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Abstract

Web Recommendation Systems (WRS’s) are used to recommend items

and future page views to world wide web users. Web usage mining lays the

platform for WRS’s, as results of mining user browsing patterns are used for

recommendation and prediction. Existing WRS’s are still limited by several

problems, some of which are the problem of recommending items to a new

user whose browsing history is not available (Cold Start), sparse data struc-

tures (Sparsity), and no diversity in the set of recommended items (Content

Overspecialization). Existing WRS’s also fail to make full use of the semantic

information about items and the relations (e.g., is-a, has-a, part-of ) among

them. A domain ontology, advocated by the Semantic Web, provides a formal

representation of domain knowledge with relations, concepts and axioms.

This thesis proposes SemAware system, which integrates domain ontology into

web usage mining and web recommendation, and increases the effectiveness

and efficiency of the system by solving problems of cold start, sparsity, content

overspecialization and complexity-accuracy tradeoffs. SemAware technique in-

cludes enriching the web log with semantic information through a proposed

semantic distance measure based on Jaccard coefficient. A matrix of semantic

distances is then used in Semantics-aware Sequential Pattern Mining (SPM )

of the web log, and is also integrated with the transition probability matrix

of Markov models built from the web log. In the recommendation phase, the

proposed SPM and Markov models are used to add interpretability. The pro-

posed recommendation engine uses vector-space model to build an item-concept

correlation matrix in combination with user-provided tags to generate top-n

recommendation.

Experimental studies show that SemAware outperforms popular recommenda-

tion algorithms, and that its proposed components are effective and efficient

for solving the contradicting predictions problem, the scalability and sparsity

of SPM and top-n recommendations, and content overspecialization problems.
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Chapter 1

Introduction

R
ecommendation Systems are being used more than ever in a wide range of

services, such as financial investments, medical and e-commerce applications.

In e-commerce, Web Recommendation Systems (WRS) rely on the history and

behavior of users to recommend future item purchases and page views, these systems are

built on top of Web Usage Mining.

Web usage mining is concerned with finding user navigational patterns on the world

wide web by extracting knowledge from web usage logs (we will refer to them as web

logs). The assumption is that a web user can physically access only one web page at

any given point in time, that represents one item. Finding frequent user’s web access

sequences is done by applying Sequential Pattern Mining (SPM) [Agrawal and Srikant,

1995] techniques on the web log. SPM fits the problem of mining the web log directly.

On the other hand, current sequential pattern mining techniques suffer from a number

of drawbacks [Mabroukeh and Ezeife, 2010], most importantly they do not incorporate

semantic information into the mining process and do not provide a way for predicting

future user access patterns or, at least, user’s next page request, as a direct result of mining.

Predicting user’s next page request (referred to as Prediction or Page Prefetching), usually

takes place as an additional phase after mining the web log.

The process of Web Usage Mining goes through the following three phases. (1) Pre-

processing phase: The main task here is to clean up the web log by removing noisy and

irrelevant data. In this phase also, users are identified and their accessed web pages are

organized sequentially into sessions according to their access time, and stored in a sequence

database. (2) Pattern Discovery phase: The core of the mining process is in this phase.

Usually, Sequential Pattern Mining (SPM) is used against the cleaned web log to mine all

the frequent sequential patterns. (3) Recommendation/Prediction phase: Mined patterns

1



1.1 Motivation

and probabilistic models are used to generate recommendations.

Web Recommendation Systems (also called Web Recommenders) rely on results of min-

ing the web log, of a single or several users, to recommend future page views or products

to the active user (who is currently browsing the web site). One kind of WRS’s is Col-

laborative Filtering in which classification is used as a way for mining the web log and

categorizing user profiles, then recommending a product or web page for a user as rated

or mostly used by the category of users to which his profile belongs. Researchers focus-

ing on WR and web personalization try to improve their systems by incorporating text

and semantic information from web pages, and using it together with usage data [Dai and

Mobasher, 2003]. On the other hand, domain knowledge is not being used in all of the

phases of Web Usage Mining and WR, and not all the axoims and power that a domain

ontology can offer are being utilized. Yet, WRS’s still suffer from problems of cold start,

content overspecialization, and scalability. The integration of the ontological information

representing the underlying concepts, and attributes embedded in a site allows for more

effective pattern discovery and solves important problems in WRS’s. In addition, this in-

tegration allows systems to infer on concept generalizations, and provide interpretability

to explain and reason about user behavior.

1.1 Motivation

As the Semantic Web becomes more endowed with specific standards, more businesses on

the Internet are starting to include domain ontologies in their online applications (e.g.,

Amazon.com1, eBay2), due to the continuous development and use of Semantic Web and

Web 2.0 technologies3. It is provided as an underlying ontology for several web applications

(like the Internet Movie Database IMDb4). Tagging and semantic annotation of web pages

is also spreading widely on the world wide web, towards realizing the semantic web (e.g.,

Flickr5, delicious6, YouTube7). An ontology provides a set of well-founded constructs

that define significant concepts and their semantic relationships. Such constructs can be

leveraged to build meaningful higher level knowledge in a particular domain. Consider an

1http://www.wsmo.org/TR/d3/d3.4/v0.2/#ontology
2http://www.ebay.com
3we refer to Tim O’Reilly’s definition of Web 2.0 (at http://oreilly.com/web2/archive/what-is-web-

20.html), that includes social networks and tagging systems made possible by new web development and
user interaction tools.

4http://www.imdb.com
5http://www.flickr.com
6http://www.delicious.com
7http://www.youtube.com

2



1.2 Contributions of Thesis

e-commerce application on the Internet that sells electronic items, call it eMart. It has a

domain ontology of all concepts of electronic items built by the ontology engineer. This

application allows its users to put up items for sale on its web site. eMart wants to be able

to match the active user’s interests with an appropriate electronic item for purchase, also

it wants to be able to predict what the next item a user will view based on his browsing

history. Users in eMart are allowed to tag items they browse or sell. As the active user (call

him John) arrives at eMart’s web site and is browsing a page that describes a GPS device,

next he moves to a page that describes a digital camera, then is looking at a camera lens

which he tags with some keywords, then he moves to browse and add to his cart a special

lens filter. As John is tagging some items, the system is taking note that those items are

of interests to him. Another first-time user (call her Jane) arrives at eMart and initiates

a search using keywords to describe a product of interest to her. For John, eMart is able

to provide a set of recommended items to browse, based on his browsing history. As for

Jane, eMart is able to match the keywords from her search query (alternatively she could

have saved a set of keywords in her user profile at eMart) with tags that users similar to

John have provided, to generate a set of top-n recommended items that match her query.

Without a domain ontology eMart is not able to categorize products or find relationships

between them. Also it is not able to calculate similarities between products or similarity

between Jane’s query and products stored in eMart’s catalog. It is not possible for eMart

to answer questions like “Why did you recommend an SD card to me?” without using

axioms provided by a domain ontology, or answer queries like “What new items can I be

interested in?”, or “What other kinds of items can interest me?”

1.2 Contributions of Thesis

This thesis shows that domain knowledge (in the form of domain ontology with relations)

can be integrated into all phases of Web Usage Mining and Web Recommendation Systems

to improve their effectiveness, to provide meaningful recommendations and to solve prob-

lems in these systems. Table 1.1 shows a list of all algorithms proposed in this thesis with

brief description of each. This thesis and published work originating from it [Mabroukeh

and Ezeife, 2009a,b, 2010, 2011] contribute to research as follows in the next two subsec-

tions.

1.2.1 Functional Contributions

The functionalities that this thesis adds to existing systems include:
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1. The proposed SemAware system integrates domain knowledge into all three phases of

Web Usage Mining and Recommendation. (algorithms getObject, SemAwareSPM,

SP-SMM and SemAwareIN in Table 1.1). Such integration adds interpretability to

results of WRS’s, at different levels of abstraction and detail of the domain knowledge.

2. Domain ontology is used in Web Recommendation with user-provided tags to enable

WRS’s to provide top-n recommendations without item clustering, depending on

scientific methods from natural language processing and vector-space models in the

proposed algorithm SemAwareIN.

3. Efficiency of SPM algorithms is enhanced by the proposed Semantics-aware SPM in

algorithm SemAwareSPM. Execution time is reduced by more than 80%, and memory

consumption is reduced by about 57%.

4. A novel method is introduced for enriching the Markov model’s transition probability

matrix with semantic information for next item prediction (algorithms SP-SMM and

Semantic-rich 1st-order Markov in Table 1.1), by a proposed combination function

⊕. This combination solves the problem of contradicting predictions, and contributes

towards minimizing complexity-accuracy tradeoff.

1.2.2 Procedural Contributions

Different procedural contributions are proposed in this thesis to achieve the discussed

functionalities. These contributions are:

1. In order to solve the problems discussed and to increase effectiveness of WRS’s, the

thesis stresses on the use of full domain ontology rather than simple hierarchical

taxonomy, by proposing a measure which incorporates all semantic relations of the

ontology in order to compute semantic distance between any two ontology concepts,

based on Jaccard coefficient [Jaccard, 1901]. This measure is used to achieve func-

tionalities (1), (3) and (4).

2. To achieve functionalities (1) and (2), and to solve limitations of WRS’s (namely, the

cold start, sparsity and scalability, and content overspecialization problems), we use

scientific methods of SPM, cosine similarity, conditional probability and spreading

activation in algorithms SemApJoin, Assoc2Markov, SemAwareIN and SemAwareIN-

Ex (Table 1.1). Chapter 3 provides a detailed description of these problems and the

proposed solutions.
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Table 1.1: List of algorithms proposed by this thesis.

SemAware Phase Algorithm Name Brief Description

Preprocessing OntoCraft To build a simple domain ontology
from the web log

getObject Maps a semantic object from a web
page to its ontology concept

SemAwareSPM General algorithm for semantics-
aware Apriori-based SPM

SemApJoin A semantics-aware join procedure for
AprioriAll-sem

Pattern Discovery / PLWAP-sem A semantics-aware variation of
PLWAP [Ezeife and Lu, 2005]

Mining Core Semantic-rich 1st-
order Markov

A method to integrate semantic dis-
tance with Markov transition proba-
bilities

SP-SMM Semantically-pruned Selective
Markov models

Ontology RollUp For ontology-based association rules
generalization

Ontology DrillDown For ontology-based association rules
specialization

Assoc2Markov Complements association rules with
results from SMM

Postprocessing SemAwareIN Ontology-based top-n WR from user
tags

SemAwareIN-LCA ontology-based dimensionality re-
duction method using Lowest Com-
mon Ancestor

SemAwareIN-FSS-50 WR with dimensionality reduction
using Feature Subset Selection

SemAwareIN-Ex Recommendation Expansion algo-
rithm that relies on ontological re-
lation

3. Algorithm Assoc2Markov is proposed to combine results of Markov models and asso-

ciation rules for more accurate recommendation. This contributes towards achieving

functionality (1) and solving the problem of contradicting predictions, using the sci-

entific method of conditional probability and confidence measures.

4. A novel method is proposed for dimensionality reduction in top-n recommendation
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using the domain ontology and the concept of Lowest Common Ancestor, this method

is compared with subset feature selection technique used to increase the scalability of

this system (algorithms SemAwareIN-LCA and SemAwareIN-FSS-50 in Table 1.1).

5. In the absence of domain ontology, algorithm OntoCraft is proposed to build a basic

domain ontology from the web log of user accesse sequences. SemAware uses this

algorithm in its preprocessing phase to achieve functionality (1).

6. A comprehensive survey of Sequential Pattern Mining (SPM) algorithms is carried

out with experimental comparison of top algorithms. The proposed taxonomy for

algorithms is the first one in the area that presents a hierarchical, a tabular and a

chronological ordering of the algorithms along with their features [Mabroukeh and

Ezeife, 2010]. It provides a deep understanding of the different algorithms, their

component features, and the different techniques and methods used in research so

far, highlighting comparative advantages and drawbacks of these algorithms.

1.3 Thesis Outline

Definitions and survey of related work are presented in Chapter 2. This thesis poses a set

of research questions in the area of sequential pattern mining and content-based WRS’s.

The thesis hypothesis is formulated based on these questions and discussed in Chapter 3

along with proposed solutions and the proposed SemAware system. Enriching the web log

with semantic information is discussed in Chapter 4, which also presents data preparation

for semantics-aware mining and recommendation. The preprocessing algorithms OntoCraft

and getObject are presented in the same chapter. Chapter 5 proposes to use semantic infor-

mation in the pattern discovery phase, where we present the semantics-aware algorithms

AprioriAll-sem, GSP-sem and PLWAP-sem. Then, Chapter 6 shows how such seman-

tic infromation is used in a probabilistic model by building and pruning semantic-rich and

Selective Markov Models for next page request prediction. Web recommendation (the post-

processing in SemAware) is discussed in Chapter 7, that proposes to use domain ontology

for recommendation by SemAwareIN algorithm to solve the problems and limitations of

content-based web recommendation, and proposes also SemAwareIN-LCA, for dimension-

ality reduction using the domain ontology. Other proposed variations of SemAwareIN are

also discussed in Chapter 7 and compared with state-of-the-art WRS algorithms

Experimental evaluations and results accompany each of the mentioned chapters as a

dedicated section. Finally, Chapter 8 concludes this thesis with important remarks and

future research directions.
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Chapter 2

Related Work

This chapter presents a detailed introduction to the topic with required definitions. It starts

first by explaining the concept of Web Usage Mining and the web log, presents problem

definition for sequential pattern mining and surveys the area. Afterwards, definition of

the domain ontology used in the proposed system is provided with examples. The chapter

then looks at Web Recommendation Systems (WRS) and proceeds to provide a definition of

ontology-based WRS’s, after which the topic is surveyed identifying pitfalls and problems.

2.1 Web Usage Mining

Web usage mining (also called web log mining) is an important application concerned with

finding user navigational patterns on the world wide web by extracting knowledge from web

logs, where ordered sequences of events in the sequence database are composed of single

items and not sets of items, with the assumption that a web user can physically access

only one web page at any given point in time. If a time window of access is considered,

which may allow a web user to browse a collection of web pages over a specified period

of time, then, it reverts back to a general sequence database. Currently, most web usage

mining solutions consider web access by a user as one page at a time, giving rise to special

sequence database with only one item in each sequence’s ordered event list. Thus, given

a set of events E = {a, b, c, d, e, f}, which may represent product web pages accessed by

users in eMart (an example e-commerce application), a web access sequence database for

four users may have the four records: [t1, < abdac >]; [t2, < eaebcac >]; [t3, < babfaec >];

[t4, < abfac >]. A web log pattern mining on this web sequence database can find a

frequent sequence < abac > indicating that over 90% of users who visit product a’s web

page of http://www.eMart.com/producta.htm also immediately visit product b’s web page

7



2.2 The Web Log and Data Preprocessing

of http://www.eMart.com/productb.htm and then revisit product a’s page, before visiting

product c’s page. Store managers may then place promotional prices on product a’s web

page, that is visited a number of times in sequence, to increase the sale of other products.

To mine such sequences, web usage mining relies on Sequential Pattern Mining (SPM) of

the web log [Pei et al., 2000; Ezeife and Lu, 2005; El-Sayed et al., 2004; Wang and Han,

2004; Goethals, 2005]. Typical applications of web usage mining fall into the area of user

modeling, such as web content personalization, web site reorganization, pre-fetching and

caching, recommendation, e-commerce and business intelligence [Facca and Lanzi, 2005].

2.2 The Web Log and Data Preprocessing

The web log is a registry of web pages accessed by different users at different times, which

can be maintained at the server-side, client-side or at a proxy server, each having its own

benefits and drawbacks on finding the users’ relevant patterns and navigational sessions

[Iváncsy and Vajk, 2006]. A web log stored at the client-side captures only web accesses

by that particular client/user and could be beneficial in mining access sequences for a

particular user as part of a web personalization system [Fenstermacher and Ginsburg, 2002;

Lu et al., 2003]. This requires that a remote agent be implemented or a modified browser

be used to collect single-user data, thus eliminating caching and session identification

problems. Whereas a proxy-side web log captures access sequences of the clients of a

certain service provider company and could be used in applications like page pre-fetching

[Pitkow and Pirolli, 1999] and caching to enhance the performance of the proxy server. A

proxy server can also reveal the actual HTTP requests from multiple clients to multiple

web servers, thus, characterizing the browsing behavior of a group of anonymous users

sharing a common server [Srivastava et al., 2000], that can serve the current trend of Group

Recommendation Systems. Web access sequences stored on the server-side represent web

page accesses of all users who visit this server at all times, which is good for mining multiple

users’ behavior and for web recommender systems. While server logs may not be entirely

reliable due to caching as cached page views are not recorded in a server log. But this

problem is solved by referring to logged information to infer and re-construct user paths,

filling out missing pages.

Work in this thesis focuses on server-side web logs used by e-commerce web sites. Such

web logs are usually raw registries of URLs visited by different users. Figure 2.1 shows

some lines extracted from a standard web log1. One can notice that each line contains the

following data: 1) timestamp of the HTTP request, 2) IP address of the requesting client,

1This “extended” web log format is a W3C standard http://www.w3.org/TR/WD-logfile.html
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3) HTTP request command with requested URI, and 4) HTTP protocol version and client

browser details. Clearly, there is no representation whatsoever of domain knowledge or

any means of describing the requested products.

Figure 2.1: A sample of six lines from a typical web log, extracted from Mobasher [2006].

Before entering the mining phase, the web log goes through a four-step preprocessing

phase [Meo et al., 2004] that includes cleaning and sessionizing. During cleaning, any

HTTP request not relevant to the mining process is deleted, like requests for images or

other media embedded in the HTML page or webspiders’ navigation, thus, decreasing

the size of the log. Sessionizing refers to the identification of different users’ sessions, each

representing a single visit to the site. Preprocessing also tries to distinguish among different

users (what can be referred to as user identification). A common approach to distinguish

among unique visitors is the use of packet sniffer and client-side cookies. Not all sites,

however, employ cookies, and due to privacy concerns, client-side cookies are sometimes

disabled by users. IP addresses, alone, are not generally sufficient for mapping log entries

onto the set of unique visitors and their sessions. This is mainly due to the proliferation

9



2.3 Sequential Pattern Mining

of ISP proxy servers which assign rotating IP addresses to clients as they browse the

web. Using IP addresses has been the area of debate and much research [Pabarskaite

and Raudys, 2007; Huntington et al., 2008]. The end product of preprocessing phase is

the navigational patterns of each user extracted as a chronological sequence of numbers or

alphabetic characters, where each of these numbers/characters denotes a web page accessed

by that user. A user can have more than one sequence corresponding to several web surfing

sessions.

In most cases, researchers are assuming that user web visit information is completely

recorded in the web server log, which is preprocessed to obtain the transaction database

to be mined for sequences [Ezeife and Lu, 2005]. According to W3C [1999], a user session

is defined as “a delimiting set of user clicks across one or more web servers”, and a server

session is defined as “a collection of user clicks to a single web server during a user session”.

While a pageview is “the visual rendering of a web page in a specific environment at a

specific point in time”, think of it as a single web page pi from the set P of all unique

web pages in the application under consideration, pi ∈ P. A clickstream is defined as a

sequential series of pageview requests made by a single user, referred to as a transaction

tj , such that tj = {p1p2 . . . pn}, where n ≤ |P|.

Definition 1 (Web Log). A web log W is a set of clickstream transactions, such that

W = {t1, t2, . . . , tj , . . . , tl}.

A web page pi in a pageview represents a certain product or item of interest to the

user. Thus we use pi to refer to a pageview or an item interchangeably throughout this

thesis.

2.3 Sequential Pattern Mining

This section is part of a full survey published in the journal of ACM Computing Surveys

[Mabroukeh and Ezeife, 2010].

Sequential pattern mining discovers frequent subsequences as patterns in a sequence

database. After preprocessing the web log, all sequences for all customers are stored in

a Sequence Database along with Customer ID CID and Transaction/Session ID TID. A

sequence database stores a number of records, where all records are sequences of ordered

events, with or without concrete notions of time. An example sequence database is retail

customers’ transactions or purchase sequences in a grocery store showing for each customer,

the collection of store items they purchased every week for one month. These sequences of

customer purchases can be represented as records with schema [Transaction/Customer ID,
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<Ordered Sequence Events>], where each sequence event is a set of store items like bread,

sugar, tea, milk. For only two such customers, an example purchase sequential database

is [t1, <(bread, milk), (bread, milk, sugar), (milk), (tea, sugar)>]; [t2, <(bread), (sugar,

tea)>]. While the first customer, with transaction ID shown as t1 in the example, made

a purchase each of the four weeks, the second customer represented by t2 made purchases

only two of the weeks. Also, a customer can purchase one or more items during each mar-

ket visit. Thus, records in a sequence database can have different lengths and each event

in a sequence can have one or more items in its set. Other examples of sequences are for

DNA sequences, stock market trends and web log data. Sequential pattern mining is an

important data mining problem with broad applications, including the analysis of customer

purchase behavior, web access patterns, scientific experiments, disease treatments, natural

disaster, and sequences of amino acids in proteins. A sequential pattern mining algorithm

mines the sequence database looking for repeating patterns (known as frequent sequences)

that can be used later by end users or management to find associations between the dif-

ferent items or events in their data for purposes such as marketing campaigns, business

intelligence, prediction and planning.

Definition 2 (Sequential Pattern Mining). Given (i) a set of sequential records (called

sequences) representing a sequential database D, (ii) a minimum support threshold called

min sup ξ, (iii) a set of k unique items or events I = {i1, i2, . . . , ik}, the problem of

mining sequential patterns is that of finding the set of all frequent sequences S in the given

sequence database D of items I at the given min sup ξ.

For example, in a web usage mining domain, the items in I can represent the set P
of all web pages (e.g., pages a, b, c, d, e, f ) or products (e.g., TV, radio) being sold in

an e-commerce web site. An itemset is a non-empty, unordered collection of items (e.g.,

(abe) which are accessed at the same time). A sequence is a lexicographically ordered list of

itemsets, e.g., S = < a(be)c(ad) >. Set Lexicographic Order [Rymon, 1992] is a total linear

order which can be defined as follows. Assume an itemset t of distinct items, t = {i1, i2, . . . ,

ik}, and another itemset of distinct items also t′ = {j1, j2, . . . , jl}, where i1 ≤ i2 ≤ · · · ≤ ik
and j1 ≤ j2 ≤ · · · ≤ jl, such that ≤ indicates “occurs before” relationship. Then, for

itemsets, t < t′ (t is lexicographically less than t′) iff either of the following is true:

1. for some integer h, 0 ≤ h ≤ min{k, l}, we have ir = jr for r < h, and ih < jh, or

2. k < l, and i1 = j1, i2 = j2,. . . ,ik = jk.

An example of the first case is (abc) < (abec) and (af ) < (bf ), the second case is similar

to a strict subset relationship, where t is a strict subset of t′, for example, (ab) < (abc).
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An itemset is a set drawn from items in I, and denoted as (i1, i2, . . . , ik), where ij is an

item or event. A sequence S is denoted as a sequence of items or events < e1e2e3 . . . eq >,

where the sequence element ej is an itemset (e.g., (be) in <a(be)c(ad)>) that might contain

only one item (which is also referred to as 1-itemset). A sequence with k items is called a

k -sequence. An item can occur only once in an itemset but it can occur several times in

different itemsets of a sequence. A sequence α =< ei1ei2ei3 . . . eim > is a subsequence of

another sequence β =< e1e2e3 . . . en > denoted as α � β, if there exists integers i1 < i2 <

· · · < im and all events eij ∈ α, and ei ∈ β, and i1 ≤ 1 and im ≤ n, such that eij ⊆ ei.

A sequential pattern is maximal if it is not a subsequence of any other sequential pattern.

Sequence lexicographical ordering can be defined as follows. Assume a lexicographical order

≤ of items I in the sequential access database, denoted as ≤I . If an item i occurs before

an item j, it is denoted as i ≤I j, this order is also extended to sequences and subsequences

by defining Sa ≤ Sb if Sa is a subsequence of Sb. Consider all sequences arranged in a

sequence tree (referred to as Lexicographical Tree) T, as in Figure 2.2 as follows: The root

of the tree is labeled {}. Recursively, if n is a node in the tree T, then n’s children are

all nodes n′ such that n ≤ n′ and ∀m ∈ T : n′ ≤ m =⇒ n ≤ m each sequence in the

tree can be extended by adding a 1-sequence to its end or adding an itemset to its end,

in the former case it is called a sequence-extended sequence and in the later case it is an

itemset-extended sequence, which is not applicable to the case of web log mining.

Figure 2.2: Lexicographic sequence subtree for only a and b items. Light lines represent
sequence-extended sequence, bold lines represent item-set extended sequence.

The frequency or support of a sequence (or subsequence) S, denoted as σ(S), is the total

12



2.3 Sequential Pattern Mining

number of sequences of which S is a subsequence divided by the total number of sequences

in the database D, whereas, the absolute support (or support count) of a sequence (or

subsequence) S, is the total number of sequences in D of which S is a subsequence. A

sequence is called frequent if its frequency is not less than a user-specified threshold called

minimum support, denoted as, min sup or the greek letter ξ. A frequent sequence Sα is

called a frequent closed sequence if there exists no proper supersequence of Sα with the

same support, i.e., 6 ∃Sβ such that Sα � Sβ and σ (Sα) = σ (Sβ), otherwise, it is said

that sequence Sα is absorbed by Sβ [Wang and Han, 2004]. For example, assume the

frequent sequence Sβ = < beadc > is the only superset of the frequent sequence Sα = <

bea >, if σ (Sα) = σ (Sβ) then Sα is not a frequent closed sequence, on the other hand,

if σ (Sα) > σ (Sβ), then Sα is a frequent closed sequence. Notice that σ (Sβ) cannot be

greater than σ (Sα), because Sα � Sβ. In web usage mining, D is a sequence database

of transactions representing web accesses, where each transaction t has a unique identifier

(Transaction id (TID) or Session id (SID)) and a sequence of single-element set events as

in < bcabd > and < bcabdac >. The problem of sequential pattern mining is restricted

to sequential web log mining with a D, min sup ξ, and set of events E = {a, b, c, d, . . .}
representing pageviews, with the following characteristics:

1. Patterns in a web log consist of contiguous page views (items in the sequences).

No two pages can be accessed by the same user at the same time, and so sequences

contain only 1-itemsets (i.e., single items). An example sequence is <bcabdac> which

is different from a general sequence like <(ba)(ab)d(ac)>.

2. Order is also important in web usage mining as the order of page references in a

transaction sequence is important. Also, each event or item can be repeated, and it

represents page refreshes and backward traversals (e.g., <aba>, <aab>, where event

a is repeated in these sequences).

3. Web logs are sparse datasets, i.e., usually there are many unique items with only few

repetitions of them in the sequences of one user, which makes algorithms targeting

sparse datasets (e.g., LAPIN WEB [Yang et al., 2006]) perform better than those

for dense datasets (e.g., PrefixSpan [Pei et al., 2001]), as claimed in Yang et al.

[2006]. Our experimental results, however, show that LAPIN Suffix [Yang et al.,

2005], outperforms PrefixSpan only on large datasets and at higher support when

there are likely not many frequent patterns.

Several sequential pattern mining techniques that can be applied to web usage mining

have been introduced in the literature since mid 1990’s. Previous surveys looked at different
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mining methods applicable to web logs [Srivastava et al., 2000; Facca and Lanzi, 2003;

Teisseire and Poncelet, 2005; Facca and Lanzi, 2005; Iváncsy and Vajk, 2006], but they

lack of three important things; they fail to (i) focus on sequential patterns as a complete

solution, (ii) provide a taxonomy and (iii) include a deep investigation of the techniques

and theories used in mining sequential patterns.

2.3.1 A Taxonomy of Sequential Pattern Mining Algorithms

A taxonomy of existing sequential pattern mining algorithms is provided in Mabroukeh

and Ezeife [2010] and summarized in Figure 2.3, which lists the algorithms, showing a

comparative analysis of different important features in them. Sequential pattern mining

algorithms can be categorized into Apriori-based, pattern-growth and early-pruning algo-

rithms. Frequent sequential pattern discovery can essentially be thought of as association

rule discovery over a temporal database. While association rule discovery [Agrawal et al.,

1993] covers only intra-transaction patterns (itemsets), sequential pattern mining also dis-

covers inter-transaction patterns (sequences), where ordering of items and itemsets is very

important, such that the presence of a set of items is followed by another item in a time-

ordered set of sessions or transactions. The set of all frequent sequences is a superset of the

set of frequent itemsets. From this similarity, the earlier sequential pattern mining algo-

rithms were derived from association rules mining techniques. The first of such sequential

pattern mining algorithms is AprioriAll algorithm [Agrawal and Srikant, 1995], derived

from the Apriori algorithm [Agrawal and Srikant, 1994]. An algorithm can fall into one or

more (hybrid algorithm) of the categories in the proposed taxonomy. Mainly, algorithms

differ in two ways:

1. The way candidate sequences are generated and stored. The main goal here, is to

minimize the number of candidate sequences generated so as to minimize I/O cost.

2. The way support is counted and how candidate sequences are tested for frequency.

The key strategy here, is the ability to eliminate any database or data structure that

has to be maintained all the time only for support counting purposes.

The data structures used to store candidate sequences have also been a research topic

and an important heuristic for memory utilization. Usually, a proposed algorithm also

has a proposed data structure to accompany it, like SPADE [Zaki, 1998] with vertical

databases, PrefixSpan [Pei et al., 2001] with projected databases, WAP-Mine [Pei et al.,

2000] with WAP-tree, and PLWAP [Ezeife and Lu, 2005] with its PLWAP-tree.
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Figure 2.3: Tabular taxonomy of sequential pattern mining algorithms.
∗algorithm is specifically for web log mining or single itemset sequence, or a variation of it for web log mining is provided by
the same authors.
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2.3.2 Apriori-based Algorithms

Apriori [Agrawal and Srikant, 1994] and AprioriAll [Agrawal and Srikant, 1995] set the

basis for a breed of algorithms that depends largely on the Apriori property and uses the

Apriori-generate join procedure to generate candidate sequences. The Apriori property

states that “All nonempty subsets of a frequent itemset must also be frequent”. It is also

described as being anti-monotonic (or downward-closed), in that, if a sequence cannot

pass the minimum support test, all of its supersequences will also fail the test. Given a

database of web access sequences D over I items, and two sets X,Y ⊆ I, then X ⊆ Y =⇒
support(Y ) ≤ support(X), Hence, if a sequence is infrequent, all of its supersets must

be infrequent, and vice versa, if a sequence is frequent, all its subsets must be frequent

too. This anti-monotonicity is used for pruning candidate sequences in the search space,

and is exploited further for the benefit of most pattern-growth algorithms. Apriori-based

algorithms scan the database several times to find frequent itemsets of size k at each kth-

iteration, then perform an exhaustive join procedure to generate a large set of candidate

sequences. Candidate sequences that do not satisfy the Apriori property are pruned, and

so on until there are no more candidate sequences. These techniques suffer from increased

delay in mining, as the number of sequences in the database gets larger. Given n frequent

1-sequences and min sup = 1, Apriori-based algorithms generate n2 +
(
n
2

)
candidate 2-

seuqneces and
(
n
3

)
candidate 3-sequences, and so on. Eventually, the total number of

candidate sequences generated will be greater than
∑n

k=1

(
n
k

)
(exponential complexity).

Such algorithms that depend mainly on the Apriori property, without taking further actions

to narrow the search space have the disadvantage of maintaining the support count for each

subsequence being mined and testing this property during each iteration of the algorithm,

which makes them computationally expensive. To overcome this problem, algorithms have

to find a way to calculate support and prune candidate sequences without counting support

and maintaining the count in each iteration. Most of the solutions provided so far for

reducing the computational cost resulting from the Apriori property, use bitmap vertical

representation of the access sequence database [Zaki, 1998; Ayres et al., 2002; Song et al.,

2005; Yang and Kitsuregawa, 2005] and employ bitwise operations to calculate support at

each iteration. The transformed vertical databases on their turn, introduce overheads that

lower the performance of the proposed algorithm, but not necessarily worse than that of

pattern-growth algorithms. Breadth-first search, generate-and-test and multiple scans of

the database, are all key features of Apriori-based methods, that pose challenging problems

hindering the performance of these algorithms.
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2.3.3 Pattern-Growth Algorithms

Soon after the Apriori-based methods of the mid 1990s, and in the early 2000s, pattern

growth method emerged as a solution to the problem of generate-and-test. The key idea is

to avoid the candidate generation step altogether, and to focus the search on a restricted

portion of the initial database. Search space partitioning feature plays an important role

in pattern-growth. Almost every pattern-growth algorithm starts by building a represen-

tation of the database to be mined, then proposes a way to partition the search space,

and generates as less candidate sequences as possible by growing on the already mined

frequent sequences, and applying the Apriori property as the search space is being tra-

versed recursively looking for frequent sequences. The early algorithms started by using

projected databases, e.g. FreeSpan [Han et al., 2000], PrefixSpan [Pei et al., 2001] with the

latter being the most influential. A subsequence α′ of sequence α is called a projection of

α w.r.t. (with respect to) prefix β if and only if (1) α′ has prefix β and (2) there exists no

proper supersequence α′′ of α′ such that α′′ is a subsequence of α and also has prefix β

[Pei et al., 2001]. PrefixSpan is based on recursively constructing the patterns by growing

on the prefix, and simultaneously, restricting the search to projected databases. This way,

the search space is reduced at each step, allowing for better performance in the presence

of small support thresholds. PrefixSpan is still considered a benchmark and one of the

fastest sequential mining algorithms alongside SPADE [Zaki, 2001]. Another algorithm,

WAP-mine [Pei et al., 2000] is the first of pattern-growth algorithms to use a physical tree

structure as a representation of the sequence database along with support counts, this tree

is mined for frequent sequences instead of scanning the complete sequence database in each

step. These tree-projection pattern-growth algorithms (e.g., PLWAP [Ezeife and Lu, 2005])

scan the sequence database at most twice, the first scan finds frequent 1-sequences and the

second scan builds the tree with only frequent subsequences along with their support. A

“header table” is maintained to point at the first occurrence for each item in a frequent

itemset, which is later tracked in a threaded way to mine the tree for frequent sequences,

building on the suffix or the prefix. Building only on frequent subsequences solves the

huge growth problem that exists in Apriori-based algorithms, making the complexity of

bulding the tree in the pattern-growth algorithms WAP-mine and PLWAP O(nl), where

n is the number of sequences in the sequence database and l is the length of the longest

frequent sequence. The time complexity for mining the tree in PLWAP is O(fp), where

f is the number of frequent 1-sequences and p is the total number of resulting frequent

patterns, but in WAP-mine this is multiplied by (p− f) times needed for constructing the

intermediate WAP-trees [Ezeife and Lu, 2005], resulting in polynomial complexity. It is
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shown in Dong and Pei [2007] that PrefixSpan has also polynomial complexity.

2.3.4 Early-Pruning Algorithms

Early-Pruning algorithms are emerging in the literature as a new breed for sequential

pattern mining. These algorithms utilize some sort of position induction to prune candidate

sequences very early in the mining process and avoid support counting as much as possible.

The rest of the mining process is simple pattern growth.

The idea of position induction is stated in Yang et al. [2006] as follows:

If an item’s last position is smaller than the current prefix position [during

mining], the item cannot appear behind the current prefix in the same customer

sequence.

These algorithms usually employ a table to track last positions of each item in the sequence

and utilize this information for early candidate sequence pruning; as the last position of

an item is the key used to judge whether the item can be appended to a given prefix k -

sequence or not, thus avoiding support counting and generation of candidate non-frequent

sequences. LAPIN [Yang et al., 2007] is comparable to PrefixSpan and is one of the

promising algorithms in this category. There are different previous attempts for different

mining scenarios, starting with LAPIN-SPAM [Yang et al., 2005] introduced as a solution

to overhead problem of bitwise operations in SPAM [Ayres et al., 2002] and claimed to slash

memory utilization by half, then LAPIN LCI, LAPIN Suffix [Yang et al., 2005] for suffix

growth methods and LAPIN WEB [Yang et al., 2006] for web log mining. In LAPIN-

SPAM, Yang and Kitsuregawa [2005] did not conduct experiments or discuss cases of

overhead processing delay for preparing the positions table and its compressed key position

version. Further investigation needs to be done on whether constructing the optimized

table introduces start-up delay. While LAPIN is different from LAPIN-SPAM in that it

does not use a bitmap representation of the database, Song et al. [2005] in HVSM go

further on stressing the importance of bitmap representation, and add to it what they call

first-horizontal last-vertical database scanning method, then use a special tree structure

where each node takes its frequent sibling nodes as its child nodes in the join process to

extend the itemset, thus avoiding support counting, but HVSM’s performance does not

exceed that of SPAM. DISC-all [Chiu et al., 2004] on the other hand, employs temporal

ordering besides the regular lexicographic ordering of items and itemsets in the sequence,

and uses a variation of projected databases for partitioning the search space depending on

the location order of frequent 1-sequences.
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2.3.5 Comparative Analysis of Sequential Pattern Mining Algorithms

Table 2.1 shows a comparative performance analysis of algorithms from each of the dis-

cussed taxonomy categories. Experimentation was performed on 1.87GHz Intel Core Duo

computer with 2 gigabytes memory running Windows Vista 32-bit, with the same imple-

mentations of the programs on synthetic data sets generated using the IBM resource data

generator code [Agrawal et al., 1993], tested also on a real data set from the School of

Computer Science web log. The following parameters are used to generate the data sets

as described in Agrawal and Srikant [1995]: |D| represents the number of sequences in the

database, |C| is the average length of the sequences, |S| is the average length of maxi-

mal potentially frequent sequence, |N| is the number of events, |T| is the average number

of items per transaction. Two data sets are used, a medium sized data set described as

C5T3S5N50D200K and a large sized data set described as C15T8S8N120D800K. These

are run at different minimum support values, low minimum supports of between 0.1% and

0.9% and regular minimum support of 1% to 10%. CPU execution time is reported by

the program of each algorithm in seconds, while physical memory usage was measured

using Microsoft CLR Profiler. GSP, PLWAP1, and WAP-mine were initially implemented

with C++ language running under Inprise C++ Builder environment and compiled on the

command line of MS Visual Studio 9 running on the operating system described above,

while the code for SPAM2, PrefixSpan3 and LAPIN4 were downloaded from their respec-

tive authors’ websites and used as provided. We ran each algorithm alone with dedicated

system resources.

Careful investigation of Table 2.1 shows how slow the Apriori-based SPAM algorithm

could become as data set size grows from medium (|D|=200K) to large (|D|=800K), due

to the increased number of AND operations and the traversal of the large lexicographical

tree. Although it is a little faster than PrefixSpan on large data sets, the reason being the

utilization of bitmaps as compared to projected databases of PrefixSpan.

One can notice that PLWAP enjoys the fastest execution times, as it clearly separates

itself from WAP-mine and PrefixSpan (from the same category of algorithms), especially

at low minimum support values when more frequent patterns are found and with large

data sets. The version we used for PrefixSpan is the one using pseudo projection [Pei

et al., 2001] in managing its projected databases. Originally, PrefixSpan scans the whole

projected database to find frequent sequences and count their support, the same process is

1GSP, PLWAP and WAP are available at http://cs.uwindsor.ca/˜cezeife/codes.html
2 http://himalaya-tools.sourceforge.net/Spam/
3 http://illimine.cs.uiuc.edu/
4 http://www.tkl.iis.u-tokyo.ac.jp/˜yangzl/soft/LAPIN/index.html
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Table 2.1: Comparative analysis of algorithms performance. The symbol “-” means an
algorithm crashes with provided parameters, and memory usage could not be measured.

Algorithm Data set Minimum Execution Memory
size Support Time (sec) Usage (MB)

A
p

ri
or

i-
b

as
ed

Medium Low (0.1%) >3600 800
GSP (|D|=200K) Medium (1%) 2126 687

Large Low (0.1%) - -
(|D|=800K) Medium (1%) - -

Medium Low (0.1%) - -
SPAM (|D|=200K) Medium (1%) 136 574

Large Low (0.1%) - -
(|D|=800K) Medium (1%) 674 1052

P
at

te
rn

-G
ro

w
th

Medium Low (0.1%) 31 13
PrefixSpan (|D|=200K) Medium (1%) 5 10

Large Low (0.1%) 1958 525
(|D|=800K) Medium (1%) 798 320

Medium Low (0.1%) - -
WAP-mine (|D|=200K) Medium (1%) 27 0.556

Large Low (0.1%) - -
(|D|=800K) Medium (1%) 50 5

E
ar

ly
P

ru
n

in
g Medium Low (0.1%) >3600 -

LAPIN Suffix (|D|=200K) Medium (1%) 7 8

Large Low (0.1%) - -
(|D|=800K) Medium (1%) 201 300

H
y
b

ri
d Medium Low (0.1%) 23 5

PLWAP (|D|=200K) Medium (1%) 10 0.556
Large Low (0.1%) 32 9

(|D|=800K) Medium (1%) 21 2

used in WAP-mine with its conditional trees, as each conditional tree presents candidate

sequences that require support counting. Manual tracing of a simple sequential pattern

mining problem in Mabroukeh and Ezeife [2010], reveals that support counting for frequent

sequences in PLWAP entails simply adding up node counts during recursive mining of the

virtual conditional subtrees, without having to scan any conditional databases. These

findings are reflected on memory consumption during actual runtime of the algorithms on

the data sets used for experimentation. It was observed, at that time, that PrefixSpan uses

more memory gradually, then it releases it also gradually as mining progresses, while in the
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case of WAP-mine more memory gets consumed faster than in PrefixSpan as intermediate

trees are created and mined. Then, suddenly memory is all released when recursion has

completely unfolded. In the case of PLWAP, more is consumed, also fast, then consumption

stays at a stable volume (smaller than WAP-tree) during mining of the tree, then suddenly

it is all released at once (not gradually) towards the end of the mining process. This

also verifies why projected database techniques use more memory than tree projection

(represented by PLWAP and WAP-mine) techniques, as noted in Table 2.1, when small

minimum support values are introduced. It is also noticed that PLWAP and WAP-mine

keep close execution times to each other for larger minimum support values where there are

no frequent patterns mined. This is because the gain in performance by PLWAP mostly

occurs when there are more frequent patterns mined. PrefixSpan also shows high speed

on data sets with high support when no frequent patterns are found. For example, it only

took 0.3sec to mine the medium data set at support of 10%. While LAPIN Suffix shows

performance close to PrefixSpan, it uses less physical memory. PLWAP shows less memory

usage than WAP-mine. PrefixSpan, on the other hand uses more memory than any pattern-

growth algorithm, even for small data sets as minimum support decreases. It was noticed

that it requires at least 2MB of memory just for scanning the sequence database looking

for frequent 1-sequences, then memory consumption increases exponentially as projected

databases are being created. Most algorithms could not handle mining long sequences with

more than 10 events.

In another experiment, the algorithms’ scalability was tested as the data set goes from

sparse to dense. In this case, four data sets were used, namely, C8T5S4N100D200K (a

sparse data set with maximum sequence length of 22 items), C10T6S5N80D200K (a less

sparse data set with maximum sequence length of 24 items), C12T8S6N60D200K (a dense

data set with maximum sequence length of 31 items), and C15T10S8N20D200K (a more

dense data set with maximum sequence length of 33 items). Dense data sets are char-

acterized by having a small number of unique items |N| and a large number of customer

sequences |C| and |T|, while sparse data sets are characterized by having a large number

of unique items |N| (e.g., a large number of web pages in a given web site) and shorter

customer sequences |C| and |T| (e.g., short user browsing sessions). Execution time results

(in seconds) are shown in Figure 2.4 at minimum support of 1%. WAP-mine and PLWAP

perform faster on sparse data sets than the other algorithms because they employ depth-

first search of the projected sparse trees. Also, as the data set gets more dense, PLWAP

emerges with least CPU time as no intermediate trees or projected databases are created.

GSP also has increased execution time because more frequent 1-sequences occur in dense

data sets than in sparse ones.
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Figure 2.4: Sequence Database density vs. algorithm execution time (in sec), at minimum
support of 1%. GSP is not shown as it is out of range of the vertical axis.

2.3.6 Discussion

An investigative look at the preceeding survey [Mabroukeh and Ezeife, 2010] poses the

following questions, along with suggested answers:

1. What are the important features that a reliable sequential pattern mining algorithm

should provide? A reliable algorithm should have acceptable performance measures

such as low CPU execution time and low memory utilization when mined with low

minimum support values, and should be scalable.

2. What are the needs of sequential pattern mining applications like web content and

web log mining? The algorithms should be able to handle varying types of data like

low quality data with noise, multi-element-set event sequences and single-element-set

event sequences, and sparse databases. The techniques should also be extendible to

support mining sequence data in other types of domains like distributed, constrained,

stream, and object-oriented domains, in addition to multidimensional sequences.

3. What are the different approaches used so far in general sequential pattern mining

and which techniques are suitable for what domains? The main techniques can be

categorized into Apriori-based, pattern-growth, early-pruning and hybrids of these

three techniques. Apriori-based algorithms are deemed too slow and have a large

search space, while pattern-growth algorithms have been tested extensively on mining

the web log and found to be fast, early-pruning have success stories with protein

sequences stored in dense databases.
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4. What else can be contributed in sequential pattern mining? Scalability and handling

very long sequences is still a problem not addressed well by many existing tech-

niques. Solutions for distributed and object-oriented domains remain open issues.

The ability to mine periodic and time-sensitive frequent patterns, which enables a

recommender/prediction system to be context and time-aware, e.g,̇ a group of users

might have frequent patterns in an e-commerce web site on holidays and special oc-

casions (like shopping for Christmas) different from their regular frequent patterns.

The recommender in a web usage mining system should be able to tell what frequent

patterns to mine and utilize based on different contexts. Also, the use of domain

knowledge and inclusion of semantic information into the mining process itself re-

quires further attention as presented in this thesis.

This investigation of sequential pattern mining algorithms in the literature reveals that

important heuristics employed include, using optimally sized data structure representations

of the sequence database, early pruning of candidate sequences, mechanisms to reduce

support counting, and maintaining a narrow search space. The quest for finding a reliable

sequential pattern mining algorithm should take these points into consideration. It is also

noted that literature has recently introduced ways to minimize support counting, although

some scholars claim to avoid it [Yang et al., 2005; Wang and Han, 2004; Chiu et al., 2004].

Minimizing support counting is strongly related to minimizing the search space.

In lights of the above, the following points can be considered in a reliable sequential

pattern mining algorithm. First, a method must generate a search space as small as pos-

sible. Features that allow this include early candidate sequence pruning and search space

partitioning. Sampling of the database and lossy compression (i.e,̇ concise representation)

can also be used to generate a smaller search space. Secondly, it is important to narrow

the search process within the search space. An algorithm can have a narrow search pro-

cedure such as depth-first search. Thirdly, methods other than tree projection should be

investigated for purposes of finding reliable sequential pattern mining techniques.

2.4 Domain Knowledge and Ontology Representation

The term domain knowledge refers to the knowledge associated with a certain concept /

topic / discpline which is usually acquired by an expert. Acquiring domain knowledge

does not have a standard method or a stand-alone process, knowledge engineers have been

using manual techniques that are fit enough for small web sites with single ontologies. For

larger websites, machine learning and text mining techniques can be employed to mine the

Semantic Web underlying a certain web site. The emergence of XML and RDF (Resource
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Description Framework) as uniform source identifiers used to describe resources in a web

site has provided several notational methods to describe the structure of a document (using

XML), and the resources it refers to with their associated properties (using RDF). Large

online businesses are starting to use these methods for representation in their web sites to

provide a schematic view of the underlying domain knowledge.

An ontology is a formal representation of a domain knowledge, by a set of concepts C

within the domain and the relations R among them [Stumme et al., 2006].

Definition 3 (Domain Ontology). A domain ontology with axioms is defined as the struc-

ture O := (C,≤C,R, σ,≤R,A) consisting of:

• two disjoint sets C and R whose elements are called concept identifiers and relation

identifiers, respectively, C is the set of concepts/classes, which are entities in the

ontology domain, and R is a set of relations defined among the concepts,

• a partial order ≤C on C, called concept hierarchy or taxonomy,

• a function σ : R → C+ called signature (where C+ is the set of all finite tuples of

elements in C),

• a partial order ≤R on R, called relation hierarchy, and

• a set A of logical axioms in some logical language L, that can describe constraints on

the ontology.

Definition 4 (Relation Hierarchy Score). Define function ψrjk :≤R→ [0, 1] that assigns

scores to relations rjk ∈ R based on their hierarchy ≤R.

Figure 2.5 shows part of the ontology for the domain of Cameras and Photography

The figure shows ontology classes C (also called concepts) in oval shapes, like Camera,

Battery. Each class has a set of attributes. For example, the Camera class has attributes

brand, Lens, color, and the Video Film class has attributes brand, price, length, quality.

Concept hierarchy ≤C is indicated in the figure with is − a edges. The figure also shows

other important relations like has-a and requires, e.g., one can notice that “Video Camera”

is-a “Camera”, and that a “Camera” has-a “Lens”. The function σ, maps relations to the

set of all finite tuples of elements in C. For example, the relation has-a has “Camera”

and “Tripod” as signature. The partial order ≤R on R represents a flat hierarchy in this
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Figure 2.5: Example domain ontology for the domain of Cameras.

example. The set A of logical axioms is used for inferencing on the logical level. This on-

tology is manually built using Web Ontology Language OWL1, and Protégé2, an authoring

tool for ontologies. This authoring tool provides a graphical and easy-to-use interface that

abstracts the details of derscription logic used to build the ontology. Description Logics

(DL) are a family of knowledge representation and reasoning formalisms that have been

endorsed by the Semantic Web initiative [Berners-Lee et al., 2001]. DLs are based on no-

tions of concepts (unary predicates) and properties (binary relations), such that complex

concepts can be built up from primitive ones using different constructs [Hu et al., 2007]. In

SemAware we rely on OWL-Lite which is based on SHIF DL. The preprocessing engine of

SemAware parses the ontology as an OWL file using different C# OWL library methods.

Only few WRS’s use domain knowledge in their processing, and those that do, mostly,

use it in the form of a topic taxonomy (i.e., categorization of items), which we refer to

as a shallow ontology, where only the is-a hierarchical relation is considered. Figure 2.6

shows an example of a topic taxonomy, the taxonomy of Photography from the Open

Directory Project (ODP)3. The full power of a domain ontology with relations is still to

1OWL is RDF-based language and a W3C standard, http://www.w3.org/2004/OWL/
2http://protege.stanford.edu/
3http://www.dmoz.org
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Figure 2.6: Topic taxonomy of Photography from the Open Directory Project ODP, can
be found at http://www.dmoz.org/Shopping/Photography.

be utilized in WRS’s. This power enables the formulation of more accurate similarity

measures between concepts, since concepts share several relations besides the is-a relation.

Use of ontology with relations also provides better interpretability of recommendation

results as this thesis will show. The proposed system in this thesis provides an algorithms

to expand the recommendation set (discussed in Section 7.2.2), and to add interpretability

to association rules (Section 7.1).

The increased realization of the semantic web and the introduction of page tagging

systems, make gathering semantic knowledge from web pages easier. In this case, user-

provided tags can be used, saving the trouble of web content mining to generate the

keywords. These tags can also be used to annotate the items, if they are not already

annotated, using semantic web techniques (for example, in SemAware, OntoMat Annotizer1

1http://annotation.semanticweb.org/ontomat/index.html
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is used to annotate the web pages with concepts from the underlying ontology). Once the

items are annotated, they can be mapped to the underlying ontology concepts.

2.4.1 Ontology Learning

As the Semantic Web is being realized with all of Web 2.0 technologies of today, the

prcoess of learning and building an ontology for an underlying domain from scratch is a

teadious, non-standardized and a partially manual process. The framework proposed by

this thesis assumes that a domain ontology is provided, but on the other hand algorithm

OntoCraft (algorithm 1, page 46) is proposed for building a simple ontology from the

web log provided as input to SemAware. There are mainly two approaches/techniques

for ontology leanring [Maedche et al., 2002]. (a) Symbolic approaches based on using

lexico-syntactic patterns in a corpus as regular expressions, for the extraction of semantic

relations among keywords that are used as ontology concepts. The task here is to define

a regular expression that captures patterns that indicate a relation of interest, and map

the results to a semantic structure like a taxonomy, an early example from NLP research

is CAMILLE [Hastings, 1994] and Hahn and Schnattinger [1998], other examples include

the use of heuristic patterns [Hearst, 1998; Caraballo, 2001; Aussenac-gilles, 2005] and

extraction from semantically-tagged corpora [Missikoff et al., 2002; Ciravegna et al., 2004].

(b) Statistics-based approaches that use probabilities and perform hierarchical clustering

of keywords into concepts and categories [Pereira et al., 1993; Glover et al., 2002], that are

later refined using classification methods [Manning and Schuetze, 1999]. Some methods use

Näıve Bayes [Sanderson and Croft, 1999; Doan et al., 2000]. It is argued in Maedche et al.

[2002] that statistics-based approaches allow for better scaling, but symbolic approaches are

more precise, although hierarchical clustering requires quadratic time and space complexity.

Zhou [2007] provides a comprehensive survey of state-of-the-art ontology learning meth-

ods, in which she refers to symbolic approaches as Rule-Based approaches, and also surveys

a hybrid approach that combines between the two discussed approaches (e.g. Xu [2002];

Rydin [2002]; Inkpen and Hirst [2003] and Cimiano et al. [2004]). Her survey is based

on several dimensions, of them are two interesting dimensions (besides the dimension of

leanring techniques) related to the field of this thesis, the data source dimension and the

learning targets dimension. The data source dimension looks at the world wide web as

a source for ontology leanring, arguing that ontology learning is different from ontology

aquisition in that it tries to be a fully automated mechanism that looks for sources other

than domain experts. This is happening because of the abundance of information on the

world wide web, and that workforces for domain knowledge have become increasingly dis-
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tributed. In addition, expert knowledge is likely to be incomplete, subjective and even

outdated [Zhou, 2007]. Due to this, people have turned to other sources including web

documents and database schemas as content for ontology learning, and the web log as

a dynamic source. In the learning targets dimensions, concepts, relations and axioms

are identified as important targets for the learning algorithm. Each of the learning tech-

niques and methods mentioned focuses on a different aspect of ontology learning and has

many variants, making selecting the most appropriate technique difficult.The performance

of ontology leanring techniques is usually enhanced with knowledge support of a dictio-

nary or a thesaurus, with borrowed techniques from Natural Language Processing (NLP).

Such knowledge provides grounds to calculate similarity between the concepts in statistical

methods, and to provide semantic meaning to relations in symbolic methoods.

Ontology learning still has a lot of open issues, including the estimation of co-occurence

probabilities not observed in training corpora, and the question of whether more care should

be put into designing machine-understandable ontologies or human-understandable ontolo-

gies, and how to bridge the gap between these two kinds of ontologies. Other issues include

the leanring of specific relations, like part-whole relation which is critical to Sequence On-

tology [Eilbeck et al., 2005] for genomic annotation, and the learning of higher degree

relations (as opposed to current binary relations) among concepts, and the construction of

high-level ontology from fine-grained learning results. Also, the issue of incremental on-

tology learning, learning from multimedia information other than text and learning from

user observations and user queries. For example, if a user combines two terms by “OR” in

his query, these terms are probably synonyms [Zhou, 2007].

2.5 Web Recommendation Systems

Since WRS’a utilize web usage mining, the problem of WRS’s is an extension to the problem

of web usage mining, such that a web log is provided as a collection of user transactions

from a certain web server, W = {t1, t2, ..., tm}. The mining phase (i.e., Pattern Discovery)

can utilize any kind of SPM, clustering or probabilistic modeling of the sequences, to be

able to provide the user with recommendations on topics, products, or next page request

related to his current pageview and online session.

I consider next page request prediction as the basic form of WRS’s, which is based

on a probabilistic model, such that a Markov process is used to model the transition

between different pageviews (this is discussed in Chapter 6). The common form of WRS’s

is the top-n WRS. Let us refer to the online user requiring recommendation as the active

user u. A WRS finds the top-n items that the active user could be most interested in.
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For ontology-based WRS’s, this thesis assumes the existence of an ontology, based on a

domain knowledge, from which inference can be made, relations, and semantic information

can be drawn. Let us define ontology-based web recommendation as follows.

Definition 5 (Ontology-based WRS). Given a sequence database W, and a domain ontol-

ogy O, define the utility function λ(u, pi,O), which measures the interest of user u in item

pi using relations R, class hierarchies ≤C and axioms A from O. An ontology-based WRS

finds the top-n items that maximize this function.

Only few WRS’s use domain knowledge, and those that do, mostly, use it in the form

of a topic taxonomy, also called shallow ontology. Next, we present a brief survey and an

overview of Web Recommendation Systems, and in Chapter 3 we discuss our proposal of

ontology-based WRS’s.

2.5.1 Overview of Web Recommendation Systems

Web recommendation systems can be divided into the following categories.

1. Content-based systems (CB): These systems mine the usage history of the user(s),

and are mostly concerned with the web page content, and maybe the semantics sur-

rounding it. Mining methods are used to generate frequent patterns and association

rules, which are later used for recommending products and next page accesses. Ex-

amples include, WebWatcher [Joachims et al., 1997], SEWeP [Eirinaki et al., 2003],

and the works in Spiliopoulou [2000]; Billsus et al. [2002]; Zhang et al. [2002] and

Berendt [2002]. In SEWeP keywords are extracted from text surrounding hyperlinks

in each web page, and used to cluster pages based on a shallow ontology. Items in as-

sociation rules resulting from SPM of the web log are mapped to their corresponding

clusters to generate recommendations of other items from these clusters. CB suffers

from problems of cold start (new items introduced that cannot be associated with

existing item clusters), scalability (too many items with too much data about them,

e.g., sparse clusters) and content overspecialization (the system recommends items

specific to only one topic, i.e., no diversity) [Adomavicius and Tuzhilin, 2005].

2. Collaborative Filtering systems (CF): Such system depend on the collaborative effort

of users’ ratings of a pool of items. Also, the items can be manually or automatically

assigned weights without relying on user ratings. Here, clustering and classification

mining methods are used to build a system that can provide recommendations on

items, to a user based on his peer’s ratings (like-minded users). In this case, users

are classified into groups or clusters, according to their interest in a subset of the
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pages. Users provide ratings to items, which can be represented in a matrix of

users-items correlations. Then, the recommender system recommends to the active

user items which users in his group are interested in, after mapping the user to

his group using semantic similarity measures. Examples of these systems, include

WebPersonalizer [Dai and Mobasher, 2003] and the works in Sarwar et al. [2001];

Mobasher et al. [2002, 2004]; Hofmann [2003] and Hofmann [2004]. CF suffers from

several problems, most importantly it relies heavily on explicit user input [Li and

Zäıane, 2004], and it lacks diversity in recommendations [Anand et al., 2007], the

same content overspecialization problem. Baseline algorithms used so far in CF

include k-Nearest neighbor, k-Means Clustering, Support Vector Machines SVM,

and Probabilistic Latent Semantic Analysis PLSA [Sandvig et al., 2007]. We notice

that CF based on association rule mining or sequential pattern mining is rarely used,

and lacks some research.

3. Hybrid systems: These combine CF and CB in one system [Melville et al., 2002; Jin

et al., 2005; Sandvig et al., 2007]. The idea is that one system will complement the

other, in order to overcome its shortcomings. Recently, commercial systems (e.g.,

Adobe’s Omniture Recommendations), provide such hybrid solutions in a compre-

hensive software application. Disadvantages of such system include the burden put

on preprocessing, data collection and data preparation, which make it difficult to

update the recommendation model once new data arrives, whether online or offline.

4. Eirinaki and Vazirgiannis [2003] add also Rule-based filtering, which is built as an

expert system. It asks the user a set of questions from a decision tree, in order to

provide a recommendation tailored to his needs.

Top commercial content-based WRS include NetMining1, which acts as a predictive

profiling tool that analyzes web site visitors’ browsing behaviors to customize the web

site content for each visitor. Redwood2, is an Open Source web log mining system, im-

plemented with Java, as a web-based interface. More advanced commercial WRS’s are

mostly provided as CRM (Customer Relationship Management) solutions, that combine

usage data mined from the web log, with customer information collected from registra-

tion information, browsing behavior, etc., to gather business intelligence, like IBM SurfAid

Analytics 3, which helps web managers identify the most effective marketing initiatives,

content, and navigation for their web sites. It improves site navigation and page layout,

1http://www.netmining.com/
2http://sourceforge.net/projects/redwood/
3http://www.ibm.com/surfaid/
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and also provides future application usage prediction, by employing probabilistic Markov

models. Omniture Recommendations1 featured in Adobe Online Marketing Suite recom-

mend products or content such as “people who bought this bought that”, most viewed,

and top sellers, as well as recommendations based on Omniture SiteSearch queries and

results. WebTrends Visitor Data Mart and WebTrends Analytics2, now used in Microsoft

Office SharePoint Services 2007, integrates usage data with content to provide relevant

information to web site visitors. As a content-based WRS, ACR News recommends news

to the visitors of the web site. It obtains usage profiles by clustering user sessions based

on association rule hypergraph partitioning [Mobasher et al., 2000]. The recommendations

can be made after matching current user session activities and usage profiles by measuring

distance and similarity.

On the other hand, commercial systems that use collaborative filtering include Grou-

pLens by NetPerceptions3, which recommends newsgroup articles based on Pearson-r cor-

relation of other users ratings. Amazon.com [Linden et al., 2003] API, the famous e-

commerce web application, enables users to rate products and provide recommendations

in the “people who bought this bought that” form, also enabling personalized user browsing

experience. It matches recommended products to the products purchased or rated by the

customer. Vignette Recommendations4 determines what content like-minded peers find

useful, then displays the best search results, content links, and products. It also provides

user’s next request recommendations, dynamic content links that are best consumed in a

specific order, which reduces clicks to intended content, resulting in increased customer

satisfaction.

MovieLens5 is a CB and CF hybrid WRS for movie recommendations. It combines

collaborative filtering and multiple information filtering agents. Weighted feature technique

is used for profiling. WebSELL [Cunningham et al., 2001] is another CB and CF hybrid

WRS, which recommends products to online shopping customers. Case-based product

retrieval technique is utilized, to measure the similarity of the products, to examine whether

the products are suitable for the customers’ requirements. User profiles are stored in the

server as a profile database. The target user is identified in a virtual community by profile

similarity matching, so collaborative recommendations can be made by recommending the

highly ranked products drawn from the virtual community. Another CB and CF hybrid

WRS is LaboUr [Schwab et al., 2001], which maintains a user model by observing users.

1http://www.omniture.com/
2http://www.webtrends.com/
3http://www.netperceptions.com
4http://www.vignette.com/
5http://movielens.umn.edu/
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Learning algorithms utilize the model in recommending new relevant objects to the users,

and a collaborative approach compares the content-based model to make recommendations

based on nearest neighbor and probabilistic techniques.

Major drawbacks of non-ontology-based WRS’s, include the cold start problem of new

users and new items and sparsity problem, in addition to other problems discussed in

Section 3.1 as part of problems identified by this thesis and the research questions posed.

2.5.2 The Use of Semantics and Content in Recommender Systems

Several attempts have been made to overcome problems in WRS’s, by building different

models which integrate several sources of information into the different phases of the rec-

ommender system. The need for domain knowledge is obvious and important. One can

trace the use of domain knowledge in web usage mining to Baumgarten et al. [2000], who

defined domain knowledge as flexible navigation templates that can specify generic navi-

gational behavior of interest, network structures for capturing web site topologies, concept

hierarchies and syntactic constraints. WRS’s that rely on Content-Based filtering (CB),

combine web content and web structure mining methods. Web content mining allows for

the extraction of semantics and keywords from the textual content of web pages, while web

structure mining incorporates meta-information included in the hyperlinks and the content

surrounding them in an HTML page [Berendt and Spiliopoulou, 2000; Berendt, 2002; Dai

and Mobasher, 2003; Li and Zäıane, 2004; Guo et al., 2005; Pabarskaite and Raudys, 2007].

This information helps narrow down the search space and guide the mining algorithm of the

WRS. For example, Pabarskaite and Raudys [2007] include text information from HTML

link tags registered in the web log with their associated web access sequences, and Berendt

[2002] implements a preprocessing module in two systems, STRATDYN and WUM, that

classify web log transactions according to concept hierarchies. These hierarchies are built

semi-automatically by parsing URLs in the web log, looking for path names indicating

entity classes, similar to concepts in a domain ontology. Such classes are presented as con-

straining templates to the mining algorithm. Li and Zäıane [2004] combine textual content

and connectivity information of web pages besides mining the web log, which does not

require user input at all. The page textual content is used to pre-process log data to model

content coherent visit sub-sessions, which are then used to generate more accurate users’

navigational patterns. Structure data of the web site, is used to expand the navigational

patterns with a rich relevant content. The connectivity information is also used to compute

the importance of pages for the purpose of ranking recommendations.

Web content mining is enhanced if web pages are characterized using an abstract repre-
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sentation based on ontologies. This is taken a step further, by incorporating these ontologies

into all phases of a WRS, as proposed by this thesis, in Section 3.2.

On the other hand, most CB WRS’s employ text mining techniques to extract a set of

keywords related to a topic/item presented in a web page. A weight (like TF-IDF [Salton

and Buckley, 1988]) may be associated with these keywords, which are later clustered using

similarity measures. The goal is to create semantic profiles for items such that recommen-

dations can be expanded to include relevant items from these profiles. In WebPersonalizer

[Dai and Mobasher, 2003], each pageview is represented as a k -dimensional feature vector,

where k is the number of features, showing the weight of each feature in the given pageview.

These features represent keywords extracted from the pageviews. Then for the whole col-

lection of pageviews, a matrix of feature weights is collected. For recommendation, the

active user profile, is matched against a set of aggregate usage profiles, showing which

group of users the active user shares common interests with, then recommendations are

provided from the set of items common among these users. Dai and Mobasher [2003] argue

that such content features can be integrated only into pre-mining or post-mining phases of

web personalization. The disadvantage of this approach is its high dimensionality and its

incapability of capturing more complex relations among objects, since only a shallow on-

tology is used. The difference between keywords extraction and content features extracted

from web pages, and the use of semantic objects drawn from a domain ontology, is that

the later can model object properties and relationships based on the underlying domain

ontology, while the other ones cannot. Being able to model objects’ properties and the

granular relationships that connect these objects, provides the ability for the recommender

system to generate its recommendations, as direct instantiations of these objects. Also,

this kind of modeling enables more accurate calculations of similarity measures, since more

detailed relations are involved.

Another example is that of Quickstep and Foxtrot [Middleton et al., 2009] research

paper recommenders, in which an external shallow ontology containing only is-a relations is

used in user profiling. Each user’s known publications are correlated with the recommender

system’s classified paper database. A set of historical interests is compiled for the active

user, and the relationship analysis tool provides a ranked list of similar users. Example

of other WRS’s that depend on subject taxonomies as shallow ontologies to classify web

pages include Cooley et al. [1999]; Acharyya and Ghosh [2003]; Eirinaki et al. [2003];

Middleton et al. [2004] and Ziegler et al. [2005]. Several subject taxonomies used, are

publicly available, like Yahoo! Directory1, Lycos2, and ODP. In these systems, pageviews

1http://dir.yahoo.com/
2http://yellowpages.lycos.com/
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from the web log, are mapped to topics in the taxonomy, so that association rules and

frequent patterns, resulting from mining, can be expanded to include other items from

these taxonomies as future recommendations to the user. Ziegler et al. [2005] propose the

use of light taxonomies (like Amazon.com book taxonomy) to represent users as vectors

of scores assigned to topics rather than individual items. Interest shown by a user in a

specific item propagates up the taxonomy to all supertopics, for generalization purposes.

On using a domain ontology, Oberle et al. [2003] present the SEAL framework for en-

hancing web usage transactions with formal semantics based on an ontology underlying

a web portal application, and used to annotate its resources. They tackle the problem

of mapping many semantic objects to a single web page, but do not elaborate on how it

is done, or discuss its consequences. The presented system resembles a combination of

WebPersonalizer and WUM [Berendt and Spiliopoulou, 2000]. After obtaining the Seman-

tic Log File, and converting it into arff format from the WEKA system [Witten and Frank,

1999], clustering is employed for mining this semantic web log, to extract knowledge about

groups of users, users’ preferences, and rules. Since the proposed framework is built on

an ontology, the web content is inherently semantically annotated exploiting the portal’s

inherent RDF annotations. The authors show interesting results on concept generalization,

that is made possible by the semantic representation in the Semantic Log File. On the

other hand, they focus only on mining, and when association rules mining is applied, it

resulted only in trivial rules, not up to expectations, given the semantic-rich log.

Tags1 are used in the area of social networking [Hayes et al., 2007] to cluster bloggers

and posts. Diederich and Iofciu [2006] study how users create tag profiles corresponding to

their interests and receive recommendations based on user-user similarity built using the

tag profiles in a user-based CF algorithm. Similarily, Zanardi and Capra [2008] use cosine to

compute user-user and tag-tag similarities to propose a social ranking formula for research

papers recommendation. They also propose a query expansion method that does not

consider semantic relations among concepts in a fashion similar to kNN clustering [Zanardi

and Capra, 2008]. de Gemmis et al. [2008] rely purely on WordNet such that documents

are mapped to synsets to identify semantic concepts behind them. This is augmented

with a probabilistic model for learning user profiles. User tags are treated as additional

content in documents. This approach is applied on a cultural hertiage recommender, but

might not work for e-commerce applications where semantic relations extend beyond lingual

semantics. In the approach proposed by our thesis, we rely on an expert domain ontology

from which concepts are identified.

On the other hand, Niwa et al. [2006] propose a cluster-based algorithm for recommend-

1Keywords that users attach to items in the web site.

34



2.5 Web Recommendation Systems

ing web pages based on the pages users have tagged. The recommendation is straightfor-

ward and is based on the similarity of tf · idf tag profile vectors. A similar approach

[Cantador et al., 2010] emerged at the time of preparing this thesis. In this approach, no

ontology is used, and tags are used directly in tf · idf measures to compute weights in

user and item profiles without dimensionality reduction or clustering, although such an

approach can be applied in any scenario where users tag items, but cases of large numbers

of tags will pose a scalability issue in these approaches.

In Guan et al. [2010] user provided tags are used for document recommendation, while

a domain ontology is not utilized, relations between users, documents and tags are found

by constructing weighted bipartite graphs, and an algorithm for subspace leanring to find

the optimal semantic space. The reason claimed is that straightforward vector space rep-

resentation does not consider semantic correlations between tags, which is important for

recommendation. Our approach on the other hand, does consider such correlations since

tags belong to ontological concepts with relations of several kinds among them in the on-

tology. As we propose a novel method for dimensionality reduction, Guan et al. learning

algorithm still suffers from a scalabiltiy problem.

Our proposed ontology-based recommender system in Section 7.2 can be described as

content-based, and it differs from the discussed methods in that, it relies on user-provided

tags only, without the need to retrieve keywords from web documents, or the need for

rating information. It also relies on a provided domain ontology to which the tags are

mapped, without using clustering or annotating the items with ontology concepts.

2.5.3 Discussion

Web recommendation systems have come a long way since they were first introduced in

the late 1990s. They went from simple results of data mining to complete stand-alone

applications that encapsulate data mining in their process. Companies like IBM and Adobe,

now provide WRS’s as complete CRM solutions. We have seen how similarity metrics have

been used to group similar items, and to group like-minded users, forming different matrices

and applying different statistical methods. We have also seen how web usage mining is

used in content-based WRS, when the web log is enriched with semantics in the form of

categorical information or keywords. The followings are major achievements that can be

noted in the field of WRS’s in the last decade:

1. WRS’s have led to semantic enrichment of web logs and user transactions, e.g., C-Log

in SEWeP [Eirinaki et al., 2003], and Semantic Log in SEAL [Oberle et al., 2003].
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2. WRS have utilized statistical modeling of user profiles, e.g. vector space representa-

tion of user transactions in WebPersonalizer [Dai and Mobasher, 2003].

3. Sequential Pattern Mining for WRS’s has been enhanced, in different ways.

(a) Input is being filtered, by using templates based on results of web structure min-

ing and web content mining [Baumgarten et al., 2000; Berendt and Spiliopoulou,

2000].

(b) The introduction of faster algorithms with less memory consumption, like Pre-

fixSpan [Pei et al., 2001] and PLWAP [Ezeife and Lu, 2005].

(c) Enhancing precision and recall in probabilistic mining methods, with the in-

troduction of Selective Markov Models [Deshpande and Karypis, 2004], and the

use of Support Vector Machines and Probabilistic Latent Semantic Analysis [Jin

et al., 2004].

4. WRS utilize a categorization, or a topic taxonomy, to explain recommendation re-

sults and provide generalized recommendations, like semantic recommendations and

concept recommendations in SEWeP [Eirinaki et al., 2003], but do not yet make full

use of semantic web technologies and domain ontologies to extend recommendations

and solve problems, like content overspecialization.

Web recommendation systems have made a lot of contributions in the way we use and think

of the Internet. The functional achievements of WRS include services and applications,

in the areas of research publication recommendations (e.g., DBLP1), news article recom-

mendations (e.g., ACR News), movie title recommendations (e.g., MovieLens2, NetFlix3),

and of course important contributions in the area of e-commerce and online shopping (e.g.,

Amazon.com, eBay). WRS’s are now an integral part of many CRM tools (like IBM

SurfAid Analytics), especially with the advent of social networks, like Facebook4. They

provide more user-friendly interfaces and personalized experiences for users, thus increasing

customer retention and loyalty.

1http://www.informatik.uni-trier.de/ ley/db/
2http://movielens.umn.edu/
3http://www.netflix.com/
4http://www.facebook.com
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Chapter 3

Proposed SemAware System for

Web Recommendation

The surveys presented in Chapter 2 reveal a number of problems and pitfalls associated

with Sequential Pattern Mining and Web Recommendation algorithms. In this Chapter

we discuss these problems and identify the questions that drive the research in this disser-

tation. Then, a proposed solution is discussed and summarized before providing details in

subsequent chapters. In addition to the research questions proposed here, thesis contribu-

tion is discussed in Section 1.2.

3.1 Problems Identified and Research Questions

Through the surveys conducted on WRS’s and SPM in Chapter 2, the following problems

are identified:

1. SPM algorithms have a huge and a sparse search space when applied on web log

mining. A method is required to efficiently guide the algorithm in this search space.

2. Mathematical modeling of sequences in SPM is needed to enable n-item prediction

and sequence re-generation. This can be a polynomial or probabilistic model capable

of re-generating the sequence with a minimal level of error.

3. Web Recommendation Systems suffer from the following problems:

3.1 The Cold Start problem, which appears when a new item is introduced that

was not recommended before. This new item did not surface up in the usage

history, or is not rated by users yet, so the system is not able to recommend it,
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since the process relies on existing user transactions [Li and Zäıane, 2004]. The

same problem appears when a new user approaches a content-based WRS with

no previous browsing history, the system has no way of telling what the next

page request will be, or what proper item to recommend. The system requires

some time to pick up user’s usage information.

3.2 The problem of Sparsity and Scalability affects efficiency when there is a

huge number of items and weights/ratings associated with each item and when

a profile is maintained for each user. This problem leads to large matrices of

data that require transformation and processing on the fly for online recom-

mendations. Sparsity problem appears when there is a huge matrix with only

few weights or ratings. Differently speaking, this problem arises when there are

many items to be recommended, but only few recommendations are provided,

or recommendations are mostly targeting only a subset of the items. The same

problem appears in SPM when dense data sets are mined, requiring an effective

pruning method to reduce the search space.

3.3 Content Overspecialization occurs in such systems as they recommend items

of high relevance to the user, with no diversity in results. This problem affects

both the user and the system. The user may get bored fast and not come back.

The system may not be able to introduce new items.

3.4 The Gray Sheep problem occurs when the active user has a taste that is not

similar to any group of users, or a profile that has equal similarity over most

item profiles. In this case recommendation with association rules only is not a

good idea since these rules depend on other users’ browsing behavior and not

only on this single active user’s browsing history. It cannot be said that every

user is a gray sheep, only users that the system find very difficult to label as

belonging to one certain cluster of users.

3.5 WRS’s do not have support for Multi-Criteria Matching. A similarity mea-

sure that considers different criteria is definitely needed for user-item matching,

since a user might have different interest levels in an item depending on different

criteria, like quality, durability, price. . . etc.

In light of the problems identfied, we put forth the following research questions to be

answered by this dissertation.

Research Question 1 Can semantic information drawn from a domain ontology enhance

Sequential Pattern Mining algorithms and Web Recommendation Systems over the
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use of a simple topic taxonomy?

Answer : The answer to this question lies in the difference that a domain ontology has

over a topic taxonomy, which is the rich collection of granular relations R (e.g., has-

a, part-of, requires), relation hierarchies ≤R that act as weights for these relations,

and axioms A. These relations provide an accurate measure for semantic similarity

between items. Using content semantic similarity depicted only by categorization or

is-a taxonomic relations is not enough. In Chapter 4 we propose a semantic similarity

measure that incorporates the different relations of an ontology. In Chapter 5 we

show how these relations are used in SPM to reduce the search space and guide

the mining algorithm. In Chapter 6 they are used also to solve the contradicting

predictions problem and prune the search space of Markov models, and in Chapter

7 we illustrate their use to expand the recommendation set.

Research Question 2 Is there a way to integrate semantic information in all phases of

Web Usage Mining?

Answer : Yes, to answer this question we propose SemAware in Section 3.2, a compre-

hensive web usage mining and recommendation system in which semantic information

drawn from the domain ontology is integrated in the three phases of Pre-processing,

Pattern Discovey and Post-processing. Subsequent chapters in this thesis are dedi-

cated to discussing the integration at each of these phases.

Research Question 3 Can the inclusion of semantic information solve the problems iden-

tified in WRS’s and how?

Answer : The methods outlined in this thesis use domain ontology to solve these

problems as follows:

For the cold start problem, when a new item arrives at the web site and into the

domain ontology, properties of this item are used to find its relations to other con-

cepts in the ontology, and that guarantees its appearance in a recommendation set of

other similar items, using cosine similarity. When a new user arrives at the system

with no browsing history, tags provided in the user query are mapped to ontology

concepts and used to find similar items for recommendation using SemAwareIN al-

gorithm, based on a vector-space model of item-concept correlations, as proposed in

Section 7.2.2. To provide a scalable recommendation system and solve the sparsity

problem, a dimensionality reduction method (SemAwareIN-LCA) is proposed in this

thesis, that relies on the domain ontology to combine leaf concepts with their Lowest

Common Ancestor (LCA) and reduce the item-concept correlation matrix. As for the

problem of content overspecialization, Spreading Activation is used in SemAwareIN-
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Ex algorithm during post-processing to traverse the domain ontology and expand the

recommendation set with diverse recommendations, relying on ontological relations

among the recommended items. As for the gray sheep problem, user-provided tags

are matched against ontology concepts via a thesaurus to generate an appropriate set

of items for recommendation using cosine similarity (Section 7.2.2). In Collaborative

Filtering and Hybrid models, we suggest that user profiles be projected over clusters

of ontology concepts, such that user similarities can be found at different settings

with different clusters. This means the ability to find that a user is more similar to

a certain group of users for a certain subset of the ontology concepts.

Research Question 4 What impact does the inclusion of semantic information have on

recommendation results?

Answer : The ontology-based model is richer and better defined than a keyword or

an item-based model. It provides grounds for the representation of fine-grained user

interests (e.g., interest for items such as an actor or a camera part). The ontology

provides a more formal processable meaning to concepts (such as what an underwater

camera requires, what movies a certain director made) and it supports inference

mechanisms to enhance recommendations. In Section 7.3 we show how a proposed

Spreading Activation method over the ontology increases the accuracy of a WRS, and

in Chapter 5 we show how semantic information can minimize the tradeoff between

complexity and accuracy in Markov models.

3.2 Proposed System and Solutions - SemAware

We propose the use of a domain ontology, and its integration in a complete web usage

mining system, targetting web recommendation and web usage mining.

Thesis hypothesis: The addition of domain ontology components (concepts C, concept

hierarchy ≤C, relations R, relation heirarchy ≤R, and axioms A) to Sequential Pattern

Mining and into the utility function λ(u, pi) of user-item interests in WRS’s to become

λ(u, pi,O) is possible, and will increase effectiveness of these systems by solving the prob-

lems of cold start, scalability and sparsity, content overspecialization, contradicting pre-

dictions and complexity-accuracy tradeoff.

To validate this hypothesis we propose SemAware, a three phase framework for ontology-

based web recommendation and web usage mining. Experimental results at each phase of

SemAware show the increased effectiveness as claimed.
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Figure 3.1 shows all the components of SemAware. The figure shows the three phases,

Figure 3.1: SemAware framework, built on top of the three phases of web usage mining.

namely, preprocessing, pattern discovery, and post-processing (from top to bottom). Here

we provide an overview of SemAware, then each subsequent chapter discusses a separate

phase of this proposed system.

In the first phase, a clean server-side web log is provided for preprocessing. This log

contains all information about user access patterns. Items and pageviews pi in the web log

are mapped to their corresponding ontology concepts turning the web log into a sequence
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database W of semantic objects (shown in the figure as “usage data”), thus enriching the

web log with semantic information.

The second phase is Pattern Discovery and Mining. The semantic-rich sequence database

W, is fed into this process. Semantics-aware SPM algorithms, AprioriAll-sem, GSP-sem,

and PLWAP-sem are proposed in which the semantic information from the first phase is

used to prune candidate sequences and avoid support counting when the candidate sequence

is not semantically correct. These proposed algorithms demonstrate, with experimental re-

sults, that domain ontology can be used in the mining core of any SPM algorithm, and it

enhances its perfromance and effectiveness, without compromising the quality of the gen-

erated frequent patterns under some conditions. We take this a step forward and propose

to integrate this semantic infomation into a probabilistic model for prediction, namely a

semantics-aware Selective Markov Model, using Markov processes as opposed to SPM, for

page prefetching. The idea is to show that this integration minimizes the tradeoff problem

between accuracy and complexity in these Markov models, at the same time it solves the

cold start and the contradicting prediction problems in these models.

In addition to next page prediction, results of the second phase include the frequent

patterns found by semantics-aware SPM, these are input to the third phase that uses

them to generate semantics-rich association rules and top-n recommendations. This post-

processing phase includes techniques that allow further filtering and reporting of results.

The interpretation of these results represents them as a set of recommended items to the

active user, or as decision making recommendations to the administrator, to be used in

web site restructuring or marketing campaigns. The actual operation of the WRS lies

in this phase. As the active user presents her query, or requests a pageview, the WRS

uses the results of mining to provide recommendations related to her actions. SemAware

utilizes semantic knowledge in this phase to provide an interpretation that can be easily

understood by a näıve user. For example a pattern that shows two sequentially frequent

pageviews like < p5p3 >, can be better interpreted if the semantics of both web pages are

involved, to result in something like, “buying a SLR camera is always associated with buying

a zoom lens”, from which this interpretation can be inferred “people who buy a camera will

most probably buy a lens to go with it,” using ontology concept generalization. We focus

on displaying the accuracy of these association rules by showing how they provide an

informed recommendation when confidence measures fail to do so, by combining semantic-

rich association rules with semantics-aware Markov models. In the third phase SemAware

provides the ability to generate top-n recommendations. In this case, an item-concept

matrix that is populated with each item’s similarity to each ontology concept, is used

to find the top-n items that maximize the utility function λ. The goal is to show how

42



3.2 Proposed System and Solutions - SemAware

Ontology-based recommendation can make use of the recent Web 2.0 tagging technologies

to provide top-n recommendations from user-provided tags, with no semantic annotation

of the items, solving the problems of cold start, sparisity and scalability, and content

overspecialization.
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Chapter 4

Preprocessing and Semantic

Enriching of the Web Log

Web usage mining assumes the existence of a clean web log in the form of a sequence

database of user access transactions as defined in Definition 1, (page 10). This chapter

shows how the web log can be enriched with semantic information drawn from the under-

lying domain ontology. We discuss cases in which the items are annotated and cases in

which the items are not annotated with ontological concepts, due to lack of ontology. The

goal of this pre-processing phase in SemAware is to provide the mining algorithm with

semantic-rich user access sequences.

4.1 Preprocessing in SemAware

In Section 1.1 we presented eMart, an e-commerce application that sells electronic devices

and accessories, like Cameras and Photography equipment. Consider Table 4.1 as a sample

of a sequence database from eMart. We will adopt this sequence database for all examples

throughout this thesis. We assume that user browsing is organized in the clean web log

(e.g., Table 4.1) into sessions (also called transactions) denoted as ti. Sessionizing was

discussed in Section 2.2. We avoid cases of tabbed browsing by which a single user might

open more than one web page simultaneously in several tabs in his web browser tool.

Web pages (e.g., p1 from Table 4.1) residing on eMart’s web server are annotated with

semantic information. In general, a web page can be annotated with semantic information

using automatic or semi-automatic software tools, that enable the ontology engineer to

extract information from the ontology and use an XML-based language to annotate a

web page by showing what semantic information it carries, and where in the ontology it
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Table 4.1: Example Sequence Database from eMart.

Trans ID Access Sequence

t1 p2p3p2p1p5
t2 p2p1p3p2p1p5
t3 p1p2p5
t4 p1p2p5p2p4
t5 p1p2p1p4

belongs, some software tools are OntoMat Annotizer [Handschuh and Staab, 2002], MnM

[Vargas-Vera et al., 2002], WebOnto [Domingue, 1998], and SHOE [Luke et al., 1997]. This

annotation process takes place during the design of the e-commerce application. We use

OntoMat Annotizer1 to manually annotate pages in eMart. Each pageview pi is mapped

to a concept ck ∈ C in the provided ontology. Items dealt with in the mining process are

instances of these concepts (also called classes). For example, a “Canon PowerShot A2000

IS” described in web page p2 (Figure 4.2) as a brand of a digital still camera sold on eMart,

is an instance of the Digital class which is a subclass of Still Camera class. The subclass

relation is represented by the is-a edge in the presented ontology of Figure 2.5.

4.1.1 Lack of Ontology and Ontology Crafting from the Web Log

In the absence of a domain ontology and annotation, SemAware has OntoCraft (Algorithm

1) to extract the keyword(s) from each web page pi’s <meta> tag, which holds keyword(s)

of topics or concepts concerning the page content. An example is the following HTML line

from a web page pi which describes a camera lens product.

<meta name=“keywords” content=“lens,camera,optical”>

These tags can also be user-provided tags. The HTML line above shows a set of keywords

Kpi = {lens, camera, optical}, such that kpi1 = {lens}, kpi2 = {camera}, and so on. For

every keyword kpij , if it is not already in the ontology (an empty ontology includes only the

thing root node), it will be added as a separate concept in the ontology, and an is-a edge

is added to connect this new concept with the all concepts from Kpi−1 . This process is

repeated for all the pages represented by pageviews in the web log. A detailed procedure

is provided in Algorithm 1, with the following example.

Example 4.1 (ontology crafting): Consider the transaction t1 = {p2, p3, p2, p1, p5},
from the running example in Table 4.1. Algorithm 1 starts by creating the root class

thing in the ontology O (lines 1-2) as in Figure 4.1a. Next, the algorithm will search

1http://annotation.semanticweb.org/ontomat/index.html
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4.1 Preprocessing in SemAware

Algorithm 1 OntoCraft() procuedre for crafting a basic ontology for SemAware from
pageview sequences in the web log

Input: clean web log W ={p1, p2, . . . , pi, . . . , pl}, such that pi represents a single pageview.
Output: Domain Ontology, represented as the directed graph O = (V,E), such that V is
the set of ontology concepts, and E is the set of is-a relation arcs connecting the concepts.
Algorithm:

1: Create an empty ontology with only root class V = {c0}
2: Initialize a counter j = 0 for classes that will be added to the ontology
3: /*process each page individually*/
4: for i=1 to l number of pages in web log W do
5: Search for < meta name = “keywords” content = “keyword1, keyword2, . . . ,

keywordn” > tag in HTML code of web page pi
6: /*extract keywords from the HTML tag*/
7: for k=1 to n, number of keywords in page pi do
8: Increment classes counter, j = j + 1
9: if keywordk was not encountered before then

10: create a class cj and add it to ontology O, V ← V ∪ cj
11: end if
12: create an is-a arc connecting this class to all previous (now parent) classes created

from pi−1, call them C−, such that a class cannot link to itself
13: add this edge to E, E ← E ∪ arc(cj , cx), cx ∈ C−)
14: end for
15: end for
16: return Ontology O = (V,E)

end

the HTML code of the first page in t1, which is p2 (shown in Figure 4.2), looking for the

<meta name=“keywords” . . .> tag which is usually found in the <head> section of HTML

code (lines 3-6). In this example, the following line is retrieved <meta name=“keywords”

content=“camera, digital, still, photo”>. In lines 7-13, the algorithm next creates a

class cj for each keyword extracted, and creates an is-a relation connecting each new class

to its parent class, in this case the thing class, as shown in Figure 4.1b. In the second

iteration of line 4, the algorithm will fetch page p3 from t1, with the set of keywords

<meta name=“keywords” content=“memory-card, storage”>, and creates two new ontol-

ogy classes for these keywords, then creates an is-a relation connecting each new class to

previous parent classes created from processing p2, as shown in Figure 4.1c. In the third

iteration, the accessed page is p2 again, by executing code lines 9-11, nothing is added

to the ontology. In the next iteration of line 4, the algorithm will fetch page p1 from t1,

with keywords <meta name=“keywords” content=“storage,camera-case”>, only one new

class is created for keyword “camera-case”, is-a relations connect this class with parent
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4.1 Preprocessing in SemAware

(a) (b)

(c) (d)

Figure 4.1: Different stages for building a simple ontology from a web log.

classes represented by p2 as it is the preceeding page to p1 in the clickstream, as shown

in Figure 4.1d. Finally, the last page in t1 is p5, with keywords <meta name=“keywords”

content=“memory-card”>, and by executing code lines 9-11, nothing is added to the on-

tology. The final crafted ontology is shown in Figure 4.1d.

OntoCraft is a näıve algorithm that treats keywords as nouns and considers each one

as an ontology concept, thus the high number of interconnecting relations. There is still

a lot of future work to be done to enhance this algorithm to the level of an ontology

learning algorithm. Things to consider include the fact that several keywords can refer to

one concept. The use of clustering is important to group similar keywords into a single

concept. Then a method is required to label the concept and other methods to find the

relations between these concepts. We believe that frequent patterns (resulting from regular

SPM of the web log) can be used to find relations between concepts. More frequent patterns

that reflect the same relation mean that the relation is of high importance to be included in

the ontology, less frequent patterns mean that the relation can be ignored and not included

in the ontology. The same way can be used to assign relation hierarchy (i.e., a weight) to

each learned relation. It is far more difficult to learn granular relations than to learn the
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4.1 Preprocessing in SemAware

(a) web page p2

(b) Header part of the HTML code for p2

Figure 4.2: Visual rendering and HTML code of pageview p2 in the running example.

simple is-a relation among the concepts. Most of the work in this thesis assumes that a

rich domain ontology is provided as defined in Definition 3, page 24.

4.1.2 Converting Pageviews into Semantic Objects During Preprocess-

ing

Each item in the web log, representing a web page access, is converted into a semantic

object in SemAware using Algorithm 2 (page 54). The result of this process is semantic-

rich user transactions, which are sequences of semantic objects.

Definition 6 (Semantic Object). A semantic object oi is represented as the tuple <

pgi, insk >, where pg represents the web page containing the product, usually an URL

address of the page, and insk is an instance of a concept ck ∈ C, from the provided ontology

O, that represents the product being referenced, where i is an index for an enumeration of

the objects in the sequences in W.

Sometimes a single pageview pi may contain more than one semantic object, like a

catalog page of products. This presents the problem of mapping many semantic objects

to one or many concepts in the ontology. Depending on the number of objects in pi, there

can be different mapping scenarios, as follows (also illustrated by Exmaple 4.2 below):
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4.1 Preprocessing in SemAware

1. If a given pi contains only one semantic object, then mapping is directly provided as

one-to-one, resulting in oi =< pgi, insk >.

2. In the case of pi referring to many concepts, many-to-one or many-to-many mapping

can be made. A many-to-one mapping is made by crawling up the concept hierarchy

≤C until a common ancestor of the instances in pi is reached, to which pi will be

mapped.

3. In the case of many-to-many mapping, each instance in pi is mapped to a single

concept, and treated as a single semantic object oik , such that oik =< pgi, insk >

and oi =
⋃
k oik .

4. There is no one-to-many mapping, because SPM will be carried on the sequences

of semantic objects, becaue an item is mapped to only one semantic concept.

Eventually, the web log W is converted into a sequence of semantic objects W = {o1, o2, . . . , om},
where m ≥ l, called semantic-rich user transactions.

Example 4.2 (object mapping): This example shows how pageviews in transaction

t9 = {p5, p4} are mapped to the ontology and converted into semantic objects, as described

in lines 9-29 of Algorithm 2 (page 54). The first web page in t9 is p5, according to lines

9-10, the algorithm will fetch tagging keywords from the HTML code of p5, as <meta

name=“keywords” content=“memory-card”>, in this case one keyword, and add it to list

Kp5 = {memory − card}. Next, by executing the conditional statement of line 12, the

algorithm will map this keyword to the ontology class memory − card in Figure 4.1d as

one-to-one mapping, by executing lines 5-6, in which a semantic object is created as the

tuple o5 =< “elec/sd.htm”, c5 >, where c5 is the memory − card class in the ontology

(with serial number 5). o5 is then added to the list of semantic objects, so = {o5}. Next

in the transaction, is p4, with the keywords <meta name=“keywords” content=“memory-

card, digital”>, the algorithm is faced with more than one keyword, here is the option

of using many-to-one mapping or many-to-many mapping. In the case of many-to-one

mapping (code lines 17-21), Kp4 = {memory− card, digital}, the algorithm will climb up

the class hierarchy of the ontology to find a common ancestor between the two classes of

memory − card and digital, which is the root class thing as seen in Figure 4.1d. Next,

a semantic object is created as the tuple o4 =< “elec/sandisk.htm”, c0 >, where c0

is the thing class in the ontology. The object o4 is then added to the list of semantic

objects so = {o5, o4}. If many-to-many mapping was chosen (code lines 23-27), then every

keyword in Kp4 is mapped separately to the ontology resulting with the semantic objects
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o41 =< “elec/sandisk.htm”, c5 > and o42 =< “elec/sandisk.htm”, c3 >, which are later

added to the set of semantic objects so as so = {o5, < o41 , o42 >}.
At the end the sequence database from Table 4.1 is transformed into a semantic-rich

sequence database as in Table 4.2, by mapping each pageview to its correponding ontology

concept and generating semantic objects after consulting Table 4.3, where each semantic

object entry oi is made of the tuple < pgi, ck >, such that ck ∈ C. Table 4.3 is constructed

for the running example as a look-up table to show mappings of pageviews, in reality,

Algorithm 2 is used as illustrated in Example 4.2 above.

Table 4.2: Resulting semantic-rich sequence database after preprocessing of the web log,
using Algorithms 1 and 2.

Trans ID Access Sequence

t1 o2o3o2o1o5
t2 o2o1o3o2o1o5
t3 o1o2o5
t4 o1o2o5o2o4
t5 o1o2o1o4

Table 4.3: Assumed domain knowledge contained in each accessed pageview, last column
shows generated semantic objects.

Access- Actual Ontology Semantic
ed Page corresponding concept Object

web page

p1 /cameras.html Cameras o1
p2 /cameras/canon.html Still Camera o2
p3 /chem/fsoln.html Film developing solution o3
p4 /film/videofilm.html Video Film o4
p5 /elect/dbatteries.html Dry Battery o5

4.2 Computing The Semantic Distance

Besides semantic enrichment of the web log, the preprocessing phase of SemAware also

computes the semantic distance between each semantic object and each other semantic

object in the web log. This semantic information plays an important role in the mining

phase of SemAware to produce effective semantics-aware SPM algorithms and in next page

request prediction, as will be seen in Chapters 5 and 6.
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Definition 7 (Semantic Distance). The Semantic Distance γoi,oj is a measure of the dis-

tance in the ontology O between the two concepts of which oi and oj are instances.

Definition 8 (Semantic Distance Matrix). A Semantic Distance Matrix Mn×n = {γoioj}
is a n× n matrix of all the semantic distances between the n semantic objects represented

by pageviews in the sequence database W.

The semantic distance matrix M is not necessarily symmetric, as the semantic distance

between two ontology concepts (e.g., Digital Camera and Batteries) is not always the same

from both directions, espcially when relations are weighted. For example, the relation

between the concepts of Camera and Battery is not symmetric, as one would assume that

a camera requires a battery to operate, and users who buy cameras will probably buy

some batteries later on, but when people buy batteries it does not necessarily mean that

they own a camera. One can say that the semantic distance is the measure in units of

semantic relatedness between any two objects oi and oj . The more related two objects

are, the lower is their semantic distance. For computing semantic distance, this thesis

follows an intensional approach by exploiting features defined directly over concepts. The

straighforward and direct way is to use graph-based intensional approach by measuring the

distance as the number of separating is-a edges between the concepts that represent oi and

oj , e.g., using Wu and Palmer measure [Wu and Palmer, 1994]. But this approach does

not capture all the semantic relations among the concepts that a rich domain ontology

provides. A more meaningful measure is to compare the relations that the two concepts

posses, and compute their similarity based on the idea that two concepts can be considered

similar if the other concepts to which each of them is connected are the same. For this

we resort to set theory and adopt the Jaccard Coefficient which measures the similarity

between two sets [Jaccard, 1901]. We propose the following semantic distance measure

using Jaccard Coefficient:

γoi,oj = 1/

∣∣∣C−ci ∩ C−cj

∣∣∣∣∣C−ci ∪ C−cj
∣∣ (4.1)

such that the semantic distance is the inverse of the semantic similarity between the two

objects. The semantic similarity depends on the Jaccard Coefficient that measures the

similarity between two sets, where the set C−ci is the set of all concepts that are directly

connected (via any one relation r ∈ R) to the concept ci to which the object oi belongs,

C− ⊆ C. The same thing can be said for C−cj with respect to oj . If relations that connect

a concept to other concepts in C− are ranked, equation (4.1) then becomes weighted such

that
∣∣∣C−ci ∩ C−cj

∣∣∣ =
∑

k ψ
C−ci∩C

−
cj

rk which is the sum of the weights of the relations that connect

each concept in the intersection set with its connected concept ci or cj . For example, if
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C−ci = {c2, c7, c12, c8}, and C−cj = {c13, c23, c7, c8}, then C−ci ∩C
−
cj = {c7, c8} and

∣∣∣C−ci ∩ C−cj

∣∣∣ =

ψri7 + ψri8 + ψrj7 + ψrj8 , such that ψrik is the weight of the relation rik that connects ci

with ck. The same process is done for the denominator in Eq. (4.1), such that
∣∣∣C−ci ∪ C−cj

∣∣∣ =∑
k ψ

C−ci∪C
−
cj

rk . In subsequent chapters as we discuss ontology-based web recommendation,

we compare the results of using this proposed measure for ontology-based recommendation

with the case when only the number of separating is-a edges is used instead.

Example 4.3 (semantic distance): Consider the two concepts Still Camera and

Video Camera from eMart’s ontology in Figure 2.5. Assume that two pageviews are

mapped to the two respective concepts c7=“Still Camera” and c9=“Video Camera”, gen-

erating semantic objects o7 and o9, then the semantic distance γo7,o9 is computed as fol-

lows:

γo7,o9 = 1/
|C−c7∩C−c9 |
|C−c7∪C−c9 |

,

C−c7 = {Camera,Digital, F ilm} (from Fig. 2.5) ,

C−c9 = {Camera,Digital, V ideo F ilm} (from Fig. 2.5) ,

C−c7 ∩ C−c9 = {Camera,Digital} and∣∣C−c7 ∩ C−c9
∣∣ = 2 ,

C−c7 ∪ C−c9 = {Camera,Digital, F ilm, V ideo F ilm} and∣∣C−c7 ∪ C−c9
∣∣ = 4 ,

⇒ γo7,o9 = 1/(2/4) = 2

Example 4.4 (semantic distance with weighted relations): Consider the same

two concepts Still Camera and Video Camera from Example 4.3 above. Assume, again,

that two pageviews are mapped to the two respective concepts c7=“Still Camera” and

c9=“Video Camera”, generating semantic objects o7 and o9. Assume that relations between

concepts have weights as in Figure 4.3, then the semantic distance γo7,o9 is computed as

follows:

γo7,o9 = 1/
|C−c7∩C−c9 |
|C−c7∪C−c9 |

,

C−c7 = {Camera,Digital, F ilm} (from Fig. 4.3) ,

C−c9 = {Camera,Digital, V ideo F ilm} (from Fig. 4.3) ,

C−c7 ∩ C−c9 = {Camera,Digital} and
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Figure 4.3: Example of weighted relations in the ontology, weights are boldface fractions.
This is an enlarged part of the ontology in Figure 2.5 with assumed weights labeled on
relation edges.

∣∣C−c7 ∩ C−c9
∣∣ =

∑
k ψ

C−c7∩C
−
c9

rk

= ψr71 + ψr91 + ψr72 + ψr92 (where c1=“Camera” and c2=“Digital”)

= 0.95 + 0.5 + 0.95 + 0.5 = 2.9 ,

C−c7 ∪ C−c9 = {Camera,Digital, F ilm, V ideo F ilm} and∣∣C−c7 ∪ C−c9
∣∣ =

∑
k ψ

C−c7∪C
−
c9

rk ,

= ψr71 + ψr91 + ψr72 + ψr92 + ψr73 + ψr94 (where c3=“Film” and c4=“Video Film”)

= 0.95 + 0.5 + 0.95 + 0.5 + 0.4 + 0.85 = 4.15

⇒ γo7,o9 = 1/(2.9/4.15) = 1.43

A disadvantage of intensional approaches is their reliance on good modelling habits of

people constructing the ontologies, as they require involvement from the ontology engineer,

e.g., to put weights on edges. On the other hand, they have an advantage over extensional

methods that require the presence of an unbiased population of instance data which is

not always available, and is unfit for web recommendation applications in which items are

not semantically pre-annotated [Hu et al., 2007]. For a survey and comparison between

different semantic similarity and distance measures, the reader can refer to [Hu et al., 2007]

and Cha [2007].
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Algorithm 2 getObject() procedure for mapping pageviews from the web log to semantic
object instances of ontology concepts

Input: Web page pi,
[optional] Domain Ontology O,

Output: Set so of semantic object(s) represented by web page pi ,
Algorithm:

1: Initialize so = {}
2: if an ontology O is provided then
3: /*mapping a semantic object to an ontology concept*/
4: Retrieve ontology class information c from annotation in given page pi
5: create a semantic object oi as a tuple oi =< pgi, c >, where pgi is the URL of page

pi, and c is the class to which it is mapped
6: add semantic object oi to the set so of semantic objects represented by page pi
7: else
8: build ontology O, by calling function OntoCraft() [see algorithm 1]
9: Search for < meta name = “keywords” content = “keyword1, keyword2, . . . ” > tag

in HTML code of web page pi
10: retrieve keyword(s) from the tag and add to list K
11: /*mapping*/
12: if there is only one keyword in K then
13: /*one-to-one*/
14: map this keyword to the ontology, by executing lines 5-6 above
15: else
16: {
17: /*many-to-one*/
18: for all keywords in K, find common ancestor by climbing up the hierarchy in

ontology O

19: this common ancestor is now c, the class to be mapped to
20: do the mapping as in lines 5-6 above
21: }
22: { /* or many-to-many*/
23: for each keyword keywordk in K list of keywords do
24: Map keywordk to its corresponding ontology class cj in the ontology
25: create a semantic object oik as a tuple oik =< pgi, ck >, where pgi is the URL

of page pi, and ck is the class to which keywordk is mapped
26: end for
27: add the tuple < oi1 , oi2 , . . . , oik >, resulting from previous for loop, to the set so

of semantic objects
28: }
29: end if
30: end if
31: return set of semantic objects so

end
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Chapter 5

Semantics-aware Sequential

Pattern Mining

SemAware integrates semantic information into Sequential Pattern Mining (SPM), this

information that has been transformed into semantic-rich user transactions in the prepro-

cessing phase is now used in the core of the adopted SPM algorithm, for effective pruning

of the search space, and to enhance the scalability and performance of these algorithms.

This work is published in Mabroukeh and Ezeife [2009b].

5.1 The Maximum Semantic Distance

The semantic distance matrix M is used during the pruning process to reduce the search

space and minimize the number of candidate frequent sequences, minimizing as well the

number of database scans and support counting processes. As presented before, pre-

processing extracts all the semantic objects represented by pageviews in web log W. Con-

sider the running example in Table 4.1, page p2 can be mapped to object o2, representing

an instance of the class of Digital Still Camera in the ontology of Figure 2.5, the “Canon

PowerShot A2000 IS”. Table 4.3 shows a mapping between the web pages from the se-

quence database of Table 4.1 being mined and the ontology of Figure 2.5, as a result of the

preprocessing described. During mapping of web pages to their corresponding concepts,

the semantic distance is computed and stored in the semantic distance matrix M, e.g.,

Figure 5.1. As stated before and in order to validate the thesis hypothesis, we want to

investigate the effect of domain semantics on SPM. Let us use this semantic information to

prune the search space of these algorithms in a similar way as minimum support threshold

is used. For this, we introduce the maximum semantic distance.
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M =



o1 o2 o3 o4 o5
o1 0 1 5 1 3
o2 1 0 2 2 3
o3 3 1 0 4 8
o4 2 5 4 0 8
o5 10 9 10 12 0


Figure 5.1: Example Semantic distance matrix used in running example from Table 4.2.

Definition 9 (Maximum Semantic Distance η). The maximum semantic distance η is a

constraining value which represents the maximum allowed semantic distance between any

two semantic objects.

Maximum semantic distance is inversely proportional to the maximum level of related-

ness a user would allow between any two semantic objects. It can be user-specified (i.e., a

user with enough knowledge of the used ontology can specify this value) or it can be auto-

matically calculated from the minimum support value specified for the mining algorithm,

by applying it as a restriction on the number of edges in the ontology graph. For example,

if the minimum support used in the mining algorithm is 5% and the number of edges in the

ontology is 60 edges, then η = 3, meaning that the maximum semantic distance allowed

between any two classes in the ontology is only 3, η = min sup × |R|. The idea behind

this calculation is that since η is a maximum measure of distance in the ontology that is

directly related to the number of edges (i.e., relations), then it is logical to use min sup as

a restriction on this distance. In the basic form this distance is a simple count of edges in

the ontology. So if η is the mean of semantic distances then this means that the maximum

allowed semantic distance is half way through the ontology. In the experiments to follow,

we show that the optimal value for η is the mean of the semantic distances in the matrix

M. This is an empirical study that supports the assumption, and is not surprising given

the direct relation between semantic distance and the number of edges in the ontology.

More future work can be conducted to investigate the relation and mining parameters that

lead to an optimal value of η.

5.2 Procedure and Example of Semantic Pruning of the Search

Space

Sequential Pattern Mining algorithms, especially Apriori-based algorithms like AprioriAll

[Agrawal and Srikant, 1995] and GSP [Srikant and Agrawal, 1996] employ the generate-and-
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test procedure, in which two (k-1 )-sequences are joined to produce a candidate k -sequence

at the kth iteration of the algorithm. Then the list of all candidate k -sequences is tested

against the minimum allowed support min sup, where all candidates with support less than

min sup are pruned from the search space. Algorithm 3 shows a general procedure for a

semantics-based SPM algorithm with a replacement generate-and-test procedure that uses

η to prune candidate sequences, such that if the semantic distance between the two (k-

1 )-sequences is more than an allowed maximum semantic distance η, then the candidate

k -sequence is pruned from the search space without the need for support counting. Support

counting requires a full scan of the sequence database for each candidate sequence. Function

SemJoin() implementation in Algorithm 3 is specific to the join procedure of the sequential

pattern mining algorithm adopted in SemAware for a specific application, an example is

SemApJoin() in Figure 5.2, which is used in AprioriAll-sem (a proposd semantics-aware

variation of AprioriAll).

Algorithm 3 General algorithm for Semantics-aware Apriori-based Sequential Pattern
Mining.

SemAwareSPM (M, S, η, min sup)
Input: sequence database S,

semantic distance matrix M,
maximum semantic distance η
minimum support min sup

Output: Semantic-rich frequent sequences
Algorithm:

1: Scan database S to find the set of frequent 1-sequences, L1 = {s1, s2, . . . , sn}.
2: k=1,
3: C1 = L1

{Apply any apriori-based sequential pattern mining algorithm using η to prune the
search space, as follows.}

4: repeat
5: k++
6: for Lk−1./Lk−1 do
7: ∀ si, sj such that si, sj ∈ Lk−1
8: Ck ← Ck

⋃
SemJoin(si, sj)

9: end for
10: Lk={c∈Ck : support(c)≥min sup}
11: until Lk−1=φ
12: return

⋃
kLk

Example 5.1 (AprioriAll-sem): Consider the semantic-rich sequence database in

Table 4.2, transactions similar to t1 are referred to as semantic-rich user transactions. The
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semantic distance between any two objects can be computed faster than support counting

that requires multiple scans of the large sequence database in some cases (e.g., Apriori-

based algorithms) or more memory space in others (e.g., Tree Projection algorithms).

Finding semantic similarity between any two objects is a matter of looking up the se-

mantic distance matrix M. In this example, we first apply an Apriori-based sequential

pattern mining algorithm on the given sequence database, AprioriAll is used with absolute

minimum support of 3 (min sup=3). It scans the database several times to find frequent

itemsets of size k at each kth iteration (starting from k=2). It also has the generate-and-

test feature (see survey in Section 2.3.2) by performing the Apriori-generate join [Agrawal

and Srikant, 1995] procedure to join Lk−1 with itself to generate Ck, the set of candidate

sequences in the kth-iteration, then prunes sequences in Ck which have subsequences not

in Lk−1, creates Lk by adding all sequences from Ck with support ≥ min sup until there are

no more candidate sequences. The proposed SemApJoin procedure uses semantic distance

for pruning candidate sequences, such that an object oi is not affixed to the sequence s if

γoioj > η, where oj is the last object in s (assume in this example that η=3). Figure 5.2

shows the details of SemApJoin which replaces Apriori-generate function in AprioriAll-

sem.

insert into Ck

select p.litemset1, . . . , p.litemsetk-1, q.litemsetk-1
from Lk−1 p, Lk−1 q
where (p.litemset1=q.litemset1, . . . , p.litemsetk-2=q.litemsetk-2)

AND
γp.litemsetk−1,q.litemsetk−1

≤ η

Figure 5.2: SemApJoin procedure with semantic pruning of candidate sequences.

Following with AprioriAll, the set of candidate sequences C1 for the database in Table 4.2

is C1= {o1:5, o2:5, o3:2, o4:2, o5:4}, where each item is represented with its support in the

form sequence:support count. After pruning, the list of frequent 1-sequences is L1={o1:5,

o2:5, o5:4}. The original Apriori-generate function now generates candidate sequences at

k=2, C2=L1./ap−genL1= {o1o1, o1o2, o1o5, o2o1, o2o2, o2o5, o5o1, o5o2, o5o5}, on the other

hand, SemApJoin function generates a smaller list of C2 = L1./SemApJoinL1 = {o1o1, o1o2,
o1o5, o2o1, o2o2, o2o5, o5o5} in which o5o1 and o5o2 are not generated simply because the

semantic distance between o5 and both o1 and o2 is larger than the maximum distance

allowed η. This is found by consulting the semantic distance matrix in Figure 5.1. Next,
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AprioriAll computes support count for each candidate sequence, resulting in C2= {o1o1:2,

o!o2:4, o1o5:4, o2o1:3, o2o2:3, o2o5:4, o5o5:0}, the algorithm then prunes all sequences in

C2 which do not have frequent subsequences (i.e. their subsequences do not appear in

L1), after pruning, the list of frequent 2-sequences L2 becomes L2={o1o2:4, o1o5:4, o2o1:3,

o2o2:3, o2o5:4}. The original Apriori-generate function now generates candidate sequences

at k=3, C3=L2./ap−genL2={o1o2o2, o1o2o5, o1o5o2, o1o5o5, o2o1o1, o2o1o2, o2o1o5, o2o2o1,
o2o2o2, o2o2o5, o2o5o1, o2o5o2, o2o5o5}, on the other hand, SemApJoin will generate a

smaller list of C3=L2./SemApJoinL2={o1o2o2, o1o2o5, o1o5o5, o2o1o1, o2o1o2, o2o1o5, o2o2o1,
o2o2o2, o2o2o5, o2o5o5} in which o1o5o2, o2o5o1 and o2o5o2 are not generated, because

the semantic distance between o5 and both o1 and o2 is larger than η. Next, AprioriAll

computes support count for each candidate sequence resulting in C3= {o1o2o2:1, o1o2o5:3,

o1o5o5:0, o2o1o1:1, o2o1o2:1, o2o1o5:2, o2o2o1:2, o2o2o2:0, o2o2o5:2, o2o5o5:0}. After pruning

L3 becomes L3={o1o2o5} and the algorithm stops, resulting in the set of all frequent

semantic objects fo=
⋃
k Lk={o1, o2, o5, o1o2, o1o5, o2o1, o2o2, o2o5, o1o2o5}. One can

notice that SemApJoin allowed the mining algorithm to reduce the search space, up to

23% in this example.

Example 5.2 (GSP-sem): This example mines the sequence database of Table 4.2

using GSP [Srikant and Agrawal, 1996] and the semantics-aware GSP-sem. By applying

GSP, The first pass on the database determines the support of each item to find frequent

1-sequences based on min sup=3. The first scan over the table at k=1 generates the set

of candidate 1-sequences C1 = {o1:5, o2:5, o3:2, o4:2, o5:4}, giving the set of frequent 1-

sequences L1={o1, o2, o5}. These sequences provide a seed set Lk which is used to generate

next level candidate sequences in the next pass at k+1. The next Ck+1 candidate set is

generated by performing a GSP-join of Lk on itself. The GSP-join, like the Apriori-generate

join requires that two sequences in Lk join with each other. A sequence s1 (e.g., ab) in

Lk joins with another sequence s2 (e.g., ba) in Lk if the subsequence obtained by dropping

the first (k-1 ) items of s1 is the same as the subsequence obtained by dropping the last

(k-1 ) items of s2, the candidate sequence generated is the sequence s1 extended with the

last item in s2 (e.g., aba is the result of joining ab and ba) and is added to Ck. According

to this, the candidate set C2 of 2-sequences is C2={o1o1, o1o2, o1o5, o2o1, o2o2, o2o5, o5o1,
o5o2, o5o5, (o1o2), (o1o5), (o2o5)}, where parenthesis denote contiguous sequences (i.e., no

time gaps). Applying semantics-aware GSP-sem, we get C2={o1o1, o1o2, o1o5, o2o1, o2o2,
o2o5, o5o5, (o1o2), (o1o5)}, in which o5o1 and o5o2 are not generated; because the semantic

distance between o5 and both o1 and o2 is larger than the maximum distance allowed η.

The algorithm then scans the sequence database for each candidate sequence to count its

support, after the pruning phase, to get L2={o1o2:3, o1o5:4, o2o1:3, o2o2:3, o2o5:4, (o1o2):3},
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now GSP-join L2 with L2 to get C3={o1o2o1, o1o2o2, o1o2o5, o2o1o2, o2o1o5, o2(o1o2),
o2o2o1, o2o2o5, o2o2o2, (o1o2)o1, (o1o2)o2, (o1o2)o5}, and so on until Ck={} or Lk−1={}.
The set of mined frequent sequences is eventually fs =

⋃
k Lk. To show an example of

pruning the contiguous subsequence in GSP, suppose we are given L3={(o1o2)o3, (o1o2)o4,

o1(o3o4), (o1o3)o5, o2(o3o4), o2o3o5}, then C4={(o1o2)(o3o4), (o1o2)o3o5}, and (o1o2)o3o5 is

pruned because its contiguous subsequence o1o3o5 is not in L3. While applying semantics-

aware GSP-sem to generate C4 results in an empty set, since (o1o2)(o3o4) and (o1o2)o3o5

are pruned; because the semantic distance between o3 and both o4 and o5 is larger than η.

5.3 Computational Complexity

We discussed in Section 2.3.2 that the space complexity of Aproiri-based algorthims is

factorial in n, where n is the number of frequent 1-sequences. However, in GSP-sem

and AprioriAll-sem this complexity is reduced by the semantic joining function (e.g.,

SemApJoin in AprioriAll-sem), which on its turn depends on the value of η. In Apriori-

based algorithms at every kth iteration, an approximate number of
(
n
k

)
candidate sequences

is generated, call it c. Assuming that l number of candidate sequence was not generated

due to pruning by the semantic joining function, then the number of generated candidate

sequences at each kth iteration after semantic pruning is p = c − l, that is p < c. The

best case is achieved when η = 1, and the worst case is when η is too large leading to

p = c. One can say that the number of candidate sequences generated in AprioriAll-sem

and GSP-sem is approximately
∑

k

(
n
k

)
− lk, where k is bound by the size of the largest

frequent sequence generated, and lk is the number of candidate k-sequences that were not

generated due to semantic pruning.

5.4 Experimental Evaluation

5.4.1 Methodology

We tested two Apriori-based semantics-aware sequential pattern mining algorithms (GSP-

sem and AprioriAll-sem), and one Pattern-Growth algorithm (PLWAP-sem) on a 2.66GHz

Intel Core2 Quad computer with 4 gigabytes memory running Windows Vista 32-bit, us-

ing two classes of datasets, synthetic and staged. The synthetic data sets are generated

using the IBM resource data generator code [Agrawal et al., 1993]. The staged dataset

is manually constructed to resemble a real web log. The following parameters are used

to generate the data sets as described in Agrawal and Srikant [1995]: |D| represents the
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number of sequences in the database, |C| is the average length of the sequences, |S| is

the average length of maximal potentially frequent sequence, |N| is the number of events,

|T| is the average number of items per transaction. A medium sized data set described as

C10T6N40S4D50K and a large sized data set described as C15T8N100S4D100K. These are

mined at different minimum support values, low minimum support of 1% and regular min-

imum support of 10%, while the maximum semantic distance is fixed at η=10. Semantic

distances are entered into the semantic distance matrix M as random numbers drawn from

a normal distribution with mean=50 and variance=40. CPU execution time is reported

by the program of each algorithm in minutes, while physical memory usage is measured in

Kilobytes (KB). All algorithms are implemented in C++. The programs are implemented

in a way such that they report their own CPU and Memory usage, which is later verified

using the Microsoft .NET CLR Profiler. PLWAP-sem was implemented as a variation of

PLWAP [Ezeife and Lu, 2005], such that semantic distance is checked against each pair

of items when the tree is built, and an object oi is not added to its location in the tree if

γoioj > η, where oj is the object that comes before oi in the sequence being added to the

tree.

5.4.2 Results

Tables 5.1 and 5.2 show the performance of the proposed algorithms. It is found that

semantic-aware algorithms, namely, GSP-sem and AprioriAll-sem, require on the average

only 26% of the search space, although the semantic distance matrix is stored in the form

of a direct access 2-dimensional array. The main reason for keeping an array data structure

is the ease and speed of accessing the indexed array to check for semantic distance between

any two objects. When the mining process starts finding size-2 frequent sequences and

larger, non-semantic algorithms’ memory consumption starts picking up more than that of

semantic-aware algorithms. A good increase in mining speed was also noticed. GSP-sem

and AprioriAll-sem are 3-4 times faster than the regular GSP and AprioriAll algorithms,

while PLWAP-sem is 15 times faster than PLWAP

To test the scalability of the semantic algorithms against different values for η, a sparse

synthetic data set is used, C8T5S4N100D200K. Sparse data sets are characterized by having

a large number of unique items |N| (e.g., a large number of web pages in a given web site)

and shorter customer sequences |C| and |T| (e.g., short user browsing sessions), such data

sets represent typical characteristics of web logs. The results show enhanced performance

at smaller values for η, as expected, the result of pruning more candidate sequences during

mining. To find the optimal value for η, that will produce mining results similar to non-
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Table 5.1: Algorithms execution time on synthetic data sets.

Execution time in minutes

Data sets
Algorithm |D|=50K |D|=100K

GSP-sem 39 169

GSP 196 >12 Hrs.

AprioriAll-sem 107 314

AprioriAll 314 >12 Hrs.

PLWAP-sem 0.2 1

PLWAP 1 20

Table 5.2: Algorithms memory usage on synthetic data sets.

Memory in KB

Data sets
Algorithm |D|=50K |D|=100K

GSP-sem 604 732

GSP 1,780 4,800

AprioriAll-sem 860 936

AprioriAll 2,300 2,560

PLWAP-sem 151 183

PLWAP 356 426

semantic-aware algorithms, a real web log was constructed to resemble a web log of eMart,

with 50,000 transactions and 100 unique web pages. The semantic distance matrix was

produced manually, from a given ontology, and fed to GSP-sem to mine the data set. Table

5.3 shows execution time results and memory usage for different values of η between 5 and

30. In all cases, minimum support was fixed at 1%. GSP algorithm consumes 2,364Kbytes

of memory for this sparse data set at this given minimum support and requires more than

8 hours of mining time. The table shows enhanced performance as the value of η becomes

smaller, which results in pruning more candidate sequences during mining, thus speeding

up the process and using less memory. It is found that values for η between 3 and 4 allow

GSP-sem to produce same frequent sequences as GSP, and yet still use 38% less memory,

and run 2.8 times faster than GSP, while for PLWAP-sem, values of η between 7 and 9

allow the algorithm to produce same frequent patterns with 57% less memory.

To look into the effectiveness of the proposed semantics-aware algorithms, a real web log
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Table 5.3: Semantics-aware GSP-sem and AprioriAll-sem scalability while changing η.
Minimum support is set at 1%.

GSP-sem AprioriAll-sem PLWAP-sem

Max.
Sem.

Memory CPU
time

Memory CPU
time

Memory CPU
time

Dist. η (KB) (min.) (KB) (min.) (KB) (min.)

5 712 43 636 43 103 1.5

10 912 87 776 130 408 15

20 1,336 196 1,260 174 438 20

30 1,712 273 1,636 259 445 21

with an expert domain ontology is used to conduct experiments and find the percentage

of resulting frequent patterns which match the patterns of the case of non-semantics-

aware mining. In this case, we were able to construct a sequence database from the

publicly available MovieLens dataset1. The semantic distance matrix is constructed from

the publicly available movie ontology MO-Movie Ontology [Bouza, 2010]. The dataset was

mined by the semantics-aware PLWAP-sem algorithm. Figure 5.3 shows the percentages of

frequent patterns that match the case of non-semantics-aware PLWAP mining of the same

dataset, in two different cases. The first case (dotted line in the figure, refer to it as Case-1)

represents results when using PLWAP-sem with a shallow ontology. That is, the semantic

distance is computed using only is-a relations by counting the number of separating edges

between ontology concepts. The second case (the solid line in the figure, refer to it as Case-

2) shows the percentages when the proposed semantic distance measure in Equation (4.1)

is used, this is the measure that incorporates all semantic relations and relation weights.

This should support the thesis hypothesis in Section 3.2 that the use of domain ontology

adds to the effectiveness of the algorithms and enhances scalability, in that, Figure 5.3

shows that in Case-2 the resulting frequent patterns match those of the real user behavior

(found by using PLWAP without semantics) to a large extent (90%-100%) for early values

of the allowed maximum semantic distance, i.e. η ≥ 7. Thus, allowing for more pruning to

take place while maintaining a good match. On the other hand, pruning does take place

in Case-2, but matches start to appear later, for values of η ≥ 10. This means that the

proposed semantic distance measure in Equation (4.1) provides for effective pruning that

is sensitive to actual user behavior, i.e., more matching patterns while having low values

for η.

1available at http://www.grouplens.org/node/73
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Figure 5.3: Comparison between mining using a shallow ontology (is-a) and using a domain
ontology with all semantic relations (all rel) on the MovieLens dataset.

5.5 Summary

A method is proposed to enhance SPM algorithms by using semantic distance measures, to

prune candidate sequences and partially relief the algorithm from support counting in order

to solve the problem of scalability in SPM, and a general semantics-aware mining proce-

dure is presented. Two Apriori-based semantics-aware SPM algorithms are implemented,

namely AprioriAll-sem and GSP-sem, and PLWAP-sem as a semantics-aware variation of

the Pattern-Growth/Early-Pruning hybrid algorithm PLWAP [Ezeife and Lu, 2005]. Ex-

perimental results show that the proposed algorithms can perform faster than the regular

algorithms with less memory requirement, when a low min sup and low η values are used,

without compromising the quality of frequent patterns generated. It is also shown that

using domain ontology to measure the semantic distance as proposed by this thesis (eq.

(4.1)) for these algorithms is more effective that using a shallow ontology, since the earlier

is more sensitive to actual user behavior and the semantic relations among items. Future

work needs to look at the effect of many-to-one and many-to-many mappings of semantic

objects on the mining process and the efficiency of semantic pruning in these two different

cases.
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Chapter 6

Semantics-aware Next Page

Request Prediction

Predicting user’s next page request on the World Wide Web is a problem that affects web

server’s cache performance and latency. Different methods exist that can look at the user’s

sequence of page views, and predict what next page the user is likely to view so it can

be prefetched. The common method for predicting next page request, is to model the

user’s accessed web pages as a Markov process with states representing the accessed web

pages and edges representing transition probabilities between states computed from the

given user sequence in the web log. The work proposed here shows yet another validation

that semantic information can be integrated into the mining core of a predictive model for

recommendation results and to solve the problems of contradicting predictions and tradeoff

in Markov models. This work is published in Mabroukeh and Ezeife [2009a] and partially

in Mabroukeh and Ezeife [2009b].

6.1 Markov Models for Prediction

Given a sequence of web pageviews generated by a user browsing the world wide web.

W ={P1,P2, . . . ,Pi, . . . ,Pl}, where Pi is a random variable representing the ith pageview

in W. The actual web page in a user’s web session will be represented by pi. The problem

of next page request prediction is to predict the web page that will be accessed next, i.e.

Pl+1.

To model the transition between different web pages in a Markov process, the probabil-

ity that a user accesses a certain web page next (or a certain item) is based on the current

state that he is visiting, resulting in a 1st-order Markov model, or the previous k states in
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the sequence, resulting in a k th-order Markov model. The probability of moving to state

S2 in a Markov model given the current state S1 is the conditional probability P(S2|S1).

For example, the probability of the sequence < p2p5 > happening, if Pi =< p2 > and

Pi+1 =< p5 >, is the conditional probability of accessing Pi+1 after Pi as follows:

Prob(Pi+1 = pi+1|Pi = pi) =
frequency(< pipi+1 >)

frequency(< pi >)
(6.1)

Let Skj be a state containing k page views from W, and l be the number of pages the user

visited so far, Skj = < pl−(k−1), pl−(k−2), . . . , pl>. The probability of accessing a page pi

after the set of k pages Skj is estimated in a kth-order Markov model from a history web

log (training data) as follows:

Prob(Pi = pi|Skj ) =
frequency(< Skj pi >)

frequency(< Skj >)
(6.2)

Using W, the page pl+1 that the user will access next is given by

pl+1 = arg max
p∈P

{Prob(Pl+1 = pl+1|Pl,Pl−1, . . . ,Pl−(k−1))} (6.3)

where P is the set of all pages in the web site. The argmax operator returns the page with

the highest conditional probability as a result of prediction. The contradicting predictions

problem occurs when argmax returns more than one result with equal probabilities.

With Skj representing the states of the Markov model, a markov process is modeled

as a directed acyclic graph in which every vertex represents a state corresponding to a

pageview in the sequence, and edges labeled with probabilities representing transitions

between the connected states according to equation (6.1), or (6.2) in the case of kth-order

Markov model. All transition probabilities are stored in a transition probability matrix

Pn×n, where n is the number of states in the model. This matrix contains the transition

probabilities from every state to every other state in the Markov model.

During the prediction phase, and when the user is browsing a certain web page, say page

a, the transition matrix P is consulted by the prediction system as a lookup table, in an

implementation of equation (6.3), to see what next state has highest transition probability

from the current state which represents a. The web page with highest probability of

occurring next is output as the result of prediction.
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6.2 Enriching the Transition Probability Matrix with Se-

mantic Information

Semantic information in the form of semantic distance is also integrated in the prediction

phase. Here, we introduce a novel way in which a 1st-order Markov model [Deshpande and

Karypis, 2004] is enriched with semantic distance measures and used for predicting next

page requests.

Semantic information can be used in a Markov model as a proposed solution to provide

semantically interpretable and accurate prediction without using complicated kth-order

or selective Markov models as discussed previously. The semantic distance matrix M is

directly combined with the transition probability matrix P of a Markov model of the

given sequence database, into a weight matrix W. This weight matrix is consulted by the

predictor software (like SemAware), instead of P, to determine future page view transitions

for caching or prefetching.

Definition 10 (Weight Matrix). The Weight Matrix W is the result of combining the

semantic distance matrix M with the Markov transition probability matrix P.

Wn×n : M⊕P −→ woi,oj , where the combination function ⊕ is described as follows,

woi,oj = Prob(Px+1|Px) +



1− γoi,oj
n∑
k=1

γoi,ok

, γoi,oj > 0

0 , γoi,oj = 0

(6.4)

, where Px+1 = px+1 and Px = px and oi is the semantic object from px and oj is the

semantic object from px+1.

Definition 10 above defines a general combination function for the purpose of combing

the probability matrix with the semantic distance matrix, and uses addition as an example

of this combination. The goal is to convert the probability to a weight such that the shorter

the semantic distance the higher this weight should be when combining the distance with

probability, and the probability of moving from one state to another should be affected by

the semantic distance between the two states and not other states, thus the direct addition

of the distance to the probability. In detail, and in order to combine P and M, M has to be

normalized such that each entry is between 0 and 1. This is achieved by dividing each row

entry by the row sum
∑n

k=1 γoi,ok . The next step would be to add both matrices together,

in order to enrich P with semantic distance measures. But, the values in M represent
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a distance, such that the higher the value, the more is the distance, which is inversely

proportional with the required output weight (i.e., a greater distance should result in a

smaller weight). To solve this problem the complement of the normalized M is what is

actually added to P. The complement is found by subtracting each non-zero entry in the

normalized M from 1. Finally, W is normalized by dividing the each row entry by the

maximum value in that row, so the weight matrix can generically fit in any Markov-based

prediction tool in place of P.

6.3 Procedure and Example of Semantic-Rich Markov Mod-

els

To create a 1st-order Markov model of the sequence database in Table 4.1 (the running

example), we use equation 6.1, and consider the sequence as a training set to build the

model and create the transition probability matrix. For ease of reference Table 4.1 is

reproduced here as Table 6.1.

Table 6.1: Sequence Database from Table 4.1 for Markov model example.

Transaction ID Sequence

t1 p2p3p2p1p5
t2 p2p1p3p2p1p5
t3 p1p2p5
t4 p1p2p5p2p4
t5 p1p2p1p4

Example 6.1 (Semantic-rich Markov models): The probability of going from

p2 to p3 is 1/8 (or 0.125), and is calculated by dividing the frequency of < p2p3 > by

the frequency of < p2 > from Table 6.1, while the probability of starting with state p2

(i.e., going from S to state p2) is 2/5 because 2 out of the 5 transactions in the database

start with p2. Figure 6.1 shows the complete Markov model after training, along with

its transition probability matrix P in Figure 6.2. For an example prediction, assume

that the user went through this sequence of page views <p2p5p1p3>. Looking at P in

Figure 6.2, there is a 100% probability that the user will next view page p2. This shows

an important shortcoming of using Markov models in next page prediction, as follows. If a

new page has been introduced in the web site as a transitional page between page p3 and

page p4, say page p7. The system based on Markov model here cannot predict that the

next page is p7 instead of p2 because p7 was not introduced in training (cold start problem).
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Figure 6.1: 1st-Order Markov model for Table 6.1.

P=



p1 p2 p3 p4 p5
p1 0 0.43 0.14 0.14 0.28
p2 0.5 0 0.125 0.125 0.25
p3 0 1 0 0 0
p4 0 0 0 0 0
p5 0 0.25 0 0 0


Figure 6.2: Transition probability matrix for Markov model in Figure 6.1.

Another problem that could arise here is contradicting prediction, for illustration, assume

in Figure 6.2 that P(p2|p1) = P(p5|p1) = 0, and notice that P(p3|p1) = P(p4|p1), which

means that there is an equal probability that a user views page p3 or p4 after viewing

page p1. Thus, the prediction capability of the system is not accurate in terms of which

is more relevant to predict after p1, and the prediction is ambiguous. Integration of the

semantic distance matrix solves this problem as experiments prove in Section 6.6 . The

transition matrix can be combined with the given semantic distance matrix M of Figure

6.3, resulting with W matrix in Figure 6.4 according to equation (6.4), as follows. First

the semantic distance matrix is normalized by dividing each row by the sum of the values

in that row, resulting in M
′
. Then each item in the semantic distance matrix is subtracted

from 1 (except zero values), resulting in M
′′
. In this way the complement of each semantic
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distance value is calculated, this is the actual value that needs to be combined with the

transition probability to show actual effect. Finally, P
′

and M
′′

are combined by matrix

addition according to equation (6.4), resulting in W. The resulting combined matrix W is

no longer a stochastic matrix because the matrix does not represent simple probability any

more. But for this matrix to be used in place of a transition probability matrix, its entries

must be normalized in the range 0 to 1, as described before, by dividing each row entry by

the maximum entry in its row. The resulting matrix provides weights for moving from one

M =



p1 p2 p3 p4 p5
p1 0 1 5 1 3
p2 1 0 2 2 3
p3 5 2 0 4 8
p4 1 2 4 0 8
p5 3 3 8 8 0


Figure 6.3: Semantic distance matrix to be combined with Markov Transition Probability
Matrix.

W =



p1 p2 p3 p4 p5
p1 0 1.33 0.64 1.04 0.98
p2 1.37 0 0.87 0.87 0.87
p3 0.74 1.89 0 0.79 0.58
p4 0.93 0.87 0.73 0 0.47
p5 0.86 1.11 0.64 0.64 0


(a) Before normalization

W =



p1 p2 p3 p4 p5
p1 0 1.00 0.48 0.78 0.74
p2 1.00 0 0.64 0.64 0.64
p3 0.39 1.00 0 0.42 0.31
p4 1.00 0.94 0.79 0 0.51
p5 0.77 1.00 0.58 0.58 0


(b) After normalization

Figure 6.4: Weight matrix W resulting from combining M (Figure 6.3) with Markov
transition matrix P according to Eq. 6.4.

state to another, that can be used in place of transition probabilities. Notice from Figure

6.4 that the weight of moving from p1 to p3 is no longer the same as moving from p1 to p4

as the transition probability matrix suggests in Figure 6.2, thus providing a well-informed

and preferable prediction, in the sense that pages which are more semantically related to

the current page are being predicted as the new pageview, rather than pages which might

have weak semantic relation to the current page.
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6.4 State Pruning in Selective Markov Models Using Se-

mantic Distance Measures

As discussed before, using Markov models for prediction suffers from a number of draw-

backs. As the order of the Markov model increases, so does the number of states and the

model complexity. On the other hand, reducing the number of states leads to inaccurate

transition probability matrix and lower coverage, thus less predictive power, and less ac-

curacy. To counter the reduction in coverage, and as a solution to this tradeoff problem,

various Markov models of differing order can be trained and used to make predictions in

the All-K th-Order Markov model [Pitkow and Pirolli, 1999], such that if the kth-order

Markov model cannot make the prediction then the (k-1)th-order Markov model is tried,

and so on. The problem with using the All-K th-Order Markov model is the large number of

states contributing to the complexity of the model and the latency of prediction, making it

inappropriate for online prediction. It is actually observed that a 1st-order Markov model

provides 83% the predictive power of an All-K th-order Markov model while consuming

only 4.2% of the space [Pitkow and Pirolli, 1999]. A considerable number of the states in

an All-K th-order Markov model might never be used during prediction, besides the fact

that many states can be shared between the different Markov models being built.

On the other hand, selective Markov models (SMM) [Deshpande and Karypis, 2004]

that only store some of the states within the model have also been proposed as a solution

to the mentioned tradeoff problem. They start off with an All-K th-Order Markov model,

then a post pruning approach is used to prune out states that are not expected to be

accurate predictors. The result is a model that has the prediction power of All-K th-Order

models with less space complexity and more prediction accuracy. Deshpande and Karypis

[2004] provide three different criteria which might be used separately to prune states in the

model before prediction, that is, frequency, confidence, and error. But they did not study

the effect and the relation of domain knowledge and semantics on selective Markov models,

neither did they try to combine the three pruning criteria into one pruning method.

In this thesis, the maximum semantic distance measure η is used for state pruning in

Selective Markov models (SMM). In this case, an All-K th-Order Markov model is first

built as in Pitkow and Pirolli [1999], next states that do not contribute to the model, i.e.

which have zero frequency, are pruned. Then, any state Skj , having γpl−(k−1),pl−(k−2)
> η,

where l is the number of pages the user visited so far and j is a simple enumeration of the

states in the model, will be pruned from the model. In our examples and experimentation,

we limit our models to 3rd-Order Markov models, similar to Deshpande and Karypis [2004].

Example 6.2 (Pruning SMM): Table 6.2 shows the All-K th-Order Markov model
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for the sequence database in Table 6.2(a). This model consists of 1st, 2nd and 3rd -order

models. To create the selective Markov model, states with a right arrow “→” are pruned

as they do not contribute to the model (i.e. they have no next state), and states with

a double right arrow “⇒” are pruned since the semantic distance between the pages is

higher than the maximum allowed semantic distance (assumimg η = 2). For example,

state S2
18 =<p5, p2> is pruned since γp5,p2 = 3 is greater than η based on the semantic

distance matrix of Figure 6.3. In this example, 14 states are pruned from just the 2nd-

order part of the selective model, 5 of which are pruned based on semantic distance, in

total resulting in 70% reduction in just the 2nd-order state space of the model, over the

All-K th-order model.

6.5 Computational Complexity

The complexity for building a 1st-order Markov model and calculating the transition prob-

ability matrix P can be computed at a maximum of O(n2), where n is number of states

(i.e. unique items in the sequence database). For an All-Kth-Order Markov model, the

computation complexity is O(nk+1), k being the maximum order in the model. On the

other hand, for building the proposed semantically-pruned SMM, the number of states gen-

erated will be n2 + (
∑k

j=2 n
j+1 − nj−1lj−1)− lk, where lj is the number of pruned states.

The prediction process requires O(nk) worst case, i.e., when no pruning has taken place.

6.6 Experimental Evaluation

6.6.1 Methodology

Experiments are carried out on three kinds of data sets. Two data sets, DS-1 and DS-2 are

generated using the IBM resource data generator [Agrawal et al., 1993]. DS-1 is a small

data set resembling a web log of 5000 user sessions, while DS-2 is a large data set resembling

a web log of 80,000 user sessions. A third data set DS-3 is a staged data set manually

constructed to resemble eMart ’s web log with 200,000 user sessions. Characteristics of the

three data sets are described in Table 6.3.

Using these data sets, 1st-Order, 2nd-Order, and AllK th-Order Markov models, along

with frequency-pruned SMM are built for testing and comparison (with k = 3). Semantic

information in the form of a semantic distance matrix M for each data set, is generated

randomly from a normal distribution. While for DS-3, the semantic distance matrix is

manualy constructed based on the given eMart ’s ontology. Using this matrix, semantic-
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Table 6.2: (a) Sample web log with user transactions. (b) Resulting transition probability
matrix for 1st-Order Markov model. (c) Resulting transition probability matrix for 2nd-
Order Markov model.

TransID Access Sequence

t1 p2p3p2p1p5
t2 p2p1p3p2p1p5
t3 p1p2p5
t4 p1p2p5p2p4
t5 p1p2p1p4
t6 p3p1p4p2p1p5
t7 p4p1p2p5p2p3p2p1
t8 p1p4p2p3p1p2p5

(a)

1st-Order State p1 p2 p3 p4 p5
S1
1 =< p1 > 0 0.38 0.08 0.23 0.23

S1
2 =< p2 > 0.43 0 0.21 0.07 0.29

S1
3 =< p3 > 0.40 0.60 0 0 0

S1
4 =< p4 > 0.20 0.40 0 0 0

S1
5 =< p5 > 0 0.29 0 0 0

(b)

2nd-Order State p1 p2 p3 p4 p5
S2
1 =< p1, p2 > 0.20 0 0 0 0.80

⇒ S2
2 =< p1, p3 > 0 1.00 0 0 0

S2
3 =< p1, p4 > 0 0.67 0 0 0

→ S2
4 =< p1, p5 > 0 0 0 0 0

S2
5 =< p2, p1 > 0 0 0.17 0.17 0.50

S2
6 =< p2, p3 > 0.33 0.67 0 0 0

→ S2
7 =< p2, p4 > 0 0 0 0 0

⇒ S2
8 =< p2, p5 > 0 0.50 0 0 0

⇒ S2
9 =< p3, p1 > 0 0.50 0 0.50 0

S2
10 =< p3, p2 > 1.00 0 0 0 0

→ S2
11 =< p3, p4 > 0 0 0 0 0

→ S2
12 =< p3, p5 > 0 0 0 0 0

S2
13 =< p4, p1 > 0 1.00 0 0 0

⇒ S2
14 =< p4, p2 > 0.50 0 0.50 0 0

→ S2
15 =< p4, p3 > 0 0 0 0 0

→ S2
16 =< p4, p5 > 0 0 0 0 0

→ S2
17 =< p5, p1 > 0 0 0 0 0

⇒ S2
18 =< p5, p2 > 0 0 0.50 0.50 0

→ S2
19 =< p5, p3 > 0 0 0 0 0

→ S2
20 =< p5, p4 > 0 0 0 0 0

(c)

rich 1st-order Markov models and semantic-pruned SMM are also constructed for testing.

A frequency threshold [Deshpande and Karypis, 2004] of 0 is used in the Selective markov

models (SMM), while varying values for η are used in the semantic-pruned SMM.

Testing is done in the following way. First, every data set is divided into a training set,

which is the first 75% sessions in the data set, and a test set, the remaining 25%. Then,
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Table 6.3: Data sets used for experimental analysis.

Data set # of # of Ave. Trans.
Transactions Unique pages Length

DS-1 5000 113 2.5

DS-2 80000 200 5

DS-3 200000 155 8

in the training part, the described Markov models are construced from the data sets and

the model size for each one is noted. Model size is defined here as the number of states

in each model. The testing part is made similar to the method described in Deshpande

and Karypis [2004], that is, every model is given a trimmed session from the test set for

prediction, in which the last page of the session is hidden. The prediction made by the

model is then compared with the hidden page of the session to compute the accuracy of

the model. Accuracy represents the predictive power of the model and is measured as the

percentage of successful predictions made.

The performance in these experiments is measured by model size and accuracy, the two

factors in the tradeoff problem described previously. The goal is to find the best model

that can provide accurate predictions while maintaining a comparatively small model size.

Sometimes a model might not be able to provide a prediction due to two reasons. First,

a contradicting prediction problem might occur. Second, the hidden page might not have

been present in the training set. If that happens, it will output the web page with the

highest frequency as a default prediction, in the case of selective or stand-alone Markov

models, or it will depend on semantic distance measures to make an informed prediction

that is considered semantically correct, as is the case in semantic-rich models.

6.6.2 Results

Semantic-rich 1st-order Markov models are found to totally eliminate the contradicting

prediction problem in all of the data sets used. For example, testing DS-3 using the 1st-

order Markov model resulted in a number of 258 contradicting predictions, while running

the same test using the semantic-rich 1st-order Markov model, resulted in 0 contradicting

predictions. This is confirmed when testing with 2nd-Order and 3rd-Order models. Albeit

that, theoriticaly, semantic-rich Markov models do not totally eliminate the problem, as

there is still the chance that two or more pages have the same probability of occuring and

have the same semantic distance from the currently viewed page, and so have an equal
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chance of being predicted.

Table 6.4 shows results of the experiments. One can notice that semantic-rich 1st-order

Markov models have the same model size as regular 1st-order models. This is because

no pruning is used in semantic-rich models. While these semantic-rich models solve the

problem of contradicting prediction, they also provide accuracy very close to that of regular

1st-order models. This accuracy differs depending on the nature of the sessions in the

data sets. For example, in DS-3, the accuracy of semantic-rich model (that is 29.80%) is

about equal to that of non semantic-rich (which is 30.02%), because, once the web log was

examined, it was found that users traversed pages that are highly semantically related and

would resemble the structural relations between the pages in the web site.

Table 6.4: Comparing accuracy and model size of different Markov models for the different
data sets. Sem. 1st-order stands for semantic-rich 1st-Order Markov models, and FPSMM
stands for frequency-pruned selective markov models with 0 frequency threshold.

DS-1 DS-2 DS-3
Model Accuracy Size Accuracy Size Accuracy Size

in % in % in %

1st-order 17.50 870 17.50 6320 30.02 992

Sem. 1st-order 12.50 870 19.02 6320 29.80 992

2nd-order 18.00 25230 18.70 181858 30.12 30752

AllK th-order 26.34 757770 19.80 1526176 29.52 985056

FPSMM 25.81 21547 25.03 807617 31.83 12741

Highlighted in boldface in Table 6.4, are the highest prediction accuracies for each data

set, which show that frequency-pruned SMM is mostly the best choice for high accuracy

and small model size, as the results show an average decrease of 57% in model size, with

only an average of 2.7 deviation in accuracy. The second best is the 2nd-order markov

model, which confirms the findings in Deshpande and Karypis [2004]. But, could there

be a better compromise in which the accuracy is higher and the model size is smaller? In

an attempt to answer this, the proposed semantic-pruned SMMs are built with differing

values for η, shown in Table 6.5.

It can be noted from Table 6.5 that, as the value of η decreases, so does the model

size. This is expected, since less η means more pruning will take place, and accuracy also

decreases for the same reason. At a value of η = 70, the semantic-pruned SMM does

provide an accuracy close to that of its respective frequency-pruned SMM (FPSMM) in

Table 6.4, with an average difference of only 1.91 percentage points in accuracy, and at
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Table 6.5: The accuracy and space size of the proposed model.

DS-1 DS-2 DS-3
Max Semantic Accuracy Accuracy Accuracy
Distance η in % Size in % Size in % Size

η = 5 5 2697 0 31163 11.71 5032

η = 20 10.71 7283 12.9 89039 20.00 9118

η = 50 20.01 10066 19.35 254399 27.43 10230

η = 70 22.77 15844 23.17 726855 31.00 11420

η = 90 24.95 20364 24.81 755641 31.34 12420

η = 110 25.81 21547 25.00 774275 31.80 12741

the same time it does maintain a smaller state space, with an average of 16% decrease in

model size.

6.6.3 Results with an Alternate Combination Function

To test the effect of the combination function ⊕ on the accuracy and size of the generated

Markov models, an alternate function is used that will scale the transition probability by

the amount of the semantic distance, as follows:

woi,oj = Prob(Px+1|Px)×



1 + (1− γoi,oj
n∑
k=1

γoi,ok

) , γoi,oj > 0

1 , γoi,oj = 0

(6.5)

In Table 6.6 we report results of using a semantic-rich and semantic-pruned Selective

Markov model with k = 3 and varying values of η, and compare results with semantic-rich

frequency-pruned Selective Markov model (SR-FPSMM), the last row in Table 6.6.

Highlighted in the table are optimal values of η for each experimental dataset where the

accuracy is at its best in regards with the model size. In these tests the semantic distance

matrix was populated with random values from a normal distribution with mean=50 and

variance=40. It can be observed that optimal results are obtained with η = 60, which is

a value around the average, as noted before in experiments of Table 6.5. The experiment

also shows that semantic-rich and pruned SMM have a minor increase in accuracy over

semantic-pruned SMM (compare highlighted rows of Tables 6.5 and 6.6).
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Table 6.6: The accuracy and space size of a semantic-rich and pruned Selective Markov
model with k = 3 and varying values of η as compared to a semantic-rich frequency-pruned
Selective Markov model of the same order (compare values in Boldface).

DS-1 DS-2 DS-3
Max Semantic Accuracy Size Accuracy Size Accuracy Size
Distance η in % in % in %

η = 10 8.3 3682 7 51371 16.24 7500

η = 20 11.60 7283 14.8 89039 22.31 9118

η = 50 22.81 10066 21.5 254399 27.33 10230

η = 60 25.75 15844 24.57 726855 32.14 11420

η = 90 25.80 20364 24.50 755641 32.25 12420

SR-FPSMM 25.15 21547 27.13 807617 33.38 12741

6.7 Summary

The availability of semantic information and the tradeoff problem between state space

complexity and accuracy in Markov models [Pitkow and Pirolli, 1999], trigger a need to in-

tegrate this information in the mining process. The proposed integration into the transition

probability matrix of lower order Markov models is prsented as a solution to the tradeoff

problem, resulting in semantic-rich lower order Markov models, and solving the problem

of contradicting predictions. We also propose to use semantic information as a criteria for

pruning states in higher order (where k > 2) Selective Markov models [Deshpande and

Karypis, 2004], and compare the accuracy and model size of this idea with semantic-rich

markov models and with traditional Markov models used in the literature. It is found that

semantic-pruned SMM have a smaller state space size than frequency-pruned SMM and

provide nearly an equal accuracy, with a possibility to increase this accuracy if the model

is enriched with semantics.

When a semantic-rich Markov model is built and the weight matrix W is produced, a

suggestion is to build an uncertainity matrix that holds the error margins during prediction.

In this case, when a prediction is made and found to be incorrect, the weight matrices

should be updated with this information and the weights (or probabilities in a transition

probability matrix) are adjusted in a process of Reinforcement Learning. This means that

learning can take place online with prediction, requiring scalable online performance. An

advanced model that fits this scenario is that of an Artificial Neural Network, which is left

for future work. For an introduction and survey on Artificial Neural Networks I refer the

reader to Chapters 1 and 2 of my Master’s thesis [Mabroukeh, 1998].
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Chapter 7

Semantics-aware Web

Recommendation

In the third phase of SemAware, the mined frequent patterns (now in the form of fre-

quent semantic objects) and the Markov models built in the previous phase, are used for

generating recommendation in the form of semantics-aware association rules, next item

prediction and top-n recommendations. This chapter has two parts. First we describe

recommendation from association rules combined with Markov predictions, then we pro-

pose an innovative top-n Ontology-based WRS that overcomes problems of scalability, cold

start, and content overspecialization. This work is accepted for publication in DESWeb

2011 (a workshop of the IEEE ICDE 2011 conference) [Mabroukeh and Ezeife, 2011], and

is partially published in Mabroukeh and Ezeife [2009b].

7.1 Recommendation from Mined Frequent Patterns

Frequent semantic objects are used in semantics-aware association rules for product and

page view recommendation. The importance of these rules lies in the ability to rollup the

ontology hierarchy and perform concept generalization, to expand the recommendation set

and provide interpretable customer behavior analysis. The results of a semantics-aware

Markov model for next-page-request predictions can be used as a complement to these

association rules, such that, in the case that prediction cannot be made using the Markov

model, then association rules can be consulted, and vice versa.

Semantics-rich association rules provide more accurate higher quality recommendation

than regular association rules. For example, consider the following two rules with the same

confidence measure:
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o3o2 → o4

o3o2 → o5

such that γo2,o5 < γo2,o4 , meaning that o5 is semantically closer to o2 than o4 is. Then the

recommendation engine will prefer to recommend o5 over o4.

In addition, concept generalization capability is not provided by regular association

rules. An example of such capability is the generalization “users who rent a movie will

also buy a snack”, which is a taxonomic abstraction resulting from mapping the frequent

sequence <be> to the ontology, and looking at higher levels in the concept hierarchy for

generalization (where b refers to a horror movie and e refers to a bag of potato chips).

As support measures the usefulness of a pattern, the confidence is an interestingness

measure that represents the certainity of an association. Statisticaly speaking it represents

a conditional probability. For example, the confidence of the association rule a→ b is the

conditional probability P (b|a). A minimum confidence threshold is specified by the deci-

sion maker (i.e. SemAware user) to discard insignificant association rules. Nevertheless,

certainity is not enough to decide if a rule makes sense or not; semantic information adds

such interpretability to association rules and reveals useless ones. Example of queries that

can be answered using semantics-rich rules are:

• “What accessories are associated with washing machines?”

• “What is required to buy any kind of a cleaning device?”

• “What kind of camera is usually associated with flat panel TVs?”

Previously we could not answer these queries with regular association rules, because

pageviews only refered to actual HTML pages, not to concepts.

7.1.1 Examples and Experimental Results

Consider the set of frequent semantic objects fo={o1, o2, o5, o1o2, o1o5, o2o1, o2o2, o2o5,

o1o2o5}, resulting from mining the sequence database of the running example in Table 4.2

(mining is traced in Example 5.1). The following set of semantics-rich association rules is

generated:
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o1
0.8−→ o2

o1
0.8−→ o5

o2
0.6−→ o1

o2
0.8−→ o5

o1
0.6−→ o2o5

o1o2
0.75−→ o5

The value at each arrow shows the confidence of the respective rule. Algorithm 4 provides

a procedure that utilizes the underlying ontology and the proposed semantic distance mea-

sure (from Equation (4.1), page 51) to perform roll-up operations and provide a generalized

semantic interpretation for any given rule, while Algorithm 5 uses the same input to per-

fom drill-down operations and provide a detailed semantic interpretation of the given rules.

The user has the option to roll-up or drill-down on any side of the association rule and in

any degree.

Algorithm 4 An algorithm to roll-up association rules based on domain ontology

Ontology RollUp(oi, O):
Input: semantic object oi =< pgi, insk >, see def. 6 pg. 48,

domain ontology O,
Output: semantic concept cup

Algorithm:

1: Retreive concept ck ∈ O to which insk belongs, by mapping the input semantic object
to the ontology

2: Find arg mincj (γck,cj ), such that γck,cj = 1/

∣∣∣C−ck∩C−cj ∣∣∣∣∣∣C−ck∪C−cj ∣∣∣ (Eq. (4.1), pg. 51) and cj is a

direct subsumer of ck, ck / cj
That is find cj the parent of ck that has the highest similarity (i.e. lowest semantic
distance) to ck

3: cup = cj
4: return concept cup

end

These two proposed algorithms take as input the semantic object directly, from any

side of the association rule, rather than taking the whole association rule, then map the

semantic object to its corresponding concept in the ontology (line 1 in both algorihms),

calculate the most similar parent or son (line 2 in both algorithms for roll-up and drill-

down respectively) using the proposed similarity measure (Eq. (4.1)) and subsumption

relationships, then return the respective parent or son.
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Algorithm 5 An algorithm to drill-down association rules based on domain ontology

Ontology DrillDown(oi, O):
Input: semantic object oi =< pgi, insk >, see def. 6 pg. 48,

domain ontology O,
Output: semantic concept cdown

Algorithm:

1: Retreive concept ck ∈ O to which insk belongs, by mapping the input semantic object
to the ontology

2: Find arg mincj (γck,cj ), such that γck,cj = 1/

∣∣∣C−ck∩C−cj ∣∣∣∣∣∣C−ck∪C−cj ∣∣∣ (Eq. (4.1), pg. 51) and ck is a

direct subsumer of cj , cj / ck
That is find cj the direct son of ck that has the highest similarity (i.e. lowest semantic
distance) to ck

3: cdown = cj
4: return concept cdown

end

Example 7.1 (semantics-rich association rules): Consider the rule o2
0.8−→ o5, and

consider the ontology in Figure 2.5 and Table 4.3 of semantic objects mappings. The rule

can be interpreted as “I am 80% sure that a “Dry Battery” is a popular item to buy after

buying a “Still Camera””. Now, by performing a one-fold drill-down on the left-hand side

and a one-fold roll-up on the right-hand side of the rule in the ontology given, it can be

interpreted as “I am 80% sure that any kind of “Battery” is a popular item to buy after

buying a “Digital” camera”. This very simple example shows the quality of semantics-rich

association rules, such results are made possible by using the proposed semantics-aware

SPM of SemAware and the proposed semantic distance measure. Regular association rules

do not provide such interpretation and capability, they can mimic the given example,

by mapping the rules to an ontology (usually a shallow one) in a tedious postprocessing

phase and use only is-a relations to roll-up and drill-down the shallow ontology [Eirinaki

et al., 2003; Vanzin and Becker, 2006]. It is important to mention here that the confidence

value should change with roll-up and drill-down, becuase generalization and specialization

are involved which affects the confidence in the resulting association rules. This is not

considered in the proposed algorithms (Algorithm 4 and Algorithm 5). The proposed

algorithms will take as input only a semantic object, not a complete association rule, and

perform roll-up or drill-down on this single provided object. An automatic relation for

computing new confidence from roll-up and drill-down operations on the complete rule is

left for future work.
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While some association rules share the same left-hand side and the same confidence

value, their right-hand side results are different, leading to confusing recommendations.

To solve this problem the resulting Markov model in SemAware is consulted, based on

Algorithm 6. This is done by aligning the left-hand side of the association rule with the

corresponding entry in W in the approriate Markov model. The semantic-rich semantic-

pruned Selective Markov model resulting from the second phase of SemAware (Chapter 6)

is used here.

Example 7.2 (contradicting association rules): Consider the example above of

the two association rules o3o2 → o4 and o3o2 → o5, with the same confidence. The markov

model will be consulted to find Prob(o4|o3o2) and Prob(o5|o3o2), by locating the row for

o3o2 in the weight matrix W for the 2nd-order model and comparing both probabilities.

The one with the highest probability will be considered as the most certain result of the

association rule. If no entry is found for o3o2 in the model, then the 1st-order model will

be consulted at the row of o2. If still no entry is found in W of the 1st-order model, then

we resort to the semantic distances γo2,o5 and γo2,o4 , and return the semantic object with

the least distance. Finally, the Markov model will be updated by adding an entry in W for

o3o2 with either o4 or o5, whichever has the least semantic distance. This entry will be the

value of the semantic distance combined with W according to the combination function ⊕
adopted in the second phase of SemAware.

To experiment with contradicting association rules, we went back to the experiments

carried on PLWAP-sem, using the same medium data set C10T6N40S4D50K and the same

large data set C15T8N100S4D100K, with min sup of 1% and η = 8, since it is reported

that this value for η is found to be optimal for these datasets with PLWAP-sem (see

Section 5.4.2). Association rules with confidence less than 85% are removed. Also a 3rd-

order semantic-rich and semantic-pruned SMM is built for each dataset separately. Table

7.1 reports the results of mining these sets. These results show the importance of the

Table 7.1: Experiments for association rules on different datasets using PLWAP-sem

Testing for association rules using PLWAP-sem

Data sets
|D|=50K |D|=100K

# frequent patterns 1498 1298

# assoc. rules 575 225

# assoc. rules with same LHS and confidence 217 157

# hits in the markov model 200 142

avg. time for generating predictions from markov model 0.45 sec. 0.33 sec.

# times markov model was updated 17 15
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Algorithm 6 An algorithm to replace association rule result with result from a Selective
Markov model in SemAware
Assoc2Markov(L, W):
Input: semantic objects in the left-hand side of the association rule, the sequence L =<
oi−k+1 . . . oi >

weight matrix of the semantic-rich Selective Markov Model of order k, W
Output: next accessed object oi+1

Algorithm:

1: SemAware provides a semantic-rich 3rd-order Selective Markov model as output of its
second phase

2: k determines the order of the semantic-rich SMM to use
3: Align the sequence L with the markov model in order to query its W

(i.e. in order to find Prob(oi+1|oi−1oi) we need a 2nd-order model, and locate the row
in W that represents the sequence L =< oi−1oi >)

4: if there is no entry in W for L then
5: remove the first object from sequence L
6: k=k-1
7: try (k)th-order Markov to align the new shorter sequence, and so on until 1st-order

model
8: end if
9: if an entry is found in W for the sequence in any of the orders of the semantics-rich

Selective model then
10: Find oi+1 = arg maxpo∈P{Prob(Pi+1 = poi+1 |Pi,Pi−1, . . . ,Pi−(k+1))}, the next ac-

cessed object oi+1 with maximum transition probability
11: return oi+1

12: else
get oi+1 from association rule that has the smallest semantic distance to oi, Add it
to the kth-order Markov model where the sequence L can be aligned, return oi+1

13:14:15: end if
end

proposed system, as it was able to resolve an average 91% of the contradicting association

rules using a fast mining algorithm, PLWAP-sem. These association rules constitute an

average 54% of the generated association rules. The average time to consult the markov

models (pre-built during the second phase of SemAware) to resolve for one association rule

is 0.39 seconds which is very fast and suitable for commercial production.
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7.2 Ontology-based Recommendation from User-Provided

Tags

Due to the continuous development and use of Web 2.0 technologies, web applications

are starting to enable their users to tag items, adding a form of semantic value to them.

An ontology-based WRS is defined in this thesis (Definition 5, page 29) as a system that

maximizes the utility function λ(u, pi,O) to find the top-n items of interest to a user. In

a model where the web pages are not annotated with ontology concepts, it is desirable to

make use of these user-provided tags as semantic information that describes the tagged

items. Such systems store user-provided tags in the database along with item description

and related information.

Given a database of items and their associated tags, the web log can be represented as

a set W = {< pi, Tpi >: 1 ≤ i ≤ |W |}, containing pairs of item pi and set of tags Tpi , where

Tpi = {gj : 1 ≤ j ≤ |G|}, gj is a tag and G is the set of all user-provided tags. Following is

an example web log:

W = { < p2, [“close”, “quality”, “clear”, “lens”] >,

< p5, [“tight”, “water”, “ocean”, “dive”] >,

< p3, [“scuba”, “mask”, “snorkel”, “dive”] >,

< p1, [“professional”, “video”, “flash”, “digital”] >,

< p4, [“dry”, “toy”, “small”] >}

The active user u provides a set of tags, either directly as a query or indirectly by providing

these tags as keywords of her favorite product features, stored in her profile when she signs

up in the web site.

7.2.1 Preprocessing and Clickstream Mapping

Since tags are freely provided by users, there is no limit on their number, which makes them

inapproriate to use as dimensions in a Vector Space Model. To avoid any dimensionality

problems and to avoid the use of time-consuming clustering methods, we propose to map

the tags to the concepts of the underlying domain ontology. Section 7.2.4 proposes a novel

method for more dimensionality reduction using the domain ontology to solve the sparsity

and scalability problems of a WRS.

To map tags to their respective ontology concepts WordNet1 [Miller et al., 1990] is used

1WordNet is a lexical database containing English nouns, verbs, adjectives and adverbs organized
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as a thesaurus, to find the similarity between an item and all the tags associated with it.

In detail, each tag in pi is compared against each concept in the ontology. This is done by

computing the similarity between the tag and the concept, both the tag and the concept

are located as two words in WordNet (say n1 representing concept cj , and n2 representing

a tag g from the set Tpi), then Wu and Palmer similarity measure [Wu and Palmer, 1994]

is computed as

sim(n1, n2) =
2×D3

D1 +D2 + 2×D3
(7.1)

where n3 is the Lowest Common Ancestor of n1 and n2, D1 is the distance (in number of

nodes on the path) between n1 and n3, and D2 is the distance between n2 and n3, while

D3 is the distance between n3 and the root.

After users tag items, the SemAware preprocessor cleans these tags before storing them

in the database. The cleaning process goes through the following steps:

Tags clean-up: Non relevant and meaningless tags are removed from each set Tpi , e.g.,

stop words (frequently occurring insignificant words like “the”), words with numbers,

and numbers. Clean tags will be treated as nouns when mapped to WordNet.

Word Stemming: Words are reduced to their root form using the standard Porter stem-

ming algorithm [Porter, 1980], which removes the common morphological and inflex-

ional endings of words. For a group of similar tags, the shortest form is chosen and

is the one that is mapped to WordNet.

After cleaning, each tag (now treated as a word) is mapped to its proper synset in

WordNet. A synset is the smallest unit in WordNet; it represents a specific meaning of a

word, and it also includes its synonyms. Each synset has a gloss that defines the concept

it represents. For example, the words “night”, “nighttime”, and “dark” constitute a single

synset that has the following gloss: “the time after sunset and before sunrise while it is

dark outside”. Synsets are interconnected using is-a-kind-of and is-a-part-of hierarchies

as semantic relations [Simpson and Dao, 2010]. To compute the similarity between two

words, the semantic similarity between their word senses is calculated using Wu and Palmer

measure as described in Equation (7.1) via hyponym/hypernym relations (is-a relations).

Due to the limitation of is-a hierarchies only“noun-noun” relations are considered.

Eventually, each item pi can be represented as a vector ~pi of similarity scores over the

space of ontology concepts, in which each entry represents the average similarity score of

into synonym sets, each representing one underlying lexical concept. It provides mechanisms for finding
synonyms, hypernyms, hyponyms, etc. for a given word.
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all the tags associated with the item pi with respect to one concept. Thus, resulting in a

matrix of items-concepts correlations, called the PC matrix, similar to Figure 7.1.

Definition 11. The items×concepts matrix is the matrix PCI×J = {sim(Tpi , cj) : I ≤
|P|, J ≤ |C|}, where sim(Tpi , cj) is the similarity score between the set of tags Tpi for item

pi and the concept cj, 1 ≤ i ≤ |W|, 1 ≤ j ≤ |C|, where P is the set of all items in the

database.

Example 7.3 (PC matrix): Follow with Clickstream mapping procedure in Algo-

rithm 7, and assume that the concepts c1 = “camera”, c2 = “lens”, c3 = “battery”,

c4 = “dive”. In lines 1-3 of the algorithm and to compute the similarity between p2, from

W and c1, we use Wu and Palmer measure with WordNet as described above, to get the

similarity score between each tag associated with p2 (the tags ‘close’, ‘quality’, ‘clear’,

‘lens’) and the concept ‘camera’. The result will be 0.346, 0.354, 0.206, 0.517 respectively.

The average score of 0.356 (Line 3 of the algorithm) is used to represent the overall similar-

ity score sim(Tp2 , c1). By computing the similarity score for each item with each concept

in this example, we get the matrix in Figure 7.1 (Lines 4-7).

PC =



c1 c2 c3 c4
p1 0.187 0.256 0.202 0.113
p2 0.356 0.463 0.232 0.202
p3 0.156 0.116 0.098 0.491
p4 0.213 0.165 0.111 0.129
p5 0.213 0.173 0.113 0.403


Figure 7.1: Example of PC matrix with item-concept similarity scores.

The PC matrix can get large and sparse, for this we propose a dimensionality reduction

method that utilizes the hierarchy of the ontology, below in Section 7.2.4.

7.2.2 Recommendation to the Active User

Tags are provided by the active user u. Let’s call the user profile, the active page pu.

These tags Tpu are then mapped to ontology concepts, in a way similar to the offline

clickstream mapping process described in Section 7.2. So, pu can now be modeled as a

vector of similarity scores in the space of concepts, ~pu = [su1 s
u
2 . . . s

u
k ], where k = |C| and

sui = sim(Tpu , cj). For the adopted example, follow with procedure Online Recommend

in Algorithm 7 and assume Tpu = {“camera”, “digital”, “zoom”}, one can compute ~pu =

[0.400 0.234 0.266 0.220] from Lines 2-3 of the procedure. To find the top-n recommenda-

tions (Lines 4-6), ~pu is matched against every row in PC to find their relatedness, using
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cosine similarity,

rel( ~pu, ~pi) =
~pu · ~pi∥∥ ~pu∥∥ ‖~pi‖ (7.2)

such that 1 ≤ i ≤ I, I from Definition 11 is the number of rows in the PC matrix.

The results are ranked in descending order and the items with top-n relatedness scores

are added to the recommendation set S (Lines 7-8 of procedure Online Recommend), i.e.,

S =
n

arg max
pi∈P

(rel( ~pu, ~pi)) (7.3)

Applying this to the example here, requires that ~pu be matched with every row of the

matrix in Figure 7.1, using equations (7.2) and (7.3). If n = 3, the recommendation set

will be S = {p4 : 0.987, p1 : 0.940, p2 : 0.936}, where the score associated with each

recommended item is the score from equation (7.2).

7.2.3 Quality of Tags and Tag Spam

Although the cleaning process does remove a number of unwanted tags and meaningless

words, it could happen that a user overtags an item or a group of items, for several purposes

like promotion or spamming. A user is limited to provide only a certain number of tags

per item, this should solve item overtagging problem. To solve the problem of spamming1,

tags can be assigned frequency scores using TF-IDF (term frequency × inverse document

frequency), and by treating the set of tags of one item Tpi as a document, and one tag as a

term. TF-IDF assigns a weight to a term in a document that is low when the term occurs

several times in a document and lowest when the term occurs in almost all documents. In

this case tags that have low scores are considered insignificant and can be removed during

preprocessing.

7.2.4 Using the Ontology Hierarchy for Dimensionality Reduction

Matrix sparsity is an important problem in recommendation systems that contributes to

the scalability problem. In the proposed model, a good number of items might be highly

similar to only a subset of the concepts. Also, another reason to reduce the dimensionality is

to decrease the time required to generate a recommendation. The proposed method makes

use of the is-a hierarchy of the ontology, in which two or more leaf concepts, represented

by their respective columns in the PC matrix, are combined by their Lowest Common

1We can define spamming in this context as the process of applying a certain tag to a large number of
items or a single item, by a single or multiple users. This also applies on tags of the same meaning being
applied repeatedly to a single item by a single user
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Ancestor (LCA) into one column. A basic combination formula using a weighted average

is used, in which the distance from each leaf concept to the LCA is used as a decay factor

of the similarity score.

sim(pi, cLCA) =

∑
j

1
dj
sim(pi, cj)

j
(7.4)

such that cj is a leaf node in O and sim(pi, cj) > 0, where cj is subsumed by cLCA denoted

as cj / cLCA and dj is the number of edges between cj and its ancestor cLCA. The result of

this formula is the similarity score between the LCA and each row in the PC matrix pi,

this formula is applied for each cLCA For example, if concepts c2 and c3 in Figure 7.1 both

have c7 as their LCA, then the two columns representing these concepts in the figure, can

be combined by equation (7.4) into one column representing c7 and the matrix size is thus

reduced by one column. If every two columns in the PC matrix are reduced using this

method to one column, then the reduced matrix will have a minimum number of columns

half of that of the original PC matrix.

Another way to reduce the dimensionality of the PC matrix is to use Feature Subset

Selection (FSS), by removing columns of concepts that have the lowest similarity scores.

Later in Section 7.3, we experiment with FSS and compare results with the proposed

LCA-based reduction.

7.2.5 Expanding the Recommendation Set

An important problem in recommendation systems is that of content overspecialization.

As a WRS provides top-n highly related items, these item are not of enough variety to

the user. For example, if a user shows interest in a narrow topic, the recommended items

will be from the same topic, especially if the user does not have a considerable brows-

ing/purchase history, which is not good for customer retention and it leaves only a small

possiblity for new items to surface. The use of domain ontology plays an important role

here, giving SemAware a huge advantage over recommender systems that do not use do-

main knowledge, in that the recommendation set can be expanded by incorporating items

from other concepts that are related to the ones represented in ~pu. A full ontology plays a

better role here than a shallow ontology, in the sense that all relations in the ontology are

utilized to provide a recommendation, in the process of Spreading Activation (Procedure

Expand RecSet in Algorithm 7). The process starts from the concept cj to which ~pu has

the highest similarity (Lines 1-2 of the procedure). Then, the recommendation is spread

over all relations from this concept to other concepts (the set of relations Rcj ), generating

recommendations of items belonging to those concepts. The relations are first ranked by
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their relation hierarchy score ψrjk (Def. 4), which is a score assigned to each relation by

the ontology engineer or the ontology learning algorithm that characterizes the relation

hierarchy ≤R (Lines 3-8). This is not possible in a shallow ontology, because only is-a

relations are present. For example, if a user is recommended a video camera product, to

expand this recommendation (Lines 4-8), the system will utilize the relations (follow with

ontology in Figure 2.5):

requires(“V ideoCamera”, “V ideoF ilm”)

is− a(“V ideoCamera”, “Camera”)

has− a(“Camera”, “Lens”)

is− a(“V ideoCamera”, “Camera”) ∧ has− a(“Camera”, “Lens”)

⇒ has− a(“V ideoCamera”, “Lens”)

So, object instances of “Lens” and “Video Film” concepts are generated and added to the

recommendation set. Such relations, like has-a and requires, are not present in a shallow

ontology, and such recommendations can not be generated from simple association rules if

only sequential pattern mining is employed by the WRS.

Algorithm 7 in page 95 provides step-by-step details of all the procedures discussed for

top-n Ontology-based WRS (called SemAwareIN).

7.2.6 Computational Complexity

The complexity of the proposed top-n WRS depends on the amount of time required to

build the offline model and the amount of time required to compute the active recommen-

dation online based on this model. While building the model we compute the similarity

of each item pi to each ontology concept ck for building the PC matrix. If there are n

items and m concepts, then the upper bound on the complexity of this step is O(mn).

When LCA-based dimensionality reduction is used, the number of m concepts is reduced

to k < m, making the complexity O(kn). If every two columns in the PC matrix are

reduced to one column then k = m/2.

The time complexity for computing active recommendations is linear and proportional

to the number of items n in the PC matrix, O(n), since pu is compared against each item

in PC. Thus, the overall complexity of the proposed system is O(mn) +O(n) = O(mn).
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7.3 Experimental Evaluation

7.3.1 Methodology

For experimental evaluation, we use the MovieLens dataset1. The proposed system (called

SemAwareIN ) is built using C#, and all experiments are performed on a 1.87GHz Intel

Core Duo machine with 2GBytes of memory, with the MO-Movie Ontology [Bouza, 2010]

as the underlying ontology, and WordNet 2.12 used for similarity computations. The

MovieLens dataset contains 100,000 tags for 10,681 movies, made by 71,567 users. The

tags are cleaned and prepared as described in Section 7.2.1 by removing non-words, stop

words, and keywords with numbers and by word stemming. The number of clean tags

extracted from the dataset is 82,454 tags.

The experiments are conducted using 5-fold cross-validation method to test the accu-

racy of the proposed system, as error metrics methodologies (like RMSE) are not a natural

fit for evaluating top-n recommendation systems [Cremonesi et al., 2010]. The MovieLens

dataset is divided into five mutually exclusive sets, and at each time four of these sets are

used for training (constituting 80% of the origial dataset) while the remaining set (20%) is

used for testing. At every fold of the cross-validation, the PC matrix is built, such that the

items represent movie IDs and the concepts represent leaf concepts in the MO ontology.

The tags Tpu from each row in the test set are used as input to the recommendation sys-

tem. They are mapped to the ontology concepts and the vector ~pu is created as described

in Section 7.2.2. Then, the recommendation set S is generated using Equation (7.3) with

n=3, and each recommended movie is matched against the movie in the current test row

from the test set. If the movie title is the same or the movies are of the same ontology

concept, then that is considered a hit. Otherwise, it is a miss. Accuracy is measured at

each fold of cross-validation, as the percentage of hits from the total number of trials made

on the test set. The average accuracy is finally computed over all of the five folds.

7.3.2 Results

After running the 5-fold cross-validation test described, the average accuracy was found to

be 82%, which is very good. To confirm this we compare SemAwareIN with non-ontology-

based top-of-the-art item-based recommendation algorithms, namely TopPop (which rec-

ommends top-n items with highest popularity) and NNCosNgbr (which uses kNN clus-

tering with item-to-item similarity to recommend top-n items). For details of these two

1available at http://www.grouplens.org/node/73
2available at http://wordnet.princeton.edu/wordnet/download/
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algorithms see Cremonesi et al. [2010]. Comparisons are made in terms of recall-at-n,

which is computed as the ratio of hits to the size of the test set at different values of n, and

precision, which is computed by dividing recall-at-n by n. Figure 7.2 shows the recall-at-n

comparisons for values of n between 5 and 20, which tell that SemAwareIN exceeds Top-

Pop and NNCosNgbr in terms of recall as it reaches, at n=10, a recall of 0.61, compared

to 0.28 and 0.45 for TopPop and NNCosNgbr, repectively. This means that about 61% of

the top-10 recommended movies are hits (i.e., are the same as, or sematically match, the

expected result). The graph in Figure 7.2 also shows error bars of 5% for SemAwareIN and

its variations, and an error percentage of 10% for TopPop and 8% for NNCosNgbr, these

are erros that we found during the multiple runs of these algorithms. Figure 7.3 confirms

Figure 7.2: Recall-at-n comparison.

that the proposed algorithm outperforms the two popular algorithms TopPop and NNCos-

Ngbr in terms of precision metrics. Each line in the figure represents the precision of the

algorithm at a given recall.

To test the effect of dimensionality reduction on solving the sparsity problem of the

PC matrix, 5-fold cross-validation is again performed, once using Feature Subset Selection

(FSS) and another time using the proposed LCA-based reduction method. In FSS 50%

of the concepts are removed, those are the 50% columns in the PC matrix that hold the

lowest average similarity scores. In LCA-based, leaf concepts are joined by their LCA
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Figure 7.3: Precision vs. recall for comparison between algorithms.

as discussed in Section 7.2.4, reducing the size of the matrix in half. The FSS variation

is called SemAwareIN-FSS-50 and the LCA-based variation is called SemAwareIN-LCA.

Figure 7.4 shows that FSS and LCA-based reductions do not compromise the accuracy

and recall of the proposed algorithm, as only 1%-6% drop in accuracy is observed, which is

logical in SemAwareIN-FSS-50 since only low-scoring concepts are removed, and is also en-

couraging in SemAwareIN-LCA, because it shows that LCA-based reduction that depends

on the ontology provides a comparable performance to an algorithm with no dimensional-

ity reduction. A close look at Figure 7.4 and Figure 7.2 reveals that SemAwareIN-FSS-50

and SemAwareIN-LCA have nearly the same performance at n≥15, which is very close

to SemAwareIN’s performance without any dimensinoality reduction as comfirmed by the

precision metrics in Figure 7.3.

To test the performance scalability of SemAwareIN we conducted cross-validation on

datasets of different sizes (extracted from the big MovieLens dataset), as shown in Table 7.2.

The table shows that the recommendation time scales very well with increasing number

of tags used in training. A careful investigation of the numbers will show a linear relation.

That is a good indicator, in both cases, with and without using LCA-based reduction. It

is worth mentioning here that the average recommendation time using SemAwareIN-LCA

is reduced by 22%, because the size of the PC matrix is reduced and so is the number of

92



7.3 Experimental Evaluation

Figure 7.4: Recall-at-n for proposed algorithms.

Table 7.2: Datasets extracted from original MovieLens dataset.

Dataset num of num of Avg. Rec. time
Size Movies Tags (in seconds)

Small 4,739 11,948 0.973

Medium 7,308 23,895 1.117

Large 9,102 47,790 1.293

comparison operations. On the other hand, Table 7.3 shows the average accuracy versus the

dataset size which is consistent with our analysis of Figure 7.4, in that SemAwareIN-LCA

does not compromise accuracy, regardless of the dataset size.

The ability of the proposed system to expand the recommendation set based on ontology

axioms is tested with n=5. In this case, SemAwareIN-Ex is implemented as a variation

of SemAwareIN in which the recommendation set of the top-5 items is expanded using

spreading activation which adds 10 more items, resulting in a set of 15 items. Recall of

SemAwareIN-Ex is compared with the recall of SemAwareIN at n=15, and found to be

0.862, that is far better than that of SemAwareIN (which is 0.753 at n=15).
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Table 7.3: Accuracy of proposed algorithms with different dataset sizes.

Dataset Accuracy (in %)
Size SemAwareIN SemAwareIN-LCA

Small 77.00 75.61

Medium 73.00 71.00

Large 70.52 70.30

7.4 Summary and Discussion

Recommendation in SemAware depends on semantic-rich association rules as well as proba-

bilistic Markov models. These two results are combined in an ensemble to provide accurate

informed recommendations, with the capability to make concept generalizations based on

the domain ontology.

SemAwareIN is an Ontology-based WRS that we propose to provide top-n recommen-

dation from user-provided tags. These tags are mapped to concepts of the domain ontology.

Similarity measures are used during mapping and a matrix of items-concepts correlation

is built offline, and is used later for online top-n recommendation. This system outper-

forms popular algorithms like TopPop and NNCosNgbr. A novel dimensionality reduction

technique is proposed to solve the sparsity problem and reduce the size of the matrix,

that depends on the hierarchy of the ontology. This technique does not compromise the

accuracy of the proposed system. We also show how the recommendation set can be ex-

panded using Spreading Activation over the ontology, taking into consideration the several

available relations, which, when tested, actually raised the accuracy of the proposed model.

This work tries to answer Research Questions 3 and 4 by showing the impact of domain

ontology on the recommendation results. There are two benefits in using an ontology over

clustering of user tags. First, this will save the costly step of clustering, and second, a

full ontology has a far better reasoning power than a topic taxonomy. In a full ontology

there are several semantic relations that can be taken into consideration (as opposed to

only is-a relation in a topic taxonomy) to provide better relatedness measures, and better

interpretability.
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Algorithm 7 SemAwareIN: Ontology-based WRS with user-provided Tags

Clickstream mapping(W, O):
Input: item database W,

domain ontology O,
Output: matrix of items×concepts PC
Algorithm:

1: for each pair <item pi, its tags Tpi > in W do
2: for each concept cj in O do
3: calculate sim(Tpi , cj), which is the average similarity between each tag in Tpi and

cj
4: store in PC, PC[i, j] = sim(Tpi , cj)
5: end for
6: end for
7: return PC

end

Online Recommend(PC, Tpu , n):
Input: matrix of items×concepts PC,

active user tags Tpu ,
number of highly similar items required n,

Output: set of top n recommended items, S
Algorithm:

1: [optional] Reduce dimensionality of PC matrix as described in section 7.2.4
2: Map user tags to concepts similar to steps 2-3 in Clickstream mapping()
3: store the mapping result as vector ~pu

4: for each item pi in PC do
5: Find rel( ~pu, ~pi), which is the relatedness of the item to user vector ~pu, using equation

(7.2)
6: end for
7: Sort results from previous step and store top n results in S

8: return S

end

Expand RecSet(O, S):
Input: domain ontology O,

set of top n recommended items, S
Output: extended set, S+

Algorithm:

1: retrieve ~pu and find concept cj to which pu is highly similar
2: start at concept cj in ontology O

3: rank relations at cj according to ψrcjck that assigns scores to relation hierarchy ≤R
cj

4: for each relation rcjck ∈ Rcj connecting cj with another concept ck do
5: get concept ck
6: retrieve items related to ck
7: add items to S, to get S+

8: end for
9: return S+

end
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

May be the biggest contribution of data mining to the world wide web, is the introduction

of Web Recommendation Systems. These systems use mining methods to provide user

behavior analysis to the decision maker, and product recommendations to the end user.

WRS’s went from being simple tools, on web sites like Amazon.com, to being an integral

usage analysis tools of web server software, and customer relationship management (CRM)

suites.

Surveys in this thesis point out several important problems in sequential pattern mining

(SPM) algorithms and WRS’s, and reveal the fact that a domain ontology with relations

and axioms is far from being used. Ideas are simply borrowed from the Semantic Web,

but the full power of this web, is yet to be utilized. We propose SemAware, a com-

prehensive ontology-based system for web usage mining and recommendation that cov-

ers the three phases of web log pre-processing, SPM with probabilistic pattern discovery

and post-processing with recommendations. The use of a domain ontology enables us

to solve scalability problems in SPM. It is shown that semantic-based SPM algorithms,

like PLWAP-sem, can mine the web log more efficiently and effectively than regular non-

semantic-based SPM and without compromising the result. The thesis also shows how

semantic information drawn from the underlying domain ontology can solve the contra-

dicting predictions problem in Markov models used for page prefetching and reduce space

complexity of Selective Markov Models (SMM) used in the same domain.

This thesis carries on to answer four important research questions regarding the use

of domain ontology for solving WRSs’ problems and its effect on recommendation results.

We propose algorithm Assoc2Markov that combines semantic-rich association rules and
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semantic-rich predictive Markov models to provide more accurate recommendations, and

algorithms that enable interpretation of results at different levels of abstraction, by rolling

up and drilling down on ontology concepts. We also propose an ontology-based WRS that

provides top-n recommendations from user-provided tags (called SemAwareIN), and show

how to solve the problems of cold start with the use of tags, the problem of sparsity and

scalability with a proposed novel dimensionality reduction approach, and the problem of

content overspecializatin using Spreading Activation in the domain ontology. The propsed

SemAwareIN outperforms popular algorithms like TopPop and NNCosNgbr in terms of

precision and accuracy.

It can be concluded that the use of domain ontology in SPM and WRS’s as hypothesized

and made possible by this thesis does enhance and increase the effectiveness of these sys-

tems, and does provide easy solutions to several problems in them, as we have established

through experiments.

8.2 Future Work

Following is a list of possible future work directions and recommendations that can emerge

from this thesis, with some implementation ideas.

8.2.1 Ontology Learning Using SPM

The simple algortihm provided for building an ontology from the web log (Algorithm 1,

pg. 46) requires further research and testing. Future work includes the identification of

relation hierarchy by using hierarchical clustering methods, and the promotion/demotion

of relations in the learned ontology according to the support or interestingness of the

frequent patterns mined from the web log. In addition, methods have to be studied to

better identify and label concepts as the ontology is being built.

8.2.2 Onotology Update to Match User Behavior

The results presented in this thesis are encouraging as they show the effect of using a

domain ontology on SPM algorithms and the effectiveness of semantic-aware algorithms.

On the other hand, scholars have debated that the ontology reflects the domain expert’s

view of the system and does not really reflect the actual user behavior. The main reason

for me doing this research was the belief that user behavior is not totally random, but is

actualy drived by logical relations among the items/web pages in the web site. Further

work is recommended on ontology update. That is, the ability of SemAware to restructure
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the ontology based on frequent patterns and association rules resulting from non-semantic-

aware mining of the web log, that will reflect the user behavior directly into the ontology.

8.2.3 The Effect of Frequent Pattern Size

While most sequential pattern mining algorithms use the item support as the main inter-

estingness measure for pruning out candidate sequences, the size of the potential frequent

pattern is being ignored. It is believed that the size of a frequent pattern has an impor-

tant effect on the decision maker and the generation of association rules more than mere

frequency (i.e., support) of the pattern. For example, one can set the minimum support

(min sup) at a certain value but get results of only frequent 1-sequences, which has no

contribution to association rules and minimal effect on decision making, especially in ap-

plications where frequent 1-sequences are not really interesting. As a matter of fact, we

have noticed during our comparative experiments with sequential pattern mining algo-

rithms, that in most cases a min sup more than 1% generates only frequent 1-sequences,

if it does generate any. Geng and Hamilton [2006] have identified nine criteria that can be

applied in three different ways to determine if a pattern is interesting or not (conciseness,

coverage, reliability, peculiarity, diversity, novelty, surprisingness, utility, and actionabil-

ity), of which we can list the size of the frequent pattern under utility and actionability,

meaning that the pattern is of importance to the decision maker and it enables him/her to

take further action. Aljandal [2009] discusses that itemset size is a propoerty which has not

been involved directly in any interestingness measure, and he points out its importance in

DNA replication applications. A direct application of frequent pattern size would be to use

it as a limiting criteria during pattern mining and restrict the algorithm to find patterns of

a certain minimum size. This can be applied in Pattern-Growth algorithms (like PrefixS-

pan) by allowing a minimum size of the prefix/suffix from which growth will start. Some

challenges still remain, like what is the maximum size allowed given the provided min sup

value? What relation is there between min sup and the size of found frequent patterns?

How will this affect time and space complexity of an algorithm? The development of a

mining method to answer these questions and also relate frequent pattern size to the utility

of the pattern is left for future work.

8.2.4 Measuring User Interest by Page View Time

It can be claimed that the interest of a user in some item is related to the time he spends

viewing the item’s web page. This can be calculated from the web log since each entry

is associated with a timestamp. It should be noted though, that if this viewing period
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exceeds a certain limit it is considered that the user has ended the browsing session, and

the next item belongs to another browsing session. This process of sessionizing has a lot

of debate about it [Pabarskaite and Raudys, 2007; Huntington et al., 2008].

With sessionizing aside, if an importance value can be associated with an item based on

the time spent by a user or all users viewing this item, then it can be used in ranking items

for top-n recommendation, or for users clustering. In addition, such importance value can

also be associated with support counting, and integrated into an interstingness measure

for mining the web log. This way only frequent patterns of importance to the users are

mined. Different levels of importance based on the time period can be defined by the data

mining engineer, that help the decision maker assess association rules.

8.2.5 Semantic-rich Neural Networks

Since semantic information can be infused into a markov model, then a semantic-rich neural

network is not far from being achieved. There are several models of neural networks, and

there is no clear method for determining the best model to use, the best size of a model to

use, and the optimal parameter for that model. All these factors, are challenging problems

to the engineer when it comes to integrating neural networks with semantic information,

most importantly in which part of the network to integrate this knowledge, in the sigmoid

function, or simply to prune states from layers?

Other research directions and future work include studying the robustness of the top-

n WRS to tag spamming, the use of domain ontology in CF WRS where users provide

scores to items, studying the effect of ontology detail on the accuracy and performance

of ontology-based WRS, and cross-ontology recommendation by aligning ontologies and

gathering semantic information from multiple ontologies. Multidimensional information,

like user demographics and gender can have a dramatic effect on the interpretation and

utility of recommendation results.
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