
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

1-1-2007

The extensible runtime infrastructure for particle
simulations with data-space management and
adaptive resource allocation.
Yu Zou
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Zou, Yu, "The extensible runtime infrastructure for particle simulations with data-space management and adaptive resource
allocation." (2007). Electronic Theses and Dissertations. 7010.
https://scholar.uwindsor.ca/etd/7010

https://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F7010&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7010&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7010&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7010?utm_source=scholar.uwindsor.ca%2Fetd%2F7010&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

The Extensible Runtime Infrastructure for Particle
Simulations with Data-Space Management and Adaptive
Resource Allocation

by

Yu Zou

A Thesis

Submitted to the Faculty of Graduate Studies

through Computer Science

in Partial Fulfillment o f the Requirements for

the Degree of Master of Science at the

University o f Windsor

Windsor, Ontario, Canada

2007

© 2007 Yu Zou

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-35037-9
Our file Notre reference
ISBN: 978-0-494-35037-9

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Running an adaptive particle simulation on a distributed parallel environment is a

challenge, which requires dynamically periodic repartitioning during the course of

computation. Repartitioning is also necessary under time and space adaptive resource

allocation. This thesis presents an implementation of dynamic and adaptive resource

management middleware for scientific particle simulation problems. We optimized

ATOP [20] data structure to greatly reduce the total data migration time and support data

cache locality. In addition, a simplified interface is designed for typical particle

simulation problems, which makes the library more useable for general scientific

computation. The thesis presents the implementation of an initial solution and the design

of a further optimized solution for future extension.

The library had been tested on a distributed memory cluster machine with typical

bench mark simulation data graphs; and experiment results show that our optimized data

structure decrease mesh adaptation time 55-99% and memory management can reduce

system runtime 15-25%.

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dedication

To

My wife, my daughter

and

in memory o f my parents

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgement

I would like to acknowledge my gratefulness to Dr. A.C. Sodan for her supervision during

this thesis work. Without her guidance and help, it would not be possible for me to finish

this work. I also thank Lin Han for his work on ATOP which provides a start point for my

work. I appreciate my committee members: Dr. Dan Wu, Dr. Wai Ling Yee and Dr.

Xianbu Yuan, who have been kind and patient during the time when I present my thesis

work.

Finally, I thank my family, my wife and my lovely daughter, for their consistent support

and spiritual encouragement.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Content

1. Introduction...1

2. P artic le S im ulations... 4

2.1 Typical Particle Simulation Phases...5

2.2 Cost Model...7

3. P artition ing A lgorithm s and A daptive R esource A llo ca tio n9

3.1 Partitioning Algorithms...9

3.2 Work Load Distribution Algorithms.. 10

3.3 Zoltan Partitioning and Load Balance Library.. 11

3.4 Adaptive Resource Allocation Systems... 12

4. D ata L ocality M anagem ent...14

5. O ur A p p ro a c h .. 17

5.1 Basic Concepts...17

5.2 Architecture of the Runtime Library System.. 18

5.3 Internal Data Structures.. 20

5.3.1 Mesh Data Structure... 21

5.3.2 Partition Structure.. 23

5.3.3 Node Structure... 24

5.3.4 Borders and Ghosts.. 27

5.4 Interfaces.. 29

5.5 Memory Alignment...32

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Experiments and Results ..34

6.1 Experiment Environment..34

6.2 Adaptation Performance..35

6.2.1 Adaptation Experiments in a Space-shared Environment................. 35

6.2.2 Adaptation Experiments in a Time-shared Environment....................40

6.3 Data Locality Management Module Performance Experiments...................... 42

6.3.1 Computation Time in Static Environment.. 43

6.3.2 Computation Time in Dynamic Environment.................................... 45

6.4 Experiment Summary..47

7 Further Possible Improvements... 49

7.1 Optimized Data Structure.. 49

7.2 Adding Memory Management.. 50

7.2.1 Block Level Management.. 51

7.2.2 Node Level Management... 53

7.3 Latency Hiding by Asynchronous Communication..55

8 Discussion and Conclusion.. 58

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX

A Bibliography..59

B Data Structures... 63

C Sample Application.. 67

D ATOP_MESH_CMMPUTE()...70

E Vita Auctoris.. 73

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table 1. Benchmark Graphs...34

Table 2. Adaptation by over partitioning in space-shared environment

with 8 partitions..36

Table3. Adaptation by partitioning from scratch in space-shared environment

with 8 partitions..37

Table 4. Init time and adaptation time by over-partitioning for 16 partitions...................38

Table 5. Init time and adaptation time by partitioning from scratch for 6 partitions........38

Table 6. Init time and adaptation time by over-partitioning with 128 partitions.............. 38

Table 7. Init time and adaptation time by ATOP environment with 128 partitions.........41

Table 8. Init time and adaptation time by K-way Partitioning from scratch with

128 partition..41

Table 9. Computation time in a static environment..43

Table 10. Computation time in a dynamic environment... 46

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 1. Typical Simulation Phases...6

Figure 2. 2D Structured Mesh with 4 Partitions..6

Figure 3. Simulation Phases in Shared Environment..13

Figure 4. System Architecture... 18

Figure 5. System Class Diagram.. 19

Figure 6. Local information 1..22

Figure 7. Local information 2 ..23

Figure 8. Aligned Normal Nodes..25

Figure 9. Aligned Nodes Bordered to One Processor.. 26

Figure 10. Aligned Nodes Bordered to Multiple Processors... 26

Figure 11. Border List Structure.. 28

Figure 12. Ghost Nodes.. 29

Figure 13. Interfaces..31

Figure 14. Un-aligned Partitions..32

Figure 15. Aligned partitions...33

Figure 16. Comparison for 16 partitions by ATOP... 39

Figure 17. Comparison for 16 partitions by partitioning from scratch............................ 39

Figure 18. Comparison for 128 partitions by ATOP..40

Figure 19. Computation time charts in a static environment... 44

Figure 20. Optimized Class Diagram.. 50

Figure 21. Block Data Structure..51

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 22. Linked List of Block before Allocation.. 52

Figure 23. Linked List of Block after Allocation..52

Figure 24. Before free block A.. 53

Figure 25. After free block A.. 53

Figure 26. Internal Block Structure..54

Figure 27. Blocks for Different-sized Nodes...54

Figure 28. Latency Fliding Algorithm.. 56

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 Introduction

Particle simulation is used for the dynamic representation of a wide range of

natural phenomena such as Computation Fluid Dynamics (CFD) and Computational

Electro Magnetics (CEM) and so on. Because of the big amount of data for the class of

problems, which can be millions of nodes in one mesh, simulations of these problems

usually need be executed on NUMA machines [7], like clusters or on a grid in order to

overcome the physical limitation of processing capability. These scientific simulations

also require that periodic repartitioning happens dynamically throughout the computation

course. The repartitions must be computed to minimize both the inter-processor

communication cost incurred during the iterative mesh-based computation and the data

redistribution costs required to balance the load. However repartitioning and re

distributing data for scaled problems can also be very expensive, and the situation

becomes even worse when the simulations are executed in a time-shared and space-

shared environment. So a good adaptive resource allocation runtime approach is critical

to reach a high throughput and better utilization of resources.

ATOP [20] provides an effective approach to solve the problem. First, it uses

over-partitioning (pre-partitioning) of data at the very beginning or when it is necessary.

When unbalanced load happens during a computation process, the system can be re

balanced by directly distributing current partitions among available nodes other than

repartitioning data from scratch. Second, ATOP always uses as many processes as

available processors in order to be adaptive to the environment. This way leads to better

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

space shared and time shared resource management. However, ATOP was not yet a

fully-fledged middle-ware system: It does not allow dynamically switch between space-

shared and time-shared adaptation; and it also requires searching to access to each node

which adds huge overhead during migration phase. All of these weaknesses will be fully

overcome in our new middleware system by applying new system design and

implementation.

A good load balance algorithm balances work load among processors in a

distributed environment, and keeps as few edge-cuts as possible among

partitions/processors in order to avoid unnecessary communication among

processors[6][9]. This can be considered as data locality management mechanism at

distributed memory level by trying to keep data in local memory. On the other hand, data

locality in a NUMA system can also be managed at cache level. We implement our data

cache locality management by putting each partition data into a continuous aligned

memory block and making each block fit into the cache of local processors, which

reduces cache misses during the computation process. Our test shows that using inline

partition data memory block can speed computation time up to 20%.

A desirable property of a run-time system is its ability of providing services with

transparency. Then users are able to use it without totally re-write their programs. The

interface provided in our project hides all implementation details and provides users a set

of simple functions for a specific application area, which also adds to our middleware

reusability and extendibility.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The structure of this thesis is arranged the following way: In Chapter 2, we will

review particle simulations and dynamic resource allocation; Chapter 3 will cover data

locality management, and Chapter 4 focuses on our approach; and finally experiment and

result are to be discussed in Chapter 5. Chapter 6 will show future possible optimizations

and Chapter 7 covers summary and conclusion respectively.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 Particle Simulations

A particle system usually refers to a computer technique to simulate various

natural and scientific processes, which are difficult to reproduce with traditional

rendering techniques. Examples of such phenomena which are commonly done with

particle systems include fire, explosions, smoke, flowing water, sparks, falling leaves,

clouds, fog, snow, dust, meteor tails, etc.

Typically, particles are objects that have mass, position, velocity, and respond to

forces, but have no spatial extent. A typical particle data structure from users’ view may

look like:

typedef structf
float m; /* mass */
float *x; /* position vector * /
float *v; /* velocity vector */
float *f; /* force accumulator */
int *nbors /* Adjacent particle */

} * Par tide;
Then for a whole particle system may look like:

typedef structf
Particle *p; /* array of pointers to particles */
int n; /* number of particles */
float t; /* simulation clock */

} *ParticleSystem;

Besides the particle data structure, a particle system also includes a solver, which

is a simulation function applied to the particle system. The solver may have interface like:

void Calculate (ParticleSystem, Particle);

Inside this function, the solver computes new values for each particle for the next

simulation clock. Position values, velocity values and force values of each particle will be

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

updated according to some computation functions for the specific simulation. For

example, the new position values for a particle P* can be expressed as a function of its

own mass, current position, current velocity, forces and its neighbor’s positions:

P* -> x [i] = / (P*->m, P* -> x[i], P* ->v[i], P* -> nbor[i], P* -> f[i])

Similarly, new values of velocity for the particle can also be expressed as

functions of positions, velocity, and forces, etc.

P* -> v [i] = /(P*->m, P* -> x[i], P* ->v[i], P* -> f[i])

2.1 Typical Particle Simulation Phases

For large-scale scientific particle simulations, efficient execution on parallel

computers requires periodic repartitioning of the underlying computational mesh. This

repartitioning should minimize both the inter-processor communications incurred in the

iterative mesh-based computation and the data redistribution costs required to balance the

load. Figure 1 illustrates the typical steps involved in the execution of adaptive mesh-

based simulations on parallel computers. And Figure 2 shows a 2D structured mesh with

4 partitions. Initially, the data mesh is distributed among the processors according to a

specific load-balancing scheme. Then a number of iterations of a simulation computation

are performed in parallel. After that, either mesh adaptation happens as local processors

refine or redefine their local regions of mesh that leads to unbalanced work load among

processors in the whole system. Then re-partitioning based on the current mesh and

system work load is computed and mesh data is redistributed among processors

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

respectively. The simulation can then enter another simulation iteration phase until either

more unbalanced load happened or the simulation terminate.

Iterative mesh-based
computation

1
s ✓7

Mesh adaptation

s ✓7

Mesh partitioning

\ ✓7

Data Redistribution

Figure 1 Typical Simulation Phases

m' a ’ m

b n' b' n

C o' c' c

: PO :d.. P' d' F P2
e q.' e' c

f r' f i

1 2 3 4 5 6 4 C ’ 4 ’ C 11 12 13 14 15 16

21' j 22' : 23' ; 24' 25' 26' I B ' O’ O ’ O' : 31' : 32' : 33' : 34' 35' ; 36'

1' 2' 5' 4' 5' 6' 4 ’ c A' C 11' : 12' ; 13' 14' 15' 16'

21 22 23 24 25 26 8 O ' 8' D 31 32 33 34 35 36

.......... ... g s' g' S

h t' h' t
; PI ; i u' r u i: ■ P3 :

..... ■ ,:j- v' j' V
"“k"" w' k' w

k' i' . X

Figure 2 2D Structured Mesh with 4 Partitions

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Cost Model

Considering the general processing steps illustrated in the above figure, and each

round of executing includes a number of iterations of the simulation, a mesh adaptation,

and load-balancing which make repartitioning and redistribution, then every round of

executing will have the run time like:

Where n stands for the number of iterations for simulation computation, Tcmp is the run

time to perform the computation for a single of the simulation, Tcmu is the time caused by

the communication for a single iteration, and Trepar and T ŝt stand for the run time of

repartitioning and data redistribution respectively in a round [20].

Furthermore, communication time among processors depends on the number of

edge-cut of the partitioning if we ignore the speed of physical computer. This can be

expressed as a function of edge-cut:

On the other hand, data redistribution time can be described as a function of total amount

of data to be moved in order to rebuild the new balanced load among processors, then we

have:

n * (Temp + Tcmu) + Trepar + Tdist (1)

emu (2)

Tdist £ (V m ov) (3)

Combine formulas (1), (2), (3) we get total run time:

n * (Tcmp + f (E Cut)) + Trepar 3" £ (V m ov) (4)

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Adaptive repartitioning affects all of the terms in above formula (4). The quality

of the new partitioning influences Tcmp. The number of edge-cuts of a new partitioning

affects the inter-processor communications time. The data redistribution time is

dependent on the total amount of data that is required to be moved in order to rebuild a

balanced load among processors.

Generally those current adaptive repartitioning schemes

[4][5] [12] [13] [14][15] [16] [17] [18] [21] [22] tend to be very fast and well balanced, which

are dependent on the partitioning algorithm. Computation time not only depends on the

simulation itself, it also depends on how efficient the runtime system can be. This is

usually related to system architecture, memory management and other implementation

details. From the perspective of partitioning and repartitioning, b o th /(Ecut)) and g (Vmov)

can seriously affect parallel run times and drive down parallel efficiencies. Therefore, it

is critical for adaptive partitioning schemes to attempt to minimize both the edge-cut and

the data redistribution cost when computing the new partitioning. From this point,

adaptive graph partitioning is a multi-objective optimization problem.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Partitioning Algorithms and Adaptive Resource Allocation

3.1 Partitioning Algorithms

Since it is hard to have both/ (Ecut)) and g (Vmov) minimized, adaptive partitioning

algorithms can be classified into two categories: The first category is to focus on

minimizing the edge-cut and to minimize the data redistribution only as a secondary

objective [12][18] [22], They make the best effort to compute a new partitioning from

scratch and then attempt to intelligently remap the sub-domain labels to those of the

original partitioning in order to reduce the data redistribution costs. Some state-of-the-art

graph partitioners are used to compute the partitions, the resulting edge-cut tends to be

extremely good. However, since there is no guarantee to how similar the new partitioning

will be to the original partitioning, data redistribution costs can be high, even after

remapping. The second category is to focus on minimizing the data redistribution cost

and to minimize the edge-cut as a secondary objective [4][14][15][16][21], These

schemes attempt to perturb the original partitioning just enough so as to balance it. So

they usually lead to low data redistribution costs, especially when the partitioning is only

slightly imbalanced. However, it can result in higher edge-cuts than partitioning from

scratch methods because perturbing a partitioning in this way also tends to adversely

affect its quality.

ATOP [20] is more like an approach that combines those two categories. It first

over-partitions the whole graph and then during the load re-balancing phase it can

redistribute data without re-partitioning from the scratch. Meanwhile, it still provides the

ability to re-partition from scratch when a higher partitioning quality is needed. From

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

their test result, ATOP shows a moderate increase of the number of edge cuts and it can

decrease adaptation time to 20%-30%.

3.2 Work Load Distribution Algorithms

Partitioning is the first step of adaptive load balancing. After partitioning, data

needs to be distributed to corresponding processors. Depending on the location of the

load balancer, load balancing algorithms can be categorized as centralized or distributed.

If the load balancer is located in one processor, and it has global load information of all

nodes and can initiate the process of work load balancing, we call it a centralized load

balancing approach. On the other hand, if each node has a load balancer which can

broadcast load information to its neighbors or all other nodes, we call it a distributed load

balancing approach. Because there must be one master processor to take care of the

processing of load balancing, centralized approaches have limitations of scalability and

are more suitable for a small number of nodes [25]. Performance of centralized

approaches degrades along with the increased number of processors. Distributed

approaches can be more scalable, but since global load information spreads among nodes

and a node may only broadcast its load information to its neighbors, the whole system is

lacking a global load profile, making these approaches less efficient as centralized

approaches.

Depending on when the work load is redistributed to nodes, again load balancing

algorithms can be divided into synchronous and asynchronous. Synchronous load

balancing requires all nodes stopping to do other work and instead taking part in the load

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

balancing process. After partitioning and data redistribution each node resumes its other

work. Asynchronous load balancing doesn’t require that all nodes stop simultaneous for

load balancing. Usually it uses work-stealing algorithms to redistribute work among

nodes asynchronously, which then provides the advantage of latency hiding between

computation and adaptation [3], The disadvantage of this approach is that it also has

worse load balancing quality, compared to the synchronous one.

3.3 Zoltan Partitioning and Load Balance Library

Zoltan [2] is a portable library that provides set of load balance and partition tools

based on MPI. It can also run on different physical platforms. ATOP uses it as partitioner

and migration tool. This makes ATOP more useable for different environments.

Moreover, Zoltan supports a wide range of partitioning algorithm such as Recursive

Coordinate Bisection (RCB), Recursive Inertial Bisection (RIB), and incorporates with

JOSTLE and ParMETIS[10], ATOP uses both Zoltan and ParMETIS; this fits the

requirement that our system should be extensible when users need to tune it for their

special usages.

Zoltan does not have special requirements on structures of nodes and meshes.

However, users do have to provide global information and local information of the whole

mesh and individual nodes by setting up a series of call-back functions. For example,

users have to provide the total number of nodes of the whole mesh, global and local id of

each node, data packing and unpacking, neighboring information of each node and so on.

Somehow this is still inconvenient and time consuming for users. This is where our

interfaces in Section 4.4 make improvement.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Adaptive Resource Allocation Systems

Adaptive resource allocation can get better response time and resource utilization

in a time-shared and space-shared environment. Running a parallel application with

adaptive resource allocation also needs cooperation from the application, which has to be

malleable [22], i.e. the application needs to be adaptive to changes of available processors

during the runtime. ATOP’s main goal is to provide support to make simulations

malleable and able to run in a shared environment with adaptive resource allocation.

Adaptation for a simulation is actually a process of load balancing, which

typically needs two components: partitioner and load balancer. To make the process

adaptive to a time-shared and space-shared environment, two more components are

necessary: resource monitor and job scheduler. See Figure 2. So not only does adaptation

happen when it is needed from the simulation phases, it also happens when the runtime

environment changes. When the local workload changes like extra nodes being available

or new jobs having been scheduled on the system, the resource monitor or job scheduler

may signal the system to start a new round of adaptation.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Iterative mesh-based
computation

Mesh partitioning

Data Redistribution

Job scheduler / Mesh adaptation or
Resource Monitor Environment change

Figure 3 Simulation Phases in Shared Environment

On a NUMA system or a grid computer system, parallel execution of applications

is generally based on message passing. MPI (message passing interfaces) has become the

de facto parallel programming paradigm. However, so far only few runtime resource

allocation systems are built on message passing. TMPI [19] and Cilk [1] tried to use

threads to replace local MPI processes which are more suitable for running on a SMP

shared memory machine. AMPI [8] tried to use threads to over-partition into MPI

“process” and balance these threads to nodes according to load information. The major

problem with these thread-based systems is that a large number of threads per node tend

to result in a big thread context switch overhead, and slow down applications if

communication is frequent. However, scientific particle simulations are communication

intensive. After every round of mesh computation, communication for exchanging local

mesh information with remote meshes is necessary.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Data Locality Management

In the last decades, the speed of processor doubled for every 2-3 years but

memory access speed only improved 10% every year. The gap between CPU speed and

memory access speed has become a bottleneck for enhancing computing power. In order

to reduce this gap, modem computers resort to multilevel memory hierarchies. Usually

modem computers have two levels of cache memories, and further NUMA machines

have both local memory and remote memory, where local memory can be considered as

the cache of the remote memory. However, computing performance improvement with

this memory structure depends on whether the caches can provide data that an application

needs at runtime, because cache misses will result in spending extra time to access data

from higher-level memory. So application performance becomes very sensitive to the

cache hits.

For particle simulation applications, improving data locality of applications will

lead to better performance. From formula (4), data locality can affect all the factors of a

particle simulation, especially Tcmp and Tcmu because a typical particle simulation tends to

repeat hundreds and even thousands of times to compute mesh between two sequential

mesh adaptations, and total number of repeated computation for a whole simulation may

reach to millions. Bad data locality always slows down a simulation during running time.

Even a small amount of saving time during the computation phase can contribute a big

jump for the whole application.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Data locality in a NUMA machine usually can be achieved at two levels. The

higher level or network level data locality can be provided between the local memory and

remote memory. Better partitioning strategies keep more needed data in local nodes, and

network latency and communication cost can be reduced. So, as we discussed in Chapter

2, those partitioning algorithms focus on minimizing edge-cuts among partitions [12] [22]

will have better data locality. In addition, this level of locality can be obtained by keeping

some extra data on local nodes: besides storing those vertices that belong to the local

mesh, all neighbor vertices will have a copy stored in local memory, which are called

ghost cells. For example, Figure 3 shows that four processors with local meshes. Shaded

cells are border nodes and labeled cells are ghost cells.

Cache locality can be provided at local processors only. On a time-shared

machine, there are two factors influence cache locality: 1), several processes or threads

share the same cache. One running process or thread displaces the cache content which

was built by the previous running process or thread. When the previous process or thread

runs again it will encounter a series of cache misses. 2), either memory fragmentations or

random memory accesses will affect utilization of cache lines. In time shared

environments we can not avoid processes or thread switches, but we still can obtain better

cache locality by optimizing application data structure. To achieve this goal, the order of

access to data is crucial. By sorting or aligning all local data in memory, all memory

access patterns for this problem can become sequential as opposed to random. This

allows maximum use of hardware-based performance features such as caching and

automatic pre-fetching. Anyway, the topic of particle sorting is not unique but generally

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ignored for current adaptive runtime systems due to the implementation complexity and

performance overhead.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 Our Approach

Our objective is to implement an efficient dynamic resource allocation

middleware for scientific particle simulations. We reach this goal by finishing the

following jobs in our project:

• Extend ATOP partitioning and load balancing algorithm by using optimized data

structures to do direct accesses.

• Add data locality management to ATOP by aligning local data into blocks of

continuous memory to provide cache locality.

• Add communication management by using border-ghost mapping to

automatically communication and make communication more efficient by

aligning packing and unpacking.

• Implement switching between time-share adaptation and space-shared adaptation.

• Interface makes the middleware easy to use.

5.1 Basic Concept

Definition: Space Adaptation'. The number of processors allocated to an

application can be changeable dynamically during runtime [20],

Definition: Time Adaptation: The time share allocated to an application can be

different on different processors and can be changed dynamically during the application’s

execution process [20],

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Architecture of the Runtime Library System

In our architecture, see Figure 4, the operating system is at the bottom and above

that the MPI library is located. The ATOP load balancing algorithm and our data locality

management (DLM) module lie above Zoltan and MPI, which manages memory

alignment, optimization, border cells and ghost cells. We use the ATOP algorithm to

over-partition the data mesh and handle dynamic adaptation when an adaptation is

necessary. We redesigned internal data structures of ATOP to avoid searching problems

and also make dynamic switching between time-shared and space-shared allocation

possible. Beneath ATOP and DLM is the Zoltan load balancing library which provides

multiple partitioning and data management tools.

Particle simulation application

3 E

1

Interfaces/Call-back Functions

ATOP DLM

Zoltan
MPI

Job Scheduler
Resource Monitor

T T

i z .
OS and NUMA machine

Figure 4 System Architecture

The Interfaces and call-back functions layer is above ATOP and DLM, and

encapsulate all the implementation detail from the users and provide users simple and

easy-to-use library functions. A good design should release application programmers

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from too much attention on dynamic variations in computational load and communication

patterns. So we provide a simplified set of interfaces in order to keep users from dealing

those tedious lower level works such as load balancing, data management, migration and

etc. Detailed interfaces will be discussed in Section 4 of this chapter.

—global in fo—
_ n o d e s : int

+ m a x _ n u m _ o f „ e d g e s : int
+ m a x _ rn jD _ o f.p a r tit io n s: int
4-num _proc: int
+ p a r jp r o c J d _ a r r : int*
+partitiQn_nun-i_arr: 'mt*
+ proc_Jd_arr: in t*
— focal in fo —;
4 -p rocJd ; int
4-num _bf_Jocals: int
+ p a r_ n u m _ o f J o c a ls i Int
+ n o d e jJ tr _ a r r : Nocle_Pfcr*
4-par_ptr_arr: Partition_Pfcr
— g h o s t in fo —
4-gh ost J is t ; Partftion_Ptr

Partition

+partition_rium : int
+parbtton_locai_ld: int
+ n u m _of _ n o d e s : int
+ len g th _ n o d e_ id _ a rr: int*
+ n o d e _ptr_arr: int*
4-isAligned: int
— border in fo —
+ num _borer J is t: int
+ b o rd e f J ist_p tr_arr: Border_List*'

INode

+gl<±>aljd: int
+ local_id: int
+ n u m _ a d j_ n o d e: int
+id_ln jja r t it io n : int

+ a d j_ n o d e_ a rr: int*
+ e d g e _ w g t_ a r r : flo a t*
+ co m p u _ w g t: floa t*
+ s ta tu s_ fia g : char

+ n o d e „ d a ta ^ 3 tr : vo ld [2 j

Border_List
4-b ord erjD rocJd : int
4-num „border_node: int
-+-global_td_arr: int*
4-list J e n g th ; int
4-border_data_ptr: ch ar*[2]

NodeJ>ata

Figure 5 System Class Diagram

We use an objective-oriented technique to design and implement our system,

though we still use C as programming language for this project. The whole system is

illustrated as class diagram like Figure 5. From the diagram, we can see that the main

data structures are node, mesh and partition, node contains all necessary information

and related operations of a node such as global id, local id, number of adjacent nodes and

etc. mesh includes all the global and local information for a mesh. Technically a mesh is

an aggregation of partitions, nodes and borderlist. partition is an aggregation of nodes.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

All related operations / functions are defined in header files mesh.h, partition.h and

node.h. The public accessibilities for all data members and methods in the UML diagram

means they are accessible for C programming language as long as a right header file is

included.

5.3 Internal Data Structures

Internal data structures are the backbone in the system. In addition to the class

diagram in Figure 6 which shows the relation among different types, more detail is

needed for explanation. Some sample code is attached in APPENDIX B.

The biggest drawback in the original ATOP implementation is that it keeps nodes

in a local array of nodes. During the adaptation process, outgoing nodes are removed

from the node array directly; and incoming nodes are inserted into the array by looking

up an empty spot in the array sequentially. This approach led to two big problems: First,

the outgoing nodes leave some holes in the local node array and inserting incoming nodes

into the array make the array out of order. When the system needs find a node, it has to

search the node from the array one by one. Second, using an array of nodes actually

assumed that each node has the same size, which makes it impossible to extend the

approach when we need to include border-ghost management and communication

management in our runtime system. More flexible data structures have to be designed.

In our new design, each node, partition and mesh is an independent object. Local

meshes and partitions can access to nodes by direct mapping using an array of pointers.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

More importantly, the index of the pointer array is exactly the global id of node. So

sequentially searching a node is no long necessary because we can get access to a node

directly if we know the global id of the node by obtaining a pointer to the node from the

node pointer array. Moreover, this makes the system architecturally neater and enable to

perform border-ghost-cell management and communication management.

5.3.1 Mesh Data Structure

Mesh data structure contains information about the number of processors, global

location of each partition and node, reference to local partitions, local nodes, ghost nodes

and border lists. The information can be classified into global information and local

information. Global information stands for the whole data graph. Local information

stands for the sub-graph located on the local processor.

1. The global information is mainly for load balancing. It shows how the current mesh is

distributed among processors, including location, global id of partitions and nodes.

• Global partition information is about where each partition locates. Suppose the

graph has m partitions, integer array par_proc_id_arr of each mesh records the

processor number for each partition globally. In other words, each processor will

keep a copy of the table and update it during each data redistribution time.

partition global id 0 1 2 3 m-3 m-2 m-1
p a r j p r o c i d a r r 0 1 1 1 15 15 15

• Similarly, global node information is about where each node locates, which tells

us on which processor a node is located.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n o d e g l o b a l i d 0 1 2 3 n -3 n -2 n -1
p r o c _ i d _ a r r 2 0 1 0 2 0 1

p a r t i t i o n n u m a r r 5 0 3 0 5 0 3

2. Local information describes how partitions and nodes are stored in the local processor,

which is very important for computation and communication. By having an array of

pointers to each local partitions and nodes with their global id as index, only constant

time (0(0)) is needed to find a partition or a node. Furthermore, mapping arrays

between local id and global id makes it possible to handle both partitions and nodes

without losing global information.

• The local information for partitions in a mesh is illustrated by Figure 6. The

par_local_global_map is actually an array which contains all local partitions’

global id. The indexes of the array stand for local ids of partitions. This means

that we can get each partition’s global id as long as we know a partition’s local id.

p a r t i t i o n l o c a l i d 0 1 2 k - 3 k -2 k -1

par_loca l__g 1 ob a l_map 2 3 1

par_ptr arr • • •

’ r ' < ir <’ '' ' rH

P a r t i t i o n
o b j e c t s

Figure 6 Local information 1

• Local information for nodes in a mesh is illustrated by Figure 7. The data member

local global map is an array which contains the global id of each local node. The

indexes of the array stand for the local ids of local nodes.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Local id 0 1 2 m-3 m-2 m-1
l o c a l g l o b a l m a p 3 24 2 X y z

node global id n-3 n-2 n-1
arr

null nulln i 11

R elated partition object

node local id m-3 m -2 m-1
node global local manWVyAViWM\n-V-/.VVVVvV\ii*.\'1VAVV'//4i*/'/'A-*v n-2

node »d£ nodenode o b j e c t

Figure 7 Local information 2

5.3.2 Partition Structure

Partition is the basic load balancing unit in over-partitioning algorithm, which

stands for a sub-graph of the local mesh and the local mesh is a sub-graph of the whole

data graph.

Partitions track all information about nodes which belong to it, see Figure 7. The

array node_global_id_arr records all local n odes’ global id. M eanw hile the pointer array

node_ptr_arr contains all pointers that point to all the nodes of the partition. The array is

used during the computation stage when we need traverse nodes one by one for each

partition.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3.3 Node Structure

Node data structure stands for a particle in a particle system or a vertex in a data

graph. An internal node data structure includes basic information about itself: global id,

local id, neighbor node information and edge-weight information. All of these are

necessary for Zoltan to manage partitioning and migration. Considering migration cost

and system scalability, the node structure should be kept as small as possible.

The node structure includes two parts: the first is the general information for

partition and migration; the second part is the node data for the computation. A node may

be a normal node, border node, or ghost node. A normal node is illustrated in Figure 8.

Border nodes and ghost nodes need more effort in handling because borders and ghosts

need to exchange information among processors. In order to avoid unnecessary data

copies for the communication phase, border nodes’ data is stored directly in the border

list (see Figure 9), except borders which are adjacent to more than one remote processor

(see Figure 10). Data member status _Jlag is used to track the type of current node:

1. status J la g data member of a node is of char type with a byte long, which is used to

record a node’s status. Now only bit 0 to 3 are used:

• Bit 0, stands for if the node is aligned. If this bit is set to 1, it means that current

node is in a continuous memory block.

• Bit 1, stands for if the node is a ghost node. If the bit is set to 1, it means the

current node is a ghost node.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Bit 2, stands for if the node is a border node. If the bit is set to 1, it means the

current node is a border node.

• Bit 3, used by border nodes. If both this bit and bit 2 are set to 1, it means that

current node is bordered to multiple processors.

Aligned n o rm a l Node

Figure 8 Aligned Normal Nodes

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B o rd e r Node to one processo r

7 6 S 4 3 2 1 0

0 0 0 0 0 1 0 1

Only bits 0 - 3 are used now.
B it 0 : 1 stands for the node is in an
aligned

memory.
B it 1: 0. This is not a ghost node.
B it 2 : 1. This is a border node.
B it3: 0 .Onlybordertoone

sub-mesh.

Figure 9 Aligned Nodes Bordered to One Processor

id_in_part.itd.on = 4

status_flag

adj _n ode_arr

N ode_dsta_pt-r (0]

N od e_d ata_p tr 113

n o d e _ d a fc a j r t r [0]

Node data Node data

B order Node to M u lfy le processors

I*

g lo b a l_ ± d

xd_xn_p ax t x t x o n

s t a t u s _ f l a g

Mode_dita_ptr[0]

Mo de _d a t i_ p t - r [1]

Copy o f d a t a 0 Copy o f d a t a 1

Copy o f d a t a 0 Copy o f d a t a 1

Figure 10 Aligned Nodes Bordered to Multiple Processors

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3.4 Borders and Ghosts

Border and Ghost cell management are very important to reduce network latency

during computation process. Borders are those nodes which have neighbor nodes located

on remote processors, and ghosts are copies of border nodes on other processors. In other

words, they are simply images of border nodes on other processors. Border and ghost cell

management is used for communication because after each computation round, we need

to update values of ghost cells for the next computation round. Updated values of border

cell will be sent to corresponding remote processors to update those ghost cells. Borders

and ghost cells need to be rebuilt after each mesh adaptation.

Border and ghost cell management includes two stages: build/rebuild stage and

update stage. After each mesh adaptation, global location of some nodes will be changed,

some border nodes will no longer be border nodes as they do not have any neighbors on

remote processors; some local nodes become new border nodes because their neighbor

nodes have been migrated to other processors. So a rebuild needs to be done before

starting the next round of simulation computation. During simulation, after each round of

computation, the data values for each node are changed but these changes only take place

for local nodes. Since border nodes change too, their images in ghost cells need to be

update before next round of computation.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P r o c e sso r id 0 1 2 3 13 14 15
border list ptr arrVv\ŴvVW'W,Yrt'A'¥attW"V«ttvWV'.'V ■ ■ ■ ■ ■ ■ ■

ni

border list objectVA\M*W/<WVM J

i l l

'

null null pull

Border list
objects

Figure 11 Border List Structure

To maximize performance of our system each local mesh keeps a border table, see

Figure 11, which is a number of arrays with each array standing for border information to

a specific remote processor. On the other hand, each local mesh has only one array of

ghost nodes. Technically the array of ghost nodes has the same structure as other normal

partitions except ghost nodes inside the partition need special treatment for their data, see

Figure12.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ghost Node and G host List

Only Infe 0 - 3 are used now.
RttO: 1 stands far the node is in m
dinned

m anoiy.
B it 1
B it 2
B it 3

1. This is not a. ^aost node.
0. Husis a.border node.
0. Only'border to one

sub-mesh.

g lo b a l _ i d

i d ir> p ax t i t i o n = 4

s t a t ms _ f l a g

ad j_ n o d e _ a r r

Ho d e _ d a ta _ p tr [0]

Wo d « e _ d a ta _ p tr [l]

Ghos t_L is t node data_ptr[0]

Node data
..

GKos t_L is t
o d e_ d a ta _ p t x [13

Node data

Figure 12 Ghost Nodes

5.4 Interfaces

To separate general user-level application data structures from our internal data

structures, we design and implement a set of simplified interfaces, seeing Figure 13. By

hiding all the complicated details like environment initialization, data migration and load

balancing, simplified interfaces are provided. This approach can also make the runtime

system more extendable and maintainable.

These interfaces have been loosely tied to users’ development style. Users can

have their own node data structures without worrying about how the system handles them.

For example, particle node data can be as simple as just an integer or a user-defined

structure which includes multiple arrays of data to describe a node’s position, force and

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

relation to other nodes. The requirement from the system is that the user has to bind the

user-defined information to the system by calling a couple of call-back functions. One

advantage of our interfaces is that users do not need deal with communication manually.

All communication among processors are handled automatically by the library.

Applying the interfaces to real simulations is simple. A programming example of

particle simulation is shown in Appendix 3, which is also the basic application used for

our experiments in Chapter 6. Using the library generally includes the following steps:

1) First, a user defines his or her node data structure and ties it to the system by

using the callback function A T O P _ S e t _ D a t a _ S i z e _ F n (& n o d e _ d a t a _ s i z e) ;

2) Second, the user defines his or her computation function and ties it to the system

by using callback function

A T O P _ S E T _ M E S H _ C O M P U T E _ F N (A T O P _ M E S H _ C O M P U T E _ F N m y _ c a l c u l a t o r) ;

3) Then the mesh, and computation environment is initialized;

4) An adaptation can be performed by calling a t o p _ a d a p t a t i o n (M e s h _ P t r m e s h ,

I n t * c o m p u t _ w e i g h t _ a r r) ;

5) Repeatedly a t o p _ m e s h _ c o m p u t e (a t o p _ m e s h _ p t r) is called to do mesh computation;

or the user goes back to step 4) to make another adaptation if it is necessary; or

goes to step 6) if the simulation is finished;

6) The simulation is finished by releasing environment resources.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

struct ATOP NODE {
int global id;
int num adj node ;
int* adj node arr;
int proc id;
int isGhost;
void* node data ptr[2

} ;

typedef struct ATOP_NODE ATOP_NODE;
typedef struct ATOP_NODE *ATOP_NODE_PTR;

struct ATOPJMESH
{

int num of global nodes
int local num of nodes;
int num proc;
int proc id;
int new data index;
int old data index;

} ;

typedef struct ATOP_MESH ATOP_MESH;
typedef struct ATOP_MESH* ATOP_MESH_PTR;

typedef void (*ATOP_MESH_COMPUTE_FN)(ATOP_MESH_PTR, ATOP_NODE_PTR);

/*********** END USER INTERFACE FUNCTIONS *********************/
int ATOP_ENVIRON_INIT(int argc, char **argv);
void ATOP_MESH_DESTROY(ATOP_MESH_PTR my_mesh_ptr);
void ATOP_ENVIRON_DESTROY();
void ATOP_MESH__DISPLAY () ;

ATOP MESH_PTR ATOP_CREATE_MESH(char* graph_name, int num__partitions);

v o i d A T O P _ S E T _ D A T A _ S I Z E _ F N (i n t (* d a t a _ s i z e _ f u n c t i o n _ n a m e) ()) ;

v o i d A T O P _ S E T _ M E S H _ C O M P U T E _ F N (A T O P _ M E S H _ C O M P U T E _ F N m y _ c a l c u l a t o r) ;

v o i d A T O P _ A D A P T A T I O N (A T O P _ M E S H m e s h , i n t * w e i g h t _ a r r)

void ATOP_MESH__COMPUTE(ATOP_MESH_PTR);

ATOP_NODE_PTR ATOP_GET_NODE(ATOP_MESH_PTR mesh_ptr, int global_id);

Figure 13 Interfaces

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5 Memory Alignment

Memory alignment is the core of the data locality management. For a mesh or a

graph, the nodes usually are generated dynamically, which means those nodes are always

spread in memory, see Figure 14. But after finishing memory alignment, all nodes for a

partition are located in one memory block and can be accessed sequentially. During the

partitioning stage, the number of partitions for the whole global mesh can be chosen, and

the memory size of a partition can be adjusted. The appropriate size for the partition

located in a continuous memory block can take advantage of the cache performance and

finally enhance throughput of the whole application.

m-3 m-2 m-1no d e l o c a l i d

n -2

no d enode m-1rrt-2

Figure 14 Un-aligned Partitions

When aligning memory for a partition, the memory management module will only

put the partition header information and all corresponding nodes in one continuous

memory block. A good reason for this structure is future extension. Right now Zoltan can

on ly migrate nodes but can not migrate partitions directly. H ow ever, keeping all partition

information together provides an opportunity to migrate partitions individually in the

future. After alignment a partition will look like Figure 15.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

la
node l o c a l i d 0 1 2 m-3 m- 2 m -1

n o d e_ g 1o b a l_ i d _ a r r 1 3 n -2

n o d e _ js t r _ a r r • • • • •

r *' : i ' ' ’
i.: r lp d « !:: irlnoditli i a i & a s i : : ;

i r u : . ,r2 ' : : ’
I m- 3 m-2 m-1

□

Figure 15 Aligned partitions

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Experimental Results

6.1 Experimental Environment

We perform all our experiments on an IBM cluster, which includes 16 nodes, and

each node contains dual Intel Xeon processors with 512 Mbytes of RAM. All nodes have

2.2 GHz CPU except the two nodes which have 2.4 GHz CPUs. Nodes are connected by

Myrinet high-speed interconnect. The operating system is Debian Linux with 2.6 Kernel

on each node, the MPI package we used is MPICH 1.27, the Zoltan version is 2.1 and the

ParMETIS is version 3.1, and K-way partition algorithm is used.

Graphs |V| |E| Description

3elt 4720 13722 2D finite element mesh

4elt 15606 45878 2D finite element mesh

wing 62032 121544 3 finite element mesh

brack2 62631 366559 3 finite element mesh

fman512 74752 261120 N/A

wave 156317 1059331 N/A

Table 1 Benchmark Graphs

W e chose the benchmark graphs from U niversity o f G reenw ich Graph Partition

Archive [26], all with Chaco graph file format. This graph archive contains various types

of graphs which fit our test plan. For better comparison we choose those test graphs

which were used in [20], Another bigger graph wave, which has twice as many vertices

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as graph finan512 and three times as many edges as graph brack2, was chosen to test the

scalability of our runtime system.

6.2 Adaptation Performance

As we mentioned, ATOP is used in our system to manage partitioning and load

balancing, however, new data structures were designed to achieve higher performance

and avoid un-necessary search for nodes which existed in the original ATOP

implementation. So we use the same set of graphs used in [20] to do our experiments in a

space-shared environment and a time-shared environment to get comparable

experimental results.

6.2.1 Adaptation Experiments in a Space-shared Environment

Both Table 2 and Table 3 show experiments in a space-shared environment.

When using ATOP over-partitioning algorithm, graphs were partitioned into 8 partitions

initially and number of processors changed in an order 4 - 8 - 4 - 2. Shaded rows are

data from [20], and all data is in seconds. The init time includes time for creating graphs

by reading graph files from hard drives and time for initially partitioning and migration to

4 processors. The adaptation time is the total adaptation time for the three adaptations (4-

>8, 8->4 and 4->2).

The data shows big jumps in performance. Table 2 shows that the init time for

over-partitioning can be shortened by 93% to 98.7% from these graphs, and adaptation

time for over-partitioning can be improved by 90% to 96%. On the other hand, Table 3

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

illustrates that init time for partitioning from scratch can speed up by 94% to 99%. For

over-partitioning, the adaptation time for partitioning from scratch can be improved by

63% to 75%. The difference of edge cuts is because we used a new version of Zoltan.

Graphs
Overall Edge Cuts

Init Time Adaptation Time
4 8 4 2

wing

2390 3261 2390 1858 202.3 25.8

2428 3287 2428 1858 12.1 2.3

38 26 38 0 -189.9 -23.5

Speedup 94% 91.1%

brack2

5047 8528 4069 204.1 26

3893 8197 3893 2907 12.7 2.4

-1154 -331 -1154 -1162 -191.4 -23.6

Speedup 93% 90.7%

flnan512

405 648 405 ; 296.0 49

405 648 405 324 3.9 2.0

0 0 0 0 -292.1 -47

Speedup 98.7% 95.9%

Table 2 Adaptation by over partitioning in space-shared environment with 8 partitions

Table 4 and Table 5 illustrate init time and adaptation time comparison for 16

partitions and experiments executed on 16 processors. More graphs are tested and the

adaptations follow 8 - 1 6 - 4 - 2 processor sequence. Init time includes initial mesh

generation, partitioning into 16 partitions and distributing partitions to 8 processors.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Similarly the shaded data come from [20] and all the rest is from current experiments.

The results show that, for small sized graphs like 3elt and 4elt, our approach does not

gain any advantage. But if the size of the graphs becomes bigger, the optimized data

structures contribute greatly to the whole init and adaptation performance. Figure 16 and

Figure 17 illustrate our performance enhancement in graphic form, where OP stands for

current results.

Graphs
Overall Edge Cuts

Init Time Adaptation Time
4 8 4 2

2129 3081 2036 947 f 215.3 ; 102.7

wing
2325 3087 2186 999 11.8 32.3

196 6 150 52 -203.5 -70.4

Speedup 94.5% 67.5%

3163 8221 223.0 88.8

brack2
3159 8222 2972 754 12.7 33.0

-4 1 -141 7 -210.3 -55.8

Speedup 94.3% 62.8%

324 648 162 328.7 199.8

finan512
324 648 324 162 3.9 50.8

0 0 0 0 -324.8 -149

Speedup 98.8% 74.5%

Table 3 Adaptation by partitioning from scratch in space-shared environment with

8 partitions

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6 and Figure 18 show init time and adaptation time comparison with 128

partitions by using over-partitioning. Initially the experiments were running on 8

processors, and then adapted to 16, 4 and 2 processors respectively. The results show our

optimized implementation has speedup up to 99% for init time and speedup up to 96%

for adaptation time. This proves that our implementation can also achieve better

performance for large number of nodes. Larger number of partitions does not affect our

system’s performance.

3elt 4elt wing brack2 finan512

INIT TIME 0.2 0.5 3.3 1.2 210 12.1 ;ii222 12.7 312 3.9

AP TIME 0.1 0.2 0.5 0.4 20.3 2.0 22.6 2.1 38.0 2.1

Table 4 Init time and adaptation time by over-partitioning for 16 partitions

3elt 4elt wing brack2 finan512

INIT TIME 0.3 0.3 3.6 1.2 234 11.8 245 12.7 354 3.9

AP TIME 0.2 0.4 2.2 ; 2.2 61.5 34.2 56.5 31.1 113 50.5

Table 5 Init time and adaptation time by partitioning from scratch for 16 partitions

3elt 4elt wing brack2 finan512

INIT TIME 0.4 0.4 4.1 1.0 215 10.5 224 11.5 326 2.8

AP TIME 0.2 0.4 0.4 17.5 1.2 18.1 1.2 30 1.0

Table 6 Init time and adaptation time by over-partitioning wit l 128 partitions

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16 partitions with ATOP

350

300 4-

250

200 4-

150 T

100 j-

50 j-

o i-
3elt 4elt wing brack2 finan512

init time

h»— init time(OP)
adapt time

-x— adapt time(OP)

Figure 16 Comparison for 16 partitions by ATOP

16 Partitions with Partitioning from Scratch

400 r

350

300

250

200

150 |

100 j-

50 ■

0 r
3elt brack2 finan512wing

init time

Hu— init time(OP)

adapt time

adapt time(OP)

Figure 17 Com parison for 16 partitions by partitioning from scratch

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128 Partitions with ATOP

350

300 ------

250 j--
200 — -

150 j--
1 0 0 -----

50 j- -
0 - — T

init time
init time(OP)
adapt time

x, adapt time(OP)

3elt 4elt vwng brack2 finan512

Figure 18 Comparison for 128 partitions by ATOP

6.2.2 Adaptation Experiments in a Time-shared Environment

In order to test our system in a time-shared environment, we assign each

processor with different computation weight to simulate changed time shares. Initially

we set up 8 processors with relative computation weights 2:2:2:2:1:1:1:1, then the

weights changed to 1:1:1:1:1:1:1:1 -> 1:1:1:1:2:2:2:2 -> 1:1:1:1:2:2:3:3 respectively.

Table 7 and Table 8 show the experiment results for using ATOP over-partitioning

algorithm and using partitioning from scratch by using K-way partitioning respectively.

Table 7 and Table 8 show that our optimized implementation also provides

improvement in a time shared environment. The bolded columns stand for the speedups.

Init time gains up to 99% speedup for both over-partitioning and partitioning from

scratch, as for space-shared cases. Adaptation times also show large improvements.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Adaptation time by over-partitioning in our implementation can reach a speedup to 97%

and the adaptation time by using K-way partitioning from scratch can get up to 72%

improvement.

Init 1:1:1:1:1:1:1:1 1:1:1:1:2:2:3:3

wing 221.9 10.7 95% 3.92 0.26 93% 458 0.24 95% 0.91 0.13 85%

brack2 12.3 94% 3.72 0.38 90% 4.48 0.72 84% 0.93 0.42 55%

finan512 2.94 99% 4.33 0.19 95% M lE 0.21 97% 0.10 0.10 0

Table 7 Init time and adaptation time by ATOP environment with 128 partitions

Init 1:1:1:1:1:1:1:1 1:1:1:1:2:2:2:2 1:1:1:1:2:2:3:3

wing 226.93 10.63 95% 22.05 6.87 67% 29.49 8.22 72% 1.87 9.05 -384%

brack2 229.98 11.58 95% 25.80 7.02 73% 24.56 8.41 66% 2.10 10.40 -395%

finan512 354.52 2.83 99% 23.18 8.66 63% :::24f4'" 10.5 57% 3.2 12.36 -286%

Table 8 Init time and adaptation time by K-way Partitioning from scratc

partitions

l with 128

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 Data Locality Management Module Performance Experiments

The locality management module plays the most important role in our system and

deserves separate experiments to test it. Currently this module is implemented by using

memory alignment. In order to test performance of this memory alignment, we need a test

scenario which includes typical particle simulation data structures and a particle

computation function.

As we discussed in Section 5.4, our implementation allows users to define their

own node data structure and solver computation functions. Then they can use call-back

functions to tie their own functions with our runtime system. For this experiment, we use

a very simplified node data structure and computation functions like below:

double node_data[2];

node_data [x] = (^neighbor_node [x]) /number_of_neighbors (5)

node_data [y] = (^neighbor node [y]) /number_of_neighbors (6)

Each node has two dimensional floating-point data and the computation functions

are calculating the average values of all the neighbor nodes’ data in two coordinate values

respectively. Then the newly calculated data will be used for the next computation round.

Each node needs access to its neighbor nodes’ data to finish computing its position for

the next step. After computation, the local processor will communicate with other

processors to exchange border/ghost node information.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The locality management module experiment is done in two steps: First we test

the performance of memory alignment in a static environment without any adaptation.

Then we conduct our experiments in a dynamic environment where the system induces

dynamical resource changes to simulate a real space-shared and time-shared runtime

environment.

6.3.1 Computation Time in Static Environment

First we test the performance enhancement from memory alignment in a static

environment, in which we use eight processors, 128 partitions and with processor relative

weights {1,1,1,1,1,1,1,1}, which means we run the experiments on 8 processors and each

processor provides the same time share for the experiments. In other words, the weight

stands for computation time. For each experiment the number of iterations will be 1000,

5000, and 10000 respectively. All data is in seconds.

Graphs/ Iterations 1000 5000 10000

Name i n iei Time speedup Time speedup Time speedup

wing
|V| =62032

|E| = 121544

26.95
29.3%

125.6
22.7%

257.0
29.7%

19.04 97.04 180.60

brack2
|V| =62631

|E| = 366559

24.35
13.2%

121.58
11.7%

245.12
12.2%

21.13 107.41 215.30

wave
|V| -156317

|E| = 1059331

62.84
14.3%

319.52
15.9%

653.89
16.4%

53.87 268.80 546.60

Table 9 Computation time in a static environment

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 9 illustrates the test result, where the shaded cells contain normal

computation time without memory alignment, and the non-shaded cells are computation

time with memory alignment. All numbers are in seconds. In this table we can see that

our memory management successfully shortens computation time by 11.7% to 29.7%.

Different iteration time also shows that the enhancement is steady and the module has no

slow-down when the graph’s size becomes larger. Figure 19 also shows these

improvements in separate charts.

norma
Haigrned

10000

B norm al

■ a lig im e d

10000

Figure 19 Computation time charts in a static environment

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3.2 Computation Time in Dynamical Environment

In order to test our system in a dynamic runtime environment, we execute our

experiments on 16 processors with 128 partitions. Initially we set each processor with the

same computation weights and all processors take part in computing. Then the

adaptations follow the processors weight matrix below, in which the first row stands for

the initial status. In this matrix, we intentionally set up mixed time-shared and space-

shared environment, see the matrix below. The first word in each row stands for which

algorithm system us to make adaptation. If it is atop, then adaptation will be done by

using ATOP over-partitioning algorithm; if it is zoltan, the adaptation will be done by

using a partitioning algorithm from the Zoltan library to partition from scratch. K-way

partitioning algorithm from the Zoltan library is used for our experiments. The numbers

in each row stand for the computation weight on each processor, which means the

computation time on each processor. The first two rows simulate a time-shared

environment, and the last two rows simulate a space-shared environment. We use the

zoltan directly in the third row to have the system made partitioning from scratch by

using Zoltan library. Before each adaptation, the application repeats 1500 times of

computation. Similarly, three graphs with different size are chosen to conduct the

experiment.

{atop, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}

{atop, 1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}

{zoltan, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}

{atop, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0}

{atop, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 10 shows our experimental results. In this table, we also see the time used

for memory alignment, which is the total time of five alignments after the five

adaptations. Compared to computation time, the alignment cost is ignorable but the

system speedups for experiments on different graphs are obvious. When we calculate the

speedups, we have already counted in the memory alignment cost. So we can get speedup

by 16.1% to 21.7% on these graphs after applying our new data locality management.

w ing brack2 w ave

Alignment Computation Alignment Computation Alignment Computation

Non-aligned 0.0 92.68 0.0 98.5 0.0 255.6

Aligned 0.08 74.85 0.11 77.05 0.37 214.1

Speedup 19.15% 21 .7% 16.1%

Table 10 Computation time in a dynamic environment

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4 Experiment Summary

By using the same set of graphs used in [20] we clearly illustrate that our new

implementation with optimized data structure get much better adaptation performance

among various graphs. Initial setup time can reduce by 99% and adaptation can also be

improved by 55% to 97%. The main reason for the improvement is that in the original

ATOP implementation, finding a node needs O(n) operation but in our implementation

only 0(0) operation is needed. The adaptation time is related to how much data needs to

be moved. As long as the graph is getting larger, the original implementation leads to

much larger turnover; our implementation, however, doesn’t need search node in an array

one by one for processing migration, which makes the system more scalable and

improves for large graphs. It also make sense that we get lower performance

enhancement in a time-shared environment compared to the improvements in a space-

shared environment, because in time-shared environment the system is expected to

migrate less data to finish an adaptation.

On the other hand, other factors such as the number of edges and the patterns of

edges also play a role for how efficiently an adaptation can be done. First, these factors

affect the adaptation performance by affecting the time of partitioning. Second, they also

can affect the quality of partitioning. In other word, these factors also affect how much

data needs to be moved during adaptation process. This is why we can not conclude the

final performance by just the number of vertex and the number of edges.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Our experiments also show that by applying the memory alignment strategy, our

data locality management module improves system performance by up to 29.7% in a

static environment and by up to 21.7% in a dynamic environment. Also the speedups are

not related to the size of the graphs.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 Further Possible Improvement

7.1 Optimized Data Structure

The current data structure works well; however, it also shows some weakness

during our implementation and experiments: border list objects are managed at mesh

level which is too coarse-grained because we only have the number of processors border

lists in total on each local mesh. In addition, communication is handled partition-based,

so both node and partition need some effort to track the corresponding border data in the

border lists, which makes the three objects mesh, partition and node somehow coupled

together when dealing with border and ghost cell management. For example, each node

needs four pointers to handle the border information, which makes the system not

scalable well for some huge data graphs. In order to overcome this problem, we

redesigned our architecture as shown in Figure 20, which mainly optimized the border

and ghost management by putting the border list under the partition level. The ghost list

is no longer a partition but an independent type, which makes the mapping between

border list and ghost list easier and the system better maintainable. More important, the

node structure becomes smaller and decoupled from how border list is handled.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

+bortter j j r o c J d ; int
+num _border_node: int [
+gtobal_id_arr: int* i
+ listje rig th ; int |
+ b o rd e r_ d a ta jr tr; char*[2] I

.Data

sta fcusjlag provides 8 bits flags, used for check if d ie noe is
border node, ghost node, border to multiple m esh...

+ source_par_num : int
+num _ghost j io d e : int
+ g teba ljd_arr: int*
+ lis tjen g th ; int
+ ghost_data_ptr: char*[2]

Ghost_List
+globalJd : Int
+ loca lJd ; mt
+num _adj_node: mt
+ld J n .partition : irtt

+ ad j_node_am int*
+edge_w gt_arr: float*
+com puj/vgt: float*
+ sta tu sjflag ! char

+node_data_p tr: vod[2]

INode

+partition_num: irt
■ fpartltionjocaljd: int
+num_of_nodes; int
+tength j io d e jd _ a r r ; int*
+nodejD tr_arr: int*
-HsAiigned: int
-- b order list --
+num Jborer J s t : int
+ border J s t j r t r j r r : Border J.ist**
- - ghost t e t - -
+ n u m _ ^ io stJ is t: int
+ghosfc_SstJd_arr: int*

Partition

Mesh

Figure 20 Optimized Class Diagram

7.2 Adding Memory Management

Another weakness is lacking further memory management. In the current system

mallocQ from C programming language is used to allocate memory dynamically. The

system call mallocQ uses a kind of linear search to find a proper size of memory from the

heap for each memory allocation. This is suitable for large size memory allocation when

each allocation is used for long term. In a typical particle simulation application, all

initializing of nodes, packing nodes for migration, and unpacking nodes from migration

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

needs to dynamically allocate and de-allocate small size of memory. Since there are a

great number of nodes in a simulation, those small-size memory chunk allocations and

de-allocations will take a lot of time and affect system performance.

Our optimized memory management module design will make memory

allocations at two levels: block level and node level. The block level algorithm allocates

and frees large-size memory blocks, and tries to eliminate memory fragmentations. The

node level allocation algorithm allocates small-size memory chunks without search and

can reuse memory.

7.2.1 Block Level Management

The block level management uses a linked list of memory holes/blocks, which are

ordered by m em ory address, called free list. Each hole is multiple times as big as a

BLOCKSIZE, which can be defined at compile time for performance tuning purpose.

Every time when we need to allocate a chunk of memory, we round the chunk size to

multiple times of the BLOCKSIZE, and find a proper size of block from the linked list. If

we cannot find a fitting one, we will allocate a new big memory chunk, say, 100 *

BLOCKSIZE, and add it to our linked list.

s t r u c t b l o c k

{
b l o c k * n e x t ;

v o i d * f r e e l i s t ;

i n t s i z e ;

s h o r t n o d e S i z e ;

s h o r t a l l o c a t e d ;

} ;

Figure 21 Block Data Structure

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

See the Figure 22; shaded parts are available free blocks in the linked list. Un

shaded parts are used by the application. They are not in the linked list. When allocating

memory, the system always finds the first block/hole that is bigger than the memory size

needed, then rounds the needed size to multiple times of BLOCKSIZE and allocate it. If

the free block is larger than needed, the rest of it will be put back to linked free list.

d e f i n e B L O C K S I Z E 5 1 2

L i n k e d l i s t : s t r u c t b l o c k * h o l e s ;

block 0 block 1

liolei

S tart address N » 100 * B L O C K S IZ E en d address

Figure 22 Linked List of Block before Allocation

For case 1, assume BLOCKSIZE = 512, we need to allocate a memory chunk with size

100. Then after we allocate it the list like Figure 23.

hole:

Figure 23 Linked List of Block after Allocation

For case 2, assume a block of memory, say A, is to be freed, then the linked list can be

shown as Figure 24 and Figure 25.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Before free block A

block 1

Figure 24 Before free block A

| Figure A fte r f re e d , c o n tin u o u s b lo ck s w ill be m erg ed

holes

blockO block I

Figure 25 After free block A

7.2.2 Node Level Management

Compared to the block, the node size is much smaller than BLOCKSIZE. Each

block can hold multiple nodes and each block only holds nodes that have the same size;

and keeps a linked list for the same node-size blocks by using a LIFO algorithm. This

way, each block can use a linked list to link the free slots in the block. When de

allocating a block, the block’s memory is free and added back to a specific memory block.

Thus helps to recycle memory blocks without fragmentation. The de-allocated space will

be the first available node-sized memory for next allocation. Each block keeps a linked

list to available memory, see Figure 26.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

El
B lo ck h ea d er

N e x t ,
S i z e = 5 1 2 ,
n o d e S l - z e = 6 0 ,
a l l o c a t e d = 180
f r e e L i s t
...... I........ •• 1

4 6 3 mill

▲
1

►

Figure 26 Internal Block Structure

An array of pointers to different node-size memory blocks is shown in Figure 27.

Once we know the size of the node, we can always find the corresponding array index,

and then get to the block which has available memory space for the node. Here another

linked list is kept for the specific node-size blocks which are neither empty (ones that

should be put back to the block-level list) nor full (ones that don’t need record).

Figure 27 Blocks for Different-sized Nodes

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.3 Latency Hiding by Asynchronous Communication

It is possible to hide communication latency by using asynchronous

communication. In our system this is managed in function

ATOP_MESH_CMMPUTE(). Appendix D shows the current implementation but it is

not a fully asynchronous algorithm. After each round of computation, the system needs

communication among processors to exchange border and ghost information. The idea is

that it is not necessary to make the communication for all nodes synchronously after each

round of computation.

In order to hide the communication latency, we initiate the communication phase

to send out border data by using a non-blocking I/O API after each computation for a

partition. After having finished the computation for one partition, updated border-data

information will be sent out to corresponding processors by using border-list information

stored in the current partition. After having finished one round of computation for the last

local partition, the first finished local partition may have its updated ghost node data

ready for the next round of computation. Pseudo code for showing the algorithm is shown

in Figure 28 and more details are explained below:

1) The local mesh prepares for asynchronously receiving its ghost data for current

round by using MPIIrecvQ for each partition. Current-round ghost-cell data will

be used for computation in the next round. Since we are sending out border data

in the next step based on each partition, the receiving will be finished for each

partition separately.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2) For each partition in the local mesh, the system switches ghost data to the last

round first. Then it checks whether all asynchronous receiving function calls for

the partition in the last round have been finished. This is done by using

MPI_WAIT(). If all last-round receiving calls for the partition have finished, all

ghost-cell data of this partition is ready and the system starts to do current round

computation. After finishing the computation for the partition, all border data of

this partition will be send out asynchronously for the current round by using

MPI_Issend(), which are asynchronously received in the step 1).

3) After having finished computation, the system swaps the values of variable

current_round and variable last_round to start next computation round.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int current_round = 1; // index, current round of computation
int last_round = 0; // index, last round of computation
int send__tag;
int recv_tag;

for (int i = 0; i < max_round; i++){
1. if (i != 0){

for each ghost_list in current mesh:
//asynchronously receive node data in ghost list for

the
//next round.

recv_tag = dotage(source partition num,
local_processor_num, current^round);

M P I _ I r e c v (. . . , g h o s t _ d a t a _ p t r [c u r r e n t _ r o u n d] ,

r e o v _ t a g [c u r r e n t _ r o u n d] , . . .) ;

}

2. f o r each local partition:
1) if (i!= 0){

g h o s t _ l i s t _ i d _ a r r [l a s t _ r o u n d]

}

2) for each related ghost_list for current partition
M P I _ W A I T (t a g [l a s t _ r o u n d] . . .)

end for each

f o r each node in the partition:

node->node_data [c u r r e n t _ r o u n d]

= c o m p u t e (node->node_data [l a s t _ r o u n d]);
end for each

3) send out updated node data from current round of
compuatation.

tag = dotage(current_partition_num,
target processor num,current round);

M P I _ I s s e n d (. . . , b o r d e r _ d a t a _ p t r [c u r r e n t _ r o u n d] ,

s e n d _ t a g [c u r r e n t _ r o u n d] , . . .)

end f o r each of 2.

Swap value of current^round and last_round
}//end of for

Figure 28 Latency Fliding Algorithm

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 Discussion and Conclusion

We have fully implemented a middleware for particle-simulation applications

which can dynamically allocate resources in a time shared and space shared environment.

By re-designing and implementing the ATOP algorithm using optimizing data structures

and adding two levels of memory management, the library now is more realistic and re

usable for scientific particle simulations. Also by providing a higher-level interface to

hide lower-level implementation details, users can spend more time on simulations

instead of taking care of resource management and data migration management. Our

experiments show that our library has improved the adaptation time by 55-99 % and has

about 20% speedup from computation time by applying our data locality management to

benchmark graphs.

Chapter 6 provides some useful design approach to further optimize our runtime

library. We explained our new optimized data structures and memory management

strategy. Thus, a potential future project from our AlphaMeta group will provide the new

optimized implementation for this library, and integrate the middleware with job

scheduler and resource monitor to make the whole library more useable for real users.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A

Bibliography

[1] RD Blumofe, CF Joerg, BC Kuszmaul, CE Leiserson, Cilk: an efficient

multithreaded runtime system Proceedings of the fifth ACM SIGPLAN

symposium on Principles and practice of parallel programming table of

contents, Santa Barbara, California, United States,Pages: 207 - 216 Year of

Publication: 1995 ISSN:0362-1340

[2] E. Boman, K. Devine, R. Fleaphy, B. Hendrickson, W.F. Mitchell, M.S. John,

and C. Vaughan. Zoltan— Data-Management Services for Parallel

Applications User’s Guide. Sandia National Laboratories, 2002

[3] K. Devine, B. Hendrickson, E. Boman, M.St. John, and C. Vaughan. Design

o f dynamic load-balancing tools for parallel applications. In Proc. of the Intl.

Conference on Supercomputing, 2000

[4] P. Diniz, S, Plimpton, B. Hendrickson, and R Leland. Parallel algorithms for

dynamically partitioning unstructured grids. Proc. 7th SIAM Conf. Parallel

Proc., 1995

[5] J. Flaherty, R. Loy, C. Ozturan, M. Shephard B. Szymanski, J. Teresco, and L.

Ziantz. Parallel structures and dynamic load balancing for adaptive finite

element computation. Appl. Numer. Maths, 26:241-263, 1998

[6] Bruce Hendrickson and Robert Leland. A multilevel algorithm for partitioning

graphs. Technical Report SAND93-1301, Sandia National laboratories, 1993

[7] Kai Hwang, Zhiwei Xu Scalable Parallel Computing page 237

published by WCB McGraw-Hill 1998 ISBN 0-07-031798-4

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[8] Chao Huang, Orion Lawlor, L. V. Kale Adaptive MPI Proceedings of the 16th

International Workshop on Languages and Compilers for Parallel Computing

(LCPC 03) 2003

[9] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular

graphs. Technical Report TR95-064, Department of Computer Science,

University of Minnesota, 1995

[10] G. Karypis, K. Schloegel, and V. Kumar. PARMETIS—Parallel Graph

Partitioning and Sparse Matrix Ordering Library version 2.0, September

1998.

[11] Girija J. Narlikar and Guy E. Blelloch Space-Efficient Implementation o f

Nested Parallelism June 1997 ACM SIGPLAN Notices , Proceedings of

the sixth ACM SIGPLAN symposium on Principles and practice of parallel

programming, Volume 32 Issue 7

[12] L. Oliker and R. Biswas. PLUM: Parallel load balancing for adaptive

unstructured meshes. Journal of Parallel and Distributed Computing,

52(2): 150-177, 1998

[13] C. Ou and S. Ranka. Parallel incremental graph partitioning using linear

programming. Proceedings Supercomputing ’94, pages 458^467, 1994.

[14] C. Ou, S. Ranka, and G. Fox. Fast and parallel mapping algorithms for

irregular and adaptive problems. Journal of Supercomputing, 10:119-140,

1996

[15] A. Patra and D. Kim. Efficient mesh partitioning for adaptive hp finite element

meshes. Technical report, Dept, of Mech. Engr., SUNY at Buffalo, 1999

[16] J. Pilkington and S. Baden. Dynamic partitioning o f non-uniform structured

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

workloads with space filling curves. Technical report, Dept, of Computer

Science and Engineering, Univ. of California, 1995

[17] K. Schloegel, G. Karypis, and V. Kumar. Multilevel diffusion schemes for

repartitioning o f adaptive meshes. Journal of Parallel and Distributed

Computing, 47(2): 109-124,1997

[18] K. Schloegel, G. Karypis, and V. Kumar. Wavefront diffusion and LMSR:

Algorithms for dynamic repartitioning o f adaptive meshes. Technical Report

TR 98-034, University of Minnesota, Department of Computer Science and

Engineering, 1998

[19] K.Shen, H.Tang, and T, Yang. Adaptive two-level thread management for fast

MPI execution on shared memory machines. In Proc. ACM/IEEE Conf. on

[20] Angela C. Sodan, Lin Han, ATOP-space and time adaptation for parallel and

gird applications via flexible data partitioning, Proceedings of the 3rd

workshop on Adaptive and reflective middleware, Toronto, Ontario, Canada,

Page: 268-276, 2004

[21] A. Sohn. S-HARP: A parallel dynamic spectralpartitioner. Technical report,

Dept, of Computer and Information Science, NJIT, 1997

[22] A. Sohn and H. Simon. JOVE: A dynamic load balancing framework for

adaptive computations on an SP-2 distributed memory multiprocessor.

Technical Report 94-60, Dept, of Computer and Information Science, NJIT,

1994

[23] R. VanDriessche and D. Roose. Dynamic load balancing o f iteratively refined

grids by an enhanced spectral bisection algorithm. Technical report, Dept, of

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Computer Science, K. U. Leuven, 1995

[24] C. Walshaw, M. Cross, and M. G. Everett. Parallel dynamic graph

partitioning for adaptive unstructured meshes. Journal of Parallel and

Distributed Computing, 47(2): 102-108, 1997

[25] M. Zaki and W. Li and S. Parthasarathy, Customized Dynamic Load

Balancing for a Network o f Workstation, Journal of Parallel and Distributed

Computing, volume 43, number 2, pages 156-162, 1997

[26] The Graph Partitioning Archive,

http://staffweb.cms.gre.ac.uk/~c.walshaw/partition/

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://staffweb.cms.gre.ac.uk/~c.walshaw/partition/

APPENDIX B

Data Structures

s t r u c t M e s h

{
/ * * * * g l o b a l i n f o v a r i a b l e s * * * * /

i n t m a x _ n u m _ o f _ n o d e s ; / * t h e n u m b e r o f n o d e s f o r g l o b a l m e s h *

i n t m a x _ n u m _ o f _ e d g e s ; / * t h e n u m b e r o f e d g e s f o r g l o b a l m e s h * /

i n t m a x _ n u m _ o f _ p a r t i t i o n s ; / * N U M _ P A R T I T I O N * /

i n t n u m _ p r o c ; / * n u m b e r o f p r o c e s s o r s * /

i n t * p r o c _ i d _ a r r ; / * g l o b a l t a b l e f o r p r o c e s s o r i d o f

e v e r y n o d e * /

i n t * p a r t i t i o n n u m a r r ; / * g l o b a l t a b l e f o r p a r t i t i o n _ n u m o f

e v e r y n o d e . * /

i n t * p a r _ p r o c _ i d _ a r r ; / * g l o b a l t a b l e f o r p r o c e s s o r i d o f e a c h

p a r t i t i o n * /

/ * * * * l o c a l i n f o v a r i a b l e s * * * * /

i n t p r o c _ i d ; / * p r o c e s s o r i d w h e r e t h e m e s h l o c a t e s *

/ * * m a p p i n g t a b l e f o r l o c a l p a r t i t i o n * * /

i n t p a r _ n u m _ o f _ l o c a l s ; / * n u m b e r o f p a r t i t i o n s o n t h i s l o c a l

m e s h * /

P a r t i t i o n _ P t r * p a r _ p t r _ a r r ; / * a r r a y o f p o i n t e r s t o p a r t i t i o n s *

/ * * m a p p i n g t a b l e f o r l o c a l n o d e s * * /

i n t n u m _ o f _ l o c a l s ; / * h o w m a n y l o c a l n o d e s * /

N o d e _ P t r * n o d e _ p t r _ a r r ;

G h o s t _ L i s t * * g h o s t _ l i s t _ p t r _ a r r ; / * a r r a y o f p o i n t e r t o

g h o s t _ l i s t . * /

} ;

t y p e d e f s t r u c t M e s h M e s h ;

t y p e d e f s t r u c t M e s h * M e s h _ P t r ;

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

struct Partition{

/ * i d e n t i t y i n f o r m a t i o n f o r c u r r e n t p a r t i t i o n * /

i n t p a r t i t i o n _ n u m ; / / p a r t i t i o n g l o b a l i d

i n t p a r t i t i o n _ l o c a l _ i d ; / / i n d e x o f t h e p a r t i t i o n i n m

/ * n o d e i n f o r m a t i o n o f c u r r e n t p a r t i t i o n * /

i n t n u m _ o f _ n o d e s ; / / n u m b e r o f n o d e s i n a r t i t i o n

N o d e _ P t r * n o d e _ p t r _ a r r ; / / a n a r r a y o f n o d e _ p t r

/ * i f p a r t i t i o n i s l o c a t e d o n a a l i g n e d m e m o r y , d i f f e r e n c e w i l l

a f f e c t p a r t i t i o n d e s t r o y * /

i n t i s A l i g n e d ;

/ * b o r d e r i n f o * /

B o r d e r _ L i s t * * b o r d e r _ l i s t _ p t r _ a r r ; / * a r r a y o f p o i n t e r t o a

B o r d e r _ L i s t . * /

i n t n u m _ b o r e r _ l i s t ; / / n u m o f p r o c e s s o r s t h e p a r t i t i o n b o r d e r

i n t * b o r d e r _ p r o c _ i d ; / / a r r a y o f b o r d e r e d p r o c e s s o r i d .

/ * g h o s t i n f o * /

i n t n u m _ g h o s t _ l i s t ; / / n u m b e r o f r e l a t e d g h o s t l i s t

i n t * g h o s t _ l i s t _ i d _ a r r ; / * a r r a y o f g h o s t l i s t i d t h a t c u r r e n t

p a r t i t i o n n e e d s * /

} ;

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

struct Node
{

}

i n t g l o b a l _ i d ;

i n t l o c a l _ i d ; / * i n d e x o f t h i s n o d e i n l o c a l _ g l o b a l _ m a p a r r a y * /

i n t n u m _ a d j _ n o d e ;

i n t * a d j _ n o d e _ a r r ;

i n t i d _ i n _ j ? a r t i t i o n ;

f l o a t * e d g e _ w g t _ a r r ;

f l o a t * c o m p u _ w g t ;

c h a r s t a t u s _ f l a g :

/ * n u m b e r o f n e i g h b o u r o f t h i s n o d e * /

/ * l i s t o f a d j a c e n t n o d e s * /

/ * c o m m u n i c a t i o n a l w o r k l o a d o r e d g e

w e i g h t) f o r a d j a c e n t n o d e s * /

/ * c o m p u t a t i o n a l w o r k l o a d * /

/ * b i t - m a p f l a g v a r i a b l e f o r n o d e s t a t u s * /

v o i d * n o d e _ d a t a _ p t r [2] ; / * p o i n t e r s a r r a y p o i n t t o n o d e d a t a . * /

t y p e d e f s t r u c t N o d e N o d e ;

t y p e d e f s t r u c t N o d e * N o d e P t r ;

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

struct
{

B o r d e r _ L i s t

i n t b o r d e r _ p r o c _ i d ; / *

i n t n u m _ b o r d e r _ n o d e ; / *

i n t * g l o b a l _ i d _ a r r ; / *

i n t l i s t _ l e n g t h ; / *

c h a r * b o r d e r _ d a t a p t r [2] ;

b o r d e r t o w h i c h p r o c e s s o r * /

n u m b e r o f n o d e i n t h e b o r d e r l i s t * /

a r r a y o f b o r d e r n o d e s ' i d i n c u r r e n t

p a r t i t i o n * /

l e n g t h f o r b o r d e r l i s t , f o r m e m o r y

m a n a g e m e n t * /

/ * p o i n t e r t o a b l o c k o f m e m o r y f o r

b o r d e r n o d e d a t a * /

} ;

s t r u c t G h o s t _ L i s t

{
i n t s o u r c e _ p a r _ n u m ;

i n t n u m _ g h o s t _ n o d e ;

i n t * g l o b a l _ i d _ a r r ;

i n t l i s t _ l e n g t h ;

/ *
/ *
/ *

/ *

c h a r * g h o s t d a t a p t r [2] ; / *

g h o s t l i s t f r o m w h i c h p a r t i t i o n * /

n u m b e r o f n o d e i n t h e g h o s t l i s t * /

a r r a y o f g h o s t n o d e s ' i d f r o m t h e

g h o s t p a r t i t i o n * /

l e n g t h f o r t h e g h o s t l i s t , f o r m e m o r y

m a n a g e m e n t * /

p o i n t e r t o a b l o c k o f m e m o r y f o r g h o s t

n o d e d a t a * /

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX C

Sample Application

i n c l u d e < a t o p . h >

d e f i n e Y E S 1

t t d e f i n e N O 0

/ * ★ * * * *

* S T E P 1 . d e f i n e t w o c a l l - b a c k f u n c t i o n s

* o n e i s f o r t h e c o m p u t i n g d a t a s i z e o f e a c h n o d e .

* t h e o t h e r o n e i s c o m p u t i n g f u n c t i o n f o r e a c h n o d e .

* /

i n t n o d e _ d a t a _ s i z e ()

{
r e t u r n s i z e o f (f l o a t) * 2 ;

>

v o i d c a l c u l a t o r (A T O P _ M E S H _ P T R a t o p _ m e s h _ p t r , A T O P _ N O D E _ P T R

a t o p _ n o d e t r)

{
i n t i , n b o r _ g l o b a l _ i d ;

f l o a t * d a t a _ a r r ;

f l o a t * r e s u l t _ a r r ;

f l o a t s u m l = 0 , a v e r a g e l = 0 ;

f l o a t s u m 2 = 0 , a v e r a g e 2 = 0 ;

A T O P _ N O D E _ P T R t e m p _ n o d e _ p t r ;

/ / p r i n t f (" ---------------------------------------e n t e r i n g c a l c u l a t o r \ n ") ;

f o r (i = 0 ; i < a t o p _ n o d e _ p t r - > n u m _ a d j _ n o d e ; i + +)

{
n b o r _ g l o b a l _ i d = a t o p _ n o d e _ p t r - > a d j _ n o d e _ a r r [i] ;

t e m p _ n o d e _ p t r = A T O P _ G E T _ N O D E (a t o p _ m e s h _ p t r ,

n b o r _ g l o b a l _ i d) ;

d a t a _ a r r =

(f l o a t *) t e m p _ n o d e _ p t r - > n o d e _ d a t a _ p t r

[a t o p _ m e s h _ p t r - > o l d _ d a t a _ i n d e x] ;

s u m l + = d a t a _ a r r [0] ;

s u m 2 + = d a t a _ a r r [1] ;

}

a v e r a g e l = s u m l / a t o p _ n o d e _ p t r - > n u m _ a d j _ n o d e ;

a v e r a g e 2 = s u m 2 / a t o p _ n o d e _ p t r - > n u m _ a d j _ n o d e ;

r e s u l t _ a r r = (f l o a t *) a t o p _ n o d e _ j 3 t r - >

n o d e _ d a t a _ p t r [a t o p _ m e s h _ p t r - > n e w _ d a t a _ i n d e x] ;

r e s u l t _ a r r [0] = a v e r a g e l ;

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

result_arr[1] = average2;
}

i n t m a i n (i n t a r g c , c h a r * * a r g v)

{
i n t i , j ;

i n t m a x _ n u m _ p a r t i t i o n ;

i n t a d a p t _ l o o p = 4 ;

i n t t e s t _ l o o p = 1 0 0 0 0 ;

f l o a t * d a t a _ a r r l ;

f l o a t * d a t a _ a r r 2 ;

i n t p a r t i t i o n _ w e i g h t s _ m a t r i x [5] [5] = {

{ A T O P , 1 , 1 , 1 , 1 } ,

{ Z O L T A N , 1 , 2 , 1 , 1 } ,

{ A T O P , 1 , 1 , 0 , 0 } ,

{ A T O P , 1 , 1 , 2 , 2 } ,

{ A T O P , 1 , 1 , 1 , 1 }

} ;

c h a r * g r a p h _ n a m e = / G r a p h s / w a v e . g r a p h " ;

/ * g r a p h f i l e n a m e * /

A T O P _ N O D E _ P T R m y _ n o d e _ j p t r ;

A T O P _ M E S H _ P T R m y _ m e s h _ j > t r ;

m a x _ n u m _ p a r t i t i o n = 1 2 8 ;

jitititicicic'k'kit'kicic'kit'kii'kiciciriric'k’kie’k 'k ’k ’k ’k 'k 'k’k ’k'k'k'k'kir'k'k'k'kicit'k'k'k'k'k'kit

* S T E P 2 r e g i s t e r u s e r d e f i n e d c a l l b a c k f u n c t i o n s * /

/ * /

A T O P _ S e t _ D a t a _ S i z e _ F n (& n o d e _ d a t a _ s i z e) ;

A T O P _ S E T _ M E S H _ C O M P U T E _ F N (^ c a l c u l a t o r) ;

f'k'k'kit'k'k'k'kit'k-k-k-k'k'kick-k'k'k'klclck'kicirirlric'kic'kicicic'k'k'k-k'k'k'k'k'kic'k'k'k'k'kir/

/ * S T E P 3 i n i t i a l i z e m e s h * /

/ * /

A T O P _ E N V I R O N _ I N I T (a r g c , a r g v) ;

m y _ m e s h _ p t r = A T O P _ C R E A T E _ M E S H (g r a p h _ n a m e , m a x _ n u m _ p a r t i t i o n) ;

/ * i n i t i a l i z e n o d e d a t a f o r e v e r y n o d e * /

f o r (i = 0 ; i < m y _ m e s h _ p t r - > n u m _ o f _ g l o b a l _ n o d e s ; i + +)

{

m y _ n o d e _ p t r = A T O P _ G E T _ N O D E (m y _ m e s h _ p t r , i) ;

/ * m a k e s u r e o n l y i n i t i a l i z e d a t a o n t h e p r o c e s s o r w h i c h

o w n s t h e n o d e * /

i f (m y _ n o d e _ p t r ! = N U L L)

{
/ * i f w e n e e d f l o a t [2] f o r e a c h n o d e _ d a t a * /

d a t a a r r l = (f l o a t *) m a l l o c (s i z e o f (f l o a t) * 2) ;

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

d a t a _ a r r 2 = (f l o a t *) m a l l o c (s i z e o f (f l o a t) * 2) ;

i f (d a t a _ a r r l = = N U L L | | d a t a _ a r r 2 = = N U L L)

{
p r i n t f (" C a n n o t a l l o c a t e m e m o r y f o r n o d e d a t a ! ! \ n ") ;

e x i t (1) ;

}

d a t a _ a r r l [0] = d a t a _ a r r 2 [0] = i ;

d a t a _ a r r l [l] = d a t a a r r 2 [l] = i * 2 ;

m y _ n o d e _ p t r - > n o d e _ d a t a _ p t r [0] = d a t a _ a r r l ;

m y _ n o d e _ p t r - > n o d e _ d a t a _ p t r [1] = d a t a _ a r r 2 ;

/ / n o d e _ d i s p l a y ((N o d e P t r) m y _ n o d e _ p t r) ;

/ * S T E P 4 F i r s t A d a p t a t i o n * /

/*★************************************★★****************/

/ * f i r s t t i m e d o i n g p a r t i t i o n a n d m i g r a t i o n , p r o b a b l y d e c i d e d b y

u s e r s * /

f o r (i = 0 ; i < a d a p t _ l o o p ; i + +) {

A T O P _ A D A P T A T I O N (m y _ m e s h _ p t r , p a r t i t i o n _ w e i g h t s _ m a t r i x [i % 5]) ;

/ / m e s h _ b o r d e r _ v a l i d a t e ((M e s h _ P t r) m y _ m e s h _ p t r) ;

/ / m e s h _ v a l i d a t e _ g h o s t ((M e s h _ P t r) m y _ m e s h _ p t r) ;

/ / A T O P _ M E S H _ D I S P L A Y (m y _ m e s h _ p t r) ;

}

/ * S T E P 5 C O M P U T A T I O N * /
/ I * /

f o r (i = 0 ; i < t e s t _ l o o p ; i + +) {

A T O P _ M E S H _ C O M P U T E (m y _ m e s h _ j 5 t r) ;

/ * t h i s m e t h o d d e c i d e s t o d o a t o p p a r t i t i o n o r z o l t a n

p a r t i t i o n a n d f o l l o w i n g m i g r a t i o n * /

A T O P _ T R Y _ A D A P A T I O N (m y _ m e s h _ p t r) ;

}

/ * /

/ * S T E P 6 F i n a l i z e * /

/ / A T O P _ M E S H _ D I S P L A Y (m y _ m e s h _ p t r) ;

A T O P _ M E S H _ D E S T R O Y (m y _ m e s h _ p t r) ;

A T O P _ E N V I R O N _ D E S T R O Y () ;

r e t u r n 0 ;

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX D

ATOP_MESH_CMMPUTE()

*
f u n c t i o n : A T O P _ M E S H _ C O M P U T E ()

i n p u t : A T O P _ M E S H _ P T R

o u t p u t : v o i d

A * /

v o i d A T O P _ M E S H _ C O M P U T E (A T O P _ M E S H _ P T R a t o p _ m e s h _ j > t r)

{
i n t i , j , i n d e x ;

N o d e _ P t r n o d e _ p t r ;

A T O P _ N O D E _ P T R a t o p _ n o d e _ p t r ;

M e s h _ P t r l o c a l _ m e s h _ p t r ;

P a r t i t i o n _ P t r p a r t i t i o n _ p t r ;

i n t t a g , p a r _ p r o c _ i d ;

v o i d * b u f f e r ;

i n t b u f f e r _ s i z e ;

i n t s o u r c e _ p r o c ;

i n t t a r g e t _ j ? r o c ;

M P I _ R e q u e s t * r e q u e s t ;

M P I _ S t a t u s * s t a t u s ;

i n t c o u n t e r = 0 ;

i n t k = 0 ;

l o c a l _ m e s h _ p t r = (M e s h _ P t r) a t o p _ m e s h _ j p t r ;

r e q u e s t = (M P I _ R e q u e s t *) m a l l o c (s i z e o f (M P I _ R e q u e s t) *

l o c a l _ m e s h _ p t r - > m a x _ n u m _ o f _ p a r t i t i o n s * 2) ;

s t a t u s = (M P I _ S t a t u s *) m a l l o c (s i z e o f (M P I _ S t a t u s) *

l o c a l _ m e s h _ p t r - > m a x _ n u m _ o f _ p a r t i t i o n s * 2) ;

/ * F i r s t , a s y n c h r o n i z e d t o r e c e i v e t h o s e i n c o m e g h o s t i n f o * /

f o r (i = 0 ; i < l o c a l _ m e s h _ p t r - > m a x _ n u m _ o f _ p a r t i t i o n s ; i + +)

{
i f (l o c a l _ m e s h _ p t r - > g h o s t _ p a r _ i d _ a r r [i] = = T R U E)

{
/ * n e e d u p d a t e d b o r d e r d a t a f r o m t h i s p a r t i t i o n * /

p a r _ p r o c _ i d = l o c a l _ m e s h _ p t r - > p a r _ p r o c _ i d _ a r r [i] ;

t a g = 1 0 0 0 * (m e s h P t r - > p r o c _ i d + 1) + i ;

b u f f e r = l o c a l _ m e s h _ p t r - > i n d e x _ i n _ b u f f e r _ a r r [i] ;

b u f f e r _ s i z e = l o c a l _ m e s h _ p t r - > n u m _ g h o s t _ a r r [i]

* n o d e d a t a s i z e o f () ;

M P I _ I r e c v (b u f f e r , b u f f e r _ s i z e , M P I _ C H A R ,

p a r _ p r o c _ i d , t a g , M P I _ C O M M _ W O R L D ,

f i r e q u e s t [c o u n t e r + +]) ;

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mesh_update_ghost(local_mesh_ptr);

/* Do computing for each local partition*/
for (i = 0; i < local_mesh_ptr->par_num_of_locals; i++)
{

/* take a local partition */
partition_ptr = local_mesh_ptr->

par_ptr_arr[local_mesh_ptr->par_local_global_map[i]]
for (j = 0; j < partition_j?tr->num_of_nodes; j++)
{

node_ptr = partition_ptr->node_ptr_arr[j];
atop_node_ptr = (ATOP_NODE_PTR) node_ptr;
 calculator(atop_mesh_ptr,atop_node_ptr);
if(node_ptr->isBorderCell)
{

mesh_update_border_data(node_ptr,
local_mesh_ptr);

}
}

/* update those ghost cells belongs to this partitions */
for (j = 0; j < partition_ptr->num_j?roc; j++)
{

mesh_collect_border_data(partition_ptr);
if(partition_ptr->bordered_proc_id_arr[j] == TRUE)
{

/* this tag will be the same as that from
receiving processor */

tag = (j + 1) * 1 0 0 0 +

partition_ptr->partition_num;
buffer = partition_ptr->start_index_arr[j];
buffer_size =

partition_ptr->num_bordered_node_arr[j]
node data sizeof();

M P I _ I s s e n d (b u f f e r , b u f f e r _ s i z e ,

M P I _ C H A R , j , t a g ,

M P I _ C O M M _ W O R L D , S r e q u e s t [c o u n t e r + +]) ;

}
} / / f o r l o o p j

} / / f o r l o o p i

/ * s y n c h r o n i z e a l l r e q u e s t * /

i f (c o u n t e r > 0) {

/ / M P I _ W a i t a l l (c o u n t e r , r e q u e s t , s t a t u s) ;

f o r (i = 0 ; i < c o u n t e r ; i + +)

{
M P I _ W a i t (& r e q u e s t [i] , & s t a t u s [i]) ;

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}
}

/*after finish a round of computation, swap new data index and
old_data_index */

mesh_data_index_swap(local_mesh_ptr);

free(request);
free(status);

}

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX E

Vita Auctoris

Name:

Place of Birth:

Education:

Yu Zou

Da Zhu County, P.R. China,

2007 M.Sc., Computer Science

University of Windsor

Ontario, Canada

2003 B.Sc., Computer Science

University of Windsor

Ontario, Canada

1995 M.A. Economics

Southwestern University of Finance and Economics

Chengdu, China

1989 B.E.Eng

SouthEast University

Nanjing, China

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	University of Windsor
	Scholarship at UWindsor
	1-1-2007

	The extensible runtime infrastructure for particle simulations with data-space management and adaptive resource allocation.
	Yu Zou
	Recommended Citation

	tmp.1507664919.pdf.ElcGC

