University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations

1-1-2007

Implementing [Psec using the Five-layer security

framework and FPGA:s.

James Wiebe
University of Windsor

Follow this and additional works at: https://scholaruwindsor.ca/etd

Recommended Citation

Wiebe, James, "Implementing IPsec using the Five-layer security framework and FPGAs." (2007). Electronic Theses and Dissertations.
6985.
https://scholaruwindsor.ca/etd/6985

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please

contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at $19-253-3000ext. 3208.

https://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F6985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F6985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F6985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/6985?utm_source=scholar.uwindsor.ca%2Fetd%2F6985&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Implementing IPsec using the Five-Layer Security Framework and FPGAs

by

James Wiebe

A Thesis
Submitted to the Faculty of Graduate Studies
through Electrical and Computer Engineering
in Partial Fulfillment of the Requirements for
the Degree of Master of Applied Science at the
University of Windsor

Windsor, Ontario, Canada

2007

© 2007 James Wiebe

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-35010-2
Our file Notre référence
ISBN: 978-0-494-35010-2
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
qguelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT .

A VHDL implementation of 128-bit AES on a Xilinx Virtex-4 FPGA (lowest |
speed grade) and ML403 development board is developed from a Verilog design that
adheres to the FIPS-197 standard, adding innovative features: automatic start of
transform, CBC mode, key permutation value readout and store, and output of each
intermediate state value. Core processing rate achieves 640 Mbps; 27 Mbps is achieved in
practice, via peripheral register access. A non-linear, cryptographically secure LFSR-
CASR pseudo-random number generator with a cycle length of 28°-22.23+1 is
translated into C and C++ from Verilog and evaluated. A C design and implementation of
IPsec, based on the Five-layer security framework, using these primitives, is presented.
The rate of [Psec packet processing achieved is 2 Mbps, determined by direct pulse
measurement. A PC-based GUI drives the IPsec implementation and serves it policies,
with a framework for ﬂexibly choosing services, mechanisms and primitives using the
SMIB.

Index Terms: IPsec, Virtex-4, FPGA, AES, pseudo-random number generator,

Software Design, Cryptography

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DEDICATION
To my mother, for a staggering amount of love, that is so great, that it is as

difficult to comprehend as the most involved scientific theory.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS
I would like to thank the members of my thesis committee, Dr. Shervin Erfani,
Dr. Huapeng Wu, and Dr. Arunita Jaekel, for their support, advice and encouragement —
and patience in arranging the times of my seminars! My advisor, Dr. Erfani, also
provided funding and printed and read all of my published and presented work done
during the time of my Master’s project work; as well, he helped me burn my seminar

CDs on a last-minute basis. Dr. Wu also kindly printed a copy of my thesis for me.

I gratefully acknowledge the assistance of the department technologists, Mr.
Frank Cicchello and Mr. Don Tersigni, for support in ordering and providing equipment
and tools, and setting up presentations. The University of Windsor ECE (Electrical and
Computer Engineering) department secretary, Andria Turner, was absolutely wonderful
in chairing my defence, in providing other support during the time of my defence that I
needed due to an extensive power failure that occurred that day, and in providing much
other support during the time of my Master’s work. Also, Dr. Roberto Muscedere
provided equipment. Liviu Danaila, and George Granata, the FAEs (Field Applications
Engineers) employed by the ML403 development board vendor, Nu Horizons, were
invaluable. Liviu was the local FAE, and helped me considerably. Jennie, the Nu
Horizons sales representative, made sure that I received the ML403 board by keeping
track of the order. The following Xilinx technical support personnel were helpful with
“webcases”: Jonney Zhao, James Broadhead, Enda Behan, Yolanda Xu, Ricky Su and
Zhaojin (“Michael”) Ye. “KJ” on the comp.arch.fpga Usenet “newsgroup” helped me set
simulation timing values so that the “post-map” simulation of my AES encryptor

succeeded.

Some of my initial training was done on the Xilinx “Microblaze” boards using
Xilinx training “lab” exercises from Xilinx and also as hosted by Dr. Paul Chow on his
website at the University of Toronto [UTXILT]. The various tutorial documents provided
by Xilinx were very useful — see the “Books, General Papers and other Resources” sub-
section in the References section: the reference codes beginning with “XIL”, particularly
the “EDK 8.2 PowerPC Tutorial in Virtex-4” [XILML403T].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thanks are due to my fellow students, Nima Bayan, Fang Chen, Amir
Yazdanshenas, Raymond Lee, Kevin Banovi¢, Ian Anderson, Mohammed Tarique and
Wenying Zheng, for technical assistance and advice and encouragement. Dr. Mohammed
Khalid also provided advice and support, and his course, “Reconfigurable Computing,”
provided some useful background. Dr. Xiang Chen provided advice and encouragement

that helped lead me to pursue this area of study.

This work is largely based on the Five-Layer framework for designing security
systems, patented by Dr. S. Erfani. The AES implementation presented is based on the
design by Rudolf Usselmann on the “Open Cores” website [USS2002], [OPENCORES].
The module hierarchy figure, used in section 3.1.7., “AES Design Done in this Work,”
was modified from Figures 6 and 7 in [USS2002]. The pseudo-random number generator
implementation presented is a translation from the Verilog design by Javier Villar on the
“Open Cores” website [VILL2005]. This material found on the “Open Cores” website is
in the public domain. The serial communication package used with MSVC++V 6.0
(Microsoft Visual C++ Version 6.0) is from “The Code Project” website, is by Ramon de
Klein, and is used under the terms of the LGPL (Lesser GNU Public License)
[KLE2003].

The “E-Business Security” figure used in section 2.3.1., “Other Management
Proposals”, is redrawn from [TRC2003] with permission from Elsevier. The “C-ISCAP”
figure used in section 2.3.1. is reproduced (redrawn) with kind permission of Springer
Science and Business Media ([PAR2002], Figure 1, pg. 383, © Springer-Verlag Berlin
Heidelberg 2002). The figure illustrating the Xilinx system architecture in section 3.1.4.,
“Architecture Provided by Xilinx” ([XILUT2003] pg 21), was published by Xilinx in
order that it “may be used in any form that would benefit the professor and students,”
[XILTMAT]. The figures illustrating AES in section 3.1.1.1., “Overview of AES”, are
from [FIPS197] and are in the public domain.

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ABSTRACT ..ooeirirtetceenienenenesesessessssressesse s esssesesasetesssssesasasnessessessessaessessessossasseses iii
DEDICATION.....cttiierereiestenenientestenrestessessaeessssssssessesssssessessassessasssessesssssessesssessassessonss iv
ACKNOWLEDGEMENTS.......ccooiimitininitnintneesresseniessensesiessesseesesssessesssssessssssessassassassens \%
LIST OF TABLESo ot ctectireeststesitsctestesnreereessessssesssssessesssesnnessesssssssessssssesesssssesssenns Xiv
LIST OF FIGURESottrtiiititiiiniiciniteretetestessesseseesssessessessnessensessessasssessensessssssenss Xvi
LIST OF ABBREVIATIONS......ccteoteitiricenrinrenteesnessesseesssessesssssassssssssessessasssessassesaens XX
ABLL. ACIONYINS ..ciouuiriririreriiienireeerireeesireeesiesesssessasesssessessesesssssssssssssssnssssssessssssasenns XX
ABL.L1. GeNeralcocuevervvirircreriieneenieseensesseseessesssesssesssesassssessesnns XX
AB.1.2, TEChNICEL.......coceirirnreerrenirenieenenrieeeenierereensesseessenseessesssesseenes XX
AB.2. ABDIEVIAtIONSccvieviiieiiiritiiesieieiee st esie e eraeretesseesestsesesessessaeseessesassansenes XXiv
AB.2.1. GeNeral....c.coovevvieiienieninienrinrenecnressieseensessiesssesssesrsessaenses XXiv
AB.2.2, Technical........cccceoveieiieriiriiirineneinrienieesiesereesseesseeessenaenes XXV
Chapter . 1
L INTRODUCTION 1
1.1, MOtIVHON. ...ecvvevrecerecsre i sess s sensssssesaesssnans 1
1.2, OVErVIEW OF IPSEC...uiivveeireririneenenirenniennensensuesssesssesssssesssesssesseens 2
1.2.1. Key EXchange.........cccccevruvieneeienrrnreireeeneenneneensionrennesaees 4
1.2.1.1.Main Mode......cocevriereerirenrersneesseenseseesenssssneseessessessens 4
1.2.1.2.Aggressive MOdEcovveviererieenneenecneenessnessseseensenns 4
1.2.1.3.QUICK MOGE....cccrirreiririereeeeniesnieeiensenessresssessaesnenes 5
1.2.1.4. Key Exchange — Conclusions........coevereresseeereeseeeenes 5
1.2.2. Security Policy Database and SMIB..........c.cocceeererverereriiS
1.2.3. Security ASSOCIAtIONScererrverveerrersrerseesivesresssessressaessnesnees 6
1.2.4. SEIVICES ..vevvrecrrierrerererniersreesrerereessssessseseesssnesssessassssessnne 7
1.2.4.1.Authentication Header Protocol........cccccereverevercrnennne 7
1.2.4.2 Encapsulating Security Payload Protocol 7
1.2.4.3.Anti-Replay Service.......cccvivmrvereninsinninninininennes 8
1.2.5. Modes of Operation..........coeevemeeriisimmesieneninsesssesiennenne 8
1.3, Previous WOrK ... 8
1.4. Problem Statementcccceverreererereirereneseniesesesessssreesessessesnesens 9
1.5. Motivation for General Layering.......cocceververvcerervensveeseerivenenes 9
1.6. Motivation to use FPGAS........ccevrevicrenrieeinrennennenereseseesennes 11
vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.7. Embedded SYStEmSccceveriererrrienenrncsencoressssesserseessessessesnesens 12

1.8, ODBJECHVES cvevverirenreeriiresineerinensieessensessesessessessensesessesseessensenses 13
1.9. Thesis Organizationceceeceeeeervererenrssreesesnereereesssessenens 13
IL REVIEW OF LITERATURE 15
2.1, INtroductiOn.......ccviveecercrmsnerceisincsisnsiessneentsnseeseeseeseessasnessassenss 15
2.1.1. History Of IPSECcccvurvirnmirrrnriniiirsicniencnteeessreeennenanenns 15
2.1.2. Government POLICScceerererrierereerercnserrrenreressrneseesnennenne 16
2.1.3. The Standards Process — Outcome...........ccoueereeereruennnncnn 16
: 2.1.4. Applicability of IPSEC......cveriiriiiiniiiniiiiniininiinenenns 17
2.1.4.1. Neighbour Discovery Protocol (NDP)........c.cccuenuene 17
2.1.4.2.IP MODILILY .vecvruverecnerisrenresinreennesissenensssesessisssesesses 17
2.1.4.3 Network Management Protocols.........ccceceuevevvrureenee 18
2.1.4.4.Streaming Multimedia.........coocvvevnrenvncnirsnnnnennens 18
2.2. Operational Aspects Of IPSEC.....cocovivnrnininintinnnenncneiioninnes 18
2.2.1. Key Exchange........ccccvcievivvirinininncieninennnennecnnennennns 18
2.3, Management and ArchiteCturecoevveervevivenieiscssennicnnnenns 22
2.3.1. Other Management Proposalsccocevvenuincnnircnnsanene 22
2.3.2. The Erfani Patent.......ccccocevruereeveniencnenercniencscncnnensenenne 26
2.4. Implementations OF IPSEC.euververireessensesssssassssnssssesssssssesansssaens 28
2.4.1. Software Implementations..........ccecerrrerrerereereiensecneneneenenes 28
2.4.2. Hardware Implementationscocvnuvresvvenvirenriseirennenens 29
2.4.2.1 FPGA Implementations.........cecveeerernsesniscsuessesnenes 29
2.4.2.2 FPGA Implementations of Primitives.........c...ccc.... 30
2422 1AES ...t snenes 30
2.4.2.2.2.HaShESceevirrereerineiecetnieeesiesaeaeenes 31

2.4.2.3.ASIC (Application-Specific Integrated Circuit)
Implementationsceevveniininniiininnnnnn. 31
2.4.2.4.ASIC Implementations of Primitives........c.ccovvennes 32
2.4.3. Conclusion of the “Implementations” Section................ 32
2.5. An IPsec Applicationc..cccovenreriinreniiiinicnininicneenneeniennne 33
2.6. High-Level Synthesis for Hardware Implementations 33
2.7. Random Number Generatorsccocovercriereeursannns seeerrenereeneans 34
II1. DESIGN AND METHODOLOGY .37
3.1. Design of an FPGA AES Hardware Accelerator...........c........ 37
3.1.1. Introductioncccceceeevecniinineennininnninennnreniesnsesenressenesenes 37
3.1.1.1.0verview of AEScccevininnimniiiienicnieniciienes 37
3.1.1.1.L1.Round Keys....cooeereiiiinniicnrininnenrneenrenennes 39

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1.1.1.2.Substitute (“Sub™) Bytescccerereevvrvverenaruenas 40

3.1.1.1.3.Shift ROWS...ccoceniiriiiniiiririicinisrenisesnenesenones 40
3.1.1.1.4.Mix Columns.......cceverereereneeensrreresnsnesssssserenes 41
3.1.2. Technology.....ccccoemrremiernirnciruenicneiisireeenesenanesvenannes 42
3.1.2.1.Specific Virtex-4 FX12 FPGA Features 43
3.1.2.2.ML403 Board Featuresc..ceceerervrereriveneneeruennes 44
. 3.1.3. Selection of the Base Design........ccccevervvrvrveveerernenenreneennes 44
3.1.3.1.Some Aspects of the Usselmann Design.................. 45
3.1.4. Architecture Provided by XilinXcccceeremeervesrenenenrenns 45
3.1.5. VHDL it XilifXeccooesseessssssssssssssssssssisessessessesssasssnsanannans 48
3.1.6. Working with the XilinX TOOISccccerverererereeriereensrenns 51
3.1.6.1.Simulation Test Methodologycccecveerveervrrvennnnne 53
3.1.6.2.Software Loading, Running and Debugging............ 53
3.1.7. AES Design Done in this Workcccceeveverervernerieernnnnne 54
3.1.7.1.Core Design and other Modificationscccceuenee. 54
3.1.7.2.Additional AES Implementation Features................ 61
3.1.7.2.1.Aut0l0ad......corevirrisiinecrinnnricnnesiseseeseenssrossensons 61
3.1.7.2.2.Key Expand Readout, Storage and Readback.61
3.1.7.2.3.Cipher-Block Chaining (CBC) Mode 63
3.1.7.2.4.Timing Diagnostic Output for Test..........c.c... 64
3.1.7.2.5.A “Stepper” Version of the Decryptor............. 65
3.1.8. Test and Demonstration SOftwarecccccereervererserceenneas 66
3.1.8.1.CLI and Simpler Programs........ccccccceevervvecvververencne 66
3.1.8.2.The AES Demonstration GUI, “AESfile”............... 69
3.1.8.2.1.The ML403 Board Codecccceeerererrrrcrurnenen 69
3.1.8.2.2.The PC Demonstration GUI, “AESfile” 70
3.2. Design of a Combination LFSR-CASR Pseudo-Random
NUmMber GENEratorccceveerreereseesesiesirsssenesssesssesssessnesssassessns 72
3.2.1. Selection of the Base Design........cccccevurenunen. SR 72
3.2.2. Description of the Tkacik-Villar LFSR-CASR PRNG ...72
3.2.3. Test Methodology and Use in this Work.........c.cceoenvenane. 73
3.3. Design of an IPsec Implementation, “IPsecImp”, Using the
Five-Layer Security Frameworkc.ccccovvnrinnenne. revrrreeennssnces 74
3.3.1. Cvs. C++ for Embedded Systemsccoceveveinivrieivneeennne 74
3.3.2. Top-Level Design of a Peer.....ccovevivvenievrnnienieniniccneen 74
3.3.3. SMIB (Security Management Information Data Base)...80
3.3.3.1.The Policy Layerccccccverriirrirnnmieerenrenineressenns 80
3.3.4. SADB (Security Association Data Base).........ccceervnnne. 81
3.3.5. OSI Layers Implemented.........ccovermevrneennineeinenienenennes 81
ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.6. Board-GUI Reliable Data Transferocceecvevsivnneesiosinnnes é3

3.3.7. The Services Layer.......ccocourrereirenrenrersescrereesnerersesereseonne 86
 3.3.7.1.The ESP SeIViCe.....cmmmrreermerrrrrneessnnssessssesessesssssnecs 87
3.3.7.2.The AH SEIVICE....ccrvrrrrrrerererrunrercersrereesensesssessenses 89
3.3.8. The Mechanisms Layercccovvniniivvnirinnnininnenns 90
3.3.8.1. The Encryption Mechanismcoceeevervcrvernreenens 90
3.3.8.1. The HMAC Mechanism.......c.cceoueeveerceerueenveeruencunene 92
3.3.9. The Primitives Layer......cccccoveereververrenerrerseererrerneneeceeennes 92
3.3.9.1.The Hash Primitiveccccoeverveenvenrienceeneenensiennnenns 92
3.3.9.2.The Encryption Primitive.........c.cceereeevverreecrrecrunanns 93
3.3.9.3.The RNG Primitivecceoveruiruerercrenreniisseesnerercnesnenes 95
3.3.10. VETSIONS..c..crierereieririenrenriresvenressesesasssssssssessessassasssensense 96
3.4. Design of a Test and Demonstration GUI, “IPsecGUI” 98
3.4.1. Test MethodoIOY.....coovverivemiririerereriinnerisserernerereererennes 106
3.5. Design of a CLI Version, “IPsecLoop,” to Facilitate Testing 108
3.5.1. Test Methodology......cccevrervinreererereeerenvensansseseniussassaenses 109
Iv. ANALYSIS OF RESULTS 112
4.1. The AES AcCelerator.........ceocvvermeerenrenerrerenerserenneseeneeseenennens 112
4.1.1. Simulation Results.......ccccouervvenrernennecrirnrcrsrcnnuncseerivennes 112
4.1.2. FPGA USAZE....ccoovierrirriirrerereeereecriennrresssesssessssessssesssees 113
4.1.3. AES Performance Resultsc.ccceervrveerurveeceneererneecrenne 114
4.1.3.1.AES Core Performance using Small Software Test
Programs......cccvvivinvnincninnnnncnncnnn, 114
4.1.3.2.AES Performance with the “AESfile” GUI........... 117
4.2. The LFSR-CASR PRNGccccevvvrerinrerrereereenreeniseinenressesenns 118
4.3. Performance Results from “IPsecImp”, “IPsecGUI” and
KIPSECLOOD” .eeiererrereernerernreresneneienressssseessessstssseessessssesirecsnes 121
4.3.1. Demo. of Processing the Largest Possible Packet......... 121
4.3.2. Demo. of Correct AES Encryption in “IPsecGUI” 123
4.3.3. “IPsecLoop” Results.......cccoovirinniivneninnininnenosiineninnens 125
4.3.3.1.Version 4, with “IPsecLoop” and “IPsecGUI”
COMPATISON..c.ereerreerrirrenrerieersresroieesseesssesssessesssessresses 126
4.3.3.2.Version 6 Compared to Ver. 4ccccevvvvcrnrenunns 128
4.3.3.3.Version 7 Compared to Ver. 6 and 4...........cccenee... 130
4.3.3.4.Version 8 Compared to VEr. 7cocvcercvniniricenennes 134
4.3.4. Comparisons to Results from the Literature.................. 137
X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V. CONCLUSIONS AND RECOMMENDATIONS 141
5.1. The AES Implementationccceeveerrerererirenniensnnercsscnsenenenns 141
5.2. The LFSR-CASR PRNG Implementation..........cccceereererinenes 143
5.3. The IPsec Implementationcccceeveeivvencernvreiivreneenseeesnens 143
5.4. Recommendations for Future Work.......cccocceevuirivinvvenicnnnenn. 146

5.4.1. The AES Implementation.........ccceveeerervrnseeenecrcvesieenenns 146
5.4.2. The LFSR-CASR PRNG Implementation 147
5.4.3. The IPsec Implementation........cccceceveverercvecrersenreesrensenes 147
APPENDICES..... 151
A, PSEUAO-COAE .couuiirirreieieiiicitesccrie st crtssre st aesnessesnessaessassressvasssessaassnenne 151
ALl IPSECIMD oottt 151
A.L.L. The SMIB....c.coiievieiirieecrenineetesseeesessessseseessesseesessens 151
A.1.1.1.The Overview and Top Two Layerscocueeueeeee 151
A.1.1.2.The POHCIEScovevverrererenrerrereneniensenenensesseessessereens 151
A.1.1.3.The Lower Three Layers (within the Overview) ..152
A.1.2. The SADBooviiviereninrenreneneneeessnesiessessessaesssssssssssons 153
A.1.3. Top-Level LoOp....coveurceerierereenieieneerereenernesesesseeneennens 153
A.1.4. Packet Processing, or OSILayerscccoeeeverveernvrcnnnn 154
AT A4 TIP LaYer...covvivvreieiriienniecenrrecenieniensesecnnsessnsensenneses 154
A.1.4.2IPSEC LaYer.....ccveiieiieieeecrieeciesresreee s eeesresvnnes 154
A 143 LInK Layer...ccoevvveneenreninreneesnssiseessnssesessnensones 155
A.1.5. Reliable Data Transfer........c.cceeevervuerereevnernvineeeneennnes 155
A.1.5.1.Send AIGOTIthINcovveveerrvnivensrnireessenssessensssensenss 155
A.1.5.2.Receive AlOrithmcccevveevveeveeeneencreerieensvennes 156
A.1.6. The AH SerVICe..cocevvuirerereerrrercrienreiesrensrnessaessnsessrensnens 156
"A.1.7. The ESP ServiCe....ccocevvvevrerrrveresinnerrensssussnssnssessessornssens 157
A.1.8. The HMAC Mechanismccccoereverreucerncvrreecsunneennne 157
A.1.9. The Encryption Mechanismccvvireinnnrienecrennaneens 158
A.1.10.L4 (Mechanism) SPI Tracking Storage...........ccveevenenne 159
A.1.11. The Hash Primitive......cccccccerrverrerriernrecssecininscercenesinenes 159
A.1.12.The RNG PrimitiVeccceverrrercrenreeniennressenisesseensassseenne 159
A.1.12.1.Get or Set the State.......ccccceevererieivienniciniecniennnne 159
A.1.12.2.Reset the State (10 all “1”S) c.ccocvvvirnvvnreenennicniunns 159
A.1.12.3.Seed the RNG......coceeereveiviinrencninieierennennenn 160
A.1.12.4.Generate a Random Number..........ccccerverecrreennene 160
"A.1.13.The AES-128 Primitiveccccecreereerivereecrernreneensenieenans 160
A.1.13.1.Key Load to the Coreccrvevveeruerrennnneiniincnenns 160

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.1.13.2.1V Load to the Core.......ccoernrrnrinnnrnnvniercvnsiisensses 160
A.1.13.3.The Encrypt or Decrypt Function..........cccecevuruens 161
A2, IPSECLOOD cvereiiriiiiiiiiinintisstesanesiesitesresr s ae s 161
A.2.1. Top-Level LOOP.....covervveirrenierceesiresinieneneiiesseencvie e 161
A.2.2. Packet Processing, or OSILayerscocevrcvrenricusvirnnns 162
A22.1IP LAYET c.occevrienirerrensieerirecressssesinnenecsssesonnesaneesnes 162
A.2.2.1.IPSEC LAYET....cceerierceirrerreeneisirinnrcsrecsessneisnees 162
A3, TPSECGUIL....uiicieiireiirieninenrieresesienessessessessnentssesssessnssnesessenns 162
A.3.1. Packet processing test SEtUPc.oceevverrevrerceersnecreeruenes 162
A.3.2. Packet processing timer processing.......cccevrereverrercrernnns 163
B. Experimental Datacccccovvvvrvierenienenieeieninenenesieeressseseessassessnsssessessessesssenses 164
B.1. Simulation ReSultSccc.oievimierirrenenienersensrenecnoneseessesneaene 164
B.1.1. ENCIYPtiON cccvivviiiiiniinerinninnvesenesisssinmenmseneessisssesssnons 164
B.1.1.1.Encryption — with All Intermediate Step Results..164
B.11.2. ABOLOAA c.ovveccvevererienereeessscsesssensoeseensssnsseessseenss 169
B.1.1.3.Cipher-Block Chaining Modec.cccccevuerurererunennen 170
B.1.2. DECIYPHON ..co.vevrerrienreenivesesssseeressssessesssesssssssseseaesseness 171
B.2. Tabulated Data from “IPsecLoop” Oscilloscope Testing....... 172
B.2.1. Version 4, with “IPsecLoop” and “IPsecGUI”
COMPATISON .eevenrererererererrrerseeessesssresssssssesssenssssesssnssssosse 172
B.2.1.1LAH Transport....ccoceeevnreeirenneeessessnesscssessnessesnsnessenes 172
B.2.1.2.AH TUNNEL.....occtrirrrirrnininiesioesensnsesassssseneons 173
B.2.1.3.ESP Transport.......ccccvvererverinensrinneinecnnnesinensnees 173
B.2.1.4.ESP Tunnel.......ccccecevrnrevuerenrersrneresesesnnsscsesasesnenne 174
B.2.2. Version 6 Compared to Ver. 4.......cccccovveviivvenncrnnennennes 175
B.2.2.1.ESP Transport.......c.cccccervurerersrersessenssnessessessssosseens 175
B.2.2.2.ESP Tunnel........cccccoerurrnvienirreenenieenenseesrereeeseesnees 176
B.2.3. Version 7 Compared to Ver. 6 and 4.........coccevvivvirennne 177
B.2.3.1.AH Transport......cccccerererervererernressennesessesessnensonneses 177
B.2.3.2.AH TUNNEL......ccveirirnierenirrenrecneieinesienseeseeneenene 178
B.2.3.3.ESP TIANSPOLL......verereeeeerscressesssessssssssssssnsssas 179
B.2.3.4.ESP Tunnel.......ccceverenenrevercenieninenneoneesisesensenees 180
B.2.4. Version 8 Compared to Ver. 7......ccovvveinvvinrvinsnnnnvnnnnnn, 180
B.2.4.1.AH Transport.......cccecevveereereesserenrersnssiensesnencssuosses 180
B.2.4.2. AH Tunnel.........ccooveeieviveneicneneniesrcisiennenesnennes 181
B.2.4.3.ESP Transport.......ccccccrervreenvesrersesseessuesseessnessessaesas 182
B.2.4.4.ESP Tunnel........ccecvevremereerecrnmniesniiresiensenienenees 183
REFERENCES 185
xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R.1. Journal and Conference Papers........couvveen. et veoresrsstones vreresrene .. 185

R.2. Books, General Papers and other RESOUICESccccciervveeirieieiniieeniveernienenessenen 190

RU3.URFCS ittt scecstestteseeseesieessesses e esiessesenesesssasssasssassnessenssesssassssssaansessesans 194

R, WEDSILES.....evvieveriicieriiririineneeisitevessrestessessesres s ssessesasssasssessessessassnessensessassasseas 195

VITA AUCTORIS...... ve 196
xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

TABLE 1. KEY ELEMENTS OF A SECURITY POLICY DATABASE (SPD)....ccccovtnviniuinenenseninnnnns 6
TABLE 2. KEY ELEMENTS OF A SECURITY ASSOCIATION DATABASEcccovecurreervoresreressosenes 6
TABLE 3. THE AES ROUND CONSTANT (HEX) c..ceovuererervervrsressessvessessunessnsssessesssnsssssssessssssas 39
TABLE 4. IEEE VHDL STD_LOGIC VALUEScevcienienuennisiioreensississioseessessiosseessssssessssssses 49

TABLE 5. XC4VFX12 DEVICE UTILIZATION SUMMARY (MOST RECENT BUILD — MAR. 12,

2007) ceeireeiieeeeeeriererae e ee e et e s e s e e et e st e s b e s e e e e bt e e e b e e e e e et e s resebas e resenraessnenarasas 113
TABLE 6. OBSERVED AES PERFORMANCE IN-CORE AND AS USED BY SOFTWARE 115
TABLE 7. AES CORE RATES ACHIEVED IN THIS WORK AND IN THE LITERATURE.......c...c..... 117

TABLE 8. PACKET PROCESSING TIMES COMPARED TO A RESULT FROM THE LITERATURE
[KERTOIIT] ..ottt es st b s n s 138

TABLE 9. (GROUP): PACKET PROCESSING RATES AND COMPARISON WITH THE LITERATURE

TABLE 10. AH TRANSPORT TABULATED DATA — VER. 4, WITH “IPSECLOOP” AND
“TPSECGUI” COMPARISON.......cccruerrrreereersrerersesssnesssnessesssssssnesssnessassssasssssssssassssessasssen 172

TABLE 11. AH TUNNEL TABULATED DATA — VER. 4, WITH “IPSECLOOP” AND “IPSECGUI”
COMPARISON............. eereeterieereetesteeeeeetetetanbebe e e et e Rt b e r e et e s et e e e e e tenr e aa e e st ereansenes 173

TABLE 12. ESP TRANSPORT TABULATED DATA — VER. 4, WITH “IPSECLOOP” AND
“IPSECGUI” COMPARISON......ccocuieueerrrersnerornersenesssesssesssesssssssassssasssiessssessssessnsessseses 174

TABLE 13. ESP TUNNEL TABULATED DATA — VER. 4, WITH “IPsecLoop” AND “IPSECGUI”

COMPARISONciettiiieieiiieieieeeetreteetreetseserseesereeastetsserersstrtstoceeesteesessersesssnsrestastssssresssres 175
TABLE 14. ESP TRANSPORT TABULATED DATA — VER. 6 COMPARED TO VER. 4......cccvouue 176
TABLE 15. ESP TUNNEL TABULATED DATA — VER. 6 COMPARED TO VER. 4....ccovvvrvvvrninne 177
TABLE 16. AH TRANSPORT TABULATED DATA — VER. 7 COMPARED TO VER. 4............... 178

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 17. AH TUNNEL TABULATED DATA — VER. 7 COMPARED TO VER. 4...covvvrvrverrnreens 179

TABLE 18. ESP TRANSPORT TABULATED DATA — VER. 7 COMPARED TO VER. 6 AND 4....179

TABLE 19. ESP TUNNEL TABULATED DATA — VER. 7 COMPARED TO VER. 6 AND4.......... 180

TABLE 20. AH TRANSPORT TABULATED DATA — VER. 8 COMPARED TO VER. 7....c..ccvvenune 181

TABLE 21. AH TUNNEL TABULATED DATA — VER. 8§ COMPARED TO VER. 7.....c.cceuerrnnnnn. 182

TABLE 22. ESP TRANSPORT TABULATED DATA — VER. 8 COMPARED TO VER. 7............... 183

TABLE 23. ESP TUNNEL TABULATED DATA — VER. 8 COMPARED TO VER. 7..ccc0corvereeruenns 184
XV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES
FIGURE 1. THE OSI MODEL ADAPTED TO FIVE LAYERS FOR THE INTERNET — ALSO SHOWING

IPSEC ..uuiiteuieieriessteresseessesentessessessessensssssassassessessessessessessansassesnesssensessessessusnsessessassasssens 3
FIGURE 2. QUICK MODEtciiiuiiiririersirersivsesssuesessesesssesassessssssessssessssaesssssasssssssssssssssssssssnsaes 5
FIGURE 3. FUNCTIONAL VS. TECHNICAL LAYERScccceiiurrenteniersrersressessessresssesesssesssasssenes 10
FIGURE 4. ASPECTS OF E-BUSINESS SECURITY TECHNICAL LAYERScccccninvrviriiniineneninns 23

FIGURE 5. ANOTHER IMPLEMENTATION-ORIENTED LAYERED ARCHITECTURE FOR IPSEC

MANAGEMENT. REPRODUCED WITH KIND PERMISSION OF SPRINGER SCIENCE AND

BUSINESS MEDIA. L e 24
FIGURE 6. THE FIVE-LAYER SECURITY FRAMEWORK, APPLIED TO IPSECcc.covvvirveinnerennn. 27
FIGURE 7. AES ADD ROUND KEYceevttiiitierererieessesseessessssssseesssessresssssssssssssessssessssssssasssnes 39
FIGURE 8. AES "SUB"-BYTES ..cveevcteerierrerreercressssnerenessreessesssesssessssassensssnassanessssssssessnasssses 40
FIGURE 9. AES SHIFT ROWS ...coutetreeriirienrerteseeseesssssessessessersessassessessissasssessessessassassessaassense 41
FIGURE 10. AES MIX COLUMNS APPLICATIONcccveerruereuerereersrereresssessassosanesssnessassssassosnesons 42
FIGURE 11. A PHOTOGRAPH OF THE XILINX ML403 BOARD.........cccveverene veererneenrsesennennnaensesd3
FIGURE 12. XILINX SYSTEM ARCHITECTUREvccoerieenensenseersessossessaessasssesssassssssasssaessssssns 46
FIGURE 13. AES ENCRYPTOR AND DECRYPTOR MODULES AND HIERARCHY cereeeesrenens 54
FIGURE 14. BIG-ENDIAN DATA ORIENTATION AND CORE IO REGISTER USAGE cereresnens 55
FIGURE 15. AES ENCRYPTOR TIMING PLANuvirvueeiniennrnrssiiisisesiessiessessssssssisssssessassssesssnns 58
FIGURE 16. AES DECRYPTOR TIMING PLAN ..v.vvvrreveeerereeseemmessrssssssssssssssssssssossssssssesssssenes 59

FIGURE 17. CONTROL BIT LOCATIONS IN SLV_REG(Q FOR BOTH AES USER PERIPHERALS....65
FIGURE 18. A "SCREENSHOT" OF THE “AESFILE” DEMONSTRATIONccvverrereeererimrrvrenneeees 71
FIGURE 19. THE POLICY LAYER AND UPPER PORTION OF THE MANAGEMENT LAYER — AN

AMBITIOUS DESIGN ..uvveeeveeeseressessseesssssssessssssssesessssasssssesesssssssesssasossssssesssssssssasssossnsess 75

xvi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 20

THE LOWER PORTION OF THE MANAGEMENT LAYER — AN AMBITIOUS DESIGN.75

FIGURE 21. SERVICE, MECHANISM AND PRIMITIVE LAYERS — AN AMBITIOUS DESION 76
FIGURE 22. THE POLICY AND MANAGEMENT LAYERS — PORTION IMPLEMENTED............... 76
FIGURE 23. THE SERVICE, MECHANISM AND PRIMITIVE LAYERS — PORTION IMPLEMENTED
... 77
FIGURE 24. "IPSECIMP" TOP-LEVEL LOOP FLOWCHARTcceeevererveerveeerueesnessvessnsesssersananne 78
FIGURE 25. THE IPSEC LAYER FLOWCHARTvvooveveereereereenrererseeeesessessessessessassssssessesssesenns 83
FIGURE 26. THE RELIABLE DATA TRANSFER "SEND" FLOWCHARTc.ccccevuerereresnrersecsasnensns 85
FIGURE 27. THE RELIABLE DATA TRANSFER "RECEIVE" FLOWCHARTccccvevuverruerervecsreennes 86
FIGURE 28. THE ESP SERVICE FLOWCHARTcocteriverererersecseeessessseesssnsssaessssssssesssessseesnnes 88
FIGURE 29. THE AH SERVICE FLOWCHARTcciterurereerreniessessesasssessasssnessasssesssasseassaessanns 90
FIGURE 30. THE ENCRYPTION MECHANISM FLOWCHART......cccveerererencrrenseressesesnnessessssesanes 91
FIGURE 31. THE HMAC MECHANISM FLOWCHARTccovevuereereeruesrersenseessesensersissesasssessens 92
FIGURE 32. ENCRYPTIVONF PRIMITIVE IV AND KEY LOAD FLOWCHARTS ...coeevrieccerarcrensensnes 94
FIGURE 33. THE ENCRYPTION PRIMITIVE FLOWCHARTccccuveurerrreesseernnnsssunssnsessuesonsessaesnes 95
FIGURE 34. THE HASH AND PSEUDO-RANDOM NUMBER GENERATOR FLOWCHARTS............ 96
FIGURE 35. OPERATIO& OF "KEYISALWAYSTREATEDASNEW" AND THE SEEDING OF THE
AR RIS e C10) 99
FIGURE 36. THE “IPSECGUI” HELP WINDOW......ccoivteririereruessreescssresessnessrsonessssssssssasssssssses 100
FIGURE 37. THE “IPSECGUI” SMIB DIALOG ...ccovvverinurererressuneesserssissiesssnsisiesessmessssseens 101
FIGURE 38. THE “IPSECGUI” SADB DIALOG ...ccccvviererereeecreninnrennssssnoncnssssuessssssssssssassssenes 102
FIGURE 39. "IPSECGUI" PACKET PROCESSING SETUP FLOWCHARTccoeerersumsrumnsunsuecnens 104
FIGURE 40. "IPSECGUI" PACKET PROCESSING TIMER PROCESSING FLOWCHART 105

Reproduced with permission of the

xvii

copyright owner. Further reproduction prohibited without permission.

FIGURE 41. A "SCREENSHOT" OF THE OPERATION OF "IPSECGUI"ccoovuvriivirnnnnn, e 106
FIGURE 42. OSCILLOSCOPE MEASUREMENT OF AH TRANSPORT OUTGOING PROCESSING
TIME WITH A 40-BYTE PACKETceevievererereerererersssssesesssessssssssesesessssssesesessssesssesssesens 1 1;1
FIGURE 43. DISTRIBUTION OF TEN THOU. 32-BIT NUMBERS FROM THE LFSR-CASR PRNG
IN 256 RANGES.....ccecreieieresvessraersreaseesssnessessssessssesssnesssssssessssessassssessssssssssssssessssssssasns 119
FIGURE 44. DISTRIBUTION OF A HUN. THOU. 32-BIT NUMBERS FROM THE LFSR-CASR
PRING IN 4096 RANGESeccvireeerierieserereisessseseessesismrsessssssesssssssssssessasssessssssasssassses 119
FIGURE 45. DISTRIBUTION OF TEN THOU. 128-BIT NUMBERS FROM THE LFSR-CASR PRNG
IN 256 RANGES.......covvuerirerernersrnecsenssrnessnessesesens Ceteeretser e st s et s st b e s reseabasentesntens 120
FIGURE 46. DISTRIBUTION OF A HUN. THOU. 128-BIT NUMBERS FROM THE LFSR-CASR

PRING IN 4096 RANGES ..uveeeirerireessesisisssrietessesssasisssssssssssesssssessssssssesssassssssssesssssssses 121

TUNNEL MODE ...ouvvttiiiiireeeeeessreeesisseesissssesssssssssessesssssssssssessssssssessssssssessssessrsssssssssns 123
FIGURE 48. "IPSECGUI" "SCREENSHOT" SHOWING CORRECT ENCRYPTIONvvevevveeerenes 124
FIGURE 49. SADB SETTINGS USED IN THE PREVIOUS FIGUREeoovvveierererereeessessssssseeeeseees 125

FIGURE 50. AH TRANSPORT PACKET PROCESSING TIMES (VER 4), COMPARING

MEASUREMENTS MADE USING “IPSECL.OOP” TO THOSE MADE USING “IPSECGUI”...127

FIGURE 51. ESP TRANSP.ORT PACKET PROCESSING TIMES — VER. 6 VS. VER. 4......ccccceuene 128
FIGURE 52. ESP TUNNEL PACKET PROCESSING TIMES — VER. 6 VS. VER. 4......ccccceeruiivnnnnn 129
FIGURE 53. AH TRANSPORT PACKET PROCESSING TIMES — VER. 7 VS. VER. 4........cccccuce.. 130
FIGURE 54. AH TUNNEL PACKET PROCESSING TIMES — VER. 7 VS. VER. 4.....coceririririnenne 131

FIGURE 55. ESP TRANSPORT PACKET PROCESSING TIMES — VER. 7 VS. VER. 6 AND 4132

FIGURE 56. ESP TUNNEL PACKET PROCESSING TIMES — VER. 7 VS. VER. 6 AND4............ 133

xviii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 57. AH TRANSPORT PACKET PROCESSING TIMES — VER, 8 VS, VER. 7...coovvrvvrnnenns 134

FIGURE 58. AH TUNNEL PACKET PROCESSING TIMES — VER. 8 VS. VER. 7.uceuvverrvrrervrevennne 135
FIGURE 59. ESP TRANSPORT PACKET PROCESSING TIMES — VER. 8 VS. VER. 7.....cccocuuunen. 136
FiGURE 60. ESP TUNNEL PACKET PROCESSING TIMES — VER. 8 VS. VER. 7..ovevvieveeervrevenens 137

... 168
FIGURE 65. ENCRYPTION SIMULATION “SCREENSHOT,” SHOWING AUTOLOAD...........c....... 169
FIGURE 66. ENCRYPTION SIMULATION “SCREENSHOT,” SHOWING CBC MODE................. 170

FIGURE 67. DECRYPTION SIMULATION "SCREENSHOT,” SHOWING IV LOAD AND SAVE171

Xix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF ABBREVIATIONS
AB.1. Acronyms

AB.1.1. General

AKA — Also Known As

BC — British Columbia — the Western-most Canadian province.

DST - Daylight Saving Time

DUANWKWYM - Don’t Use Acronyms; Nobody Will Know What You Mean!
IBM — International Business Machines: a very large and famous company
ID - Identity

NA — Not Applicable

PC - Personal Computer

SW — SoftWare

US — United States

USA — United States of America

AB.1.2. Technical

3DES — Triple-DES — see DES

ACK - Acknowledgement: a non-printing ASCII control character

ACM — Association for Computing Machinery

AES — Advanced Encryption Standard — Rijndael, as of Fall 2000.

AH - Authentication Header — authenticating the packet contents in IPsec

ANSI: American National Standards Institute

ASCII — ANSI Standard Code for Information Interchange

ASIC — Application-Specific Integrated Circuit

b — bit(s) — single binary digit(s)

B — Byte(s) — fiindamentally defined as a group of eight bits, i.e., an “octet™ of bits. Also,
the “B” programming language, which stands for Bell labs, where it was invented.

BDM — Background Debug Mode — see PCIV

BE - Big-Endian (see LE)

BIOS - Basic Input-Output System

BITS — Bump-In-The-Stack — the addition of processing by insertion and integration into
existing layered protocols. Compare BITW.

BITW — Bump-In-The-Wire — the addition of processing devices placed downstream in
the dataflow from the originator. Compare BITS. '

BRAM - Block RAM

bps — bits per second. Compare Bps. Usually about ten times the latter due to parity and
other bits included with every byte.

Bps — Bytes per second. Compare bps.

BSB — Base System Builder — a “wizard” in Xilinx EDK

BSD — Berkeley Software Distribution — various versions of open-source Unix.

C — a programming language; successor to B

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C++ — an object-oriented programming language; successor to C

CA — Certificate Authority

CASR - Cellular Automata Shift Register — see LFSR

CBC - Cipher-Block Chaining — a cipher feedback mode in which the output of the
previous encrypted block is XORed with the next block of plaintext before that is
encrypted. See ECB.

C-ISCAP - Controlled Internet Secure Connectivity Assurance Platform — author-
specific; see [PAR2002].

CLI — Command-Line Interface — compare GUI

CMOS — Complementary Metal-Oxide Semiconductor

COPS-PR - Common Object Policy Service for PRovisioning — RFC 3084

CPLD - Complex Programmable Logic Device

CPU - Central Processing Unit

CSPRNG - Cryptographically-Secure PRNG

DCM - Digital Clock Manager

DH - Diffie-Hellman

dDoS — Distributed DoS

DES - Pronounced “Dez” (short “e””) — (The) Data Encryption Standard, US National
Bureau of Standards, FIPS Publication 46, January 1977

DMA — Direct Memory Access

DNS - Domain Name Service — the protocol used on the Internet, for the WWW, for
translation between IP addresses and website names.

DOI — Domain Of Interpretation

DoS — Denial of Service

DOS - Disk Operating System (owned and developed by Microsoft, Inc.)

DSP - Digital Signal Processing

E — Electronic, as in “E-business,” “email,” etc.

ECB — Electronic Code Book — a block cipher mode that uses no feedback. Each block is
encrypted independently of the others. Pipelining or parallel encryption is possible,
but is cryptographically, weaker, since identical blocks of plaintext will result in
identical blocks of ciphertext. See CBC.

ECC - Elliptic Curve Cryptography

ECE - Electrical and Computer Engineering — still a fairly new amalgamation as of the
2000s

EDK — Embedded Development Kit — Xilinx software — see ISE

EEPROM - Electrically-Erasable PROM — often pronounced “E-squared PROM”

ESP — Encapsulating Security Protocol — encrypting the packet contents in IPsec

ETX — End-of-Text: a non-printing ASCII control character

FAE —Field Applications Engineer

FIPS — Federal Information Processing Standard — a US (United States) establishment

FPGA - Field-Programmable Gate Array

FSL — Fast Simplex Link

FTP — File Transfer Protocol

GF - Galois Field

GDB — GNU DeBug — an open-source debugger for embedded systems

GNU - GNU is Not Unix — A Unix-like operating system and collection of programs

9 %

XX1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GPIO - General Purpose — or Parallel — IO

GPL —GNU Public License

GUI — Graphical User Interface — compare CLI

HAS-160 — a cryptographic hash function designed for use with the Korean KCDSA
digital signature algorithm [WIKIP].

HDL — Hardware Design Language, such as VHDL or Verilog

HLS — High-Level Synthesis

HMAC — Hashed Message Authentication Code

HO — High-Order — see LO

HOB — High-Order Byte

'HTTP —HyperText Transfer Protocol

IC — Integrated Circuit

IDE — Integrated Development Environment

IEEE - Institute of Electrical and Electronics Engineers

IETF — Internet Engineering Task Force — see References — Websites.

IIC — Inter-IC bus

IKE — Internet Key Exchange

10 — Input-Output

IP — Internet Protocol; also Intellectual Property (used to refer to HDL implementations)

IPIC — IP InterConnect, Xilinx — IP: Intellectual Property

IPIF —IP InterFace, Xilinx — IP: Intellectual Property

IPsec, IPSec — IP Security

IPSP — Internet Protocol Security Policy

IPSPE — unknown: see IPSP, and [KEN1994]; possibly IPSP Extended.

IPv4 —IP version 4 — see IP

IS — Information Systems

ISAKMP - Internet Security Association and Key Management Protocol [STA2003], pg.
202

ISE — Integrated Software Environment (Xilinx software — see EDK); also Internet
Security Evaluation system [PAR2002].

"IV — Initial (or Initialization) Vector

JTAG - Joint Test Action Group, IEEE standard 1149.1

L — Layer, Laptop _

LAN — Local Area Network

LCD - Liquid Crystal Display

LE - Little-Endian (see BE)

LED - Light-Emitting Diode

LFSR — Linear Feedback Shift Register — see CASR

LGPL — Lesser GNU Public License

LO — Low-Order — see HO

LSI— Low Scale Integration (or Large Scale Integration) — see MSI and VLSI

LUT - Look-Up Table

MAC — Message Authentication Code — see HMAC

MDS5 — Message Digest algorithm 5 - one of a series of message digest algorithms
designed by Professor Ronald Rivest of MIT.

MIB - Management Information Base

xxii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MITM — Man In The Middle, or Monkey (saboteur) In The Middle

MS — Microsoft (company) — see MSVC++V6

MSI — Medium Scale Integration — see LSI and VLSI

MSVC++V6 — MS Visual C++ Version 6.0

NAK — Negative Acknowledgement: a non-printing ASCII control character

NDP — Neighbour Discovery Protocol

NGM — New Group Mode, an IPsec key exchange utility mode.

NRE — Non-Recurring Engineering (costs)

OP — OutPut

OPB — On-Chip Peripheral Bus, Xilinx

OS — Operating System

OSI — Open Systems Interconnection

P — PC: Personal Computer, often intended to mean an “IBM” (now generic) PC.

'PAR - Place And Route

PCB - Printed-Circuit Board

PCIV - the Xilinx “Parallel Cable IV (pronounced “PC-four”) cable. (Used for BDM)

PDA — Personal Digital Assistant

PGP — Pretty Good Privacy, a software package that provides confidentiality and
authentication at the application layer [PGPI].

PIB — Policy Information Base — RFC 3159.

PLB — Processor Local Bus, Xilinx

PPC —Power PC, i.e., “Power Personal Computer”, a microprocessor that can perform as
Intel x86 as well as Motorola 68x CPUs.

PRNG - Pseudo-RNG — see CSPRNG

PROM - Programmable ROM — see EEPROM

PSTN - Public Switched Telephone Network

PU - frequency of occurrence Per Unit (per each one), as “percent” is per each hundred.

QoS — Quality of Service. Types of: “Hard”: specific numerical guarantees are made and
kept. “Soft”: higher-priority data flows are given higher-priority access to the system.

RACE - Research and development in Advanced Communications technologies in
Europe. Used in RIPEMD-160 (qv).

RADAR - RAdio Detection And Ranging

‘RAM — Random-Access Memory — see ROM, BRAM, SRAM

RC — ReConfigurable (hardware) such as FPGAs and CPLDs.

RFC — Request For Comment: an IETF document that can be informational, a proposed
standard, or an IETF standard.

RIPEMD-160 — RACE (qv) Integrity Primitives Evaluation Message Digest — a 160-bit
message digest algorithm (and cryptographic hash function) developed in Europe.
[WIKIP]

RNG — Random-Number Generator — see PRNG, CSPRNG

ROM - Read-Only Memory — see PROM, EEPROM, RAM

RTP - Real-time Transport Protocol: i.e., a Transport Protocol designed for real-time
communications such as streaming multimedia, or possibly telepresence.

S — Substitution, as in S-Box

SA — Security Association

SADB - Security Association Database

xxiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SHA-1 — Secure Hash Algorithm 1 — successor to MDS.
SLA — Service Level Agreement
'SMIB - Security Management Information Database
SPI — Security Policy Index — uniquely identifies an SA
SPD or SPDB - Security Policy Database
SRAM - Static RAM
STX — Start-of-Text: a non-printing ASCII control character
SWAN — Secure WAN — see WAN
TCP — Transmission Control Protocol — the main Transport-level protocol used on the
Internet, providing a guarantee of reliable delivery and correct packet ordering.
TTL — Time To Live — field of an Internet Protocol (IP) datagram
UART - Universal Asynchronous Receiver-Transmitter — an integrated device that can
perform such communication protocols as RS232
UDP - User Datagram Protocol — a simple Transport-level protocol used on the Internet
UML - The Unified Modeling Language
VHDL - VHSIC HDL
VHSIC - Very High-Speed Integrated Circuit — see VHDL
VLIW — Very Long Instruction Word
VLSI — Very Large Scale Integration (see MSI and LSI)
VPN - Virtual Private Network
XMD - Xilinx Microprocessor Debug
XOR — Exclusive-OR — a common operation in cryptography, since it is its own inverse
WAN — Wide-Area Network
WEP - a standard for protecting 802.1X communications, “Wired Equivalent Privacy” —
so-called; it is not really very strong.
WWW - The World-Wide Web, AKA, in some circles, as “The World-Wide Wait”.
XST —Xilinx Synthesis Tool

AB.2. Abbreviations

AB.2.1. General

approx. — approximately

demo. — demonstration

dept. - department

Fig. — Figure, i.e., illustration.

hun. — hundred

inc. — incoming

out. — outgoing

rev. — revision (often synonymous with “ver.”, but sometimes used to denote sub-version
levels)

sub. — substitute, or substitution; “sub” is also a complete word or prefix meaning
“below”, “under” or “smaller”.

thou. — thousand

v., ver. — version (often synonymous with “rev.”)

XXiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AB.2.2, Technical

app. — application

dec. - decryption

enc. — encryption :

Flash — Flash EEPROM

hex. — hexadecimal

'Hz — Hertz — cycles, or any repetitive occurrence, per second. The repetitive occurrence
is simply a dimensionless count, so this unit has a dimension only of inverse time.

Rcon — Round constant

slv_regs — slave registers, of a component in an embedded system

std_logic — standard logic

XXV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1
INTRODUCTION
1.1. Motivation

To begin with the virtually self-evident, companies need communications. In any
economy beyond that of the 1700s (in the USA), electronic communications are needed.
Indeed, these are valuable to individuals for personal use, as well. Telegraph, telephone,
telex and facsimile systems performed all the services of electronic communication
systems in their day, for decades, since the 1800s, and it was not until the 1990s that the
Internet began to rise to predominance, replacing and supplementing those systems with
the mass ability to transmit documents. The facsimile machine has been largely rendered
redundant by email and the WWW (World Wide Web), and telephony is in the process of
becoming an Internet application at the time of this writing, although it is not now
known, of course, if the entire legacy PSTN (Public Switched Telephone Network) will

be replaced by the Internet and if so, how long that will require.

Partly due to its public nature, and partly due to economies of scale, the Internet is
extremely economical to use, which gives a reason for companies and individuals to
make great use of it. However, since it is public, it is necessary to secure its use for
general privacy purposes. Today, generally only companies have the resources to perform
mass securing of Internet services, although personal software packages such as PGP
(Pretty Good Privacy) are available for individual use — PGP performs security services
at the user, or application layer [PGPI]. For mass use, companies use encryption to
implement VPNs (Virtual Private Networks), using the Internet as their own private
communication network, VPNs are technically available to individuals, since Microsoft
Windows XP, for one, is equipped to perform IPsec (Internet Protocol security), but its
setup still requires technical expertise and cooperation that are mostly beyond the abilities
of unorganized individuals. Notably, the “Free S/WAN” movement and software package

has attempted to provide IPsec to individuals; so far without success [FSWAN].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Use of a public network gives some of the strongest possible reasons to adopt
security measures against attacks that threaten, although managers of private networks
are well advised to adopt additional security measures beyond the physical. Some attacks
and their countermeasures are as follows:

e Masquerade, unauthorized access, repudiation: need an
authentication/access control service
Message modification, replay: need an integrity service
Spying: need a confidentiality service
Denial of service (DoS)/unauthorized access: need an availability/access
control service

These imply the existence of five basic services: authentication, integrity,
confidentiality, access control and availability. Two others are anti-replay (a form of
integrity, given that the time a message is sent should be counted as part of its makeup),
and non-repudiation (which consists of authentication plus audit logging or message

retention).

The combination of “IP” (Internet Protocol) and “Security” creates the
abbreviation “IPsec”. Although it was originally intended to secure all IP transactions, it
found its most naturai application in VPNs [FER1999]. IPsec can be thought of as an
adaptation of the general concept of VPNs to the Internet [PER2000].

1.2. Overview of IPsec

The idea of IPsec dates back to 1994, and the most important four RFCs
(Requests For Comment) were issued in 1998 [STA2003]. They are: RFC 2401,
“Security Architecture for the Internet Protocol”, RFC 2402, “IP Authentication Header”,
RFC 2406, “IP Encapsulating Security Payload (ESP)”, and RFC 2408, “Internet Security
Association and Key Management Protocol (ISAKMP)” — see the “RFCs” subsection in
the References section — a full list of IPsec RFCs is available [IPS2005].

A brief overview of [Psec is presented here. A comprehensive and detailed

description of IPsec has already been done in the working group to which this author

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

belongs, in the ECE department at the University of Windsor, by a previous Master’s
candidate; please see [FAH2005].

It is desirable to make the security system transparent to the user, for if the user
has to perform any operation to accomplish the security transform in addition to sending
the message, the additional burden will likely be refused, done carelessly, or, with the
best will in the world, absent-mindedly forgotten in the press of competing primary
duties. The IPsec layer or sublayer is located below the IP layer, just above the link layer
(see Figure 1 for the OSI model adapted to five layers for the Internet — OSI stands for
“Open Systems Interconnection™), and thus is transparent to the user, who generally deals

directly with only the Application layer.

Application

Transport
IP

IPsec sublayer e IP (Internet Protocol)
Security - a security system
Link

Physical

Figure 1. The OSI model adapted to five layers for the Internet — also showing IPsec

IPsec provides confidentiality, integrity, authentication, anti-replay services, and
can be used for non-repudiation and access control, although common implementations
of those two are typically weak (see the final paragraph in section 2.2.1. “Key
Exchange”). It does not provide a formal availability service, and suffers from weakness

in this area (see section 2.2.1., “Key Exchange”).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2.1. Key Exchange

There are three different modes of key exchange in IPsec: Main Mode, Aggressive
Mode, and Quick Mode. There are also some utility modes, such as NGM (New Group
Mode), used to negotiate a new group for Diffie-Hellman Key Exchange, carried out
under protection of ISAKMP (Internet Security Association and Key Management
Protocol) phase 1. Main Mode and Aggressive Mode are alternate modes that can be used
to establish the “Phase 1” SAs (Security Associations), whereas Quick Mode is an
exchange that uses the protection of the Phase 1 SAs to establish the Phase 2 SAs that are
the actual IPsec working SAs that protect the data packets ([ZH0O2000] pg. 1606).

12.1.1. Main Mode

The initiator sends a cookie and a proposed phase 1 SA. The responder replies
with a cookie and the accepted phase 1 SA. The initiator sends its Diffie-Hellman public
key and a nonce, and the responder replies with its Diffie-Hellman public key and nonce.
Both sides compute the Diffie-Hellman shared secret, or key. The initiator sends its
signed certificate to establish its identity and the responder replies with its signed
certificate ([AIE2002] Figure 3, pg. 55). Signing in this case means to encrypt a hash of
the message using the shared secret — in general, signing means encryption, using a
shared secret, or a private key in a public key cryptosystem, of the message itself or of a

hash of the message. A total of six messages are sent.

1.2.1.2. Aggressive Mode

In Aggressive Mode, only three messages are exchanged. The initiator cookie,
proposed Phase 1 SA, Diffie-Hellman public key and initiator ID (identity) are sent at
once, and the the responder replies with its own cookie, the accepted Phase 1 SA, its
Diffie-Hellman public key , its ID, as well as its signed certificate. The initiator then
sends its signed certiﬁcate ([AIE2002] Figure 4, pg. 56).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2.1.3. Quick Mode

See Figure 2. The initator sends its proposed Phase 2 SA, nonce, hash, optional
DH public key, and optionally, client IDs. The responder replies with the accepted Phase
2 SA, nonce, hash, optional DH public key, and optionally, client IDs. As a handshake,
the initiator sends a hash of the nonces ([ZH02000] pg. 1608).

initiator responder

Msg hash, Prg :
_. ﬁaz;ee, Optionaf DH, th,m%lfggg;

M

sa 3 Sh, Responoes
Misghash, Aoospted PRS00 v

‘Monee, Optional DH, Opti

Hash of the Nopges

oo

Figure 2. Quick mode

1.2.14. Key Exchange — Conclusions

It can be seen that these protocols are susceptible to a DoS (Denial of Service)
attack. Since there is no burden of identification or computation placed upon the initiator,
attackers can make the server perform computationally-expensive modular
exponentiations in order to calculate the Diffie-Hellman shared secret. See section 2.2.1.,

“Key Exchange”, for a full discussion.

1.2.2. Security Policy Database and SMIB
An IPsec implementation requires an SPD (Security Policy Database) for the
purpose of negotiating security associations. The SPD contains, in part, selectors to

determine whether or not to process a packet, for a given policy of how to process the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

packet selected. The selectors can be set to “all”, as “wildcards”, and the sense of the
selectors can be set as meaning either to select or not select the packets with the selected
characteristics. Using an SPI (Security Policy Index) to uniquely identify a Security
Association (SA), an SPD entry can refer to more than one SA, and a single SA can be
derived from more than one SPD entry, in which case more than one SPD entry would

have the same SPI — see Table 1 for an illustration.

From To Protocol Port Policy SPI(s)
1.1.1.1 2222 " TCP 1000 ESP w. 3DES 1,3
1.1.1.1 2222 * * ESP w.AES 2

Table 1. Key elements of a Security Policy Database (SPD)

In addition, it can be useful to define a Security Management Information
Database (SMIB), containing the SPD and other information useful to running a security
and communication system, such as the local address, clients served by the IPsec
operating entity, or node, the functional modules available to the system to do key
management and perform the other services noted before, and the parameters needed to
control them. See [KEN1994] for a list of ideas.

1.2.3. Security Associations
A security association (SA) defines the agreement under which two entities will
use IPsec to communicate, in a particular direction,; i.e., two SAs are needed for
'bidirectional communication. The SA contains, at a minimum, the addresses of the
communicating entities, the protocol and mode to be used, the SPI, and the algorithms to
be used — see Table 2 for an illustration of a Security Association Database (SADB),

which contains the information specifying the node’s SAs.

From To Protocol Mode SPI Policy
2222 1.1.1.1 ESP Tunnel 10 64-bit DES
1.1.1.1 2222 ESP Transport 11 168-bit DES

Table 2. Key elements of a Security Association Database

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2.4. Services

1.24.1. Authentication Header Protocol

The Authentication Header (AH) Protocol adds a header to IP packets, that
contains a signed hash of the message, to transform the packet into an IPsec packet. This
provides authentication and integrity services. The header also contains the SPI so that
the SA can be identified, a sequence number for anti-replay purposes, and some other
data, such as the type of header immediately following, and the “payload” length of the

Authentication Header.

1242, Encapsulating Security Payload Protocol

In the Encapsulating Security Payload (ESP) Protocol, each IP packet’s contents
are encrypted, pfoﬁding confidentiality and encryption. The contents are first padded to
bmake them a natural number multiple of the encryption block size, and to provide space
for the padding length field itself, meaning that if the contents are already a multiple of
the block size, padding must still be added. A header is added that contains the SPI and
sequence number, and a variable-length authentication field is specified, following the
payload data. If an Initial Vector (IV) is included with the ciphertext, it is usually not
encrypted ([STA2003] pg. 183); in this work it was realized that if Cipher-Block
Chaining (CBC) were to be used, and the IV is first encrypted without chaining,
following which the IV is used, an attacker would be able to tell if the first block of data
happened to be all zeroes, because then the encrypted IV and the first encrypted block of
data would be identical (note that for the strongest possible security, security algorithms
are generally made thoroughly public in order to receive the most possible scrutiny). If
chaining were to be done from the encrypted IV, the encrypted IV would itself be the IV,

‘meaning that time would have been wasted in a needless transform done to the IV.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.243. Anti-Replay Service

Each IPsec packet contains a 32-bit sequence number to prevent replay attacks. If
a packet with an identical sequence number is received, it is discarded. Also, if a packet
with a sequence number that is too old is received, it is discarded. Of course, if the packet
authentication fails, the packet is discarded. The foregoing are events that should be
logged for audit [STA2003]. A settable “window size” determines the lowest sequence
number that will be accepted, from the highest sequence number so far received. When
the sequence number overflows, the SA should be renegotiated, although whether that

will be done is generally also negotiated.

1.2.5. Modes of Operation

Two modes of operation are defined for each of the AH and ESP protocol,
Transport Mode and Tunnel Mode. In Transport Mode, the IP packet’s header is modified
as needed for retransmission and the IPsec header is inserted following. Any transform,
such as ESP, is done only to the packet payload. In Tunnel Mode, a new IP header is
appended to the beginning of the IP packet, following which the IPsec header is added,
following which the entire IP packet is included, unchanged in AH protocol and
transformed only, in ESP. This allows the original IP packet to continue on unchanged
after its transmission as an IPsec packet, which is very useful when a gateway is

employed, and for VPNs.

1.3. Previous Work

As noted after, (see section 2.3.2., “The Erfani Patent™), in previous work in the
author’s group in the ECE department at the University of Windsor ([FAH2005] section
4.2, pp. 84-94, and Chapter V), a five-layer framework for the design of a security system
was introduced. The five layers are: the Policy, Management, Services, Mechanisms and
Primitives layers (see section 2.3.2., after). These five layers were “fleshed out” into
modules and several operating scenarios were described. These are: an IPsec session
scenario, in which the security system is used to establish an SA and send a packet via

ESP Transport mode ([FAH2005] section 5.1.1, pp. 100-105), a comparison between

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

policies used for secure vs. very secure applications ([FAH2005] section 5.1.2, pg. 105),
‘and a description of a combination of SAs in which IPsec AH protocol packets are
tunnelled through an ESP SA between two routers ([FAH2005] section 5.1.3, pg. 106).

1.4. Problem Statement

Generally, the software approach to implementation is versatile, but resulting
implementations are felatively slow. Use of “hardware”, or dedicated integrated circuits
(ICs) — or even LSI and MSI (Low Scale and Medium Scale Integration) ICs to perform

a task results in implementations that work much faster, but versatility suffers.

Cryptographic operations, such as encryption, decryption, hashing and random
number generation are generally extremely computationally intensive, making hardware

accelerators extremely desirable.

This leads to the question: How can the five-layer security architecture be used to
implement IPSec in hardware, given that the overhead of using cryptography mandates

hardware acceleration?

1.5. Motivation for General Layering

In implementatidn, breaking the task into implementation layers, from hardware,
to software drivers, middleware and user-interface layers is useful to make it manageable
and doable by a group of individuals or working groups, each of which does his own
component. Modules can also be upgraded and replaced separately. Each layer uses the
services of the layer below (except for the lowest layer — in perhaps a system-limited
sense) to provide services to the layer above (except for the highest layer — again, in
perhaps a narrow sense). This was done in the seven-layer OSI model which specifies the
following layers, from top to bottom: Application, Presentation, Session, Transport,
Network, Link and Physical. The seven were reduced to five for the Internet: Application,
Transport, Network, Link and Physical. Note that in this modified OSI model, IPsec, if

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

implemented via BITS (Bump-In-The-Stack), would fit at the bottom of the Network
(Packet), or IP layer, since IPsec is applied after packetization just before sending to the
Link layer — note that the diagrams in [FUM1998] (Figure 2, pg. 191), and in [HUN1998]
(Figure 11, pg. 1118), depicting IPsec between the IP and TCP (Transmission Control

Protocol) layers, are not right.

It is also useful to break the task down into conceptual, functional, or managerial
levels, as in [ERF2003], which proposes five layers: Policy, Management, Services,

Mechanisms and Primitives (Figure 3).

Setvices Ivechanisms |Primitives

Middisware
{Sublaysrs)

Jenpiogaphy

Dirtvers
Hardware
—

Figure 3. Functional vs. technical layers

As indicated in Figure 3, in a relation proposed in this work, a given functional
layer requires presence at its and all lower implementation layers; the lower
implementation levels have to contain “sub” functions to support the higher functionality.
Policies require entering from the user interface, presence in databases, and control of the
data. Management may require some entry from the user interface as well, but it at least
is specified by the'data entered into the databases. Services and Mechanisms are tasks
and subtasks, and primitives require the low-level math functions and cryptography.
Finally, in order for the electronic communications to proceed, the software must operate

the hardware via drivers.

It might theoretically be possible to be more efficient with an “ad hoc” unlayered

design, but a sufficiently complex system would not then be understandable and

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

improvements or bug fixes would eventually become impossible, at some level of
complexity. Disadvantages of layering include the necessity of passing data down
through the multiple layers, which can slow down processing. Strict separation of layers
can prevent a successful system design if passing needed data is disallowed on the
grounds that it appéars to “belong” only to one certain layer. A layer may duplicate
functionality present in another layer, perhaps due to insufficient communication and
planning between the respective working groups. An example of this latter inefficiency is
error checking and recdvery, which is often done at the link layer as well as on “an end-
to-end basis” ([KUR2000], 3" ed., pg. 47).

1.6. Motivation to use FPGAs

FPGAs (Field-Programmable Gate Arrays) contain thousands of blocks of
identical generic logic which can be configured via programming like a static RAM
(Random Access Memory) to operate in an extremely wide range of different behaviours.
They are cost-effective in production and testing since this can be done in-house with
affordable equipment, and devices are provided by manufacturers that make available

~many resources (block RAM, clock dividers, etc.) in a structured way.

FPGAs offer some of the performance levels of hardware and also some of the
versatility of software, since they can be reconfigured for different functionality, even
during runtime. Configuration files, or “bit files”, for programming the FPGA, can be
stored in memory, such as Flash EEPROM (Electrically-Erasable Programmable Read-
Only Memory), or “Flash”, and recalled at will. Stored configurations, such as encryption
schemes, can be compressed for storage [DAN2000]. Field upgrades for such things as

bug fixes and new standards are possible, even using pin-compatible devices [CHE2002].

FPGAs offer lower non-recurring engineering (NRE) costs compared to custom or
semi-custom ICs, such as ASICs (Application-Specific ICs), since they come ready-

made, and need only be configured. On the other hand, they incur higher per-unit (PU)

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

costs, such that if sales of more than 100,000 units occur, it would be more economical to
spend the NRE costs to produce an ASIC ([KHA2006] pg. 8, [OGA2004]).

Software running on a general-purpose processor can typically produce AES
(Advanced Encryption Standard — Rijndael is the name of the specific algorithm adopted)
throughputs of low tens of Mbps (i.e., 30) [DAN2000], whereas FPGAs can achieve up to
176 Mbps implementing DES (the Data Encryption Standard) and up to Gbps rates

bimplementing AES; for example, speeds of 964 Mbps ([WOL2004] pp. 550, 554) and
1.197 Gbps [LUJ2005] have been reported (see section 2.4., “Implementations of IPsec,”
after). An ASIC processor achieved 2.29 Gbits/s of AES throughput in a 0.18um CMOS
(Complementary Metal-Oxide Semiconductor) standard-cell technology in 2002
[SCH2002].

1.7. Embedded Systems

An embedded system is a computerized module or component containing built-in
software, usually on an IC chip, which is not changed in its normal course of operation.
As part of its computerization, it also contains a computer processor, but that is not a
defining characteristic, since non-embedded systems such as PCs (Personal Computers)
also contain processors. For example, in this work, the normal operation of the system
does not include loading and running the firmware, i.e., once the bit file, which contains
both the FPGA configuration (the “soft hardware™) and the (“firm”) software, has been
loaded to the board. Although this work involved loading the ML403 board on a regular
basis, every single time it was used, this can be seen as engineering development work,
not regular user operation, for which the bit file could be stored in the Flash EEPROM
(Electrically-Erasable Programmable Read-Only Memory) and automatically loaded at
bootup. The ML403 board can also be loaded by a user via a “flash card”, in which case
its status as an embedded system would be greatly mitigated. For another example, a PC
is not an embedded system, because the user operates it by loading programs to its RAM
IC chip or chips from its hard disk, such as by clicking with a “mouse”, in its normal

course of operation. Internally, however, a PC contains an embedded system, the BIOS

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(the Basic Input-Output System), which historically could not be very easily changed by
the user at all (PCs first appeared in the early 1980s, and somewhat earlier, too, in a
general sense, before the IBM PC appeared on the market). Today, the BIOS chip can be
a Flash EEPROM, which can be changed by the user via a special procedure, not in its
normal course of operation. Another example of an embedded system might be a PDA
(Personal Digital Assistant), able to perform many applications. Another might be the
anti-lock braking module in a car. Yet another might be a coffee maker, in which the
software would most likely be present in a PROM, soldered directly to the PCB (Printed-
Circuit Board), to keep manufacturing costs low. Another might be a washing machine,
in which the PROM might conceivably be placed in a socket, for possible warranty
repairs. Another might be a “set-top box”, capable of having its software in its Flash
EEPROM updated “over the air” by the service provider. Clearly, the more easily the
software can be changed, and the more frequently it actually is, the less “embedded” the

system is.

1.8. Objectives

This work has the following objectives: (1) to produce a block-level design of an
IPSec processor, (2) implementing each layer of the Five-Layer paradigm, and (3)
implement at least a key portion of it, using FPGA hardware accelerators; (4) to avoid
pitfalls — note that the implementation of a security system can detract from its maximum
theoretical strength as planned in corresponding standards — standards do not specify
implementation details; and (5) to compare the performance results achieved to those of

others.

1.9. Thesis Organization

This thesis is organized as follows: Chapter 2 presents a review of the literature
pertaining to IPsec and its implementations. A brief history of and background to IPsec
are presented and its applicability is discussed. IPsec key exchange, as a noteable point of

weakness in IPsec, is treated. An overview of high-level management schemes for IPsec
13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is presented, including the patent by S. Erfani, which is the background for this work.
Software and hardware implementations of IPsec and its primitives are surveyed, the
latter in FPGAs and ASICs, and an example application is presented. High Level
Synthesis is discussed, as well as random number generators. Chapter 3 presents the
design of an AES hardware accelerator in VHDL (Very High-Speed Integrated Circuits
Hardware Design Language), as ported, or translated, from Verilog and implemented on
-a Xilinx Virtex-4 FPGA using the Xilinx ML403 development board, the design of test
software for it, the design of a CSPRNG (Cryptographically-Secure Pseudo-Random
Number Generator) in C (the programming language), as ported from Verilog, the design
of an implementation of a portion of an IPsec implementation in C using the novel
security design framework proposed by S. Erfani (see [ERF2003] and [FAH2005]), the
design of two demonstration GUIs (Graphical User Interfaces) using MSVC++V6
(MicroSoft Visual C++ ver. 6), and the design of a CLI (Command-Line Interface)
suitable for performance-testing of the IPsec implementation. The test methodologies are
also presented. In Chapter 4, the results acquired from testing the AES implementation,
the CSPRNG, and the IPsec implementation are presented and analyzed. Lastly, Chapter
5 presents conclusions and discusses areas for future work. In each of Chapters 3-5,
section 1 contains the AES implementation discussion, section 2 contains the CSPRNG

discussion and section 3 contains the IPsec implementation discussion.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER I
REVIEW OF LITERATURE
2.1. Introduction

This chapter presents an overview of IPsec implementation and management in a
variety of different areas: industry white papers, FPGA papers, papers on ASICs, papers
on implementation of primitives such as AES and Random Number Generators (RNGs),
papers on High-Level Synthesis (HLS), papers on IKE (Internet Key Exchange), and
system-wide, or "high-level" papers. The Erfani patent [ERF2003], which is the paradigm
for the present research, is presented. It is shown that the state of the art in the literature

‘contemplates syste&n-wide approaches to IPsec, but there is still room for improvement in
terms of explicit recognition of all layers of an IPsec system for the purpose of managing

its design and implementation (see the author’s overview paper [WIE2006]).

2.1.1. History of IPsec

IPsec refers to the “Secure IP” set of proposals published by the IETF (the
Internet Engineering Task Force) as RFCs [IETF]. The formal standards process in the
IETF began in 1992 (compare 1994 as stated in [STA2003] before, in section 1.2.) with
the publication of the first draft charter for the IPSEC working group [DUN2001], and as
of April 29, 2005, there were 31 RFCs listed in the IPsec Charter [ITEF-IPSEC].

IPsec has now been in existence for so long that the pace of technological change
has obsoleted part of it — the original, or “single” DES (Data Encryption Standard)
specified only a 56-bit key and can now be broken by an exhaustive search attack in a
few days using publicly-published techniques. The FreeS/WAN [FSWAN] organization
has disallowed “56-bit” DES on the grounds that it is now too weak (even though that
level of security would prevent real-time monitoring of transmissions and could allow the
continuing accumulation of ciphertext faster than it could be cracked), which technically
places them in violation of the standard. In Oct 2, 2000,The US National Bureau of
Standards officially adopted one of the proposals, Rijndael, which was submitted in the

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

competition to provide the Advanced Encryption Standard (AES), replacing DES
[JAR2003], [REJ2003], but the movement to replace DES as the minimal encryption
standard with 3DES did not succeed. However, DES expired as a standard in 1998
[ELB2000].

Another debate was over simplex vs. duplex data flows. Since data might need to
be transmitted in only one direction, it was decided to base IPsec on simplex connections;

hence Security Associations (SAs) are one-way [DUN2001].

2.1.2. Government Politics

The US govefnnient’s reaction to new encryption technologies was one of the
strongest: it classified cryptographic hardware and software as “munitions” and forbade
its export. Furthermore, US nationals were forbidden from even providing any technical
assistance whatsoever to the development or maintenance of cryptographic products that
would be available in cher countries. This caused severe problems for the development
of IPsec in that most of the IPsec working group members were US citizens and could
only work on the standard, not provide any technical examples or do any testing.
Implementations of IPsec had to be developed with the input of US citizens entirely
forbidden in order to keep US government regulations from preventing their distribution.
This resulted in the slowing of design and deployment of [Psec-compliant systems
[DUN2001].

2.1.3. The Standards Process — Outcome

Input to the sté.ndards process came from hardware vendors, who wanted “bump-
in-the-wire” (BITW - compare BITS) devices to tunnel IP packets through hardware
encryption systems. Adding this capability to the standards increased their extent
[DUN2001].

The standards produced are very complex. This is an inescapable consequence of
a committee process; a much more streamlined standard would be developed by having a

competition and awarding a large monetary prize to the winner, which would save

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

everyone money overall due to the never-ending costs of dealing with the permanent
excessive complexity that resulted from the committee process. The competition
approach was seemingly successfully used to select Rijndael as the AES. Excessive
complexity invites misunderstanding, resulting in implementation and user mistakes that
leave security holes. Industry, government and academia were each involved in IPsec,
and the results show in the multiple options specified. One harsh but useful critique of
IPsec stated that although IPsec is the best security option in this area, it is not possible

for the authors to determine whether or not IPsec is secure [FER1999].

2.14. Applicability of IPsec
| - IPsec is really only useful for implementing VPNs (Virtual Private Networks).

The following are some areas in which IPsec was tried and either found unworkable or
workable with difficulties ([ARK2005] pp. 242-246).

2.14.1. Neighbour Discovery Protocol (NDP)

There is a basic i_ogical flaw in attempting to use IPsec for NDP: a “chicken-and-
egg” problem. In order to exchange keys with the neighbours, they have to be discovered.
In order to discover them securely, keys would have to be exchanged with them. Solving
this and other problems that were involved, caused additional thorny problems, inducing
the IETF to abandon IPsec for use in NDP.

2.1.4.2. IP Mobility

There are some basic concerns with using IPsec and Mobile IP. IP addresses can
change rapidly, and new IPsec tunnels have to be set up, which could cause so much
overhead that any actual user communication would not have any time to run. The
implementation approach to IPsec — relying on IP addresses, which is not a correct
approach (see the final paragraph in section 2.2.1., “Key Exchange”) — has to be changed
to mitigate this. Anot‘her» problem is how the mobile node could continue to set up Mobile

IP tunnels to the host node if the host node is behind a firewall or gateway and the mobile
17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

node travels away from the LAN. These problems are not insurmountable and IPsec is

still used, running it over the Mobile IP tunnels.

Aside from these, there is the question of using IPsec to secure the binding
updates in which the mobile node informs the host of its new IP address. A global
authentication infrastructure would be required for this, which does not exist. Also, such
an infrastructure would have to track all IP addresses assigned to users and provide this
information in a secure way, which would be impractical, to say the least. Instead of
using IPsec, a different set of mechanisms was adopted which use the routing

infrastructure to assist in authorization of the mobile node.

2.143. Network Management Protocols

Although IPsec could provide security for all management traffic in a network, it
itself does not provide means with which to differentiate nodes in order to provide them
‘with different privileges, since it was not designed for that, but rather to identify different

SAs between different users. These protocols would have to add their own user

authentication mechanisms at the application layer.

2.14.4. Streaming Multimedia

Streaming Multimedia uses RTP (Real-time Transport Protocol), which changes
port numbers dynamically. This would prevent use of IPsec implementations that rely on
stable IP addresses, upper layer protocol identifiers, and port numbers to locate the

policies and SAs to use.

2.2. Operational Aspects of IPsec

2.2.1. Key Exchange

The Key Exchange protocol has a number of weaknesses which were the subject

i

of several investigations.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Key Exchange protocol is rather susceptible to a Denial of Service attack due
to the acceptance of Difﬁe-Hellman (DH) values; the initiator (or client) can have the
responder (or server) doing modular exponentiation for nothing. Even though cookies are
used, a Distributed Denial of Service attack can always be mounted. Also, since ISAKMP
uses a date and time stamp as a responder cookie, these must be left behind in the
responder in order to track initiators, meaning that the responder can be clogged with
these, giving rise to a so-called “cookie crumb” attack. Instead, as in the Photuris
protocol [RFC2522], the responder cookie should be regenerable from sender

‘information and one local secret ([SIM1999] pg. 3, [RFC2522] pg. 18). There is no
resource-limitation feature in ISAKMP, as in Photuris — an initiator can collect ISAKMP
responses in a “cookie jar” and then send them all rapidly as key exchange messages
([SIM1999] pg. 4). A saboteur, or “Monkey In The Middle” (MITM) can simulate the
initiator to the responder and vice-versa, sending each of them different DH keys so that
they waste resources computing a non-matching “shared secret” and fail to discover the
attack until later veriﬁcation fails ([SIM1999] pg. 4) (Note that this is not to be confused
with the “Man In The Middle” attack, in which the attacker maintains the illusion, to both
parties, that they are each secretly communicating with the other, in order to breach the
confidentiality of the communication). Aggressive Mode eliminates the initial cookie
exchange, thereby reducing its utility as a counter against DoS attacks. It does not
provide identity protection, but it is intended for mobile users, who most need it, due to
the ease of eavesdropping on wireless links ([SIM1999] pg. 5). Quick Mode opens the |

‘door to a DoS-Replay attack in which an attacker simply replays the Quick Mode packefs
and the responder uses all of its resources decrypting the packets only to find that the
nonces used are the same ([SIM1999] pg. 6). Additional flaws noted in [SIM1999], (pp.
6-8) include the overly general IKE/ISAKMP framework that relies on a Domain Of
Interpretation (DOI), requiring further negotiations to agree on specifications, the
addition of modes and options which defeats scalability and simplicity, inadequate and
inconsistent error messaging, unpadded ID field sizes that indicate the types of contents
such as IP addresses, and unauthenticated fields that could be used as Trojan-Horse

channels.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However, there seems to be a mistaken diagnosis of a possible “Man In The
Middle” attack in [ZHO2000], pg. 1609. Its analysis is that a MITM attack is made
possible because the final hash sent by the responder in Main Mode is done using the
initiator’s suggested SA. An attacker can pose as the initiator in the SA exchange and
choose one of several SA offers for the responder and a different one for the initiator. A
check of the final hash that is received by the initiator, done by the initator, using the SA
supplied to it, will verify the final hash sent. However, the final hash sent from the
initiator to the responder should fail its check due to different SAs in use without the
MITM any longer, and so should the final hash sent from responder to initiator. This
problem seems to be the same, then, as the “Monkey In The Middle” vulnerability noted

before.

» Also noted in [ZHO2000], pg. 1610, is the possibility of an active attack in which
the identity of a correspondent can be learned. Since no authentication is done until initial
SAs are set up, an attacker could pose as a responder and learn the identities of any

initiator when the SA is set up and the initiator sends its identity.

Several papers provided suggestions to improve key exchange by suggesting new

and different protocols, as discussed in the following section.

[AIE2002] suggested a pair of protocols, called JFKi and JFKr, for “Just Fast
Keying”, “initiator” and “responder”, respectively; the former was designed to provide
identity protection for the initiator in the key exchange and the latter to provide it for the
responder. Applications would be an anonymous client contacting a public server, vs.
peer-to-peer. These protocols combat DoS attacks against the responder by not requiring
the responder to perform modular computation until the initiator has first done so, and
established round-trip communication. This basic idea is also the idea of [CHO2003] (pp.

332-333).

Identity protection is provided to the initiator in JFKi because after doing the key

calculation, the initiator sends its identity encrypted. In JFKzr, the responder sends its

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

identity encrypted after receiving the initiator’s identity. Active identity protection is not
possible for both initiator and responder, as noted ([AIE2002] pg. 52), due to the DoS
protection for the fesponder — the initiator has to send its ID first, because the responder .
can’t be allowed to go ahead with modular computation until the initiator has taken on
that burden first. Thus the initiator will be subject to an active ID attack in using the JFKr
protocol, but not in the JFKi protocol.

It seems that the possibility of a “Man In The Middle Attack™ was forgotten; to
combeat that, public keys exchanged should be signed by a CA (Certificate Authority) at

the time that one side sends its identity.

Another proposal ([CHO2003] pg. 329), involves “client puzzles” in which the
server requires a client to solve a computationally-intensive puzzle before the responder
will create state or do its own computations. The server sends a hash containing its nonce,
to the client, along with a partial solution to the hash. The client has to do a certain
amount of computation to find the nonce and it has to return the correct nonce before the
server will authenticate it, while the server only has to store the nonce for each client. The
client's workload increases rapidly and linearly with the number of requests it makes,
whereas the line representing linear increase of storage and work at the server has a very
low slope when shown on a graph ([LEI2000] pg. 7). The server could vary the difficulty

of its puzzles in direct relation (or more) to its load.

It is to be hoped that the debate process within the IETF will adopt these and/or
other suggestions for improving the present easily-attackable state of IKE/ISAKMP.

Finally, related to key exchange, an example of the way that implementation can
cause security holes is in the practice of treating an IP address as being authenticated by
the IPsec AH protocol, since that is what gateways or firewalls can examine for filtering

‘purposes. Actually, the AH authenticates the packets as coming from a user who knows '
the key. ([FER1999] pg. 5) This means that a different user could use the trusted IP
address, set up SAs, and be trusted as a different party. This kind of masquerade is

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

precisely what authentication is supposed to prevent. Since IP addresses are so easily
forged, identification must depend upon the possession of secret knowledge, not upon IP
addresses ([SIM1999] pg. 6). A general statement of this problem is that somehow
binding has to be achieved between entities that are outside of the protocol and their
purported identities within the protocol. A related problem is that of different protocols
using different names for the same entity [ROE2001].

2.3. Management and Architecture

2.3.1. Other Management Proposals

[GUT2004] has proposed and developed an approach to dealing with the
complexity involved in configuring real-world security systems, in order to prevent
oversights that cause security holes. The method takes four steps: (1) modeling, (2)
expressing security goals, (3) deriving algorithms and (4) implementing. Modeling
expresses the security system in mathematical terms which allows it to be processed by
algorithms to check for missed areas whose validity in turn can be verified. Thus a
security system can be checked for correctness in the design phase before the expense of

implementation is incurred.

[TRC2003] has pointed out the paradigm of low-level to high-level interactions
and that at each level, the needs of technology, the organization and government

mandates must be taken into account (Figure 4).

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N\ R

e\ 8

Figure 4. Aspects of E-business security technical layers

“Approaches related to security of IS (Information Systems) are to be linked
within appropriate methodology to achieve optimal and balanced solutions for an
enterprise.” ([TRC2003] pg. 359). The security of E-business should be designed along
with the E-business and not added in as an afterthought. Unfortunately IPsec is an

afterthought to IPv4.

[DUF2002] has proposed a three-level architecture for security management for
distributed multimedia services, arranged in three layers: service, middleware and
network ([DUF2002] Figure 1, pg. 364) — note that the unlabeled ellipses represent
additional services and managers according to their layer (The ACM — Association for

Computing Machinery — did not grant permission to reproduce this figure).

Note thaf functional concepts at a certain high level require implementation at its
level and at all lower levels; for example the policy rules need handling here at the

Middleware level as well as the Network level.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[PAR2002] has proposed a “C-ISCAP” (Controlled Internet Secure Connectivity

Assurance Platform), “which is an internet information security system based on IPsec.”

(Figure 5).

(SEGul H ISE

SEMSa | |SEPSc |[AUTOKEM], gAuTokey] | SEPSe ||sEmsa
: En |- UKEN | 5PDB |-
e DB UKEM - : -
4 SPDB - L : Kormel
SADB ¥y
v UGINE
SQMGM , Sectre Host!
Gateway Gateway
CASCAP Architecture

{{:mtmﬁednmwmex Secure Connectivity Assurance Platform)

Figure 5. Another implementation-oriented layered architecture for IPsec management. Reproduced

with kind permission of Springer Science and Business Media.

Here, ISE stands for “Internet Security Evaluation System”, which evaluates
system safety and attempts to proactively identify threats. SEPS is the security policy
database, SEMS is the Security Management System, “AUTOKEM? is the automatic key
exchange mechanism, using a CA (Certificate Authority) to prevent “Man In The
Middle” attacks, UKEM is the “Universal Key Management System”, SPDB is the
Security Policy Databasé, SADB is the Security Association Database and “UGINE” is

the “Universal IPsec Engine”.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In a follow-up paper, [KIM2002], it is proposed to use multiple secure IKE
sessions in parallel when one C-ISCAP system needs to communicate with more than one
other, by using different Diffie-Hellman random numbers in each signature to keep track
of the different sessions. A “chicken and egg” dilemma, somewhat similar to the one
mentioned before, would result if the policies for creating IPsec associations were to be
distributed using IPsec. To improve communication between the UGINE and the SEPS,

two separate stacks, one for each communication direction, are proposed.

A design at the Mechanisms and Primitives level was provided by [FER2005] in
proposing a multi-accelerator. Each accelerator was provided with its own work queue
and a scheduler distributed the work among the accelerators and the CPU (Central
Processing Unit). A scheduling algorithm was developed that controlled this distribution
of IPsec packet processing. Soft QoS (Quality of Service) could be supported in that

‘higher-priority bit streams would be provided with a higher-priority access to the

scheduler,

[LIM2003] proposed a system of policy distribution using a four-layer
architecture of management, processing, consumer and target, with the policy data base
serving the upper three layers. A policy server defines, stores, and configures policies for
the ultimate target systems and the policies are distributed to the targets using IETF
standard protocols: COPS-PR (Common Object Policy Service for PRovisioning) or
SNMP; the Policy Information Base (PIB) standard is proposed in RFC 3159. The
usefulness of this can be appreciated if a large company has tens or hundreds or more
IPsec installations to be configured throughout a country or large region, in similar or

different ways; automating the configurations helps to prevent human error.

[GAB2004] proposed an “Active Networks” architecture that contains policy,
service, management as well as lower modules. This architecture is active in the same
sense as the other architectures in this section in that it contains a policy layer and
controlling and reactive elements. A “commodity” PC was used, containing an Intel P4
2.2 GHz CPU with 512 Mbit RAM running Red Hat Linux 8.0; 396 packets per second

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

could be processed when the user credential (such as an X.509 certificate) is only
contained in the packet(s) and 1190 packets per second (three times the rate) could be
processed when the user credential was already contained in the node. However, the size

of packets used was not given.

[DON2004] proposes a Secure Name Service (SNS) to enhance availability ,
between cooperating extranets. SNS only answers queries from trusted network domains,
and returns a “secure handle” to a service, rather than an IP address as does DNS. “This
SH (Secure Handle) is Ihapped to the real IP address of the host in the SNS framework by
SGs (Security Gateways), and the IP address is only known to the SNS server and
associated SGs.” ([DON2004] pg. 549).

As can be seen from the foregoing, the state of the art in the literature
contemplates some systematic approaches to IPsec. What seems to be needed here is a

unifying paradigm.

2.3.2. The Erfani Patent

[ERF2003] [USPTO] “outlined a comprehensive system and method for
managing security in an electronic network,” composed of five functional layers: policy,
management, service, mechanisms and primitives (see Figure 6 and the top row of Figure
3). Just as the layered OSI model is a model optimized for the design of communication

systems, this five-layer model is optimized for the design of security systems.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6. The five-layer security framework, applied to IPsec

In previous work in the author’s group in the ECE department at the University of
Windsor ([FAH2005], Section 4.2, pp. 84-94, and Chapter V), as noted before, these five
layers have been “fleshed out” into modules and several operating scenarios have been
described. Modules in the policy layer include: Prevention and detection of IPsec security
violations, Network-wide IPsec implementation policy, and Disaster recovery. Modules
in the management layer include: Policy control and management of security services,

-Event logging, IPsec services monitoring, User interface, Interoperability and Recovery
and backup. Modulés in the services layer include: Access Control, Integrity,
Authentication, Confidentiality, Privacy and Rejection of replayed packets. Modules at
the mechanisms layer are further subdivided into the following groups: Encryption,
Message authentication, Key management, Certificates and Digital signatures. Finally,
modules at the primitives layer are further subdivided into the following groups: Prime
number generation, Modular arithmetic, Encryption, Hashing and Elliptic Curve
Cryptography (ECC), although the latter is not yet used in IPsec. Additional modules at
the policy level are SLA (Service Level Agreement) and User Information. Additional

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

modules at the service level include Availability, although this service is not formally

~specified by the IPsec RFCs and is weak in IPsec (see Section 2.2.1., “Key Exchange™).

24. Implementations of IPsec

2.4.1. Software Implementations

It was found in [NAY2005] that the Free S/WAN implementation incurred greater
performance degradation than 802.1X due to its end-to-end security with double
authentication, a stronger encryption method as well as better key management and
tunneling. One of their results was that in using DES for FTP (File Transfer Protocol),
degradation of performance was worse than the degradation for HTTP (HyperText
Transfer Protocol) in going from 802.1X to Free S/WAN.

In [KER1997], a software implementation of IPsec was done on Linux and
_several different versions of BSD (Berkeley Software Distribution). It was found that
ehcryption of packets “was a major bottleneck”, resulting in a factor of ten decrease in
throughput in a ping performance test. Authenticating packets caused no significant
decrease in throughput in this test. Unfortunately their results for UDP (User Datagram
Protocol) throughput and TCP transfer throughput were not reported in meaningful units
— for example it was not possible to discern the meaning of 5000 units of throughput in
terms of “cpu time”. However, the factor of ten decrease in throughput using ESP was
evident, and in these tests, the use of AH did make significant differences in throughput,
reducing throughput by 30% and 50% in UDP transfer and 50% and 60% in TCP for
MD5 and SHA-1, respectively.

In [KAN2004], an IPsec stack was developed for the Linux kernel 2.4 and 2.6
series. HMAC-SHA-1 and HMAC-MDS5 (HMAC: Hashed Message Authentication
Code) were implemented for authentication, NULL, DES-CBC, and 3DES-CBC were
included for encryption. This work was submitted to the Linux kernel maintainers; it had
the advantage of simplicity, but it differed in the Security Association and Policy
Database (SADB and SPDB) cache lookup system used in IPv4 and IPv6, leading to it

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

being declined for use W_ith Linux. Throughput and other numerical results were not

reported in this work.

2.4.2. Hardware Implementations

2.4.2.1. FPGA Implementations

[DAN2000], “An Adaptive Cryptographic Engine for IPSec Architectures”, was
the first to take advantage of compressibility of dynamic configurations. The AES
finalists at the time, which were MARS, RC6, Rijndael, Serpent and Twofish, were
implemented. Compared with software implementations, throughput speedup of 4 to 20

times was achieved while the key setup time was reduced 20 to 700 times.

[BEL2002], “GRIP: A Reconfigurable Architecture for Host-Based Gigabit-Rate
Packet Processing”, offloaded processor cycles onto a dedicated network interface, which
allowed more bandwidth for the cryptography. Throughput of 50 Mbps were measured,
possibly due to decryption failures of packets over 1500 bytes in size, and flow-control

issues caused by the design of the header-processing logic.

In [CHE2002], “Implementation of an FPGA Based Accelerator for Virtual
Private Networks,” a 3DES core achieved 120Mbits/s in CBC (Cipher-Block Chaining)

‘mode, three times as fast as a software implementation.

In [MCL2002], “A Single-chip IPSEC Cryptographic Processor,” a single-chip
IPsec cryptographic processor was implemented on a single XCV1000E Xilinx Virtex
FPGA. Throughput results were 310 Mbps for AES and 78 Mbps for SHA-1.

In [KIM2004]:, “Design and Implementation of a Private and Public Key Crypto
Processor and its Application to a Security System,” AES: 390, 3DES: 267, SEED: 358

and KASUMI: 568 Mbps were achieved using an FPGA. Parts of the processor were later

implemented in 0.5pm CMOS. To test and demonstrate the chip, a custom board

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

providing real-time data security for a data storage device was developed. It encrypted all

data going to the hard disk and decrypted all data leaving it.

In [LUJ2005], “IPSec Implementation on Xilinx Virtex-II Pro FPGA and Its
Application,” IKE was done in the Power PC portion of the FPGA; the hardware invoked
the software only when necessary. Throughput result were AES: 1197, SHA-1: 304 and
MD5: 277 Mbps.

These all reach to the Services Layer — no higher.

24.2.2. FPGA Implementations of Primitives
2422.1. AES

As noted before, Rijndael was chosen as AES in October 2000 [REJ2003].

In [JAR2003], a Finnish reference, a fully-unrolled implementation of Rijndael
was done using a Xilinx Virtex-II FPGA, implementing the S-Boxes (Substitution Boxes)
combinatorially. It was designed fully pipelined so that a new data-key pair can be input
at every clock cycle. The design consists of eleven separate blocks. Throughput results
were 17.8 Gbps for an individual block, but overall throughput in a cipher feedback mode

such as CBC, was not reported.

In [STN2003], a reference from Belgium, another fully-unrolled implgmentation
of Rijndael was done. Using the Xilinx Virtex E FPGA LUTs (Look-Up Tabfes),
throughput of 1,563 Mbps was achieved, and using the RAM to implement the S-Boxes,
throughput of 11,776 Mbps was achieved.

A final-round contender for AES, Serpent, was implemented on a Xilinx Virtex
XCV1000 FPGA in [ELB2000]. Four different architectures were implemented: Iterative
Looping, Iterative Looping with Partial Loop Unrolling, Full Loop Unrolling and Full
(32-stage) pipelining. Throughputs achieved were 61.92 Mbps, 444.16 Mbps, 312.32

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Mbps and 4.86 Gbps, respectively, although the final one was in ECB (Electronic Code
Book) mode only. Software could process Serpent at a rate of 26.90 Mbps of throughput.

2.4.22.72. Hashes

_ In [KAN2002], SHA-1, HAS-160, and MD-5 were implemented on one chip, an
Altera EP20K FPGA. Combining SHA-1 with HAS-160 reduced the required logic
elements by 27%. Throughput results depend on the speed grade of the device; grade 3
was used. Results were 114, 160 and 142 Mbps, respectively.

In [ZIB2003], a Chinese reference, the SHA-1 algorithm was implemented on an
Altera EP1K FPGA and a maximum throughput of 268.99 Mbps was achieved.

In [KHA2005], a reference from the University of Victoria, BC, Canada, the
similarities between MD5, SHA-1 and RIPEMD-160 (since they are based on an earlier
hash function, MD4) were used to design one chip to perform all three; a LUT (Look-Up
Table) design on a Xilinx Virtex II FPGA. Simulation only was reported; in that,
projected throughput was 145.72, 116.94, and 116.94 Mbps, respectively.

In [DEE2001], a reference from the Memorial University of Newfoundland,
Canada, two implementations of MDS5 using iteration and full-loop unrolling were done
on a Xilinx Virtex V1000 FPGA with a clock rate of up to 200 MHz. Throughput was
165 and 354 Mbps, respectively.

3
1

24.2.3. ASIC (Application-Specific Integrated Circuit) Implementations

In [WUL2001], “CryptoManiac: A Fast Flexible Architecture for Secure
Communication,” 0.25 um standard-cell technology was used to implement the
“CryptoManiac” processor, a 32-bit VLIW (Very Long Instruction Word) dedicated
cryptographic processor which contains four functional units each with an adder, a 1kB

S-Box cache, two logical units for instruction combining, a rotator, and two multipliers.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A specialized instruction set optimized for running cryptographic algorithms was
provided. One key innovation was combining arithmetic and logical operations within a
single cycle, since the latter type of operation often follows the former in cryptographic
processing, allowing the processor clock cycle to be better used. The best results for
Rijndael (AES) that were achieved was about a 64 Mbps encryption rate, superior for a

software implementation.

2424. ASIC Implementations of Primitives

In [WAN2004], an ASIC implementation of SHA-1 and MD35 was done using
0.25 pym CMOS technology; their innovations were reduced hardware complexity in
reducing the number of multiplexers and hardware sharing by using common hardware
for both algorithms. Throughput results were 417 and 520 Mbps for SHA-1 and MD35,
and about 94 and 117 Mbps when digital signing of these hashes was required.

In [REJ2003], two ASIC implementations of Rijndael were done using 0.13 pm
CMOS technology; in one, only one lookup table was used to implement the S-Box used
for all rounds and access to it is pipelined between rounds. In the other, separate S-Boxes
were implemented in order to use them concurrently. Both implementations achieved
2.56 Gbps of throughput in feedback modes.

2.43. Conclusion of the “Implementations” Section

In conclusion and summary, the heavy overhead incurred by encryption mandates
hardware acceleration. Software running on a general-purpose processor can typically
produce AES (Advanced Encryption Standard), i.e., Rijndael, throughputs of low tens of
Mbps (i.e., 30) [DAN2000]. 70.5 Mbps using Visual C++ was achieved, as reported in
[MRO2000]. FPGAs (Field-Programmable Gate Arrays) can achieve up to 176 Mbits/s
implementing DES (Data Encryption Standard) and up to 964 Mbits/s implementing AES
[WOL2004]. An ASIC processor achieved 2.29 Gbits/s of AES throughput in a 0.18um
CMOS standard-cell technology in 2002 [SCH2002], [VER2003].

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

None of these implementations used a comprehensive functional architecture such

a the present, proposed, five-layer framework.

2.5. AnIPsec Application

[GOD2002] used IPsec to secure a wireless gateway. The Microsoft Windows
2000 implementation —i.e., a software implementation — of IPsec was used; but the WEP
(so-called “Wired Equivalent Privacy”) implementation was not specified. A Buffalo
WLI PCM-11 wireless network interface PC card was used. Throughput was 604 kBps
unencrypted, 458 kBps using 40-bit WEP, 355 kBps using IPsec with DES and MD5 and
209 kBps using IPsec with 3DES and SHA. Multiply by 10 to get speeds in bits per
second (bps), which are believable in terms of the roughly 30 Mbps maximum throughput

possible using software implementations of IPsec.

2.6. High-Level Synthesis for Hardware Implementations

UML (the Unified Modeling Language) [JAC1998] was considered as the design
‘language for the FPGA portion of this project, but was rejected as not suitable because it

was object-oriented, too high-level and tools to program FPGAs were not available.

Simulink, a software package by Mathworks Inc., was considered. In a user
report, “The engineers at SELEX generated a specification for what they wanted the
FPGA to do using Simulink and used Xilinx System Generator for DSP to program the
FPGA to match the Simulink model,” [MAT2006].This was found to be aimed at DSP
(Digital Signal ProceSsihg) and required the basically manual step of replacing the
Simulink standard blocks with Xilinx standard blocks.

According to a tutorial on HLS (High-Level Synthesis), there are many
unanswered questions when it comes to using this technique in a complete context.

“Much work needs to be done before synthesis becomes really practical,” ({(MCF1988]
‘pg. 335). According to [COM2002], HLS tends to produce larger and slower designs than

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

structural description can produce. Its descriptions can leave many aspects of the circuit

unspecified. Also, optimizing for the bit width of operands cannot be done.

In [LIH2005], the rather heroic measure of inserting a timing and netlist control
guidance stage between the place and route steps of physical synthesis for ASICs had to
be done. It is reported that there are very few algorithms that have been proposed to make
the HLS tool aware of the layout information, so that the resulting physical design can be

improved.

Investigating SystemC, a HLS language, “The performance of this simulation
kernel is not to be compared with that of commercial VHDL/Verilog simulators at the
present,” ([WIKIP], SystemC). Also, the size and complexity of SystemC models
becomes too large to be practical in modern design projects, and new tools are being

researched to deal with the complexity [GEN2006].

HLS is an open area of research (Dr. M. Khalid, in personal conversation, May
2006).

As a result of these investigations, the Xilinx ISE (Integrated Software
Environment) and EDK (Embedded Development Kit) software packages were chosen,
due to availability, as well as availability of compatible hardware development boards
such as the Xilinx “Microblaze” (or “Multimedia”) boards, which are equipped with
Xilinx Virtex II FPGAs. HDL (Hardware Description Language) programming in VHDL

or Verilog was chosen, rather than attempting to use HLS.

2.7. Random Numbér Generators

Since an RNG (Random Number Generator) was incorporated in this work, some
background on PRNGs (Pseudo-RNGs) and CSPRNGs (Cryptographically Secure
PRNGs) was investigated.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It is desirable to have an RNG to generate keys and IVs (Initial Vectors), for if the
users were entrusted with this task, they would skip it as a time-consuming burden,
leaving them set to all zeroes, or provide short and simple values, or naturally provide
predictable values. IVs are often sent in the clear and only need to be different, since their
purpose is only to vary the ciphertext. However, it should not be possible to predict the
future values or determine the previous values used for keys, in case some become
known to an attacker. An RNG which has the property of difficulty of determining past or
future values from current values is known as cryptographically secure. For testing, it is
useful to use a PRNG for its repeatable output. For actual use, the PRNG is seeded with
an initial value taken from randomly-occurring values, such as the time of day, the value
of a free-running counter or the time delays determined between user activity. Many such
values are often combined together, often using the XOR (Exclusive-OR) operation, for

the greatest possible unpredictability.

To make an exhaustive search — involving trying all possible values (somewhat
inaccurately known as “brute force™) — attack impractical, a long sequence, known as the
“period” or “cycle length”, before the PRNG repeats, is important. A well-designed
PRNG has a cycle length of 2°, where e is the number of bits in the state; the “state” is the
core “word” on which the PRNG operates and which provides the source of the bits of
the output number) {LEC1998]. The number of bits in the state is also known as the
“linear complexity”, of a linear PRNG, of course [WAL2007]. A good PRNG has a cycle
length of over 2% [LEC1998]. The “Mersenne Twister" algorithm has a period of

(2"*")-1 ([WIKIP], “Pseudorandom_number_generator”).

Linear PRNGs, such as LFSR (Linear Feedback Shift Register) types suffer from
predictability [HP12006]. For example, an LFSR was developed that operated at high |
speed, low power and high precision and was useful in general communication systems,
RADAR (RAdio Detecﬁon And Ranging) signal simulation and processing environments
Where random numbers exhibiting more than one type of statistical distribution were
needed [WEI2004], but would not be completely useful for cryptography. In order to be
cryptographically secure, the RNG should perform well in strict statistical tests. One such

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is the “DIEHARD” series of tests, developed by George Marsaglia at the Florida State
University Department of Statistics ([SOT1999], pg. 2), [MAR1995], which consists of
fifteen different tests (sée also [WIKIP], “Diehard_tests”, for an intuitive description of
each). "The higher the entropy in a series of numbers is, the more difficult it is to predict
a given number on the basis of the preceding numbers in the series," [HAA1999]. "True
random numbers are independent from each other and therefore unpredictable but they
are rarely employed," [KAR2000]. For more comments on randomness required for

cryptography, see [RFC1750].

AES itself makes a fine CSPRNG with an enormous period [HP12006]. It could
be used to encrypt the value of a counter beginning at some seed, using CBC or some
other mode, which wbuld give a period of 2°, where b is the cipher block length (128 to
256, for AES) ([HEL2003] pg. 324); it could also be used to repeatedly encrypt its own
output (as in CBC encrypting blocks of all zeroes), but the period cannot be guaranteed
using this method ((HEL2003] pg. 324). The foregoing could be done, of course, starting
with some seed IV. AES also has tremendous non-linearity included in its design
[FIPS197].

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER Il
DESIGN AND METHODOLOGY
3.1. Design of an FPGA AES Hardware Accelerator

3.1.1. Introduction

The AES cipher was chosen in October 2000 [REJ2003], to replace DES (Data
Encryption Standard) which is now too computationally intensive to use in obtaining
‘good security, givén that it has to be run three times to obtain an effective key length that

is sufficiently secure.

3.1.1.1. Overview of AES

AES is a ten-round substitution-permutation cipher [FIPS197]; it carries the 128
(or 192 or 256)-bit plaintext value through “rounds”, i.e., repetitions of the four
processing steps, which are: XOR with the “key permutation” or “key expand” value for
that round (i.e., the round key), substitute (sub) bytes using an “S-box”, shift rows and
mix columns, to convert it into the ciphertext. The value being carried is known as the
state. The inverse cipher does each round in reverse order, meaning that an inverse S-
box, and an inverse mix columns function are required. The same key expand values are
applied, in reverse order. A former name of the algorithm chosen as the AES, Rijndael,
‘was “Square”, as can be seen after. Rather than attempting a repetition of the complete -
details of AES, an idea, or the “flavour” is presented here and the reader is referred to the
standard for the complete details [FIPS197].

The difference between Rijndael and AES is that Rijndael is defined for block and
key sizes of every increment of 32 bits from 128 to 256 bits, inclusive, whereas AES has
a fixed block size of 128 bits and key sizes of only 128, 192 and 256 bits ((WIKIP],
“Advanced_Encryption_Standard™). The 128-bit key size definition was chosen to

implement for this project, for simplicity.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following listing shows the pseudo-code for the AES encryption cipher

[FIPS197]:

Cipher (byte in[4*N,], byte out[4*N,], word key[4*Ny])
byte state[4*Ny], w[4*Np, N.+1], state[4*Np,], integer round
state = in
ComputeRoundKey (key, wilky, 11)

AddRoundKey (state, wlky, 11)
for round = 1 step 1 to N,-1
ComputeRoundKey (key, wlky, round+1])
SubBytes (state)
ShiftRows (state)
MixColumns (state)
. AddRoundKey (state, wlky,, round+l)
end for
ComputeRoundKey (key, wlky, N+17])
SubBytes (state)
ShiftRows (state)
AddRoundKey (state, wlky, Ng+1)
out = state

Note: Np: number of blocks, N;: number of rounds, w: key expand array, kx: key
permutation, 4: 4 bytes, i.e., each block is 4 bytes, or 32 bits.

and the inverse, or decryption cipher:

InvCipher (byte in[4*N,], byte out[4*N,], word key[4*Np])

byte state[4*Np,], w[4*N,, N,+1]

state = in

ComputeRoundKey (w[ky, 1])

AddRoundKey (state, wlky, 1])

for round = N,-1 step -1 downto 1
InvShiftRows (state)
InvSubBytes (state)
ComputeRoundKey (w[ky, round+l1l])
AddRoundKey (state, wl[ky, round+l)
" InvMixColumns (state)

end for.

InvShiftRows (state)

InvSubBytes (state)

ComputeRoundKey (wlk,, Ny+11)

AddRoundKey (state, wlky, N.+1)

out = state

Note that, in spite of the pseudo-code provided by the FIPS (Federal Information
Processing Standard), in decryption the entire set of round keys must be computed before

decryption can begin, since the last must be used first. For AES-128, Ny,=4 and N;=10. w

is chosen to represent the array of key expand values in [FIPS197].

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1.1.1.1. Round Keys

The round keys, or “key expand values”, are permutations of the key. The first
“permutation” is the key itself. In each round, this is XORed with the “sub-bytes”
(substituted bytes) of the current key permutation value rotated left by 8 bits, using the
same S-box as do the rounds, i.e., “key XOR (sub(rot(key)))”. Also, the high-order byte
of each 32-bit portion of the 128-bit block is XORed with the output of a function of the
round step in which the HOB (High-Order Byte) is determined from Table 3. This _
function is called “Rcon” (Round Constant), where Reon(step) = [26P"){00} {00} {00}]'-
in GF(2®) [FIPS197]. (GF: Galois Field).

Round | 01 02 03 04 05 06 07 08 09 0A

Rcon | 01 | 02 | 04 | 08 | 10 | 20 | 40 | 8 | 1B | 36
(HOB)

Table 3. The AES round constant (hex)

Figure 7 [FIPS197] illustrates how the round key is added in each round. Each 32-
bit block of the round key is XORed column-wise to a matrix formed from the bytes of

the state.
= round * Nb
SO.C’ N SO‘{? »
50,0 2 | o3 " Soofl + bz| s
Sie _ e I e A Sie | :
s el s
1.0 e EIE , : o —.2 | 513
< W ¥2 | Wis3 s ,
S0l 72 121522 S0l 72€ ba| %23
50| 83, 2] 533 530 || 3. pa | 532
SSS—— {

Figure 7. AES add round key

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1.1.1.2. Substitute (“Sub”) Bytes

Figure 8 [FIPSl97] illustrates the substitution process. Each byte is replaced, on

an individual basis. This operation introduces non-linearity.

S-Box ' '))

So,0 | So,1 ii»f‘ﬁl- -\‘?0.0‘31 So2 | Sos

81,0 s |2 $i3 310 '-112 i3
re v Snc

S30] 52115221523 S0l %21 | 522] S23

S$30]1 550 19321 532 S50 San | H32 | B33

Figure 8. AES "sub''-bytes

3.1.1.1.3. Shift Rows

Figure 9 [FIPS197] illustrates how each row is shifted, each by one successive
byte extra. |

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ShiftRows ()

i] [] 9 L
Sr.{} Sr.l Si'.Z SI',3 Sr,() Sr,l Sr,2 Sr,?s
Ry s’
So0 1 50,1 | S0.2 | S S0.0 | S0 | Y02 | So03

Figure 9. AES shift rows

-+ 3.1.1.14. Mix Columns

Figure 10 illustrates how the “Mix columns” operation is applied. The operation
itself is a complex and staggered combinatoric operation done to each byte of each 32-bit

block (column) in the matrix.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MixColumns ()

Figure 10. AES mix columns application

3.1.2. Technology

As noted befo:re,.’Xilinx was chosen for tool availability on the desktop PC
(Personal Computer) used for this research, which had a 2.39 GHz motherboard
containing a “Celeron” CPU and 256 MB of RAM. The Xilinx software packages used
were version 8.21 of: the ISE (Integrated Software Environment — 8.2.031, specifically)
and the EDK (Embeddgd Development Kit, version 8.2.01i, specifically).

In the ISE individual modules are built — including even an entire project instance
from the EDK —, simulated, and loaded as a “bit file” or “bitstream” to a target board,
whereas in the EDK individual modules are put together , such as the Power PC (PPC),
RS232/UART (Universal Asynchronous Receiver-Transmitter) module and any user IP
(Intellectual Property) that was developed, and entire systems are built [XILQST],
[XILIDT].

The Xilinx ML4Q3 board, shown in Figure 11, an embedded system, was chosen
for this research; the Board includes a Xilinx Virtex-4 FPGA which in turn contains a
hard-core PPC 405 — the XC4VFX12-FF668 [XILUG80] (a “hard-core” device is actual
device with its design doped into the semiconductor, as opposed to a “soft-core” device,

which is implemented by means of the FPGA fabric). The Virtex-4 was the next to most

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

recent version in the Xilinx Virtex series; it is a general principle never to buy version
one of anything (even the first of a new sub-version of an existing series). Moreover, the
board had a reasonable price, of $495 US, as of June 2006.

Figure 11. A photograph of the Xilinx ML403 board

3.1.2.1. Specific Virtex-4 FX12 FPGA Features

The Virtex-4 FPGA contains four embedded Digital Clock Managers (DCMs)
that can divide the clock and provide an additional three clock phases at each multiple of

ninety degrees [XILV4DS].

It also contains on-chip BRAM (Block RAM) useful for small software programs
up to 128kB [XILML403T] and which is available for use instead of the FPGA fabric
when appropriate, such as for ROMs (Read-Only Memories) and RAMs. The Xilinx

‘“primitive” name for individual portions of BRAM is RAMB16 — inciividual elements

incorporated in Xilinx FPGAs are known as “primitives” within the Xilinx company (not

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to be confused with the use of the term “primitive™ in this work to mean the lowest-level
functionality of a security system). The XC4VFX12 has thirty-six 18kB blocks of BRAM
[XILV4DS].

The XC4VFX12 FPGA also contains 5,472 cells, or “slices”, of FPGA fabric
containing 10,944 LUTs (Look-Up Tables) at two LUTs per slice, which is relatively
small compared to the 10,752 slices (21,504 LUTs) of the Virtex-II FPGA in the Xilinx
“Microblaze” boards [XILV4DS] [XILV2DS], however, those FPGAs (XC2V2000-
FF896) do not cor{:gain the hard-core PPC. Note that the suffix of the part number, such as

FF668 or FF896, fefers to the package type and number of pins [XILPKG].

3.1.2.2. ML403 Board Features

The ML403 board has a 100 MHz clock — which means a 10 ns clock period, and
it has an expansion header of many pins, connected to FPGA pins on the circuit board,
which is very useful for oscilloscope measurements. It has an RS232 serial port, 1IMB of
SRAM (Static RAM), and a JTAG (Joint Test Action Group) port for downloading the
firmware and debugging. A special cable, the “PCIV”, or “Parallel Cable IV”
(pronounced “PC-four”) cable is required to connect from the PC parallel port to the
JTAG port.

In addition to the XC4VFX12 FPGA, the board also has an ACE (Advanced
Configuration Engine — XCCACE), Flash EEPROM, (XCF32P, 8 MB), a CPLD
(Complex Programmable Logic Device — XC95144XL), a Flash Configuration controller,
an EEPROM (4kb IIC — Inter-IC bus — interface), an LCD (Liquid Crystal Display)
screen, push buttons, LEDs (Light Emitting Diodes), and other features. For the purposes
of this work, only the PPC and FPGA (integrated together in one) chip was used, of the
major ICs available on the ML403 board.

3.1.3. Selection of the Base Design

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The various designs examined for use as a starting point were as follows. The
design by Rudolf Usselmann of ASICs.ws [USS2002], done in Verilog, was clearly
documented, with detailed synthesis results for a Xilinx Spartan Ile XS2V200-6 FPGA,
so it was chosen. Others looked at were a low-area implementation done in SystemC
requiring 500 clock cycles to encrypt or decrypt a block for the 128-bit AES algorithm
[VILL22005], a 128-bit implementation done in VHDL [SAT2004], a work in progress
only tested at the gate level with placement and routing still to be done [HUR2002], and
an advertised “Ultra High Speed AES (Rijndael) Crypto Processor,” not in the public
domain [DEV2003].

3.1.3.1. Some Aspects of the Usselmann Design

The Usselmann design [USS2002] included a text_in vector to input the plaintext
(or ciphertext, in the case of the inverse transform, or decryptor), a key vector to input the
key, a text_out vector to output the ciphertext (or plaintext), a keyload signal to initialize
the key expand values from the key, and a “load” signal to initiate the transform. In the
encryptor, keyload was connected to load because the key expand values are generated as
the rounds require them, but in the decryptor, keyload was a separate input. There was a
done pulse output in both, and a keydone output for the decryptor, indicating that the key
expand values were generated and stored internally. Keyload only had to be repeated in
the decryptor if the key was changed, but it had to be done before the inverse transform
using that key could be done, which is always the case, since the inverse transform

requires the last key expand value first.

This design features the S-box instantiated sixteen times, to process each of the
bytes of the state simultaneously each round. This increases speed at the expense of
FPGA slices and/or FPGA resources such as BRAM, since the S-boxes are realized as

ROMs.

3.1.4. Architecture Provided by Xilinx

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For the user peripheral, Xilinx provides the outer wrapper VHDL, named after the
user peripheral, and a core, named user_logic.vhd [XILUT2003], [XILML403T] for
VHDL, if VHDL is chosen, or “.v”, if a Verilog implementation is selected. The outer
wrapper is an [PIC (IP — Intellectual Property — InterConnect) which instantiates the IPIF
(IP InterFace) for the OPB (On-Chip Peripheral Bus) — the IPIF is a subset of the OPB —
and user_logic.vhd, ahd interconnects them. Note that here IP stands for “Intellectual
Property”. In this work, the AES encryptor and decryptor were implemented as two

separate user peripherals, called “aes_enc” and “aes_dec”, respectively.

Ref Clk

User InputiOutput

Figure 12. Xilinx system architecture

Referring to Figure 12 ([XILUT2003] pg. 21), the OPB also serves such
peripherals as the UART and GPIO (General-Purpose I0), that may be instantiated as
modules using the Xilinx EDK, and is connected via the “PLB20PB” bridge to the PLB
(Processor Local Bus) which is connected to the PPC CPU. The PLB also connects to the
BRAM via a controller module. The DCM modules connect to the PPC and to the busses.
The JTAG port connects to the PPC. The modules required are added in the EDK using

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the BSB (Base System Builder) wizard or from the available peripheral window pane on
the left in the EDK [XILML403T].

Xilinx provides the standard IP cores used, such as the UART. In this work, a

‘communication speed of 57,600 kbps was chosen using the BSB.

Xilinx provides an interface in the user_logic file itself for the user to interface
with the outer wrapper — the user programs the slv_regs (“slave registers”) from software
and can access them in the user_logic core using the VHDL shown after (or Verilog, if
selected). Xilinx also provides the software libraries in C source code to access the slave

registers via software,

The C code to read and write the siv_regs, provided by Xilinx is shown here (the

first line is just an associated variable declaration).

Xuint32 Reg32Value = 0;
Reg32vValue = AES_ENC mReadSlaveRegO (XPAR AES ENC_ 0 BASEADDR);
AES_ENC_mWriteSlaveRegO (XPAR AES ENC 0 BASEADDR, Reg32Value);

For a decryptor instruction, “ENC” is replaced with “DEC” in both places in each
instruction. For a different siv_reg, the “0” in “SlaveReg0” is changed to the desired

number, from 0-12 (decimal notation).

The user fills in the rest of user_logic with his HDL - in this work, the Usselmann
core’s top level-file. The outer wrapper is fully provided by the Xilinx tools
[XILML403T] and does not need to be modified by the user unless the user desires to add
something extra, such as an external connection of a signal to an FPGA pin, as was done
in this work. The outer wrapper is always in VHDL and interface is accomplished using
the default binding rules if user_logic is in Verilog ([XILIPTS3] pg. 28). The default
binding rules state, in part:

If the entity name is the same as the component name, then this entity is
bound to the component.

If there are multiple architectures for the same entity, the last compiled
architecture for the entity is chosen [MAR2003].

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following is a portion of user_logic.vhd — showing the “slave register”

interface provided by Xilinx:

SLAVE_REG WRITE_PROC : process(Bus2IP_Clk) is
begin
if (Bus2IP_Clk'event and (Bus2IP Clk = '1')) then
if (Bus2IP Reset = 'l') then
slv_reg0 <= (others => '0'");
[...1.

else
case slv_reg write_select is
when "1000000000000" =>

for byte_index in 0 to (C_DWIDTH/8)-1 loop

if (Bus2IP BE(byte index) = 'l1')} then
slv_reg0(byte index*8 to byte index*8+7) <=
Bus2IP_Data(byte_index*8 to byte_index*8+7);

end 1f;

end loop;

[...]

when others => null;
end case;
end if;
end if;
end process SLAVE REG _WRITE_ PROC;

SLAVE REG_READ PROC : process(slv_reg read select, slv_reg0,
slv_regl, slv_reg2, slv_reg3, slv_reg4, slv_reg5, slv_reg6, slv_reg7,
slv_reg8, slv_reg9, slv_reglO, slv_regll, slv_regl2) is

begin
case slv_reg read _select is
when "1000000000000" => slv_ip2bus _data <= slv_reg0;

L..].

when others => slv_ip2bus_data <= (others => '0');

end case;
end process SLAVE_REG_READ PROC;

3.1.5. VHDL in Xilinx

Variables are called “signals” in VHDL (in Verilog, “wire”, or “reg”), and arrays
of signals are called “vectors”, typically declared as “std_logic” — “standard logic” in
vwhich the values allowed are shown in Table 4. Typically only “0” and “1” are used, and

“U” and “X” appear in practice, as found in this work.

U | Uninitialized

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X | Forcing Unknown
0 | Forcing 0

1 Forcing 1

Z | High Impedance
W | Weak Unknown
L | Weak0

H | Weak 1

- Don’t care

Table 4. IEEE VHDL std_logic values

Signal processing is typically done within “processes”, each of which are
associated with a clock edge. Most conditional logic blocks can only be implemented
within processes. However, boolean logic and assignments can be done
“asynchronously”, but that should be kept to an absolute minimum in Xilinx VHDL for

FPGAs. The format of a process block is shown:

MY PROC: process (myclk, myrst)
begin
if (myrst = '0') then
myvar <= '0';
elsif (rising_ edge(myclk)) then
[insert your logic involving myvar, etc., here]
end if;
end process MY PROC;

Note the standard reset signal, myrst and its syntax. This block and its elsif can be
omitted, keeping only the contents of the “elsif”’. The part in parentheses after the key-
word “process” is called the sensitivity list. The process will activate only when a signal

in the sensitivity list changes.

Note that (myclk'event and (myclk ='1")) is equivalent to (rising_edge(myclk))
and that (myclk'event and (myclk = ‘0")) is equivalent to (falling_edge(myclk))
[XILXST].

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Typically, “non-blocking” assignments are used in signal processing, which
means that all assignments in the process are done simultaneously from the input data
when the clock edge occurs. The syntax for a “non-blocking” assignment is “<=". In a
“blocking” assignment, one assignment is performed first before the next is done; the
syntax for this is “:=". Blocking assignments are often used in logic “functions,” which

implement combinatorial logic.

The value of a signal can be determined in complex ways and set in its own
process, but write conflicts will occur if a signal is controlled from more than one
process. However, signals can be used for “read” purposes in different processes. If it is
attempted to reset signals using a non-reset signal in the standard reset syntax, the signal
will be interpreted as a reset signal and will be connected to the design reset, causing

~write conflicts. Using the syntax in the Xilinx manuals is mandatory if one wishes to
accomplish one’s intention with Xilinx VHDL [XILXST]. As an example, the “case
statement” cryptographic S-box had to be put in a process to be properly recognized as a
ROM, or else the Xilinx synthesis tool would interpret the block as an asynchronous

RAM and remove all but one of the required instances.

For another example, the VHLD for a dual-port RAM is shown:

proceSs‘(clk)

begin
if (clk'event and clk = '1l') then
if (we = '1'") then
RAM(conv_integer(a)) <= di;
end if;
read a <= a;
end 1f;

end process;
do <= RAM(conv_integer(read_a)):

Note: we: write enable, a: address, do: data out [XILXST].

This is the only type of syntax that will be recognized by the Xilinx synthesizer as a dual-
port RAM.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fortunately, assignments between vectored signals declared as big-endian and
little-endian (see section 3.1.7.1., “Core Design and other Modifications™ for

explanation) are straightforward; e.g.:

signal ‘key : STD LOGIC VECTOR (127 downto 0);
signal slv_regl : std logic_vecter(0 to C DWIDTH-1);
key (127 downto 96) <= slv_regl;

bit 0 of siv_regl will be assigned to bit 127 of the variable key, and so on to bit 31
(i.e., C_DWIDTH-1) of slv_regl assigned to bit 96 of key.

Note that range assignment is flexible; e.g.:

signal w0, wl, w2, w3: STD _LOGIC VECTOR(31l downto 0);

Type kbarray is array (10 downto 0) of STD LOGIC VECTOR({127
downto 0);

signal kb: kbarray;

w3 <= kb(conv_integer(read kb)) (127 downto 096);

and can be applied to the output of arrays, as shown.

3.1.6. Working with the Xilinx Tools

When building a module or an entire project in the Xilinx ISE, the simulation
stages available are behavioral, post-translate, post-map and post-PAR (place and route),
reflecting the build stages: design entry (behavioral simulation), synthesize and translate
(post-translate), map (post-map) and PAR (post-PAR simulation) (Note that Xilinx uses
the US spelling of “behavioural”). In synthesis, the HDL is recognized and represented as
logic components such as AND gates, counters, ROMs, and so on. “Translate” is a
technical stage in which the “netlist” (the list of circuit connections) format is converted.
In map, the logic components are expressed using the type of logic cells available in the
FPGA, which contain two LUTs per cell, or “slice”, a multiplexer and two flip-flops. In
“place”, specific logié cells in the FPGA are chosen for the mapped content, and in
“route”, the FPGA switching fabric, which makes up three-quarters of the FPGA, is set

with the necessary electrical connections.

BRAM resources are automatically used for ROMs by XST (the Xilinx Synthesis

Tool). When necessary, separate vectors can be used to contain data instead of using

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ROM syntax, and also distributed LUT (Look-Up Table) ROMs, available from the

Templates in the ISE, are available.

When using the EDK and making changes to the design [XILML403T], “Project

— Clean All Generated Files” must be done, or the changes will not be recognized.

Simulation has some differences from implementation — the Unisim library is
required for post-PAR simulation, but only required for implementation in modules

containing the LUT ROMs —the Unisim library declaration is shown:

library UNISIM;
use UNISIM.VCOMPONENTS.ALL;

The following IEEE libraries were required:

library ieee;
use ieee.std logic 1164.all;
use ieee.std logic unsigned.all;

However, the following two have to be commented-out in order to support
conv_integer for array index addressing (conv_integer is used to converting std_logic to

an array index) when that is used:

Use ieee.numeric std.all;
use ieee.std logic_arith.all;

The file containing input stimulus to feed to the design for simulation is called the
“testbench”. Input setup times and output valid delay settings in the testbench must equal
or exceed the “minimum arrival time before clock” and “maximum output required time

after clock” specified in the synthesis report or simulations will not succeed.

Mentor Graphics ModelSim XE III 6.1e starter edition was used for simulation,
which was quite reliable, and allowed examination of interior design signals, which was
not possible with the simulator provided with the Xilinx ISE. Moreover, simulation of

advanced build stages, such as post-PAR, in the Xilinx software was very much “broken”

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and unusable. The ISE allows selection of different simulators when the Xilinx project is
created, and when working with the project. A VHDL vector is normally represented as a
single line in simulation output and can be set for display or input in various radices

(bases), such as hexadecimal, decimal, octal and binary.

3.1.6.1. Simulation Test Methodology

Simulation results, of the encryptor and decryptor core designs, were initially
verified using an available Javascript implementation that showed the results and
intermediate values of the transform and its inverse [STY2006]. Due to problems
encountered in higher orders of simulation, such as post-translate and post-map, in which
portions of the key expand values were being apparently duplicated, due to not making
the S-box synchronous, and using insufficient “input setup time” and “output valid delay”
‘timing specifications in the testbench, respectively, the arbitrarily-chosen and somewhat:
redundant key of 466E6172 676C6572 20426C61 67686572 (hex.), which was the ASCII

(ANSI Standard Code for Information Interchange — ANSI: American National Standards
Institute) for "Fnargler Blagher", was changed to 01020304 15161718 292A2B2C
3D3E3F42 (hex.), which has no planned ASCII meaning, for simulation, so that each

byte would be unambiguously unique.

3.1.6.2. Software Loading, Running and Debugging

Xilinx includes the GDB (GNU DeBug — GNU: “GNU is Not Unix”) software.
Before invoking that, XMD (Xilinx Microprocessor Debug) must be started and
connected to the Power PC target (see [XILEST], chapters 10-12). The icon to launch
XMD is visually identifiable as a bug in a box. Connection is automatic. Experience
showed however, that it was necessary to disconnect and reconnect in order for GDB,
especially, to successfully operate: enter the command “disconnect 0”, and then “connect
ppc hw” in the XMD window (the quotes are delimiters here and not included in the
command). XMD appears similar to a DOS (Disk Operating System) window and DOS

commands will work. The user can change directories, for example. To test the compiled
53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and linked software without using GDB, the command “dow executable.elf” can be used
— but it is necessary to change to the directory containing “executable.elf”, first. “run”
launches execution; “stop” stops it. This is useful since the debugger slows execution so
much that RS232 communication is prevented. If debugging is desired, GDB can be
launched by clicking the icon next to the XMD icon, which is of a bug (not in a box).
This method is also useful for loading larger amounts of code to SRAM, when the code

-size exceeds that available in BRAM.

3.1.7. AES Design Done in this Work
3.1.7.1. Core Design and other Modifications

Figure 13 shows the modules and their hierarchy in the encryptor and decryptor
design, modified from that found in [USS2002]: the top-levels were renamed

“user_logic” as required by Xilinx, and the higher-level wrappers needed for bus

interfacing were added.

Xilinx IPIC Wrapper

aes_snc.vhd
l , " ags daa whd
user logic.vhd 4’

user_logic vhd

%&ml@&&wx%m 128 vhd aes shoxvhd

! \ @8s.inv_sboxvhd
Bean SBox. ’
aes_rconvhd a8, amvhd
AES Cipher AES3 Inverse Cipher

IPIC: IP InterConnect
IP: Intellectual Property

Figure 13. AES encryptor and decryptor modules and hierarchy

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Note that the key expand module was not included with the inverse cipher, or
decryptor, in order to allow both modules to fit in the XC4VFX12 FPGA. As detailed
after, key expand readout from the encryptor and input to the decryptor, for its storage,

was implemented.

Thirteen 32-bit slv_regs were specified for each core — slv_reg0 for control
signals, /-4 for the key input, 5-8 for the plain/cipher text and I'V input and 9-12 for

cipher/plain text output and other output.

Big-endian data orientation was maintained in the design, as shown in Figure 14.
In this orientation, high-order data is located in the low-order ends of the registers, since
the general standard for numeric notation is to read the high order data first, left to right
and top to bottom, and memory maps are generally presented low-order to high-order,
left to right and top to bottom. In little-endian data orientation, the low-order data is

located in the low-order register bits.

Keyln [TextIn |TextOut |
slv. reg} slv_regd | slv_regd

slv_reg? slv_reg6 slv_regl0
shv_reg3|siv _reg|slv_regl]
dlv. ragd slv reg8 slv. f%g12

128-bit word
0

Figure 14. Big-endian data orientation and core IO register usage

Extensive modifications to the original code were required in order to make it
work on a Xilinx FPGA and to interface it to the OPB. First, however, the original
Verilog code was verified in behavioural simulation. The decision was made to translate

the Verilog into VHDL, to avoid having to rely on mixed-language support. Then the

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

done bit behaviour was revised so that it would remain set for the software to read. This

was accomplished by removing a clearing condition; instead of the former:
done <= (not (dent(l) or dent(2) or dent(3)))} and dent(0);
done <= not (dcnt(3) or dent(2) or dent(l));

the latter was used, where dcnt is a four-bit counter, counting down. This VHDL syntax
selects individual bits of a vector. When the “and” of the zero-order bit was included,
done would be cleared on the clock rising edge after dent reached zero, making done a
‘pulse with a length of only one clock cycle. Id_r was used in order to blear done for
another transform, where /d_r stands for “real load” and is timed always to occur on the
same clock phase (see the section on “autoload”). A signal called dcntbits was defined
and set to “1” for as long as dcnt is not “0”, and used to enable updating of fext out while
the rounds progress. When done is changed to “1”, dcntbits is changed to “0” and

text_out stops changing so that it can be read.

All major blocks of the design had to be placed within VHDL processes of the
type shown before, and assigned a clock signal so that they would be synchronous. This
was a major step in success of simulation beyond behavioral. Asynchronous latches are
difficult to simulate, because their timing has to be followed and correctly predicted using
wire and component delays, whereas a clocked flip-flop’s state can be processed by the

simulator at the clock transition times.

Amalgamating the shift rows step was possible because the signals being
transferred to the next step only needed to be rearranged. This freed a clock cycle in the
timing plan. Saving a step in each round allowed the use of two clock phases for the more
computationally-intensive mix columns and inverse mix columns functions. The DCM
was used since it could produce three additional clock pulses of the same frequency as
the system clock, at evvach multiple of a 90-degree phase delay. Since the system clock was
100 MHz, its period was 10 ns, making each phase 2.5 ns apart. The XC4VFX12 FPGA
on the ML403 board was speed grade 10, the slowest of grades 10, 11 and 12 [XILRIV],
and the design could not achieve the timing of 2.5 ns between round steps. Therefore a

second DCM was used to produce the additional three phases and the first was used to
56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

divide the clock by two. Four phases of a 50 MHz, 20 ns clock are 5 ns apart, and the
design was able to meet timing. The timing plans were carefully worked out so that
required data was available by the time of occurrence of the clock edge used by the

process requiring the data.

Figures 15 and 16 show the timing plans developed for the encryptor and
decryptor. In the encryptor timing diagram, notice the sequentially-placed sa (add-round-
key step), followed by “sub bytes”, then “mix columns”, after two phases of time so that
the mix columns logic would have 10 ns to propagate before being required at its 180-
degree clock phase. The key expand value, w, is made ready one phase prior to being
needed for the add-round-key step. Within the key expand module, rconout is made ready
well in advance of the time that it is needed for inclusion. The done signal is timed to go

high one phase after text out is ready.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Onsclock || =
20 ns clock : -

phases 90 180270 0 90 180
90 degree phase - L D
180 degree phase

270 degree phase [e 20 15 clock and phases produced
! : - by DCM |

Id s (ealload) | T (g
textin (table) ”
ey (stable) 1 T

Encaypt. _
dent (round count) :

sa (text infme xor W) i
sub bytes N l
¥ columns '

done '

text out | (sub bytes wor w's)
Key Expand

R

subwor '
Reon ‘
rent | }
ront_next |
reonout ' ‘

Figure 15, AES encryptor timing plan

Id_r is positioned to begin always on the same clock phase (see the section on
autoload). When /d_r is high, text_in is used to XOR with the key expand value, whereas
after that the key expand value is XORed with the final step (mix columns) of the

previous round.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10 ns clock — 1 '
20nsclock -
-phases O 90 180270 0 90 180
90 degree phase | S T
180 degree phase |
270:degree phase T 7T L] 20ns clock and phases produced
L1 | 1§ eypow
Id 1 (realload)y |
textin (stable) I
ey (stable)
Decaypt .
dent (round count)y | | i (setto 1 duringld 1)
dentgo o I i {setto 1 dt;ting?id%r}
sa (text i Xor W's of inv.mc's) i ~ |-use as st's for sub bytes
sibbytes |
ark (sub bytes xor w's) |
inv mix colurns (mc) |
done - 1 |tetout=ark
Key Expand retrieve 1 .
w's ’

Figure 16. AES decryptor timing plan

In the decryptof, the shift rows operation occurs before the “sub-bytes”, but this
operation is made implicit from the sa data by simple arrangement in the VHDL
assignment statements (as in the encryptor). The key expand value has to be retrieved for
use; it cannot be generated concurrently as in the encryptor, since the final key expand
value is needed first, in the decryptor. The key expand values are loaded into the
decryptor before any decryption transform is initiated. By initializing the step counter
dent to 1 during /d_r, and also initializing it to zero prior and by default, the number of
clock cycles required for decryption was reduced from eleven to ten — note that dent
actually is counted upwards in the decryptor. It should be possible to adjust the encryptor
timing plan and logic in a similar manner in order to reduce the time required by a clock

cycle.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The encryptor (aes_enc), along with the other supporting modules, used all
assigned BRAM resources. Therefore, in the decryptor (aes_dec), separate vectors to
store the key expand values were used, instead of the dual-port RAM structure that was
otherwise available, and Xilinx distributed LUT (Look-Up Table) ROMs, available from
the Templates in the ISE, were used for the S-boxes. Modifying the libraries to be
included in the project for the decryptor array declaration when the dual-port RAM was
being used, seemed to cause the slv_reg contents to be displayed backwards in post-
translate and later simulations. Declaring them as big-endian in the decryptor was the

“work-around.

The slave registér interface described before was modified in its write process so
that selected bits could be written to the slave registers by the core while the slave
registers were not already being written to by the bus. It is not possible to write, from the
core, a bit in a s/v_reg that is regularly being driven from the bus, originating from
software, since the bit will be overwritten and its value will not change. However, it is
possible to write to bits individually, thus choosing the role of each bit. The only bit
required in slv_reg0 as an output from the core is the done bit; the rest of the control bits
defined in this work for s/v_reg0 are inputs. Therefore the “case” statement in the
slv_regs write process was separated using “if” statements into groups of s/v_reg0 on its
own, slv_regs9-12, which are also used as outputs, and slv_regsI-8, which are only used
as inputs. The condition used in the “if” statements is the write select to the registers from

‘the bus; in the “else”, writes from the core were placed. Bit 0 of s/v_reg0 was assigned as
the bit to which done erm the core is written, and is set when donre is “1” and cleared
when Id_r is “1”. The clock to the slv_reg write process is the bus clock undivided; the
pulses from the core, being twice as long, would therefore always occur for enough time
to allow a bus clock rising edge to occur. The bits which are defined as control inputs
from slv_reg0 are assigned asynchronously in the core from their slv_reg0 bit positions.
In the block involving sjv_regs9-] 2, those registers are assigned from fext_out when done

iS ‘61”

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1.7.2. Additional AES Implementation Features

. .3.1.7.2.1. Autoload

e

Originally in the development of the encryptor and decryptor, a bit from siv_reg0
was defined as the “load” bit and /d_r would be set to “1” on its clock, if “load” was
high. This caused an avoidable delay in setting the bit in software and then clearing it — it
would have to be cleared or ld_r would repeat — in fact, /d_r always repeated when this
method was used until the “load” bit was cleared, because the speed of the transform, of
eleven clock cycles, was more than twice as fast as the software could set and clear the

“1”

“load” bit. Instead, a signal called start_load was defined which is set to “1” when
slv_reg8 is written, and cleared when /d_r is detected to be set to “1”. Therefore

start load turns on at some arbitrary time and waits for the Id_r process to detect it on the
chosen clock for /d_r, and then turns itself off. In the /d_r process, Id_r is turned off on
its own chosen clock rising edge if it is set, thus ensuring that it stays high for only one of
its clock cycles. Thus the write to the final rext _in register neatly triggers one Id_r pulse
and one transform. This could also be useful if DMA (Direct Memory Access) ability is
added to this core at some future date. DMA ability is available [XILOPBIP2H], and was

investigated as part of this work, but adding it is a considerable undertaking.

3.1.7.2.2. Key Expand Readout, Storage and Readback

A method to induce the encryptor to produce and hold the key expand values one
at a time to be read by software, was developed in a resource-efficient manner by
utilizing control bits connected from s/v_reg0. Since software sets the control bits, a
slice-consﬁming VHDL process to generate the control bits as a signal did not have to be

used, and the control signals need only be read by the core.

One control bit, krd is used only to signal that the key expand module is in “key
expand readout” mode. If it is set, slv_regs9-12 are set from the key expand value, not
from text out. A second control bit, kstep, is used to proceed to the next key expand

value on the next clock when it is high, or to hold the current key expand value when it is

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

low. A third control bit, kstepend, was found necessary to prevent the state variable,
rent_next from free-ruﬁning (repeatedly causing its own update) in the “rcon” (round
constant) module. It was necessary in the end to add a small process to time the exact
transition of kstep and kstepend to the clock pulse before rcon is generated for its use in
the key expand modulef Then, as long as krd is “1”, setting kstep to “1”, then setting

“1”

kstepend to via software, would cause the subsequent key expand value to be
available for the software to read from slv_regs9-12. Simultaneously clearing kstep and
kstepend is necessary to prepare for the generation of the next variable. To begin the
whole process, load (via autoload) must be done after setting krd. The first key expand
value is the key itself, and is read before using kstep. When all eleven key expand values
have been read, krd niusf be cleared in order to use the encryptor in its regular transform

mode.

A random-access protocol was added to the decryptor to store the key expand
values. Four bits of slv;regO in the decryptor were assigned for selection of eleven
internal storage vectors, kcnt, internally, and a VHDL case statement was used to select

‘the storage vector to receive the contents of s/v_regsI-4 (the key input slave registers)
when kld (“keyload”, from slv_reg0) is “1”. When kld is “0”, dcnt is used to address the
particular key expand value when the decryptor is operating in its regular transform
mode; as noted before, dent is actually counted upwards from zero in the decryptor; note
that this means that the final key expand value (in encryption order) is located in address
zero of the internal decryptor storage and thus the entire set of the eleven key expand

values is stored in the decryptor in reverse order.

Also when kld is “0”, a kbrden (“key buffer read enable”) signal from slv_reg0 is
used to select key readback, which was used as a confidence test when the decryptor was
under development. An asynchronous assignment was used to determine the random-
access address, read_kb, used to obtain the selected key expand value when k/d is “0”,
since dcnt is used when kbrden is “0”, for the regular transform mode, and kcnit,

‘determined from the random-access address set in slv_reg0, is used when kbrden is “1”":

read kb <= ((not(kbrden & kbrden & kbrden & kbrden)) and dent)
or ((kbrden & kbrden & kbrden & kbrden) and kecnt);

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Note that ”&” is a concatenation operator, making a four-bit vector from kbrden for
selection of either dcnt or kcnt. If kbrden is set in slv_reg0, the corresponding key expand
value, according to the number set in the kcnt bits set in slv_reg0, can be read from

slv_regs9-12 under software control.

.3.1.7.2.3. Cipher-Block Chaining (CBC) Mode

In a block ciphér such as AES, the same block encrypted with the same key
always gives the same ciphertext. This mode of encryption is known as “Electronic Code
.Book” mode, and is obviously cryptographically weaker than if the plaintext could be
“salted” in some continually-varying way — in cryptography, “salting” the message means

to add unrelated content before encryption in order to attempt frustration of cryptanalysis.

In Cipher-Block Chaining (CBC) mode, the plaintext is XORed with the output of
the previous encrypted block before being fed to the encryptor core for encryption. In
decryption, each decrypted block is XORed with the previous block of ciphertext to
reveal the plaintext. This is possible due to the property of the XOR operation that it is its
own inverse. When the first block in an encryption or decryption sequence is processed,

-an “IV”, or “Initial Vector” is used in place of the ciphertext of the previous block.

This was added as a non-optional feature — in the encryptor a one-time dore pulse
~ was added during which time the ciphertext is transferred to the IV vector, which was
‘reused for this purpose as well as for the actual IV, for simplicity. In the decryptor, two
such pulses were required; in the first, the output is XORed with the /7 to form the

plaintext; in the second, the 7V is updated from the current ciphertext.

To enter the IV, an ivload bit was defined in siv_reg0 for both the encryptor and
the decryptor. When “1”, the contents of slv_regs5-8 are copied to the internal IV vector.
An ivrdback bit was defined in slv_reg0 for the decryptor. When set, the current value of
the IV is copied to siv_regs9-12 for read-back. This feature was not added to the

encryptor, due to space concerns.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- 3.1.7.2.4. Timing Diagnostic Output for Test

In each of the encryptor and the decryptor, a “test process” was added in which a
signal, called loadtodone is set high when Id_r is detected and cleared when done is
detected. This signal was defined as an output in the formal parameter list of the module
and passed up to the outer wrapper where it in turn was defined as an output in its formal

| , parameter list. This change was the only change necessary to the outer wrapper. In the
EDK, this signal from the encryptor was connected to pin AF24 of the FPGA, which is
connected on the ML403 board to J6 pin 64, and this signal from the decryptor was
connected to pin AA24 of the FPGA, which is connected to J6 pin 2. As the top side of
the ML403 board is viewed so that the large, gold-coloured “Virtex V4” and “Xilinx”
labels are the correct way up for reading, J6 is the large header on the far right of the
board. It is a double-column header; the third column of pins placed to the left of J6 to
-make it appear like a three-column header is actually J3. There is another three-column
header to the left of J6 and J3, with some PCB (Printed-Circuit Board) space visible
between it and J6 and J3. Pin 2 of J6 is at the upper right of the header and pin 64 is at the
bottom right; both are corner pins, making attachment by an oscilloscope probe as easy as
possible. The comparatively large, threaded brass cable connectors nearby on the PCB
make a useful ground connection for the ground alligator clip of the oscilloscope probe.
The “net” connections to the FPGA pins from the design can be found in “system.ucf” in

the \data\ directory of the EDK project and are shown here:

Net aes_enc_0_loadtodoneout pin LOC=AF24;
Net aes_dec 0_loadtodoneout_pin LOC=AAZ4;

In an earlier version of the AES core, an output signal set from the “load”
slv_reg0 bit was routed to one of the pins noted before, as well as loadtodone, when only
one core at a time was being tested in the FPGA, and before the autoload modification
was done. This allowed the time taken to set and clear the load bit via software to be

measured using an oscilloscope.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 17 shows the locations of the control bits in s/v_reg0 in the encryptor and

decryptor:

Enceyptor - stv_reg0

LI TP PP PP T T PTTTT T T I [refrefme]r o]

LE 00 01.02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
BE 31 30 29 28 27 26 25 24 23 22 21 20 13 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

D - Done, L - Load (Go) (ric longer used), I - IV load
Key expand mode: Kr - Key read (Rey expand mode), Ks - Koy step, Ke - Key step end (Key expand values are read from siv_regs9-12)

Decrypter - shv_reg0

1 O O O 5153 S) ES N ED ST A)

LE 00 01 02 03 04 05 06 07 0B 69 10 11 12 13 14 15 16 17 18 1% 20 21 22 23 24 25 26 27 28 29 30 31
BE 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1413 12 11 10 09 08 07 06 05 04 03 02 01 00

D - Done, L - Load (Go) (no longer used), I - IV load, Ir - IV readback
Key storage and read back: K1 - Rey load, Kb - Key readback, K3-K0 - Key schedule index (reverse of encryption order)
LE - Little Endian, BE - Big Endian

Figure 17. Control bit locations in slv_reg0 for both AES user peripherals

Bit 02 (BE — Big-Endian) in the decryptor was for “Key Expand Done”, but that

is not used since the key expand values are supplied to the decryptor.

.3.1.7.2.5. A “Stepper” Version of the Decryptor

Blocks of logic were added to the decryptor to enable their corresponding clock
_phases in the core ;vhen the software would pulse a bit in s/v_reg0. A counter was used to
count through the clock phases, incrementing once each time the bit in slv_reg0 went
high, and an enable for each phase was timed to be “1” when the rising edge of that phase
was to occur. These enables were added as a condition to each process that uses a clock
phase. The output of each resulting step of the three steps per round was placed in
slv_regs9-12, resulting in a readout of the current state for each step of each round. This
was written as a debugging check, and remains of theoretical interest. The method used,
of implementing a separate process to enable each clock phase with its own pulse, was
costly in terms of FPGA fabric and led to the realization of the simpler method used in

the key expand generation feature.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A simple CLI (Command-Line Interface) program was written to write the key
and the plaintext to the decryptor peripheral’s slave registers, pulse the load bit, then
repeatedly pulse the step bit in slv_reg0, and read slv_regs9-12, and send their hex-
ASClI-encoded values for display via RS232 when the user presses a printable character
key on the computer keyboard — see the section after, “CLI and Simpler Programs™ for

more description of this general programming technique.

A bug was found in which the initial key expand value used was not correct due
to the repeated /d_r during the “load” pulse causing the array index used to access the
array of key expand values being incremented; the index was not being initialized along

‘with the value of dcnt when the latter was initialized to zero. Due to arbitrary key expand
values being left from previous rounds of operation, the “stepper” would eventually
produce a series of correct output values. This knowledge was used to correct the
decryptor’s operation by initializing the key expand values always from the first element
of the key expand array rather than relying on the initialized array index; in the
subsequent round, /d_r occurred, and the index was always being set to the second value.
This fix was added to'v the “stepper”, as well, which should correct its operation, but the

“stepper” was not subsequently tested.

3.1.8. Test and Demonstration Software

3.1.8.1. CLI and Simpler Programs

Numerous small CLI programs were written to be loaded into the ML 403 board to
‘test the AES cores, beginning with one to successfully write and read back the slave
registers. The standard program, “Hyperterminal”, included with all versions of
Windows, was used on the PC to view the RS232 output from the board and send user
keystroke data. Xilinx provided easy-to-use function calls to use the UART and the
RS232 port, such as inbyte() and outbyte() — the parentheses following the identifier is
syntax that indicates a C function, and, in actual implementation, may or may not contain
a list of parameters béing passed to the function. In addition, Xilinx provided a written

“TestApp_Memory” C program that tested memory and reported via RS232, making a

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

useful test of system “liveness”. Next, one was written to write the key and plaintext and
“to turn the “load” Eit on and off, loop to wait for the “done” bit, and then read siv_regs9-
12; later, this was also written to test the decryptor. These confirmed basic operation of
the user peripheral, once the same cryptographic output appeared that was seen in

simulation.

Functions were written to encode and decode numeric values and strings, because
raw binary data should not be sent over an RS232 link, for the reason that some numbers
are RS232 control codes that can stop the link from apparently functioning. Any numbers
sent over an RSQ32 link that are not intended as control codes should be encoded as
printable ASCIIL. The encode function, called “hex-ASCII encoding” in this work,
interprets numeric data as hexadecimal and creates the printable characters representing
the hexadecimal digits. The decode function takes a string of characters that represent
hexadecimal digit§ and converts it into the numeric data that was represented. Note that

-an ASCII character requires eight bits and a binary hexadecimal digit requires only four-
bits, meaning that this type of encoding doubles the storage space required (when the data
is not immediately decoded upon reception). When the program in the board sends
numeric data for display, it encodes the digits, and when it receives numeric data typed
by the user from the keyboard, it decodes the characters received, to determine the

numeric value of the data.

Versions for each of the encryptor and the decryptor were written to loop, setting
and clearing thé “load” bit, when that was used, looping to wait for the “done” bit, and
then repeating. This was used to determine the maximum possible processing speed
available using this overall design, and did not even include any RS232 output, being
intended for measurement of the diagnostic output signals using an oscilloscope. Later,
these programs were revised to use autoload and to include a full write of the input and a

full read of the output.

A full CLI test program was written to exercise all features included with the

cores; this program evolved as features were added, originating as a version to test only

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the encryptor. Its basic design is an endless loop with no exit criterion, containing a wait
for a character to be fcce_ived via RS232, following which a C “switch” statement (which
is the C-language equivalent of the VHDL “case” statement) was used to act on valid
command characters received. An infinite outer loop is the basic computer operating
system in its simplest form. In it, the list of tasks to be done is placed, to be processed in
a round-robin fashion — i.e., repeatedly. Notably, this test program echoes the key expand
values one at a time via RS232 when the key is loaded, as they are copied to the
decryptor core. The inbyte() function waits for input if none is available, making it useful
for halting processing to allow the user to view the output generated. Typically, a string
such as “Press any key to continue” is first sent for display, following which the wait-for-
input function call is invoked. The character typed by the user is generally not otherwise

used in this specific situation.

Since Cipher-Block Chaining mode was added to the AES cores, the IV is loaded
to both by this test software, and the encrypted block can be seen to vary, following

which it is always decrypted to the correct plaintext, upon repeated test encryptions.

Commands available in this program are: “i - enter the IV; v - view decryptor's
IV; k - enter the key (and do key exp); p - enter the plaintext; e - encrypt and decrypt; x -
Display the decryptor's key expand values”. The command characters are made case-
insensitive in the switch statement by using pairs of case statements for each block. This
saves the memory required to add in an extra library; moreover the library containing the

standard C “toupper” function was not found in the GNU libraries provided by Xilinx.

This basic design was used for the ML403 board code that works with the

demonstration GUTI: the demonstration GUI sends the individual command characters.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1.8.2. The AES Demonstration GUI, “AESfile”

The demonstration GUI sends the individual command characters to the board
and then has a programmed dialog with the board until the specific dialog for that

command character finishes.

In this demonstration, a text file with a given name, “plaintextin.txt” is sent block-
by-block to the board and encrypted. Each encrypted block is hex-ASCII encoded by the
board and sent back to the PC for storage in a text file, “ciphertextout.txt”. The GUI-
board system also does decryption by reading a file called “ciphertextout.txt” and sending
the block of hex-ASClII-encoded bytes back to the board, which sends back the block of
sixteen characters (128 bits); the GUI saves these in a file called “plaintextout.txt”. Note
that the block of hex-ASCII-encoded bytes requires 32 ASCII characters, one to represent
each hexadecimal digit in 128 bits. The ASCII values of the block of sixteen plaintext
characters are treated as numeric data by the board for encryption purposes. For

“decryption purposes, the 32 hex-ASCII-encoded characters received are first decoded, by

the board, to sixteen bytes of numeric data.

- 3.1.8.2.1. The ML403 Board Code

When ‘K’ is received as a command, the board then expects the hex-ASCII-
encoded key from the GUI, which it decodes, writes to the encryptor, does key expand

and writes the key expand values to the decryptor.

When ‘i’ is received as a command, the board then expects the hex-ASCII-
encoded IV from the GUI, which it decodes and writes to the encryptor and the
decryptor.

When ‘e’ is received as a command, the board encrypts the IV using an IV of
zero, sends it to the GUI, updates the encryptor with the IV, and then loops: receiving
blocks from the GUI, encrypting them and sending them back. It stops when the ASCII

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

character “ETX” (End-of-Text) is received and includes it as the last character to encrypt,

padding any remnant of the last block with zeroes.

When ‘d’ is received as a command, the board first receives the encrypted IV
from the GUI (hex-ASClI-encoded), decodes it, and decrypts it using the key and an IV
of zero. Then it ﬁpdates the decryptor’s IV with the decrypted IV Then it loops, |
receiving hex-ASCII-encoded blocks of ciphertext from the GUI, decoding them,
: decrypting them, and sending them back. When the ETX is found, the loop exits.

3.1.8.2.2. The PC Demonstration GUI, “AESfile”

A package written for MSVC++V6, to do serial 10, was located [KLE2003], and
incorporated into a MSVC++V6 project. Its function calls (“methods” in C++), provided
the ability to communicate with the ML403 board via RS232.

The GUI, named “AESfile,” provides two “edit boxes” for entry of the key and
IV, and two “static text boxes™ next to these for display of the resulting numeric key and
IV, since, if characters are typed into the “edit boxes”, their ASCII values are used as the
numeric cryptographic data. Radio buttons are provided to allow interpretation of the

user’s entry in the edit boxes as either hex. digits or ASCII characters.

Two buttons are provided, one to encrypt and the other to decrypt. A large static’
text box is provided in which activity echoing is shown, such as the data being encrypted
or decrypted. A function was designed and implemented to add characters to the activity
display and delete the oldest characters when the text box becomes full, giving the
appearance of “scrolling”. When a button is clicked, the files are read and the board is
commanded to encrypt or decrypt, via the procedure described before. The IV is
encrypted and added to “ciphertextout.txt” so that only the correct key is needed to
decrypt an encrypted file. Encrypting the IV was realized to be somewhat of a
cryptographically faulty idea, as described before (see section 1.2.4.2. “Encapsulating

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Security Payload Protocol™). Figure 18 shows a “screenshot™ of this demonstration in

action.

ALS-CHC Lile Uncrypling Bemonstration

 nacicat

 Ciphenewt

Figure 18. A "screenshot' of the “AESfile” demonstration

Test methodology for this, to determine the encryption speed, consisted of timing
the file encryptionwand decryption processes as they progressed, using a digital watch thaf
counts seconds. Due to expected delays caused by the RS232 transmission and the text

display to the activity window, a more accurate timing method did not seem justified.
It seemed that other programs installed on the PC would hold access to the serial
port and prevent communication from working. One such seemed to be the Tektronix PC

Communications software, whose use is described after for obtaining images from the

oscilloscope. Another seemed to be MSVC++V6; it was necessary to repeatedly begin

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and stop debugging in its IDE (Integrated Development Environment) in order to obtain
access to the serial port — which, at least, was faster than rebooting the PC.
“Hyperterminal” could be used to determine if access to the serial port could be obtained,
as it would repoft a dialog box if it could not obtain access to the serial port; however, |,
that indication was not reliable when the Tektronix software was seemingly preventing
access. “Hyperterminal” must itself be “disconnected” using its menu option or exited if

it is required to use another PC program that accesses the serial port.

3.2. Design of a Combination LFSR-CASR Pseudo-Random Number Generator

3.2.1. Selection of the Base Design

The availability of random number generators was somewhat limited; on the
“Open Cores” website [OPENCORES], there were only two selections available. The
Verilog/SystemC LFSR-CASR (Cellular Automata Shift Register) RNG was chosen for
its claimed good statistical properties [VILL2005]. The other, a library of RNGs, was
indicated as not being synthesizable [DRA2004].

| 3.2.2. Description of the Tkacik-Villar LFSR-CASR PRNG
This PRNG was made available in SystemC and Verilog, and based on the design
by Thomas E. Tkacik [TKA2002].

The LFSR contains bits numbered from 0 to 42; each clock, each of bits 0, 19 and
40 are replaced by their XOR with bit 42, then the contents of the LFSR is rotated one bit
to the higher directioﬁ: bit 0 becomes bit 1, and so on to bit 42 becoming bit 0. The
resulting output has a cycle length of (2**)-1 and a bias of 27

The CASR contains bits numbered from 0 to 36; each clock, each bit is replaced
by the XOR of its two neighbour bits, with bit 36 and bit 0 being considered neighbours,
and bit 27 is specially included as a third XOR input for its subsequent value. This is a

“cellular automata” reminiscent of “Life”, and introduces non-linearity. “Life” is played.

or run on a two-dimensional matrix of square cells of (ideally) infinite extent. Every tick

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of its “clock™, each cell is declared as “live” if it previously had exactly three “living”
neighbours out of its eight, unchanged if it had exactly two “living” neighbours, and
“dead” for any other status. It produces many interesting non-linear combinations of
cells, and it in particular, as well as cellular automata, are a separate field of study. The
37-bit CASR has a cycle length of (2¥)-1 and a bias of 2%

Each clock cycle, the low-order 32 bits are XORed together to form the output.
The LFSR-CASR combination has a cycle length of 2802823741 and a bias of 2%
[TKA2002]. The final XOR and the use of only the lower 32 bits of each state conceals

the states from cryptanalysis.

The combination produces a good randomized output ([TKA2002] pg. 7), and
does well on the “Diehard” tests ([TKA2002] pg. 8) — see section 2.7., “Random Number

Generators”, before.

3.2.3. Test Methodology and Use in this Work
In this work, this PRNG was first translated from Verilog to C++ — which was a

significant coding change, and its output was verified for correctness against simulation
of the original Verilog. Then the C++ program was made to output, in hexadecimal, up to
100,000 32-bit numbers, and up to 100,000 128-bit numbers by grouping the 32-bit
numbers in fours. DOS Sort was used to sort the numbers into numerical order, and a
second C++ program was written to count the numbers that fell within groups of values
~of the same first »tvvvo and three digits, giving 256 and 4096 groups of numbers,
respectively. The count of the quantity of numbers that fell into each group were plotted

against the location of the groups in the number-lines of magnitude 2% and 2'%.

The C++ code was then modified into C code, in a minor change, for inclusion in

the IPsec implementation.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3. Design of an IPsec Implementation, “IPsecImp”, Using the Five-Layer Security

Framework

3.3.1. Cvs. C++ for Embedded Systems

Since the IPsec implementation will have to go into an embedded system, amount
of memory used is critical. Although the ML403 board has 1MB of SRAM, it is desirable
for test and demonstration purposes to fit the entire software package into the available
BRAM on the FPGA/CPU chip itself, for one-step downloading from a bit file. The
implementation created along with the AES peripherals provided 32kB of BRAM. C++
code with a class and a constructor and small method of only approximately two lines, as
generated by the GNU C++ compiler that came with the Xilinx EDK, required about 40k.
In comparison, 64k times 16 would be the entire SRAM of 1MB. Clearly C++ is too
costly in terms of memory usage for the ML403 board. Equivalent code compiled with
the GNU C compiler required about one-seventh the memory, and the IPsec portion
implemented used slightly less than 32kB (0x8000 bytes).

3.3.2. Top-Level Design of a Peer

An IPsec implementation, designed for demonstration and testing, was developed.
The important functionality is located in the ML403 board, and called “IPsecImp” with a
GUI to operate it, via an RS232 serial connection, located on a Windows PC, called
“IPsecGUI”. The GUI commands the OSI layer functionality to start, sends it its

operating settings as chosen by the user, and displays results.

Figures 19, 20 and 21 give an ambitious top-level design for an IPsec peer,
showing all five layers of the security framework. Following that, Figures 22 and 23

show the portion that was implemented.

Layering helps the design a good deal, by reducing it to an exercise in
“connecting the dots” — but the design of the management layer still is not entirely
-rigorous. SLAs (Service Level Agreements) are used to determine the policy settings for
the SMIB. The layers used are numbered as follows: 1., Policy, 2., Management, 3.,

Services, 4., Mechanisms, and 5., Primitives.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It was planned to use public-domain code for all standard mechanisms and

primitives — which was done for the two primitives implemented, AES and the PRNG.

Falicy Layer | Management Layer ' Poficy eriry from keyisoard o e
ehsron e each user 2 Fleckers’ @ S8
o opag @
SlAs- User |y Usar interfave ‘ . ' t:.%s I Kw‘mmge(‘z;
Policies 1 (Sotiwars) e |y MR l Yy
, 1 BackupiRestor
b I Raquast resiotes! Controller store n
::’:“Y’WW% wmelrickey
Detection/Pravantion of Ll Gt ervice
invalid entry (Sdcurly. . 3
Violslons) TapoDiva. |5
 E—
SPOBY ' 4
System Capacity wes
Usir Interface o all SMIB ™} analysie - disdhow ertties: Sec.vids. | Saw
!(:yers) ‘ Hrut osed system capacty M,U}l l«wm
(o D KEad | y #‘ L i
m iPsec LoygingMonitoring
Controlisrs Residinto " —
How stento btk Backup
Joigs Dravious optionie) Wi ’ eniitr
Swht o log ¥

Figure 19. The Policy layer and upper portion of the Management layer — an ambitious design

public -2,

Dispatoher l
intemnet

Wt - ol it }
oty s ek -
1 1PSec Condroller

- Dosant risad coopectiong 1o
Corn, wlly, o %m"“m""“mm“A 3 gt the SPDB or e Ut
IKEASAKIMP =
Pear . Controlier

Kay Managsment
smairtaing Keys acc 10 SALE

{13 Floppyliskiess servar iy
secure loation: (SPDB ahd SADS)
(23 SLAs, SPUBI, SADH, ey
aoregs - nuln: backiip whensvet o
changs i nadi - oot for loaghig (V) ; A
(33 Tape difve for first nymeof security: T
Encryption of dala for sepore yer, 1 ‘Key storage

! Dt ususlly goos ot ways, bl arows
w g CONtOLAME managenent gt i the dreclion ot the thadule cafed.

odules

Figure 20. The lower portion of the Management layer — an ambitious design

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Services Layer .)
Sk Clrlr
Confidgndiality]'mesmv] ‘Mhentica!ioﬂ i Anti-replay mg 'é;mgdwcgw
SMIB All mudules
e
Mecharieme Layer .
All modules Ok key mgrat Engryption

HMAC- ~Symmitdc; Agymmetric

~private. and public key

< ganaration "x" and "g¥modn")
m -ahared-sevret generation l

Primitives Layet

lAEQT at;\srsl

Modutar arithimetic:
LCRT -Mull. .
-mult ol exp. |

Frime bumbar gansration
+iitterRabin algorithm

T] mEasaKMP Crar :
PRING (Pesudo-Random], |
furnber Genarator) .

SMB All modulpe

Figure 21. Service, Mechanism and Primitive Layers — an ambitious design

The portion implemented was a subset of the design shown in Figures 19, 20 and
21, as shown in Figures 22 and 23. See also Appendix A, for pseudo-code.

Pulicy Layer

The SPDB, or policy server, resides on Management Layer- e
the PC; all else except the GUI resides on -Polcy.eniry from keyboard or fie
the terget bosrd, which is the node, or “IChange IPec kays® coammand

' SPOB User Interface (GUY) Detection/Prevention-of -
‘ oo Bl Iriafith @y

{Software, PC)

{to all SMIB
layers)
System Capacity
analysis - dissliow srdries
ihat exceed system capacily
(For tast and cortrolin ;
demy, version)
, Dispatchar {FSec Controller
i o St et
Intemet / onthe link whether FSec appies. :

(Extornal {o the fivedayer Date usually goes both ways, but arrows
pind i the divecticns of the module called.

secwity architecture)

Faear

! Smis] ’

Figure 22, The Policy and Management Layers — portion implemented

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vSarvicas Layer

Confidentiality. - !Mthantir:ation }

SMIB All mdules

i

tachanisms Layer

k. 4 ¥
Al modules JEncryption
i ~Bymmutric HMAC
Primitives Layer
¥ ‘ y
PRNG (Pseudo-Random A
Number Genserator) & SHA 2 {dummy) »

SMIB All modules

i

Figure 23. The Service, Mechanism and Primitive layers — portion implemented

The basic design is the same as used previously, in which an infinite main loop is
used, within which a command character is awaited from the GUI via RS232, and acted
on using a switch statement, with the difference that a “non-blocking™ check for a
received character is used in order to allow the outer loop to run freely. That allows other
processing to be inserted before the command character check. In this design, two 32-bit
counters were added to continually count, in order to be used as a random seed value for

-the PRNG. Since the PRNG used (see before) has internal states of more than 32 bits,
only a portion of the higher-order 32-bit counter is used. That one is counted down (in a
cycle) from OxFFF FFFFF (hex.) and the lower-order one is counted up, from
0x00000000. Other processing is the functions of the OSI layers, including the IPsec
sublayer, within an “if” block that is activated by a Boolean variable, PacketProcessing,
that is turned on when a command character is received, sent by the controlling GUI
when it is ready to send it a packet to process. The function calls for the three
implemented OSI layers are listed within that “if” block, and they are repeatedly called,

every iteration of the outer loop, until there is no more processing to do, in which case the

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PacketProcessing variable is turned off. This top-level loop is considered the
management layer; Figure 24 illustrates this design. See section 3.5., “Design of a CLI
Version, ‘IPsecLoop,’ to Facilitate Testing,” for a slightly differing version. Pseudo-code

for most functions implemented can be found in Appendix A.

Initialize PRNG, N
Key SP1 : :
¥ 7 Character
Initistize SMIB Received
* 7
Ine. loopcounter

Case of char.tovd |~ ny. | send *Hallo" characters vie RS232

|
: . | seodthe RNG with the 64-bit count
A~ and | send the count wia RS232

L

i | sendthe SADB via RS232
| _

igh | receive the SADB via RS232
|

[Pgnc avllayer \mi: | send the SMIB vie RS232

! ,‘

layer o 7 | toceive the SMIB via RS232

Packet
processing
e/

')

1 | toggle load key in core every

i
< 'p": | Togale packet processing

Figure 24. "IPsecImp" top-level loop flowchart

The command characters are the following: ‘r’: the PRNG is seeded from the
free-running counter values. The unpredictable time at which a human operator would
cause the GUI to send this command introduces the true random element. The seed value
is also sent to the GUI. ‘h’: the characters of the string “Hello” are sent to the GUI, as an
indication of board “liveness”. ‘z’: the SADB is sent from the board to the GUL. ‘s’: the
SADRB is received from the GUI by the board. ‘m’: the SMIB is sent from the board to

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the GUL. ‘i’: the SMIB is received from the GUI by the board. ‘k’: a variable,
KeylsAlwaysTreatedAsNew is toggled that determines whether the key should always be
loaded to the core for evéry IPsec packet transform or if it should only be loaded when it
changes. Internally, theré is a NeedNewlV Boolean variable that is set when the IV from
the SADB (and otherwise when required, see after) is zero. ‘p’: PacketProcessing is
toggled. It is only turned on if there is a protocol and mode set in the SADB. This code
can also be operated via Hyperterminal for debugging purposes. For the purpose of
discarding data sent when the board is not ready for it, none of these command characters

are characters that represent hexadecimal digits.

Before this outer loop is entered, the SMIB is initialized to the services,
mechanisms and primitives made available by the embedded software and FPGA

configuration. A cleared SADB is also created.

The C language syntax provides the ability to define variables for the compiler’s
pre-processor to read; these are called “#define” (“pound-define”), and can be checked
using “#ifdef”. In thié design, the C function prototypes and their external declarations
were put in the same file, and a “#ifdef” was used to check the alternative to be used,
using conditional compilation. A header file that included the main header file was used
to be included in files that used another file’s functionality, that “#define”’ed the variable
to be checked. The native header file was included in its own source code file, so that the
variable would not be defined and the native file would have its function prototypes

‘selected. This technique can be used to implement a limited form of the object-oriented
concept of private methods and data; generally a header file’s #defines are made
available to other files that need to use that file’s functionality in this technique. Another
use of “#define” and “#ifdef” is to “#define” a variable at the top of a header file if it is
not already defined, and to include the contents of the header file as well, in that
conditional compilation. This prevents errors if header files included in the header file
include the same header.ﬁle at some level of inclusion; the header file will not include its

content if its vatiable is already defined.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.3. SMIB (Security Management Information Data Base)

The SMIB is organized using C language “structs” (data structures), one
representing each layer. The SMIB itself is a “struct”, containing the lower-level
“structs”. Some ideas for general content of an SMIB were found in [KEN1994] (see also
section 1.2.2., “Security-Policy Database and SMIB”, before). The policy “struct”
contains an integer giving the number of policies, and a pointer to the defined policy
“struct”, allowiﬁg more than one policy to be pointed to, by allocating the memory
required. Although the SMIB contains a value for the number of policies, only one policy
at a time is used in the board at this time. The management layer “struct” contains four
bytes for the local IP address, an integer for the number of clients, a Boolean variable
indicating whether the client addresses should be interpreted as pairs, for range purposes,
and a pointer to an array of four-byte client addresses, so that any number of client
addresses can be referenced. The Services layer “struct” contains a “struct” for each of
AH and ESP, each of which contains a Boolean variable to indicate whether the service is
available, and an integer to indicate the mechanism number. In future work, the AH and
ESP structs can be replaced with pointers to them so that more than one can be stored.
This would allow selection of different services. In the same way, the mechanism number
would allow selection of different mechanisms. The mechanism layer is designed in a
similar way, as is the primitives layer, which could allow a great deal of flexibility in
choosing combi;lations of algorithms. The numbers in the primitive layer “structs” refer

to primitive algorithm numbers which can be chosen for each type of primitive.

3.33.1. The Policy Layer

The policy “struct” has two conceptual groups of variables: selectors and SA
negotiation goals. The selectors determine whether a packet is to be processed, in flexible
ways; each has a Boolean variable associated with it to determine if it should be used, or
interpreted to match any packet. The six selectors implemented are understood to be
combined together in an “AND” sense, since each selector represents an additional
criterion to check. An overall Boolean is used to set whether the result of the overall

selection should be taken in the opposite sense.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the “negotiation goals™ group of variables, the protocols and modes desired
should be considered to be non-negotiable. A “negotiate” Boolean is provided to select
whether it is acceptablé to negotiate different service numbers of those available. Two
sets of negotiation goals are provided, inner and outer, so that IPsec protocols can be

nested in pairs.

3.3.4. SADB (Security Association Data Base)
See the SADB plan in the pseudo-code in Appendix A for the complete list of
contents of the SADB.

Note that the Service number field in the SADB is the location where the number

chosen in negotiation from one of the available services is stored.

The “IV Constant” field in the SADB is used to clear NeedNewlV (equivalent to
setting it to “FALSE”, in C — any non-zero value in a C variable is interpreted as
“TRUE”), unless the IV is zero, in which case NeedNewlV is set on a one-time basis.
This helps to counteract the natural user disinclination to originate cryptographic
material. NeedNewlV is passed down the layers via function calls to the mechanisms
layer, where it induces the getting of a new IV using the RNG in the sending case, when

encryption is used.

As it was realized that an SA is associated only with a communication in one
direction, considerable simplification resulted from reducing the number of keys and IVs
from eight to two, since incoming and outgoing cryptographic material did not need to be
stored in the SA, and neither did that material need to be stored on behalf of the other
entity.

3.3.5. OSI Layers Implemented
The IP (Internet Protocol) layer, IPsec layer and Link layer are represented in this
‘work. The Link layer is a dummy layer that calls the dispatcher to get the IPsec packet

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and send it back to the IP layer. The IP layer is largely a dummy layer that receives the
packet from the GUI via reliable data transfer, in “IPsecImp”, or copies the established
test packet in memory, in “IPsecLoop” (see after). When a layer receives a pointer to
allocated memory via the dispatcher, and uses it, it is responsible for deallocating that
memory. When the IP layer receives the IP packet back via the dispatcher from the IPsec

layer, it echoes it and then deallocates its memory.

The IPsec layer is based on the service calls. It checks the dispatcher for the
presence of a packet. There are two outer if blocks, one for the transmit, sending,
outgoing, or IP to IPsec case (in which case the IP packet is converted to an IPsec packet)
and one for the receive, incoming, or Link to IPsec case (in which case the IPsec packet

_is converted to an IP packet). In the transmit block, the SADB for outgoing packets is
checked for the protocol to use and the appropriate service call is made. In the receive
block, the protocol field of the datagram is checked and then the SPI is checked for a
match against that set in the SADB for incoming packets, before the service call is made.
The pointer to the “incoming” SADB is set, in the management layer, to the “outgoing”
SADB so that they will be identical for the purposes of this research. Any error codes
generated from lower levels are passed to the Management layer for appropriate action,
such as stopping packet processing and displaying error messages. Before each service
call, the reliable data transfer routine is used to send a short synchronization message,
literally the characters “Synch”, to the GUI, to alert the GUI to start its timer to measure
the duration of the service call. Following the service call, regular RS232 output is used
to alert the GUI that processing has ended. Following the “receiving” AH service call, a
message indicating whether the authentication succeeded is sent via RS232; reliable data

.transfer was used to prevent the GUI from missing it. Figure 25 illustrates the design of
the [Psec layer.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Peotasol. Syoch. o7, GUT -p{ ‘13 AR Setvics.
is " '
?
Synch. w.UL 13 ESP Survice

KeylsHow e FALSE

Retug -]

Dulele the [Peec packet

&

Figure 25. The IPsec layer flowchart

3.3.6. Board-GUI Reliable Data Transfer
In development of the AES file encryption demonstration, “AESfile”, a

‘considerable number of extraneous characters were observed being received by the GUL
Their source is unknown, whether that was a characteristic of the serial package used
[KLE2003]. In an attempt to deal with that in the “IPsecGUI”, first it was attempted to
require all characters, even printing characters themselves, to be hex-ASCII encoded and
allow reception of only characters representing hex. digits, discarding any others.
However, extraneous characters could still conceivably be hex. digits (0-9, a-f, or, A-F),
and debugging using :Hy‘perterminal was made tedious since even the text strings sent
were encoded and readable only with much difficulty. What was really needed was

reliable data transfer.

The requirements for this feature were the sending of a checksum, its verification,
as well as three-way handshaking. Not only should the sending code receive an “ACK”
or “NAK?”, but the' receiving code should have it echoed back to know that its response

“has been received. Finally, the sending code should receive an acknowledgement that the

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

receiver knows that the sender has received its response. Another requirement was that
communication should not “deadlock”, for example, with the receiver waiting for a

character and the transmitter not sending any more.

The above requirements were satisfied by the following. First, the “receive” code
sends “STX” when it begins to wait for a transmission. The sender begins sending when
it receives an “STX”. When the receiver receives something, it stops sending “STX”. The

“send” code sends its message, followed by a hex-ASClI-encoded checksum, and then
sends “ETX” characters if it does not receive a response, until it receives a response. The
message is hex-ASCII-encoded if it consists of numeric data, and the checksum is
calculated from the unencoded data. The receiver uses the numeric ASCII value for
“ETX”, 0x03, if dropouts occur and it needs some “ETX”es to make up the required
length of the message, which is supplied to the “receive” or “send” code by its respective
calling function. In that case, the message verification fails (which was tested as being
quite reliable). When the receiver has done the message verification, it then sends “ACK”
or “NAK?, until it receives back either one, and then stops sending. The “send” code is
aware that the “receive” code has received back its echo when the receiver stops sending.
If “NAK” was sent by the receiver, both routines begin again. In practice, these routines
had to be carefully adjusted with delay loops so that the board, with its 100 MHz clock,
_could successfully communicate with the PC used, with its 2.39 GHz clock, and with the
laptop, with its 701 MHz clock (Pentium IIT CPU). Figures 26 and 27 illustrate the design

of the send and receive code.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

-—-)% Receive ‘a character

Hex ASCH ‘wde,
send digits

Clear any STX
received

B!

Hew ASCH ericods,
senid checksum

' Whetisit
2

Echoitback

received
7

Chargeter
received
e

Figure 26. The reliable data transfer "send" flowchart

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Check for handshake |

¥

Resend the ACK or
NAK

Reveive and discard
sty chasacters

Decode and storedigits, | (Note: got chedkova hevs,
#dd o shecksum o)

Figure 27. The reliable data transfer "receive" flowchart

These routines were only used to transfer numeric data; the “send” function
included an input indicating whether the string pointed to should be sent via reliable data
transfer, so that the same function could be reused to send unencoded characters without
expecting any responSe, in order to avoid code duplication. The ML403 board code and
the GUI code were written so that it was known at a given program location whether
reliable data transfer was to be used. Each entity, “IPsecImp” in the board and
“IPsecGUI” in the PC, has both a send and a receive function. If data of varying length
was to be sent, the length was first sent as numeric data using a variable of known length

in order to send a known number of bytes.
3.3.7. The Services Layer
Both an AH and ESP service were written. A pointer to the SMIB and to the

SADB are passed to these routines, which use the service number in the SADB to trace

the primitives to use, via the SMIB, from the service number, via the mechanism number,

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to the primitive algorithm number. This is necessary because it is these routines that
allocate the memory for the transformed packet and therefore must access information
from the Primitives layer in order to determine precise data sizes needed. This is an
example of strict layering making implementation difficult (see section 1.5., “Motivation
for General Layering”). Since the goal is a successful implementation, the end should not
be sacrificed to the means; doing that might constitute fanaticism, which sometimes
occurs in the form of increasing effort while losing sight of objectives.
¢

These routines also read and build IP and IPsec packets. IPv4 is supported in this
work ([BAC1997], “IP Packet Structure,”
http://www.freesoft.org/CIE/Course/Section3/7.htm), [RFC0791]. Note that in the RFCs
and in other standards documents, the term of choice to replace “byte,” is “octet,” since
the term “byte” is sometimes used loosely, to refer to other than eight bits; in RS232
transmission, the presence of start, stop and parity bits often means that a “byte” is nine,
ten or eleven bits. Note also, that in this design, the AES IV is included, unencrypted, in
every packet that contains data encrypted using AES, at the beginning of the section,

immediately before it.

3.3.7.1. The ESP Service

In the ESP tservice, for sending, the size of the space required for the IPsec
datagram (a specific term for a packet at the IP level [KUR2000]) is calculated and the
space for the datagram is allocated from the system heap, using the standard C function,
malloc() [KER1988]. In addition, space for at least the data to be encrypted is allocated,
since padding has to be added to conform to a natural number of encryption block sizes,
and to hold the padding size information itself. This latter space has at least the packet
payload copied to it and is configured with the padding and the padding size, in order to
send this space to the mechanism for encryption. Any unused padding area is set to
zeroes, for confidentiality, in order to prevent any leak of data left in the memory area
used, which should not be sent along with the packet. The Encryption mechanism routine

is called and is passed a pointer to the destination address for the ciphertext, the source

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.freesoft.Org/CIE/Course/Section3/7.htm

address of the plaintext, and the data length. In addition, the mechanism is sent the
mechanism number to use, determined from the SMIB, and the key and the IV from the
SADB. It is also sent the SPI from the SADB for the purposes of only updating the key in

the encryption core when necessary.

Upon reception, the IP datagram can only be allocated after the mechanism is
called, because the padding size is not known until then. Instead, space is allocated for
the size of the IPsec datagram payload, less only the size of the IV, as a destination for
the decrypted data from the mechanism. The IP datagram payload only is then transferred
to the IP datagram built.

Before exiting, the temporary payload area is freed, leaving only the datagrams-in

‘and -out, of the service call. Figure 28 illustrates the design of the ESP service.

ot mana g
unenc/dec, dalagien
Gacluding padding

[Tranuformed dets in Datagrem oul
Payload in vneno/des, datagram

Transformed data in unenc/dec: datagrem
Payload in dutugramin i

Caleuluts paddinng vive
and aize of Datagram ot i
- P, stonisg, :
Ot thi wituel s, for the
Detagrem out.

Caloalate dec funenc.
datapran eive Greluding
padding.

4

Uit paddini s, size of Dataghan vut; Deleté unencifder: | of "
|Eetand Sl Dabagrén out, ‘ | dutagrem

Figure 28. The ESP service flowchart

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.7.2. The AH Service

In the AH service, the datagram must always be hashed, in order to create the
authentication data when sending, or for comparison with the decrypted authentication
data when receiving. Therefore space for the generated hash must always be allocated. If
receiving, space for the hash, as decrypted from the authentication data, must also be
allocated. In addition, a copy of the IPsec datagram should always be created, in order to
build a copy to send to the HMAC mechanism for hashing and signing (encrypting, if
sending). This copy requires mutable fields (those fields that are changed when the
packet is transmitted across links) to be zeroed. This copy can become the IPsec
datagram when sending; doing this increases processing speed. When receiving, this
datagram is created in this design, but it would be possible to increase processing speed
by modifying the IPsec"datagram that was passed in to the service, since it is always
deleted by the IPsec sublayer following the service call. The IP datagram is directly
created from the IPsec datagram if receiving since doing so amounts to only removing the

AH header, and, if in Tunnel mode, the extra IP header.

An IPsec datagram is thus always passed to the HMAC mechanism for hashing, if
sending or receiving. The pointer to the encrypted authentication data is set to its location
in the original IPsec datagram if receiving, and set to separate allocated storage if
sending, because the datagram to be hashed must not be written to while it is being read;
this is passed to the mechanism. Pointers to the generated hash storage and the decrypted
hash storage are also sent to the mechanism. As in the ESP mechanism call, the
mechanism is sent the mechanism number to use determined from the SMIB, and the key
and the IV from the SADB. It is also sent the SPI from the SADB for the purposes of

only updating the key in the encryption core when necessary.

After the call to the mechanism, if sending, the authentication data is copied to the
AH area in the IPsec datagram. If receiving, the generated hash is compared to the
decrypted hash and a Boolean variable indicating whether the verification succeeded is
passed out of the AH sefvice call. All storage is freed except for the datagrams in and out,

of the service call. Figure 29 illustrates the design of the AH service.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

et mofm&m for
Jranisformrd datagram

¥

Point to logation of

signed hash

y

Make copy of datagram
Mt ooy

Case ofHesh | ey et
e s [Hash vis 2 bytes]

Cass of Enc. . .
&lag‘aiim - AES.128; [Extra AH hor size +— 16 byles |

4 mw;)h"h

Gt dec: Hash tnem.

Figure 29. The AH service flowchart

3.3.8. The Mechanisms Layer

3.3.8.1. The Encryption Mechanism

The encryption mechanism contains the code to initialize the SPI-based key
tracker, and the RNG. If the mechanism is passed the command to initialize these, it does

so, seeding the PRNG with all “1”s. It exits immediately if it does initialization.

The mechanism mainly consists of an outer switch statement that is used to select
the desired processing for the desired set of primitives found for the particular
mechanism number that was passed in. AES-128 is the only primitive so far implemented
for encryption. In that case the SPI-based key tracker is used to help determine whether

the key needs to be updated in the core. In addition, if the KeylsNew variable passed in

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from the upper layers is true (where it is determined from KeyIsdlwaysTreatedAsNew,
and other factors, if that is false), the core is updated with the key. When the key is
updated in the core, the SPI-based key tracker is also updated with the SPI used. If
sending, if the NewIVNeeded variable passed in from the upper layers is true, the selected
RNG is used to obtain a new IV. Since the IV storage area was passed to the mechanism
via a pointer (i.e., as a memory address), this updates the IV in the SADB. The IV is also
| copied to the beginning of the destination transform area whose pointer was passed in to
the mechanism. If receiving, the IV is retrieved from the beginning of the transform area.
The IV is written to the core via the primitives, and the primitive is called to encrypt or
decrypt the data starting from the address of the origin transform data and to place the
transformed data in the destination transform area. The starting addresses have to be
adjusted to follow the IV in the destination transform area if encrypting, and in the origin
transform area if decrypting. An error code is accepted from the primitive and passed out
of this mechanism when it completes. Figure 30 illustrates the design of the encryption

mechanism,

SRV AES core

© | BetgPlafthis key -
M inLAABRIZENPL . [AR duerypt: Menlinto
arid ool kg i dore payload out.

k.

I Eﬂd’afcasd }

Figure 30. The encryption mechanism flowchart

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.8.1. The HMAC Mechanism

The HMAC mechanism contains an empty “if” block for initialization in case any

HMAC-specific initialization needs to be done.

The HMAC mechanism contains a switch statement to select and use the Hash
function specified in the. SMIB. The generated hash is passed out of the mechanism using
the pointer that was passed in. A second switch statement selects the encryption method,
whose functionality is the same as that explained for the encryption mechanism. In future
work, considerable object code could be saved by making that encryption block into a
function. The decrypted or encrypted hash is passed out using the passed-in pointer.
Figure 31 illustrates the design of the HMAC mechanism; note the similarity in the case

“of the encryption algorithm to that in the Encryption mechanism.

Cassofhash
algosith
Cusn of Brie, Set IV in AlS care
algasittun,
ARS decrypt: Mesioin to
3 decrppled hagh cut -
Relury Set SPI of thiskey
P in LAAESIZESPY - [t 4
and ool key in tore AES sncrypt GenerstedHask in,
10 Mem. 0w ’

Figure 31. The HMAC mechanism flowchart

3.3.9. The Primitives Layer

3.3.9.1. The Hash Primitive

The hash primitive is a dummy hash, intended to be filled with the SHA-2 hash
routine in future work. Thus 256 bits, or eight 32-bit words, are passed back from this

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

function, each containing, alternately, 0xXSASASASA and 0xASASASAS. See the figure
in section 3.3.9.3., “The RNG Primitive,” for a diagram.

3.3.9.2. The Encryption Primitive

Three functions are provided, to update the IV in both the AES encryption and
decryption cores in one, to update the key in the cores, only doing the key expand process
and copy to the decryptor core when specifically commanded, and to encrypt or decrypt a
block of memory from an origin starting address to a destination starting address, for a
length of memory given in bytes. The length is passed in twice to this latter function, for
error checking and the length is also checked to confirm that is a natural-number multiple
of the 128-bit block sizé of sixteen bytes. An error code is returned if this check fails.
Figure 32 and 33 illustrate the design of this primitive.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Set IV in core Set key i core

siv: regl ivioad sly_regsl-d e I¥0103
Yoip e] :

sncrypior cote

slv_regs 58 = V0103 |

‘Run key expand slgorithm
M in encryptos core;
trensfer velues to decryptor

encryplor core

slv_regD ivioad
Bit -0

1 decryptor core
siv_regll ivioad
bite1

decryplor core)
sly_rogs 58 e IV 103

iscryptor cote
sty regl ivioad
| bit«0.

=

Figure 32. Encryption primitive IV and key load flowcharts

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

'

ﬁemicum
sly_roge 5.8 v viphertext (128 bits)

Encryptor core
slv rege 3.8 v plaintent (1382 bits)

€. Done bitset

| Decryptor core o
| plaintext (128 bits) e slv_regs 9-12

Eneryptor cote. ‘
ciphertest (128 bitg) e sly, rege 912,

Place blockin L
output

Figure 33. The encryption primitive flowchart

3.3.9.3. The RNG Primitive

Four functions are provided. One function acts as the storage for the state of the
LFSR-CASR PRNG. Static variables are used in this function to contain the two 64-bit
state variables in the form of four 32-bit words. As explained before, not all of the high-
order 32-bit words for each of the LFSR and CASR are used. The function will store or
retrieve these values depending upon the command passed in. Another function resets the
four 32-bit words passed in. Another seeds the four 32-bit words that are passed in. The
most important function generates the pseudo-random number generator from the current
state (the four 32-bit words) passed in, and returns a 32-bit pseudo-random number.
Generation updates the state variables, as described before (see section 3.2., “Design of a
Combination LFSR-CASR Pseudo-Random Number Generator”). Whenever the state
variables are required for passing into the generation function, they must be retrieved

from the storage function first (except of course if they are updated repeatedly before the

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

local state values are lost such as by exiting the current function) and whenever they are
updated by one of the reset, seed, or generation functions, they must be stored using the
storage function. Figure 34 illustrates the design of the functions written to make use of

the PRNG primitive (as well as an illustration of the dummy hash routine).

SHA-2 Hash {Duainy) Peudo-Randony Wumber Generator (PRNG)
) Store and vetxieve the stats ~ Reset Generate
- two paits of 32-bit words
Retuen #3240 words, p ¢
sy Genstate HOCASR, LOCASK,
UxASASAIAS HOLFSR. LOLFSR.
{Uing CASILLESR algodithin

{ Output « LOCASR € LOLFSR |

_
Store HOUASE, LOCASR. .
HOLFSR, LOLFSR Seed
g '
HOCASH ¢ HOBuod
@@ LOCAER e [180eed
HOLPER e HOSsed
LOLBSR o~ 10Beed

Figure 34. The hash and pseudo-random number generator flowcharts

3.3.10. Versions

Four different versions of the actual layers to be tested for performance, Service,
Mechanism and Primitive, were created, mostly involving changes to the Service
functions, due to their complexity. Some changes were made to the mechanisms, but
none to the primitives. A design change was made in ver. 7 to conform better to the
layering idea, and to use the SMIB. Some additions were made to the SMIB. The version
numbers are from the IPsecLoop CLI version of the project, but the same actual files and
therefore the identical code is used for the Services down to the Primitives layers in both
versions. This replaceability (or fungibility, to use the correct, but obscure word) due to

modularity is a huge benefit derived from layering.

ver. 4: This was the initial version tested.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ver. 6: The ESP service was modified to remove “for” loops that cleared the entire

datagram, which would cause delays proportional to the packet size.

ver. 7: Clearing of the padding area in ESP was restored that was removed in ver.
6, to prevent security leaks, and additional reduction of processing time in ESP and AH
was done, involving only clearing unused areas of the datagram rather than pre-clearing
the entire datagram before filling it; the significant fix in ESP was done in ver. 6. The
design was corrected to use the SMIB to look up the primitive numbers as is implicit in
the layering scheme; algorithm numbers from the SADB had been passed-down — the
SADB was changed to have the service number (intended to be obtained from the SA
negotiation) set in the SADB. Future work may cause additional processing delays when
multiple services, mechanisms and primitives cause full SMIB looking-up to be done,
-however, it probably will not be significant compared to processing times incurred by

packet payloads.

ver. 8: A transform pulse was added to follow the service call immediately, for
accurate timing (see section 3.5., “Design of a CLI Version, ‘IPsecLoop,’ to Facilitate
Testing,” after). The ESP service was modified to create only the payload portion to hold
the payload image to be transformed, and to remove some redundant header-setting code.
The AH service was revised to simply use the [Psec datagram created for hashing as the
datagram out when sending, instead of copying it to a new one. The encrypted
authentication data produced when sending was placed into a temporary holding area for
transfer to the IPsec datagram after the mechanism call. Some redundant header-setting
code was removed. Both the HMAC and the Enc. mechanisms were revised to only get
the key from the void pointer in the SADB when it is needed. Initialization was only
necessary in one mechanism, which saves a little code space. Some common code across
an if-else that was left when the SADB was simplified to one key and one IV was
amalgamated. The mechanisms were revised to not retrieve the IV from the SADB's
pointer if NewIVNeeded. The local key and IV variables were removed from the
mechanisms. The mechanism-level key status tracker (L4AES128Mode) was revised to

track the key in use via the SPI to uniquely identify the SADB and is now called

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

'LAAES128SPI The RNG was added as a field in the mechanisms layer in the SMIB.
MaxIPsecPacketSize was added to the policy struct in the SMIB.

3.4. Design of a Test and Demonstration GUI, “IPsecGUI”

The GUI, named “IPsecGUI”, and also written in MSVC++V6, supports all the
features that were coded: into the board: “hello”, “key is new”, random no. seed, SMIB
and SADB receive and send. As in “AESfile”, there is an activity window to display
scrolling messages to the user. Text appearing in this activity window is also saved to a
file, “ActivityLog.txt” for self-record-keeping. The SMIB and SADB settings can be read
in and saved via file I/O. A test packet can be read in via file I/O and its total size is
validated and corrected, if necessary. A test packet size increment can be set and used to
increment the test packet size. Help information is shown in a “modeless” window that
can be left open while working, for reference. The “Packet Send” butfon initiates the
PacketProcessing of thé OSI layers in the board, and the called functions in the GUI

measure the processing speeds of the service calls in the board.

Figures 35 and 36 show the operation of the KeylsAlwaysTreatedAsNew, i.e.,
“Load key in core every transform,” the seeding of the RNG, and the help window.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i

Figure 35. Operation of ""KeyIsAlwaysTreatedAsNew" and the seeding of the RNG in “IPsecGUI”

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 36. The “IPsecGUI” help window

When the GUI launches, it first gives the ‘h’ command to check whether the
board is responding. If “Hello” is not received back, an error message is displayed to the
user. If the board is responding, reliable data transfer is used to get the SMIB and the
SADB from the board. In this way, update of context to the PC is automatic. If the user
chooses to access the SADB dialog, the SADB is also acquired fror\n the board, including
the key and IV pointed to, since the board changes the IV — and changing the key is

forseen, in future work, when key exchange is added.
Multiple policies are supported by the GUI. A GUI field is provided for the user
to enter the number of policies, and another is provided for the user to select the

particular policy to view. When the former field is changed, the space allocated is

changed to hold the required number of policies, in an array of policy structures. When

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the latter field is changed, the policy fields are updated with the data of the policy number
selected. When a data field is changed, the entry in its policy structure is updated. If
“OK” is clicked in the SMIB window, those policy structures are incorporated as the
~official SMIB afrasf of policy structures, and the former array of policy structures is
discarded. If the SMIB window is exited without clicking “OK?”, such as by clicking
“Cancel”, that is not done, leaving the official array of policy structures previously
entered, unchanged. In addition, if “OK” is clicked, the SMIB in the board is updated via
reliable data transfer and the policy that was selected to view in the SMIB dialog window

is sent to the board. The same technique is used to implement the entry of multiple clients
in the management layer of the SMIB.

Figure 37 shows the SMIB window, or dialog box.

gl

Figure 37. The “IPsecGUI” SMIB dialog

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Similarly, when the user exits the SADB, it is updated to the board via reliable
data transfer if “OK” was clicked.

Figure 38 shows the SADB dialog box, with the first non-zero IV produced by the
PRNG from a seed of all “1”’s (or “F’s, in hex.).

Figure 38. The “IPsecGUI” SADB dialog

There is a checkbox provided for setting the IV Constant field in the SADB,
“Hold first non-zero IV.” See the explanation before, in section 3.3., “Design of an IPsec

Implementation, ‘IPsecImp’ [etc.],” for the use of this field.

In sending these structures as a block, it should be noted that the GNU C code in
the board uses big-endian data orientation, whereas the MSVC++V6 code running on the

PC uses little-endian. The GUI is responsible for correcting the data orientation after

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

receiving from the board and before sending back to the board, by switching the order of

the bytes within each variable affected; a series of functions were written to do this.

When the “Packet Send” button is clicked, the GUI verifies whether the SMIB
exists and has been set, and whether the SADB exists, including the key and IV, and has
been set. The existence of the test packet is checked, and its header is checked for the
minimum size. Using the same code that the board uses to obtain the IPsec packet size,
the GUI checks to me_;ke. sure that the resulting IPsec packet would not be larger than
64kB-1 bytes, or 0xFFFF (65,535) bytes, and also that it would not be larger than the
maximum packet size set in the policy. If everything is verified satisfactorily, the ‘p’
command is issued to the board to start packet processing. Reliable data transfer is used
to send the test packet to the board when the IP layer requires it. The synchronization
message, “Synch”, is received, using reliable data transfer, in order to synchronize with
the beginning of the service call. The time count variables are cleared, and a timer that

~counts milliseconds is turned on. Following this, execution occurs in the timer message-

handling routine. Figure 39 illustrates the design of this function.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

On button-click to send packet

Validate SMIB, SADB | 5 Send test packet size
and contents ‘, vis veliable data transfer
display progress dot
Test for existence and } : :
validity of test packet Sendtest packet via
‘ ‘ reliable dats transfer
Send's' to board Reveive 'Syncht Rom
board via reliable data
transfer, display progress
dot ‘ _
PacketOutgoing +— trus |
PacketOutProcTime «- 0
PackellnProcTime « 0
|86t the GUI timer for timer
— |mesgages ai a Lms rate
Display the ————
sfror mag rovd,

Figure 39. "IPsecGUI" packet processing setup flowchart

In the timer message-handling routine, the quickest possible check is made for
any character received via RS232. The time count variables are updated, and the routine
exits if no character was received. This is done since timer messages are ignored if the
MSVC++V6 program is busy, and missing timer messages would result in a low time
count. If a character was received, the timer is stopped, and reliable data transfer is used
to get the IPsec packet. The synchronization message is received again, and the same
process is used to time the “incoming”, or “receiving”, service call, in which the IPsec
packet is converted back to an IP packet. During this process, minimal echoing is shown
in the activity window, in order not to cause difficulties in synchronizing the GUI with
the board, which could cause problems such as communication lockups. Packet Sending

Progress Indicators shown are: “.. .0. .i”, which have the following meanings:

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

first dot: test packet size received successfully by the board.

second dot: test éacket rcvd and timing synch. message sent successfully by the
board. |

space and dot: IPsec packet size received back.

‘0" IPsec packet received back (outgoing processing complete).

dot: synch. message sent successfully by the board.

space and dot: AH header success message (or "Not AH" if not doing AH)
received and derived IP packet size received back.

‘i’ derived IP packet successfully received back (incoming processing complete).

Figure 40 illustrates the design of this function.

On Timer
Increment the approprists count Outigo Use relisble data transfer to feteive the:
) * gong e) receve
depending upon PackelOutgoing |- Processing ol status message of the AH vedfication (or
9 dusamy characters if ESP)
Display the time taken for
¥ ncoming processing
Display the time taken for &
vutgoing $5iy
e Got this 1P packet size vig
-& teliable data transfor, display
Gel the IPsec packe! size via a spaceand s progrese dot
telinbile duis tranefir, displey ‘
& spave and & progress dot e
et the 1P packet using relisble data
"mnsfex;: disglay an *i* for * heoming
Cist the Foer packet using relisble data processing complete”
. tansfer, display an "o for *outgoing. l
Eeror mag procesaing compleie
G fromboad & ‘Display and log the IF and the
1Psec packet
Racsive "Synch® from
board vis salishle dete *
_ transfer, display progress Display end log the protocol
4 dot , and the mods
Display the 4 . *
ertormag rovd - 5 Y
Het the QUL timer for limer Display and log the butgoing
] messages ot a.lms rale and incoming processing times
o . v
‘ . Display sndlog the AH
: verficalionmessage

Figure 40. "IPsecGUI" packet processing timer processing flowchart

Figure 41 shows a “screenshot” of an example of the IPsecGUI’s operation.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 41. A "screenshot" of the operation of "IPsecGUI"

See also the pseudo-code for the “IPsecGUI” packet processing functions, in
Appendix A.

3.4.1. Test Methodology

Testing the time required for the service calls to complete was done using the
IPsecGUI packet processing functions described before. The times were echoed to the
activity window, and thus to the activity log file. A standard 40-byte (0x28) test packet
with a six-32-bit-word (twenty-four bytes) header was used, and incremented in units of
0x100 and 0x200 bytes up to 0x4028 (approximately 16K) bytes. This range was used in
‘testing all four pfdfoéol-mode combinations: AH protocol, Transport and Tunnel modes,
and ESP protocol, Transport and Tunnel modes. The packet used was as follows (hex.,

with spaces added for readability):
06000028 00000000 5A81BEEF 12131415 26272829 DEADBE0OO 01020304
15161718 292a2b2c 3d3e3f42

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A packet of the smallest size possible was tested just to verify correct operation —

note the one-byte payload and the five-long-word header:
05000015 00000000 SA81BEEF 12131415 26272829 A5
Also, a packet with the largest possible header, of fifteen, OxF, “long words” (32-

bit words), and a one-byte payload, was also tested, just to verify correct operation:

0F00003D 00000000 5A81BEEF 12131415 26272829 DEADBEOO 10000001
10000001 10000001 10000001 10000001 10000001 10000001 10000001 10000001
A5

The typical size of a packet is about 500 bytes, 576 bytes to be exact ((RFC0791]
pg.12), and “Datagrams are rarely larger than 1,500 bytes” ((KUR2000], 3" ed., pg. 326).
In an example from the literature, IPsec was tested only up to a packet size of about 8k
(0x2000) bytes [KER1997]. The minimum packet size includes a one-byte payload
(IRFC0791] pg 34). In testing in this work, operation with an IP packet of the minimum
size and up to an IPsec packet of the maximum size of OXFFFF bytes was tested.
However, “Such long datagrams are impractical for most hosts and networks”

([RFC0791] pg.12). The resulting millisecond counts were graphed.

Testing was done to verify that the AES encryption was appearing correctly. ESP
Transport mode was used to encrypt a packet payload consisting, in part, of the block
01020304 15161718 292A2B2C 3D3E3F42,” using the first IV produced by the RNG |
from a seed of all “F”’s (hex.), which is FFEFFFFD E3CFFFF9 C19FFFF2 943FFFE4.
The key value was arbitrarily chosen as the same as the plaintext. To follow the process
of Cipher-Block Chaining (CBC mode), these were XORed using Windows Calculator to
obtain FGEDFCF9 F6DOESE1 E8BSD4DE A901C0A6. To predict the ciphertext that
should appear, the Styer Javascript example [STY2006] was used, which predicted
“F1E73B95 E690F 3BA 45CF3F0B DDD92594.” An ESP Transport test was done using
the 40-byte test packet, which contained that block as a payload, first leaving the IV in
the SADB set to zero, and a freshly-initialized board that had the RNG seed set to all
“F”’s (hex.). Additionally, the comprehensive CLI demonstration program done to
demonstrate the operation of the AES core described in section 3.1.8.1., “CLI and

Simpler Programs,” was also used to verify the output of these “higher-level” programs.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In addition, the “IPsecGUI” (as well as “IPsecLoop”) was used many times to
encrypt and decrypt packets using all four protocol-mode combinations, and the resulting

IPsec and received-back IP packets were verified for correctness.

3.5. Design of a CLI Version, “IPsecLoop,” to Facilitate Testing

Since it was unknown how accurate the method of testing described before using
“IPsecGUI” would be, oscilloscope timing measurements were planned, with the idea
that the service calls would be iterated. There was no point in developing a GUI to
operate such a program, therefore “IPsecLoop” has no GUI, and is a CLI program,
operated via Hyperterminal. Also, it only differs in the top-level loop and OSI layers; all
of L3 (Service) to L5 (Primitive) layers are identical — the same C files are used as in

“IPsecImp”.

Referring to the pseudo-code (see Appendix A), “IPsecLoop” differs from
“IPsecImp” in having a pre-set SADB set in initialization, before the main command
loop. Also, the test packet is built-in by allocating memory for it and setting its contents
during program initialization. In the command loop, ‘r’ to seed the PRNG, ‘z’ and ‘s’ to
send and receive the SADB, and ‘m’ and ‘i’ to send and receive the SMIB, are not
needed and are removed. Instead, the following commands were added: ‘o’, to toggle
testing between outgoing (sending) and incoming (receiving), ‘t’, to change the protocol
and mode to be tested, ‘i’, to change the increment by which to increase the test packet
size, ‘s’, to increment the test packet size or revert to the original size, and ‘n’, to toggle
NeedNewlV. Commands retained are ‘h’, for “Hello” from the board, ‘k’ to toggle
KeylsAlwaysTreatedAsNew, and ‘p’, to start packet processing, i.e., launch the test.

In the IPsec sublayer function, an infinite loop was placed around each of the
services, which activates if its protocol and processing direction are set. A message is

echoed to the user to indicate that outgoing, or incoming, processing is occurring.

Slv_reg8 of the AES core of the opposite transform from that employed by the service

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

call for that direction is written in order to cause autoload and create the diagnostic pulse
previously described, in order to mark the timing of the loop and make it readable by an
oscilloscope. Since the service call contains many lines of calculation and memory
allocation, and there are two more layers below it, it was expected that the duration of the
transform pulse would be about three orders of magnitude shorter than the duration of the
service call, leading to a precise reading. Moreover, a reading to the nearest 220 ns due to
the transform pulse is about three and a half orders of magnitude more precise than the
IPsecGUI measurement, which is to the nearest millisecond.

Included in the service call loop are (as noted in Appendix A):

a dummy transform to read via oscilloscope to mark the loop (the opposite one to
the one used in the service call)

the service call ,

a dummy transform to read via oscilloscope to mark the end of the service call
(added in ver. 8 of “IPsecLoop”)

test for error

set KeylsNew from top-level user selection, KeylsAlwaysTreatedAsNew

check for a keystroke via R§232 and exit the loop if so

check for the setting of the "Outgoing" vs. incoming test selection to exit the loop
after only one execution if testing the other direction.

delete the transformed packet if looping so as not to use up the memory

Since the extra instructions required for continuous looping would cause some
delay, ver. 8 of “IPsecLoop” was revised to add an extra dummy transform immediately

after the service call, for accurate timing.

3.5.1. Test Methodology

The test methodology to use “IPsecLoop” is fairly straightforward. Oscilloscope
probes are connected to pins 2 and 64 of J6 so that the decryption core “loadtodone”
signal (pin 2), is connected to channel 1 (the upper trace in Figure 42) and the encryption
core “loadtodone” signal (pin 64) is connected to channel 2 (the lower trace in Figure 42).

Hyperterminal is used to operate the program running in the ML403 board. ‘p’ is pressed

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to begin the first test. The reading is read from the oscilloscope, in units of screen
divisions, in order to work carefully from the raw data. The “units per division” setting is
carefully noted. A key is pressed to exit the loop. The processed packet is echoed,
following that (if incoming processing is being tested, the IPsec packet is echoed before
the program pauses during the incoming processing). The ‘0’ command is used to toggle
the test to the opposite direction. The ‘i’ command is used to select the packet increment
amount and the ‘s’ command is used to increment the packet size. The packet size,
starting from the standard 40 (0x28)-byte packet (see section 3.4.1., “Test Methodology”
— “IPsecGUI™) is incremented until a range of packet sizes from 0x28 to 0x4028 bytes for
that protocol and mode are tested, then the process is repeated for the other three

protocol-mode combinations.

To show the method used (without the additional marker pulse following the
service call, which would be close to the second marker pulse for the beginning of the
next loop), Figure 42 shows an oscilloscope measurement of AH Transport outgoing
processing time with the 40 (0x28 hex.)-byte packet, using IPsecLoop ver. 6. The
oscilloscope used was the Tektronix TDS1002 Two-Channel Digital Storage
Oscilloscope [TEKTDS]. Tektronix TDSPCS1 “Open Choice” PC Communications
Software, Version 1.10, was installed on the PC and a 9-pin RS232 full “cross-cable” or
“null modem” (the RS232 handshaking lines were also crossed) cable was used to

connect an RS232 serial port on the PC to the RS232 port on the oscilloscope.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

. &

Tk M. BTwe WMPcaising . THORR

" it m m g .1@” i ‘ /c\iﬁ«? iw‘muw,mru
1381

TDS 1002 - 5:41:16 PM 3/20/2007

Figure 42. Oscilloscope measurement of AH Transport outgoing processing time with a 40-byte

packet

The ‘k’ and ‘i’ commands only need to be toggled on once or twice, preferably
when the packet size béing tested is the smallest, so that the additional processing time to
load the key into the core or get the IV from the PRNG can be most easily determined

from the total processing time read from the oscilloscope. Since the IV is in the data in
the incoming (receiving) processing, setting NeedNewlIV does not cause a new IV to be
acquired for that computation, of course. The time taken to load the key and/or the IV

was not included in the series of measurements of packet processing time.

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER IV
ANALYSIS OF RESULTS
4.1. The AES Accelerator

4.1.1. Simulation Results

Referring té fhe large “screenshots” in Appendix B, section B.1., Figures 61, 62,
63 and 64 in section B.1.1.1. show simulation of an encryption transform. Using the key
shown, of value 01020304 15161718 292A2B2C 3D3E3F42 (hex.), and text _in, of
41747461 636B2061 74206461 776E2020 (hex.) — which is the ASCII for “Attack at
dawn ” (note the two spaces at the end that make up the sixteen bytes of a 128-bit block),
a ciphertext, or text_out, of 03211ECA A144E6D0 7FF9F6D9 1801D80C (hex.) was
produced, and was verified (see section 3.1.6.1., “Simulation Test Methodology™). The
“load pulse” process formerly used can be seen. w0-w3 are the key expand values,
beginning with the unchanged value of the key itself. The sa variables are the results of
the XOR of the state (beginning with fext_in), the sa_sub variables are the results of the

sub-byte operation, and the sa_mc variables are the results of the mix columns step.

In section B.1.1.2., verification with autoload can be seen in Figure 65. Note that

_start_load starts when slv_reg8 is written.

In section B.1.1:3., two encryptions using CBC mode can be seen in Figure 66.
During the time of the donepulse, the ciphertext in slv_regs9-12 is copied into iv0-3. The
results of XOR with the plaintext can be seen where fext_in changes. The differing

ciphertext can be seen, as produced by the chained plaintext.

The “screenshot” in section B.1.2., “Decryption” (Figure 67) shows the inverse
transform from the chained ciphertext in s/v_regs5-8. The previous ciphertext can be
seen, just prior, in slv_regs5-8, being used to load iv0-3 during ivioad. When slv_reg8 is
written, the transform commences (wWhich was designed not to happen when ivioad is

“1”), and the familiar ASCII for “Attack at dawn * can be seen in slv_regs9-12,

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘oceurring during dohepulse, when the decrypted output is XORed with the IV to form the
plaintext. During done2Zpulse, the previous ciphertext is seen being transferred to the IV.
In slv_regsi-4, the last (in encryption order) key expand value loaded to the decryptor
can be seen, being the first used for decryption in w0-3. (slv_regsI-4 correspond to w3-
0). The last key expand value used in w0-3 can be seen to be the key itself, opposite from
encryption order. Slv_reg0 bit 6 can be somewhat discerned as being the source of ivioad

(0x40 when the only bit set in slv_reg0).

4.1.2. FPGA Usage
Table 5 shows the FPGA device utilization summary when both the encryptor and

the decryptor core, with all of the features described before, were included.

Number of BUEGs 7 out of 32 21%
Number of DCM_ADVs 2 out of 4 50%
Number of ILOGICs 33 out of 320 10%
Number of External IOBs 68 out of 320 21%
Number of LOCed IOBs 68 out of 68 100%
Number of JTAGPPCs 1 out of 1 100%
Number of OLOGICs 63 out of 320 19%
Number of PPC405 ADVs 1 out of 1 100%
Number of RAMBl6s 36 out of 36 100%
Number of Slices 5470 out of 5472 99%
Number of SLICEMs 666 out of 2736 24%
Number of Slices containing only related logic: 4,635 out of
5,470 84%
Number of Slices containing unrelated logic: 835 out of
5,470 15% |

Table 5. XC4VFX12 device utilization summary (most recent build — Mar. 12, 2007)

The most recent build was only required due to the change to “Daylight Saving
Time” (DST), which was held early in 2007, when the Windows XP PC Operating
System (OS) changed the EDK/ISE project file times retroactively to those of the

changed “time zone”. Previous builds were done on Dec 10 and Nov 18, 2006.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As can be seen, usage has moved into using slices for unrelated logic, 99% of the
slices being used. Place and route required 54 minutes; that time begins to grow rapidly

as the FPGA is filled and slices have to be used for unrelated logic.

4.1.3. AES Performance Results
4.13.1. AES Core Performance using Small Software Test Programs

Please refer to the methodology that can be found in sections 3.1.7.2.4., “Timing

Diagnostic Output for Test,” and 3.1.8.1., “CLI and Simpler Programs”.

When the original method of pulsing “load” to begin the transform was used, the
load pulse in the encfyptpr was observed to take 510 ns and “loadtodone” was observed
to take 730 ns. 730 - 510 = 220 ns, which is eleven 20 ns clock pulses as expected.

Clearly, turning a bit on and off via software over the bus is slow.

Table 6 shows some of the most relevant observations that were made. The
calculated SW transform rate was calculated by multiplying 128 by the SW loop rate (or
by dividing it by the period).

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ohserved AES Core erfmmanca used by software and In-F PGA i
Load (go) {Calculated)
method or 5w
Date ftest o emstom
(2008) idescriptioniCore 1SW loop speed irate FPGA transform time
| | ln2Bbit
Period [Rate ‘biack%s}j -{Load pulse Lnad~m~ Transform
- lus) ikHz) Mbps) i(ns) : Qone gt_sl time (ns) |
10-Oct Pulse Encryptor; 226 442 BB.B371E8] 5101 7301 2201
21-NovlAutoload {Decryptor] 1.78] 569] 71 gzaﬂz} NA 200 200
Full write o
andwead | : i
11-Deciback Encryptor 53 189 24.150943 NA NA 2201
Full write - ' :
and read f y
iback Decryptor 576 1741 22200222 NAI NA 2001
Full write : i
andread | , , '
back Bath- 10.18; 982 12573674 NA; NA! NA,
Full write _ - :
and read 1
back (D) 1Boih 8.94] 111.8: 14317673 NAI Nﬁz /
Pulse load: tested wst?: OP 1o] mn while the load ;wlse was, imgh while, also: 0#’ foa ;xm until dona
is high. | !
Autoload: test by oniy smguﬁtng toapin fmm time of immai cad Qﬁ 1) umﬁ dong: asserted
note-Autoload used in all subsequent tests |
{D): Not even testing for the mme bitin ﬁuﬁwara smca the FPGA is so fast
NA: Not Applicable ‘- , .

Table 6. Observed AES performance in-core and as used by software

“Full write and read back” means that the time taken to write all four input and

read all four output slave registers via software was included in the test loop. The test of

both means that the output of the encryptor was fed into the input of the decryptor by

reading and writing the slave registers via software.

Note that if the time taken to turn the load bit on and then off is 510 ns, then the

“time for one write is 255 ns. If the time taken to read a slave register is the same, that

means that it is hardly worth using a software loop to check for the done bit in slv_reg0,

since the transform takes only 200-220 ns.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

By initializing the step counter in the decryptor and using a different timing plan,

the clock cycles required were reduced from eleven to ten.

220 ns to encrypt 128 bits implies 128/220 = 582 Mbps, and 200 ns to decrypt
implies 128/200 = 640 Mbps as an intrinsic core transform rate; however, some method,
such as DMA, will be ﬁeeded to transfer data to and from the core as fast as it can be
processed. Xilinx offers a technology called FSL (Fast Simplex Link) that can import

“data from user IP cores to its soft-core processors, but this method is not available when a

hard-core processor, as in this work, is used.

Processing via software intervention is slow. Even if the time required to write the
input slave registers, wait for the transform to finish and read the output slave registers
could be reduced by removing the wait loop on the grounds that the transform happens so
quickly compared to software operation that a wait loop is not needed, that would only
save about 600 ns from 6ne of the single transform times noted in Table 6 (removing it
when it was used twice when both transforms were done, saved 1.24 ps, as can be seen
from Table 6). If the encryption time, for example, were thus reduced to 4.7 us, that
would still imply a processing rate of only 27 Mbps, 21 times slower than the core’s
capacity of 582 Mbps. |

.
Table 7 compares the intrinsic core transform rates of this work with those of

others’ found in the litefature.

AES core rates achieved, by implementation (Mbps)
This [MCL2002] | [DAN2000] | [KIM2004] | [BEL2002] | [LUJ2005]
work |
Encryption | 582 310 353 390 887 1197
Decryption 640

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This work (Fall 2006): Xilinx Virtex-4 FPGA, XC4VFX12, speed grade 10
(slowest)

[DAN2000]: all_bn an FPGA (make, model unspecified)

[BEL2002]: Xilinx Virtex 1000 FPGA

[MCL2002]: XCV1000E

[KIM2004]: FPGA not specified

[LUJ2005]: Xilinx Virtex-I Pro 100 XC2VP100

Table 7. AES core rates achieved in this work and in the literature

Since the FPGA used in this work is the lowest speed grade [XILRIV], it may be
possible to double its processing rates by running the core at the full 100 MHz clock

speed (see section 3.1.7.1., “Core Design and other Modifications™).

4,13.2. AES Performance with the “AESfile” GUI

Please refer to the test methodology described in section 3.1.8.2.2., “The PC
Demonstration GUI, ‘AESfile’.”

“AESfile” encrypts a 36kB text file in 24s and decrypts it (75 kB of ciphertext) in
36s. 36kB/24s=1.5 kBps = 1.5 x 8 =12 kbps (57600 bps serial connection). 75k/36 =
25k/12=2.1 kBps = '2.1'x 8 = 17 kbps. The serial communication speed, display delays
in the PC application, as well as the software calls in the board for each 128-bit block, all
contribute to this slowdown. The simple calculation of the encryption and decryption
rates here may not be precisely meaningful, because in both processes, there is a
transmission of 16 bytés of plaintext and 32 bytes of hex-ASClII-encoded ciphertext for
each block transformed, meaning that both processing times should be the same. The

‘longer time taken for decryption is explained by the extra display echoing included in the
decryption process (see the figure in section 3.1.8.2.2., “The PC Demonstration GUI,
‘AESfile’”).

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Here is an example of the ciphertext output from “AESfile” (notes added on the
right, afterward). A key and IV of zero were used to encrypt the plaintext:"Attack at
dawn Attack at dawn ". Two spaces were added to each phrase to make each phrase a

block of 16 bytes; the quotes were not included in the plaintext.

66E94BD4EF8A2C3B88B4CFAS9CA342B2E ~ IV encrypted in ECB
06362F5ED752BD8A1AZD8AFF2D887988 — "Attack at dawn "
5049804CC352A02E3B6E2BB6EBS55E548 — "Attack at dawn "
8A8BC7Z2E24DCFE7DFF6F8S065BE13599 ~ 0x03 (ETX) padded with 0's.

This output format looks regular and pleasing to the eye, somewhat reminiscent of
the “PGP” style of output [PGPI], and is suitable in the same way, for convenient

copying and pasting for emailing, since it is ASCII text.

4.2. The LFSR-CASR PRNG

Please refer to section 3.2.3., “Test Methodology and Use in this Work”, for a
description of how the graphs that follow were produced (the section just preceding that
one refers to tests already done on this PRNG as documented in a corporate paper). The
four graphs that follow (Figures 43, 44, 45 and 46) show that the distribution of the
pseudo-random numbers produced by the LFSR-CASR PRNG is reasonably uniform, at

least for the quantities of numbers produced.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Distribution of ten thou. 32-bit numbers in 256 ranges

Quantity (dec} of numbers generated

5 46 2

u

Figure 43. Distribution of ten thou. 32-bit numbers from the LFSR-CASR PRNG in 256 ranges

Dist. of a hun. thou. 32-bit nos. in 4096 ranges

Quantity (dec) of hos. generated

R T EEY
<t N D~ b & 6 .0 o

Goo
Gda
1b4
28e
368
¢
da0
e7a
54

Number value (hex) in range (x1675)

Figure 44. Distribution of a hun. thou. 32-bit numbers from the LFSR-CASR PRNG in 4096 ranges

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dist. of ten thou. 128-bit nos. in 256 ranges

60 , e

[+ Seties1}
20

10

Quantity {dec) of nos. generated
[
[

g I : L [phiing
82 88T ORLSS§ELETII S
‘Number value (hex) in range (x16*30)

Figure 45. Distribution of ten thou. 128-bit numbers from the LFSR-CASR PRNG in 256 ranges

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dist. of a hun. thou. 128-bit nos. in 4096 ranges

Quantity {(dec) of hos. generated

3] 0N QO O O X @ ™ O
SE2RBI BERELETEE
e

Number value (hex) in range {x16429)

dab
e7a
54

Figure 46. Distribution of a hun. thou. 128-bit numbers from the LFSR-CASR PRNG in 4096 ranges

4.3. Performance Results from “IPsecImp”, “IPsecGUI” and “IPsecLoop”

Please refer to sections 3.3.10., “Versions”, 3.4.1., “Test Methodology”
(“IPsecGUI™), and 3.5.1., “Test Methodology” (“IPsecLoop™).

In a related note, final memory usage in the XC4VFX12 chip, out of the designed
(using BSB) 0 to 0x7FFF BRAM memory space, was 0x7ab6 for “IPsecLoop” and
Ox6fea for “IPsecImp”. IPsecLoop required more space due to the built-in SADB and test
packet, including its copying, changing the test packet size, and the commands to toggle
the test direction, change the protocol and mode, setting the test packet size increment,
and toggling “NeedNewIV?, in spite of removal of the send and receive code for the
SADB and SMIB and the removal of the reliable data transfer code.

4.3.1. Demo. of lf;rocessing the Largest Possible Packet

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 47 shows successful packet processing using the largest IPsec packet
possible in ESP, Tunnel mode. An IP packet size of FFBE created by increasing the
payload size of the standard 40 (0x28)-byte test packet was the maximum possible using

this protocol and modé, since it resulted in an IPsec packet size of OxFFFF.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 47. Packet processing using the largest IPsec packet possible in ESP, Tunnel mode

4.3.2. Demo. of Correct AES Encryption in “IPsecGUI”

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figures 48 and 49 show correct AES encryption in “IPsecGUI” demonstration,
and the SADB settings used. Note the predicted block of ciphertext in the I[Psec packet
(copied below the GUI window shown in Figure 48). Note also that the IP packet was

correctly received back.

FIENS% FOR0PIBA YSCRIE0N DUOSSY

Figure 48. "IPsecGUI" "screenshot' showing correct encryption

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SADD

Figure 49. SADB settings used in the previous figure

4.3.3. “IPsecLoop” Results

In Figure 42, in section 3.5.1., “Test Methodology” (“IPsecLoop”), two
encryption pulses are visible, due to the two (128-bit) blocks of hash being signed
(encrypted), since the SHA-2 hash (supplied by the function that returns a dummy hash)
is a 256-bit hash.

In testing with version 8, it was found that the extra loop-managing overhead after
each service call takes 8.4us, which is not a significant amount of error, but was included
in measurements prior to ver. 8 (see section 3.5., “Design of a CLI Version, ‘IPsecLoop,’

to Facilitate Testing™).

Using “IPsecLoop”, the time required to run the LFSR-CASR PRNG in software
for four 32-bit numbers to get the 128-bit IV was determined to be 1.3ms. The time
required to load the key into the encryptor was determined to be 15us, and 20us when
version 8 was tested (see section 3.3.10., “Versions”). The time required to load the key
into the encryptor, do key expand in the encryptor and load the key expand values into

the decryptor was determined to be 130us, and 120us when version 8 was tested. It is not

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

quite clear why the time required to load the key expand values into the decryptor should
decrease when the time required to load the key into the encryptor increased, which may
have occurred due to the slightly more complex code used to track the key loaded into the

core according to the SPI being used.

The figures in sections 4.3.3.1. to 4.3.3.4., inclusive, show the packet processing
times graphed, for the range of packet sizes, protocol-mode combinations, and software)
-versions tested (seé the test methodology sections: 3.4.1., “IPsecGUI”, and 3.5.1.,
“IPsecLoop”; see also the tabulated data in Appendix B, section B.2.). All lines graphed

are closely linear, beginning at the origin.

433.1. Version 4, with “IPsecLoop” and “IPsecGUI” Comparison

In the graph shown in Figure 50, since it is expected that the line symbols will be
difficult to discern without the benefit of colour, it should be explained that the upper line
is “Incoming” and the middle line is “Outgoing”. The lowest four lines are the
“IPsecGUI” results, “GUI in L,” “GUI in P,” “GUI out L,” and “GUI out P,” in order
from top to bottom, at least on the right-hand end, at a packet size of 16,424 (0x4028)
bytes; their total spread there is only about 8 ms.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AH Transport packet processing times (ver 4)

180
160
140
N
E 120 -+ Outgoing
@
£ -#- Incoming
= 100 — GUIoutL
£ a0 ~-GUlinL
8 - GUI out P
¢ 60 —GUIInP
(%
40
20
0 ; s

8] 5000 10000 15000 20000
Packet size {bytes, base ten)

Figure 50. AH Transport packet processing times (ver 4), comparing measurements made using

“IPsecLoop” to those made using “IPsecGUI”

Note the low count given by the GUI (“L” stands for the Laptop and “P” stands
for the PC). There must have been some activity going on in the “IPsecGUI” code which
caused it to miss most of its millisecond time-count event messages. It is concluded that it

is a better idea to use good, commercially-available test equipment, than to attempt to

build one’s own.

The processing times are close to being linear, meaning a fixed per-byte
processing rate; the header size of twenty-four bytes which imposes a fixed processing
overhead, does not impose an overhead sufficient to appear in these graphs. Differences
in processing times in these graphs that are proportional to the packet size must be

explained by processing done to each unit of payload.

The incoming (receiving) processing may have taken longer in the results shown

in Figure 50, due to two additional comparison operations used in the “for”-loop that

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

copies the datagram without the authentication data in order to hash it with that field
cleared. In the outgoing (sending) code (the “if” of the “if-else”), the authentication data
section was skipped by using a separate “for”-loop from the one that copied the packet

header portion.

4.3.3.2. Version. 6 Compared to Ver. 4

ESP Transpoit packet processing times

140

g
2 80 DUV
:: e C ¥4
& - QUIVE
@
& 60 i U0 VB
2
a.

g 2000 . 4000 8000 8000 100006 12000 14000 16000 18000
Packet size {bytes, base ten}

Figure S1. ESP Transport packet processing times — ver. 6 vs, ver. 4

In the graph shown in Figure 51, the lines are “Out v4,” “Inc v4,” Inc v6,” and
“Out v6,” from top to bottom. “Inc v6” is only above “Out v6” by 3 ms at the right-hand

end, and the two are centered on 60ms there.

Note that no change was made to the AH service in ver. 6, however the ESP
service was modified to remove “for” loops that cleared the entire datagram, which
would cause delays proportional to the packet size. Outgoing processing required more

time in ver. 4 in ESP due to copying the entire datagram to be encrypted including the

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

padding as well as to the datagram to be produced, which was not necessary; see also the

analogous graph for ESP Tunnel mode, in Figure 52.

ESP Tunnel packet processing thivies

140

120

100

w

£

g) g UL ¥
m it JNC VG

‘g s QUEYErS
3 g G VEE B
2

.

40

20

0 2000 4000 600 8000 10000 12000 14000 16000 18000
| Packet size (bytes, base ten)

Figure 52, ESP Tunnel packet processing times — ver. 6 vs. ver. 4

In the graph shown in Figure 52, the lines are “Out v4,” “Inc v4,” Inc ver 6,” and
“QOut ver 6,” from top to bottom. “Inc ver 6” is only above “Out ver 6” by 2 ms at the

right-hand end, and the two are centered on 60ms there.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.33.3. Version 7 Compared to Ver. 6 and 4

AH Transport packet processing times

180

160

140

120

w

g ,
g 100 o CIUE G
'g "
] it OUEWT
g 80 o NG 9T

o,

<
©

G 2000 4000 6000, 8000 10000, 12000 14000 16000 18000
Packst size (bytes, base ten}

Figure 53 AH Transport packet processing times — ver. 7 vs. ver. 4

In the graph shown in Figure 53, the lines are “Inc v4,” “Inc v7,” “Out v4,” and
“Out v7,” from top to bottom. “Inc v7” reaches 143 ms at the right-hand end, and “Out

v7” reaches 90 ms.

Note thaf ver. 4 is compared to ver. 7 here, since no change was made to AH in
ver. 6. As noted in section 3.3.10., “Versions,” AH was sped up by removing a “for” loop
that was being used to pre-clear the entire datagram; instead, only portions of the
outgoing or incoming datagram being prepared that needed to be, were cleared. This

applied to both modes; see also the graph of AH Tunnel mode in Figure 54.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AH Tunnel packet processing times

180

160

140

120

o QuE ¥4

e {11C VA
e Ut vl

- e vl

100

80

Processing time {ms}

£0

40

20

Q 2006 4000 8000 8000 10000 12000 14000 16000 18000
Packet size (bytes, base ten)

Figure 54. AH Tunnel packet processing times — ver. 7 vs. ver. 4

In the graph shown in Figure 54, the lines are “Inc v4,” “Inc v7,” “Out v4,” and
“Out v7,” from top to bottom. “Inc v7” reaches 143 ms at the right-hand end, and “Out

v7” reaches 93 ms.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ESP Transport packet processing times

140

120

100

80

60

Processing time {ms}

40

20

i I e R

a 2000 4000 BOOG 8000 16006 12000 14000 16000 180600
Packst size {bytes, base ten)

et QUL V4
el J1C VY
w Qutve
oneovns]ﬂC Y6
it UL T
ot I0C YT

Figure 55. ESP Transport packet processing times — ver. 7 vs. ver. 6 and 4

In the graph shown in Figure 55, the lines are “Out v4,” “Inc v4,” “Inc v6,” “Inc

v7,” “Out v6,” and “Out v7;” those last four looked at, at the right end, since their total

spread there is only about 2 ms.

Note that no processing time penalty was incurred in the ESP protocol in going

from ver. 6 to ver. 7, showing that processing not done to each unit of the packet paylod

is not signiﬁcanf; see also the graph of ESP Tunnel mode in Figure 56.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E$P Tunnel packet processing times

140

120
100
§, et QUL ¥4
@ 80 il S ¥4
.é - Qutv
& o 2
§ 50 e OUEVT
& e
40
it

s

16000 18000

0 .3 2 & B AR 55 v Ciindees:
a 2000 4080 6000 8000 16000 12000
Puckst size {bytes, base tan)

14000

Figure 56. ESP Tunnel packet processing times — ver. 7 vs. ver. 6 and 4

In the graph shown in Figure 56, the lines are “Out v4,” “Inc v4,” “Inc v6,” “Inc
v7,” “Out v6,” and “Out v7,” although, at the right end, “Inc v6” is covered by “Inc v7”
and “Out v6,” the lowest line there, is covered by “Out v7”; the total spread of the last

four there is only about 2 ms.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43.34. Version 8 Compared to Ver. 7

AH Transport packet processing times

160

140

120

100

=2
<

]

i‘;’ e GUEVT
B il NG YT
g 80

& o QUEVE
§ winiio; 1016 VB
4

o

40

20

i} 2000 4000 8060 8000 10006 42000 140600 16060 18000
Packet size (bytes, base ten)

Figure 57. AH Transport packet processing times — ver. 8 vs. ver. 7

In the graph shown in Figure 57, “Inc v7” is very slightly above “Inc v8,” at the
right end, by only about 1 ms, virtually superimposed, then “Out v7” follows, then “Out
v8,” from top to bottom. “Out v8” reaches 48 ms at the right-hand end.

The reusé of the datagram prepared for hashing as the outgoing datagram, as
noted in section 3.3.10., “Versions,” succeeded in almost halving the outgoing packet
processing time in the AH protocol in ver. 8§ as compared to ver. 7; see also the graph of
AH Tunnel mode, in Figure 58. The incoming packet processing time in this protocol
could be similarly reduced by clearing the mutable fields of the received IPsec datagram
and sending it to the Mechanisms layer for hashing (also removing and saving the block
of authentication data), which is advisable, since although the incoming IPsec packets are

passed to the Service layer by pointer (i.e., memory address) and thus retain any

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘modifications made to them, they are simply discarded by the security layer above the

Service layer, following the service call.

AH Tunnel packet processing tmes

160

140

120

100

g e OULNVT
= s I VT
u‘ ‘

§ 8 o CUEVE
@ i I YE,
£

0 2000 4000 8000 8000 10000 12000 14000 16000 18000
Packet size (biytes, base teri)

Figure 58. AH Tunnel packet processing times — ver. 8 vs. ver. 7
In the graph shown in Figure 58, “Inc v7” is very slightly above “Inc v8,” at the
right end, by only about 1 ms, slightly less than in the previous graph, virtually

superimposed, then “Out v7” follows, then “Out v8,” from top to bottom. “Out v8”

reaches 48 ms at the right-hand end.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ESP Transport packet processing times

80

50

Processing time {ms}
oy
€«

€ar
<D

0 4000 4000 6000 - 8000 10000 14000 16000 18000

Packst size (bytes, bass ten}

12000

Figure 59. ESP Transport packet processing times — ver. 8 vs. ver. 7

In the graph shown in Figure 59, “Inc v8” is the highest line, reaching 69 ms at
‘the right-hand end; followed by “Inc v7,” which reaches 62 ms, and “Out v8” is slightly
higher than “Out v7,” virtually superimposed.

Here again it can be seen that introducing efficiencies not tied to each unit of
payload has no significant effect; modifying for the efficiency of not including the
datagram header in the plaintext to be encrypted didn’t help at all in the outgoing case
and introduced some extra processing in the incoming case. Since the index values of the
payload data items alone were no longer the same as those of the entire datagram, an
additional index variable was used in the code following the mechanism call, that copies
the decrypted data to the IP datagram being built. Incrementing that extra index variable
is probably responsible for the extra time taken, since it was the only additional
processing added. The outgoing (sending) case was not affected, because it already used

an additional loop variable to be incremented, due to the changed positioning of the

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

packet payload in the IPsec packet due to the addition of the ESP header. The receiving
~case is a little simpler because the payload always goes right after the IP header (and the
mechanism processing is not able to place it because the padding size is unknown before
and during decryption in the ESP protocol). This is also the case in Tunnel mode, as

shown in Figure 60.

ESP Tunnel packet processing times

80

79

60

il
<

g
=

g it QULVT
E=3 . .
% 40 e INC VT
E e QUEVE
£

§ i JAC VB
&

n
<

2000 4000 8000 8000: 10000 12000 14600 16600 18000
Packat size {bytes; bage ten)

Figure 60. ESP Tunnel packet processing times — ver. 8 vs. ver. 7

In the graph shown in Figure 60, “Inc v8” is the highest line, reaching 69.5 ms at
the right-hand end, followed by “Inc v7,” which reaches 62 ms, and “Out v8” is slightly
higher than “Out v7,” virtually superimposed.

4.3.4. Comparisons to Results from the Literature ,
| Table 8 shows a comparison of the best processing times achiéved in this work
against an available report of processing times found in the literature [KER1997]. The
paper reported on a 3DES implementation, which is notoriously slow, all done in

software, which is not difficult to beat. The paper’s times are for combined ESP with

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ESP’s own authentication, and are the latencies. At the largest packet size compared, the
sum of the largest AH and ESP processing reported in this work (which would be two
different protocols; nested), become slightly larger than the 3DES-MD5 implementation.
| For example, at the 8kB packet size (approx. 2028 hex.), if the incoming AH Transport
and ESP Transport mode from this work were to be used together, the latency would be
103 ms vs. 100 ms reported from the 3DES-MDS5 implementation, although the AH
incoming processing time in this work can be halved, as explained before. However, at
the small packet sizes, the worst combined times from this work become approximately
five times less than those of the 3DES-MDS5 implementation. This work could be added

to, to add the ESP’s own authentication service, which would be more efficient.

IPsec packet processing times comparison
Packet Quigoing :Incoming Outgoing iIncoming Qutgoing |Incoming Outgoing Incoming |[KER1997]
Packet i size prac. time proc. time proc. time proc. time proc. time proc. time prac. time proc. time|3DES-
size (hex) i(decimal) ({me) (AR) :(ms) (AR} | (ms) (AU) ((ms) (AU) (ms) {ER) {ms) {ER) (ms) (EU) |{ms) (EU) |MD5 (ms)
28 40 0.435 0.84 0.51 0.975 0.38 0.315 0.44 0.255¢
128 295 1.18 3.1 1.25 3.2 1.3 1.3 1.4 1.2
228 852 1.94 53 2 54 2.2 2.2 23 22 40
328 608
428 1064 3.43 9B 35 98 4.1 4.1 42 4.1 42
528 1320
628 1576 49 14 495 14 58 8 b B
728 1832
828 2088 6.4 19 6.45 19 7.8 B 7.8 78
928 2344
a2B 2600 7.8 23 7.95 23 9B 8.8 97 9.8]
c28 3112 925 2B 9.38 28 12 12 12 12
e2B 3624 10.9 32 108 32 13 14 14 14
1028 4136 12.4 3B 12.8 36 18 18 15 16 B5
1228 4648 13.8 41 139
1428 5160 15.3 45 15.4 45 18 20 19 19
1828 6184 18.3 54 18.3 54 23 23 23 23
1c28 7208 213 63 213 B2 28 7 Py 7
2028 8232 243 72 243 72 30 N 3o 31 100
2428 9255 273 80 273 80 34 35 34 35
2828 10280 30.3 53] 30.3 S0 3B 35 3 39
2c28 11304 33.3 98 33.3 95 41 43 41 42
3028 12328 36.3 108 36.3 106 45 46 45 45
3428 13352 3B 115 39.3 115 48 50 49 50
3828 14375 42 125 423 125 52 54 53 54
3c28 15400 45 133 45 131 56 58 56 58
4028 16424 4B 143 48 143 60 62 B0 B2
(Packet sizes in bytes - 8 bits in the ML403 board)
This work: IPsecLoop ver. 7, March 21, 2007 AR: Auth. Trans.; AU: Auth Tunn,; ER: ESP Trans.; EU: ESP Tunn,
Using IPsecl.oap ver. B results, Aaril 9, 2007, for AH outgoing, hath madas: AR and All
Sw, 100MHz PPC405 with FPGA AES accelerator |
{{A: Authentication Header;, E: ESP: Encapsulating Security F’ayload Trans.: Transpnn Modg; Tunn.: Tunnel Mode.)
[KER1997]: Keromytis, 1997 latency - @ SW, Linux, implermentation on a 166MHz Pentium w. 100Mbps Ethemnet

Table 8. Packet processing times compared to a result from the literature [KER1997].

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In Table 9, shown as a group of tables, the processing-time results from the

previous table are expressed as rates, calculated by dividing the packet size processed by

the time taken, averaging them for each category and expressing them in units of

Megabits per second (Mbps). A comparison with three results found in the literature is

made.
. IPsec packet processing rates (Mbps)
Outgoing | Incoming | Outgoing | Incoming | Outgoing | Incoming | Outgoing
proc. rate | proc:rate | proc.rate | proc.rate | proc.rate | proc.rate | proc. rate
| (AR) (AR) (AU) (AU) (ER) (ER) (EU)
2.5 0.88 2.5 0.87 2.1 2.0 2.1
(cont)
Incoming
proc. rate
(EV)
2.1

These results are calculated averages across 40 to 16kB packet sizes (since the rate
remained roughly constant due to linearity of the processing-time results)

Literature reports (Mbps)
[BEL2002] | [DAN2000] | [CHE2002]
AES AES 3DES

50 353 53

[BEL2002]: SW,Linux, w AES acceleration on Xilinx Virtex 1000 FPGAs

| [DAN2000]: all on an FPGA (make, model unspecified)

[MCL2002]: Did not test packet processing rates

[KIM2004]: Did not test packet processing rates

[CHE2002]: Free S/WAN using a DES accelerator on a custom platform, "Pilchard"
[LUJ2005]: Did not test packet processing rates

Table 9. (group): Packet processing rates and comparison with the literature

The processing rates reported from this work are lower than those found in the
literature due to reading core results from registers via the bus rather than using DMA,

FSL, an all-FPGA implementation or some other such fast access method.

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS

In this work, an IPsec implementation, including five design layers, from top to
bottom: Policy, Management, Service, Mechanism, and Primitive, an SMIB (Security
Management Informati'on Database), an SPDB (Security Policy Database), an SADB
(Security Association Database), code to support testing and a GUI, was developed and

tested. The portions designed and the results are discussed as follows.

5.1. The AES Implementation

A 128-bit AES implementation was done in VHDL in this work, working from a
published Verilog core design that accurately implemented the published AES standard,
using a Xilinx Virtex-4 FPGA, part number XC4VFX12, in the Xilinx ML403
development board. The cipher and inverse cipher were implemented as separate
modules, an encryptof ahd decryptor, using 99% of the FPGA fabric, and unrelated logic
occupying 15% of the slices; even so, the key expand module was not added to the
decryptor and a protocol is provided to obtain the key expand, or permutation, values
from the decryptor and store them in the decryptor, a process that requires 120 s,
whereas loading the key to the encryptor required 20 ps. The speed grade of the FPGA
was 10, the slowest, and the clock used in the modules was divided by two from the 100

‘MHz board clock. The encryptor performs its transform in eleven clock cycles, i.e., 220
ns; the decryptor in ten, i.e., 200 ns, due to a better timing plan, which could be adopted
for the encryptor. These times imply processing rates of 582 Mbps and 640 Mbps,
respectively. However, the access method to obtain the results is only via software via
32-bit registers via the OPB, which reduces maximum processing rates to about 22 to 27

Mbps in this implementation.

In addition to fhé ability to generate and read the key expand values from the
encryptor and store them in the decryptor via software, the key expand values stored in
the decryptor can be read via software. Both peripherals have CBC mode built in, so that
the plaintext input to the encryptor is always XORed with the stored and automatically-

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.updated “IV” register, and the internally decrypted block in the decryptor is always
XORed with its similarly-designed “IV” register. The “IV” register can be loaded into
each peripheral, and a readback method is provided in the decryptor. The peripherals
each automatically perform their transform when their input data registers are written. A
“programming model” is provided in this work showing the bit positions in the peripheral
slave registers for the commands to accomplish these operations and giving the
operational protocol required. Connections to pins on the ML403 board provide two
signals, each of which is high when its corresponding peripheral is performing its
transform, allowing oscilloscope measurements to be taken for research, development,

and evaluation purposes.

A version of the decryptor was produced that can output the value of each step of
each round, and did so in testing. A bug fix was added that was verified in the main
-version of the decryptor, to the source code of the “stepper” and is expected to induce the

“stepper” version to begin always with the correct output.

Numerous small software programs were written in C and C++ to test and
demonstrate the AES cores, culminating in a full CLI version that demonstrates all
features of the cores in individual block processing, and a C++ GUI that runs on a PC and
uses the ML403 board to encrypt and decrypt an ASCII text file on the PC. It was found
that the I'V should not be encrypted when CBC mode is used, since an attacker could use
knowledge of that design to tell when the first block of plaintext happens to be all zeroes.
The processing rate of the “AESfile” GUI using the ML403 board in this way was found
to be in the 12-17 kbps range, given a 57,600 bps RS232 link and a good deal of time-

consuming processing display echoing to the user in the GUL

It is hoped that this section of this work will contribute a commercially-useful
AES implementation, with the features necessary for it to be used in practice, and
contribute knowledge of the capabilities of the relatively recently-developed Xilinx
Virtex 4 FPGA, results from which have not yet been seen in journal and conference

papers.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2. The LFSR-CASR PRNG Implementation

A LFSR-CASR PRNG implementation was done in C++ and C in this work,
working from a published Verilog design. Distributions of samples of its output were
‘graphed in this work, showing that its output seems to have a good, uniform distribution:
Using the IPsec implementation done in this work, it produces and stores a 128-bit
random number in 1.3ms, as a concaten_ation of four of its output words (a rate of 128/1.3
= 98 kbps). According to its original specifications, the basic design has a cycle length of
282823741 and a bias of 2%, Its final XOR and the use of only the lower 32 bits of
each of its state variables conceals the states from cryptanalysis. The original design
came supplied with a report from the literature that showed that it did well in the
“Diehard” series of statistical tests [TKA2002].

However, AES itself makes a better PRNG, having a cycle length of two to the
exponent of its block size, and being carefully and successfully designed for extreme
non-linearity. From a design comparison, it is estimated that AES contains up to two
orders of magnitude more non-linearity than does this LFSR-CASR PRNG. Since it is

“already impleméntéd in the FPGA, it can produce random numbers much more quickly, .
at arate of 27 Mbps in this work. Although an FPGA implementation of the LFSR-CASR
PRNG would probably generate pseudo-random numbers faster than AES, it remains
merely a good PRNG, while AES makes a great one [HEL2003].

5.3. The IPsec Implementation

Working from the five-layer framework for design of a security system
established in previous work, a partial IPsec implementation was designed, written in C
and tested. Content from each of the five layers was included. The AES and PRNG
implementations discussed before were used as the primitives, and a dummy SHA-2 hash
routine was included. Two mechanisms, an HMAC and an encryption mechanism, and

two service routines, AH and ESP, were implemented. IPv4 was supported. The HMAC

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mechanism performs its signing by using the AES symmetric key to encrypt the hash —a
key exchange service was not implemented. The ciphertext in both the HMAC and the
transformed ESP datagram begin with the IV itself, sent unencrypted along with the
datagram. The mechanisms are designed to show the technique of selecting the primitives
and to show the technique of selecting different mechanisms; new mechanisms added are
intended to be added as additional cases to the existing mechanism files. The anti-replay
service was not implemented. Attention was given to possible security leaks, such as by
‘making sure that the ‘padding area in the ESP plaintext is cleared. The SMIB is designed.
to be used to specify and select the mechanism from the service and the primitives from
the mechanism. The idea of having an array of services, mechanisms and primitives is

indicated. The SMIB is designed in its policy layer to support doubly-nested SAs.

At the management layer, two versions were implemented, one which supports a
remote GUI, running on a PC, and a CLI (Command-Line Interface) version more
suitable for use in performing laboratory measurements. In the GUI version, the IP
addresses of multiple clients can be entered and the Service, Mechanism and Primitive
layers are configurable. The board itself supplies the basic configuration of its
implemented capabilities. In the SADB, the IV can be set constant, or to be regenerated
by the RNG for every packet sent. The PRNG can be seeded from a free-running counter.

The GUI demonstrates packet transform and reverse transform: IP to IPsec and back.

At the policy layer, multiple policies were implemented, making the GUI running
on the PC a policy server. Only the selected policy is downloaded to the board. It is
intended that the service number as an index of the array of those available be negotiated
in SA setup; the SADB is designed to hold that selection. The SADB and SMIB can be
saved to files on the PC from the GUI, the SMIB in three different files, one for each of
the policies, the clients’ IP addresses, and the base SMIB.

The implementation was verified to successfully process packets from the
smallest to largest possible size of a five-32-bit-word header and one-byte payload, to a

six-32-bit-word header and a total size of 65,535 bytes, respectively, in both the GUI and

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the CLI versions. A benefit of layering and modularity is that all files at the layers below

the management were the same in both versions.

The typical packet processing rate achieved in this implementation was found to
be 2.0 Mbps, measuring the rate at which the Service calls could be repeated, although
outgoing (IP to IPsec) AH processing reached 2.5 Mbps and incoming AH processing
sank to 0.87 Mbps. The packet processing times for all four protocol-mode combinations
were always linear, meaning a roughly constant packet processing rate. Operations that
do not need to be done over the packet payload do not significantly affect processing
time. The time required, 120 ps, to load the key expand values into the decryptor, is not a
serious delay, considering that it usually only has to be done once after the SA is set up

~with a particular key. It could cause more delay if the board serves more than one
incoming SA. The time required to get a random number using the software
implementation of the LFSR-CASR PRNG, 1.3 ms, is significant, especially given the
processing times of the most common packet size of about 500 bytes, of about 2 ms.
Processing rates reported in this work are lower than those reported in [BEL2002],
[DAN2000] and [CHE2002] (see section 4.3.4., “Comparisons to Results from the
Literature™), due to reading core results from registers via the bus rather than using some
fast access method such as DMA, FSL (Fast Simplex Link) or an all-FPGA

implementation. However, it is not difficult to beat a software implementation of 3DES.

Some different versions of the service calls and lower were produced in
development, to carefully adhere to the design concept of using the SMIB to select the
modules used in the lower layers from those in the upper layers, and to remove

-inefficiencies and speed up processing. Four different versions were involved in testing.

As briefly noted before in this section, a huge benefit resulted from the modularity
of layering when a second version, “IPsecLoop”, was needed for testing: only the
management layer file needed to be modified; eight code files and their “header” files for
three lower layers could simply be reused. A drawback of layering was noticed in which

data present at a lower layer had to be read at a higher layer, that is, the Primitive layer

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

information on the size of data created at the Primitive layer had to be used at the
Services layer in order to determine packet sizes; strict separation of layers had to be
discarded in order to have a successful implementation. However, the design of the

management layer is still not entirely rigorous.

| 5.4. Recommendations for Future Work

5.4.1. The AES Implementation

The timing plan of the encryptor could be revised to match that of the decryptor,

“shaving” a clock cycle off of the time required.

A higher speed grade of the XC4VFX12 Virtex-4 could be used to determine if
the core transform rate could be doubled. This could be attempted in simulation with
available tools, without having to buy an actual chip; once post-PAR simulation
succeeds, operation in the actual chip is virtually guaranteed. However, one must pay
attention to test techniques; it is easy to set unrealistically-short input pulse times in the
testbench, for example,‘ when real-world input pulse durations may trigger unintended

effects in the design and cause it to fail. |

The debugged source code of the “stepper” version of the decryptor could be

built, tested and verified.

The preceeding three ideas would be good initial exercises to perform to become
familiar with the technology. An ambitious investigation would be to see if the encryptor

and decryptor could B_e implemented in the same module.

Programming the Flash EEPROM could be done so that the code in the board
would be non-volatile, making demonstration easier, especially with larger code sizes
that require the IMB of SRAM, since the debugger to load the executable code separately

may not be available when the board is programmed “in the field” or in demonstrations,

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

using Xilinx “iMPACT”, due to the full Xilinx software package being cumbersomely

large for installation ona laptop PC.

5.4.2. The LFSR-CASR PRNG Implementation

AES should be used as the PRNG in this work, saving the code space required for
the software implementation of the LFSR-CASR PRNG that has a far shorter cycle
length and is probably much less non-linear, and speeding up random-number generation

by over two orders of magnitude using technology established in this work.

5.4.3. The IPsec Implementation

As with most work, the amount of work that can be done in the future vastly

.exceeds the amount of work completed.

The project could be redone without the layering in order to compare the
effectiveness of the layering technique, but that would be tedious, since it is not expected
to produce useful, modifiable code and is therefore not recommended. Instead, it is
recommended to investigate the use of DMA to speed up processing; then the results
obtained could be expected to be improved, and could be recompared with those from the
literature. An all-FPGA implementation would be an ambitious undertaking, and would
require the purchase of considerable amounts of new hardware. FSL could perhaps be
attempted using the Xilinx “Microblaze” boards available in this department, if available
in the version installed, which is 6.1. Otherwise that might require purchase of new

hardware, design software and Xilinx IP cores.

As a conclusion from this work and a recommendation, it is a better idea to use

good, commercially-available test equipment than to attempt building one’s own.

An easy and forseen improvement that can be made is to double the speed of the
AH incoming processing using the method described (see section 4.3.3.4., “Version 8

Compared to Ver. 7). The ESP Service routine should be reverted from ver. 8 to ver. 7.
147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As was done in this portion of this work, the IV should not be encrypted if
included with ciphertext encrypted in CBC mode, since an attacker could use knowledge

of such a feature to determine whether the first block of plaintext is all zeroes.

v Additional primitives, mechanisms, and thus services could be added,
implementing the arrays in the SMIB by making the contents of the constituent lower
three layers into pointers to the contained structures. The reading of the SMIB to
determine the services, mechanisms and primitives used would then have to be fully
“fleshed out”. The “Enabled” fields that were designed into the SMIB Services,
Mechanisms and Primitives layers, could be actually used. The SHA-2 hash routine,
which contains only dummy code as a result of this work, could be implemented. The
unimplemented IPsec. services and portions thereof, such as anti-replay and ESP
authentication (which would be more efficient than nesting ESP and AH SAs — see |
section 4.3.4., “Comparisons to Results from the Literature™), could be added. Support
for IPv6 could be added. A challenging investigation would be to make the désign of the

management layer more rigorous.

_ Header checksumming support could be added, as well as support for other IP
header and AH header fields. This work now supports the IP header total length field (in
octets), the datagram total length field, the AH or ESP protocol field, the TTL (Time To
Live) field, the AH header Payload length, the ESP padding length, and the AH and ESP
headers’ SPI. All other fields were left for future work.

An RxIVConstant variable can be defined for the SADB and used if the particular
mechanism calls for the TV not to be included with the ciphertext. More criteria could be
added as policy selectors. More ideas could be incorporated into the SMIB from

[KEN1994].

A function should be used for the AES-128 encryption mechanism, since a similar

block of code is used in both the HMAC and Encryption mechanisms. In general,

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

functions should be used for any mechanism component that may be added in the future,

that is used in a similar way in more than one mechanism.

More sophisticated error recovery techniques could be added, such as “freeing”

all “malloc”ed pointers in the event of heap overflow.

Since the reliable data transfer routines sometimes “lock up” and seem, during the
initial transfer of a session, particularly, to take many repetitions for a successful
transmission, their operation should be debugged, using a protocol analyzer. Display
echoing to the activity was used in debugging, which might continue to be useful; the
echoing commands affect the timing, which is “touchy”, and are left “commented out”, in

the source code.

As with all complex software, the software written in this work should be viewed
with scepticism and should be continually tested, particularly in areas of operation that do
not receive common use, or in areas of unintended operation permitted by the software
that could cause the program to fail.

Key Exchange could be added, as well as support for bidirectional SAs; in this
work, the incoming SA is set to use the same SA as the outgoing. To implement multiple
SAs, the SADB declaration could be made a pointer to an array of pointers that each
point to an SADB. Then space for SADBs can be “malloc”ed at will, as can the space for
an array of pointers as the number of SADB instances change. To work with the GUIL, an
intermediate dialog coﬁld be added in the GUI that just gets the different SPIs from the
board, allowing the user to select the SPI of the SADB that he wishes to view. It does not

“seem likely that support for the incoming SADB being identical to the outgoing would

need to be retained.

In outgoing processing in the IPsec sublayer, the SA should be chosen from the
future array of SAs based on the selectors in the datagram. In incoming processing, the

SAs should all be searched for the SPI that matches that in the datagram.

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A challeng‘é would be to make the implementation in this work communicate with
| a different existing implementation. A full OSI stack would have to be included. The
physical OSI layer could be Ethernet and use the RJ11 connector on the ML403 board.
The application layer can be the interface to the GUI on the PC or perhaps the LCD on
the ML403 board, or any other of the many IO devices and output ports on the ML403
board.

If AH IPsec packets fail to authenticate, that should at least be made an auditable
event, for the system administrator to check on, and should conceivably be passed up to

the application layer to prevent further communication and inform the user of that.

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDICES
APPENDIX A

A. Pseudo-Code
Note that “//” or “/*” indicates a comment

A.l. IPsecimp

A.1.1. The SMIB

A.l.1.1. The Overview and Top Two Layers

structure SMIB {
structure PolicyLayer {
NumberOfPolicies
pointer to array of policy structures }
structure ManagementLayer {
Local IP Address
NumberOfClients
boolean AreAddressRanges // If so, there should be an even
NumberOfClients
- pointer to array of client IP addresses }
structure ServicesLayer {}
structure MechanismsLayer {}
structure PrimitivesLayer {} }

A.1.1.2. The Policies

structure Policy {
// First, the selectors, and whether they are used
boolean Next1ItemUsed // If False, all destination addrs are selected.
DestinationAddress
boolean Next2ItemUsed
SourceAddress
boolean Next3ItemUsed
NextProtocol
boolean Next4ItemUsed
IPSecurityLabel // Level 1-16 (future work: more criteria)
boolean Next5ItemUsed
TransportDestinationPort
boolean Next6ItemUsed
TransportSourcePort

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

selected

processed.

SAs.

// If none of the above are used, all packets are

boolean Process // True if these packets are to be processed
// False if these are the packets NOT to be

choices if selected one not accepted

choices if selected one not accepted

A.1.1.3.

// The negotiation goals
// The policy data is to be used by the key exchange module to negotiate
32-bit int SPI1Inner // SPI of the inner SA set up - 0 if none
32-bit int SPI20uter // SPI of the outer SA set up - 0 if none
Protocollnner // Protocol type of the inner SA to be set up
Modelnner // The mode wanted: 1 for transport; 2 for tunnel
ServNumlInner // Array index in the service structure
boolean NegotiateInner /I if True, try different service
ProtocolOuter // Protocol type of the outer SA to be set up
ModeQuter
ServNumOuter // Array index in the service structure
boolean NegotiateOuter /1 if True, try different service
MaxIPsecPacketSize

.}

The Lower Three Layers (within the Overview)

structure SMIB {
structure PolicyLayer {}
structure ManagementLayer {}
structure ServicesLayer {

structure AH {

Enabled
HMAC mech. no. }

structure ESP {

Enabled
enc. mech. no. } }

structure MechanismsLayer {

structure Encryption {

Enabled
RNG prim. no. }
enc. prim. no. }

structure HMAC {

Enabled

RNG prim. no. }
Hash. prim. no.
enc. prim. no. } }

structure PrimitivesLayer {

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

structure Encryption {

Enabled -

enc. algorithm no.

chaining mode } // such as CBC
structure Hash {

Enabled

hash algorithm no. }
structure RNG {

Enabled

RNG algorithm no. } } }

In future work, each substructure of the Services to Primitives layers can be
generalized to an array of the structures in order to select one at the higher layer. For
now, each service, mechanism and primitive number is zero for each type because there

is only one of each.

A.1.2. The SADB
structure SADB {

FromIPAddress // Set to all 255s for all

TolPAddress

Protocol // 1=AH; 2=ESP

Mode // Same for AH and ESP 1=Transport 2=Tunnel
32-bit int SPI // default 1

32-bit int SequenceNumber

32-bit int AntiReplayWindow

boolean SequenceNumberOverflow

32-bit int LifeTime // Number of bytes

L3ServiceNo // The SMIB service number negotiated

Pointer to (address of) the key

Pointer to the IV

boolean IVConstant; // - true if IV constant for this SA

boolean OppositeSAldentical; // The SA for the other direction --
TRUE if so }

A.1.3. Top-Level Loop

Initialization
-call the security Services layer with initialization command code.
~fill in lower three SMIB layers to reflect programmed capabilities.
-"key is always new" «— FALSE;
-packet processing < FALSE;
Loop forever {
increment 64-bit counter for RNG seed (dec high 32 bits; inc low 32 bits)
if (packet processing) { // process the OSI stack

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IP Layer . // Note: each of these layers is called in sequence and each
checks the dispatcher for an incoming packet
IPsec sublayer
Link Layer }
if (Command character received via RS232) {
case of command character {
h: board sends "Hello" characters via RS232
r: board seeds the RNG with the 64-bit count and sends the count via

- RS232 L
z: board sends its SADB out via RS§232
s: board receives its SADB via RS232
m: board sends its SMIB out via RS232
i: board receives its SMIB via RS232
k: toggle setting to initialize key in core every packet transform: "key is
always new"

p: toggle packet processing } } }
Note: blocks of data in the r,z,s,m and i commands are communicated using two
reliable data transfer routines: a send routine and a receive routine. These commands are

not used in the test version (IPsecLoop).

A.1.4. Packet Processing, or OSI Layers

Al4.1. IP Layer

IP Layer: somewhat of a dummy layer {
if (Start of Test) {
Start of Test < FALSE
get the memory to receive the test packet via RS232
receive the test packet via RS232 using reliable data transfer
dispatch the packet to the next layer }

check the dispatcher for a received packet

if (Packet received) {
send the packet received, out via RS232 using reliable data transfer
delete the memory containing the packet received back
packet processing «<— FALSE — passed to top-level loop } }

A142. IPsec Layer

[Psec Layer {
if (not already a packet being sent to the Link layer) {
check the dispatcher for a packet from the IP layer }

{

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if (packet received from the IP layer) { // Showing the packet sending code
KeylsNew < KeylsNew or KeylsAlwaysTreatedAsNew or ((not
LastTimeWasSending) and KeysDiffer)
depending upon the protocol in the SADB {
use the reliable data transfer to synchronize with the GUI
Level 3 AH or ESP Service(SADB, SMIB, SENDING, KeyIsNew,
NeedNewlV, IP packet in, IPsec packet out)
KeylsNew «— FALSE }
echo the IPsec packet via RS232 using reliable data transfer - alerts the GUI
dispatch the IPsec packet to the link layer
delete the IP packet }

The receive code is analogous, with RECEIVING set in the service call, except
that the protocol is read from the incoming packet and the SPI from the incoming packet
is checked against the available incoming SADB(s). If the protocol is AH, a header
verification message is sent via RS232. }

A.14.3. Link Layer

Link LaYef: 2 dummy layer {
check the dispatcher for a packet from the IPsec layer
if there is a packet, put it back in the dispatcher to send it back }

A.1.5. Reliable Data Transfer
These are for the IPsecImp demonstration only. Each of the board and the GUI

have a send and a receive routine

A.1.5.1. Send Algorithm

Send algorithm (pointer to character buffer, length) {
Receive characters until STX from the recipient is received
for each count of length, encode each of the two digits of the character
byte as hexadecimal ASCII
and send the two digits
- -increment the checksum from the original byte
read and clear any hanging characters sent from the recipient, to clear any
left-over STXes _
send the four-byte checksum the same way.
if nothing received back from recipient, send ETX until something is
while characters received back from recipient, echo back ACK or NAK
-this ensures that the send code knows that the receiver got the
handshake, when it stops sending

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-quit and continue if recipient sent STX for another block of data
if the transmission was ACKed, quit, otherwise repeat the above to try

again }

A.1.5.2. Receive Algorithm

Receive algorithm (pointer to character buffer, length) {
read any hanging characters and discard; stop if ETX received
if ETX not received, send STX until a character is received
get two characters for every count of length ;
-each of the two is a hex digit; strip off the ASCII encoding and
make one byte
-increment the checksum using the determined byte
get the four-byte checksum the same way
send ACK or NAK depending upon whether the checksums match
get the handshake from the Sending entity
-if the handshake is not ACK or NAK, resend the ACK or NAK
until the handshake is received.
read any hanging characters and discard
if the checksums matched, quit, otherwise repeat the above }

A.1.6. The AH Service ~

L3AHServ (in: SADB, SMIB, Initialize, KeylsNew, Sending, NewIVNeeded,
DatagramlIn, out: DatagramOut, Verifies) {
if (Initialize) L4AMACMech(Initialize) and return.
case SMIB—Hash and encryption primitive {
get the hash size needed
: get the size of any extra space needed for signing (encryption) such as for
including the IV } ;
get memory for the generated hash
if (not Sending) get memory for the decrypted hash, for verification
get size of and memory for the transformed datagram, depending upon
SADB—mode: Transport or Tunnel
point to the location of the signed hash to write if Sending or to read if
receiving (pAuthData)
get size of and memory for a copy of the datagram to hash (pPayloadToL4)
fill the copy of the datagram to hash, leaving off the mutable fields — set to zero
fill the transformed datagram out, skipping the location of the signed hash if
sending
L4MACMech(In: SMIB—HMAC Mechanism number, SADB — key and IV,
SMIB, Initialize, KeyIsNew, Sending, NewIVNeeded, pPayloadToL4, Out (In if
receiving): pAuthData, Out: DecryptedHash, GeneratedHash)
delete the space at pPayloadToL4

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if (not Sending) check the decrypted vs. generated hash and set Verifies
accordingly
delete the decrypted and generated hash memory }
-Future work: use SADB service no — SMIB—Service layer—>Mechan1sm layer
and —Primitives layer when arrays added

A.1.7. The ESP Service

L3ESPServ (in: SADB, SMIB, Initialize, KeylsNew, Sending, NewIVNeeded,

DatagramlIn, out: DatagramOut) {

if (Initialize) L4EncMech(Initialize) and return.

case SMIB— encryption primitive {

get the encryption block size
specify whether an IV is included }

if (Sending) calculate the padding size required to make the payload a natural
number multiple of the block size

calculate the transformed DatagramOut size, depending on SADB — mode:
Transport or Tunnel

get the memory for an unencrypted/decrypted copy of the datagram,
DatagramOutUnEnc, with all the padding; also if receiving, the padding has to be
decrypted before the padding size can be retrieved.

if (Sending) get the memory for the DatagramOut

if (Sending) set pTransformedData in DatagramOut, else set pTransformedData
in DatagramOutUnEnc

if (Sending) set pPayloadToL4 to the payload location in DatagramOutUnEnc,
else set it to the payload location in DatagramIn

Set the header data in DatagramOutUnEnc

if (Sending) set the data to be transformed in DatagramOutUnEnc and copy the
header data to DatagramQOut

L4EncMech(In: SMIB — Enc Mechanism number, SADB — key and IV,
SMIB, Initialize, KeyIsNew, Sending, NewIVNeeded, pPayloadToL4, Out:
pTransformedData)

if (not Sending) get the memory and copy DatagramQOutUnEnc to DatagramOut
without the padding

delete DatagramOutUnEnc}

Future work: use SADB service no — SMIB—Service layer—Mechanism layer

and —Primitives layer when arrays added)

A.1.8. The HMAC Mechanism

L4MACMech(In: SMIB—HMAC Mechanism number, SADB — key and IV,
-SMIB, Initialize, KeyIsNew, Sending, NewlVNeeded, pPayloadToL4, Out (In if
receiving): AuthHdrStorage, Out: DecryptedHash, GeneratedHash) {
if (Initialize) L4AAES128Mode(NONE) return
case SMIB—SMIB Prims layer.SMIB Hash Prims.Algorithm {
SHAZ2: set the hash size

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L5SHA?2 (pPayloadToL4, Out: GeneratedHash) }
case SMIB—SMIB_Prims_layer.SMIB_Enc_Prims.Algorithm {
AES128: get the key, if (Sending) get the IV
determine whether the key needs to be set in the core from KeylsNew
and L4AES128Mode
if so, set the core use to MAC using L4AES128Mode() and call
L5AESI28UpdateKey
if NewIVNeeded and Sending) {
Get the RNG state, Use the RNG to create a random number for the
IV, save the RNG state
Pass back the new IV using its pointer }
if (Sending) {
put the IV into the output datagram at AuthHdrStorage
LSAES128UpdatelVs() - put the IV into the AES core
L5SAES128EnDecrypt(ENCRYPT, GeneratedHash, HashSize,
-(AuthHdrStorage+sizeof(IV)), HashSize) }
else {
get the IV from the input datagram at AuthHdrStorage
L5AES128UpdatelVs() - put the IV into the AES core
L5AES128EnDecrypt(DECRYPT, (AuthHdrStorage+sizeof(IV)),
HashSize, DecryptedHash, HashSize) } } }

A.1.9. The Encryption Mechanism

L4EncMech(In: SMIB—Encryption Mechanism number, SADB — key and IV,
SMIB, Initialize, KeyIsNew, Sending, NewIVNeeded, pPayloadTol4, Out:
TransformStorage) {
if (Initialize) L4AES128Mode(NONE), reset and save the RNG state, return
case SMIB—SMIB_Prims _layer.SMIB_Enc_Prims.Algorithm {
AES128: get the key, if (Sending) get the IV
determine whether the key needs to be set in the core from KeyIsNew
and L4AES128Mode -
if so, set the core use to ENC using L4AES128Mode() and call
L5AESI28UpdateKey
if NewlVNeeded and Sending) {
Get the RNG state, Use the RNG to create a random number for the
IV, save the RNG state
Pass back the new IV using its pointer }
if (Sending) {
put the IV into the output datagram at TransformStorage
L5AES128UpdatelVs() - put the IV into the AES core
L5AES128EnDecrypt(ENCRYPT, pPayloadToL4+sizeof(IV), Size,
(TransformStorage+sizeof(IV)), Size) }
else {
get the IV from the input datagram at pPayloadToL4
L5AES128UpdatelVs() - put the IV into the AES core

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L5AES128EnDecrypt(DECRYPT, pPayloadToL4-+sizeof(IV), Size,
TransformStorage, Size) } } }

A.1.10.L4 (hdechanism)_ SPI Tracking Storage

L4AES128SPI(Setting, SomethingSet, —SPI, —Decrypting) {
static IsSomethingSet // Whether anything is stored
static SPIState
static DecryptingState

if (Setting) {

IsSomethingSet = SomethingSet

- SPIState = —SPI

DecryptingState = —Decrypting}
else {

—SPI = SPIState

—Decrypting = DecryptingState}
return(IsSomethingSet)}

A.1.11.The Hash Primitive
Dummy Hash

L5 SHA2(MsgIn; MsglLen, 32-bit Out0 - 32-bit Out7) { set each of the eight 32-bit
words to (hex) SASA5ASA }

A.1.12.The RNG Primitive
First, the state is stored using static variables within a function — this function

must be used to retrieve and then to save the state before and after the Generate function.

A.l1.12.1. Get or Set the State

L5RngCoreValues(int Set, 32-bit HOCASR, 32-bit LOCASR, 32-bit HOLFSR,
32-bit LOLFSR) {
if (Set) store HOCASR, LOCASR, HOLFSR, LOLFSR (the state) in local
static variables ’
else retrieve the state }

A.1.12.2. Reset the State (to all “1”s)
L5RngReset(32-bit HOCASR, 32-bit LOCASR, 32-bit HOLFSR, 32-bit

LOLFSR) {
set the state to all binary 1s, i.e., hex FFFFFFFF for each }

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.1.12.3. Seed the RNG

L5RngSeed(32-bit HOSeedIn, 32-bit LOSeedIn, 32-bit HOCASR, 32-bit
LOCASR, 32-bit HOLFSR, 32-bit LOLFSR) {
HOCASR « HOSeedIn, LOCASR « LOSeedIn, HOLFSR «
HOSeedIn, LOLFSR « LOSeedIn }

A.l1.12.4, Generate a Random Number

L5RngGenerate(32-bit HOCASR, 32-bit LOCASR, 32-bit HOLFSR, 32-bit
LOLFSR) { .
generate the random number as given previously and update the state
return the 32-bit random number }

A.1.13.The AES-128 Primitive

A.1.13.1. Key Load to the Core

L5SAES128UpdateKey(32-bit Key0, 32-bit Key1, 32-bit Key2, 32-bit Key3,
Decryptor) {
write the encryptor core slave registers 1-4 with Key 0 to 3
if (Decryptor) {
use the algorithm detailed previously to load the key expand values from
the encryptor core to the decryptor core }

The encryptor's IV was changed by loading the key expand values to the
decryptor; just clear it even if not loading the decryptor. The calling
routine will be responsible for setting it:

L5AES128UpdatelVs(0, 0, 0, 0) }

A.1.13.2. IV Load to the Core

L5AES128UpdatelVs(32-bit IVO0, 32-bit IV1, 32-bit IV2, 32-bit IV3) {
set IVLoad in the encryptor core
write the encryptor core slave registers 5-8 with IVO to 3
clear IVLoad in the encryptor core
set IVLoad in the decryptor core
write the decryptor core slave registers 5-8 with IVO to 3
clear IVLoad in the decryptor core }

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.1.13.3. The Encrypt or Decrypt Function

L5AES128EnDecrypt(int Encrypt, 32-bit CurrentBlockIn, BlockInLength, 32-bit
CurrentBlockOut, BlockOutLength) {
Validate user entry - BlockInLength must be a multiple of sixteen bytes,
and BlockOutLength must be at least the same size - return with error if not the case.
for each 128-bit (16-byte) block {

// Note big-endian data orientation. Note that SlaveReg8 has to be
written last for the transform to proceed; use the first 32-bit words as higher-order data.
In the core, SlaveReg5 is highest order.

if (Encrypt) {

write the encryptor core slave registers 5-8 with the four
32-bit words of the block in
?' Wait for the encryptor core to finish, although doing this
'seems somewhat ridiculous given how fast the core works (220 ns).
read the encryptor core slave registers 9-12 to the four 32-
bit words of the block out }
else {
do the same except using the decryptor core slave registers

11}

A.2. IPsecLoop

Differences from IPsecImp are shown. Note that IPsecLoop has no GUI, since it
is a CLI program. Also, it only differs in the top-level loop and OSI layers; all of L3

(Service) to L5 (Primitive) layers are identical.

A.2.1. Top-Level Loop
Differences from IPsecImp:

Initialization
-set the SADB
-set a specific embedded test packet
commands
r, Z, S, m, and i are not needed
added:
o: toggle the loop testing between outgoing (encryption) and receiving back
(decryption)
t: change the protocol and mode to be tested, in the SADB
i: change the increment by which to increase the test packet size
n: toggle "need new IV"; if set, a new IV is acquired via the RNG every packet
transform
s: increment the packet size or revert to the starting size

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.2.2. Packet Processing, or OSI Layers

Differences from IPsecImp:

A2.2.1. IP Layer

IP Layer:
Start of test: -
copy the embedded test packet (so that the IPsecLayer won't delete the
original) -
if packet received:
echo the packet via plain RS232

A221. IPsec Layer

IPsec Layer:

The service calls are put into a loop containing:

a dummy AES transform (the opposite one to the one used in the service
call) to read via oscilloscope to mark the loop

the service call

a dummy transform to read via oscilloscope to mark the end of the service
call

test for error

set "KeylsNew" from top-level user selection

check for a keystroke via RS232 and exit the loop if so

check for the setting of the "Outgoing" vs. incoming test selection to exit the
loop after only one execution if testing the other direction.

delete the transformed packet if looping

A3, IPsecGUI

The key packet processing functions are shown below.
A.3.1. Packet processing test setup

OnButtonSendPacket {
initial validation of SMIB, SADB and their contents
test for existance and validity of the test packet - header size, minimum 1-byte
payload size
verify that the size of the IPsec test packet produced will be no larger than
(hex) FFFF

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

send 'p' to start packet processing in the board
if no error message from the board, use reliable data transfer to send the test
packet _'
- display a progress dot after sending the packet size
use reliable data transfer to receive "Synch" from the board to synchronize to
the board's actual service call
- display a progress dot
PacketOutgoing « true
PacketOutProcTime «— 0, PacketInProcTime «— 0
Set the GUI timer for timer messages at a 1ms rate }

A.3.2. Packet processing timer processing

OnTimer {
increment the appropriate count depending upon PacketOutgoing
check for character received; exit if nothing
stop the timer.
if error message from the board, display it and exit
if (PacketOutgoing) {
display the time taken for the outgoing processing for display purposes
get the IPsec packet size via reliable data transfer; display a space and a progress dot
get the IPsec packet using reliable data transfer; display an "o" for "outgoing
processing complete"
use reliable data transfer to receive "Synch" from the board to synchronize to the
board's actual service call
display a progress dot
Set the GUI timer for timer messages at a 1ms rate }
else {
use reliable data transfer to receive the status message of the AH verification (or
dummy characters if ESP)
display the time taken for the incoming processing for display purposes
get the IP packet size via reliable data transfer; display a space and a progress dot
get the IP packet using reliable data transfer; display an "i" for "incoming processing
complete” .
display the IP and the IPsec packet
echo the protocol and mode for record-keeping
echo the outgoing and incoming processing times for record-keeping
echo the AH verification message for record-keeping } }

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B

B. Experimenta] Data

B.1. Simulation Results

B.1.1. Encryption

B.1.1.1. Encryption — with All Intermediate Step Results

At the time these “screenshots” were taken, the “load pulse” method was used to

initiate “Id_r” and the transform.

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tweave Ldela

— upper left quadrant of view

screenshot"

"

on

jon simulati

Encrypt

Figure 61.

65

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ew

— lower left quadrant of v

screenshot"

jon "

ion simulati

Encrypti

.

62

Figure

66

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ht quadrant of view

.

— upper rig

"screenshot"

jon simulation

igure 63. Encrypti

F

67

1

#

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ght quadrant of view

—lower ri

screenshot"

ion simulation "

Encrypti

64

Figure

B

68

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Autoload

1.1.2.

toload

ing au

** show

“screenshot,

imulation

igure 65. Encryption s

F

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Frovamnn

Cipher-Block Chaining Mode

EiE :
531399 ge tp 1219149 py

B.1.1.3.

66.

ing CBC mode

show

screenshot,”

fon simulation ¢

. Encrypti

igure

F

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.1.2. Decryption

Now 3200 D

shta 0

ing IV load and save

show

”
el

"'screenshot.

on

.

lat

ion simu

Decrypti

igure 67

F

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘B.2. Tabulated Data from “IPsecLoop” Oscilloscope Testing

B.2.1. Version 4, with “IPsecLoop” and “IPsecGUI” Comparison

B.2.1.1. AH Transport

AH Transport Mode packet processing times using IPsecl.oop, - data of Mar 1-2,
2007

(entered here Mar 13-15) - James Wiebe
(Packet sizes in bytes - 8 bits in the ML403 board)

"GUI processing times" refer to use of the IPsecGUI; (1) laptop runs Mar 13-14, 2007
(2) on PC Mar 17, 2007

GUI
GuUI inc.
Outgoing Incoming GUI out. out. proc.
proc. proc. proc. GUl inc. proc. time
Packetsize Packet size time time time (ms) proc. time time (ms)
(hex) (decimal) (ms) (ms) (1) (ms) (1) (ms)(2) (2)

28 40 0.72 0.97 2 2 1 1
128 . 296 3.9 36 2 2 1 1
228 © 552 5.7 6.3 2 1 1 1
328 808 7.6 2 1 1 1
428 1064 9.3 11.5 2 1 1 1
528 1320 11.3 1 2
628 1576 13 17 1 1 1 2
728 1832 15 2 1
828 2088 17 22 1 1 1 2
928 2344 18.8 2 2
a28 2600 28 1 1 1 3
c28 3112 24 33 1 2 1 3
e28 3624 28 38 1 2 2 2

1028 4136 315 44 2 3 3 3
1228 - 4648 35.5 ' 3 3
1428 5160 39 54 2 4 3 4
1828 6184 46 64 3 5 3 5
1c28 7208 54 75 4 6 4 6
2028 8232 61 85 5 7 5 6
2428 9256 68 95 5 8 5 7
2828 10280 76 108 6 9 6 8
2¢28 11304 83 118 7 10 5 8
3028 12328 90 128 7 11 6 8
3428 " 13352 98 140 7 12 7 9
3828 14376 108 150 9 14 7 10
3c28 15400 113 160 9 15 8 11
4028 16424 120 170 10 15 8 12

Table 10. AH Transport tabulated data — ver. 4, with “IPsecLoop” and “IPsecGUI” comparison

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.2.1.2.

AH Tunnel

AH Tunnel Mode packet processing times using IPsecLoop, - data of Mar 3, 2007
(entered here Mar 15) - James Wiebe
(Packet sizes in bytes - 8 bits in the ML403 board)
"GUI processing times" refer to use of the IPsecGUI; (1) laptop runs Mar 13-14, 2007
(2) on PC Mar 17, 2007

Packet size
(hex)

28
128
228
328
428
528
628
728
828
928
a28
c28
e28

1028
1228
1428
1828
1¢c28
2028
2428
2828
2¢c28
3028
3428
3828
3c28
4028

Packet size
(decimal)
40
296
552
808
1064
1320
1576
1832
2088
2344
2600
3112
3624
4136
4648
5160
6184
7208
8232
9256
10280
11304
12328
13352
14376
15400
16424

Outgoing

09
2.8
46

8.3

12

17

20
23
27
31

38
45
53
60
68
75
82
20
98
106
111
120

1.2
3.8
6.4

12

17

22

28
33
38
43

54
64
75
85
95
105
116
128
138
150
160
170

Incoming GUI out.

time (ms)

NDNDNDNDDN

—

-

N - wa

QO NN~NOOGTDDWN

10

GUl inc.
proc. time

(ms) (1)

= NDNDNDN

-—

—

D a i)

O 00 Mo h

10
11
13
13
14
15

GUI
out.
proc.
time
(ms) (2)

~NONNNODOOOAEAWWW_LONMNMNNN_AaAaa Aaaaaas

GUI
inc.

proc.

time
(ms)

@)

Table 11. AH Tunnel tabulated data — ver. 4, with “IPsecLoop” and “IPsecGUI” comparison

B.2.1.3.

ESP Transport

ESP Transport Mode packet processing times using |PsecLoop, - data of Mar 3,

2007

(entered here Mar 15) - James Wiebe

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

OO N~~NOOAODLEDBREWWWOWNNMNNAN A A @A

(Packet sizes in bytes - 8 bits in the ML403 board)

"GUI processing times" refer to use of the IPsecGUI; (1) laptop runs Mar 13-14,
2007

(2) on PC Mar 17, 2007

GUI
out.
Outgoing Incoming proc. GUlinc. GUlout. GUIinc.
Packet Packet proc. proc. time proc. proc. proc.
size size time time (ms) time time time
(hex) (decimal) (ms) (ms) 1) (ms)(1) (ms)(2) (ms)(2)

28 40 06 0.41 2 2 1 1
128 296 27 1.8 2 2 1 1
228 552 47 3.2 2 2 1 1
328 808 46 1 1
428 1064 8.8 6 1 2 1 1
528 1320 1 1
628 1576 13 8.8 1 1 1 1
728 1832 2 1
828 2088 17 12 1 1 2 1
928 2344 2 2
az28 2600 21 14 1 1 2 1
c28 3112 25 17 1 1 2 2
e28 3624 30 20 1 1 3 2
1028 4136 34 23 2 1 2 2
1228 4648 3 2
1428 5160 42 28 2 1 3 2
1828 6184 50 34 3 2 4 2
1c28 7208 58 40 4 3 4 3
2028 8232 66 45 5 3 5 3
2428 9256 74 50 4 4
2828 10280 83 56 7 4 6 4
2c¢28 11304 920 682 7 4 7 4
3028 12328 100 68 7 5 6 5
3428 13362 . 108 73 8 6 7 6
3828 14376 115 78 10 1 7 6
3c28 15400 125 85 11 7 8 6
4028 16424 133 91 11 6 9 6

Table 12. ESP Transport tabulated data — ver. 4, with “IPsecLoop” and “IPsecGUI” comparison

B2.14. ESP Tunnel

ESP Tunnel Mode packet processing times using IPsecLoop, - data of Mar 3, 2007
(entered here Mar 15) - James Wiebe

(Packet sizes in bytes - 8 bits in the ML403 board)

"GUI processing times" refer to use of the IPsecGUI; (1) laptop runs Mar 13-14, 2007
(2) on PC Mar 17, 2007

Packet Packet Outgoing Incoming GUlout. GUiinc. GUI GUl inc.

size size proc. proc. proc. proc. time out. proc.

(hex) (decimal) time time time (ms) (ms) (1) proc. time
174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(ms) (ms) (1) time (ms) (2)

(ms) (2)

28 40 0.755 0.34 2 2 1 1
128 206 2.8 1.7 2 2 1 1
228 552 4.8 3.1 2 2 1 1
328 808 7.9 4.5 1 1
428 1064 8.9 5.9 2 2 1 1
528 1320 - 1 1
628 1576 13 8.7 1 2 2 1
728 1832 2 1
828 2088 17 12 1 1 1 1
928 2344 2 1
az28 2600 21 14 1 1 2 2
c28 3112 26 17 1 1 2 1
e28 3624 30 20 1 1 3 2

1028 4136 35 23 1 1 3 2
1228 4648 3 2
1428 5160 42 28 3 1 3 2
1828 6184 50 34 3 2 4 2
1c28 7208 58 40 3 2 4 3
2028 8232 - 66 45 5 2 5 4
2428 9256 75 51 5 3 5 3
2828 10280 83 56 6 3 6 4
2c28 11304 93 62 7 4 6 4
3028 12328 100 67 8 5 7 5
3428 13352 108 73 9 5 8 6
3828 14376 115 78 10 6 8 6
3c28 15400 125 85 10 7 7 6
4028 16424 133 20 11 7 9 7

Table 13. ESP Tunnel tabulated data — ver. 4, with “IPsecLoop” and “IPsecGUI” comparison

B.2.2. Version 6 Compared to Ver. 4

B.2.2.1. ESP Transport

ESP Transport Mode packet processing times using IPsecLoop, -
data of Mar 20,
2007 - IPsecloop Ver 006
(entered here Mar 26) - James Wiebe
(1) - Data of Mar 3, for comparison
(Packet sizes in bytes - 8 bits in the ML403 board)
QOutgoing Incoming Outgoing Incoming
Packet Packet proc. proc. proc. proc.
size size time time time time
(hex) (decimal) (ms)(1) (ms)(1) (ms) (ms)
28 40 0.6 0.41 0.39 0.37
128 296 27 1.8 1.3 1.4
228 552 4.7 3.2 2.3 23

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

328
428
528
628
728
828
928
az28
c28

e28

1028
1228
1428
1828
1c28

2028

2428
2828
2¢28
3028
3428
3828
3c28
4028

808
1064
1320
1576
1832
2088
2344
2600
3112
3624
4136
4648
5160
6184
7208
8232
9256

10280
11304
12328
13352
14376
15400
16424

8.8

13

17

21
25
30
34

42
50
58
66
74
83
90
100
108
116
125
133

8.8

12

14
17
20
23

28
34
40
45
50
56
62
68
73
78
86
91

4.2

6

7.9

9.8
12
14
16

19
23
28
30
35
38
42
46
49
53
57
60

4.2

6.2

8.1

10
12
14
16

20
24
28
31
35
39
44
47
51
55
59
63

Table 14. ESP Transport tabulated data — ver. 6 compared to ver. 4

B.2.2.2. ESP Tunnel

ESP Tunnel Mode packet processing times using IPsecLoop, -
data of Mar 20,
2007 - IPseclLoop Ver 006

(entered here Mar 26) - James Wiebe

(1) - Data of Mar 3, for comparison
(Packet sizes in bytes - 8 bits in the ML403 board)

Packet

size

(hex)

28

128
228
328
428
528
628
728
828
928
a28

Packet
size

Outgoing
proc.
time
(decimal) (ms) (1)
40 0.755
296 2.8
552 48
808 7.9
1064 8.9
1320
1576 13
1832
2088 17
2344
2600 21
176

0.34
1.7
3.1
4.5
59

8.7

12

14

proc.
time
(ms)

Incoming Outgoing
proc.
time

(ms) (1)

0.48
1.4
23
4.2
6.1

8

9.9

Incoming
proc.
time
(ms)

0.31

1.3

23

4.2
6.1
8.1

9.9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c28 3112 26 17 12 12

€28 3624 30 20 14 14
1028 4136 35 23 16 16
1228 4648
1428 5160 42 28 19 20
1828 - 6184 50 34 23 23
1c28 - 7208 58 40 27 27
2028 8232 66 45 30 32
2428 9256 75 51 34 35
2828 10280 83 56 38 39
2c28 11304 93 62 42 43
3028 12328 100 67 46 47
3428 13352 108 73 49 51
3828 . 14376 116 78 54 55
3c28 15400 125 85 56 58
4028 16424 133 90 60 62

Table 15. ESP Tunnel tabulated data — ver. 6 compared to ver. 4

B.2.3. Version 7 Compared to Ver. 6 and 4

B.2.3.1. AHrTransport

AH Transport Mode packet processing times using IPsecl.oop, -
data of Mar 21,
2007 - IPsecLoop Ver 007
(entered here Mar 26) - James Wiebe
(1) - Data of Mar 1-2, for comparison
(Packet sizes in bytes - 8 bits in the ML.403 board)
Outgoing Incoming Outgoing Incoming

Packet Packet proc. proc. proc. proc.
size size time time time time
(hex) - (decimal) (ms)(1) (ms)(1) (ms) (ms)
28 40 0.72 0.97 0.56 0.84
128 296 3.9 3.6 2 3.1
228 552 57 6.3 34 5.3
328 808 7.6
428 1064 9.3 11.5 6.2 9.6
528 1320 11.3
628 1576 13 17 9 14
728 - 1832 15
828 2088 17 22 12 19
928 2344 18.8
a28 2600 28 15 23
c28 3112 24 33 18 28
€28 3624 28 38 21 32
1028 4136 31.5 44 23 36
1228 4648 35.5 26 41
1428 5160 39 54 29 45
1828 6184 46 64 35 54
177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- 1¢c28
2028
2428
2828

2c28 -
3028 -

3428
3828
3c28
4028

7208

8232

9256
10280
11304
12328
13352
14376
15400
16424

54
61
68
76
83
90
98
108
113
120

75

85

95
108
118
128
140
150
160
170

40
46
52
58
63
68
73
80
85
920

63
72
80
88
98
108
115
125
133
143

Table 16. AH Transport tabulated data — ver. 7 compared to ver. 4

B.2.3.2. AH Tunnel

AH Tunnel Mode packet processing times using IPsecLoop, - data

of Mar 21,
2007 - IPseclLoop Ver 007

(entered here Mar 26) - James Wiebe
(1) - Data of Mar 1-2, for comparison
(Packet sizes in bytes - 8 bits in the ML403 board)

Packet
size
(hex)
28
128
228
328
428
528
628
728
828
928
a28
c28
e28
1028

1228
1428

1828
1628
2028
2428
2828
2c28

3028

3428
3828

Packet
size
(decimal)

40
296
552
808

1064
1320
1576
1832
2088
2344
2600
3112
3624
4136
4648
5160
6184
7208
8232
9256
10280
11304
12328
13352
14376

Outgoing

(ms) (1)

incoming

proc.

time

(ms) (1)
0.9 1.2
2.8 3.8
4.6 6.4
8.3 12
12 17
17 22
20 28
23 33
27 38
31 43
38 54
45 64
53 75
60 85
68 95
75 105
82 116
90 128
98 138
105 150

178

Outgoing
proc.
time
(ms)

0.69

21

3.6

6.4
9.3
12

15
18
21
23

29
35
41
46
52
58
63
70
75
80

Incoming
proc.
time
(ms)

0.975

3.2

54

9.8
14
19

23
28
32
36

45
54
62
72
80
80
99
106
115
125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.2.3.3.

3c28
4028

15400
16424

111
120

160
170

85
93

131
143

Table 17. AH Tunnel tabulated data — ver. 7 compared to ver. 4

ESP Transport

ESP Transport Mode packet processing times using IPsecLoop, - data of Mar 21,
2007 - IPsecLoop Ver 007
(entered here Mar 26) - James Wiebe
(1) - Data of Mar 3 - ver 4

(2) - Data of Mar 20 - ver 6

(Packet sizes in bytes - 8 bits in the ML403 board)

Packet
size
(hex)
28
128
228
328
428
528
628
728
828
928
a28
c28
e28
1028
1228
1428
1828
1c28
2028
2428
2828
2c28
3028
3428
3828
3c28
4028

Packet
size

(decimal)
40
296
552
808
1064
1320
1576
1832
2088
2344
2600
3112
3624

4136

4648
5160
6184
7208
8232
9256

10280

11304
12328
13352
14376
15400
16424

Table 18. ESP Transport tabulated data — ver. 7 compared to ver. 6 and 4

Outgoing
proc.
time
(ms) (1)
06
2.7
4.7

8.8
13
17

21
25
30
34

42
50
58
66
74
83
20
100
108
115
125
133

Incoming Outgoing
proc. proc.
time time
(ms) (1) (ms) (2)
0.41 0.39
1.8 1.3
32 23
46
6 4.2
8.8 6
12 7.9
14 9.8
17 12
20 14
23 16
28 19
34 23
40 28
45 30
50 35
56 38
62 42
68 46
73 49
78 53
85 57
91 60

179

Incoming
proc.
time
(ms) (2)
0.37
1.4
2.3

4.2
6.2
8.1

10
12
14
16

20
24
28
31
35
39
44
47
51
55
59
63

Outgoing
proc.
time
(ms)

0.38

1.3

22

4.1
5.9
7.8

9.6
12
13
15

19
23
26
30
34
38
41
45
48
52
56
60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Incoming
proc.
time
(ms)

0.315

1.3

22

41
6
8

9.9
12
14
16

20
23
27
31
35
39
43
46
50
54
58
62

B.2.34.

ESP Tunnel

ESP Tunnel Mode packet processing times using IPsecloop, - data of Mar 21,
2007 - IPsecLoop Ver 007
(entered here Mar 26) - James Wiebe
(1) - Data of Mar 3- ver 4

(2) - Data of Mar 20 - ver 6

(Packet sizes in bytes - 8 bits in the ML403 board)

Packet
size
(hex)
28
128
228
328
428
528
628
728
828
928
a28
c28
e28
1028
1228
1428
1828
1¢28
2028
2428
2828
2¢28
3028
3428
3828
3c28
4028

Outgoing
Packet . proc.
size . time
(decimal) (ms) (1)
40 0.755
296 2.8
552 4.8
808 7.9
1064 8.9
1320
1576 13
1832
2088 17
2344
2600 21
3112 26
3624 - 30
4136 35
. 4648
5160 42
6184 50
7208 58
8232 66
9256 75
10280 83
11304 93
12328 100
13352 108
14376 115
15400 125
16424 133

Table 19. ESP Tunnel tabulated data — ver. 7 compared to ver. 6 and 4

incoming Outgoing
proc. proc.

time time

(ms) (1) (ms) (2)

0.34
1.7
3.1
4.5
5.9

8.7

12

14
17
20
23

28
34
40
45
51
56
62
67
73
78
85
90

B.2.4. Version 8 Compared to Ver. 7

B.24.1.

AH Transport

0.48
1.4
2.3

4.2

6.1

8

9.9
12
14
16

19
23
27
30
34
38
42
46
49
54
56
60

incoming
proc.
time
(ms) (2)
0.31
1.3
2.3

4.2
6.1
8.1

9.9
12
14
16

20
23
27
32
35
39
43
47
51
55
58
62

Outgoing
proc.
time
(ms)

0.44

1.4

23

4.2
6
7.8

9.7
12
14
15

19
23
27
30
34
38
41
45
49
53
56
60

AH Transport Mode packet processing times using IPsecl.oop, -

data of Apr 9,

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Incoming
proc.
time
(ms)

0.255

1.2

2.2

4.1
6
7.9

9.8
12
14
16

19
23
27
31
35
39
42
46
50
54
58
62

2007 - IPsecLoop Ver 008
{entered here Apr 10) - James Wiebe
(1) - Data of IPsecLoop ver 007, Mar 21, for comparison
(Packet sizes in bytes - 8 bits in the ML403 board)
Outgoing Incoming Outgoing Incoming

Packet Packet proc. proc. proc. proc.
size size time time time time
(hex) (decimal) (ms){(1) (ms)(1) (ms) (ms)
28 40 0.56 0.84 0.435 0.83
128 . 296 2 3.1 1.19 3.03
228 552 3.4 5.3 1.94 52
328 808
428 1064 6.2 9.6 3.43 9.6
528 1320
628 1576 9 14 4.9 14
728 1832
828 2088 12 19 6.4 18.4
028 2344
-a28 2600 15 23 7.9 22.8
c28 3112 18 28 9.25 27.3
e28 3624 21 32 10.9 31.8
1028 4136 23 36 124 36
1228 - 4648 26 41 13.8 40.3
1428 5160 29 45 15.3 45
1828 6184 35 54 18.3 53
1c28 7208 40 63 21.3 62
2028 8232 46 72 24.3 71
2428 9256 52 80 27.3 79.5
2828 10280 58 88 30.3 88
2c28 11304 63 98 33.3 98
3028 = 12328 68 108 36.3 106
3428 13352 73 115 39 115
3828 14376 80 125 42 123
3c28 15400 85 133 45 133
4028 16424 20 143 48 141

Table 20. AH Transport tabulated data — ver. 8 compared to ver. 7

B.2.4.2. AH:Tunnel

AH Tunnel Mode packet processing times using IPsecloop, - data
of Apr 9,
2007 - IPsecLoop Ver 008
{entered here Apr 10) - James Wiebe
(1) - Data of Mar 21, IPsecLoop ver 007, for comparison
(Packet sizes in bytes - 8 bits in the ML403 board)
Outgoing Incoming Outgoing Incoming

Packet Packet proc. proc. proc. proc.

size size time time time time

(hex) (decimal) (ms)(1) (ms)(1) (ms) (ms)
181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28 40 069 0975 0.51 0.975

128 296 2.1 32 1.25 3.2
228 562 3.6 54 2 5.4
328 808
428 - 1064 6.4 9.8 3.5 9.88
528 1320
628 1576 9.3 14 4.95 14.1
728 1832
828 2088 12 19 6.45 18.6
928 2344
a28 2600 15 23 7.95 23
c28 3112 18 28 9.38 27.3
e28 = 3624 21 32 10.9 32
1028 4136 23 36 12.8 36.5
1228 4648 13.9 41
1428 5160 29 45 15.4 45
1828 6184 35 54 18.3 54
1c28 7208 41 62 21.3 63
2028 8232 46 72 24.3 71.5
2428 9256 52 80 27.3 81.5
2828 -~ 10280 58 20 30.3 89
2c28 11304 63 99 33.3 o8
. 3028 12328 70 106 36.3 108
3428 13352 75 115 39.3 116
3828 14376 80 125 42.3 126
3c28 15400 85 131 45 133
4028 16424 93 143 48 142

Table 21. AH Tunnel tabulated data — ver. 8 compared to ver. 7

B.2.43. ESP Transport

ESP Transport Mode packet processing times using IPsecLoop, -
data of Apr 9,
2007 - IPsecLoop Ver 008
(entered here Apr 10) - James Wiebe
(1) - Data of Mar 21 - ver 7
(Packet sizes in bytes - 8 bits in the ML403 board)
Outgoing Incoming Outgoing Incoming

Packet Packet proc. proc. proc. proc.
size size time time time time
(hex) (decimal) (ms)(1) (ms)(1) (ms) (ms)
28 40 0.38 0.315 0.27 0.24
- 128 296 1.3 1.3 1.23 1.33
228 552 22 22 2.16 24
328 808
428 1064 4.1 4.1 4.1 4.55
528 - 1320
628 1576 5.9 6 5.9 6.7
728 1832
182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

828 2088 7.8 8 7.8 8.9

928 2344
a28 . 2600 9.6 9.9 9.63 1"
c28 3112 12 12 11.5 13.1
e28 = 3624 13 14 13.4 15.4
1028 4136 15 16 156.3 17.5
1228 4648 17.3 19.8
1428 5160 19 20 18.1 21.9
1828 6184 23 23 22.8 26.3
1c28 7208 26 27 26.5 30.3
2028 . 8232 30 31 30.3 34.8
2428 9256 34 35 34 39.3
2828 10280 38 39 37.8 43.3
2c28 11304 41 43 41.5 47.5
3028 12328 45 46 45 52
3428 13352 48 50 49 56.5
3828 14376 52 54 53 61
3c28 15400 56 58 56.5 65
4028 16424 60 62 60 69

Table 22. ESP Transport tabulated data — ver. 8 compared to ver, 7

B244. ESP Tunnel

ESP Tunnel Mode packet processing times using IPseclLoop, -
data of Apr 9,
2007 - IPsecLoop Ver 008
(entered here Apr 10) - James Wiebe
(1) - Data of Mar 21 - ver 7
(Packet sizes in bytes - 8 bits in the ML403 board)
Outgoing Incoming Outgoing Incoming

Packet - Packet proc. proc. proc. proc.
size size time time time time
(hex) (decimal) (ms)(1) (ms)(1) (ms) (ms)
28 40 0.44 0.255 0.34 0.26
128 296 1.4 1.2 1.3 1.35
228 552 2.3 2.2 2.23 2.43
328 808
428 1064 4.2 4.1 4.1 4.6
528 1320
628 1576 6 6 6 6.75
728 1832
828 2088 7.8 7.9 7.9 8.9
928 2344
a2g8 = 2600 9.7 9.8 9.8 11.1
c28 = 3112 12 12 11.6 13
€28 3624 14 14 13.5 154
1028 4136 15 16 15.4 17.5
1228 4648 17.3 19.8
1428 5160 19 19 19.1 21.9
183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1828
1¢c28
2028
2428
2828
2c28
3028
3428
3828
3c28
4028

6184
7208
8232
9256
10280
11304
12328
13352
14376
15400
16424

23
27
30
34
38
41
45
49
63
56
60

23
27
31
35
39
42
46
50
54
58
62

22.8
26.5
30.5
34.3
37.8
41.5

45
49.5

54

57
60.5

26.3
30.5
34.8
39.3
43.5
47.5

52

56
60.5
65.5
69.5

Table 23. ESP Tunnel tabulated data — ver. 8 compared to ver. 7

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

R.1. Journal and Conference Papers |

[AIE2002] Aiello, W., Bellovin, S., Blaze, M., Canetti, R., Ioannidis, J., Keromytis, A.,
and Reingold, O., “Efficient, DoS-Resistant, Secure Key Exchange for Internet
Protocols,” Proc. of the 9th ACM Conf. on Computer and Communications
Security, Nov. 2002, pp. 48-58.

[ARK2005] Arkko, J., and Nikander, P., “Limitations of IPsec Policy Mechanisms,”
Lecture Notes in Computer Science, Vol. 3364, 2005, Springer-Verlag GmbH, pp.
241-251.

[BEL2002] Bellows, P., Flidr, J., Lehman, T., Schott, B., and Underwood, K., “GRIP: a
Reconfigurable Architecture for Host-based Gigabit-rate Packet Processing,”
Proc. 10th Annual IEEE Symp. on Field-Programmable Custom Computing
Machines, 22-24 Apr., 2002, pp. 121-130.

[CHE2002] Cheung, O., and Leong, P., “Implementation of an FPGA Based Accelerator
for Virtual Private Networks,” Proc., 2002 IEEE Int’l Conf. on Field-
Programmable Tech., 16-18 Dec., 2002, pp. 34-41.

[CHO2003] Choi, M., Kwak, D, and Moon, S., “A Proposal for DoS-Defensive Internet
Key Exchange,” Lecture Notes in Computer Science, Vol. 2668, 2003, Springer-
Verlag GmbH, pp. 328-337.

[COM2002] Compton, K., and Hauck, S., “Reconfigurable Computing: A Survey of
Systems and Software,” ACM Computing Surveys, Vol. 34, No. 2, June 2002, pp.
171-210.

[DAN2000] Dandalis, A., Prasanna, V., and Rolim, J., “An Adaptive Cryptographic
Engine for IPSec Architectures,” 2000 IEEE Symp. on Field-Programmable
Custom Computing Machines, 17-19 April, 2000 pp.132-141.

[DEE2001] Deepakumai‘a, J., Heys, H. and Venkatesan, R., “FPGA Implementation of
MDS35 Hash Algorithm,” Canadian Conf. on Electrical and Computer Engineering
(CCECE 2001), Vol. 2, 13-16 May 2001, pp. 919-924.

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

'[DON2004] Dong, Y., Choi, C., and Zhang, Z., “A Security Framework for Protecting
Traffic Between Collaborative Domains,” Microprocessors and Microsystems 28,
Dec. 2004, Elsevier Science Ltd., pp. 547-559.

[DUF2002] Duflos, S., Kervella, B. and Horlait, E., “An Architecture for Policy-based
Security Management for Distributed Multimedia Services,” Proc. of the Tenth
ACM Int’l Conf. on Multimedia, Dec. 2002, ACM, pp. 653-655.

[DUN2001] Dunbar, N, “IPsec Networking Standards - An Overview,” Information
Security Ti echhical Report, Vol. 6, No. 1, March 2001, Elsevier Science Ltd., pp.
35-48.

[ELB2000] Elbirt, A. and Paar, C., “An FPGA Implementation and Performance
Evaluation of the Serpent Block Cipher,” Proc. of the 2000 ACM/SIGDA Eighth
Int’l Symp. on Field Programmable Gate Arrays (FPGA ‘2000), Feb. 2000, ACM
Press, pp. 33-40.

[FER1999] Ferguson, N. and Schneier, B., “A Cryptographic Evaluation of IPSec,”
Counterpane Internet Security Inc., San Jose, CA, 1999.

[FER2005] Ferrante A., Piuri V., Castanier F., “A QoS-enabled Packet Scheduling
Algorithm for IPSec Multi-Accelerator Based Systems,” Proc. of the 2nd Conf. on
Computing Frontiers, May 2005, ACM, pp. 221-229.

[FUM1998] Fumy, W., “Internet Security Protocols,” Lecture Notes in Computer
Science, Vol. 1 528, 1998, Springer-Verlag GmbH, pp. 186-208.

[GAB2004] Gabrijel¢i¢, D., Blazi¢, B., and Tasi¢, J., “Future Active IP Networks
Security Architecture,” Computer Communications 28, Aug. 2004, Elsevier Ltd.,
pp.688-701.

[GEN2006] Genz, C., and Drechsler, R., “System Exploration of SystemC Designs,”
IEEE Computer Society Annual Symposium on Emerging VLSI Technologies and
Architectures, 2006, Volume 00, 2-3 March 2006.

| [GOD2002] Godber, A., and Dasgupta, P., “Secure Wireless Gateway,” Proc. of the 3rd
ACM workshop on Wireless security, Sept. 2002, ACM, pp. 41-46.

[GUT2004] Guttman, J., and Herzog, A., “Rigorous Automated Network Security

Management,” International Journal of Information Security, Vol. 4, Nos. 1-2,

Dec. 2004, Springer-Verlag GmbH, pp. 29-48.

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[HEL2003] Hellekalék, P., “Empirical Evidence Concerning AES,” ACM Transactions
on Modeling and Computer Simulation (TOMACS), Vol. 13, Issue 4, Oct. 2003,
pp. 322-333.

[HUN1998] Hunt, R., “Internet/Intranet Firewall Security-policy, Architecture and
Transaction Services,” Computer Communications 21, Sept. 1998, Elsevier Ltd.,
pp.1107-1123.

[JAR2003]J éirvinén, K., Tommiska, M. and Skytt4, J., “A Fully Pipelined Memoryless

| 17.8 Gbps AES-128 Encryptor,” Proc. of the 2003 ACM/SIGDA 11th Int’l
Symposium on FPGAs, Feb. 2003, pp. 207-215.

[KAN2002] Kang, Y., Kim, D., Kwon, T., Choi, I., “An Efficient Implementation of
Hash Function Processor for IPSEC,” Proc. of the 2002 IEEE Asia-Pacific
Conference on ASIC, 6-8 Aug. 2002, ACM Press, pp. 93-96.

[KAN2004] Kanda, M., Miyazawa, K. and Esaki, H., “USAGI IPv6 IPsec development
for Linux,” Proc. of the 2004 Int’l Symp. on Applications and the Internet
Workshops (SAINTW’04), 26-30 Jan. 2004, IEEE, pp.159-163.

[KAR2000] Karras, D., and Zorkadis, V., “Overfitting in Multilayer Perceptrons as a
Mechanism for (Pseudo) Random Number Generation in the Design of Secure
Electronic Commerce Systems,” EUROCOMM 2000, Information Systems for
Enhanced Public Safety and Security, 17 May 2000, IEEE, pp. 345-349..

[KER1997] Kerorhytis, A., Ioannidis, J. and Smith, J., “Implementing IPsec,” Global
Telecom. Conf., Nov. 1997, Vol. 3, IEEE, pp.1948-1952.

[KIM2002] Kim, G., Park, W., Nah, J. and Sohn, S., “Security Policy Deployment in
IPSec,” Lecture Notes in Computer Science, 2002, Vol. 2344, Springer-Verlag,
pp. 453-464.

[KIM2004] Kim, H. and Lee, S., “Design and Implementation of a Private and Public
Key Crypto Processor and its Application to a Security System,” JEEE
Transactions on Consumer Electronics, Feb 2004, Vol. 50, Issue 1, pp. 214-224.

[LEC1998] L'Ecuyer, P., “Uniform Random Number Generators,” Proc. of the 1998
Winter Simulation Conference, 13-16 Dec. 1998, Vol. 1, IEEE, pp. 97-104.

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[LEI2000] Leiwo, J., Aura, T., and Nikander, P., “Towards Network Denial of Service
Resistant Protocols,” Proc. of the 15th Int’l Information Security Conf. (IFIP/SEC
2000), Beijing, China, August 2000, pp. 1-10.

[LIH2005] Li, H., Katkoori, S., and Liu, Z., “Feedback Driven High Level Synthesis for
Performance Optimization,” ASICON 2005. 6th Int’l Conf- On ASIC, Vol. 2, 24-
27 Oct. 2005, IEEE, pp. 882-885.

[LIM2003] Li, M., “Policy-Based IPsec Management,” IEEE Network, Nov/Dec 2003,
IEEE, pp. 36-43.

[LUJ2005] Lu, J. and Lockwood, J., “IPSec Implementation on Xilinx Virtex-II Pro
FPGA and Its Application,” Proc.of the 19th IEEE Int’l Parallel and Distributed
Processing Symp., 4-8 Apr. 2005, pp. 158b-164b.

[MCF1988] McFarland, M., Parker, A., and Carnposano, R., “Tutorial on High-Level
Synthesis,” 25th ACM/IEEE Design Automation Conf., 1988, pp. 330-336.

[MCL2002] McLoone, M., and McCanny, J., “A Single-chip IPSEC Cryptographic
Processor,” Proc. IEEE Workshop on Signal Processing Systems, Oct. 2002, pp.
133-138.

[NAY2005] “Modeling and Evaluation of Security Architecture for Wireless Local Area
Networks by Indexing Method: A Novel Approach,” Lecture Notes in Computer
Science, Vol. 3439, 2005, Springer-Verlag GmbH, pp. 25-35.

[PAR2002] Park, W., Nah, J. and Sohn, S., “A Study of Security Association
Management Oriented to IP Security,” Lecture Notes in Computer Science, 2002,
Vol. 2344, Springer-Verlag GmbH, pp. 381-388.

[REJ2003] Rejeb, J. and Ramaswamy, V., “Efficient Rijndael implementation for high-
speed optical networks,” 10th Int’l Conf. on Telecommunications, 2003 (ICT
2003), Vol. 1, 23 Feb.-1 Mar. 2003, IEEE, pp. 641-645.

[ROE2001] Roe, M. “Authentication and Naming (Transcript of Discussion),” Lecture
Notes in Computer Science, 2001, Vol. 2133, Springer-Verlag GmbH, pp. 20-23.

[SCH2002] Schaumont, P., Kuo, H., and Verbauwhede, 1., “Unlocking the Design
Secrets of a 2.29 Gb/s Rijndael Processor,” Proc. of the 39th Conf. on Design
Auto., Jun 10-14, 2002.

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[SOT1999] Soto, J., “Statistical Testing of Random Number Generators,” Proc. of the
22" National Iﬁformation Systems Security Conf., Oct. 1999, National Institute of
Standards & Technology. Available: http://csrc.nist.gov/rng/nissc-paper.pdf.

[STN2003] Standaert, F., Rouvroy, G., Quisquater, J. and Legat, J., “A Methodology to
Implement Block Ciphers in Reconfigurable Hardware and its Application to Fast
and Compact AES Rijndael,” Proc. of the 2003 ACM/SIGDA 11th Int’l
Symposium on Field Programmable Gate Arrays (FPGA ‘03), 23-25 Feb. 2003,
ACM Press, pp. 216-224.

[TRC2003] Tréek, D., “An Integral Framework for Information Systems Security
Management,” Computers & Security, May 2003, Vol. 22, No. 4, Elsevier Ltd.,
pp.337-360.

[VER2003] Verbauwhede, 1., Schaumont, P., and Kuo, H., “Design and Performance
Testing of a 2.29 GB/s Rijndael Processor,” IEEE Journal Of Solid-State Circuits,
Vol. 38, No. 3, March 2003, pp. 569-572.

[WAN2004] Wang, M., Su, C., Huang, C. and Wu, C., “An HMAC processor with
integrated SHA-1 and MDS algorithms,” Proc. of the 2004 Conf. on Asia South
Pacific Design Automation: Electronic Design and Solution Fair (ASP-DAC '04),
January 2004, IEEE, pp. 456-458.

[WEI2004] Wei, C, Chengshu, L, and Xin, S., “FPGA Implementation Of Universal
Random Number Generator,” ICSP '04, 7th Int’l Conf. On Signal Processing,
Vol. 1, 31 Aug.-4 Sept. 2004, IEEE, pp. 495-498.

[WIE2006] Wiebe, J., “IPSec Implementation and Management Methods,” /nt’l
Conference fdr Upcoming Engineers (ICUE), May 13-14, 2006.

[WOL2004] Wollinger, T., Guajardo, J., and Paar, C., “Security on FPGAs: State-of-the-
Art Implementations and Attacks,” ACM Trans. on Embedded Computing
Systems, Aug 2004, Vol. 3, No. 3, pp. 534-574.

[WUL2001] Wu L., Weaver, C. and Austin, T., “CryptoManiac: a Fast Flexible
Architecture fof Secure Communication,” Proc. of the 28th Annual Int’l Symp. on
Computer Architecture (ISCA '01), 30 Jun-4 Jul 2001, IEEE, pp.110-119.

| [ZHO2000] Zhou, J., “Further Analysis of the Internet Key Exchange Protocol,”
Computer Communications 23, Nov. 2000, Elsevier Ltd., pp.1606-1612.

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://csrc.nist.gov/mg/nissc-paper.pdf

[ZIB2003] Zibin, D. and Ning, Z., “FPGA Implementation of SHA-1 Algorithm,” Proc.
Sth Int’l Conference on ASIC, 21-24 Oct. 2003, IEEE, Vol. 2, pp. 1321-1324.

R.2. Books, General Papers and other Resources

[BAC1997] Baccala, B., ed., “Connected: An Internet Encyclopedia,” Freesoft.org, April
1997. Available: http://www.freesoft.org/CIE/index.htm.

[DEV2003] “Ultra High Speed AES (Rijndael) Crypto Processor,” DeverSYS.com, 2003.
Available: http://deversys.com/?action=project&id=43.

[DRA2004] Drange, G., “Random Number Generator Library,” Norway, Sept. 30, 2004.
Available: http://www.opencores.org/projects.cgi/web/rng_lib/overview.

[ERF2003] Erfani, S., “Security Management System and Method,” US Patent 6,542,993
B1, Apr. 1, 2003.

[FAH2005] Fahandezh, M., “A Framework for IPSec Functional Architecture,” MASc
Thesis, ECE, Faculty of Grad. Studies and Research, U. Windsor, 2005.

[FIPS197] Federal Information Processing Standards Publication 197, “Announcing the
Advanced Encryption Standard (AES)," Nov. 26, 2001. Available:
http://csre.nist.gov/publications/fips/fips197/fips-197.pdf.

[HAA1999] Haahr, M., “Introduction to Rand(‘)mness and Random Numbers,”
Random.org, June 1999. Available:
http://dirk.eddelbuettel.com/code/random/random-essay.pdf.

[HP12006] Hellakalek, P., “Random Number Generators — the pLab Project —
Generators,” University of Salzburg, Austria, 2006. Available:

http://random.mat.sbg.ac.at/generators/.

[HUR2002] Huriadi, A., “AES Core design with Alliance,” Institute of Technology,
Bandung, Indonesia, 2002. Available: http://ic.ee.itb.ac.id/%7Ehuriadi/AES/.

[JAC1998] Jacobson, I, Booch, G, and Rumbaugh, J, The Unified Software Development
Process, Addison Wesley Longman, 1998, ISBN 0-201-57169-2.

[KEN1994] Kent, S, “IPSEC SMIB”, e-mail to ipsec@ans.net, Aug.10, 1994. Available:
http://www.sandelman.ottawa.on.ca/ipsec/1994/08/msg00139.html.

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.fi~eesoft.org/CIE/index.htm
http://deversvs.com/?action=proiect&id=43
http://www.opencores.org/proiects.cgi/web/mg
http://csrc.nist.gov/publications/fips/fipsl
http://dirk.eddelbuettel.com/code/random/random-essav.pdf
http://random.mat.sbg.ac.at/generators/
http://ic.ee.itb.ac.id/%7Ehuriadi/AES/
mailto:ipsec@ans.net
http://www.sandelman.ottawa.on.ca/ipsec/1994/08/msgQ0139.html

'[KER1988] Kernighan, B., and Ritchie, D., The C Programming Language, 2" ed.,
AT&T Bell Laboratories, Murray Hill, NJ, Prentice Hall PTR, Englewood Cliffs,
NJ, 1988, ISBN 0-13-110362-8 (pbk.), ISBN 0-13-110370-9.

[KHA2006] Khalid, M., “Reconfigurable Computing Systems: Challenges and
Opportunites,” Reconfigurable Computing Course, ECE Dept., University of
Windsor, Jan. 2006, First lecture, p. 8.

[KLE2003] de Klein,; R.., “Serial library for C++,” The Code Project, Nov. 13, 2003.
Available: httb://www.codeproiect.com/svstem/ serial.asp.

[KUR2000] Kurose, J., Ross, K., Computer Networking — A Top-Down Approach
Featuring the Internet, 1% ed., Jul. 10, 2000, 3™ ed., 2005, Addison-Wesley
Publishing Company, ISBN 0-20-147711-4 (1% ed.), 0-321-22735-2 (3" ed.).

[MAL2002] Malik, D.; C++ Programming: Program Design Including Data Structures,
Course Technology, div. of Thomson Learning, Inc., Boston, MA, 2002, ISBN 0-
619-03569-2.

[MAR1995] Marsaglia, G., “The Marsaglia Random Number CDROM including the
Diehard Battery of Tests of Randomness,” Florida State University, 1995.
Available: http://www.stat.fsu.edu/pub/diehard/.

[MAR2003] Martin, T., “Lectures, ECE 4514 Digital Design II,” Virginia Tech, Fall
2003. Available: http://www.ece.vt.edu/tlmartin/ece45 14/lectures/index.html.

[MAT2006] “SELEX Sénsors and Airborne Systems Streamlines FPGA Development
with MathWofks and Xilinx Tools,” User Stories, The MathWorks, Inc., 2006.
Available:
http://www.mathworks.com/company/user_stories/userstory10995.html?by=comp
any. ‘

[MRO2000] Mroczkowski, P., "Implementation of the Block Cipher Rijndael using
Altera FPGA,” 2000. Available:
http://csre.nist.gov/encryption/aes/round2/comments/20000510-

pmroczkowski.pdf

[OGA2004] Ogawa, J., “Living in the Product Development ‘Valley of Death’,” FPGA
and Structured ASIC Journal, ABG Solutions Marketing, Altera Corp., Nov. 23,
2004. Available: http://www.fpgajournal.com/articles/20041123 altera.htm.

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.codeproiect.com/svstem/serial.asp
http://www.statfsu.edu/pub/diehard/
http://www.ece.vt.edu/tlmartin/ece4514/lectures/index.html
http://www.mathworks.com/companv/user
http://csrc.nist.gov/encrvption/aes/round2/comments/2000051Q-
http://www.fpgaioumal.com/articles/20041123

[PER2000] Perlmutter, B., with Zarkower, J., Virtual Private Networking — A View from
the Trenches, Prentice Hall, Upper Saddle River, NJ, 2000, ISBN 0-13-020335-1.

[SAT2004] Satyanarayana, H, “AES128 [Implementation].” Available:
http://www.opencores.org/projects.cgi/web/aes_crypto_core/overview.

[SIM1999] Simpson, W., “IKE/ISAKMP considered harmful,” USENIX,
http://www.usenix.org/publications/login/1999-12/features/harmful html, 1999

[STA2003] Stallings, W., Network Security Essentials: Applications and Standards, 2nd
ed., Prentice Hall, Upper Saddle River, NJ, 2003 , ISBN 0-13-035128-8.

[STY2006] Styer, E., “JavaScript AES Example,” Eastern Kentucky University, 2006.
Available: http://www.cs.eku.edu/faculty/styer/460/Encrypt/JS-AES .html.

[TEKTDS] User Manual, TDS1000- and TDS2000-Series Digital Storage Oscilloscope
Tektronix, Beaverton, OR, Tektronix Part No. 071-1064-00.

[TKA2002] Tkacik, T., “A Hardware Random Number Generator,” CHES2002, Rev 0.1,
Motorola, 2002. Available:
http://ece.gmu.edu/crypto/ches02/talks_files/Tkacik.pdf.

[USS2002] Usselmann, Rudolf, “Advanced Encryption Standard / Rijndael IP Core,”
Rev. 1.1, Nov. 12, 2002. Available:
http://www.opencores.org/projects.cgi/web/aes_core/overview.

[UTXILT] Xilinx, “Xilinx Training Labs at University of Toronto,” Nov 2003.
Available: http://www.eecg.toronto.edu/~pc/courses/edk/.

[VILL2005] Villar, J, “A SystemC/V erilog Random Number Generator,” Universidad
Rey Juan Carlos, Spain, 2005. Available:
http://www.opencores.org/projects.cgi/web/systemc_rng/overview.

[VILL22005] Villar, J, “128/192 AES [Using System C],” Universidad Rey Juan Carlos,
Spain, 2005. Available:
http://www.opencores.org/projects.cgi/web/systemcaes/overview.

[WAL2007] Walton, J., “A Survey of Pseudo Random Number Generators,” The Code
Project, Jan. 2007. Available: htp://www.codeproject.com/useritems/PRNG.asp.

[XILEST] Xilinx, “Embedded System Tools Reference Manual, Embedded Development
Kit, EDK 8.2i,” UG111 (v6.0), June 23, 2006.

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.opencores.org/proiects.cgi/web/aes
http://www.usenix.Org/publications/login/l
http://www.cs.eku.edu/facultv/stver/460/Encrvpt/JS-AES.html
http://ece.gmu.edu/crvpto/ches02/talks
http://www.opencores.org/proiects.cgi/web/aes
http://www.eecg.toronto.edu/~pc/courses/edk/
http://www.opencores.org/proiects.cgi/web/svstemc
http://www.opencores.org/proiects.cgi/web/svstemcaes/overview
http://www.codeproiect.com/useritems/PRNG.asp

[XILIDT] Xilinx, “ISE 8.2 In-Depth Tutorial,” Available:
http://direct.xilinx.com/direct/ise8 tutorials/ise8tut.pdf.

[XILIPTS3] Xilinx, “Import Péripheral Tutorial which targets the Spartan-3 devices 7.1.”
Available: http://www.xilinx.com/support/techsup/tutorials/edk_tutorials.htm.

[XILMLA403T] Xilinx, “EDK 8.2 PowerPC Tutorial in Virtex-4,” WT001 (v4.0) January
30, 2006. Available:
http://www xilinx.com/support/techsup/tutorials/EDK_82 PPC_Tutorial.pdf.

[XILOPBIPZH] ‘X’i.linx, “OPB IPIF (v2.00h),” DS414, Apr. 6, 2005.

[XILPKG] Xilinx, “Device Package User Guide,” UG112 (v2.0) May 31, 2006.
Available: http://www.xilinx.com/bvdocs/userguides/ugl 12.pdf.

[XILQST] Xilinx, “ISE 8.2i Quick Start Tutorial” Available:
http://www.xilinx.com/support/sw_manuals/xilinx82/download/.

[XILRIV] Rivoallon, F., “Achieving Breakthrough Performance in Virtex-4 FPGAs,”
WP218 (v1.4), May 19, 2006. Available:
http://direct.xilinx.com/bvdocs/whitepapers/wp218.pdf.

[XILTMAT] Xilinx, “Teaching Materials,” 1994-2007. Available:
http://www xilinx.com/univ/teaching_material.htm.

[XILUG80] Xilinx, “ML401/ML402/ML403 Evaluation Platform User Guide,” UG080
(v2.5) May 24, 2006. Available:
http://direct.xilinx.com/bvdocs/userguides/ug080.pdf.

[XILUT2003] X111nx Processor IP Team, “EDK Training at University of Toronto,” Nov
2003. Available:
http://www.eecg.toronto.edu/~pc/courses/432/2004/handouts/Trainingl ecture.pdf

, via http://www.xilinx.com/univ/downld partnerteaching.htm, via

http://www xilinx.com/univ/teaching_material.htm.
[XILV2DS] Xilinx, “Virtex-II Platform FPGAs: Complete Data Sheet,” DS031 (v3.4)
Mar. 1, 2005. Available: http://direct.xilinx.com/bvdocs/publications/ds031.pdf.
[XILV4DS] “Virtex-4 Family Overview,” DS112 (v1.5) Feb. 10, 2006. Available:

http://direct xilinx.com/bvdocs/publications/ds112.pdf.
[XILXST] Xilinx, “XST User Guide,” 8.2i. Available:

http://www xilinx.com/support/sw_manuals/xilinx82/download/.

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://direct.xilinx.com/direct/ise8
http://www.xilinx.com/support/techsup/tutorials/edk
http://www.xilinx.com/support/techsup/tutorials/EDK
http://www.xilinx.com/bvdocs/userguides/ugll2.pdf
http://www.xilinx.com/support/sw
http://direct.xilinx.com/bvdocs/whitepapers/wp218.pdf
http://www.xilinx
http://direct.xilinx.com/bvdocs/userguides/ugQ80.pdf
http://www.eecg.toronto.edu/~pc/courses/432/2004/handouts/TrainingLecture.pdf
http://www.xilinx.com/univ/downld
http://www.xilinx.com/univ/teaching
http://direct.xilinx.com/bvdocs/publications/ds031
http://direct.xilinx.com/bvdocs/publications/dsll2.pdf
http://www.xilinx.com/support/sw

R.3. RFCs

Note: all RFCs are available using the following format:
http://www.ietf.org/rfc/rfcNNNN.txt , where “NNNN is the four-digit RFC number —

insert leading zeroes to make four digits if the number is shorter.

[IPS2005] “IPsec Chérte_r [and list of IPsec RFCs],” Apr. 2005, Available:
ftp://ftp.ietf. org/ietf/ipsec/ipsec-charter.txt.

[RFC0791] “Internet Protocol,” Information Sciences Institute, University of Southern
California, Sept. 1981
[RFC1700] Reynolds, J. and Postel, J., “Assigned Numbers,” Oct. 1994.
[RFC1750] Eastlake, D., Crocker, S., and Schiller, J., “Randomness Recommendations
for Security,” Dec. 1994. _
' [RFC2401] Kent, S., and Atkinson, R., “Security Architecture for the Internet Protocol,”
Nov. 1998. ‘
[RFC2402] Kent, S., and Atkinson, R., “IP Authentication Header,” Nov. 1998.
[RFC2406] Kent, S., and Atkinson, R., “IP Encapsulating Security Payload (ESP),” Nov.
1998.
[RFC2408] Maughan, D., Schertler, M., Schneider, M., and Turner, J., “Internet Security
Association ai_ld Key Management Protocol (ISAKMP),” Nov. 1998.
[RFC2409] Harkins, D., and Carrel, D., “The Internet Key Exchange (IKE),” Nov 1998.
[RFC2522] Karn, P., and Simpson, W., "Photuris: Session-Key Management Protocol,"
March 1999.
[RFC3159] McCloghrie, K. et al., “Structure of Policy Provisioning Information (SPPI),”
IETF RFC 3159, Aug. 2001.

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://wwwjetf.org/rfc/rfcNNNN.txt
ftp://ftp.ietf.org/ietf/ipsec/ipsec-charter.txt

R.4. Websites

[FSWAN] The Free Secure Wide-Area Network (Free S/WAN) project, an open-source

software implementation of IPSec, http://www.freeswan.org/.

[IETF] The Internet Engineering Task Force, http://www.ietf.org.

[ITEF-IPSEC] IP Security Protocol Working Group (ipsec) FTP site,
fip://fip.ietf.org/ietflipsec/.

[OPENCORES] “Open Cores,” http://www.opencores.org.

[PGPI] “Pretty Good Privacy,” http://www.pgpi.org.
[USPTO] The US Patent and Trademark Office, http://www.uspto.gov.
[WIKIP] Wikipedia, http://www.wikipedia.org; English home page,

http://en.wikipedia.org.

195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.freeswan.org/
http://www.ietf.org
ftp://ftp.ietf.org/ietf/ipsec/
http://www.opencores.org
http://www.pgpi.org
http://www.uspto.gov
http://www.wikipedia.org
http://en.wikipedia.org

VITA AUCTORIS

NAME: James H. L. Wiebe

PLACE OF BIRTH: London, Ontario

YEAR OF BIRTH: 1963

EDUCATION: Cameron Heights Collegiate Institute
Kitchener, Ontario
1978-1982
University of Waterloo

Waterloo, Ontario
1982-1987 B.A.Sc.

University of Windsor
Windsor, Ontario
2004-2007 M.A.Sc.

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	University of Windsor
	Scholarship at UWindsor
	1-1-2007

	Implementing IPsec using the Five-layer security framework and FPGAs.
	James Wiebe
	Recommended Citation

	tmp.1507664919.pdf.CXbXf

