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ABSTRACT
(

A VHDL implementation of 128-bit AES on a Xilinx Virtex-4 FPGA (lowest 

speed grade) and ML403 development board is developed from a Verilog design that 

adheres to the FIPS-197 standard, adding innovative features: automatic start of 

transform, CBC mode, key permutation value readout and store, and output of each 

intermediate state value. Core processing rate achieves 640 Mbps; 27 Mbps is achieved in 

practice, via peripheral register access. A non-linear, cryptographically secure LFSR- 

CASR pseudo-random number generator with a cycle length of 280-243-237+l is 

translated into C and C++ from Verilog and evaluated. A C design and implementation of 

IPsec, based on the Five-layer security framework, using these primitives, is presented. 

The rate of IPsec packet processing achieved is 2 Mbps, determined by direct pulse 

measurement. A PC-based GUI drives the IPsec implementation and serves it policies, 

with a framework for flexibly choosing services, mechanisms and primitives using the 

SMIB.

Index Terms: IPsec, Virtex-4, FPGA, AES, pseudo-random number generator, 

Software Design, Cryptography

iii
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LIST OF ABBREVIATIONS

AB. 1. Acronyms

AB.1.1. General 

AKA -  Also Known As
BC -  British Columbia -  the Western-most Canadian province.
DST -  Daylight Saving Time
DUANWKWYM -  Don’t Use Acronyms; Nobody Will Know What You Mean!
IBM -  International Business Machines: a very large and famous company
ID -  Identity
NA -  Not Applicable
PC -  Personal Computer
SW -Softw are
US -  United States
USA -  United States of America

AB.l.2. Technical

3DES -  Triple-DES -  see DES
ACK -  Acknowledgement: a non-printing ASCII control character
ACM -  Association for Computing Machinery
AES -  Advanced Encryption Standard -  Rijndael, as of Fall 2000.
AH -  Authentication Header -  authenticating the packet contents in IPsec
ANSI: American National Standards Institute
ASCII -  ANSI Standard Code for Information Interchange
ASIC -  Application-Specific Integrated Circuit
b -  bit(s) -  single binary digit(s)
B -  Byte(s) -  fundamentally defined as a group of eight bits, i.e., an “octet” of bits. Also, 

the “B” programming language, which stands for Bell labs, where it was invented. 
BDM -  Background Debug Mode -  see PCIV 
BE -  Big-Endian (see LE)
BIOS -  Basic Input-Output System
BITS -  Bump-In-The-Stack -  the addition of processing by insertion and integration into 

existing layered protocols. Compare BITW.
BITW -  Bump-In-The-Wire -  the addition of processing devices placed downstream in 

the dataflow from the originator. Compare BITS.
BRAM -  Block RAM
bps -  bits per second. Compare Bps. Usually about ten times the latter due to parity and 

other bits included with every byte.
Bps -  Bytes per second. Compare bps.
BSB -  Base System Builder -  a “wizard” in Xilinx EDK
BSD -  Berkeley Software Distribution -  various versions of open-source Unix.
C -  a programming language; successor to B

x x
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C++ -  an object-oriented programming language; successor to C 
CA -  Certificate Authority
CASR -  Cellular Automata Shift Register -  see LFSR
CBC -  Cipher-Block Chaining -  a cipher feedback mode in which the output of the 

previous encrypted block is XORed with the next block of plaintext before that is 
encrypted. See ECB.

C-ISCAP -  Controlled Internet Secure Connectivity Assurance Platform -  author- 
specific; see [PAR2002].

CLI -  Command-Line Interface -  compare GUI
CMOS -  Complementary Metal-Oxide Semiconductor
COPS-PR -  Common Object Policy Service for PRovisioning -  RFC 3084
CPLD -  Complex Programmable Logic Device
CPU -  Central Processing Unit
CSPRNG -  Cryptographically-Secure PRNG
DCM -  Digital Clock Manager
DH -  Diffie-Hellman
dDoS -  Distributed DoS
DES -  Pronounced “Dez” (short “e”) -  (The) Data Encryption Standard, US National 

Bureau of Standards, FIPS Publication 46, January 1977 
DMA -  Direct Memory Access
DNS -  Domain Name Service -  the protocol used on the Internet, for the WWW, for 

translation between IP addresses and website names.
DOI -  Domain Of Interpretation 
DoS -  Denial of Service
DOS -  Disk Operating System (owned and developed by Microsoft, Inc.)
DSP -  Digital Signal Processing 
E -  Electronic, as in “E-business,” “email,” etc.
ECB -  Electronic Code Book -  a block cipher mode that uses no feedback. Each block is 

encrypted independently of the others. Pipelining or parallel encryption is possible, 
but is cryptographically, weaker, since identical blocks of plaintext will result in 
identical blocks of ciphertext. See CBC.

ECC -  Elliptic Curve Cryptography
ECE -  Electrical and Computer Engineering -  still a fairly new amalgamation as of the 

2000s
EDK -  Embedded Development Kit -  Xilinx software -  see ISE
EEPROM -  Electrically-Erasable PROM -  often pronounced “E-squared PROM”
ESP -  Encapsulating Security Protocol -  encrypting the packet contents in IPsec 
ETX -  End-of-Text: a non-printing ASCII control character 
FAE -Field Applications Engineer
FIPS -  Federal Information Processing Standard -  a US (United States) establishment
FPGA -  Field-Programmable Gate Array
FSL -  Fast Simplex Link
FTP -  File Transfer Protocol
GF -  Galois Field
GDB -  GNU DeBug -  an open-source debugger for embedded systems
GNU -  GNU is Not Unix -  A Unix-like operating system and collection of programs

x x i
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GPIO -  General Purpose -  or Parallel - 1 0
GPL -GNU Public License
GUI -  Graphical User Interface -  compare CLI
HAS-160 -  a cryptographic hash function designed for use with the Korean KCDSA 

digital signature algorithm [WIKIP].
HDL -  Hardware Design Language, such as VHDL or Verilog
HLS -  High-Level Synthesis
HMAC -  Hashed Message Authentication Code
HO -  High-Order -  see LO
HOB -  High-Order Byte
HTTP -HyperText Transfer Protocol
IC -  Integrated Circuit
IDE -  Integrated Development Environment
IEEE -  Institute of Electrical and Electronics Engineers
IETF -  Internet Engineering Task Force -  see References -  Websites.
IIC -  Inter-IC bus
IKE -  Internet Key Exchange
10 -  Input-Output
IP -  Internet Protocol; also Intellectual Property (used to refer to HDL implementations)
IPIC -  IP Interconnect, Xilinx -  IP: Intellectual Property
IPIF -  IP InterFace, Xilinx -  IP: Intellectual Property
IPsec, IPSec -  IP Security
IPSP -  Internet Protocol Security Policy
IPSPE -  unknown: see IPSP, and [KEN1994]; possibly IPSP Extended.
IPv4 -  IP version 4 -  see IP 
IS -  Information Systems
ISAKMP -  Internet Security Association and Key Management Protocol [STA2003], pg. 

202
ISE -  Integrated Software Environment (Xilinx software -  see EDK); also Internet 

Security Evaluation system [PAR2002].
IV -  Initial (or Initialization) Vector
JTAG -  Joint Test Action Group, IEEE standard 1149.1
L -  Layer, Laptop
LAN -  Local Area Network
LCD -  Liquid Crystal Display
LE -  Little-Endian (see BE)
LED -  Light-Emitting Diode
LFSR -  Linear Feedback Shift Register -  see CASR
LGPL -  Lesser GNU Public License
LO -  Low-Order -  see HO
LSI -  Low Scale Integration (or Large Scale Integration) -  see MSI and VLSI 
LUT-Look-Up Table
MAC -  Message Authentication Code -  see HMAC
MD5 -  Message Digest algorithm 5 - one of a series of message digest algorithms 

designed by Professor Ronald Rivest of MIT.
MIB -  Management Information Base

x x ii
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MITM -  Man In The Middle, or Monkey (saboteur) In The Middle 
MS -  Microsoft (company) -  see MSVC++V6 
MSI -  Medium Scale Integration -  see LSI and VLSI 
MSVC++V6 -  MS Visual C++ Version 6.0
NAK -  Negative Acknowledgement: a non-printing ASCII control character 
NDP -  Neighbour Discovery Protocol
NGM -  New Group Mode, an IPsec key exchange utility mode.
NRE -  Non-Recurring Engineering (costs)
OP -  OutPut
OPB -  On-Chip Peripheral Bus, Xilinx
OS -  Operating System
OSI -  Open Systems Interconnection
P -  PC: Personal Computer, often intended to mean an “IBM” (now generic) PC.
PAR -  Place And Route 
PCB -  Printed-Circuit Board
PCIV -  the Xilinx “Parallel Cable IV” (pronounced “PC-four”) cable. (Used for BDM) 
PDA -  Personal Digital Assistant
PGP -  Pretty Good Privacy, a software package that provides confidentiality and 

authentication at the application layer [PGPI].
PIB -  Policy Information Base -  RFC 3159.
PLB -  Processor Local Bus, Xilinx
PPC -  Power PC, i.e., “Power Personal Computer”, a microprocessor that can perform as 

Intel x86 as well as Motorola 68x CPUs.
PRNG -  Pseudo-RNG -  see CSPRNG 
PROM -  Programmable ROM -  see EEPROM 
PSTN -  Public Switched Telephone Network
PU -  frequency of occurrence Per Unit (per each one), as “percent” is per each hundred. 
QoS -  Quality of Service. Types of: “Hard”: specific numerical guarantees are made and 

kept. “Soft”: higher-priority data flows are given higher-priority access to the system. 
RACE -  Research and development in Advanced Communications technologies in 

Europe. Used in RIPEMD-160 (qv).
RADAR -  RAdio Detection And Ranging
RAM -  Random-Access Memory -  see ROM, BRAM, SRAM
RC -  ReConfigurable (hardware) such as FPGAs and CPLDs.
RFC -  Request For Comment: an IETF document that can be informational, a proposed 

standard, or an IETF standard.
RIPEMD-160 -  RACE (qv) Integrity Primitives Evaluation Message Digest -  a 160-bit 

message digest algorithm (and cryptographic hash function) developed in Europe. 
[WIKIP]

RNG -  Random-Number Generator -  see PRNG, CSPRNG 
ROM -  Read-Only Memory -  see PROM, EEPROM, RAM
RTP -  Real-time Transport Protocol: i.e., a Transport Protocol designed for real-time 

communications such as streaming multimedia, or possibly telepresence.
S -  Substitution, as in S-Box
SA -  Security Association
SADB -  Security Association Database

x x iii
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SHA-1 -  Secure Hash Algorithm 1 -  successor to MD5.
SLA -  Service Level Agreement
SMIB -  Security Management Information Database
SPI -  Security Policy Index -  uniquely identifies an S A
SPD or SPDB -  Security Policy Database
SRAM -  Static RAM
STX -  Start-of-Text: a non-printing ASCII control character 
SWAN -  Secure WAN -  see WAN
TCP -  Transmission Control Protocol -  the main Transport-level protocol used on the 

Internet, providing a guarantee of reliable delivery and correct packet ordering.
TTL -  Time To Live -  field of an Internet Protocol (IP) datagram 
UART -  Universal Asynchronous Receiver-Transmitter -  an integrated device that can 

perform such communication protocols as RS232 
UDP -  User Datagram Protocol -  a simple Transport-level protocol used on the Internet 
UML -  The Unified Modeling Language 
VHDL -  VHSIC HDL
VHSIC -  Very High-Speed Integrated Circuit -  see VHDL
VLIW -  Very Long Instruction Word
VLSI -  Very Large Scale Integration (see MSI and LSI)
VPN -  Virtual Private Network 
XMD -  Xilinx Microprocessor Debug
XOR -  Exclusive-OR -  a common operation in cryptography, since it is its own inverse 
WAN -  Wide-Area Network
WEP -  a standard for protecting 802. IX communications, “Wired Equivalent Privacy” -  

so-called; it is not really very strong.
WWW -  The World-Wide Web, AKA, in some circles, as “The World-Wide Wait”.
XST -  Xilinx Synthesis Tool

AB.2. Abbreviations

AB.2.1. General

approx. -  approximately
demo. -  demonstration
dept. - department
Fig. -  Figure, i.e., illustration.
hun. -  hundred
inc. -  incoming
out. -  outgoing
rev. -  revision (often synonymous with “ver.”, but sometimes used to denote sub-version 

levels)
sub. -  substitute, or substitution; “sub” is also a complete word or prefix meaning 

“below”, “under” or “smaller”, 
thou. -  thousand
v., ver. -  version (often synonymous with “rev.”)

xxiv
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AB.2.2. Technical

app. -  application 
dec. - decryption 
enc. -  encryption 
F lash-Flash EEPROM 
hex. -  hexadecimal
Hz -  Hertz -  cycles, or any repetitive occurrence, per second. The repetitive occurrence 

is simply a dimensionless count, so this unit has a dimension only of inverse time. 
Rcon -  Round constant
slv_regs -  slave registers, of a component in an embedded system 
std_logic -  standard logic
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Chapter I

INTRODUCTION

1.1. Motivation

To begin with the virtually self-evident, companies need communications. In any 

economy beyond that of the 1700s (in the USA), electronic communications are needed. 

Indeed, these are valuable to individuals for personal use, as well. Telegraph, telephone, 

telex and facsimile systems performed all the services of electronic communication 

systems in their day, for decades, since the 1800s, and it was not until the 1990s that the 

Internet began to rise to predominance, replacing and supplementing those systems with 

the mass ability to transmit documents. The facsimile machine has been largely rendered 

redundant by email and the WWW (World Wide Web), and telephony is in the process of 

becoming an Internet application at the time of this writing, although it is not now 

known, of course, if the entire legacy PSTN (Public Switched Telephone Network) will 

be replaced by the Internet and if so, how long that will require.

Partly due to its public nature, and partly due to economies of scale, the Internet is 

extremely economical to use, which gives a reason for companies and individuals to 

make great use of it. However, since it is public, it is necessary to secure its use for 

general privacy purposes. Today, generally only companies have the resources to perform 

mass securing of Internet services, although personal software packages such as PGP 

(Pretty Good Privacy) are available for individual use -  PGP performs security services 

at the user, or application layer [PGPI]. For mass use, companies use encryption to 

implement VPNs (Virtual Private Networks), using the Internet as their own private 

communication network. VPNs are technically available to individuals, since Microsoft 

Windows XP, for one, is equipped to perform IPsec (Internet Protocol security), but its 

setup still requires technical expertise and cooperation that are mostly beyond the abilities 

of unorganized individuals. Notably, the “Free S/WAN” movement and software package 

has attempted to provide IPsec to individuals; so far without success [FSWAN].

1
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Use of a public network gives some of the strongest possible reasons to adopt 

security measures against attacks that threaten, although managers of private networks 

are well advised to adopt additional security measures beyond the physical. Some attacks 

and their countermeasures are as follows:

• Masquerade, unauthorized access, repudiation: need an 
authentication/access control service

• Message modification, replay: need an integrity service
• Spying: need a confidentiality service
• Denial of service (DoS)/unauthorized access: need an availability/access 

control service

These imply the existence of five basic services: authentication, integrity, 

confidentiality, access control and availability. Two others are anti-replay (a form of 

integrity, given that the time a message is sent should be counted as part of its makeup), 

and non-repudiation (which consists of authentication plus audit logging or message 

retention).

The combination of “IP” (Internet Protocol) and “Security” creates the 

abbreviation “IPsec”. Although it was originally intended to secure all IP transactions, it 

found its most natural application in VPNs [FER1999]. IPsec can be thought of as an 

adaptation of the general concept of VPNs to the Internet [PER2000].

1.2. Overview of IPsec

The idea of IPsec dates back to 1994, and the most important four RFCs 

(Requests For Comment) were issued in 1998 [STA2003]. They are: RFC 2401,

“Security Architecture for the Internet Protocol”, RFC 2402, “IP Authentication Header”, 

RFC 2406, “IP Encapsulating Security Payload (ESP)”, and RFC 2408, “Internet Security 

Association and Key Management Protocol (ISAKMP)” -  see the “RFCs” subsection in 

the References section -  a full list of IPsec RFCs is available [IPS2005].

A brief overview of IPsec is presented here. A comprehensive and detailed 

description of IPsec has already been done in the working group to which this author

2
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belongs, in the ECE department at the University of Windsor, by a previous Master’s 

candidate; please see [FAH2005].

It is desirable to make the security system transparent to the user, for if the user 

has to perform any operation to accomplish the security transform in addition to sending 

the message, the additional burden will likely be refused, done carelessly, or, with the 

best will in the world, absent-mindedly forgotten in the press of competing primary 

duties. The IPsec layer or sublayer is located below the IP layer, just above the link layer 

(see Figure 1 for the OSI model adapted to five layers for the Internet -  OSI stands for 

“Open Systems Interconnection”), and thus is transparent to the user, who generally deals 

directly with only the Application layer.

(Internet Protocol)
Security - a security system

Figure 1. The OSI model adapted to five layers for the Internet -  also showing IPsec

IPsec provides confidentiality, integrity, authentication, anti-replay services, and 

can be used for non-repudiation and access control, although common implementations 

of those two are typically weak (see the final paragraph in section 2.2.1. “Key 

Exchange”). It does not provide a formal availability service, and suffers from weakness 

in this area (see section 2.2.1., “Key Exchange”).
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1.2.1. Key Exchange

There are three different modes of key exchange in IPsec: Main Mode, Aggressive 

Mode, and Quick Mode. There are also some utility modes, such as NGM (New Group 

Mode), used to negotiate a new group for Diffie-Hellman Key Exchange, carried out 

under protection of IS AKMP (Internet Security Association and Key Management 

Protocol) phase 1. Main Mode and Aggressive Mode are alternate modes that can be used 

to establish the “Phase 1” SAs (Security Associations), whereas Quick Mode is an 

exchange that uses the protection of the Phase 1 SAs to establish the Phase 2 SAs that are 

the actual IPsec working SAs that protect the data packets ([ZH02000] pg. 1606).

1.2.1.1. Main Mode

The initiator sends a cookie and a proposed phase 1 SA. The responder replies 

with a cookie and the accepted phase 1 SA. The initiator sends its Diffie-Hellman public 

key and a nonce, and the responder replies with its Diffie-Hellman public key and nonce. 

Both sides compute the Diffie-Hellman shared secret, or key. The initiator sends its 

signed certificate to establish its identity and the responder replies with its signed 

certificate ([AIE2002] Figure 3, pg. 55). Signing in this case means to encrypt a hash of 

the message using the shared secret -  in general, signing means encryption, using a 

shared secret, or a private key in a public key cryptosystem, of the message itself or of a 

hash of the message. A total of six messages are sent.

1.2.1.2. Aggressive Mode

In Aggressive Mode, only three messages are exchanged. The initiator cookie, 

proposed Phase 1 S A, Diffie-Hellman public key and initiator ID (identity) are sent at 

once, and the the responder replies with its own cookie, the accepted Phase 1 SA, its 

Diffie-Hellman public k ey , its ID, as well as its signed certificate. The initiator then 

sends its signed certificate ([AIE2002] Figure 4, pg. 56).

4
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1.2.1.3. Quick Mode

See Figure 2. The initator sends its proposed Phase 2 SA, nonce, hash, optional 

DH public key, and optionally, client IDs. The responder replies with the accepted Phase 

2 S A, nonce, hash, optional DH public key, and optionally, client IDs. As a handshake, 

the initiator sends a hash of the nonces ([ZH02000] pg. 1608).

It can be seen that these protocols are susceptible to a DoS (Denial of Service) 

attack. Since there is no burden of identification or computation placed upon the initiator, 

attackers can make the server perform computationally-expensive modular 

exponentiations in order to calculate the Diffie-Hellman shared secret. See section 2.2.1., 

“Key Exchange”, for a full discussion.

1.2.2. Security Policy Database and SMIB

An IPsec implementation requires an SPD (Security Policy Database) for the 

purpose of negotiating security associations. The SPD contains, in part, selectors to 

determine whether or not to process a packet, for a given policy of how to process the

in it ia to r responder

gash of the

Figure 2. Quick mode

1.2.1.4. Key Exchange -  Conclusions
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packet selected. The selectors can be set to “all”, as “wildcards”, and the sense of the 

selectors can be set as meaning either to select or not select the packets with the selected 

characteristics. Using an SPI (Security Policy Index) to uniquely identify a Security 

Association (SA), an SPD entry can refer to more than one SA, and a single SA can be 

derived from more than one SPD entry, in which case more than one SPD entry would 

have the same SPI -  see Table 1 for an illustration.

From To Protocol Port Policy SPI(s)

1.1.1.1 2 2 2 .2 TCP 1000 ESP w. 3DES ! ’3
1.1.1.1 22 .2 2 * * ESP w.AES 2

Table 1. Key elements of a Security Policy Database (SPD)

In addition, it can be useful to define a Security Management Information 

Database (SMIB), containing the SPD and other information useful to running a security 

and communication system, such as the local address, clients served by the IPsec 

operating entity, or node, the functional modules available to the system to do key 

management and perform the other services noted before, and the parameters needed to 

control them. See [KEN1994] for a list of ideas.

1.2.3. Security Associations

A security association (SA) defines the agreement under which two entities will 

use IPsec to communicate, in a particular direction; i.e., two SAs are needed for 

bidirectional communication. The S A contains, at a minimum, the addresses of the 

communicating entities, the protocol and mode to be used, the SPI, and the algorithms to 

be used -  see Table 2 for an illustration of a Security Association Database (SADB), 

which contains the information specifying the node’s SAs.

From To Protocol Mode SPI Policy

2.2.2.2 1.1.1.1 ESP Tunnel 10 64-bit DES

1.1.1.1 2.2.22 ESP Transport 11 168-bit DES

Table 2. Key elements of a Security Association Database
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1.2.4. Services

1.2.4.1. Authentication Header Protocol

The Authentication Header (AH) Protocol adds a header to IP packets, that 

contains a signed hash of the message, to transform the packet into an IPsec packet. This 

provides authentication and integrity services. The header also contains the SPI so that 

the S A can be identified, a sequence number for anti-replay purposes, and some other 

data, such as the type of header immediately following, and the “payload” length of the 

Authentication Header.

1.2.4.2. Encapsulating Security Payload Protocol

In the Encapsulating Security Payload (ESP) Protocol, each IP packet’s contents 

are encrypted, providing confidentiality and encryption. The contents are first padded to 

make them a natural number multiple of the encryption block size, and to provide space 

for the padding length field itself, meaning that if the contents are already a multiple of 

the block size, padding must still be added. A header is added that contains the SPI and 

sequence number, and a variable-length authentication field is specified, following the 

payload data. If an Initial Vector (IV) is included with the ciphertext, it is usually not 

encrypted ([STA2003] pg. 183); in this work it was realized that if Cipher-Block 

Chaining (CBC) were to be used, and the IV is first encrypted without chaining, 

following which the IV is used, an attacker would be able to tell if the first block of data 

happened to be all zeroes, because then the encrypted IV and the first encrypted block of 

data would be identical (note that for the strongest possible security, security algorithms 

are generally made thoroughly public in order to receive the most possible scrutiny). If 

chaining were to be done from the encrypted IV, the encrypted IV would itself be the IV, 

meaning that time would have been wasted in a needless transform done to the IV.
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1.2.4.3. Anti-Replay Service

Each IPsec packet contains a 32-bit sequence number to prevent replay attacks. If 

a packet with an identical sequence number is received, it is discarded. Also, if a packet 

with a sequence number that is too old is received, it is discarded. Of course, if  the packet 

authentication fails, the packet is discarded. The foregoing are events that should be 

logged for audit [STA2003]. A settable “window size” determines the lowest sequence 

number that will be accepted, from the highest sequence number so far received. When 

the sequence number overflows, the SA should be renegotiated, although whether that 

will be done is generally also negotiated.

1.2.5. Modes of Operation

Two modes of operation are defined for each of the AH and ESP protocol, 

Transport Mode and Tunnel Mode. In Transport Mode, the IP packet’s header is modified 

as needed for retransmission and the IPsec header is inserted following. Any transform, 

such as ESP, is done only to the packet payload. In Tunnel Mode, a new IP header is 

appended to the beginning of the IP packet, following which the IPsec header is added, 

following which the entire IP packet is included, unchanged in AH protocol and 

transformed only, in ESP. This allows the original IP packet to continue on unchanged 

after its transmission as an IPsec packet, which is very useful when a gateway is 

employed, and for VPNs.

1.3. Previous Work

As noted after, (see section 2.3.2., “The Erfani Patent”), in previous work in the 

author’s group in the ECE department at the University of Windsor ([FAH2005] section

4.2, pp. 84-94, and Chapter V), a five-layer framework for the design of a security system 

was introduced. The five layers are: the Policy, Management, Services, Mechanisms and 

Primitives layers (see section 2.3.2., after). These five layers were “fleshed out” into 

modules and several operating scenarios were described. These are: an IPsec session 

scenario, in which the security system is used to establish an S A and send a packet via 

ESP Transport mode ([FAH2005] section 5.1.1, pp. 100-105), a comparison between
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policies used for secure vs. very secure applications ([FAH2005] section 5.1.2, pg. 105), 

and a description of a combination of SAs in which IPsec AH protocol packets are 

tunnelled through an ESP SA between two routers ([FAH2005] section 5.1.3, pg. 106).

1.4. Problem Statement

Generally, the software approach to implementation is versatile, but resulting 

implementations are relatively slow. Use of “hardware”, or dedicated integrated circuits 

(ICs) -  or even LSI and MSI (Low Scale and Medium Scale Integration) ICs to perform 

a task results in implementations that work much faster, but versatility suffers.

Cryptographic operations, such as encryption, decryption, hashing and random 

number generation are generally extremely computationally intensive, making hardware 

accelerators extremely desirable.

This leads to the question: How can the five-layer security architecture be used to 

implement IPSec in hardware, given that the overhead of using cryptography mandates 

hardware acceleration?

1.5. Motivation for General Layering

In implementation, breaking the task into implementation layers, from hardware, 

to software drivers, middleware and user-interface layers is useful to make it manageable 

and doable by a group of individuals or working groups, each of which does his own 

component. Modules can also be upgraded and replaced separately. Each layer uses the 

services of the layer below (except for the lowest layer -  in perhaps a system-limited 

sense) to provide services to the layer above (except for the highest layer -  again, in 

perhaps a narrow sense). This was done in the seven-layer OSI model which specifies the 

following layers, from top to bottom: Application, Presentation, Session, Transport, 

Network, Link and Physical. The seven were reduced to five for the Internet: Application, 

Transport, Network, Link and Physical. Note that in this modified OSI model, IPsec, if

9
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implemented via BITS (Bump-In-The-Stack), would fit at the bottom of the Network 

(Packet), or IP layer, since IPsec is applied after packetization just before sending to the 

Link layer -  note that the diagrams in [FUM1998] (Figure 2, pg. 191), and in [HUN1998] 

(Figure 11, pg. 1118), depicting IPsec between the IP and TCP (Transmission Control 

Protocol) layers, are not right.

It is also useful to break the task down into conceptual, functional, or managerial 

levels, as in [ERF2003], which proposes five layers: Policy, Management, Services, 

Mechanisms and Primitives (Figure 3).

Policies yanaaement Services f^sch&ftisms PiffnH m i

User Interface;
Midcilwsre

(Sublayers)

Databases

Data control

Tasks -  H
Sub-tasks
Math functions,
cryptography * 1 /■' sVSfi?? y-*

'Drivers' . i f  !> M
Hardware

Figure 3. Functional vs. technical layers

As indicated in Figure 3, in a relation proposed in this work, a given functional 

layer requires presence at its and all lower implementation layers; the lower 

implementation levels have to contain “sub” functions to support the higher functionality. 

Policies require entering from the user interface, presence in databases, and control of the 

data. Management may require some entry from the user interface as well, but it at least 

is specified by the data entered into the databases. Services and Mechanisms are tasks „ 

and subtasks, and primitives require the low-level math functions and cryptography. 

Finally, in order for the electronic communications to proceed, the software must operate 

the hardware via drivers.

It might theoretically be possible to be more efficient with an “ad hoc” unlayered 

design, but a sufficiently complex system would not then be understandable and
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improvements or bug fixes would eventually become impossible, at some level of 

complexity. Disadvantages of layering include the necessity of passing data down 

through the multiple layers, which can slow down processing. Strict separation of layers 

can prevent a successful system design if passing needed data is disallowed on the 

grounds that it appears to “belong” only to one certain layer. A layer may duplicate 

functionality present in another layer, perhaps due to insufficient communication and 

planning between the respective working groups. An example of this latter inefficiency is 

error checking and recovery, which is often done at the link layer as well as on “an end- 

to-end basis” ([KUR2000], 3rd ed., pg. 47).

1.6. Motivation to use FPGAs

FPGAs (Field-Programmable Gate Arrays) contain thousands of blocks of 

identical generic logic which can be configured via programming like a static RAM 

(Random Access Memory) to operate in an extremely wide range of different behaviours. 

They are cost-effective in production and testing since this can be done in-house with 

affordable equipment, and devices are provided by manufacturers that make available 

many resources (block RAM, clock dividers, etc.) in a structured way,

FPGAs offer some of the performance levels of hardware and also some of the 

versatility of software, since they can be reconfigured for different functionality, even 

during runtime. Configuration files, or “bit files”, for programming the FPGA, can be 

stored in memory, such as Flash EEPROM (Electrically-Erasable Programmable Read- 

Only Memory), or “Flash”, and recalled at will. Stored configurations, such as encryption 

schemes, can be compressed for storage [DAN2000]. Field upgrades for such things as 

bug fixes and new standards are possible, even using pin-compatible devices [CHE2002].

FPGAs offer lower non-recurring engineering (NRE) costs compared to custom or 

semi-custom ICs, such as ASICs (Application-Specific ICs), since they come ready­

made, and need only be configured. On the other hand, they incur higher per-unit (PU)
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costs, such that if  sales of more than 100,000 units occur, it would be more economical to 

spend the NRE costs to produce an ASIC ([KHA2006] pg. 8, [OGA2004]).

Software running on a general-purpose processor can typically produce AES 

(Advanced Encryption Standard -  Rijndael is the name of the specific algorithm adopted) 

throughputs of low tens of Mbps (i.e., 30) [DAN2000], whereas FPGAs can achieve up to 

176 Mbps implementing DES (the Data Encryption Standard) and up to Gbps rates 

implementing AES; for example, speeds of 964 Mbps ([WOL2004] pp. 550, 554) and 

1.197 Gbps [LUJ2005] have been reported (see section 2.4., “Implementations of IPsec,” 

after). An ASIC processor achieved 2.29 Gbits/s of AES throughput in a 0.18pm CMOS 

(Complementary Metal-Oxide Semiconductor) standard-cell technology in 2002 

[SCH2002],

1.7. Embedded Systems

An embedded system is a computerized module or component containing built-in 

software, usually on an IC chip, which is not changed in its normal course of operation. 

As part of its computerization, it also contains a computer processor, but that is not a 

defining characteristic, since non-embedded systems such as PCs (Personal Computers) 

also contain processors. For example, in this work, the normal operation of the system 

does not include loading and running the firmware, i.e., once the bit file, which contains 

both the FPGA configuration (the “soft hardware”) and the (“firm”) software, has been 

loaded to the board. Although this work involved loading the ML403 board on a regular 

basis, every single time it was used, this can be seen as engineering development work, 

not regular user operation, for which the bit file could be stored in the Flash EEPROM 

(Electrically-Erasable Programmable Read-Only Memory) and automatically loaded at 

bootup. The ML403 board can also be loaded by a user via a “flash card”, in which case 

its status as an embedded system would be greatly mitigated. For another example, a PC 

is not an embedded system, because the user operates it by loading programs to its RAM 

IC chip or chips from its hard disk, such as by clicking with a “mouse”, in its normal 

course of operation. Internally, however, a PC contains an embedded system, the BIOS
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(the Basic Input-Output System), which historically could not be very easily changed by 

the user at all (PCs first appeared in the early 1980s, and somewhat earlier, too, in a 

general sense, before the IBM PC appeared on the market). Today, the BIOS chip can be 

a Flash EEPROM, which can be changed by the user via a special procedure, not in its 

normal course of operation. Another example of an embedded system might be a PDA 

(Personal Digital Assistant), able to perform many applications. Another might be the 

anti-lock braking module in a car. Yet another might be a coffee maker, in which the 

software would most likely be present in a PROM, soldered directly to the PCB (Printed- 

Circuit Board), to keep manufacturing costs low. Another might be a washing machine, 

in which the PROM might conceivably be placed in a socket, for possible warranty 

repairs. Another might be a “set-top box”, capable of having its software in its Flash 

EEPROM updated “over the air” by the service provider. Clearly, the more easily the 

software can be changed, and the more frequently it actually is, the less “embedded” the 

system is.

1.8. Objectives

This work has the following objectives: (1) to produce a block-level design of an 

IPSec processor, (2) implementing each layer of the Five-Layer paradigm, and (3) 

implement at least a key portion of it, using FPGA hardware accelerators; (4) to avoid 

pitfalls -  note that the implementation of a security system can detract from its maximum 

theoretical strength as planned in corresponding standards -  standards do not specify 

implementation details; and (5) to compare the performance results achieved to those of 

others.

1.9. Thesis Organization

This thesis is organized as follows: Chapter 2 presents a review of the literature 

pertaining to IPsec and its implementations. A brief history of and background to IPsec 

are presented and its applicability is discussed. IPsec key exchange, as a noteable point of 

weakness in IPsec, is treated. An overview of high-level management schemes for IPsec
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is presented, including the patent by S. Erfani, which is the background for this work. 

Software and hardware implementations of IPsec and its primitives are surveyed, the 

latter in FPGAs and ASICs, and an example application is presented. High Level 

Synthesis is discussed, as well as random number generators. Chapter 3 presents the 

design of an AES hardware accelerator in VHDL (Very High-Speed Integrated Circuits 

Hardware Design Language), as ported, or translated, from Verilog and implemented on 

a Xilinx Virtex-4 FPGA using the Xilinx ML403 development board, the design of test 

software for it, the design of a CSPRNG (Cryptographically-Secure Pseudo-Random 

Number Generator) in C (the programming language), as ported from Verilog, the design 

of an implementation of a portion of an IPsec implementation in C using the novel 

security design framework proposed by S. Erfani (see [ERF2003] and [FAH2005]), the 

design of two demonstration GUIs (Graphical User Interfaces) using MSVC++V6 

(MicroSoft Visual C++ ver. 6), and the design of a CLI (Command-Line Interface) 

suitable for performance-testing of the IPsec implementation. The test methodologies are 

also presented. In Chapter 4, the results acquired from testing the AES implementation, 

the CSPRNG, and the IPsec implementation are presented and analyzed. Lastly, Chapter 

5 presents conclusions and discusses areas for future work. In each of Chapters 3-5, 

section 1 contains the AES implementation discussion, section 2 contains the CSPRNG 

discussion and section 3 contains the IPsec implementation discussion.
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CHAPTER II

REVIEW OF LITERATURE

2.1. Introduction

This chapter presents an overview of IPsec implementation and management in a 

variety of different areas: industry white papers, FPGA papers, papers on ASICs, papers 

on implementation of primitives such as AES and Random Number Generators (RNGs), 

papers on High-Level Synthesis (HLS), papers on IKE (Internet Key Exchange), and 

system-wide, or "high-level" papers. The Erfani patent [ERF2003], which is the paradigm 

for the present research, is presented. It is shown that the state of the art in the literature 

contemplates system-wide approaches to IPsec, but there is still room for improvement in 

terms of explicit recognition of all layers of an IPsec system for the purpose of managing 

its design and implementation (see the author’s overview paper [WIE2006]).

2.1.1. History of IPsec

IPsec refers to the “Secure IP” set of proposals published by the IETF (the 

Internet Engineering Task Force) as RFCs [IETF]. The formal standards process in the 

IETF began in 1992 (compare 1994 as stated in [STA2003] before, in section 1.2.) with 

the publication of the first draft charter for the IPSEC working group [DUN2001], and as 

of April 29,2005, there were 31 RFCs listed in the IPsec Charter [ITEF-IPSEC].

IPsec has now been in existence for so long that the pace of technological change 

has obsoleted part of it -  the original, or “single” DES (Data Encryption Standard) 

specified only a 56-bit key and can now be broken by an exhaustive search attack in a 

few days using publicly-published techniques. The FreeS/WAN [FSWAN] organization 

has disallowed “56-bit” DES on the grounds that it is now too weak (even though that 

level of security would prevent real-time monitoring of transmissions and could allow the 

continuing accumulation of ciphertext faster than it could be cracked), which technically 

places them in violation of the standard. In Oct 2, 2000,The US National Bureau of 

Standards officially adopted one of the proposals, Rijndael, which was submitted in the
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competition to provide the Advanced Encryption Standard (AES), replacing DES 

[JAR2003], [REJ2003], but the movement to replace DES as the minimal encryption 

standard with 3DES did not succeed. However, DES expired as a standard in 1998 

[ELB2000].

Another debate was over simplex vs. duplex data flows. Since data might need to 

be transmitted in only one direction, it was decided to base IPsec on simplex connections; 

hence Security Associations (SAs) are one-way [DUN2001].

2.1.2. Government Politics

The US government’s reaction to new encryption technologies was one of the 

strongest: it classified cryptographic hardware and software as “munitions” and forbade 

its export. Furthermore, US nationals were forbidden from even providing any technical 

assistance whatsoever to the development or maintenance of cryptographic products that 

would be available in other countries. This caused severe problems for the development 

of IPsec in that most of the IPsec working group members were US citizens and could 

only work on the standard, not provide any technical examples or do any testing. 

Implementations of IPsec had to be developed with the input of US citizens entirely 

forbidden in order to keep US government regulations from preventing their distribution. 

This resulted in the slowing of design and deployment of IPsec-compliant systems 

[DUN2001].

2.1.3. The Standards Process -  Outcome

Input to the standards process came from hardware vendors, who wanted “bump- 

in-the-wire” (BITW -  compare BITS) devices to tunnel IP packets through hardware 

encryption systems. Adding this capability to the standards increased their extent 

[DUN2001].

The standards produced are very complex. This is an inescapable consequence of 

a committee process; a much more streamlined standard would be developed by having a 

competition and awarding a large monetary prize to the winner, which would save
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everyone money overall due to the never-ending costs of dealing with the permanent 

excessive complexity that resulted from the committee process. The competition 

approach was seemingly successfully used to select Rijndael as the AES. Excessive 

complexity invites misunderstanding, resulting in implementation and user mistakes that 

leave security holes. Industry, government and academia were each involved in IPsec, 

and the results show in the multiple options specified. One harsh but useful critique of 

IPsec stated that although IPsec is the best security option in this area, it is not possible 

for the authors to determine whether or not IPsec is secure [FERI 999].

2.1.4. Applicability of IPsec

IPsec is really only useful for implementing VPNs (Virtual Private Networks). 

The following are some areas in which IPsec was tried and either found unworkable or 

workable with difficulties ([ARK2005] pp. 242-246).

2.1.4.1. Neighbour Discovery Protocol (NDP)

There is a basic logical flaw in attempting to use IPsec for NDP: a “chicken-and- 

egg” problem. In order to exchange keys with the neighbours, they have to be discovered. 

In order to discover them securely, keys would have to be exchanged with them. Solving 

this and other problems that were involved, caused additional thorny problems, inducing 

the IETF to abandon IPsec for use in NDP.

2.1.4.2. IP Mobility

There are some basic concerns with using IPsec and Mobile IP. IP addresses can 

change rapidly, and new IPsec tunnels have to be set up, which could cause so much 

overhead that any actual user communication would not have any time to run. The 

implementation approach to IPsec -  relying on IP addresses, which is not a correct 

approach (see the final paragraph in section 2.2.1., “Key Exchange”) -  has to be changed 

to mitigate this. Another problem is how the mobile node could continue to set up Mobile 

IP tunnels to the host node if the host node is behind a firewall or gateway and the mobile
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node travels away from the LAN. These problems are not insurmountable and IPsec is 

still used, running it over the Mobile IP tunnels.

Aside from these, there is the question of using IPsec to secure the binding 

updates in which the mobile node informs the host of its new IP address. A global 

authentication infrastructure would be required for this, which does not exist. Also, such 

an infrastructure would have to track all IP addresses assigned to users and provide this 

information in a secure way, which would be impractical, to say the least. Instead of 

using IPsec, a different set of mechanisms was adopted which use the routing 

infrastructure to assist in authorization of the mobile node.

2.1.4.3. Network Management Protocols

Although IPsec could provide security for all management traffic in a network, it 

itself does not provide means with which to differentiate nodes in order to provide them 

with different privileges, since it was not designed for that, but rather to identify different 

SAs between different users. These protocols would have to add their own user 

authentication mechanisms at the application layer.

2.1.4.4. Streaming Multimedia

Streaming Multimedia uses RTP (Real-time Transport Protocol), which changes 

port numbers dynamically. This would prevent use of IPsec implementations that rely on 

stable IP addresses, upper layer protocol identifiers, and port numbers to locate the 

policies and SAs to use.

2.2. Operational Aspects of IPsec

2.2.1. Key Exchange (

The Key Exchange protocol has a number of weaknesses which were the subject 

of several investigations.

18

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



The Key Exchange protocol is rather susceptible to a Denial of Service attack due 

to the acceptance of Diffie-Hellman (DH) values; the initiator (or client) can have the 

responder (or server) doing modular exponentiation for nothing. Even though cookies are 

used, a Distributed Denial of Service attack can always be mounted. Also, since ISAKMP 

uses a date and time stamp as a responder cookie, these must be left behind in the 

responder in order to track initiators, meaning that the responder can be clogged with 

these, giving rise to a so-called “cookie crumb” attack. Instead, as in the Photuris 

protocol [RFC2522], the responder cookie should be regenerable from sender 

information and one local secret ([SIM1999] pg. 3, [RFC2522] pg. 18). There is no 

resource-limitation feature in ISAKMP, as in Photuris -  an initiator can collect ISAKMP 

responses in a “cookie jar” and then send them all rapidly as key exchange messages 

([SIM1999] pg. 4). A saboteur, or “Monkey In The Middle” (MITM) can simulate the 

initiator to the responder and vice-versa, sending each of them different DH keys so that 

they waste resources computing a non-matching “shared secret” and fail to discover the 

attack until later verification fails ([SIM1999] pg. 4) (Note that this is not to be confused 

with the “Man In The Middle” attack, in which the attacker maintains the illusion, to both 

parties, that they are each secretly communicating with the other, in order to breach the 

confidentiality of the communication). Aggressive Mode eliminates the initial cookie 

exchange, thereby reducing its utility as a counter against DoS attacks. It does not 

provide identity protection, but it is intended for mobile users, who most need it, due to 

the ease of eavesdropping on wireless links ([SIM1999] pg. 5). Quick Mode opens the 

door to a DoS-Replay attack in which an attacker simply replays the Quick Mode packets 

and the responder uses all of its resources decrypting the packets only to find that the 

nonces used are the same ([SIM1999] pg. 6). Additional flaws noted in [SIM1999], (pp. 

6-8) include the overly general IKE/ISAKMP framework that relies on a Domain Of 

Interpretation (DOI), requiring further negotiations to agree on specifications, the 

addition of modes and options which defeats scalability and simplicity, inadequate and 

inconsistent error messaging, unpadded ID field sizes that indicate the types of contents 

such as IP addresses, and unauthenticated fields that could be used as Trojan-Horse 

channels.
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However, there seems to be a mistaken diagnosis of a possible “Man In The 

Middle” attack in [ZH02000], pg. 1609. Its analysis is that a MITM attack is made 

possible because the final hash sent by the responder in Main Mode is done using the 

initiator’s suggested SA. An attacker can pose as the initiator in the SA exchange and 

choose one of several SA offers for the responder and a different one for the initiator. A 

check of the final hash that is received by the initiator, done by the initator, using the SA 

supplied to it, will verify the final hash sent. However, the final hash sent from the 

initiator to the responder should fail its check due to different SAs in use without the 

MITM any longer, and so should the final hash sent from responder to initiator. This 

problem seems to be the same, then, as the “Monkey In The Middle” vulnerability noted 

before.

Also noted in [ZH02000], pg. 1610, is the possibility of an active attack in which 

the identity of a correspondent can be learned. Since no authentication is done until initial 

SAs are set up, an attacker could pose as a responder and learn the identities of any 

initiator when the SA is set up and the initiator sends its identity.

Several papers provided suggestions to improve key exchange by suggesting new 

and different protocols, as discussed in the following section.

[AIE2002] suggested a pair of protocols, called JFKi and JFKr, for “Just Fast 

Keying”, “initiator” and “responder”, respectively; the former was designed to provide 

identity protection for the initiator in the key exchange and the latter to provide it for the 

responder. Applications would be an anonymous client contacting a public server, vs. 

peer-to-peer. These protocols combat DoS attacks against the responder by not requiring 

the responder to perform modular computation until the initiator has first done so, and • 

established round-trip communication. This basic idea is also the idea of [CH02003] (pp. 

332-333).

Identity protection is provided to the initiator in JFKi because after doing the key 

calculation, the initiator sends its identity encrypted. In JFKr, the responder sends its
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identity encrypted after receiving the initiator’s identity. Active identity protection is not 

possible for both initiator and responder, as noted ([AIE2002] pg. 52), due to the DoS 

protection for the responder -  the initiator has to send its ID first, because the responder 

can’t be allowed to go ahead with modular computation until the initiator has taken on 

that burden first. Thus the initiator will be subject to an active ID attack in using the JFKr 

protocol, but not in the JFKi protocol.

It seems that the possibility of a “Man In The Middle Attack” was forgotten; to 

combat that, public keys exchanged should be signed by a CA (Certificate Authority) at 

the time that one side sends its identity.

Another proposal ([CH02003] pg. 329), involves “client puzzles” in which the 

server requires a client to solve a computationally-intensive puzzle before the responder 

will create state or do its own computations. The server sends a hash containing its nonce, 

to the client, along with a partial solution to the hash. The client has to do a certain 

amount of computation to find the nonce and it has to return the correct nonce before the 

server will authenticate it, while the server only has to store the nonce for each client. The 

client's workload increases rapidly and linearly with the number of requests it makes, 

whereas the line representing linear increase of storage and work at the server has a very 

low slope when shown on a graph ([LEI2000] pg. 7). The server could vary the difficulty 

of its puzzles in direct relation (or more) to its load.

It is to be hoped that the debate process within the IETF will adopt these and/or 

other suggestions for improving the present easily-attackable state of IKE/ISAKMP.

Finally, related to key exchange, an example of the way that implementation can 

cause security holes is in the practice of treating an IP address as being authenticated by 

the IPsec AH protocol, since that is what gateways or firewalls can examine for filtering 

purposes. Actually, the AH authenticates the packets as coming from a user who knows 

the key. ([FER1999] pg. 5) This means that a different user could use the trusted IP 

address, set up SAs, and be trusted as a different party. This kind of masquerade is
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precisely what authentication is supposed to prevent. Since IP addresses are so easily 

forged, identification must depend upon the possession of secret knowledge, not upon IP 

addresses ([SIM1999] pg. 6). A general statement of this problem is that somehow 

binding has to be achieved between entities that are outside of the protocol and their 

purported identities within the protocol. A related problem is that of different protocols 

using different names for the same entity [ROE2001].

2.3. Management and Architecture

2.3.1. Other Management Proposals

[GUT2004] has proposed and developed an approach to dealing with the 

complexity involved in configuring real-world security systems, in order to prevent 

oversights that cause security holes. The method takes four steps: (1) modeling, (2) 

expressing security goals, (3) deriving algorithms and (4) implementing. Modeling 

expresses the security system in mathematical terms which allows it to be processed by 

algorithms to check for missed areas whose validity in turn can be verified. Thus a 

security system can be checked for correctness in the design phase before the expense of 

implementation is incurred.

[TRC2003] has pointed out the paradigm of low-level to high-level interactions 

and that at each level, the needs of technology, the organization and government
■■ -J

mandates must be taken into account (Figure 4).
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Figure 4. Aspects of E-business security technical layers

“Approaches related to security of IS (Information Systems) are to be linked 

within appropriate methodology to achieve optimal and balanced solutions for an 

enterprise.” ([TRC2003] pg. 359). The security of E-business should be designed along 

with the E-business and not added in as an afterthought. Unfortunately IPsec is an 

afterthought to IPv4.

[DUF2002] has proposed a three-level architecture for security management for 

distributed multimedia services, arranged in three layers: service, middleware and 

network ([DUF2002] Figure 1, pg. 364) -  note that the unlabeled ellipses represent 

additional services and managers according to their layer (The ACM -  Association for 

Computing Machinery -  did not grant permission to reproduce this figure).

Note that functional concepts at a certain high level require implementation at its 

level and at all lower levels; for example the policy rules need handling here at the 

Middleware level as well as the Network level.
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[PAR2002] has proposed a “C-ISCAP” (Controlled Internet Secure Connectivity 

Assurance Platform), “which is an internet information security system based on IPsec.” 

(Figure 5).

CA

* .....
$em$ m i

SEMSinISE

SEMSi SEPSc AUTOKEM SEPScirroKEi

UKEMUKEM

SADB SADB

UGINE UGINE

C-ISCAP Architecture 
{CMtroIied-lnteritet Secure Connectivity Assurance Platform}

Figure 5. Another implementation-oriented layered architecture for IPsec management. Reproduced 

with kind permission of Springer Science and Business Media.

Here, ISE stands for “Internet Security Evaluation System”, which evaluates 

system safety and attempts to proactively identify threats. SEPS is the security policy 

database, SEMS is the Security Management System, “AUTOKEM” is the automatic key 

exchange mechanism, using a CA (Certificate Authority) to prevent “Man In The 

Middle” attacks, UKEM is the “Universal Key Management System”, SPDB is the 

Security Policy Database, SADB is the Security Association Database and “UGINE” is 

the “Universal IPsec Engine”.

24

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



In a follow-up paper, [KIM2002], it is proposed to use multiple secure IKE 

sessions in parallel when one C-ISCAP system needs to communicate with more than one 

other, by using different Diffie-Hellman random numbers in each signature to keep track 

of the different sessions. A “chicken and egg” dilemma, somewhat similar to the one 

mentioned before, would result if the policies for creating IPsec associations were to be 

distributed using IPsec. To improve communication between the UGINE and the SEPS, 

two separate stacks, one for each communication direction, are proposed.

A design at the Mechanisms and Primitives level was provided by [FER2005] in 

proposing a multi-accelerator. Each accelerator was provided with its own work queue 

and a scheduler distributed the work among the accelerators and the CPU (Central 

Processing Unit). A scheduling algorithm was developed that controlled this distribution 

of IPsec packet processing. Soft QoS (Quality of Service) could be supported in that 

higher-priority bit streams would be provided with a higher-priority access to the 

scheduler.

[LIM2003] proposed a system of policy distribution using a four-layer 

architecture of management, processing, consumer and target, with the policy data base 

serving the upper three layers. A policy server defines, stores, and configures policies for 

the ultimate target systems and the policies are distributed to the targets using IETF 

standard protocols: COPS-PR (Common Object Policy Service for PRovisioning) or 

SNMP; the Policy Information Base (PIB) standard is proposed in RFC 3159. The 

usefulness of this can be appreciated if a large company has tens or hundreds or more 

IPsec installations to be configured throughout a country or large region, in similar or 

different ways; automating the configurations helps to prevent human error.

[GAB2004] proposed an “Active Networks” architecture that contains policy, 

service, management as well as lower modules. This architecture is active in the same 

sense as the other architectures in this section in that it contains a policy layer and 

controlling and reactive elements. A “commodity” PC was used, containing an Intel P4 

2.2 GHz CPU with 512 Mbit RAM running Red Hat Linux 8.0; 396 packets per second
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could be processed when the user credential (such as an X.509 certificate) is only 

contained in the packet(s) and 1190 packets per second (three times the rate) could be 

processed when the user credential was already contained in the node. However, the size 

of packets used was not given.

[DON2004] proposes a Secure Name Service (SNS) to enhance availability 

between cooperating extranets. SNS only answers queries from trusted network domains, 

and returns a “secure handle” to a service, rather than an IP address as does DNS. “This 

SH (Secure Handle) is mapped to the real IP address of the host in the SNS framework by 

SGs (Security Gateways), and the IP address is only known to the SNS server and 

associated SGs.” ([DON2004] pg. 549).

As can be seen from the foregoing, the state of the art in the literature 

contemplates some systematic approaches to IPsec. What seems to be needed here is a 

unifying paradigm.

2.3.2. The Erfani Patent

[ERF2003] [USPTO] “outlined a comprehensive system and method for 

managing security in an electronic network,” composed of five functional layers: policy, 

management, service, mechanisms and primitives (see Figure 6 and the top row of Figure 

3). Just as the layered OSI model is a model optimized for the design of communication 

systems, this five-layer model is optimized for the design of security systems.
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Figure 6. The five-layer security framework, applied to IPsec

In previous work in the author’s group in the ECE department at the University of 

Windsor ([FAH2005], Section 4.2, pp. 84-94, and Chapter V), as noted before, these five 

layers have been “fleshed out” into modules and several operating scenarios have been 

described. Modules in the policy layer include: Prevention and detection of IPsec security 

violations, Network-wide IPsec implementation policy, and Disaster recovery. Modules 

in the management layer include: Policy control and management of security services, 

Event logging, IPsec services monitoring, User interface, Interoperability and Recovery 

and backup. Modules in the services layer include: Access Control, Integrity, 

Authentication, Confidentiality, Privacy and Rejection of replayed packets. Modules at 

the mechanisms layer are further subdivided into the following groups: Encryption, 

Message authentication, Key management, Certificates and Digital signatures. Finally, 

modules at the primitives layer are further subdivided into the following groups: Prime 

number generation, Modular arithmetic, Encryption, Hashing and Elliptic Curve 

Cryptography (ECC), although the latter is not yet used in IPsec. Additional modules at 

the policy level are SLA (Service Level Agreement) and User Information. Additional
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modules at the service level include Availability, although this service is not formally 

specified by the IPsec RFCs and is weak in IPsec (see Section 2.2.1., “Key Exchange”).

2.4. Implementations of IPsec

2.4.1. Software Implementations

It was found in [NAY2005] that the Free S/WAN implementation incurred greater 

performance degradation than 802. IX due to its end-to-end security with double 

authentication, a stronger encryption method as well as better key management and 

tunneling. One of their results was that in using DES for FTP (File Transfer Protocol), 

degradation of performance was worse than the degradation for HTTP (HyperText 

Transfer Protocol) in going from 802.IX to Free S/WAN.

In [KER1997], a software implementation of IPsec was done on Linux and 

several different versions of BSD (Berkeley Software Distribution). It was found that 

encryption of packets “was a major bottleneck”, resulting in a factor of ten decrease in 

throughput in a ping performance test. Authenticating packets caused no significant 

decrease in throughput in this test. Unfortunately their results for UDP (User Datagram 

Protocol) throughput and TCP transfer throughput were not reported in meaningful units 

-  for example it was not possible to discern the meaning of 5000 units of throughput in 

terms of “cpu time”. However, the factor of ten decrease in throughput using ESP was 

evident, and in these tests, the use of AH did make significant differences in throughput, 

reducing throughput by 30% and 50% in UDP transfer and 50% and 60% in TCP for 

MD5 and SHA-1, respectively.

In [KAN2004], an IPsec stack was developed for the Linux kernel 2.4 and 2.6 

series. HMAC-SHA-1 and HMAC-MD5 (HMAC: Hashed Message Authentication 

Code) were implemented for authentication, NULL, DES-CBC, and 3DES-CBC were 

included for encryption. This work was submitted to the Linux kernel maintainers; it had 

the advantage of simplicity, but it differed in the Security Association and Policy 

Database (SADB and SPDB) cache lookup system used in IPv4 and IPv6, leading to it
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being declined for use with Linux. Throughput and other numerical results were not 

reported in this work.

2.4.2. Hardware Implementations

2.4.2.1. FPGA Implementations

[DAN2000], “An Adaptive Cryptographic Engine for IPSec Architectures”, was 

the first to take advantage of compressibility of dynamic configurations. The AES 

finalists at the time, which were MARS, RC6, Rijndael, Serpent and Twofish, were 

implemented. Compared with software implementations, throughput speedup of 4 to 20 

times was achieved while the key setup time was reduced 20 to 700 times.

[BEL2002], “GRIP: A Reconfigurable Architecture for Host-Based Gigabit-Rate 

Packet Processing”, offloaded processor cycles onto a dedicated network interface, which 

allowed more bandwidth for the cryptography. Throughput of 50 Mbps were measured, 

possibly due to decryption failures of packets over 1500 bytes in size, and flow-control 

issues caused by the design of the header-processing logic.

In [CHE2002], “Implementation of an FPGA Based Accelerator for Virtual 

Private Networks,^ a 3DES core achieved 120Mbits/s in CBC (Cipher-Block Chaining) 

mode, three times as fast as a software implementation.

In [MCL2002], “A Single-chip IPSEC Cryptographic Processor,” a single-chip 

IPsec cryptographic processor was implemented on a single XCV1000E Xilinx Virtex 

FPGA. Throughput results were 310 Mbps for AES and 78 Mbps for SHA-1.

In [KIM2004], “Design and Implementation of a Private and Public Key Crypto 

Processor and its Application to a Security System,” AES: 390, 3DES: 267, SEED: 358 

and KASUMI: 568 Mbps were achieved using an FPGA. Parts of the processor were later 

implemented in 0.5pm CMOS. To test and demonstrate the chip, a custom board
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providing real-time data security for a data storage device was developed. It encrypted all 

data going to the hard disk and decrypted all data leaving it.

In [LUJ2005], “IPSec Implementation on Xilinx Virtex-II Pro FPGA and Its 

Application,” IKE was done in the Power PC portion of the FPGA; the hardware invoked 

the software only when necessary. Throughput result were AES: 1197, SHA-1: 304 and 

MD5: 277 Mbps.

These all reach to the Services Layer -  no higher.

2.4.2.2. FPGA Implementations of Primitives

2.4.2.2.I. AES

As noted before, Rijndael was chosen as AES in October 2000 [REJ2003].

In [JAR2003], a Finnish reference, a fully-unrolled implementation of Rijndael 

was done using a Xilinx Virtex-II FPGA, implementing the S-Boxes (Substitution Boxes) 

combinatorially. It was designed fully pipelined so that a new data-key pair can be input 

at every clock cycle. The design consists of eleven separate blocks. Throughput results 

were 17.8 Gbps for an individual block, but overall throughput in a cipher feedback mode 

such as CBC, was not reported.

In [STN2003], a reference from Belgium, another fully-unrolled implementation 

of Rijndael was done. Using the Xilinx Virtex E FPGA LUTs (Look-Up Tables), 

throughput of 1,563 Mbps was achieved, and using the RAM to implement the S-Boxes, 

throughput of 11,776 Mbps was achieved.

A final-round contender for AES, Serpent, was implemented on a Xilinx Virtex 

XCV1000 FPGA in [ELB2000]. Four different architectures were implemented: Iterative 

Looping, Iterative Looping with Partial Loop Unrolling, Full Loop Unrolling and Full 

(32-stage) pipelining. Throughputs achieved were 61.92 Mbps, 444.16 Mbps, 312.32
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Mbps and 4.86 Gbps, respectively, although the final one was in ECB (Electronic Code 

Book) mode only. Software could process Serpent at a rate of 26.90 Mbps of throughput.

2.4.2.2.2. Hashes

In [KAN2002], SHA-1, HAS-160, and MD-5 were implemented on one chip, an 

Altera EP20K FPGA. Combining SHA-1 with HAS-160 reduced the required logic 

elements by 27%. Throughput results depend on the speed grade of the device; grade 3 

was used. Results were 114,160 and 142 Mbps, respectively.

In [ZIB2003], a Chinese reference, the SHA-1 algorithm was implemented on an 

Altera EP1K FPGA and a maximum throughput of 268.99 Mbps was achieved.

In [KHA2005], a reference from the University of Victoria, BC, Canada, the 

similarities between MD5, SHA-1 and RIPEMD-160 (since they are based on an earlier 

hash function, MD4) were used to design one chip to perform all three; a LUT (Look-Up 

Table) design on a Xilinx Virtex II FPGA. Simulation only was reported; in that, 

projected throughput was 145.72,116.94, and 116.94 Mbps, respectively.

In [DEE2001], a reference from the Memorial University of Newfoundland, 

Canada, two implementations of MD5 using iteration and full-loop unrolling were done 

on a Xilinx Virtex V I000 FPGA with a clock rate of up to 200 MHz. Throughput was 

165 and 354 Mbps, respectively.

2.4.2.3. ASIC (Application-Specific Integrated Circuit) Implementations

In [WUL2001], “CryptoManiac: A Fast Flexible Architecture for Secure 

Communication,” 0.25 pm standard-cell technology was used to implement the 

“CryptoManiac” processor, a 32-bit VLIW (Very Long Instruction Word) dedicated 

cryptographic processor which contains four functional units each with an adder, a lkB 

S-Box cache, two logical units for instruction combining, a rotator, and two multipliers.
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A specialized instruction set optimized for running cryptographic algorithms was 

provided. One key innovation was combining arithmetic and logical operations within a 

single cycle, since the latter type of operation often follows the former in cryptographic 

processing, allowing the processor clock cycle to be better used. The best results for 

Rijndael (AES) that were achieved was about a 64 Mbps encryption rate, superior for a 

software implementation.

2.4.2.4. ASIC Implementations of Primitives

In [WAN2004], an ASIC implementation of SHA-1 and MD5 was done using 

0.25 pm CMOS technology; their innovations were reduced hardware complexity in 

reducing the number of multiplexers and hardware sharing by using common hardware 

for both algorithms. Throughput results were 417 and 520 Mbps for SHA-1 and MD5, 

and about 94 and 117 Mbps when digital signing of these hashes was required.

In [REJ2003], two ASIC implementations of Rijndael were done using 0.13 pm 

CMOS technology; in one, only one lookup table was used to implement the S-Box used 

for all rounds and access to it is pipelined between rounds. In the other, separate S-Boxes 

were implemented in order to use them concurrently. Both implementations achieved 

2.56 Gbps of throughput in feedback modes.

2.4.3. Conclusion of the “Implementations” Section

In conclusion and summary, the heavy overhead incurred by encryption mandates 

hardware acceleration. Software running on a general-purpose processor can typically 

produce AES (Advanced Encryption Standard), i.e., Rijndael, throughputs of low tens of 

Mbps (i.e., 30) [DAN2000]. 70.5 Mbps using Visual C++ was achieved, as reported in 

[MR02000]. FPGAs (Field-Programmable Gate Arrays) can achieve up to 176 Mbits/s 

implementing DES (Data Encryption Standard) and up to 964 Mbits/s implementing AES 

[WOL2004]. An ASIC processor achieved 2.29 Gbits/s of AES throughput in a 0.18pm 

CMOS standard-cell technology in 2002 [SCH2002], [VER2003],
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None of these implementations used a comprehensive functional architecture such 

a the present, proposed, five-layer framework.

2.5. An IPsec Application

[GOD2002] used IPsec to secure a wireless gateway. The Microsoft Windows 

2000 implementation -  i.e., a software implementation -  of IPsec was used; but the WEP 

(so-called “Wired Equivalent Privacy”) implementation was not specified. A Buffalo 

WLIPCM-11 wireless network interface PC card was used. Throughput was 604 kBps 

unencrypted, 458 kBps using 40-bit WEP, 355 kBps using IPsec with DES and MD5 and 

209 kBps using IPsec with 3DES and SHA. Multiply by 10 to get speeds in bits per 

second (bps), which are believable in terms of the roughly 30 Mbps maximum throughput 

possible using software implementations of IPsec.

2.6. High-Level Synthesis for Hardware Implementations

UML (the Unified Modeling Language) [JAC1998] was considered as the design 

language for the FPGA portion of this project, but was rejected as not suitable because it 

was object-oriented, too high-level and tools to program FPGAs were not available.

Simulink, a software package by Mathworks Inc., was considered. In a user 

report, “The engineers at SELEX generated a specification for what they wanted the 

FPGA to do using Simulink and used Xilinx System Generator for DSP to program the 

FPGA to match the Simulink model,” [MAT2006].This was found to be aimed at DSP 

(Digital Signal Processing) and required the basically manual step of replacing the 

Simulink standard blocks with Xilinx standard blocks.

According to a tutorial on HLS (High-Level Synthesis), there are many 

unanswered questions when it comes to using this technique in a complete context.

“Much work needs to be done before synthesis becomes really practical,” ([MCF1988] 

pg. 335). According to [COM2002], HLS tends to produce larger and slower designs than
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structural description can produce. Its descriptions can leave many aspects of the circuit 

unspecified. Also, optimizing for the bit width of operands cannot be done.

In [LIH2005], the rather heroic measure of inserting a timing and netlist control 

guidance stage between the place and route steps of physical synthesis for ASICs had to 

be done. It is reported that there are very few algorithms that have been proposed to make 

the HLS tool aware of the layout information, so that the resulting physical design can be 

improved.

Investigating SystemC, a HLS language, “The performance of this simulation 

kernel is not to be compared with that of commercial VHDL/Verilog simulators at the 

present,” ([WIKIP], SystemC). Also, the size and complexity of SystemC models 

becomes too large to be practical in modern design projects, and new tools are being 

researched to deal with the complexity [GEN2006].

HLS is an open area of research (Dr. M. Khalid, in personal conversation, May

2006).

As a result of these investigations, the Xilinx ISE (Integrated Software 

Environment) and EDK (Embedded Development Kit) software packages were chosen, 

due to availability, as well as availability of compatible hardware development boards 

such as the Xilinx “Microblaze” (or “Multimedia”) boards, which are equipped with 

Xilinx Virtex II FPGAs. HDL (Hardware Description Language) programming in VHDL 

or Verilog was chosen, rather than attempting to use HLS.

2.7. Random Number Generators

Since an RNG (Random Number Generator) was incorporated in this work, some 

background on PRNGs (Pseudo-RNGs) and CSPRNGs (Cryptographically Secure 

PRNGs) was investigated.
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It is desirable to have an RNG to generate keys and IVs (Initial Vectors), for if the 

users were entrusted with this task, they would skip it as a time-consuming burden, 

leaving them set to all zeroes, or provide short and simple values, or naturally provide 

predictable values. IVs are often sent in the clear and only need to be different, since their 

purpose is only to vary the ciphertext. However, it should not be possible to predict the 

future values or determine the previous values used for keys, in case some become 

known to an attacker. An RNG which has the property of difficulty of determining past or 

future values from current values is known as cryptographically secure. For testing, it is 

useful to use a PRNG for its repeatable output. For actual use, the PRNG is seeded with 

an initial value taken from randomly-occurring values, such as the time of day, the value 

of a free-running counter or the time delays determined between user activity. Many such 

values are often combined together, often using the XOR (Exclusive-OR) operation, for 

the greatest possible unpredictability.

To make an exhaustive search -  involving trying all possible values (somewhat 

inaccurately known as “brute force”) -  attack impractical, a long sequence, known as the 

“period” or “cycle length”, before the PRNG repeats, is important. A well-designed 

PRNG has a cycle length of 2e, where e is the number of bits in the state; the “state” is the 

core “word” on which the PRNG operates and which provides the source of the bits of 

the output number) [LEC1998]. The number of bits in the state is also known as the 

“linear complexity”, of a linear PRNG, of course [WAL2007]. A good PRNG has a cycle 

length of over 2200 [LEC1998]. The “Mersenne Twister" algorithm has a period of 

(219,937)-1 ([WIKIP], “Pseudorandom_number_generator”).

Linear PRNGs, such as LFSR (Linear Feedback Shift Register) types suffer from 

predictability [HP12006]. For example, an LFSR was developed that operated at high 

speed, low power and high precision and was useful in general communication systems, 

RADAR (RAdio Detection And Ranging) signal simulation and processing environments 

where random numbers exhibiting more than one type of statistical distribution were 

needed [WEI2004], but would not be completely useful for cryptography. In order to be 

cryptographically secure, the RNG should perform well in strict statistical tests. One such
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is the “DIEHARD” series of tests, developed by George Marsaglia at the Florida State 

University Department of Statistics ([SOT1999], pg. 2), [MAR1995], which consists of 

fifteen different tests (see also [WIKIP], “Diehard_tests”, for an intuitive description of 

each). "The higher the entropy in a series of numbers is, the more difficult it is to predict 

a given number on the basis of the preceding numbers in the series," [HAA1999]. "True 

random numbers are independent from each other and therefore unpredictable but they 

are rarely employed," [KAR2000]. For more comments on randomness required for 

cryptography, see [RFC 1750].

AES itself makes a fine CSPRNG with an enormous period [HP12006]. It could 

be used to encrypt the value of a counter beginning at some seed, using CBC or some 

other mode, which would give a period of 2b, where b is the cipher block length (128 to 

256, for AES) ([HEL2003] pg. 324); it could also be used to repeatedly encrypt its own 

output (as in CBC encrypting blocks of all zeroes), but the period cannot be guaranteed 

using this method ([HEL2003] pg. 324). The foregoing could be done, of course, starting 

with some seed IV. AES also has tremendous non-linearity included in its design 

[FIPS197].

36

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CHAPTER III

DESIGN AND METHODOLOGY

3.1. Design of an FPGA AES Hardware Accelerator

3.1.1. Introduction

The AES cipher was chosen in October 2000 [REJ2003], to replace DES (Data 

Encryption Standard) which is now too computationally intensive to use in obtaining 

good security, given that it has to be run three times to obtain an effective key length that 

is sufficiently secure.

3.1.1.1. Overview of AES

AES is a ten-round substitution-permutation cipher [FIPS197]; it carries the 128 

(or 192 or 256)-bit plaintext value through “rounds”, i.e., repetitions of the four 

processing steps, which are: XOR with the “key permutation” or “key expand” value for 

that round (i.e., the round key), substitute (sub) bytes using an “S-box”, shift rows and 

mix columns, to convert it into the ciphertext. The value being carried is known as the 

state. The inverse cipher does each round in reverse order, meaning that an inverse S- 

box, and an inverse mix columns function are required. The same key expand values are 

applied, in reverse order. A former name of the algorithm chosen as the AES, Rijndael, 

was “Square”, as can be seen after. Rather than attempting a repetition of the complete 

details of AES, an idea, or the “flavour” is presented here and the reader is referred to the 

standard for the complete details [FIPS197].

The difference between Rijndael and AES is that Rijndael is defined for block and 

key sizes of every increment of 32 bits from 128 to 256 bits, inclusive, whereas AES has 

a fixed block size of 128 bits and key sizes of only 128,192 and 256 bits ([WIKIP], 

“Advanced_Encryption_Standard”). The 128-bit key size definition was chosen to 

implement for this project, for simplicity.
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The following listing shows the pseudo-code for the AES encryption cipher 

[FIPS197]:
Cipher (byte in[4*Nb], byte out[4*Nb], word key[4*Nb])

byte state[4*Nb], w[4*Nb, Nr+1], state[4*Nb], integer round 
state = in
ComputeRoundKey(key, w[kx, 1])
AddRoundKey(state, w[kx, 1]) 
for round = 1 step 1 to Nr-1

ComputeRoundKey(key, w[kx, round+1])
SubBytes(state)
ShiftRows(state)
MixColumns(state)
. AddRoundKey(state, w[kx, round+1) 

end for
ComputeRoundKey(key, w[kx, Nr+1])
SubBytes(state)
ShiftRows(state)
AddRoundKey(state, w[kx, Nr+1) 
out = state

Note: Nb: number of blocks, Nr: number of rounds, w: key expand array, kx: key 
permutation, 4: 4 bytes, i.e., each block is 4 bytes, or 32 bits.

and the inverse, or decryption cipher:

InvCipher(byte in[4*Nb], byte out[4*Nb], word key[4*Nb] ) 
byte state [4*Nb], w[4*Nb, Nr+1] 
state = in
ComputeRoundKey(w[kx, 1])
AddRoundKey(state, w[kx, 1]) 
for round = Nr-1 step -1 downto 1 

InvShiftRows(state)
InvSubBytes(state)
ComputeRoundKey(w[kx, round+1])
AddRoundKey(state, w[kx, round+1) 
InvMixColumns(state) 

end f o r .
InvShiftRows(state)
InvSubBytes(state)
ComputeRoundKey(w[kx, Nr+1])
AddRoundKey(state, w[kx, Nr+1) 
out = state

Note that, in spite of the pseudo-code provided by the FIPS (Federal Information 

Processing Standard), in decryption the entire set of round keys must be computed before 

decryption can begin, since the last must be used first. For AES-128, Nb=4 and Nr=T0. w 

is chosen to represent the array of key expand values in [FIPS 197].
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3.1.1.1.1. Round Keys

The round keys, or “key expand values”, are permutations of the key. The first 

“permutation” is the key itself. In each round, this is XORed with the “sub-bytes” 

(substituted bytes) of the current key permutation value rotated left by 8 bits, using the 

same S-box as do the rounds, i.e., “key XOR (sub(rot(key)))”. Also, the high-order byte 

of each 32-bit portion of the 128-bit block is XORed with the output of a function of the 

round step in which the HOB (High-Order Byte) is determined from Table 3. This 

function is called “Rcon” (Round Constant), where Rcon(step) = [2(step'1){00} {00} {00}] 

in GF(28) [FIPS 197]. (GF: Galois Field).

Round 01 02 03 04 05 06 07 08 09 0A
Rcon

(HOB)
01 02 04 08 10 20 40 80 IB 36

Table 3. The AES round constant (hex)

Figure 7 [FIPS 197] illustrates how the round key is added in each round. Each 32- 

bit block of the round key is XORed column-wise to a matrix formed from the bytes of 

the state.
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Figure 7. AES add round key

39

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



3.1.1.1.2. Substitute (“Sub”) Bytes

Figure 8 [FIPS 197] illustrates the substitution process. Each byte is replaced, on 

an individual basis. This operation introduces non-linearity.

%

3 oa

S r ,c
1,2

•V2.0 *2,3S 2A S2,2

*%.o S3A 33,2 %

S-BOX
%,0 50J h ,2 ^0,3

%
s

1
V *1.3

« 9 *

O h i 1?2,2: ^2,3

% 4,1 SX2 S3J

Figure 8. AES "sub"-bytes

3.1.1.1.3. ShiftRows

Figure 9 [FIPS 197] illustrates how each row is shifted, each by one successive 

byte extra.
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Figure 9. AES shift rows

3.1.1.1.4. Mix Columns

Figure 10 illustrates how the “Mix columns” operation is applied. The operation 

itself is a complex and staggered combinatoric operation done to each byte of each 32-bit 

block (column) in the matrix.
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Figure 10. AES mix columns application

3.1.2. Technology

As noted before, Xilinx was chosen for tool availability on the desktop PC 

(Personal Computer) used for this research, which had a 2.39 GHz motherboard 

containing a “Celeron” CPU and 256 MB of RAM. The Xilinx software packages used 

were version 8.2i of: the ISE (Integrated Software Environment -  8.2.03i, specifically) 

and the EDK (Embedded Development Kit, version 8.2.01i, specifically).

In the ISE individual modules are built -  including even an entire project instance 

from the EDK - ,  simulated, and loaded as a “bit file” or “bitstream” to a target board, 

whereas in the EDK individual modules are put together, such as the Power PC (PPC), 

RS232/UART (Universal Asynchronous Receiver-Transmitter) module and any user IP 

(Intellectual Property) that was developed, and entire systems are built [XILQST], 

[XILIDT].

The Xilinx ML403 board, shown in Figure 11, an embedded system, was chosen 

for this research; the board includes a Xilinx Virtex-4 FPGA which in turn contains a 

hard-core PPC 405 -  the XC4VFX12-FF668 [XILUG80] (a “hard-core” device is actual 

device with its design doped into the semiconductor, as opposed to a “soft-core” device, 

which is implemented by means of the FPGA fabric). The Virtex-4 was the next to most
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recent version in the Xilinx Virtex series; it is a general principle never to buy version 

one of anything (even the first of a new sub-version of an existing series). Moreover, the 

board had a reasonable price, of $495 US, as of June 2006.

r !-•vwrmsx-**■■■■■I

Figure 11. A photograph of the Xilinx ML403 board

3.1.2.1. Specific Virtex-4 FX12 FPGA Features

The Virtex-4 FPGA contains four embedded Digital Clock Managers (DCMs) 

that can divide the clock and provide an additional three clock phases at each multiple of 

ninety degrees [XILV4DS].

It also contains on-chip BRAM (Block RAM) useful for small software programs 

up to 128kB [XILML403T] and which is available for use instead of the FPGA fabric 

when appropriate, Such as for ROMs (Read-Only Memories) and RAMs. The Xilinx 

“primitive” name for individual portions of BRAM is RAMB16 -  individual elements 

incorporated in Xilinx FPGAs are known as “primitives” within the Xilinx company (not
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to be confused with the use of the term “primitive” in this work to mean the lowest-level 

functionality of a security system). The XC4VFX12 has thirty-six 18kB blocks of BRAM 

[XILV4DS].

The XC4VFX12 FPGA also contains 5,472 cells, or “slices”, of FPGA fabric 

containing 10,944 LUTs (Look-Up Tables) at two LUTs per slice, which is relatively 

small compared to the 10,752 slices (21,504 LUTs) of the Virtex-II FPGA in the Xilinx 

“Microblaze” boards [XILV4DS] [XILV2DS], however, those FPGAs (XC2V2000- 

FF896) do not contain the hard-core PPC. Note that the suffix of the part number, such as 

FF668 or FF896, refers to the package type and number of pins [XILPKG].

3.1.2.2. ML403 Board Features

The ML403 board has a 100 MHz clock -  which means a 10 ns clock period, and 

it has an expansion header of many pins, connected to FPGA pins on the circuit board, 

which is very useful for oscilloscope measurements. It has an RS232 serial port, 1MB of 

SRAM (Static RAM), and a JTAG (Joint Test Action Group) port for downloading the 

firmware and debugging. A special cable, the “PCIV”, or “Parallel Cable IV” 

(pronounced “PC-four”) cable is required to connect from the PC parallel port to the 

JTAG port.

In addition to the XC4VFX12 FPGA, the board also has an ACE (Advanced 

Configuration Engine -  XCCACE), Flash EEPROM, (XCF32P, 8 MB), a CPLD 

(Complex Programmable Logic Device -  XC95144XL), a Flash Configuration controller, 

an EEPROM (4kb IIC -  Inter-IC bus -  interface), an LCD (Liquid Crystal Display) 

screen, push buttons, LEDs (Light Emitting Diodes), and other features. For the purposes 

of this work, only the PPC and FPGA (integrated together in one) chip was used, of the 

major ICs available on the ML403 board.

3.1.3. Selection of the Base Design
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The various designs examined for use as a starting point were as follows. The 

design by Rudolf Usselmann of ASICs, ws [USS2002], done in Verilog, was clearly 

documented, with detailed synthesis results for a Xilinx Spartan He XS2V200-6 FPGA, 

so it was chosen. Others looked at were a low-area implementation done in SystemC 

requiring 500 clock cycles to encrypt or decrypt a block for the 128-bit AES algorithm 

[VILL22005], a 128-bit implementation done in VHDL [SAT2004], a work in progress 

only tested at the gate level with placement and routing still to be done [HUR2002], and 

an advertised “Ultra High Speed AES (Rijndael) Crypto Processor,” not in the public 

domain [DEV2003],

3.1.3.1. Some Aspects of the Usselmann Design

The Usselmann design [USS2002] included a text in vector to input the plaintext 

(or ciphertext, in the case of the inverse transform, or decryptor), a key vector to input the 

key, a text_out vector to output the ciphertext (or plaintext), a keyload signal to initialize 

the key expand values from the key, and a “load” signal to initiate the transform. In the 

encryptor, keyload was connected to load because the key expand values are generated as 

the rounds require them, but in the decryptor, keyload was a separate input. There was a 

done pulse output in both, and a keydone output for the decryptor, indicating that the key 

expand values were generated and stored internally. Keyload only had to be repeated in 

the decryptor if the key was changed, but it had to be done before the inverse transform 

using that key could be done, which is always the case, since the inverse transform 

requires the last key expand value first.

This design features the S-box instantiated sixteen times, to process each of the 

bytes of the state simultaneously each round. This increases speed at the expense of 

FPGA slices and/or FPGA resources such as BRAM, since the S-boxes are realized as 

ROMs.

3.1.4. Architecture Provided by Xilinx
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For the user peripheral, Xilinx provides the outer wrapper VHDL, named after the 

user peripheral, and a core, named user_logic.vhd [XILUT2003], [XILML403T] for 

VHDL, if VHDL is chosen, or “.v”, if a Verilog implementation is selected. The outer 

wrapper is an IPIC (IP -  Intellectual Property -  Interconnect) which instantiates the IPIF 

(IP InterFace) for the OPB (On-Chip Peripheral Bus) -  the IPIF is a subset of the OPB -  

and user_logic.vhd, and interconnects them. Note that here IP stands for “Intellectual 

Property”. In this work, the AES encryptor and decryptor were implemented as two 

separate user peripherals, called “aes_enc” and “aes_dec”, respectively.

JTAG

P.BV34 -  » «

-  I *'11
™  °BP“ S ?

PROC Si 
RESEl

BRA;
BLOCK

O Pb UART 
1 c5u

OPB LTHERNCP'O

External PHY
jy&£js£yESiiiML

Figure 12. Xilinx system architecture

Referring to Figure 12 ([XILUT2003] pg. 21), the OPB also serves such 

peripherals as the UART and GPIO (General-Purpose 10), that may be instantiated as 

modules using the Xilinx EDK, and is connected via the “PLB20PB” bridge to the PLB 

(Processor Local Bus) which is connected to the PPC CPU. The PLB also connects to the 

BRAM via a controller module. The DCM modules connect to the PPC and to the busses. 

The JTAG port connects to the PPC. The modules required are added in the EDK using
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the BSB (Base System Builder) wizard or from the available peripheral window pane on 

the left in the EDK [XILML403T].

Xilinx provides the standard IP cores used, such as the UART. In this work, a 

communication speed of 57,600 kbps was chosen using the BSB.

Xilinx provides an interface in the user_logic file itself for the user to interface 

with the outer wrapper -  the user programs the slv_regs (“slave registers”) from software 

and can access them in the user logic core using the VHDL shown after (or Verilog, if 

selected). Xilinx also provides the software libraries in C source code to access the slave 

registers via software,

The C code to read and write the slvregs, provided by Xilinx is shown here (the 

first line is just an associated variable declaration).
Xuint32 Reg32Value = 0;
Reg32Value = AES_ENC_mReadSlaveRegO(XPAR_AES_ENC_0_BASEADDR);
AES_ENC_mWriteSlaveRegO(XPAR_AES_ENC_0_BASEADDR, Reg32Value);

For a decryptor instruction, “ENC” is replaced with “DEC” in both places in each 

instruction. For a different slv_reg, the “0” in “SlaveRegO” is changed to the desired 

number, from 0-12 (decimal notation).

The user fills in the rest of user_logic with his HDL -  in this work, the Usselmann 

core’s top level-file. The outer wrapper is fully provided by the Xilinx tools 

[XILML403T] and does not need to be modified by the user unless the user desires to add 

something extra, such as an external connection of a signal to an FPGA pin, as was done 

in this work. The outer wrapper is always in VHDL and interface is accomplished using 

the default binding rules if userjogic is in Verilog ([XILIPTS3] pg. 28). The default 

binding rules state, in part:

If the entity name is the same as the component name, then this entity is
bound to the component.

If there are multiple architectures for the same entity, the last compiled
architecture for the entity is chosen [MAR2003].
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The following is a portion of user_logic.vhd -  showing the “slave register” 

interface provided by Xilinx:
SLAVE_REG_WRITE_PROC : process(Bus2IP_Clk) is 

begin
if (Bus2IP_Clk'event and (Bus2IP_Clk = '1')) then 

if (Bus2IP_Reset = '1') then 
slv_regO <= (others => '0');

else
case slv_reg_write_select is 

when "1000000000000" =>
for byte_index in 0 to (C_DWIDTH/8)-1 loop 

if ( Bus2IP_BE(byte_index) = '1' ) then
slv_reg0(byte_index*8 to byte_index*8+7) <= 

Bus2IP_Data(byte_index*8 to byte_index*8+7);
. end if; 
end loop;

[ .  . . ]

when others => null; 
end case; 

end if; 
end if;

end process SLAVE_REG_WRITE_PROC;

SLAVE_REG_READ_PROC : process( slv_reg_read_select, slv_reg0, 
slv_regl, slv_reg2, slv_reg3, slv_reg4, slv_reg5, slv_reg6, slv_reg7, 
slv_reg8, slv_reg9, slv_regl0, slv_regll, slv_regl2 ) is 

begin
case slv_reg_read_select is

when "1000000000000" => slv_ip2bus_data <= slv_reg0;
[. • •]

when others => slv_ip2bus_data <= (others => '0'); 
end case; 

end process SLAVE_REG_READ_PROC;

3.1.5. VHDL in Xilinx

Variables are called “signals” in VHDL (in Verilog, “wire”, or “reg”), and arrays 

of signals are called “vectors”, typically declared as “std jogic” -  “standard logic” in 

which the values allowed are shown in Table 4. Typically only “0” and “1” are used, and 

“U” and “X” appear in practice, as found in this work.

U Uninitialized
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X Forcing Unknown

0 Forcing 0

1 Forcing 1

z High Impedance

w Weak Unknown

L WeakO

H Weak 1

- Don’t care

Table 4. IEEE VHDL std_logic values

Signal processing is typically done within “processes”, each of which are 

associated with a clock edge. Most conditional logic blocks can only be implemented 

within processes. However, boolean logic and assignments can be done 

“asynchronously”, but that should be kept to an absolute minimum in Xilinx VHDL for 

FPGAs. The format of a process block is shown:
MY_PROC: process (myclk, myrst) 
begin

if (myrst = '0') then 
myvar <= 'O'; 

elsif (rising_edge(myclk)) then
[insert your logic involving myvar, etc., here] 

end if; 
end process MY_PROC;

Note the standard reset signal, myrst and its syntax. This block and its elsif can be 

omitted, keeping only the contents of the “elsif’. The part in parentheses after the key­

word “process” is called the sensitivity list. The process will activate only when a signal 

in the sensitivity list changes.

Note that (myclk’event and (myclk = '1')) is equivalent to (rising_edge(myclk)) 

and that (myclk'event and (myclk = ‘0')) is equivalent to (falling_edge(myclk)) 

[XILXST].
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Typically, “non-blocking” assignments are used in signal processing, which 

means that all assignments in the process are done simultaneously from the input data 

when the clock edge occurs. The syntax for a “non-blocking” assignment is “<=”. In a 

“blocking” assignment, one assignment is performed first before the next is done; the 

syntax for this is Blocking assignments are often used in logic “functions,” which 

implement combinatorial logic.

The value of a signal can be determined in complex ways and set in its own 

process, but write conflicts will occur if a signal is controlled from more than one 

process. However, signals can be used for “read” purposes in different processes. If it is 

attempted to reset signals using a non-reset signal in the standard reset syntax, the signal 

will be interpreted as a reset signal and will be connected to the design reset, causing 

write conflicts. Using the syntax in the Xilinx manuals is mandatory if  one wishes to 

accomplish one’s intention with Xilinx VHDL [XILXST]. As an example, the “case 

statement” cryptographic S-box had to be put in a process to be properly recognized as a 

ROM, or else the Xilinx synthesis tool would interpret the block as an asynchronous 

RAM and remove all but one of the required instances.

For another example, the VHLD for a dual-port RAM is shown:
process (elk) 
begin

if (elk1event and elk = '1') then 
if (we = 11 1) then

RAM(conv_integer(a)) <= di; 
end if; 
read_a <= a; 

end if; 
end process;
do <= RAM(conv_integer(read_a));

Note: we: write enable, a: address, do: data out [XILXST].

This is the only type of syntax that will be recognized by the Xilinx synthesizer as a dual 

port RAM.
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Fortunately, assignments between vectored signals declared as big-endian and 

little-endian (see section 3.1.7.1., “Core Design and other Modifications” for 

explanation) are straightforward; e.g.:
signal -key : STD_LOGIC_VECTOR (127 downto 0);
signal slv_regl : std_logic_vector(0 to C_DWIDTH-1);
key(127 downto 96) <= slv_regl;

bit 0 of slv_regl will be assigned to bit 127 of the variable key, and so on to bit 31 

(i.e., C_DWIDTH-1) of slv regl assigned to bit 96 of key.

Note that range assignment is flexible; e.g.:
signal wO, wl, w2, w3: STD_LOGIC_VECTOR(31 downto 0);
Type kbarray is array (10 downto 0) of STD_LOGIC_VECTOR(127

downto 0);
signal kb: kbarray;
w3 <= kb(conv_integer(read_kb))(127 downto 096);

and can be applied to the output of arrays, as shown.

3.1.6. Working with the Xilinx Tools

When building a module or an entire project in the Xilinx ISE, the simulation 

stages available are behavioral, post-translate, post-map and post-PAR (place and route), 

reflecting the build stages: design entry (behavioral simulation), synthesize and translate 

(post-translate), map (post-map) and PAR (post-PAR simulation) (Note that Xilinx uses 

the US spelling of “behavioural”). In synthesis, the HDL is recognized and represented as 

logic components such as AND gates, counters, ROMs, and so on. “Translate” is a 

technical stage in which the “netlisf ’ (the list of circuit connections) format is converted. 

In map, the logic components are expressed using the type of logic cells available in the 

FPGA, which contain two LUTs per cell, or “slice”, a multiplexer and two flip-flops. In 

“place”, specific logic cells in the FPGA are chosen for the mapped content, and in 

“route”, the FPGA switching fabric, which makes up three-quarters of the FPGA, is set 

with the necessary electrical connections.

BRAM resources are automatically used for ROMs by XST (the Xilinx Synthesis 

Tool). When necessary, separate vectors can be used to contain data instead of using
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ROM syntax, and also distributed LUT (Look-Up Table) ROMs, available from the 

Templates in the ISE, are available.

When using the EDK and making changes to the design [XILML403T], “Project 

—> Clean All Generated Files” must be done, or the changes will not be recognized.

Simulation has some differences from implementation -  the Unisim library is 

required for post-PAR simulation, but only required for implementation in modules 

containing the LUT ROMs -the Unisim library declaration is shown:
library UNISIM;
use UNISIM.VCOMPONENTS.ALL;

The following IEEE libraries were required:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

However, the following two have to be commented-out in order to support 

convjnteger for array index addressing (conv_integer is used to converting std_logic to 

an array index) when that is used:
Use ieee.numeric_std.all;
use ieee.std_logic_arith.all;

The file containing input stimulus to feed to the design for simulation is called the 

“testbench”. Input setup times and output valid delay settings in the testbench must equal 

or exceed the “minimum arrival time before clock” and “maximum output required time 

after clock” specified in the synthesis report or simulations will not succeed.

Mentor Graphics ModelSim XE III 6.1e starter edition was used for simulation, 

which was quite reliable, and allowed examination of interior design signals, which was 

not possible with the simulator provided with the Xilinx ISE. Moreover, simulation of 

advanced build stages, such as post-PAR, in the Xilinx software was very much “broken”
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and unusable. The ISE allows selection of different simulators when the Xilinx project is 

created, and when working with the project. A VHDL vector is normally represented as a 

single line in simulation output and can be set for display or input in various radices 

(bases), such as hexadecimal, decimal, octal and binary.

3.1.6.1. Simulation Test Methodology

Simulation results, of the encryptor and decryptor core designs, were initially 

verified using an available Javascript implementation that showed the results and 

intermediate values of the transform and its inverse [STY2006]. Due to problems 

encountered in higher orders of simulation, such as post-translate and post-map, in which 

portions of the key expand values were being apparently duplicated, due to not making 

the S-box synchronous, and using insufficient “input setup time” and “output valid delay” 

timing specifications in the testbench, respectively, the arbitrarily-chosen and somewhat , 

redundant key of 466E6172 676C6572 20426C61 67686572 (hex.), which was the ASCII 

(ANSI Standard Code for Information Interchange -  ANSI: American National Standards 

Institute) for "Fnargler Blagher", was changed to 01020304 15161718 292A2B2C 

3D3E3F42 (hex.), which has no planned ASCII meaning, for simulation, so that each 

byte would be unambiguously unique.

3.1.6.2. Software Loading, Running and Debugging

Xilinx includes the GDB (GNU DeBug -  GNU: “GNU is Not Unix”) software. 

Before invoking that, XMD (Xilinx Microprocessor Debug) must be started and 

connected to the Power PC target (see [XILEST], chapters 10-12). The icon to launch 

XMD is visually identifiable as a bug in a box. Connection is automatic. Experience 

showed however, that it was necessary to disconnect and reconnect in order for GDB, ; 

especially, to successfully operate: enter the command “disconnect 0”, and then “connect 

ppc hw” in the XMD window (the quotes are delimiters here and not included in the 

command). XMD appears similar to a DOS (Disk Operating System) window and DOS 

commands will work. The user can change directories, for example. To test the compiled
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and linked software without using GDB, the command “dow executable.elf ’ can be used 

-  but it is necessary to change to the directory containing “executable.elffirst, “run” 

launches execution; “stop” stops it. This is useful since the debugger slows execution so 

much that RS232 communication is prevented. If debugging is desired, GDB can be 

launched by clicking the icon next to the XMD icon, which is of a bug (not in a box). 

This method is also useful for loading larger amounts of code to SRAM, when the code 

size exceeds that available in BRAM.

3.1.7. AES Design Done in this Work

3.1.7.1. Core Design and other Modifications

Figure 13 shows the modules and their hierarchy in the encryptor and decryptor 

design, modified from that found in [USS2002]: the top-levels were renamed 

“user_logic” as required by Xilinx, and the higher-level wrappers needed for bus 

interfacing were added.

Xilinx me Wrapper
aes anc.vhd

I
Xilinx IPIC Wrapper

a es  dec.vhd

user logic vhd I
la&JL&M
userjogic.vhd

assJ»y„*xpar»dL i2S.vhd aes_.st30x.vhd

Inverse SBm  
CB8_jnv_sb<»c.vhd

S M : SBox
aes_.fcoti.vhd o*$jsbox,vhd

AES Cipher AES Inverse Cipher

IPIC: IP Interconnect 
IP: Intellectual Property

Figure 13. AES encryptor and decryptor modules and hierarchy
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Note that the key expand module was not included with the inverse cipher, or 

decryptor, in order to allow both modules to fit in the XC4YFX12 FPGA. As detailed 

after, key expand readout from the encryptor and input to the decryptor, for its storage, 

was implemented.

Thirteen 32-bit slv regs were specified for each core -  slvregO  for control 

signals, 1-4 for the key input, 5-8 for the plain/cipher text and IV input and 9-12 for 

cipher/plain text output and other output.

Big-endian data orientation was maintained in the design, as shown in Figure 14. 

In this orientation, high-order data is located in the low-order ends of the registers, since 

the general standard for numeric notation is to read the high order data first, left to right 

and top to bottom, and memory maps are generally presented low-order to high-order, 

left to right and top to bottom. In little-endian data orientation, the low-order data is 

located in the low-order register bits.

Key In Text In Text Out
slvjegl
slv_reg2
sbjreg3
s k j t tg A

shr_reg5
slv_reg6
slvjreg7
slvjregS

dv_reg£
slv_reglO
shnregll
slv_reg!2

128-bit word 
High

Data order
IE #

Low

Low
0 31
0 31
0 31
0 31 Split into 4 32-bit

.words

-*► Low:. 
_

Figure 14. Big-endian data orientation and core IO register usage

Extensive modifications to the original code were required in order to make it 

work on a Xilinx FPGA and to interface it to the OPB. First, however, the original 

Verilog code was verified in behavioural simulation. The decision was made to translate 

the Verilog into VHDL, to avoid having to rely on mixed-language support. Then the
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done bit behaviour was revised so that it would remain set for the software to read. This 

was accomplished by removing a clearing condition; instead of the former:
done <= (not (dcnt(l) or dent(2) or dent(3)) ) and dcnt(O); 
done <= not (dent(3) or dent(2) or dcnt(l)); 

the latter was used, where dent is a four-bit counter, counting down. This VHDL syntax 

selects individual bits of a vector. When the “and” of the zero-order bit was included, 

done would be cleared on the clock rising edge after dent reached zero, making done a 

pulse with a length of only one clock cycle. ld_r was used in order to clear done for 

another transform, where ld_r stands for “real load” and is timed always to occur on the 

same clock phase (see the section on “autoload”). A signal called dcntbits was defined 

and set to “1” for as long as dent is not “0”, and used to enable updating of text out while 

the rounds progress. When done is changed to “1”, dcntbits is changed to “0” and 

text out stops changing so that it can be read.

All major blocks of the design had to be placed within VHDL processes of the 

type shown before, and assigned a clock signal so that they would be synchronous. This 

was a major step in success of simulation beyond behavioral. Asynchronous latches are 

difficult to simulate, because their timing has to be followed and correctly predicted using 

wire and component delays, whereas a clocked flip-flop’s state can be processed by the 

simulator at the clock transition times.

Amalgamating the shift rows step was possible because the signals being 

transferred to the next step only needed to be rearranged. This freed a clock cycle in the 

timing plan. Saving a step in each round allowed the use of two clock phases for the more 

computationally-intensive mix columns and inverse mix columns functions. The DCM 

was used since it could produce three additional clock pulses of the same frequency as 

the system clock, at each multiple of a 90-degree phase delay. Since the system clock was 

100 MHz, its period was 10 ns, making each phase 2.5 ns apart. The XC4VFX12 FPGA 

on the ML403 board was speed grade 10, the slowest of grades 10,11 and 12 [XILRIV], 

and the design could not achieve the timing of 2.5 ns between round steps. Therefore a 

second DCM was used to produce the additional three phases and the first was used to
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divide the clock by two. Four phases of a 50 MHz, 20 ns clock are 5 ns apart, and the 

design was able to meet timing. The timing plans were carefully worked out so that 

required data was available by the time of occurrence of the clock edge used by the 

process requiring the data.

Figures 15 and 16 show the timing plans developed for the encryptor and 

decryptor. In the encryptor timing diagram, notice the sequentially-placed sa (add-round- 

key step), followed by “sub bytes”, then “mix columns”, after two phases of time so that 

the mix columns logic would have 10 ns to propagate before being required at its 180- 

degree clock phase. The key expand value, w, is made ready one phase prior to being 

needed for the add-round-key step. Within the key expand module, rconout is made ready 

well in advance of the time that it is needed for inclusion. The done signal is timed to go 

high one phase after text out is ready.

57

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



10 ns clock

20 m  dock 

•^phases 

90 degree phase 
180 degree phase 
270 degree phase

ld_r (real load)

text in (stable)
key (stable) 

Iitciypt
dent (round count)
dcntbits 

sa (text in/mc xor w) 

sub bytes 

mix columns

done

text out 
Key Expand
Key perm (w) 
subword 

Rcoit 
rent
rcntjnext
rconout

90 180 270 0 90 180

" J :  :
I i

L _ , 20 ns clock and phases produced' I

I

t

(sub bytes xorw's)

Figure 15. AES encryptor timing plan

ld_r is positioned to begin always on the same clock phase (see the section on 

autoload). When Id r is high, tex tjn  is used to XOR with the key expand value, whereas 

after that the key expand value is XORed with the final step (mix columns) of the 

previous round.
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-phases 0 90 180 270 0 90 180

90 degree phase -----1 t f
180 degree phase
270'degree phase 20 ns clock and phases produced;

i by DCM
ld_r (real load) __ 

text in (stable)
key (stable)

Decrypt
dent (round count) 1 1 (set to 1 during ld_r)

idcatgo 1 1 (set to 1 during ldjr)
sa (text k  xor w's or kv mc's) -use as sr's for sub bytes

sub bytes I
ark (sub bytes xor w's)

kv mix columns (me)
done text out= ark

Key Expand retrieve I
-w's

Figure 16. AES decryptor timing plan

In the decryptor, the shift rows operation occurs before the “sub-bytes”, but this 

operation is made implicit from the sa data by simple arrangement in the VHDL 

assignment statements (as in the encryptor). The key expand value has to be retrieved for 

use; it cannot be generated concurrently as in the encryptor, since the final key expand 

value is needed first, in the decryptor. The key expand values are loaded into the 

decryptor before any decryption transform is initiated. By initializing the step counter 

dent to 1 during Id r, and also initializing it to zero prior and by default, the number of 

clock cycles required for decryption was reduced from eleven to ten -  note that dent 

actually is counted upwards in the decryptor. It should be possible to adjust the encryptor 

timing plan and logic in a similar manner in order to reduce the time required by a clock 

cycle.
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The encryptor (aes enc), along with the other supporting modules, used all 

assigned BRAM resources. Therefore, in the decryptor (aes_dec), separate vectors to 

store the key expand values were used, instead of the dual-port RAM structure that was 

otherwise available, and Xilinx distributed LUT (Look-Up Table) ROMs, available from 

the Templates in the ISE, were used for the S-boxes. Modifying the libraries to be 

included in the project for the decryptor array declaration when the dual-port RAM was 

being used, seemed to cause the slv_reg contents to be displayed backwards in post- 

translate and later simulations. Declaring them as big-endian in the decryptor was the 

work-around.

The slave register interface described before was modified in its write process so 

that selected bits could be written to the slave registers by the core while the slave 

registers were not already being written to by the bus. It is not possible to write, from the 

core, a bit in a slv_reg that is regularly being driven from the bus, originating from 

software, since the bit will be overwritten and its value will not change. However, it is 

possible to write to bits individually, thus choosing the role of each bit. The only bit 

required in slv_regO as an output from the core is the done bit; the rest of the control bits 

defined in this work for slvregO  are inputs. Therefore the “case” statement in the 

slvregs  write process was separated using “i f ’ statements into groups of slv_regO on its 

own, slvjegs9-12, which are also used as outputs, and slv_regsl-8, which are only used 

as inputs. The condition used in the “i f ’ statements is the write select to the registers from 

the bus; in the “else”, writes from the core were placed. Bit 0 of slv_regO was assigned as 

the bit to which done from the core is written, and is set when done is “1” and cleared 

when ld_r is “1”. The clock to the slv_reg write process is the bus clock undivided; the 

pulses from the core, being twice as long, would therefore always occur for enough time 

to allow a bus clock rising edge to occur. The bits which are defined as control inputs 

from slv regO are assigned asynchronously in the core from their slv regO bit positions. 

In the block involving slv_regs9-12, those registers are assigned from text_out when done 

is “1”.
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3.1.7.2. Additional AES Implementation Features

. ,3.1.7.2.1. Autoload

Originally in the development of the encryptor and decryptor, a bit from slv_regO 

was defined as the “load” bit and I d r  would be set to “1” on its clock, if “load” was 

high. This caused an avoidable delay in setting the bit in software and then clearing it -  it 

would have to be cleared or ld_r would repeat -  in fact, ld_r always repeated when this 

method was used until the “load” bit was cleared, because the speed of the transform, of 

eleven clock cycles, was more than twice as fast as the software could set and clear the 

“load” bit. Instead, a signal called start Jo a d  was defined which is set to “1” when 

slv_reg8 is written, and cleared when ld_r is detected to be set to “1”. Therefore 

start Jo a d  turns on at some arbitrary time and waits for the ld_r process to detect it on the 

chosen clock for ld_r, and then turns itself off. In the ld_r process, ld_r is turned off on 

its own chosen clock rising edge if it is set, thus ensuring that it stays high for only one of 

its clock cycles. Thus the write to the final te x tjn  register neatly triggers one ld_r pulse 

and one transform. This could also be useful if DMA (Direct Memory Access) ability is 

added to this core at some future date. DMA ability is available [XILOPBIP2H], and was 

investigated as part of this work, but adding it is a considerable undertaking.

3.1.7.2.2. Key Expand Readout, Storage and Readback

A method to induce the encryptor to produce and hold the key expand values one 

at a time to be read by software, was developed in a resource-efficient manner by 

utilizing control bits connected from slv_regO. Since software sets the control bits, a 

slice-consuming VHDL process to generate the control bits as a signal did not have to be 

used, and the control signals need only be read by the core.

One control bit, krd is used only to signal that the key expand module is in “key 

expand readout” mode. If it is set, slv_regs9-12 are set from the key expand value, not 

from text_out. A second control bit, kstep, is used to proceed to the next key expand 

value on the next clock when it is high, or to hold the current key expand value when it is
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low. A third control bit, kstepend, was found necessary to prevent the state variable, 

rcntjiext from free-running (repeatedly causing its own update) in the “rcon” (round 

constant) module. 'It was necessary in the end to add a small process to time the exact 

transition of kstep and kstepend to the clock pulse before rcon is generated for its use in 

the key expand module. Then, as long as krd is “1”, setting kstep to “1”, then setting 

kstepend to “1” via software, would cause the subsequent key expand value to be 

available for the software to read from slv_regs9-12. Simultaneously clearing kstep and 

kstepend is necessary to prepare for the generation of the next variable. To begin the 

whole process, load (via autoload) must be done after setting krd. The first key expand 

value is the key itself, and is read before using kstep. When all eleven key expand values 

have been read, krd must be cleared in order to use the encryptor in its regular transform 

mode.

A random-access protocol was added to the decryptor to store the key expand 

values. Four bits of slv_regO in the decryptor were assigned for selection of eleven 

internal storage vectors, kcnt, internally, and a VHDL case statement was used to select 

the storage vector to receive the contents of slvjregsl-4  (the key input slave registers) 

when kid (“keyload”, from slv regO) is “1”. When kid is “0”, dent is used to address the 

particular key expand value when the decryptor is operating in its regular transform 

mode; as noted before, dent is actually counted upwards from zero in the decryptor; note 

that this means that the final key expand value (in encryption order) is located in address 

zero of the internal decryptor storage and thus the entire set of the eleven key expand 

values is stored in the decryptor in reverse order.

Also when kid is “0”, a kbrden (“key buffer read enable”) signal from slv_reg0 is 

used to select key readback, which was used as a confidence test when the decryptor was 

under development. An asynchronous assignment was used to determine the random- 

access address, readjcb, used to obtain the selected key expand value when kid is “0”, 

since dent is used when kbrden is “0”, for the regular transform mode, and kcnt, 

determined from the random-access address set in slvjregO, is used when kbrden is “1”:
read_kb <= ((not(kbrden & kbrden & kbrden & kbrden)) and dent) 

or ((kbrden & kbrden & kbrden & kbrden) and kcnt);
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Note that ”&” is a concatenation operator, making a four-bit vector from kbrden for 

selection of either dent or kcnt. If kbrden is set in slv_regO, the corresponding key expand 

value, according to the number set in the kcnt bits set in slv_regO, can be read from 

slv_regs9-12 under software control.

3.1.7.2.3. Cipher-Block Chaining (CBC) Mode

In a block cipher such as AES, the same block encrypted with the same key 

always gives the same ciphertext. This mode of encryption is known as “Electronic Code 

Book” mode, and is obviously cryptographically weaker than if the plaintext could be 

“salted” in some continually-varying way -  in cryptography, “salting” the message means 

to add unrelated content before encryption in order to attempt frustration of cryptanalysis.

In Cipher-Block Chaining (CBC) mode, the plaintext is XORed with the output of 

the previous encrypted block before being fed to the encryptor core for encryption. In 

decryption, each decrypted block is XORed with the previous block of ciphertext to 

reveal the plaintext. This is possible due to the property of the XOR operation that it is its 

own inverse. When the first block in an encryption or decryption sequence is processed, 

an “IV”, or “Initial Vector” is used in place of the ciphertext of the previous block.

This was added as a non-optional feature -  in the encryptor a one-time done pulse 

was added during which time the ciphertext is transferred to the IV  vector, which was 

reused for this purpose as well as for the actual IV, for simplicity. In the decryptor, two 

such pulses were required; in the first, the output is XORed with the IV  to form the 

plaintext; in the second, the IV  is updated from the current ciphertext.

To enter the IV, an ivload bit was defined in slvjregO for both the encryptor and 

the decryptor. When “ 1”, the contents of slv_regs5-8 are copied to the internal IV  vector. 

An ivrdback bit was defined in slv_regO for the decryptor. When set, the current value of 

the IV is copied to slv_regs9-12 for read-back. This feature was not added to the 

encryptor, due to space concerns.
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.3.1.7.2.4. Timing Diagnostic Output for Test

In each of the encryptor and the decryptor, a “test process” was added in which a 

signal, called loadtodone is set high when ld_r is detected and cleared when done is 

detected. This signal was defined as an output in the formal parameter list of the module 

and passed up to the outer wrapper where it in turn was defined as an output in its formal 

parameter list. This change was the only change necessary to the outer wrapper. In the 

EDK, this signal from the encryptor was connected to pin AF24 of the FPGA, which is 

connected on the ML403 board to J6 pin 64, and this signal from the decryptor was 

connected to pin AA24 of the FPGA, which is connected to J6 pin 2. As the top side of 

the ML403 board is viewed so that the large, gold-coloured “Virtex V4” and “Xilinx” 

labels are the correct way up for reading, J6 is the large header on the far right of the 

board. It is a double-column header; the third column of pins placed to the left of J6 to 

make it appear like a three-column header is actually J3. There is another three-column 

header to the left of J6 and J3, with some PCB (Printed-Circuit Board) space visible 

between it and J6 and J3. Pin 2 of J6 is at the upper right of the header and pin 64 is at the 

bottom right; both are comer pins, making attachment by an oscilloscope probe as easy as 

possible. The comparatively large, threaded brass cable connectors nearby on the PCB 

make a useful ground connection for the ground alligator clip of the oscilloscope probe. 

The “net” connections to the FPGA pins from the design can be found in “system.ucf ’ in 

the \data\ directory of the EDK project and are shown here:
Net aes_enc_0_loadtodoneout_pin LOC=AF24;
Net aes_dec_0_loadtodoneout_pin LOC=AA24;

In an earlier version of the AES core, an output signal set from the “load” 

slv_regO bit was routed to one of the pins noted before, as well as loadtodone, when only 

one core at a time was being tested in the FPGA, and before the autoload modification 

was done. This allowed the time taken to set and clear the load bit via software to be 

measured using an oscilloscope.
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Figure 17 shows the locations of the control bits in slv regO in the encryptor and 

decryptor:

Encryptor - stv_regO

I Ke Kr Ks L D

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

D - Done, L Load (Go) (no longer used), I - IV load
Key expand mode: Kr - Key read (Key expand mode), Ks Key step, Ke - Key step end (Key expand values are read from sl»_regs9-12)

Decryptor - slv_regO

K3 K2 HI K0 fr I Kb K1 L D

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
31 30 29 28 27 26 25 24 23 22 21 20 19 13 17 16 15 14 13 12 I f 10 09 08 07 06 05 04 03 02 01 00

D - Done, L - Load (Go) (no longer used), I - IV load, Ir - IV readback
Key storage and read back: K t - Key load, Kb - Key readback, K3-K0 - Key schedule index (reverse of encryption order)
LE - Little Endian. BE • Big Endian

Figure 17. Control bit locations in slv_regO for both AES user peripherals

Bit 02 (BE -  Big-Endian) in the decryptor was for “Key Expand Done”, but that 

is not used since the key expand values are supplied to the decryptor.

3.1,7,2.5. A “Stepper” Version of the Decryptor

Blocks of logic were added to the decryptor to enable their corresponding clock 

phases in the core when the software would pulse a bit in slv_reg0. A counter was used to 

count through the clock phases, incrementing once each time the bit in slvjregO went 

high, and an enable for each phase was timed to be “1” when the rising edge of that phase 

was to occur. These enables were added as a condition to each process that uses a clock 

phase. The output of each resulting step of the three steps per round was placed in 

slv_regs9-12, resulting in a readout of the current state for each step of each round. This 

was written as a debugging check, and remains of theoretical interest. The method used, 

of implementing a separate process to enable each clock phase with its own pulse, was 

costly in terms of FPGA fabric and led to the realization of the simpler method used in 

the key expand generation feature.
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A simple CLI (Command-Line Interface) program was written to write the key 

and the plaintext to the decryptor peripheral’s slave registers, pulse the load bit, then 

repeatedly pulse the step bit in slv_regO, and read slv_regs9-12, and send their hex- 

ASCII-encoded values for display via RS232 when the user presses a printable character 

key on the computer keyboard -  see the section after, “CLI and Simpler Programs” for 

more description of this general programming technique.

A bug was found in which the initial key expand value used was not correct due 

to the repeated ld_r during the “load” pulse causing the array index used to access the 

array of key expand values being incremented; the index was not being initialized along 

with the value of dent when the latter was initialized to zero. Due to arbitrary key expand 

values being left from previous rounds of operation, the “stepper” would eventually 

produce a series of correct output values. This knowledge was used to correct the 

decryptor’s operation by initializing the key expand values always from the first element 

of the key expand array rather than relying on the initialized array index; in the 

subsequent round, ld_r occurred, and the index was always being set to the second value. 

This fix was added to the “stepper”, as well, which should correct its operation, but the 

“stepper” was not subsequently tested.

3.1.8. Test and Demonstration Software

3.1.8.1. CLI and Simpler Programs

Numerous small CLI programs were written to be loaded into the ML403 board to 

test the AES cores, beginning with one to successfully write and read back the slave 

registers. The standard program, “Hyperterminal”, included with all versions of 

Windows, was used on the PC to view the RS232 output from the board and send user 

keystroke data. Xilinx provided easy-to-use function calls to use the UART and the 

RS232 port, such as inbyte() and outbyte() -  the parentheses following the identifier is 

syntax that indicates a C function, and, in actual implementation, may or may not contain 

a list of parameters being passed to the function. In addition, Xilinx provided a written 

“TestApp_Memory” C program that tested memory and reported via RS232, making a
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useful test of system “liveness”. Next, one was written to write the key and plaintext and 

to turn the “load” bit on and off, loop to wait for the “done” bit, and then read slv_regs9- 

12; later, this was also written to test the decryptor. These confirmed basic operation of 

the user peripheral, once the same cryptographic output appeared that was seen in 

simulation.

Functions were written to encode and decode numeric values and strings, because 

raw binary data should not be sent over an RS232 link, for the reason that some numbers 

are RS232 control codes that can stop the link from apparently functioning. Any numbers 

sent over an RS232 link that are not intended as control codes should be encoded as 

printable ASCII. The encode function, called “hex-ASCII encoding” in this work, 

interprets numeric data as hexadecimal and creates the printable characters representing 

the hexadecimal digits. The decode function takes a string of characters that represent 

hexadecimal digits and converts it into the numeric data that was represented. Note that 

an ASCII character requires eight bits and a binary hexadecimal digit requires only four 

bits, meaning that this type of encoding doubles the storage space required (when the data 

is not immediately decoded upon reception). When the program in the board sends 

numeric data for display, it encodes the digits, and when it receives numeric data typed 

by the user from the keyboard, it decodes the characters received, to determine the 

numeric value of the data.

Versions for each of the encryptor and the decryptor were written to loop, setting 

and clearing the “load” bit, when that was used, looping to wait for the “done” bit, and 

then repeating. This was used to determine the maximum possible processing speed 

available using this overall design, and did not even include any RS232 output, being 

intended for measurement of the diagnostic output signals using an oscilloscope. Later, 

these programs were revised to use autoload and to include a full write of the input and a 

full read of the output.

A full CLI test program was written to exercise all features included with the 

cores; this program evolved as features were added, originating as a version to test only
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the encryptor. Its basic design is an endless loop with no exit criterion, containing a wait 

for a character to be received via RS232, following which a C “switch” statement (which 

is the C-language equivalent of the VHDL “case” statement) was used to act on valid 

command characters received. An infinite outer loop is the basic computer operating 

system in its simplest form. In it, the list of tasks to be done is placed, to be processed in 

a round-robin fashion -  i.e., repeatedly. Notably, this test program echoes the key expand 

values one at a time via RS232 when the key is loaded, as they are copied to the 

decryptor core. The inbyte() function waits for input if none is available, making it useful 

for halting processing to allow the user to view the output generated. Typically, a string 

such as “Press any key to continue” is first sent for display, following which the wait-for- 

input function call is invoked. The character typed by the user is generally not otherwise 

used in this specific situation.

Since Cipher-Block Chaining mode was added to the AES cores, the IV is loaded 

to both by this test software, and the encrypted block can be seen to vary, following 

which it is always decrypted to the correct plaintext, upon repeated test encryptions.

Commands available in this program are: “i - enter the IV; v - view decryptor's 

IV; k - enter the key (and do key exp); p - enter the plaintext; e - encrypt and decrypt; x - 

Display the decryptor's key expand values”. The command characters are made case- 

insensitive in the switch statement by using pairs of case statements for each block. This1, 

saves the memory required to add in an extra library; moreover the library containing the 

standard C “toupper” function was not found in the GNU libraries provided by Xilinx.

This basic design was used for the ML403 board code that works with the 

demonstration GUI: the demonstration GUI sends the individual command characters.
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3.1.8.2. The AES Demonstration GUI, “AESfile”

The demonstration GUI sends the individual command characters to the board 

and then has a programmed dialog with the board until the specific dialog for that 

command character finishes.

In this demonstration, a text file with a given name, “plaintextin.txt” is sent block- 

by-block to the board and encrypted. Each encrypted block is hex-ASCII encoded by the 

board and sent back to the PC for storage in a text file, “ciphertextouttxt”. The GUI- 

board system also does decryption by reading a file called “ciphertextouttxt” and sending 

the block of hex-ASCII-encoded bytes back to the board, which sends back the block of 

sixteen characters (128 bits); the GUI saves these in a file called “plaintextouttxt”. Note 

that the block of hex-ASCII-encoded bytes requires 32 ASCII characters, one to represent 

each hexadecimal digit in 128 bits. The ASCII values of the block of sixteen plaintext 

characters are treated as numeric data by the board for encryption purposes. For 

decryption purposes, the 32 hex-ASCII-encoded characters received are first decoded, by 

the board, to sixteen bytes of numeric data.

3.1.8.2.1, The ML403 Board Code

When ‘k’ is received as a command, the board then expects the hex-ASCII- 

encoded key from the GUI, which it decodes, writes to the encryptor, does key expand 

and writes the key expand values to the decryptor.

When ‘i’ is received as a command, the board then expects the hex-ASCII- 

encoded IV from the GUI, which it decodes and writes to the encryptor and the 

decryptor.

When ‘e’ is received as a command, the board encrypts the IV using an IV of 

zero, sends it to the GUI, updates the encryptor with the IV, and then loops: receiving 

blocks from the GUI, encrypting them and sending them back. It stops when the ASCII
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character “ETX” (End-of-Text) is received and includes it as the last character to encrypt, 

padding any remnant o f the last block with zeroes.

When ‘d’ is received as a command, the board first receives the encrypted IV 

from the GUI (hex-ASCII-encoded), decodes it, and decrypts it using the key and an IV 

of zero. Then it updates the decryptor’s IV with the decrypted IV. Then it loops, 

receiving hex-ASCII-encoded blocks of ciphertext from the GUI, decoding them, 

decrypting them, and sending them back. When the ETX is found, the loop exits.

3.1.8.2.2. The PC Demonstration GUI, “AESfile”

A package written for MSVC++V6, to do serial 10, was located [KLE2003], and 

incorporated into a MSVC++V6 project. Its function calls (“methods” in C++), provided 

the ability to communicate with the ML403 board via RS232.

The GUI, named “AESfile,” provides two “edit boxes” for entry of the key and 

IV, and two “static text boxes” next to these for display of the resulting numeric key and 

IV, since, if characters are typed into the “edit boxes”, their ASCII values are used as the 

numeric cryptographic data. Radio buttons are provided to allow interpretation of the 

user’s entry in the edit boxes as either hex. digits or ASCII characters.

Two buttons are provided, one to encrypt and the other to decrypt. A large static 

text box is provided in which activity echoing is shown, such as the data being encrypted 

or decrypted. A function was designed and implemented to add characters to the activity 

display and delete the oldest characters when the text box becomes full, giving the 

appearance of “scrolling”. When a button is clicked, the files are read and the board is 

commanded to encrypt or decrypt, via the procedure described before. The IV is 

encrypted and added to “ciphertextouttxt” so that only the correct key is needed to 

decrypt an encrypted file. Encrypting the IV was realized to be somewhat of a 

cryptographically faulty idea, as described before (see section 1.2.4.2. “Encapsulating
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Security Payload Protocol”). Figure 18 shows a “screenshot” of this demonstration in 

action.
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Figure 18. A "screenshot" of the “AESfile” demonstration

Test methodology for this, to determine the encryption speed, consisted of timing 

the file encryption and decryption processes as they progressed, using a digital watch that 

counts seconds. Due to expected delays caused by the RS232 transmission and the text 

display to the activity window, a more accurate timing method did not seem justified.

It seemed that other programs installed on the PC would hold access to the serial 

port and prevent communication from working. One such seemed to be the Tektronix PC 

Communications software, whose use is described after for obtaining images from the 

oscilloscope. Another seemed to be MSVC++V6; it was necessary to repeatedly begin
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and stop debugging in its IDE (Integrated Development Environment) in order to obtain 

access to the serial port -  which, at least, was faster than rebooting the PC. 

“Hyperterminal” could be used to determine if  access to the serial port could be obtained, 

as it would report a dialog box if it could not obtain access to the serial port; however, j 

that indication was not reliable when the Tektronix software was seemingly preventing 

access. “Hyperterminal” must itself be “disconnected” using its menu option or exited if 

it is required to use another PC program that accesses the serial port.

3.2. Design of a Combination LFSR-CASR Pseudo-Random Number Generator

3.2.1. Selection of the Base Design

The availability of random number generators was somewhat limited; on the 

“Open Cores” website [OPENCORES], there were only two selections available. The 

Verilog/SystemC LFSR-CASR (Cellular Automata Shift Register) RNG was chosen for 

its claimed good statistical properties [VILL2005]. The other, a library of RNGs, was 

indicated as not being synthesizable [DRA2004].

3.2.2. Description of the Tkacik-Villar LFSR-CASR PRNG

This PRNG was made available in SystemC and Verilog, and based on the design 

by Thomas E. Tkacik [TKA2002].

The LFSR contains bits numbered from 0 to 42; each clock, each of bits 0,19 and 

40 are replaced by their XOR with bit 42, then the contents of the LFSR is rotated one bit 

to the higher direction: bit 0 becomes bit 1, and so on to bit 42 becoming bit 0. The 

resulting output has a cycle length of (243)-l and a bias of 2'43.

The CASR contains bits numbered from 0 to 36; each clock, each bit is replaced 

by the XOR of its two neighbour bits, with bit 36 and bit 0 being considered neighbours, 

and bit 27 is specially included as a third XOR input for its subsequent value. This is a 

“cellular automata” reminiscent of “Life”, and introduces non-linearity. “Life” is played 

or run on a two-dimensional matrix of square cells of (ideally) infinite extent. Every tick
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of its “clock”, each cell is declared as “live” if it previously had exactly three “living” 

neighbours out of its eight, unchanged if it had exactly two “living” neighbours, and 

“dead” for any other status. It produces many interesting non-linear combinations of 

cells, and it in particular, as well as cellular automata, are a separate field of study. The 

37-bit CASR has a cycle length of (237)-l and a bias of 2"37.

Each clock cycle, the low-order 32 bits are XORed together to form the output. 

The LFSR-CASR combination has a cycle length of 280-243-237+l and a bias of 2'80 

[TKA2002]. The final XOR and the use of only the lower 32 bits of each state conceals 

the states from cryptanalysis.

The combination produces a good randomized output ([TKA2002] pg. 7), and 

does well on the “Diehard” tests ([TKA2002] pg. 8) -  see section 2.7., “Random Number 

Generators”, before.

3.2.3. Test Methodology and Use in this Work

In this work, this PRNG was first translated from Verilog to C++ -  which was a 

significant coding change, and its output was verified for correctness against simulation 

of the original Verilog. Then the C++ program was made to output, in hexadecimal, up to 

100,000 32-bit numbers, and up to 100,000 128-bit numbers by grouping the 32-bit 

numbers in fours. DOS Sort was used to sort the numbers into numerical order, and a 

second C++ program was written to count the numbers that fell within groups of values 

of the same first two and three digits, giving 256 and 4096 groups of numbers, 

respectively. The count of the quantity of numbers that fell into each group were plotted 

against the location of the groups in the number-lines of magnitude 232 and 2128.

The C++ code was then modified into C code, in a minor change, for inclusion in 

the IPsec implementation.
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3.3. Design of an IPsec Implementation, “IPsecImp”, Using the Five-Layer Security 

Framework

3.3.1. C vs. C ++for Embedded Systems

Since the IPsec implementation will have to go into an embedded system, amount 

of memory used is critical. Although the ML403 board has 1MB of SRAM, it is desirable 

for test and demonstration purposes to fit the entire software package into the available 

BRAM on the FPGA/CPU chip itself, for one-step downloading from a bit file. The 

implementation created along with the AES peripherals provided 32kB of BRAM. C++ 

code with a class and a constructor and small method of only approximately two lines, as 

generated by the GNU C++ compiler that came with the Xilinx EDK, required about 40k. 

In comparison, 64k times 16 would be the entire SRAM of 1MB. Clearly C++ is too 

costly in terms of memory usage for the ML403 board. Equivalent code compiled with 

the GNU C compiler required about one-seventh the memory, and the IPsec portion 

implemented used slightly less than 32kB (0x8000 bytes).

3.3.2. Top-Level Design of a Peer

An IPsec implementation, designed for demonstration and testing, was developed. 

The important functionality is located in the ML403 board, and called “IPsecImp” with a 

GUI to operate it, via an RS232 serial connection, located on a Windows PC, called 

“IPsecGUI”. The GUI commands the OSI layer functionality to start, sends it its 

operating settings as chosen by the user, and displays results.

Figures 19,20 and 21 give an ambitious top-level design for an IPsec peer, 

showing all five layers of the security framework. Following that, Figures 22 and 23 

show the portion that was implemented.

Layering helps the design a good deal, by reducing it to an exercise in 

“connecting the dots” -  but the design of the management layer still is not entirely 

rigorous. SLAs (Service Level Agreements) are used to determine the policy settings for 

the SMIB. The layers used are numbered as follows: 1., Policy, 2., Management, 3., 

Services, 4., Mechanisms, and 5., Primitives.
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It was planned to use public-domain code for all standard mechanisms and 

primitives -  which was done for the two primitives implemented, AES and the PRNG.
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Figure 19. The Policy layer and upper portion of the Management layer -  an ambitious design
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75

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Services L»y»r 

Confidentiality fintegHty (Authentication Arti-nyt*? I ::gSgS2S5™w

M echanism s Layer 

AM m odules

f Z ^ Z ^ \
L  SMIB J

DH key rogmt 
-private end public key 
generation ( V  and “gXmodn") 
shared  secre t generation

w w
HMAC

Encryption
-Sym m etric, Asym metric

Primitives Layer

Prime number generation 
•MHIsnRabin ‘ “

llKe/ISAKMPO*rtr

Modular arithmetic 
-CRT-Mutt. Iny. 
-muk. -m»d.; e*p>

SHA-1

Number (Senerato r)

|A ES, others I

Figure 21. Service, Mechanism and Primitive Layers -  an ambitious design

The portion implemented was a subset of the design shown in Figures 19,20 and 

21, as shown in Figures 22 and 23. See also Appendix A, for pseudo-code.
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Figure 23. The Service, Mechanism and Primitive layers -  portion implemented

The basic design is the same as used previously, in which an infinite main loop is 

used, within which a command character is awaited from the GUI via RS232, and acted 

on using a switch statement, with the difference that a “non-blocking” check for a 

received character is used in order to allow the outer loop to run freely. That allows other 

processing to be inserted before the command character check. In this design, two 32-bit 

counters were added to continually count, in order to be used as a random seed value for 

the PRNG. Since the PRNG used (see before) has internal states of more than 32 bits, 

only a portion of the higher-order 32-bit counter is used. That one is counted down (in a 

cycle) from OxFFFFFFFF (hex.) and the lower-order one is counted up, from 

0x00000000. Other processing is the functions of the OSI layers, including the IPsec 

sublayer, within an “i f ’ block that is activated by a Boolean variable, PacketProcessing, 

that is turned on when a command character is received, sent by the controlling GUI 

when it is ready to send it a packet to process. The function calls for the three 

implemented OSI layers are listed within that “i f ’ block, and they are repeatedly called, 

every iteration of the outer loop, until there is no more processing to do, in which case the
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PacketProcessing variable is turned off. This top-level loop is considered the 

management layer; Figure 24 illustrates this design. See section 3.5., “Design of a CLI 

Version, ‘IPsecLoop,’ to Facilitate Testing,” for a slightly differing version. Pseudo-code 

for most functions implemented can be found in Appendix A.

Toggle packet processing

receive the SMIB vi&RS232

send the SMIB via RS232

•end the SADB via RS232

receive the SADB via RS232

send-Hello1' characters via HS232

toggle toad key in core every 
transform

seedthe RNGwiththe 64-bit count 
and send the count via K5232

Figure 24. "IPsecImp" top-level loop flowchart

The command characters are the following: ‘r’: the PRNG is seeded from the
I

free-running counter values. The unpredictable time at which a human operator would 

cause the GUI to send this command introduces the true random element. The seed value 

is also sent to the GUI. ‘h’: the characters of the string “Hello” are sent to the GUI, as an 

indication of board “liveness”, ‘z’: the SADB is sent from the board to the GUI. ‘s’: the 

SADB is received from the GUI by the board, ‘m’: the SMIB is sent from the board to
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the GUI. ‘i’: the SMIB is received from the GUI by the board, ‘k’: a variable, 

KeylsAlwaysTreatedAsNew is toggled that determines whether the key should always be 

loaded to the core for every IPsec packet transform or if it should only be loaded when it 

changes. Internally, there is a NeedNewIV Boolean variable that is set when the IV from 

the SADB (and otherwise when required, see after) is zero, ‘p’: PacketProcessing is 

toggled. It is only turned on if there is a protocol and mode set in the SADB. This code 

can also be operated via Hyperterminal for debugging purposes. For the purpose of 

discarding data sent when the board is not ready for it, none of these command characters 

are characters that represent hexadecimal digits.

Before this outer loop is entered, the SMIB is initialized to the services, 

mechanisms and primitives made available by the embedded software and FPGA 

configuration. A cleared SADB is also created.

The C language syntax provides the ability to define variables for the compiler’s 

pre-processor to read; these are called “#define” (“pound-define”), and can be checked 

using “#ifdef’. In this design, the C function prototypes and their external declarations 

were put in the same file, and a “#ifdef ’ was used to check the alternative to be used, 

using conditional compilation. A header file that included the main header file was used 

to be included in files that used another file’s functionality, that “#define”ed the variable 

to be checked. The native header file was included in its own source code file, so that the 

variable would not be defined and the native file would have its function prototypes 

selected. This technique can be used to implement a limited form of the object-oriented 

concept of private methods and data; generally a header file’s #defines are made 

available to other files that need to use that file’s functionality in this technique. Another 

use of “#define” and “#ifdef ’ is to “#define” a variable at the top of a header file if  it is 

not already defined, and to include the contents of the header file as well, in that 

conditional compilation. This prevents errors if header files included in the header file 

include the same header file at some level of inclusion; the header file will not include its 

content if its variable is already defined.
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3.3.3. SMIB (Security Management Information Data Base)

The SMIB is organized using C language “structs” (data structures), one 

representing each layer. The SMIB itself is a “struct”, containing the lower-level 

“structs”. Some ideas for general content of an SMIB were found in [KEN1994] (see also 

section 1.2.2., “Security Policy Database and SMIB”, before). The policy “struct” 

contains an integer giving the number of policies, and a pointer to the defined policy 

“struct”, allowing more than one policy to be pointed to, by allocating the memory 

required. Although the SMIB contains a value for the number of policies, only one policy 

at a time is used in the board at this time. The management layer “struct” contains four 

bytes for the local IP address, an integer for the number of clients, a Boolean variable 

indicating whether the client addresses should be interpreted as pairs, for range purposes, 

and a pointer to an array of four-byte client addresses, so that any number of client 

addresses can be referenced. The Services layer “struct” contains a “struct” for each of 

AH and ESP, each of which contains a Boolean variable to indicate whether the service is 

available, and an integer to indicate the mechanism number. In future work, the AH and 

ESP structs can be replaced with pointers to them so that more than one can be stored. 

This would allow selection of different services. In the same way, the mechanism number 

would allow selection of different mechanisms. The mechanism layer is designed in a 

similar way, as is the primitives layer, which could allow a great deal of flexibility in 

choosing combinations of algorithms. The numbers in the primitive layer “structs” refer 

to primitive algorithm numbers which can be chosen for each type of primitive.

3.3.3.1. The Policy Layer

The policy “struct” has two conceptual groups of variables: selectors and SA 

negotiation goals. The selectors determine whether a packet is to be processed, in flexible 

ways; each has a Boolean variable associated with it to determine if it should be used, or 

interpreted to match any packet. The six selectors implemented are understood to be 

combined together in an “AND” sense, since each selector represents an additional 

criterion to check. An overall Boolean is used to set whether the result of the overall 

selection should be taken in the opposite sense.
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In the “negotiation goals” group of variables, the protocols and modes desired 

should be considered to be non-negotiable. A “negotiate” Boolean is provided to select 

whether it is acceptable to negotiate different service numbers of those available. Two 

sets of negotiation goals are provided, inner and outer, so that IPsec protocols can be 

nested in pairs.

3.3.4. SADB (Security Association Data Base)

See the SADB plan in the pseudo-code in Appendix A for the complete list of 

contents of the SADB.

Note that the Service number field in the SADB is the location where the number 

chosen in negotiation from one of the available services is stored.

The “IV Constant” field in the SADB is used to clear NeedNewIV (equivalent to 

setting it to “FALSE”, in C -  any non-zero value in a C variable is interpreted as 

“TRUE”), unless the IV is zero, in which case NeedNewIV is set on a one-time basis.

This helps to counteract the natural user disinclination to originate cryptographic 

material. NeedNewIV is passed down the layers via function calls to the mechanisms 

layer, where it induces the getting of a new IV using the RNG in the sending case, when 

encryption is used.

As it was realized that an S A is associated only with a communication in one 

direction, considerable simplification resulted from reducing the number of keys and I Vs 

from eight to two, since incoming and outgoing cryptographic material did not need to be 

stored in the SA, and neither did that material need to be stored on behalf of the other 

entity.

3.3.5. OSI Layers Implemented

The IP (Internet Protocol) layer, IPsec layer and Link layer are represented in this 

work. The Link layer is a dummy layer that calls the dispatcher to get the IPsec packet
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and send it back to the IP layer. The IP layer is largely a dummy layer that receives the 

packet from the GUI via reliable data transfer, in “IPsecImp”, or copies the established 

test packet in memory, in “IPsecLoop” (see after). When a layer receives a pointer to 

allocated memory via the dispatcher, and uses it, it is responsible for deallocating that 

memory. When the IP layer receives the IP packet back via the dispatcher from the IPsec 

layer, it echoes it and then deallocates its memory.

The IPsec layer is based on the service calls. It checks the dispatcher for the 

presence of a packet. There are two outer if blocks, one for the transmit, sending, 

outgoing, or IP to IPsec case (in which case the IP packet is converted to an IPsec packet) 

and one for the receive, incoming, or Link to IPsec case (in which case the IPsec packet 

is converted to an IP packet). In the transmit block, the SADB for outgoing packets is 

checked for the protocol to use and the appropriate service call is made. In the receive 

block, the protocol field of the datagram is checked and then the SPI is checked for a 

match against that set in the SADB for incoming packets, before the service call is made. 

The pointer to the “incoming” SADB is set, in the management layer, to the “outgoing” 

SADB so that they will be identical for the purposes of this research. Any error codes 

generated from lower levels are passed to the Management layer for appropriate action, 

such as stopping packet processing and displaying error messages. Before each service 

call, the reliable data transfer routine is used to send a short synchronization message, 

literally the characters “Synch”, to the GUI, to alert the GUI to start its timer to measure 

the duration of the service call. Following the service call, regular RS232 output is used 

to alert the GUI that processing has ended. Following the “receiving” AH service call, a 

message indicating whether the authentication succeeded is sent via RS232; reliable data 

transfer was used to prevent the GUI from missing it. Figure 25 illustrates the design of 

the IPsec layer.
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Figure 25. The IPsec layer flowchart

3.3.6. Board-GUI Reliable Data Transfer

In development of the AES file encryption demonstration, “AESfile”, a 

considerable number of extraneous characters were observed being received by the GUI. 

Their source is unknown, whether that was a characteristic of the serial package used 

[KLE2003]. In an attempt to deal with that in the “IPsecGUI”, first it was attempted to 

require all characters, even printing characters themselves, to be hex-ASCII encoded and 

allow reception of only characters representing hex. digits, discarding any others. 

However, extraneous characters could still conceivably be hex. digits (0-9, a-f, or, A-F), 

and debugging using Hyperterminal was made tedious since even the text strings sent 

were encoded and readable only with much difficulty. What was really needed was 

reliable data transfer.

The requirements for this feature were the sending of a checksum, its verification, 

as well as three-way handshaking. Not only should the sending code receive an “ACK” 

or “NAK”, but the receiving code should have it echoed back to know that its response 

has been received. Finally, the sending code should receive an acknowledgement that the
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receiver knows that the sender has received its response. Another requirement was that 

communication should not “deadlock”, for example, with the receiver waiting for a 

character and the transmitter not sending any more.

The above requirements were satisfied by the following. First, the “receive” code 

sends “STX” when it begins to wait for a transmission. The sender begins sending when 

it receives an “STX”. When the receiver receives something, it stops sending “STX”. The 

“send” code sends its message, followed by a hex-ASCII-encoded checksum, and then 

sends “ETX” characters if  it does not receive a response, until it receives a response. The 

message is hex-ASCII-encoded if it consists of numeric data, and the checksum is 

calculated from the unencoded data. The receiver uses the numeric ASCII value for 

“ETX”, 0x03, if dropouts occur and it needs some “ETX”es to make up the required 

length of the message, which is supplied to the “receive” or “send” code by its respective 

calling function. In that case, the message verification fails (which was tested as being 

quite reliable). When the receiver has done the message verification, it then sends “ACK” 

or “NAK”, until it receives back either one, and then stops sending. The “send” code is 

aware that the “receive” code has received back its echo when the receiver stops sending. 

If “NAK” was sent by the receiver, both routines begin again. In practice, these routines 

had to be carefully adjusted with delay loops so that the board, with its 100 MHz clock, 

could successfully communicate with the PC used, with its 2.39 GHz clock, and with the 

laptop, with its 701 MHz clock (Pentium III CPU). Figures 26 and 27 illustrate the design 

of the send and receive code.
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These routines were only used to transfer numeric data; the “send” function 

included an input indicating whether the string pointed to should be sent via reliable data 

transfer, so that the same function could be reused to send unencoded characters without 

expecting any response, in order to avoid code duplication. The ML403 board code and 

the GUI code were written so that it was known at a given program location whether 

reliable data transfer was to be used. Each entity, “IPsecImp” in the board and 

“IPsecGUI” in the PC, has both a send and a receive function. If data of varying length 

was to be sent, the length was first sent as numeric data using a variable of known length 

in order to send a known number of bytes.

3.3.7. The Services Layer

Both an AH and ESP service were written. A pointer to the SMIB and to the 

SADB are passed to these routines, which use the service number in the SADB to trace 

the primitives to use, via the SMIB, from the service number, via the mechanism number,
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to the primitive algorithm number. This is necessary because it is these routines that 

allocate the memory for the transformed packet and therefore must access information 

from the Primitives layer in order to determine precise data sizes needed. This is an 

example of strict layering making implementation difficult (see section 1.5., “Motivation 

for General Layering”). Since the goal is a successful implementation, the end should not 

be sacrificed to the means; doing that might constitute fanaticism, which sometimes 

occurs in the form of increasing effort while losing sight of objectives.

■c,

These routines also read and build IP and IPsec packets. IPv4 is supported in this 

work ([BAC1997], “IP Packet Structure,”

http://www.freesoft.Org/CIE/Course/Section3/7.htm). [RFC0791]. Note that in the RFCs 

and in other standards documents, the term of choice to replace “byte,” is “octet,” since 

the term “byte” is sometimes used loosely, to refer to other than eight bits; in RS232 

transmission, the presence of start, stop and parity bits often means that a “byte” is nine, 

ten or eleven bits. Note also, that in this design, the AES IV is included, unencrypted, in 

every packet that contains data encrypted using AES, at the beginning of the section, 

immediately before it.

3.3.7.1. The ESP Service

In the ESP service, for sending, the size of the space required for the IPsec 

datagram (a specific term for a packet at the IP level [KUR2000]) is calculated and the 

space for the datagram is allocated from the system heap, using the standard C function, 

malloc() [KER1988]. In addition, space for at least the data to be encrypted is allocated, 

since padding has to be added to conform to a natural number of encryption block sizes, 

and to hold the padding size information itself. This latter space has at least the packet 

payload copied to it and is configured with the padding and the padding size, in order to 

send this space to the mechanism for encryption. Any unused padding area is set to 

zeroes, for confidentiality, in order to prevent any leak of data left in the memory area 

used, which should not be sent along with the packet. The Encryption mechanism routine 

is called and is passed a pointer to the destination address for the ciphertext, the source

87

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.freesoft.Org/CIE/Course/Section3/7.htm


address of the plaintext, and the data length. In addition, the mechanism is sent the 

mechanism number to use, determined from the SMIB, and the key and the IV from the 

SADB. It is also sent the SPI from the SADB for the purposes of only updating the key in 

the encryption core when necessary.

Upon reception, the IP datagram can only be allocated after the mechanism is 

called, because the padding size is not known until then. Instead, space is allocated for 

the size of the IPsec datagram payload, less only the size of the IV, as a destination for 

the decrypted data from the mechanism. The IP datagram payload only is then transferred 

to the IP datagram built.

Before exiting, the temporary payload area is freed, leaving only the datagrams-in 

and -out, of the service call. Figure 28 illustrates the design of the ESP service.
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Figure 28. The ESP service flowchart
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3.3.7.2. The AH Service

In the AH service, the datagram must always be hashed, in order to create the 

authentication data when sending, or for comparison with the decrypted authentication 

data when receiving. Therefore space for the generated hash must always be allocated. If 

receiving, space for the hash, as decrypted from the authentication data, must also be 

allocated. In addition, a copy of the IPsec datagram should always be created, in order to 

build a copy to send to the HMAC mechanism for hashing and signing (encrypting, if 

sending). This copy requires mutable fields (those fields that are changed when the 

packet is transmitted across links) to be zeroed. This copy can become the IPsec 

datagram when sending; doing this increases processing speed. When receiving, this 

datagram is created in this design, but it would be possible to increase processing speed 

by modifying the IPsec datagram that was passed in to the service, since it is always 

deleted by the IPsec sublayer following the service call. The IP datagram is directly 

created from the IPsec datagram if receiving since doing so amounts to only removing the 

AH header, and, if in Tunnel mode, the extra IP header.

An IPsec datagram is thus always passed to the HMAC mechanism for hashing, if 

sending or receiving. The pointer to the encrypted authentication data is set to its location 

in the original IPsec datagram if receiving, and set to separate allocated storage if 

sending, because the datagram to be hashed must not be written to while it is being read; 

this is passed to the mechanism. Pointers to the generated hash storage and the decrypted 

hash storage are also sent to the mechanism. As in the ESP mechanism call, the 

mechanism is sent the mechanism number to use determined from the SMIB, and the key 

and the IV from the SADB. It is also sent the SPI from the SADB for the purposes of 

only updating the key in the encryption core when necessary.

After the call to the mechanism, if sending, the authentication data is copied to the 

AH area in the IPsec datagram. If receiving, the generated hash is compared to the 

decrypted hash and a Boolean variable indicating whether the verification succeeded is 

passed out of the AH service call. All storage is freed except for the datagrams in and out, 

of the service call. Figure 29 illustrates the design of the AH service.
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Figure 29. The AH service flowchart

3.3.8. The Mechanisms Layer

3.3.8.1. The Encryption Mechanism

The encryption mechanism contains the code to initialize the SPI-based key 

tracker, and the RNG. If the mechanism is passed the command to initialize these, it does 

so, seeding the PRNG with all “ l ”s. It exits immediately if it does initialization.

The mechanism mainly consists of an outer switch statement that is used to select 

the desired processing for the desired set of primitives found for the particular 

mechanism number that was passed in. AES-128 is the only primitive so far implemented 

for encryption. In that case the SPI-based key tracker is used to help determine whether 

the key needs to be updated in the core. In addition, if the KeylsNew variable passed in
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from the upper layers is true (where it is determined from KeylsAlwaysTreatedAsNew, 

and other factors, if that is false), the core is updated with the key. When the key is 

updated in the core, the SPI-based key tracker is also updated with the SPI used. If 

sending, if the NewIVNeeded variable passed in from the upper layers is true, the selected 

RNG is used to obtain a new IV. Since the IV storage area was passed to the mechanism 

via a pointer (i.e., as a memory address), this updates the IV in the SADB. The IV is also 

copied to the beginning of the destination transform area whose pointer was passed in to 

the mechanism. If receiving, the IV is retrieved from the beginning of the transform area. 

The IV is written to the core via the primitives, and the primitive is called to encrypt or 

decrypt the data starting from the address of the origin transform data and to place the 

transformed data in the destination transform area. The starting addresses have to be 

adjusted to follow the IV in the destination transform area if encrypting, and in the origin 

transform area if decrypting. An error code is accepted from the primitive and passed out 

of this mechanism when it completes. Figure 30 illustrates the design of the encryption 

mechanism.
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Figure 30. The encryption mechanism flowchart
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3.3.8.1. The HMAC Mechanism

The HMAC mechanism contains an empty “i f ’ block for initialization in case any 

HMAC-specific initialization needs to be done.

The HMAC mechanism contains a switch statement to select and use the Hash 

function specified in the SMIB. The generated hash is passed out of the mechanism using 

the pointer that was passed in. A second switch statement selects the encryption method, 

whose functionality is the same as that explained for the encryption mechanism. In future 

work, considerable object code could be saved by making that encryption block into a 

function. The decrypted or encrypted hash is passed out using the passed-in pointer. 

Figure 31 illustrates the design of the HMAC mechanism; note the similarity in the case 

of the encryption algorithm to that in the Encryption mechanism.
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Figure 31. The HMAC mechanism flowchart

3.3.9. The Primitives Layer

3.3.9.1. The Hash Primitive

The hash primitive is a dummy hash, intended to be filled with the SHA-2 hash 

routine in future work. Thus 256 bits, or eight 32-bit words, are passed back from this
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function, each containing, alternately, 0x5A5A5A5A and 0xA5A5A5A5. See the figure 

in section 3.3.9.3., “The RNG Primitive,” for a diagram.

3.3.9.2. The Encryption Primitive

Three functions are provided, to update the IV in both the AES encryption and 

decryption cores in one, to update the key in the cores, only doing the key expand process 

and copy to the decryptor core when specifically commanded, and to encrypt or decrypt a 

block of memory from an origin starting address to a destination starting address, for a 

length of memory given in bytes. The length is passed in twice to this latter function, for 

error checking and the length is also checked to confirm that is a natural-number multiple 

of the 128-bit block size of sixteen bytes. An error code is returned if this check fails. 

Figure 32 and 33 illustrate the design of this primitive.
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3.3.9.3. The RNG Primitive

Four functions are provided. One function acts as the storage for the state of the 

LFSR-CASR PRNG. Static variables are used in this function to contain the two 64-bit 

state variables in the form of four 32-bit words. As explained before, not all of the high- 

order 32-bit words for each of the LFSR and CASR are used. The function will store or 

retrieve these values depending upon the command passed in. Another function resets the 

four 32-bit words passed in. Another seeds the four 32-bit words that are passed in. The 

most important function generates the pseudo-random number generator from the current 

state (the four 32-bit words) passed in, and returns a 32-bit pseudo-random number. 

Generation updates the state variables, as described before (see section 3.2., “Design of a 

Combination LFSR-CASR Pseudo-Random Number Generator”). Whenever the state 

variables are required for passing into the generation function, they must be retrieved 

from the storage function first (except of course if they are updated repeatedly before the
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local state values are lost such as by exiting the current function) and whenever they are 

updated by one of the reset, seed, or generation functions, they must be stored using the 

storage function. Figure 34 illustrates the design of the functions written to make use of 

the PRNG primitive (as well as an illustration of the dummy hash routine).
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Figure 34. The hash and pseudo-random number generator flowcharts

3.3.10. Versions

Four different versions of the actual layers to be tested for performance, Service, 

Mechanism and Primitive, were created, mostly involving changes to the Service 

functions, due to their complexity. Some changes were made to the mechanisms, but 

none to the primitives. A design change was made in ver. 7 to conform better to the 

layering idea, and to use the SMIB. Some additions were made to the SMIB. The version 

numbers are from the IPsecLoop CLI version of the project, but the same actual files and 

therefore the identical code is used for the Services down to the Primitives layers in both 

versions. This replaceability (or fungibility, to use the correct, but obscure word) due to 

modularity is a huge benefit derived from layering.

ver. 4\ This was the initial version tested.
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ver. 6: The ESP service was modified to remove “for” loops that cleared the entire 

datagram, which would cause delays proportional to the packet size.

ver. 7: Clearing of the padding area in ESP was restored that was removed in ver. 

6, to prevent security leaks, and additional reduction of processing time in ESP and AH 

was done, involving only clearing unused areas of the datagram rather than pre-clearing 

the entire datagram before filling it; the significant fix in ESP was done in ver. 6. The 

design was corrected to use the SMIB to look up the primitive numbers as is implicit in 

the layering scheme; algorithm numbers from the SADB had been passed-down -  the 

SADB was changed to have the service number (intended to be obtained from the SA 

negotiation) set in the SADB. Future work may cause additional processing delays when 

multiple services, mechanisms and primitives cause full SMIB looking-up to be done, 

however, it probably will not be significant compared to processing times incurred by 

packet payloads.

ver. 8: A transform pulse was added to follow the service call immediately, for 

accurate timing (see section 3.5., “Design of a CLI Version, ‘IPsecLoop,’ to Facilitate 

Testing,” after). The ESP service was modified to create only the payload portion to hold 

the payload image to be transformed, and to remove some redundant header-setting code. 

The AH service was revised to simply use the IPsec datagram created for hashing as the 

datagram out when sending, instead of copying it to a new one. The encrypted 

authentication data produced when sending was placed into a temporary holding area for 

transfer to the IPsec datagram after the mechanism call. Some redundant header-setting 

code was removed. Both the HMAC and the Enc. mechanisms were revised to only get 

the key from the void pointer in the SADB when it is needed. Initialization was only 

necessary in one mechanism, which saves a little code space. Some common code across 

an if-else that was left when the SADB was simplified to one key and one IV was 

amalgamated. The mechanisms were revised to not retrieve the IV from the SADB's 

pointer if  NewIVNeeded. The local key and IV variables were removed from the 

mechanisms. The mechanism-level key status tracker (L4AES128Mode) was revised to 

track the key in use via the SPI to uniquely identify the SADB and is now called
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L4AES128SPI. The RNG was added as a field in the mechanisms layer in the SMIB. 

MaxIPsecPacketSize was added to the policy struct in the SMIB.

3.4. Design of a Test and Demonstration GUI, “IPsecGUI”

The GUI, named “IPsecGUI”, and also written in MSVC++V6, supports all the 

features that were coded into the board: “hello”, “key is new”, random no. seed, SMIB 

and SADB receive and send. As in “AESfile”, there is an activity window to display 

scrolling messages to the user. Text appearing in this activity window is also saved to a 

file, “ActivityLog.txt” for self-record-keeping. The SMIB and SADB settings can be read 

in and saved via file I/O. A test packet can be read in via file I/O and its total size is 

validated and corrected, if necessary. A test packet size increment can be set and used to 

increment the test packet size. Help information is shown in a “modeless” window that 

can be left open while working, for reference. The “Packet Send” button initiates the 

PacketProcessing of the OSI layers in the board, and the called functions in the GUI 

measure the processing speeds of the service calls in the board.

Figures 35 and 36 show the operation of the KeylsAlwaysTreatedAsNew, i.e., 

“Load key in core every transform,” the seeding of the RNG, and the help window.

98

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



SMIB SADB *.4»ng A .-  T u m p M

S p ,ee  u sv e i P e r  &n*tratiort

P f l - J « n , « j * e d  1 E 1 IB C '3 C 1 E E 4 -3 6 4

JaUclSeudJ  ̂ [nut,emj t™ t

1 '£ * £ *  ,JDi
W fleilj

tbyte®, hsst) test

ttwkiML4oy | ie'p j

S f  pV Seyrcm -e-e., bade,,.,

i •.- -ipuO tlin JI item  u  Le -<l ... .it.. to r  -u i 3
jTeelns padsel send m t teym e an the board, IhtsughiFsett.,

OP p&ck&t i&s&w$d fegsete*..................... IK 1 -4i;jt,.7;i’Su£̂ SLU-X1b.l. «H,CI.-lt.bJWlAJ!j3E34:
330000121 S14t

. ; u  :o,F<3>r.r o r m y .u ;B / i  t i w . ' j / s j w ,  i v i ' W '  i .B fx t r - ru  - :7 i! : '. . :4 tG U 2 jiU iv : '/ ir

[The protocd used was W , and Iteffiodetised wat Transport,

|p  10 )P«c (»ocessina *•«? taken 2 ms.:p cr i„ ip praceseing time taken ms
pH ncflQcr sycvc$?n^ Y$f(fi$w

k-m; , ,„•>« a 1*
.1 -r.j .,1 M i  m l

towtadetr,MU03:

It'lmwd I ....if* 
m ix - . ( e d  ■ r ' iE > 9 C'"“''"'"‘iiir“

■ J B B B

- t , i : i / r f l i . i i e e ’e d o  n > «  it  LIU £#-

Figure 35. Operation of "KeylsAIwaysTreatedAsNew" and the seeding of the RNG in “IPsecGUI”
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Figure 36. The “IPsecGUI” help window

When the GUI launches, it first gives the ‘h’ command to check whether the 

board is responding. If “Hello” is not received back, an error message is displayed to the 

user. If the board is responding, reliable data transfer is used to get the SMIB and the 

SADB from the board. In this way, update of context to the PC is automatic. If the user 

chooses to access the SADB dialog, the SADB is also acquired from the board, including 

the key and IV pointed to, since the board changes the IV -  and changing the key is 

forseen, in future work, when key exchange is added.

Multiple policies are supported by the GUI. A GUI field is provided for the user 

to enter the number of policies, and another is provided for the user to select the 

particular policy to view. When the former field is changed, the space allocated is 

changed to hold the required number of policies, in an array of policy structures. When
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the latter field is changed, the policy fields are updated with the data of the policy number 

selected. When a data field is changed, the entry in its policy structure is updated. If 

“OK” is clicked in the SMIB window, those policy structures are incorporated as the 

official SMIB array of policy structures, and the former array of policy structures is 

discarded. If the SMIB window is exited without clicking “OK”, such as by clicking 

“Cancel”, that is not done, leaving the official array of policy structures previously 

entered, unchanged. In addition, if “OK” is clicked, the SMIB in the board is updated via 

reliable data transfer and the policy that was selected to view in the SMIB dialog window 

is sent to the board. The same technique is used to implement the entry of multiple clients 

in the management layer of the SMIB.

Figure 37 shows the SMIB window, or dialog box.
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Figure 37. The “IPsecGUI” SMIB dialog 
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Similarly, when the user exits the SADB, it is updated to the board via reliable 

data transfer if “OK” was clicked.
*

Figure 38 shows the SADB dialog box, with the first non-zero IV produced by the 

PRNG from a seed of all “ l ”s (or “F”s, in hex.).
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Figure 38. The “IPsecGUI” SADB dialog

There is a checkbox provided for setting the IV  Constant field in the SADB, 

“Hold first non-zero IV.” See the explanation before, in section 3.3., “Design of an IPsec 

Implementation, ‘IPsecImp’ [etc.],” for the use of this field.

In sending these structures as a block, it should be noted that the GNU C code in 

the board uses big-endian data orientation, whereas the MSVC++V6 code running on the 

PC uses little-endian. The GUI is responsible for correcting the data orientation after
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receiving from the board and before sending back to the board, by switching the order of 

the bytes within each variable affected; a series of functions were written to do this.

When the “Packet Send” button is clicked, the GUI verifies whether the SMIB 

exists and has been set, and whether the SADB exists, including the key and IV, and has 

been set. The existence of the test packet is checked, and its header is checked for the 

minimum size. Using the same code that the board uses to obtain the IPsec packet size, 

the GUI checks to make sure that the resulting IPsec packet would not be larger than 

64kB-l bytes, or OxFFFF (65,535) bytes, and also that it would not be larger than the 

maximum packet size set in the policy. If everything is verified satisfactorily, the ‘p’ 

command is issued to the board to start packet processing. Reliable data transfer is used 

to send the test packet to the board when the IP layer requires it. The synchronization 

message, “Synch”, is received, using reliable data transfer, in order to synchronize with 

the beginning of the service call. The time count variables are cleared, and a timer that 

counts milliseconds is turned on. Following this, execution occurs in the timer message- 

handling routine. Figure 39 illustrates the design of this function.
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Figure 39. "IPsecGUI" packet processing setup flowchart

In the timer message-handling routine, the quickest possible check is made for 

any character received via RS232. The time count variables are updated, and the routine 

exits if  no character was received. This is done since timer messages are ignored if  the 

MSVC++V6 program is busy, and missing timer messages would result in a low time 

count. If a character was received, the timer is stopped, and reliable data transfer is used 

to get the IPsec packet. The synchronization message is received again, and the same 

process is used to time the “incoming”, or “receiving”, service call, in which the IPsec 

packet is converted back to an IP packet. During this process, minimal echoing is shown 

in the activity window, in order not to cause difficulties in synchronizing the GUI with 

the board, which could cause problems such as communication lockups. Packet Sending 

Progress Indicators shown are: “.. .o. .i”, which have the following meanings:
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first dot: test packet size received successfully by the board.

second dot', test packet rcvd and timing synch, message sent successfully by the

board.

space and dot'. IPsec packet size received back.

'o': IPsec packet received back (outgoing processing complete). 

dot', synch, message sent successfully by the board. 

space and dot'. AH header success message (or "Not AH" if not doing AH) 

received and derived IP packet size received back.

‘i derived IP packet successfully received back (incoming processing complete).

Figure 40 illustrates the design of this function.
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Figure 40. "IPsecGUI" packet processing timer processing flowchart

Figure 41 shows a “screenshot” of an example of the IPsecGUI’s operation.
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Figure 41. A "screenshot" of the operation of "IPsecGUI"

See also the pseudo-code for the “IPsecGUI” packet processing functions, in 

Appendix A.

3.4.1. Test Methodology

Testing the time required for the service calls to complete was done using the 

IPsecGUI packet processing functions described before. The times were echoed to the 

activity window, and thus to the activity log file. A standard 40-byte (0x28) test packet 

with a six-3 2-bit-word (twenty-four bytes) header was used, and incremented in units of 

0x100 and 0x200 bytes up to 0x4028 (approximately 16k) bytes. This range was used in 

testing all four protocol-mode combinations: AH protocol, Transport and Tunnel modes, 

and ESP protocol, Transport and Tunnel modes. The packet used was as follows (hex., 

with spaces added for readability):
06000028 00000000 5A81BEEF 12131415 26272829 DEADBE00 01020304 

15161718 292a2b2c 3d3e3f42
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A packet of the smallest size possible was tested just to verify correct operation -  

note the one-byte payload and the five-long-word header:
05000015 00000000 5A81BEEF 12131415 26272829 A5
Also, a packet with the largest possible header, of fifteen, OxF, “long words” (32- 

bit words), and a one-byte payload, was also tested, just to verify correct operation:
0F00003D 00000000 5A81BEEF 12131415 26272829 DEADBE00 10000001 

10000001  10000001  10000001  10000001  10000001  10000001  10000001  10000001 
A5

The typical size of a packet is about 500 bytes, 576 bytes to be exact ([RFC0791] 

pg.12), and “Datagrams are rarely larger than 1,500 bytes” ([KUR2000], 3rd ed., pg. 326). 

In an example from the literature, IPsec was tested only up to a packet size of about 8k 

(0x2000) bytes [KER1997]. The minimum packet size includes a one-byte payload 

([RFC0791] pg 34). In testing in this work, operation with an IP packet of the minimum 

size and up to ah IPsec packet of the maximum size of OxFFFF bytes was tested. 

However, “Such long datagrams are impractical for most hosts and networks” 

([RFC0791] pg.12). The resulting millisecond counts were graphed.

Testing was done to verify that the AES encryption was appearing correctly. ESP 

Transport mode was used to encrypt a packet payload consisting, in part, of the block 

“01020304 15161718 292A2B2C 3D3E3F42,” using the first IV produced by the RNG 

from a seed of all “F”s (hex.), which is F7EFFFFD E3CFFFF9 C19FFFF2 943FFFE4. 

The key value was arbitrarily chosen as the same as the plaintext. To follow the process 

of Cipher-Block Chaining (CBC mode), these were XORed using Windows Calculator to 

obtain F6EDFCF9 F6D9E8E1 E8B5D4DE A901C0A6. To predict the ciphertext that 

should appear, the Styer Javascript example [STY2006] was used, which predicted 

“F1E73B95 E690F3BA 45CF3F0B DDD92594.” An ESP Transport test was done using 

the 40-byte test packet, which contained that block as a payload, first leaving the IV in 

the SADB set to zero, and a freshly-initialized board that had the RNG seed set to all 

“F”s (hex.). Additionally, the comprehensive CLI demonstration program done to 

demonstrate the operation of the AES core described in section 3.1.8.1., “CLI and 

Simpler Programs,” was also used to verify the output of these “higher-level” programs.
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In addition, the “IPsecGUI” (as well as “IPsecLoop”) was used many times to 

encrypt and decrypt packets using all four protocol-mode combinations, and the resulting 

IPsec and received-back IP packets were verified for correctness.

3.5. Design of a CLI Version, “IPsecLoop,” to Facilitate Testing

Since it was unknown how accurate the method of testing described before using 

“IPsecGUI” would be, oscilloscope timing measurements were planned, with the idea 

that the service calls would be iterated. There was no point in developing a GUI to 

operate such a program, therefore “IPsecLoop” has no GUI, and is a CLI program, 

operated via Hyperterminal. Also, it only differs in the top-level loop and OSI layers; all 

of L3 (Service) to L5 (Primitive) layers are identical -  the same C files are used as in 

“IPsecImp”.

Referring to the pseudo-code (see Appendix A), “IPsecLoop” differs from 

“IPsecImp” in having a pre-set SADB set in initialization, before the main command 

loop. Also, the test packet is built-in by allocating memory for it and setting its contents 

during program initialization. In the command loop, ‘r’ to seed the PRNG, ‘z’ and ‘s’ to 

send and receive the SADB, and ‘m’ and ‘i’ to send and receive the SMIB, are not 

needed and are removed. Instead, the following commands were added: ‘o’, to toggle 

testing between outgoing (sending) and incoming (receiving), ‘t ’, to change the protocol 

and mode to be tested, ‘i’, to change the increment by which to increase the test packet 

size, ‘s’, to increment the test packet size or revert to the original size, and ‘n’, to toggle 

NeedNewIV. Commands retained are ‘h’, for “Hello” from the board, ‘k’ to toggle 

KeylsAlwaysTreatedAsNew, and ‘p’, to start packet processing, i.e., launch the test.

In the IPsec sublayer function, an infinite loop was placed around each of the 

services, which activates if its protocol and processing direction are set. A message is 

echoed to the user to indicate that outgoing, or incoming, processing is occurring. 

Slv_reg8 of the AES core of the opposite transform from that employed by the service
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call for that direction is written in order to cause autoload and create the diagnostic pulse 

previously described, in order to mark the timing of the loop and make it readable by an 

oscilloscope. Since the service call contains many lines of calculation and memory 

allocation, and there are two more layers below it, it was expected that the duration of the 

transform pulse would be about three orders of magnitude shorter than the duration of the 

service call, leading to a precise reading. Moreover, a reading to the nearest 220 ns due to 

the transform pulse is about three and a half orders of magnitude more precise than the 

IPsecGUI measurement, which is to the nearest millisecond.

Included in the service call loop are (as noted in Appendix A): 

a dummy transform to read via oscilloscope to mark the loop (the opposite one to 

the one used in the service call) 

the service call

a dummy transform to read via oscilloscope to mark the end of the service call 

(added in ver. 8 of “IPsecLoop”) 

test for error

set KeylsNew from top-level user selection, KeylsAlwaysTreatedAsNew 

check for a keystroke via RS232 and exit the loop if so

check for the setting of the "Outgoing" vs. incoming test selection to exit the loop 

after only one execution if testing the other direction.

delete the transformed packet if looping so as not to use up the memory

Since the extra instructions required for continuous looping would cause some 

delay, ver. 8 of “IPsecLoop” was revised to add an extra dummy transform immediately 

after the service call, for accurate timing.

3.5.1. Test Methodology

The test methodology to use “IPsecLoop” is fairly straightforward. Oscilloscope 

probes are connected to pins 2 and 64 of J6 so that the decryption core “loadtodone” 

signal (pin 2), is connected to channel 1 (the upper trace in Figure 42) and the encryption 

core “loadtodone” signal (pin 64) is connected to channel 2 (the lower trace in Figure 42). 

Hyperterminal is used to operate the program running in the ML403 board, ‘p’ is pressed
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to begin the first test. The reading is read from the oscilloscope, in units of screen 

divisions, in order to work carefully from the raw data. The “units per division” setting is 

carefully noted. A key is pressed to exit the loop. The processed packet is echoed, 

following that (if incoming processing is being tested, the IPsec packet is echoed before 

the program pauses during the incoming processing). The ‘o’ command is used to toggle 

the test to the opposite direction. The ‘i’ command is used to select the packet increment 

amount and the ‘s’ command is used to increment the packet size. The packet size, 

starting from the standard 40 (0x28)-byte packet (see section 3.4.1., “Test Methodology” 

-  “IPsecGUI”) is incremented until a range of packet sizes from 0x28 to 0x4028 bytes for 

that protocol and mode are tested, then the process is repeated for the other three 

protocol-mode combinations.

To show the method used (without the additional marker pulse following the 

service call, which would be close to the second marker pulse for the beginning of the 

next loop), Figure 42 shows an oscilloscope measurement of AH Transport outgoing 

processing time with the 40 (0x28 hex.)-byte packet, using IPsecLoop ver. 6. The 

oscilloscope used was the Tektronix TDS1002 Two-Channel Digital Storage 

Oscilloscope [TEKTDS]. Tektronix TDSPCS1 “Open Choice” PC Communications 

Software, Version 1.10, was installed on the PC and a 9-pin RS232 full “cross-cable” or 

“null modem” (the RS232 handshaking lines were also crossed) cable was used to 

connect an RS232 serial port on the PC to the RS232 port on the oscilloscope.
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Figure 42. Oscilloscope measurement of AH Transport outgoing processing time with a 40-byte

packet

The ‘k’ and ‘i’ commands only need to be toggled on once or twice, preferably 

when the packet size being tested is the smallest, so that the additional processing time to 

load the key into tfie core or get the IV from the PRNG can be most easily determined 

from the total processing time read from the oscilloscope. Since the IV is in the data in 

the incoming (receiving) processing, setting NeedNewIV does not cause a new IV to be 

acquired for that computation, of course. The time taken to load the key and/or the IV 

was not included in the series of measurements of packet processing time.
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CHAPTER IV

ANALYSIS OF RESULTS

4.1. The AES Accelerator

4.1.1. Simulation Results

Referring to the large “screenshots” in Appendix B, section B.I., Figures 61, 62, 

63 and 64 in section B. 1.1.1. show simulation of an encryption transform. Using the key 

shown, of value 01020304 15161718 292A2B2C 3D3E3F42 (hex.), and tex tjn , of 

41747461 636B2061 74206461 776E2020 (hex.) -  which is the ASCII for “Attack at 

dawn ” (note the two spaces at the end that make up the sixteen bytes of a 128-bit block), 

a ciphertext, or textout, of 03211ECA A144E6D0 7FF9F6D9 1801D80C (hex.) was 

produced, and was verified (see section 3.1.6.1., “Simulation Test Methodology”). The 

“load pulse” process formerly used can be seen. w0-w3 are the key expand values, 

beginning with the unchanged value of the key itself. The sa variables are the results of 

the XOR of the state (beginning with textjn), the sa su b  variables are the results of the 

sub-byte operation, and the sa jn c  variables are the results of the mix columns step.

In section B.l.1.2., verification with autoload can be seen in Figure 65. Note that 

start load starts when slv_reg8 is written.

In section B. 1.1.3., two encryptions using CBC mode can be seen in Figure 66. 

During the time of the donepulse, the ciphertext in slv_regs9-12 is copied into ivO-3. The 

results of XOR with the plaintext can be seen where tex tjn  changes. The differing 

ciphertext can be seen, as produced by the chained plaintext.

The “screenshot” in section B.l .2., “Decryption” (Figure 67) shows the inverse 

transform from the chained ciphertext in slv_regs5-8. The previous ciphertext can be 

seen, just prior, in slv_regs5-8, being used to load ivO-3 during ivload. When slv_reg8 is 

written, the transform commences (which was designed not to happen when ivload is 

“1”), and the familiar ASCII for “Attack at dawn ” can be seen in slvjregs9-12,
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occurring during donepulse, when the decrypted output is XORed with the IV to form the 

plaintext. During done2pulse, the previous ciphertext is seen being transferred to the IV. 

In slv_regsl-4, the last (in encryption order) key expand value loaded to the decryptor 

can be seen, being the first used for decryption in wO-3. (slv_regsl-4 correspond to w3- 

0). The last key expand value used in wO-3 can be seen to be the key itself, opposite from 

encryption order. Slv_regO bit 6 can be somewhat discerned as being the source of ivload 

(0x40 when the only bit set in slv_reg0).

4.1.2. FPGA Usage

Table 5 shows the FPGA device utilization summary when both the encryptor and 

the decryptor core, with all of the features described before, were included.

Number of BUFGs 7 out of 32 21%
Number of DCM_ADVs 2 out of 4 50%
Number of ILOGICs 33 out of 320 10%
Number of External IOBs 68 out of 320 21%

Number of LOCed IOBs 68 out of 68 100%
Number of JTAGPPCs 1 out of 1 100%
Number of OLOGICs 63 out of 320 19%
Number of PPC4 05_ADVs 1 out of 1 100%
Number of RAMB16s 36 out of 36 100%
Number of Slices 5470 out of 5472 99%

Number of SLICEMs 666 out of 2736 24%

Number of Slices containing only related logic: 4,635 out of
5.470 84%

Number of Slices containing unrelated logic: 835 out of
5.470 15%

Table 5. XC4VFX12 device utilization summary (most recent build -  Mar. 12,2007)

The most recent build was only required due to the change to “Daylight Saving 

Time” (DST), which was held early in 2007, when the Windows XP PC Operating 

System (OS) changed the EDK/ISE project file times retroactively to those of the 

changed “time zone”. Previous builds were done on Dec 10 and Nov 18,2006.
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As can be seen, usage has moved into using slices for unrelated logic, 99% of the 

slices being used. Place and route required 54 minutes; that time begins to grow rapidly 

as the FPGA is filled and slices have to be used for unrelated logic.

4.1.3. AES Performance Results

4.1.3.1. AES Core Performance using Small Software Test Programs

Please refer to the methodology that can be found in sections 3.1.7.2.4., “Timing 

Diagnostic Output for Test,” and 3.1.8.1., “CLI and Simpler Programs”.

When the original method of pulsing “load” to begin the transform was used, the 

load pulse in the encryptor was observed to take 510 ns and “loadtodone” was observed 

to take 730 ns. 730 - 510 = 220 ns, which is eleven 20 ns clock pulses as expected. 

Clearly, turning a bit on and off via software over the bus is slow.

Table 6 shows some of the most relevant observations that were made. The 

calculated SW transform rate was calculated by multiplying 128 by the SW loop rate (or 

by dividing it by the period).
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Observed AES core performance used by software and in-^PGtX

Date

Load (go) 
method or
te s t !!

{(Calculated).
SW
transform

(2006) descrifrtionjCote

I§
!

SW  loop speed rate
| j (128-bit 

Period jRate j blocks) 
(ps) I (kHz) IfMbps)

FPGA tram

Load pulse 
(ns)

rform time

Load-to- 
Done (ns)

Transform 
time (ns)

i i w c t Pulse j Encryptor 2 .28 j  442 j  66.637168 510 730 220
21-Nuv Autoload 

Full write
and read

j Decryptor 1 76 559. 71 910112 NA 200 . 2 ®

11-Dec back 
Full write 
and read

Encryptor

|
I

5 .3 | 18s j  24.150943

j

NA NA ' i y « M

back _ 
Full write 
and read

; Decryptor

I

5.76; 174! 22 222222 NA NA .2 0 0

back 
Full write
and read

| Both

I

10,18 . 98 ,2 j  .12,573674 

8.941 1 1 1 .J  14.317673

..............NA . NA NA

back (D) {Both NA NA NA
Pulse load: tested  with OP to a pin while the load pulse w as high while also OP to a pin until dona
is high. ' . i . _ 1 . : .................  i .    ; i
Autoload: tes t by only outputting to a pin firom time of internal load (Id j) until done asserted  
note-Aytaioadused. in all subsequent te s ts  . I. . . . :
(D): Not even testing for the Done bit in software, since the FPGA is so  fast 

IN A: Not Applicable

Table 6. Observed AES performance in-core and as used by software

“Full write and read back” means that the time taken to write all four input and 

read all four output slave registers via software was included in the test loop. The test of 

both means that the output of the encryptor was fed into the input of the decryptor by 

reading and writing the slave registers via software.

Note that if the time taken to turn the load bit on and then off is 510 ns, then the 

time for one write is 255 ns. If the time taken to read a slave register is the same, that 

means that it is hardly worth using a software loop to check for the done bit in slv_regO, 

since the transform takes only 200-220 ns.

115

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



By initializing the step counter in the decryptor and using a different timing plan, 

the clock cycles required were reduced from eleven to ten.

220 ns to encrypt 128 bits implies 128/220 = 582 Mbps, and 200 ns to decrypt 

implies 128/200 = 640 Mbps as an intrinsic core transform rate; however, some method, 

such as DMA, will be needed to transfer data to and from the core as fast as it can be 

processed. Xilinx offers a technology called FSL (Fast Simplex Link) that can import 

data from user IP cores to its soft-core processors, but this method is not available when a 

hard-core processor, as in this work, is used.

Processing via software intervention is slow. Even if  the time required to write the 

input slave registers, wait for the transform to finish and read the output slave registers 

could be reduced by removing the wait loop on the grounds that the transform happens so 

quickly compared to software operation that a wait loop is not needed, that would only 

save about 600 ns from one of the single transform times noted in Table 6 (removing it 

when it was used twice when both transforms were done, saved 1.24 ps, as can be seen 

from Table 6). If the encryption time, for example, were thus reduced to 4.7 ps, that 

would still imply a processing rate of only 27 Mbps, 21 times slower than the core’s 

capacity of 582 Mbps.
r

Table 7 compares the intrinsic core transform rates of this work with those of 

others’ found in the literature.

AES core rates achieved, by implementation (Mbps)

This

work

[MCL2002] [DAN2000] [KIM2004] [BEL2002] [LUJ2005]

Encryption 582 310 353 390 887 1197

Decryption 640
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This work (Fall 2006): Xilinx Virtex-4 FPGA, XC4VFX12, speed grade 10 

(slowest)

[DAN2000]: all on an FPGA (make, model unspecified)

[BEL2002]: Xilinx Virtex 1000 FPGA 

[MCL2002]: XCV1000E 

[KIM2004]: FPGA not specified 

[LUJ2005]: Xilinx Virtex-II Pro 100 XC2VP100

Table 7. AES core rates achieved in this work and in the literature

Since the FPGA used in this work is the lowest speed grade [XILRIV], it may be 

possible to double its processing rates by running the core at the full 100 MHz clock 

speed (see section 3.1.7.1., “Core Design and other Modifications”).

4.1.3.2. AES Performance with the “AESfile” GUI

Please refer to the test methodology described in section 3.1.8.2.2., “The PC 

Demonstration G U I,‘AESfile’.”

“AESfile” encrypts a 36kB text file in 24s and decrypts it (75 kB of ciphertext) in 

36s. 36kB/24s =1.5 kBps = 1.5 x 8 = 12 kbps (57600 bps serial connection). 75k/36 = 

25k/12 = 2.1 kBps = 2.1 x 8 = 17 kbps. The serial communication speed, display delays 

in the PC application, as well as the software calls in the board for each 128-bit block, all 

contribute to this slowdown. The simple calculation of the encryption and decryption 

rates here may not be precisely meaningful, because in both processes, there is a 

transmission of 16 bytes of plaintext and 32 bytes of hex-ASCII-encoded ciphertext for 

each block transformed, meaning that both processing times should be the same. The 

longer time taken for decryption is explained by the extra display echoing included in the 

decryption process (see the figure in section 3.1.8.2.2., “The PC Demonstration GUI, 

‘AESfile’”).
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Here is an example of the ciphertext output from “AESfile” (notes added on the 

right, afterward). A key and IV of zero were used to encrypt the plaintext: "Attack at 

dawn Attack at dawn Two spaces were added to each phrase to make each phrase a 

block of 16 bytes; the quotes were not included in the plaintext.
66E94BD4EF8A2C3B884CFA59CA342B2E - IV encrypted in ECB
06362F5ED752BD8A1A2D8AFF2D887988 - "Attack at dawn "
504 9804CC352A02E3B6E2BB6EB55E548 - "Attack at dawn "
8A8BC72E24DCFE7DFF6F8 9065BE13599 - 0x03 (ETX) padded with 0's.

This output format looks regular and pleasing to the eye, somewhat reminiscent of 

the “PGP” style of output [PGPI], and is suitable in the same way, for convenient 

copying and pasting for emailing, since it is ASCII text.

4.2. The LFSR-CASR PRNG

Please refer to section 3.2.3., “Test Methodology and Use in this Work”, for a 

description of how the graphs that follow were produced (the section just preceding that 

one refers to tests already done on this PRNG as documented in a corporate paper). The 

four graphs that follow (Figures 43,44,45 and 46) show that the distribution of the 

pseudo-random numbers produced by the LFSR-CASR PRNG is reasonably uniform, at 

least for the quantities of numbers produced.
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Distribution of ten thou. 32-bitnumbers in 256 ranges

O ■» M O <0 O U #  (D t  M O <D O^  tn co r- h- co o> as x t o  -o o> q> ’*-

Number value (hex) in range (x16A$)
I  ----------------— -    — ,................... - ........     :i ., :■■■■.................................... _ ■........... ....... ....— „ — ,—  ----------- „ — — —  , „   , ;,«

Figure 43. Distribution of ten thou. 32-bit numbers from the LFSR-CASR PRNG in 256 ranges

Dist. of a hun. thou, 32-bit nos. in 4096 ranges

Number value (hex) in range (x16A5)
l  ..................    ..,.g,............       J

Figure 44. Distribution of a hun. thou. 32-bit numbers from the LFSR-CASR PRNG in 4096 ranges
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Dist of ten thou. 128-bit nos. in 256 ranges
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Figure 45. Distribution of ten thou. 128-bit numbers from the LFSR-CASR PRNG in 256 ranges
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Dist. of a hun. thou. 128-bit nos. in 4096 ranges
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1 11 I I 11 1 1 11 1 1 1 111 <f 8
Number value {hex) in range (x16A29)

 -   —  ■ -  ■■■- - r....
Figure 46. Distribution of a hun. thou. 128-bit numbers from the LFSR-CASR PRNG in 4096 ranges

4.3. Performance Results from “IPsecImp”, “IPsecGUI” and “IPsecLoop”

Please refer to sections 3.3.10., “Versions”, 3.4.1., “Test Methodology” 

(“IPsecGUI”), and 3.5.1., “Test Methodology” (“IPsecLoop”).

In a related note, final memory usage in the XC4VFX12 chip, out of the designed 

(using BSB) 0 to 0x7FFF BRAM memory space, was 0x7ab6 for “IPsecLoop” and 

0x6fea for “IPsecImp”. IPsecLoop required more space due to the built-in SADB and test 

packet, including its copying, changing the test packet size, and the commands to toggle 

the test direction, change the protocol and mode, setting the test packet size increment, 

and toggling “NeedNewIV”, in spite of removal of the send and receive code for the 

SADB and SMIB and the removal of the reliable data transfer code.

4.3.1. Demo, of Processing the Largest Possible Packet
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Figure 47 shows successful packet processing using the largest IPsec packet 

possible in ESP, Tunnel mode. An IP packet size of FFBE created by increasing the 

payload size of the standard 40 (0x28)-byte test packet was the maximum possible using 

this protocol and mode, since it resulted in an IPsec packet size of OxFFFF.

122

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Figure 47. Packet processing using the largest IPsec packet possible in ESP, Tunnel mode

4.3.2. Demo, of Correct AES Encryption in “IPsecGUI”
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Figures 48 and 49 show correct AES encryption in “IPsecGUI” demonstration, 

and the SADB settings used. Note the predicted block of ciphertext in the IPsec packet 

(copied below the GUI window shown in Figure 48). Note also that the IP packet was 

correctly received back.

G U I

Sel&tg ;£SP Transport

£etT «fP ar

Ordgoirig process tone I , ' Inco
tew) r1 (mt)

!nc Feel oi f t : l  Pa.-i ei

W es. heir)

iJetoML4D3?

r  toad key in com every ti

Using reliable data transfer to send Ihe SADB to the ML403 board...
Sending lha 128-bil kr-yto the ML403 boatd...
Gendins Ihe 1 » b il IV to the ML403 board...
'Sent Ihe SADB to the ML4D3 bead, end mode any local updates, successful.
,The protocol set is ESP. The mods set is Transport

’Getting test packet (tom liks "restPackettot" on PC...
Packet length: 0028
The packet 06CCW)29000CI000IBAatBEEFi2j314l52e2?2£B3DEADBE0tKn020X1413161710292a2b2c3d3ea«
Got the packet successful 
Packet send and receive lest 
.Cheeking the SADB:
The SADB settings seem to he adequate: continuh'is)..

;T eating packet sand end receive on the board, through IPsec...

n213l41SSG272823DEADBE0DD1O2O30415tS17182S2A2B2C3D3E3F42
IPsec packet
:OMQt»EOOnMIOCl005AjaXIOm?t3t4B2627282»EADB£0(BOO«iaBOOOOOt30Cr7EFFFFDE3CFFFFX13FFFF2843TFE4F1E7
:3B9SE690F38A45CP3f:0eD D O S2S9474tBO I35A B5O CB3«8SA EW aa3W
The protocol used was ESP, and the mode used was Transport

;IP to IPsec processing time taken: t ms.
IPsec to IP processmg time taken: 1 ms.

:PiIlt§!5 ®(5®4

Figure 48. "IPsecGUI" "screenshot" showing correct encryption
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Figure 49. SADB settings used in the previous figure

4.3.3. “IPsecLoop” Results

In Figure 42, in section 3.5.1., “Test Methodology” (“IPsecLoop”), two 

encryption pulses are visible, due to the two (128-bit) blocks of hash being signed 

(encrypted), since the SHA-2 hash (supplied by the function that returns a dummy hash) 

is a 256-bit hash.

In testing with version 8, it was found that the extra loop-managing overhead after 

each service call takes 8.4ps, which is not a significant amount of error, but was included 

in measurements prior to ver. 8 (see section 3.5., “Design of a CLI Version, ‘IPsecLoop,’ 

to Facilitate Testing”).

Using “IPsecLoop”, the time required to run the LFSR-CASR PRNG in software 

for four 32-bit numbers to get the 128-bit IV was determined to be 1.3ms. The time 

required to load the key into the encryptor was determined to be 15ps, and 20ps when 

version 8 was tested (see section 3.3.10., “Versions”). The time required to load the key 

into the encryptor, do key expand in the encryptor and load the key expand values into 

the decryptor was determined to be 13Ops, and 120ps when version 8 was tested. It is not
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quite clear why the time required to load the key expand values into the decryptor should 

decrease when the time required to load the key into the encryptor increased, which may 

have occurred due to the slightly more complex code used to track the key loaded into the 

core according to the SPI being used.

The figures in sections 4.3.3.1. to 4.3.3.4., inclusive, show the packet processing 

times graphed, for the range of packet sizes, protocol-mode combinations, and software 

versions tested (see the test methodology sections: 3.4.1., “IPsecGUI”, and 3.5.1., 

“IPsecLoop”; see also the tabulated data in Appendix B, section B.2.). All lines graphed 

are closely linear, beginning at the origin.

4.3.3.1. Version 4, with “IPsecLoop” and “IPsecGUI” Comparison

In the graph shown in Figure 50, since it is expected that the line symbols will be 

difficult to discern without the benefit of colour, it should be explained that the upper line 

is “Incoming” and the middle line is “Outgoing”. The lowest four lines are the 

“IPsecGUI” results, “GUI in L,” “GUI in P,” “GUI out L,” and “GUI out P,” in order 

from top to bottom, at least on the right-hand end, at a packet size of 16,424 (0x4028) 

bytes; their total spread there is only about 8 ms.
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AH Transport packet processing times (ver 4)
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Figure 50. AH Transport packet processing times (ver 4), comparing measurements made using 

“IPsecLoop” to those made using “IPsecGUI”

Note the low count given by the GUI (“L” stands for the Laptop and “P” stands 

for the PC). There must have been some activity going on in the “IPsecGUI” code which 

caused it to miss most of its millisecond time-count event messages. It is concluded that it 

is a better idea to use good, commercially-available test equipment, than to attempt to 

build one’s own.

The processing times are close to being linear, meaning a fixed per-byte 

processing rate; the header size of twenty-four bytes which imposes a fixed processing 

overhead, does not impose an overhead sufficient to appear in these graphs. Differences 

in processing times in these graphs that are proportional to the packet size must be 

explained by processing done to each unit of payload.

The incoming (receiving) processing may have taken longer in the results shown 

in Figure 50, due to two additional comparison operations used in the “for”-loop that
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copies the datagram without the authentication data in order to hash it with that field 

cleared. In the outgoing (sending) code (the “i f ’ of the “if-else”), the authentication data 

section was skipped by using a separate “for”-loop from the one that copied the packet 

header portion.

4.3.3.2. Version 6 Compared to Ver. 4

ESP Transport packet processing times

Qutv4
*~inc¥4
* OUtVS

v -ln cv 6

10000 12000 14000 16000 18000
i Packet slz* {bytes, bese ten)I

Figure 51. ESP Transport packet processing times -  ver. 6 vs. ver. 4

In the graph shown in Figure 51, the lines are “Out v4,” “Inc v4,” Inc v6,” and 

“Out v6,” from top to bottom. “Inc v6” is only above “Out v6” by 3 ms at the right-hand 

end, and the two are centered on 60ms there.

Note that no change was made to the AH service in ver. 6, however the ESP 

service was modified to remove “for” loops that cleared the entire datagram, which 

would cause delays proportional to the packet size. Outgoing processing required more 

time in ver. 4 in ESP due to copying the entire datagram to be encrypted including the
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padding as well as to the datagram to be produced, which was not necessary; see also the 

analogous graph for ESP Tunnel mode, in Figure 52.

ESP Tunnel packet processing times
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-»-lncv4 
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Inc ver 6

m
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Packet size {bytes, base ten)
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Figure 52. ESP Tunnel packet processing times -  ver. 6 vs. ver. 4

In the graph shown in Figure 52, the lines are “Out v4,” “Inc v4,” Inc ver 6,” and 

“Out ver 6,” from top to bottom. “Inc ver 6” is only above “Out ver 6” by 2 ms at the 

right-hand end, and the two are centered on 60ms there.
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4.3.3.3. Version 7 Compared to Ver. 6 and 4

r
AH Transport packet processing times
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Figure 53. AH Transport packet processing times -  ver. 7 vs. ver. 4

In the graph shown in Figure 53, the lines are “Inc v4,” “Inc v7,” “Out v4,” and 

“Out v7,” from top to bottom. “Inc v7” reaches 143 ms at the right-hand end, and “Out 

v7” reaches 90 ms.

Note that ver, 4 is compared to ver. 7 here, since no change was made to AH in 

ver. 6. As noted in section 3.3.10., “Versions,” AH was sped up by removing a “for” loop 

that was being used to pre-clear the entire datagram; instead, only portions of the 

outgoing or incoming datagram being prepared that needed to be, were cleared. This 

applied to both modes; see also the graph of AH Tunnel mode in Figure 54.
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AH Tunnel packet processing times
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Figure 54. AH Tunnel packet processing times -  ver. 7 vs. ver. 4

In the graph shown in Figure 54, the lines are “Inc v4,” “Inc v7,” “Out v4,” and 

“Out v7,” from top to bottom. “Inc v7” reaches 143 ms at the right-hand end, and “Out 

v7” reaches 93 ms.
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BSP Transport packet processing times
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Figure 55. ESP Transport packet processing times -  ver. 7 vs. ver. 6 and 4

In the graph shown in Figure 55, the lines are “Out v4,” “Inc v4,” “Inc v6,” “Inc 

v7,” “Out v6,” and “Out v 7 t h o s e  last four looked at, at the right end, since their total 

spread there is only about 2 ms.

Note that no processing time penalty was incurred in the ESP protocol in going 

from ver. 6 to ver. 7, showing that processing not done to each unit of the packet paylod 

is not significant; see also the graph of ESP Tunnel mode in Figure 56.
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BSP Tunnel packet processing times
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Figure 56. ESP Tunnel packet processing times -  ver. 7 vs. ver. 6 and 4

In the graph shown in Figure 56, the lines are “Out v4,” “Inc v4,” “Inc v6,” “Inc 

v7,” “Out v6,” and “Out v7,” although, at the right end, “Inc v6” is covered by “Inc v7” 

and “Out v6,” the lowest line there, is covered by “Out v7”; the total spread of the last 

four there is only about 2 ms.
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4.3.3.4. Version 8 Compared to Ver. 7

AH Transport packet processing times
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Figure 57. AH Transport packet processing times -  ver. 8 vs. ver. 7

In the graph shown in Figure 57, “Inc v7” is very slightly above “Inc v8,” at the 

right end, by only about 1 ms, virtually superimposed, then “Out v7” follows, then “Out 

v8,” from top to bottom. “Out v8” reaches 48 ms at the right-hand end.

The reuse of the datagram prepared for hashing as the outgoing datagram, as 

noted in section 3.3.10., “Versions,” succeeded in almost halving the outgoing packet 

processing time in the AH protocol in ver. 8 as compared to ver. 7; see also the graph of 

AH Tunnel mode, in Figure 58. The incoming packet processing time in this protocol 

could be similarly reduced by clearing the mutable fields of the received IPsec datagram 

and sending it to the Mechanisms layer for hashing (also removing and saving the block 

of authentication data), which is advisable, since although the incoming IPsec packets are 

passed to the Service layer by pointer (i.e., memory address) and thus retain any
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modifications made to them, they are simply discarded by the security layer above the 

Service layer, following the service call.

AH Tunnel packet processing times

—♦— Out v7
~ * - 'ln c v 7

Out v8

10000 12000 14000 16000 18000
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Figure 58. AH Tunnel packet processing times -  ver. 8 vs. ver. 7

In the graph shown in Figure 58, “Inc v7” is very slightly above “Inc v8,” at the 

right end, by only about 1 ms, slightly less than in the previous graph, virtually 

superimposed, then “Out v7” follows, then “Out v8,” from top to bottom. “Out v8” 

reaches 48 ms at the right-hand end.

135

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



ESP Transport packet processing times
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Figure 59. ESP Transport packet processing times -  ver. 8 vs. ver. 7

In the graph shown in Figure 59, “Inc v8” is the highest line, reaching 69 ms at 

the right-hand end, followed by “Inc v7,” which reaches 62 ms, and “Out v8” is slightly 

higher than “Out v7,” virtually superimposed.

Here again it can be seen that introducing efficiencies not tied to each unit of 

payload has no significant effect; modifying for the efficiency of not including the 

datagram header in the plaintext to be encrypted didn’t help at all in the outgoing case 

and introduced some extra processing in the incoming case. Since the index values of the 

payload data items alone were no longer the same as those of the entire datagram, an 

additional index variable was used in the code following the mechanism call, that copies 

the decrypted data to the IP datagram being built. Incrementing that extra index variable 

is probably responsible for the extra time taken, since it was the only additional 

processing added. The outgoing (sending) case was not affected, because it already used 

an additional loop variable to be incremented, due to the changed positioning of the
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packet payload in the IPsec packet due to the addition of the ESP header. The receiving 

case is a little simpler because the payload always goes right after the IP header (and the 

mechanism processing is not able to place it because the padding size is unknown before 

and during decryption in the ESP protocol). This is also the case in Tunnel mode, as 

shown in Figure 60.

ESP Tunnel packet processing times

-*-Outv7
**-incv7
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Figure 60. ESP Tunnel packet processing times -  ver. 8 vs. ver. 7

In the graph shown in Figure 60, “Inc v8” is the highest line, reaching 69.5 ms at 

the right-hand end, followed by “Inc v7,” which reaches 62 ms, and “Out v8” is slightly 

higher than “Out v7,” virtually superimposed.

4.3.4. Comparisons to Results from the Literature

Table 8 shows a comparison of the best processing times achieved in this work 

against an available report of processing times found in the literature [KER1997]. The 

paper reported on a 3DES implementation, which is notoriously slow, all done in 

software, which is not difficult to beat. The paper’s times are for combined ESP with
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ESP’s own authentication, and are the latencies. At the largest packet size compared, the 

sum of the largest AH and ESP processing reported in this work (which would be two 

different protocols, nested), become slightly larger than the 3DES-MD5 implementation. 

For example, at the 8kB packet size (approx. 2028 hex.), if the incoming AH Transport 

and ESP Transport mode from this work were to be used together, the latency would be 

103 ms vs. 100 ms reported from the 3DES-MD5 implementation, although the AH 

incoming processing time in this work can be halved, as explained before. However, at 

the small packet sizes, the worst combined times from this work become approximately 

five times less than those of the 3DES-MD5 implementation. This work could be added 

to, to add the ESP’s own authentication service, which would be more efficient.

IPsec packet processing tim es comparison
Packet Outgoing Incoming Outgoing Incoming Outgoing Incoming Outgoing Incoming [KER1997]

Packet 
size (hex)

size
(decimal)

prac. time 
(ms) (AR)

proc. time 
(ms) (AR)

11II proc. time 
(ms) (AU)

prac. time 
(ms) (ER)

proc. time 
(ms) (ER)

prac. time 
(ms) (EU)

proc. time 
(ms) (EU)

3DES- 
MD5 (ms)

26 40 0.435 0.B4 0 51 0.975 0 38 0 315 0.44 0 255
126 296 1.19 3.1 3 2 1.3 1 3 1.4 1.2
226 552 1 94 5.3 ................2 5.4 2 2 2 2 2.3 .............2.2 40
326 BOB
426 1064 3.43 9.6 .............3.5 9 6 ZIIM. 4 1 4.2 ............ 4.1 42
526 1320
626 1576 4.9 14 4 95 ..............14 5 9 ................ 6 6 ................6
726 1832
B26 2068 6.4 19 6 45 19 7 8 6 7.8 ............ 7.9
926 2344
a2B 2600 7.9 23 7 95 23 9 6 9 9 9 7 9.6
c20 3112 9.25 ..............26 9.38 28 12 12 12 12
e2B 3624 10.9 32 ...........l a g ..............32 13 .............. 14 14 14

1028 4136 12.4 36 12.6 36 ..............15 16 15 16 65
1226 4648 13.B 41 ...........1 1 9
1426 5160 1 5 3 ..............45 154 ..............45 .............. 19 20 19 19
1628 B1B4 1 8 3 54 18.3 54 23 23 23 23
1c26 7208 21 3 ..............63 21 3 62 ..............26 27 27 27
202B 8232 24 3 ” 72 24 3 72 30 31 30 31 ........... ..100
2428 9256 27.3 80 27 3 80 34 35 34 35
2828 10260 30.3 "..8B ..........30.3 90

. _
39

, . _

39
2c28 11304 33 3 98 33 3 99 ..............41 43 .............41 42
3026 12328 36.3 ”"100 36.3 106 45 46 45 46
3428 13352 39 115 39 3 115 48 50 49 50
3626 14376 42 1 2 5 42 3 125 52 54 53 54
3c2B 15400 45 133 45 131 56 56 56 58
4026 16424 ............  46 ........ 143

— *
143 60 62 60 62

[Packet sizes in bytes - B bits in the ML403 board)
This work: IPsecLoop ver. 7, March 21, 2007 AR: Auth. Trans.; AU: Auth Tunn.; ER E SP Trans.; EU: E SP  Tunn.
Using IPsecLoop ver. B results, April 9 , 20D7, for AH outgoing, bath modes: AR end AU
SW , 100MHz PPC4J05 with FPGA AES a cce l e r a t o r I  ” ^ ...
(A: Authentication Header; E: ESP E ncapsulating Security Payload; Trans.: Transport Modu; funn.: Tunnel Mode.) 
[KER1997]: Keromytis, 1997: latency - a SW , Linux, implementation on a 166MHz Pentium w. 100Mbps E thernet___

Table 8. Packet processing times compared to a result from the literature [KER1997].
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In Table 9, shown as a group of tables, the processing-time results from the 

previous table are expressed as rates, calculated by dividing the packet size processed by 

the time taken, averaging them for each category and expressing them in units of 

Megabits per second (Mbps). A comparison with three results found in the literature is 

made.

IPsec packet processing rates (Mbps)
Outgoing 
proc. rate 
(AR)

Incoming 
proc: rate 
(AR)

Outgoing 
proc. rate 
(AU)

Incoming 
proc. rate 
(AU)

Outgoing 
proc. rate 
(ER)

Incoming 
proc. rate 
(ER)

Outgoing 
proc. rate 
(EU)

2.5 0.88 2.5 0.87 2.1 2.0 2.1

(cont) 
Incoming 
proc. rate 
(EU)

2.1

These results are calculated averages across 40 to 16kB packet sizes (since the rate 
remained roughly constant due to linearity of the processing-time results)

Literature reports (Mbps)
[BEL2002]
AES

[DAN2000]
AES

[CHE2002]
3DES

50 353 53

[BEL2002]: SW, Linux, w AES acceleration on Xilinx Virtex 1000 FPGAs 
[DAN2000]: all on an FPGA (make, model unspecified)
[MCL2002]: Did not test packet processing rates 
[KIM2004]: Did not test packet processing rates
[CHE2002]: Free S/WAN using a DES accelerator on a custom platform, "Pilchard" 
[LUJ2005]: Did not test packet processing rates

Table 9. (group): Packet processing rates and comparison with the literature

The processing rates reported from this work are lower than those found in the 

literature due to reading core results from registers via the bus rather than using DMA, 

FSL, an all-FPGA implementation or some other such fast access method.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

In this work, an IPsec implementation, including five design layers, from top to 

bottom: Policy, Management, Service, Mechanism, and Primitive, an SMIB (Security 

Management Information Database), an SPDB (Security Policy Database), an SADB 

(Security Association Database), code to support testing and a GUI, was developed and 

tested. The portions designed and the results are discussed as follows.

5.1. The AES Implementation

A 128-bit AES implementation was done in VHDL in this work, working from a 

published Verilog core design that accurately implemented the published AES standard, 

using a Xilinx Virtex-4 FPGA, part number XC4VFX12, in the Xilinx ML403 

development board. The cipher and inverse cipher were implemented as separate 

modules, an encryptor and decryptor, using 99% of the FPGA fabric, and unrelated logic 

occupying 15% of the slices; even so, the key expand module was not added to the 

decryptor and a protocol is provided to obtain the key expand, or permutation, values 

from the decryptor and store them in the decryptor, a process that requires 120 ps, 

whereas loading the key to the encryptor required 20 ps. The speed grade of the FPGA 

was 10, the slowest, and the clock used in the modules was divided by two from the 100 

MHz board clock. The encryptor performs its transform in eleven clock cycles, i.e., 220 

ns; the decryptor in ten, i.e., 200 ns, due to a better timing plan, which could be adopted 

for the encryptor. These times imply processing rates of 582 Mbps and 640 Mbps, 

respectively. However, the access method to obtain the results is only via software via 

32-bit registers via the OPB, which reduces maximum processing rates to about 22 to 27 

Mbps in this implementation.

In addition to the ability to generate and read the key expand values from the 

encryptor and store them in the decryptor via software, the key expand values stored in 

the decryptor can be read via software. Both peripherals have CBC mode built in, so that 

the plaintext input to the encryptor is always XORed with the stored and automatically-
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updated “IV” register, and the internally decrypted block in the decryptor is always 

XORed with its similarly-designed “IV” register. The “IV” register can be loaded into 

each peripheral, and a readback method is provided in the decryptor. The peripherals 

each automatically perform their transform when their input data registers are written. A 

“programming model” is provided in this work showing the bit positions in the peripheral 

slave registers for the commands to accomplish these operations and giving the 

operational protocol required. Connections to pins on the ML403 board provide two 

signals, each of which is high when its corresponding peripheral is performing its 

transform, allowing oscilloscope measurements to be taken for research, development, 

and evaluation purposes.

A version of the decryptor was produced that can output the value of each step of 

each round, and did so in testing. A bug fix was added that was verified in the main 

version of the decryptor, to the source code of the “stepper” and is expected to induce the 

“stepper” version to begin always with the correct output.

Numerous small software programs were written in C and C++ to test and 

demonstrate the AES cores, culminating in a full CLI version that demonstrates all 

features of the cores in individual block processing, and a C++ GUI that runs on a PC and 

uses the ML403 board to encrypt and decrypt an ASCII text file on the PC. It was found 

that the IV should not be encrypted when CBC mode is used, since an attacker could use 

knowledge of that design to tell when the first block of plaintext happens to be all zeroes. 

The processing rate of the “AESfile” GUI using the ML403 board in this way was found 

to be in the 12-17 kbps range, given a 57,600 bps RS232 link and a good deal of time- 

consuming processing display echoing to the user in the GUI.

It is hoped that this section of this work will contribute a commercially-useful 

AES implementation, with the features necessary for it to be used in practice, and 

contribute knowledge of the capabilities of the relatively recently-developed Xilinx 

Virtex 4 FPGA, results from which have not yet been seen in journal and conference 

papers.
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5.2. The LFSR-CASR PRNG Implementation

A LFSR-CASR PRNG implementation was done in C++ and C in this work, 

working from a published Verilog design. Distributions of samples of its output were 

graphed in this work, showing that its output seems to have a good, uniform distribution. 

Using the IPsec implementation done in this work, it produces and stores a 128-bit 

random number in 1.3ms, as a concatenation of four of its output words (a rate of 128/1.3 

= 98 kbps). According to its original specifications, the basic design has a cycle length of 

280-243-237+l and a bias of 2"80. Its final XOR and the use of only the lower 32 bits of 

each of its state variables conceals the states from cryptanalysis. The original design 

came supplied with a report from the literature that showed that it did well in the 

“Diehard” series of statistical tests [TKA2002].

However, AES itself makes a better PRNG, having a cycle length of two to the 

exponent of its block size, and being carefully and successfully designed for extreme 

non-linearity. From a design comparison, it is estimated that AES contains up to two 

orders of magnitude more non-linearity than does this LFSR-CASR PRNG. Since it is 

already implemented in the FPGA, it can produce random numbers much more quickly,. 

at a rate of 27 Mbps in this work. Although an FPGA implementation of the LFSR-CASR 

PRNG would probably generate pseudo-random numbers faster than AES, it remains 

merely a good PRNG, while AES makes a great one [HEL2003].

5.3. The IPsec Implementation

Working from the five-layer framework for design of a security system 

established in previous work, a partial IPsec implementation was designed, written in C 

and tested. Content from each of the five layers was included. The AES and PRNG 

implementations discussed before were used as the primitives, and a dummy SHA-2 hash 

routine was included. Two mechanisms, an HMAC and an encryption mechanism, and 

two service routines, AH and ESP, were implemented. IPv4 was supported. The HMAC
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mechanism performs its signing by using the AES symmetric key to encrypt the hash -  a 

key exchange service was not implemented. The ciphertext in both the HMAC and the 

transformed ESP datagram begin with the IV itself, sent unencrypted along with the 

datagram. The mechanisms are designed to show the technique of selecting the primitives 

and to show the technique of selecting different mechanisms; new mechanisms added are 

intended to be added as additional cases to the existing mechanism files. The anti-replay 

service was not implemented. Attention was given to possible security leaks, such as by 

making sure that the padding area in the ESP plaintext is cleared. The SMIB is designed 

to be used to specify and select the mechanism from the service and the primitives from 

the mechanism. The idea of having an array of services, mechanisms and primitives is 

indicated. The SMIB is designed in its policy layer to support doubly-nested S As.

At the management layer, two versions were implemented, one which supports a 

remote GUI, running on a PC, and a CLI (Command-Line Interface) version more 

suitable for use in performing laboratory measurements. In the GUI version, the IP 

addresses of multiple clients can be entered and the Service, Mechanism and Primitive 

layers are configurable. The board itself supplies the basic configuration of its 

implemented capabilities. In the SADB, the IV can be set constant, or to be regenerated 

by the RNG for every packet sent. The PRNG can be seeded from a free-running counter. 

The GUI demonstrates packet transform and reverse transform: IP to IPsec and back.

At the policy layer, multiple policies were implemented, making the GUI running 

on the PC a policy server. Only the selected policy is downloaded to the board. It is 

intended that the service number as an index of the array of those available be negotiated 

in SA setup; the SADB is designed to hold that selection. The SADB and SMIB can be 

saved to files on the PC from the GUI, the SMIB in three different files, one for each of 

the policies, the clients’ IP addresses, and the base SMIB.

The implementation was verified to successfully process packets from the 

smallest to largest possible size of a five-32-bit-word header and one-byte payload, to a 

six-3 2-bit-word header and a total size of 65,535 bytes, respectively, in both the GUI and
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the CLI versions. A benefit of layering and modularity is that all files at the layers below 

the management were the same in both versions.

The typical packet processing rate achieved in this implementation was found to 

be 2.0 Mbps, measuring the rate at which the Service calls could be repeated, although 

outgoing (IP to IPsec) AH processing reached 2.5 Mbps and incoming AH processing 

sank to 0.87 Mbps. The packet processing times for all four protocol-mode combinations 

were always linear, meaning a roughly constant packet processing rate. Operations that 

do not need to be done over the packet payload do not significantly affect processing 

time. The time required, 120 ps, to load the key expand values into the decryptor, is not a 

serious delay, considering that it usually only has to be done once after the SA is set up 

with a particular key. It could cause more delay if the board serves more than one 

incoming S A. The time required to get a random number using the software 

implementation of the LFSR-CASR PRNG, 1.3 ms, is significant, especially given the 

processing times of the most common packet size of about 500 bytes, of about 2 ms. 

Processing rates reported in this work are lower than those reported in [BEL2002], 

[DAN2000] and [CHE2002] (see section 4.3.4., “Comparisons to Results from the 

Literature”), due to reading core results from registers via the bus rather than using some 

fast access method such as DMA, FSL (Fast Simplex Link) or an all-FPGA 

implementation. However, it is not difficult to beat a software implementation of 3DES.

Some different versions of the service calls and lower were produced in 

development, to carefully adhere to the design concept of using the SMIB to select the 

modules used in the lower layers from those in the upper layers, and to remove 

inefficiencies and speed up processing. Four different versions were involved in testing.

As briefly noted before in this section, a huge benefit resulted from the modularity 

of layering when a second version, “IPsecLoop”, was needed for testing: only the 

management layer file needed to be modified; eight code files and their “header” files for 

three lower layers could simply be reused. A drawback of layering was noticed in which 

data present at a lower layer had to be read at a higher layer, that is, the Primitive layer
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information on the size of data created at the Primitive layer had to be used at the 

Services layer in order to determine packet sizes; strict separation of layers had to be 

discarded in order to have a successful implementation. However, the design of the 

management layer is still not entirely rigorous.

5.4. Recommendations for Future Work

5.4.1. The AES Implementation

The timing plan of the encryptor could be revised to match that of the decryptor, 

“shaving” a clock cycle off of the time required.

A higher speed grade of the XC4VFX12 Virtex-4 could be used to determine if 

the core transform rate could be doubled. This could be attempted in simulation with 

available tools, without having to buy an actual chip; once post-PAR simulation 

succeeds, operation in the actual chip is virtually guaranteed. However, one must pay 

attention to test techniques; it is easy to set unrealistically-short input pulse times in the 

testbench, for example, when real-world input pulse durations may trigger unintended 

effects in the design and cause it to fail.

The debugged source code of the “stepper” version of the decryptor could be 

built, tested and verified.

The preceeding three ideas would be good initial exercises to perform to become 

familiar with the technology. An ambitious investigation would be to see if  the encryptor 

and decryptor could be implemented in the same module.

Programming the Flash EEPROM could be done so that the code in the board 

would be non-volatile, making demonstration easier, especially with larger code sizes 

that require the 1MB of SRAM, since the debugger to load the executable code separately 

may not be available when the board is programmed “in the field” or in demonstrations,
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using Xilinx “iMPACT”, due to the full Xilinx software package being cumbersomely 

large for installation on a laptop PC.

5.4.2. The LFSR-CASR PRNG Implementation

AES should be used as the PRNG in this work, saving the code space required for 

the software implementation of the LFSR-CASR PRNG that has a far shorter cycle 

length and is probably much less non-linear, and speeding up random-number generation 

by over two orders of magnitude using technology established in this work.

5.4.3. The IPsec Implementation

As with most work, the amount of work that can be done in the future vastly 

exceeds the amount of work completed.

The project could be redone without the layering in order to compare the 

effectiveness of the layering technique, but that would be tedious, since it is not expected 

to produce useful, modifiable code and is therefore not recommended. Instead, it is 

recommended to investigate the use of DMA to speed up processing; then the results 

obtained could be expected to be improved, and could be recompared with those from the 

literature. An all-FPGA implementation would be an ambitious undertaking, and would 

require the purchase of considerable amounts of new hardware. FSL could perhaps be 

attempted using the Xilinx “Microblaze” boards available in this department, if available 

in the version installed, which is 6.1. Otherwise that might require purchase of new 

hardware, design software and Xilinx IP cores.

As a conclusion from this work and a recommendation, it is a better idea to use 

good, commercially-available test equipment than to attempt building one’s own.

An easy and forseen improvement that can be made is to double the speed of the 

AH incoming processing using the method described (see section 4.3.3.4., “Version 8 

Compared to Ver. 7”). The ESP Service routine should be reverted from ver. 8 to ver. 7.
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As was done in this portion of this work, the IV should not be encrypted if 

included with ciphertext encrypted in CBC mode, since an attacker could use knowledge 

of such a feature to determine whether the first block of plaintext is all zeroes.

Additional primitives, mechanisms, and thus services could be added, 

implementing the arrays in the SMIB by making the contents of the constituent lower 

three layers into pointers to the contained structures. The reading of the SMIB to 

determine the services, mechanisms and primitives used would then have to be fully 

“fleshed out”. The “Enabled” fields that were designed into the SMIB Services, 

Mechanisms and Primitives layers, could be actually used. The SHA-2 hash routine, 

which contains only dummy code as a result of this work, could be implemented. The 

unimplemented IPsec services and portions thereof, such as anti-replay and ESP 

authentication (which would be more efficient than nesting ESP and AH S As -  see 

section 4.3.4., “Comparisons to Results from the Literature”), could be added. Support 

for IPv6 could be added. A challenging investigation would be to make the design of the 

management layer more rigorous.

Header checksumming support could be added, as well as support for other IP 

header and AH header fields. This work now supports the IP header total length field (in 

octets), the datagram total length field, the AH or ESP protocol field, the TTL (Time To 

Live) field, the AH header Payload length, the ESP padding length, and the AH and ESP 

headers’ SPI. All other fields were left for future work.

An RxIVConstant variable can be defined for the SADB and used if  the particular 

mechanism calls for the IV not to be included with the ciphertext. More criteria could be 

added as policy selectors. More ideas could be incorporated into the SMIB from 

[KEN1994].

A function should be used for the AES-128 encryption mechanism, since a similar 

block of code is used in both the HMAC and Encryption mechanisms. In general,
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functions should be used for any mechanism component that may be added in the future, 

that is used in a similar way in more than one mechanism.

More sophisticated error recovery techniques could be added, such as “freeing” 

all “malloc”ed pointers in the event of heap overflow.

Since the reliable data transfer routines sometimes “lock up” and seem, during the 

initial transfer of a session, particularly, to take many repetitions for a successful 

transmission, their operation should be debugged, using a protocol analyzer. Display 

echoing to the activity was used in debugging, which might continue to be useful; the 

echoing commands affect the timing, which is “touchy”, and are left “commented out”, in 

the source code.

As with all complex software, the software written in this work should be viewed 

with scepticism and should be continually tested, particularly in areas of operation that do 

not receive common use, or in areas of unintended operation permitted by the software 

that could cause the program to fail.
*

Key Exchange could be added, as well as support for bidirectional SAs; in this 

work, the incoming SA is set to use the same SA as the outgoing. To implement multiple 

SAs, the SADB declaration could be made a pointer to an array of pointers that each 

point to an SADB. Then space for SADBs can be “malloc”ed at will, as can the space for 

an array of pointers as the number of SADB instances change. To work with the GUI, an 

intermediate dialog could be added in the GUI that just gets the different SPIs from the 

board, allowing the user to select the SPI of the SADB that he wishes to view. It does not 

seem likely that support for the incoming SADB being identical to the outgoing would 

need to be retained.

In outgoing processing in the IPsec sublayer, the SA should be chosen from the 

future array of SAs based on the selectors in the datagram. In incoming processing, the 

SAs should all be searched for the SPI that matches that in the datagram.
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A challenge would be to make the implementation in this work communicate with 

a different existing implementation. A full OSI stack would have to be included. The 

physical OSI layer could be Ethernet and use the RJ11 connector on the ML403 board. 

The application layer can be the interface to the GUI on the PC or perhaps the LCD on 

the ML403 board, or any other of the many 10 devices and output ports on the ML403 

board.

If AH IPsec packets fail to authenticate, that should at least be made an auditable 

event, for the system administrator to check on, and should conceivably be passed up to 

the application layer to prevent further communication and inform the user of that.
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APPENDICES

APPENDIX A

A. Pseudo-Code 

Note that “//” or “/*” indicates a comment 

A.I. IPsecImp

A.1.1. The SMIfi

A. 1.1.1. The Overview and Top Two Layers

structure SMIB { 
structure PolicyLayer {

NumberOfPolicies 
pointer to array of policy structures } 

structure ManagementLayer {
Local IP Address 
NumberOfClients
boolean AreAddressRanges // If so, there should be an even 

NumberOfClients
pointer to array of client IP addresses } 

structure ServicesLayer {} 
structure MechanismsLayer {} 
structure PrimitivesLayer {} }

A. 1.1.2. The Policies

structure Policy {
// First, the selectors, and whether they are used
boolean NextlltemUsed // If False, all destination addrs are selected.
DestinationAddress
boolean Next2ItemUsed
SourceAddress
boolean Next3ItemUsed
NextProtocol
boolean Next4ItemUsed
IPSecurityLabel // Level 1-16 (future work: more criteria)
boolean Next5ItemUsed
T ransportDestinationPort
boolean Next6ItemUsed
TransportSourcePort
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/ / I f  none of the above are used, all packets are
selected

boolean Process // True if these packets are to be processed
// False if these are the packets NOT to be

processed.
// The negotiation goals
// The policy data is to be used by the key exchange module to negotiate

SAs.
32-bit int SPI1 Inner // SPI of the inner SA set up - 0 if  none
32-bit int SPI20uter // SPI of the outer SA set up - 0 if none
Protocollnner //
Modelnner //
ServNumlnner //
boolean Negotiatelnner 

choices if selected one not accepted
ProtocolOuter //
ModeOuter 
ServNumOuter 
boolean NegotiateOuter 

choices if selected one not accepted 
MaxIPsecPacketSize 
. . . }

A. 1.1.3. The Lower Three Layers (within the Overview)

structure SMIB { 
structure PolicyLayer {} 
structure ManagementLayer {} 
structure ServicesLayer { 

structure AH {
Enabled
HMAC mech. n o .} 

structure ESP {
Enabled
enc. mech. no. } } 

structure MechanismsLayer { 
structure Encryption {

Enabled
RNG prim. n o .} 
enc. prim. n o .} 

structure HMAC {
Enabled
RNG prim. n o .}
Hash. prim. no. 
enc. prim. n o .} } 

structure PrimitivesLayer {
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// if True, try different service
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// Array index in the service structure 
// if True, try different service
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structure Encryption {
Enabled
enc. algorithm no.
chaining mode } // such as CBC

structure Hash {
Enabled
hash algorithm n o .} 

structure RNG {
Enabled
RNG algorithm no. } } }

In future work, each substructure of the Services to Primitives layers can be 

generalized to an array of the structures in order to select one at the higher layer. For 

now, each service, mechanism and primitive number is zero for each type because there 

is only one of each.

A. 1.2. The SADB

structure SADB {
FromlPAddress // Set to all 255s for all
ToIP Address
Protocol // 1=AH; 2=ESP
Mode // Same for AH and ESP l=Transport 2=Tunnel
32-bit int SPI // default 1
32-bit int SequenceNumber
32-bit int AntiReplayWindow
boolean SequenceNumberOverflow
3 2-bit int LifeTime // Number of bytes
L3ServiceNo // The SMIB service number negotiated
Pointer to (address of) the key
Pointer to the IV
boolean IVConstant; // - true if IV constant for this SA
boolean OppositeSAIdentical; // The SA for the other direction -

TRUE if so }

A. 1.3. Top-Level. Loop 

Initialization
-call the security Services layer with initialization command code.
-fill in lower three SMIB layers to reflect programmed capabilities.
-"key is always new" <— FALSE;
-packet processing <— FALSE;

Loop forever {
increment 64-bit counter for RNG seed (dec high 32 bits; inc low 32 bits) 
if (packet processing) { // process the OSI stack
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IP Layer // Note: each of these layers is called in sequence and each
checks the dispatcher for an incoming packet 

IPsec sublayer 
Link Layer} 

if (Command character received via RS232) { 
case of command character { 

h: board sends "Hello" characters via RS232 
r: board seeds the RNG with the 64-bit count and sends the count via

RS232
z: board sends its SADB out via RS232 
s: board receives its SADB via RS232 
m: board sends its SMIB out via RS232 
i: board receives its SMIB via RS232
k: toggle setting to initialize key in core every packet transform: "key is

always new"
p: toggle packet processing } } }

Note: blocks of data in the r,z,s,m and i commands are communicated using two 

reliable data transfer routines: a send routine and a receive routine. These commands are 

not used in the test version (IPsecLoop).

A. 1.4. Packet Processing, or OSI Layers 

A. 1.4.1. IP Layer

IP Layer: somewhat of a dummy layer { 
if (Start of Test) {

Start of Test <— FALSE
get the memory to receive the test packet via RS232 
receive the test packet via RS232 using reliable data transfer 
dispatch the packet to the next layer }

check the dispatcher for a received packet 
if  (Packet received) {

send the packet received, out via RS232 using reliable data transfer 
delete the memory containing the packet received back 
packet processing <— FALSE -  passed to top-level loop } }

A. 1.4.2. IPsec Layer

IPsec Layer { 
if (not already a packet being sent to the Link layer) { 

check the dispatcher for a packet from the IP layer }

j l
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if (packet received from the IP layer) { // Showing the packet sending code
KeylsNew <— KeylsNew or KeylsAlwaysTreatedAsNew or ((not 

LastTimeWasSending) and KeysDiffer)
depending upon the protocol in the SADB { 

use the reliable data transfer to synchronize with the GUI 
Level 3 AH or ESP Service(SADB, SMIB, SENDING, KeylsNew, 

NeedNewIV, IP packet in, IPsec packet out)
KeylsNew«- FALSE} 

echo the IPsec packet via RS232 using reliable data transfer - alerts the GUI 
dispatch the IPsec packet to the link layer 
delete the IP packet}

The receive code is analogous, with RECEIVING set in the service call, except 
that the protocol is read from the incoming packet and the SPI from the incoming packet 
is checked against the available incoming SADB(s). If the protocol is AH, a header 
verification message is sent via RS232.}

A. 1.4.3. Link Layer

Link Layer: a dummy layer { 
check the dispatcher for a packet from the IPsec layer 
if  there is a packet, put it back in the dispatcher to send it back }

A. 1.5. Reliable Data Transfer

These are for the IPsecImp demonstration only. Each of the board and the GUI 

have a send and a receive routine

A.I.5.1. Send Algorithm

Send algorithm (pointer to character buffer, length) {
Receive characters until STX from the recipient is received 
for each count of length, encode each of the two digits of the character 

byte as hexadecimal ASCII
and send the two digits
-increment the checksum from the original byte 

read and clear any hanging characters sent from the recipient, to clear any 
left-over STXes

send the four-byte checksum the same way.
if nothing received back from recipient, send ETX until something is 
while characters received back from recipient, echo back ACK or NAK 

-this ensures that the send code knows that the receiver got the 
handshake, when it stops sending
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-quit and continue if recipient sent STX for another block of data 
if the transmission was ACKed, quit, otherwise repeat the above to try

again }

A. 1.5.2. Receive Algorithm

Receive algorithm (pointer to character buffer, length) {
read any hanging characters and discard; stop if  ETX received 
if ETX not received, send STX until a character is received 
get two characters for every count of length

-each of the two is a hex digit; strip off the ASCII encoding and
make one byte

-increment the checksum using the determined byte 
get the four-byte checksum the same way
send ACK or NAK depending upon whether the checksums match 
get the handshake from the Sending entity

-if the handshake is not ACK or NAK, resend the ACK or NAK 
until the handshake is received.

read any hanging characters and discard
if the checksums matched, quit, otherwise repeat the above }

A. 1.6. The AH Service

L3AHServ (in; SADB, SMIB, Initialize, KeylsNew, Sending, NewIVNeeded, 
Datagramln, out: DatagramOut, Verifies) {

if (Initialize) L4MACMech(Initialize) and return, 
case SMIB—>Hash and encryption primitive { 

get the hash size needed
get the size of any extra space needed for signing (encryption) such as for 

including the IV }
get memory for the generated hash
if (not Sending) get memory for the decrypted hash, for verification 
get size of and memory for the transformed datagram, depending upon 

SADB—>mode: Transport or Tunnel
point to the location of the signed hash to write if  Sending or to read if 

receiving (pAuthData)
get size of and memory for a copy of the datagram to hash (pPayloadToL4) 
fill the copy of the datagram to hash, leaving off the mutable fields -  set to zero 
fill the transformed datagram out, skipping the location of the signed hash if

sending
L4MACMech(In: SMIB—>HMAC Mechanism number, SADB —> key and IV, 

SMIB, Initialize, KeylsNew, Sending, NewIVNeeded, pPayloadToL4, Out (In if 
receiving): pAuthData, Out: DecryptedHash, GeneratedHash) 

delete the space at pPayloadToL4
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if (not Sending) check the decrypted vs. generated hash and set Verifies 
accordingly

delete the decrypted and generated hash memory }
-Future work: use SADB service no —► SMIB—̂ Service layer—̂ Mechanism layer 

and —̂ Primitives layer when arrays added

A. 1.7. The ESP Service

L3ESPServ (in: SADB, SMIB, Initialize, KeylsNew, Sending, NewIVNeeded, 
Datagramln, out: DatagramOut) {

if (Initialize) L4EncMech(Initialize) and return, 
case SMIB—► encryption primitive { 

get the encryption block size 
specify whether an IV is included } 

if (Sending) calculate the padding size required to make the payload a natural 
number multiple of the block size

calculate the transformed DatagramOut size, depending on SADB —» mode: 
Transport or Tunnel

get the memory for an unencrypted/decrypted copy of the datagram, 
DatagramOutUnEnc, with all the padding; also if receiving, the padding has to be 
decrypted before the padding size can be retrieved.

if  (Sending) get the memory for the DatagramOut
if (Sending) set pTransformedData in DatagramOut, else set pTransformedData 

in DatagramOutUnEnc
if (Sending) set pPayloadToL4 to the payload location in DatagramOutUnEnc, 

else set it to the payload location in Datagramln
Set the header data in DatagramOutUnEnc
if (Sending) set the data to be transformed in DatagramOutUnEnc and copy the 

header data to DatagramOut
L4EncMech(In: SMIB —»Enc Mechanism number, SADB —> key and IV, 

SMIB, Initialize, KeylsNew, Sending, NewIVNeeded, pPayloadToL4, Out: 
pTransformedData)

if (not Sending) get the memory and copy DatagramOutUnEnc to DatagramOut 
without the padding

delete DatagramOutUnEnc}
Future work: use SADB service no —> SMIB—̂ Service layer—>Mechanism layer 

and —̂ Primitives layer when arrays added)

A. 1.8. The HMAC Mechanism

L4MACMech(In: SMIB—»HMAC Mechanism number, SADB —*• key and IV, 
SMIB, Initialize, KeylsNew, Sending, NewIVNeeded, pPayloadToL4, Out (In if 
receiving): AuthHdrStorage, Out: DecryptedHash, GeneratedHash) { 

if (Initialize) L4AES128Mode(NONE) return 
case SMIB—►SMIB_Prims_layer.SMIB_Hash_Prims.Algorithm {

SHA2: set the hash size
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L5SHA2 (pPayloadToL4, Out: GeneratedHash)} 
case SMIB—»SMIB_Prims_layer.SMIBJEnc_Prims. Algorithm {

AES 128: get the key, if (Sending) get the IV
determine whether the key needs to be set in the core from KeylsNew 

and L4AES128Mode
if so, set the core use to MAC using L4AES128Mode() and call 

L5AESI28UpdateKey
if (NewIVNeeded and Sending) {

Get the RNG state, Use the RNG to create a random number for the 
IV, save the RNG state

Pass back the new IV using its pointer } 
if (Sending) {

put the IV into the output datagram at AuthHdrStorage 
L5AES128UpdateIVs() - put the IV into the AES core 
L5AES128EnDecrypt(ENCRYPT, GeneratedHash, HashSize, 

(AuthHdrStorage+sizeof(IV)), HashSize)} 
else {

get the IV from the input datagram at AuthHdrStorage 
L5AES128UpdateIVs() - put the IV into the AES core 
L5AES 128EnDecrypt(DECRYPT, (AuthHdrStorage+sizeof(IV)), 

HashSize, DecryptedHash, HashSize)} } }

A. 1.9. The Encryption Mechanism

L4EncMech(In: SMIB—̂ Encryption Mechanism number, SADB —> key and IV, 
SMIB, Initialize, KeylsNew, Sending, NewIVNeeded, pPayloadToL4, Out: 
TransformStorage) {

if (Initialize) L4AES128Mode(NONE), reset and save the RNG state, return 
case SMIB—>SMIB_Prims_layer.SMIB_Enc_Prims.Algorithm {

AES 128: get the key, if (Sending) get the IV
determine whether the key needs to be set in the core from KeylsNew 

and L4AES128Mode
if so, set the core use to ENC using L4AES128Mode() and call 

L5AESI28UpdateKey
if (NewIVNeeded and Sending) {

Get the RNG state, Use the RNG to create a random number for the 
IV, save the RNG state

Pass back the new IV using its pointer } 
if (Sending) {

put the IV into the output datagram at TransformStorage 
L5AES128UpdateIVs() - put the IV into the AES core 
L5AES 128EnDecrypt(ENCRYPT, pPayloadToL4+sizeof(IV), Size, 

(TransformStorage+sizeof(IV)), S ize)} 
else {

get the IV from the input datagram at pPayloadToL4 
L5AES128UpdateIVs() - put the IV into the AES core

158

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



L5AES128EnDecrypt(DECRYPT, pPayloadToL4+sizeof(IV), Size, 
TransformStorage, S ize)} } }

A.1.10.L4 (Mechanism) SPI Tracking Storage

L4AES128SPI(Setting, SomethingSet, —>SPI, —̂ Decrypting) {
static IsSomethingSet // Whether anything is stored
static SPIState 
static DecryptingState

if  (Setting) {
IsSomethingSet = SomethingSet 
SPIState = —»SPI 
DecryptingState = —>Decrypting}

else {
-►SPI = SPIState 
—►Decrypting = DecryptingState} 

return(IsSomethingSet)}

A. 1.11 .The Hash Primitive 

Dummy Hash

L5SHA2(MsgIn, MsgLen, 32-bit OutO - 32-bit Out7) { set each of the eight 32-bit 
words to (hex) 5A5A5A5A }

A.1.12.The RNG Primitive

First, the state is stored using static variables within a function -  this function 

must be used to retrieve and then to save the state before and after the Generate function.

A. 1.12.1. Get or Set the State

L5RngCoreValues(int Set, 32-bit HOCASR, 32-bit LOCASR, 32-bit HOLFSR, 
32-bit LOLFSR) {

if  (Set) store HOCASR, LOCASR, HOLFSR, LOLFSR (the state) in local 
static variables

else retrieve the state }

A .I.12.2. Reset the State (to all “ l ”s)

L5RngReset(32-bit HOCASR, 32-bit LOCASR, 32-bit HOLFSR, 32-bit 
LOLFSR) {

set the state to all binary Is, i.e., hex FFFFFFFF for each }
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A .I.12.3. Seed the RNG

L5RngSeed(32-bit HOSeedln, 32-bit LOSeedln, 32-bit HOCASR, 32-bit 
LOCASR, 32-bit HOLFSR, 32-bit LOLFSR) {

HOCASR«- HOSeedln, LOCASR <- LOSeedln, HOLFSR «- 
HOSeedln, LOLFSR «- LOSeedln }

A. 1.12.4. Generate a Random Number

L5RngGenerate(32-bit HOCASR, 32-bit LOCASR, 32-bit HOLFSR, 32-bit 
LOLFSR) {

generate the random number as given previously and update the state 
return the 32-bit random number }

A .I.13.The AES-128 Primitive 

A .I.13.1. Key Load to the Core

L5AES128UpdateKey(32-bit KeyO, 32-bit Keyl, 32-bit Key2,32-bit Key3, 
Decryptor) {

write the encryptor core slave registers 1-4 with Key 0 to 3 
if  (Decryptor) {

use the algorithm detailed previously to load the key expand values from 
the encryptor core to the decryptor core }
The encryptor's IV was changed by loading the key expand values to the 

decryptor; just clear it even if not loading the decryptor. The calling 
routine will be responsible for setting it:

L5AES 128UpdateIVs(0, 0, 0, 0)}

A. 1.13.2. IV Load to the Core

L5AES 128UpdateIVs(32-bit IVO, 32-bit IV1, 32-bit IV2, 32-bit IV3) { 
set IVLoad in the encryptor core 
write the encryptor core slave registers 5-8 with IVO to 3 
clear IVLoad in the encryptor core 
set IVLoad in the decryptor core 
write the decryptor core slave registers 5-8 with IVO to 3 
clear IVLoad in the decryptor core }

160

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



A .I.13.3. The Encrypt or Decrypt Function

L5AES128EnDecrypt(int Encrypt, 32-bit CurrentBlockln, BlocklnLength, 32-bit 
CurrentBlockOut, BlockOutLength) {

Validate user entry - BlocklnLength must be a multiple of sixteen bytes, 
and BlockOutLength must be at least the same size - return with error if  not the case, 

for each 128-bit (16-byte) block {
// Note big-endian data orientation. Note that SlaveReg8 has to be 

written last for the transform to proceed; use the first 32-bit words as higher-order data. 
In the core, SlaveReg5 is highest order.

if (Encrypt) {
write the encryptor core slave registers 5-8 with the four

32-bit words of the block in
Wait for the encryptor core to finish, although doing this 

seems somewhat ridiculous given how fast the core works (220 ns).
read the encryptor core slave registers 9-12 to the four 32-

bit words of the block o u t} 
else {

do the same except using the decryptor core slave registers

A.2. IPsecLoop

Differences from IPsecImp are shown. Note that IPsecLoop has no GUI, since it 

is a CLI program. Also, it only differs in the top-level loop and OSI layers; all of L3 

(Service) to L5 (Primitive) layers are identical.

A.2.1. Top-Level Loop

Differences from IPsecImp:

Initialization 
-set the SADB
-set a specific embedded test packet 

commands 
r, z, s, m, and i are not needed 
added:
o: toggle the loop testing between outgoing (encryption) and receiving back 

(decryption)
t: change the protocol and mode to be tested, in the SADB
i: change the increment by which to increase the test packet size
n: toggle "need new IV"; if  set, a new IV is acquired via the RNG every packet

transform
s: increment the packet size or revert to the starting size
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A.2.2. Packet Processing, or OSI Layers 

Differences from IPsecImp:

A.2.2.1. IP Layer

IP Layer:
Start of test:

copy the embedded test packet (so that the IPsecLayer won't delete the
original)

if packet received:
echo the packet via plain RS232

A.2.2.1. IPsecLayer

IPsec Layer:

The service calls are put into a loop containing:
a dummy AES transform (the opposite one to the one used in the service 

call) to read via oscilloscope to mark the loop 
the service call
a dummy transform to read via oscilloscope to mark the end of the service

call
test for error
set "KeylsNew" from top-level user selection 
check for a keystroke via RS232 and exit the loop if so 
check for the setting of the "Outgoing" vs. incoming test selection to exit the 

loop after only one execution if testing the other direction, 
delete the transformed packet if looping

A.3. IPsecGUI

The key packet processing functions are shown below.

A.3.1. Packet processing test setup

OnButtonSendPacket { 
initial validation of SMIB, SADB and their contents
test for existance and validity of the test packet - header size, minimum 1-byte 

payload size
verify that the size of the IPsec test packet produced will be no larger than 

(hex) FFFF
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send 'p' to start packet processing in the board
if no error message from the board, use reliable data transfer to send the test

packet
- display a progress dot after sending the packet size

use reliable data transfer to receive "Synch" from the board to synchronize to 
the board's actual service call

- display a progress dot 
PacketOutgoing <— true
PacketOutProcTime <— 0, PacketlnProcTime <— 0 
Set the GUI timer for timer messages at a 1ms rate }

A.3.2. Packet processing timer processing 

OnTimer {
increment the appropriate count depending upon PacketOutgoing 
check for character received; exit if nothing 
stop the timer
if error message from the board, display it and exit 
if (PacketOutgoing) { 

display the time taken for the outgoing processing for display purposes 
get the IPsec packet size via reliable data transfer; display a space and a progress dot 
get the IPsec packet using reliable data transfer; display an "o" for "outgoing 

processing complete"
use reliable data transfer to receive "Synch" from the board to synchronize to the 

board's actual service call 
display a progress dot
Set the GUI timer for timer messages at a 1ms rate } 

else {
use reliable data transfer to receive the status message of the AH verification (or 

dummy characters if ESP)
display the time taken for the incoming processing for display purposes 
get the IP packet size via reliable data transfer; display a space and a progress dot 
get the IP packet using reliable data transfer; display an "i" for "incoming processing 

complete"
display the IP and the IPsec packet
echo the protocol and mode for record-keeping
echo the outgoing and incoming processing times for record-keeping
echo the AH verification message for record-keeping } }
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APPENDIX B

B. Experimental Data

B.l. Simulation Results

B.1.1. Encryption

B. 1.1.1. Encryption -  with All Intermediate Step Results

At the time these “screenshots” were taken, the “load pulse” method was used to 

initiate “Id r” and the transform.
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Figure 61. Encryption simulation "screenshot" -  upper left quadrant of view
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Figure 62. Encryption simulation "screenshot" -  lower left quadrant of view
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Figure 63. Encryption simulation "screenshot" -  upper right quadrant of view
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Figure 64. Encryption simulation "screenshot" -  lower right quadrant of view
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Figure 65. Encryption simulation “screenshot,” showing autoload
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Figure 66. Encryption simulation “screenshot,” showing CBC mode
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B.1.2. Decryption

Figure 67. Decryption simulation "screenshot,” showing IV load and save

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



B.2. Tabulated Data from “IPsecLoop” Oscilloscope Testing

B.2.1. Version 4, with “IPsecLoop” and “IPsecGUI” Comparison

B.2.1.1. AH Transport

AH Transport Mode packet processing times using IPsecLoop, - data  of Mar 1-2, 
2007
(entered here Mar 13-15) - Jam es  W iebe 
(Packet sizes in bytes - 8 bits in the ML403 board)
"GUI processing times" refer to use  of the IPsecGUI; (1) laptop runs Mar 13-14, 2007 
(2) on PC Mar 17, 2007

(hex)

GUI
GUI inc.

Outgoing Incoming GUI out. out. proc.
proc. proc. proc. GUI inc. proc. time

size Packet size time time time (ms) proc. time time (ms)
(decimal) (ms) (ms) (1) (ms) (1) (ms) (2) (2)

28 40 0.72 0.97 2 2 1 1
128 296 3.9 3.6 2 2 1 1
228 v 552 5.7 6.3 2 1 1 1
328 808 7.6 2 1 1 1
428 1064 9.3 11.5 2 1 1 1
528 1320 11.3 1 2
628 1576 13 17 1 1 1 2
728 1832 15 2 1
828 2088 17 22 1 1 1 2
928 2344 18.8 2 2
a28 2600 28 1 1 1 3
c28 3112 24 33 1 2 1 3
e28 3624 28 38 1 2 2 2

1028 4136 31.5 44 2 3 3 3
1228 4648 35.5 3 3
1428 5160 39 54 2 4 3 4
1828 6184 46 64 3 5 3 5
1c28 7208 54 75 4 6 4 6
2028 8232 61 85 5 7 5 6
2428 9256 68 95 5 8 5 7
2828 10280 76 108 6 9 6 8
2c28 11304 83 118 7 10 5 8
3028 12328 90 128 7 11 6 8
3428 ' 13352 98 140 7 12 7 9
3828 14376 108 150 9 14 7 10
3c28 15400 113 160 9 15 8 11
4028 16424 120 170 10 15 8 12
10. AH Transport tabulated data -  ver. 4, with “IPsecLoop” and “IPsecGUI” comparison
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B.2.1.2. AH Tunnel

AH Tunnel Mode packet processing times using IPsecLoop, - data  of Mar 3, 2007
(entered here Mar 15) - Jam es  W iebe
(Packet sizes in bytes - 8 bits in the ML403 board)
"GUI processing times" refer to use  of the IPsecGUI; (1) laptop runs Mar 13-14, 2007 
(2) on PC Mar 17, 2007

(hex)

GUI
GUI inc.

Outgoing Incoming GUI out. out. proc.
proc. proc. proc GUI inc. proc. time

size Packet size time time time (ms) proc. time time (ms)
(decimal) (ms) (ms) (1) (ms) (1) (ms) (2) (2)

28 40 0.9 1.2 2 2 1 1
128 296 2.8 3.8 2 2 1 1
228 552 4.6 6.4 2 2 1 1
328 808 2 2 1 1
428 1064 8.3 12 2 1 1 1
528 1320 1 1
628 1576 12 17 1 1 1 2
728 1832 1 1
828 2088 17 22 1 1 2 2
928 2344 2 2
a28 2600 20 28 1 1 2 2
c28 3112 23 33 1 2 3
e28 3624 27 38 1 1 2 3

1028 4136 31 43 2 4 3 3
1228 4648 1 4
1428 5160 38 54 2 4 3 4
1828 6184 45 64 3 5 3 4
1c28 7208 53 75 4 8 3 5
2028 8232 60 85 4 6 4 6
2428 9256 68 95 5 8 5 7
2828 10280 75 105 6 9 5 7
2c28 11304 82 116 7 10 6 8
3028 12328 90 128 7 11 7 9
3428 13352 98 138 7 13 7 10
3828 14376 105 150 9 13 7 10
3c28 15400 111 160 9 14 8 10
4028 16424 120 170 10 15 7 11

Table 11. AH Tunnel tabulated data -  ver. 4, with “IPsecLoop” and “IPsecGUI” comparison

B.2.1.3. ESP Transport

ESP Transport Mode packet processing tim es using IPsecLoop, - data of Mar 3, 
2007
(entered here Mar 15) - Jam es  W iebe
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(Packet sizes in bytes - 8 bits in the ML403 board)
"GUI processing times" refer to use  of the IPsecGUI; (1) laptop runs Mar 13-14, 
2007
(2) on PC Mar 17, 2007

GUI
out.

Outgoing Incoming proc. GUI inc. GUI out. GUI inc.
Packet Packet proc. proc. time proc. proc. proc.
size size time time (ms) time time time
(hex) (decimal) (ms) (ms) (1) (ms) (1) (ms) (2) (ms) (2)

28 40 0.6 0.41 2 2 1 1
128 296 2.7 1.8 2 2 1 1
228 552 4.7 3.2 2 2 1 1
328 808 4.6 1 1
428 1064 8.8 6 1 2 1 1
528 1320 1 1
628 1576 13 8.8 1 1 1 1
728 1832 2 1
828 2088 17 12 1 1 2 1
928 2344 2 2
a28 2600 21 14 1 1 2 1
c28 3112 25 17 1 1 2 2
e28 3624 30 20 1 1 3 2

1028 4136 34 23 2 1 2 2
1228 4648 3 2
1428 5160 42 28 2 1 3 2
1828 6184 50 34 3 2 4 2
1c28 7208 58 40 4 3 4 3
2028 8232 66 45 5 3 5 3
2428 9256 74 50 4 4
2828 10280 83 56 7 4 6 4
2c28 11304 90 62 7 4 7 4
3028 12328 100 68 7 5 6 5
3428 13352 108 73 8 6 7 6
3828 14376 115 78 10 1 7 6
3c28 15400 125 85 11 7 8 6
4028 16424 133 91 11 6 9 6

Table 12. ESP Transport tabulated data -  ver. 4, with “IPsecLoop” and “IPsecGUI” comparison

B.2.1.4. ESP Tunnel

ESP Tunnel Mode packet processing tim es using IPsecLoop, - data of Mar 3, 2007
(entered here Mar 15) - Jam es  W iebe
(Packet sizes in bytes - 8 bits in the ML403 board)
"GUI processing times" refer to use  of the IPsecGUI; (1) laptop runs Mar 13-14, 2007 
(2) on PC Mar 17, 2007

Packet Packet Outgoing Incoming GUI out. GUI inc. GUI GUI inc.
size size proc. proc. proc. proc. time out. proc.
(hex) (decimal) time time time (ms) (ms) (1) proc. time
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(ms) (ms) (1) time (ms) (2) 
(ms) (2)

28 40 0.755 0.34
128 296 2.8 1.7
228 552 4.8 3.1
328 808 7.9 4.5
428 1064 8.9 5.9
528 1320
628 1576 13 8.7
728 1832
828 2088 17 12
928 2344
a28 2600 21 14
C28 3112 26 17
e28 3624 30 20

1028 4136 35 23
1228 4648
1428 5160 42 28
1828 6184 50 34
1c28 7208 58 40
2028 8232 66 45
2428 9256 75 51
2828 10280 83 56
2c28 11304 93 62
3028 12328 100 67
3428 13352 108 73
3828 14376 115 78
3c28 15400 125 85
4028 16424 133 90

Table 13. ESP Tunnel tabulated data -  ver. 4,

2 2 1 1
2 2 1 1
2 2 1 1

1 1 
2 2 1 1

1 1 
1 2 2 1

2 1 
1 1 . 1  1

2 1 
1 1 2  2
1 1 2  1
1 1 3  2
1 1 3  2

3
3 1 3
3 2 4
3 2 4
5 2 5
5 3 5
6 3 6
7 4 6
8 5 7
9 5 8

10 6 8
10 7 7
11 7 9

1th “IPsecLoop” and “IPsecGUI” comparison

B.2.2. Version 6 Compared to Ver. 4

B.2.2.1. ESP Transport

ESP Transport Mode packet processing times using IPsecLoop, - 
data of Mar 20,
2007 - IPsecLoop Ver 006
(entered here Mar 26) - Jam es W iebe
(1) - Data of Mar 3, for comparison
(Packet sizes in bytes - 8 bits in the ML403 board)

Outgoing Incoming Outgoing Incoming
Packet Packet proc. proc. proc. proc.
size size time time time time
(hex) (decimal) (ms) (1) (ms) (1) (ms) (ms)

28 40 0.6 0.41 0.39 0.37
128 296 2.7 1.8 1.3 1.4
228 552 4.7 3.2 2.3 2.3
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328 808 4.6
428 1064 8.8 6 4.2 4.2
528 1320
628 1576 13 8.8 6 6.2
728 1832
828 2088 17 12 7.9 8.1
928 2344
a28 2600 21 14 9.8 10
c28 3112 25 17 12 12
e28 3624 30 20 14 14

1028 4136 34 23 16 16
1228 4648
1428 5160 42 28 19 20
1828 6184 50 34 23 24
1c28 7208 58 40 28 28
2028 8232 66 45 30 31
2428 9256 74 50 35 35
2828 10280 83 56 38 39
2c28 11304 90 62 42 44
3028 12328 100 68 46 47
3428 13352 108 73 49 51
3828 14376 115 78 53 55
3c28 15400 125 85 57 59
4028 16424 133 91 60 63

Table 14. ESP Transport tabulated data -  ver. 6 compared to ver. 4

B.2.2.2. ESP Tunnel

ESP Tunnel Mode packet processing times using IPsecLoop, - 
data of Mar 20,
2007 - IPsecLoop Ver 006
(entered here Mar 26) - Jam es W iebe
(1) - Data of Mar 3, for comparison
(Packet sizes in bytes - 8 bits in the ML403 board)

Outgoing Incoming Outgoing Incoming
Packet Packet proc. proc. proc. proc.
size size time time time time
(hex) (decimal) (ms) (1) (ms) (1) (ms) (ms)

28 40 0.755 0.34 0.48 0.31
128 296 2.8 1.7 1.4 1.3
228 552 4.8 3.1 2.3 2.3
328 808 7.9 4.5
428 1064 8.9 5.9 4.2 4.2
528 1320
628 1576 13 8.7 6.1 6.1
728 1832
828 2088 17 12 8 8.1
928 2344
a28 2600 21 14 9.9 9.9
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c28 3112 26 17 12 12
e28 3624 30 20 14 14

1028 4136 35 23 16 16
1228 4648
1428 5160 42 28 19 20
1828 6184 50 34 23 23
1c28 7208 58 40 27 27
2028 8232 66 45 30 32
2428 9256 75 51 34 35
2828 10280 83 56 38 39
2c28 11304 93 62 42 43
3028 12328 100 67 46 47
3428 13352 108 73 49 51
3828 14376 115 78 54 55
3c28 15400 125 85 56 58
4028 16424 133 90 60 62

Table 15. ESP Tunnel tabulated data -  ver. 6 compared to ver. 4

B.2.3. Version 7 Compared to Ver. 6 and 4

B.2.3.1. AHf Transport

AH Transport Mode packet processing tim es using IPsecLoop, - 
data of Mar 21,
2007 - IPsecLoop Ver 007
(entered here Mar 26) - Jam es W iebe
(1) - Data of Mar 1-2, for comparison
(Packet sizes in bytes - 8 bits in the ML403 board)

Outgoing Incoming Outgoing Incoming
Packet Packet proc. proc. proc. proc.
size size time time time time
(hex) (decimal) (ms) (1) (ms) (1) (ms) (ms)

28 40 0.72 0.97 0.56 0.84
128 296 3.9 3.6 2 3.1
228 552 5.7 6.3 3.4 5.3
328 808 7.6
428 1064 9.3 11.5 6.2 9.6
528 1320 11.3
628 1576 13 17 9 14
728 1832 15
828 2088 17 22 12 19
928 2344 18.8
a28 2600 28 15 23
c28 3112 24 33 18 28
e28 3624 28 38 21 32

1028 4136 31.5 44 23 36
1228 4648 35.5 26 41
1428 5160 39 54 29 45
1828 6184 46 64 35 54
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1c28 7208 54 75 40 63
2028 8232 61 85 46 72
2428 9256 68 95 52 80
2828 10280 76 108 58 88
2c28 11304 83 118 63 98
3028 12328 90 128 68 108
3428 13352 98 140 73 115
3828 14376 108 150 80 125
3c28 15400 113 160 85 133
4028 16424 120 170 90 143

Table 16. AH Transport tabulated data -  ver. 7 compared to ver. 4

B.2.3.2. AH Tunnel

AH Tunnel Mode packet processing tim es using IPsecLoop, - data 
of Mar 21,
2007 - IPsecLoop Ver 007
(entered here Mar 26) - Jam es  W iebe
(1) - Data of Mar 1-2, for comparison
(Packet sizes in bytes - 8 bits in the ML403 board)

Outgoing Incoming Outgoing Incoming
Packet Packet proc. proc. proc. proc.
size size time time time time
(hex) (decimal) (ms) (1) (ms) (1) (ms) (ms)

28 40 0.9 1.2 0.69 0.975
128 296 2.8 3.8 2.1 3.2
228 552 4.6 6.4 3.6 5.4
328 808
428 1064 8.3 12 6.4 9.8
528 1320
628 1576 12 17 9.3 14
728 1832
828 2088 17 22 12 19
928 2344
a28 2600 20 28 15 23
c28 3112 23 33 18 28
e28 3624 27 38 21 32

1028 4136 31 43 23 36
1228 4648
1428 5160 38 54 29 45
1828 6184 45 64 35 54
1c28 7208 53 75 41 62
2028 8232 60 85 46 72
2428 9256 68 95 52 80
2828 10280 75 105 58 90
2c28 11304 82 116 63 99
3028 12328 90 128 70 106
3428 13352 98 138 75 115
3828 14376 105 150 80 125
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3c28 15400 111 160 85 131
4028 16424 120 170 93 143

Table 17. AH Tunnel tabulated data -  ver. 7 compared to ver. 4

B.2.3.3. ESP Transport

ESP Transport Mode packet processing times using IPsecLoop, - data  of Mar 21,
2007 - IPsecLoop Ver 007
(entered here Mar 26) - Jam es W iebe
(1) - Data of Mar 3 - ver 4
(2) - Data of Mar 20 - ver 6
(Packet sizes in bytes - 8 bits in the ML403 board)

Outgoing Incoming Outgoing Incoming Outgoing Incoming
Packet Packet proc. proc. proc. proc. proc. proc.
size size time time time time time time
(hex) (decimal) (ms) (1) (ms) (1) (ms) (2) (ms) (2) (ms) (ms)

28 40 0.6 0.41 0.39 0.37 0.38 0.315
128 296 2.7 1.8 1.3 1.4 1.3 1.3
228 552 4.7 3.2 2.3 2.3 2.2 2.2
328 808 4.6
428 1064 8.8 6 4.2 4.2 4.1 4.1
528 1320
628 1576 13 8.8 6 6.2 5.9 6
728 1832
828 2088 17 12 7.9 8.1 7.8 8
928 2344
a28 2600 21 14 9.8 10 9.6 9.9
c28 3112 25 17 12 12 12 12
e28 3624 30 20 14 14 13 14

1028 4136 34 23 16 16 15 16
1228 4648
1428 5160 42 28 19 20 19 20
1828 6184 50 34 23 24 23 23
1c28 7208 58 40 28 28 26 27
2028 8232 66 45 30 31 30 31
2428 9256 74 50 35 35 34 35
2828 10280 83 56 38 39 38 39
2c28 11304 90 62 42 44 41 43
3028 12328 100 68 46 47 45 46
3428 13352 108 73 49 51 48 50
3828 14376 115 78 53 55 52 54
3c28 15400 125 85 57 59 56 58
4028 16424 133 91 60 63 60 62

Table 18. ESP Transport tabulated data -  ver. 7 compared to ver. 6 and 4
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B.2.3.4. ESP Tunnel

ESP Tunnel Mode packet processing times using IPsecLoop, - data of Mar 21,
2007 - IPsecLoop Ver 007
(entered here Mar 26) - Jam es  W iebe
(1) - Data of Mar 3 - ver 4
(2) - Data of Mar 20 - ver 6
(Packet sizes in bytes - 8 bits in the ML403 board)

Outgoing Incoming Outgoing Incoming Outgoing Incoming
Packet Packet proc. proc. proc. proc. proc. proc.
size size time time time time time time
(hex) (decimal) (ms) (1) (ms) (1) (ms) (2) (ms) (2) (ms) (ms)

28 40 0.755 0.34 0.48 0.31 0.44 0.255
128 296 2.8 1.7 1.4 1.3 1.4 1.2
228 552 4.8 3.1 2.3 2.3 2.3 2.2
328 808 7.9 4.5
428 1064 8.9 5.9 4.2 4.2 4.2 4.1
528 1320
628 1576 13 8.7 6.1 6.1 6 6
728 1832
828 2088 17 12 8 8.1 7.8 7.9
928 2344
a28 2600 21 14 9.9 9.9 9.7 9.8
c28 3112 26 17 12 12 12 12
e28 3624 30 20 14 14 14 14

1028 4136 35 23 16 16 15 16
1228 4648
1428 5160 42 28 19 20 19 19
1828 6184 50 34 23 23 23 23
1c28 7208 58 40 27 27 27 27
2028 8232 66 45 30 32 30 31
2428 9256 75 51 34 35 34 35
2828 10280 83 56 38 39 38 39
2c28 11304 93 62 42 43 41 42
3028 12328 100 67 46 47 45 46
3428 13352 108 73 49 51 49 50
3828 14376 115 78 54 55 53 54
3c28 15400 125 85 56 58 56 58
4028 16424 133 90 60 62 60 62

Table 19. ESP Tunnel tabulated data -  ver. 7 compared to ver. 6 and 4

B.2.4. Version 8 Compared to Ver. 7

B.2.4.1. AH Transport

AH Transport Mode packet processing tim es using IPsecLoop, - 
data of Apr 9,
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2007 - IPsecLoop Ver 008
(entered here Apr 10) - Jam es W iebe
(1) - Data of IPsecLoop ver 007, Mar 21, for comparison
(Packet sizes in bytes - 8 bits in the ML403 board)

Outgoing Incoming Outgoing incoming
Packet Packet proc. proc. proc. proc.
size size time time time time
(hex) (decimal) (ms) (1) (ms) (1) (ms) (ms)

28 40 0.56 0.84 0.435 0.83
128 296 2 3.1 1.19 3.03
228 552 3.4 5.3 1.94 5.2
328 808
428 1064 6.2 9.6 3.43 9.6
528 1320
628 1576 9 14 4.9 14
728 1832
828 2088 12 19 6.4 18.4
928 2344
a28 2600 15 23 7.9 22.8
c28 3112 18 28 9.25 27.3
e28 3624 21 32 10.9 31.8

1028 4136 23 36 12.4 36
1228 4648 26 41 13.8 40.3
1428 5160 29 45 15.3 45
1828 6184 35 54 18.3 53
1c28 7208 40 63 21.3 62
2028 8232 46 72 24.3 71
2428 9256 52 80 27.3 79.5
2828 10280 58 88 30.3 88
2c28 11304 63 98 33.3 98
3028 12328 68 108 36.3 106
3428 13352 73 115 39 115
3828 14376 80 125 42 123
3c28 15400 85 133 45 133
4028 16424 90 143 48 141

Table 20. AH Transport tabulatedI data -  ver. 8 compared to ver. 7

B.2.4.2. AHTunnel

AH Tunnel Mode packet processing times using IPsecLoop, - data 
of Apr 9,
2007 - IPsecLoop Ver 008
(entered here Apr 10) - Jam es  W iebe
(1) - Data of Mar 21, IPsecLoop ver 007, for comparison
(Packet sizes in bytes - 8 bits in the ML403 board)

Outgoing Incoming Outgoing Incoming
Packet Packet proc. proc. proc. proc.
size size time time time time
(hex) (decimal) (m s)(1) (m s)(1) (ms) (ms)
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28 40 0.69 0.975 0.51 0.975
128 296 2.1 3.2 1.25 3.2
228 552 3.6 5.4 2 5.4
328 808
428 1064 6.4 9.8 3.5 9.88
528 1320
628 1576 9.3 14 4.95 14.1
728 1832
828 2088 12 19 6.45 18.6
928 2344
a28 2600 15 23 7.95 23
c28 3112 18 28 9.38 27.3
e28 3624 21 32 10.9 32

1028 4136 23 36 12.8 36.5
1228 4648 13.9 41
1428 5160 29 45 15.4 45
1828 6184 35 54 18.3 54
1c28 7208 41 62 21.3 63
2028 8232 46 72 24.3 71.5
2428 9256 52 80 27.3 81.5
2828 10280 58 90 30.3 89
2c28 11304 63 99 33.3 98
3028 12328 70 106 36.3 108
3428 13352 75 115 39.3 116
3828 14376 80 125 42.3 125
3c28 15400 85 131 45 133
4028 16424 93 143 48 142

Table 21. AH Tunnel tabulated data -  ver. 8 compared to ver. 7

B.2.4.3. ESP Transport

ESP Transport Mode packet processing times using IPsecLoop, - 
data of Apr 9,
2007 - IPsecLoop Ver 008
(entered here Apr 10) - Jam es W iebe
(1) - Data of Mar 21 - ver 7
(Packet sizes in bytes - 8 bits in the ML403 board)

Outgoing Incoming Outgoing Incoming
Packet Packet proc. proc. proc. proc.
size size time time time time
(hex) (decimal) (ms) (1) (ms) (1) (ms) (ms)

28 40 0.38 0.315 0.27 0.24
128 296 1.3 1.3 1.23 1.33
228 552 2.2 2.2 2.16 2.4
328 808
428 1064 4.1 4.1 4.1 4.55
528 1320
628 1576 5.9 6 5.9 6.7
728 1832
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828 2088 7.8 8 7.8 8.9
928 2344
a28 2600 9.6 9.9 9.63 11
c28 3112 12 12 11.5 13.1
e28 3624 13 14 13.4 15.4

1028 4136 15 16 15.3 17.5
1228 4648 17.3 19.8
1428 5160 19 20 19.1 21.9
1828 6184 23 23 22.8 26.3
1c28 7208 26 27 26.5 30.3
2028 8232 30 31 30.3 34.8
2428 9256 34 35 34 39.3
2828 10280 38 39 37.8 43.3
2c28 11304 41 43 41.5 47.5
3028 12328 45 46 45 52
3428 13352 48 50 49 56.5
3828 14376 52 54 53 61
3c28 15400 56 58 56.5 65
4028 16424 60 62 60 69

Table 22. ESP Transport tabulated data -  ver. 8 compared to ver. 7

B.2.4.4. ESP Tunnel

ESP Tunnel Mode packet processing times using IPsecLoop, - 
data of Apr 9,
2007 - IPsecLoop Ver 008
(entered here Apr 10) - Jam es W iebe
(1) - Data of Mar 21 - ver 7
(Packet sizes in bytes - 8 bits in the ML403 board)

Outgoing Incoming Outgoing Incoming
Packet Packet proc. proc. proc. proc.
size size time time time time
(hex) (decimal) (ms) (1) (ms) (1) (ms) (ms)

28 40 0.44 0.255 0.34 0.26
128 296 1.4 1.2 1.3 1.35
228 552 2.3 2.2 2.23 2.43
328 808
428 1064 4.2 4.1 4.1 4.6
528 1320
628 1576 6 6 6 6.75
728 1832
828 2088 7.8 7.9 7.9 8.9
928 2344
a28 2600 9.7 9.8 9.8 11.1
c28 3112 12 12 11.6 13
e28 3624 14 14 13.5 15.4

1028 4136 15 16 15.4 17.5
1228 4648 17.3 19.8
1428 5160 19 19 19.1 21.9
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1828 6184 23 23 22.8 26.3
1c28 7208 27 27 26.5 30.5
2028 8232 30 31 30.5 34.8
2428 9256 34 35 34.3 39.3
2828 10280 38 39 37.8 43.5
2c28 11304 41 42 41.5 47.5
3028 12328 45 46 45 52
3428 13352 49 50 49.5 56
3828 14376 53 54 54 60.5
3c28 15400 56 58 57 65.5
4028 16424 60 62 60.5 69.5

Table 23. ESP Tunnel tabulated data -  ver. 8 compared to ver. 7
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