperature. A handful

of studies have examined the influence of canopy cover on fuel moisture (e.g.,

Whitehead et al. 2006; Estes et al. 2012; Banwell et al. 2013). Generally, it was

found that canopy cover has the strongest impact on fuel moisture during periods

of low to moderate fire weather; extreme fire weather leads to more homogeneous

moisture levels.

Variability in canopy cover and precipitation interception will impact spatial

patterns in fuel moisture. The amount of interception by vegetation is strongly de-

pendent on antecedent precipitation (dry canopies have a higher capacity to retain

moisture than wet canopies), wind speeds, and air temperature, which influence

evaporation and precipitation rates. Mean annual interception rates are dependent

on canopy densities and weather and range from 3 to 30% of total precipitation,

depending on forest stand characteristics and climate conditions (Winkler et al.,

2010). The amount of infiltrating precipitation that will be stored within the lit-

ter layer is dependent on antecedent moisture conditions and precipitation rates.

Sato et al. (2004) found that the rate of moisture accumulation fell quickly upon

initiation of precipitation, plateauing at a maximum storage amount that was itself

dependent on the precipitation rate. Within the Canadian Fire Weather Index sys-
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tem, precipitation adds moisture content to the fine fuels at a rate that decreases

with increasing precipitation rate and initial moisture content (Van Wagner, 1987).

Mesoscale air flows driven by buoyancy differentials can also change surface

climates. For instance, the negative buoyancy experienced by cool surface air

forms down-slope katabatic drainage flows during clear nights. This will lead

to cooler air with higher relative humidity levels pooling in valley bottoms and

hollows (Lundquist et al., 2008). Simulated maps of fire danger generated for a

mountainous terrain by Holden and Jolly (2011) found that nocturnal drainage led

to diminished fire danger in valley bottoms. A similar pattern of relatively low fire

danger in valley bottoms was found by Schunk et al. (2013).

High fuel moisture may also be found in topographically convergent and/or

poorly drained areas within a landscape. Late-successional stands with lower fire

frequencies are more likely to occur within riparian zones (Camp et al., 1997;

Dwire and Kauffman, 2003). Lateral flows of water through the duff and litter

layers themselves are more ephemeral and occur at a smaller spatial scale than lat-

eral flow within mineral soils (Kim et al., 2005; Keith et al., 2010b). It is likely,

therefore, that any hydrological impact on fuel moisture patterns is due to lateral

flow within the underlying mineral soil, which then influences fuel moisture.

Such an influence could happen in a number of ways. Fuels could be inundated

if the water table reaches the surface. High water tables mainly occur in regions of

hydrological accumulation such as regions of confluence, on perched water tables,

or within valley bottoms (Winkler et al., 2010). This effect may be reduced during

dry periods; Dyer (2009) found that cool climates found in valley bottoms are less

pronounced during the growing season. Secondly, as mentioned in the previous

section, it may be possible for the moisture of surface fuels to be influenced by the

underlying soil moisture through upwards capillary draw, although the literature

is unclear on this topic. While a few observational studies have indicated that

surface fuels gain moisture from the underlying soils (Hatton et al., 1988; Samran

et al., 1995; Nyman et al., 2015b), exclusion experiments by Keith et al. (2010a)

indicated that during dry conditions diurnal cycles in duff moisture were driven by

evaporation from the surface; capillary draw had no impact. A number of models

of litter moisture (Ogée and Brunet, 2002; Matthews, 2006) assume no upwards

capillary draw.
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Hydrology may also have an indirect control of fuel moisture by first influ-

encing near-surface atmospheric conditions. Temperatures have been found to be

lower near streams (Bolstad et al., 1998; Lookingbill and Urban, 2003; Fridley,

2009) due to increased evaporative cooling. Moreover, Dobrowski (2011) pointed

out that relatively moist soils can temper the diurnal range of near-surface temper-

ature due to increased thermal inertia. The cooler, more slowly varying microcli-

mates found above moist soils could, in turn, lead to slowly varying fuel moisture.

1.3 Thesis objectives and outline
From the overview of the literature presented above, it is clear that there are a num-

ber of research gaps that have yet to be filled. Specifically, it is unclear whether

changes in near-surface atmospheric conditions can lead to substantial variabil-

ity in fuel moisture and fire danger over a forested landscape within complex ter-

rain. There is also little information about the relative influence of different fac-

tors controlling fuel moisture patterns. Finally, there has been a lack of research

on separating the direct and indirect impacts of microclimates on fuel moisture.

Therefore, the overall objective of this thesis is to quantify the spatial variability in

near-surface atmospheric conditions, examine how this variability translates into

patterns in fuel moisture and fire danger, and determine the relative influence of

canopy cover, radiation load, and elevation on these patterns.

Radiation load is defined here as the intensity of solar radiation on the for-

est floor if the canopy were to be removed, and will vary with slope and aspect.

Canopy cover is defined here in terms of a canopy gap fraction estimated from

hemispherical photos. In the interest of producing a focused study, and given re-

source limitations, the potential influences of cold-air pooling and groundwater

patterns on fuel moisture patterns are not examined here.

As mentioned above, wind, slope and fuel amount influence fire danger in

addition to fuel moisture. However, this thesis will focus on the contribution of

fuel moisture to fire danger rating. Consequently, the Energy Release Component

(ERC) of the US National Fire Danger Rating System will be used as a metric for

potential fire danger. The ERC is strongly dependent on fuel moisture, and is not

related to wind or slope. The ERC is used operationally in the United States as a
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metric for potential fire behaviour.

The thesis objectives will be addressed through four analysis chapters. Fol-

lowing a description of the field site and methodology in Chapter 2, the analysis

in Chapter 3 focuses on the spatial patterns of observed near-surface temperature

and relative humidity. Specifically, a network of humidity and temperature sen-

sors was established at sites representing a range of both radiation load and canopy

cover. The locations were chosen so that the two dimensional parameter space

described by canopy cover and radiation load was sampled as evenly as possible.

This sampling approach allows for the influence of both factors to be assessed in-

dependently and for their relative influence to be compared. The objective of this

chapter is to quantify the amount of spatial variability in near-surface atmospheric

conditions that is seen across a small (<4 km2) forested landscape, how weather

conditions control that variability, and the relative influence of radiation load and

canopy cover on spatial patterns in near-surface conditions. Sites were chosen with

consistent understory vegetation in order to focus on the direct impacts of changing

radiation loads on fuel moisture.

In order to determine how micrometeorological conditions impact fuel mois-

ture, a novel fuel moisture model was developed that explicitly simulates heat

and moisture exchange between the atmosphere and standardized fuel sticks. This

model is described and evaluated in Chapter 4. The new model builds on the model

used operationally by fire management agencies by increasing the sophistication of

the treatment of radiative and turbulent heat transfers. This increased sophistication

will allow for a more detailed examination of how changing micrometeorological

conditions alter fuel moisture. A focus on elevated fuel moisture sticks avoids the

requirement to simulate the potential influence of underlying soil moisture on fuel

moisture.

In Chapter 5 the network of near-surface weather observations presented in

Chapter 3, and the fuel moisture model presented in Chapter 4, are combined to

simulate fuel moisture variability across the field site. These data are then used

to examine the influence of micrometeorology and site characteristics on spatial

patterns in fuel moisture and fire danger. As in Chapter 3, the spatial variability

in fuel moisture and fire danger is quantified, and the relative influence of canopy

cover and radiation load is assessed. This chapter examines if either radiation load
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or canopy cover have the ability to create significant patterns in fuel moisture and

fire danger that persist over multiple days. In order to examine how changing

microclimates on different slope aspects directly impact fuel moisture, a sampling

approach will be used which separates the influence of radiation load and canopy

cover and uses sites with consistent understory. Chapter 5 also attempts to quantify

the relative influence of precipitation and radiation on fuel moisture and fire danger.

Finally, in Chapter 6 rasters of fuel moisture are developed to examine patterns

in fire danger across a larger study region of 140 km2. In this way the analysis

of spatial patterns in fire danger and fuel moisture is extended beyond point mea-

surements made within a small (<4 km2) area. Additionally, this final analysis

introduces the impact of elevation. The required rasters of relative humidity and

temperature are estimated using a non-linear machine learning approach that is

trained on the near-surface observations used in Chapter 3.

Final conclusions are provided in Chapter 7, beginning with a summary of

major findings. This is followed by a discussion of the implications of the findings

and potential future research directions.
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Chapter 2

Field site and methodology

2.1 Overview
A network of near-surface humidity and temperature sensors was established across

a forested landscape with a wide range of both radiation load and canopy cover.

In order to isolate the influence of these two factors, and given the focus on the

landscape scale, the network sampled a relatively small area (<4 km2) with little

change in elevation. This sampling design ensured that there were no larger scale

climatic gradients, and that all sites were forced by the same above-canopy condi-

tions. Sites were selected so as to sample as much of the two dimensional space

described by canopy cover and radiation load as possible, which helped to avoid

collinearity and its effects on the stability of estimated regression coefficients. As

mentioned in the introduction, this thesis will attempt to isolate the direct impact

of patterns in microclimate on fuel moisture due to increased radiation from the

indirect impacts, which are attributable to the fact that vegetation is often denser

in cooler and wetter microclimates. Therefore, sites were chosen which had rel-

atively consistent vegetation with little understory vegetation. As a complement

to this network, fuel moisture, solar radiation, precipitation, and wind speed were

measured at a subset of sites.
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2.2 Field site
The field location was selected based on several criteria. At a broad scale, the

Interior Douglas-fir (IDF) Biogeoclimatic Ecological Classification (BEC) zone

(Pojar et al., 1987) was chosen as a suitable ecosystem type for this field work for

several reasons. Firstly, this region is characterized by relatively long seasons of

intense fire weather and was likely to provide a wide range of conditions including

protracted dry periods. Secondly, this BEC zone is characterized by a relatively

sparse understory which allowed me to focus on the influence of the overstory

independently of the influence of shrubs and understory trees. At a finer scale, I

focused on locating regions of Crown land that were accessible by major logging

roads but were not being actively logged. Finally, I looked for regions characterized

by high spatial variability in canopy cover and radiation load so that a wide range

of these factors could be sampled within a relatively small area.

Based on these criteria, a broader region of interest was selected located 20

km north-west of Kamloops, just west of the Lac du Bois Grasslands Protected

area with an average elevation of 1170 m. The plateau region exhibits a rolling

terrain, and logging activity has left a mosaic of stand structures. Within the drier

regions of BC, such as the IDF and Ponderosa Pine BEC zones, canopy cover

increases with decreasing radiation load due to decreased water deficit. However,

the logging at the field location has, to a certain extent, decoupled this relationship;

logging on cool north facing slopes has provided sites with low radiation load and

low canopy cover. This decoupling provided an opportunity to sample the entire

canopy cover/radiation load parameter space.

A smaller field site was then selected within this broader region. Its location

is shown in Figure 2.1. Using Landsat imagery, the Vegetation Resource Inventory

database (http://www. for.gov.bc.ca/hts/vri/), and Google Earth, canopy cover was

mapped across the broader region. Combining these layers with maps of radiation

load calculated using ArcGIS 10 (ESRI), the region was divided into 16 strata, each

with a unique combination of low, low-moderate, high-moderate, and high levels of

both canopy cover and radiation load. A smaller region was then identified within

which as many of the 16 strata as possible were represented. Having selected the

specific study area, these strata were then used to to select individual measurement
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sites so that as much of the two-dimensional parameter space was sampled as pos-

sible. In Chapter 6 I produce 30-m resolution rasters of fire danger across a 34 km2

study region centred around the field site. The location of this study region is also

shown in Figure 2.1

2.3 Field methodology
The network of stations comprised 24 sites, each of which had a LogTag Haxo-8

relative humidity/temperature sensor, which took measurements every 30 minutes.

A detailed map of the field area along with the site locations is shown in Figure

2.2, and site characteristics are provided in Table 2.1. Site locations were chosen

to minimize among-site variation in understory structure, with a preference for

sites dominated by a needle bed interspersed with grasses and/or mosses. Shrubs

and thick understory vegetation were avoided as much as possible. Observations

were made from May 6 to September 22, 2014. The field site was established soon

after the area was accessible, and ended when the likelihood of a period of high

fire danger occurring had diminished. Each LogTag was placed within a custom

radiation screen constructed from corrugated plastic sheets and reflective foil tape,

based on the design by Holden et al. (2013). As these data will be used to drive

the fuel moisture stick model developed in Chapter 3, the sensors were placed 30.5

cm above the ground, which is the standard measurement height for fuel moisture

sticks.

At each site, hemispherical photos of the canopy were taken to estimate canopy

cover. A Nikon FC-E8 fisheye lens and a Nikon Coolpix 4500 4.0 mega pixel cam-

era were used to take the images at the highest image quality. These images were

processed with the Gap Light Analyser software (Frazer et al., 1999), which gener-

ated canopy gap fractions as a function of zenith angle and azimuth. A total canopy

gap fraction, which was taken to represent canopy cover, was then generated by in-

tegrating over the half sphere. The hemispherical photos were also used to model

below-canopy shortwave radiation load. The details of this modelling are provided

in Chapter 5. Aspect was estimated at each site using a compass, and slope gra-

dients were estimated at each site by averaging both the downslope and upslope

gradient over a distance of 10 m using an inclinometer. Aspect and slope were then
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Figure 2.1: Map of study area, including the Field site location (purple tri-
angle), the Sparks Lake fire weather station used in Chapter 5 (yellow
square) , and the study region (green square) and Kamloops Airport
weather station (red circle) used in Chapter 6. The location of the study
area within BC is indicated by the black point in the map at top.
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Figure 2.2: Detail of the field site. Top: aerial photography of site. Bottom:
radiation load averaged over the entire field season (calculated using
a 30-m resolution digital elevation model developed by Rosin (2010)).
Sites referred to in text are indicated by colour.

18



used to calculate radiation load at each site using the equations of Iqbal (1983). At

each site, flux densities of solar radiation parallel to the forest floor were calculated

assuming clear sky conditions and no canopy cover. These hourly data were then

averaged over the entire field season to generate average radiation loads for each

site.

At three of the sites, Fuel Moisture 1, Fuel Moisture 2, and the Base Station,

Campbell Scientific CS506 Fuel Moisture Sensors made 10-hour fuel moisture ob-

servations at a standard height of 30.5 cm. This sensor is composed of a time do-

main reflectometer probe embedded within a standard moisture stick with a radius

of 0.65 cm and a length 50.8 cm. Co-located with each fuel moisture sensor was a

Rotronic HC-S3 humidity and air temperature sensor (also at a height of 30.5 cm),

a Rainwise tipping bucket raingauge, and a Kipp And Zonen CM3 pyranometer. In

addition, at the Base Station wind speed was measured by a Met One anemometer,

which has a stall speed of 0.4 m s1, and temperature and humidity measurements

were also taken at a height of 1.62 m. Wind speed was interpolated to 30.5 cm

from 1.62 m using a neutral logarithmic wind profile. The aerodynamic roughness

length was set to 0.01 m, which is appropriate for short grass (Oke, 1990). Fuel

moisture, temperature, humidity, wind speed, and solar radiation measurements

were made at 10 minute intervals. Finally, precipitation was also measured at Site

8 and at Site 1. Example photos of the instrumentation are shown in Figure 2.3.

A number of steps were taken to assess the accuracy of the Logtag sensors.

Firstly, to assess any intrinsic biases of individual sensors, the LogTags were set

to measure ambient temperature and humidity in the lab for three days before and

after the field season. Secondly, the LogTag observations were compared to higher

quality co-located Rotronic HC-S3 observations made at three of the sites. Results

from this analysis can be found in Appendix A.

Even though the pine dowels used in the automatic fuel moisture sensors are

carefully selected and standardized, it is likely that the sensors used here would

provide slightly different results. With respect to sensor accuracy, the manufacturer

reports that the root mean square error is± 0.74% for moisture content below 10%,

± 0.90% for moisture between 10% to 20%, ± 1.94% for moisture between 20%

and 30% and± 2.27% for values above 30% (Campbell Scientific, 2015). To check

the consistency between the sensors, two comparison periods were undertaken on
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Figure 2.3: Field instrumentation. Left: Base Station; Top Right: LogTag
Haxo-8 humidity and temperature sensor; Bottom Right: Radiation
screen installed at Site 6. Instrumentation was surrounded by chicken
wire to protect against grazing cattle.

either end of the field season in which the sensors were co-located for a total of

35 days. Using these co-located data, biases between the sensors were calculated

and then removed to bring the three sensors into agreement. Details of this fuel

moisture sensor calibration is detailed in Appendix A.

2.4 Supplementary weather observations
In order to provide context for the single season of fire danger estimated at the field

site in Chapter 5, 26 years of fire weather data from a nearby British Columbia
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Wildfire Management Branch fire weather station, Sparks Lake, were used to gen-

erate a regional climatology of fire danger. The station’s location, shown in Figure

2.1, is at a similar elevation and forest type as the field site. The data, which

were taken from Pacific Climate Impact Consortium’s Data Portal (https://www.

pacificclimate.org/data), include hourly observations of wind speed, precipitation,

and relative humidity and temperature at a screen height of 2 m. Shortwave ra-

diation was not measured at these stations and was therefore extracted from the

Daymet dataset, which is a 1-km resolution daily interpolated weather dataset

(Thornton et al., 1997). Daily mean shortwave radiation was converted to the re-

quired hourly resolution using the technique outlined by Liu and Jordan (1960).

Any fire season (May 15th to October 1st) that had a data gap wider than four days

was not used in the analysis and any data gap less than four days was in-filled using

linear interpolation. Although this is not a particularly accurate method, it does not

likely have a large impact on the resulting fire danger climatology derived from 26

fire seasons.

The analysis in Chapter 6 requires the calculation of temperature and humidity

lapse rates. These lapse rates were calculated using the field observations com-

bined with observations at the Kamloops Airport, which is at an elevation of 345 m

above sea-level, compared to the field site’s elevation of 1170m (See Figure 2.1 for

location). The Kamloops Airport data were produced by Environment and Climate

Change Canada and also acquired via the Pacific Climate Impact Consortium’s

Data Portal.
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Table 2.1: Site characteristics.

Site Name Longitude Latitude Radiation Canopy Gap Aspect Slope
(Degrees) (Degrees) Load (Wm−2) Fraction (%) (Degrees) (Degrees)

Site 1 -120.5991 50.7969 293 32 239 17
Site 2 -120.5967 50.7969 282 28 294 5
Site 3 -120.5930 50.7942 291 18 241 25
Site 4 -120.5873 50.7989 208 16 21 29
Site 5 -120.5886 50.7997 223 18 22 25
Site 6 -120.5896 50.7995 291 31 227 4
Site 8 -120.5953 50.7988 268 60 44 11
Site 9 -120.5956 50.8011 268 30 22 9

Site 10 -120.5970 50.8014 241 28 8 18
Site 11 -120.5976 50.8018 245 47 28 18
Site 12 -120.5994 50.8023 266 46 332 10
Site 13 -120.6033 50.8024 294 21 232 29
Site 14 -120.6067 50.8030 262 32 307 15
Site 15 -120.6042 50.8046 274 46 299 10
Site 16 -120.6029 50.8040 268 17 27 9
Site 17 -120.6032 50.8034 238 14 12 19
Site 18 -120.6037 50.8033 265 32 27 10
Site 19 -120.6028 50.8032 246 14 34 18
Site 21 -120.5898 50.7920 294 33 237 19
Site 22 -120.5899 50.7913 232 10 10 21
Site 23 -120.5895 50.7989 232 19 41 24

Base Station -120.6058 50.8008 298 68 216 11
Fuel Moisture 1 -120.5925 50.7984 237 18 47 24
Fuel Moisture 2 -120.5972 50.7990 303 52 207 15
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Chapter 3

Spatial variability of near-surface
temperature and humidity across
a heterogeneous forested
landscape

3.1 Introduction
Near-surface atmospheric conditions drive fuel drying rates (Cohen and Deeming,

1985; Van Wagner, 1987) and can vary significantly at a range of scales within a

heterogeneous forested landscape. Spatial patterns in near-surface conditions can

be due to a number of factors including aspect and elevation (Barry, 2008), cold-air

pooling (Holden et al., 2011b), patterns in canopy cover due to natural and anthro-

pogenic disturbances (Chen et al., 1999), precipitation, and soil moisture dynamics

(Lookingbill and Urban, 2003). Any large fire (>1 km2) will likely encounter a

mosaic of conditions as all of these factors vary at a range of scales, leading to

complex patterns in fire behaviour and effects. It is therefore important to under-

stand what are the most important drivers of patterns in near-surface conditions at

the scale of large fires (1 km2 to 100 km2), how weather conditions enhance or

diminish their effects, and how the impact of elevation, aspect, cold-air-pooling,
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canopy cover, precipitation, and soil moisture interact.

Relative humidity is often taken to be the master variable that determines fuel

moisture (Viney, 1991; Matthews, 2013). Fuel moisture is primarily driven by

adsorption and desorption, especially at lower moisture levels. These sorption

processes are constantly moving fuel towards some equilibrium moisture content,

which is the moisture level the fuel would obtain if left to come into equilibrium

with some constant atmospheric condition. By analysing the thermodynamics of

sorption, Nelson (1984) demonstrated that this equilibrium moisture content is di-

rectly related to relative humidity. This dependence on relative humidity is an

important distinction that sets sorption apart from evaporation and condensation,

which are more strongly related to humidity deficits: vapour pressure deficit or

vapour density deficit (Oke, 1990). Consequently, relative humidity will be the

primary focus of this study. However, variability in relative humidity is, to a large

extent, driven by variability in temperature, particularly at the daily time scale

where vapour pressure is less variable. Temperature also has a direct but secondary

impact on fuel moisture (Viney, 1991). Temperature will therefore be included in

this analysis primarily because it provides insight into the observed trends in rela-

tive humidity. Due to its direct impact on relative humidity, absolute humidity will

be examined here as well using vapour pressure.

The relative influence of canopy cover and radiation load on near-surface con-

ditions will be examined in this study. Canopy cover and radiation load also merit

study due to possible interactions (Nyman et al., 2015b). The influence of aspect is

likely diminished below dense canopies, and canopy cover may not be as important

on very cool terrain facets where radiation levels are already low.

In general, temperatures increase with increasing radiation load (Geiger, 1965;

Barry, 2008). Within open sites there is a positive linear relationship between ra-

diation load and surface temperatures (Chung and Yun, 2004; Vercauteren et al.,

2013) (unless otherwise stated, the literature reviewed here examines mid-latitude

temperate forests). This influence of solar radiation is seen primarily during the

day (Bolstad et al., 1998; Lookingbill and Urban, 2003; Dingman et al., 2013).

This influence of aspect is strongest during winter months when lower sun angles

lead to larger spatial variability in radiation load (Smith, 2002; Dobrowski et al.,

2009), and is reduced during cloudy conditions (Dobrowski, 2011; Suggitt et al.,

24



2011). Dingman et al. (2013) found that the impact of radiation load on tempera-

ture increased closer to the ground.

There is little evidence in the literature of any significant impact of aspect on

absolute humidity. In many cases the dewpoint temperature is assumed to equal

the daily minimum temperature (e.g., Thornton et al. 1997). Given the lack of vari-

ability in nocturnal temperatures across different terrain facets, this approach im-

plicitly assumes that there is no influence of aspect on absolute humidity. Changes

in relative humidity with aspect are therefore driven largely via its impact on tem-

perature. For instance, given constant absolute humidity, one would expect that

daytime minimum relative humidity would be lower on warmer slopes. Indeed,

Holden and Jolly (2011) found that, averaged over the fire season, daytime relative

humidity levels were lowest on south-west facing slopes.

Canopy cover also has a significant impact on forest floor conditions. Overall, a

forest canopy acts to reduce diurnal variability in temperature by reducing incom-

ing solar radiation and nocturnal radiative cooling (Chen et al., 1999). Stathers

(1989) found that the probability of seedling frost damage was reduced below

dense canopies. Because of counteracting effects of longwave cooling and solar

heating, canopy cover has less impact on daily mean temperatures. Canopy influ-

ence is most strongly felt near the ground (Whitehead et al., 2006; Suggitt et al.,

2011), during summer months due to increased sun angles (Suggitt et al., 2011;

Smith, 2002), and during fair weather conditions (Chen et al., 1993). Working in

New South Wales, Australia, Ashcroft and Gollan (2011) demonstrated that canopy

cover is more important than both elevation and distance to the coast in determin-

ing a site’s extreme temperatures. However, this influence is only seen at very high

canopy densities. An opposite result was obtained by Vanwalleghem and Meen-

temeyer (2009) where stand density played only a minor role in determining the

spatial variability of temperature at monthly, daily, and sub-daily time scales.

As with aspect, the influence of canopy cover on relative humidity is partly

driven by temperature variability. Compared to open sites, cooler daytime condi-

tions below dense canopies lead to higher relative humidity while relative humid-

ity is lower at night when nocturnal cooling is reduced (Chen et al., 1993; Renaud

et al., 2011). However, this effect is more modest and less consistent than for

temperature. Meyer et al. (2001), Whitehead et al. (2006), and Brooks and Kyker-
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Snowman (2008) all found little to no impact of canopy cover on relative humidity

differences, while Latif and Blackburn (2010) found lower nocturnal relative hu-

midity within natural treefall gaps. Chen et al. (1993) found that absolute humidity

within a forested site was higher during the day and lower during the night as

compared to an open site, suggesting that some of the variability in relative hu-

midity was due to changes in absolute humidity. Again, this is not a robust result

as Valigura and Messina (1994) found no real impact of canopy cover on absolute

humidity.

Fridley (2009) and Dobrowski (2011) demonstrated that relatively moist soils

can temper the diurnal range of near-surface temperature due to increased thermal

inertia. These results are echoed by Ashcroft and Gollan (2013a), who found that

canopy cover only gains importance as a factor for near-surface conditions during

drier situations.

The above literature leaves room for further research aimed at a specific goal

of this thesis: the quantification of spatial variability in near-surface conditions

at the landscape scale, with an emphasis on humidity and fuel moisture. For in-

stance, many of the above mentioned studies have focused on screen-level mea-

surements. However, conditions can change significantly within the first few me-

tres of the atmosphere (Oke, 1990). Both Dingman et al. (2013) and Suggitt et al.

(2011) demonstrated that the landscape-scale variability in temperature seen near

the surface was largely absent at heights above 1.5 m. Consequently, since surface

fuel moisture is driven by conditions at the forest floor, results based on screen-

level measurements may be misleading. Another gap in the literature is that most

topoclimatology studies focus on large (>100 km2) areas and elevation gradients,

while a spreading fire interacts with the mosaic of terrain, fuels, and moisture at

a smaller scale of around 1 km2. As well, while the literature focuses on temper-

ature, fuel moisture is primarily driven by relative humidity, which can have dif-

ferent spatial patterns and driving factors than temperature. In addition, there has

been little focus on the impact of weather events on spatial patterns. In most cases

the focus has been on long-term or monthly averages, which removes the impact

of shorter-term weather variability that drives extreme fire weather conditions.

Finally, few studies have attempted a focused and systematic analysis of the

relative impact of aspect and canopy cover or their interaction. Vanwalleghem and
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Meentemeyer (2009) found that the spatial pattern of temperature across a 274

km2 study area was more closely related to stand structure than radiation load at

monthly time scales, while the opposite was true at daily time scales. However,

these were just two of a number of different explanatory variables examined. Sug-

gitt et al. (2011) found that the monthly mean temperature differences between

south and north-facing slopes were similar to the differences between open and

forested sites, although these results were from two different study regions. Zou

et al. (2007) measured shortwave radiation at sites with different combinations of

aspect, slope, and canopy cover. The results suggest an interaction between radi-

ation load and canopy cover during the summer. The impact of aspect on below-

canopy solar radiation was muted under dense canopies, and canopy cover had a

larger impact on south aspects compared to north aspects.

Given the gaps in the literature and the goals of this thesis, this chapter will

address the following research questions:

1. How much variability is seen in near-surface temperature and humidity at the

landscape scale across a heterogeneous forested environment with complex

terrain?

2. How do weather conditions act to either enhance or diminish this spatial

variability in near-surface temperature and humidity?

3. What is the relative influence of radiation load and canopy cover on spatial

patterns in near-surface temperature and humidity, and do these two factors

interact?

The analysis will be guided by the following specific hypotheses that are based

on results from the literature and preliminary analysis of the field data:

1. Spatial variability in near-surface conditions is enhanced during fair-weather,

dry conditions.

2. canopy cover and radiation load have an interacting influence on spatial pat-

terns of near-surface temperature and relative humidity.

3. canopy cover and radiation load are better predictors of spatial patterns in

near-surface temperature than relative humidity.
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This chapter begins with a description of the analysis methods in Section 3.2.

Results presented in Section 3.3 include quantification of the variability of near-

surface humidity and temperature (Section 3.3.1) and analysis of the relative influ-

ences of radiation load and canopy cover on these near-surface conditions (Section

3.3.2). This is followed by a discussion of results in Section 3.4 and conclusions in

Section 3.5

3.2 Methods
Acquisition and processing of field data are described in Chapter 2. The first step in

the analysis for the current chapter involved calculating the daily mean, maximum,

and minimum values for relative humidity, vapour pressure, and temperature at

each of the 24 sites described in Chapter 2.2. These data were originally measured

at 30 minute intervals. Spatial variability was quantified by calculating daily site-

specific anomalies from the daily intersite mean for each of the variables. The

daily anomaly time-series of these nine variables formed the core of this chapter’s

analysis. For the purpose of calculating the maximum and minimum values, the

day was taken to start at sunrise rather than midnight. That is, the hours before

sunrise are assumed to belong to the previous day. During a particularly cold night,

the temperature and humidity at midnight could be more extreme than the previous

morning’s conditions. In this case, ending days at midnight would lead to a double

counting of these extreme conditions for both days. Ending the day at sunrise

avoids this truncation issue.

Due to the strong diurnal cycles in temperature and relative humidity, max-

imum and minimum values were chosen as indicators of daytime and nocturnal

extremes. Daytime extremes are important as they provide an indication of how

severe the afternoon fire weather will become. It is often during the afternoon that

the most intense fire behaviour occurs. The nocturnal extremes are important be-

cause they indicate the extent to which fuel moisture can increase, or recharge,

during the night. The daily mean values were highlighted as they indicate the av-

erage seasonal trends in relative humidity and temperature, which play a large role

in determining the seasonal trends in fuel moisture, especially for the larger fuel

elements.
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To address the first two research questions, anomalies were compared across

sites to identify the variables and periods of the day that exhibited the widest spread

across stations. This spread was quantified by calculating, for each day and for each

of the nine variables, both the standard deviation and the maximum range (that is,

the difference between the warmest and coolest site, or the wettest and driest site)

of the variables. These daily standard deviations and ranges were averaged for

each month and for all days with and without rain. To specifically address the

second research objective, daily time series of these ranges were compared to time

series of weather variables measured at the Base Station that could potentially be

influencing temporal changes in the the spread of conditions across sites.

To address the third research question, longer term averages of the anomalies

were calculated over the entire field season for days with and without rain, and for

each month, resulting in seven averaging periods (five months + all rain days + all

dry days). For each combination of the nine variables and the seven averaging pe-

riods, optimal linear regression models were developed using canopy gap fraction,

radiation load, and their interaction as possible predictors of these average anoma-

lies. Collinearity between predictors was assessed by calculating variance inflation

factors (VIF). As well, exploratory analysis using Cook’s distance suggested that

Site 22 was a significant outlier during the night time and was therefore excluded

from the following analysis. Consequently, these 23 data points were used to fit

the models. An examination of bi-plots between predictors and predictands did not

uncover any obvious non-linear relationships. Therefore, no transformations were

deemed necessary.

The optimal models were selected using the following stepwise approach. First,

single predictor models were developed for both explanatory variables. Second,

starting with the strongest single predictor model, analysis of variance was used

to determine if the addition of the second predictor, and then an interaction term,

significantly improved the model. That is, for each additional term, the null hy-

pothesis that the term’s regression coefficient was equal to zero was tested. The

term was added to the optimal model only if the null hypothesis was rejected at the

95% confidence level.

In order to compare the relative influence of canopy gap fraction and radiation

load, the predictors and predictands were first normalized by subtracting the mean
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and dividing by the standard deviations. In this way the relative sizes of the esti-

mated regression coefficients indicated the relative influence of each predictor on

the spatial patterns in near-surface conditions.

Throughout this analysis two sites were chosen to represent end-members of

the sample. Site 4 was located on a steep north-facing slope with a closed-canopy.

The Fuel Moisture 2 site was in an open location on a south-facing slope. These

sites are highlighted in the results section. In addition, Site 22 was identified as a

significant outlier due to its unusual nocturnal conditions relative to other similarly

placed sites. This site was also singled out in the following results.

3.3 Results

3.3.1 Quantifying variability in near-surface humidity and
temperature and the impact of weather conditions

The seasonal trends in near-surface conditions are presented in Figure 3.1. There

was a warming trend through May, June, and into July with cooling through August

and September. There was also an unseasonally cool period in the second half of

July centred around a significant precipitation event. Absolute humidity remained

relatively steady during the first three months of the season. In August there was a

substantial increase in vapour pressure, which was followed by a drying trend into

September. Relative humidity generally decreased through May, June, and July.

Two low-humidity periods occurred in mid-July and late July / early August. The

last dry period ended with the increase in vapour pressure. In general, precipitation

was associated with high relative humidity values across all sites.

Figure 3.2 shows 29 days of humidity and temperature data for all 24 sites at a

resolution of 30 minutes. Both relative humidity and temperature had large diurnal

cycles while for vapour pressure the diurnal signal was weaker. The largest amount

of spatial variability occurred during the afternoon and early morning. Nocturnal

variability in relative humidity across sites was particularly large. At times the

differences between sites were over 40%. For all three variables the spatial vari-

ability among sites tended to increase during warm, dry periods with no rain, while

precipitation acted to collapse the spread among stations. Fuel Moisture 2, which
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Figure 3.1: Daily relative humidity, vapour pressure, and temperature obser-
vations. The thick black lines are the daily intersite means. The grey
ribbons show the intersite range of the daily minimum and maximum
values. Hourly precipitation observations at the Base Station are pre-
sented in bottom plot.

had little canopy cover, was consistently warmer during the day and cooler at night

compared to the closed canopy Site 4. There was no consistent difference between

sites. The Fuel Moisture 2 site also saw larger diurnal cycles in relative humidity

with wetter nights and drier afternoons. Compared to the similarly placed Site 4,

the diurnal cycle was much larger at Site 22 due to its cool and wet nocturnal con-

ditions. Indeed, the nocturnal conditions at Site 4 were similar to those at the open

Fuel Moisture 2 site.
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Figure 3.2: A sample of hourly relative humidity, vapour pressure, temperature, and precipitation (bottom) observations
for all sites (grey lines). Fuel Moisture 2, Site 22, and Site 4 are highlighted.
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The spatial variability in temperature and humidity is highlighted in Figure 3.3.

A summary of these anomalies is presented in Table 3.1. In general, variability in-

creased over the first three months of the season. The daily mean values saw less

spread across sites while nocturnal conditions were generally the most variable, es-

pecially for relative humidity. Other than minimum relative humidity, precipitation

acted to reduce the spread across stations.

Figure 3.3 also demonstrates the consistent warm/dry daytime conditions and

cool/wet nocturnal conditions at the Fuel Moisture 2 site seen in Figure 3.2. It

further demonstrates that the anomalies in daytime conditions (Figures 3.3B and

D) were relatively steady throughout the field season, regardless of weather condi-

tions. This consistent variability is in contrast to the nocturnal conditions (Figures

3.3A and E), which exhibited obvious shifts between periods of low and high vari-

ability. Figure 3.3 demonstrates that the role of precipitation in reducing spatial

variability was strongest at night.

Anomalies in mean vapour pressure (Figure 3.3C) were less consistent than

for relative humidity and temperature. However, daily mean vapour pressure was

generally lower at Site 4 while the last half of the season saw a large moist anomaly

at Site 22. July exhibited two periods of more significant spread in vapour pressure

which coincided with similar large ranges in the nocturnal relative humidity and

temperature.

Even though the outlying Site 22 was similar to Site 4 in its placement (north-

facing closed-canopy), it was generally much cooler with higher relative humidity

at night. Site 22 also consistently had the lowest temperature and highest relative

humidity of all sites during the day. Absolute humidity at Site 22 did not show

such strong anomalies, although it exhibited relatively high vapour pressure during

August, July, and September.

The spread in near-surface conditions and the influence of rain events are high-

lighted in Figure 3.4. The impact of precipitation is easily identified here. For most

variables, rain events acted to reduce the spatial variability, reflecting the results in

Table 3.1. The impact of precipitation is most evident during the night (Figures

3.4A and E) when rain created substantial reductions in the spatial range of maxi-

mum relative humidity and minimum temperature. A similar but less severe pattern

is seen in the maximum temperatures (Figure 3.4D). Precipitation had the opposite
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Figure 3.3: Daily anomalies from the intersite mean for maximum and mini-
mum relative humidity and temperature, and daily mean vapour pressure
at all sites (grey lines). As in Figure 3.2, Fuel Moisture 2, Site 22, and
Site 4 are highlighted.
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Table 3.1: Daily standard deviation (SD) and maximum range (Range) of
temperature and humidity variables averaged across each month and
across all days with and without rain.

RHmin Tmax RHmax Tmin RHmean Tmean

(%) (◦C) (%) (◦C) (%) (◦C)
Period SD Range SD Range SD Range SD Range SD Range SD Range
May 3.9 16.1 1.5 5.6 4.2 15.5 0.9 3.2 2.8 11.3 0.5 2.2
June 3.3 13.0 1.7 6.0 6.4 22.5 1.3 4.5 3.5 12.2 0.5 2.3
July 3.4 14.0 2.1 7.6 8.5 28.6 1.9 6.3 3.9 14.4 0.7 3.4
Aug. 4.5 19.3 2.0 6.9 6.2 21.4 1.6 5.2 3.6 14.5 0.6 2.9
Sept. 5.7 23.0 2.0 7.5 7.8 28.6 1.8 5.8 5.0 19.8 0.9 3.8

Dry Days 4.0 16.4 2.0 7.4 8.1 27.4 1.8 5.8 4.1 15.5 0.7 3.4
Rain Days 4.3 17.6 1.5 5.4 3.9 15.1 1.1 3.7 3.0 11.8 0.4 2.0

impact on minimum relative humidity, which generally became more variable after

significant rain (Figure 3.4B). Examination of Figure 3.3B demonstrates that these

significant increases in the total range were primarily due to the outlying Site 22.

However, post-rain increases are seen to a certain degree in the standard deviation

as well, suggesting that this effect was felt broadly across all sites. The impact

of precipitation on vapour pressure (Figure 3.4C) is less clear; rain acted to both

increase and decrease variability while in other cases there did not seem to be any

impact.

The influence of weather conditions on the spread across stations is further

demonstrated in Figure 3.5 where the daily standard deviation of maximum and

minimum relative humidity and temperature (the grey lines in Figures 3.4A, B, D,

and E) are plotted against days since rain, solar radiation (Kd), daily precipitation

amounts, and daily mean wind speed. Again, the impact of precipitation is clear. In

addition, the left column of Figure 3.5 demonstrates that the homogenising impact

of precipitation on nocturnal conditions and daytime temperatures was felt across

the landscape for a number of days after precipitation ended. However, as seen in

Figure 3.4B and Table 3.1, precipitation had the opposite impact on minimum rela-

tive humidity where the spread across stations was highest during and immediately

after precipitation.

Increased solar radiation was associated with increased variability for all but

minimum relative humidity, for which there was a small negative relationship (mid-

dle column). The relationship was strongest for daytime temperatures (bottom
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Figure 3.4: Range (black line) and standard deviation (grey line) of daily
maximum and minimum relative humidity (A, B), mean vapour pressure
(C), and maximum and minimum temperature (D, E). Hourly precipita-
tion (F), and daily average wind speed (G) are also provided. Precipita-
tion amounts are also shown with maroon shading.
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Figure 3.5: Daily standard deviation of maximum and minimum humidity
(top two rows) and minimum and maximum temperature (bottom two
rows) plotted against days since rain (first column), solar radiation (sec-
ond column), daily precipitation (third column), and mean wind speed
(fourth column). Days are divided into days with rain (blue points) and
without (red points). For maximum humidity and minimum tempera-
ture solar radiation is calculated as a running average of the current and
following days. Loess curves with a two-degree polynomial are fit to
the relations with days since rain while linear regressions are fit to the
solar radiation plots (solid blue lines) The 95% confidence intervals for
these fits are included (grey ribbons).
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row). For the nocturnal variables (top row and third row) solar radiation is calcu-

lated as an average of the current day and the following day and can be thought of as

a metric of “sky clearness” and radiative cooling at night. Consequently, the physi-

cal link to near-surface variability is less direct than for maximum temperature, for

which solar radiation is for the current day only, leading to decreased correlations

in the nocturnal case. The spread in nocturnal conditions is reduced during periods

with heavy precipitation or high wind speeds, especially for nocturnal conditions.

3.3.2 Quantifying the impact of radiation load and canopy cover

The correlation between radiation load and canopy cover ranged from 0.44 to 0.56,

depending on the averaging period chosen. VIFs (Montgomery and Peck, 1992)

for all averaging periods remained below 2 in all cases, suggesting that collinearity

is not a major concern (Zuur et al., 2007).

The results of the model selection procedure are shown in Table 3.2. In all

cases, an interaction term did not improve the model at the 95% confidence level

and is therefore not included in the following analysis. For the sake of brevity,

results are presented only for June, September, and the full season. The relationship

between predictands and predictors is generally what would be expected. Cooler

conditions with higher relative humidity are found at north-facing, closed-canopy

sites during the day and at open canopy sites during the night. Notably, there is

a relatively strong positive relationship between maximum vapour pressure and

canopy gap fraction; higher vapour pressure is generally found at open sites.

Overall, canopy gap fraction was the strongest predictor. That is, for almost

all cases, canopy gap fraction explained more of the spatial pattern in near-surface

conditions and had larger or comparable standardized regression coefficients than

radiation load. However, it is important to note that radiation load was a strong

predictor of minimum relative humidity. On average, the temperature models were

the most skillfull (assessed using the coefficient of determination), while the vapour

pressure models performed the poorest. Models of daily mean values were gener-

ally poorer than for maximum and minimum values. Indeed, the two variables had

no significant explanatory power (at the 5% confidence level) for average temper-

atures during periods of rain.
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The models for “All Dry Days” summarized in Table 3.2 are shown graphically

in Figure 3.6. In general, there was a wider range in nocturnal conditions than dur-

ing the day, which is consistent with Figure 3.3. canopy cover had a significant

effect on both daytime and nocturnal conditions. Moreover, compared to radia-

tion load the influence of canopy cover was stronger for daytime temperatures and

approximately equal for daytime relative humidity. The abnormal nocturnal condi-

tions seen at Site 22 (which was not included in the regression analysis) are clear

from this figure. Compared to similar sites surrounding it within the parameter

space, it was cooler and had higher relative humidity levels.

3.4 Discussion
There were a number of significant findings from this study. Firstly, near-surface

conditions were generally more heterogeneous during dry, clear-sky conditions,

and spatial variability was reduced during, and for a few days following, precip-

itation. In particular, spatial variability in daytime relative humidity was low and

relatively unaffected by weather conditions. Secondly, while canopy cover had

weak drying effect on daytime humidity due to solar heating, canopy cover also

had a stronger impact on nocturnal relative humidity, which was higher at open

sites due to longwave cooling. Consequently, open sites experienced higher daily

mean relative humidity.

3.4.1 Quantifying variability in near-surface humidity and
temperature and the impact of weather conditions

Significant variability was seen across the relatively small study area, especially

at night. For instance, the daily ranges in both minimum and maximum temper-

atures were often comparable to over a kilometre of elevation change, assuming

a typical lapse rate of ca. 6◦C per kilometre. In some cases, nocturnal relative

humidity was close to 100% at open sites but around 50% at closed-canopy sites.

Spatial contrasts in daytime relative humidity were less pronounced. Some of the

above results reflect similar findings in the literature. For instance, the presence of

a canopy significantly reduced the diurnal variability of relative humidity and tem-

perature (Chen et al., 1993), and higher temperatures were found on south-facing

39



●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●

RHmin

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●

RHmax

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●

Tmax

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●

Tmin

225

250

275

300

225

250

275

300

20 40 60 20 40 60

20 40 60 20 40 60

Canopy gap fraction (%) Canopy gap fraction (%)

Canopy gap fraction (%) Canopy gap fraction (%)

R
ad

ia
tio

n 
lo

ad
 (W

m
−2

)
R

ad
ia

tio
n 

lo
ad

 (W
m

−2
)

−10

−5

0

5

10

15

RH
Anomaly (%)

−4

−2

0

2

Temperature
Anomaly( oC)

Figure 3.6: Average anomalies of daily maximum and minimum relative hu-
midity (top row) and temperature (bottom row) for all non-rain days
plotted on the radiation load - canopy gap fraction parameter space.
The right column shows daytime conditions (maximum temperature
and minimum relative humidity), while the left column shows night
time conditions (minimum temperature and maximum relative humid-
ity). The anomaly values predicted by the linear regression models sum-
marized in rows 1-4 of Table 3.2 are indicated by the contour lines.
Specific sites are highlighted as in Figures 3.3 and 3.2: Site 22 (yellow),
Fuel Moisture 2 (red), and Site 4 (green).
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slopes (Barry, 2008).

As was hypothesized, variability was generally enhanced during dry, clear-sky

conditions, although this study revealed further details and caveats that expand

on this relatively simple prediction. For instance, the impact of precipitation is

strongest for nocturnal relative humidity and temperature. As well, this homoge-

nizing influence of precipitation persisted for a number of days following rain. It is

likely that increased moisture following precipitation led to increased thermal in-

ertia of near-surface conditions (Fridley, 2009; Dobrowski, 2011), which, in turn,

reduced heterogeneity across the landscape. As well, variability in daytime min-

imum relative humidity increased during and immediately after rainfall and was

negatively related to solar radiation, supporting what was seen in Figure 3.4.

It is likely that some of the fluctuation between high and low variability of max-

imum relative humidity is due to the 100% saturation ceiling. That is, precipitation

followed by nocturnal cooling will bring many of the sites to saturation, decreas-

ing variability substantially. This saturation effect explains the strong relationship

between precipitation amount and the spread in maximum humidity seen in Figure

3.5.

Site 22 is an interesting outlier in this dataset. Even though it had the dens-

est canopy of any site, its nocturnal conditions were similar to that of an open

site: cool with high relative humidity. It also saw a substantial cold/wet daytime

anomaly compared to all other sites. The sensor in this case was located within 15

m of a draw that remained wet throughout the season. It is likely that an elevated

water table at the site led to enhanced near-surface moisture, leading, in turn, to ele-

vated relative humidity compared to other closed-canopy locations. Indeed, during

the last half of the season when the rest of the sites dried out, this extra source

of moisture kept vapour pressure anomalously high at Site 22 (see Figure 3.3C),

explaining the elevated relative humidity throughout the day. The cold anomaly

could be attributed to evaporative cooling that would occur as drier surrounding air

was advected through the site. The cold anomaly could also be partially explained

by the fact that groundwater is typically cooler than summer air temperatures. An-

other potential explanation is that cool air was draining downslope from an open

area located upslope of the site. However, because this cold advection would have

only occurred during clear nights, it cannot explain the consistent cold anomaly
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present during all times of day and weather conditions.

3.4.2 Quantifying the impact of radiation load and canopy cover

In most cases, canopy gap fraction and radiation load were able to account for a

large amount of the spatial variability of near-surface conditions. The fitted rela-

tions were stronger during the night than during the day. The best results were

achieved for nocturnal temperature during dry conditions, for which the model ex-

plained up to 85% of the spatial variability. Canopy gap fraction emerged as the

most important predictor, even for daytime temperature and daytime relative hu-

midity during days with rain. Even for variables with radiation load as the strongest

single predictor, the standardized regression coefficient values where comparable

between the two predictors. This suggests that the amount of solar radiation be-

ing absorbed at a particular site is more dependent on canopy interception than

the solar angle relative to the slope of the forest floor. Considering that the im-

pact of radiation load increases closer to the forest floor (Dingman et al., 2013), it

is also possible that skin temperatures of the forest floor would be more strongly

influenced by radiation load, and that this impact is diminished at the 30.5 cm

measuring height used here.

It was hypothesized that canopy cover and radiation load would be stronger

predictors of temperature than humidity. This prediction is borne out in the re-

sults where the temperature models were the most skillfull, followed by relative

humidity and then vapour pressure. It is possible that variability in humidity is

more dependent on site characteristics such as the amount and type of understory

vegetation and the resulting rates of transpiration. Although an effort was made to

maintain consistent understory vegetation across sites, the variability that did occur

may have been enough to increase unexplained variability in relative humidity.

The analysis also revealed higher vapour pressure at more open sites, especially

for mean and maximum vapour pressure. This result is slightly counter-intuitive,

as one might expect that more open canopies would allow for greater mixing with

drier air aloft, leading to a negative relationship. However, it is also possible that as

canopy cover decreases, the amount of moisture removed from the forest floor via

transpiration within the overstory would also decrease. It is unlikely that increased
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precipitation at open sites led to increased vapour pressure as these results demon-

strated that precipitation had little impact on vapour pressure. It may also be the

case that heating of the Logtag sensors by solar radiation led to a positive bias in

temperature and vapour pressure at open sites. However, if this radiation influence

were present, one would expect a bias at higher temperatures. Yet, following the

removal of temperature biases in the Logtag sensors (see Appendix A), no such

bias was apparent.

An important result here is the homogeneity of daytime humidity, which was

relatively constant regardless of weather conditions. For instance, in contrast to

the other variables, precipitation did not act to decrease the variability in minimum

relative humidity across sites while solar radiation had a small negative impact (see

Figure 3.5). The positive relationship between canopy gap fraction and vapour

pressure may explain this reduced spatial variability in daytime relative humidity

and its weak relationship with canopy gap fraction. That is, higher levels of vapour

pressure at open sites were balanced by higher daytime temperatures, resulting in

less variability in minimum relative humidity across sites.

It is significant that daily mean relative humidity and temperature are gener-

ally less variable across sites and were more poorly predicted than minimum and

maximum values. Indeed, during periods of rain the spatial pattern in daily mean

temperatures was not related to either explanatory variable. Chen et al. (1999)

suggested that due to the counteracting impact of canopy cover on daytime versus

nocturnal conditions, average conditions will likely be less related to canopy cover

and will therefore be less spatially variable.

The lack of interaction between the two predictors is also notable. It was origi-

nally hypothesized that increased canopy cover would diminish the impact of radi-

ation load on near-surface conditions, while canopy cover would be less important

on cool north-facing aspects where the radiation load is already low. However, no

evidence for this was found in this study, although it is possible that a larger dataset

would produce significant interaction terms.
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3.4.3 Implications for fuel moisture

These findings have a number of implications for fuel moisture. With respect to

relative humidity, which is the primary driver of fuel moisture, the spread across

sites is smaller during the day than at night. Therefore, in the afternoon, when

fires are often the most active, spatial variability in fuel moisture may be small.

As well, relative humidity patterns across the landscape are not strongly dependent

on weather conditions, suggesting that the daytime spatial variability in drying

potential may not increase during particularly dry periods.

Air temperature does have a secondary impact on fuel moisture. However,

these results suggest that the nocturnal and daytime variability of near-surface tem-

perature (both of which are driven primarily by canopy cover) are of equal mag-

nitude but opposite sign. This balance between daytime and nocturnal conditions

means that there would be no persistent temperature anomaly that could drive a

significant divergence in fuel moisture across sites.

This behaviour is in contrast to that of relative humidity, which varied more

at night than during the day, leading to the positive relationship between canopy

gap fraction and daily mean relative humidity seen in Table 3.2. Therefore, as will

be hypothesized in Chapter 5, nocturnal moisture recharge may overwhelm the

daytime drying at the open sites, leading to higher fuel moisture at open sites.

Being quicker to respond, the smaller fuel elements will likely follow this diel

cycle of relative humidity: increased moisture and spatial variability at night fol-

lowed by drier, less variable fuel moisture during the day. For the larger fuel ele-

ments with their longer response times, the impact of increased daily mean relative

humidity at open sites, integrated over time, may actually lead to higher fuel mois-

ture at open sites. In any case, canopy cover, being a stronger predictor of relative

humidity anomalies than radiation load, will, in turn, be the primary driver of spa-

tial patterns in fuel moisture.

3.5 Conclusions
The largest variability in near-surface conditions was seen at night, while daily

mean values were less variable than both daily minimum and maximum values.

At night, sites with dense canopies remained warmer than open sites due to down-
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welling longwave radiation. Consequently, there were some instances in which

open sites were near or at saturation while relative humidity was around 50% at

closed-canopy sites. During the day, cool, north-facing slopes were often signifi-

cantly cooler than nearby warm south-facing slopes. For temperature and noctur-

nal relative humidity, precipitation acted to reduce variability across the landscape

while variability increased during clear sky conditions. However, radiation and

precipitation had the opposite impact on daytime relative humidity variability. The

homogenizing influence of precipitation persisted for a number of days after rain

ceased, and the impact of weather conditions on spatial variability was largest at

night. One site, located next to a draw that remained wet throughout the season,

recorded anomalously wet, cool conditions relative to other similarly placed sites.

As other sites dried out over the course of the season, the site’s high water table

provided a source of moisture, which also led to evaporative cooling.

Together, canopy gap fraction and radiation load predicted up to 85% of the

spatial variability in near-surface climate. Patterns in temperature were better pre-

dicted than relative humidity, while vapour pressure was poorly predicted. Overall,

canopy gap fraction was a better predictor of average near-surface conditions than

radiation load. Notably, mean relative humidity was positively correlated with

canopy gap fraction during both dry and wet conditions, suggesting that open sites

are on average wetter than closed sites, even after periods with no rain.

The results of this study have a number of implications for fuel moisture.

Firstly, spatial variability in daytime relative humidity is relatively limited and not

strongly impacted by weather conditions, suggesting that afternoon fuel moisture

will remain homogenous across the landscape and throughout the fire season. Sec-

ondly, because open sites are wetter compared to closed-canopy sites, it is possible

that open sites will see higher fuel moisture. Finally, areas where a high water

table persists throughout the season will likely have wetter fuels relative to the

surroundings.

The implications for fuel moisture will be studied in more detail in Chapters 5

and 6 where the fuel moisture model developed in Chapter 4 will be combined with

the above dataset and canopy interception models of precipitation and radiation to

generate modelled patterns of fuel moisture across the landscape.
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Table 3.2: Results of model selection. Standardized regression coefficients
are shown in the Canopy Gap and Rad Load columns. Bold values indi-
cate the predictor with the strongest single variable model as determined
by the coefficient of determination. Missing values indicate that the ad-
dition of the predictor did not substantially improve the model perfor-
mance. Standard error of the estimate is provided in the units of the pre-
dictor (Temperature: ◦C, Relative Humidity: %, Vapour Pressure: kPa).

Predictand Period Canopy Gap Rad Load Adj. R2 Std. Error
RHmin All Dry Days -0.39 -0.56 0.64 1.66
Tmax All Dry Days 0.64 0.36 0.74 0.89

RHmax All Dry Days 0.78 0.23 0.82 3.50
Tmin All Dry Days -0.82 -0.2 0.85 0.72

RHmean All Dry Days 0.83 0.68 1.84
Tmean All Dry Days -0.61 0.34 0.34
emin All Dry Days
emax All Dry Days 0.74 0.53 0.03
emean All Dry Days 0.56 0.28 0.02
RHmin All Rain Days -0.59 -0.43 0.76 1.33
Tmax All Rain Days 0.74 0.25 0.76 0.64

RHmax All Rain Days 0.75 0.54 2.40
Tmin All Rain Days -0.92 0.84 0.44

RHmean All Rain Days 0.59 0.32 1.82
Tmean All Rain Days
emin All Rain Days -0.43 0.15 0.02
emax All Rain Days 0.76 0.56 0.03
emean All Rain Days 0.52 0.23 0.02
RHmin June -0.46 -0.49 0.65 1.36
Tmax June 0.81 0.64 0.88

RHmax June 0.85 0.71 3.04
Tmin June -0.92 0.85 0.48

RHmean June 0.77 0.57 1.77
Tmean June
emin June
emax June 0.83 0.68 0.03
emean June 0.73 0.51 0.02
RHmin September -0.77 0.57 2.83
Tmax September 0.56 0.54 0.85 0.68

RHmax September 0.84 0.69 3.83
Tmin September -0.92 0.84 0.68

RHmean September 0.73 0.51 2.52
Tmean September -0.71 0.48 0.40
emin September -0.53 0.25 0.02
emax September
emean September

46



Chapter 4

A model for simulating the
moisture content of standardized
fuel sticks of various sizes

4.1 Introduction
Dead fuel moisture is an important determinant of wildfire behaviour as it influ-

ences a fire’s intensity and rate of spread (Rothermel, 1972). Metrics of fuel mois-

ture are at the core of both the Canadian and U.S. fire danger rating systems (Cohen

and Deeming, 1985; Van Wagner, 1987). Moisture content of the 1-hour, 10-hour,

100-hour and 1000-hour fuel sizes is a major component of the American National

Fire Danger Rating System and is used to estimate, among other things, ignition

potential, fireline intensity, flame length, and rate of spread. Given constant envi-

ronmental conditions, fuel elements are assumed to dry following an exponential

decay to some equilibrium moisture constant. The names of the fuel sizes are in

reference to the decay constant of these exponential drying curves.

Traditionally, the moisture of the smaller two fuel sizes was estimated by

weighing standardized Pinus ponderosa (ponderosa pine) dowelling. Recently, au-

tomated measurements have become more common in which moisture sensors are

integrated directly into the fuel sticks, allowing for remote real-time observations
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(Nelson, 2000). However, fuel moisture observations are not always available, es-

pecially for larger fuel sizes. Simple models were therefore developed within the

National Fire Danger Rating System that related fuel moisture to the equilibrium

moisture constant by assuming exponential drying curves (Cohen and Deeming,

1985). These models used climatological data from a single study to estimate mois-

ture. Consequently, the diurnal cycle forcing the model is assumed to be constant

even though the model is applied across a range of sites and weather conditions.

A more sophisticated process-based model was developed by Nelson (2000),

which simulates the moisture content of the fuel sticks at sub-daily resolution (re-

ferred to here as the Nelson model). An updated version of the Nelson model is

a component of the FlamMap (Finney, 2006) and FARSITE (Finney, 2004) fire

modelling tools that are used by a number of fire management agencies to simulate

spatial patterns in fuel moisture and fire behaviour. The Nelson Model is also inte-

grated into the USDA Weather Information Management System. Andrews (2014)

suggested that the Nelson model be used within the BehavePlus fire modelling

system.

The Nelson model simulates the energy and moisture exchange at the surface

as well as the transport of moisture and heat within the interior of the stick. In-

ternal moisture transport can occur within the model through the diffusion of wa-

ter vapour, the diffusion of bound water, or capillary flow. It also includes semi-

empirical modelling of rainwater absorption.

The radial and temporal variation of moisture and heat within fuel sticks can

be described by a two-dimensional partial differential equation expressed in ra-

dial coordinates. In order to simplify the problem, the Nelson model uses a lin-

earised energy budget in which net longwave radiation is estimated as a function

of the difference between the stick temperature and the apparent sky temperature.

The model assumes two constant apparent sky temperatures, one for the daytime

and one for the nighttime. However, the accuracy of the linearised energy budget

diminishes when the difference between the fuel temperature and apparent atmo-

spheric temperature increases. Indeed, during periods of high radiation this tem-

perature difference exceeds 30 ◦C.

Moreover, a linearized energy budget does not allow for variations in down-

welling longwave radiation due to canopy coverage or changes in sky conditions

48



such as cloud cover. Including the impact of the canopy on longwave radiation may

be particularly important for simulating the impact of changing canopy cover on

the spatial patterns of fuel moisture across forested landscapes. However, because

FARSITE and FlamMap use the Nelson model, they are not able to include varia-

tions in longwave radiation due to canopy coverage because the Nelson model, as

mentioned above, does not have this functionality.

In addition, the transport of moisture between the stick surface and the atmo-

sphere is modelled by assuming that the fuel stick acts as a wet bulb. That is, it is

assumed that sensible and latent heat flux are the only components of the energy

budget, and all sensible heat is converted to latent heat, driving evaporation. How-

ever, if the stick is exposed to direct sunlight, shortwave radiation would dominate

the energy budget, and the wet-bulb assumption becomes invalid.

This chapter presents a model for simulating the fuel moisture of standard fuel

sticks. The model uses a linear approximation of the internal transport of heat

and moisture but solves the energy and moisture budgets numerically, whereas the

Nelson model uses a linear form of the energy budget and solves the internal trans-

port equations numerically. By solving the energy and moisture budgets numeri-

cally, incoming and outgoing longwave radiation can be modelled directly. This

approach allows for the incoming radiation to vary due to both canopy coverage

or changing sky conditions. As well, the transport of moisture to and from the

surface of the stick, and its corresponding latent heat flux, is calculated using an

aerodynamic resistance approach. This approach avoids the assumption made in

the Nelson model that the stick acts like a wet-bulb. However, it does require the

inclusion of wind speed as an input variable, which is avoided in the Nelson model.

With respect to internal transport, the new model divides the stick into two layers

and calculates an energy and moisture budget for each layer at every time step.

Moisture observations of fuel sticks are used to calibrate and evaluate the

model. Two independent datasets were used: a previous dataset of moisture content

of 1-hour, 10-hour, 100-hour, and 1000-hour fuel sticks used to evaluate the Nelson

model, and the observations of 10-hour fuel stick moisture content collected at the

Base Station and Fuel Moisture 2 site (see Chapter 2). An additional analysis will

examine the sensitivity of the model to its forcing variables.

This chapter begins with a full description of the model in Section 4.2 (a list
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of symbols is provided at beginning of the thesis), followed by a description of

the model calibration and evaluation and sensitivity analysis in Section 4.3. Model

evaluation results are then presented and discussed (Sections 4.4 and 4.5), followed

by conclusions in Section 4.6.

4.2 Model description

4.2.1 Overview

The model requires hourly values of air temperature, relative humidity, precipita-

tion, shortwave radiation, and wind speed. The stick is assumed to be suspended at

a standard 30.5 cm above the forest floor. The stick is divided into two zones: a thin

outer layer that reacts to atmospheric forcing, and a larger central core. The thick-

ness of the outer layer changes with the different stick sizes, but remains below 8

mm. This division will allow the model to respond to changes in atmospheric con-

ditions at the hourly scale as well as over multiple days. Temperature and moisture

are assumed to be spatially constant within the outer layer and core. The average

stick temperature, Ts (K), and moisture, ms (kg of H2O), are calculated as:

Ts = f To +(1− f )Tc (4.1)

ms = f mo +(1− f )mc (4.2)

where To, Tc, mo, and mc are the temperature and moisture of the outer layer and

inner core, respectively, and f is the fraction of the stick volume taken up by the

outer layer. The variable f will be estimated via calibration.

The model is based on the assumption that diffusion and conduction only occur

radially, and that transfers of heat and moisture to and from the stick only occur

between the outer layer and the environment; the core will only gain or lose energy

and moisture through conduction and diffusion from the outer layer. This assump-

tion simplifies the problem and was also made by the Nelson model. Figure 4.1

provides a model schematic.

The model is composed of four differential equations which represent the en-
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Figure 4.1: Schematic of model showing all components of the moisture and
energy budgets. Please refer to the list of symbols for an explanation of
the labels.

ergy and moisture budgets for each of the two zones. The energy budget for the

outer layer, solved for the rate of temperature change, is:

dTo

dt
=

1
cs ρsVo

(
Labs +Kabs,di f f +Kabs,dir−

asLemit −asQh− (as−2πr2)Qe−C
)

(4.3)

where Labs is the absorbed longwave radiation (W) , Kabs,di f f and Kabs,dir are the

absorbed diffuse and direct shortwave radiation, respectively (W), Lemit is the emit-

ted longwave radiation (W m−2), Qh is the sensible heat flux (W m−2), Qe is the

latent heat flux (W m−2), C is the conduction into the stick’s core (W), cs is the

stick specific heat (J K−1 kg−1), which is a function of the stick moisture and tem-

perature (see Appendix A for details), ρs is the stick density (400 kg m−3, Nelson,

2000), Vo is the volume of the outer layer, and as is the surface area of the entire

stick.

The energy budget of the core is composed solely of conduction from the outer

layer:

51



dTc

dt
=

C
cs ρsVc

(4.4)

where Vc is the volume of the core.

The moisture budget for the outer layer is composed of three components: ab-

sorbed precipitation (Pabs), evaporation/desorption (E), and diffusion (D) into the

core:

dmo

dt
= Pabs− (as−2πr2)E−D (4.5)

All three terms on the right-hand side are in units of kg s−1. Evaporation is propor-

tional to the latent heat flux (details below), which connects the moisture and the

energy budgets.

The moisture budget for the core is composed of diffusion only:

dmc

dt
= D (4.6)

Of note here is the use of the total stick surface area minus the area of the stick

ends (as− 2πr2) when calculating latent heat flux and evaporation. For the two

smallest fuel sizes, the 1-hour and 10-hour fuel sticks, the area of the stick ends is

small relative to their total surface area and can therefore be ignored (see Section

4.3). Moreover, the two larger 100-hour and 1000-hour fuel moisture sticks used

for calibration and evaluation had wax coating their ends. This would have blocked

desorption or adsorption at the stick ends. For these reasons, the latent heat flux

and evaporation terms were calculated using only the lateral stick surface.

In contrast, the full surface area, as, is used when calculating emitted longwave

and sensible heat flux as it is assumed that the wax did not impact the conductivity

or emissivity of the stick ends. However, it is also assumed that there is only

radial transport of heat and moisture within the stick. Therefore, while the energy

exchanged between the surroundings and the stick ends is ignored, it is assumed

that this energy will be exchanged via the outer layer. In effect, the outer layer has

an “effective” outer surface area equal to the area of the entire stick.

The model was written in Fortran and makes use of the ODEPACK library

of differential equation solvers (Hindmarsh, 1983). The deSolve package in R
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(Soetaert et al., 2010) was used to initialize the model and input the forcing data.

4.2.2 Shortwave radiation

Because the stick is suspended above the ground, radiation inputs must be calcu-

lated from both directions. When discussing radiation components, the subscript

“d” indicates downwelling inputs, “u” indicates upwelling inputs from the ground,

and “emitt” indicates emitted radiation from the stick.

The downwelling shortwave radiation Kd (W m−2) is divided into its diffuse,

Kd,di f f , and direct, Kd,dir, components following Erbs et al. (1982). Details of

these calculations are presented in Appendix A. The upwelling shortwave input is

calculated as Ku = αgKd , where αg is the ground albedo which is taken to be 0.185,

based on values reported by Eck and Deering (1992) and Smith and Goltz (1994).

The direct solar radiation absorbed by the stick, Kabs,dir (W), is calculated as:

Kabs,dir = ashadow(1−αs)Kd,dir (4.7)

where αs is the stick albedo. A constant albedo value of 0.65 (Nelson, 2000) is

assumed. ashadow is the area of the shadow cast by the stick on a horizontal plane

and is a function of the sun position:

ashadow = 2rl cscφ(1− cos2
φ cos2

ψ)0.5 +πr2 cotφ cosψ (4.8)

where φ is the solar elevation angle and ψ is the solar azimuth angle, both in

radians (Monteith and Unsworth, 2008). This approach is more sophisticated than

the approach by Nelson (2000), where ashadow was assumed to be constant.

Appendix A provides details on the calculation of diffuse solar radiation ab-

sorbed by the stick, Kabs,di f f (W).

4.2.3 Longwave radiation

In our model, downwelling longwave radiation, Ld , varies with changing sky con-

ditions, temperature, and canopy coverage. Changing sky conditions are accounted

for with a varying atmospheric emissivity, εa (See Appendix A for details). Canopy

coverage is accounted for using a sky-view factor, s, which is the proportion of the
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sky hemisphere which is open to the atmosphere. Ld is calculated as:

Ld = (sεa +(1− s)εcanopy)σT 4
a (4.9)

where ecanopy is the canopy emissivity, and σ is the Stephan-Boltzmann constant

(5.67× 10−8 W m−2 K−4). This approach expands upon the Nelson model, which

used two constant values for downwelling longwave, one during the day and one

at night, and did not allow for a changing canopy. However, because the evaluation

dataset that was used to test both the present model and the Nelson model was

collected only at open sites, and in the interest of providing a focused study here,

the model evaluation presented below does not include an assessment of our canopy

treatment. The impact of canopy on fuel moisture will be examined in Chapter 5.

The upwelling longwave input from the ground and longwave output from the

stick are calculated as:

Lu = εgσT 4
a , Lemitt = εsσT 4

o (4.10)

where εg = 0.95 (Monteith and Unsworth, 2008) and εs = 0.85 (Nelson, 2000) are

the emissivities of the ground and stick, respectively. Although the emissivity may

change when liquid water is present on the stick surface, this only occurs during

brief periods directly following precipitation. Therefore, Following Nelson (2000),

the stick emissivity is assumed to remain constant. Here it is also assumed that the

the ground temperature is equal to the air temperature, Ta. While this assumption

is likely not valid during clear sky conditions (due to solar heating and longwave

cooling), the resulting bias was not deemed large enough to warrant increasing

model complexity in order to simulate the forest floor temperature.

As with diffuse shortwave radiation, Appendix A provides details on how the

longwave radiation absorbed by the stick, Labs (W), is calculated.

4.2.4 Sensible heat flux

Sensible heat flux is calculated using an aerodynamic resistance approach:

Qh = ρaca
To−Ta

Ω
(4.11)
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where ρa is the density of air (1.093 kg m−3) and ca is the specific heat of air (1005

J kg−1 K−1). Ta is the temperature of the ambient air and Ω is the aerodynamic

resistance (sm−1), which is calculated following Monteith and Unsworth (2008):

Ω =
2r

κNu
(4.12)

where r is the radius of the stick (m), κ is the thermal diffusivity of air ( 1.9×10−5

m2 s−1), and Nu is the Nusselt number, which, in the case of a cylinder exposed to

the range of wind speeds observed in the field, can be assumed to be a function of

the Reynolds Number, Re:

Nu = 0.17Re0.62 (4.13)

where

Re =
u2r
ν

(4.14)

where u is the wind speed (m s−1) and ν is the kinematic viscosity of air (1.51×10−5

m2 s−1). When the wind speed fell below the stall speed of the anemometer (0.4

m s−1), the wind speed was set to the stall speed. The approach may have over-

estimated evaporation during low wind conditions. However, as will be shown

later in this chapter, fuel moisture was relatively insensitive to wind speeds, so this

approximation likely did not have a significant impact on model output.

4.2.5 Water vapour and latent heat flux

The mass flux of water vapour to and from the stick, E (kg m−2 s−1), is computed

as:

E =
qsur f −qa

Ω
(4.15)

where qa is the vapour density of the ambient air (kg m−3) and qsur f is the vapour

density at the stick surface. Here the aerodynamic resistance of water vapour is

assumed to be the same as the resistance for sensible heat flux, Ω.

In order to calculate qsur f , desorption and adsorption within the stick needs
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to be accounted for. These sorption processes were included using the following

approach. When the stick’s moisture content is above the fibre saturation point of

30%, the stick surface is near or at saturation, and it is assumed that liquid water is

present, and evaporation occurs as from a liquid surface. Below the fibre saturation

point desorption processes begin to dominate and resistance to moisture removal

increases. This resistance occurs because an increasing proportion of the moisture

within the stick would be composed of bound water, which requires extra energy

to convert to water vapour and diffuse out towards the surface (Viney, 1991).

Adsorption and desorption constantly move the moisture of a fuel towards an

equilibrium moisture content, which is a function of the temperature and relative

humidity at the fuel surface. To account for these sorption processes it will be

assumed that the surface of the stick is always at the equilibrium moisture con-

tent. Following Matthews (2006), this assumption allows us to invert the equation

for the equilibrium moisture content given by Nelson (1984) to calculate the rela-

tive humidity of the air right at the stick surface, RHsur f , for a given stick surface

temperature, Tsur f (K), and moisture content, msur f (%) :

RHsur f = exp
(
−4.19M
RTsur f

exp(msur f B+A)
)

(4.16)

where M is the molecular mass of water ( 0.0180 kg mol−1), R is the gas constant

(8.314 ×10−3 kPa m3 mol−1 K−1), and B and A are unitless empirical constants,

which will be treated as adjustable parameters during model optimization. The

factor of 4.19 is required to convert the original equation of Nelson (1984) to S.I.

units. RHsur f can then be combined with the saturation vapour density, qsat , to

calculate qsur f :

qsur f = qsat RHsur f (4.17)

which can then be used in Equation 4.15 to calculate evaporation rates.

The impact of ms on RHsur f is presented in Figure 4.2 for a range of possi-

ble curves using A and B values suggested by the experimental work of Anderson

(1990b). The influence of temperature on RHsur f is relatively weak, and it is ig-

nored in this figure by setting temperature to a constant 15◦C. Here we see the
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aforementioned relationship between surface humidity and fuel moisture content.

Above the fibre saturation point of 30%, the relative humidity at the surface is at

or near 100% and evaporation is not limited. As moisture decreases below 30%,

the relative humidity quickly decreases, and the resistance to moisture removal

increases as sorption processes begin to dominate.
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A=5.3 / B=−21 A=5.5 / B=−17 A=4.6 / B=−15

Figure 4.2: The impact of surface fuel moisture on surface relative humidity
for different values of A and B. The fibre saturation point of 30% is
shown by the vertical dashed grey line.

Here it will be assumed that the surface moisture and temperature are equal

to the average moisture and temperature of the outer layer. In the final model,

the outer layer represents a thin outer shell, whose thickness increases with fuel

size but remains below 8 mm for the largest size. Therefore, this assumption is

reasonable as the moisture and temperature within the thin outer layer will not

likely deviate significantly from the mean value. Indeed, Matthews (2006) made
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the same assumption when modelling the moisture content of eucalyptus litter ele-

ments, which also have a small but finite thickness. This approximation simplifies

the model considerably by avoiding the calculation of moisture right at the surface.

In order to calculate the latent energy flux, Qe (W m−2), from the vapour mass

flux, E, the lower energy state of the bound water within cellulose material com-

pared to liquid water has to be accounted for (Skaar, 1988). Consequently, the

energy required to transition a unit mass of water from its bound state to vapour (in

J kg−1) is the sum of the latent heat of vaporisation, λvap, and the differential heat

of sorption, λsorp, so that:

Qe = (λvap +λsorp)E (4.18)

Sorption processes should become insignificant as the fuel moisture content

approaches and exceeds the fibre saturation point of 30% and moisture loss is due

to evaporation only. Therefore, λsorp is modelled as an exponentially decaying

function of fuel moisture content (Nelson, 2000):

λs =
21000

M
e−14ms (4.19)

The dependence of λvap on temperature (Stull, 1988) is also accounted for:

λvap = 2.501×106−2.37×103 (Ta−273.15) (4.20)

4.2.6 Conduction and diffusion

Diffusion and conduction within the stick are computed using a bulk transport ap-

proach, assuming that each layer has a constant temperature and moisture content.

Using a radial coordinate system, the flux of heat between the two layers, C (W),

is given as:

C = 2π l
ks (To−Tc)

ln( ro,mid
rc,mid

)
(4.21)

where ro,mid is the mid-point radius of the outer layer, rc,mid is the mid-point radius

of the core, and ks ( J m−1 s−1 K−1) is the bulk conductivity of the stick which is
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calculated as an empirical linear function of the stick moisture:

ks = g(0.1941+0.004064ms)+0.01864 (4.22)

where g is the specific gravity of the stick, equal to 0.42 (Simpson and Tenwolde,

1999).

The rate of diffusion into the core from the outer layer, D (kg s−1), is computed

as

D = 2π l
ds ρs(mo−mc)

ln( ro,mid
rc,mid

)
(4.23)

where ds, the bulk diffusion coefficient of the stick (m2 s−1), will be determined

though model calibration. The stick density, ρs, is required to convert the moisture

from a fractional weight to kg m−3.

In actuality, the diffusivity will change with moisture content, and is governed

by three different processes: bound water diffusion, vapour diffusion, and capil-

lary flow (Nelson, 2000). Using a single constant parameter for controlling internal

moisture transport is therefore a significant simplification. Consequently, ds should

be seen as an empirical parameter that describes the rate at which the stick responds

to external forcing. Therefore, during model calibration ds will be allowed to move

beyond the range of diffusivity values reported in the literature. This reduced com-

plexity is warranted based on the relatively simple application. Moreover, analysis

not shown here demonstrated that calculating ds as a function of the average stick

moisture did not increase the skill of the model.

4.2.7 Precipitation

The amount of precipitation absorbed by the outer layer, Pabs (kg s−1), is calculated

from the incident precipitation rate, Pinc (kg s−1 m−2), and the dimensions of the

stick:

Pabs = 2r l Pinc (4.24)

Here it is assumed that all precipitation intercepted by the stick is absorbed, and
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no precipitation is intercepted by the stick ends. The moisture content of the outer

layer is limited to a maximum value, mmax. Any precipitation above this amount is

assumed to run off the stick. The value of mmax will be determined through model

calibration.

4.3 Model calibration and evaluation
Two datasets were used to calibrate and evaluate the model. The first dataset was

composed of observations from the Base Station (BS) and Fuel Moisture 2 site

(FM2), which were the two sites with open canopies and a full suite of meteoro-

logical and fuel moisture measurements. Each site had one fuel moisture sensor.

An analysis of forest canopy impacts on fuel moisture will be left for Chapter 5.

Consequently, the closed-canopy Fuel Moisture 1 site was not used in this chapter.

Each site had a single fuel moisture sensor. The Rotronic HC-S3 Temperature and

Relative Humidity measurements from both the 30.5 cm and 1.62 m heights were

used here. Wind speed was interpolated to 30.5 cm from 1.62 m using a neutral

logarithmic wind profile. The aerodynamic roughness length was set to 0.01 m,

which is appropriate for short grass (Oke, 1990). Wind speed was assumed to be

the same across the two sites because FM2 did not have an anemometer. Although

the pine dowels used in the automatic fuel moisture sensors are carefully selected

and standardized, it is likely that the two sensors used here would provide slightly

different results. With respect to sensor accuracy, the manufacturer reports that the

root mean square error is ± 0.74% for moisture content below 10%, ± 0.90% for

moisture between 10% to 20%, ± 1.94% for moisture between 20% and 30% and

± 2.27% for values above 30%. To check the consistency between the two sensors,

two comparison periods were undertaken on either end of the field season in which

the two sensors were co-located for a total of 35 days.

The second dataset was collected between April 1996 and December 1997 in an

agricultural field in Oklahoma and is described in detail by Carlson et al. (2007).

This dataset was originally used to evaluate and train the Nelson Model. In this

case, fuel moisture for the 1-hour, 10-hour, 100-hour, and 1000-hour fuel sizes was

estimated by twice-daily field weighings of ponderosa pine dowels of increasing

radii: 0.2, 0.64, 2.0, and 6.4 cm. The 10-hour dowels had a length of 50 cm while
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the other three sizes had lengths of 41 cm. The three smaller sizes were weighed to

the closest 0.1 g, while the 1000-hour fuel was weighed to the closest gram. The

absolute accuracy of these measurements is therefore less than 1% moisture con-

tent. For the two smallest fuel sizes standard arrays of four connected dowels were

weighed. An average weight across three separate dowels was used for the two

largest sizes. To minimize the impacts of weathering on moisture measurements,

the 1 and 10-hour dowels were replaced every three months while the 100-hour

dowels were replaced every six months. The 1000-hour dowels were not replaced

during the two years. Forcing data were taken from a nearby weather station run

by Oklahoma Mesonet. Air temperature and humidity were measured at a standard

screen height. Wind speed was measured at 10 m and was also interpolated to 30.5

cm.

The model was optimized by adjusting five parameters: A, B, Km, mmax, and

f . Based on work by Anderson (1990b), potential values ranged from 4.4 to 6.7

for A and -22 to -10 for B. Diffusivity values reported in the literature ranged from

0.1 ×1010 to 2 ×1010 m2 s−1 (Fosberg, 1970; Deeming et al., 1977; Avramidis

and Siau, 1987; Anderson, 1990a; Wadsö, 1993). This range was used as a starting

point. However, as previously mentioned, ds was not required to remain within

this range. The value of mmax was allowed to vary between 30% and 150% and

the value of f varied from 0.05 to 0.90. To find optimal parameter sets, a particle-

swarm optimization routine (Clerc, 2010) implemented in R was used (cran.r-project.

org/web/packages/pso/). Default values were used for all settings, except the

swarm size was increased from the default of 13 to 32 as this was found to im-

prove the stability of the search results.

Initial evaluation runs indicated that letting f vary across different stick sizes

did not increase the optimal model skill but significantly reduced the ability of the

model to predict moisture at different sites. A a single value of f was therefore

used across all models. This was done by initially calibrating all models with an

adjustable f . A final constant value of 0.22 was then calculated as the average of

all optimal f values. The other four parameters were then optimized using this

constant f value.

The Nash-Sutcliffe efficiency (NSE) was used to determine the skill of each

model run. It is a measure of how close the modelled output is to a 1:1 agree-
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ment with observations, and accounts for both bias and correlation. The NSE is

computed as:

NSE = 1−
ΣN

t=1(m
t
m−mt

o)
2

ΣN
t=1(mt

o− ‘)2
(4.25)

where mt
m and mt

o are the modelled and observed values, respectively, at time t,

mo is the mean of the observations, and N is the total number of time steps. NSE

ranges from negative infinity to 1. A value of 1 indicates perfect agreement, while

a negative value indicates that the average of the observations is more skillful than

the model output. The optimal parameter set was assumed to be reached when the

value of NSE did not improve by more than 10−4 over 20 consecutive iterations of

the particle swarm algorithm.

In optimizing the model a priority was placed on accurate simulation of mois-

ture values below the fibre saturation point of 30%. This was done for a number of

reasons. Firstly, periods of low moisture are particularly important when estimat-

ing wildfire potential. Secondly, the accuracy of electronic fuel moisture sensors

above the fibre saturation point has not been thoroughly determined, and manual

moisture measurements decrease in reliability at higher moisture levels (Nelson,

2000). Therefore, a log transformation was applied to both the observations and

model output before the NSE was calculated, creating a new NSElog. This met-

ric increases the influence of the dry periods and was used by the particle-swarm

routine to find the optimal model.

Two approaches were used to test the transferability of the calibrated model

across time and different sites. First, for each fuel size the model was calibrated

using just the 1997 Oklahoma data and then evaluated using the 1996 Oklahoma

data. In the second approach individual models were calibrated at all three sites

(the two BC sites and the Oklahoma site) and then evaluated at the other sites.

As well, in order to assess the influence of measurement height, predictions were

made at BS using both the near-surface and screen-level temperature and humidity

measurements.

During both calibration and evaluation the model was initialized using the first

observed moisture value. Consequently, the first portion of the model output is not

truly independent of the observations. However, analysis not shown here indicated
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that for all but the 1000-hour fuel the choice of initial value has an negligible impact

on the model output because the model quickly comes to equilibrium with the

forcing data. For the 1000-hour model the impact of the initial value was felt for

the first 20 days of the simulation. Therefore, the initial 20 days were used as

a spin-up period in the 1000-hour simulations and were removed before model

statistics were calculated.

4.3.1 Model sensitivity analysis

To determine the sensitivity of the model to each forcing variable, a series of model

runs were undertaken in which each variable was randomized in turn and then in-

put, along with the other, non-randomized, variables into the model. If the model

was relatively insensitive to a forcing variable, then there should be little differ-

ence between the original model output and the output generated when the indi-

vidual variable was randomized. Diffuse and direct downwelling shortwave radia-

tion, downwelling longwave radiation, relative humidity, air temperature, and wind

speed were all randomized. Precipitation was not included in this analysis as the

discrete nature of the variable and its lack of a consistent diurnal trend does not

lend itself to a comparison with the other forcing variables.

In detail, the time series of the variable to be randomized was divided into days,

and those days were randomized across the season. In this way, the randomized

variable still had realistic diurnal trends and the correlation structure across the

variables was maintained. The sensitivity of the model to each forcing variable

was quantified by calculating the bias and coefficient of determination between the

randomized model runs and the original, non-randomized model run.

4.4 Results
Before evaluating the model, the accuracy of the fuel moisture sensors used at the

BC sites were examined. The BC sensors were installed at the same site, both 30.5

cm above the ground, for 20 days at the beginning and 15 days at the end of the

field season. A comparison of the observations from these two periods is presented

in Figure 4.3. The root mean square error between the two sensors was larger than

the accuracy reported by the manufacturer (Section 4.3): 2.56% for moisture levels
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below 10%, ± 3.58% for moisture between 10% to 20%, ± 3.55% for moisture

between 20% and 30% and ± 5.00% for values above 30%. However, at the lower

moisture values the sensors were strongly correlated and much of the error was due

to a consistent bias. As moisture levels increased, the spread increased and the bias

changed sign.

0

20

40

60

0 20 40 60
FM2 Obs Fuel Mois (%)

B
S

 O
bs

 F
ue

l M
oi

s 
(%

)

Figure 4.3: Comparison of co-located fuel moisture observations by the sen-
sors used at sites BS and FM2. A 1:1 line is provided as a reference.

The optimal parameter values for all site and size combinations are presented in

Table 4.1. The diffusivity coefficient, ds, increased with increasing fuel size from

2.61 ×10−10 m2 s−1 for the 1-hour model to 3.45 ×10−9 m2 s−1 for the 1000-

hour model. The optimal ds values were above the range of values provided in the

Methods section. This is not unexpected as a “bulk” approach was used to calculate

diffusion in which the two layers are assumed to have constant temperature and

moisture. The maximum allowable moisture content, mmax, was smaller for the

larger fuel sizes. Parameters A and B did not show any apparent relationship to

fuel size.

Model performance during calibration is summarized in Table 4.2. Although

the model was optimized using NSElog, the coefficient of determination, R2, the
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Table 4.1: Optimal parameter values for all calibration site/size combinations

Calibration Calibration A B ds mmax f
Size (hour) Site (m2 s−1) (%)

1 OK 4.00 -12.00 2.61e-10 79.3 0.22
10 BS 4.98 -18.80 3.01e-10 76.8 0.22
10 FM2 4.70 -22.00 2.92e-10 90.6 0.22
10 OK 4.96 -20.10 5.39e-10 66.3 0.22

100 OK 5.11 -22.00 5.46e-10 48.6 0.22
1000 OK 4.81 -18.40 3.45e-09 44.0 0.22

root mean square error, and the model bias were also provided. Here the model bias

is calculated as the mean difference between the modelled and observed values. A

positive bias indicates that the model was, on average, wetter than the observations.

At the Oklahoma site, model skill increased with increasing fuel size, while the

model was more skillful in simulating the BC sites than the Oklahoma site. The

models had a dry bias across all sites and sizes.

Table 4.2: Skill of optimal models applied to calibration data. Comparison
statistics used are: the Log-transformed Nash-Sutcliffe efficiency, coeffi-
cient of determination, root-mean-square error, bias, and bias for all data
with observed moisture below 30%. The units of Bias and RMSE are
percent moisture content.

Calibration Calibration NSElog R2 RMSE Bias Bias (<30%)
Size (hour) Site (%) (%) (%)

1 OK 0.28 0.78 7.50 -0.04 0.58
10 BS 0.90 0.92 3.19 -0.38 0.07
10 FM2 0.93 0.94 2.86 -0.09 0.22
10 OK 0.85 0.85 4.01 -0.30 -0.05

100 OK 0.84 0.85 1.86 -0.08 -0.03
1000 OK 0.87 0.89 1.18 -0.07 -0.07

Results of calibrating using the 1997 Oklahoma data and evaluating on the

1996 data are presented in Table 4.3. Compared to the optimal results in Table 4.2,

the model lost little predictive skill when applied to an independent time period.
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Again, model skill generally increased with fuel size. Most of the reduction in

skill from the optimal results was seen in the biases. Scatter plots for this model

evaluation are presented in Figure 4.4, while example time series are presented

in Figure 4.5. In particular, high moisture levels for the 1-hour fuel were poorly

simulated.

Table 4.3: Model evaluation with independent time period: models are cali-
brated on 1997 Oklahoma data and evaluated using 1996 data. The units
of Bias and RMSE are percent moisture content.

Evaluation NSElog R2 RMSE Bias Bias (<30%)
Size (Hour) (%) (%) (%)

1 0.14 0.72 9.37 0.83 1.94
10 0.84 0.90 3.18 0.80 1.01
100 0.82 0.84 1.98 0.53 0.58

1000 0.89 0.90 1.21 -0.44 -0.44
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Figure 4.4: Comparison of modelled and observed fuel moisture at the Ok-
lahoma site for 1996. The models used were calibrated for each size
separately using the 1997 data. A) 1-hour fuel size, B) 10-hour fuel
size, C) 100-hour fuel size, and D) 1000-hour fuel size.
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Figure 4.5: Example time series of modelled fuel moisture (grey lines) gener-
ated by 1997 Oklahoma models and observed fuel moisture (black line)
at the Oklahoma site during 1996 for the A) 1-hour fuel size, B) 10-hour
fuel size, C) 100-hour fuel size, and D) 1000-hour fuel size. Note the
varying y-axis limits.

The second evaluation approach found optimal models for the 10-hour fuel

size at all three sites and evaluated those models at the other sites. The models for

10-hour sticks, calibrated using the BC data set, were applied to the 10-hour and

the 1-hour Oklahoma data to mirror the methods of Carlson et al. (2007). These

results are presented in Table 4.4. As expected, model skill was high between the
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two BC sites. Significantly, compared to the calibration results (Table 4.2), the

skill of the Oklahoma model was not substantially reduced when applied to the BC

sites. Indeed, it achieved higher R2 values when modelling the independent data.

This is in contrast to the BC model, which, when applied to the Oklahoma site,

produced poorer predictions than during the calibration runs.

Table 4.4: Model evaluation with independent sites: models calibrated at one
site are evaluated at the other two sites. All models are trained using
the 10-hour fuel size. The units of Bias and RMSE are percent moisture
content.

Calibration Evaluation Evaluation NSElog R2 RMSE Bias Bias (<30%)
Site Site Size (hour) (%) (%) (%)
BS FM2 10 0.75 0.94 3.90 1.96 2.79
BS OK 1 0.22 0.77 7.47 0.53 1.67
BS OK 10 0.79 0.82 4.49 1.15 1.42

FM2 BS 10 0.68 0.90 4.54 -2.48 -2.54
FM2 OK 1 0.26 0.76 8.05 -1.83 -1.26
FM2 OK 10 0.74 0.79 5.40 -1.16 -1.32
OK BS 10 0.80 0.91 4.04 -2.26 -1.76
OK FM2 10 0.83 0.93 3.70 0.29 1.15

Much of the reduction in skill was due to larger biases. The BS model produced

a wet bias at the other two sites, while the Fuel Moisture 2 model produced dry

biases when applied to the BS and OK sites. These biases are apparent in Figure

4.6, where scatter plots compare modelled moisture to observations. Figure 4.6B

mirrors the results shown in Figure 4.3. That is, compared to the BS sensor, the

Fuel Moisture 2 sensor had a dry bias for lower moisture and a wet bias during

wetter conditions. Consequently, the Fuel Moisture 2 model had a similar bias

when predicting at BS: the Fuel Moisture 2 model underpredicted fuel moisture

at low moisture values and overpredicted at the highest levels. As was the case

for the cross-time evaluation results (Figure 4.4), model error was highest when

simulating higher moisture values at the Oklahoma site (Figure 4.6D).

Figure 4.7 presents sample time series of modelled and observed 10-hour fuel

moisture at BS and Oklahoma sites. The model calibrated at FM2 overpredicted

during precipitation events due to its higher mmax value (see Table 4.1). The dry

bias of the Oklahoma model is apparent in Figure 4.7C. At the lower moisture lev-
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Figure 4.6: Comparison of modelled 10-hour fuel moisture with observations
when the model is calibrated and evaluated at different sites. A) Cali-
brated at BS and evaluated at BS, B) Calibrated at FM2 and evaluated
at BS, C) Calibrated at Oklahoma and evaluated at BS, D) Calibrated at
BS and evaluated at Oklahoma.

els, this bias is due to larger diurnal cycles and excessive drying during the day,

leading to daytime moisture minima that were almost always lower than the obser-

vations. The Oklahoma 10-hour model had a higher diffusivity value compared to

BS model. Consequently, the model responded more quickly to the diurnal cycle

leading to these larger amplitudes in moisture. The opposite is true in Figure 4.7D

where the Oklahoma observations were modelled by the BS model.

To test the influence of measurement height, humidity and temperature were

measured at the near-surface (0.305 m above the ground) as well as the screen-

level (1.62 m) at BS and the 10-hour Oklahoma model was forced with both. When

forced with the near-surface observations, the model generated consistently higher

fuel moisture than when the screen-level data were used. In particular, diurnal cy-

cles were larger and nocturnal maxima were noticeably higher during fair-weather

conditions. Overall, the model output based on near-surface forcing data has a

positive 1.1% bias compared to screen-level forced output. This bias is evident in
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Figure 4.7: Example time series of observed (black) and modelled (grey) 10-
hour fuel moisture when the model is calibrated and evaluated at dif-
ferent sites. A) Calibrated at BS and evaluated at BS, B) calibrated at
FM2 and evaluated at BS, C) calibrated at Oklahoma and evaluated at
BS, D) Calibrated at BS and evaluated at Oklahoma. Note that BS data
are from 2014 while the Oklahoma data are from 1996.

the sample time-series presented in Figure 4.8. As well, the near-surface condi-

tions were, on average, wetter than at screen level, with a 0.05 kPa bias in absolute

humidity and a 2.9% bias in relative humidity.

The results of the model sensitivity analysis are presented in Figure 4.9. The

fuel moisture model is substantially more sensitive to relative humidity than to any
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Figure 4.8: A comparison of modelled 10-hour fuel moisture generated at BS
using the 10-hour Oklahoma model forced by screen-level observations
(grey) and near-surface observations (black).

other variable. Air temperature and longwave radiation have a secondary impact

on the model output. Significantly, this analysis suggests that diffuse shortwave

radiation and wind speed have very little influence on the model output.

Table 4.5 provides a comparison of our model skill, given as R2 values, with the

results of Carlson et al. (2007), who used the same Oklahoma data to evaluate the

Nelson model. As our model was trained at both BS and FM2, Table 4.5 includes

two different R2 values for the 1-hour and 10-hour fuels. The parameters used

by Carlson et al. (2007) for the 1-hour and 10-hour sizes were identical and had

previously been calibrated using a separate dataset. Therefore, their test of the 1-

hour and 10-hour model mirrors our evaluation of the 10-hour model calibrated at

the two BC sites using the Oklahoma data. For the Nelson model, the regressions

of simulated against observed values had R2 values of 0.64 and 0.79 for the 1-hour

and 10-hour fuel sizes, respectively. When applied to the same data our model

achieved higher R2 values of 0.77 and 0.76 for the 1-hour fuel size. For the 10-

hour fuel size our model improved or matched the skill of the Nelson model with

R2 values of 0.82 and 0.79. The biases produced by our model are dependent on

the calibration site. The BS model produced a smaller bias for the 1-hour fuel size

(0.53% compared to 1.4% reported by Carlson et al. 2007) while the FM2 model

produced a larger bias of -1.83%. For the 10-hour fuel size, Both BC models

produced a larger bias (1.15% and -1.16% compared to 0.1%).

Carlson et al. (2007) used the Oklahoma data set for both calibration and eval-
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Figure 4.9: Comparison statistics when comparing original fuel moisture
model output at BS with model output when one of the forcing vari-
ables (downwelling diffuse and direct shortwave, downwelling long-
wave, relative humidity, air temperature, and windspeed) is randomized
across days. Mean bias is provided on the left and the coefficient of
determination is provided on the right. Results for all four fuel sizes are
provided.

uation of their 100-hour and 1000-hour models. In this case it is most appropriate

to compare their results to the model skill achieved by our optimized models. The

Nelson model achieved R2 values of 0.77 and 0.56 for the 100-hour and 1000-hour

fuel sizes, respectively. Our model improves on this, with optimal R2 values of

0.85 and 0.89 for the same sizes. Additionally, our optimized models produced bi-

ases of -0.08% and -0.07 % for the 100-hour and 1000-hour fuel sizes, respectively.

This is also an improvement on the Nelson model biases: 0.6% for the 100-hour

model and -0.2% for the 1000-hour model.

The skill of the new model can also be compared to that of Resco de Dios

et al. (2015), who developed a simple model for simulating daily minimum 1-hour
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Evaluation R2 Bias (%)
Size (hour) Nelson Current Nelson Current

1 0.64 0.77, 0.76 1.4 0.53, -1.83
10 0.72 0.82, 0.79 0.1 1.15, -1.16
100 0.77 0.85 0.6 -0.08
1000 0.56 0.89 -0.2 -0.07

Table 4.5: Comparison of model skill between the Nelson model and the
model presented here when applied to the Carlson dataset. The unit for
Bias is percent moisture content.

and 10-hour fuel moisture content. The authors evaluated their model using obser-

vations from a previous version of the Campbell Scientific 10-hour fuel moisture

sensor (the CS505). When evaluating their model with an independent dataset they

achieved an R2 value of 0.67 and a bias of 0.73%. Our model improves on these

results as well, with higher correlations and comparable biases. However, some of

the sensors used for evaluation by Resco de Dios et al. (2015) were placed on the

ground, while their calibration sensors were suspended 30.5 cm above the ground.

This difference in placement could have led to a reduction in their model skill.

4.5 Discussion
The model presented here improved on the skill achieved by the Nelson model

when applied to the same dataset and has additional features that allow for a more

realistic treatment of canopy coverage and changes in sky conditions. Fuel mois-

ture simulated by the new model had consistently higher correlations with obser-

vations compared to the Nelson model, suggesting that the new model would be

better at simulating seasonal and diel trends in fuel moisture.

This study has demonstrated that when simulating the moisture of standard

fuel sticks, more sophisticated treatments of internal moisture transport, precipita-

tion interception, and the transfer of moisture to and from the atmosphere do not

necessarily increase the skill of the model. If the model was intended to be applied

to a range of fuel types with varying characteristics, then a more detailed process-

based model may indeed be more appropriate. However, the simple characteristics

of the moisture sticks lend themselves to a less complex formulation such as ours,

73



especially if it can be calibrated to observations.

A portion of the model bias seen in the evaluation results can be explained by

intrinsic differences between individual sensors or sticks. That is, model skill was

limited by inconsistent observations across sites. The comparison of co-located

fuel moisture sensors (Figure 4.3) demonstrated that significant biases can exist

even between sensors sourced from the same manufacturer. Even though Carlson

et al. (2007) averaged over multiple sticks that were periodically replaced, the types

of sticks used in that study may have exhibited a systematic bias compared to the

BC sensors.

These results point to the importance of having co-located meteorological ob-

servations; small changes in local conditions could reduce the maximum achiev-

able model skill. Overall, the BC sites, which had co-located weather observations,

yielded better calibration results. When applied to the BC sites, the performance of

the Oklahoma model was not significantly reduced from the calibration run. This

finding suggests that the benefit of having co-located measurements at the BC sites

compensated for the inevitable reduction when the model was applied to the inde-

pendent dataset. Indeed, the opposite was not true; the BC models yielded larger

reductions in skill when applied to the Oklahoma site.

The model had the most difficulty predicting high moisture levels. There are a

number of reasons for this. Firstly, as previously mentioned, the reliability of stan-

dardized fuel moisture sticks is reduced during wet conditions. Consequently, the

lack of dependable observations could have led to modelling error. Secondly, the

rate at which the stick loses and gains moisture increases with increasing moisture.

Therefore, any error in the modelled response time or differences in conditions be-

tween the weather station and the fuel sticks would be magnified at these higher

levels of moisture.

These issues become particularly important for the smaller fuel sizes, which

likely explains why the 1-hour model had the poorest results and high RMSE val-

ues: the rapid moisture changes are more difficult to predict, the stick is more

often at elevated moisture levels, and the lack of co-located weather observations

would be particularly detrimental in this case. However, this reduction in skill at

higher moisture levels is less of a concern as it is the simulation of low-moisture

conditions that is most important for fire management purposes.
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Forcing the model with near-surface observations (0.305 m above the ground)

led to a wet bias relative to the screen-level measurements (1.62 m). It was also

shown that near-surface conditions were consistently wetter than at screen height.

This vertical gradient likely explain the biases between the two tests.

As previously mentioned, our model is capable of including the impact of

canopy cover on downwelling longwave radiation. However, because Carlson et al.

(2007) only made measurements at open sites, and for the sake of brevity, the im-

pact of canopy coverage was not assessed here, even though a closed canopy would

likely increase the amount of downwelling radiation substantially and increase noc-

turnal stick temperature, especially during clear nights. Based on Equation 4.16,

this would lead to increased stick moisture. Yet, it should be mentioned that the

sensitivity analysis results suggest that, compared with relative humidity, longwave

radiation has little impact on fuel moisture. The influence of canopy coverage on

fuel stick moisture will be examined in Chapter 5.

In contrast to the Nelson model, our model requires wind speed as a forcing

variable. However, the sensitivity analysis demonstrated that the model is insensi-

tive to winds speeds. This lack of influence was expected, because at lower mois-

ture levels the rate at which the stick exhanges moisture with the atmosphere is

limited by sorption processes within the stick (that are not influenced by wind),

as opposed to turbulent fluxes within the atmosphere (see Section 4.2.5). Conse-

quently, using a constant aerodynamic resistance would remove wind speed from

the list of required forcing variables and may do little to alter model skill, especially

at lower moisture levels.

4.6 Conclusions
The model developed in this chapter differs from the Nelson model (Nelson, 2000)

in a number of ways. It simplifies the treatment of the internal transport of moisture

and heat, the capture of precipitation, and the transfer of moisture between the stick

and the atmosphere, while its treatment of longwave and shortwave radiation is

more sophisticated: it avoids linearising the net longwave component and allows

for variations in sky condition and canopy coverage. As well, it does not assume

that the stick acts like a wet bulb, as this assumption does not hold true when the
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stick is exposed to direct sunlight. This model can be applied operationally using

standard weather observations.

The model was evaluated to determine its transferability across different time

periods and different sites. The model lost little skill when applied to an inde-

pendent time period. It was also demonstrated that the 10-hour fuel model retains

much of its predictive skill when it is calibrated at one site and evaluated at an inde-

pendent site. However, in some cases the model did exhibit relatively larger biases

when applied to the evaluation dataset. This could partly be due to intrinsic differ-

ences in the observation technique: one dataset used manually weighed fuel sticks

while the other used automatic fuel moisture sensors. Our results also suggest that

having co-located weather observations at the same height as the moisture stick

improves model results. The skill of our model improved on the performance of

the Nelson model (as presented by Carlson et al. 2007) when predicting the same

set of fuel moisture measurements.

In the next chapter the model will be applied to the field observations described

in Chapter 2, along with modelled below-canopy precipitation and radiation, to

simulate fuel moisture and fire danger at all 24 sites. The modelled dataset will

then be used to examine the spatial variability of fuel moisture and fire danger

across a forested landscape. The model will also be used to examine the influence

of canopy cover on simulated fire danger.
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Chapter 5

Modelling the spatial variability
of fuel moisture and fire danger
across a heterogeneous forested
landscape

5.1 Introduction
A number of studies have examined the influence of terrain on surface conditions

and fuel moisture. Hayes (1941) measured the fuel moisture at open sites on nearby

north-facing and south-facing slopes. Fuel moisture was always higher on the north

slope. Conditions were wetter at lower slope positions where the average differ-

ence was 1.9% moisture content. Stambaugh et al. (2007) also found that decidu-

ous litter was drier on south-facing slopes under most conditions, but the impact of

aspect was absent during the wettest and driest conditions. Gibos (2010) examined

the influence of aspect on fine fuel moisture within montane spruce stands. The

absence of a significant difference between a north and south aspect was attributed

to high canopy coverage at both sites, which reduced radiation levels by around

90%. Nyman et al. (2015b) reported that fuel moisture was higher on cooler as-

pects, although the cooler aspects also had increased canopy cover and understory
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vegetation, and thicker organic soils which retained moisture.

Sullivan and Matthews (2012) modelled forest floor fuel moisture for differ-

ent aspect and slope combinations. Differences in modelled fuel moisture mainly

occurred during the morning on steep slopes due to lower morning sun angles.

Holden and Jolly (2011) used a network of temperature and humidity sensors

across a region of complex terrain to create high resolution maps of the estimated

fire danger, which is strongly impacted by fuel moisture. There was significant

variability in fire danger and these patterns changed over the fire season. Specif-

ically, south facing slopes had drier fuels, due in part to increased radiation. As

well, the distribution of early season fire danger was bi-modal, reflecting signifi-

cantly different drying rates between different facets and elevations.

Others have examined the impact of stand structure on fuel moisture. Coun-

tryman (1977) demonstrated that within-stand variability in fuel moisture was de-

pendent on the integrated amount of direct sunlight experienced by a particular

location; more radiation led to decreased moisture. Observations by Whitehead

et al. (2006) indicated that lower moisture content was found in thinned stands

compared to unthinned stands. However, these differences diminished as the fuels

dried out and were not significant during the driest periods of the season. In a sim-

ilar study by Estes et al. (2012), moisture levels were measured for fuel sticks of

various sizes placed on the forest floor of thinned and unthinned stands. Overall,

the drying impact of a reduced canopy cover was small with the only significant

influence occurring for large 10,000-hour fuels early in the season. Pook and Gill

(1993) found that fine fuel moisture within Pinus radiata stands was most sensitive

to canopy coverage and density during wetter periods. Both Banwell et al. (2013)

and Faiella and Bailey (2007) could not identify any significant differences in fuel

moisture across sites with differing canopy cover. A slightly different result was

obtained by Tanskanen et al. (2006) who also observed increased drying rates in

open stands as compared to mature closed stands. However, the differences be-

tween sites increased over the season, which the authors attributed to the enhanced

light interception by the canopy with decreasing solar angle.

Rothermel et al. (1986) created a model that simulates the impact of both

canopy cover and aspect on fuel moisture. Their model uses empirical relation-

ships between radiation levels, wind speed, and fuel moisture developed by Byram
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and Jemison (1943). These relationships were established using a “weather simu-

lator” whereby surface fuels were encompassed in a large box in which radiation

levels and wind speeds were controlled by lights and fans. Changing light lev-

els were used to simulate the impact of changing radiation loads with aspect and

slope. These empirical relationships suggested that radiation load has a significant

impact on fuel moisture. However, their model underestimated moisture levels at

high radiation levels, possibly because the authors did not include the impact of

evaporative cooling or resistance due to sorption processes in their calculations.

Rothermel et al. (1986) also developed a canopy shading algorithm that directly

calculated shading cast by the canopy, taking into account canopy height, tree type,

aspect and slope. They found that their model was more accurate than the FFMC

(see Chapter 1) when predicting fuel moisture in direct sunlight.

There are a number of gaps in the literature that will be addressed in this chap-

ter. Firstly, when examining the spatial patterns of fuel moisture, most studies used

observations with approximately a weekly resolution. Some studies made daily

measurements, but this is still too coarse to resolve diurnal trends. As well, to my

knowledge, the relative impact of canopy coverage and aspect on fuel moisture has

not been examined. As mentioned in Chapter 1, aspect can impact fuel moisture

directly through changes in radiation, but it also has an indirect effect by affect-

ing understory and overstory vegetation cover and soil type. In order to accurately

predict fuel moisture patterns across the landscape, it will be important to disentan-

gle these direct and indirect effects, especially if disturbance history decouples the

relationship between radiation load and vegetation. To my knowledge, only one

other study (Nyman et al., 2015a) has attempted to separate the effects of radiation

load and canopy cover on fuel moisture. Their results suggested that the impact of

aspect was primarily an indirect effect due to increased vegetation on cooler slopes.

This study will examine the spatial patterns and temporal trends of observed

and modelled fuel moisture and fire danger across a heterogeneous forested land-

scape and address these knowledge gaps. Using hourly resolution data will allow

for an analysis of diurnal trends, nocturnal conditions, and the impact of synoptic

weather variability on fuel moisture. This chapter will isolate the direct impact of

radiation load on fuel moisture. In this study, the isolation of the direct effect of

radiation load will be accomplished by (1) choosing sites with homogenous un-
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derstory vegetation, (2) sampling across the entire parameter space described by

canopy cover and radiation load (see Chapter 3), and (3) focusing on elevated fuel

sticks that are not impacted by underlying soil moisture.

As a fire moves across a landscape, the speed and intensity of the propagating

front of the fire is dependent, not just on fuel moisture, by also on wind speed,

fuel amount, and the slope of the terrain (Rothermel, 1972). Consequently, spa-

tial patterns in fire intensity (the amount of heat released by the fire), and the fire

severity (the resulting impact of the fire) will not be entirely dictated by patterns in

fuel moisture. For instance, a fire may burn more intensely as it moves up slope,

and local wind fields can have a significant impact on patterns as well (McKenzie

et al., 2011). However, this chapter will focus on the contribution of fuel moisture

to fire danger. To this end, the Energy Release Component (ERC) of the US Na-

tional Fire Danger Rating System Cohen and Deeming (1985) will be used here as

a metric for potential fire danger. The ERC is strongly dependent on fuel moisture,

and does not account for the impact of wind speed or the influence of slope on

the propagating fire. The ERC is related to the total available energy per unit area

that could potentially be released by the fire front and provides an indication of

seasonal wetting and drying cycles.

The results from Chapters 3 and 4 suggest a number of possible outcomes for

this chapter. (1) It was shown in Chapter 3 that relative humidity, which is the main

driver of fuel moisture, was relatively homogeneous during the day, regardless of

weather conditions, while the opposite was true at night. One would therefore

expect similar homogeneous fuel moisture during the day, with elevated variability

at night. (2) During days without rain, open sites had, on average, higher levels of

relative humidity, suggesting that open sites may have wetter fuels. (3) It is likely

that conditions will be anomalously wet at the outlying Site 22 where there was an

elevated water table throughout the season. (4) Given its strong performance as a

predictor of near-surface climate, one would expect that canopy gap fraction will

be a better predictor of patterns in fuel moisture than radiation load. (5) Model

sensitivity analysis in Chapter 4 demonstrated that modelled fuel moisture was

primarily driven by relative humidity. Longwave and shortwave radiation had a

much smaller secondary influence, suggesting that the impact of the canopy on

fuel moisture is primarily an indirect one. That is, changes in canopy cover will
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impact near-surface conditions, which, in turn, will impact fuel moisture. Changes

in the radiation budget of the stick with a changing canopy will only be a secondary

driver of changes in fuel moisture.

This chapter will pursue the following research questions and accompanying

hypotheses:

• Research Question #1: How much variability in fuel moisture and fire danger

is seen at the landscape scale and how does that variability change with the

time of day and with weather conditions?

– Hypothesis #1a: During the day, fuel moisture and fire danger will be

homogeneous. Heterogeneity will increase at night, while Site 22 will

be significantly wetter relative to the other sites.

– Hypothesis #1b: During the day, variability will decrease with increas-

ing solar radiation. Nocturnal spatial variability will be highest during

dry, clear-sky conditions with low winds.

• Research Question #2: How do modelled changes in precipitation and/or ra-

diation absorbed by the moisture stick impact fire danger and fuel moisture?

– Hypothesis #2a: Changes in radiation amounts absorbed by the mois-

ture sticks will have little impact on fire danger.

– Hypothesis #2b: Changes in precipitation amounts will have a large

initial impact, but this influence will recede over the course of around

a week.

• Research Question #3: What are the relative impacts of canopy coverage and

radiation load on spatial patterns in fuel moisture and fire danger?

– Hypothesis #3a: Canopy coverage is the dominant factor influencing

fuel moisture and fire danger, and this influence is strongest for noctur-

nal conditions.

– Hypothesis #3b: Open sites will see wetter fuels relative to closed-

canopy sites.
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This chapter begins with a description of the methods in Section 5.2, which

includes an overview of the data analysis (Section 5.2.1), and a description of both

the precipitation and shortwave radiation interception models (Sections 5.2.2 and

5.2.3). Results are presented in Section 5.3, followed by a discussion (Section 5.4)

and concluding remarks (Section 5.5)

5.2 Methods

5.2.1 Analysis overview

The fuel moisture model described in Chapter 4 was forced with meteorological

observations described in Chapter 2 to model 1-hour, 10-hour, 100-hour, and 1000-

hour fuel moisture at all 24 sites. For the 1-hour, 100-hour, and 1000-hour fuel

sizes parameter sets optimized to the Oklahoma dataset (Carlson et al., 2007) were

used. The 10-hour fuel size was modelled using the parameter set optimized to the

Base Station (see Chapter 4).

The model requires relative humidity, temperature, precipitation, shortwave ra-

diation, and wind speed and a sky view factor for each site. Relative humidity and

temperature were measured using the LogTag sensors. The influence of the canopy

on precipitation, shortwave radiation, and longwave radiation was also modelled.

The precipitation and shortwave components of the canopy model are described in

the next two sections. These models were forced using observations from the Base

Station, which assumes that above-canopy conditions are homogeneous across the

sites. As the furthest sites were 1.8 km apart with no significant elevation differ-

ences, this estimation should be reasonable. Details of the longwave component of

the canopy model were provided in Chapter 4. In order to evaluate the full suite of

models, below-canopy fuel moisture simulated at the closed-canopy Fuel Moisture

1 site was compared to observation.

Wind speed was only measured at the Base Station. Although wind speed

is reduced within denser canopy (Graefe, 2004), it was shown in Chapter 4 that

the fuel moisture model is only weakly sensitive to wind speed. Indeed, at lower

moisture levels, wind speed had no discernible impact. Because of this fact, and

because there were no below-canopy wind observations to evaluate a potential wind
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speed model, wind speed was assumed not to spatially vary across sites.

Potential fire danger was estimated using the ERC, which is a component of the

American National Fire Danger Rating System (Cohen and Deeming, 1985) and is

an estimate of the maximum amount of heat that could be potentially released by

the propagating fire front. The ERC is not dependent on slope, wind speed, or fuel

amount and is strongly related to the moisture of all four fuel sizes. In the context

of this study the term “potential fire danger” is used synonymously with ERC, and

can be considered as the contribution of fuel moisture to potential fire behaviour,

independent of the impacts of weather, fuel amounts, or the impact of slope on fire

propagation.

The ERC was used by Holden and Jolly (2011) for assessing the heterogeneity

of potential fire danger over a large mountainous region. The “G” fuel model was

used to calculate the ERC. This choice, which was also made by Holden and Jolly

(2011), was based on maps of fuel models provided by www.landfire.gov, which

categorized similar forest types within the states of Washington and Oregon as “G”

type fuels. As was mentioned in Chapter 4, a 20 day spin-up period was used when

modelling 1000-hour fuel moisture to remove any sensitivity to initial conditions.

Consequently, modelled ERC presented here begins 20 days after the start of the

field season.

To address the first research question regarding spatial variability in fuel mois-

ture and potential fire danger, an analysis similar to that of Chapter 3 was used.

Daily anomalies from the intersite mean were calculated for daily maximum and

minimum modelled fuel moisture (all sizes) and ERC. Daily standard deviations

and maximum ranges were calculated to quantify the spatial variability. Spatial

variability in fuel moisture was also assessed using fuel moisture observations at

the Base Station, Fuel Moisture 1, and Fuel Moisture 2 sites.

In order to assess the influence of weather conditions, the daily standard devia-

tions were correlated against air temperature, relative humidity, wind speed, short-

wave radiation, and Days Since Precipitation. The weather variables were then

combined in a multiple regression to create an optimal model of ERC variability.

Analysis of Variance was used to determine whether the inclusion of additional

variables improved the model. In order to isolate the impact of these weather vari-

ables, only days without precipitation were used, as the impact of rain dominates
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variability during wet days. As well, the outlier Site 22 was removed from this

analysis.

To address the second research question, precipitation interception, shortwave

radiation interception, and the impact of the canopy on longwave radiation were

removed from the canopy model one at a time before modelling fuel moisture. A

fourth simulation removed all three components from the model. These resulting

fuel moisture time series were then compared to the original simulation to deter-

mine the relative influence of each component. This analysis was performed using

Site 4, which had one of the densest canopies. It is important to note here that the

same relative humidity and temperature observations were used as inputs into the

model. These observed near-surface conditions were, of course, influenced by the

canopy as well. Therefore, this analysis separates the direct impact that the canopy

has on the fuel moisture stick through changing the incident precipitation and net

radiation at its surface, from the indirect impact of the canopy through its influence

on near-surface conditions.

The third research question was addressed using a similar analysis to that used

in Chapter 3. Longer term averages of fuel moisture and ERC anomalies were

calculated over the entire field season for days with and without rain, and for each

month. Optimal linear regression models were then developed using canopy gap

fraction, radiation load, and their interaction as possible predictors of these average

anomalies (see Chapter 3 for further details).

The influence of canopy gap fraction and radiation load was also explored using

a Principal Component Analysis (PCA). PCA was applied to the 24 column matrix

composed of the ERC time-series from all sites, resulting in 24-element component

loading vectors for 24 principal components (PC). Sites with similar component

loading values were assumed to have similarly varying ERC time-series. The com-

ponent loading values of the four leading PCs were then regressed against canopy

gap fraction and radiation load to determine if either of those variables were able

to isolate similarly varying sites.
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5.2.2 Precipitation interception model

Below-canopy precipitation was modelled using a simplified sparse-canopy Rutter

model based on the approach of Valente et al. (1997). This model uses a “water-

bucket” approach wherein canopy storage is the net result of incident precipitation

minus evaporation from the canopy, drainage to the stems, and drainage directly to

the forest floor. The canopy is modelled as a water-bucket with a maximum storage

capacity. Any additional precipitation above this capacity drains out of the canopy.

Above-canopy incident precipitation was assumed to equal the amount measured

at the Base Station. Here precipitation is assumed to fall vertically.

Figure 5.1 provides a schematic of the model. Before any interception occurs,

a certain amount of the incident precipitation, Pg, falls directly to the forest floor

through gaps in the canopy. Once the incident precipitation has entered the canopy,

evaporation from the canopy, Ec is calculated as:

Ec =

{
(1− ε)E Cc

Sc
: Cc < Sc

(1− ε)E : Cc ≥ Sc

where E (mm) is the potential evaporation, Cc (mm) is the current amount of

canopy storage per unit area of covered area, ε is the fraction of total forest stand

evaporation that occurs from the trunk and stems, and Sc (mm) is the canopy stor-

age capacity per unit of covered area, which is calculated as Sc = S/c, where S is

the canopy storage capacity (in mm) and c is the canopy cover fraction. Both S and

ε are adjustable model parameters.
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Figure 5.1: Schematic of the rutter precipitation interception model. Adapted
from Valente et al. (1997)

The portion of canopy drainage, Dc (mm), that is diverted to stemflow is deter-

mined by the stemflow fraction parameter, pd , which is also an adjustable model

parameter. The final precipitation rate at the forest floor, Pf (mm), is the average

of the free throughfall and the canopy drip throughfall, Di,c (mm), weighted by the

canopy cover fraction:
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Pf = (1− c)Pg + cDi,c (5.1)

The canopy cover fraction, c, was estimated at each site using hemispherical

photo analysis described in section 5.2.3. For this application, the canopy coverage

was estimated using a minimum angle above the horizon of 85 degrees. That is,

it was assumed that only the canopy directly above the gauge contributed to the

precipitation at a specific point.

Following Carlyle-Moses and Gash (2011), potential evaporation from the canopy,

E, which assumes a saturated canopy, is modelled using a Dalton-type equation:

E =
ρacp

λγ ra
[e∗s − ea] (5.2)

where ρa (1.225 kg m−3) is the density of air (which is assumed to be constant), cp

(1.00467× 10−3 MJ kg−1 K−1) is the specific heat of air, λ (2.45 MJ kg−1) is the

latent heat of vaporisation, γ ( 0.0665 kPa K−1) is the psychrometric constant, ra (s

m−1) is the aerodynamic resistance, e∗s is the saturation vapour pressure (kPa), ea is

the ambient vapour pressure (kPa), and e∗s − ea is the vapour pressure deficit (kPa)

between the saturated canopy and the ambient air. In lieu of direct measurements

above the canopy, screen height measurements from the Base Station were used as

a replacement for above-canopy conditions.

Aerodynamic resistance is calculated following Rutter et al. (1975):

ra =
1

k2 u

(
ln

z−d
zo

)2

(5.3)

where k (0.4) is the von Kármán constant, u (m s−1) is the windspeed at height z

(m), which is 2 m above the canopy, d is the displacement height, which is taken to

be 75% of the canopy height, and zo is the aerodynamic roughness length, which

is taken to be 10% of the canopy height. Canopy height at each site was estimated

using the Vegetation Resource Inventory database (https://www.for.gov.bc.ca/hts/

vri). The average canopy height of 20 m was used in all cases.

The screen-height wind speed measured at the Base Station, uscreen, was inter-

polated to the above-canopy height, z, using the approach of Rutter et al. (1975):
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u = ln

(
z−d

zo

)(
0.818+ ln(a+4.75)

)−1

uscreen (5.4)

where a is the anemometer height (1.62 m).

There are three adjustable parameters in this model: the maximum canopy

storage capacity, S, the proportion of canopy drainage diverted to stemflow, pd ,

and the proportion of total stand evaporation that comes from stems and trunks,

ε . Average values for S (1.54 mm), pd (0.05), and ε (0.02) were calculated from

values reported by the literature for forest types similar to the study site (Rutter

et al., 1975; Whitehead and Kelliher, 1991; Loustau et al., 1992; Klaassen et al.,

1998; Spittlehouse, 1998; Iroume and Huber, 2002; Link et al., 2004; Pypker et al.,

2005) and used here. Parameter calibration was not attempted as there was only

one site with below-canopy precipitation measurements and therefore not enough

data to perform accurate model calibration.

Modelled precipitation was compared to observations at Fuel Moisture 2, Site

8, Site 1, and Fuel Moisture 3. The first three sites were assumed to be open

locations as there was no canopy coverage for altitudes of 85◦ above the horizontal

at these rain gauges. Consequently, the model assumed that there was no canopy

interception, and these sites therefore tested the assumptions that above-canopy

precipitation was homogeneous across all sites and that precipitation at a given

point on the forest floor is determined only by the amount of canopy directly above.

The rain gauge at Fuel Moisture 1 was below the canopy and was used to evaluate

the interception model.

Because only one closed-canopy site was used, the skill with which the model

predicts spatial patterns in below-canopy precipitation cannot be tested here. How-

ever, the sparse-canopy Rutter model is a widely accepted approach and the param-

eters values used are based on optimal values taken from the literature. Moreover,

as will be seen in the results, fuel moisture is relatively insensitive to precipitation

amounts, especially during dry periods.
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5.2.3 Shortwave radiation interception model

The canopy interception of shortwave radiation was modelled by combining the

hemispherical photos described in Chapter 2 with solar geometry calculations fol-

lowing the technique of Moore et al. (2005). As a first step, above canopy radiation

is assumed to equal measured radiation at the Base Station and is divided into its

direct, (Kdir) and diffuse (Kdi f f ) components using the procedure detailed in Ap-

pendix B. To generate gap fraction as a function of zenith angle, θ , and azimuth,

ψ , each hemispherical photo was converted to grayscale and a brightness threshold

was chosen to demarcate pixels of open sky from pixels of canopy. The image was

then divided into 5◦ by 5◦ segments, which were each assigned a gap fraction from

the proportion of open sky pixels to total pixels. Figure 5.2 provides examples of

both original and processed hemispherical photos.

Time series of the solar zenith and azimuth angle were calculated using the

equations of Iqbal (1983). At each time step this information was used to place the

sun within a particular 5◦ by 5◦ segment of the hemispherical photo. The above-

canopy direct radiation was then reduced by that segment’s gap fraction to generate

a time series of below-canopy direct radiation, Kbc,dir(t).

Below-canopy diffuse radiation was modelled using a sky-view factor calcu-

lated by integrating f (θ ,ψ) over the the half sphere:

fv =
1
π

∫ 2π

0

∫ 2π

0
f (θ ,ψ)cosθ sinθ dθ dψ (5.5)

This integral was estimated numerically using the 5◦ resolution gap fraction.

The total below-canopy downwelling shortwave radiation was calculated as:

Kbc(t) = Kbc,dir(t)+ fv Kdi f f (t) (5.6)

where Kbc(t) is the time series of total below-canopy solar radiation at the forest

floor.

The model was evaluated by comparing modelled Kbc at Fuel Moisture 1 and 2

to the measured below-canopy shortwave radiation at those two sites. Daily values

were used for the evaluation. This choice of resolution was made for a number

of reasons. Firstly, hourly values of modelled shortwave radiation are impacted by
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Figure 5.2: Hemispherical photos overlayed with radial grids with a 5 de-
gree resolution (top row), and thresholded hemispherical photos (bot-
tom row). Examples provided are from Sites 15 (left column) and 23
(right column).
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the location of individual sun flecks and are therefore sensitive to the exact position

that the hemispherical photo was taken. In this case, the hemispherical photos were

taken directly above the Logtag sensors rather than the pyranometers. Therefore,

at the hourly scale, there was a significant amount of model error. However, this

model error was reduced at the daily time scale. Secondly, given the slow response

time of fuel moisture, it is less important to model hourly variations in radiation

than it is to simulate daily and seasonal variability.

The one adjustable parameter in the model is the brightness threshold used

to demarcate open sky pixels from canopy pixels. The modelled radiation was

found to be sensitive to this threshold. Therefore, for the two evaluation sites, the

brightness threshold was adjusted to obtain the lowest model bias, following the

procedure of Leach and Moore (2010).

5.3 Results

5.3.1 Model evaluation

Below-canopy precipitation model

Modelled below-canopy precipitation was compared to observations at Fuel Mois-

ture 1, Fuel Moisture 2, Site 8, and Site 1. Model skill statistics are presented

in Table 5.1. Scatter plots of modelled versus observed precipitation are shown in

Figure 5.3. Both Fuel Moisture 2 and Site 1, which had gauges below open canopy,

showed low model biases with RMSE values less than 1 mm, supporting the as-

sumption that precipitation was relatively uniform across the study area. However,

the other open site, Site 8, had a large negative model bias. It is not likely that this

error was due to an intrinsic bias of the rain gauges, as they were calibrated in the

lab. It is also unlikely that the bias was due to a spatial gradient in rainfall intensity,

as Site 8 was located within 250 m of Fuel Moisture 2, which did not experience the

same bias. It is possible that there was wind-induced undercatch of precipitation

at the Base Station (Mekonnen et al., 2015), which was more exposed than Site

8 and consequently likely experienced higher wind speeds. At Fuel Moisture 1,

which had a canopy coverage of 57% directly above the rain gauge, the simulated
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precipitation had a bias of 0.04 and an RMSE of 0.6 mm. This model accuracy is

comparable to the open sites Fuel Moisture 2 and Site 1.

Table 5.1: Precipitation interception model statistics: Coefficient of determi-
nation, model bias and root mean square error.

Site R2 Bias RMSE
(mm) (mm)

Fuel Moisture 1 0.93 -0.04 0.60
Fuel Moisture 2 0.94 -0.01 0.66

Site 1 0.99 0.01 0.34
Site 8 0.91 -0.36 1.12

Shortwave interception model

The optimal brightness threshold that minimized the error in modelled below canopy

shortwave radiation at Fuel Moisture 1 was 210. For Fuel Moisture 2, model bias

decreased as the brightness threshold increased. However, once the brightness

threshold was increased beyond 141, portions of the open sky began to be incor-

rectly masked out as “canopy.” Therefore, 141 was used as the optimal brightness

threshold for Fuel Moisture 2. For all other sites, 210 was used as the optimal

brightness threshold unless the same incorrect masking of the open sky occurred.

If this erroneous masking did occur, the optimal threshold was taken to be the

highest possible value before the masking of open sky occurred.

Modelled below-canopy shortwave radiation was compared to observations at

Fuel Moisture 1 and Fuel Moisture 2. Model skill statistics are presented in Table

5.2. Time series and scatter plots of modelled and observed shortwave radiation

are shown in Figures 5.4 and 5.5, respectively. The model accuracy was high for

Fuel Moisture 2. The bias was -3.4 Wm−2, or 2% of the seasonal average, while

the RMSE was 9.9 Wm−2. Model bias at Fuel Moisture 2 became more negative as

the season progressed. Figure 5.5 demonstrates that, as previously discussed, the

model did a substantially better job at simulating daily data than hourly data. The

larger scatter of hourly observations is likely due to the fact that the hemispherical

photos were taken above the LogTag sensors, and not the pyranometer. The two

locations would have experienced slightly different insolation at short time scales
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Figure 5.3: Scatter plots of daily modelled and observed precipitation. Re-
gression lines are provided (Black Lines), and 1:1 lines are provided for
reference (grey lines).

as sun flecks moved across the forest floor. The model was less accurate for Fuel

Moisture 1. However, the model bias of -7.0 Wm−2, was still only 9% of the

seasonal average.

Table 5.2: Shortwave interception model statistics: Coefficient of determina-
tion, model bias and root mean square error.

Site R2 Bias RMSE
(Wm−2) (Wm−2)

Fuel Moisture 1 0.86 -7.03 12.87
Fuel Moisture 2 0.99 -3.44 9.88
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Figure 5.4: Time series of modelled and observed daily shortwave radiation
at Fuel Moisture 1 and Fuel Moisture 2.

Combined model of below-canopy fuel moisture

A two-month sample of modelled and observed fuel moisture at Fuel Moisture 1 is

presented in Figure 5.6, while a scatter plot of the entire season’s data is provided

in Figure 5.7. Overall, the model accurately simulated the seasonal pattern of fuel

moisture. Model accuracy improved with decreasing moisture content. The model

had a bias of -1.4%, an RMSE of 4.3% and an R2 of 0.88. For moisture below

30% the bias and RMSE decreased to -0.5% and 2.1%, respectively, while the R2

decreased to 0.85. Much of the error during the drier periods was due to larger

simulated diurnal cycles, particularly during early August.
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Figure 5.5: Scatter plots of modelled and observed hourly and daily short-
wave radiation at Fuel Moisture 1 and Fuel Moisture 2. A 1:1 line is
included for reference (dashed line).

5.3.2 Spatial variability of fuel moisture and fire danger

Observed 10-hour fuel moisture from the Base Station, Fuel Moisture 1, and Fuel

Moisture 2 is presented in Figure 5.8 as hourly (5.8A), daily maximum (5.8B),

and daily minimum values (5.8C). Overall, the three stations maintained similar

moisture levels throughout the season, particularly during the day when conditions

were dry. However, Fuel Moisture 1 had a dry nocturnal bias and smaller diurnal

variability during dry conditions. Consequently, the fuel sticks were, on average,

wetter at the the open sites.

A sample of hourly modelled 1-hour fuel moisture, 1000-hour fuel moisture,

and ERC is presented in Figure 5.9. The same sites highlighted in Chapter 3 are

also highlighted here: the south-facing open canopy Fuel Moisture 2 site, the north-

facing closed-canopy Site 4, and the anomalously wet Site 22. Similar to observed

fuel moisture, all 24 sites had similar seasonal trends in modelled fuel moisture

as well as ERC, and nocturnal differences were larger than during the day. The

open canopy south-facing Fuel Moisture 2 site exhibited wetter fuels and lower
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ERC at night than the closed-canopy Site 4. As the sites dried out during the

day, the 1-hour fuel moisture responded quickly and became drier at the open site

during the day, while the more slowly varying 1000-hour remained consistently

wetter at the open site; the nocturnal cooling overwhelmed the daytime heating

for the larger fuel size. Although not shown here, daytime 10-hour and 100-hour

fuel moisture were also higher at open sites. Consequently, daytime ERC was

often similar between the open and closed sites. Finally, the moist Site 22 had a

consistently low ERC, particularly during the day. Site 22 and Fuel Moisture 2

experienced similar nocturnal conditions, despite the large differences in canopy

cover.

Spatial heterogeneity across stations is explored in more detail in Table 5.3.

Fuel moisture and ERC were consistently more homogeneous during the day than

at night, and larger fuels were less variable than smaller fuels. Precipitation in-

creased variability, particularly for the smaller fuels.

Table 5.3: Daily standard deviation (SD) and maximum range (Range) of
daily minimum and maximum 1-hour fuel moisture (1-hmin and 1-hmax),
1000-hour fuel moisture (1000-hmin and 1000-hmax), and ERC (ERCmin

and ERCmax) averaged across each month and across all days with and
without rain.

ERCmax ERCmin 1-hmax 1-hmin 1000-hmax 1000-hmin

(%) (%) (%) (%)
Period Range SD Range SD Range SD Range SD Range SD Range SD
May 21.4 5.4 5.8 1.6
June 9.4 2.1 18.0 4.5 17.0 4.4 2.3 0.6 2.0 0.5 1.6 0.4
July 11.8 2.6 15.5 4.0 10.8 2.7 3.8 0.9 1.9 0.5 1.7 0.4
Aug. 12.9 2.6 18.1 4.8 19.7 5.0 3.5 0.8 2.1 0.5 2.0 0.4
Sept. 14.9 3.6 20.1 5.1 21.9 5.0 5.7 1.3 2.6 0.7 2.3 0.6

Dry Days 11.9 2.6 17.9 4.6 14.2 3.6 2.8 0.7 2.0 0.5 1.9 0.4
Rain Days 12.5 2.8 17.3 4.5 24.4 6.0 6.3 1.5 2.3 0.7 1.9 0.4
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Figure 5.6: Two months of modelled and observed fuel moisture for the Fuel
Moisture 1 site using the precipitation and radiation canopy interception
models and the fuel moisture model.
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Figure 5.7: Scatter plot of modelled and observed fuel moisture for the Fuel
Moisture 1 site using the precipitation and radiation canopy interception
models. Data from the entire season are used here. A 1:1 line has been
added for reference (black line).

Afternoon and early morning ERC time-series are shown in Figure 5.10 and are

compared to the ERC climatology for Sparks Lake, which was located at a standard

open site. The reduced variability in daytime ERC is evident here. Daytime fuel

moisture at Site 22 decreased at a slower rate than the other sites. During the driest

periods, the nocturnal spread across sites was comparable to the difference between

the median and 95th percentile modelled at the open Sparks Lake site. Again, apart

from Site 22, there is less spread in daytime ERC.

Daily standard deviations of minimum and maximum ERC are plotted against

weather variables in Figure 5.11. Changes in the spatial variability of daytime po-

tential fire danger were correlated only with wind speed at the 95% confidence

level; higher wind speeds led to a more homogeneous landscape. Nocturnal fire

danger variability was most strongly correlated with wind speed and relative hu-

midity. At night the landscape was more homogeneous during days with high rel-

ative humidity and low wind speed. Temperature, shortwave radiation, and Days

Since Rain were all negatively related to nocturnal ERC variability, although these
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correlations are weak. Modelling the standard deviation of nocturnal ERC with

maximum relative humidity and wind speed resulted in an R2 value of 0.46. The

addition of the remaining variables did not improve model performance at the 95%

confidence level.

5.3.3 Influence of canopy cover on below-canopy fuel moisture

The impact of removing components of the canopy model on fuel moisture is pre-

sented in Figure 5.12. When the canopy did not absorb or emit longwave radiation,

fuel moisture increased. In contrast, removing shortwave canopy interception led

to dry biases. As would be expected, removing precipitation interception led to wet

biases. Overall, the largest biases occurred during and immediately after rain, par-

ticularly for the smaller fuel sizes. For the 1-hour fuels, these biases disappeared

almost immediately after rain, but the 1000-hour fuel remained anomalously wet

for at least ten days following rain. When the canopy was removed entirely, the

influence of the increased shortwave radiation was generally larger than both the

decreased longwave and increased precipitation, leading to a dry bias overall. An

exception was during periods of rain or low amounts of shortwave radiation.

The impact of canopy removal on ERC is presented in Figure 5.13. The re-

moval of shortwave interception from the model increased the ERC by 7.0 on av-

erage, which is a mean relative bias of 13.1%. During periods of high ERC the

bias decreased to around 5. Removing the canopy impact on longwave radiation

decreased ERC on average by -4.0 (-7.4%). Removing precipitation interception

decreased the ERC on average by -2.0 (-3.6%). The decrease in ERC due to in-

creased precipitation was only comparable to the radiation terms during and imme-

diately following periods of rain. When the influence of the canopy was removed

entirely, the ERC bias was almost always positive with an average ERC bias of 1.9

(3.5%). The one exception was during a period of persistent rain in late August

and early September.
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5.3.4 Modelling spatial patterns in fuel moisture and potential fire
danger with canopy cover and radiation load

The results of the model selection procedure are provided in Table 5.4. Canopy

gap fraction was almost always the best single predictor and the addition of radi-

ation load as a second predictor only improved the model (at the 95% confidence

level) for daytime 1-hour fuel moisture. Daytime ERC and 1000-hour fuel mois-

ture were not significantly related to either canopy gap or radiation load. Overall,

the strongest models were for daytime and nocturnal 1-hour fuel moisture. Noctur-

nal ERC was also relatively well predicted. Spatial patterns were generally poorly

predicted during periods of rain.

Conditions were wetter at more open sites during the night. Daytime 1-hour

fuel moisture was lower at open sites, while canopy gap did not impact daytime

1000-hour fuel moisture. Although not shown in Table 5.4, both 10-hour and 100-

hour fuel moisture had weak positive relationships with canopy gap during the day,

suggesting that only the smallest fuel size dried quickly enough to recover from

the wetter nocturnal conditions. Daytime 1-hour fuel moisture was also lower on

south-facing slopes. This relationship was particularly strong at the end of the fire

season in September. Daily mean fuel moisture was generally higher and ERC

lower at open sites.

The first PC of the ERC time series reflected the average seasonal trend in ERC.

Canopy gap fraction was weakly correlated with the loading values of the first PC

(R2 = 0.31). Loading values of the second PC were strongly correlated with canopy

gap fraction with an R2 = 0.84 (Figure 5.14). Radiation load was weakly correlated

with the second PC (R2 = 0.31), but did not improve predictive skill (at the 95%

confidence level) when added as a second predictor along with canopy gap fraction.

The two predictors were not significant predictors of any of the higher PCs.

Apart from the outlier Site 22, the sites with the three lowest and three highest

PC2 loading values also had the highest and lowest canopy gap fraction. These

six sites are highlighted in Figure 5.15, in which two months of ERC data are

presented. The closed-canopy sites (high PC2) saw smaller changes in ERC over

the day compared to the open canopy sites (low PC2).

100



5.4 Discussion
Overall, daytime fuel moisture and potential fire danger exhibited low spatial vari-

ability, regardless of weather conditions, and daytime ERC was not related to either

radiation load or canopy cover. Fuel moisture and fire danger were more variable

at night and that variability increased during cool, moist periods with low wind

speeds. Patterns in fuel moisture and fire danger were dominated by differences in

nocturnal longwave cooling due to changes in canopy cover. Consequently, open

sites had lower daily minimum and daily mean fire danger, and radiation load did

not have a significant impact on ERC.

As mentioned in the introduction of this chapter, the ERC, which is used here

as a metric for fire danger, does not include the impact of slope, wind speed, or

fuel amounts on fire behaviour. Rather, the ERC represents the seasonal cycle of

fire danger due to the drying and wetting of fuels. Consequently, patterns in the

fire behaviour and resulting fire effects of an individual fire will also be dictated

by variability of the wind field, and patterns in fuel amounts. For instance, wind

speeds are generally lower below dense canopy (Oke, 1990), which may counter-

act the elevated ERC found under denser stands. As well, even though ERC was

not related to aspect, warmer, south facing aspects may experience increased up-

slope flows and more intense fire behaviour. Landscape patterns in fuel type and

amount are also impacted by stand density, slope, and aspect, and can also impact

patterns in fire behaviour (McKenzie et al., 2011). However, fuel moisture is an

important driver of fire behaviour (Rothermel, 1972), and the patterns in ERC that

have been presented here will likely play an important role in determining both the

behaviour of an individual fire, as well as the pattern of long-term fire potential or

burn likelihood.

5.4.1 Spatial variability of fuel moisture and potential fire danger

Nocturnal variability was higher than daytime variability, consistent with Hypoth-

esis #1a. Excluding Site 22, variability in daytime conditions was small relative

to the interannual variability recorded at the Sparks Lake fire weather station (see

Figure 5.9). These results suggest that, apart from areas with an additional source

of moisture due to a higher water table (such as Site 22), the study landscape dries
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out during the day at a similar rate following rain, regardless of canopy cover or

aspect.

During dry periods, open canopy sites had moist nocturnal conditions similar

to median conditions modelled at Sparks Lake, while nocturnal conditions at the

dry closed canopy sites were comparable to the station’s most extreme years (see

Figure 5.10). The average difference in ERC between the driest and wettest site

ranged from 15 to 20, depending on the time of year. This range can be compared

to the results of Holden and Jolly (2011) who modelled daily ERC over a larger

mountainous region (>400 km2) with an elevational range of over 1400 m. In

their study, the range of ERC across the study region was comparable to what was

found here. Therefore, the current study demonstrates that, at the landscape scale,

variability in nocturnal fire danger can be significant for areas with a mosaic of

canopy cover.

Hypothesis #1a also correctly predicted the wet conditions exhibited by Site

22. These results suggest that locations with a supply of subsurface moisture will

have a relatively cool, wet near-surface climate that, in turn, will lead to reduced

potential fire danger relative to surrounding areas. Previous work supports this

conclusion. Duff moisture is generally higher at the bottom of hillslopes (Samran

et al., 1995; Keith et al., 2010b; Vo, 2001), and Camp et al. (1997) found that

fire refugia were most likely to occur in regions with a large contributing upslope

area, such as regions of confluence, over perched water tables, and within valley

bottoms.

Overall, variability in modelled daytime ERC was not strongly related to weather

variables (Figure 5.11). This is not unexpected, as the spatial variability across sites

during the day is low (see Table 5.3. Wind speed was the one variable with a sig-

nificant but weak impact on the spatial variability of ERC: variability was lower on

windier days. Based on the results of Chapter 3, Hypothesis #1b incorrectly pre-

dicted that increased solar radiation would lead to increased daytime ERC variabil-

ity. However, it is possible that increased modelling accuracy would have revealed

such a relationship.

The low variability in daytime fuel moisture and ERC reiterates what was

found in previous studies (e.g., Chrosciewicz 1989; Whitehead et al. 2006; Faiella

and Bailey 2007; Estes et al. 2012; Banwell et al. 2013). These studies also sug-
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gested that daytime variability is higher during moist conditions and following rain.

In contrast, the results of the current study suggest that, during the day, the spatial

variability of ERC is relatively insensitive to weather conditions.

Hypothesis #1b predicted that, as was found for relative humidity and temper-

ature in Chapter 3, ERC would also become less variable during cool and moist

conditions. However, these results found the opposite: nocturnal ERC variability

is highest during cool, moist conditions. Unlike near-surface climate, the amount

of below-canopy precipitation directly impacts fuel moisture and ERC. From Fig-

ure 5.13 it is clear that the impact of precipitation on ERC persists for around a

week. Therefore, it is likely that variations in canopy interception across sites led

to higher nocturnal variability in ERC. Indeed, when precipitation interception was

removed from the model, relative humidity lost much of its impact on nocturnal

ERC variability and the negative relationship with Days Since Rain disappeared

completely.

Increased wind speed reduces nocturnal variability in ERC. It is likely that this

relationship was not due to the direct impact of wind speed on the fuel stick, as

Chapter 4 demonstrated that this impact was small. Rather, wind speed primar-

ily influences fuel moisture and ERC indirectly though its impact on near-surface

conditions. Indeed, nocturnal relative humidity was also more homogeneous dur-

ing days with high wind speeds (see Chapter 3).

5.4.2 Influence of canopy cover on below-canopy fuel moisture

Setting the canopy to be transparent to longwave radiation decreased the energy

absorbed by the stick. When the stick was saturated immediately following rain,

this reduction in net radiation reduced the amount of energy available for evapora-

tion, leading to wet fuels. When the stick was below the fibre saturation point and

sorption processes dominated, the decreased longwave radiation led to lower stick

temperatures, which, in turn, led to higher equilibrium moisture content and higher

moisture overall (see Figure 5.12). The opposite was true for shortwave radiation;

removing shortwave interception led to a dry bias relative to the full model. It is

clear from Figure 5.12 that biases due to changes in radiation interception were

much larger during wet periods following precipitation. Resistance to moisture re-
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moval increases as the stick dries out. Consequently, changes in the energy budget

have the most impact on fuel moisture during wetter periods.

Removing shortwave radiation interception by the canopy led to an average

ERC bias of 7.0, which is comparable to, or larger than, the average spatial anoma-

lies reported in Table 5.3. Therefore, in contrast to what was predicted in Hypothe-

sis #2, the impact of changing a stick’s radiation budget is not negligible. However,

it is still of secondary importance compared to the impact of near-surface relative

humidity (See Chapter 4).

It was hypothesized that precipitation would have a large impact during rain

events, but that this impact would recede over the course of a week after rain

ceased. It was indeed the case that the wet bias due to increased precipitation

was largest during rain events and that this bias decreased over the course of a

week. However, in most cases increased precipitation had a smaller impact than

changes to the radiation components, and the ERC was lowered by less than 5

units, or on the order of a few percentage points of relative change. The impact of

changing below-canopy precipitation was largest during a period of moderate but

persistent rain in late July and early August, suggesting that the duration of a rain

event is more important than rain amount. This is because persistent low-intensity

precipitation will readily be intercepted and evaporated from the canopy.

The simulated removal of the dense canopy from Site 4 increased daily precip-

itation by, on average, 1.0 mm, which, in turn, decreased the average ERC at the

site by 3.6% but had little impact on ERC during dry periods. The average error for

the precipitation interception model was less than 0.66 mm (Table 5.1). Therefore,

the accuracy of the model was high enough for the purpose of simulating potential

fire danger, especially during extended dry periods. The same reasoning extends

to the shortwave interception model. Removing the canopy from Site 4 increased

the average shortwave radiation by 180 W m−2, leading to an ERC bias of 13%.

The much smaller errors of the interception model (Table 5.2) would therefore re-

sult in only minor errors in ERC. Based on these comparisons, it is likely that the

complexity of both interception models could be reduced without diminishing the

accuracy of modelled potential fire danger, especially during dry conditions, and if

observations of near-surface humidity and temperature are available.
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5.4.3 Modelling spatial patterns in fuel moisture and potential fire
danger with canopy cover and radiation load

Based on the results from Chapter 3, it was predicted in Hypothesis #3a that canopy

cover would be the dominant factor in determining spatial patterns in fuel moisture

and potential fire danger. This hypothesis has been confirmed here. Apart from 1-

hour fuel moisture, canopy gap fraction was the best single predictor, and radiation

load did not improve the models when added as a second predictor. The dominant

impact of canopy cover was reiterated by the PCA. Canopy cover is the most im-

portant determinant of diurnal variability in ERC. These results demonstrate that

the direct impact of aspect on fuel moisture through changes in radiation load is

likely secondary to the indirect impact of increased canopy cover. This conclusion

was also reached by Nyman et al. (2015a), who found that the impact of aspect was

primarily an indirect effect due to increased vegetation on cooler slopes.

It was also hypothesized that predictive skill would be larger during the night.

This prediction was true for the 1000-hour fuel moisture and ERC, neither of which

were related to either factors during the day. However, the daytime and nocturnal

1-hour fuel moisture models were equally skillful.

Only the 1-hour fuel size was drier at open sites and south-facing slopes during

the day. In fact, daytime 10-hour and 100-hour fuel moisture was higher at open

sites. Consequently, as predicted in Hypothesis #3b, open sites had, on average,

higher modelled fuel moisture and lower potential fire danger, although the rela-

tionships were weak with relatively low R2 values. Observed 10-hour fuel moisture

was also wetter at open sites.

There are a number of possible reasons why ERC was lower at open sites.

Firstly, an examination of Figure 5.9 suggests that, because of their longer response

times, the larger fuel sizes were not able to dry out quickly enough at open sites

to reverse the nocturnal pattern when fuels were wetter at open sites. In contrast,

1-hour fuel moisture responded quickly enough so that it mirrored the daytime rel-

ative humidity patterns seen in Chapter 3, with drier conditions at open sites and

south-facing slopes. Secondly, Chapter 3 demonstrated that canopy gap fraction

had a much larger impact on relative humidity patterns at night, and that daily mean

absolute humidity was also higher at open sites. Thirdly, Figure 5.12 demonstrated

that 100-hour and 1000-hour fuel moisture were elevated for a few days follow-
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ing rain. Consequently, precipitation patterns may have counteracted patterns in

daytime solar radiation and enhanced patterns in nocturnal cooling for these larger

fuels. It is possible that previous results pointing to a small or insignificant impact

of canopy cover on fuel moisture (Faiella and Bailey, 2007; Estes et al., 2012; Ban-

well et al., 2013) could be explained by this counteracting effect of solar heating

and nocturnal cooling.

5.5 Conclusions
Canopy interception models of precipitation and shortwave radiation were reason-

ably accurate, especially for the purpose of modelling below-canopy fuel moisture.

The suite of models developed here was able to accurately simulate the observed

seasonal trends in below-canopy fuel moisture. The models produced a bias of

1.4%, and RMSE of 4.3% and an R2 of 0.88, although these results improved dur-

ing dry periods.

Compared to longwave radiation and precipitation, shortwave radiation had the

strongest direct impact on fuel moisture. Precipitation interception had the small-

est impact on fuel moisture and ERC, especially during dry periods. The impact

of precipitation became negligible around a week following rain. As previously

mentioned, it is important to note this analysis separates the direct impact that the

canopy has on the fuel moisture stick through changing the incident precipitation

and net radiation at its surface, from the indirect impact of the canopy through its

influence on near-surface conditions.

Both observed and modelled fuel moisture and potential fire danger were rel-

atively homogeneous across the landscape during the day; daytime variability in

modelled fuel moisture was comparable to the model error. This lack of daytime

variability agrees with previous studies and may be a result of the counteracting

effects of nocturnal cooling and increased precipitation versus daytime solar heat-

ing. Daytime ERC variability was not strongly influenced by weather conditions.

This result is in contrast to previous studies, which generally concluded that the

impact of canopy cover on fuel moisture is diminished during dry periods. While

daytime 1-hour fuel moisture was related to canopy cover and radiation load, pat-

terns in daytime ERC were not related to either canopy cover or radiation load. At
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the anomalously moist Site 22, an elevated water table likely contributed to low

ERC throughout the season.

Fuel moisture and potential fire danger were more variable at night. Compared

to a climatology of ERC modelled at a nearby long term station, the wettest sites

were comparable to a median season, while the driest sites had ERC levels similar

to the 95th percentile. The variability in nocturnal ERC was comparable to the

variability in average ERC found across a much larger mountainous region (Holden

and Jolly, 2011), suggesting that a mosaic of canopy cover can lead to significant

variability in nocturnal ERC at the landscape scale.

Nocturnal fire danger was also more strongly influenced by weather conditions.

Specifically, the landscape became more variable during cool and moist periods,

and during periods with low wind speeds. This is in contrast to the near-surface

climate which was relatively homogeneous during cool and moist conditions. The

difference is likely due to variations in below-canopy precipitation, which has a

stronger, direct impact on fuel moisture. Spatial patterns in nocturnal ERC and

fuel moisture were correlated with canopy cover but not radiation load. These

correlations were strongest for the smaller fuel sizes.

Overall, open sites saw significant nocturnal longwave cooling and increased

precipitation. Because these impacts persisted within the slowly varying larger fu-

els, fuel moisture and ERC patterns were dictated by canopy cover with wetter

average conditions at open sites. Only the 1-hour fuel size reacted quickly enough

to mirror the drier and warmer daytime conditions at open sites and south-facing

slopes. Finally, these results demonstrate that the direct impact of aspect on fuel

moisture through changes in radiation load is likely secondary to the indirect im-

pact of increased canopy cover.

The assessment of spatial patterns in potential fire danger presented here was

limited to point measurements across a small field site. This analysis will be ex-

tended to a larger scale in the following chapter, where the suite of models pre-

sented here will be used to generate high-resolution rasters of ERC across a large

(140 km2) region with a significant elevational gradient. This approach will allow

for a comparison of the relative influence of not just radiation load and canopy

cover, but elevation as well. Moreover, simulating high-resolution rasters will al-

low for a more detailed analysis of patterns in ERC to determine if there are patches
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within the landscape that remain moist relative to their surroundings.
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Table 5.4: Results of model selection. Standardized regression coefficients
are shown in the Canopy Gap and Rad Load columns. Bold values indi-
cate the predictor with the strongest single variable model as determined
by the coefficient of determination. Missing values indicate that the ad-
dition of the predictor did not substantially improve the model perfor-
mance. The standard error of the estimate is also provided in units of the
predictand (ERC: unitless, FMC: %).

Predictand Period Canopy Gap Radiation Load R2 Std. Error
ERCmin All Dry Days -0.86 0.72 2.35

1-h FMmax All Dry Days 0.89 0.78 1.40
1000-h FMmax All Dry Days 0.69 0.46 0.30

ERCmax All Dry Days
1-h FMmin All Dry Days -0.61 -0.43 0.78 0.23

1000-h FMmin All Dry Days
ERCmean All Dry Days -0.7 0.46 1.76

1-h FMmean All Dry Days 0.84 0.70 0.51
1000-h FMmean All Dry Days

ERCmin All Rain Days -0.68 0.43 3.13
1-h FMmax All Rain Days 0.64 0.39 3.74

1000-h FMmax All Rain Days 0.54 0.25 0.52
ERCmax All Rain Days

1-h FMmin All Rain Days -0.77 0.58 0.56
1000-h FMmin All Rain Days

ERCmean All Rain Days -0.5 0.21 2.53
1-h FMmean All Rain Days

1000-h FMmean All Rain Days
ERCmin June -0.73 0.51 2.96

1-h FMmax June 0.84 0.68 2.05
1000-h FMmax June

ERCmax June
1-h FMmin June -0.68 -0.33 0.79 0.19

1000-h FMmin June
ERCmean June -0.45 0.16 2.21

1-h FMmean June 0.74 0.53 0.80
1000-h FMmean June

ERCmin September -0.8 0.63 3.25
1-h FMmax September 0.78 0.58 3.10

1000-h FMmax September 0.67 0.42 0.51
ERCmax September

1-h FMmin September -0.75 0.54 0.53
1000-h FMmin September

ERCmean September -0.66 0.40 2.89
1-h FMmean September 0.64 0.39 1.50
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Figure 5.8: Observed hourly 10-hour fuel moisture at all three sites (A), along with daily maximum (B) and daily
minimum (C) values. Observed precipitation at the Base Station is also provided (D).
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Figure 5.9: A sample of modelled hourly 1-hour and 1000-hour fuel moisture, modelled ERC for for all sites (grey
lines), and observed precipitation at the Base Station. Fuel Moisture 2, Site 22, and Site 4 are highlighted.
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Figure 5.10: Daytime and night-time ERC for all sites. As in Figure 5.9, Fuel Moisture 2, Site 22, and Site 4 are
highlighted. The grey ribbon indicates the range between the median and 95th percentile ERC calculated at the
Sparks Lake station over 26 seasons.
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Figure 5.11: Daily standard deviation of maximum and minimum ERC plotted against daily minimum and maximum
relative humidity and temperature, daily mean wind speed, daily mean sortwave radiation, and Days Since Rain.
Regression lines and the coefficient of determination (R2) are included for plots where null hypothesis that the
regression coefficient is equal to zero was rejected at the 95% confidence level (blue lines).
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Figure 5.12: Modelled fuel moisture biases (compared to the original model)
at Site 4 for all four sizes when removing one or all of the components
of the canopy model: Longwave, shortwave, or precipitation. Note the
varying scales of the y-axes.
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Figure 5.13: Daily mean ERC biases (compared to the original model) at Site
4 when removing one or all of the components of the canopy model:
Longwave, shortwave, or precipitation. Hourly precipitation at the
Base Station is included.

Figure 5.14: Second principal component of ERC for all 24 sites plotted
against canopy gap fraction and radiation load. As in Figures 5.9 and
5.10, Fuel Moisture 2, Site 22, and Site 4 are highlighted.
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Figure 5.15: A month of ERC values for all 24 sites (grey lines). The sites
with the three highest PC2 loadings (blue lines) and the sites with the
three lowest PC2 loadings (orange lines) are highlighted.
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Chapter 6

Modelling high resolution fire
danger rasters across a large
study region

6.1 Introduction
Wildfire behaviour depends on a complex combination of fuels, topography and

weather, all of which vary at multiple scales. Consequently, the spatial pattern

of wildfires and their ecological impact across the landscape is heterogeneous

(McKenzie et al., 2011). Determining the drivers of this spatial behaviour will

aid in predicting the spatial pattern of fire effects, which can, in turn, influence

successional trajectories and ecological processes (Romme et al., 2011). Under-

standing what drives the spatial behaviour of fires is also significant from a fire

management perspective if the goal is to create more resilient ecosystems in the

face of a changing climate by introducing more fire onto the landscape (Holden

et al., 2011a).

Patterns in fuel moisture likely influence fire spread (Littell and Gwozdz, 2011;

Miller and Urban, 2000) and burn severity patterns (Alexander et al., 2006; Dillon

et al., 2011; Arkle et al., 2012). It is therefore important to assess how fuel mois-

ture varies at different spatial scales, and the relative influence of the factors driving
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these patterns. In the extreme case where the landscape is homogeneously dry, a

fire can spread unimpeded through a region, given ideal wind conditions. How-

ever, in moderate fire weather conditions, particular areas of the landscape may be

susceptible to fire spread while others are not, and in this case the pattern of fuel

moisture becomes important. If fuel moisture changes gradually across the land-

scape, i.e. there is a large spatial autocorrelation, a fire can easily spread across the

drier portion of the region. Alternatively, if the fuel moisture pattern is patchier,

and the scale of spatial autocorrelation decreases, a fire will be less likely to move

across the entire landscape without patches of wetter fuels impeding its spread

(Littell and Gwozdz, 2011).

Results from Chapter 5 suggest that in the dry Interior Douglas-fir forests stud-

ied here, daytime variability in fuel moisture and potential fire danger is low, apart

from locations that are influenced by a high water table. That is, the whole land-

scape dries out at a similar rate. Moreover, spatial patterns in daytime fire danger

were not significantly correlated with either canopy gap fraction or radiation load.

Nocturnal fire danger is more variable and significantly impacted by canopy cover.

However, the above results were based on point measurements across a small

area. These data provide limited information about actual landscape patterns or

the potential for areas to remain persistently wet relative to their surroundings. As

well, the previous chapters were restricted to a relatively small area (approximately

1 km2) with little change in elevation. In this chapter the relationships identified

in previous chapters will be extrapolated to a larger 140 km2 area with a mosaic of

canopy coverage and radiation load and a significant elevational gradient. Central

to this analysis is the development of non-linear random forest models for pre-

dicting near-surface temperature and relative humidity across the landscape using

meteorological data from a base station along with raster layers of canopy cover,

radiation load, and elevation. The final product will be time-varying 30-m resolu-

tion rasters of temperature, humidity, and potential fire danger.

As described in Chapter 3, high resolution (<1 km) gridded maps of weather

variables have been produced by a number of researchers (Holden et al., 2011a;

Holden and Jolly, 2011; Ashcroft and Gollan, 2011; Bennie et al., 2010; Holden

et al., 2015). However, much of this work has focused on temperature rather than

relative humidity, which is an important driver of fuel moisture. Holden and Jolly
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(2011) developed an empirical downscaling approach using Principal Component

Analysis and a network of relative humidity sensors that generated 30-m resolution

maps of relative humidity across a mountainous region. They found that elevation

had a strong influence on relative humidity, while radiation load was a secondary

predictor. However, this approach did not include the impact of canopy coverage

and used measurements 2 m above the ground. Ashcroft and Gollan (2011) devel-

oped 25-m resolution grids of near-surface humidity and temperature that included

the influence of canopy coverage. In their analysis, elevation and canopy cover

were strong determinants of relative humidity patterns. However, the grids they

produced were of long term extreme values; they did not produce time-varying

maps. This chapter will build on the literature by developing high resolution maps

of both near-surface temperature and relative humidity at a hourly time intervals

that are dependent on canopy cover, aspect, and elevation.

Less work has been done on developing and analysing high resolution maps

of fire danger. As mentioned in Chapter 5, high resolution fire danger maps de-

veloped by Holden and Jolly (2011) exhibited spatial patterns that changed over

the fire season. The authors used the Energy Release Component (ERC) to repre-

sent potential fire danger. South facing slopes and lower elevations saw higher fire

danger. This chapter will expand on these results by providing a novel examina-

tion of the relative influence of elevation, canopy cover, and radiation load on the

variability and patterns of both nocturnal and daytime fire danger.

This study will pursue three research objectives:

• Objective #1: Develop and evaluate models to predict temperature and rela-

tive humidity across a forested landscape and use these models, along with

models for precipitation and radiation canopy interception, to generate daily

rasters of potential fire danger across a large study region (140 km2).

• Objective #2: Examine the spatial variability of potential fire danger across

the study region and determine the relative influence of canopy coverage,

radiation load, and elevation on that variability. The following prediction

will be tested:

– Elevation is the most important factor driving the spread in potential
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fire danger across the study region, followed by canopy gap fraction,

and then radiation load.

• Objective #3: Examine the spatial patterns of potential fire danger across

the study region and how it changes over the fire season. The following

prediction will be tested:

– The impact of canopy cover and radiation load on daytime fuel mois-

ture and potential fire danger is not strong enough to create landscape

patches that are significantly wetter than the surrounding area.

This chapter begins with a description of the methods and data used, includ-

ing: an overview of the methods used to develop rasters of temperature, humidity,

and fire danger (Section 6.2.1); a description of the required input rasters (Section

6.2.2), and a detailed description of the temperature and humidity random forest

models (Section 6.2.3). The results section will provide: evaluation results for the

humidity and temperature models (Section 6.3.1, Objective #1); an analysis of the

relative influence of elevation, canopy cover and radiation load (Section 6.3.2, Ob-

jective #2); and an analysis of fire danger patterns across the study region (Section

6.3.3, Objective #3). This is followed by a discussion of results (Section 6.4) and

conclusions (Section 6.5).

6.2 Methods

6.2.1 Overview

In this study I produced daily 30-m resolution rasters of the relative humidity, tem-

perature, and ERC across a 140 km2 study region centred around the study site de-

scribed in the previous chapters (See Figure 2.1 for location). Figure 6.1 provides a

schematic overview of the procedure. The ERC rasters were calculated by running

the fuel moisture model (see Chapter 4) and the ERC model (see Chapter 5) at

each 30-m grid cell. This required time-varying input rasters of below-canopy pre-

cipitation, below-canopy shortwave radiation, near-surface relative humidity and

temperature, and wind speed. It also required a raster of canopy gap fraction (de-
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scribed in Section 6.2.2). As mentioned in Chapter 5, ERC represents the potential

heat released by a propagating fire front and, as such, does not include the impact

of wind speed or slope fire danger. Instead, it can be viewed as representing the

contribution of fuel moisture to fire danger.

Base	
Station	
Wind	
Speed

Base	Station	
Shortwave	
Radiation

Base	Station	
Precipitation

Shortwave	
Interception	

Model

Precipitation	
Interception	

Model

Canopy	
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Below-
Canopy	

Shortwave	
Radiation	
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Humidity	&	
Temperature	
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Fuel	
Moisture		&	
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Figure 6.1: Procedure used to generate fire danger rasters. Variables are
shown as squares and models are shown as green circles. Variables
are either time-varying spatial rasters (yellow squares), constant spatial
rasters (purple squares), or non-spatial time series (grey squares).

The weather rasters were generated using weather observations from the Base

Station (described in Chapter 2) and rasters of canopy gap fraction and elevation.

Specifically, the below-canopy precipitation raster was generated by running the

precipitation interception model described in Chapter 5 at each grid cell, forced
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with Base Station precipitation data and using the canopy gap fraction value at each

cell. This approach assumes that above-canopy precipitation is constant across the

study region. The below-canopy shortwave radiation raster was generated by run-

ning a simple empirical shortwave interception model (described below in Section

6.2.3) at each grid cell, which was forced with Base Station shortwave radiation

observations and the canopy gap fraction at each cell.

Wind speed was assumed to be constant across the study region and was set

to be equal to the wind speed observed at the Base Station. This is a signifi-

cant simplification as wind speed would be expected to vary significantly across

a mountainous landscape.However, this simplification was considered to be rea-

sonable because, as shown in Chapter 4, modelled fuel moisture was relatively

insensitive to wind speed. This finding was supported by additional analysis, in

which ERC was calculated at the Base Station after wind speeds were adjusted by

a constant factor, and then compared to the original ERC. Results for this analysis

are shown in Appendix C, Figure C.1. Significant adjustments in wind speed did

little to impact ERC, especially during dry periods. Moreover, estimating below-

canopy wind speeds across a mountainous landscape would substantially increase

the complexity of the study.

As mentioned in the introduction, rasters of near-surface relative humidity and

temperature were generated by running non-linear random forest models at each

grid point. A schematic of the procedure used is presented in Figure 6.2. The

required inputs for these models are: rasters of canopy gap fraction, seasonally

averaged above-canopy radiation load, and precipitation amount; shortwave radi-

ation, temperature, relative humidity, hours since precipitation, and wind speed

observed at the base station; as well as the hour of the day and the day of year. Be-

fore the Base Station temperature and relative humidity were input into the model,

they were adjusted to the elevation of each grid cell using a time-varying lapse

rate. The temperature and humidity lapse rates were calculated every hour us-

ing observations from the Kamloops Airport, which is at an elevation of 345 m

above sea-level, compared to the Base Station’s elevation of 1170 m (See Figure

2.1 for location). The Kamloops Airport data were acquired from Environment

Canada and Climate Change via the Pacific Climate Impact Consortium’s Data

Portal (https://pacificclimate.org/data).
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Figure 6.2: Procedure used to generate relative humidity and temperature
rasters. Variables are shown as squares and models are shown as
green circles. Variables are either time-varying spatial rasters (yellow
squares), constant spatial rasters (purple squares), or non-spatial time
series (grey squares).

To evaluate the relative influence of canopy coverage, radiation load, and ele-

vation on the variability and patterns of potential fire danger across the study land-

scape, rasters of ERC were generated while setting all but one of the these three

factors to be constant and equal to its average value across the study region.

Variogram analysis was used to quantify the spatial autocorrelation of ERC
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patterns across the study region. Specifically, the variogram of ERC was calculated

across the entire study region for each day. A spherical variogram model was

then fit to the experimental variogram, as analysis not shown here indicated that

it was the most appropriate model in this instance. The variogram range was then

extracted from the spherical model for each day. The variogram range represents

the maximum distance of spatial autocorrelation in ERC. Larger ranges indicate a

slowly varying pattern, while patterns with smaller ranges vary at smaller scales

and are more “patchy.”

6.2.2 Spatial input data

The three required input rasters, shown in Figure 6.3, were elevation, canopy gap

fraction, and seasonally averaged above-canopy radiation load (indicated as pur-

ple squares in Figure 6.2). Elevation data were taken from a 30-m resolution

digital elevation model (DEM) of BC developed by Rosin (2010). The canopy

gap fraction raster was derived from the Vegetation Resource Inventory Database

(https://www.for.gov.bc.ca/hts/vridata/), which contains numerous GIS layers pro-

viding information on vegetation type, stand structure, and logging history. To

generate the canopy gap fraction raster the “Crown Closure” layer was cropped to

the study region and converted to a 30-m resolution raster with the same geome-

try as the DEM. The seasonally averaged above-canopy radiation load raster was

calculated from the DEM using the Potential Incoming Solar Radiation tool avail-

able within the SAGA-GIS software. The radiation load raster was calculated as

the mean potential incoming solar radiation averaged across the length of the field

season (May 10 to September 22).

6.2.3 Modelling details

The random forest machine learning approach (Breiman, 2001) was used to model

near-surface temperature and relative humidity across the landscape. Random for-

est models are an extension of classification and regression tree (CART) models.

A CART model uses an iterative approach in which the set of training observa-

tions are split into smaller and smaller subsets based on threshold predictor values.

At each iteration the split is made that generates the most homogenous subsets.
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CART models have a number of advantages in that they do not make any assump-

tions about variable distributions, they can identify non-linear relationships, and

are not susceptible to over-fitting. Random forest models generate a “forest” of

trees using a bootstrapping approach in which an ensemble of trees are trained on

random subsets of the training data and then validated against the remaining data.

The results from the ensemble of trees are then aggregated. Random forest models

have been increasingly used to predict spatial variables where there are non-linear

and hierarchical relationships present (Dillon et al., 2011). The R package “ran-

domForest” (Liaw and Wiener, 2002) was used with 120 random trees grown for

each model.

As previously mentioned, there are three categories of predictor variables:

hourly meteorological observations from a single site (precipitation amount, hours

since precipitation, wind speed, temperature, relative humidity, and shortwave ra-

diation); spatially varying site characteristics (seasonally averaged above-canopy

radiation load, and canopy gap fraction); and two time variables (hour of day and

day of year). Because different processes are more or less important depending on

the time of day, separate models were developed for daytime hours and nighttime

hours demarcated by sunrise and sunset. As well, seasonally averaged radiation

load was not used as a predictor in the nighttime model.

The models were trained using the observational dataset described in Chapter

2. Near-surface relative humidity and temperature were simulated at the individual

Logtag sites and compared to observations. The hourly meteorological input vari-

ables were taken from the Base Station. The same site-specific canopy gap fraction

and average above-canopy radiation load values used in Chapters 3 and 5 were used

as model inputs here. Due to its outlying behaviour, Site 22 was excluded from this

analysis.

Although the random forest method uses cross validation to test each tree, the

observations are divided randomly, ignoring site and time of year. However, it is

important to examine how the models performed at independent sites and time pe-

riods not used for training. Therefore, two additional cross-validation approaches

were developed. In one case the models were trained at a random subset of half the

sites and evaluated using the remaining sites, and in the other case the models were

trained on the first half of the field season, and evaluated on the remaining portion.
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As mentioned above, the precipitation interception model, fuel moisture model,

and ERC model were all taken, unchanged, from the previous chapters. However,

estimating below-canopy shortwave radiation using hemispherical photos as was

done in Chapter 5 is not feasible when a raster across the whole study region is

required. Therefore, a simple shortwave interception model was created whereby

the fraction of radiation intercepted by the canopy was modelled as a linear func-

tion of canopy gap fraction. The model was developed using three steps. Firstly,

the simulated shortwave radiation that was generated in Chapter 5 was taken as a

proxy for observations. Secondly, a seasonal average of below-canopy shortwave

radiation was calculated for each site and divided by the average at the Base Sta-

tion site. Finally, this ratio of below-canopy radiation to open-site radiation was

regressed against canopy gap fraction. This linear regression was then combined

with the canopy gap fraction raster and the hourly time-series of shortwave radia-

tion measured at the Base Station to generate a time-varying raster of below-canopy

shortwave radiation.

6.3 Results

6.3.1 Temperature/humidity model

Table 6.1 provides cross-validation model skill statistics for both the relative hu-

midity and temperature models. Model skill was highest when the evaluation and

training subsets were split across sites, rather than time. Cross-site model skill

was highest for minimum relative humidity and minimum temperature. Example

comparisons of modelled and observed daily relative humidity and temperature are

shown in Figure 6.4 using data from site 10, which is one of the evaluation sites.

The models are able to simulate the seasonal trends well. The large wet bias in

maximum relative humidity seen in Table 6.1 is also apparent in this figure.

Modelled relative humidity and temperature, along with modelled below-canopy

precipitation and shortwave radiation, were then used to model fuel moisture and

ERC. The resulting ERC values were compared to the ERC values generated using

observations (see Chapter 5) at the evaluation sites. Comparison statistics are pro-

vided in Table 6.2. Model root mean square errors were 5.06 and 5.70 for ERCmax
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Table 6.1: Skill of models applied to evaluation data. Comparison statistics
used are: root-mean-square error, bias, and coefficient of determination.
Results are provided for evaluation across both time and sites.

RHmax (%) RHmin (%) Tmax (◦C) Tmin (◦C)
Time Site Time Site Time Site Time Site

RMSE 7.23 5.71 4.54 3.50 1.47 1.42 1.74 0.99
Bias 2.94 1.03 -2.42 1.45 0.53 -0.36 -0.78 -0.03
R2 0.88 0.88 0.95 0.96 0.95 0.95 0.88 0.94

and ERCmin, respectively, model bias was 1.51 and 3.26, and R2 values were 0.90

to 0.95. Example scatter plots comparing ERC forced by both observed and sim-

ulated relative humidity and temperature are shown in Figure 6.5. Only sites not

used for model training are shown. The correlations are strong especially at higher

values, although some cases exhibited either negative or positive biases, depending

on the site and time of day.

Table 6.2: Comparison statistics between modelled ERC forced by observed
meteorology and modelled ERC forced by simulated meteorology. Com-
parison statistics used are: root-mean-square error, bias, and coefficient
of determination. Results are provided for evaluation using both inde-
pendent time-period and independent sites.

ERCmax ERCmin

Time Site Time Site
RMSE 5.51 5.06 5.43 5.70
Bias 3.26 2.68 1.77 1.51
R2 0.91 0.90 0.95 0.93

6.3.2 Relative impact of factors influencing the spatial variability of
potential fire danger

The full suite of models shown in Figures 6.1 and 6.2 was applied to all 30-m grid

cells within the study region to generate time-varying rasters of nighttime (0400

h) and afternoon (1600 h) ERC. These specific hours were used instead of daily

maximum and minimum values for the sake of consistency across the study region.

To show both the seasonal trend and spatial variability of ERC across the study
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region, time-series from all grid cells are shown in Figure 6.6. To provide context,

an ERC value of 60 was highlighted in the plots. Conditions above this threshold

are often associated with extreme fire behaviour (Raymond and Peterson, 2005).

As was seen in Chapter 5, afternoon ERC was less spatially variable than nighttime

ERC. Nightitme ERC was most variable during moderately dry conditions at the

beginning and end of the fire season.

The spatial variability of ERC across the study region is examined in more

detail in Figure 6.7, where the standard deviation of nighttime and afternoon ERC

is shown for the entire field season. Also included is the standard deviation of

ERC maps generated when only one of the three influencing factors: canopy gap,

elevation, or above-canopy radiation load, is allowed to vary across the study region

(the other two factors are set to their average values). This isolation of factors

allows for an analysis of the relative influence of these factors, addressing Objective

#2 of this chapter.

Overall, ERC variability was enhanced by precipitation events, although this

relationship was not as consistent at night as it was during the day. The spatial

variability of afternoon ERC also was consistently reduced during dry periods.

In contrast, the spatial variability of nighttime ERC was much noisier, and the

influence of weather conditions was less obvious. For instance, in some cases rain

acted to increase variability, while in other cases the opposite was true.

ERC was consistently more variable across the study region when all three

factors were allowed to vary. As hypothesized, patterns in radiation load had the

least amount of impact, while much of the spatial variability in afternoon ERC can

be attributed to changes in elevation. One exception was during large rain events,

when the variability driven by patterns in canopy cover was equal to or larger than

the influence of elevation. Another exception was during the driest periods (mid-

July, Early August, and Late August) when variability was low and all three factors

had a similar influence. Canopy cover had a much larger influence on the spatial

variability of nighttime ERC. Indeed, during the driest periods elevation had little

influence on nighttime conditions, and a large majority of the variability was driven

by canopy cover.

128



6.3.3 Spatial patterns of potential fire danger across the study region

Examples of ERC rasters are provided in Figures 6.8 and 6.9. Two days were

chosen: the first day immediately following a large rain event, and 8 days later,

after the landscape was able to dry out (both days are indicated in Figure 6.7).

Elevation had a dominant influence on the spread of ERC during the first day,

but as conditions became drier the impact of elevation was diminished and canopy

cover became more dominant, especially at night. As the landscape went from an

elevation-dominated pattern to a canopy-dominated one, ERC transitioned from a

slowly varying pattern with a large spatial autocorrelation scale, to a pattern dom-

inated by the smaller scale variability of the canopy mosaic and a small spatial

autocorrelation scale. This shift in spatial patterns can be seen in Figure 6.10

where the change in the semi-variogram range of both afternoon and nighttime

ERC are presented. Between the two example days shown in Figures 6.8 and 6.9,

the range transitioned from around 5 km to around 1 km, indicating that the spatial

autocorrelation of ERC was substantially reduced as elevation, which has a large

autocorrelation scale, lost influence. There were a number of other cases, gen-

erally during dry periods, where the range in ERC was significantly diminished,

indicating a transition to a canopy-dominated pattern. In general, there was a trend

towards lower variogram ranges during the middle of the season.

The relationship between the mean of ERC across the study region, the stan-

dard deviation of ERC, and the variogram range is presented in Figure 6.11. The

variability in ERC across the study region decreased as the landscape dried out. It

is also evident from Figure 6.11 that most days with a small autocorrelation scale

were also relatively dry with little variability in ERC, especially during the day.

There were a few instances in which the region exhibited large variability dur-

ing relatively dry periods. Two such days are highlighted in Figure 6.11 and pre-

sented as rasters in Figure 6.12. In both cases there was a large amount of spatial

heterogeneity in potential fire danger, especially at the higher elevations where

there is a mosaic of canopy coverage. In the daytime example (June 11th) the

largest fire danger at higher altitudes was in areas with an open canopy, while the

opposite was true during the nighttime example (July 15th). However, these in-

stances of dry, variable conditions did not persist for multiple days.
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Figures 6.7, 6.8, and 6.9 were repeated for both temperature and relative hu-

midity and included as supplementary material in Appendix C.

6.4 Discussion

6.4.1 Temperature / humidity model

Chapter 3 demonstrated that spatial patterns in near-surface conditions were strongly

dependent on canopy cover, radiation load, and weather conditions. The random

forest models developed in this chapter were able to capture much of those rela-

tionships. When applied to independent sites, the models produced errors that were

comparable to the accuracy of the LogTag sensors themselves (See Appendix A),

especially for minimum relative humidity and minimum temperature. The non-

linearity of the random forest models was important for this application, as it was

able to simulate the interaction between weather patterns and site characteristics

seen in Chapter 3 (specifically, Figure 3.3). It is also interesting to note that model

skill was highest when applied to independent sites, rather than an independent

time period. This result suggests that the relationship between weather conditions

and near-surface conditions changes over the course of the fire season.

Even though the modelled relative humidity and temperature had strong R2

values when compared to observations, the model did not capture the full obser-

vational variability. When comparing the modelled standard deviation of relative

humidity across the entire study region in Figure C.2 to the standard deviation of

ERC generated from observations at just the 24 observation sites (Chapter 5, Table

5.3), it is clear that the modelled variability is lower than observations, especially

for afternoon RH. This diminished variability in model output is unavoidable when

a model is fit to observational data.

Moreover, model variability was also reduced because the field observations

described in Chapter 2 did not sample as wide a range of radiation load as was

found across the study region used in this chapter. Specifically, some steep, north-

facing facets had average radiation loads lower than what was sampled. The ran-

dom forest models interpolated to these lower values by maintaining a constant

relationship between radiation load and near-surface conditions beyond the lowest
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radiation load sampled by the field observations. Consequently, the models likely

underestimated the variability of relative humidity and temperature across the study

region that is driven by changes in radiation load. These results should therefore be

examined with the understanding that actual variability in near-surface conditions

is larger than what was produced by the suite of models, especially during the day.

The unique modelling approach used in the chapter for generating high-resolution

maps of temperature and relative humidity across a complex landscape has applica-

tions beyond the objectives of this thesis. Understanding how temperature and hu-

midity change at the local scale is important for determining the location of micro-

climates or microrefugias that are suitable for particular species (Dobrowski, 2011;

Ashcroft and Gollan, 2013a). This thesis has demonstrated that a host of factors

can interact to determine near-surface conditions at a specific spot on the land-

scape. This chapter has shown that the suite of models developed in this chapter

has the ability to capture some of these interactions in order to simulate changing

patterns of relative humidity and temperature across a forested landscape.

6.4.2 Simulated potential fire danger maps

In addressing Objective #2, it was found that afternoon fire danger was relatively

homogeneous during dry periods, even across the extended study region of 140

km2 with an elevation difference of over 1200 m. ERC variability was particularly

low during the peak of the fire season. One driver of these low variability periods

in afternoon ERC was a reduced relative humidity lapse rate; there is a moderate

(0.51) correlation between the standard deviation of afternoon ERC using all fac-

tors (blue line in Figure 6.7) and the standard deviation of afternoon RH driven

with just elevation (red line in Figure C.2). It may also be the case that the fuel

moisture model was not able to dry out the fuels below a certain minimum mois-

ture level. Consequently, all grid points approached this minimum moisture level,

even if there was variability in relative humidity across the study region. In con-

trast, nighttime variability is higher, mirroring the results of Chapter 5 where ERC

variability across the observational sites was also higher at night (see Table 5.3).

A number of studies have demonstrated that during dry periods fuel moisture

is homogenous across a range of canopy cover (Whitehead et al., 2006; Estes et al.,
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2012; Banwell et al., 2013) and radiation load (Gibos, 2010), findings which were

supported by the results of Chapter 5. The present analysis expands on those results

and suggests that during dry conditions fuel moisture and potential fire danger are

relatively homogenous over a large regions on the order of 100 km2 with a wide

range of canopy cover, radiation load and elevation.

It was determined that, as hypothesized, elevation generally had the largest im-

pact on overall fire danger variability, and radiation load had the smallest impact.

However, there were a number of exceptions. For instance, canopy cover had a

large influence on afternoon ERC variability during significant precipitation events

when precipitation interception became important, although this influence dimin-

ished quickly as the landscape dried out. As well, canopy cover played a much

larger role during the night, reflecting the findings of Chapter 5 where canopy gap

fraction was only predictive of the spatial patterns in minimum ERC and had no

connection with daytime patterns. Canopy cover drove the largest amount of night-

time variability during dry, clear-sky conditions, when the role of the canopy in de-

termining net longwave radiation was most prominent. It should be mentioned that

there was a small amount of variability in nighttime ERC when only radiation load

varied. This variability was present, even though radiation load was not included

as a predictor variable in the nighttime temperature and humidity models, because

the influence of the daytime models persisted into the night due to the “memory”

of the fuel moisture model.

As mentioned in the previous section, the model underestimated fire danger

variability due to canopy cover and radiation load. In contrast, the impact of ele-

vation was not modelled; rather, the lapse rate was calculated directly from obser-

vations. Consequently, it is likely that these results overestimated the influence of

elevation as compared to canopy cover and radiation load. However, it is still likely

that elevation was the dominant factor influencing variability, at least for afternoon

ERC.

As was mentioned in this chapter’s introduction, patches of wet fuels within a

landscape could act as impediments to fire spread or lead to heterogeneous burn

severity patterns, which has implications for ecological processes and fire suppres-

sion practices. Of the three factors controlling fuel moisture patterns in this study,

only canopy cover and radiation load vary at spatial scales small enough to gener-
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ate such patches. However, as seen in Figures 6.7 and 6.11, these two factors had

the strongest relative influence during dry periods when ERC variability is low and

the entire landscape is burnable. Moreover, while fire danger variability is larger

during moderately dry conditions, these periods were also characterized by more

slowly varying patterns in fuel moisture (i.e., large variogram ranges) dominated

by changes in elevation. Consequently, these results confirm the second hypothe-

sis that changes in near-surface conditions due to variations in radiation load and

canopy cover are not large enough to generate patches that are substantially wetter

relative to their surroundings.

Of course, it is possible that factors other than radiation load and canopy cover

could lead to patches of anomalously wet fuels. For instance, based on results

from Chapters 3 and 5, it is likely that areas characterized by high water tables can

remain wet throughout the fire season. As well, it should be re-iterated that these

results likely underestimate the influence of radiation load on fire danger patterns.

6.5 Conclusions
The random forest models described in this chapter were able to accurately predict

relative humidity and temperature at independent sites not used for model training.

Model accuracy was on par with the accuracy of the LogTag sensors and was the

highest for minimum temperature and minimum relative humidity. These results

demonstrated that the random forest model was able to capture the complex inter-

action between site characteristics and weather seen in Chapter 3. One limitation

of the model was that the observational sites did not cover the full range of radia-

tion load within the study region, resulting in an underestimation of the influence

of radiation load across the region. Another limitation was that the tests sites were

at a similar elevation. As the suite of models included the impact of elevation, it

would have been beneficial to have test sites located across a range of elevation.

The full suite of models produced simulated ERC at independent sites with root

mean square errors ranging from 5.06 and 5.70, biases ranging from 1.51 to 3.26,

and R2 values ranging from 0.90 to 0.95. These values are for the entire indepen-

dent evaluation dataset. However, the model exhibited larger biases at individual

sites although these biases tended to decrease at higher ERC values.
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The modelled rasters of afternoon potential fire danger were relatively homo-

geneous during dry periods, even across the extended study region of 140 km2 and

with a difference in elevation of over 1200 m. This low variability was partly due

to low relative humidity lapse rates, as well as the fact that modelled fuel moisture

had a lower moisture limit that all grid points reached during dry periods, regard-

less of site characteristics. Unlike afternoon ERC, variability in nighttime ERC

was less impacted by weather conditions.

Elevation had the largest overall impact on spatial fire danger variability, espe-

cially during the day. Canopy cover had a relatively strong influence during large

precipitation events and at night during fair-weather conditions. Radiation load had

little impact on the spatial variability of fire danger across the study region.

During dry periods, afternoon ERC transitioned from an elevation-dominated

spatial pattern with a large spatial autocorrelation scale to a “patchy” pattern with

a small autocorrelation scale that was dictated by the mosaic in canopy cover.

However, these dry periods with patchy patterns were also characterized by low

variability in potential fire danger. These results suggest that radiation load and

canopy cover do not have a large enough influence on potential fire danger to gen-

erate patches within the landscape that are significantly wetter than the surrounding

landscape.
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Figure 6.3: Canopy Gap, Radiation Load, and Elevation rasters used as input
layers for relative humidity and temperature models.
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Figure 6.5: Example comparisons of ERC generated using observed mete-
orological conditions and ERC generated using simulated conditions.
Results for daily maximum and minimum ERC are shown. A subset of
four sites not used for training the humidity and temperature models are
shown here. 1:1 lines is provided for reference.
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Figure 6.6: Afternoon and nighttime ERC for all grid points within the study
region. The dashed horizontal line indicates an ERC value of 60.
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Figure 6.7: Standard deviations of nighttime and afternoon ERC across the
entire study region. The results from four different simulations are
shown here: three runs in which all but one of the three spatial fac-
tors were kept constant, and one when all three factors varied across
the study region. The magenta points indicate the two days which are
shown as rasters in Figures 6.8 and 6.9
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Figure 6.8: Rasters of afternoon ERC for two different days (columns, indi-
cated in Figure 6.7). Rasters driven by all factors, and the three factors
individually (rows) are provided.
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Figure 6.9: As in Figure 6.8, but for nighttime ERC.
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Figure 6.11: Relationship between the mean ERC, the standard deviation of
ERC, and the variogram range of ERC across the landscape for both
afternoon and nighttime ERC. Two example days when the fire danger
was both high and variable are highlighted and the rasters for these two
days are shown in Figure 6.12.
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Figure 6.12: Example rasters for both an afternoon and nighttime case in
which the fire danger is both high as well as variable. The two ex-
ample cases are highlighted in Figure 6.11.
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Chapter 7

Conclusions

This thesis quantified spatial patterns in near-surface atmospheric conditions, fuel

moisture, and potential fire danger across a forested landscape, and examined how

those patterns were impacted by weather conditions, canopy cover, radiation load,

and elevation. It also identified the degree to which near-surface microclimates

directly impact fuel moisture. Presented below are the key findings of the thesis, a

discussion of their implications, and potential future research directions.

7.1 Summary of key findings
Chapter 3 examined spatial patterns in near-surface temperature and humidity across

a forested landscape with complex terrain. The objective of the study was to quan-

tify the amount of spatial variability in near-surface conditions, determine how

weather conditions impact that variability, and determine the relative influence of

canopy cover and radiation load on spatial patterns of near-surface conditions. Sub-

stantial variability was seen across the small (<4 km2) study site. In general, near-

surface conditions were more heterogeneous during during dry, clear-sky condi-

tions, and spatial variability was reduced during, and for a few days following, pre-

cipitation. Weather conditions had the largest impact on nocturnal fuel moisture.

An important finding was that the spatial variability in daytime relative humidity

was low and relatively unaffected by weather conditions.

Spatial patterns in near-surface conditions were related to both canopy cover
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and radiation load, with canopy cover being the more important predictor. Daytime

conditions were drier and warmer on south-facing slopes. Canopy cover had a

strong impact on nocturnal relative humidity, which was higher at open sites due

to longwave cooling. Canopy cover had an opposite, but weaker effect on daytime

humidity due to solar heating. Consequently, open sites experienced higher daily

mean relative humidity. Finally, one site located near a draw with an inferred high

water table remained anomalously cool and moist throughout the fire season.

Chapter 4 described a new model for simulating the moisture content of stan-

dardized fuel moisture sticks, which was subsequently used in Chapters 5 and 6 to

simulate fuel moisture across the study landscape. The model included treatments

of internal heat and moisture transport, radiation and turbulent heat fluxes, atmo-

spheric moisture exchange, and precipitation absorption. Compared to the Nelson

Model, which is used operationally by fire agencies, this novel model is relatively

simple, apart from its treatment of radiation transfer, which is more sophisticated.

When evaluated using both an independent time period and an independent

dataset, the optimized model was able to capture 72 to 94% of the variance in

observations. Despite its simplified approach, the model improved on the skill

achieved by the Nelson model. Moreover, the model allows for a more realis-

tic treatment of canopy coverage and changes in sky conditions, features that are

important for the simulation of fuel moisture patterns described in Chapter 5. Fi-

nally, sensitivity analysis suggested that relative humidity is the dominant driver of

modelled fuel moisture. The model was relatively insensitive to wind speed and

shortwave radiation, suggesting that treatment of these forcing variables could be

further simplified.

In Chapter 5, fuel moisture and potential fire danger (represented by the En-

ergy Release Component) were simulated across the field site using the new fuel

moisture model, along with models of canopy interception of radiation and precip-

itation. This suite of models was able to accurately simulate the observed seasonal

trends in below-canopy fuel moisture. Following model evaluation, the chapter’s

objective was to quantify the spatial variability of fuel moisture and potential fire

danger, and determine the relative influence of canopy cover and radiation load.

Daytime fuel moisture and fire danger exhibited low spatial variability, regardless

of weather conditions, and daytime fire danger was not related to either factor.
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Fuel moisture and ERC were more variable at night and that variability increased

during cool, moist periods with low wind speeds. Overall, patterns in fuel mois-

ture and ERC were dominated by differences in nocturnal longwave cooling due

to changes in canopy cover. Consequently, radiation load only had a secondary

impact on 1-hour fuel moisture, and open sites had lower daily minimum and daily

mean fire danger. At the anomalously moist Site 22, an elevated water table likely

contributed to low potential fire danger throughout the season.

Chapter 6 presented a method for producing high-resolution rasters of potential

fire danger over a 140 km2 region with a wide range of canopy cover, radiation load,

and elevation. The study’s objective was to assess the relative impact of these three

factors on patterns in fire danger, and examine, in detail, the spatial patterns in fire

danger. As part of this procedure a machine learning approach was used which

accurately simulated spatial patterns in temperature and relative humidity.

During dry conditions fire danger was relatively homogenous over the region,

which had a wide range of canopy cover, radiation load, and elevation. Change in

elevation led to the most variability in potential fire danger across the landscape.

While changes in radiation load and canopy cover sometimes led to “patchy” pat-

terns in fire danger during dry conditions, these periods also saw little variability in

fire danger. These results suggest that radiation load and canopy cover do not have

a large enough direct influence on daytime fuel moisture to generate patches within

the landscape that remain significantly wetter than the surrounding landscape.

7.2 Implications of findings
Increased radiation loads on warmer aspects can have a direct impact on fuel mois-

ture by increasing drying rates on south-facing slopes. This direct impact is often

cited as a significant factor dictating patterns in historical fire frequency (Heyer-

dahl et al., 2001) and burn severity (Holden et al., 2009; Birch et al., 2015; Kane

et al., 2015; Dillon et al., 2011). However, results from this thesis suggest that in

the Interior Douglas-fir forest type studied here the change in radiation load across

terrain facets is likely a secondary factor in determining spatial patterns in fuel

moisture, following canopy cover. Moreover, chapter 5 demonstrated that, across

the study site, daytime ERC was not related to radiation load. Fine, 1-hour fuel
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moisture was lower on warmer slopes, but canopy cover still played the dominant

role. Therefore, it may be that indirect impacts of radiation load, though its impact

on canopy cover and understory density, may play the larger role in determining

fuel moisture patterns. Indeed, Nyman et al. (2015b) reached a similar conclusion.

Consequently, for the purpose of predicting the spatial pattern of fuel moisture

across the landscape, it is as important to have accurate spatial vegetation data as

it is to have terrain information. In many forest types aspect and canopy density

are linked (Zou et al., 2007), so that both indirect and direct effects on fuel mois-

ture work in concert and fuel moisture would reliably be lower on warmer aspects.

However, there are many other factors that influence vegetation density, includ-

ing soil properties, groundwater, and disturbance history, that weaken the aspect-

vegetation relationship. Indeed, in wetter, energy-limited forests, stand compo-

sition is relatively unaffected by aspect (Ohmann and Spies, 1998). These results

suggest that drier fuels will not necessarily be found on slopes with higher radiation

loads.

Overall, there was a lack of variability in daytime fuel moisture and ERC across

the landscape, supporting previous findings (Whitehead et al., 2006; Faiella and

Bailey, 2007; Estes et al., 2012). However, this study built on the literature by

examining not just the afternoon conditions, but the entire diurnal moisture cycle.

This analysis determined that the lack of variability in afternoon fuel moisture is

likely due to a balance between daytime solar heating and nocturnal longwave

cooling. Moreover, this significant impact of nocturnal cooling meant that fuel

moisture was, on average, lower at open sites, a result which was seen in both

observed and modelled fuel moisture.

The important role that nocturnal cooling plays in determining fuel moisture

is a significant finding, as many fuel moisture models ignore this process. For in-

stance, the fire growth simulation model, FARSITE, which is used operationally,

includes the impact of canopy cover on daytime solar radiation, but not noctur-

nal longwave cooling (Rothermel et al., 1986). However, this study suggests that

changes in nocturnal longwave cooling can have a dominant impact on spatial pat-

terns in fuel moisture, especially for the larger fuel sizes. Consequently, FARSITE

may overestimate the differences in daytime fuel moisture between open and closed

sites.
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These results may have implications for the management of prescribed files or

wildfires that burn for multiple days during moderate conditions. Understanding

and predicting the spatial patterns of fire effects can help managers achieve their

specific management objectives. For instance, even though fine fuels will likely be

drier at open sites during the afternoon, the overall wetter fuels at open sites may

mean that, all other things being equal, fires will be less intense and have less se-

vere impacts at open sites. Brown et al. (1985) found that 1000-hour fuel moisture

was a strong predictor of duff consumption by prescribed fires, which, in turn, can

impact seedling establishment and post-fire recovery (Johnstone et al., 2010). Con-

sequently, results from this thesis have a number of implications for prescribed fire

management. Firstly, in the drier forest types examined here, and during moder-

ate fire weather conditions, canopy cover and aspect may, on their own, have little

impact on duff consumption during the day, and understory vegetation may be an

important factor dictating burn patterns. Secondly, setting burns during cool moist

conditions may lead to a more heterogenous burn pattern.

While there has been an effort to thin stands in drier forests in order to re-

store pre-settlement forest structure and reduce fire hazards, there is concern that

these treatments will increase solar radiation penetration and decrease fuel mois-

ture. However, results from this study and previous research suggest that these

concerns may be overstated. In fact, it may be the case that thinning stands will

decrease fuel moisture, especially for the larger fuel sizes.

The lack of variability in fuel moisture seen in Chapter 5 and the simulated fuel

moisture patterns generated in Chapter 6 suggest that neither gradients in canopy

cover nor radiation load have a large enough direct impact on fuel moisture to gen-

erate patches of wet fuels that persist into the field season. As long as sites are

forced by the same above-canopy conditions, nocturnal recharge will balance day-

time drying and not let sites diverge. In order for a site to remain wet, it requires

a substantial source of additional moisture. Site 22 demonstrated that this mois-

ture can come from an elevated water table that keeps an area moist throughout

the season. Consequently, accurately predicting how fuel moisture changes across

the landscape requires spatial information about subsurface flow and water table

patterns.
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7.3 Suggestions for future research
One limitation of this study was that it focused on observed and modelled moisture

of elevated fuel sticks. Even though these fuel sticks are the basis of the Amer-

ican Fire Behaviour Prediction System, their moisture content may not represent

the moisture of fuels on the forest floor. For instance, there may be differences be-

tween the microclimate immediately above the forest floor and at a height of 30.5

cm, as vertical gradients in temperature and humidity can be significant near the

ground (Oke, 1990). Indeed, it was found in Chapter 4 that modelled fuel moisture

is dependent on the height at which the temperature and humidity measurements

are taken. Moreover, fuel elements on the forest floor may gain moisture from

the underlying soils (Hatton et al., 1988; Samran et al., 1995), and elevated fuels

have more exposed surface area and may be more efficient at exchanging moisture

and heat with the atmosphere. Finally, there are number of methods of measur-

ing fuel moisture, including destructive sampling of the litter layer (Gibos, 2010),

weighing of dowels placed on the forest floor (Estes et al., 2012), or direct sen-

sor measurements of the litter later (Nyman et al., 2015a). Consequently, it would

be instructive to systematically compare the moisture of different types of fuels,

measurement techniques, and measurement heights. Such comparison would al-

low us to compare results from different studies which use different measurement

techniques.

As mentioned in Chapter 4, it would be useful to examine, in detail, the sensi-

tivity of the fuel moisture model developed here to the different model parameters

and forcing variables. Initial sensitivity analysis in Chapter 4 suggested that the

model is strongly dependent on relative humidity and relatively insensitive to wind

speed and shortwave radiation. Further analysis could identify elements of the

model that could be simplified without sacrificing model skill. For instance, it is

likely that using a constant aerodynamic resistance would not reduce model skill

and remove the requirement for wind speed as an input. As well, the model’s com-

plex approach to calculating both shortwave and longwave radiation absorption

could likely be reduced substantially. Such an analysis could result in an updated

version of the model which would still be more sophisticated and skillful than

most of the fuel moisture models reviewed in the Introduction, but also be simple
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enough to be utilized by other researchers. For instance, when choosing a fuel

moisture model to be used within a coupled fire-atmospheric model, Mandel et al.

(2012) opted to use a relatively simple fuel moisture model rather than the model

developed by Nelson (2000), which they deemed to be too complicated.

Another limitation of this study is its reliance on a single season of field ob-

servations taken across a relatively small area. Future studies could expand on

this work by deploying new networks of near-surface measurements across dif-

ferent locations and different forest types. These new datasets could be used to

test whether the relationships between near-surface conditions, radiation load, and

canopy cover found here are applicable to other locations. Independent datasets

such as these could also be used to evaluate the temperature and relative humidity

random forest models developed in Chapter 6.

These networks could also be designed to examine the impact of factors other

than radiation load and canopy cover on fuel moisture patterns. For instance, ev-

idence from Chapters 3 and 5 suggested that relative humidity and fuel moisture

likely increase in the vicinity of streams and regions with elevated water tables. A

future field project could focus on quantifying gradients in fuel moisture and rela-

tive humidity near these wet regions. It would also be useful to determine the scale

at which this influence occurs. That is, what amount of separation from a draw or

stream is required before its effect becomes negligible? It is also possible that there

would be a complex interaction between the distance from a saturated area, terrain,

and canopy cover that could be explored. The impact of nocturnal katabatic flows

and cold-air ponding on fuel moisture patterns would be another important area

to study. Areas that are susceptible to cold-air ponding would likely see elevated

relative humidity at night. It is unclear how pervasive this impact would be over a

fire season, and if it is strong enough to impact daytime fuel moisture or generate

patches of anomalously moist fuels. Finally, as mentioned above, atmospheric con-

ditions immediately above the forest floor may be different than conditions at the

30.5 cm height used in this study. A network of sensors placed a few centimetres

above the forest floor (similar to the measurements by Ashcroft and Gollan 2013b)

may help identify those differences and be more applicable to surface fuels.

The sites used in this study were purposefully situated in similar areas with

little understory growth and homogenous surface vegetation. Choosing sites with
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consistent understory vegetation allowed for an examination of the direct impact

of changes in microclimate on near-surface conditions and fuel moisture, rather

than its indirect impact through changes in vegetation. However, as suggested by

Nyman et al. (2015b), these indirect impacts are likely significant. It is important,

then, to attempt to quantify these vegetation impacts on dead fuel moisture. For

instance, a network of sites could be established where sites are chosen across

gradients of understory and surface vegetation in a region with little variability in

topography. Each site would be characterized by percent cover or density of forbs,

mosses, dead litter, shrubs, and understory and overstory trees. The impact of these

factors on fuel moisture could then be assessed. This analysis of vegetation impacts

would provide complementary information to the results found in this study.

Networks of near-surface observations could also be used to assess the accu-

racy of modelling systems used operationally. For instance, the FARSITE (Finney,

2004) and FlamMap (Finney, 2006) models both estimate relative humidity, tem-

perature, and fuel moisture across forested landscapes using a model developed

by Rothermel et al. (1986). This model includes the impact of canopy, slope and

aspect, and elevation on near-surface conditions, but does not include nocturnal

longwave cooling. Fuel moisture is modelled using both the National Fire Danger

Rating System (Cohen and Deeming, 1985) and the Nelson Model (Nelson, 2000).

A network of near-surface observations could be used to evaluate these models.

To my knowledge, no study has evaluated the ability of these models to accurately

simulate spatial patterns in fuel moisture.

Finally, as was mentioned in Chapter 5, fuel moisture is one of a number of

factors that will determine the behaviour of an individual fire. Others include wind

speed, slope, and fuel amounts. Fire behaviour prediction tools such as FARSITE

and FlamMap include treatments of all these processes, but could be improved by

including some of the insights from this thesis. These tools could then be used

to examine the sensitivity of spatial patterns in modelled fire behaviour to fuel

moisture, wind speed, slope, and fuel amounts, and determine the most important

determinant of spatial fire behaviour.
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Appendix A

Temperature, humidity, and fuel
moisture bias correction

A.1 Methods
The LogTags were set to measure ambient temperature and humidity in the lab for

three days before and after the field season. For both periods and both variables, an

average value across all LogTags was calculated and biases from this inter-LogTag

mean were calculated for each LogTag. After checking that these biases remained

stable over the field season, that is, the biases were the same for both calibration

periods, these individual biases of each LogTag were removed.

From a brief pre-field test it was apparent that the three fuel moisture sensors

exhibit biases relative to one another when co-located. These biases were removed

before comparisons were made between fuel moisture measurements at different

sites. This was accomplished with an approach similar to the LogTag bias correc-

tion. The three moisture sensors were co-located at the Base Station for the first

20 days of the field season. After the field season the moisture sensors were again

set up to take co-located measurements at the UBC climate station for an addi-

tional 15 days. The first comparison period was used to calculate the biases of the

sticks relative to one another. Once these biases were removed, the second com-

parison period was used to test the stability of these biases. Here I will focus on

reducing the bias during the dry, low-moisture periods with no rain, because these
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periods represent the majority of the season and are the most important from a fire

behaviour stand point.

Pre-field tests also indicated that the LogTags had biases relative to higher-

quality sensors. These biases were quantified by comparing the LogTag data to

the data from the co-located high-quality sensors located at Fuel Moisture 1 and

2 and the Base Station. Initial analysis indicated that the LogTag biases were not

constant; they changed with the changing humidity and temperature. Moreover,

these relationships between the absolute value of the variable and the bias were

non-linear. Therefore, a generalized additive model (GAM) from the R package

mgcv was used to quantify these non-linear relationships. To account for the non-

linear relationships, these variables were first passed through a thin plate regression

spline smoothing function. The amount of smoothing was chosen automatically

through cross validation. These models were then used to estimate the bias at each

time step which was then removed from the LogTag data.

A.2 Results

A.2.1 Logtag bias corrections

Based on the two comparison periods, the individual systematic biases of the Log-

Tags were stationary throughout the field season, and were within the± 1◦C and±
5 % humidity instrument error reported by the manufacturer. Individual humidity

and temperature biases averaged across both periods were therefore removed from

each LogTag before further analysis.

Figure A.1 provides a comparison between all Rotronic and uncorrected Log-

Tag observations taken at these three sites. The smoothed function fitted by the

GAM model is also shown. The humidity bias is most prominent at the higher

values where the LogTag sensors underpredict by a few percentage points. Con-

versely, the LogTag sensors overpredict temperature especially at the higher values.

This is reflected in the comparison statistics shown in Table A.1.

Once the GAM-modelled errors were removed the comparison statistics im-

proved, with most of the improvement seen in the biases. Example relative hu-

midity time-series are shown in Figure A.2 for both pre and post adjustment while
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error statistics are provided in Table A.1. The root mean square errors saw marginal

improvements while the correlations did not change. This is expected as it is ev-

ident from Figure A.1 that much of the error is due to the spread rather than any

systematic bias. It is likely that the slower response time of the LogTag sensors

is responsible for much of this error. However, as we are primarily interested in

daily ranges and seasonal trends, this error will not impact the final results of this

analysis.

Figure A.1: Comparison of all co-located LogTag and Rotronic temperature
and relative humidity observations. The red line is the smoothed GAM
function. A 1:1 line is provided for reference.

Table A.1: LogTag vs. Rotronic comparison statistics for both relative hu-
midity and temperature. Values provided for before and after the bias
adjustment.

Relative Humidity Temperature
Bias Cor. RMSE Bias Cor. RMSE
(%) (%) (oC) (oC)

Pre-Adj. -0.68 0.98 5.16 0.28 0.99 1.09
Post-Adj. 0.00 0.98 4.79 -0.00ww 1.00
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Figure A.2: Example relative humidity measurements by the Rotronic and
LogTag sensor at the Base Station along with bias-adjusted LogTag
data.

A.2.2 Fuel moisture sensor bias corrections

A comparison of un-adjusted co-located fuel moisture data from all three sensors is

presented in Figure A.3. Below the fibre saturation point of 30% moisture content,

where liquid water begins to form on the surface of the sticks, the sensors track

each other very closely with correlations between 0.94 and 0.98. Sensors 1 and 3

show little bias between each other (.11 %) while sensor 2 has a consistent negative

bias relative to the other two sensors (-3.2 % and -3.1 %). Above the fibre satura-

tion point the sensors are much less consistent: the correlations between sticks are

lower (r ranges from 0.86 to 0.94) and no one stick shows a consistent bias com-

pared to the others. However, the late-season comparison period shows much more

agreement above the fibre saturation point compared to the early-season period.

This may be due to the relatively modest rainfall amount during the late-season

period, i.e., as the sensors approach the saturation point of around 60%, agreement
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diminishes substantially.

Figure A.3: Early and late-season comparison of co-located moisture sensors
before bias adjustment.

Biases from an inter-sensor mean were calculated for each sensor using the

early-season data. These biases were then removed from the late-season data and

comparison statistics were calculated. In general, when below the fibre saturation

point, biases between sensors seemed to be consistent over the season, although

over the course of the season the spread between sensors increased slightly. When

the early-season biases were removed the remaining late-season biases between
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sensors ranged from 0.18 to 0.65%.

Because the biases seemed to be consistent over the season, I calculated season-

wide sensor biases from the inter-sensor mean using both comparison periods and

removed these biases from data. Because the periods below the fibre saturation

point represent the majority of the season and are the most significant to this re-

search, I calculated these biases using just the data below the fibre saturation point.

Comparison statistics after removing these biases are presented in Table A.2. The

root mean square error between sensors ranges from 1.52 to 2.25%. The adjusted

fuel moisture time-series are shown in Figure A.4.

Table A.2: Intercomparison of moisture sensors after the bias adjustment us-
ing both comparison periods. Statistics are calculated for data below and
above the Fibre Saturation Point as well as for all the data. Comparisons
are made between sensors 1 and 2 (‘1v2’), 1 and 3 (‘1v3’) and 2 and 3
(‘2v3’).

Correlation Bias (%) RMSE (%)
1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3

Above FSP 0.94 0.86 0.89 -0.48 4.52 5.00 3.52 6.47 6.79
Below FSP 0.98 0.94 0.96 0.00 0.00 0.00 1.52 2.25 1.52

All Data 0.99 0.97 0.98 -0.12 1.14 1.26 2.20 3.78 3.65
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Figure A.4: Early and late-season comparison of co-located moisture sensors
after bias adjustment.

174



Appendix B

Fuel moisture model details

B.1 Stick specific heat calculation
Following Wilkes (1979) the change in cs with moisture and temperature is calcu-

lated as:

cs =
cwood +mcwater

1+ms
+ cbound (B.1)

where m is the average stick moisture, cwater(4200 J K−1 kg−1) is the specific heat

of water, and cwood , the specific heat of dry wood, is estimated as :

cwood = 103.1+3.867Ts (B.2)

cbound accounts for the energy absorbed by the bound water below the fibre satura-

tion point and is given as an empirical function of temperature and moisture:

cbound =

{ (
23.55Ts−1320ms−6191

)
ms : ms < m f sp

0 : ms ≥ m f sp

B.2 Division of shortwave radiation into diffuse and
direct components

The ratio of diffuse to total radiation is:

175



Kd,di f f

Kd
=


1.0−0.09n n≥ 0.22

0.951−0.1604n+4.388n2

−16.638n3 +12.336n4 0.22 > n≥ 0.80

0.165 n > 0.80

where n, the clearness index, is calculated as the ratio Kd/Kd,max, where Kd,max is

the theoretical maximum solar radiation achievable under a cloud free sky and is

calculated as:

Kd,max = Ksolarτ
p/psea−level sinφ (B.3)

where Ksolar is the solar constant (1367 W m−2), τ is the atmospheric transmissivity

which is set to 0.75, p and psea−level are the pressure at the site and at sea-level,

respectively, and φ is the solar elevation angle.

The downwelling longwave radiation, Ld (W m−2), is calculated by estimating

an atmospheric emissivity, ε . Following Prata (1996) we can first calculate a clear

sky emissivity, ε0 as:

εclear−sky = 1− (1+w)exp
(
− (1.2+3.0w)0.5) (B.4)

where w is the precipitable water content (cm) which is estimated as:

w = 465
(M qa

R

)
(B.5)

We need to account for cloudiness to estimate a final atmospheric emissivity,

εa, from the clear-sky case, εclear−sky. Following Arnold et al. (1996), this can be

done by using the clearness index, n, calculated above. Specifically, εa is calculated

as:

εa = (1+βm)εclear−sky (B.6)

where m is the cloudiness factor and β is a constant based on cloud type. β is taken

to be a constant value of 0.26 which is an average value for a variety of cloud types

(Braithwaite and Olesen, 1990). m is calculated from n:
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m =

{
1−n : n > 0.2

1 : n≤ 0.2

B.3 Absorbed radiation
To calculate the diffuse radiation absorbed by the cylindrical fuel sticks, Labs and

Kabs,di f f (W), we will first assume that all incoming diffuse radiation is isotropic.

We can then integrate the equation for the intensity of diffuse radiation on a inclined

plane over the surface of the cylinder.

Iqbal (1983) provided the diffuse radiation intensity, I (W m−2), for an inclined

plane exposed to both upwelling and downwelling isotropic diffuse radiation:

Id = I
1
2
(1+ cosθ), Iu = I

1
2
(1− cosθ) (B.7)

where θ is the angle relative to the horizontal. We apply these two equations to the

infinitesimal segment in Figure B.1. For the upper half of the cylinder the radiation

absorbed, Iabs,top (W), will be:

Iabs,top = I
∫

π/2

0
1+ cos(π/2−θ)lrdθ (B.8)

The symmetry of the problem allows us to double the integral from 0 to π/2 (which

cancels out the 1/2 factor in equation B.7). For the lower half we use the same

geometry as in Figure B.1 but we take the radiation to be upwelling towards the

infinitesimal segment (i.e., we flip the geometry around the horizontal axis). There-

fore, the limits of integration remain the same but we use the equation for Iu instead:

Iabs,bott = I
∫

π/2

0
1− cos(π/2−θ)lrdθ (B.9)

The total absorbed diffuse radiation, Iabs, (in J s−1) is then:
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Iabs = Iabs,bott + Iabs,top + Iabs,edge =

lrI
∫

π/2

0
2dθ + I2πr2 = I(πlr+2πr2) (B.10)

Iabs,edge is the power absorbed by both stick edges and is derived by applying equa-

tion B.7 to those vertical faces. We can apply this result to our problem, and calcu-

late the shortwave and longwave diffuse radiation absorbed by the stick using the

terms defined in section ??:

Labs = (πlr+2πr2)es(Ld +Lu) (B.11)

Kabs,di f f = (πlr+2πr2)(1−αs)(Kd,di f f +Ku) (B.12)

dx	=	r	dqg =	p /2	-q

q

dq
r

Figure B.1: Integral geometry for the absorption of diffuse radiation by the
fuel moisture stick.
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Appendix C

Supplementary information for
Chapter 6
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of wind speed by constant factors of 0.1 and 10.
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Figure C.2: Standard deviations of afternoon and nighttime relative humidity
across the entire study region. The results from four different simula-
tions are shown here: three runs in which all but one of the three spatial
factors were kept constant, and one when all three factors varied across
the landscape. The points indicate the two days which are shown as
rasters in Figures 6.8 and 6.9
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Figure C.3: As in Figure 6.7, but for temperature
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Figure C.4: Rasters of afternoon relative humidity for two different days
(columns, indicated in Figure 6.7). Rasters driven by all factors, and
the three factors individually (rows) are provided.
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Figure C.5: As in Figure 6.8, but for nighttime relative humidity.
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