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CHAPTER 1. GENERAL INTRODUCTION  

Life depends on three inter-woven basics: energy, nutrients, and a supporting 

environment. This dissertation is an examination of those three basics under the context of 

complementary crop and pig production in Iowa. The ultimate goal is to provide useful 

information to the general public, students, policy makers, and fellow academics about the 

potential impacts of different pig production systems. An overarching assumption of this 

dissertation is that pigs and crops will be raised in Iowa and that human society will not 

spontaneously alter its modus operandi. It is my hope that with information based decision 

making we can better address the mounting challenges we face and foster the advancement of 

a more sustainable agriculture. 

United States pig production is concentrated in Iowa, and is a major influence on the 

economic and ecological condition of that community. A pig production system includes 

buildings, equipment, feed ingredients, feed processing, and nutrient management at the 

individual farm level. Energy is used in all aspects of pig production, from the manufacture 

of materials used in building construction to the cultivation and processing of feedstuffs. 

Historically the availability of fossil fuels has minimized pressure to consider all uses of non-

solar energy in pig production. Rising energy prices, uncertain access to petroleum supplies, 

and recognition of the environmental impacts of using fossil fuels are increasing awareness 

and incentives to reduce the use of limited non-solar energy resources. Comprehensive, 

accurate information is critical to informed decision making. Analysis of non-solar energy 
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use by modern pig farms in the state of Iowa, the Midwest region, and the United States is 

lacking.  

Greenhouse gas emission by human activity impacts the supporting environment that 

all Earth-based life relies on. The emission of greenhouse gases by agriculture is impacted by 

both crop and livestock sectors. Consumption of energy results in emission of greenhouse 

gases. If non-solar energy use in the construction and operation of a pig farm can be 

minimized, greenhouse gas emissions may decline. Both carbon sequestration and soil 

erosion potential is heavily influenced by cropping systems and indirectly affected by diets 

fed to pigs. If a perennial crop such as alfalfa could be incorporated into the feeding regime 

of pigs, there may be potential for decreasing losses of soil and soil bound nutrients due to 

erosion and generation of soil organic matter through carbon sequestration. 

Nutrient cycling within an agricultural system can greatly impact energy use by that 

system. Internal cycling of nutrients such as occurs when pig manure is returned to fields 

producing the crops that ultimately feed the growing pigs may lower the need for synthetic 

sources of fertility. Synthetic forms of fertility typically require significant amounts of 

energy to generate and transport. Thus utilizing locally produced, animal-based sources of 

fertility can lower the non-solar energy use of crop production. Nutrients can also move from 

a pig production system to air and water and thus impact the supporting environment. 

Energy use, nutrient cycling, and ecological impacts on the global environment of 

agricultural systems are not isolated events or entities. Rather they are interconnected 

influences which must be considered simultaneously when evaluating the desirability of a 

given production system, or when designing an agroecosystem suitable for a particular 

landscape. Models are simplified representations of complex reality and as such allow 
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modelers to predict likely trends within a system as well as the magnitude of changes 

resulting from management decisions. The utility of a model obviously relies to a great 

extent on the accuracy of modeling assumptions used as well as correctly representing the 

relationships and interactions that occur within a system. Although imperfect, models can be 

powerful analytical tools. Thus to predict the comparative non-solar energy use and 

ecological impacts of different pig production systems a series of complimentary and 

interconnected models were developed and used.  

This dissertation quantifies non-solar energy use in the construction and operation of 

pig production systems in Iowa. A pig production system includes buildings, equipment, feed 

ingredients, feed processing, and nutrient management at the individual farm level. Non-solar 

energy use, nutrient cycling, and environmental impact by different phases of pig production, 

under different diet and facility scenarios are modeled and compared using process analysis 

methodology. All energy inputs (direct and indirect) into a pig production system are 

considered based upon physical material flows. Direct energy is used within the system for 

agricultural production. Diesel fuel, electricity, and feed use are examples of direct energy. 

Energy used to produce farm inputs such as mineral fertilizers, seeds, gates, building 

materials and equipment are examples of indirect or embedded energy. For this project, 

indirect energy use one-step backwards from the farm is considered e.g. the energy used to 

produce gates and feeders will be included but not the energy used to manufacture the 

equipment to produce the gates and feeders. Energy and material flows within and out of a 

pig production system are compared to energy and material flows into the system in order to 

calculate energy use efficiency. 
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DISSERTATION ORGANIZATION 

 This thesis is divided into a literature review, six papers, a general summary, and 

three appendices. The six manuscripts that comprise the bulk of this dissertation have been 

published, accepted for publication, or are awaiting submission to an appropriate scientific 

journal and are individually formatted according to the guidelines of each journal. 
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CHAPTER 2: LITERATURE REVIEW 

ENERGY 

There are two broad categories of energy—embodied and operating. Embodied 

energy is the energy required to produce, manufacture, provide, or supply a product, material, 

or service (Hammond and Jones, 2008b). In pig buildings, energy used to manufacture 

facility components such as concrete, steel, and plastics are examples of embodied energy. 

Operating energy is the energy directly used by a system to function on a daily basis. In pig 

buildings, electricity to operate ventilation systems, liquefied petroleum gas to heat buildings, 

and diets fed to pigs are examples of operating energy. To borrow terminology from 

economics, operating energy can be considered analogous to variable costs—costs (energy 

use) that are incurred only if pig production occurs. Alternatively, embodied energy can be 

viewed as fixed costs—costs (energy use) that are incurred to create and maintain the means 

of production even if no pigs are actually raised. 

GREENHOUSE GASES 

The emission of energy related pollutants is a major influence of global climate 

alteration (IPCC, 2006, 2007). Global climate altering emissions (greenhouse gases) are 

usually reported in terms of carbon equivalents (IPCC, 2006, 2007). Three greenhouse gases 

are of primary importance when relating global climate change to energy use—carbon 

dioxide (CO2), methane (CH4) and nitrous oxide (N2O) (IPCC, 2006, 2007). Global warming 

potential (GWP) is a measure of how much a given mass of greenhouse gas contributes to 

global climate change (IPCC, 2006, 2007). Global warming potential is calculated over a 

period of time and so a time-scale must be reported in order for GWP’s of different processes 

to be meaningfully compared. Reporting greenhouse gas emissions in terms of 100-year 
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GWP relative to CO2 is standard international practice (IPCC, 2007). Table 1 presents 100-yr 

GWP of the three greenhouse gases of primary interest. As table 1 shows, all greenhouse 

gases are not equal. For example 1.0 kg N2O has the 100-yr GWP of 298.0 kg CO2. 

Caculating 100-yr GWP from energy consumption is simply a matter of converting emissions 

of CO2, CH4, and N2O into CO2 equivalents and summing the results. Combusting 1 GJ of 

liquefied petroleum gas (LP gas) on farms is reported to result in emission of 63,100 g CO2, 

5.0 g CH4, and 0.1 g N2O per GJ of energy released (IPCC, 2006). Equation 1 presents the 

calculation of the 100-yr GWP of burning 1 GJ LP gas. 

Equation 1
63,100 g CO2

1 GJ LP gas   
1 g CO2 equivalents

1 g CO2
   

63,100 g CO2 equivalents
1 GJ LP gas

5.0 g CH4
1 GJ LP gas   

25 g CO2 equivalents

1 g CH4
   

125 g CO2 equivalents
1 GJ LP gas

0.1 g N2O
1 GJ LP gas   

298 g CO2 equivalents

1 g N2O
  29.8 g CO2 equivalents

1 GJ LP gas

63,100 g   125 g   298 g   63,523 g CO2 equivalents 1 GJ LP gas
 

The energy density assumptions and calculated 100-yr global warming potential of 

six sources of energy on Iowa farms is summarized as table 2. 

CARBON 

 Linking greenhouse emissions with energy consumption gives rise to the notion of 

embodied carbon (Hammond and Jones, 2008b) and operating carbon. For example the 

embodied carbon of steel used in a pig building would be the greenhouse gas emissions 

associated with consumption of energy during production of that steel. Similarly, the 
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operating carbon of a ventilation system in a pig barn would be the greenhouse gas emissions 

that result from generation of electricity to operate fans. 

LIFE CYCLE ASSESSMENT 

 Life cycle assessment (LCA) is a technique to analyze the environmental aspects and 

impacts associated with a product, process or service (ISO, 2006; EPA, 2008b). The main 

components of LCA include: 

1) Inventory of all relevant energy and material inputs and environmental releases 

2) Evaluation of the impacts associated with inputs and releases 

(ISO, 2006; EPA, 2008b) 

 

 As the name implies LCA examines the life span of a product or service. This allows 

more complete accounting of the environmental impact of goods and services, but also 

necessitates clearly defining the beginning and end points of a product’s lifespan.  

There are several approaches to LCA ranging from cradle-to-gate, cradle-to-grave, 

and cradle-to-cradle (Hawken et al., 1999; Hammond and Jones, 2008a; Hammond and 

Jones, 2008b). The main difference is in the endpoint of the examined life cycle. For clarity, 

consider the basic example of a steel pig feeder. Cradle-to-grave LCA begins with extraction 

of raw materials (including recycled materials if applicable) needed to produce a product and 

ends with disposal of the product at the end of its use (Hammond and Jones, 2008a). Using 

our steel feeder example, the cycle begins with mining of iron ore and ends with eventual 

scrapping of the feeder after several years of use. Cradle-to-cradle LCA begins with 

extraction of raw materials (including recycled materials if applicable) needed to produce a 

product and ends with the recycling of the product into another product (Hawken et al., 

1999). In this case the LCA would end with the recycling of the steel feeder into another 
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metal product. Cradle-to-gate LCA begins with extraction of raw materials (including 

recycled materials if applicable) and ends with delivery of the product to its point of use. In 

this case the LCA would end when the feeder is delivered to a pig farm (Hammond and 

Jones, 2008a; Hammond and Jones, 2008b). Because of the inherent difficulties in tracking 

inputs and impacts after a product has been delivered to its point of use, many LCA reports 

are technically cradle-to-gate analyses (LaHore and Croke, 1978; Ericksson et al., 2005; 

Dalgaard et al., 2008; Hammond and Jones, 2008b). 

LCA OF SWINE FEED INGREDIENTS 

 Because feed is the largest single input in swine production, the energy inputs and 

associated environmental impacts of swine feed ingredients have received the most attention 

(LaHore and Croke, 1978; Binder, 2003; Ericksson et al., 2005; Nielsen et al., 2006; Nielsen 

and Wenzel, 2006; Dalgaard et al., 2008). LaHore and Croke reported support energy needed 

to produce 19 feed ingredients for Australian pig production (LaHore and Croke, 1978). This 

report excludes corn and does not provide nutritional analysis of the included ingredients 

(LaHore and Croke, 1978). 

 Exogenous phytase and synthetic amino acids are an important part of consideration 

in modern pig production and providing those products is a multi-billion dollar business for 

ingredient manufacturers (Binder, 2003; Nielsen et al., 2006; Nielsen and Wenzel, 2006). 

Assessments of exogenous phytase have reported that the key energetic advantage of feeding 

phytase is reducing the amount of inorganic phosphorus in pig diets (Nielsen et al., 2006; 

Nielsen and Wenzel, 2006). From a pig production standpoint, it has been demonstrated that 

inclusion of exogenous phytase enables utilization of plant source phosphorus by pigs and 

allows diets containing reduced amounts of inorganic phosphorus to be nutritionally adequate 
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(Veum et al., 2006; Veum and Ellersieck, 2008; Emiola et al., 2009). Literature on the LCA 

of synthetic amino acids is less available. After an extensive search of multiple data bases, 

published articles, and personal communications with ingredient manufactures, only one 

publication presenting the production energy of synthetic amino acids could be found 

(Binder, 2003). Binder (2003) reports that chemical synthesis of 1.0 kg DL-methionine 

requires 88.0 MJ of primary energy. This value is considerably higher than the estimate of 

50.0 MJ/kg for supplemental ingredients including synthetic amino acids reported by LaHore 

and Croke (1978). The paucity of information in the published literature pertaining to the 

energy required to produce L-lysine, the synthetic amino acid most commonly fed to pigs is 

unfortunate and should be rectified. 

 Production of soybean meal in Argentina with subsequent delivery to Rotterdam 

Habor, in the Netherlands has been reported (Dalgaard et al., 2008). Imported soybean meal 

is a major source of amino acids for pigs in Europe (Ericksson et al., 2005; Dalgaard et al., 

2008). The application of information presented by Dalgaard et al. (2008) to Iowa swine 

production must take into account the likelihood of substantial reductions in transportation 

energy required. Dalgaard et al. (2008) estimate an ocean voyage of more than 12,000 km for 

soybean meal from Argentina to the Netherlands. Given Iowa’s leadership in U. S. soybean 

production (USDA, 2009) and processing (Hardy, 2009), it is reasonable to assume that 

soybean meal fed in Iowa travels a much shorter distance. 

ASSESSMENT OF PIG PRODUCTION INPUTS AND IMPACTS 

 Iowa pig production in 1975 was estimated to require input of 2,622 MJ non-solar 

energy per 100 kg of liveweight (Reid et al., 1980). Approximately 65% of the energy input 

was directly associated with swine feed (Reid et al., 1980). For every 100 kg of pigs 
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produced 809 m2 of cropland was required (Reid et al., 1980). United States pig production 

has changed dramatically since 1975, but Reid et al (1980) provides a historic perspective of 

Iowa pig production. 

 The efficiency of Swedish pork production reportedly increased by approximately 

20% between the years 1972 and 1993 (Uhlin, 1998). Feed and fertilizers accounted for 60% 

of the energy input in Swedish pork production in 1993 (Uhlin, 1998). Uhlin (1998) reported 

the total energy use for pig production relative to energy output in pork. This is a unique 

reporting strategy among the LCA literature pertaining to pig production. The researchers 

reported that in 1993, Swedish pork required 4.10 MJ non-solar energy input for every 1.0 

MJ of pork produced (Uhlin, 1998). The energy density of fresh pork carcass, excluding bone 

and skin is reported as 15.73 MJ/kg (USDA, 2008). Assuming a reported dressing percentage 

of 72% for pigs (Lammers et al., 2008), the non-solar energy input is calculated to be 46.4 

MJ/kg live weight. 

 Indicators of resource use and environmental impact for 5 pig farms in Denmark were 

collected for 3 years (1994–1997) (Halberg, 1999). The selected farms did not statistically 

represent Danish farms, but they were typical pig farms for Denmark at that time (Halberg, 

1999). Non-solar energy inputs of 13–20 MJ per 1.0 kg of live weight was reported with no 

examination of the portion of non-solar energy committed to feed production presented 

(Halberg, 1999). 

 Dutch researchers compared pork with pea-based protein for human nutrition and 

assumed 3,783 MJ of non-solar energy input for every 112.2 kg pig (Zhu and van Ierland, 

2004). The researchers included energy use for growing crops, manufacturing feed, pig 

farming, harvest of the animal, and processing of meat products (Zhu and van Ierland, 2004). 
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Although their precise methodology is opaque, it is estimated that Zhu and van Ierland 

(2004) attributed 70% of the total non-solar energy input to producing the pig or 2,650 MJ 

per 112.2 kg live pig. A total of 741.7 kg of CO2 equivalents were attributed to each pig 

through the entire pork chain (Zhu and van Ierland, 2004). Because greenhouse gas 

emissions are closely tied to energy consumption, it is estimated that 70% of the total CO2 

equivalents (519 kg) were allocated to producing the 112.2 kg market pig.  

 The estimated non-solar energy use for pig production under different production 

schemes in France ranges from 15.9–22.2 MJ per kg of pig (Basset-Mens and van der Werf, 

2005). The scenario most closely resembling commodity pork production in the United 

States required 15.9 MJ of non-solar energy input and resulted in emission of 2.3 kg CO2 

equivalents per 1.0 kg of pig live weight (Basset-Mens and van der Werf, 2005). The French 

researchers estimated 2.7% of total non-solar energy use should be attributed to operation of 

pig housing with 74% of the non-solar energy use being associated with crop and feed 

production (Basset-Mens and van der Werf, 2005).  

 Researchers in Sweden focused on the impact of feed choice on energy use and 

environmental impacts of pork production (Ericksson et al., 2005). Three scenarios for 

protein supply were considered—imported soybean meal, locally produced peas and 

rapeseed cake, and locally produced peas and rapeseed cake with synthetic amino acids 

(Ericksson et al., 2005). Their analysis assumed soybean meal was imported from South 

America, this resulted in the pigs fed soybean meal based diets requiring 6.8 MJ non-solar 

energy input/kg pig growth (Ericksson et al., 2005). Pigs fed locally sourced peas and 

rapeseed cake required the least non-energy input, 5.3 MJ/kg growth (Ericksson et al., 2005). 

Adding synthetic amino acids to locally sourced peas and rapeseed cake dramatically reduced 
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predicted nitrogen excretion by the growing pigs, but resulted in use of 6.3 MJ non-solar 

energy per kg of pig growth (Ericksson et al., 2005). The researchers focused exclusively on 

the grow-finish stage of production and did not include energy use or environmental impacts 

resulting from operation of pig housing (Ericksson et al., 2005). The three dietary scenarios 

resulted in emission of 1.5, 1.3, and 1.4 kg CO2 equivalents/kg of pig growth (Ericksson et 

al., 2005). 

 A 2006 United Kingdom report estimated the non-solar energy use for 1.0 kg of pork 

as 17.0 MJ and the 100-yr GWP as 6.4 kg CO2 equivalents (Williams et al., 2006). The 

purpose of this report was to compare many different commodities with each other rather 

than methods for producing one particular product (Williams et al., 2006). Energy use for 

building operation was not reported and no comparisons of different types of pig farms were 

made (Williams et al., 2006).  

 Belgium researchers used a Flemish farm database of technical and economic records 

to establish a representative specialized pig farm for modeling purposes (Meul et al., 2007). 

They used this model farm to estimate energy use efficiency for different farm types using 

process analysis methodology (Meul et al., 2007). This method calculates direct and indirect 

energy inputs based on physical material flows and ignores solar energy and human labor 

inputs (Jones, 1989). Although inclusion of human labor inputs would result in a more 

complete evaluation of agricultural systems the difficulty in quantifying and allocating 

human labor and the corresponding introduction of error into the analysis is generally 

considered to outweigh the potential benefits (Jones, 1989). Meul et al. (2007) considered 

energy input using the cradle-to-gate approach of LCA. They included embodied energy use 

one step backwards from the farm—i.e. energy used to produce fertilizers was included, 
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energy used to manufacture the fertilizer plant was not (Meul et al., 2007). Non-solar energy 

use of 17.2 MJ/kg carcass weight was reported for the average pig farm model with 70% of 

the non-solar energy use being directly attributed to feed production (Meul et al., 2007). The 

researchers also generated a model representing the 5% most energy efficient pig farms and 

examined energy use for those operations (Meul et al., 2007). It is estimated that the most 

energy efficient pig farms require10.6 MJ of non-solar energy use/kg carcass weight with 

73% of non-solar energy use directly attributed to feed (Meul et al., 2007). 

 The most recent assessment of swine production was conducted in Denmark and 

focuses exclusively on global warming, eutrophication, acidification, and photochemical 

smog (Dalgaard et al., 2007). Resource use for grain, soybean meal, heat, and electricity are 

stated and can be used to calculate non-solar energy consumption. If a barley-soybean meal 

diet is assumed total non-solar energy inputs are 43.34 MJ/kg pork (Dalgaard et al., 2007). 

This assumes a gross energy (GE) value for barley and soybean meal of 15.9 and 17.2 MJ/kg 

respectively (Sauvant et al., 2004). Valuing feed inputs based on GE is problematic from a 

nutritional standpoint, but is the most straightforward method to derive a non-solar energy 

input estimate from the provided information. For every 1.0 kg pork produced under the 

conditions of the Danish model, emission of 3.6 kg CO2 equivalents occurs (Sauvant et al., 

2004). 

 Table 3 summarizes nine reports of energy use and CO2 emissions for pork 

production. Recent work in this area has focused in Europe and Denmark in particular. There 

are fundamental differences between European and United State pigs production that limits 

the application of European results to inform decision making by pig producers in Iowa. 

European swine diets typically include more variety in feed ingredients and often include 
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high amounts of small grains such as barley. Peas, rapeseed cake, and soybean meal are all 

commonly used as protein sources in European swine diets. Iowa swine diets are almost 

entirely comprised of corn and soybean meal. Pigs are generally limit fed in Europe and fed 

ad libitum Iowa. Diet form may also vary. Feeding pelleted or liquid feeds in Europe is 

common while in the United States almost all diets are fed as dry mash. Some Iowa farms do 

provide water at the feeder, encouraging consumption of a wet-dry feed, but this strategy is 

very different from liquid feeding systems seen in Europe. Market weight in the United 

States is also heavier than in Europe. Finally climate conditions and primary environmental 

concerns are different between Europe and Iowa. 

ENERGY IN PIG NUTRITION 

 Approximately 60-80% of the total cost of pork production can be attributed to 

providing feed to the animal (Fowler, 2007). And energy components account for 80-90% of 

pig diets by mass (Holden et al., 1996). Historically highly digestible starches have been the 

primary source of energy in pig diets with fats and oils playing an important role particularly 

in diets for young pigs. Forages and nonstarch polysaccharides are of limited use in modern 

growing pig diets although these feedstuffs can be fed to pregnant sows without negative 

effects on reproductive performance (Calvert et al., 1985; van der Peet-Schwering et al., 

2002). Proteins can be catabolized by the pig. Proteins are less energy dense than lipids and 

have an energy density that is similar to carbohydrates (Berg et al., 2002; Salway, 2004). 

Catabolism of proteins requires elimination of nitrogen from the body, an activity that lowers 

the net gain in biologically useful energy from oxidation of proteins relative to carbohydrates 

and lipids (Berg et al., 2002; Salway, 2004). Traditionally the price premium paid for 
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proteinaceous feedstuffs has been too high for widespread use of protein as a source of 

energy for pigs. 

 Gross energy (GE) is the theoretical maximum energy that could be used by the pigs 

and is defined as the energy releases as heat following total combustion of a feedstuff (NRC, 

1998; Ewan, 2001). Although GE is the starting point for further calculations, it is not a good 

measure of useful energy for pigs because it does not consider any of the losses of energy 

during ingestion, digestion, and metabolism of a feedstuff (Moehn et al., 2005). For example 

1.0 kg of starch has approximately the same amount of GE as 1.0 kg of straw (Moehn et al., 

2005) and 1.0 kg of corn has similar GE as 1.0 kg of soybean hulls (Sauvant et al., 2004). 

 Terms commonly used to describe dietary energy include DE, ME, and NE (Ewan, 

2001; Moehn et al., 2005). Digestible energy (DE) is the GE of the feed consumed minus the 

GE of the feces excreted (NRC, 1998; Ewan, 2001; Moehn et al., 2005). Metabolizable 

energy (ME) is DE minus energy excreted in urine and combustible gases (NRC, 1998; 

Ewan, 2001; Moehn et al., 2005). While DE and ME are relatively simple to determine, they 

only express potential energy and do not take into consideration the pig’s ability to utilize 

energy from different dietary sources (Moehn et al., 2005; Noblet, 2006, 2007). Given work 

demonstrating pigs utilize energy present in consumed starch, protein, and lipid at different 

efficiencies (van Milgen et al., 2001), DE and ME values for feedstuffs are limited. The 

practical effect of using DE and ME systems is that they typically overestimate the energy 

value of protein and underestimate the energy value of lipids (Noblet, 2007; Payne and 

Zijlstra, 2007). 

 Net energy (NE) values of feedstuffs provide a more precise measure of the energy 

available for use by the animal (Ewan, 2001; Moehn et al., 2005; Noblet, 2007). Net energy 
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is defined as ME minus the heat produced during digestion of feed, metabolism of nutrients, 

and excretion of wastes (Ewan, 2001; Moehn et al., 2005). The energy left following those 

losses—energy in feces, urine, and gaseous products of digestion, and heat produced during 

digestion, metabolism, and excretion—is the energy actually used by the animal for 

maintenance and production (Moehn et al., 2005; Noblet, 2006, 2007). Net energy is thus the 

only system that expresses usable dietary energy by incorporating the efficiency of nutrient 

use. Most North American swine nutritionists are most familiar with DE and ME systems. 

Although DE or ME systems may have been sufficient when formulating simple diets 

containing primarily corn and soybean meal, the advantages of the NE system are greater as 

diet complexity increases. Discussion surrounding adoption and application of a net energy 

system is on-going among North American swine nutritionists (Moehn et al., 2005 ; Payne 

and Zijlstra, 2007; Zijlstra and Payne, 2008). 

 As noted by Payne and Zijlstra (2007) the efficacy of any energy system is dependent 

upon the accuracy of the energy values assigned to a set of ingredients. The DE, ME, and NE 

values of many ingredients can be readily obtained from feeding tables (NRC, 1998; Sauvant 

et al., 2004) but use of those values are only appropriate for ingredients having chemical 

characteristics similar to those in the tables (Noblet, 2007). As feed ingredients become 

increasingly differentiated—DDGS from one particular ethanol plant, soybean meal from 

low linolenic acid soybeans, low phytate corn—the task of updating ingredient nutrient 

matrices to reflect the feed ingredient actually used becomes critical. Payne and Zijlstra 

(2007) provide an action plan for analyzing ingredients, calculating values, and adjusting 

formulation schemes accordingly. Equations for calculating NE from chemical analysis of 

crude protein, fat, and fiber; moisture; ash; acid and neutral detergent fiber; sugar; and starch 
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were proposed by Noblet et al. (1994). These equations are the basis for the energy values 

reported by Sauvant et a. (2004). The most recent NRC for swine presents NE values based 

on the work of several different researchers (NRC, 1998) and in general NE values reported 

by NRC are lower than those explicitly calculated by Sauvant et al. (2004). 

AMINO ACIDS 

Growing pigs fed grain-based diets typical of modern swine production eat to satisfy 

a demand for energy and so the quantity of feed consumed depends on the energy density of 

the diet fed (NRC, 1998; Ellis and Augspurger, 2001; Ewan, 2001; Whittemore et al., 2003). 

Nutrient-to-energy ratios are thus important considerations when formulating and comparing 

pig diets (NRC, 1998; Ellis and Augspurger, 2001; Ewan, 2001; Whittemore et al., 2003). It 

is well established that different amino acids are required in different proportions to support 

growth of pigs (Lewis, 2001) and current nutrient recommendations relate intake of the 

essential amino acids in proportion to intake of lysine (NRC, 1998; Whittemore et al., 2003). 

The amino acid present in the least amount relative to the pig’s requirement is known as the 

first limiting amino acid (Lewis, 2001; Whittemore, 2006). Lysine is generally the first 

limiting amino acid in practical swine diets with methionine, threonine, and tryptophan also 

being of key concern (Lewis, 2001). 

SWINE NUTRITION RECOMMENDATIONS 

Nutrition recommendations for swine in the United States are currently based on 

metabolizable energy and apparent ileal digestible amino acids (NRC, 1998). A net energy 

(NE) system considers the amount of heat lost during digestion and subsequent deposition of 

nutrients in body tissue and is thus a more accurate estimate of the true energy content of an 

ingredient (Ewan, 2001; Moehn et al., 2005; Noblet, 2007). Discussion of the practicality and 
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application of a net energy system is on-going among North American swine nutritionists 

(Moehn et al., 2005 ; Payne and Zijlstra, 2007; Zijlstra and Payne, 2008). At present 

standardized ileal digestibility is the most accurate basis for diet formulations in regards to 

amino acids availability (Gabert et al., 2001; Sauvant et al., 2004; Stein et al., 2007a; Stein et 

al., 2007b). More recent European recommendations are based on net energy and 

standardized ileal digestible amino acids (Whittemore et al., 2003). Feedstuff tables 

presenting the NE and SID amino acid content of feed ingredients are available (Whittemore 

et al., 2003; Sauvant et al., 2004). 
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Table 1. One hundred year global warming potential of three primary greenhouse gasesa 
Common name Chemical Formula 100-yr GWP, CO2 equivalents 
Carbon dioxide CO2 1 
Methane CH4 25 
Nitrous oxide N2O 298 
a (IPCC, 2007) 
 

 

Table 2. Energy density and 100-yr global warming potential of common Iowa farm fuels 
Fuel Energy density, MJ/L 100-yr GWP, g CO2/MJ 
Corn grain 11.7a na 
Liquefied petroleum gas 25.73b 63.52c 
Number 2 diesel 38.46b 82.73c 
Electricity na 229.32d 
Ethanol 21.3e na 
Biodiesel 34.5f na 

a Gross energy of corn grain is 16.2 MJ/kg (Sauvant et al., 2004) 
b (Downs and Hansen, 1998). 
c (IPCC, 2006). 
d Calculated from weighted average of fuels consumed for electricity generation and 

transmission losses for Iowa (IPCC, 2006; EPA, 2008a) 
e (Hill et al., 2006). 
f (Hill et al., 2006; Huo et al., 2008) 
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Table 3. Summary of published energy assessments of pig productiona 
 
 
Location 

 
Production 

Year 

Non-solar 
energy input,  

MJ/kg live wt. 

Non-solar energy 
attributed to feed, 

% of total 

Emissions, kg 
CO2 equivalents/ 

kg live wt. 
Iowab  1975 36.2 72.2 nr 
United Statesb 1975 37.2 71.7 nr 
Swedenc 1993 46.4 61.0 nr 
Denmarkd 1997 17.0 NR nr 
Belgiume 1998 23.7 70.0 nr 
Belgiumf 1998 14.6 73.0 nr 
Denmarkg 2004 23.6 NR 4.6 
Franceh 2005 15.9  74.0 2.3 
Denmarki 2005 6.8 100.0 1.5   
Denmarkj 2005 5.3 100.0 1.3 
Denmarkk 2005 6.3 100.0 1.4 
United Kingdoml 2006 23.5  nr 8.8 
Denmarkm 2007 59.8 nr 5.0 

a Assumes 1 kg of pork = 1.38 live weight 
b (Reid et al., 1980) 
c (Uhlin, 1998) 
d (Halberg, 1999) 
e Average farm examined (Meul et al., 2007). 
f Top 5% energy efficient pig farms in database (Meul et al., 2007). 
g (Zhu and van Ierland, 2004) 
h (Basset-Mens and van der Werf, 2005) 
i Imported soybean meal as protein source, finishing phase only (Ericksson et al., 

2005). 
j Local pea and rapeseed meal as protein source, finishing phase only (Ericksson et al., 

2005). 
k Local pea and rapesedd meal with synthetic amino acids, finishing phase only 

(Ericksson et al., 2005). 
l (Williams et al., 2006) 
m Calculated based on gross energy of barley-soybean meal diet (Dalgaard et al., 2007). 
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CHAPTER 3. CONSTRUCTION RESOURCE USE 
 OF TWO DIFFERENT TYPES AND SCALES OF IOWA SWINE 

PRODUCTION FACILITIES  
 

A paper accepted by Applied Engineering in Agriculture 
 

P. J. Lammers, M. S. Honeyman, J. D. Harmon, J. B. Kliebenstein, and M. J. Helmers1 
 
 

ABSTRACT. As global populations and affluence rise, there is increasing demand for 

energy, animal protein, and construction materials. In many cases, available resource pools 

are insufficient to meet growing market demands, resulting in increased prices and 

competition for limited resources. This study evaluates key construction resources needed to 

build different types and scales of Iowa swine production facilities. Two types of facilities—

conventional confinement and hoop barn-based—within farrow-to-finish pig production 

systems scaled to produce either 5,200 or 15,600 market pigs annually are examined. 

Conventional confinement facilities are typical of pork industry practice in the United States 

and are characterized by individual gestation stalls and 1,200 head grow-finish buildings with 

slatted concrete floors and liquid manure systems. The hoop barn-based alternative uses 

bedded group pens in hoop barns for gestation and finishing. Five building materials: 

concrete, steel, lumber, thermoplastics, insulation, as well as crushed rock and diesel fuel 

used for building site preparation are considered. Land surface area required for buildings 
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and pig production infrastructure are also compared. Relative market costs of newly 

constructed swine facilities are compared under several material price scenarios. Using hoop 

barns for grow-finish and gestation results in lower construction costs. Increasing the scale of 

pig production results in lower construction costs per pig space, however the construction 

costs per pig space for a 5,200 head hoop barn-based complex is less than the construction 

costs per pig space for a 15,600 head conventional confinement system. In terms of 

construction resource use and cost, hoop barns for swine are a viable alternative that are less 

dependent on the scale of production than conventional confinement facilities. 

Keywords. Building materials, Construction costs, Hoop barn, Swine production. 

 

INTRODUCTION 

Global population is projected to reach 9.2 billion people in 2050 and if realized will 

represent an increase of more than 360% over a 100 year time period (UN, 2007). Population 

in China and the United States is also projected to increase dramatically (UN, 2007). Those 

two countries lead the world in pork production and consumption, a trend that is likely to 

continue (den Hartog, 2005; FAO, 2006). Increased population and rising incomes have 

created increased market demand for energy, animal protein, and construction materials 

globally. Over time, increased market demand for available resources typically results in 

greater price competition for those resources. Thus it is appropriate to examine the relative 

efficacy of using construction resources to build different types and scales of animal protein 

production systems. This paper examines the material use for constructing different types and 

scales of Iowa swine production facilities. Relative costs of building different types and 

scales of Iowa swine production facilities are also compared under different pricing 
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scenarios. Information presented in this paper constitutes an inventory of construction 

resources required for construction of pig production facilities. This inventory can be 

combined with additional information to conduct a life cycle analysis of pig production, 

however the present paper is not a complete life cycle analysis of pig production facilities.  

METHODS 

This project considers input of construction resources into different types and scales 

of swine production facilities based upon physical material flows. Two types of facilities—

conventional confinement and hoop barn-based are considered within identically scaled 

farrow-to-finish production systems. The conventional confinement system is typical of pork 

industry practice in Iowa and is characterized by individual gestation stalls and 1,200 head 

grow-finish buildings with slatted concrete floors and liquid manure systems. The hoop barn-

based alternative system uses group pens in bedded hoop barns for gestation and finishing. 

Both systems will use farrowing crates and climate controlled nursery facilities and are 

summarized in table 1. Resource use is related to volume of pig flow and so pig production 

systems sized to produce batches of either 400 or 1,200 pigs every 28 d, or 5,200 and 15,600 

pigs annually are compared.  

PIG FLOW REQUIREMENTS 

PigCHAMP is a production record system widely used in the United States pork 

industry and summarized records of reproduction performance are available online 

(PigCHAMP, 2008). Average reproductive performance benchmarks for PigCHAMP users 

in 2004 and 2006 were used to calculate pig numbers and flow through breeding, gestation, 

and farrowing. The latest USDA survey of pig producers in the U.S. (USDA, 2007) reports 

days spent in a particular housing type as well as mortality rates during a specific growth 
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phase. This information was used to calculate pig numbers and flow through nursery and 

grow-finish facilities. Pig flow parameters used to calculate space requirements are detailed 

in table 2. Table 3 details pig space needs for annual production at the level of 5,200 and 

15,600 market pigs annually. The hoop-based system will require the same type and number 

of pig spaces as the conventional confinement system, although spaces will be distributed 

across more individual buildings.  

BUILDING MATERIALS 

The buildings examined are simplified design models that were generated to provide 

estimates of building material use. Building dimensions, layout, and material selection 

decisions for the examined facilities were determined by interviewing construction firms, 

facility managers, and industry consultants. Although the buildings are intended to be similar 

to actual facilities currently being built in Iowa they are not engineered designs. Application 

of the buildings or building components described should be limited to estimating material 

use of similar buildings. Midwest Plan Service publications (MWPS, 1987, 1989a, b; Brumm 

et al., 2004; Harmon et al., 2004; Koenig and Runestad, 2005) were used as a basis for all 

designs. Table 4 provides a basic summary of building dimensions and layout. The farrowing 

facility used by conventional confinement system and the hoop barn-based system is 

identical in terms of size and room set-up. Both systems also use a pull-plug manure system. 

However, in the conventional confinement system the pull-plug manure system is connected 

through underground pipe to the gestation barn’s 2.4 m deep manure storage tank. This is 

typical of conventional confinement facilities in the U.S. In the hoop barn-based system, the 

gestation facilities are hoop barns and do not have pits for liquid manure storage. Thus in the 

hoop barn-based system, farrowing facilities must include a 2.4 m deep pit appropriately 
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sized for liquid manure storage from the farrowing facility. For this comparison the hoop 

barn-based system’s farrowing facility includes an exterior pit. The hoop barn-based 

farrowing pit in this analysis is a 3.6 m wide, 2.4 m deep pit that runs the length of the 

building (21.9 m long for the 5,200 market pig system and 73.2 m long for the 15,600 market 

pig system). 

Farrowing and nursery facilities consist of a 2.4 m high, framed wall around the entire 

building. The exterior wall is sheeted with steel while the wall that is in contact with the pigs 

is covered with commercially available high-density polyethylene sheeting. Appropriately 

designed wood rafters sit on top of the walls. Steel sheeting is assumed for the roof and 

ceiling of farrowing and nursery facilities.  

The building shell for breeding and gestation and grow-finish within a facility type 

are similar. The conventional system begins with a 2.4 m deep pit and concrete slats. On top 

of the pit wall a 1.4 m high concrete sidewall is poured around the entire building. A 0.9 m 

high framed wall is set on top of the concrete walls. The buildings described are rectangles, 

the short sides of the rectangles are enclosed with exterior steel and interior high-density 

polyethelene sheeting. The long walls of the buildings are covered by a 0.9 m tall curtain that 

runs the length of the building. Above the curtain a 0.3 m header is assumed with 

appropriately designed lumber rafters sitting on top of the building wall. Steel sheeting is 

assumed to cover the roof and ceiling in conventional grow-finish and gestation facilities. 

Hoop structures for swine are less complex in their construction. A hoop barn is a 

QuonsetTM-shaped structure that has been previously described (Honeyman et al., 2001; 

Brumm et al., 2004; Harmon et al., 2004). Hoop barn sidewalls are assumed to be 1.5 m high 

and consist of wooden posts and sidewalls. Tubular steel arches are attached to the posts, 
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forming a hooped roof. A UV resistant, high-density polyethylene tarp is pulled over the 

arches and fastened to the sidewalls. It is assumed that the entire floor area is covered with 

reinforced concrete. Hoop barns for grow finish have a 0.8 m high elevated pad covering 1/3 

of the floor area. Feeders and waterers are located on this pad. In hoop barns for gestation a 

3.0 m wide 0.8 m high pad is set along one of the long side-walls with feed stalls located on 

top of the concrete pad. An appropriate waterer is located on the other side of the building on 

top of a small (1.8  0.9 m), 0.8 m high concrete platform. 

Five primary building materials are reported: concrete, steel, lumber, insulation, and 

thermoplastics. Each material is not a homogenous entity, but for this comparison material 

specifications have been standardized and material use is reported by mass. For this 

comparison, the volume of each material was calculated from a list of materials for every 

building and then multiplied by a density factor appropriate for each material. Table 5 

presents material density assumptions used to calculate mass of materials required for a 

particular building. Current prices of building materials were collected by personal interview 

with various suppliers operating in Iowa, the leading pig producing state in the U.S. The 

estimated market values of construction materials are summarized in table 5. 

LAND SURFACE AREA 

 Multi-site pig production is common in the United States, however for this 

comparison it is assumed that one building site is used for all phases of production. 

Individual buildings detailed in Table 4 were arranged on a scaled model site according to 

the following guidelines. First, a distance of at least 46 m was maintained between distinct 

phases of production—farrowing, nursery, grow-finish, and gestation. Secondly a minimum 

of 6 m distance was maintained between individual buildings within a production phase—



31 

between grow-finish barns for example. Finally, a 6 m buffer was added to the edge of all 

buildings lining the perimeter of the building site. For the hoop barn-based building sites, 

storage hoops for bedding were positioned near the gestation and grow-finish hoop barns. 

Hoop barns used for storage were allowed a 6 m separation between other buildings, but 

were not required to be separated by 46 m from buildings housing pigs. Access roads to 

facilities were then outlined on the scaled model. A perimeter was drawn around the entire 

building site to delineate total land surface area needed for buildings, access roads, and 

buffers. The market value of land suitable for building swine facility complexes was assumed 

to be $3,200/ha for initial analysis. 

BUILDING SITE PREPARATION 

 It was assumed that the building site was previously furnished with sufficiently sized 

wells, electrical mains, and a main entrance driveway. Building site preparation includes 

excavating manure storage pits, backfilling completed manure storage pits, grading the entire 

building site, and building access roads. Earthwork for nursery, conventional gestation, and 

conventional grow-finish buildings was calculated by multiplying the building dimensions by 

the depth of the manure storage pit. The building dimensions and manure storage pit depths 

given in table 4 were increased by 0.5 m and then used to calculate volume of soil to be 

excavated. The volume of backfill required for each building was calculated by subtracting 

the volume of the manure storage pit from the volume excavated. Grading of the building site 

was calculated by multiplying the site’s entire surface area by 0.3 m and is used to estimate 

the earthwork needed to reposition soil that was excavated in excess of the backfill for 

manure pits, as well as prepare the building site for farrowing facilities and hoop barn 

construction. In the conventional confinement system, manure from the farrowing facility is 
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stored in the gestation barn pit and no additional earthwork was included in the estimate. The 

farrowing facility used in the hoop barn-based systems has a manure storage pit and so 

excavation and backfilling was calculated for a 2.4 m deep manure storage pit adjacent to the 

farrowing facility. Access roads were calculated by multiplying the length of each road by a 

width of 3 m and a depth of 0.9 m. Each access road was finished by covering with a 0.3 m 

thick layer of crushed rock.  

 Appropriately sized machines were selected for earthwork based on discussions with 

equipment company representatives. The time required to complete each task was calculated 

using machine capacities and construction estimating references (RES, 1990; Mossman and 

Plotner, 2006). Hours of operation were then multiplied by fuel use per hour values presented 

by Caterpillar Inc. (2008). Initial costs analyses assume diesel fuel is valued at $1.00/l. 

LABOR AND MATERIAL COSTS 

 Labor and material costs were first calculated for each building based on the material 

list for each building and data presented by Mossman and Plotner (2006). Prices reported by 

Mossman and Plotner (2006) represent the estimated national average for industrial and 

commercial construction projects. National averages can be indexed for different locations 

providing a more precise cost estimate. Because costs for Iowa under most labor and material 

divisions relevant to construction of swine facilities were below the national average 

(Mossman and Plotner, 2006), national averages are reported. Labor and material costs are 

highly dependent on specific activities, for example the labor cost of excavating a cubic 

meter of soil is nearly twice the labor costs of grading the same volume of soil (Mossman 

and Plotner, 2006). The reported comparisons used task specific labor and material costs to 

calculate total project costs.  
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CONSTRUCTION COST SENSITIVITY TO PRICE CHANGE 

 The sensitivity of the total construction cost for a given type and scale of swine 

facilities to changes in prices of concrete, steel, land, labor and energy were examined.  

Sensitivity analysis for concrete, steel, land, and labor was performed by multiplying the 

reported cost associated with each resource by price increases of different magnitudes and 

then adding the additional cost to the original construction costs. Sensitivity analysis for 

energy costs increases required calculating the impact of energy prices on all resources. 

Embodied energy is the energy used to generate a particular material. Hammond and Jones 

(2008) details the embodied energy of building materials from cradle-to-gate. In other words 

the embodied energy values used in our analysis account for energy required to gather and 

process raw and recycled materials into construction resources but does not consider the 

energy associated with a construction material after it has been produced. There is no 

universally accepted value of the embodied energy of a specific material, but using a readily 

available reference that includes all examined materials (Hammond and Jones, 2008) ensures 

that materials are compared on an even basis. Two building resources considered, diesel fuel 

and thermoplastics, are almost entirely composed of petroleum and thus are very dependent 

on the price of energy. The relative magnitude of embodied energy of concrete, steel, lumber, 

and insulation relative to thermoplastics is 0.01, 0.32, 0.10, and 0.03. For example if a given 

mass of thermoplastic has an embodied energy value of 100 MJ, the embodied energy values 

of equivalent masses of concrete, steel, lumber, and insulation would be 1, 31, 10, and 3 MJ, 

respectively. If all energy prices increase by 25%, the price of thermoplastics and diesel fuel 

are assumed to also increase by 25%. The market price of concrete, steel, lumber, and 
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insulation are assumed to increase proportionally to their embodied energy value relative to 

thermoplastics. 

RESULTS 

 Table 6 presents construction resource use for swine production facilities. Increasing 

the number of pigs sold annually resulted in increased use of construction resources. 

However in most cases tripling pig production space increased construction resource use by 

less than 300%. There was little overall difference in the magnitude of resource use between 

the two scales of pig production within a facility type. More land area is necessary to site the 

hoop barn-based systems, but fuel use to perform earthwork operations is half of what 

conventional confinement facilities require. Generally fewer building resources were 

required for the hoop barn-based systems. 

 Estimated construction costs for swine production facilities based on Mossman and 

Plotner (2006) are summarized in table 7. The farrowing facility for the hoop barn-based 

system includes a 2.4 m manure storage pit, while in the conventional confinement system 

manure from the farrowing facility is stored in the gestation pit. This difference results in the 

farrowing facility for the hoop-based systems costing 11–14% more than the farrowing 

facility for the conventional confinement systems. The major difference between the hoop 

barn-based system and the conventional confinement system is the cost of building grow-

finish facilities. Estimated construction costs of hoop barns for grow-finish pigs are 27–41% 

of the construction costs of similarly sized conventional facilities. Estimated gestation facility 

costs are below previous estimates (Lammers et al., 2008), however the current estimate does 

not include ventilation or water systems. Building hoop barn-based gestation is estimated to 

cost 31–64% less than conventional confinement facilities with the major differences from 
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less concrete and steel being used in the hoop barns. Both systems include individual 

gestation stalls and gestation stalls are a significant contributor to the total mass of steel in 

both types of facilities. Although stalls used for feeding are not as heavy as stalls used for 

gestation, this analysis assumes gestation stalls are used for housing gestating sows in the 

conventional confinement system and for feeding gestating sows in the hoop barn-based 

system. The hoop barn-based system requires storage facilities for bedding as well as more 

land, crushed rock, labor, and equipment use for site preparation. Still this greater use of 

resources did not negate the cost advantages presented by using hoop barns for grow-finish 

and gestation.  

 The estimated construction cost per market pig space is very different for the two 

systems. Estimated construction costs per pig space are lowest for the 15,600 head hoop 

barn-based complex and both hoop barn-based systems cost less per pig space than any 

conventional confinement system considered. Increasing the size of the operation resulted in 

lower construction costs per pig space. Moving from 5,200 head to 15,600 head in the 

conventional confinement system results in a construction cost reduction of 38% per pig 

space. In the hoop barn-based system the same change in size only reduces construction costs 

by 13% per pig space. Labor costs are highly dependant upon type of activity. Building 

conventional confinement facilities and hoop barn-based facilities require different amounts 

of different types of labor. This is illustrated by the reported differences in reduction of 

building cost per pig space between conventional confinement and hoop barn-based systems. 

 Labor and material costs were also estimated for each swine facility complex using 

mass and market values of materials reported in tables 5 and 6. Hours of labor were 

estimated based on Mossman and Plotner (2006). An initial value of $20/hr was assumed for 
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all construction labor. Table 8 presents estimated construction costs for swine facility 

complexes based on material use calculations. Overall costs estimated based on material 

mass is less than costs estimated according to Mossman and Plotner (2006). Costs presented 

by Mossman and Plotner (2006) are national averages, while costs used in the material mass 

method are more accurate for Iowa. The cost of building swine facilities on a market pig 

space basis follows a similar pattern regardless of the method of estimation. Based on 

material mass the cost per pig space for a hoop barn-based facility sized to produce 15,600 

pigs is $92, while the hoop barn-based facility producing 5,200 pigs annually can be built for 

a cost of $107/pig space. Both are lower than the costs of building a 15,600 head 

conventional confinement facility which in turn is less than the construction cost of a 5,200 

head conventional confinement facility. In the conventional confinement system, increasing 

size from 5,200 head to 15,600 head results in reducing construction costs by 25%. In the 

hoop barn-based system increasing the size of facilities from 5,200 head to 15,600 head 

results in a 14% reduction in construction costs. 

Actual building costs are likely to be different than the estimates presented in tables 7 

and 8. However, it is expected that the distribution of costs within a facility type and the 

magnitude of differences between conventional confinement facilities and hoop barn-based 

systems remain relatively constant. For example, approximately 70% of the costs of building 

swine facilities are material costs with the remainder being allocated to labor costs. Systems 

that use bedded hoop barns for gestation and grow-finish cost less to construct than 

conventional confinement facilities for identically scaled operations. Increasing the total 

volume of pigs produced results in reduced construction cost per pig space, however the 

hoop barn-based system producing 5,200 pigs annually costs less to construct per pig space 
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than the conventional confinement facilities producing 15,600 pigs annually regardless of the 

method used to estimate construction costs. 

Results from table 8 were used to compare the effect of construction resource price 

changes on the total costs of different types and scales of pig facilities. Construction cost 

sensitivity to changes in the value of concrete and steel are presented as figures 1 and 2. 

More concrete and steel per pig space are used in the conventional confinement facilities. 

Increasing the cost of concrete and steel increases the construction costs for all type and 

scales of pig facilities. If resource prices change uniformly for all types and scales of pig 

production facilities, the construction costs per market pig sold for a conventional 

confinement facility sized to produce 15,600 market pigs annually is very similar the 

construction costs per market pig sold for a hoop barn-based system producing 5,200 market 

pigs annually. If concrete or steel prices increase by 25%, construction costs per market pig 

sold increase by 3–4% or 4–5% respectively. Doubling the price of concrete increases 

construction costs per market pig sold by 15–18%. A doubling in the price of steel results in 

a 21–25% construction cost per market pig sold increase. Even if resource prices do not 

change uniformly for all types and scales of pig production facilities it is only at the extremes 

that the generalized cost advantage of building hoop barn-based systems sized to produce 

15,600 market pigs annually do not hold. For example if a firm building the hoop barn-based 

system sized to produce 15,600 market pigs annually pays double the price for steel that a 

construction firm building the conventional confinement facilities sized to produce 15,600 

market pigs annually can obtain, then construction costs for the conventional confinement 

facility are approximately 1% less than the construction costs for the hoop barn-based 

system. 
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Pig production in hoop barns allows more space per pig, but does require more land 

surface area. Figure 3 details construction cost sensitivity to changes in land values. Because 

the cost of land is a relatively small factor in the total construction cost of a pig facility, 

construction costs are not very responsive to land value increases. A doubling of land values 

only increases the total construction costs per market pig sold by 3–8% regardless of type 

and scale of facility. The construction costs of hoop barn-based systems are more sensitive to 

land value changes than in conventional confinement. However land values would have to 

increase more than 2,000% (data not shown) before conventional confinement facilities have 

a construction cost advantage over hoop barn-based systems due to land costs. 

Labor is the single largest construction expense in building pig facilities. Figure 4 

details the effect changing labor values have on the total construction costs of different types 

and scales of pig production facilities. Increasing the size of the production facilities delivers 

construction cost per market pig sold advantages. In the conventional confinement system 

construction costs per market pig sold for the facilities sized to produce 5,200 market pigs 

annually are 33–41% higher than construction costs per market pig sold for the facilities 

sized to produce 15,600 market pig under the different labor value scenarios. The hoop barn-

based system construction costs per market pig sold for facilities sized to produce 5,200 

market pigs annually are only 13–16% higher than the construction costs per market pig sold 

for the facilities sized to produce 15,600 market pig annually. The firm building hoop barn-

based systems at the 15,600 market pigs per year scale would have to pay approximately 

40% more for labor than the firm building conventional confinement facilities at the 15,600 

market pigs per year scale before construction costs are higher for the hoop barn-based 

system. 
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The effect of changing energy prices on the total construction costs of different types 

and scales of pig production facilities are presented as figure 5. Systemic increases in the 

price of energy has more dramatic impact on the relative construction cost per market pig at 

the 10% level than other resource price increases. Increasing energy prices by 10% results in 

a 7–8% increase in construction costs for all facility types and scales.  Increasing energy 

prices by 25% results in a 8–10% increase in total construction costs from initial conditions. 

Energy price increases ranging between 10 and 75% result in total construction costs 

increasing linearly at rate of 6–8%. Doubling the value of energy resources causes a spike in 

total construction costs. Doubling the value of energy resources increases the construction 

costs of the examined pig production facilities by 26–31%.  

Based on construction costs per market pig sold, there is more incentive to increase 

the scale of pig production in conventional confinement systems than in hoop barn-based 

systems. For all construction resource price scenarios examined the difference between the 

5,200 and 15,600 market pig firms was greater for the conventional facilities than the hoop 

barn-based systems.  If all firms have access to construction resources at the same price, 

construction cost per market pig sold for a hoop barn-based production facility sized to 

produce 5,200 market pigs annually is less than the construction costs per market pig sold for 

a conventional confinement facility producing 15,600 market pigs annually. Firms that are 

building facilities on a larger scale may be able to achieve some resource pricing advantages 

over smaller firms. However, it is unlikely that a conventional confinement swine facility 

sized to produce 15,600 pigs annually would have more negotiating clout than a hoop barn-

based swine facility producing the same number of pigs. 
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CONCLUSIONS 

This paper examines construction resources of different types and scales of Iowa 

swine production facilities. The environmental impact of pig production also depends on 

production efficiency of different systems, energy use by those systems, resulting emissions, 

and nutrient cycling within a production system. The present comparison of construction 

resource use does not provide a complete life cycle analysis of pork production. Rather it 

provides a construction resource inventory that can later be combined with future analyses of 

operating different swine production facilities to generate a more systemic life cycle analysis 

of pork production.  

Hoop barn-based swine facilities use less concrete, steel, lumber, thermoplastics, 

insulation, diesel fuel, and labor to construct than identically scaled conventional 

confinement facilities. More crushed rock and land is needed for hoop barn-based swine 

facilities but these are relatively small contributors to the total construction costs of swine 

facilities. The relative impacts of resource price changes are similar for both types and scales 

of swine facilities examined. The construction costs of hoop barn-based swine facilities are 

more sensitive to land prices than conventional confinement facilities, but land price is a 

relatively minor factor in total construction costs. Increasing the scale of facilities from 5,200 

pigs to 15,600 pigs reduces construction costs per pig space regardless of system, but the 

magnitude of reduction is less for hoop barn-based facilities than conventional confinement 

facilities. Regardless of method for estimating construction cost, a swine production facility 

producing 5,200 market pigs annually and using hoop barns for gestation and grow-finish 

costs less to build per pig space than a conventional confinement swine facility producing 

either 5,200 or 15,600 market pigs annually. In terms of construction resource use and costs, 
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hoop barns for swine are a lower cost alternative that is less scale dependant than 

conventional confinement facilities. As competition for construction resources increase the 

cost advantages of building hoop barn-based swine facilities is expected to increase. 
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Table 1. Pork production systems compared. 
 System 
Production phase Conventional Hoop barn-based 
Breeding and Gestation individual stalls with deep pit group pens in bedded hoop 
barns 
Farrowing[a] crates with pull plug system crates with pull plug system 
Nursery pens with shallow pit pens with shallow pit 
Grow-finish pens with deep pit pens in bedded hoop barns 
[a] Manure from farrowing building stored in gestation pit (conventional) or adjacent outside 
storage pit (hoop barn-based). 
 
 
 
 
Table 2. Pig flow parameters [a]. 
Weaned pigs per litter, pigs 9.2 
Litters of weaned per mated female, litters/yr 2.3 
Farrowing rate, litters born/sows mated 77.6% 
Nursery mortality rate 2.9% 
Grow-finish mortality rate 3.9% 
Sow herd replacement rate 60.0% 
Pig age at weaning, d 21.0 
Maximum pig age at market, d 180.0 
[a] Based on USDA (2007) and Pig CHAMP (2008). 
 
 
Table 3. Pig spaces needed by production phase for 2 levels of annual pig production. 
 5,200 pigs 15,600 pigs 
Production Phase spaces  turns/yr spaces  turns/yr 
Breeding and gestation 310 na 900 na 
Farrowing 48 13.0 140 13.0 
Nursery 880 6.5 2,600 6.5 
Grow-finish 1,600 3.3 4,800 3.3 
 

 



  

Table 4. Summary of pig facilities examined. 
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  Building Area/thermal  Gross Net 
Production dimensions, resistance, Area[a] Area[b] 
level/phase  m × m MJ/hr-°C m2/pig m2/pig Description 
5,200 pigs/yr 
 Farrowing[c] 21.9 × 13.4 0.56 6.1 3.3 4 rooms of 12 crates, pull plug gutter to 2.4 m pit 
 Nursery 30.5 × 15.5 0.79 0.5 0.4 4 rooms of 22 pens, 1.2 m pit 
 Grow-Finish 
  Conventional 92.0 × 15.5 6.38 0.9 0.8 4 rooms of 8 pens, 2.4 m pit 
  Hoop-based 21.9 × 9.1  1.0 1.0 8 hoop barns with 1 sort/load area, 1 pen/barn 
 Gestation 
  Conventional 52.4 × 13.4 3.72 2.3 1.3 individual gestation stalls, 2.4 m pit 
  Hoop-based 21.9 × 9.1  5.8 5.2 9 hoop barns, 2 groups pens with 36 feed stalls/barn 
 Storage 18.3 × 18.3    bedding storage, 65% of area allocated to storage 
15,600 pigs/yr 
Farrowing[c] 73.2 × 13.4 1.55 7.0 3.3 10 rooms of 14 crates, pull plug gutter to 2.4 m pit 
 Nursery 41.1 × 15.5 1.01 0.5 0.3 2 barns with 1.2 m pit, 4 rooms of 30 pens/barn 
 Grow-Finish 
  Conventional 61.3 × 15.5 4.43 0.8 0.7 4 barns with 2.4 m pit, 1 room of 20 pens/barn  
  Hoop-based 21.9 × 9.1  1.0 1.0 24 hoop barns with 4 sort/load areas, 1 pen/barn 
Gestation 
  Conventional 70.7 × 13.4 4.78 2.1 1.3 2 barns with 2.4 m pit, individual gestation stalls 
  Hoop-based 21.9 × 9.1  5.5 5.0 25 hoop barns, 2 groups pens with 36 feed stalls/barn 
 Storage 18.3 × 18.3    bedding storage, 2 entire hoop barns 
[a] Total area under cover. 
[b] Total area under cover minus walkways and alleys. 
[c] Manure storage for the farrowing facility in the conventional confinement system is the 2.4 m deep pit under the gestation 
facility. Manure storage for the farrowing facility in the hoop barn-based system is a separate 2.4 m deep pit adjacent to the 
farrowing facility. 
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Table 5. Density and estimated value of construction materials examined. 
 Density Est.Value 
Material  g/cm3 $/kg Examples and Uses  
Concrete[a] 2.40  $0.04 building foundations, walls, manure storage, slats 
Steel[b] 8.08  $1.14 concrete reinforcing bar, siding, gating, hoop 
trusses 
Lumber[c] 0.53  $0.23 building frame, trusses 
Thermoplastics[d,e] 0.95  $1.00 flooring, pens, building curtains, hoop barn tarps 
Insulation[f.g] 0.03  $0.59 ceiling and walls of non-hoop buildings 
Crushed rock[h] 2.75  $0.02 access roads 
[a] Koenig and Runestad (2005). 
[b] BSCI (2008). 
[c] Rao (2008). 
[d] High density polyethylene. 
[e] BT (2008). 
[f] Loose fill cellulose. 
[g] USDOE (2005). 
[h] Hammond and Jones (2008). 
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Table 6. Construction resource use for swine production facilities. 
 Conventional Hoop barn-based 
 Pigs sold annually 5,200 15,600 5,200 15,600 
Farrowing[a] Concrete, kg 150,464 451,393 287,534 691,769 

 Steel, kg 20,508 32,092 22,499 38,404 
 Lumber, kg 6,651 19,561 6,651 19,561 
 Thermoplastics, kg 16,053 30,172 12,466 26,585 
 Insulation, kg 2,433 6,415 2,433 6,415 

 Diesel fuel, l 0 0 38 124 
Nursery Concrete, kg 288,653 782,598 288,653 782,598 

 Steel, kg 27,093 64,662 27,093 64,662 
 Lumber, kg 12,468 26,238 12,468 26,238 
 Thermoplastics, kg 12,159 30,892 12,159 30,892 
 Insulation, kg 3,192 5,110 3,192 5,110 

 Diesel fuel, l 46 466 46 466 
Grow-Finish Concrete, kg 1,237,294 3,435,800 678,191 2,074,200 

 Steel, kg 28,740 113,264 11,024 33,336 
 Lumber, kg 33,569 89,960 18,560 56,136 
 Thermoplastics, kg 3,084 4,792 1,074 3,216 
 Insulation, kg 6,759 17,576 0 0  

 Diesel fuel, l 802 2,146 0 0 
Gestation Concrete, kg 696,669 1,709,790 606,078 1,683,550 

 Steel, kg 38,329 107,144 27,333 75,925 
 Lumber, kg 13,115 34,920 16,812 46,700 
 Thermoplastics, kg 711 1,610 1,350 3,750 
 Insulation, kg 3,402 9,116 0 0 
 Diesel fuel, l 281 468 0 0 

Bedding storage Concrete, kg 0 0 56,296 173,218 
 Steel, kg 0 0 2,137 9,574 
 Lumber, kg 0 0 268 826 
 Thermoplastics, kg 0 0 124 380 

Access Roads Crushed rock, kg 132,000 264,000 303,600 475,200 
 Diesel fuel, l 34 64 78 121 
Site Preparation Diesel fuel, l 399 830 591 1,110 
Total for all production facilities 

 Concrete, kg 2,373,080 6,379,581 1,916,752 5,405,335 
 Steel, kg 114,670 317,162 90,086 221,901 
 Lumber, kg 56,029 151,074 44,985 129,856  
 Thermoplastics, kg 32,007 67,466 37,123 64,823 
 Insulation, kg 19,361 51,017 9,210 24,325 
 Crushed rock, kg 132,000 264,000 303,600 475,200 
 Diesel fuel, l 1,562 3,910 753 1,700 

 Land, m2 11,868 24,870 16,671 32,117 
 Labor, hr 23,000 45,900 14,300 39,300 

[a] Manure storage for the farrowing facility in the conventional confinement system is the 2.4 m 
deep pit under the gestation facility. Manure storage for the farrowing facility in the hoop 
barn-based system is a separate 2.4 m deep pit adjacent to the farrowing facility. 
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Table 7. Estimated construction costs for swine production facilities.[a] 
 Conventional Hoop barn-based 
 Pigs sold annually 5,200 15,600 5,200 15,600 

Farrowing[b] Materials $87,008 $180,488 $92,593 $211,211 
 Labor $36,789 $92,372 $50,042 $133,950 
 Total/farrowing crate $2579 $1,949 $2,972 $2,465 
 
Nursery Materials $86,678 $233,986 $86,678 $233,986 
 Labor $42,913 $107,006 $42,913 $107,006 
 Total/pig space $147 $131 $147 $131 
 
Grow-Finish Materials $310,033 $764,378 $99,996 $307,094 
 Labor $192,205 $250,348 $36,690 $111,928 
 Total/pig space $314 $211 $85 $87  
 
Gestation Materials $264,429 $418,357 $104,823 $291,179 
 Labor $230,703 $251,018 $49,131 $136,475 
 Total/sow space $1,597 $744 $497 $475 
 
Storage Materials 0 0 $12,725 $25,832 
 Labor 0 0 $4,898 $9,796 
 Total/m2 0 0 $53 $53 
 
Site Preparation Land $23,200 $48,800 $32,800 $63,200 
 Materials $10,980 $21,053 $25,283 $39,537 
 Labor $723 $1,505 $1,071 $2,013 
 Equipment $2,222 $4,623 $3,289 $6,181 
 Total/m2 $3.13 $3.06 $3.75 $3.45 
  
Subtotal Material and Land $782,328 $1,667,062 $454,898 $1,172,039 
Subtotal Labor and Equipment $505,555 $706,872 $188,034 $507,349 
Total  $1,287,883 $2,373,934 $642,932 $1,679,388 
 
Construction cost per market pig sold $248 $152 $124 $108 

[a] Mossman and Plotner (2006). 
[b] Manure storage for the farrowing facility in the conventional confinement system is the 

2.4 m deep pit under the gestation facility. Manure storage for the farrowing facility 
in the hoop barn-based system is a separate 2.4 m deep pit adjacent to the farrowing 
facility. 

 



48 

Table 8. Estimated construction costs for swine facility complexes based on material 
mass[a]. 
 Conventional Hoop barn-based 
 Pigs sold annually 5,200 15,600 5,200 15,600 

Concrete  $94,932 $255,183 $76,670 $216,213 
Steel  $130,724 $361,565 $102,698 $252,967 
Lumber  $12,887 $34,747 $10,346 $29,867 
Thermoplastics  $32,007 $67,466 $37,123 $64,823 
Insulation  $11,423 $30,100 $5,434 $14,352 
Crushed Rock  $2,640 $5,280 $6,072 $9,504 
Fuel  $1,562 $3,910 $753 $1,700 
Land  $23,200 $48,800 $32,800 $63,200 
Labor[b]  $460,000 $918,000 $286,000 $786,000 
Total  $769,375 $1,725,051 $557,896 $1,438,626 
 
Construction cost per market pig sold $148 $111 $107 $92 

[a] Calculated by multiply material masses reported in table 6 by estimated market values of 
materials presented in table 5. 
[b] Calculated by multiplying hours of labor reported in table 6 by $20/hr. 
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Figure 1. Construction cost sensitivity to change in concrete prices for different types 
and scales of pig production facilities[a]. 
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[a] HOOP or CONV and 15,600 or 5,200 represent hoop barn-based pig production 
or conventional confinement facilities scaled to produce 15,600 or 5,200 market 
pigs annually. 
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Figure 2. Construction cost sensitivity to change in steel prices for different types and 
scales of pig production facilities[a]. 
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 [a] HOOP or CONV and 15,600 or 5,200 represent hoop barn-based pig production 
or conventional confinement facilities scaled to produce 15,600 or 5,200 market 
pigs annually. 
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Figure 3. Construction cost sensitivity to change in land values for different types and 
scales of pig production facilities[a]. 
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[a] HOOP or CONV and 15,600 or 5,200 represent hoop barn-based pig production 
or conventional confinement facilities scaled to produce 15,600 or 5,200 market 
pigs annually. 



52 

 
 
Figure 4. Construction cost sensitivity to change in construction labor prices for 
different types and scales of pig production facilities[a]. 
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  [a] HOOP or CONV and 15,600 or 5,200 represent hoop barn-based pig production 
or conventional confinement facilities scaled to produce 15,600 or 5,200 market 
pigs annually. 
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Figure 5. Construction cost sensitivity to change in energy prices for different types and 
scales of pig production facilities[a]. 
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[a] HOOP or CONV and 15,600 or 5,200 represent hoop barn-based pig production 
or conventional confinement facilities scaled to produce 15,600 or 5,200 market 
pigs annually. 
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ABSTRACT  

Energy and carbon use by different types and scales of pig production systems are 

assumed to be different, but have not been critically examined. This study evaluates energy 

and carbon use by two types of facilities—conventional confinement and hoop barn-based— 

within farrow-to-finish pig production systems scaled to produce 5,200 and 15,600 market 

pigs annually in Iowa. Conventional confinement facilities are typical of pork industry 

practice in the United States and are characterized by individual gestation stalls and 1,200 

head grow-finish buildings with slatted concrete floors and liquid manure systems. The hoop 

barn-based alternative uses group pens in bedded hoop barns for gestation and finishing. Both 

systems use climate controlled farrowing facilities with individual farrowing crates as well as 

climate controlled nursery facilities. Resources such as energy and carbon can be categorized 

as embodied or operating based on how they are used. Embodied energy refers to the quantity 

of energy required to manufacture, provide, or supply a product, material, or service. 
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Embodied carbon is the CO2 and other greenhouse gases released during production of a 

material or service. Operating energy is the energy required for a system to function on a 

daily basis. Energy consumption is commonly used to estimate greenhouse gas emissions. 

Operating carbon refers to the amount of greenhouse gases released by consumption of 

operating energy expressed in CO2 equivalents. Pig facility type affects embodied and 

operating energy and carbon associated with pig production and may markedly impact life 

cycle assessment of pork. This analysis indicates that hoop barn-based pig production may 

more effectively use limited non-solar energy resources for pig production than conventional 

confinement facilities. 

Keywords: Swine production, hoop barns, embodied energy, operating energy 

1. Introduction 

 Meat production and demand is increasing throughout the world, and pork is the 

most widely consumed meat globally (Delgado et al., 1999; FAO, 2006). The United States is 

the world’s second largest producer of pork (den Hartog, 2005) and has long been a leader in 

modern pork production. United States pig production is centered in Iowa (USDA, 2002b) 

and is a major influence on the economic and ecological condition of that region. Historically 

the availability and market price of fossil fuels has minimized pressure to critically consider 

all uses of energy in pig production. Rising energy prices, global conflicts, and recognition of 

the environmental impacts of using fossil fuels are increasing awareness and incentive to 

optimize use of these limited resources.  

 Energy use can be classified into 2 broad categories— embodied and operating. 

Embodied energy refers to the quantity of energy required to manufacture, provide, or supply 

a product, material, or service (Hammond and Jones, 2008). In pig production, energy used to 



56 

produce facility components such as concrete, steel, plastics, and lumber are examples of 

embodied energy. Operating energy is the energy required for a system to function on a daily 

basis. The energy value of the feed directly consumed by pigs as well as liquid fuels and 

electricity used to modify the pig environment are examples of operating energy for pig 

production.  

Pig feed, bedding materials, liquid fuels, and electricity have an embodied energy 

value, but that value is highly dependent upon production assumptions that are beyond the 

scope of this paper. In our assessment an input is either an operating or an embodied energy 

component. If an input is used to provide the structural framework for pig production—

concrete, metal, plastics—it is classified as an embodied energy component and the energy 

associated with manufacture of that component is included. If an input is consumed during 

the daily operation of a pig facility—feed, liquid fuels, electricity—it is classified as an 

operating energy component and only the energy released by the consumption of the input—

the operating energy—is included. The embodied energy associated with production of 

operating energy components are not included in this analysis.  

Embodied carbon is the CO2 and other greenhouse gases released during the 

production of a product (Hammond and Jones, 2008) and represents the initial global climate 

altering emissions associated with a product. Emissions of compounds associated with global 

climate change occur during fuel consumption and are often expressed in terms of CO2 

equivalents. The operating carbon of a pig production facility is simply the CO2 equivalents 

released through consumption of operating energy inputs associated with pig production. 

Operating energy components have an embodied carbon associated with their provision, but 

this is not included in this analysis. In this paper, embodied carbon is exclusively affiliated 
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with embodied energy inputs and operating carbon is exclusively associated with 

consumption of operating energy components. 

 Accurate life cycle assessment relies on current and comprehensive information 

relating to all aspects of a particular process. Comprehensive analysis regarding embodied 

energy and carbon of different pig facilities as well as the operating energy and resulting 

global climate altering emissions, or CO2 equivalents, associated with producing pigs in those 

facilities has not been reported. To date, life cycle assessments for modern pig production 

have focused on the grow-finish phase of production and particularly the embodied energy of 

feedstuffs (Ericksson et al., 2005; Meul et al., 2007). Although these analyses address a 

major portion of the total energy used for pig production, they do not account for all energy 

use. The objective of this project is to estimate the embodied energy and carbon of different 

types and scales of Iowa swine production facilities. The operating energy and corresponding 

CO2 equivalent emissions from raising pigs in different types and scales of pig production 

facilities are also estimated. 

2. Methods 

This project considers energy inputs (embodied and operating) into a pig facility 

based on physical material flows. Energy used to produce facility components such as steel, 

plastics, and lumber are examples of embodied energy. Operating energy inputs are used 

directly for pig production and include feed consumed by the pigs, liquid fuels used to heat 

buildings and remove manure, and electricity used to ventilate and illuminate buildings. To 

borrow terminology from economics, operating energy can be considered analogous to 

variable costs— costs that are incurred (energy that is used) only if actual pig production 

occurs. Alternatively, embodied energy can be viewed as fixed costs— costs that are incurred 
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(energy that is used) to create and maintain the means of production even if no pigs are 

produced. 

Energy inputs are then used to calculate embodied carbon and emission of CO2 

equivalents. Embodied carbon is the CO2 and other greenhouse gases released during the 

production of facility components (Hammond and Jones, 2008) and represent the initial CO2 

cost of building different types and scales of pig facilities. Emissions released by 

consumption of operating energy represent the annual addition of CO2 equivalents resulting 

from raising pigs using a particular housing system. 

Two types of facilities— conventional confinement and bedded hoop barn-based— 

are considered within identically scaled farrow-to-finish production systems. The 

conventional confinement system is typical of pork industry practice in the United States and 

is characterized by individual gestation stalls and 1,200 head grow-finish buildings with 

slatted concrete floors and liquid manure systems. The hoop barn-based alternative uses 

group pens in bedded hoop barns for gestation and finishing. Both systems have been 

previously described by the authors (Lammers et al., 2009) and will use climate controlled 

farrowing facilities with individual farrowing crates as well as climate controlled nursery 

facilities. Energy and carbon use is also related to volume of pig flow and so pig production 

systems sized to produce batches of either 400 or 1,200 market pigs every 28 d, or 5,200 and 

15,600 market pigs annually are compared. 

2.1. Embodied energy and carbon of swine production facilities 

 Five primary building materials are examined: concrete, steel, lumber, insulation, and 

thermoplastics. The mass of building materials reported by Lammers et al. (2009) for each 

type of pig production facility was multiplied by embodied energy and carbon data presented 
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by Hammond and Jones ( 2008). Globally standardized embodied energy and carbon values 

for building materials have not been recognized. The use of one open-access database for all 

embodied energy and carbon values (Hammond and Jones, 2008) insures that materials are 

compared on an equal basis as well as allowing for peer review and future analysis. The 

actual values of embodied energy and carbon present in a given mass of building materials 

used in pig production facilities may be different from the results of this analysis. However, 

the relative difference in embodied energy and carbon between the different types and scales 

of pig production facilities are expected to remain stable. Table 1 summarizes material 

density, embodied energy, and embodied carbon assumptions for the building materials 

examined. 

 Another source of embodied energy and carbon of pig buildings is the diesel fuel used 

for earthwork associated with the construction of pig facilities. Estimated diesel fuel use for 

these activities have been reported by Lammers et al. (2009). The volume of diesel fuel 

reported by Lammers et al. (2009) was multiplied by an energy value of 38.46 MJ/L (Downs 

and Hansen, 2007) to estimate the energy used for earthwork. The energy from earthwork 

activities associated with construction of pig facilities is included in the estimate of embodied 

energy of pig facilities. For every GJ of diesel fuel combusted an estimated emission of 82.73 

kg CO2 equivalents occurs (IPCC, 2006). Embodied carbon from diesel fuel used for 

earthwork was calculated by multiplying the energy in GJ from diesel fuel associated with 

construction by 82.73 kg CO2 equivalents. 

Embodied energy and carbon of pig production facilities represent one-time inputs 

that occur at the time of construction. To take into account potentially different useful 

lifespans of different pig facilities it is appropriate to divide total embodied energy and 
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carbon from construction by the estimated useful lifespan of a facility.  Construction costs of 

conventional confinement facilities are often assumed to be paid over 15 or 20-year useful 

lifespans. Hoop barns are often used for similar time frames, although replacement of the tarp 

is sometimes necessary after 10 or 12 years of use. Two different scenarios are considered for 

hoop barns. The first assumes that the useful lifespan of hoop barns are identical to the useful 

lifespan of conventional confinement facilities. The second includes additional embodied 

energy and carbon required to replace all tarps on hoop barns once during a 15 or 20-year 

useful lifespan. 

2.2 Operating energy of pig production facilities 

Energy use for one 365-d period was modeled for each phase of pig production. This 

analysis examines energy use of a production facility and includes thermal environment 

control (heating and ventilation), pumping water, cleaning the facility between groups of 

pigs, lighting, consumed pig feed, bedding use, and removing manure slurry or bedding pack 

from the building. Assessments of operating energy are highly dependent on where the 

system boundary is drawn. For this analysis the boundary is the pig production facility, more 

explicitly the actual pig barn. Activities that occur within the pig barn are included; activities 

that occur outside of the actual barn are not. For example energy used to produce the feed, 

transport manure slurry or bedding pack to fields, and other related activities are not 

addressed in this paper. This boundary separates quantification of energy use associated with 

a particular type of building from energy use associated with generalized pig production.  

Initial start-up energy for a new building can be significant, for example bringing a 

newly constructed nursery building or one that has been idle for an extended period of time 

up to an acceptable temperature in the middle of winter requires a large input of energy 
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simply to warm the building structure. For our analysis, production is assumed to have 

reached steady-state; i.e. the buildings are in operation and pigs are regularly flowing through 

them. Two performance scenarios are considered. The first analysis assumes that feed 

conversion and sow reproductive performance is equal for conventional confinement and the 

hoop barn-based alternative. The second analysis incorporates reported performance 

differences for pigs and sows housed in hoop barns.  

2.2.1 Thermal Climate Control 

 Thermal climate is the sum effects of air temperature, moisture, and airflow 

experienced by pigs (Curtis, 1983). Building characteristics and exterior temperatures as well 

as the number and size of pigs present affect the thermal climate of a pig barn. Mechanically 

ventilated pig barns commonly use LP gas and electricity to provide a suitable thermal 

environment for pigs. Hoop barns are naturally ventilated buildings that rely on bedding and 

pig behavior to modify thermal environment. This section addresses energy use for 

mechanical control of thermal climate in pig barns. Bedding is discussed in a following 

section. 

Other than initial site selection, producers have little control over exterior 

temperatures. Historic temperature data is available for several locations in Iowa (Kjelgaard, 

2001; ISU, 2008). Hourly temperature readings for a typical meteorological year for the 

1961–1990 time period have been summarized by location into reference tables commonly 

referred to as BIN data (Kjelgaard, 2001). BIN data consists of a series of 5°F dry bulb 

temperature ranges or bins, where every hour in a typical meteorological year that falls 

within a range is included in the appropriate bin (Kjelgaard, 2001). This allows modeling of 

energy used for heating and cooling based upon temperatures differences and time.  
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In Iowa, latitude is more predictive of thermal environment than longitude. Mason 

City, Iowa, 43.1°N, 93.2°W shares a latitude that is similar to 6 of the top 10 pig producing 

counties in Iowa (USDA, 2002a). Energy used for thermal environment control at Mason 

City, Iowa was modeled using annual BIN data as exterior temperature for one complete 

year— 365 d or 8,760 h. Assumptions relating to building dimensions, thermal resistance and 

pig stocking density are summarized in table 2.  

Farrowing, nursery, and finishing barns are emptied and cleaned between groups of 

pigs. This results in those buildings housing zero pigs for 1-15% of the year. When there are 

no pigs in a building, no heat production from pigs occurs, ventilation rates can be 

dramatically reduced, and acceptable temperature range is usually allowed to expand. Our 

model assumes that sows enter the farrowing facility 3 days prior to farrowing and litters are 

weaned at 21 d of age. Our model assumes 13 turns of the farrowing facility in 1 year, thus 

the building is occupied by pigs for 85% of the year (equation 1). 

Equation  1. Occupancy  of  farrowing  building
24  d /group  of  sows    13 turns / yr

365  d / yr
   85%  of  year

 

Our model assumes pigs are weaned at 21 d of age and enter the nursery weighing 5.4 

kg. Fifty days later the pigs weigh 32.2 kg and enter the grow-finish building. There are 6.5 

groups of pigs that move through a nursery in 1 yr, thus the nursery is occupied by pigs for 

89% of the year (equation 2). 

Equation  2. Occupancy  of  nursery  building
50  d /group  of  pigs    6.5  turns / yr

365  d / yr
   89%  of  year
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Our model assumes pigs enter the grow-finish building at 71 d of age weighing 32.2 

kg and are marketed 109 d later at 138.3 kg. There are 3.3 groups of pigs that move through a 

grow-finish building in 1 yr, thus the grow-finish building is occupied by pigs for 99% of the 

year (equation 3). 

Equation  3. Occupancy  of  grow  finish  building
109  d /group  of  pigs    3.3 turns / yr

365  d / yr
   99%  of  year

 

 Our model assumes that the average pig in the nursery and grow-finish building 

weighs 18.8 and 85.3 kg respectively. Table 3 summarizes modeled building occupancy, pig 

weight, heat production, target temperature, and minimum ventilation rate for each 

production phase. When no pigs are in a given building it is assumed that heat production is 

zero, that ventilation is reduced to 650 L  min-1  building-1, and that room temperature is 

maintained between 10–32.2°C. 

 Worksheets from MidWest Plan Service publications (MWPS, 1987, 1990a, b) were 

combined with historic temperature data for Mason City, Iowa (Kjelgaard, 2001), and model 

assumptions presented in tables 2 and 3 to estimate energy used for thermal climate control 

of pig facilities. The step-by-step process for calculating energy use for thermal control of 

grow-finish facilities within a system producing 15,600 market pigs annually has been 

presented previously (Lammers, 2009). Calculations for the grow-finish facilities within the 

5,200 market pig system and for the farrowing, nursery, and gestation facilities in both 

systems followed a similar process with appropriate adjustments made for differences in pig 

size and building characteristics. 

Ventilation of pig buildings is necessary to provide proper environment for the pigs 

and stockmen. Ventilation systems remove heat from a building and heat loss through 
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ventilation was calculated using equations from MWPS publications (MWPS, 1987, 1990a, 

b). Cold weather ventilation rates for different sized pigs are presented in MWPS 

publications (MWPS, 1990a, b). These ventilation rates are the minimum rates to maintain 

acceptable air quality and humidity (MWPS, 1990a, b). Hourly heat loss from ventilation was 

calculated using hourly temperature differences and pig size specific ventilation rates. Our 

analysis assumes that building heaters are ventilated to the outdoors and do not require 

additional room ventilation. 

 Although heat is lost from the building through surfaces and the ventilation system, 

heat is added to the building by the pigs themselves. Sensible heat production by pigs of 

different body weights and at different room temperatures are presented in table 3. To 

calculate heat production by pigs in a given hour, sensible heat production from one pig was 

multiplied by the number of pigs in a particular building 

The difference between heat produced by pigs and the sum of heat loss from building 

surfaces and the minimum ventilation were calculated for 8,760 h (1 year) of production for 

each location. If the hourly difference was negative, additional heat inputs were necessary 

and if the difference was positive additional cooling tactics may be required. Hourly heat 

input needs were summed to determine annual heat input requirements. Based on 

manufacturer literature and conversations with heating equipment representatives it was 

assumed that heating strategies would be 98% efficient. Thus annual heat input requirements 

were divided by 98% to estimate total energy used for heating during a typical year. 

Most mechanically ventilated pig buildings are equipped with multiple, variable-

speed fans that are governed by thermostats. In mechanically ventilated pig buildings, air 

exchange to maintain interior air quality and remove humidity from the building occurs at a 
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constant, minimal rate regardless of exterior weather conditions. The cold weather ventilation 

rate is the minimal rate necessary to maintain acceptable air quality and humidity and is 

based on pig body weight (MWPS, 1990a, b). As exterior temperatures increase, the interior 

temperature of pig facilities also increases. As interior temperatures increase, ventilation rates 

also increase for most pig facilities. A common approach to ventilating pig barns is to 

designate one set of fans for maintaining air quality with another larger capacity system used 

for temperature modification. 

For each type of pig facility, 2 sets of commercially available fans with adequate 

capacity for a particular task—air quality or temperature modification— were selected from a 

third party database (BESS, 2008). Hours of operation for each set of fans were estimated for 

each location by combining annual BIN data with pig and building characteristics. Energy 

use for air exchange was then calculated by multiplying the hours of operation for each fan 

system by reported fan efficiencies (BESS, 2008). To standardize comparisons, fan system 

efficiencies of 339.8 L    min-1/W and 736.2 L  min-1/W (12 cfm/W and 26 cfm/W) were 

assumed for air quality and temperature modification systems respectively. 

The environment of the farrowing facility is a unique situation because the thermal 

needs of both the newborn pig and the adult sow must be addressed. Although the newborn 

pig has no practical upper limit for room temperature, the sow will reduce feed intake and 

subsequent milk production if she becomes uncomfortably warm. To address these different 

requirements, the room temperature of the farrowing facility is assumed to be kept at 18.3°C 

with an allowable maximum of 21.1°C. The higher temperatures necessary for young pig 

comfort are achieved through the use of supplemental radiant heating that does not 

significantly contribute to overall room temperature. For each litter of pigs farrowed it was 
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assumed that two 175 W heat lamps are used for 48 hours followed by 12 d of one 175 W 

heat lamp use. 

2.2.2 Water 

 Water is essential to pig survival and growth and large quantities of water are used to 

clean most pig facilities. Wash water is usually heated and pressurized to assist in the 

cleaning process. Pumping water from a well to a pig facility as well as heating and 

pressurizing wash water requires energy and is included in our analysis. Water use 

assumptions used to calculate required water volume are included as Table 4. Appropriately 

sized well pumps were selected for the different facility sites based on water volume using 

MWPS guidelines (MWPS, 1987). For our analysis we assume a 0.37 kW (1/2 hp) motor 

with a pumping capacity of 20.8 L/min (330 g/h) at 275.8 kPa (40 psi). The National 

Association of Electrical Manufacturers (NEMA) is a trade association representing over 450 

members and publishes technical standards and efficiency ratings for electrical motors 

(NEMA, 2009a). For our analysis we assume all electrical motors used are rated as NEMA 

Premium motors for efficiency. For pumping water, the 0.37kW electrical motor is assumed 

to have a 82.5% nominal efficiency (NEMA, 2009b). Volume of water, well pump capacity, 

and motor efficiency were used to calculate the amount of energy needed for pumping water 

from the well and pressurizing water lines used for drinking water. 

 Most conventional confinement facilities in Iowa are cleaned using portable pressure 

washers and a variety of designs and specifications are commercially available. For our 

analysis we assume that the pressure washer will deliver 20.8 L/min at 31 MPa. The washer 

will be powered by a 14.9 kW electric motor. This motor is assumed to have a nominal 

efficiency of 91.7% (NEMA, 2009b). The hours of motor operation needed for a particular 



67 

task was calculated based on water usage and flow rates. Energy used for water delivery and 

pressurization was calculated by combining motor size, hours of operation, and nominal 

efficiency. The pressure washer will also be equipped with a diesel burner with capacity to 

raise the temperature of wash water by 60°C at 95% efficiency. The temperature of ground 

water in Iowa is approximately 8°C (USGS, 2008). It is assumed that wash water would be 

heated to 60°C. Heat energy necessary to increase the temperature of the wash water by 52°C 

was first calculated using the density and specific heat of water in combination with volume 

of wash water used. Energy used for heating wash water was then taken as 105% of the 

calculated heat energy. 

2.2.3 Illumination 

 Illuminating pig facilities with electric lights is common in mechanically ventilated 

facilities. Adequate illumination is essential for conscientious stockmanship. ASAE ( 2005) 

characterizes different light sources and provides recommendations for light levels and 

photoperiods of pig facilities. Compact fluorescent lights with an efficiency of 68 lm/W were 

used in this analysis. Energy use for illumination in conventional confinement facilities was 

calculated using ASAE recommendations for pig facilities (ASAE, 2005). It was assumed 

that 100% of the floor area in the confinement facility would be illuminated and that hours of 

operation would match ASAE recommendations (ASAE, 2005) Hoop barns use some electric 

lights, but typically only 33–50% of the barn is illuminated. Natural lighting also allows 

reduction in the hours electrical lights are needed. Energy used for illuminating 50% of the 

total floor area was calculated for hoop barns. It was also assumed that hours of illumination 

in hoop barns would be 50% of ASAE recommendations because of natural lighting (ASAE, 

2005). 
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2.2.4 Feed 

 Feed is typically the largest expense in a farrow-to-finish pig operation and the 

amount of energy associated with feed is also very large. The energy required to produce the 

raw ingredients for pig feed, process those components into a particular diet, and deliver the 

diet from the feed mill to a particular barn is not included in this report. This analysis 

considers only the energy used to move feed from on-site storage to feeders and the gross 

energy (GE) of the feed presented to the pigs. Energy use related to feed is closely linked to 

the amount of feed consumed and the energy density of the diet. Feed intake and growth 

efficiency assumptions for pigs housed in mechanically ventilated confinement facilities are 

presented in table 5. 

A total of seven corn-soybean meal diets were considered for modeling purposes. 

Two reference diets were used for adult animals—one for gestating sows and one for 

lactating sows (Holden et al., 1996). The five corn-soybean meal control diets fed to growing 

pigs in an earlier study were used as the reference diets for growing pigs in this analysis 

(Lammers et al., 2008b). All diets were formulated to meet or exceed NRC recommendations 

for metabolizable energy, lysine, methionine, threonine, tryptophan, and available 

phosphorus for a specific category of pigs (NRC, 1998). Diet formulations were combined 

with GE values of ingredients from literature (Sauvant et al., 2004) to calculate the GE of 

mixed diets fed to pigs. The GE and amount of each diet fed was used to calculate the GE 

value of an average kg of pig feed in the production model. On average, the GE value of pig 

feed fed from farrow-to-finish was 16.0 MJ/kg. Total feed energy was calculated by 

multiplying feed use per market pig sold by GE value of the feed by the total number of 

market pigs sold in a particular system. 
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The pig production model presented by Lammers et al. (2009) results in each sow 

producing the equivalent of 19.7 market pigs annually. Taking into consideration nursery and 

grow-finish mortality rates of 2.9% and 3.9%, respectively, the equivalent of 51.0 kg of 

nursery feed and 307.5 kg of grow-finish feed is directly attributable to each pig sold in the 

conventional confinement system. An additional 15.6 kg of lactation feed and 37.0 kg of 

gestation feed are also allocated to each market pig sold in the conventional confinement 

system. Thus each pig sold was attributed 411.1 kg of feed for the conventional system. 

Under the initial assumption of equal feed consumption, each pig sold from the hoop barn-

system was also attributed 411.1 kg of feed.  

Commercially available feed augers were selected to move feed from bulk storage 

bins to pig feeders. The size of electric motors used for feed delivery in a particular facility 

was determined based on auger and feed characteristics (APS, 2008). All electrical motors 

used for feed delivery were assumed to have a nominal efficiency of 82.5% (NEMA, 2009b). 

Hours of operation for feed auger motors were calculated using manufacturer capacity 

estimates (APS, 2008). Hours of operation, motor size, and nominal efficiency were 

combined to calculated energy used for feed delivery. 

2.2.5 Bedding 

Hoop barns for pigs require bedding to effectively operate. Large round bales of 

cornstalks are the most commonly used bedding for gestation and grow-finish pigs in Iowa. 

A single bale weighs approximately 544 kg and occupies approximately 2.8 m2 of area. In 

Iowa, bedding is baled following corn harvest in October-November and stored for use 

throughout the year. Usually only bedding that will be exposed to heavy spring and summer 

rains is stored under shelter (Harmon et al., 2004). Thus for our analysis we assume storage 
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space in hoop barns adequate for 50% of the required bedding for a particular system. Each 

finishing pig sold will require approximately 91 kg of bedding (Brumm et al., 2004). Each 

gestation space will require approximately 730 kg of bedding annually (Harmon et al., 2004). 

The GE of corn stover ranges between 16.7 and 20.9 MJ/kg dry matter (Pordesimo et al., 

2005). We assume that baled cornstalks have a moisture content of 15%, thus the GE value of 

cornstalk bedding used in this analysis is 14.2 MJ/kg of cornstalk bedding. The energy 

needed to grow corn, bale cornstalks, and deliver bales to the building site is not included in 

this analysis. 

2.2.6 Manure handling 

Energy required to remove manure from the production facility is included in this 

analysis. It was assumed that liquid slurry was agitated and pumped from the storage pits 

annually. It was assumed that the pump/agitator would require 41 kW and would have a 

capacity of 7,500 L/min when agitating and 6,500 L/min when pumping slurry from a 2.4 m 

deep pit. Liquid manure volume was calculated using reference excretion data for different 

body weights of pigs (ISU, 2003). Water used to clean pig barns ultimately is removed from 

the building as manure slurry. The volume of wash water for each barn was calculated based 

on Fulhage and Hoehne (2001). Total manure slurry volume was calculated by combining the 

volumes of manure and wash water and used to estimate annual energy use for agitating and 

pumping liquid slurry. A representative tractor-driven slurry pump was selected based on 

manufacturer literature and interviews with technical support staff. For this analysis we 

assumed a slurry pump with a capacity of 6500 L/min when pumping and 7,500 L/min when 

agitating. An appropriately sized diesel tractor was selected to power the slurry agitator using 

the Nebraska Tractor Test Laboratory database (NTTL, 2008). The tractor identified has an 
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expected fuel efficiency of 16.42 L/hr operation while agitating and pumping liquid manure 

(NTTL, 2008). Calculated hours of operation were multiplied by fuel use per hour to estimate 

total fuel use for agitating and pumping liquid manure slurry. Energy used for liquid manure 

handling was calculated by multiplying the volume of diesel fuel used by an energy value of 

38.46 MJ/L (Downs and Hansen, 2007). 

Bedded hoop barns are cleaned between groups of pigs using a tractor with 

mechanical front wheel drive and a front-end loader. For our analysis we assume that the 

bedding pack is moved from the hoop barn to a compost site within 300 m of the hoop barns. 

The model assumes the bedding pack in hoop barns for gestating sows is removed twice 

annually. Hoop barns for grow-finish pigs are typically cleaned out and re-bedded between 

each group of pigs and that is what our model assumes.  Based on our experience a 21.9  9.1 

m bedded hoop barn can be cleaned and re-bedded in 2 hr if the removed bedding is stored on 

site. Tractors used to clean hoop barns typically have mechanical front-wheel drive and a 

power take-off that delivers a maximum power of 48-63 kW. The John Deere 6120 meets 

those specification (NTTL, 2008). When cleaning a hoop-barn, maximum tractor power is 

not required for the entire time, thus to calculate fuel use, reported fuel consumption for the 

John Deere 6120 operating at 83% of maximum power (16.42 L/hr) was used (NTTL, 2008). 

After removal from the pig production facility, liquid pig manure is typically injected 

into crop fields. Energy is required to transport the manure from pig facilities to fields and to 

incorporate the manure into the soil. These uses of energy are beyond the scope of this paper 

and are not included in the analysis. The bedding pack from hoop barns is often composted 

on site to reduce bulk before incorporation into crop fields. Mechanical turning of 

composting materials assists in the composting process. Finished compost is spread across 
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the surface of crop fields and often incorporated. Turning, spreading, and incorporating 

compost requires energy but is not included in this analysis because it occurs outside of the 

pig production facility. 

2.2.7 Demonstrated performance differences 

The efficacy of converting feed into pork is affected by housing conditions. Because 

feed is by far the largest source of operating energy it is important to consider feed use by 

pigs raised in different types of facilities. In a 3-year study in Iowa, Honeyman and Harmon 

(2003) compared growth and performance of grow-finish pigs housed in bedded hoop barns 

and conventional confinement. During summer (June through October) gain-to-feed was not 

different for the two systems but during winter (December through April) pigs housed in 

deep bedded hoop barns required 8.2% more feed per unit of gain (Honeyman and Harmon, 

2003). Based on historic climate data for Iowa, it is estimated that for approximately 40% of 

the year (146 d) temperatures are sufficiently cold ( 7°C) to require more feed per unit of 

gain in bedded hoop barns compared to conventional systems (Kjelgaard, 2001; ISU, 2008). 

During other days of the year feed consumption is identical for pigs housed in bedded hoop 

barns and conventional finishing buildings. Feed use for grow-finish pigs in hoop barns was 

calculated to be 103.3% of conventional grow-finish feed use or 317.6 kg/market pig. 

Because identical farrowing and nursery facilities are used by both systems, feed 

consumption by lactating sows and nursery pigs in the hoop-based system is identical to the 

conventional system or 15.6 and 51.0 kg of feed per market pig, respectively.  

Annual feed use for gestating sows housed in hoop barns was assumed to be 7% more 

than feed use by gestating sows in conventional confinement facilities (Lammers et al., 

2008a). Reproductive performance of group housed sows in hoop barns is equal to sows 
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housed in individual gestation stalls and for some measures may be improved (Lammers et 

al., 2007). Sows housed in hoop barns for gestation gave birth to 7.5% more live pigs per 

litter and had equal pre-wean mortality rates as sows house in individual gestation stalls 

(Lammers et al., 2007). Originally it was assumed that prolificacy and sow inventory would 

be identical for the two systems (Lammers et al., 2009). Taking into consideration the 

demonstrated differences in prolificacy, fewer sows are needed in the hoop barn-based 

system. A hoop barn-based production system with 7.5% greater sow prolificacy compared to 

conventional confinement sows would require 45 vs 48 and 130 vs 140 farrowing crates to 

produce 5,200 and 15,600 market pigs. Similarly gestation spaces required for the hoop 

systems is 288 (8 hoop barns) and 838 (23 hoop barns) vs 310 and 900 individual gestation 

stalls. Gestating sow feed consumption per litter in bedded hoop barns was estimated as 

107% of gestating sow feed use in the conventional system, but 7.5% more pigs per litter are 

assumed to be marketed from sows gestated in hoop buildings. Taking into consideration 

these performance differences, gestation feed per market pig sold from the hoop barn-based 

system is equal to or slightly less than gestation feed per market pig sold from the 

conventional system. We assume feed that gestation feed per market pig sold for both 

systems is 37.0 kg. Each market pig in the conventional system was attributed 411.1 kg of 

feed. When performance differences were included in the analysis, each, market pig in the 

hoop barn-based system was attributed 421.2 kg of feed. Taking into account demonstrated 

performance differences (Honeyman and Harmon, 2003; Lammers et al., 2007), farrow-to-

finish swine farms using bedded hoop barns for gestating sows and grow-finish pigs require 

approximately 2.4% more feed annually than conventional systems.  
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 Because fewer hoop barns were needed for gestating sows in the second analysis, 

bedding use and energy required to remove bedding and manure pack was adjusted 

accordingly. Energy use for heat lamps in the farrowing facility was also reduced to match 

the number of sows in farrowing crates for the hoop barn-based system. Modeled energy use 

for ventilation and heating of the farrowing barn in the hoop barn-based system was either 

less than or equal to the conventional system. Because the reduction in modeled energy use 

for ventilation and heating was very small, no adjustments were made for these parameters.  

2.3 Energy type and greenhouse gas emission 

 Energy comes from several fuels. Operating energy for mechanical control of the 

thermal environment, water, lights, feed, bedding, and manure handling values were 

calculated and then divided by fuel type. Emissions of three greenhouse gases— CO2, CH4, 

and N2O — were estimated based on fuel type (IPCC, 2006; EPA, 2008). Standardized 

global warming potentials for the three gases of interest (IPCC, 2007) were used to calculate 

emission of CO2 equivalents or operating carbon by fuel type. Operating energy and carbon 

were then totaled for each system considered.  

There are two main categories considered in this analysis: renewable and 

nonrenewable. It is generally accepted that nonrenewable fuels require long periods of time 

to form and that reserves are being used faster than the rate of formation. Alternatively 

renewable fuels are fuels that are consumed at rates similar to their rate of regeneration. In 

our analysis there are 3 types of nonrenewable energy: electricity, liquefied petroleum gas, 

and diesel. Electricity is not inherently nonrenewable, for example electrical generation using 

wind turbines is growing in Iowa and is generally considered a renewable source of 

electricity. However, more than 75% of electricity in Iowa is produced by burning coal (EIA-
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DOE, 2009) and coal is indisputably a nonrenewable fuel. Similarly there has been rapid 

growth in production and use of biodiesel—monoakyl esters derived from vegetable oils or 

animal fats rather than petroleum. Biodiesel is typically considered a renewable fuel, but the 

majority of diesel used in Iowa is petroleum based which is nonrenewable. In this analysis 

the category renewable fuel refers exclusively to sources of energy that can be regenerated 

annually. Feed and bedding are produced from annual crops in Iowa and are the two types of 

fuel included in the renewable energy category. 

2.3.1 Nonrenewable fuels 

 In this analysis electricity is used for pumping water, air exchange, moving feed from 

storage to feeders, illumination, auxiliary heat lamps in the farrowing barn, and similar 

activities. Domestic electricity generation emission factors are available for Iowa (EPA, 

2008). It is calculated that 229.32 kg of CO2 equivalents are released for every GJ of 

electrical energy used (IPCC, 2006, 2007; EPA, 2008). 

Liquefied petroleum (LP) gas is commonly used to heat pig facilities in Iowa. In our 

analysis, energy used for heating pig facilities will originate from liquefied petroleum gas. It 

is calculated that 63.52 kg of CO2 equivalents are released for every GJ of energy that 

originates from liquefied petroleum gas (IPCC, 2006, 2007). 

 Diesel fuel is a common source of mobile energy on Iowa farms. Energy used for 

handling manure and heating wash water is assumed to originate from diesel fuel. It is 

calculated that 82.73 kg of CO2 equivalents are released for every GJ of energy that 

originates from diesel fuel (IPCC, 2006, 2007). 

2.3.2 Renewable fuels  
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Most feed and all bedding material comes from annual plants and are considered 

renewable fuels in this analysis. The GE of feed and bedding delivered to pigs is the potential 

renewable energy consumption of a given facility. Because feed and bedding originate from 

annual plants, no net CO2 emissions are associated with these forms of energy in this 

analysis. 

Renewable fuels are further divided between energy that is directly consumed (feed) 

and energy that is recycled (bedding). Swine feed is consumed by pigs and converted to meat 

and other tissue. Metabolism is not 100% efficient and some of the energy delivered as feed 

is lost in manure, urine, and gaseous emissions. The GE of feed eaten by pigs is irretrievably 

transformed and so it is truly consumed energy. Alternatively, cornstalks used for bedding 

are not significantly altered in form. Pigs use bedding for lounging, dunging, and controlling 

their thermal climate. Little bedding is eaten by pigs and so the mass of bedding that enters a 

hoop barn is later removed with additional mass (and energy) from urine and feces. 

Generation of energy from combustion of corn stalks in Iowa is very small and most corn 

stalks are simply returned to the soil following harvest. Cornstalks used for bedding are also 

ultimately returned to cropland, and so any energy found in cornstalk bedding is not 

consumed but rather recycled back to cropland after a short ( 1 yr) delay. Because the 

boundary of this analysis is strictly drawn around the pig production facility, implications of 

this delayed return of cornstalks to cropland are beyond the scope of this paper. 

2.3.3 Production Outputs 

 Swine production systems transform non-renewable and renewable streams of energy 

into meat and other tissue. The efficiency of this conversion is not 100%. Raising pigs results 

in the co-generation of feces, urine, and gaseous emissions. This analysis examines energy 
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use on a market pig basis. The consumed energy that is returned as tissue and lost as feces, 

urine, and gaseous emissions from a single pig raised in the conventional system and the 

hoop barn-based alternative is assumed to be equal. 

3. Results 

3.1.1 Embodied energy 

 Embodied energy of different types and scales of swine production facilities are 

presented in table 6. Grow-finish and gestation facilities are different for the two systems and 

are detailed in table 6. Nursery facilities are identical for both conventional confinement and 

hoop barn-based systems(Lammers et al., 2009). Farrowing facilities are very similar, the 

only difference being that in the conventional confinement system, manure from the 

farrowing facility is stored underneath the gestation barn and in the hoop barn-based system 

that uses bedded hoop barns for gestation a separate liquid manure storage tank is required 

for the farrowing facility (Lammers et al., 2009). Because the farrowing and nursery facilities 

are similar for both pig production systems they are not detailed in this analysis. Embodied 

energy of the farrowing, nursery, and bedding storage facilities are included in the systems 

total reported in table 6. 

 Concrete is the largest component of embodied energy in all grow-finish facilities, 

accounting for 45–57% of the total embodied energy in grow-finish buildings. Steel is the 

second largest component of embodied energy in grow-finish buildings. In conventional 

confinement facilities, as scale of production increases, embodied energy per market pig 

decreases. Steel is an exception to this trend. This results from differences in building 

dimensions and layout presented by Lammers et al. (2009). The 5,200 market pig system 

assumes one 92.0  15.5 m building with 4 rooms for grow-finish. The 15,600 market pig 
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system assumes four 61.3  15.5 m buildings with each building managed as one room. The 

difference in building number and dimensions results in more concrete reinforcing steel per 

market pig needed in the conventional grow-finish buildings scaled to produce 15,600 market 

pigs annually.  

 Using hoop barns for grow-finish pigs requires approximately 50% less embodied 

energy compared to conventional confinement buildings. In this analysis increasing the hoop 

barn-based system from 5,200 to 15,600 market pigs annually increases the embodied energy 

per market pig produced. This is because of differences in grow-finish hoop barn 

organization (Lammers et al., 2009). As described by Lammers et al. (2009)the system scaled 

to produce 5,200 market pigs annually requires eight 21.9  9.1 m hoop barns. These 8 hoop 

barns share one common sort/load area. Alternatively in the 15,600 market pig system, 

twenty-four, 21.9  91 m hoop barns are arranged in 4 groups of 6 hoop barns and each group 

requires a separate sort/load area (Lammers et al., 2009). These arrangements were selected 

to best match the housing situation for the conventional confinement system (Lammers et al., 

2009). 

 Within a system, increasing from 5,200 to 15,600 market pigs has little effect on the 

embodied energy of grow-finish facilities. Within a system there was an advantage to 

increasing scale in gestation facilities. Gestation facilities systems scaled to produce 15,600 

market pigs annually require 8–12% less embodied energy per market pig compared to 

gestation facilities scaled to produce 5,200 market pigs annually. Steel is the largest source of 

embodied energy in gestation buildings due to the use of gestation crates or feeding stalls in 

both conventional and hoop barn gestation facilities. Conventional gestation requires about 

40% more embodied energy as steel than hoop barns. Hoop barns require more lumber and 
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more thermoplastics, but require 13–17% less total embodied energy per market pig 

compared to conventional confinement. 

 Farrowing and nursery facilities use large quantities of thermoplastics and 

thermoplastics require a tremendous amount of embodied energy. This results in the dramatic 

increase in embodied energy found in thermoplastics of the all buildings section (table 6). 

Within a system type, increasing the scale of production by 300% does not decrease the 

embodied energy per market pig by 33%. Rather a 15% reduction is found in the 

conventional facilities and a 24% decrease is estimated for the hoop barn-based system. The 

hoop barn-based system scaled to produce 15,600 market pigs annually requires the least 

embodied energy per market pig of any system considered. Tripling pig production reduces 

embodied energy per market pig by 24% in the hoop barn-based system, but only 15% in the 

conventional confinement system. The embodied energy per market pig of a hoop barn-based 

facility complex sized to produce 5,200 market pigs annually is 6.8% more than the 

embodied energy of a conventional confinement facility sized to produce 15,600 market pigs 

annually. Producing 15,600 or 5,200 pigs using hoop barns for gestation and grow-finish 

requires 1,393.8 and 1,064.1 MJ of embodied energy per market pig sold. The embodied 

energy of conventional confinement facilities sized to produce 15,600 and 5,200 market pigs 

annually is 1,304.5 and 1,543.0 MJ per market pig sold. 

3.1.2 Embodied carbon 

 Embodied carbon of different types and scales of pig facilities are reported in table 7. 

Embodied carbon follows the same pattern of embodied energy—hoop barn-based facilities 

require less embodied carbon than conventional facilities and increasing the scale of 

production reduces embodied carbon per market pig. Although the conventional confinement 
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system sized to produce 15,600 market pigs annually required slightly less embodied energy 

per pig space than the hoop barn-based facility sized to produce 5,200 market pigs annually, 

the embodied carbon was less for the hoop barn-based facility. Producing pigs in hoop barn-

based facilities sized to produce 15,600 or 5,200 pigs annually results in one-time embodied 

CO2 emissions equal to 80.6 and 93.7 kg per market pig sold. Building conventional 

confinement facilities producing 15,600 or 5,200 market pigs annually result in CO2 

emissions of 100.9 and 113.4 kg per market pig sold. 

3.1.3 Annual embodied energy and carbon during useful life of facilities 

Table 8 compares annual embodied energy and carbon of all buildings under 15 and 

20-year useful lifespan scenarios. On a useful lifespan basis, the embodied energy and carbon 

of pig facilities follow the same pattern as total embodied energy and carbon. Adding 

replacement tarps into the analysis increases the embodied energy and the hoop barn-based 

system. The overall advantage of hoop barn-based facilities sized to produce 15,600 market 

pigs annually is maintained in spite of this increase. Because the embodied carbon of 

replacement tarps is so small relative to other facility components, the embodied carbon of 

the hoop barn-based system did not change. Hoop barn-based facilities sized to produce 

5,200 market pigs annually require greater embodied energy, but less embodied carbon per 

market pig than conventional confinement facilities sized to produce 15,600 market pigs. The 

conventional confinement facility sized to produce 5,200 pigs annually requires the most 

embodied energy and carbon per market pig of all facility types examined. 

3.2.1 Operating energy 

Mason City, 43.1°N, 93.2°W, shares a latitude that is similar to 6 of the top 10 pig 

producing counties in Iowa (USDA, 2002a). In Iowa, latitude is more predictive of thermal 
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environment than longitude and so Mason City was selected as most representative of 

climatic conditions experienced by pig farms in Iowa. The estimated energy use by pig space 

for thermal environment control of different phases and scales of conventional confinement 

facilities located near Mason City Iowa is presented as table 9. Providing adequate heat 

accounts for 78–93% of the estimated energy use for thermal environment control in pig 

barns. Increasing from 5,200 to 15,600 market pigs annually reduces energy use per pig 

space by 1–7% for different production phases. 

Thermal control of farrowing facilities requires nearly 700% more energy per pig 

space than any other production facility. Farrowing buildings must be kept at higher 

temperatures than other buildings to meet the thermal needs of young pigs. Farrowing 

buildings also have less density of pig spaces than other building types. Conventional 

confinement gestation facilities are estimated to use more energy per pig space than nursery 

and grow-finish facilities but less than farrowing barns. Providing heat is the major use of 

energy for thermal control of conventional pig facilities for all production phases in Iowa. As 

growing pigs increase in size, less energy is used for heating buildings and more is used for 

ventilation. Approximately 93–97% of the energy use for thermal control of farrowing barns 

is associated with providing heat. Alternatively, 80% of the energy use for thermal control of 

grow-finish buildings results from providing heat.  

Table 10 details the operating energy for different types and scales of pig production 

facilities by fuel type and activity when feed conversion and reproductive performance are 

identical for the two systems. Liquefied petroleum gas for heating pig buildings is the single 

largest nonrenewable energy input for conventional systems. The hoop barn-based system 

uses 35% less energy as liquefied petroleum gas compared to conventional systems. Hoop 
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barns do not use mechanical systems to provide heat, but use bedding packs. Removal of 

bedding packs with a front-end loader occurs between every group of grow-finish pigs, or 3.3 

times per year in our analysis. Liquid manure storage pits typical of conventional systems are 

usually designed to store manure slurry for a year. Our analysis assumes liquid manure pits 

are pumped annually. This results in more time, and ultimately more diesel fuel use for 

removing bedding pack in the hoop barn-based system as compared to pumping liquid 

manure in the conventional system. 

The hoop barn-based systems uses 70% less energy for ventilation, pressure washing, 

illumination, feed delivery, and heating of wash water that identically scaled conventional 

facilities require to operate. Despite using nearly 4 times more energy for manure handling, 

the hoop barn-based systems uses 36% less  total nonrenewable energy to produce market 

pigs than the conventional system. On a per pig basis, the hoop barn based system producing 

15,600 market pigs annually uses the least nonrenewable energy. The hoop barn system 

producing 5,200 market pigs annually uses 40% of the nonrenewable energy than the 

conventional system scaled to produce 15,600 market pigs annually requires. The 

conventional system producing 5,200 market pigs annually requires the most nonrenewable 

energy per market pig. In the hoop barn-based systems, increasing the number of pigs 

marketed reduces the nonrenewable energy used by 4%. In the conventional systems, 

increasing the number of pigs marketed reduces the nonrenewable energy used by 6%. 

The amount of renewable energy—feed and bedding—used to operate pig facilities 

dwarfs the nonrenewable energy inputs. Energy in feed is by far the largest single contributor 

to operating energy in all pig production systems examined. No bedding is used in 

conventional facilities, but bedding is a critical component of managing pigs in hoop barns. 
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Our analysis assumes 100% of energy present in bedding entering hoop barns is returned 

when hoop barns are cleaned out. The hoop barn-based system uses similar amounts (2% 

less) of total energy as the conventional system. This is because of the overwhelming impact 

of feed energy to the overall energy consumption total. 

Increasing pig production by three-fold barely changes total energy use per pig (0.05–

0.2%) in both systems. Once again the influence of renewable energy, particularly feed on 

the total energy budget of pig production is responsible for the similarity between systems 

producing 5,200 market pigs and systems scaled to produce 15,600 market pigs annually. 

From a total operating energy consumption per market pig produced standpoint, there is little 

if any inherent energetic advantage in increasing the scale of pig production. 

 Table 11 presents type of fuel inputs for different phases of production. Because the 

farrowing and nursery facilities are operated the same way under hoop barn-based and 

conventional confinement systems, the operating energy for farrowing and nursery facilities 

are identical at a given level of production. Approximately 67% of the nonrenewable energy 

used in farrowing facilities is electricity, primarily because of heat lamps. Liquefied 

petroleum gas accounts for 56–58% of the nonrenewable energy use in nursery buildings. In 

conventional grow-finish buildings liquefied petroleum gas is the largest nonrenewable 

energy source. As expected diesel fuel use mirrors manure production—grow-finish pigs 

produce the most manure of any phase of production and use the most diesel fuel of all 

phases. Other than diesel fuel to clean out bedding packs, there is very little nonrenewable 

energy used in hoop barns for grow-finish pigs and gestating sows. A large portion (67%) of 

nonrenewable energy use in conventional confinement facilities for grow-finish pigs and 

gestating sow is used to heat buildings. 
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 As expected renewable energy use is highest in the grow-finish phase because of the 

large quantities of feed that is consumed by pigs in this phase. In hoop barns, 21% of 

renewable energy input in the grow-finish phase is bedding. Gestating sows are limit fed and 

in gestation hoop barns 50% of total renewable energy input is bedding. Conventional 

systems do not use bedding and so feed accounts for 100% of renewable energy in those 

systems. The grow-finish phase of pig production is the most energetically intensive, 

however the other phases cannot be entirely ignored. Approximately 30% of the 

nonrenewable energy use occurs in the farrowing and nursery stages of production and 

gestation buildings account for 23% of total nonrenewable energy use in conventional 

systems. In hoop barn-based systems farrowing and nursery accounts for 59 and 20%of 

nonrenewable energy use, respectively. Gestation accounts for only 9% of nonrenewable 

energy consumption in hoop barn-based pig production. Regardless of system, focusing only 

on the grow-finish phase ignores large amounts of nonrenewable energy use that may be 

important to consider when estimating greenhouse gas emissions associated with pig 

production. 

3.2.2 Greenhouse gas emissions 

 Greenhouse gas emissions from operation of different phases of pig production within 

different types and scales of facilities are presented as table 12. Because feed and bedding 

originate from annual plants, no net CO2 emissions are associated with these forms of energy 

in this analysis. Using hoop barns for gestation and grow-finish reduces greenhouse gas 

emissions per market pig by more than 50%. Producing 15,600 market pigs annually using 

hoop barn-based facilities results in emission of 10.97 kg of CO2 equivalents per market pig. 

Producing only 5,200 market pigs annually using hoop barn-based facilities increases the 
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greenhouse gas emissions per market pig sold by 6.9% to an average of 11.73 kg greenhouse 

gas emissions per market pig. Producing market pigs in conventional confinement facilities 

requires greater use of electricity, liquefied petroleum gas, and diesel fuel. This in turn 

translates into larger greenhouse gas emissions from operation of those facilities. Increasing 

the number of market pigs produced from 5,200 to 15,600 results in 5.7% less greenhouse 

gas emissions per market pig sold from conventional confinement facilities. However using 

conventional confinement facilities to produce 15,600 market pigs annually results in 48% 

more greenhouse gas emissions per market pig sold compared to producing 5,200 market 

pigs annually using hoop barn-based facilities. 

3.2.3 Incorporating demonstrated performance differences 

Table 13 presents performance adjusted operating energy and associated greenhouse 

gas emissions of different pig production systems and scales by fuel type and activity. With 

7.5% more pigs per sow in the hoop barn-based system, fewer sows must be maintained in 

gestation and fewer litters need to be farrowed. This results in reductions in the amount of 

electricity used for heat lamps in the farrowing facility and in diesel fuel used for cleaning 

out hoop barns for gestating sows. Under this analysis, hoop barn-based pig production uses 

37–39% less nonrenewable energy than conventional systems. 

Our second analysis assumes that grow-finish pigs housed in bedded hoop barns 

require 3.3% more feed per unit of gain, this translates into the 3% increase in renewable 

energy as feed for the entire pig herd presented for hoop barn-based pig production in table 

13. Because of increase feed consumption during the grow-finish phase of production, 

systems using hoop barns for gestation and grow-finish at the two scales examined require 

similar amounts (2% more) of operating energy/market pig as the conventional systems. 
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  Incorporating improved sow reproduction reduces nonrenewable energy use for hoop 

barn-based pig production and reduces emission of greenhouse gases. Under the assumption 

of different performance between two general pig production systems, hoop-barn based 

production results in 54–57% less greenhouse gas emission. The optimal system for 

producing pigs in terms of minimizing greenhouse gas emissions is the hoop barn-based 

system scaled to sell 15,600 market pigs annually. The conventional system scaled to 

produce 5,200 market pigs annually uses the most nonrenewable energy of any system 

examined and consequently emits the most greenhouse gas.  

4.0 Discussion 

 Producing pigs using hoop barns for grow-finish and gestation requires less embodied 

energy and carbon than using conventional confinement facilities. Hoop barn-based pig 

production require similar quantities of total operating energy than conventional facilities but 

results in less greenhouse gas emissions per market pig. Increasing the scale of production 

from 5,200 to 15,600 market pigs annually lowers the embodied energy, embodied carbon, 

nonrenewable energy use and greenhouse gas emissions per market pig. However the 

reduction is less dramatic for the hoop barn-based system compared to the conventional 

confinement system. Hoop barn-based production scaled to produce 5,200 market pigs 

annually requires similar amounts of embodied energy and less embodied carbon compared 

to conventional confinement facilities scaled to produce 15,600 market pigs annually. Using 

hoop barns for grow-finish and gestation requires less nonrenewable energy and results in 

lower emissions of greenhouse gas. 

This analysis demonstrates that hoop barns for pigs have several energetic and 

environmental advantages over conventional confinement facilities. Embodied energy and 



87 

carbon values are heavily dependent on the assumptions that are included in their calculation. 

Using one database that includes all materials (Hammond and Jones, 2008) insures that 

materials are compared on an equal basis. The listed values of embodied energy and carbon 

for different pig production facilities may or may not be exact. However the relative 

magnitude of the values, particularly when comparing different systems built and operated at 

the same location, is expected to remain stable. Similarly operating energy use and the 

thermal environment regime of a particular pig facility will depend on climate conditions. 

The conditions assumed in this analysis are typical of historic averages for Iowa, the leader in 

United States pig production. It is representative of the environment where the majority of 

pigs in the United States are raised.  

Hoop barn-based pig production is more dependent on operating energy from feed 

and bedding than conventional confinement production. Alternatively conventional 

confinement facilities rely more on nonrenewable fossil fuels to modify pig environment. 

Hoop barns for grow-finish pigs and gestating sows have been successfully demonstrated and 

performance of pigs in these facilities are similar to pigs in conventional confinement 

(Honeyman and Harmon, 2003; Lammers et al., 2007). Historically the availability of fossil 

fuels has minimized pressure to critically consider all uses of energy in pig production. 

Rising energy prices, global conflicts, and recognition of the environmental impacts of using 

fossil fuels are increasing awareness and incentive to optimize use of these limited resources. 

Using hoop barns for grow-finish pigs and gestating sows is an effective strategy to reduce 

direct use of fossil fuels for pork production and may minimize global climate altering 

emissions. 
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Table 1. Density, embodied energy, and embodied carbon for building materials examineda 
 
Material 

Density, 
g/cm3 

Embodied energy, 
MJ/kg 

Embodied carbon, 
kg CO2/kg 

Concrete 2.40 0.95 0.129 
Steel 8.08 24.40 1.770 
Lumber 0.53 7.40 0.450 
Thermoplastics 0.95 76.70 1.600 
Cellulose insulation 0.03 2.12 0.000 

a From Hammond and Jones (2008). 
 
 
Table 2. Pig facility assumptionsa 
 
 
Production Phase 

Scale, 
market 
pigs/yr 

Building 
dimensions, 

m  m 

Area/thermal 
resistance, 
MJ/hr-°C 

Stocking 
rate, 

hd/barn 

Number of 
buildings for 

production system 
Farrowing 5,200 21.9  13.4 0.56 48 1 
Nursery 5,200 30.5  15.5 0.79 880 1 
Grow-Finish 5,200 92.0  15.5 6.38 1,600 1 
Gestation 5,200 52.4  13.4 3.72 310 1 
      
Farrowing 15,600 73.2  13.4 1.55 140 1 
Nursery 15,600 41.1  15.5 1.01 1,300 2 
Grow-Finish 15,600 61.3  15.5 4.43 1,200 4 
Gestation 15,600 70.3  13.4 4.78 450 2 

a From (Lammers et al., 2009) 
 
 
 
 



 

Table 3. Building occupancy, pig size and heat production, target temperature and minimum ventilation rate assumptions for 
estimating energy use for thermal climate control of conventional swine facilities 
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 Occupancy   Room Temperaturea Ventilation rateb 
Building Pigs in 

hr/yr 
Pigs out, 

Hr/yr 
Pig body 

weight, kg 
Sensible 

heatc, kJ/pig 
Min, 
°C 

Max, 
°C 

Minimumd,  
L  min-1  hd-1 

Maximume,  
L  min-1  hd-1 

Farrowingf 7,447 1,314 142.9 897.9 18.3 21.1 566 14,158 
Nursery 7,896 964 18.8 188.4 19.5 25.5 85 991 
Grow-finish 8,672 88 85.3 531.4 15.5 22.5 283 3,398 
Gestation 8,760 0 157.0 598.2 12.8 21.1 396 4,248 

a Based on Holden et al. (1996), Carr (1998), and Wathes and Whittemore (2006). Min and max is the temperature at which 
heat must be added or removed, respectively, to maintain pig comfort and performance. 

b From MWPS (1990b). 
c Calculated based on Pedersen (2002) and Brown-Brandl et al. (2004). 
d Minimum ventilation rate to maintain acceptable air quality and humidity inside building. 
e Maximum allowed ventilation rate, coupled with additional cooling strategies to reduce interior temperature of building 
f Lactating sows will be housed in the farrowing facility with their litter of pigs. Presented body weight and sensible heat 

production is for the sow only. 
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Table 4. Water use by pig facilities 
Facility Drinking and coolinga Cleaningb 
Farrowing 30 L  head-1d-1 1,083 L  space-1  yr-1 
Nursery 5 L  head-1  d-1 60 L  space-1  yr-1 

Grow-finish 10 L  head-1d-1 137 L  space-1  yr-1 
Gestation 16 L  head-1d-1 138 L  space-1  yr-1 
a Based on Thacker (2001). 
b From Fulhage and Hoehne (2001). 
 
 
 
Table 5. Daily feed intake and growth efficiency assumptions for pigs housed in 
conventional confinementa 
Class of pig Body weight Feed level 
Gestating sow 157.0 kg 2.3 kg/d 
Lactating sow 142.9 kg 6.4 kg/d 
Growing pigs 5–23 kg 1.7 kg of feed/kg of body weight gain 
 23–45 kg 2.0 kg of feed/kg of body weight gain 
 45–91 kg 2.6 kg of feed/kg of body weight gain 
 91–136 kg 3.4 kg of feed/kg of body weight gain 
a Based on work reported by Lammers et al. (2007) and Lammers et al. (2008b). 
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Table 6. Embodied energy of pig facilities per market pig by system and scale 
System  Conventional  Hoop barn-based 
Market pigs/yr 5,200 15,600  5,200  15,600 
 Grow-finish, MJ/market pig      
  Concrete 226.0 209.2  123.8  126.3 
  Steel 134.8 177.2  51.7  52.1 
  Lumber 47.7 42.7  26.3  26.6 
  Thermoplastics 45.4 23.6  15.8  15.8 
  Insulation 2.7 2.4  0  0 
  Diesel 5.9 5.3  0  0 
  Total 462.5 460.4  217.7  220.8 
 Gestation, MJ/market pig      
  Concrete 127.3 104.1  110.8  102.5 
  Steel 179.8 167.6  128.3  118.8 
  Lumber 18.7 16.5  23.8  22.2 
  Thermoplastics 10.4 7.9  20.0  18.5 
  Insulation 1.3 1.2  0  0 
  Diesel 2.1 1.2  0  0 
  Total 339.6 298.5  282.9  262.0 
 All buildings, MJ/market pig      
  Concrete 433.5 388.5  350.2  329.2 
  Steel 538.1 496.1  422.7  347.1 
  Lumber 79.8 71.7  64.0  61.6 
  Thermoplastics 472.1 331.7  547.5  318.7 
  Insulation 7.9 6.9  3.8  3.3 
  Diesel 11.6 9.6  5.6  4.2 
  Total 1,543.0 1,304.5  1,393.8  1,064.1 
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Table 7. Embodied carbon of pig facilities per market pig by system and scale 
System  Conventional  Hoop barn-based 
Market pigs/yr 5,200 15,600  5,200  15,600 
 Grow-finish, kg CO2/market pig      
  Concrete 30.8 28.4  16.7  17.2 
  Steel 9.8 12.8  3.8  3.8 
  Lumber 2.9 2.6  1.5  1.6 
  Thermoplastics 1.0 0.5  0.4  0.3 
  Diesel 0.5 0.4  0  0 
  Total 45.0 44.7  22.4  22.9 
 Gestation, kg CO2/market pig      
  Concrete 17.3 14.2  15.0  13.9 
  Steel 13.1 12.2  9.2  8.8 
  Lumber 1.2 1.0  1.5  1.3 
  Thermoplastics 0.2 0.2  0.4  0.4 
  Diesel 0.2 0.1  0  0 
  Total 32.0 27.7  26.1  24.4 
 All buildings, kg CO2/market pig      
  Concrete 58.8 52.8  47.5  44.7 
  Steel 39.0 36.0  30.6  25.2 
  Lumber 4.8 4.4  3.8  3.7 
  Thermoplastics 9.8 6.9  11.3  6.7 
  Diesel 1.0 0.8  0.5  0.3 
  Total 113.4 100.9  93.7  80.6 
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Table 8. Annual allotment of embodied energy and carbon for different lifespan scenarios of 
different pig facilities by system and scale 
System  Conventional Hoop barn-based 
Market pigs/year 5,200 15,600 5,200 15,600 
 Embodied energy, MJ/market pig   
 15 year useful life 102.9 87.0 93.0 75.7 
 15 year useful life, replace thermoplastic tarps once 95.3 73.2 
 20 year useful life 77.2 65.2 69.7 53.2 
 20 year useful life, replace thermoplastic tarps once 71.5 54.9 
      
 Embodied carbon, kg/market pig   
 15 year useful life 7.6 6.7 6.2 5.4 
 15 year useful life, replace thermoplastic tarps once 6.3 5.4a 
 20 year useful life 5.7 5.0 4.7 4.0 
 20 year useful life, replace thermoplastic tarps once 4.7a 4.1 
 a In some case, the embodied carbon of additional thermoplastic tarps is so small 

relative to other facility components replacing the thermoplastic tarps does not impact 
embodied carbon per market pig. 
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Table 9. Energy use per pig space for thermal environment control of different phases and scales 

of conventional confinement facilities in Mason City, Iowaa 
 
Barn 

Scale, 
market pig/yr 

Pig 
spaces 

Ventilation, 
MJ/space 

Heat, 
MJ/space 

Auxiliary Heat, 
MJ/space 

Total, 
MJ/space 

Farrowing 5,200 48 114.6 1,433.3 2,737.5 4,285.4 
Nursery 5,200 880 16.0 246.0 0 262.0 
Grow-finish 5,200 1,600 37.5 230.0 0 267.5 
Gestation 5,200 310 144.2 1,175.5 0 1,319.7 
       
Farrowing 15,600 140 188.6 1,378.6 2,737.5 4,304.7 
Nursery 15,600 2,600 15.4 226.4 0 241.8 
Grow-finish 15,600 4,800 35.0 210.5 0 245.5 
Gestation 15,600 900 144.4 1,112.6 0 1257.0 

a Mason City, 43.1°N, 93.2°W 
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Table 10. Operating energy of different systems and scales of pig facilities by fuel type and 
activitya 

System  Conventional Hoop barn-based 
Market pigs per year  5,200 15,600 5,200 15,600 
Nonrenewable energy, MJ/market pig     
 Electricity     
  Ventilation 26.9 26.6 5.3 5.1 
  Auxiliary heat 25.3 24.6 25.3 24.6 
  Water delivery 2.6 2.5 2.6 2.4 
  Pressure washing 3.4 3.3 0.9 0.9 
  Illumination 6.5 5.9 3.8 3.7 
  Feed delivery 2.6 1.0 0.2 0.3 
 Liquefied petroleum gas     
  Building heat 109.7 102.9 72.9 66.8 
 Diesel fuel     
  Heating wash water 16.8 15.9 4.6 4.4 
  Manure handling 2.9 2.7 11.1 10.8 
Total nonrenewable energy 196.7 185.4 126.7 119.4 
       
Renewable energy, MJ/market pig     
 Feed 6,534.4 6,534.4 6,534.4 6,534.4 
 Bedding into barn 0 0 1,910.2 1,890.2 
 Bedding removed from barn    (1,910.2) (1,890.2) 
Net renewable energy 6,534.4 6,534.4 6,534.4 6,534.4 
       
Total energy, MJ/market pig 6,731.1 6,719.8 6,661.1 6,653.8 
aFeed conversion and reproductive performance identical for both systems. 
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Table 11. Energy inputs for different phases of pig production by system, phase, and scale of 
facilitiesa 
 Nonrenewable Energy, MJ/market pig Renewable Energy, MJ/market pig 
 Electricity LP Gas Diesel Total  Feed Bedding Total 
Conventional confinement; 5,200 market pigs annually 
 Farrowing 29.5 12.2 2.5 44.2  248.0 0 248.0 
 Nursery 4.0 8.9 2.5 15.4  820.8 0 820.8 
 Grow-finish 21.7 56.9 12.1 90.7  4,875.2 0 4,875.2 
 Gestation 12.2 31.5 2.7 46.4  590.4 0 590.4 
Conventional confinement; 15,600 market pigs annually 
 Farrowing 28.7 12.2 2.5 44.2  248.0 0 248.0 
 Nursery 3.9 8.1 2.4 14.4  820.8 0 820.8 
 Grow-finish 19.5 54.5 11.3 85.3  4,875.2 0 4,875.2 
 Gestation 11.6 28.7 2.6 42.9  590.4 0 590.4 
Hoop barn-based; 5,200 market pigs annually 
 Farrowing 29.5 12.2 2.5 44.2  248.0 0 248.0 
 Nursery 4.0 8.9 2.5 15.4  820.8 0 820.8 
 Grow-finish 2.2 0 6.4 8.6  4,875.2 1,292.2 6,167.4 
 Gestation 2.4 0 4.4 6.8  590.4 618.0 1,208.4 
Hoop barn-based; 15,600 market pigs annually 
 Farrowing 28.7 12.2 2.5 44.2  248.0 0 248.0 
 Nursery 3.9 8.1 2.4 14.4  820.8 0 820.8 
 Grow-finish 2.0 0 6.4 8.4  4,875.2 1,292.2 6,167.4 
 Gestation 2.3 0 4.0 6.3  590.4 598.0 1,188.4 
  aFeed conversion and reproductive performance identical for both systems. 
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Table 12. Greenhouse gas emissions from operation of different systems and phases of pig 
production within different types and scales of facilitiesa 
  Electricity 

kg CO2 / 
market pig 

 LP Gas, kg 
CO2 / 

market pig 

 Diesel, kg 
CO2 / 

market pig 

 Total, kg 
CO2 / 

market pig 
Conventional confinement; 5,200 market pigs annually 
Farrowing  6.76  0.77  0.21  7.74 
Nursery  0.92  0.56  0.21  1.69 
Grow-finish  4.98  3.61  1.00  9.59 
Gestation  2.80  2.00  0.22  5.02 
Total  15.46  6.94  1.64  24.04 
Conventional confinement; 15,600 market pigs annually 
Farrowing  6.58  0.74  0.20  7.52 
Nursery  0.89  0.51  0.20  1.60 
Grow-finish  4.47  3.46  0.93  8.86 
Gestation  2.66  1.82  0.22  4.70 
Total  14.60  6.53  1.55  22.68 
Hoop barn-based; 5,200 market pigs annually 
Farrowing  6.76  0.77  0.21  7.74 
Nursery  0.92  0.56  0.21  1.69 
Grow-finish  0.50  0  0.53  1.03 
Gestation  0.55  0  0.36  0.91 
Total  8.74  1.33  1.31  11.73 
Hoop barn-based; 15,600 market pigs annually 
Farrowing  6.58  0.74  0.20  7.52 
Nursery  0.89  0.51  0.20  1.60 
Grow-finish  0.46  0  0.53  0.99 
Gestation  0.53  0  0.33  0.86 
Total  8.46  1.25  1.26  10.97 
aFeed conversion and reproductive performance identical for both systems. 
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Table 13. Performance adjusteda operating energy and associated greenhouse gas emissions 
of different pig production systems and scales by fuel type and activity 

System  Conventional Hoop barn-based 
Market pigs per year  5,200 15,600 5,200 15,600 
Nonrenewable energy, MJ/market 
pig 

    

 Electricity     
  Ventilation 26.9 26.6 5.3 5.1 
  Auxiliary heat 25.3 24.6 23.7 19.8 
  Water delivery 2.6 2.5 2.6 2.4 
  Pressure washing 3.4 3.3 0.9 0.9 
  Illumination 6.5 5.9 3.8 3.7 
  Feed delivery 2.6 1.0 0.2 0.3 
 Liquefied petroleum gas     
  Building heat 109.7 102.9 72.9 66.8 
 Diesel fuel     
  Heating wash water 16.8 15.9 4.6 4.4 
  Manure handling 2.9 2.7 10.6 10.5 
Total nonrenewable energy 196.7 185.4 124.6 113.9 
       
Renewable energy, MJ/market pig     
 Feed 6,534.4 6,534.4 6,729.0 6,729.0 
 Bedding into barn 0 0 1,866.3 1,849.0 
 Bedding removed from barn   (1,866.3) (1,849.0) 
Net renewable energy 6,534.4 6,534.4 6,729.0 6,729.0 
       
Total energy, MJ/market pig 6731.1 6,719.8 6,853.6 6,842.9 
     
Greenhouse gas emissions     
 Electricity, kg CO2/market pig 15.46 14.60 8.37 7.38 
 LP Gas, kg CO2/market pig 6.94 6.53 1.34 1.25 
 Diesel, kg CO2/market pig 1.64 1.55 1.26 1.23 
Total emissions, kg CO2/market pig 24.04 22.68 10.97 9.86 
aGrow-finish pigs housed in hoop barns consume 3.3% more feed and sow herd reduced by 
7% in hoop barn-based system to account for reproductive performance differences. 
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 CHAPTER 5. DIGESTIBLE AND METABOLIZABLE ENERGY OF CRUDE 
GLYCEROL FOR GROWING PIGS 
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ABSTRACT: The apparent DE and ME value of crude glycerol for growing pigs was 

determined in 5 experiments using crude glycerol (86.95% glycerol) from a biodiesel 

production facility with soybean oil used as the initial feedstock (AG Processing Inc., 

Sergeant Bluff, IA). Dietary treatments were 0, 5, or 10% glycerol addition to basal diets in 

Exp. 1; 0, 5, 10, or 20% glycerol addition to basal diets in Exp. 2; and 0 and 10% crude 

glycerol addition to the basal diets in Exp. 3, 4, and 5. Each diet was fed twice daily to pigs 

in individual metabolism crates. After a 10-d adjustment period, a 5-d balance trial was 

conducted. During the collection period, feces and urine were collected separately after each 

meal and stored at 0°C until analyses. The GE of each dietary treatment and samples of urine 

and feces from each pig were determined by isoperibol bomb calorimetry. Digestible energy 

of the diet was calculated by subtracting fecal energy from the GE in the feed, whereas ME 

was calculated by subtracting the urinary energy from DE. The DE and ME values of crude 

glycerol were estimated as the slope of the linear relationship between either DE or ME 

intake from the experimental diet and feed intake. Among all experiments, the crude glycerol 

                                                 
1Reprinted with permission of J. Anim. Sci. 2008.86:602-608 
2Corresponding author: kerr@nsric.ars.usda.gov 
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(86.95% glycerol) examined in this study was found to have a DE of 3,344 ± 8 kcal/kg and a 

ME of 3,207 ± 10 kcal/kg when fed to growing pigs, thereby providing a highly available 

energy source for growing pigs. 

 

Key words: biofuels, crude glycerol, metabolizable energy, pigs 

INTRODUCTION 

Crude glycerol is the principal co-product of biodiesel production (Ma and Hanna, 

1999; Van Gerpen, 2005; Thompson and He, 2006), with 79 g of crude glycerol generated 

for every 1.0 L of biodiesel produced (Thompson and He, 2006). With current biodiesel 

production capacity, approximately 4.16 × 108 kg of crude glycerol could be generated 

annually (NBB, 2007). Multiple reviews of the metabolic effects of glycerol have been 

published (Lin, 1977; Tao et al., 1983; Brisson et al., 2001). Glycerol is absorbed by the 

gastrointestinal tract of nonruminants (Tao et al., 1983) and is utilized as an energy source 

(Cryer and Bartley, 1973). Glycerol is gluconeogenic with glycerol gluconeogenisis being 

limited by the availability of glycerol (Cryer and Bartley, 1973; Tao et al., 1983; Baba et al., 

1995). 

Studies examining the effects of supplementing crude glycerol to diets fed to swine 

(Kijora and Kupsch, 2006; Kiljora et al., 1995, 1997; Mourot et al., 1994) and broilers 

(Cerrate et al., 2006; Simon et al., 1996) have shown little to no effect on animal 

performance. Research determining the energy value of crude glycerol is limited. Recently, 

Bartelt and Schneider (2002) reported a decrease in the ME of glycerol as the level of dietary 

glycerol was increased in swine and poultry diets.  In contrast, Dozier et al. (2008) in broilers 

and Lammers et al. (2008) in laying hens did not observe this effect. The objectives of the 
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current study were to determine the apparent DE and ME of crude glycerol at various levels 

of supplementation and to determine if the apparent energy values differed between starter 

and finisher pigs. 

MATERIALS AND METHODS 

General Pig Management. The Iowa State University Animal Care and Use 

Committee approved all experimental protocols and all experiments utilized the same batch 

of crude glycerol (86.95% glycerol). The crude glycerol was characterized through standard 

techniques (AOAC, 1995; AOCS, 2000; ASTM 2006) and is detailed in Table 1. Crude 

glycerol was obtained from biodiesel production using soybean oil as the initial feedstock 

(AG Processing Inc., Sergeant Bluff, IA). Three experiments (Exp. 1, 3, and 4) examined 

crude glycerol fed to starter pigs (average initial BW, 10.3 ± 1.4 kg) whereas 2 experiments 

(Exp. 2 and 5) examined crude glycerol fed to finishing pigs (average initial BW, 104.7 ± 8.0 

kg). In each experiment, 24 pigs were randomly assigned to individual metabolism crates 

equipped with screens and trays that allowed total but separate collection of feces and urine. 

Dimensions of individual metabolism crates were 0.53 × 0.71 m for starter pigs and 0.8 × 2.1 

m for finishing pigs. Due to crate design, barrows were used in the starter pig metabolism 

experiments while gilts were used in the finishing pig metabolism experiments. 

Pigs were randomly assigned to dietary treatments after pen assignment. Dietary 

treatments consisted of a common basal diet which met or exceeded NRC requirements 

(NRC, 1998) mixed with 0, 5, 10, or 20% crude glycerol addition to the basal diet (Exp. 1 

and 2) or 0 and 10% crude glycerol addition to the basal diet (Exp. 3, 4, and 5). Basal diet 

formulations and calculated analyses are summarized in Table 2. A 10-d adjustment period 

was used to adapt pigs to the metabolism crate and the dietary treatment.  
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Pigs were fed 2 equal daily meals. In Exp. 1, 2, 4 and 5, pigs were fed a set amount of 

the basal diet with pigs on the glycerol treatments offered an increased feed allotment based 

on the amount of glycerol addition to the basal diet (Adeola, 2001). In Exp. 3 pigs assigned 

to 10% crude glycerol received 5% more feed than control pigs. In all experiments, pigs were 

fed twice daily with feed consumption and refusal recorded at the end of the experimental 

period. Table 3 details daily feed allowance and components for dietary treatments fed for 

each of the 5 experiments. Following the adjustment period, urine was collected for the 

following 5d into stainless steel buckets containing 30mL of 6 N HCl placed below the 

collection drain of each crate. Urine was collected twice daily, diluted with water to a 

constant volume, and thoroughly mixed, with a representative aliquot collected and stored at 

0°C until subsequent analysis. 

In Exp. 1 and 2, Fe2O3 (0.25% by weight) was thoroughly mixed with the initial feed 

allocation and fed on the evening of d 10. The appearance of the marker in the feces signaled 

the beginning of the fecal collection period. Feces were collected twice daily and stored at 

0°C. A second pulse of Fe2O3 was thoroughly mixed and fed with the tenth subsequent meal 

(5-d collection period). Upon appearance of the second pulse of marker in the feces, 

collection was terminated. Because pigs seemed to have an aversion to the feed containing 

the marker in Exp. 1 and 2, no marker was utilized in Exp. 3, 4, and 5. Rather, total fecal 

collection was performed for a 120 h (5 d) time period beginning the morning of d 11 and 

ending the morning of d 16. 

Chemical Analyses. Feed samples were ground through a 1-mm screen before energy 

determination. Fecal samples were thawed, dried at 70°C for 48 h, and weighed to determine 

the DM content. Fecal samples were ground through a 1-mm screen in preparation for energy 
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determination. For urine energy determination, 2 mL of urine was added to 0.5 g of dried 

cellulose and subsequently dried at 50°C for 24 h prior to energy determination. The GE of 

feed, feces, and urine plus cellulose were determined using an isoperibol bomb calorimeter 

(model number 1281; Parr Instrument Co., Moline, IL) with benzoic acid used as a standard. 

Duplicate analyses were performed on all diets and samples of feces from each pig whereas 

triplicate analysis was performed on diluted urine plus cellulose from each pig. Urinary 

energy was determined by subtracting the energy contained in cellulose from the combined 

urine plus cellulose energy. 

Calculations and Statistical Analysis. Observations from 108 pigs of the 120 pigs 

assigned to dietary treatments across all experiments were used for analysis. Observations 

from 9 pigs were not possible to quantify due to diarrhea, constipation, or feed refusal. 

Observations from 3 pigs exceeded their treatment group mean by more than 2 SD and were 

considered outliers. The authors do not have an explanation why all but 1 pig excluded from 

analysis received experimental diets containing crude glycerol. 

Gross energy consumed was calculated by multiplying the GE value of the diet fed by 

feed intake over the 5-d collection period. Apparent DE values were calculated by 

subtracting fecal energy from intake energy. Apparent ME values were calculated by 

subtracting urinary energy from apparent DE. The apparent DE and ME values of crude 

glycerol fed to pigs were estimated as the slope of the linear relationship between the 

apparent DE or ME intake from the experimental diet, dependent variable, and feed intake, 

independent variable, (Adeola, 2001) using JMP 6.0 (SAS Institute, Inc. Cary, NC). A 

regression model was used to test for effect of feed intake, experiment number, fecal 
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collection method, type of pig, and type of pig × feed intake interaction on apparent DE and 

ME. 

RESULTS AND DISCUSSION 

Production of biofuels is increasing due to rising energy prices, uncertain access to 

petroleum supplies, and recognition of the environmental impacts of fossil fuel use (Ma and 

Hanna, 1999; Hill et al., 2006; Kurki et al., 2006). Consequently, increased production of co-

products from biofuels industries will necessitate livestock producers to be flexible in 

feedstuff choice. Crude glycerol, being a readily available energy source, may play an 

important role in meeting the energy needs of pigs as biodiesel production expands. 

 The ME of the basal diet used in the starter experiments was 3,165, 3,199, and 3,248 

kcal/kg for Exp 1, 3, and 4 respectively. The ME of the basal diets used in the finisher 

experiments were 3,174 and 3,255 kcal/kg for Exp 2 and 5 respectively. These values are 

within 5% of the calculated contents for the starter and finisher basal diets and reflect good 

collection and analytical techniques in all experiments. The GE of crude glycerol evaluated 

in these experiments was determined to be 3,625 ± 26 kcal/kg. This is close to expectations 

relative to pure glycerol (in house GE analysis of 4,305 kcal/kg), given that our sample of 

crude glycerol evaluated contained 86.95% glycerol with low levels of methanol (0.028%) 

and free fatty acid (0.29%). Based upon our data in broilers (Dozier et al., unpublished data) 

and laying hens (Lammers et al., 2008) we did not expect the level of crude glycerol to affect 

ME determination. However, when data from Exp. 1 was analyzed separately the ME of 

crude glycerol declined with increasing levels of supplementation, with estimated ME values 

of 3,601, 3,239, and 2,579 kcal/kg crude glycerol for 5, 10, and 20% inclusion levels, 

respectively (quadratic, P = 0.05). Bartelt and Schneider (2002) also showed a decrease in 
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the ME of glycerol (99.9% glycerol) with increasing levels of glycerol fed to 34-kg barrows, 

with ME/kg being 4,177, 3,436, and 2,524 kcal/kg at 5, 10, and 15% inclusion levels, 

respectively.  In Exp. 1, the decrease in ME of glycerol appears to be due to pigs fed the 20% 

crude glycerol. Removing the 20% inclusion level data from Exp. 1 showed no such 

difference in ME estimation with the remaining levels of crude glycerol tested (0, 5, and 

10%), resulting in a ME value of 3,463 kcal/kg (linear, P = 0.001). In contrast, there was no 

effect of crude glycerol inclusion level on ME determination when determined with finishing 

pigs in Exp. 2. 

Apparent energy values for all 5 experiments are detailed in Table 4. Among all 

treatments, digestibility ranges between 89 and 92% while ME values are between 86 and 

88% of the GE intake. The only exception is found in the starter pigs fed 20% crude glycerol 

(Exp. 1). The digestibility of the fed diet is 90% in those 6 pigs, however, the ME value is 

83% of the GE intake. This further highlights a potential decline in the ability of 11.0-kg pigs 

to metabolize more than 10% crude glycerol. We do not have an explanation for this effect as 

enzyme kinetics involved in glycerol metabolism have not been studied in the pig and this 

experiment was not designed to evaluate tissue utilization or metabolism of glycerol in the 

pig. With 6 starter pigs fed 20% crude glycerol it is difficult to draw conclusions about the 

small pig’s ability to utilize crude glycerol, although the question should be examined 

further. Given the fact that pigs fed the 20% crude glycerol in Exp. 1 had reduced utilization 

of crude glycerol, as determined by a lower ME estimate, we chose to exclude the pigs from 

subsequent analysis. 

Markers such as Fe2O3 have long been used in nutritional studies (Kotb and Luckey, 

1972). In Exp. 1 (starter) and 2 (finisher), Fe2O3 seemed to affect palatability of the diet 
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through visual evaluation of feed acceptance at the initiation of the collection period. This is 

supported by Jagger et al. (1992) who reported that 57-kg pigs had some initial reluctance to 

consume feed when the level of marker was increased from 0.1% to 0.5% TiO2. We chose 

not to use a marker in Exp. 3, 4, and 5 because acceptance of feed is critical in short-term 

metabolic studies. 

Table 5 presents the apparent DE and ME values as determined by linear regression 

(Adeola, 2001) for Exp. 1 to 5. Apparent DE and ME were not influenced by experiment 

(Exp. 1 to 5), use of marker to determine fecal collection time points (Exp. 1 and 2 versus 

Exp. 3, 4, and 5), type of pig (starter, Exp. 1, 3, and 4 versus finisher, Exp. 2 and 5), or by 

type of pig × feed intake interaction. As expected, feed intake affected both apparent DE and 

ME intake (P  0.001).  

In the current experiments, the ratio of DE:GE for the crude glycerol examined 

equaled 92% indicating that crude glycerol was well digested by pigs. In comparison to corn 

and soybean oil, 2 common feedstuffs used to provide energy in pig diets, the ratio of 

ME:DE for the crude glycerol examined was 96%, which is identical to the ME:DE ratio for 

soybean oil and is comparable to the ratio of ME:DE for corn which is 97% (NRC, 1998). 

These relationships support the assertion that the crude glycerol used in these experiments 

was well utilized by the pig as a source of energy. This is agreement with Bartelt and 

Schneider (2002) who reported that > 97% of the glycerol is digested prior to the cecum. 

The results of combined regressions indicate that the DE value of the examined crude 

glycerol (86.95%) was 3,344 ± 8 kcal/kg (Figure 1) and that the ME was 3,207 ± 10 kcal/kg 

(Figure 2). Recent work with the same crude glycerol sample estimated an apparent ME 

(corrected for nitrogen) to be 3,805 kcal/kg for laying hens (Lammers et al. 2008) and 3,684 
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kcal/kg for broilers (Dozier et al., 2008) which are not different from the GE for this sample 

of crude glycerol (3,625 ± 26 kcal/kg). Tao et al. (1983) indicated that the oxidation of 

glycerol to carbon dioxide releases 4,320 kcal/kg. Rosebrough et al. (1980) assumed a ME 

value of 4,200 kcal/kg for dietary glycerol in turkeys while Cerrate et al. (2006) estimated a 

ME value of 3,528 kcal/kg in broilers. Until now, no work has reported an actual 

determination of ME of crude glycerol in swine. When placed on an equivalent glycerol 

basis, our ME determination would be marginally higher than the 3,436 kcal ME/kg 

determined for pure glycerol (Bartelt and Schneider, 2002).  

With an ME of 3,207 ± 10 kcal/kg, crude glycerol can be used as an excellent source 

of energy for growing pigs. Levels of other compounds in crude glycerol (i.e., methanol, 

sodium- or potassium chloride, and free fatty acids), however, must be monitored to prevent 

excessive amounts in pig diets and for potential impacts on ME determination of this 

feedstuff. 
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Table 1. Characterization of crude glycerol        
Item  Value Analytical method 
Total glycerol1, % 86.95 ASTM2 D 6584-00E01 
Methanol1, % 0.028 Gas chromatography (proprietary method) 
pH1  5.33 Orion 230A pH meter with 9107 BN probe 
Total fatty acid1, % 0.29 AOCS3 G 4.40 modified for glycerin 
Moisture4, % 9.22 AOAC5 984.20 
Crude protein4, % 0.41 AOAC 990.03 
Crude fat4, % 0.12 AOAC 920.39 (A) 
Ash4, % 2 3.19 AOAC 942.05 
Sodium4, %2 1.26 AOAC 956.01 
Chloride4, %2 1.86 AOAC 9.15.01, 943.01 
Potassium4, %2 < 0.005 AOAC 956.01 
Color4  < 1 AOCS Cc 13a-43 
Gross energy6, kcal/kg 3625 ± 26 Isoperibol  bomb calorimeter 

1Values reported by AGP, Inc. Sergeant Bluff, IA, Lot # GB605-03. 
2American Society for Testing Materials (2006) 
3American Oil Chemists’ Society (2000). 
4Analysis by University of Missouri-Columbia Experiment Station Chemical 

Laboratories, Columbia, MO. 
5Association of Official Analytical Chemists (1995). 
6Analysis by USDA, National Swine Research and Information Center, Ames, IA; Model 

number 1281, Parr Instrument Co. Inc., Moline, IL. 
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Table 2. Ingredient and calculated content of basal diets fed to starter and finisher pigs, as-
fed basis 
Item Starter1 Finisher2 

Ingredient, % 
Corn 44.75 79.20 
Soybean meal, 47.5%  38.92 18.30 
Whey (dried) 12.50 0.00 
DL-methionine 0.03 0.00 
L-threonine 0.02 0.00 
Dicalcium phosphate 1.84 0.90 
Limestone 1.00 0.85 
Sodium chloride 0.25 0.33 
Trace mineral mix 0.153 0.094 

Choline chloride, 60% 0.03 0.00 
Vitamin mix 0.375 0.206 

Mold inhibitor 0.10 0.10 
Total 100.00 100.00 
 
Calculated content 
ME, Mcal/kg 3.326 3.327 
Lysine, % 1.40 0.76 
Total sulfur AA, % 0.79 0.54 
Threonine, % 0.96 0.57 
Tryptophan, % 0.30 0.17 
Calcium, % 1.02 0.60 
Available phosphorus, % 0.51 0.23 
Sodium, % 0.23 0.15 
Chlorine, % 0.37 0.25 

1Mean initial BW, 10.3 ± 1.4 kg. 
2Mean initial BW, 104.7 ± 8.0 kg. 
3Provided the following per kg of diet: Cu, 26.3 mg as Cu oxide; Fe, 263 mg as Fe 

sulfate; I, 3.0 as Ca iodate; Mn, 90.0 mg as Mn oxide; and Zn, 225 mg as Zn oxide. 
4Provided the following per kg of diet: Cu, 15.8 mg as Cu oxide; Fe, 158 mg as Fe 

sulfate; I, 1.8 as Ca iodate; Mn, 54.0 mg as Mn oxide; and Zn, 135 mg as Zn oxide. 
5Provided the following per kg of diet: vitamin A, 8,157 IU; vitamin D3, 2,039 IU; 

vitamin E, 41 IU; vitamin B12, 0.04 mg; riboflavin, 12.2 mg; niacin, 61.2 mg; d-
panothentic acid, 32.6 mg. 

6Provided the following per kg of diet: vitamin A, 4,409 IU; vitamin D3, 1,102 IU; 
vitamin E, 22 IU; vitamin B12, 0.02 mg; riboflavin, 6.6 mg; niacin, 33.1 mg; d-
panothentic acid, 17.6 mg. 
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Table 3. Number of pigs, daily feed allowance1, and components fed for 5 experiments 
 Glycerol Number  Daily intake GE  
Experiment addition, % of pigs Basal diet, g Glycerol, g kcal/kg diet 
1 (11.0 ± 0.5 kg) 2 0 6 376 0 3,680 
 5 6 376 19 3,670 
 10 6 376 38 3,707 
 20 6 376 75 3,681 
 
2 (109.6 ± 5.5 kg)2 0 6 2,292 0 3,652 
 5 6 2,292 115 3,666 
 10 6 2,292 229 3,664 
 20 5 2,292 458 3,690 
 
3 (8.4 ± 0.9 kg)3 0 12 316 0 3,746 
 10 7 300 30 3,806 
 
4 (11.3 ± 0.7 kg)3 0 11 400 0 3,778 
 10 9 400 40 3,780 
 
5 (99.9 ± 7,4 kg)3 0 12 2,000 0 3,783 
 10 10 2,000 200 3,768 

1Pigs were fed 2 equal meals daily in each experiment. 
2Fecal collection by marker method. 
3Fecal collection by 120 h method. 
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Table 4. Apparent energy values for 5 experiments1 
  Glycerol Addition, %  
Item 0 5 10 20 
Experiment 1 initial BW, 11.0 ± 0.5 kg 
Gross energy intake, kcal/d 1,384 ± 13 1,450 ± 16 1,535 ± 1 1,660 ± 5 
Fecal energy, kcal/d 147 ± 19 138 ± 14 146 ± 21 168 ± 19 
Digestible energy, kcal/d 1,237 ± 19 1,311 ± 14 1,389 ± 21 1,491 ± 19 
Urinary energy, kcal/d 47 ± 16 56 ± 19 68 ± 25 108 ± 25 
Metabolizable energy, kcal/d 1,190 ± 30 1,255 ± 25 1321 ± 36 1,384 ± 29 
 
Experiment 2 initial BW, 109.6 ± 5.5 kg 
Gross energy intake, kcal/d 8,370 ± 46 8,824 ± 8 9,237 ± 64 10,148 ± 89
  
Fecal energy, kcal/d 798 ± 108 811 ± 48 885 ± 83 828 ± 50 
Digestible energy, kcal/d 7,573 ± 108 8,013 ± 48 8,352 ± 83 9,320 ± 50 
Urinary energy, kcal/d 298 ± 28 282 ± 24 350 ± 40 600 ± 44 
Metabolizable energy, kcal/d 7,277 ± 124 7,731 ± 53 8,002 ± 81 8,720 ± 83 
 
Experiment 3 initial BW, 8.4 ± 0.9 kg 
Gross energy intake, kcal/d 1,180 ± 1  1,256 ± 1 
Fecal energy, kcal/d 121 ± 14  115 ± 9 
Digestible energy, kcal/d 1,059 ± 14  1,141 ± 9 
Urinary energy, kcal/d 48 ± 8  61 ± 19 
Metabolizable energy, kcal/d 1,011 ± 18  1,080 ± 23 
 
Experiment 4 initial BW, 11.4 ± 0.7 kg 

Gross energy intake, kcal/d 1,511 ± 2  1,663 ± 10 
Fecal energy, kcal/d 160 ± 21  150 ± 16 
Digestible energy, kcal/d 1,352 ± 21  1,514 ± 16 
Urinary energy, kcal/d 53 ± 7  73 ± 12 
Metabolizable energy, kcal/d 1,299 ± 23  1,441 ± 18 
 
Experiment 5 initial BW, 99.9 ± 7.4 kg 

Gross energy intake, kcal/d 7,566 ± 27  8,290 ± 33 
Fecal energy, kcal/d 858 ± 136  836 ± 86 
Digestible energy, kcal/d 6,708 ± 136  7,451 ± 86 
Urinary energy, kcal/d 198 ± 38  264 ± 31 
Metabolizable energy, kcal/d 6,510 ± 158  7,187 ± 90 

1Calculated energy values presented as Mean ± SEM. 
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Table 5. Apparent energy value of crude glycerol fed to pigs, as-fed basis1 
Experiment Pigs Initial BW, kg DE, kcal/kg SEM ME, kcal/kg SEM 
1 18 11.0 ± 0.6 4,401 282 3,463 480 
2 23 109.6 ± 5.5 3,772 108 3,088 118 
3 19 8.4 ± 0.9 3,634 218 3,177 251 
4 20 11.3 ± 0.7 4,040 222 3,544 237 
5 22 99.9 ± 7.4 3,553 172 3,352 192 

1All experiments represent data from 5-d energy balance experiments following a 10-d 
adaptation period. 
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Figure 1. Apparent DE of crude glycerol fed to pigs. Data represents the combined 
regression from Exp. 1 through 5 of DE intake over feed consumption for a 5-d period for 
102 pigs fed 0, 5, 10, and 20% crude glycerol, with the slope of the regression line indicating 
crude glycerol’s DE equals 3,344 kcal/kg. 
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Figure 2 
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Figure 2. Apparent ME of crude glycerol fed to pigs. Data represents the combined 
regression from Exp. 1 through 5 of ME intake over feed consumption for a 5-d period for 
102 pigs fed 0, 5, 10, and 20% crude glycerol, with the slope of the regression line indicating 
crude glycerol’s ME, equals 3,207 kcal/kg. 
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CHAPTER 6. GROWTH PERFORMANCE, CARCASS CHARACTERISTICS, 
MEAT QUALITY, AND TISSUE HISTOLOGY OF GROWING PIGS FED CRUDE 

GLYCERIN-SUPPLEMENTED DIETS 
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ABSTRACT: The effects of dietary crude glycerin on growth performance, carcass 

characteristics, meat quality indices, and tissue histology of growing pigs fed crude glycerin 

were determined in a 138-d feeding trial. Crude glycerin utilized in the trial contained 

84.51% glycerin, 11.95% water, 2.91% sodium chloride, and 0.32% methanol. Eight days 

post-weaning, 96 pigs (48 barrows, 48 gilts, average BW of 7.9 ± 0.4 kg) were allotted to 24 

pens (4 pigs/pen), with sex and BW balanced at the start of the experiment. Dietary 

treatments were 0, 5, and 10% crude glycerin inclusion into corn-soybean meal based diets 

and were randomly assigned to pens. Diets were offered ad libitum in meal form and 

formulated to be equal in ME, sodium, chloride, and Lys, with other AA balanced on an ideal 

AA basis. Pigs and feeders were weighed every other week to determine ADG, ADFI, and 

G:F. At the end of the trial, all pigs were scanned using real time ultrasound and 

subsequently processed at a commercial abattoir. Blood samples were collected pretransport 

and at the time of harvest for plasma metabolite analysis. In addition, kidney, liver, and eye 

                                                 
4Reprinted with permission of J. Anim. Sci. 2008.86:2962–2970  
5Corresponding author: kerr@nsric.ars.usda.gov  
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tissues were collected for subsequent examination for lesions characteristic of methanol 

toxicity. After an overnight chilling of the carcass, loins were removed for meat quality, 

sensory evaluation, and fatty acid profile analysis. Pig growth, feed intake, and G:F were not 

affected by dietary treatment. Dietary treatment did not affect 10th-rib backfat, LM area, 

percent fat free lean, meat quality, or sensory evaluation. Loin ultimate pH was increased (P= 

0.06) in pigs fed the 5 and 10% crude glycerin compared with pigs fed no crude glycerin 

(5.65 and 5.65 versus 5.57 respectively). Fatty acid profile of the LM was slightly changed 

by diet with the LM from pigs fed 10% crude glycerin having less linoleic acid (P < 0.01) 

and more eicosapentaenoic acid (P = 0.02) than pigs fed the 0 or 5% crude glycerin diets. 

Dietary treatment did not affect blood metabolites or frequency of lesions in the examined 

tissues. This experiment demonstrated that pigs can be fed up to 10% crude glycerin with 

little to no effect on pig performance, carcass composition, meat quality, or lesion scores. 

 

Key words: biofuels, crude glycerin, fatty acids, growing pigs, histology, meat quality 

INTRODUCTION 

 The production of biofuels fuels is increasing in a dramatic fashion (Ma and Hanna, 

1999; Hill et al., 2006; Kurki et al., 2006). Biodiesel production in the United States have 

grown exponentially since 1999 with existing U.S. production capacity being approximately 

5.3 billion L (National Biodiesel Board 2007). A co-product of the biodiesel industry is crude 

glycerin, with 79 g of crude glycerin generated for every 1.0 L of biodiesel produced 

(Thompson and He, 2006). Consequently, with current biodiesel production capacity, 

approximately 4.2 × 108 kg of crude glycerol could be generated annually (National 

Biodiesel Board 2007). 
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 Crude glycerin obtained from a biodiesel production facility using soybean oil as its 

feedstock has been shown to be a highly available energy source in laying hens (Lammers et 

al., 2008a), broilers (Dozier III et al., 2008), and swine (Lammers et al., 2008b). Pigs can be 

fed up to 10% glycerin with little or no effect on pig performance (Kiljora et al., 1995, 1997) 

. The reported effect of glycerin on meat quality has been inconsistent. In pigs fed wheat–

soybean meal based diets, 24-h drip loss and cooking loss were reduced in the muscles from 

pigs supplemented with 5% crude glycerin (Mourot et al., 1994). In contrast, Kijora and 

Kupsch (2006) noted no effect on carcass dripping or press water loss in barley–soybean 

meal based diets supplemented with up to 10% glycerin. Crude glycerin supplementation has 

been shown to slightly increase oleic acid at the expense of linoleic and linolenic acids, 

consequently decreasing the unsaturation index of fat (Mourot et al., 1994; Kijora et al., 

1997). 

 Low concentrations of methanol are contained in crude glycerin and acute methanol 

intoxication can lead to formic acid accumulation leading to metabolic acidosis (Medinsky 

and Dorman, 1995; Skrzydlewska, 2003). Animals differ widely, however, in their ability to 

metabolize methanol (Roe 1982). Although crude glycerin contains trace concentrations of 

methanol, no data exist on the effect of crude glycerin containing methanol on tissue 

histology in growing pigs. The objectives of the current study were to evaluate effects of 

crude glycerin supplementation on growing-finishing pig performance, carcass composition, 

meat quality, composition and profile of LM intramuscular lipid, and histology of the eye, 

liver, and kidney tissue. 
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MATERIALS AND METHODS 

 The Iowa State University Animal Care and Use Committee approved all 

experimental protocols. 

Animals and Dietary Treatments. Crude glycerin was obtained from a biodiesel 

production facility (AG Processing Inc., Sergeant Bluff, IA) that utilized soybean oil as its 

feedstock. The analysis of the crude glycerin used in this study is listed in Table 1. 

 Pigs (Cambrough 22 females  L337 sires) were weaned at 21 d of age and fed a 

commercial starter diet for 1 wk. Eight days post-weaning, 96 pigs (48 gilts, 48 barrows) 

with an average BW of 7.9 ± 0.4 kg were allotted to 24 pens (4 pigs/pen) with sex 

distribution and pen weight balanced at the start of the experiment. Dietary regimes were 

randomly assigned to each pen, with dietary treatments being 0, 5, and 10% crude glycerin 

inclusion into corn-soybean meal diets. Pigs were fed diets over a 5-phase feeding program 

during the 138-d trial. Within each phase, diets were offered ad libitum in meal form and 

were formulated to be equal in ME, sodium, chloride, with diets based on total Lys with 

other AA balanced on an ideal AA basis. Initial diet formulation and calculated nutrient 

content of control diets are summarized in Table 2. 

 Pigs were individually weighed every 2 wk with feed disappearance recorded at the 

time of pig weighing to determine ADG, ADFI, and G:F. Dietary phase changes 

corresponded with the day that pigs were weighed, occurring on the same day for all 

treatments. Pigs were housed in nursery (1.2 × 1.2 m) pens for 33 d, grower (1.8 × 1.9 m) 

pens for 28 d, and finisher (2.7 × 1.8 m) pens for the final 77 d. Nursery pens had wire mesh 

flooring while the grower and finisher pens had partial slats. All rooms were mechanically 

ventilated with pull-plug manure storage systems. During the course of the experiment 6 pigs 
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were removed from the trial due to health issues with no pattern of pig removal based on 

dietary treatment and no individual pen having more than 1 pig removed. Pen feed 

disappearance was adjusted for the removed pig at the time of removal. On d-138, all pigs 

were weighed (133 ± 6 kg BW) for the termination of the performance period and scanned 

using real-time ultrasound as described by Sullivan et al. (2007) Blood samples (10 mL) for 

plasma analysis were collected via jugular venipuncture into containers containing sodium 

heparin and stored on ice until blood collection from all pigs was complete. Samples were 

then centrifuged at 900  g for 20 min at 4°C, after which an aliquot of plasma from each 

sample was used for plasma urea nitrogen analysis. Pigs remained in their respective pens 

with access to feed and water until transport to the abattoir on d-139. 

Carcass Traits. On the morning of d-139, 90 pigs were transported to the abattoir 

(Sioux-Preme Packing Co., Sioux Center, IA). One pig died during transport. On d-140, pigs 

were electrically stunned and exsanguinated. Blood, eye, and liver samples were harvested 

from early post-mortem carcasses for further analysis. Carcasses were chilled overnight 

(0°C). Last rib fat depth was measured on each carcass at 24 h postmortem and the percent 

lean was calculated (proprietary equation, Sioux-Preme Packing Co.). The loin from the left 

side of each carcass (10th rib to posterior tip) was removed, vacuum packaged, placed on ice, 

transported to Iowa State University, and stored at 0°C until subsequent analysis. Tissue and 

loin samples from 2 pigs were not collected at the abattoir due to operator error. Loin 

marbling scores were evaluated 12 d postmortem according to National Pork Board 

Standards (NPPC, 2000). Loin muscle was evaluated for moisture composition(AOAC, 

1990) with loin purge determined on additional loin samples after 12 d of storage as 

described by Gardner (2006) Following loin purge loss, chop purge was determined using 
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2.54 cm-thick chops which were weighed and placed in a plastic bag and stored for 24 h at 

2.2±1.1°C with chop purge based on the weight of free liquid in the bag (Garderner et al. 

2006). Drip loss was determined using 2.54-cm thick boneless chops (2 per loin) as detailed 

by Lonergan et al. (2001). Minolta color values from each chop were obtained with a Minolta 

Chroma meter (model CR-310; Knoica Minolta Sensing Americas Inc., Ramsey NY) with a 

0° viewing angle, a 50-mm diameter measuring area, and a CIE D65 illuminant. One 

measurement was taken on each chop sample.  

Cooked Loin Evaluation. The loins of 2 pigs from each pen (1 barrow and 1 gilt) 

were randomly selected for evaluation. Following 12 d of storage, two 2.54-cm-thick loin 

chops were removed from the center of the loin for sensory and instrumental texture analysis 

as described by Sullivan et al. (2007). 

Fatty Acid Profile Analysis. Lipids were extracted and measured from a sample of 

each loin (Folch et al., 1957), which were subsequently methylated to fatty acid methyl esters 

using boron trifluride (BF3) in methanol, and removed from solution as described by Du et al. 

(1999). The fatty acid methyl esters were analyzed for fatty acid composition according to 

procedures established by Du et al. (1999) using gas chromatography (HP 6890 equipped 

with an autosampler, flame ionization detector, Agilent Technologies, Santa Clara, CA) and a 

column (HP-wax fused silica capillary column, 30 m × 0.25 mm × 0.25 µm film thickness; 

Supelco, Bellefonte, PA). Fatty acid methyl esters were identified by comparing the retention 

times of authentic fatty acid standards. 

Plasma Metabolites. In addition to obtaining blood samples from all pigs before 

shipping, blood samples were also collected on the day of slaughter at the time of 

exsanguination into 50-mL cetrifuge tubes containing sodium heparin (14.2 USP units/mL). 
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Samples were subsequently centrifuged at 900  g for 20 min and stored at -80°C pending 

analysis. Blood urea nitrogen was determined enzymatically as described previously (Kerr et 

al., 2004). Plasma cortisol was determined using a commercially available kit (Active 

Cortisol EIA, Diagnostic Systems Laboratories, Inc., Webster, TX) that has been previously 

validated for porcine serum (Weber and Spurlock, 2004). Commercially available kits 

(Sigma Chemical Co. St. Louis, MO) were used to measure plasma glucose and glycerol 

(GAHK20 and F6428 respectively). In addition, commercially available kits (Pointe 

Scientific Inc., Canton MD) were used to measure plasma lactate concentrations and creatine 

kinase activity  (L7596 and C7512, respectively). All of the plasma metabolites were 

measured in duplicate. 

Tissue Histology. From all pigs, 1 eye, liver, and kidney per pig were collected at the 

time of slaughter and placed in neutral-buffered 10% formalin. They were subsequently 

processed by routine paraffin embedding techniques, cut in 4 m sections, and stained with 

hematoxylin and eosin and Masson’s trichrome techniques. All sections were read for lesions 

(Maxie, 2007) twice by a single person versed in lesion evaluation. 

Statistical Analysis. Data were subjected to ANOVA (SAS Inst. Inc., Cary, NC) and 

differences between means were tested using the PDIFF option. Pig performance (ADG, 

ADFI, and G:F) was evaluated in each dietary phase and for the entire 138-d feeding period 

with the pen used as the experimental unit. Carcass composition and meat quality traits were 

evaluated to test for effect of dietary treatment, pig gender, and diet × gender interaction. 

Plasma metabolites pre-transport and immediately post-exsanguination, and differences in 

the frequency of histological lesions were evaluated for the effect of dietary treatment. 
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Individual pigs were the experimental unit for analysis of carcass composition, meat quality, 

plasma metabolites and lesion data.  

RESULTS AND DISCUSSION 

 Average daily gain, ADFI, and G:F were not affected by dietary treatment in any 

phase (data not shown) or over the entire growing 138 d period (Table 3). These results agree 

with results from previous studies examining growth and performance of pigs fed crude 

glycerol in barley-soybean meal (Kiljora et al., 1995; Kijora et al., 1997; Kijora and Kupsch, 

2006) and wheat-soybean meal diets (Mourot et al., 1994). This is also supported by work in 

broilers that demonstrated up to 5% glycerin can be fed without affecting growth or feed 

conversion (Simon et al., 1996; Cerrate et al., 2006). 

 The effects of diet, gender, and their potential interaction on carcass characteristics 

are described in Table 4. There was no diet × gender interaction on any trait examined. In 

agreement with other reports (Mourot et al., 1994; Kiljora et al., 1995; Kijora et al., 1997; 

Kijora and Kupsch, 2006) dietary treatment did not effect 10th rib backfat, LM area, fat free 

lean, daily lean gain, or carcass lean percentage. As expected 10th rib backfat was thicker in 

barrows than gilts (Cline and Richert, 2001; Renaudeau and Mourot, 2007). 

Diet did not affect HCW, percent loin lean, moisture content, or chop lipid percentage 

(Table 5). These results agree with other reports (Mourot et al., 1994; Kiljora et al., 1995, 

1997; Kijora and Kupsch, 2006). Inclusion of glycerin in the diet did not affect chop drip 

loss, with is in agreement with Kijora and Kupsch (2006) and Airhart et al. (2002) but 

contrary to the findings of Mourot et. al (1994). As expected, carcasses from gilts weighed 

less and were leaner than the carcasses from barrows (P  0.05). 
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Loin tissue from pigs fed 10 % crude glycerin had less concentrations of linoleic acid (18:2) 

than the other  dietary treatments (P < 0.01; Table 5) which agrees with the work of Morout 

et al. (1994) and Kijora et al. (1997). Eicosapentaenoic acid (20:5) increased with increasing 

crude glycerin supplementation (P = 0.02). Morout et al. (1994) did not report eicosapentoic 

acid (20:5) concentrations but reported declines in myristic acid (14:0) in backfat and 

linolenic acid (18:2) in backfat and semimembranosus muscle when pigs were fed 5% 

glycerin. Kijora et al. (1997) did not find these changes in backfat from pigs fed 10% 

glycerin. There is no clear consensus on the effect feeding crude glycerin may have on fatty 

acid profile of pork lipid (Mourot et al., 1994; Kijora et al., 1997). The apparent 

disagreement on the effect feeding glycerin has on fatty acid profile of pork fat may be due to 

differences in amount and profile of fatty acids remaining in the crude glycerin, or in our 

case, the reduction in corn (and consequently corn oil) due to the addition of crude glycerin. 

The relative differences in amount and profile of fatty acids in other feedstuffs included in 

the experimental diets may also limit comparisons across studies. 

Dietary glycerin may reduce water loss from the carcass and cooking if slaughter 

follows and overnight fast (Mourot et al., 1994). In the current experiment however, pork 

loin quality and sensory characteristics were not affected by diet or sex and there was no diet 

 sex interaction (Table 6) Furthermore, data presented here indicate that cooking loss is not 

affected by crude glycerin supplementation, which is in contrast with the findings of Mourot 

et al. (1994) who reported less carcass drip loss and cooking loss from muscle of pigs fed 5% 

glycerin. The lack of a change in drip and cooking loss in the current study may be due to the 

30-h feed withdrawal time compared with the overnight fast in the study by Mourot et al. 

(1994). Other workers have demonstrated that removing feed 24 h before slaughter will 



131 

reduce drip loss and lessens decline in muscle pH (Jones et al., 1985; Eikenlenboom et al., 

1990). Eikenlenboom et al. (1990) also reported reduced cooking loss in pigs fasted 24 h 

before slaughter. This is the first report of sensory evaluation of loin chops from pigs fed 

crude glycerol. Diet did not impact pork quality traits evaluated by a trained sensory panel. 

There was no diet × time interaction or diet effect on any plasma metabolite measured 

(Table 7). Plasma urea nitrogen is an indicator of body protein status (Kohn et al., 2005) and 

has been used to determine protein requirements and lean tissue growth rates in pigs (Chen et 

al., 1995; Coma et al., 1995). Plasma urea nitrogen was not affected by time of collection or 

diet, supporting the conclusion that lean tissue mobilization was not altered by feeding up to 

10% crude glycerin. Glycerin is absorbed by the gastrointestinal tract of nonruminants (Tao 

et al., 1983) and crude glycerin has been shown to be a source of energy in both pigs 

(Lammers et al. 2008b) and chickens (Dozier et al. 2008; Lammers et al. 2008a). The 

absence of a dietary treatment effect on plasma glycerol concentrations indicates metabolism 

of dietary glycerin was not affected at levels less than or equal to 10% of the diet. 

Concentrations of most plasma metabolites were different between pre-transport and at the 

time of slaughter (P < 0.01). Transporting pigs has been shown to cause stress in pigs (Pérez 

et al., 2002; Apple et al., 2005). Increases in plasma cortisol, glucose, lactate, and creatine 

phosphokinase are correlated with increased stress in pigs (Brown et al., 1998; Pérez et al., 

2002; Apple et al., 2005). Our results indicate a stress response in pigs were following 

transport to the abattoir and that feeding crude glycerol did not reduce this effect.  

 Current biodiesel processing techniques utilize methanol which is not completely 

recovered, and thus, methanol is found in crude glycerol at very low concentrations (Table 

1). Intermediates in the metabolism of methanol to carbon dioxide and water are 
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formaldehyde and formate. The toxic effects of methanol poisoning are actually due to the 

formation, accumulation, and slow metabolism of formate in some species (Medinsky and 

Dorman, 1995; Skrzydlewska, 2003). Clinical consequences of methanol poisoning are 

central nervous system depression, vomiting, severe metabolic acidosis, blindness, and 

Parkinsonian-like motor disease (Roe, 1982; Dorman et al., 1993; Skrzydlewska, 2003). 

During the course of this study, no pig demonstrated any clinical symptoms of methanol 

toxicity. The 6 animals that were removed during the trial were removed for respiratory 

disease or lameness, with no attribution to a specific dietary treatment. Of the 89 pigs 

harvested, no gross lesions were observed at the time of collection. In addition, the frequency 

of histological lesions in kidney, liver, and eye, the pharmacological targets for methanol 

toxicity, were not influenced by dietary treatment (Table 8). This agrees with an earlier study 

in which no pathological changes in liver or kidney in response to consumption of crude 

glycerin during finishing (Kiljora et al., 1995). 

 Provided diets are formulated on an equal energy basis, the results from this study 

demonstrate that up to 10% crude glycerin can be fed to growing-finishing pigs with little to 

no effect on pig performance, carcass composition, meat quality, or lesion scores in the eye, 

liver, or kidney tissue. Although we noted only small effects on ultimate pH and fatty acid 

profiles of the LM, the decline in drip and cooking losses as reported by Mourot et al. (1994) 

may warrant further examination of crude glycerin supplementation on meat quality through 

evaluation of the amount, method, or length of administration. Combined with our previous 

work evaluating the energy value of crude glycerin in nonruminants (Lammers et al., 2007; 

Dozier III et al., 2008; Lammers et al., 2008), we conclude that crude glycerin is a viable 

source of dietary energy that is well utilized by pigs. Lastly, although this study was not 
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designed to specifically examine the toxicology of methanol fed to pigs, the results indicate 

that the levels of methanol in these diets did not negatively affect pig performance or 

frequency of histological lesions in tissues assocated with methanol metabolism. 
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Table 1. Characterization of crude glycerin 
Item Value Analytical method 
Total glycerin1, % 84.51 Determined by difference2 
Methanol1, % 0.32 Gas chromatography (proprietary method) 
pH1 5.67 Orion 230A pH meter with 9107 BN probe 
Total fatty acid1, % 0.00 AOCS3 G 4.40 modified for glycerin 
Moisture,4 % 11.95 AOAC5 984.20 
Crude protein, 4 % 0.82 AOAC 990.03 
Crude fat, 4 % 0.23 AOAC 920.39 (A) 
Ash,4 %2 2.98 AOAC 942.05 
Sodium,4 %2 1.20 AOAC 956.01 
Chloride,4 %2 1.71 AOAC 9.15.01, 943.01 
Potassium,4 %2 < 0.005 AOAC 956.01 
Color4 < 1 AOCS Cc 13a-43 
Metabolizable energy,6 kcal/kg 3,638 Predicted value3 

1Values reported by AGP, Inc. Sergeant Bluff, IA, Lot # GB608-25. 
2Determined within the AGP Inc. laboratory as: 100 - % methanol - % total fatty acid - % 

moisture - % NaCl.  
3AOCS (2000). 
4Analysis by University of Missouri-Columbia Experiment Station Chemical Laboratories, 

Columbia, MO. 
5AOAC (1995). 
6ME of crude glycerin = GE of pure glycerin × purity of crude glycerin = 4,305 kcal/kg × 

84.51%. Based on Lammers et al. (2007). 
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Table 2. Initial diet formulation and calculated nutrient content of control experimental 
diets fed to pigs1 
Phase I II III IV V 
Weight range, kg 7–12 12–23 23–45 45–78 78–120 
Ingredient, %      
Corn 54.00 64.50 69.50 77.30 84.40 
Soybean meal 30.90 30.90 26.50 20.00 13.50 
Soybean oil 1.00 0.65 0.65 0 0 
Dried whey 10.00 0 0 0 0 
L-lysineHCl 0.27 0.17 0.15 0.10 0.09 
DL-methionine 0.09 0.06 0 0 0 
L-threonine 0.09 0.07 0.03 0 0 
Dicalcium phosphate 2.12 2.05 1.42 1.10 0.76 
Ground limestone 0.73 0.70 1.00 0.77 0.55 
Sodium chloride 0.26 0.40 0.35 0.33 0.30 
Choline chloride, 60% 0.03 0 0 0 0 
Vitamin premix2,3 0.35 0.35 0.25 0.25 0.25 
Mineral premix4, 0.16 0.15 0.15 0.15 0.15 
Total 100.00 100.00 100.00 100.00 100.00 
Calculated analysis      
ME kcal/kg 3,294 3,305 3,327 3,321 3,343 
Lysine, % 1.37 1.23 1.10 0.88 0.70 
Total sulfur AA, % 0.76 0.73 0.61 0.53 0.47 
Threonine, % 0.89 0.83 0.72 0.58 0.49 
Tryptophan, % 0.25 0.23 0.21 0.18 0.14 
Calcium, % 0.97 0.88 0.75 0.96 0.79 
Available phosphorus, % 0.54 0.46 0.34 0.27 0.20 
Sodium, % 0.21 0.18 0.16 0.15 0.14 
Chlorine, % 0.35 0.29 0.27 0.25 0.24 

1Dietary treatments 5 and 10 consisted of the above diets formulated to include 5 or 
10% crude glycerin respectively while remaining constant in terms of calculated 
ME, listed amino acid content, available phosphorus, sodium, and chlorine. 
Crude glycerin replaced 7 to 10% corn and 40 to 60% sodium chloride at 5% 
level and 15 to 17% corn and 80 to 100% sodium chloride at 10% level. 

2Provided the following per kilogram in phase I and II diets: vitamin A, 7,718 IU; 
vitamin E, 40 IU; niacin, 57 mg; D-panothenic acid, 31 mg; riboflavin, 12 mg. 

3Provided the following per kilogram in phase III through V diets: vitamin A, 5,513 
IU; vitamin E, 29 IU; niacin, 42 mg; D-panothenic acid, 22 mg; riboflavin, 8 mg. 

4Provided the following per kilogram in phase I diet: Zn, 156 mg as ZnO; Fe, 280 
mg as Fe2SO4; Cu, 1.4 mg as CuO; Mn, 73 mg as MnO2; I, 3.2 mg as CaI. 

5Provided the following per kilogram of phase II through V diets: Zn, 146 mg as 
ZnO; Fe, 263 mg as Fe2SO4; Cu, 1.3 mg as CuO; Mn, 68 mg as MnO2; I, 3.0 mg 
as CaI. 
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Table 3. Growth and performance of growing pigs fed crude glycerin1 
 Diet2   
 0 5 10 SEM P-value 
Replicates, pen3 8 8 8   
Start weight, kg 7.9 8.0 7.8 0.2 0.60 
End weight, kg 132.9 134.0 132.8 2.3 0.92 
ADG, g/d 905 913 906 16 0.93 
ADFI, g/d 2,333 2,385 2,400 52 0.66 
G:F 0.39 0.38 0.38 0.01 0.12 

1138-d feeding trial. 
2Dietary treatments were 0, 5, or 10% crude glycerol inclusion in corn-

soybean meal diets fed in 5 phases. 
34 pigs were initially assigned to each pen, over the course of the experiment 

6 pigs were removed with no pen having more than 1 pig removed.   
 
 



 
 
 
 
 

Table 4. Effect of crude glycerin on estimated carcass characteristics1  
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 Diet2  Gender  P-value 

 
 0 5 10 SEM Barrow Gilt SEM Diet Gender D × G 
Pigs, number 30 29 31  44 46     
Initial BW, kg 8.0 8.0 7.9 0.2 7.9 8.0 0.2 0.80 0.78 0.69 
Final BW, kg 133 134 133 2.0 137 129 2.0 0.93 0.01 0.92 
10th rib backfat, mm 18.8 21.0 20.7 0.8 22.0 18.3 0.7 0.14 0.01 0.13 
LM area, cm2 48.6 49.0 46.6 0.9 48.0 48.1 0.7 0.12 0.92 0.33 
Fat free lean, % 52.0 51.8 50.6 0.8 51.9 51.1 0.6 0.37 0.34 0.78 
Lean gain, g/d 365 363 355 5.0 364 358 4.0 0.37 0.30 0.70 

1From ultrasound scan data. 
2Dietary treatments were 0, 5, or 10% crude glycerin inclusion in corn-soybean meal diets fed in 5 

phases over a 138-d feeding trial. 
 

 
 



 

 
Table 5. Carcass characteristics and fatty acid profile of loin chops from pigs fed crude glycerin  
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 Diet1  Gender  P-value  

 0 5 10 SEM Barrow Gilt SEM Diet Gender D × G 
Loins, number 27 29 31  43 44     
Hot carcass wt, kg 95.2 97.2 97.3 1.8 98.7 94.5 1.4 0.61 0.03 0.97 
Lean, % 55.8 54.7 55.5 0.5 54.7 56.0 0.4 0.21 0.02 0.61 
Moisture, % 74.0 73.9 74.0 0.1 73.8 74.1 0.1 0.78 0.01 0.78 
Total lipid, % 1.30 1.31 1.25 0.03 1.30 1.27 0.02 0.31 0.30 0.47 
Ultimate pH 5.57 5.65 5.65 0.03 5.63 5.62 0.02 0.06 0.77 0.59 
Drip loss, % 0.85 0.73 0.81 0.10 0.79 0.80 0.08 0.67 0.96 0.87 
Loin purge, % 1.67 1.84 1.62 0.17 1.77 1.65 0.13 0.61 0.54 0.43 
Chop purge, % 3.72 3.84 3.90 0.30 3.70 3.94 0.20 0.90 0.46 0.24 
Chop lipid, % 2.15 2.07 2.08 0.07 2.19 2.02 0.06 0.71 0.04 0.70 
Fatty acids2           
14:0 1.29 1.31 1.25 0.03 1.30 1.27 0.02 0.06 0.03 0.04 
16:0 24.10 24.14 24.15 0.19 24.29 23.97 0.16 0.98 0.15 0.48 
16:1 (n – 7) 3.73 3.87 3.82 0.08 3.79 3.83 0.07 0.45 0.65 0.29 
17:0 0.28 0.29 0.25 0.02 0.28 0.27 0.01 0.28 0.64 0.68 
17:1 (n – 10) 0.27 0.30 0.30 0.01 0.29 0.29 0.01 0.08 0.68 0.59 
18:0 11.68 11.77 12.00 0.18 11.86 11.78 0.14 0.41 0.69 0.39 
18:1 39.47 38.92 40.18 0.44 39.90 39.14 0.36 0.12 0.13 0.75 
Unknown 5.12 5.24 5.10 0.10 5.08 5.22 0.08 0.57 0.26 0.23 
18:2 (n – 6) 10.34 10.34 9.27 0.26 9.68 10.28 0.21 0.01 0.04 0.63 
18:3 (n – 3) 0.27 0.29 0.27 0.02 0.26 0.30 0.02 0.78 0.17 0.65 
20:0 0.13 0.13 0.13 0.01 0.13 0.13 0.01 0.55 0.82 0.75 
20:4 (n –6) 2.96 3.00 2.90 0.10 2.78 3.13 0.08 0.76 0.01 0.76 
20:5 (n – 3) 0.09 0.10 0.11 0.01 0.09 0.10 0.01 0.02 0.05 0.90 
22:5 (n – 6) 0.28 0.29 0.28 0.01 0.26 0.30 0.01 0.08 0.01 0.75 
1Dietary treatments were 0, 5, or 10% crude glycerin inclusion in corn-soybean meal diets fed in 5 phases over a 

138-d feeding trial. 
2Fatty acids are expressed as g/100g total fatty acids. Fatty acids are designated by the number of carbon atoms 

followed by the number of double bonds. The position of the first double bond relative to the methyl (n) end of 
the molecule is also included. 

 



 

 
Table 6. Meat quality and sensory evaluation of loin chops from pigs fed crude glycerin  
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 Diet1  Gender  P-value  
 0 5 10 SEM Barrow Gilt SEM Diet Gender D × G 
Loins, number 16 16 16  24 24     
Loin marbling score2 2.0 2.1 2.1 0.1 2.1 2.0 0.1 0.81 0.60 0.61 
Cook loss, % 18.3 17.9 18.6 0.9 18.7 17.9 0.7 0.86 0.45 0.79 
Japanese color score3 2.6 2.7 2.8 0.8 2.7 2.7 0.1 0.79 0.83 0.51 
Hunter L*4 53.4 53.0 53.4 0.9 53.7 52.9 0.8 0.95 0.48 0.42 
Minolta L*4 55.6 55.3 55.6 0.8 55.8 55.1 0.7 0.95 0.48 0.42 
Minolta a*4 17.5 17.4 17.4 0.2 17.3 17.6 0.1 0.88 0.23 0.09 
Minolta b*4 4.9 5.1 4.6 0.4 4.9 4.9 0.3 0.68 0.94 0.12 
Instron, kg force5 6.0 5.9 6.0 0.3 6.2 5.7 0.2 0.91 0.10 0.14 
Juiciness score6 5.5 5.7 5.5 0.4 5.4 5.7 0.3 0.93 0.54 0.35 
Tenderness score6 6.1 6.1 5.9 0.4 5.8 6.3 0.3 0.93 0.24 0.29 
Chewiness score6 3.6 3.4 3.3 0.3 3.5 3.3 0.2 0.74 0.39 0.31 
Pork flavor score6 2.2 2.2 2.2 0.1 2.2 2.2 0.1 0.91 0.56 0.05 
Off-flavor score6 3.5 3.4 3.1 0.3 3.2 3.5 0.3 0.68 0.35 0.23 

1Dietary treatments were 0, 5, or 10% crude glycerin inclusion in corn-soybean meal diets fed in 5 phases 
over a 138-d feeding trial. 

2Evaluated 12 d postmortem according to National Pork Board Standards (NPPC, 2000). The marbling 
standards correspond to % intramuscular lipid. 

3Japanese color bar 1 – 6 scale, 1 = extremely light, 6 = extremely dark (Sullivan et al. 2007). 
4Higher L* values indicate a lighter color, higher a* values indicate a redder color, and higher b* values 

indicate a more yellow color (Sullivan et al. 2007). 
5Average of 3 maximum force peaks. 
6Scores on a 1 – 10 scale. Lower scores represent low degrees of characteristics, high scores represent high 

degrees of characteristics (Sullivan et al. 2007). 
 



 
 

Table 7. Effect of crude glycerin on plasma metabolites pre-transport and at the time of harvest  
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 Pre-transport1  Harvest1  P-value  

Diet2 0 5 10 0 5 10 SEM Diet Time D × T3 
BUN mg/dL4 14.7 14.5 13.6 14.0 14.6 13.8 0.5 0.24 0.67 0.59 
Cortisol, µg/dL 6.7 6.6 6.1 15.1 11.8 13.6 1.6 0.56 0.01 0.59 
Glucose, mg/dL 101.8 99.0 98.0 138.6 143.4 140.3 4.6 0.91 0.01 0.70 
Glycerol, µM 0.04 0.04 0.04 417.5 410.3 444.8 34.7 0.87 0.01 0.87 
Lactate, mM 4.0 4.7 4.1 12.4 12.3 12.2 0.6 0.86 0.01 0.83 
CPK, IU/L5 720.2 683.3 678.0 1,844.2 2,212.7 1,954.8 110.3 0.29 0.01 0.19 

1 Blood samples for plasma analysis were collected prior to transport to the abattoir and at the time of 
harvest immediately after electrical stunning. 

2Dietary treatments were 0, 5, or 10% crude glycerin inclusion in corn-soybean meal diets fed in 5 
phases over the 138-d feeding trial. 

3 D  T = interaction between diet and time 
4 BUN = blood urea nitrogen 
5 CPK = creatine phosphokinase 
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Table 8. Frequency of histological lesions in tissue of pigs fed crude glycerin1 
 Diet2   
Lesion, % of tissues with lesion 0 5 10 SEM P-value 
Hecpatocellular pleomorphism 93.1 96.6 96.8 4.0 0.75 
Portal hepatitis 41.3 34.5 45.1 9.2 0.70 
Periportal fibrosis 27.6 17.2 12.9 7.3 0.34 
Lymphoplasmacytic interstitial nephritis 41.4 41.4 48.4 9.4 0.82 
Lymphoplasmacytic hepatitis 3.4 3.4 3.2 3.4 0.99 
Lymphohistiocytic perineuritis 0.0 3.4 0.0 2.0 0.36 
Hepatic lipidosis 3.4 0.0 0.0 2.0 0.35 

1 No gross lesions were observed in tissues harvested. One eye, liver, and kidney were 
collected from 29, 29, and 31 pigs for Diet 0, 5, and 10, respectively. 

2 Dietary treatments were 0, 5, or 10% crude glycerin inclusion in corn-soybean meal 
diets fed in 5 phases over a 138-d feeding trial. 
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ABSTRACT: Demand for non-solar energy and concern about the implications of fossil fuel 

combustion have encouraged examination of energy use associated with agriculture. The 

United States is a global leader in pig production and the U. S. swine industry is centered in 

Iowa. Feed is the largest individual input in pig production, but the energy consumption of 

the Iowa swine feed production chain has yet to be critically examined. This anlysis 

examines non-solar energy use and resulting 100-yr global warming potential (GWP) 

associated with the entire swine feed production chain, beginning with cultivation of crops 

and concluding with diet formulation. Five cropping sequences are considered and the non-

solar energy use and accompanying 100-yr GWP associated with production of 13 common 

swine feed ingredients is estimated. A cropping sequence of corn-soybean-corn-oats under 

seeded with alfalfa delivers more NE and starch/MJ non-solar energy input than a corn-

soybean or corn-corn-soybean sequence despite producing less total NE and starch/m2. Two 

diet formulation strategies are considered for four crop sequence  diet type scenarios. The 

first formulation strategy (SIMPLE) does not include synthetic amino acids or phytase. The 

second (COMPLEX) reduces crude protein content of the diet by using L-lysine to meet SID 

lysine requirements of pigs and includes the exogenous enzyme phytase. Regardless of crop 
                                                 
6 Corresponding author: honeyman@iastate.edu 
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sequence  diet type scenario including the enzyme phytase is energetically favorable and 

reduces the potential excretion of phosphorus by reducing or removing inorganic phosphors 

from the complete diet. Including L-lysine reduces the crude protein content of the diet but 

requires more non-solar energy to deliver adequate SID lysine than simply feeding soybean 

meal. Replacing soybean meal with full-fat soybeans is not energetically beneficial under 

Iowa conditions. Swine diets including DDGS and crude glycerol require approximately 50% 

more non-solar energy inputs than corn-soybean meal diets or corn-soybean meal diets 

including oats. This study is not a complete life cycle assessment of pig production in Iowa 

but provides essential information on cultivation, processing, and manufacture of swine feed 

ingredients in Iowa that can be coupled with other models to estimate the non-solar energy 

use and 100-yr global warming potential of pig production in Iowa. 

Keywords: Crop production, feed processing, swine feedstuffs 

INTRODUCTION 

Feed is the largest individual input in pig production systems. In the United States, 

pig diets are complete formulated mixes of several different ingredients, primarily corn and 

soybean meal. Iowa leads the United States in pork production as well as cultivation of corn 

and soybeans (USDA, 2009). Recently, production of biofuels—fuel grade ethanol from 

carbohydrates and monoakyl esters for biodiesel from lipids—has rapidly increased in the 

United States (NBB, 2008; RFA, 2009). Iowa also leads the United States in ethanol 

production (RFA, 2009) and is second in terms of biodiesel production capacity (NBB, 

2008). 

 Processing grains and oilseeds into feed ingredients commonly fed to pigs require 

different techniques and energy inputs. Feed ingredients such as corn and oats are typically 
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ground but generally require little additional manipulation. Other raw materials such as 

soybeans require multi-step processes to produce soybean meal and other potential diet 

components such as full-fat soybeans. Ground corn and soybean meal typically account for  

95% of the mass of a typical pig diet. In the United States, the remaining 0–5% includes 

minerals, vitamins, synthetic amino acids, and enzymes. Growth in production of ethanol 

from corn grain and biodiesel from soy oil have increased the use of biofuel co-products, 

particularly dried distillers grains with solubles (DDGS) and to a lesser extent crude glycerol 

in pig diets. Crude glycerol is a co-product of biodiesel production, while DDGS is a co-

product of ethanol distillery.  

Nutrition recommendations for swine in the United States are currently based on 

metabolizable energy and apparent ileal digestible amino acids (NRC, 1998). A net energy 

(NE) system considers the amount of heat lost during digestion and subsequent deposition of 

nutrients in body tissue and is thus a more accurate estimate of the true energy content of an 

ingredient (Ewan, 2001; Moehn et al., 2005; Noblet, 2007). Discussion of the practicality and 

application of a net energy system is on-going among North American swine nutritionists 

(Moehn et al., 2005 ; Payne and Zijlstra, 2007; Zijlstra and Payne, 2008). At present 

standardized ileal digestibility is the most accurate basis for diet formulations in regards to 

amino acids availability (Gabert et al., 2001; Sauvant et al., 2004; Stein et al., 2007a; Stein et 

al., 2007b). More recent European recommendations are based on net energy and 

standardized ileal digestible amino acids (Whittemore et al., 2003). Feedstuff tables 

presenting the NE and SID amino acid content of feed ingredients are available (Whittemore 

et al., 2003; Sauvant et al., 2004). 
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With increasing attention being paid to energy in all aspects of agriculture, it is 

appropriate to re-examine the production of different swine feed ingredients and the potential 

impacts of different diet formulation strategies. This analysis examines the non-solar energy 

use and greenhouse gas emissions associated with the entire pig feed production chain. This 

begins with cultivation of crops and includes ingredient processing and manufacture, diet 

formulation, and diet metabolism within the pig. The crop–pig diet cycle is completed with 

return of nutrients in pig manure back to cropland. This analysis examines different crop 

production scenarios, processes for preparing diet ingredients, and efficacy of various 

formulation strategies to minimize non-solar energy use, optimize nutrient cycling, and 

minimize 100-year global warming potential from emissions associated with pig feed 

production. 

MATERIALS AND METHODS 

Crop production. A crop production model representative of conditions seen in Iowa 

was developed and used to evaluate different crop rotation scenarios (Lammers, 2009a). 

Models are simplifications of reality and thus are inherently imprecise. Models can be useful 

for predicting trends and relative differences between several systems. The purpose is not to 

detail every input and variable that may affect crop production and resulting environmental 

impact. Rather simplifying assumptions are made with the goal of developing a functional 

representation of crop production and resulting environmental impacts under the context of 

pig production in Iowa. The crop production model is not designed to accurately predict 

absolute impacts. Rather the model is intended to predict the relative magnitude and direction 

of outcomes resulting from different actions and choices. 
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 Five crop sequences were selected for examination. They are: continuous corn (C-C), 

corn-soybean (C-S), corn-corn-soybean (C-C-S), corn-soybean-corn-oat under seeded with 

alfalfa (C-S-C-O), and corn-soybean-corn-oat under seeded with alfalfa-alfalfa (C-S-C-O-A). 

The first 3 sequences are currently typical in Iowa and across the Midwest United States. The 

last 2 rotations are proven alternatives that may reduce total non-solar energy use and better 

facilitate nutrient cycling within crop production. Initial conditions and model assumptions 

for cultivation of the different crop rotations were developed in consultation with Iowa 

farmers, Iowa State University researchers, extension publications, and peer-reviewed 

research articles. In practice alfalfa may be planted once and harvested for a period of 3–5 

years. However alfalfa hay is not a common diet component in pig diets, nor is it well 

utilized by swine. The purpose of this model is to examine crop production in the context of 

pig production and as such it was assumed that only 1 year of alfalfa hay would be produced 

on a given area before it returns to production of grain or oilseeds more commonly fed to 

pigs. Both the C-C and C-S-C-O-A sequences may not be practical for total and complete 

swine feed production, however we included these two sequences in our anlayis in order to 

more fully examine and compare the C-S, C-C-S, and C-S-C-O sequences. 

Three main types of non-solar energy inputs were considered: diesel fuel, liquefied 

petroleum gas, and electricity. Emission of 3 greenhouse gases— CO2, CH4, and N2O—were 

estimated based on fuel type (IPCC, 2006; EPA, 2008). Standardized 100-yr GWP for the 

three gases were used to calculate 100-year global warming potential by energy type 

expressed in terms of CO2 equivalents (IPCC, 2007). Diesel fuel is the most commonly used 

energy source for operating crop production equipment and transporting grain. Diesel fuel 

use is often reported in terms of volume per time, volume per area, or volume per distance. 
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To calculate the energy consumed as diesel fuel, an energy density of 38.46 MJ/L was 

assumed for diesel fuel (Downs and Hansen, 1998). For every GJ of diesel fuel combusted by 

agricultural equipment, an estimated emission of 82.73 kg CO2 equivalents occurs (IPCC, 

2006, 2007). Liquefied petroleum gas is used as a major feedstock and source of energy in 

the manufacture of synthetic fertilizers and pesticides (Bhat et al., 1994). It is also commonly 

used to dry grain on-farm (Bern, 1998; Wilcke, 2004). It is estimated that 63.15 kg CO2 

equivalents are released for every GJ of energy originating as liquefied petroleum gas (IPCC, 

2006, 2007). Domestic electricity generation emission factors for Iowa (EPA, 2008) were 

used to estimate the 100-yr global warming potential resulting from use of electricity. It is 

estimated that 229.32 kg CO2 equivalents are released for every GJ of electrical energy used 

(IPCC, 2007; EPA, 2008). 

Gross energy (GE) of all production represents the energy that could be gained by 

simply combusting all grain, oilseed, and biomass produced by a given crop sequence. Net 

energy (NE) represents the portion of gross energy that is available for a pig to use for 

growth and maintenance from a particular feedstuff (Ewan, 2001; Whittemore, 2006). Net 

energy most closely represents the true energy value of a feedstuff relative to pig production 

and is the energy value of most interest to swine nutritionists (Ewan, 2001; Whittemore et al., 

2003; Whittemore, 2006). Starch concentration is another important measure of a product’s 

suitability for human food (Quezada-Cavillo et al., 2006) or pig feed (Sauber and Owens, 

2001; Whittemore, 2006). Sauvant et al. (2004) presents the GE, NE available to pigs, and 

the starch content of many feed ingredients. The GE of wheat straw is 16.9 MJ/kg, (91.4% 

dry matter) (Sauvant et al., 2004) and our analysis assumes oat straw is equivalent to wheat 

straw. Corn stover was assumed to have a GE value of 14.2 MJ/kg at 15% moisture 
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(Pordesimo et al., 2005). It was assumed that oat straw and corn stover are of very limited 

value as food or feedstuffs and that NE and starch content is effectively zero. Crop 

production model results and literature values were used to calculate GE, NE available to 

growing pigs, and total starch production for each crop production sequence. 

Feed ingredient processing and manufacture. Feed ingredients such as corn require 

little manipulation beyond grinding. Alternatively, converting raw soybeans into soybean 

meal and soy oil requires multi-step processes. An inventory of raw material inputs, 

processing activities, estimated transportation distances of material inputs and finished 

ingredients, and non-solar energy use for 13 feed ingredients was prepared and has been 

detailed elsewhere (Lammers, 2009b). This inventory is summarized in table 1 and was used 

in combination with diet formulations to calculate non-solar energy use and 100-yr GWP 

associated with manufacturing swine feed adequate to produce one, 136.0 kg market pig. 

Primary feed ingredients—grains, soybean meal, biofuel co-products—typically account for 

 95% of the mass of pig diets. The remaining mass of the diet includes minerals, vitamins, 

synthetic amino acids, and enzymes. Our examination of the micro-feed ingredients focuses 

on ground limestone, salt, and monocalcium phosphate (MCP) because these three 

ingredients account for most of the mass among micro-ingredients. The enzyme phytase and 

synthetic amino acids L-lysine and DL-methionine are also included because they have an 

impact on phosphorus and nitrogen utilization and cycling within pig production systems that 

is disproportionate to their relative mass. 

Diet formulation and metabolism. Diet formulations that have been demonstrated to 

be nutritionally adequate according to NRC recommendations (Holden et al., 1996; NRC, 

1998; Lammers et al., 2008) were entered into a spreadsheet that recalculated nutritional 
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content based on feed ingredient tables presented by Sauvant et al. (2004). Two reference 

diets were for adult animals—one for gestating sows and one for lactating sows (Holden et 

al., 1996). Five reference diets were for growing pigs and matched the corn-soybean meal 

control diets fed in a previous study (Lammers et al., 2008). Reference diets and estimated 

nutrient intake associated with production of one 136.0 kg market pig is presented as table 2. 

The ratio of SID lysine to NE as well as the ratio of available phosphorus to NE were 

calculated from the reference diets and used to formulate a set of baseline diets (SIMPLE) for 

this analysis. This set of diets does not include synthetic amino acids or exogenous enzymes. 

 Including synthetic amino acids and the enzyme phytase affects nitrogen and 

phosphorus utilization by the pig and impacts the overall nutrient cycling of pig feed 

production. A second set of diets (COMPLEX) were formulated to include phytase and 

synthetic amino acids. The desired ratio of threonine to NE and tryptophan to NE for a given 

diet were calculated based on the ideal amino acid ratio concept (NRC, 1998; Lewis, 2001; 

Whittemore et al., 2003). COMPLEX Diets were first formulated to provide adequate 

threonine and tryptophan. The synthetic amino acids DL-methionine and L-lysine were then 

added as needed to provide adequate methionine and lysine. Feeding the enzyme phytase 

enables utilization of plant source phosphorus by pigs and allows diets containing reduced 

amounts of inorganic phosphorus to be nutritionally adequate. Based on previous reports 

(Veum et al., 2006; Veum and Ellersieck, 2008; Emiola et al., 2009), MCP was excluded 

from diets containing phytase unless the total phosphorus provided by the final diet (g total 

phosphorus : kJ NE) was not  100% of the available phosphorus presented by the reference 

diets. 
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Within each general formulation scheme (SIMPLE and COMPLEX) four different 

strategies were considered. The first (Corn-SBM) represents what is typical practice in Iowa 

and consists primarily of corn and soybean meal. The second (Oat-SBM) is a corn-soybean 

meal diet that includes oats. Diets for growing pigs were formulated to include 4% oats and 

sow diets included up to 80% oats by mass for the Oat-SBM strategy. The third diet strategy 

(Oat-FFSB) is a corn-based diet that includes oats and replaces soybean meal with full-fat 

soybeans. An earlier study in Denmark reported replacing soybean meal with peas and 

rapeseed cake reduced non-solar energy inputs for swine diet manufacture by 22% 

(Ericksson et al., 2005). The Oat-FFSB diet strategy was designed to examine the efficacy of 

alternative sources of protein-feed ingredients in Iowa. Full-fat soybeans were used as the 

primary source of amino acids and soybean meal was removed from all diets. Diets for 

growing pigs and sows were allowed to include up to 10 and 80% oats respectively. The final 

diet strategy (Co-products) is a corn-soybean meal diet that includes maximal amounts of 

DDGS and crude glycerol. Diets for growing pigs were allowed to include up to 25% DDGS 

and diets for sows included 35–40% DDGS. All diets under the Co-products formulation 

strategy included 10% crude glycerol. 

Diet formulation strategies were then considered under the context of selected crop 

sequences. Ingredient lists from each formulation strategy were combined with non-solar 

energy and 100-yr GWP values associated with processing feed ingredients and non-solar 

energy and 100-yr GWP associated with cultivation of different crops in selected sequences. 

For each cropping sequence  diet formulation scenario, the non-solar energy and 100-yr 

GWP required to grow, manufacture, and deliver adequate feed (approximately 4,300 MJ 
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NE, 2.8 kg SID lysine, and 1.2 kg available phosphorus) to produce one 136.0 kg market pig 

was determined. 

RESULTS AND DISCUSSION 

 Table 1 reports the non-solar energy use and resulting 100-yr GWP associated with 

producing and delivering 13 swine feed ingredients in Iowa. This inventory is not a complete 

life cycle assessment of swine feed but can be linked with crop and pig production models to 

estimate the ecological impacts of raising pigs. The last compilation of multiple swine feed 

ingredients was published in 1978 and was specific to Australia (LaHore and Croke, 1978). 

More recent examinations have considered 1 or 2 individual ingredients under European 

conditions (Binder, 2003; Nielsen et al., 2006; Nielsen and Wenzel, 2006; Dalgaard et al., 

2008). The feed table included in this report is not a complete listing of all ingredients 

commonly fed in Iowa, however it is starting point for future examinations of non-solar 

energy use associated with other swine feed ingredient production in Iowa and the United 

States and can be used for life cycle analysis of pig production in the Midwest United States. 

 Tables 3 and 4 summarize the non-solar energy and 100-yr GWP of individual crops 

within different cropping sequences in Iowa. Production of corn grain requires the most 

energy per unit of land area but also produces the largest quantity of grain of any crop 

examined (Lammers, 2009a). This results in corn requiring less non-solar energy per kg grain 

than soybeans and oats in most cropping sequences. Increasing the complexity of cropping 

sequences allows reduction in synthetic fertilizers applied to corn while maintaining or 

enhancing productivity. This results in corn grain grown in the C-S-C-O-A sequence 

requiring 29% less non-solar energy compared to corn grain grown in the C-C sequence. A 
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similar but less pronounced trend is seen in soybeans. As expected, the 100-yr GWP of 

individual crops within different crop sequences closely follows non-solar energy use. 

Increasing crop sequence complexity reduces non-solar energy use and 100-yr GWP 

for individual crops within a sequence while maintaining or increasing crop output/m2 

(Lammers, 2009a). This advantage requires foregoing the opportunity to maximizing 

production of a single crop per total land area. For example, the crop production model 

assumes that corn raised in C-C produces 1.13 kg/m2 while corn raised in C-S produces 1.26 

kg/m2 (Lammers, 2009a). If 100 m2 is managed as C-C, 113 kg corn grain will be produced, 

alternatively if the same 100 m2 is managed as C-S only 63 kg corn grain will be produced. 

This illustrates the importance of not only considering individual crops within a sequence, 

but the sum productivity of entire crop sequences. 

The total non-solar energy inputs, 100-yr GWP, and productivity of 5 complete crop 

sequences in Iowa are summarized as table 5. Continuous corn delivers the most GE, NE and 

starch/m2, but also requires the most non-solar energy input of any sequence examined. The 

most complex sequence—C-S-C-O-A—requires the least non-solar energy input/m2 but also 

delivers the least total GE, NE, and starch. The C-S sequence results in the most NE/ MJ 

non-solar energy input. Our analysis assumes no NE is gained from alfalfa by pigs. Despite 

this assumption, the complex C-S-C-O-A sequence produces more MJ NE/ MJ non-solar 

energy input than continuous corn. Alfalfa hay certainly has value, particularly as feed for 

horses or ruminants, however expanding our analysis to include other species of livestock is 

beyond the scope of this report. The C-C-S sequence produces the second most Starch/MJ 

non-solar energy. The C-C-S and C-S-C-O-A sequences produce similar amounts of NE/MJ 
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non-solar energy. The C-S-C-O sequence produces more starch/MJ non-solar energy but less 

NE/MJ non-solar energy than the C-S sequence. 

 The calculated analysis of four formulation strategies without the use of synthetic 

amino acids and phytase (SIMPLE) is summarized in table 6. The diet analysis presented is a 

weighted average of all feed associated with production of one 136.0 kg market pig. This 

includes 5 diets fed to growing pigs as well as the lactation and gestation feed required to 

produce 1 pig. Table 7 details the same formulation strategies but allows use of synthetic 

amino acids and the exogenous enzyme phytase (COMPLEX). As expected the inclusion of 

L-lysine reduces g crude protein intake/ MJ NE. Intake of crude protein content from diets 

containing L-lyisne is 83–91% of the crude protein intake from the SIMPLE diet 

formulations. Including the exogenous enzyme phytase consistently enables reduction of 

total phosphorus in diet formulations. The benefits of phytase are less pronounced when 

formulating diets with  25% DDGS. This is because DDGS has sufficient available 

phosphorus to exclude most MCP from the SIMPLE diet formulation. The advantage of 

including phytase is the ability to reduce the amount of MCP and other inorganic sources of 

phosphorus in the diet. Because the SIMPLE, Co-products diet formulation already has < 1% 

MCP, adding phytase does not reduce MCP inclusion as much as in other diet formulation. 

 Eight crop sequence  diet formulation scenarios are presented in table 8. Our 

analysis did not compare every possible crop sequence  diet formulation combination. 

Rather we focused our analysis on combinations of most interest. The baseline scenario is a 

corn-soybean meal diet and a C-S cropping sequence. This combination is representative of 

current Iowa practice. A slight modification of current practice would be adoption of the C-

S-C-O sequence with an accompanying inclusion of oats in the diets fed to pigs. A third 
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alternative considers the potential of feeding full-fat soybeans to pigs. Full-fat soybeans are 

not typically fed to pigs. However there is interest in increasing on-farm processing of 

feedstuffs and roasting soybeans is a method of processing soybeans that can easily be done 

on-farm in Iowa. The diet that includes full-fat soybeans is nested within the C-S-C-O 

sequence rather than the C-S sequence because producers most interested in on-farm roasting 

of soybeans are assumed to also be more interested in diversifying cropping sequences than 

others. The final crop sequence  diet formulation combination is a C-C-S sequence that 

includes production of the biofuels and feeding of biofuel co-products. 

Inclusion of L-lysine and exogenous phytase is typical of conventional pig production 

in the United States. The COMPLEX formulation strategy incorporates this practice. The 

COMPLEX formulation strategy requires less non-solar energy input/ MJ NE delivered to 

pigs for most crop sequence  diet scenarios. The COMPLEX formulation strategy reduces 

non-solar energy input/ MJ NE by 3–7% for each diet type. The exception is the Co-product 

diet type. The COMPLEX formulation of the Co-product diet requires 1.8% more non-solar 

energy input than the SIMPLE formulation of the Co-product diet. As expected 100-yr GWP 

follows input energy. Including phytase and L-lysine reduces 100-yr GWP associated with 

pig diet production by 40–90% depending on the diet type. 

 The COMPLEX corn-soybean meal diet requires less non-solar energy input/ MJ NE 

delivered to pigs than the SIMPLE formulation. Adding L-lysine to a corn-soybean meal diet 

allows removal of approximately 25% of the soybean meal in the diet. This results in a 

reduction of energy needed to produce soybeans, but an increase in energy to produce L-

lysine. For the corn-sbm baseline, removing some soybeans and adding L-lysine was not 

energetically favorable. The SIMPLE diet requires expenditure of 30.5 kJ of non-solar 
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energy to provide adequate SID lysine as soybean meal. The COMPLEX diet requires 

expenditure of 30.7 kJ of non-solar energy to provide adequate SID lysine as soybean meal 

and L-lysine. Although not energetically advantageous, adding L-lysine to the diet allows 

dramatic reduction in the total crude protein delivered to the animal. This in turn reduces the 

potential for nitrogen excretion by pigs into the environment. Increasing pork production per 

unit of feed nitrogen delivered to pigs has been a goal of United States pork producers and 

the inclusion of L-lysine supports that. However inclusion of L-lysine comes at an energetic 

cost that is not offset by equal or more reductions in energy expended to provide soybean 

meal or other protein sources. This may ultimately limit the utility of diets formulated to 

include synthetic amino acids when considered from a crop  livestock systems perspective. 

 Feeding phytase allows nearly complete removal of MCP from pig diets. Because 

MCP requires a large amount of non-solar energy to produce, its near elimination from diet 

formulations greatly reduces non-solar energy inputs for complete diet production. Phytase 

also requires a large amount of non-solar energy to produce, but the benefits of phytase can 

be achieved by including very small amounts of the exogenous enzyme in the diet. For 

example, the SIMPLE Oat-SBM diet contains 0.92% MCP by mass at an energetic cost of 

13.0 kJ non-solar energy input/MJ NE. Adding 0.01% phytase to the diet allows removal of 

all MCP and only requires 0.4 kJ non-solar energy input/MJ NE. This translates into a 

savings of 12.6 kJ non-solar energy/ MJ NE pig diet for the Oat-SBM diet type. Inclusion of 

phytase in pig diets enables diets lower in total phosphorus to be nutritionally adequate and 

may lower phosphorus excretion by pigs (Veum et al., 2006; Veum and Ellersieck, 2008; 

Emiola et al., 2009). The additional energetic cost of including phytase is more than off-set 
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by reductions in the non-solar energy input required if providing adequate available 

phosphorus as MCP. 

 The Oat-SB diet type required 8% more non-solar energy input/MJ NE than the Corn-

SBM diet type for both formulation strategies. As in the Corn-SBM diet type, the main 

energetic advantage of the COMPLEX formulation strategy was removal of MCP from the 

diet. Adding L-lysine reduced the crude protein content of the diet, but also increased the 

energy cost of supplying SID lysine as compared to the SIMPLE formulation strategy. 

 The Oat-FFSB diet type is not energetically favorable compared to the Corn-SBM 

and Oat-SBM approaches. Roasting of soybeans requires large inputs of non-solar energy 

and does not deliver proportional benefits in terms of total non-solar energy input/MJ NE 

delivered to pigs. Previous European examinations of pig production have suggested that 

avoidance of soybean meal in pig diets is energetically and environmentally beneficial 

(Ericksson et al., 2005). Our results disagree with those conclusions. Soybean meal used in 

the Danish study was imported from South America (Ericksson et al., 2005) but our study 

assumed soybean processing occurs within the state of Iowa (Lammers, 2009b). Imported 

soybean meal is a major source of amino acids for European swine diets (Ericksson et al., 

2005; Dalgaard et al., 2008). Given Iowa’s leadership in U. S. soybean production (USDA, 

2009) and processing (Hardy, 2009) some of the previously reported advantages of 

displacing soybean meal with alternative protein sources (Ericksson et al., 2005) may not 

apply to Iowa. Including L-lysine in the Oat-FFSB diet was energetically favorable due to 

reduced inputs of full-fat soybeans. The SIMPLE diet formulation required 73.1 MJ non-

solar energy input to provide adequate SID lysine in the form of full-fat soybeans. The 
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COMPLEX diet formulation required 64.6 MJ non-solar energy input to provide adequate 

SID lysine as full-fat soybeans and L-lysine.  

 Diets containing  25% DDGS and 10% crude glycerol required more non-solar 

energy input/MJ NE than any other diet scenario. The production energy of co-product feeds 

is larger then the non-solar energy needed to grow and process other major feed ingredients. 

For example if we assume a C-S sequence, 1.0 kg of ground corn requires 1,894 kJ and 1.0 

kg of soybean meal require 2,394.4 kJ non-solar energy input. Alternatively DDGS requires 

4,700 kJ/kg and crude glycerol requires 2,200 kJ/kg. The NE of the four ingredients is also 

different—11.1, 8.4, 7.0, and 9.9 MJ/kg— for corn grain, soybean meal, DDGS, and crude 

glycerol respectively. Thus each MJ of NE from corn grain and soybean meal requires 171 

and 285 kJ non-solar energy respectively while each MJ of NE from DDGS and crude 

glycerol require 671 and 224 kJ non-solar energy respectively. If return of NE for pigs/kJ 

non-solar energy input is the only concern, feeding biofuel co-products is not favorable. 

However if biofuels are produced, including co-products in swine diets might be economical 

for individual producers. 

Unlike the other diet types, the COMPLEX formulation strategy required 1.8% more 

non-solar energy/MJ NE than the SIMPLE formulation. This is a result of 2 factors. The first 

is the COMPLEX diet includes L-lysine. L-lysine reduces the crude protein content of the 

diet but increases the non-solar energy needed to provide adequate SID lysine compared to 

soybean meal. The second factor has to do with the nature of DDGS. Fermentation of corn 

grain results in the phosphorus present in DDGS being more available to pigs than 

phosphorus in corn. Increasing the availability of plant-source phosphorus means little MCP 

is needed in the SIMPLE diet formulation of the Co-product diet type. The main energetic 



161 

advantage of the COMPLEX diet formulation for the other diet types was removal of 

approximate 13.0 kJ non-solar energy input associated with providing available phosphorus 

as MCP. With less MCP in the SIMPLE Co-product diet to remove the energetic benefits 

achieved by adding phytase and removing MCP are overcome by the increase in non-solar 

energy used to deliver SID lysine. 

 Including DDGS and crude glycerol may require more non-solar energy than simply 

feeding corn grain and soybean meal, but for individual operations adding biofuel co-

products may be economical. Adding phytase to diets and reducing or removing MCP 

reduces the non-solar energy cost of swine feed and may reduce phosphorus excretion from 

the pig. This is clearly a double benefit of phytase. The net effect of feeding L-lysine is less 

clear cut. Adding L-lysine reduces the crude protein content of diets while providing 

adequate SID lysine to pigs and might reduce excretion of nitrogen by pigs. However this 

environmental benefit is achieved at a cost of increased non-solar energy inputs—first to 

provide SID lysine in as L-lysine to pigs and secondly by increasing the need for synthetic 

nitrogen for crop production. Further examination of the interactions among non-solar energy 

use for synthetic fertilizers and different strategies to deliver adequate SID lysine to pigs is 

warranted and should be a high priority for individuals considering the non-solar energy use 

and environmental impacts of pig production systems. 

 The current study is not a complete life cycle assessment of pig production in Iowa. 

However the presented inventory of non-solar energy and 100-yr GWP associated with 

growing and processing swine feed ingredients provides essential information for life cycle 

assessment of pig production. Results from this project can be combined with other studies to 

more fully understand the non-solar energy use and 100-yr GWP of Iowa swine production. 
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Table 1. Energy use and resulting 100-yr global warming potential associated with producing 
and delivering swine feed ingredients to feed mill and mixing formulated swine diets in Iowa1. 
 
Ingredient 

Production Energy2 
kJ/kg 

100-yr GWP2 
g CO2 equivalents/kg 

Ground corn 24.0 4.3 
Ground oats 24.0 4.3 
Full-fat roasted soybeans 597.9 46.7 
Soybean meal 501.0 39.9 
Soy oil 421.0 33.6 
DDGS3 4,700.0 86.4 
Crude glycerol4 2,200.0 168.3 
Ground limestone5 2,545.0 173.4 
Salt5 1,635.0 279.8 
Monocalcium phosphate6 13,800.0 1,104.4 
Phytase7 40,000.0 2,000.0 
L-Lysine 52,170.0 1,642.2 
DL-Methionine8 88,000.0 5,557.2 
Mixing and delivery of diet 10.5 1.2 
1 Values from Lammers (2009b) unless otherwise noted. 
2 Does not include energy use or 100-yr global warming potential (GWP) associated with 

cultivation and storage of grains and oilseeds. 
3 Values include energy and 100-yr GWP required to produce 3.3 kg corn grain in C-S 

sequence. Values exclude NE of 3.3 kg corn grain not fed to pigs, the gross energy of 1.4 L 
ethanol that is co-produced, and the potential displacement of other transportation fuels by 
ethanol. Values assume 0% capture of CO2 produced by fermentation. 

4 Values include energy and 100-yr GWP required to production 14.2 kg soy oil from C-S 
sequence. Values exclude NE of 14.2 kg soy oil not fed to pigs, the gross energy of 12.7 L 
of biodiesel that is co-produced, and the potential displacement of other transportation fuels 
by biodiesel. 

5 (LaHore and Croke, 1978). 
6 (Nielsen and Wenzel, 2006). 
7 (Nielsen et al., 2006). 
8 (Binder, 2003). 
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Table 2. Nutrient content of reference diets and estimated nutrient intake associated with 
production of one, 136.0 kg market pig1. 
 
Diet 

Feed 
intake2, kg 

Net Energy 
MJ/kg 

Standardized ileal 
digestible Lysine, g/kg 

Available 
Phosphorus, g/kg 

Phase 1 10.2 10.15 12.21 6.11 
Phase 2 16.8 9.99 10.77 5.42 
Phase 3 57.8 10.16 9.54 4.04 
Phase 4 92.3 10.27 7.57 3.29 
Phase 5 181.4 10.52 5.90 2.49 
Gestation 37.0 10.72 4.29 5.06 
Lactation 15.6 10.29 8.59 5.49 
Totals3 411.1 4.27 2.80 1.28 
1 Reference diets from Lammers et al. (2008) and Holden et al. (1996).  
2 Feed intake assumptions from Lammers et al. (2009), includes death loss of 2.9 and 3.9% in 

nursery and grow-finish respectively. 
3 Total kg feed intake; GJ net energy; kg standardized ileal digestible lysine, and kg available 

phosphorus associated with production of one 136.0 kg market pig.  
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Table 3. Calculated non-solar energy use and associated with production of grains, oilseeds, 
and biomass from different cropping sequences in Iowa1. 
 Cropping Sequence2 
Product C-C C-S C-C-S C-S-C-O C-S-C-O-A 
Corn grain, kJ/kg 2,116.8 1,870.0 1,975.7 1,785.5 1,510.7 
Corn stalks, kJ/kg 55.6 53.4 53.4 53.4 53.4 
Soybeans, kJ/kg na 1,893.4 1,878.7 1,878.7 1,849.7 
Soybean meal3, kJ/kg na 1,079.2 1,070.9 1,070.9 1,054.3 
Soy oil3, kJ/kg na 814.2 807.8 807.8 795.4 
Oat grain, kJ/kg na na na 2,754.2 2,754.2 
Oat straw, kJ/kg na na na 37.1 37.1 
Alfalfa hay, kJ/kg na na na na 1,355.0 
1 Based on Lammers (2009a). 
2 C-C = continuous corn; C-S = corn, soybean; C-C-S = corn, corn, soybean, C-S-C-O = 

corn, soybean, corn, oat under seeded with alfalfa; C-S-C-O-A = corn, soybean, corn, oat 
under seeded with alfalfa, alfalfa hay. 

3 Assumes soybeans are processed into soybean meal (80% of soybean mass) with NE of 
8.4 MJ/kg and 17% soybean oil (17% of soybean mass) with NE of 29.8 MJ/kg. A 
processing loss of 3% soybean mass is also assumed. Soybean cultivation energy allocated 
based on NE of final product mass (57% attributed to soybean meal, 43% attributed to soy 
oil) (Lammers, 2009b). 
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Table 4. Calculated 100-yr global warming potential (g CO2 equivalents/kg) associated with 
production of grains, oilseeds, and biomass from different cropping sequences in Iowa1. 
 Cropping Sequence2 
Product C-C C-S C-C-S C-S-C-O C-S-C-O-A 
Corn grain, g CO2/kg 151.7 133.5 140.6 127.8 109.4 
Corn stalks, g CO2/kg 4.6 4.3 4.3 4.3 4.3 
Soybeans, g CO2/kg na 140.8 139.5 139.5 137.4 
Soybean meal3, g CO2/kg na 80.3 79.5 79.5 78.3 
Soy oil3, g CO2/kg na 60.5 60.0 60.0 59.1 
Oat grain, g CO2/kg na na na 216.0 216.0 
Oat straw, g CO2/kg na na na 2.9 2.9 
Alfalfa hay, g CO2/kg na na na na 104.0 
1 Based on Lammers (2009a). 
2 C-C = continuous corn; C-S = corn, soybean; C-C-S = corn, corn, soybean, C-S-C-O = 

corn, soybean, corn, oat under seeded with alfalfa; C-S-C-O-A = corn, soybean, corn, oat 
under seeded with alfalfa, alfalfa hay. 

3 Assumes soybeans are processed into soybean meal (80% of soybean mass) with NE of 
8.4 MJ/kg and 17% soybean oil (17% of soybean mass) with NE of 29.8 MJ/kg. A 
processing loss of 3% soybean mass is also assumed. Soybean cultivation energy allocated 
based on NE of final product mass (57% attributed to soybean meal, 43% attributed to soy 
oil) (Lammers, 2009b). 
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Table 5. Summary of production, non-solar energy inputs, and 100-year global warming 
potential for 5 crop sequences1.2. 
Sequence C-C C-S C-C-S C-S-C-O C-S-C-O-A 
Gross energy, MJ/m2 31.25 21.25 25.81 22.06 20.62 
Net energy, MJ/m2 12.27 8.89 10.52 8.79 7.76 
Starch, g/m2 708.40 394.95 526.60 432.94 346.35 
      
Non-solar energy, MJ/m2 2.44 1.57 1.94 1.66 1.43 
100-yr GWP3, g CO2 
equivalents/m2 

175.70 113.10 139.3 119.8 105.1 

      
Output Ratios      
Gross energy : non-solar energy 12.81 13.54 10.95 13.29 14.42 
Net energy : non-solar energy 5.03 5.66 5.42 5.29 5.43 
Starch : non-solar energy 290.33 251.56 271.44 260.81 242.20 
      
Gross energy : 100-yr GWP 0.18 0.19 0.19 0.18 0.20 
Net energy : 100-yr GWP 0.07 0.08 0.07 0.07 0.07 
Starch : 100-yr GWP 4.03 3.49 3.78 3.61 3.30 
1 From Lammers (2009a). 
2 CC= continuous corn, C-S = corn-soybean; C-C-S = corn-corn-soybean; C-S-C-O = corn, 

soybean, corn, oat under seeded with alfalfa; C-S-C-O-A = corn, soybean, corn, oat 
under seeded with alfalfa, alfalfa hay 

3 100-yr GWP = 100-year global warming potential 
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Table 6. Calculated analysis and ingredients for 4 SIMPLE1 diet formulations required for 
production of one, 136.0 kg market pig. 
 Formulation strategy 
Ingredient Corn-SBM Oat-SBM Oat-FFSB Co-products 
Corn,% 76.84 63.12 45.64 44.04 
Soybean meal, % 19.85 18.03 0 15.89 
Oats, % 0 15.57 20.93 0 
Full-fat soybeans, % 0 0 29.66 0 
DDGS, % 0 0 0 26.88 
Crude glycerol, % 0 0 0 10.00 
Ground limestone, % 2.02 2.14 2.57 2.98 
Salt, % 0.29 0.22 0.28 0 
Monocalcium phosphate, % 1.00 0.92 0.92 0.21 
Total 100.00 100.00 100.00 100.00 
     
Estimated feed intake, kg 417.35 435.31 425.25 465.73 
     
Analysis     
NE, MJ/kg 10.24 9.81 10.05 9.17 
SID Lysine : NE, g/MJ 0.66 0.66 0.66 0.66 
Available P : NE, g/MJ 0.30 0.30 0.30 0.31 
Crude protein : NE, g/MJ 15.24 15.44 16.11 19.26 
Total P : NE, g/MJ 0.54 0.55 0.55 0.53 
1 Diets formulated to have equal ratios of standardized ileal digestible (SID) lysine to NE and 

available phosphorus (available P) to NE. No synthetic amino acids or exogenous enzymes 
included. 
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Table 7. Calculated analysis and ingredients for COMPLEX1 diet formulations required for 
production of one, 136.0 kg market pig. 
 Formulation strategy 
Ingredient Corn-SBM Oat-SBM Oat-FFSB Co-products 
Corn,% 83.17 68.04 52.34 51.99 
Soybean meal, % 14.91 14.16 0 8.98 
Oats, % 0 15.88 21.15 0 
Full-fat soybeans, % 0 0 24.34 0 
DDGS, % 0 0 0 26.66 
Crude glycerol, % 0 0 0 10.00 
Ground limestone, % 1.49 1.53 1.75 2.12 
Salt 0.22 0.24 0.30  
Monocalcium phosphate, % 0.03 0 0 0 
L-lysine, % 0.17 0.14 0.11 0.24 
Exogenous phytase2, % 0.01 0.01 0.01 0.01 
Total 100.00 100.0 100.0 100.0 
     
Estimated feed intake, kg 405.19 423.83 417.01 450.31 
     
Analysis     
NE, MJ/kg 10.54 10.08 10.24 9.49 
SID Lysine : NE, g/MJ 0.66 0.66 0.66 0.66 
Available P : NE, g/MJ 0.30 0.30 0.30 0.30 
Crude protein : NE, g/MJ 13.22 13.77 14.64 16.06 
Total P : NE, g/MJ 0.32 0.31 0.32 0.44 
1 Diets formulated to have adequate threonine. Synthetic lysine and methionine added as 

needed to meet requirements.  
2 Exogenous phytase assumed to have phytase activity of 5,000 U/g material. 
 



 

  
Table 8. Non-solar energy inputs1 and 100-yr global warming potential associated with feeding one 136.0 
kg market pig from select crop sequence  diet formulation strategies. 
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Crop sequence2 C-S C-S-C-O C-S-C-O C-C-S  
Diet Type3 Corn-SBM Oat-SB Oat-FFSB Co-product 
Formulation strategy4 S C S C S C S C 
Corn, kJ/MJ NE 142.2 149.4 116.4 122.1 82.2 92.5 96.0 109.5 
Oats, kJ/MJ NE 0 0 44.1 43.8 57.9 57.3 0 0 
Soybean meal, Kj/MJ NE 30.5 22.2 28.9 22.1 0 0 27.2 15.0 
Full-fat soybeans, kJ/MJ NE 0 0 0 0 73.1 58.8 0 0 
L-lysine, kJ/MJ NE 0 8.6 0 7.1 0 5.8 0 13.1 
DDGS, kJ/MJ NE 0 0 0 0 0 0 137.7 132.1 
Crude glycerol, kJ/MJ NE 0 0 0 0 0 0 24.0 23.2 
Limestone, kJ/MJ NE 5.0 3.6 5.6 3.9 6.5 4.4 8.3 5.7 
Salt, kJ/MJ NE 0.5 0.3 0.4 0.4 0.5 0.5 0 0 
Monocalcium phosphate, kJ/MJ NE 13.4 0.4 13.0 0 12.6 0 3.2 0 
Phytase, kJ/MJ NE 0 0.4 0 0.4 0 0.4 0 0.4 
Mix and deliver, kJ/MJ NE 1.0 1.0 1.1 1.0 1.0 1.0 1.1 1.1 
Total input energy, kJ/MJ NE 192.6 185.9 209.4 200.8 233.8 220.7 297.5 300.1 
         
Total 100-yr GWP5, g CO2/MJ NE 14.3 13.3 38.9 10.0 17.7 15.4 23.5 13.8 
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ABSTRACT 

Most published research concerning non-solar energy use by swine production 

systems has been conducted in Europe and does not extensively examine different housing 

scenarios. This paper compares non-solar energy use for pig production options in Iowa. The 

baseline system produces 15,600 pigs annually using confinement facilities and a corn-

soybean cropping sequence. Diet formulations for the baseline system include synthetic 

amino acid L-lysine and exogenous phytase. The baseline system represents the majority of 

current pork production systems in Iowa and the Upper Midwest where the majority of U.S. 

swine are produced. The baseline system is designed to minimize land-surface area 

requirements and encourage maximal pork production per unit of feed net energy and 

standardized ileal digestible lysine fed to pigs. Selected combinations of facility type  diet 

formulation  crop sequence scenarios were examined and compared. The baseline system 

for swine production in Iowa is estimated to require 7.1 MJ non-solar energy/kg of live 

weight pig produced. Emissions of 587 g CO2 equivalents/kg live weight are also associated 

with the Iowa swine production systems. An alternative system that uses hoop barns for 
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grow-finish pigs and gestating sows would require only 6.9 MJ non-solar energy/kg live 

weight and result in emission of 516 g CO2 equivalents/kg, a 3 and 12% reduction 

respectively. Using hoop barns for swine production requires more feed and thus more non-

solar energy to grow and process feed ingredients. However the savings in non-solar energy 

associated with operating hoop barn-based swine systems relative to conventional 

confinement systems offsets those inputs. When assessing swine production systems, diet 

type and feed ingredient processing is the major influence on non-solar energy use and 100-

yr global warming potential, but facility type also must be considered. 

1. Introduction 

Life cycle assessment (LCA) of swine production has been concentrated in Europe, 

particularly Denmark (Halberg, 1999; Zhu and van Ierland, 2004; Basset-Mens and van der 

Werf, 2005; Ericksson et al., 2005; Williams et al., 2006; Dalgaard et al., 2007; Meul et al., 

2007). There are fundamental differences between European and United States swine 

production that limits the application of European results to inform decision making by pig 

producers in the United States. European swine diets typically include more variety of feed 

ingredients and often include high amounts of small grains such as barley. Peas, rapeseed 

cake, and soybean meal are all commonly used as protein sources in European swine diets. In 

the United States, swine diets are almost entirely comprised of corn and soybean meal. 

Growing pigs are usually limit fed in Europe but fed ad libitum in the United States. Feeding 

pelleted or liquid feeds is Europe is common while in the United States almost all diets are 

ground and fed dry. Some farms provide water at the feeder, encouraging consumption of a 

wet-dry feed, but this strategy is very different from liquid feeding systems seen in Europe. 
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Finally climate conditions and primary environmental concerns differ between Europe and 

the United States. 

United States swine production is centered in Iowa (USDA, 2009). Iowa is also a 

leader in production of corn and soybeans (USDA, 2009), soybean processing (Hardy, 2009), 

and biofuel production (NBB, 2008; Hardy, 2009; RFA, 2009). Non-solar energy use for 

swine production in Iowa was last estimated as 36.2 MJ/kg live weight based on 1975 

production statistics (Reid et al., 1980). Interest in non-solar energy use for all sectors of 

society is increasing due to rising energy prices, uncertainty about access to fossil fuel 

reserves, and growing consensus about the deleterious implications fossil fuel use has for 

global climate. As a leader in United States swine production and feed manufacture, a critical 

examination of non-solar energy use by modern Iowa swine production systems is over due. 

Resource use by different types and scales of swine facilities differs (Lammers et al., 

2009a; Lammers et al., 2009c). Conventional farrow-to-finish swine facilities in Iowa are 

mechanically ventilated buildings with liquid manure handling systems. Pigs are born in 

farrowing crates and at weaning are moved to a heated nursery facility. As pigs grow, they 

are often moved from nursery facilities to larger grow-finish buildings. Grow-finish buildings 

typically house 1,200 animals in pens of 30-60 animals. The entire floor space is slatted 

concrete. Gestation occurs in buildings similar to grow-finish buildings except pens are 

replaced with individual gestation stalls. Conventional housing for swine in Iowa and a hoop 

barn-based alternative have been detailed and examined (Lammers et al., 2009a; Lammers et 

al., 2009c). The hoop barn-based alternative uses similar farrowing and nursery facilities as 

the conventional system, but grow-finish pigs and gestating sows are housed in bedded hoop 

barns. Hoop barns in Iowa are 21.9  9.1 m QuonsetTM- shaped structures that have been 
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previously described (Honeyman et al., 2001; Brumm et al., 2004; Harmon et al., 2004). 

Hoop barn sidewalls are approximately 1.5 m high and consist of wooden posts and 

sidewalls. Tubular steel arches are attached to the posts, forming a hooped roof. An 

ultraviolet light resistant, high-density polyethelyne tarp is pulled over the arches and 

fastened to the sidewalls. The floor is solid, usually concrete, with raised areas for eating and 

drinking. The rest of the floor is bedded with corn stalks or other plant materials. Buildings 

for grow-finish pigs are managed as a single pen with 180–200 animals per pen (Honeyman 

et al., 2001; Honeyman and Harmon, 2003; Lammers et al., 2009a; Lammers et al., 2009c). 

Gestating sows in hoop barns are managed in group pens with individual feeding stalls 

(Lammers, 2006; Lammers et al., 2008; Lammers et al., 2009a; Lammers et al., 2009c). 

 Constructing farrow-to-finish swine systems that use bedded hoop barns for grow-

finish and gestation has been shown to require fewer construction resources and cost 17–30% 

less than systems that use conventional facilities (Lammers et al., 2009c). Operating hoop-

based farrow-to-finish swine facilities is estimated to require 36% of the non-solar energy 

inputs of a conventional system (Lammers et al., 2009a). Crop sequence and diet formulation 

strategy also influences the non-solar energy use of swine production systems (Lammers et 

al., 2009b). The purpose of this paper is to examine non-solar energy use of different facility 

type  crop sequence  diet formulation strategies. Ecological impacts are also estimated 

based on non-solar energy use and nutrient cycling.  

2. Methods 

Process analysis methodology was used to calculate direct and indirect energy inputs 

based on physical material flows (Jones, 1989). Similar to previous assessments (Meul et al., 

2007) a cradle-to-gate approach of LCA that included embodied energy one step before the 
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farm was used. Consistent with process analysis methods, we did not include solar energy 

and human labor inputs (Jones, 1989). Managing pigs in hoop barns requires a different set 

of skills and proficiencies compared to managing pigs in conventional systems but labor is 

generally assumed to be similar for both types of housing systems. 

2.1 Facilities 

Previous examinations of constructing (Lammers et al., 2009c) and operating 

(Lammers et al., 2009a) farrow-to-finish swine systems were combined to estimate non-solar 

energy and greenhouse gas emissions associated with different types of pig facilities. Our 

analysis assumes the useful life of the conventional buildings is 15 years. The useful life of 

the hoop barns is also 15 years, but we include replacement of the thermoplastic tarp once 

within the 15 years in our report. 

2.2 Diet formulation 

 Seven reference diets were the basis for calculating net energy (NE) and nutrient 

intake associated with production of one 136.0 kg market pig as previously described 

(Lammers et al., 2009b). Two general formulation strategies were considered in this analysis. 

The ratio of standardized ileal digestible (SID) lysine to NE was the basis for SIMPLE diet 

formulation. COMPLEX diet formulation began with first meeting the SID-to-NE 

requirement for threonine and tryptophan. The synthetic amino acids DL-methionine and L-

lysine were then added as needed to provide adequate methionine and lysine. Because 

inclusion of the exongenous enzyme phytase has been shown to be energetically favorable 

(Lammers et al., 2009b) both diet strategies were formulated to include phytase.  

Plant sources of P typically are not well utilized by pigs because swine do not 

produce adequate amounts of endogenous phytase (Crenshaw, 2001). Monocalcium 
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phosphate (MCP) is a highly digestible in-organic source of P commonly used in pig diets. 

Inclusion of exogenous phytase makes plant P more available to pigs (Veum et al., 2006; 

Veum and Ellersieck, 2008; Emiola et al., 2009). It has been demonstrated that grain-soybean 

meal diets with exogenous phytase can be nutritionally adequate without any inorganic 

source of P in the diet (Veum et al., 2006; Veum and Ellersieck, 2008; Emiola et al., 2009). 

MCP was minimized in our diet formulations by excluding MCP unless the total phosphorus 

provided by the final diet (g total P: kJ NE) was not  100% of the available phosphorus 

presented by the reference diets. 

2.3 Crop sequence  diet type 

 Three sets of diets were considered. The first diet type was a corn-soybean meal 

(Corn-Soy) diet typicaly fed in Iowa. The second diet type (Oat-Soy) is similar to the first 

except it includes oats. The third diet type (Co-product) is a Corn-Soy diet that included the 

biofuel co-products dried distillers’ grains with solubles (DDGS) and crude glycerol. The 

Co-product diet type was formulated to include 25 and 40% DDGS for growing pigs and 

sows, respectively, and 10% crude glycerol for growing pigs. These inclusion rates 

correspond with recommended maximal inclusion rates for biofuel co-products in swine diets 

(Honeyman et al., 2007; Kerr et al., 2007). 

 Three previously described crop sequence scenarios were considered, they are a corn-

soybean (C-S) sequence, a corn-soybean-corn-oat under seeded with alfalfa (C-S-C-O) 

sequence, and a corn-corn-soybean (C-C-S) sequence (Lammers et al., 2009b). The C-S 

sequence was assumed for the Corn-Soy diet type and the C-S-C-O sequence was assumed 

for the Oat-Soy diet type. The C-C-S sequence is paired with the Co-product diet type. Our 

previous model of crop production assumed that 100% of crop nutrients would be delivered 



180 

by synthetic fertilizers and the crop sequence itself (Lammers et al., 2009b). For this analysis 

the crop production model included application of manure nutrients and reduced synthetic 

fertilizer use accordingly. Excretion of nitrogen (N) and phosphorus (P) from pigs fed 

different diets was estimated and then corrected for losses during storage and application. 

2.3.1 Nutrient excretion from pigs 

 Total feed intake for each diet formulation was estimated and used to calculate intake 

of crude protein (CP), and total P as previously described (Lammers et al., 2009b). Based on 

previous reports, we estimated that if the hoop barn-based facilities were used, feed and 

nutrient intake of a given diet was 3.0% more than for conventional confinement facilities 

(Honeyman and Harmon, 2003; Lammers et al., 2009a). Excretion of N and P were 

calculated based on nutrient intake. 

Nitrogen excretion was estimated based on results of a grow-finish feeding study 

(Canh et al., 1998). Pigs were fed diets containing 12.5–16.5% CP for 9 weeks with total 

collection of urine and feces (Canh et al., 1998). Based on the results of that study we 

estimate that for pigs fed 12–17% CP, N excretion can be calculated by the following 

equation: 

Equation 1.  Nitrogen excretion for growing pigs fed 12 17% crude protein
Nex  0.1369   CPin   15.154
Where

Nex   Nitrogen excretion,  g

CPin   = Crude protein intake,  g

 

 Phosphorus excretion was estimated based on results of 2 studies examining phytase 

in nursery (Veum and Ellersieck, 2008) and finishing (Veum et al., 2006) pigs. Both studies 

examined the efficacy of exogenous phytase by comparing P retention in pigs fed graded 
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levels of exogenous phytase in diets formulated to be low in available P (Veum et al., 2006; 

Veum and Ellersieck, 2008). Both studies also included a positive control diet that was 

adequate in available P by inclusion of inorganic phosphorus sources (Veum et al., 2006; 

Veum and Ellersieck, 2008). The intake and excretion of P by pigs fed the negative and 

positive control diets in previous studies (Veum et al., 2006; Veum and Ellersieck, 2008) are 

the basis for the following equation used to predict phosphorus excretion by pigs in our 

assessment. 

Equation 2.  Phosphorus excretion by pigs
Pex =  0.79    Pin    1.0593

Where
Pex   Total phosphorus excreted,  g

Pin    Total phosphorus intake,  g

 

 Diet formulation affects energy density of the diets fed to pigs and pigs consume feed 

based on energy density of the diet. Because not all feed consumed is utilized by the pig, it is 

necessary to estimate relative differences in fecal mass when comparing different dietary 

strategies. Pigs fed Corn-Soy diets with synthetic amino acids were assumed to produce 

waste at rates found in tables used for developing manure management plans (ISU, 2003). 

For other diet formulations, for every 5% increase in feed intake over the baseline Corn-Soy 

scenario a 1% increase in waste volume was assumed. 

2.3.2 Nutrient losses during storage and application 

 Loss of N from pig wastes during storage and application is a major concern (ISU, 

2003; IPCC, 2006; Wathes and Whittemore, 2006). Losses from different types of storage 

systems vary (Arogo et al., 2003; Nicks et al., 2004; Phillippe et al., 2006; Phillippe et al., 

2007). Previous examinations of nitrogen loss from swine manure storage units have focused 
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on liquid manure systems or deep-litter systems that use sawdust. Only 1 study has examined 

the characteristics of cornstalk bedding packs in hoop barns (Tiquia et al., 2002). Using a 

mass balance approach, N losses of 35–45% were reported. European researchers have 

reported N losses of only 28% from deep-litter pens when using straw (Nicks et al., 2004). 

Others report N losses of up to 75% from deep-litter pens using straw bedding (Phillippe et 

al., 2006). No published studies have specifically examined N loss from liquid manure stored 

in deep pits compared to N loss from bedded hoop barns. For our analysis we assume 

nitrogen losses of 25% from liquid manure storage and 50% from bedded hoop barns (IPCC, 

2006). 

 Liquid manure is often direct injected into cropland. Our model assumes liquid 

manure is directly injected into cropland after removal from storage and that 98% of the N in 

the stored manure is delivered to crop fields and that it 100% is available to crops in the year 

of application (ISU, 2003). For every 100 kg N excreted by pigs and handled as liquid 

manure, our analysis assumes 73.5 kg of N is available to crops with 25 kg N lost during 

storage and 1.5 kg lost during application. 

Manure and bedding from hoop barns is often composted prior to application. The 

ratio of C:N in the composting material, moisture content, and frequency of turning have all 

been shown to influence reduction of material mass, total losses of N , and type of N 

emission from composting pig manure (Huang et al., 2001; Tiquia et al., 2002; Huang et al., 

2004). Our analysis assumes no turning of compost and that a 40% reduction in material 

mass occurs (Tiquia et al., 2002). Our analysis assumes that the 50% N loss reported 

previously includes all N loss during storage and composting (IPCC, 2006). Our analysis 

assumes 0% loss of N from stable compost that is applied and incorporated to crop fields and 
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that 60% of the delivered N is available to plants during the year of application with the 

remaining 40% available to plants in the following year (Shaffer, 2001). For every 100 kg of 

N excreted by pigs housed in bedded hoop barns, our analysis assumes 50 kg of N is 

available to crops over a 2-year period. 

Phosphorus does not volatilize and under most manure storage and handling scenarios 

most of the excreted P is delivered to crop fields (Fulhage and Hoehne, 2001). Our analysis 

assumes 100% of the excreted P is delivered to crop fields and is available for plant growth 

in the year of application. We also assume that cropland has a P-index of 2–5 which allows 

N-based manure management but prohibits P application rates exceeding two times the P 

removal rates of the crop schedule (USDA-NRCS, 2004; IADNR, 2006).  

2.3.2.1 Land application of manure slurry or compost 

Our model assumes swine waste is returned to cropland that was used to grow crops 

fed to pigs. Application rates of swine manure were based on nutrient removal rates by the 

crops with application of synthetic fertilizers reduced accordingly (Lammers et al., 2009b). 

Concentration of nutrients in swine manure slurry or compost were calculated for liquid 

manure systems and the bedded hoop barns. For liquid pig manure, the mass of N and P after 

taking into account storage and application losses were divided by the calculated slurry 

volume. Non-solar energy use for transporting and injecting liquid pig manure into cropland 

is reported as 20.8 kJ/L (Wiens et al., 2008). Application rate was calculated based on 

manure slurry nutrient concentration and nutrient removal rates by crops. We assume non-

solar energy use of 20.8 kJ/L of liquid swine manure applied. 

For swine manure compost, the mass of N and P after taking into account storage and 

composting losses were divided by the mass of the finished compost. Application rate was 
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calculated based on nutrient concentration of the compost and nutrient removal rates by 

crops. It was assumed that compost would be loaded onto a trailer with a capacity of 22,000 

kg and hauled an average of 3.2 km with an average fuel efficiency of 3.0 km/L. Energy 

density of diesel fuel is assumed to be 38.46 MJ/L. Thus transportation energy cost of 

delivering compost to fields was calculated as 1.9 kJ/kg. Energy use for spreading the 

compost across the field was estimated based on reported diesel fuel use for field operations 

(Downs and Hansen, 1998; Hanna, 2001). 

Use of diesel fuel for transporting, injecting or spreading liquid swine manure or 

compost results in emission of greenhouse gases. The 100-yr global warming potential of 

diesel fuel consumption is reported as 63.52 g CO2 equivalents/MJ non-solar energy as 

diesel fuel (IPCC, 2006). Diesel fuel consumption for manure handling was totaled and used 

to calculated greenhouse gas emissions associated with non-solar energy use for manure 

handling for each diet  housing comparison. 

2.5 Reporting 

 The baseline system—conventional confinement housing, pigs fed a COMPLEX 

Corn-Soy diet, C-S cropping sequence—was first modeled and summarized. Selected 

combinations of facility type  diet formulation  crop sequence scenarios were also 

examined and compared. For each facility type  diet formulation  crop sequence scenario 

examined the land area, non-solar energy use, and 100-yr GWP for the entire pig production 

system was calculated and divided by the number of 136.0 kg market pigs produced. Not all 

grains, oilseeds, and biomass produced within a crop sequence are necessarily consumed by 

pigs. Crop products not consumed by pigs are assumed to be exported from the farm. 

Exported crop production for each housing  diet formulation  crop sequence scenario were 
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calculated and reported. All scenarios are designed to provide adequate corn and oats. As 

needed soybean meal is imported to the farm. Imports and exports of crop products were 

totaled and compared for each facility type  diet formulation  crop sequence scenario 

considered. 

3. Results 

3.1 Baseline scenario 

 Table 1 presents the baseline scenario for pig production in Iowa. In the baseline 

scenario each market pig is estimated to require 967.6 MJ non-solar energy and result in 79.8 

kg CO2 equivalents. Approximately 60% of the non-solar energy use for pig production is 

associated with growing and processing feed ingredients. Fifty percent of the non-solar 

energy use is due to cultivation of crops. Feed ingredient manufacture and processing of feed 

accounts for just over 9% of total energy. Although 19% of the non-solar energy use results 

from facility operation, 28% of the 100-yr GWP results from that activity. Nearly 30% of 

non-solar energy use is associated with construction and operation of facilities, and 37% of 

the 100-yr GWP associated with pig production can be attributed to facility construction and 

operation in the Corn-Soy baseline scenario. The baseline scenario assumes a C-S cropping 

sequence and results in export of 20.9 kg soybean meal and 17.3 kg soy oil per market pig 

sold. The total crop land area needed to produce feed grown on farm is 535 m2/market pig or 

a total of 834.6 hectares for the 15,600 pig system. 

 Table 2 details two additional crop sequence and diet type scenarios for the 

conventional confinement facilities. The SIMPLE Oat-Soy diet formulation does not include 

L-lysine and requires almost 25% less energy for processing feed ingredients compared to 

the baseline scenario. However energy used to cultivate crop is 35% more for the SIMPLE 
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Oat-Soy option compared to the baseline. Including synthetic amino acids increases the 

processing energy required for pig diets and decreases the CP content of the feed and 

ultimately the amount of N excreted by the pig. Removing synthetic amino acids from diets 

should increase N excretion, increasing N delivery to fields, and reduce the need for synthetic 

N fertilizers. However the benefits of feeding higher CP to pigs and reducing application of 

N fertilizers to cropland is not energetically favorable in the conventional systems compared. 

 Cultivation energy for the COMPLEX Co-product diet formulation was less than any 

other scenario, however the processing energy is 5–7 times greater. This is because of the 

way DDGS and crude glycerol were assessed. Our analysis assumes DDGS and crude 

glycerol are imported to the farm and that cultivation of the corn and soybeans required to 

produce those biofuel co-products are attributed to the processing energy of those feed 

ingredients. The different crop sequence  diet formulations result in differing crop 

surpluses. The baseline scenario assumes a C-S sequence and results in export of 20.9 kg 

soybean meal and 17.3 kg soy oil per market pig respectively. The SIMPLE Oat-Soy 

scenario assumes a C-S-C-O sequence and results in export of 121.3 kg corn grain, and 10.43 

kg soy oil/market pig but requires the importing of 29.47 kg of soybean meal/market pig. The 

COMPLEX Co-product scenarios with a C-C-S sequence imports 19.30 kg soybean meal and 

exports 6.78 kg soy oil/market pig. 

 A hoop-based pig production system requires less non-solar energy for operation of 

facilities, but also requires more feed. Because liquid pig manure from conventional facilities 

and swine manure compost from hoop barns have different release rates of crop available 

nutrients, different cropping sequences may be more effective in a hoop barn-based system 

than in the conventional confinement system. Table 3 details three diet formulation  
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cropping sequence scenarios for farrow-to-finish swine production using hoop barns for 

gestation and grow-finish. Feeding pigs housed in hoop barns a COMPLEX Corn-Soy diet 

from C-S cropping sequence require 939.8 MJ non-solar energy and results in 79.8 kg CO2 

equivalents per market pig sold. This is 3% less than the non-solar energy use associated with 

the same diet  crop sequence scenario when pigs are housed in conventional confinement. 

The hoop barn system results in 12% less 100-yr global warming potential compared to the 

conventional system. The hoop barn-based system’s advantage is in reduced operating 

energy requirements and manure handling. Injecting liquid pig manure using an umbilical 

cord systems requires a 20.8 MJ/L (Wiens et al., 2008). Loading, hauling, and surface 

spreading finished swine manure compost requires less energy per unit of fertility delivered 

to crop fields. Operating the hoop barn-based complex requires 39% less non-solar energy 

than a conventional confinement system. This dramatic difference more than offsets the 

additional energy needed to grow feedstuffs and process feed ingredients in the hoop barn-

based system. 

 A SIMPLE Oat-Soy diet fed to pigs housed in hoop barns requires 19% more total 

non-solar energy input compared to the baseline conventional system. Feeding a SIMPLE 

Oat-Soy diet to pigs in hoop barns requires similar energy as feeding the same diet to pigs 

housed in conventional systems, once again because of the effects of different manure 

handling systems and facility operating requirements. The COMPLEX Co-product diet 

strategy required the most non-solar energy input in both the hoop barn-based and 

conventional confinement systems. In terms of non-solar energy use per market pig produced 

feeding biofuel co-products to pigs may not be the optimal use for those co-products, 
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although comparative pricing of various feed ingredients at different locations may make 

feeding biofuel co-products economical for individual producers. 

 Although the main product of swine production systems is obviously pigs, not all 

crop products grown within a particular sequence are necessarily consumed by pigs. Table 4 

summarizes the mass of crop products potentially exported from each facility  diet type  

formulation strategy. Because the focus of this examination is energy, the NE value of the 

exported feedstuffs when fed to pigs is totaled. We also present the NE of any feedstuffs that 

need to be imported. From those two values a net NE can be calculated. The C-S-C-O 

sequences produce an abundance of corn and this results in those systems exporting NE as 

feedstuffs from the farm despite the need to import soybean meal. All sequences examined 

export soy oil, which ultimately leads to a positive balance of exported - imported feedstuffs 

in terms of NE for pigs.  

 For all scenarios considered, growing and processing swine feed was the largest 

contributors to total non-solar energy and 100-yr global warming potential associated 

production of one 136.0 kg market pig in Iowa farrow-to-finish swine systems. The energy 

and 100-yr global warming potential of facility construction and operation is not 

inconsequential and should be included in future assessments of swine production systems. 

As expected the impact of non-solar energy use required to construct and operate different 

swine production systems influences the total balance of the system. Despite using more non-

solar energy for production and delivery of feed, farrow-to-finish systems using hoop barns 

for grow-finish pigs and gestating sows use similar or less non-solar energy as comparable 

conventional systems. 
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 Current reports from Europe of non-solar energy use for pig production range from 

5.3–23.5 MJ/kg live weight (Basset-Mens and van der Werf, 2005; Ericksson et al., 2005; 

Williams et al., 2006). Previous reports have been conducted in Europe and have likely 

assumed very different crop production and feed processing scenarios than what we have 

presented. Others have not included facility operation, focusing exclusively on feeding 

strategies. With nearly 30% of the non-solar energy use required to produce a pig resulting 

from facility construction and operation reports that do not include this aspect of pig 

production are incomplete. We estimate that raising pigs in conventional confinement 

systems operating in Iowa uses 7.1 MJ non-solar energy per kg of live weight pig. The 

alternative system using hoop barns for grow-finish pigs and gestating sows may reduce the 

non-solar energy use by 3% to 6.9 MJ/kg of live weight. Hoop barn-based swine production 

systems can be managed to use similar or less resources than conventional systems. Although 

the conventional system did not develop within a vacuum, as we strive to optimally allocate 

non-solar energy reserves and reduce the global warming potential of pig production, support 

for alternative systems such as hoop barns is warranted. 
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Table 1. Assessment of non-solar energy and 100-yr global warming potential associated 
with farrow-to-finish pig production in Iowa in the baseline system1. 
 Non-solar 

Energy, MJ/pig 
100-yr GWP kg CO2 

equivalents/pig 
Facility construction 87.0 6.7 
Facility operation 185.4 22.7 
Cultivation of crops 512.6 38.1 
Processing of feed 99.5 7.0 
Manure application 83.1 5.3 
Total 967.6 79.8 

1 Conventional confinement facilities scaled to produce 15,600 market pigs annually. 
Requires 535 m2 cropland/market pig and results in surplus production of 20.9 kg 
soybean meal and 17.3 kg soy oil. 
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Table 2. Alternative crop sequences and diet formulation strategies for Iowa farrow-to-finish 
systems using conventional confinement scaled to produce 15,600 market pigs annually. 
 Non-solar 

energy, 
MJ/pig 

100-yr GWP, 
kg CO2 

equivalents/pig 

Non-solar 
energy, 
MJ/pig 

100-yr GWP, 
kg CO2 

equivalents/pig 
Building construction 87.0 6.7 87.0 6.7 
Building operation 185.4 22.7 185.4 22.7 
Cultivation of crops 694.2 51.4 425.1 31.0 
Processing of ingredients 74.9 6.8 561.6 20.0 
Manure application 84.1 5.3 84.3 5.4 
Total 1,125.6 92.9 1,343.4 85.8 
     
System Characteristics   
Crop sequence C-S-C-O C-C-S 
Diet type Simple Oat-Soy Complex Co-product 
On-farm feed production area 629.2 m2/pig 306.8 m2/pig 
Off-farm feed production area 96.9 m2/pig 277.6 m2/pig 
Imported soybean meal 29.47 kg/pig 19.30 kg/pig 
Surplus corn grain 121.30 kg/pig 0 
Surplus soy oil 10.43 kg/pig 6.78 kg/pig 



 
  
 
 

Table 3. Assessment of non-solar energy and 100-yr global warming potential associated with Iowa farrow-to-finish pig 
production systems using bedded hoop barns for gestating sows and grow-finish pigs. 
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 Non-solar 
energy, 
MJ/pig 

100-yr GWP, 
kg CO2 

equivalents/pig 

Non-solar 
energy, 
MJ/pig 

100-yr GWP, 
kg CO2 

equivalents/pig 

Non-solar 
energy, 
MJ/pig 

100-yr GWP,  
kg CO2 

equivalents/pig 

 

Facility construction 73.2 5.4 73.2 5.4 73.2 5.4  
Facility operation 113.9 9.9 113.9 9.9 113.9 9.9  
Cultivation of crops 622.7 45.8 854.6 62.5 543.3 39.1  
Processing of feed 102.5 7.2 79.5 7.2 578.4 20.6  
Manure application 20.6 1.3 20.9 1.3 20.8 1.3  
Harvesting bedding 6.9 0.6 6.9 0.6 6.9 0.6  
Total 939.8 70.2 1,149.1 86.9 1,336.5 76.9  
        
System Characteristics     
Crop sequence C-S C-S-C-O C-C-S  
Diet type COMPLEX Corn-Soy SIMPLE Oat-Soy COMPLES Co-products  
On farm feed production area 551.0 m2 667.6 m2 316.2 m2  
Off-farm production area 0 102.8 m2 279.5 m2  
Imported soybean meal 0 31.26 kg/pig 19.87 kg/pig  
Surplus corn grain 0 128.72 kg/pig 0  
Surplus soy oil 17.8 kg/pig 11.7 kg/pig 7.0 kg/pig  
Surplus soybean meal 21.53 kg/pig 0 0  
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Table 4. Feedstuff surpluses and deficits associated with production of one 136.0 kg market 
pig under selected facility  diet type  crop sequence scenarios. 
Facility Conventional Confinement Hoop Barn-Based 
Diet type Corn-Soy Oat-Soy Co-product Corn-Soy Oat-Soy Co-product 
Crop Sequence C-S C-S-C-O C-C-S C-S C-S-C-O C-C-S 
Corn grain, kg 0 121.3 0 0 128.7 0 
Soy oil, kg 17.3 10.4 6.8 17.8 11.7 7.0 
Soybean meal, kg 20.9 -29.5 -19.0 21.5 -31.3 -19.9 
       
NE exported1, MJ 691.1 1,657.2 202.0 711.3 1788.6 208.6 
NE imported1, MJ 0 247.6 159.9 0 180.9 166.9 
Balance, MJ 691.1 1,409.6 42.1 711.3 1,607.7 41.7 
1 Based on Sauvant et al. (2004) 
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CHAPTER 9. GENERAL CONCLUSIONS 

 Assessing non-solar energy use and ecological impacts of swine production systems 

is a complex process that must take into consideration feed choice and diet formulation 

strategy, pig growth and performance assumptions, as well as facility type and management. 

The variability in Iowa swine farms is decreasing, still there is sufficient diversity in existing 

production systems that drawing firm conclusions about the advantages of one system over 

another is difficult if not impossible. Previous energy assessments of pork production have 

focused on European conditions and our work demonstrates that results and 

recommendations from Europe should be interpreted by U. S. swine producers and policy 

makers with caution. Differences in feed ingredient mix, crop production systems, and 

management strategies between Iowa and Europe support continued assessment of North 

American swine production systems.  

 The choice in facility type dramatically effects the amount of construction resources 

and total cost of building swine production facilities. A system that uses bedded hoop barns 

for gestating sows and grow-finish pigs requires approximately 15% less concrete and 

lumber and 30% less steel than a system using conventional confinement facilities. The hoop 

barn-based system requires 30% more land area for its building site, but building site costs 

are a very small portion of the total cost of building swine facilities. Total construction costs 

for a hoop barn-based system is 17% less than a conventional system. Increasing the scale of 

pig production from 5,200 to 15,600 market pigs annually reduces construction cost per pig 

by 25% in conventional systems. The same increase in scale reduces construction cost per 

pig space by only 14% in a hoop barn-based system. The construction cost/pig space of a 

5,200 head farrow-to-finish system using hoop barns for gestating sows and grow-finish pigs 



 199 

is less than the construction cost/pig space of a conventional 15,600 head farrow-to-finish 

system. Systems that use hoop barns may be more scale neutral than conventional systems. 

Nearly 30% of the non-solar energy use of a conventional pig production system is 

associated with constructing and operating pig facilities. Mechanically ventilated pig 

facilities modify the pig’s thermal environment through the use of liquefied petroleum gas 

and electricity. Although heating and ventilating pig barns allows managers to maintain 

temperatures within the pig’s thermal comfort zone this management approach requires large 

amounts of energy inputs. Hoop barns modify pig environment through the use of bedding 

and increased feed consumption. These inputs also require energy but are generally 

considered renewable resources. Currently conventional systems rely heavily on direct use of 

fossil fuels to maintain pig comfort. Both conventional and hoop barn-based systems are 

currently dependent on fossil fuels to operate, however a hoop barn-based system requires 

approximately two thirds the non-solar energy inputs that a conventional system needs to 

function. Greenhouse gas emissions from agriculture are increasingly being scrutinized. By 

reducing non-solar energy inputs required to operate a system, greenhouse gas emissions 

associated with pig production can also be reduced. Operating a hoop barn-based system 

reduces greenhouse gas emission associated with pig facilities by more than 50% compared 

to the conventional system. 

 Feed is the largest single input into a pig production system, both in terms of cost and 

non-solar energy use. This is the reason why most assessments of pork production focus 

heavily on feedstuff choice and diet strategies. The non-solar energy and resulting global 

warming potential associated with growing and processing feed ingredients commonly used 
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in Iowa has not been previously reported. Although far from complete the inventory of 13 

feedstuffs included in this dissertation is a starting point.  

 Biofuel production is increasing and this results in production of co-products that may 

be fed to pigs. Crude glycerol is a co-product of biodiesel production. This relatively 

unexamined feedstuff is an excellent source of energy for pigs. The apparent metabolizable 

energy of the crude glycerol we examined is 3,207 ± 10 kcal/kg. Biodiesel production occurs 

at many different processing plants each with their own standard operating procedures and 

expectations. This results in variability of the co-product crude glycerol. Responsible 

nutritionists must consider this when formulating diets to include crude glycerol just as they 

would for any other feed ingredient. We have demonstrated that pigs can be fed up to 10% 

crude glycerol from wean to finish without influencing average daily gain, average daily feed 

intake, or the gain to feed ratio. Crude glycerol supplementation did not affect carcass or 

pork quality, although fatty acid profile of longissimus muscle lipid was slightly altered. 

Methanol is a trace contaminant found in crude glycerol from biodiesel production that can 

be detrimental to pigs. However we found no evidence of methanol toxicity in pigs fed up to 

10% crude glycerol during a 138-d feeding trial. 

 Including biofuel co-products in the diet of pigs may be economical and is an 

excellent way to harvest an available resource. However non-solar energy use for growing, 

processing, and delivering swine diets including dried distiller’s grains and crude glycerol 

requires greater than 33% more non-solar energy compared to a typical corn-soybean meal 

diet. Feeding phytase reduces the need for inorganic phosphorus in pig diets and dramatically 

reduces the non-solar energy use of pig diet production. Synthetic amino acids when fed to 

pigs reduce nitrogen excretion due to more precise matching of amino acid delivery with pig 
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needs, but requires more non-solar energy inputs than meeting amino acid needs by feeding 

soybean meal. Replacing soybean meal with full-fat soybeans allows producers to process a 

greater percentage of total feed on-farm. Replacing soybean meal with full-fat soybeans 

requires more non-solar energy for pig feed production. Locations that require long distance 

transport of soybean meal may benefit from local processing of alternative protein sources, 

but this is not the situation for Iowa.With soybean meal processing plants dispersed 

throughout the state there is no energetic advantage to replacing soybean meal with full-fat 

soybeans.  

 The “standard” pig production system is Iowa is conventional confinement with a diet 

consisting of corn and soybean meal. Typical crop sequence is corn-soybean and swine diets 

include synthetic amino acids and the exogenous enzyme phytase. This same crop sequence 

 diet formulation pairing can be incorporated into a system using hoop barns for gestation 

and grow-finish and results in a reduction of non-solar energy use and global climate altering 

emissions. There are benefits to more complex crop sequences. However those sequences are 

not as well suited as a corn-soybean sequence in terms of producing swine feedstuffs. A corn 

soybean sequence delivers adequate nutrition to pigs and requires the least non-solar energy 

input. 

 The total non-solar energy input associated with one 136 kg pig produced in a 

conventional farrow-to-finish system in Iowa and fed a typical corn-soybean meal diet that 

included synthetic lysine and exogenous phytase is 967.6 MJ. Consuming this non-solar 

energy results in emission of 79.8 kg of CO2 equivalents. Alternatively producing the same 

pig in a system using hoop barns for gestating sows and grow-finish pigs requires 939.8 

MJ/pig and results in emission of 70.2 kg CO2 equivalents, a reduction of 3 and 12% 
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respectively. Hoop barn-based swine production systems can be managed to use similar or 

less resources than conventional confinement systems. As we strive to optimally allocate 

non-solar energy reserves and other limited resources, support for examining and improving 

alternative systems is warranted. 
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APPENDIX 1: CALCULATING ENERGY USE FOR THERMAL CONTROL OF 
GROW-FINISH FACILITIES WITHIN A FARROW-TO-FINISH SYSTEM 

PRODUCING 15,600 MARKET PIGS ANNUALLY 
 

 
 
Step 1. Divide exterior temperature data between hours with pigs and hours with no pigs in 
building. 
 

Table 1 summarizes historic temperature date for the location modeled as well as the 

division of time between when pigs are housed in the building and when the building is 

empty. Temperature data is for Mason City, IA, 43.1°N, 93.2°W for the years 1961–1990 

(Kjelgaard, 2001). The division of time is based on pig flow assumptions detailed previously 

(Lammers et al., 2009). 

Step 2. Calculate the balance point temperature of the building. 

The balance point temperature is the exterior temperature at which the building is in 

thermal balance—interior temperature remains constant without additional heat inputs or 

losses. The balance point temperature is calculated based on the following equation presented 

by MWPS publications (MWPS, 1987, 1990a, b): 

tb = ti - (HP ÷ (AT/RT + 1.1  cfmMIN  Head) (Equation 1) 
Where 
 tb = Balance point temperature, °F 
 ti = Inside temperature, °F 

  HP = Heat production by pigs, Btu/hr 
 AT/RT = The sum of all area/resistance ratios of the building, Btu/hr • °F 

or (AS/RS) + (AP/RP) 
1.1 = Conversion factor  
cfmMIN = Minimum ventilation rate, ft3  min-1  pig-1 

  Head  = Number of pigs in building 
 

Balance point temperature and long-term climate data can be used to estimate the 

number of hours a particular facility will need additional heat added or removed during a 

year. The number of hours that the exterior temperature is less then the balance point 
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temperature is the number of hours in a year that additional heat must be added. Alternatively 

the number of hours that the exterior temperature is greater than the balance point 

temperature is the number of hours in a year that additional heat removal strategies are 

needed. The grow-finish building houses 1,200 pigs, each pig has a body weight of 85.3 kg 

and produces 531.4 kJ of sensible heat. Assuming a minimum room temperature of 15.5°C 

and minimum ventilation rate of 283 L  min-1  hd-1, the balance temperature is -9.2°C. 

 

Step 3. Determine number of hours that heat will be need to be added to the building and the 
least square mean exterior temperature for that time frame. 
 

 The balance point temperature for the grow-finish building example is -9.2°C. A sub-

set of temperature  time data points from table 1 can now be identified. All temperature  

time data points  -9.2 °C are included in the subset and all temperature  time data points > 

-9.2°C are excluded. Table 2 Summarizes the number of hours pigs occupy the building at 

temperatures  -9.2°C. This information can be used to calculate the least square mean 

temperature for the 1,063.2 hr when exterior temperatures are  -9.2°C. The exterior 

temperature is calculated as -16.3°C for the 1,063.2 hr when additional heat is needed. 

 

Step 4. Calculate heat inputs required. 

 The thermal balance of a pig building is calculated following the general equation: 

Thermal balance (Btu/hr) = Hin - Hout  (Equation 2) 
 

Where 
Hin = Sensible heat production by pigs, Btu/hr 
Hout= Heat loss from building surfaces, Btu/hr + Heat loss from ventilation, Btu/hr 
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If the thermal balance is negative, additional heat must be added to the building to 

maintain interior temperature at a given set-point. If thermal balance is positive, additional 

heat must be removed from the building to prevent interior temperature from increasing. 

Heat production by pigs is calculated using equations based on Pedersen (2002) and 

Brown-Brandl et al. (2004). Heat production by growing pigs is calculated using the 

appropriate equation based on body weight: 

Total heat production by pigs  10 kg:  
 HP = 4.3  BW0.15  BW  Head  3.41214  (Equation 3a) 
Total heat production by pigs > 10 kg  

HP = 14.11  BW-0.38  BW  Head  3.41214 (Equation 3b) 
  
Where 
 HP = Heat production, Btu/hr 
 BW = Body weight, kg 
 Head = Number of pigs in building 
 3.41214 = Conversion factor W to Btu/hr 
 
Heat production by adult pigs is influenced by body weight as well as production 

phase. Heat production by gestating sows or lactating sows with litters is calculated using 

one of the following production phase specific equations: 

Total heat production by gestating sows 
 HP = (4.85  BW0.75 + 2  10-0.5  DP3 + 76  0.18)  Head  3.41214 
         (Equation 4a) 
Total heat production by lactating sows 
 HP = (4.85  BW0.75 + 28  6 + 76  0.18)  Head  3.41214  

(Equation 4b) 
Where 
 HP = Heat production, Btu/hr 
 BW = Body weight, kg 
 DP = Days of pregnancy, d 
 Head = Number of sows in building 
 3.41214 = Conversion factor W to Btu/hr 
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The amount of heat produced as sensible heat is then calculated as a temperature 

dependent percentage of the total heat production based on Pedersen (2002) and  Brown-

Brandl et al. (2004). 

Heat loss from the building is calculated using equations presented by MWPS 

publications (MWPS, 1987, 1990a, b). Heat loss from each building surface is calculated 

using the general equation: 

BSL = (AS/RS)  (ti-to)  (Equation 5a) 
Where 

BSL = Heat loss through a surface, Btu/hr 
AS = Surface area, ft2 

RS = Total resistance of the surface to heat flow, °F•ft2•hr/Btu 
ti = Inside temperature, °F 
to = Outside temperature, F 

  
Heat loss through the floor perimeter is calculated using the following equation: 

HLFP = (AP/RP)  (ti-to) (Equation 5b) 
Where 

HLFP = Heat loss through floor perimeter, Btu/hr 
AP = Building perimeter, ft 
RP = Resistance of perimeter to heat flow, °F•ft•hr/Btu 
ti = Inside temperature, °F 
to = Outside temperature, F 

 

The losses from each surface are added together to calculate the total heat loss from 

surfaces of the building. Heat loss from ventilation necessary to maintain air quality is 

calculated using the following equation: 

HLVMIN = 1.1  cfmMIN  (ti-to)  Head (Equation 6) 

Where 
HLVMIN = Heat loss from minimum ventilation, Btu/hr 
1.1 = Conversion factor 
cfmMIN = Minimum ventilation rate, ft3  min-1  pig-1 
ti = Inside temperature, °F 
to = Outside temperature, F 
Head = Number of pigs in building 
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Table 3 summarizes the value of key variables in equations 1-6 for the grow-finish 

building example. By manipulating variables presented in table 3 and equations 1-6 we find 

that 194.3 MJ/hr additional heat must be added to the building in order to maintain an interior 

temperature of 15.5°C when exterior temperatures are -16.3°C.  Calculating the additional 

heat input is then simply a matter of multiplying heat input/hr by the number of hours 

modeled. In this example: 

 194.3 MJ/hr  1,063.2 hr = 206.6 GJ/building 

Assuming a heater efficiency of 98% approximately 210.8 GJ of heat must be added 

to the described grow-finish building annually when pigs are housed in the building. 

 Steps 2–4 are then repeated for when no pigs are housed in the building. When no 

pigs are present, heat production is zero, ventilation is reduced to 650 L/min for the entire 

building and interior temperature is maintained at 10°C. This results in a balance temperature 

of 10°C. A second sub-set of temperature  time data points was then drawn from table 1 and 

is summarized as table 4. The least square mean temperature for hours that require additional 

heat inputs when no pigs are present is -3.1°C. Table 5 summarizes the value of key variables 

in equations 1-6 for the empty grow-finish building example. By manipulating variables 

presented in table 5 and equations 1-6 we find that 34.3 MJ/hr additional heat must be added 

to the building in order to maintain an interior temperature of 10°C when exterior 

temperatures are -3.1°C.  Calculating the additional heat input is then simply a matter of 

multiplying heat input/hr by the number of hours modeled. In this example: 

 34.3 MJ/hr  47.8 hr = 1.6 GJ/building 

 Assuming a heater efficiency of 98%, 1.7 GJ of heat must be added to the described 

grow-finish building annually when the building is empty. The total heat required by this 
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grow-finish building for 1 year is thus 212.5 GJ. With 4 grow-finish buildings in the system 

producing 15,600 market pigs annually a total of 850 GJ of heat input is needed for thermal 

climate control of grow-finish buildings. 

Step 5. Calculate energy used for maintaining air quality 

 Pigs are housed in the grow-finish building 8,672.4 hr/yr. The ventilation rate needed 

to maintain air quality (minimum ventilation) for the 85.3 kg pig in our model is 283 L  

min-1  head-1. With a fan efficiency of 339.8 L  min-1  W-1 operating the minimal 

ventilation fans requires 999.4 W. Thus a total of 8,667.2 kW•hr or 31.2 GJ of electricity is 

required to operate minimal ventilation fans when pigs are housed in one grow-finish 

building. Therefore a total of 124.8 GJ electricity is needed to maintain air quality inside 4 

grow-finish buildings in the 15,600 market pigs/year system when pigs are present. 

 The grow-finish building is empty of pigs for 87.6 hours. When the barn has no pigs 

in it, the minimal ventilation rate is 650 L/min. Fan efficiency is 339.8 L  min-1  W-1, thus 

maintaining air quality when no pigs are present requires a total of 0.2 kW•hr or 0.7 MJ per 

building. The total electricity needed for maintaining minimal air quality in the 4 grow-finish 

buildings for the 15,600 market pig/year system is slightly more than 124.8 GJ/year. 

Step 6. Calculate the energy used to reduce interior temperature of barns 

If exterior temperature is greater than the balance point temperature but less than the 

maximum allowable interior temperature, increasing the ventilation rate will remove heat 

from the building and maintain interior temperatures within the accepted range. Additional 

ventilation to remove heat from a building is calculated using the following equation from 

MWPS publications (MWPS, 1987, 1990a, b): 
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cfmADD = (DHL ÷ [1.1  (ti-to)]) ÷ Head (Equation 7) 
 
Where 
 cfmADD = Additional ventilation rate, ft3  min-1  hd-1 
 DHL = Desired heat loss, Btu/hr 

1.1 = Conversion factor 
ti = Inside temperature, °F 
to = Outside temperature, F 
Head = Number of pigs in building 

 
In situations where the exterior temperature is greater then both the balance point 

temperature and the interior temperature of the building, interior temperature will increase 

unless additional cooling tactics are used. Circulating fans, sprinklers, water drippers, 

evaporative cooling systems, and zone cooling are examples of additional cooling strategies. 

These tactics require energy but are beyond the scope of this model. When the exterior 

temperature is greater than the interior temperature, energy use is estimated based on hot 

weather ventilation rates presented by MWPS publications (MWPS, 1987, 1990a, b). 

 Tables 5 and 6 summarizes the different temperature  hour data used to calculate 

cooling of pig buildings with and without pig present respectively. Equations 1-7 and fan 

efficiency assumptions can then be manipulated to calculate the energy used for cooling pigs. 

Table 8 summarizes energy use for thermal control of 1 grow-finish building in a farrow-to-

finish swine production system producing 15,600 market pigs annually. 
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Table 1. Historic exterior temperature for Mason City, IA (43.1°N, 93.2°W)a 
Temperature, 

°C 
Total time, 
hours/year 

Pigs in barn, 
hour/yr 

Barn empty, 
hr/yr 

33.6 20 19.8 0.2
30.8 75 74.3 0.8
28.1 258 255.4 2.6
25.3 429 424.7 4.3
22.5 526 520.7 5.3
19.7 567 561.3 5.7
16.9 941 931.6 9.4
14.2 603 597.0 6.0
11.4 565 559.4 5.7
8.6 519 513.8 5.2
5.8 437 432.6 4.4
3.1 744 736.6 7.4
0.3 616 609.8 6.2

-2.5 550 544.5 5.5
-5.3 454 449.5 4.5
-8.1 382 378.2 3.8

-10.8 327 323.7 3.3
-13.6 228 225.7 2.3
-16.4 159 157.4 1.6
-19.2 84 83.2 0.8
-21.9 127 125.7 1.3
-24.7 90 89.1 0.9
-27.5 46 45.5 0.5
-30.3 10 9.9 0.1
-33.1 3 3.0 0.0

Total 8,760 8672.4 87.6 
a 1961–1990 based on (Kjelgaard, 2001) 
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Table 2. Hours and least square mean temperature below 
balance temperature for grow-finish building example 
when pigs are inside building. 
Temperature, 

°C 
Hours 

with pigs, hr
 

Temp.  Hour 
-10.8 323.7 -3,496.0
-13.6 225.7 -3,069.5
-16.4 157.4 -2,581.4
-19.2 83.2 -1,597.4
-21.9 125.7 -2,752.8
-24.7 89.1 -2,200.8
-27.5 45.5 -1,251.3
-30.3 9.9 -300.0
-33.1 3.0 -99.3

Total 1,063.2 -17,348.5 
LS Mean Temperature, °C -16.3 
 
 
Table 3. Values of key variables needed to calculate 
energy use for heating example grow-finish buildings 
when pigs are present. 
Variable Value 
Pigs 1,200 hd 
Body weight 85.3 kg 
Heat production 531.4 kJ/hd 
Minimum ventilation 283 L  min-1  hd-1 

AT/RT 4.43 MJ/hr-°C 
Exterior temperature -16.3°C 
Interior temperature 15.5°C 
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Table 4. Hours and least square mean temperature below 
balance temperature for grow-finish building example 
when pigs not in building. 
Temperature, 

°C 
Hours 

With no pigs, hr
 

Temp.  Hour 
8.6 5.2 44.7
5.8 4.4 25.5
3.1 7.4 22.9
0.3 6.2 1.9
-2.5 5.5 -13.8
-5.3 4.5 -23.9
-8.1 3.8 -30.8
-10.8 3.3 -35.6
-13.6 2.3 -31.3
-16.4 1.6 -26.2
-19.2 0.8 -15.4
-21.9 1.3 -28.5
-24.7 0.9 -22.2
-27.5 0.5 -13.8
-30.3 0.1 -3.0
-33.1 0.0 0

Total 47.8 -149.5
LS Mean Temperature, °C -3.1 
 
 
Table 5. Values of key variables needed to calculate 
energy use for heating example grow-finish building 
with no pigs present. 
Variable Value 
Pigs 0 
Heat production 0 
Minimum ventilation 650 L  min-1 

AT/RT 4.43 MJ/hr-°C 
Exterior temperature -3.1°C 
Interior temperature 10.0°C 
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Table 6. Hours and least square mean temperature for different cooling scenarios 
with pigs in barn 

Ventilation Rate Increased to Maintain Room Temperature 
Temperature, 

°C 
Hours with pigs in 

barn/yr 
Temperature  hour 

22.5 520.7 11,715.8
19.7 561.3 11,057.6
16.9 931.6 15,744.0
14.2 597.0 8,477.4
11.4 559.4 6,377.2
8.6 513.8 4,418.7
5.8 432.6 2,509.1
3.1 736.6 2,283.5
0.3 609.8 182.9

-2.5 544.5 -1,361.3
-5.3 449.5 -2,382.4
-8.1 378.2 -3,063.4 

Total 6835.0 55,959.1 
LS Mean Temperature °C 8.2 
  

Maximum Ventilation Rate 
Temperature, 

°C 
Hours with pigs in 

barn/yr 
Temperature   hour 

 
33.6 19.8 665.3
30.8 74.3 2,288.4
28.1 255.4 7,176.7
25.3 424.7 10,744.9

Total 774.2 20,875.3 
LS Mean Temperature °C 27.0 
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Table 7. Hours and least square mean temperature for different cooling scenarios 
with no pigs in barn 

Ventilation Rate Increased to Maintain Room Temperature 
Temperature, 

°C 
Hours with pigs in 

barn/yr 
Temperature  hour 

22.5 0.2 4.5
19.7 0.8 15.8
16.9 2.6 43.9
14.2 4.3 61.1
11.4 5.3 60.4

Total 13.2 185.7 
LS Mean Temperature °C 14.1 
 
 
 
 
Table 8. Summary of annual non-solar energy use for controlling thermal environment of a 
1,200 head grow-finish swine facility in Mason City, Iowa 
Process Duration, hr Heat, GJ Electricity, GJ 
Heat for pigs 1,063.2 210.8 0 
Maintain air quality for pigs 8,672.3 0 31.2 
Cooling pigs 7,609.2 0 21.2 
Maintain temperature of empty barn 47.8 1.7 0 
Maintain air quality when barn empty 87.6 0 0.6 
Totals for year  212.5 53.0 
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APPENDIX 2. CROP PRODUCTION MODEL 

 Corn grain is the single largest input into modern Iowa pig production. Marketing 

grain through livestock has been and continues to be the primary destination for Iowa grain 

crops (ICPB/ICGA, 2009). It is apparent that Iowa pig and crop production are linked. 

However, crop production is rarely considered within the context of pig feed production. Pig 

production decisions are often made without full consideration of the potential for crop  pig 

synergy. The following model was designed to evaluate crop management choices as they 

pertain to production of pig feed. The crop production model was used to estimate non-solar 

energy use and 100-yr global warming potential (GWP) of selected crops and cropping 

sequences. Results from the crop production model are summarized and included for 

reference purposes. Results from the described model can be linked with other information 

on feed ingredient processing to generate life cycle assessments of Iowa pork production 

systems as well as help evaluate crop management decisions within the context of pig feed 

production. 

MODEL DESCRIPTION AND ASSUMPTIONS 

 Table 1 presents initial conditions of the soil, annual inputs, and expected crop 

production assumptions for the crop production model. The model assumes that growing 

conditions for the various crops are ideal except for the absences of abundant nitrogen, 

phosphorus, and potassium. Initial buffer pH of the soil was set at 6.5 with calcium carbonate 

as limestone to be applied as needed to support crop production. The soil was assumed to 

have an initial nitrate-nitrogen concentration (NO-
3–N) of 0 ppm with additional synthetic 

nitrogen applied to fields according to Iowa State University recommendations (ISU, 2003). 

The crop production model assumed that soil began at the optimal concentration of 
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phosphorus and potassium and that those nutrients are applied at crop removal rates (Sawyer 

et al., 2002). Anhydrous ammonia (NH3), diammonium phosphate (DAP), and muriate of 

potash (MOP) were the primary synthetic source of nitrogen, phosphorus, and potassium 

considered (Bhat et al., 1994). Diammonium phosphate delivers both phosphorus and 

nitrogen. Credit was given for any nitrogen applied as DAP and subtracted from the amount 

to be applied as NH3.  

Chemical herbicide was used to address weeds in corn and soybeans. Annually, two 

separate applications of herbicide were assumed for both corn and soybeans with application 

rate and specific active ingredient used for each crop taken directly from USDA reports for 

the state of Iowa (NASS, 2007). Chemical herbicide use by state is reported by the National 

Agricultural Statistics Service of USDA (NASS, 2007). The most recent year compiled for 

corn was 2005, during that year 4 active ingredients—atrazine, acetochlor, s. metolachlor, 

and glyphosate—accounted for 87% of all herbicide applied to corn in Iowa (NASS, 2007). 

The model assumes 1 application of a weighted-average mix of atrazine, acetochlor, and s. 

metolachlor and a second application of glyphosate in corn. Soybean herbicide use in Iowa 

was most recently compiled for 2006, during that year, glyphosate was applied to 97% of all 

soybean acres receiving herbicide (NASS, 2007). The model assumes 2 applications of 

glyphosate in soybeans. It is assumed that both corn and soybeans are glyphosate resistant 

varieties. Application rates of specific active ingredients for each crop were taken directly 

from USDA reports for Iowa (NASS, 2007) and scaled to the modeled area.  

Average fuel requirements for farming tasks under typical conditions were the basis 

for estimating diesel fuel use for field operations (Downs and Hansen, 1998; Hanna, 2001). 

Road transportation of grain, oilseed, alfalfa hay, oat straw, and corn stover were also 
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estimated. It was assumed that a semi-tractor truck with appropriate trailer would be used to 

haul harvest products an average of 3.2 km with an average fuel efficiency of 3.0 km/L of 

diesel fuel. The model assumed a grain trailer with a volume of 33.3 m3 (Edwards and 

Clarahan, 2008). A flat-bed trailer with usable cargo area of 7.3  3.0  3.0 m was modeled 

for transporting large (2.4  1.2  0.9 m) square bales of hay, straw, and stover. All 

calculations assume a trailer that is filled to capacity. Given standardized densities of 

different grain crops (ASABE, 2008) and reported densities of various plant materials 

(Börjesson, 1996; Peterolia, 2007) the mass of the loaded semi-tractor and trailer were within 

Iowa legal weight limits (IDOT, 2007).  

Transportation energy for all materials was calculated using mass at harvest moisture 

content. With the exception of corn grain, all material was harvested at storage moisture 

contents presented in table 1. As modeled, corn grain was harvested at an average moisture 

content of 19.5% (grain production = 1.18 kg/m2) and transported to the on-farm grain 

processing location. Corn grain typically requires additional drying following harvest. A 4% 

reduction in mass through drying of corn using typical drying technology was included in the 

model. The drying system is assumed to require 6.5 MJ/kg of mass reduction with 97% of the 

energy coming from liquefied petroleum gas and the other 3% from electricity (Bern, 1998; 

Wilcke, 2004).  

The quality of stored grain is maintained by timely aeration to control temperature 

and moisture content of the grain (MWPS, 1987; Wilcke and Morey, 2002). Grain is 

consumed throughout the year and so less grain will need to be aerated in April compared to 

December. Annual energy use for maintenance of stored grain quality for a commercial 

(3,523.9 m3 or 100,000 bushel) grain storage unit was estimated taking into consideration 
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linearly decreasing grain stocks (MWPS, 1987; Wilcke and Morey, 2002). The model 

assumes that each kg of grain produced requires 0.45 kJ of electricity to provide adequate 

aeration for storage throughout the year.  

 It is well known that rotating crops affects production. Based on reports from Iowa 

(Al-Kaisi et al., 2006b, a; Mallarino et al., 2006; Al-Kaisi and Licht, 2007b, a; Mallarino and 

Licht, 2007; Al-Kaisi, 2008b, a) the crop model assumed growing corn in any of the 4 non-

continuous corn scenarios will result in an 11% increase in corn production compared to 

continuous corn. The crop model also assumed growing soybeans in any rotation would 

result in a 4% increase over growing soybeans continuously. For the rotations where 

soybeans are grown less than every other year, annual production was assumed to increase by 

8% over continuous soybeans (Mallarino and Licht, 2007).  

The model assumes that oats will always be under seeded with alfalfa and that oat 

production will not be affected by any of the examined rotations. The model assumes no 

harvestable production of alfalfa during the establishment year. Production in the following 

year is listed in table 1. Nitrogen fixing legumes can influence soil NO-
3–N concentrations 

experienced by following crops. It is assumed that a nitrogen credit of 4.5, 8.4, and11.2 g/m2 

are provided to the subsequent crop of corn by soybeans, alfalfa planted with oats, and 

established alfalfa. Complex crop rotations may encourage reduction of herbicide by 

reducing the total area requiring a specific time-sensitive task such as cultivation of corn and 

soybeans for early season weed control. Based on Leibman et al. (2008) the weed control 

regime for the C-S-C-O-A rotation will include herbicide application on corn and soybean at 

18% of the rate that is used otherwise accompanied by 1 rotary hoeing operation and 2 field 

crop cultivations. 
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The energy used to manufacture a product or service can be referred to as the 

embodied energy of that product of service. Embodied energy values of seed (Börjesson, 

1996; Nagy, 1999; Hill et al., 2006), ground limestone (Hammond and Jones, 2008), 

synthetic fertilizers and herbicides (Bhat et al., 1994) were used to estimate non-solar energy 

use for crop inputs. These values were combined with fuel use for field operations, 

transportation, and crop drying to calculate the total non-solar energy use of the different 

crop sequences. Emission of greenhouse gases are directly linked to energy use but are 

influenced by the mix of fuel types. Table 2 presents fuel use distribution and 100-year 

global warming potential for crop production inputs.  

Gross energy (GE) of all production represent the energy that could be gained by 

simply combusting all grain, oilseed, and biomass produced by a given crop sequence. Net 

energy (NE) represents the portion of GE that a pig actually uses for growth and maintenance 

from a particular feedstuff (Ewan, 2001; Whittemore, 2006). Net energy most closely 

represents the true energy value of a feedstuff relative to pig production and is the energy 

value of most interest to swine nutritionists (Ewan, 2001; Whittemore et al., 2003; 

Whittemore, 2006). Starch concentration is another important measure of a product’s 

suitability for human food (Quezada-Cavillo et al., 2006) or pig feed (Sauber and Owens, 

2001; Whittemore, 2006). Sauvant et al. (2004) presents the GE, NE available to growing 

pigs, and the starch content of corn, oats, roasted soybeans, alfalfa hay, and wheat straw. 

Wheat straw was assumed to be equivalent to oat straw in terms of GE for this analysis. Corn 

stover was assumed to have a GE value of 14.2 MJ/kg at 15% moisture (Pordesimo et al., 

2005). It was assumed that oat straw and corn stover were of very limited value as food or 

feedstuffs and that NE value and starch content was effectively zero. Crop production model 
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results and literature values were used to calculate GE, NE available to growing pigs, and 

total starch production for each crop production sequence. 

RESULTS 

 Table 3 presents the estimated annual inputs and crop production parameters for 

individual crops within different crop sequences. Adding soybeans to the crop sequence 

reduces anhydrous ammonia needs by 15% and increases grain and stover production relative 

to continuous corn. With increasing crop production, diammonium phosphate and muriate of 

potash use also increases. More complex crop rotations drastically reduce the amount of 

anhydrous ammonia needed by corn. Although rotations that include oats and alfalfa also 

require additional crop inputs, the total inputs per square meter of farmland in the more 

complex rotations are less than the combinations of corn and soybeans. Production of corn 

within more complex rotations increases the productivity of corn as compared to 

monoculture, but productivity per area of total cropland decreases. For example, if 100 m2 of 

cropland is available and it is managed as continuous corn, 70.84 kg of starch will be 

produced. Alternatively if the 100 m2 of available cropland is managed under the corn-

soybean sequence starch production per m2 of corn planted increases, but total area planted to 

corn decreases and only 39.49 kg of starch is produced. This illustrates the importance of 

considering not only individual crops within a rotation, but also the total impact of a specific 

crop sequence. 

 Calculated non-solar energy use and 100-year global warming potential for individual 

crops within different crop sequences is presented as tables 4 and 5. Reducing crop inputs 

reduces non-solar energy use and production of greenhouse gases. As expected growing corn 

in more complex rotations reduces non-solar energy use and 100-year global warming 
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potential for corn production as compared to monoculture. Corn is the most energy intensive 

crop considered. Thus as corn’s relative contribution to a sequence decreases, the non-solar 

energy use for the entire crop sequence also decreases. For example, 100% of cropland in the 

C-C sequence is devoted to corn production and the non-solar energy use of cropland 

managed as continuous corn is 2.44 MJ/m2. Alternatively the C-C-S, C-S, and C-S-C-O-A 

sequences assume 66, 50, and 40% of the total cropland area being devoted to corn 

production. Non-solar energy use of managed cropland is 1.94, 1.56, and 1.43 MJ/m2 for the 

C-C-S, C-S, and C-S-C-O-A sequences, respectively. One hundred-year global warming 

potential follows the same trend of decreasing impacts per m2 of managed cropland for the 

more complex sequences as compared to corn managed as a monoculture. 

 Information about individual crops managed within different crop sequences 

presented in tables 3–5 is summarized in table 6. Table 6 presents production, non-solar 

energy inputs, and 100-year global warming potential of 5 different crop sequences. Corn 

delivers large amounts of material that is high in GE, NE, and starch content. Reducing 

corn’s portion of available cropland by adding other crops to the sequence reduces overall 

production of GE, NE, and starch. Corn is also the most non-solar energy intensive crop 

examined and reducing the percentage of area devoted to corn production reduces non-solar 

energy use and 100-year global warming potential of the entire cropping sequence.  

Of greatest interest are the output ratios or yield results presented in table 6. Yield is 

calculated by simply dividing a measure of output by a measure of input. Within industrial 

agriculture, the concept of crop yield described as bushel/acre is strongly entrenched, but 

may give a false sense of productivity. Although farmland is a limited resource that must be 

considered, non-solar energy requirements for crop production may be even more finite. 
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Similarly, if financial incentives are offered or regulations are imposed to better manage 

greenhouse gas emissions, a practical calculation of yield should relate production of 

desirable end-products (NE or starch) per unit of undesirable co-products (greenhouse gas 

production). Table 6 includes output ratios which relate GE, NE, and starch production to 

non-solar energy use and 100-year global warming potential. 

Gross energy is a measure of potential energy production that may be particularly 

important for those focused on bio-fuels or production of other renewable energy resources. 

However the focus of this paper is crop production in the context of producing feedstuffs for 

pigs. Net energy is the reported measure of productivity that is of greatest interest to swine 

nutritionists. Although pigs are not thought to have a starch requirement per se, starch is 

often used as a measure of grain quality and suitability for nonruminant animals and is of 

interest to nutritionists who work with livestock as well as human nutritionists.  

Continuous corn produces the least NE per unit of non-solar energy or 100-year 

global warming potential. The C-S sequence produces the most net energy per unit non-solar 

energy. Continuous corn produces the most starch/MJ non-solar input and g CO2 equivalents. 

Other than starch production, C-C is not as effective as the other sequences considered. The 

C-S-C-O-A sequence produces the least amount of starch/ MJ non-solar energy and g CO2 

equivalents. Management of alfalfa requires large amounts of energy-intensive field 

operations and produces very little NE and no starch for pigs. The C-S-C-O sequence 

captures many of the energetic benefits of the C-S-C-O-A sequence without devoting any 

space to production of alfalfa. Because alfalfa is considerably less desirable as a feedstuff for 

pigs compared to the other crops, the rotational benefits of alfalfa do not outweigh its 

drawbacks in this analysis. Perennial crops such as alfalfa provide valuable services and 
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should be included in generalized crop sequences. However deriving maximal benefit from 

forage crops requires inclusion of ruminant animals in the equation. Such analysis and 

discussion is beyond the scope of this paper. It is important to note that the C-S and C-S-C-

O-A sequences perform similarly and that both are superior to C-C in terms of producing 

both NE and GE/ MJ non-solar energy and g CO2 equivalents. 

 The C-S sequence produces the most NE/MJ non-solar energy input and g CO2 

equivalents. The C-S-C-O sequence is the best alternative sequence in terms of starch and net 

energy production per unit of non-solar energy input and g CO2 equivalents. A C-S-C-O-A 

sequence may offer several advantages for systems that include ruminants, but in terms of 

producing pig feed it is not as well suited as the C-S or C-S-C-O sequences. 
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Table 1. Initial conditions of the soil, annual inputs, and expected crop production1,2. 
 Corn Soybean Oat Alfalfa 
Seed production3, kg/m2 1.13 0.33 0.43 0 
Seed dry matter at harvest4, % 80.5 87.0 86.0 Na 
Harvestable biomass3, kg/ m2 0.94 0 0.21 0.9 
Biomass dry matter at harvest, % 85.0 na 92.0 92.0 
Soil buffer pH 6.5 6.5 6.5 6.5 
CaCO3 application5, kg/ m2 0.3 0.3 0.3 0.7 
Soil test nitrate, ppm N 0 0 0 0 
N application6, g/ m2 24.2 0 10.1 0 
P2O5 application, g/ m2 7.6 4.8 5.4 5.6 
K2O5 application, g/ m2 6.0 9.1 13.4 17.9 
Seed7 7.9 40.9 5.6 1.8 
Herbicide8,9, g a.i. / m2 0.25 0.14 0 0 

1 Values represent average production and total inputs for one calendar year of continuous 
corn, continuous soybeans, oats under seeded with alfalfa and alfalfa following 
establishment.  

2 Based on Sawyer et al. (2002) unless otherwise stated. 
3 Grain and harvestable biomass (corn stover, oat straw, alfalfa hay) equivalent to 180, 54, 

120 bushel/acre and 4.0 ton/acre at 84.5, 87.0, 86.0, and 85.0% dry matter for corn, 
soybean, oat, and alfalfa respectively. 

4  Corn grain will be dried to 84.5% dry matter for storage, all other crops are harvested at 
storage moisture content. 

5 Assumes 15.24 cm of soil depth to be neutralized. 
6 Nitrogen from PM 1811 ISU 2003. 
7 Corn and soybeans are given as seed/m2; oats and alfalfa presented as g seed/m2. 
8 Based on NASS (2007). 
9 Active ingredient 
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Table 2. Fuel use distribution assumptions and 100-year global warming potential for 
crop production inputs. 

Input Electricity, 
% 

Diesel, 
 % 

Liquefied 
Petroleum Gas, 

% 

Total GWP1,  
kg CO2/GJ 

Seed 2.5 2.5 95.0 67.79 
Limestone 0 100 0 82.73 
Anhydrous ammonia2 2.6 0 97.4 67.47 
Diammonium phosphate2 4.5 0.2 95.3 70.67 
Muriate of potash2 4.3 0 95.7 70.30 
Herbicide2 3.0 0 97.0 68.14 
Field operations 0 100 0 82.73 
Transportation 0 100 0 82.73 
Drying of corn grain 3.0 0 97.0 75.02 
Aeration of stored grain 100 0 0 229.32 

1 100-year Global warming potential (IPCC, 2006, 2007; EPA, 2008). 
2 Based on Bhat et al. (1994). 



 

 

 
Table 3. Estimated annual inputs and crop production parameters for individual crops within different crop sequences1. 
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Sequence C-C C-S C-C-S C-S-C-O C-S-C-O-A 
Crop Corn Corn Soybean Corn Soybean Corn Soybean Oat Corn Soybean Oat Alfalfa 
Limestone, kg/m2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Anhydrous ammonia, g/m2 25.8 23.2 0 26.0 0 20.8 0 9.7 14.0 0 9.7 0 
Diammonium phosphate, g/m2 16.8 18.7 11.2 18.7 11.6 18.7 11.6 12.0 18.7 11.6 12.0 12.5 
Muriate of potash g/m2 10.1 11.2 15.7 11.2 16.3 11.2 16.2 22.4 11.2 16.2 22.4 29.9 
Herbicide2, mg a.i./m2 252.8 252.8 138.1 252.8 138.1 252.8 138.1 0 207.3 113.2 0 0 
             
Seed production3, kg/m2 1.13 1.26 0.38 1.26 0.39 1.26 0.39 0.43 1.26 0.39 0.43 0 
Stover/straw/hay, kg/m2 0.94 1.04 0 1.04 0 1.04 0 0.21 1.04 0 0.21 0.90 
Gross energy4, MJ/m2 31.25 34.73 7.76 34.73 7.97 34.73 7.97 10.79 34.73 7.97 10.79 14.90 
Net energy4, MJ/m2 12.27 13.68 4.10 13.68 4.21 13.68 4.21 3.57 13.68 4.21 3.57 3.20 
Starch4, g/m2 708.40 789.90 0 789.90 0 789.90 0 151.96 789.90 0 151.96 0 

1 C-C= continuous corn, C-S = corn-soybean; C-C-S = corn-corn-soybean; C-S-C-O = corn, soybean, corn, oat under seeded with 
alfalfa; C-S-C-O-A = corn, soybean, corn, oat under seeded with alfalfa, alfalfa hay 

2 Active ingredient 
3 Seed production reported at storage moisture content of 15.5, 13.0, and 14.0% for corn, soybeans, and oats respectively 
4 Corn at 84.5% dm = 15.84 MJ/kg GE, 10.85 MJ/kg NE, 62.69% starch 
Corn stalks 14.2 MJ/kg as harvested 
Full-fat soybeans at 87% dm = 20.42 MJ/kg GE, 10.80 MJ/kg NE, 0% starch 
Oats at 86% dm = 16.79 MJ/kg GE, 7.81 MJ/kg NE, 35.34% starch 
Oat straw 16.9 MJ/kg as harvested 
Alfalfa 17-18% protein as dry matter; 90.6% dm = 16.3 MJ/kg GE; 3.5 MJ/kg NE 
 
 



  

 

 
Table 4. Calculated non-solar energy use (kJ/m2) for individual crops within different crop sequences1. 
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Sequence C-C C-S C-C-S C-S-C-O C-S-C-O-A 
Crop Corn Corn Soybean Corn Soybean Corn Soybean Oat Corn Soybean Oat Alfalfa 
Seed 21.5 21.5 42.0 21.5 42.0 21.5 42.0 40.3 21.5 42.0 40.3 63.0 
Limestone 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 360.0 
Anhydrous ammonia 1,235.8 1,126.7 0 1,259.9 0 1,011.3 0 469.7 679.8 0 469.7 0 
Diammonium phosphate 332.2 360.1 220.5 360.1 228.3 369.1 228.3 236.2 369.1 228.3 236.2 246.1 
Muriate of potash 93.1 103.4 144.8 103.4 150.0 103.4 150.0 206.9 103.4 150.0 206.9 275.8 
Herbicide 81.9 81.9 62.7 81.9 62.7 81.9 62.7 0 67.1 51.4 0 0 
Field operations 161.8 161.8 92.8 161.8 92.8 161.8 92.8 124.9 161.8 92.8 124.9 266.5 
Transport of grain 21.5 23.9 6.5 23.9 6.7 23.9 6.7 13.8 23.9 6.7 13.8 0 
Drying of grain 293.7 326.3 0 326.3 0 326.3 0 0 326.3 0 0 0 
Aeration of stored grain 0.5 0.6 0.2 0.6 0.2 0.6 0.2 0.2 0.6 0.2 0.2 0 
Bale oat straw 0 0 0 0 0 0 0 42.3 0 0 42.3 0 
Transport of straw/hay 0 0 0 0 0 0 0 7.8 0 0 7.8 8.1 
Bale cornstalks 22.3 22.3 0 22.3 0 22.3 0 0 22.3 0 0 0 
Transport cornstalks 30.0 33.2 0 33.2 0 33.2 0 0 33.2 0 0 0 
Total, kJ/m2 2,444.3 2,411.7 719.5 2,544.9 732.7 2,305.3 732.7 1,292.1 1,959.0 721.4 1,292.1 1,219.5 
Average, kJ/m2 2,444.3 1,565.6 1940.8 1,658.8 1,430.2 

1 C-C= continuous corn, C-S = corn-soybean; C-C-S = corn-corn-soybean; C-S-C-O = corn, soybean, corn, oat under seeded with alfalfa; 
C-S-C-O-A = corn, soybean, corn, oat under seeded with alfalfa, alfalfa hay 

 
 



  

 

 
 

Table 5. Calculated 100-year global warming potential (g CO2 equivalents/m2) for individual crops within different crop 
sequences1. 

 

Sequence C-C C-S C-C-S C-S-C-O C-S-C-O-A 
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Crop Corn Corn Soybean Corn Soybean Corn Soybean Oat Corn Soybean Oat Alfalfa 
Seed 1.5 1.5 2.8 1.5 2.8 1.5 2.8 2.7 1.5 2.8 2.7 4.3 
Limestone 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 29.8 
Anhydrous ammonia 84.6 76.0 0 85.0 0 68.2 0 31.7 45.9 0 31.7 0 
Diammonium 
phosphate 

23.5 25.4 15.6 25.4 16.1 26.1 16.1 16.7 26.1 16.1 16.7 17.4 

Muriate of potash 6.5 7.3 10.2 7.3 10.5 7.3 10.5 14.5 7.3 10.5 14.5 19.4 
Herbicide 5.6 5.6 4.3 5.6 4.3 5.6 4.3 0 4.6 3.5 0 0 
Field operations 13.4 13.4 7.7 13.4 7.7 13.4 7.7 10.3 13.4 7.7 10.3 22.0 
Transport of grain 1.8 2.0 0.5 2.0 0.6 2.0 0.6 1.1 2.0 0.6 1.1 0 
Drying of grain 22.0 24.5 0 24.5 0 24.5 0 0 24.5 0 0 0 
Aeration of stored grain 0.1 0.1 0 0.1 0 0.1 0 0 0.1 0 0 0 
Bale oat straw 0 0 0 0 0 0 0 3.5 0 0 3.5 0 
Transport of 
straw/hay 

0 0 0 0 0 0 0 0.6 0 0 0.6 0.7 

Bale cornstalks 1.8 1.8 0 1.8 0 1.8 0 0 1.8 0 0 0 
Transport cornstalks 2.5 2.7 0 2.7 0 2.7 0 0 2.7 0 0 0 
Total, g/m2 175.7 172.7 53.5 181.7 54.4 165.6 54.4 93.5 142.3 53.6 93.5 93.6 
Average, g/m2 175.7 113.1 139.3 119.8 105.1 

1 C-C= continuous corn, C-S = corn-soybean; C-C-S = corn-corn-soybean; C-S-C-O = corn, soybean, corn, oat under seeded with 
alfalfa; C-S-C-O-A = corn, soybean, corn, oat under seeded with alfalfa, alfalfa hay 
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Table 6. Summary of production, non-solar energy inputs, and 100-year global 
warming potential for 5 crop sequences1. 
Sequence C-C C-S C-C-S C-S-C-O C-S-C-O-A 
Gross energy, MJ/m2 31.25 21.25 25.81 22.06 20.62 
Net energy, MJ/m2 12.27 8.89 10.52 8.79 7.76 
Starch, g/m2 708.40 394.95 526.60 432.94 346.35 
      
Non-solar energy, MJ/m2 2.44 1.57 1.94 1.66 1.43 
100-yr GWP2, g CO2 
equivalents/m2 

175.70 113.10 139.3 119.8 105.1 

      
Output Ratios      
Gross energy : non-solar energy 12.81 13.54 10.95 13.29 14.42 
Net energy : non-solar energy 5.03 5.66 5.42 5.29 5.43 
Starch : non-solar energy 290.33 251.56 271.44 260.81 242.20 
      
Gross energy : 100-yr GWP 0.18 0.19 0.19 0.18 0.20 
Net energy : 100-yr GWP 0.07 0.08 0.07 0.07 0.07 
Starch : 100-yr GWP 4.03 3.49 3.78 3.61 3.30 

1 CC= continuous corn, C-S = corn-soybean; C-C-S = corn-corn-soybean; C-S-C-O = corn, 
soybean, corn, oat under seeded with alfalfa; C-S-C-O-A = corn, soybean, corn, oat 
under seeded with alfalfa, alfalfa hay 

2 100-yr GWP = 100-year global warming potential 
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APPENDIX 3: PIG FEED INGREDIENT MANUFACTURING AND 
DELIVERY: PROCESS INVENTORY AND ASSUMPTIONS 

 
This section examines the energy required to prepare a complete and balanced pig 

diet at a commercial feed mill typical of Iowa including transportation distance and fuel 

efficiency assumptions. The energy required to process corn, oats, and soybeans into primary 

feed ingredients—ground corn, ground oats, roasted soybeans, soy oil, and soybean meal is 

reported. The energetics of corn-grain ethanol and soy oil-based biodiesel in the context of 

pig feedstuff creation is also reviewed. The energy and subsequent emissions of greenhouse 

gases required to process, manufacture, or synthesize ground limestone, moncalcium 

phosphate, phytase, L-lysine, and DL-Methionine are estimated based on reviewed literature. 

Non-solar energy use and 100-yr global warming potential (GWP) are reported per kg of feed 

ingredient or complete and balanced diet. 

TRANSPORTATION AND DIET MIXING 

 Many pig diet ingredients are produced near the site of diet formulation and pig 

production, some are not. The model assumes that transportation of distances  200 km 

occurs via freight train. The energy intensity of moving freight via U.S. railroads is reported 

as 0.2 kJ  kg•km-1 (Davis et al., 2008). For transportation of distances < 200 km a semi-

tractor truck with fuel efficiency of 2.2 km/L is assumed (Davis et al., 2008). A reported 33.3 

m3 trailer volume (Edwards and Clarahan, 2008) and 24,000 kg towing capacity are also 

assumed. It is estimated that the energy intensity of moving freight via the described semi-

tractor and trailer is 0.7 kJ  kg•km-1. Assumed transportation distances for each feed 

ingredient are detailed in table 1. It is assumed that 100% of transportation fuel is diesel fuel. 



 235 

 Energy associated with weighing ingredients, moving ingredients and mixed diets 

inside of the feed mill, and mixing of the final diet is assumed to originate as electricity. 

Based on discussions with commercial feed mill operators and equipment manufacturers it is 

estimated that all activities associated with mixing and moving material inside the feed mill 

requires 2.1 kJ/kg. 

PRIMARY FEED INGREDIENTS 

 Cereal grains such as corn and oats are almost always ground and mixed with other 

ingredients before being fed to pigs. Reducing particle size of cereal grains to  600 m 

results in improvements in nutrient digestion, absorption, and metabolism in pigs (Hancock 

and Behnke, 2001). Reducing feed particle size to  400 m improves some measures of 

productivity in growing pigs (Healy et al., 1994; Wondra et al., 1995a) and energy utilization 

in lactating sows (Wondra et al., 1995c). However diets with particle size  400 m have also 

been shown to increase the severity of stomach ulceration in finishing pigs (Wondra et al., 

1995a) and lactating sows (Wondra et al., 1995c). Flowability of finely ground diets can be 

problematic, requiring more attention to adjustment of feeders. For this analysis it is assumed 

that the target feed particle size is 600 m. 

 Although both hammermills and roller mills are common in the US feed industry, 

roller mills offer several advantages in pig diet manufacture. Greater apparent nutrient 

digestibility has been reported in finishing pigs fed corn ground using a roller mill compared 

to hammermilled corn (Wondra et al., 1995b). It is also generally accepted that operation of 

roller mills requires less energy/kg of feed processed compared to hammermills (Hancock 

and Behnke, 2001). Wondra et al. (1995b) report energy use of  38.9 kJ/kg for a roller mill 

compared to 51.2 kJ/kg for a hammermill when milling corn to a mean particle size of 400 
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m. Energy consumption by a commercial feed mill is expected to be considerably less per 

kg of material ground. Based on discussions with commercial feed mill operators and 

equipment manufacturers it is estimated that processing 1,000 kg of material to 600 m in a 

commercial roller mill typical of what is used in Iowa for processing pig feed will require 

15.6 MJ and 104 seconds.   

 Raw soybeans have been effectively fed to gestating sows (Crenshaw and Danielson, 

1985). Other researchers have reported that finishing pigs fed diets containing amino acid-

supplemented raw soybeans perform similarly to pigs fed corn-soybean meal control diets 

(Southern et al., 1990). Raw soybeans contain several anti-nutritional factors, particularly 

trypsin inhibitors which disrupt protease activity and reduce protein digestion and utilization 

(De Schutter and Morris, 1990; van Heugten, 2001). Simple heat treatment or roasting of raw 

soybeans destroys the trypsin inhibitors and other anti-nutritional factors in soybeans (De 

Schutter and Morris, 1990). Roasted, full-fat soybeans contain all the soy oil and amino acids 

present in raw soybeans without the anti-nutritional factors. Feeding roasted, full-fat 

soybeans—a high energy, amino acid rich feedstuff—to pigs results in equal or superior 

performance to pigs fed soybean meal as a protein supplement (De Schutter and Morris, 

1990). Based on conversations with commercial grain roasters it is estimated that processing 

1,000 kg raw soybeans into roasted, full-fat soybeans requires 536.9 MJ energy from 

liquefied petroleum gas  (LP gas) and 37.0 MJ energy from electricity. Following roasting, 

full-fat soybeans are ground before being mixed with other diet ingredients. As with corn and 

oats, our model assumes that processing roasted, full-fat soybeans to 600 µm in a commercial 

roller mill requires 15.6 kJ/kg of material. 
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  Roasted, full-fat soybeans are not a common feedstuff for pigs in Iowa because of the 

historic profit potential in separating soybean oil and meal. Soybean meal is often directed to 

animal feed, but most soybean oil is marketed to higher value end-users. Processing soybeans 

into soybean meal and soy oil is a multi-step process that requires significant amounts of 

energy input (Erickson, 1995; Li et al., 2006; Dalgaard et al., 2008; Huo et al., 2008). 

Efficiency of soybean processing plants is not 100% with literature values ranging from 

78.6–82.0% for the conversion of soybeans into soybean meal (Woerfel, 1995; Li et al., 

2006; Dalgaard et al., 2008). Similarly 15.8–17.8% of a given mass of soybeans will be 

manufactured into soy oil (Woerfel, 1995; Li et al., 2006; Dalgaard et al., 2008). For our 

analysis we assume that 100 kg of soybeans will be processed into 80 kg soybean meal and 

17 kg soy oil, with the remaining 3 kg being lost. 

 When a process has two or more usable products, the energy required for processing 

is allocated between the products. Because this analysis is focused on pig feed production, 

we will allocate processing energy based on net energy (NE) and mass of feedstuffs 

produced. For example, processing 100 kg of soybeans results in 80 kg soybean meal with a 

NE for growing pigs of 8.4 MJ/kg (Sauvant et al., 2004). In addition to soybean meal, 17 kg 

soybean oil with a NE for growing pigs of 29.8 MJ/kg (Sauvant et al., 2004) is also 

generated. Processing of 100 kg of soybeans into soybean meal and soy oil thus results in the 

production of 1,178.6 MJ NE for growing pig. We attribute 57% of soybean production and 

processing energy to soybean meal and 43% to soy oil based on the NE of the final product 

mass. Literature values of energy use for processing of soybeans into soybean meal and 

soybean oil range between 0.47 MJ/kg (Dalgaard et al., 2008) and 2.66 MJ/kg (Huo et al., 

2008). For this analysis we assume soybean processing requires 0.60 MJ/kg. This equates to 
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0.34 MJ/kg of soybean meal and 0.26 MJ/kg of soy oil. Following previous reviews (Li et al., 

2006; Dalgaard et al., 2008; Huo et al., 2008), we estimate that 91% of the energy associated 

with soybean processing is LP gas and 9% is electricity. 

BIOFUEL CO-PRODUCTS 

 The energy balance of biofuels is affected by the inputs required to produce raw 

materials and how those raw materials are refined into biofuels. Clearly defining system 

boundaries is essential for a meaningful discussion of biofuels. Our analysis of biofuel 

production is focused on implications for pig diets. We assume that the raw materials used 

for biofuel production are corn grain and soy oil for ethanol and biodiesel production 

respectively. The co-product of ethanol fermentation is dried distiller’s grains with solubles 

(DDGS). The co-product of biodiesel refining is crude glycerol. We assume that the corn and 

soybeans are grown in a corn-soybean sequence. The cultivation and processing energy of 

soybeans is divided between soy oil and soybean meal based on NE of the total mass of 

products. Only the energy attributed to soy oil is included in the biofuel analysis. The 

distribution of energy and 100-yr global warming potential for the production of  biofuels 

and their co-products is presented in tables 2 and 3. 

 Generating ethanol from corn grain and biodiesel from soy oil necessarily forgoes the 

opportunity of feeding those feedstuffs to pigs. Thus when examining biofuels in the context 

of pig feed production the cultivation energy of the feedstock, the processing energy of 

converting the feedstock into biofuel and co-product, the energetic value of the biofuel and 

co-product, and the NE of the feedstock not fed to pigs are considered. The NE of corn grain 

and soy oil are 11.1 MJ/kg and 29.8 MJ/kg respectively (Sauvant et al., 2004) and our 

analysis incorporates the NE opportunity cost of converting these materials into biofuels and 
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co-products as opposed to directly feeding corn or soy oil to pigs. We attribute 100% of the 

NE of the feedstock not fed to pigs to ethanol and biodiesel. Dried distillers grains with 

solubles and crude glycerol are co-product feedstuffs that would never be created except for 

the production of ethanol and biodiesel.  All other energy inputs are divided between the 

biofuel and co-product based on proportion of useful energy in the final products.  

The allocation of processing energy between biofuel and co-products influences the 

energy balance of biofuel production (Shapouri et al., 2002; Hill et al., 2006; Huo et al., 

2008). For every 1,000 kg of corn entering ethanol processing facilities, 417.3 L ethanol is 

generated and 303.6 kg DDGS is co-produced (ISU, 2008). The gross energy (GE) of corn-

grain ethanol is assumed to be 21.3 MJ/L (Hill et al., 2006) while the density is 0.80 kg/L 

(Blei and Odian, 2000). The NE of DDGS when fed to pigs is 7.0 MJ/kg (Sauvant et al., 

2004). Thus processing 1,000 kg corn grain into ethanol and DDGS results in 11.0 GJ useful 

energy (biofuel + coproduct). Of the total useful energy, 81% is attributed to ethanol with the 

remaining 19% attributed to DDGS. Therefore 81% of the energy used during the production 

process is allocated to ethanol and the remaining 19% is allocated to DDGS in our analysis.  

Another important co-product of ethanol production is CO2 released during 

fermentation. It has been reported that 23% of the total CO2 emissions from production of 

ethanol is from the actual fermentation of feedstock and that 100% of emissions from 

fermentation processes are captured (Möllersten et al., 2003). It has also been reported that 

54% of the total CO2 emissions released during consumption of processing energy related to 

corn grain ethanol production and fermentation of corn is captured (Möllersten et al., 2003). 

Some biorefineries capture and sell CO2 from ethanol plants to the beverage industry or 

manufacturers of dry ice (ISU, 2008; Vogel, 2008). This CO2 eventually makes its way to the 
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atmosphere and so is not sequestered, but rather delayed. Sequestration of CO2 by biofuel 

producers is a prospect (Möllersten et al., 2003; Lindfeldt and Westermark, 2008) but no dry-

mill ethanol plant in Iowa reports capturing CO2 for long-term sequestration (IADNR, 2008). 

Our analysis assumes zero net emissions of CO2 and other greenhouse gases from the actual 

fermentation of corn grain. Our analysis does include emissions of greenhouse gases 

associated with non-solar energy use in the processing of grain into ethanol and DDGS. 

Estimated energy use for conversion of corn into ethanol and DDGS through the dry-

milling process range from 12.7–13.6 MJ/L ethanol (Shapouri et al., 2002; Hill et al., 2006). 

Our analysis assumes 13.2 MJ/L of ethanol production. Energy used for production of 

ethanol and its co-product is divided between thermal energy and electricity (Shapouri et al., 

2002). It is estimated 74% of the energy used for processing corn into ethanol and DDGS is 

from LP gas and 26% is from electricity (Shapouri et al., 2002). 

Processing soybean oil into biodiesel requires energy, reagents, and solvents and 

results in co-production of crude glycerol (Hill et al., 2006; Huo et al., 2008). For every 1.0 

kg of soybean oil processed, 1.0 kg of biodiesel and 0.1 kg co-products (glycerol, salts, and 

other impurities) are generated (Huo et al., 2008). The mass of end-products is greater than 

the mass of soybean oil entering the refinement process because of the addition of solvents 

and reagents. Hill et al. (2006) included the production energy of solvents and reagents used 

in biodiesel production and estimated that every 1.0 kg of soybean oil processed requires 1.0 

MJ of steam energy and 0.1 MJ of electricity. This compares with the estimated 1.0 MJ of 

natural gas and 0.05 MJ of electricity presented by Huo et al. (2008). For this analysis we 

assume that each kg of soybean oil processed requires 1.0 MJ of natural gas and 0.1 MJ of 

electricity. For every 1.0 L of biodiesel produced, it is estimated that 79 g of crude glycerol is 
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generated (Thompson and He, 2006). The GE of biodiesel used in previous analyses range 

from 32.9 to 36.1 MJ/L (Hill et al., 2006; Huo et al., 2008). Our analysis assumes the GE of 

biodiesel is 34.5 MJ/L. A reported density of 0.89 kg/Lwas also assumed for biodiesel (Huo 

et al., 2008). 

 Crude glycerol is a substance that until recently received little attention as a feedstuff 

for pigs in the United States. Lammers et al. (2008) reported a digestible energy (DE) value 

of 14.0 MJ/kg. Net energy of crude glycerol fed to pigs has not been determined. The ratio of 

NE to DE is variable for feedstuffs with a typical range of 0.68–0.72 (Whittemore et al., 

2003). A ratio of NE to DE of 0.71 is commonly used for conversion of DE to NE 

(Whittemore et al., 2003). Multiplying the reported DE of crude glycerol (Lammers et al., 

2008) by 0.71 results in a predicted NE value that is similar to the theoretical NE value 

calculated using prediction equations for swine feedstuffs (Sauvant et al., 2004). The NE of 

crude glycerol fed to growing pigs is estimated as 9.9 MJ/kg in this analysis.  

For every 1,000 kg of soybean oil entering biodiesel processing facilities, 890 L of 

biodiesel and 70.3 kg of crude glycerol are produced. This results in the generation of 31.4 

GJ useful energy (biofuel + co-product). Producing this useful energy requires 1.0 GJ of LP 

gas and 0.1 GJ electricity. Based on useful energy generated, 98% of processing energy is 

allocated to the biodiesel with 2% allocated to crude glycerol.  

MICRO-INGRDIENTS 

 The mirco-ingredients—minerals, vitamins, sythetic amino acids, and enzymes—

typical account for 5% of the total mass of pig diets fed.  Our analysis focuses on salt, ground 

limestone, and monocalcium phosphate because those 3 ingredients account for most of the 

mass among the micro-ingredients. The enzyme phytase and synthetic amino acids L-Lysine 
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and DL-Methionine are also included because they have an impact on nitrogen and 

phosphorus utilization and cycling within pig production systems that is disproportionate to 

their relative mass. 

 Ground limestone is added to pig diets as a source of Ca. The energy to produce 1.0 

kg of ground limestone is reported as 2.5 MJ with 97% of the energy coming as LP gas and 

the remaining 3% as electricity (LaHore and Croke, 1978). It is calculated that production of 

ground limestone results in emission of 173.4 g CO2 equivalents (IPCC, 2006; EPA, 2008). 

Salt is added to pig diets as a source of Na and as a stimulant of feed intake. The energy to 

produce 1.0 kg of salt is reported as 1.6 MJ with 65% of the energy coming as electricity and 

the remaining as LP gas (LaHore and Croke, 1978). Producing 1.0 kg of salt is calculated to 

result in emission of 279.8 g CO2 equivalents (IPCC, 2006; EPA, 2008). The processing 

energy values reported by LaHore and Croke (1978) are for feed production in Australia and 

are more than 30 years old. It is assumed that techniques and efficiencies for limestone and 

salt production in Australia are similar to Iowa. It is reasonable that incremental 

improvements in processing efficiency have occurred over time. Because limestone and salt 

require relatively little processing energy and comprise  5% of the diet, the error introduced 

by using processing energy values from 1978 is assumed to be negligible. 

 Monocalcium phosphate, Ca(H2PO4)2, is a highly available inorganic source of 

phosphorus (P) that is commonly used in pig diets. Environmental impact potential 

associated with production of monocalcium phosphate (MCP) has been reported (Nielsen and 

Wenzel, 2006). It is estimated that producing 1.0 kg of MCP requires 13.8 MJ of energy and 

results in emission of 1,103.4 g of CO2 equivalents (Nielsen and Wenzel, 2006). 
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 Plants incorporate P into their structures that are generally inaccessible to the 

digestive tract of pigs. Feeding pigs the enzyme phytase enables utilization of plant source P. 

This in turn allows reduction of inorganic P sources required to meet the needs of pigs and 

reduces the excretion of P to the environment (Crenshaw, 2001; Wathes and Whittemore, 

2006; Whittemore, 2006). Environmental impacts associated with production of a 

commercial form of phytase—Ronozyme® P5000 CT—through fungal fermentation has 

been examined (Nielsen et al., 2006; Nielsen and Wenzel, 2006). Impact values presented by 

Nielsen and Wenzel (2006) take into consideration benefits derived from reduced use of 

MCP. Use of the cradle-to-gate values presented by Nielsen et al. (2006) is more appropriate 

for our analysis because it enables balanced comparison of more specific dietary formulation 

strategies. Our analysis assumes that production of 1.0 kg phytase requires 40 MJ and results 

in emission of 2,000 g CO2 equivalents (Nielsen et al., 2006).  

 Synthetic amino acids enable more precise matching of diet formulation with the 

nutritional requirements of the pig. This in turn optimizes amino acid utilization and 

minimizes excretion of nitrogen (N) by the pig. Lysine and methionine are generally the first 

and second limiting amino acids in pig diets. This is because of the relatively low amounts of 

these amino acids found in typical feed ingredients relative to the pig’s needs. 

 Commercial synthesis of L-lysine through bacterial fermentation is well established 

with an estimated 800,000 metric tons produced annually (Anastassiadis, 2007). The process 

of bacterial fermentation is widely understood and discussed (Hilliger et al., 1984; Gerhartz 

et al., 1985; Anastassiadis, 2007). However information necessary to determine the energy 

use and 100-yr global warming potential associated with L-lysine synthesis is generally 

regarded as proprietary information. Thus a simplified model of L-lysine synthesis is 
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presented and used to estimate energy use and 100-yr global warming potential of this feed 

ingredient. 

Synthesis of L-lysine occurs through aerobic biosynthesis by selected strains of 

bacteria (Gerhartz et al., 1985; Anastassiadis, 2007). There are four basic components of 

bioreactors used for biosynthesis of L-lysine—a carbon rich substrate, a source of nitrogen, 

selected strains of bacteria, and aeration (Hilliger et al., 1984; Anastassiadis, 2007). Molasses 

and ethanol are the most common substrates for bacterial fermentation of L-lysine although 

other carbon sources can be used (Hilliger et al., 1984). Our simplified model assumes that 

ethanol (C2H6O) is the primary source of carbon and that anhydrous ammonia (NH3) is the 

source of nitrogen (Anastassiadis, 2007). Identifying a specific microorganism for use in this 

simplified model is not necessary, rather the authors assume a strain capable of yielding 45 g 

L-lysine for every 100 g of ethanol is used. This yield falls within the range of reported 

productivity for developed strains of microorganisms (Anastassiadis, 2007). Microbial 

synthesis of L-lysine is an aerobic process (Hilliger et al., 1984; Anastassiadis, 2007).  A 

model for predicting energy use for aeration in L-lysine fermentation has been proposed by 

Hilliger et al. (1984). If a 25 m3 commercial fermentation vat is used, the power input 

necessary for maintaining aerobic conditions is estimated as 129.6 MJ/hr (Hilliger et al., 

1984). Continuous flow of the fermentation process has several advantages under 

commercial production conditions (Anastassiadis, 2007) and our model assumes a 

continuous flow process. Microbial fermentation is a biological process and thus necessarily 

requires time. Based on literature reports it is assumed that 48 hours pass between the time a 

particular molecule of ethanol enters the fermenter and its carbon atoms exit as L-lysine or 

co-products of fermentation (Hilliger et al., 1984; Gerhartz et al., 1985; Anastassiadis, 2007).  
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Post-fermentation drying of the L-lysine fermentation broth is necessary to produce the solid 

feed additive most commonly used in pig diets (Anastassiadis, 2007). Removal of water is 

estimated to require 6.5 MJ/kg of water with 97% of the energy consumed as LP gas and the 

remaining 3% as electricity (Bern, 1998; Wilcke, 2004). The 100-yr GWP of drying activity 

is calculated as 0.44 kg CO2 equivalents per kg of water removed (IPCC, 2006; EPA, 2008). 

The simplified model of L-lysine synthesis through bacterial fermentation is presented as 

equation 1. 

Equation 1:  Simplified model of L  lysine synthesis through bacterial fermentation

2,222 g C2H6O   232 g NH3
0.63 MJ aeration   1,000 g Lysine   6.5 g H2O

1,000 g Lysine   6.5 g H2O 0.04 MJ drying   1,000 g Lysine

 

 

 The fermentation broth is generally maintained at a temperature of 31–33°C during 

the entire process (Anastassiadis, 2007). This likely requires the input of some energy as 

heat. It is also expected that energy from steam generated during the drying process is 

recycled through the production cycle. Our simplified model assumes no inputs of energy for 

heating fermentation broth and no recovery of steam generated energy. We estimate that 

production of 1.0 kg of L-lysine requires 2,222 g (2.8 L) ethanol, 232 g anhydrous ammonia, 

0.64 J of processing energy. The energy and 100-yr global warming potential associated with 

production of anhydrous ammonia and ethanol were also included in the analysis. Production 

of 2.8 L of ethanol from corn grain produced in a corn-soybean crop sequence was estimated 

using previously described crop and biofuel production models. It is estimated that 

cultivating and processing adequate amounts of corn to produce 2.8 L ethanol requires 40.20 

MJ and results in emissions of 736.8 g CO2 equivalents. This estimate does not include the 
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portion of cultivation and processing energy that is allocated to the ethanol co-product, 

DDGS or the NE of 6.6 kg corn not fed to pigs if processed into 2.8 L ethanol. Producing 232 

g anhydrous ammonia is calculated to require 11.3 MJ (Bhat et al., 1994) and result in 

emission of 762.4 g CO2 equivalents (Bhat et al., 1994; IPCC, 2006; EPA, 2008). 

 DL-methionine production through fermentation is possible, however no commercial 

process utilizing fermentation has been developed due to problems associated with isolation 

of appropriate strains of microbes (Gomes and Kumar, 2005; Kumar and Gomes, 2005). A 

chemical process for production of DL-methionine has been recognized for more than 60 

years (Goldsmith and Tishler, 1946) and is the exclusive method for production of DL-

methionine on a commercial scale (Binder, 2003). The chemical synthesis of 1.0 kg DL-

methionine is reported to require 88.0 MJ of energy, the vast majority being delivered as 

petrochemical raw materials (Binder, 2003). Based on the assumption that 100% of the 

petrochemical is delivered as LP gas, it is calculated that each 1.0 kg of DL-methionine 

results in emmisison of 5,557.2 g CO2 equivalents (IPCC, 2006). 

RESULTS 

Table 4 presents energy use and resulting 100-yr global warming potential associated 

with preparation and delivery of feed ingredients. Very little processing is required to prepare 

corn and oats for inclusion in pig diets. Also because feed mills are typically located near the 

site of grain and pig production, transportation energy for these feedstuffs is less than other 

feed ingredients.  The energy required to produce 1.0 kg of monocalcium phosphate, phytase, 

L-Lysine, and DL-Methionine are several orders of magnitude larger than energy required to 

produce primary feed ingredients like corn and soybean meal. Very small quantities of these 
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feed ingredients are used in typical pig diets and their inclusion usually results in nutrient 

cycling impacts that exceed their relative contribution to the mass of the mixed diet.  

CONCLUSIONS 

 The current inventory of manufacturing and processing energy of pig feed ingredients 

is an initial step in improved analysis of the implications of pig diet choice in Iowa. This 

inventory is by no means complete, but it can be linked with the previously described crop 

production model (Lammers, 2009) to estimate the non-solar energy and 100-yr GWP 

associated with pig feed production in Iowa. Refinement of this inventory and inclusion of 

additional feed ingredients is desirable and should continue. 
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Table 1. Estimated travel distance1 and mode of transportation for pig feed ingredients and 
finished diet in Iowa. 
 Mode of Transportation  
 
Activity 

Semi-tractor, 
Km 

Railroad, 
km 

Energy, 
kJ/kg 

Grain delivery to feed mill 12 0 8.4 
Roasted soybean delivery to feed mill  12 0 8.4 
Soybean delivery to soybean processor 130 0 91.0 
Soybean meal delivery to feed mill 100 0 70.0 
Soy oil delivery to feed mill 100 0 70.0 
Soybean oil delivery to biodiesel bio-refinery 0 0 0 
Crude glycerol delivery to feed mill 100 0 70.0 
Grain delivery to ethanol bio-refinery 48 0 33.6 
DDGS delivery to feed mill 36 0 25.2 
Ethanol delivery to amino acid processor 0 500 100.0 
Synthetic amino acid delivery to feed mill 48 500 133.6 
Ground limestone delivery to feed mill 75 0 52.5 
Salt delivery to feed mill 75 0 52.5 
Monocalcium phosphate delivery to feed mill 48 600 153.6 
Phytase delivery to feed mill 48 700 173.6 
Delivery of mixed diet to pig production site 12 0 8.4 

1 Values are for round trip distance. 
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Table 2. Inventory of non-solar energy and 100-yr global warming potential associated with 
ethanol fermentation and dried distiller’s grains co-generation. 
 Entire Process Ethanol DDGS 
Corn input, kg/kg DDGS 3.3   
Biofuel output, L  1.4  
Co-product output, kg   1.0 
Useful energy output, MJ 36.8 29.8 7.0 
Allocation of impacts, %  81 19 
    
NE of corn not fed1, MJ 36.6 36.6 0 
Production and delivery of corn2, MJ 6.3 5.1 1.2 
Fermentation and drying3, MJ 18.5 15.0 3.5 
Total non-solar energy input energy, MJ 61.4 56.7 4.7 
    
Emissions from cultivation2, g CO2 equivalents 440.6 356.9 83.7 
Emissions from delivery3, g CO2 equivalents 14.2 11.5 2.7 
Total emissions, g CO2 equivalents 454.8 368.4 86.4 

1 Attributed entirely to ethanol because DDGS is a co-product feed that would not be 
produced except for production of ethanol. 

2 Non-solar energy and associated emissions used to grow, harvest, store, transport, and 
grind 3.3 kg corn planted in Corn-Soybean sequence with no harvesting of corn 
stalks. 

3 Non-solar energy and associated emissions used to process 3.3 kg of ground corn into 
1.0 kg DDGS and 1.4 L fuel ethanol. 
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Table 3. Inventory of non-solar energy and 100-yr global warming potential associated with 
biodiesel refining and crude glycerol co-generation. 
 Entire Process Ethanol DDGS 
Soybean oil kg/kg crude glycerol 14.2   
Biofuel output, L  12.7  
Co-product output, kg   1.0 
Useful energy output, MJ 448.1 438.2 9.9 
Allocation of impacts, %  98 2 
    
NE of soy oil not fed1, MJ 426.2 426.2 0 
Production and delivery of soy oil2, MJ 96.2 94.3 1.9 
Refining3, MJ 15.6 15.3 0.3 
Total non-solar energy input energy, MJ 538.0 535.8 2.2 
    
Emissions from cultivation2, g CO2 equivalents 7,186.0 7,042.3 143.7 
Emissions from delivery3, g CO2 equivalents 1,228.5 1,203.9 24.6 
Total emissions, g CO2 equivalents 8,414.5 8,246.2 168.3 

1 Attributed entirely to biodiesel because crude glycerol is a co-product feed that would 
not be produced except for production of biodiesel. 

2 57% of non-solar energy and associated emissions used to grow, harvest, store, 
transport, and process 83.6 kg soybeans planted in Corn-Soybean sequence into 14.2 
kg soy oil and 66.9 kg soybean meal. Reported value excludes non-solar energy and 
associated emissions allotted to soybean mean (43% of total). 

3 Non-solar energy and associated emissions used to process 14.2 kg of soy oil into 1.0 
kg crude glycerol and 1.4 L biodiesel. 
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Table 4. Energy use and resulting 100-yr global warming potential associated with producing 
and delivering swine feed ingredients to feed mill and mixing formulated swine diets in Iowa. 
 
Ingredient 

Production Energy1 
kJ/kg 

100-yr GWP1 
g CO2 equivalents/kg 

Ground corn 24.0 4.3 
Ground oats 24.0 4.3 
Full-fat roasted soybeans 597.9 46.7 
Soybean meal 501.0 39.9 
Soy oil 421.0 33.6 
DDGS2 4,700.0 86.4 
Crude glycerol3 2,200.0 168.3 
Ground limestone4 2,545.0 173.4 
Salt4 1,635.0 279.8 
Monocalcium phosphate5 13,800.0 1,104.4 
Phytase6 40,000.0 2,000.0 
L-Lysine 52,170.0 1,642.2 
DL-Methionine7 88,000.0 5,557.2 
Mixing and delivery of diet 10.5 1.2 

1 Does not include energy use or 100-yr global warming potential (GWP) associated 
with cultivation and storage of grains and oilseeds. 

2 Values include energy and 100-yr GWP required to produce 3.3 kg corn grain in C-S 
sequence. Values exclude NE of 3.3 kg corn grain not fed to pigs, the gross energy of 
1.4 L ethanol that is co-produced, and the potential displacement of other 
transportation fuels by ethanol. Values assume 0% capture of CO2 produced by 
fermentation. 

3 Values include energy and 100-yr GWP required to production 14.2 kg soy oil from C-
S sequence. Values exclude NE of 14.2 kg soy oil not fed to pigs, the gross energy of 
12.7 L of biodiesel that is co-produced, and the potential displacement of other 
transportation fuels by biodiesel. 

4 (LaHore and Croke, 1978). 
5 (Nielsen and Wenzel, 2006). 
6 (Nielsen et al., 2006). 
7 (Binder, 2003). 
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