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ABSTRACT 
 

 

Following World War II, Midwestern farmers transitioned away from integrated crop 

and livestock production systems that included perennial forage crops toward two-crop 

rotations of corn and soybeans. This transition has contributed to severe environmental 

degradation in the region, including soil erosion and ground and surface water pollution from 

nutrients and pesticides. At the same time, the decrease in diversity on the farm has 

corresponded with a decrease in the number of Midwestern farms, and an increase in average 

farm size. As part of an interdisciplinary course of study in sustainable agriculture and plant 

breeding, this thesis addresses first the socio-political, economic, and ecological 

consequences and causes of decreased forage production in Iowa, and then focuses in on a 

breeding study related to the biofuel potential of reed canarygrass. In the first paper I review 

the agronomic, ecological, and economic benefits of forage incorporation into corn and 

soybeans rotations and then attempt to explain the socio-political reasons why forages are not 

grown on more Iowa farms. The second paper details an evaluation of reed canarygrass 

germplasm for biofuel traits. We evaluated the entire reed canarygrass germplasm collection 

available in the US at two locations, over two years, for biomass and quality traits. We found 

significant variability for yield, height, and quality traits among germplasm of both US origin 

and from regions around the world. Higher yields from Central and Northern-European 

accessions as compared to Middle-Eastern and Eastern-European accessions suggest they 

would be the best candidates for inclusion in a direct breeding program. All accessions 

contained relatively high levels of ash, indicating that reed canarygrass may work best as part 

of a mixture of bioenergy feedstocks
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CHAPTER 1: GENERAL INTRODUCTION 

 

 

Prior to World War II, Midwestern farmers routinely included forages in their 

cropping and livestock systems. These pastures and hay crops supplied fodder that fueled 

animal traction, and were a source of cash income alongside profits from grain production. 

Following the Second World War cheap chemical fertilizers and pesticides became widely 

available, and farmers transitioned away from agricultural systems that merged crop and 

livestock production toward two-crop rotations of corn and soybeans (Dimitri et al., 2005 and 

Cardwell, 1982). This shift in agricultural production has corresponded with a decrease in the 

number of farms in the Midwest, as well as a decrease in farm incomes (USDA, 2006). The 

substitution of corn and soybean rotations for systems that include perennial forage crops, 

along with the decoupling of crop and livestock production, has contributed to severe 

environmental degradation in the region, including topsoil loss and water pollution by 

nutrient and pesticide run-off (Hatfield et al., 1999).  

Concerns about the environmental degradation caused by corn and soybean rotations, 

along with rapidly growing interest in and demand for biofuels made from cellulose, is 

starting to renew interest in forages. As part of an interdisciplinary course of study in 

sustainable agriculture and plant breeding, this thesis explores two aspects of forage 

production in the Midwest. The first is in the form of a review paper in which I examine the 

agronomic, ecological, and economic benefits to Iowa farmers including forages as part of 

their corn and soybean rotations, and then seek to discern the socio-political barriers to 

greater forage incorporation on Iowa farms. The second half of the thesis focuses on breeding 
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efforts for a particular forage crop that may have potential as a source of biomass for 

cellulosic ethanol, reed canarygrass, in a paper reporting the results of an evaluation of reed 

canarygrass germplasm for biofuel feedstock potential.  

 

Thesis Organization           

 The thesis is organized into four chapters. Chapter one provides a general 

introduction and explanation of the thesis organization. Chapter two is a paper accepted by 

the journal ―Renewable Agriculture and Food Systems‖ entitled, ―Benefits and barriers to 

forages in Iowa corn and soybean rotations.‖ Chapter three is a paper to be submitted to the 

journal ―Crop Science‖ entitled, ―Reed canarygrass germplasm evaluation for biofuel traits.‖ 

Chapter four provides general conclusions on the thesis material. 
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CHAPTER 2: BENEFITS AND BARRIERS TO PERENNIAL FORAGE CROPS 

IN IOWA CORN AND SOYBEAN ROTATIONS 

 

A paper accepted by Renewable Agriculture and Food Systems 

 

Julia Olmstead
1
 and E. Charles Brummer

2
 

 

Abstract:  

The transition away from forage-based cropping systems in Iowa to corn and 

soybean rotations since World War II has corresponded with degraded economic and 

environmental conditions in the state. Falling net incomes for farmers and concern over 

global warming and the effects of agriculture-related pollution on water, wildlife and 

human health has increased interest in diversified cropping systems. This paper reviews 

the benefits of diversifying Iowa corn and soybean rotations with perennial forage species 

such as alfalfa and red clover. Perennial forage crops improve soil quality, decrease NO3-

N leaching and soil erosion, increase carbon sequestration, and decrease pesticide and 

herbicide needs by controlling weed and insect pests. Forage legumes reduce N fertilizer 

needs for succeeding corn crops at a higher rate than soybeans, and corn crops following 

forages have higher yields than after corn or soybeans. Farmers who add alfalfa to corn 

and soybean rotations could realize significant economic gains. A simulated five-year 

rotation in Iowa including corn-soybeans-oats/alfalfa-alfalfa-alfalfa would result in a 24% 

net income increase over five years of corn-soybean-corn-soybean-corn, even with 

government farm support payments for the row crops. Farm policies that encourage 

                                                           
1
 Graduate student, Graduate Program in Sustainable Agriculture and Agronomy Department, Iowa State 

University. Primary and corresponding author. 
2
 Professor, Crop and Soil Sciences Department, University of Georgia, Co-author 
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commodity production create little incentive for Iowa farmers to diversify their cropping 

systems beyond corn and soybeans, despite the clear economic and ecological benefits. 

We recommend increasing federal support for conservation programs that reward 

environmentally beneficial farm practices such as the Conservation Securities Program 

and we encourage land grant universities to hire researchers interested in alternative 

agricultural systems.          

 

Introduction 

Prior to World War II, forage species, used for pasture, silage, and hay, were 

routinely included in Iowa crop rotations. By providing feed for livestock and work 

animals, cash income to farmers from hay sales, and crucial ecological benefits to the 

farming system, these multifunctional crops mitigated risk on the farm. The post-war 

influx of cheap, abundant chemical fertilizers and synthetic pesticides, along with a shift 

from animal to machine-based labor, caused a decrease in forage-based cropping 

sequences
1, 2

, in part because farmers did not need to rely solely on forage legumes to 

supply nitrogen nor did they need feed for draft animals.  

Since 1950, Iowa agriculture has increasingly focused on intensive corn (Zea mays 

L.) and soybean (Glycine max (L.) Merr.) production, an effort that produced impressive 

results – corn and soybean yields nearly quadrupled and more than doubled, respectively, 

between 1950 and 2004
3
. Ironically, these yield increases did not represent improved 

welfare for Iowa farms or farmers. During the same period of time, the number of farms in 

Iowa decreased by more than 50% and crop prices plummeted
4
. After adjusting for 
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inflation, average net income per Iowa farm in 2001 was 9% lower than it was in 1960, 

despite a more than twofold increase in the number of acres per farm
4
. 

Meanwhile, the environmental implications of intensive corn and soybean 

production are cause for concern. Runoff and artificial drainage from corn and soybean 

fields are well-documented causes of nonpoint source contamination of surface and 

groundwater bodies with sediment, nutrients (especially NO3-N and P), and pesticides
9-13

. 

NO3-N loading to the Mississippi River from agricultural operations in the Mississippi 

River Basin has been linked to a hypoxic zone in the Gulf of Mexico that is growing in 

size and severity
14

. Further, pesticide and herbicide use in corn and soybean production 

may have negative effects on human and wildlife health
15-17

. 

We hypothesize that diversifying Iowa corn and soybean rotations by including 

forage crops would offer farmers a way to mitigate negative environmental impacts 

caused by corn and soybean production while providing a lucrative source of income not 

dependent on government subsidization. In this paper, we review the literature on the 

agronomic and ecological effects of forage incorporation into Iowa and Midwestern 

cropping systems. We also look at the economic effect of incorporating forages into corn 

and soybean rotations in Iowa and assess socio-political barriers that discourage farmers 

from including forage species as part of their agricultural systems. Finally, we make 

recommendations for policy changes that would encourage the adoption of forages by 

corn and soybean farmers, a goal that has the potential to greatly improve not only the 

ecological health of Iowa waterways and soil but also the economic health of the state‘s 

farmers. Although this analysis primarily focuses on Iowa, the discussion and conclusions 

can likely be generalized to other agroecosystems. 
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Forage Production 

 Forage is defined as the edible part of a plant, other than the separated grain, that is 

generally above ground and that can provide feed for grazing animals or can be harvested 

for feeding
18

. In Iowa, several grass and legume species are cultivated as forages, 

including smooth bromegrass (Bromus inermis Leyss.), orchardgrass (Dactylis glomerata 

L.), switchgrass (Panicum virgatum L.), red (Trifolium pratense L.) and white clover  

(Trifolium repens L.), birdsfoot trefoil (Lotus corniculatus L.), and most commonly, 

alfalfa (Medicago sativa L.)
19

. Forages can be harvested by animals in pasture-based 

systems or mechanically harvested throughout the growing season as silage/haylage, hay, 

or pellets for use as year-round livestock feed.     

Precise estimates of the amount of perennial forage crops grown in Iowa are not 

available.  Iowa has between one and two million hectares of pastureland, encompassing 

cropland, permanent, and woodland pastures
19

. An additional 650,000 hectares of hay 

were harvested in Iowa in 2004, 525,000 ha (81%) of which was alfalfa
20

. This represents 

7% of Iowa‘s crop harvest, which also includes corn, soybeans, oats (Avena sativa L.) and 

wheat (Triticum aestivum L.).  

Relative to corn and soybeans, perennial forage crops have high caloric and 

protein yields, and high output/input energy ratios. Based on energy data from production 

in Ohio, alfalfa yields nearly twice as many calories and protein per hectare as soybeans 

and more than 40% more protein than corn per hectare. The energy output/input (energy 

inputs include labor, machinery, fuel, fertilizers, pesticides, electricity and transportation) 

ratios for alfalfa, soybeans, and corn are 6.17:1, 4.15:1, and 2.5:1, respectively
21

. The 
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relative energy efficiency of alfalfa over a corn and soybean rotation is mainly the result 

of the high energy cost of nitrogen fertilizer applied primarily to corn. 

 

Agronomics 

Rotational Yield Benefits 

Little debate exists over the yield benefits arising from diversifying crop rotations, 

particularly those combining legume and grass crops in succession. A rotation of corn and 

soybeans yielded 10% more than continuous corn and 8% more than continuous soybeans 

in Minnesota, evidence for a ―rotation effect‖
22

.  Adding perennial forage legumes, 

particularly alfalfa, to the system, creates more substantial benefits to corn yield, a trend 

that has been observed for over 50 years and in many regions of North America
23-33 

(Table 

1). In Minnesota, a single year of alfalfa increased succeeding corn yields by 19%
24

 to 

84%
22

 compared to corn following corn and by 33% compared to corn following 

soybean
22

. Even when nitrogen is applied to the corn crop, corn following alfalfa typically 

yields more than corn following soybeans
34

. These studies demonstrate that rotations 

including at least one year of alfalfa would produce higher corn and soybean yields than 

the typical corn-soybean rotation. Because the preceding alfalfa crop supplies nitrogen to 

the corn for free, the higher yield is produced at lower input cost as well. Yield benefits 

conferred by alfalfa occur in sub-humid regions like the Midwest or in areas under 

irrigation. When water availability is restricted, alfalfa, which uses large quantities of 

water, can decrease subsequent corn yields
35

. 
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Weeds Effects 

In recent years, Iowa farmers have sprayed more than 95% of corn and soybean 

fields annually with herbicides
36

. Evidence of human and animal toxicity of the most 

frequently applied herbicides – atrazine for corn and glyphosate for soybeans – has raised 

concerns about their widespread use
15-17

.  In particular, the widespread adoption of 

Roundup Ready® soybeans and corn has resulted in a large increase in the application of 

Roundup® (glyphosate), which is now present in many water samples in the Midwest
37

.  

Further, herbicide tolerant crops do not solve the weed control problem; resistance has 

developed in many weed species to herbicides like Roundup®, diminishing the value of 

the technology
38

.  In other words, the technological fix of herbicide resistant crops is 

transient, requiring continual reinvigoration by more advanced technology. 

In contrast, alfalfa and other forages planted in rotation with corn and soybeans 

offer non-chemical means of controlling weeds. When grown in monoculture, alfalfa 

stands decrease or eliminate populations of several weed species, including milkthistle 

[Silybum marianum (L.) Gaertn.], field bindweed (Convulvulus arvensis L.), white 

campion [Silene latifolia subsp. Alba (Mill.) Greuter & Burdet; syn. S. alba (Mill.) E.H.L. 

Krause], and common lambsquarter [Chenopodium album L.]
39-42

. By their second-year, 

alfalfa stands can often be weed-free without any herbicide use
43, 44

. Without decreasing 

yields of succeeding crops, alfalfa has been shown to reduce weed densities to a 

comparable degree as herbicides
45-47

. A recent demonstration of one alternative system 

has shown that diversifying crop rotations to include triticale and either red clover or 

alfalfa is nearly as effective as herbicide use in controlling velvetleaf (Abutlion 
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theophrasti Medik.) and foxtail (Setaria febari Hermm.), two of the most prevalent weed 

species found in corn and soybean crops in the Midwestern U.S.
48

.   

 

Soil Nutrients 

All plants require nitrogen for growth. Corn, like most grass species, cannot fix its 

own nitrogen and must mainly rely either on synthetic fertilizer or animal manure nitrogen 

inputs or on nitrogen that has been fixed by a legume species planted before it. Soybeans 

are legumes, and hence fix nitrogen, but in quantities insufficient to fully meet the N 

demands of themselves or of successive corn crops. In contrast, alfalfa can fix up to nine 

times more N than soybeans, birdsfoot trefoil up to 4 times as much, and red clover up to 

5 times more
49

.  Sweetclover (Melilotus spp.), once widely planted throughout the 

Midwest and Great Plains, can produce even more N than these species
50

.  The value of 

alfalfa for increasing soil nutrient levels has been documented since at least the time of the 

Roman agronomist Columella, who wrote sometime around 100 C.E. that alfalfa ―dungs 

the land‖
51

. The decomposing alfalfa crop results in more mineralizable N than either 

soybean or corn crops
52

, further demonstrating the value of the crop in providing nitrogen 

for crop production. 

Alfalfa‘s superior nitrogen fixation rate enables it to reduce the economically 

optimum N fertilizer rate needed for corn production by a greater magnitude than 

soybeans. Iowa State University recommends a reduction in the application rates of N 

fertilizer to corn following alfalfa by 80-85% compared to 0-25% for corn following 

soybeans
53

. Alfalfa in rotation with corn contributes an 18-50 kg per hectare larger 

nitrogen credit than soybeans, depending on the condition of the stand when rotated out of 
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alfalfa
54

. In addition to cost savings for nitrogen fertilizer, this credit also results in a 

considerable reduction in the amount of nitrogen leaving the agroecosystem
33, 55, 56

.  

 

Soil Quality 

 Forage legumes and grasses improve soil quality as determined by multiple 

indicators, including improved soil organic matter (SOM) and physical properties
26, 57-65 

(Table 2). Five years of continuous alfalfa increased the mean weight diameter of water-

stable aggregates (an indicator of soil quality) from 1.5 to 2.3 mm and C content increased 

from 26 g/kg to 30 g/kg
66

. In comparison, five years of corn and fallow resulted in neither 

an increase nor decrease in soil quality
66

. Alfalfa, bromegrass and red clover increased soil 

structural quality, as indicated by a decrease in dispersable clay and an increase in wet 

aggregate stability, compared to continuous corn grown under either conventional and no-

till conditions, which showed either no improvement or some decline in soil structural 

quality
57

. 

 

Ecological Benefits 

 Recent decades have seen growing concern over the widespread damage 

caused by row cropping, including soil erosion, nutrient contamination of waterways, and 

contribution to excess greenhouse gas emissions
33, 67, 68

. Cropping systems that reduce or 

mitigate these problems are essential if agricultural systems are to be environmentally 

sustainable in the long-term. Crop rotations that include forages can help reduce negative 

impacts of agriculture on the environment, as compared to rotations that only include corn 

and soybeans, through decreased NO3-N leaching and water drain flows
33, 55, 56, 69 

and by 
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increased C sequestration
59, 66, 70-76 

(Table 2). Additionally, forage crops can also play an 

important role in providing critical wildlife habitat for many species of migratory birds 

and small mammals
51, 77

 (Table 2).  

 

Economics 

 Few formal economic comparisons exist that calculate production costs and profits 

on Midwestern farms with corn and soybean rotations as compared to those with 

alternative rotations including forage crops such as alfalfa
65, 78-81

. Case study economic 

analyses, however, often show alternative rotation schemes to be economically 

competitive with, or frequently advantageous over, rotations of only corn and soybeans
65, 

78, 79, 81, 82
. Additionally, a number of analyses show that forage-based livestock production 

systems are economically advantageous over grain-based livestock systems or row-crop 

systems
83, 84

. 

 To illustrate the economic differences between a corn–soybean rotation and two 

alternative rotations in Iowa, we compared estimated production costs and incomes on an 

average-sized Iowa farm. This analysis does not pretend to be exhaustive or to take into 

consideration the complexity of factors influencing production costs and income on Iowa 

farms.  Variables such as yield differences between farms, the effects of precipitation and 

pest stress, management differences, or the complexity and variation of incomes from 

government payments will affect any given farmer‘s bottom line. This analysis seeks 

solely to compare production costs and farm incomes based on average farm size, 

management practices, input costs, prices, and government payments. 
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 According to 2005 statistics from the Iowa Department of Agriculture
20

, average 

farm size in Iowa is 143 hectares, so we set our generalized farm size equal to that figure. 

This analysis could be scaled up or down for other farm sizes and the income differences 

between the systems would change proportionally.  According to 2002 statistics on land 

tenure rates, Iowa farmers on average rent 59% of the land they farm, so on our 

generalized farm we assumed 81 hectares were rented and 62 hectares were owned
85

. The 

cropping systems analyzed were as follows: 

Conventional: corn—soybean 

Alternative 1: corn—soybean—oat/alfalfa 

Alternative 2: corn—soybean—oat/alfalfa—alfalfa—alfalfa   

 The conventional system, an annual corn and soybean rotation, represents the most 

common cropping system found in Iowa. For our purposes, we assumed that ½ of the farm 

was planted to each crop each year. Alternative 1 includes an oats/alfalfa mix.  Thus, in 

any given year, 1/3 of the farm is in corn, 1/3 in soybean, and 1/3 in oat/alfalfa; crops 

would be rotated year-to-year in that order on each of the thirds. Oat would be harvested 

for grain and the straw baled; a single alfalfa harvest would be taken one month after oat 

harvest.  Alfalfa regrowth would be plowed down, adding value as an N fertilizer to the 

succeeding corn crop, but not considered in our economic analysis. For the Alternative 2 

rotation, the farm is divided into five fields, with one in corn, one in soybean, one in oat 

and establishing alfalfa, and two in established alfalfa in any given year. During the two 

post-establishment years of alfalfa production, four harvests are made each season. 

Crop production costs were obtained from Iowa State University Extension 

estimates, which include fixed and variable expenses such as machinery and fuel, seeds, 
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chemical inputs (including pesticides and fertilizers), labor, and land
86

. Actual crop prices 

were obtained from the Iowa Department of Agriculture
20

 (except for the average price of 

oat straw, which was obtained from the Hay and Forage Grower website
87

) (Table 3). 

Government payments, including direct and counter-cyclical payments, were estimated as 

described below using formulas and figures provided by the Farm Services Agency of the 

USDA
88

. Direct Payments (DP) were estimated with the formula, DP = DP rate x base 

acreage x 85% x DP yield, where the DP rate was set in the U.S. Farm Bill, the base 

acreage is based on the historical acreage in crop production (assumed to be the entire 

program crop area on our generalized farm), and the DP yields are equivalent to those 

listed in Table 3. Counter-cyclical payments (CCP) were estimated using the formula, 

CCP = target price - market price x base acreage x 85% x CCP yield, where the target 

price was set in the U.S. Farm Bill, market prices are given in Table 3, and CCP yields are 

equivalent to those listed in Table 3. 

Yields used in the analysis for corn, soybean, alfalfa, oat and oat straw were the 

average yields used to determine production costs in the Iowa State University Extension 

publication
86

 (Table 3). These yields were used for all of the systems, despite the fact that 

yields may differ depending on the rotation employed as we described in earlier sections 

of this paper. Similarly, the various ecological benefits of a system including forage crops 

are not accounted in this analysis. 

To make our estimates, we obtained average crop production costs and returns in 

each year for each system (Table 4) and calculated average net income across five years 

(the length of the longest rotation) from each production system. Government payments 

were also averaged across years. Net returns are equal to gross income (including 
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deficiency payments when government programs apply) minus all production costs. 

Average net returns for the entire 5-year rotation were calculated with and without 

government program payments for each system (Table 5).  

 Profitability of the cropping systems was based on production costs, prices 

obtained by farmers for crops, and in some cases government program payments. Our 

calculations clearly show that the Alternative 2 rotation, with three years of alfalfa, is the 

most profitable, whether government payments are included or not. Alternative 1, with 

only one year of alfalfa, ranks second in profitability, both with and without government 

payments. The conventional system, which does not include forage, is the least profitable 

system, and results in a net loss without government payments.  

 Despite the increased costs associated with alfalfa production (which include 

factors such as additional machinery and labor), the price obtained for the crop makes the 

system with 3 years of alfalfa very profitable, 43% more than the conventional system 

even when including government program payments. According to our analysis, adding 

only one year of alfalfa to a corn-soybean rotation (Alternative 1) decreases profitability 

of the system compared to Alternative 2, due to the relatively high cost of alfalfa seed, 

costs associated with planting, and low yield of alfalfa in the establishment year.   

 The most profitable cropping system in our analysis contained three years of 

alfalfa. Prices of alfalfa vary with production levels in local markets and are not eligible 

for government deficiency payments. An increase in alfalfa production due to inclusion of 

the crop on more Iowa farms could therefore lead to depressed alfalfa prices. Future 

studies will need to consider the lowest prices for alfalfa at which the producer would 

have a net income equivalent to conventional systems, both with and without government 
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program payments. A price sensitivity analysis could also indicate the economic 

feasibility of increased production levels and the need to consider new markets (other than 

hay) for alfalfa and other forages as production increases. One possibility could be the 

expansion of pasture-based livestock systems, demanded by a growing consumer sector
89

 

and offering many ecological services as compared to decoupled row crop and livestock 

systems
90

. The bottom line from our analysis showed that even without accounting the 

many positive externalities generated by alfalfa (or forages in general), profitability of the 

cropping enterprise increased with the inclusion of a forage component during the years 

2001-2005.  

The rapid expansion of the ethanol industry has caused a recent spike in corn 

prices that this economic analysis does not account for. Corn prices rose to four dollars 

per bushel at the end of 2006 and in early 2007
3
. Farmers have responded by increasing 

planned corn acreage in Iowa for 2007
91

. Although alfalfa (and most other crop) prices 

have risen along with corn, the high corn prices of 2006 made corn, on average, more 

profitable than alfalfa. To examine the change to farm income from the corn price 

increases, we compared net income from corn versus alfalfa, with and without 

government payments, on our sample farm, using 2006 average prices and government 

pay rates, 2006 production costs, and the same size and rented vs. owned land proportion 

assumptions as in our original analysis
85, 86, 88

. With government payments included in net 

income estimates, one year of corn in 2006 was 25% more profitable than alfalfa. When 

government payments were excluded, however, alfalfa was 38% more profitable than corn 

in 2006 (Table 6). 

 



16 

 

Barriers to Forage Incorporation 

Our review of the literature and a simple cost-benefit analysis using average input 

costs and output crop value demonstrate numerous agronomic, ecological, and economic 

benefits that are being attained on Iowa farms that include forages in rotation with corn 

and soybeans. Why don‘t more farmers grow forage crops?  We surmise that the 

combination of government policies, market dynamics, time constraints from off-farm 

employment, and culture has influenced the hesitancy of many farmers to diversify 

cropping systems.  

 Perhaps most importantly, U.S. agricultural policies subsidize a narrow set of 

commodities in Iowa including corn, soybeans and, to a limited extent, oats. USDA 

subsidies for Iowa farms totaled $12.5 billion between 1995-2004, with corn and soybean 

production receiving 83% of those dollars, while only 15% went toward conservation 

programs (mainly the Conservation Reserve Program)
92

. These policies are really a means 

of risk management, guaranteeing farmers a return on commodity crops regardless of the 

many uncontrollable variables that may impinge on production. Without similar risk 

avoidance for other crops, farmers would naturally be loath to grow them. Further, the 

programs essentially reward maximization of commodity production, offering little 

incentive for diversification of crop rotations or incorporation of perennial crops into 

agricultural landscapes.  

 Without policy incentives to encourage cropping system diversity (or at a 

minimum, policies that do not encourage corn and soybean production), many Iowa 

farmers are unlikely to take steps to incorporate forages into their cropping systems. A 

survey of row crop farmers in central Iowa found that 40% of respondents would be ―not 
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willing at all‖ to convert to a cropping system incorporating more forages. However, 

another 40% said they would be ―somewhat willing,‖ and 20% of respondents said they 

would be ―very willing‖ to add forages. Of those who were not willing at all, reasons cited 

included preference for their corn/soybean rotation, the need for increased labor, and the 

need for new equipment. Survey respondents also cited a lack of market incentives as the 

most serious obstacle to adoption of more ecologically sound farming practices
93

.  

 Until recently, the relatively low cost of synthetic nitrogen fertilizers and fuel has 

meant that farmers often did not view energy costs alone as a significant incentive to make 

changes in agricultural systems. Recent increases in non-renewable energy costs, 

however, may mean farmers will consider alternative crop production systems that require 

fewer energy inputs, such as forage-based rotations
94

.   

Conversely, rising energy costs may increase demands for biofuels such as corn-

based ethanol and soy biodiesel.  Although comprehensive economic analyses for this 

scenario have not yet been done, projections from the USDA and World Resources 

Institute show a substantial increase in corn production over the next decade to meet 

biofuel demands
94, 95

. Recent corn price increases fueled by ethanol demand means corn 

has lately become as or more profitable as alfalfa (Table 6). Corn acreage will expand in 

the near future, a scenario that will come with very high environmental costs. On the 

bright side, with the advent of ethanol from cellulose, many forage crops could be dual 

use—livestock feed or biofuel feedstock—and thus, could contribute in a sustainable way 

to a bioenergy future. 

 



18 

 

Recommendations for Change 

 Forages offer potential ecological, economic and agronomic benefits to 

midwestern agricultural landscapes and producers, and many farmers already incorporate 

forages into their systems. We see three possible avenues toward increasing the role of 

forage crops in the Midwest and throughout the country: revamped farm policies that 

stress conservation rather than production, a reinvigorated agricultural research paradigm 

that recognizes that the public interest is not always served by industry, and a more vocal 

forage research sector.  

Without government policies that encourage alternative agricultural systems, 

farmers are unlikely to make changes to their crop rotations. Future farm policy should 

encourage diversification of agricultural landscapes and should reward environmental 

services provided by farmers. U.S. farm policies should support forage production for hay 

and pastures, which would increase the numbers of ruminant livestock on the land. 

Increased pasture-based livestock production could lead to higher net incomes for farmers 

while simultaneously decreasing N fertilizer use and soil erosion, thereby improving water 

quality and increasing carbon sequestration
83, 96

. 

 We recommend increased funding and support for two programs within U.S. farm 

policy intended to promote agricultural biodiversity and conservation: the Sustainable 

Agriculture Research and Extension Program (SARE) and the Conservation Security 

Program (CSP). SARE is a competitive grant program for research and outreach that 

funds farmer, citizen and researcher driven projects, and has been shown to be effective at 

increasing sustainable production practices
97

. The promotion of researcher-farmer 

collaboration with a goal of increased diversity and sustainability on agricultural 
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landscapes that is supported by SARE is crucial both to encourage positive changes on 

farms and to influence research priorities within land grant universities.  

 The CSP offers payments to farmers and landowners for carrying out conservation 

practices on working agricultural land. Unlike the Conservation Reserve Program (CRP), 

where the government essentially rents marginal land to establish grasses or wetlands, the 

CSP seeks to reward farmers whose agricultural practices provide ecological services such 

as soil erosion reduction and increased biodiversity. While the CRP has resulted in 

decreased erosion and increased biodiversity on some marginal lands, its costs have 

included a reduction in the number of working farms as well as reduced rural community 

vitality
98

. We recommend increased funding and expansion of incentive programs like the 

CSP that, rather than encourage increased commodity production, promote farming 

practices that provide both livable incomes for farmers and ecological benefits. 

 Secondly, because forage-related research currently attracts little funding from the 

agribusiness industry and is unlikely to receive substantial industry support in the future, 

agricultural research at the state land-grant institutions and through the USDA 

Agricultural Research Service needs to include a critical mass of forage scientists. Data 

for public sector forage breeding show that the numbers of breeders has declined by 26% 

across all forages and by 46% for alfalfa just in the period from 1994 to 2001
99

.  

Therefore, encouraging universities and the USDA-ARS to hire scientists willing to 

investigate the full range of alternative production systems would enable forage crops to 

gain a higher profile.  Land grant universities need to develop alternatives that help 

farmers remain on the land while being economically stable and environmentally 

sensitive, rather than simply following the lead of industrialized agriculture. Funding for 
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agricultural research from state legislatures is declining and research support is 

increasingly based on extramural funds through governmental agencies like USDA or 

NSF.  These programs need to be crafted to enable the long-term nature of perennial 

forage crop research to compete successfully.  

 Finally, forage scientists need to do a better job of relaying the importance of their 

research to funding agencies, the government, and to the public.  Although we often 

complain about the limitations constraining our field, we do not often take the initiative to 

write letters to the editor or to our congressional delegations supporting our field and the 

importance of forages to aesthetically pleasing, environmentally beneficial, and 

economically sustainable farming systems. 
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Table 1.  Corn yield following corn, soybeans or alfalfa across ten environments. 

       

Preceding crop 

Alfalfa-

corn as       

Corn Soybeans Alfalfa 

% of 

corn-corn Location Year Reference 

 -------------kg/ha -------------     

267 - 748 280% IA 1948 31 

1599 - 4792 300% GA 1970 32 

1670 - 5170 310% ON 1976 25 

3700 5100 6800 184% MN 1986 27 

852 - 1642 193% PA 1988 29
1
 

8709 9126 9031 104% MN 1994 33
2
 

7860 8130 9270 118% MN 1997 23 

5084 7015 7966 157% ON 2003 30 

3830 6140 7300 191% SD 2005 24 

7407 7407 9416 127% MN 2005 26 
1
The corn yield values come from Table 1, with the comparison being corn following corn 

with no nitrogen application versus corn following alfalfa in 1984. 
2
Comparisons from Table 2 and crop yields in 1994, which is the only year with corn 

grown directly after both alfalfa and corn. 

 

 

Table 2. Soil quality and ecological benefits contributed by forages  

   

Ecological Indicator Data Reference 

Soil organic matter 

(SOM) 

148% greater SOM with C-S-O/A-A-A than C-

S-C-S-C 26 

Soil organic C (SOC) 24% greater SOC in C-C-O-A than C-S 73 

Subsurface drainage 54% less subsurface drainage in A-C-C than C-S 33 

Nitrogen loss 14% less NO3-N loss in A-A-A-C-O-S than C-S 55 

Nitrogen loss 37% less NO3-N loss in A-C-C than C-S 56 

Nitrogen loss 23-77% lower N loss in A-C-C than C-S 33 

Wildlife habitat 

18 times more wildlife in A than in a field by 

chance  77 

C, Corn; S, Soybeans; O, Oats; A, Alfalfa 
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Table 4. Simulated production costs, gross returns and net returns for three cropping 

systems on an “average” 143 ha Iowa farm for the years 2001 through 2005. 

    Cropping System 

Year   Conventional
1
 Alt 1

2
 Alt 2

3
 

2001 

Cost $91,568 $84,314 $93,670 

Gross Return $79,822 $85,479 $128,383 

Net Return -$11,745 $1,165 $34,712 

2002 

Cost $90,896 $83,214 $90,922 

Gross Return $96,899 $98,416 $131,062 

Net Return $6,003 $15,202 $40,140 

2003 

Cost $94,786 $86,823 $95,659 

Gross Return $117,628 $109,624 $135,245 

Net Return $22,842 $22,802 $39,586 

2004 

Cost $100,013 $91,887 $100,099 

Gross Return $90,412 $91,421 $127,288 

Net Return -$9,601 -$465 $27,189 

2005 

Cost $105,799 $97,435 $109,177 

Gross Return $91,471 $93,516 $124,309 

Net Return -$14,328 -$3,919 $15,132 
1
C-S, 

2
C-S-O/A , 

3
C-S-O/A-A-A   

C,corn; S,soybeans; O,oats; A,alfalfa    
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Table 5. Whole farm gross and net returns with and without government program 

payments for three cropping systems on an “average” 143 ha Iowa farm from the years 

2001 through 2005. 

 

 
With Government Payments 

Without Government 

Payments 

Cropping 

System
1
 

5-year Gross 

Returns 

(Rank)
2
 

5-Year Net 

Returns 

(Rank) 

5-year Gross 

Returns 

(Rank) 

5-Year Net 

Returns 

(Rank) 

Conventional 
$543,474 

(3) 

$60,413 

(3) 

$476,232 

(3) 

-$6,829 

(3) 

Alternative 1 
$525,524 

(2) 

$81,852 

(2) 

$478,456 

(2) 

$34,784 

(2) 

Alternative 2 
$674,527 

(1) 

$185,000 

(1) 

$646,287 

(1) 

$156,760 

(1) 

1
Conventional = C-S, Alternative 1 = C-S-O/A, Alternative 2 = C-S-O/A-A-A; C, corn; S, 

soybean; O, oat; A, alfalfa 
2
The rank of 1 is highest value 

 

 

Table 6. Whole farm gross and net returns with and without government program 

payments for corn vs. alfalfa on an ―average‖ 143 ha Iowa farm in 2006.  

  
With Government 

Payments 

Without Government 

Payments 

Crop 
2006 Gross 

Return 

2006 Net 

Return 

2006 Gross 

Return 

2006 Net 

Return 

Corn $204,525 $70,600 $172,352 $38,428 

Alfalfa $180,030 $53,209 $180,030 $53,209 
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Reed canarygrass germplasm evaluation for biofuel traits 

Julia Olmstead
1
, E. Charles Brummer

2
, and Michael D. Casler

3
 

Abstract 

Reed canarygrass (RCG), a cool-season perennial forage crop that grows well in cool, 

wet climates, could be used as an energy crop. Despite its bioenergy potential, little breeding 

effort has gone into its development as an energy crop. We evaluated the entire reed 

canarygrass germplasm collection available in the United States for biomass, cell wall 

compositional traits based on fiber analysis, crude protein, and ash at two midwestern 

locations in 1999 and 2000. Variation among accessions was observed for all variables. 

Biomass yield was not correlated with acid detergent fiber (cellulose + lignin) or with acid 

detergent lignin, indicating good potential for developing favorable feedstocks for cofiring or 

for fermentation. A cluster analysis of accession based on phenotypic traits, as well as plots 

of principle component scores, showed that phenotypes varied somewhat among accessions 

from within a particular country or region as well as among regions. Accessions showed 

general clustering by region. Germplasm from central-, northern-, and southern-Europe 

tended to yield more than germplasm from the Middle East and eastern-Europe, suggesting 

that the former may be better suited for use in direct breeding programs. Overall, sufficient 

variation exists among wild and cultivated germplasm to warrant further RCG breeding work 

for biofuel development.      

 

                                                           
1
 Primary author of manuscript, organized and analyzed data  

2
 Co-author, collected data 

3
 Co-author, collected data 
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Introduction 

Perennial crops offer numerous positive benefits to agricultural systems, including 

decreased topsoil erosion and nutrient runoff (Crews, 2004; Jaynes, 2001; Olmstead and 

Brummer, 2007; Randall, 1997; Tolbert, 1998). For centuries, perennial herbaceous crops 

supplied energy to the farm in the form of fodder that fueled animal traction. These crops are 

once again being considered as potential energy sources. Interest in the conversion of plant 

biomass to fuel will likely lead to substantial increases in the acreage grown of perennial 

herbaceous crops in the near future.  

Reed canarygrass (Phalaris arundinacea L.) (RCG), grown most commonly as 

forage, has more recently been shown to have potential as an energy crop. In Europe, after an 

evaluation of 20 perennial grasses for energy crop potential, RCG was one of four plants 

selected for further research and development, based on its promising biomass characteristics 

(Lewandowski et al., 2003). RCG is a cool-season, perennial, rhizomatous grass that forms 

tall-growing, dense stands and grows well in cool, wet climates while at the same time has 

excellent drought tolerance (Carlson et al., 1996). Its wide-ranging adaptability makes it 

relatively more productive in the summer than other cool-season species (Carlson et al., 

1996). RCG produces high biomass yields, in some cases even exceeding switchgrass 

(Anderson et al., 1991; Wright, 1988). Reed canarygrass is considered complementary to 

warm-season biomass crops, as it fills a niche by growing well in cool climates or times of 

the year when grasses such as switchgrass or miscanthus may not perform well 

(Lewandowski et al., 2003). 

Reed canarygrass is a member of the family Poaceae, genus Phalaris and tribe 

Phalarideae. It is native to temperate areas of the Northern Hemisphere, including regions of 
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Europe, Asia, and North America (Anderson, 1961). It typically grows in low-lying, wet 

areas such as along wetlands, creek banks, roadside ditches, lake shores, and rivers (Carlson 

et al., 1996). RCG has presented invasibility problems in wetlands in some regions of North 

America. Exotic germplasm introduced from Europe may be the cause of most invasive RCG 

strains, possibly due to hybridization with native North American strains (Lavergne and 

Molofsky, 2007). RCG is occasionally used as a forage crop in North America and to a lesser 

extent in Eastern Europe, Scandinavia and Japan. Finland and Sweden have recently begun 

growing RCG for bioenergy production and paper pulp production. In 2003, 2,700 hectares 

of RCG were under cultivation in Finland and 430 hectares were under cultivation in Sweden 

(Sahramaa, 2003).  

Both tetraploid and hexaploid varieties of RCG exist, but most RCG in North 

America and in Europe are self-sterile allotetraploids, with large amounts of morphological 

variation (Lewandowski et al., 2003). Hexaploid RCG is adapted to warmer environments 

and is not winter dormant (McWilliam and Neal-Smith, 1962).  

RCG forms deep and dense root systems that make it valuable for soil erosion 

control, particularly in wet areas (Carlson et al., 1996). It has been shown to grow well in 

areas with low fertility and poor soil quality, enabling its successful establishment on 

degraded areas such as surfaced-mined soils (Evanylo et al., 2005). It is efficient at capturing 

nitrogen, and could be used as a buffer crop or sponge crop to reduce nutrient leaching and 

run-off from sources such as manure and fertilizer applications, municipal waste-water 

effluent, or sewage sludge (Giggey et al., 1989; Marten et al., 1979; Partala et al., 2001). 

RCG can also serve as valuable wildlife habitat, particularly for nesting birds and small 

mammals (Camp and Best, 1994; Semere and Slater, 2007).  



38 

Despite its potential as a biofuel crop, RCG germplasm has not been evaluated to 

assess biofuel traits. In the U.S., all breeding to date has focused on forage traits – 

palatability, seed retention, disease resistance, persistence, and leafiness (Carlson et al., 

1996). Maximum biomass per se has not been evaluated in available germplasm, and high 

yielding germplasm with poor nutritive value may have been overlooked in previous 

evaluations. Likewise, the concentrations of chemical constituents such as chlorine and 

sulfur, which are undesirable in biofuel feedstocks, have not been important considerations in 

past breeding efforts.  

Breeding and evaluation of RCG germplasm for bioenergy and research on improved 

harvest schemes that maximize the bioenergy potential of the crop have been undertaken to a 

limited extent in Sweden, Finland, and England. In Finland, local, unimproved RCG 

germplasm was found to have relatively high ligno-cellulose levels and high biomass yields, 

and could be valuable, when used in a breeding program along with existing cultivars, for 

bioenergy cultivar development (Sahramaa, 2003). Swedish studies showed that early spring 

harvest of an over-wintered, senesced crop resulted in lower levels of undesirable mineral 

elements within the biomass, improved dry matter content, a greater proportion of nutrients 

from the plant recycled back into the soil, and easier and cheaper biomass storage, although 

yields were lower than autumn harvested RCG (Landstrom et al., 1996). In England similar 

results were found – delayed harvest reduced undesirable elements but also reduced biomass 

yields (Christian et al., 2006).  

High biomass yield is the most important variable for biofuel crops. Biofuel 

conversion systems determine the desirability of high or low levels of fibers, minerals or 

other chemical compounds. For direct combustion and gasification systems, low minerals 
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concentrations are desirable in the biomass source, and lignin is beneficial because of its high 

energy density. For ethanol fermentation, hemicellulose and cellulose yield is the priority; 

lignin is undesirable because of its adverse affects on bacteria. The objective of this research 

was to determine the overall biofuel potential of a diverse collection of reed canarygrass 

germplasm from which new breeding germplasm could be developed.     

 

MATERIALS AND METHODS 
 

Plant materials 

Reed canarygrass germplasm was obtained from the USDA National Plant 

Introduction Station in Pullman, WA. One hundred four accessions were available for 

distribution when the experiment began; of those, 94 had sufficient germination to be 

included at both locations of the experiment (Arlington, WI and Ames, IA), seven were 

included only at Ames, and the remaining three were excluded due to poor germination.  Of 

the 94 accessions, 27 were designated as cultivars in the GRIN (Germplasm Resources 

Information Network) system and 67 accessions represented wild or naturalized genetic 

material or had unknown provenance. Six additional cultivars (Bellevue, Palaton, PSC 1142, 

Rival, Vantage, and Venture) were included in the experiment at both locations. An 

additional five accessions obtained from Finland, seven germplasms developed at ISU, a 

germplasm collected in Iowa (Fraser, Boone Co.), and the cultivar ‗Flare‘ were included only 

at Ames due to limited seed. Accessions were of diverse geographic origin, including North 

America, Europe, the Middle East, and northwestern Asia. 
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Experimental design and data collection 

Seeds were germinated in the greenhouse and transplanted to the field in mid-July, 

1998. Each plot consisted of two rows spaced 30 cm apart, with 20 plants spaced 30 cm apart 

in each row. Approximately 1.2 m was left between plots. The experiment was a randomized 

complete block design with two replications at each location. 

Nitrogen was applied at 112 kg N ha
-1

 in early April in 1999, and split applied 

between early April and after the first harvest in 2000.  Plant height was measured 

immediately prior to harvest as the standing height of each plot. Plots were harvested twice in 

1999 and in 2000, in late May or early June and in October using a flail-type or sickle-type 

harvester. A subsample from each plot was taken before harvest and dried at 60ºC for four 

days in order to adjust plot yield to a dry matter basis.  Forage yields of each plant were 

summed over both harvests prior to statistical analysis.  Samples were also used to conduct 

biofuel and forage analyses as described previously (Lemus et al., 2002).  For all analyses, 

sample values were estimated using near infrared spectroscopy (NIRS) calibrated with wet 

chemistry.  Neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent 

lignin fiber (ADL) concentrations were determined using the ANCOM 200 Fiber Analyzer 

(ANKOM Technology Corp., Fairport, NY 14450). Crude protein (CP) was determined 

using the micro-Kjeldahl procedure and ash was determined by combustion of a 1 g sample 

in a muffle furnace at 550ºC for 4 h. In-vitro dry matter digestibility (IVDMD) was also 

assessed as described by Sleugh et al. (2000). Coefficients of determination (R
2
), standard 

errors of calibration, and cross-validation were 0.98, 0.65, and 1.13 for NDF; 0.98, 0.50, 0.75 

for ADF; 0.97, 0.16, 0.28 for ADL; 0.99, 0.66, 1.40 for IVDMD; 0.99, 0.31, 0.58 for CP; and 

0.92, 0.13, 0.23 for ash, respectively. 
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Statistical analyses 

Analyses of variance were conducted on all variables using generalized least squares 

(Searle, 1971). All effects were considered random. ANOVAs were computed for each 

variable both at each location and across locations. The Ames only accessions were dropped 

from this analysis to make a balanced dataset.  

Accession means were computed for each variable and averaged over harvests and 

years, which resulted in 40 variables (20 from each location). The 40 variables were 

standardized by year and harvest and phenotypic correlation coefficients between locations 

for each variable were generated to help interpret accession x location interactions. 

Accession means were also computed for each variable and averaged over harvests, years, 

and locations, resulting in 20 variables, which were used to generate phenotypic correlation 

coefficients between variables. 

The 20 standardized variables were organized into principal components. The 

principal component scores were used for a cluster analysis using Ward‘s method (Milligan, 

1980). The principal components were weighted by the proportion of variance that each 

explained. This weighting insured that each of the 20 variables contributed equally to the 

cluster formation. The cluster dendrogram was truncated at 16 clusters, which explained 90% 

of the variation. 

To examine differences in performance among germplasm from different regions of 

the world, entries were divided into ten regional groups based on latitude and longitude 

(Table 1). We used Duncan‘s multiple range test to compare regional mean values for all 

variables.  
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Unless otherwise indicated, statistical significance is assessed at the 5% probability 

level throughout the results and discussion. 

 

RESULTS AND DISCUSSION 
 

Genotypic Variation and Entry x Environment Interactions 

 

 One accession (PI329243) completely died at both locations, so only 99 accessions 

remained for analysis.  Variation between the two locations was present only for yield and 

variation among years was not significant for any of the measured variables (Table 2).  No 

location x year interaction was present. Therefore, we combined data across locations and 

years for the analyses among regions and for the cluster analyses. Two accessions (PI206463 

and PI338666) were removed from the cluster analysis due to incomplete data at all locations 

and years. Variation among harvests within years was present only for crude protein, but all 

variables except NDF showed a location x harvest interaction.  

Variation among entries was observed for all variables (Table 2). Entry x location and 

entry x harvest interactions were significant for all variables except height and crude protein 

for the former. The location x entry interaction variance was equal in magnitude to the entry 

variance for yield, but lower than the entry variance for all other traits, and usually 

considerably smaller.  Thus, perhaps the most important trait for bioenergy purposes shows 

considerable instability across locations.  Entry x year interaction was only present for 

height. The location x harvest variance components were generally higher than entry x 

harvest or experimental error variance components, except for NDF and ADF (Table 2).  
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Phenotypic correlations 

 Data standardized by year and harvest, from all variables except ash, were positively 

and moderately-to-highly correlated between Ames, Iowa and Arlington, Wisconsin (Table 

3). The correlation between the two locations for yield was low (0.36), which is logical 

considering the complexity of genotype by environment interactions that affect yield. The 

highest correlation was for winter kill (0.94). Nearly all the accessions had very good 

survival rates, and those that were susceptible were killed most likely by the cold winter 

temperatures that occurred in both locations. The overall strong correlations between the two 

locations for nearly all variables supported our decision to combine data for analysis. 

 Yield, averaged across years, harvests, and locations, was positively correlated with 

height and maturity, as seen in other crops (e.g., switchgrass [Lemus et al., 2002]), and had a 

low, positive correlation with spring vigor and IVDMD (Table 3). Yield had a negative 

correlation with crude protein and NDF, but was not correlated with ADF (cellulose + lignin) 

or ADL (lignin), two measures of biomass quality. Height, however, had a positive, medium 

correlation with NDF and ADF, was highly correlated with spring vigor and maturity, and 

negatively correlated with IVDMD, crude protein, and winter kill.  A desirable biofeedstock 

for cofiring would have high biomass yield and high concentrations of cellulose and lignin.  

Thus, the lack of a negative correlation between yield and these traits is promising for 

breeding efforts to improve both traits concurrently.  However, feedstocks used for 

fermentation would ideally have a low level of lignin, which interferes with efficient ethanol 

production, so the lack of correlation also may permit at least some improvement in lowering 

lignin and improving yield in these germplasms.   
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Cluster Analysis of Accession Means 

 The cluster analysis indicated that 90% of the variation among accession means could 

be accorded to 16 clusters (Fig. 1). The number of accessions contained in each cluster varied 

from a maximum of 13 accessions to two clusters containing only one accession, indicating 

phenotypic uniqueness of those accessions.  

 Other than clusters 13 and 16, which contained only one accession each, most of the 

clusters were geographically diverse (Table 5). Ten clusters contained accessions from at 

least four source countries, and all but one of the clusters with multiple accessions contained 

accessions from more than one country. Accessions from Russia, the former Soviet Union, 

and the USA were distributed throughout the dendrogram, although a large proportion of 

Russian accessions had R
2
 values greater than 0.8 with each other in Clusters 9-12 (Fig. 1, 

Table 5). Accessions from some other countries were confined to certain parts of the 

dendrogram. For example, the three Polish accessions were clustered together in Cluster 5, 

and the two Austrian accessions occurred in Cluster 12. There were some patterns of 

clustering related to geographic origin that were visible, for example in Clusters 9-11, which 

primarily contained accessions from areas in Scandinavia, northern Europe, Canada and far 

northwestern Russia. Clusters 6-8 contained accessions of primarily Middle Eastern origin, 

while accessions in Cluster 5 were from north-central Europe, Canada, and the USA.  

 Only Cluster 2 had a mean forage yield significantly higher than the overall mean, 

and it was also significantly taller than the overall mean. Cluster 1 had significantly higher 

NDF and ADF content than the mean, was significantly taller than the overall means, and 

contained lower ash content than the mean. Thus, these clusters in particular may have the 

best biofuel feedstock potential. 
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Clusters 6 and 8 also contained higher NDF content than the overall mean, and cluster 

13 contained significantly higher NDF and ADF content than the overall means.  

 

Principal Component Analysis 

 The first three principal components (PC) explained 74% of the variance among 

accessions, with the first principal component accounting for 40% of the variance, the second 

for 22%, and the third for 12%. Two PC plots—PC1 vs. PC2 (Fig. 2) and PC2 vs. PC3 (Fig. 

3)—showed overall a range of trait values among and between regions, but also some 

discernable groupings by region, more easily seen in Fig. 3. Accessions from Regions 3-6, 

from countries in or near the Middle East (Table 1), tended to aggregate in the upper right-

hand corner of the plot (Fig. 3). Those accessions from Central and Southern Europe, as well 

as most accessions from the U.S. and Canada (Regions 1, 2, 8, and 9), fell primarily into the 

lower left-hand corner of the plot. The separation of these two groups of accessions based on 

phenotypic differences relates to the cluster dendrogram, which tended to group accessions 

from Middle Eastern or eastern-European countries separately from central, northern, and 

southern-European accessions (Fig. 1). Interestingly, accessions from Region 7, which come 

from unidentified locations in the Former Soviet Union, fall fairly close together near the 

intersection of the two groups.  

 

Regional Sources of Variation 

 Overall, there was little variation among regions for the means of the measured 

variables (Table 4). Mean yield, averaged across years and locations, was highest for Region 

1, which included eight accessions from France, Morocco, Portugal, and Switzerland. 
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Significant differences in mean yield only existed between Region 1 and Regions 5 (Former 

Soviet Union, Kazakhstan, Russia) and 10 (Australia and Argentina). Significant differences 

in mean height existed only between accessions from Region 7 (unspecified locations within 

the Former Soviet Union) and Region 10, which included one cultivar each from Australia 

and Argentina. Region 7 (from unspecified locations within the Former Soviet Union) 

differed from several other regions for the NDF, ADF, and ADL traits, but it is difficult to 

draw conclusions from this difference as the germplasm in Region Seven could have wide 

variations in geographic origins. Crude protein and IVDMD showed no variation among 

regions. Thus, little differentiation among accessions is noted on the basis of geographical 

origin alone, as suggested by the dendrogram (Fig. 1). 

These data suggest several avenues forward for breeding reed canarygrass for 

bioenergy uses.  First, the cultivated types in the USA and Canada perform well, but not 

better than germplasm from Europe.  We don‘t see any evidence that North American 

germplasm has superior performance compared to accessions from Europe, which does not 

support the hybrid vigor hypothesis of Lavergne and Molofsky (2007) that North American x 

European germplasm naturally hybridized in North America resulting in aggressive modern 

reed canarygrass germplasm.  However, we did not grow these plants in natural wetland 

areas where the advantage of North American genotypes may be more evident.  In any case, 

we can tap into European accessions for possible genotypes containing high yield and 

desirable cell wall composition. 

 Second, the relatively poor performance of Middle-Eastern and Central Asian 

germplasm suggests it cannot be useful directly in breeding programs.  Possible heterosis 

between this germplasm and North American germplasm may be worth investigating. 
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 Finally, and on a less enthusiastic note, ash contents vary among germplasms to an 

extent, but all are quite high, at 10% or more of dry matter, considerably more than desirable 

for cofiring applications (and probably for fermentation as well).  Thus, while breeding may 

lower the ash content somewhat, substantial decreases seem unlikely, necessitating mixing 

reed canarygrass with other feedstocks. 

  

CONCLUSIONS 

Reed canarygrass is a promising source of biomass for cellulosic ethanol and other 

alternative energy sources. To create valuable biomass, breeders will need to increase yields 

while maintaining high hemicellulose and cellulose content (for fermentation) or high 

lignocellulose for gasification or cofiring. Until now, reed canarygrass breeding has focused 

exclusively on forage traits. The results in this study show that breeding in reed canarygrass 

for biomass traits would likely be a worthy effort and that germplasm other than the low 

alkaloid germplasm developed for forage production is likely to be useful in this effort. This 

study‘s data also show that useful germplasm could be obtained from regions around the 

globe, as the multiple comparisons among regions showed few differences in trait values 

based on origin. Overall, European and North American germplasm performed better than 

Central Asian and Middle-Eastern germplasm, suggesting that direct breeding efforts should 

likely begin with germplasm from those regions. The potential for heterosis between 

germplasm from regions that show significant phenotypic differences, however, would mean 

that all of the germplasm could have a place in a breeding program. The relatively high ash 

content of reed canarygrass suggests that it would be best utilized as part of a mixture of 



48 

cellulosic feedstocks, a situation that, as it would lead to increased diversity in agricultural 

systems, has its own advantages.   
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Figure Legends 
 

Fig. 1. Cluster dendrogram for 97 reed canarygrass accessions based on principal component 

values derived from eleven phenotypic traits averaged across two harvests per year at 

Ames, IA and Arlington, WI in 1999 and 2000, showing the 16 clusters that account 

for 90% of the phenotypic variation among accessions. 

 

Fig. 2. Scatterplot of the relationship among accessions grouped by region of origin based on 

the first and second principal components derived from 11 phenotypic traits averaged 

across two harvests per year at Ames, IA and Arlington, WI in 1999 and 2000. 

 

Fig. 3. Scatterplot of the relationship among accessions grouped by region of origin based on 

the first and second principal components derived from 11 phenotypic traits averaged 

across two harvests per year at Ames, IA and Arlington, WI in 1999 and 2000. 
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Table 1.  Latitude and longitude ranges and country names for ten regional divisions of 

100 reed canarygrass accessions tested at two locations in 1999 and 2000.   

Region 

Number of 

Accessions Latitude Longitude Counties Included 

  Degrees  

1 9 35-50 
-
10-10 Swtizerland, Portugal, France, Morocco 

2 21 40-60 10-25 Germany, Denmark, Sweden, 

Yugoslavia, Austria, Poland, Norway, 

Slovakia 

3 7 35-45 30-55 Turkey, Iran, Russia 

4 7 40-45 65-70 Kazakhstan, Uzbekistan 

5 9 50-60 60-90 Russia, Kazakhstan 

6 14 50-70 30-55 Former Soviet Union, Russia, Ukraine 

7† 7 - - Former Soviet Union 

8 6 
-
100-

-
155 40-60 US, Canada 

9 17 
-
70-

-
100 35-50 US, Canada 

10‡ 2 - - Australia, Argentina 

† Accessions originated from unknown locations within the former Soviet Union 

‡ One accession each from Australia and Argentina 
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Table 4.  Means of seven phenotypic traits for 99 reed canarygrass accessions based on 

region of origin, averaged over two harvests per year at Ames, IA and 

Arlington, WI in 1999 and 2000. 
 

 

†
 
Means within columns followed by different letters are statistically different (P > 0.05). 

 

 

 

 

 

 

 

 

  

Region 

Number of 

Accessions 

Yield  

 

Height  

 

IVDMD NDF  

 

ADF ADL CP 

  (g plant
-1

) (cm) --------------------(%)-------------------- 

1 9 179.32
a
† 98.03

ab
 61.77

a
 54.28

ab
 29.35

ab
 3.14

ab
 14.00

a
 

2 21 162.44
ab

 94.04
ab

 61.54
a
 54.37

ab
 29.54

ab
 3.17

ab
 13.98

a
 

3 7 146.84
ab

 93.85
ab

 60.25
a
 55.73

a
 30.41

a
 3.37

a
 13.30

a
 

4 7 163.30
ab

 95.35
ab

 61.89
a
 54.18

ab
 29.12

ab
 3.06

b
 13.95

a
 

5 9 141.78
b
 93.11

ab
 61.09

a
 54.89

a
 29.64

ab
 3.17

ab
 14.03

a
 

6 14 153.14
ab

 95.42
ab

 60.13
a
 55.35

a
 30.28

a
 3.26

ab
 13.54

a
 

7 7 156.52
ab

 86.64
b
 62.48

a
 52.91

b
 28.54

b
 3.07

b
 14.75

a
 

8 6 158.64
ab

 96.76
ab

 60.88
a
 54.87

a
 29.88

ab
 3.25

ab
 14.46

a
 

9 17 159.01
ab

 94.69
ab

 60.41
a
 55.43

a
 30.22

a
 3.29

ab
 13.91

a
 

10 2 140.56
b
 107.68

a
 61.42

a
 54.98

a
 29.99

ab
 3.27

ab
 13.38

a
 

         

Mean  158.13 94.66 61.08 54.76 29.75 3.21 13.93 
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Table 5:  Country of origin of reed canarygrass accessions accorded to 16 clusters based 

on principal components derived from 11 phenotypic traits measured over two 

harvests per year at Ames, IA and Arlington, WI in 1999 and 2000. 
 

 

 

 

 

†AST = Australia, AUS = Austria, CAN = Canada, DEN = Denmark, FRA = France, GER = 

Germany, IRA = Iran, KAZ = Kazakhstan, NOR = Norway, POR = Portugal, RUS = Russia, 

SLO = Slovakia, SLV = Slovenia, SOV = the former Soviet Union, SWI = Switzerland, TUR 

= Turkey, USA = United States, UZB = Uzbekistan, YUG = the former Yugoslavia. 
 

 

 

 

 

  

Cluster  Country Composition 

1 KAZ, POR, RUS, SOV, TUR, USA 

2 3 USA, SLV 

3 GER, 2 SOV, 5 USA, YUG 

4 CAN, DEN, RUS, 2 SOV, SWE, UKR, USA, YUG 

5 CAN, DEN, 2 GER, 3 POL, SLO, 3 SWI, 2 USA 

6 IRA, 4 KAZ, 2 RUS, SOV, UZB 

7 CAN, IRA, KAZ, SOV 

8 IRA, KAZ, 2 RUS, TUR 

9 DEN, GER, KAZ, NOR, 3 RUS, SWI 

10 CAN, NOR, 4 RUS 

11 3 RUS 

12 2 AUS, 4 CAN, 3 RUS, SOV 

13 USA 

14 DEN, NOR, RUS 

15  CAN, FRA, 2 POR, 2 USA 

16 AST 
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Table 6:  Means of seven phenotypic traits for accessions grouped into 16 clusters 

based on principal component scores developed from data measured on 97 

reed canarygrass accessions over two harvests per year at Ames, IA and 

Arlington, WI in 1999 and 2000.  

Cluster 

No. of 

accessions Yield Height NDF ADF ADL IVDMD ASH 

  g plant
-1

 cm -------------------------%-------------------------- 

1 5 285 106 60 33 3.8 56 10 

2 3 342 105 58 32 3.6 58 11 

3 7 320 102 57 32 3.5 58 11 

4 8 315 97 57 31 3.5 58 12 

5 13 324 97 57 31 3.4 59 11 

6 9 277 98 59 32 3.7 57 12 

7 4 259 90 58 31 3.5 58 13 

8 5 225 91 59 32 3.6 57 12 

9 8 323 91 56 30 3.4 59 13 

10 6 272 87 57 31 3.4 59 13 

11 3 270 95 58 31 3.4 58 12 

12 9 287 96 57 31 3.5 58 12 

13 1 272 90 60 33 3.6 57 11 

14 3 243 80 54 28 3.1 61 15 

15 6 202 72 57 31 3.4 59 13 

16 1 17 - 55 30 3.1 63 13 

Mean  265 93 57 31 3 58 12 

Std.Er.  10.16 2.37. 0.39 0.30 0.05 0.41 0.29 
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                                        Principle Component 3 

Fig. 3. 
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GENERAL CONCLUSION 
 

 Since World War II, the definition of Iowa agriculture has increasingly narrowed to just 

corn, soybeans, and industrial livestock production. The elegant systems of nutrient cycling and 

management that were achieved by integrated livestock and row-crop production have been 

dismantled in favor of decoupled production schemes. As Wendell Berry once put it, ―when we 

took animals off farms and put them onto feedlots, we had, in effect, taken an old solution — the 

one where crops feed animals and animals‘ waste feeds crops — and neatly divided it into two 

new problems: a fertility problem on the farm, and a pollution problem on the feedlot,‖ (Berry, 

1996). Forage crops were once a centerpiece of the farm, providing fodder for livestock, a cash 

crop when harvested, and the ecological services diversified crop rotations and perennials 

provide. 

 As our extensive review of the literature unequivocally shows, returning perennial forage 

crops to Iowa farms (and Midwestern farms in general) would go a long way toward mitigating 

many of the negative environmental consequences of corn and soybean production. Ideally, 

forages would be added to farm systems along with livestock. But even when planted in rotation 

with corn and soybeans and harvested for sale as hay, forages offer multiple benefits to farmers 

and the environment. Perennial forages such as alfalfa reduce nutrient requirements of 

succeeding corn and soybean crops, improve soil quality, reduce the need for pesticides, provide 

wildlife habitat, decrease nutrient leaching into groundwater, and even boost yields of successive 

crops. Forage production could also provide a needed economic boost to Iowa farms. Our 

economic simulation of farm incomes with and without alfalfa included in the rotation showed 

that a five-year rotation including alfalfa (3 years), corn, and soybeans was 24% more profitable 



61 

than a five-year rotation of only corn and soybeans, even when including government payments 

for the commodity crops. 

 While expanding forage production in Iowa and throughout the Midwest seems like a 

natural choice for farmers as it would be both economically and environmentally beneficial for 

the region, government farm policy focuses almost entirely on commodity production. Thus 

farmers, who take on tremendous amounts of risk with each planting, can hardly be blamed for 

growing what they know the government will support, even if crop prices plummet.  

 The best way to encourage increased forage production would be to refocus government 

farm subsidies away from commodities and toward supporting ecologically beneficial farm 

practices. Rewarding farmers who improve the environment through their agricultural practices, 

like by growing alfalfa and other perennial forages, could mean significant increases in 

agricultural diversity.    

 Recent interest in ethanol produced from cellulose may also play a role to encourage 

farmers to grow forages. While much of the focus until now has been on switchgrass, some other 

forage grasses may also prove to have potential as bioenergy feedstocks. Reed canarygrass, a 

relatively high-yielding perennial forage, performs well in climates poorly suited to switchgrass. 

Our evaluation showed that sufficient variation exists in available germplasm to make a reed 

canarygrass breeding project, with biofeedstock as a goal, worthwhile. If cellulosic ethanol were 

to be produced on a large-scale, a diversity of feedstocks would be necessary to avoid facing the 

same problems caused by monocultures of corn and soybeans.   

 Agricultural systems that are both environmentally and economically sustainable must be 

more diverse than just corn and soybean rotations. Returning forage crops to Iowa farms, either 
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as part of systems that include livestock or as rotated crops harvested for hay or biomass, will go 

a long way toward improving the health of our land, water, and rural economies. 
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