
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2011

Salient Search
Jonathan Vermette
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Vermette, Jonathan, "Salient Search" (2011). Electronic Theses and Dissertations. 342.
https://scholar.uwindsor.ca/etd/342

https://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F342&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F342&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F342&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/342?utm_source=scholar.uwindsor.ca%2Fetd%2F342&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

SALIENT SEARCH

by

JONATHAN VERMETTE

A Thesis
Submitted to the Faculty of Graduate Studies

through Computer Science
in Partial Fulfilment of the Requirements for

the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada

2011

c© 2011 JONATHAN VERMETTE

SALIENT SEARCH

by

JONATHAN VERMETTE

APPROVED BY:

Dr. Phil Graniero
Department of Earth and Environmental Sciences

Dr. Dan Wu
School of Computer Science

Dr. Scott Goodwin
School of Computer Science

Dr. Subir Bandyopadhyay
Chair of Defense

School of Computer Science

May 19, 2011

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis

has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my

thesis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

iii

Abstract

All real-time pathfinding algorithms suffer from some degree of suboptimal behaviour

on the part of the agent. A consequence of the need to perform a move before it is

guaranteed to be optimal, this is inversely proportional to the amount of effort given

to planning between each move.

Many real-time algorithms employ a constant-bounded local search to plan a single

move at a time. However they need multiple trials to converge on an optimal solution.

More recent hierarchical approaches produce good results after a single trial, but rely

on extensive pre-processing, limiting their use in dynamic environments. A newer

algorithm, Time Bounded A*, conducts a global A* to find an optimal path on the

first trial, while creating partial paths for an agent to follow. However, harder search

problems can induce the appearance of indecisiveness on the part of the agent as all

of its time is spent moving back and forth between subgoals.

To remedy this, we introduce Salient Search. This algorithm adds new features

to TBA* to track and dedicate search effort to a given subsection of the open list.

Experiments on maps taken from popular computer games show that for small plan-

ning slices, Salient Search reduces the indecisiveness shown by an agent. Further, the

effect is stronger on more difficult problems.

iv

Dedication

To Jennifer...

v

Acknowledgements

I would first like to thank my supervisor, Dr. Scott Goodwin for inviting me to work

in Game AI, and providing plenty of guidance and direction during my time as a

graduate student. He has helped me win an argument that has gone on between

parents and kids all over: All those years playing video games, instead of being a

waste of my time have put me on the path to a satisfying and challenging career.

I would like to the thank the members of the thesis committee for taking time out

of their schedules to review this thesis, and for providing valuable feedback during

the proposal. Their suggestions guided this work.

Special thanks goes to Dr. Nathan Sturtevant, previously of the University of

Alberta, for replying to my early enquiries into his work and for providing access to

the code repository for his Hierarchical Open Graph project. The dataset of maps

used in this thesis were derived from the set provided through this framework.

Finally, I would like to thank the Montana’s restaurant of Windsor, Ontario for

providing table coverings that patrons are encouraged to draw on. It was here while

having lunch one afternoon that Dr. Goodwin and I sketched out the initial idea that

became Salient Search. And sketch is the key word. From this meeting I suspect

that this thesis has the curious distinction of being among the first to be conceived

in crayon and butcher’s paper.

I would thank my peers as well as the reader for not drawing undue conclusions of

the inherent quality of a crayon-based thesis.

vi

Table of Contents

Page

Author’s Declaration of Originality . iii

Abstract . iv

Dedication . v

Acknowledgements . vi

List of Tables . x

List of Figures . xi

List of Algorithms . xiii

Glossary . xiv

Chapter

1 Introduction . 1

1.1 Problem Domain . 1

1.2 Contribution of this Thesis . 3

1.3 Organization of this Thesis . 4

2 Real-time Pathfinding . 5

2.1 A* . 5

2.2 Learning Real-Time Algorithms . 7

2.2.1 LRTA* . 7

2.2.2 K LRTA* . 10

2.2.3 LRTA*(k) . 10

2.2.4 RTAA* . 11

vii

2.2.5 P-LRTA* . 11

2.3 Hierarchical Real-Time Algorithms 12

2.3.1 PR LRTA* . 14

2.3.2 D LRTA* . 15

2.4 Time-Bounded A* . 16

2.4.1 Planning . 18

2.4.2 Execution . 20

2.4.3 Real-Time Claim . 20

2.5 Summary . 22

3 Salient Search . 23

3.1 Motivation . 23

3.1.1 Why ‘Salient’ Search . 26

3.2 Salient Expansion . 27

3.2.1 The Salient List . 28

3.2.2 Allocating Work - NS . 33

3.3 Subgoal Selection by Strategy . 34

3.3.1 Simple Tie-Breaking . 35

3.3.2 Agent Heuristic Distance . 36

3.4 Summary . 37

4 Experimental Setup and Analysis 38

4.1 Problem Domain . 38

4.1.1 Assumptions . 41

4.1.2 Search Pair Generation . 42

4.1.3 Heuristics Used . 42

4.1.4 Parameters . 43

4.2 Results . 44

4.3 Analysis of Results . 47

4.3.1 Path Quality . 47

viii

4.3.2 Suboptimality of Travel . 48

4.3.3 Back-stepping Behaviour . 51

4.4 Performance on Harder Problems . 57

4.5 Summary . 63

5 Conclusion . 65

5.1 Future work . 67

References . 68

Appendices

A Additional Figures and Tables . 73

B Maps . 77

Vita Auctoris . 83

ix

List of Tables

4.1 NS Values . 43

4.2 Travel Ratio of TBA* . 48

4.3 Travel Ratio of Salient Search . 48

4.4 Mean Backwards Steps for Agents in SS, TBA* 53

4.5 ANOVA For Backwards Steps . 53

4.6 Mean Changes in Direction of Travel for SS, TBA* 56

4.7 ANOVA For Changes in Direction . 56

4.8 Mean Backwards Steps for Agents in SS, TBA* On Harder Maps . . 61

4.9 ANOVA For Backwards Steps On Harder Maps 61

4.10 Mean Changes in Direction of Travel For SS, TBA* On Harder Maps 62

4.11 ANOVA For Changes In Direction of Travel On Harder Maps 63

A.1 Heuristic Error Breakdown By Map 75

A.2 Travel Ratio of Salient Search on Cardinal Grid-Type 75

A.3 Travel Ratio of TBA* on Cardinal Grid-Type 76

x

List of Figures

1.1 Types of Problem Domains . 2

2.1 A* In Action. 6

2.2 A Heuristic Depression for LRTA* . 9

2.3 An Example of Graph Abstraction 13

2.4 PR LRTA* . 15

2.5 Illustration of Successive Subgoals of TBA* 19

2.6 Agent Backtracking in TBA* . 20

3.1 Successive Paths With No Common Section. 24

3.2 An Agent Moving Towards Subgoal g 25

3.3 Visual Representation of a Salient . 26

3.4 The Salient on a Search Tree . 29

3.5 The Salient List . 32

4.1 An Example Map . 39

4.2 Grid Types . 39

4.3 Illustration of Corner Cutting . 40

4.4 Histrogram of A* Costs For Different Map Styles 44

4.5 Scatterplot of Heuristic Error. 46

4.6 Travel Ratio of Salient Search With AD Strategy 49

4.7 Travel Ratio of Salient Search With TB Strategy 50

xi

4.8 Two Different Behaviours From Travel Paths. 52

4.9 A Forking Path. 55

4.10 Backtracking Behaviours . 57

4.11 Four Maps With Harder Searches . 58

4.12 Travel Ratios on Harder Maps . 59

xii

List of Algorithms

1 A* . 5

2 Learning Real-Time A* (LRTA*) . 8

3 Priortized LRTA* (P-LRTA*) . 12

4 Time Bounded A* (TBA*) . 17

5 Salient Search . 30

6 SalientA∗(lists, start, goal, NE, NS) 31

7 Salient Search: expandNext . 31

8 Salient Search: expandSalient . 32

xiii

Glossary

A*

An informed search algorithm. A best-first algorithm, notable for being opti-

mally efficient ; A* expands the fewest number of nodes while guaranteeing the

path found is optimal.

backtracking

A move made by an agent in real-time pathfinding to return to a previously

visited node, in pursuit of a new subgoal.

closed list

A data structure used in pathfinding algorithms to identify search nodes that

have already been expanded.

heuristic

A function to estimate the optimal distance between two nodes or states in a

problem space. Heuristic functions that never overestimate the optimal distance

are said to be admissible, and important property.

heuristic error

The difference between a heuristic estimate and the true optimal cost between

two nodes or states in a problem space.

learning real-time search

Search algorithms that repeatedly revisit values to update them and converge

xiv

to their ‘true’ value. LRTA* is a notable example.

most promising node

The next node to be expanded in best-first search. In A*, the most promising

node is the node on the open list with the lowest f -score. In TBA*, the most

promising node at different points in time form the endpoints of the various

paths created.

octile grid

A two-dimensional grid space where diagonal moves are permitted.

optimal path

Between two points, the optimal path is that which has the lowest cost to

traverse.

open list

A data structure used in pathfinding algorithms to identify search nodes that

are ready to be expanded.

pathfinding

The problem of identifying a series of moves or transformations in a problem

space that produces a desired state or solution.

real-time pathfinding

Any pathfinding algorithm that incorporates both planning and execution by

an agent, while guaranteeing a constant bound on the amount of planning for

every execution, independent of the size of the problem space.

resource limit

A limit defining the bound on planning in a real-time algorithm.

salient

The subtree of the explored search space that are successors of the salient root.

xv

salient expansion

Node expansion conducted on nodes defined by the salient list.

salient list

The data structure that describes which nodes on the open list are part of the

salient.

salient search

A real-time pathfinding algorithm derived from TBA*.

salient root

The node that initially describes a salient. When expanded, all successor nodes

are referenced by the salient list.

strategy

A decision function to choose between the best nodes of the open and salient

lists.

subgoal

Some intermediate destination node that the agent is moving towards, and not

necessarily the stated goal of the problem

suboptimality

The ratio to which a path between two points is greater in cost than the optimal.

time bounded A*

A real-time pathfinding algorithm. Notable for employing a global search tech-

nique while ensuring a constant bound on planning.

travel ratio

The ratio between the cost of the solution path, and the total cost incurred by

the agent reaching the goal.

xvi

Chapter 1

Introduction

1.1 Problem Domain

This is a thesis on pathfinding. Broadly speaking, pathfinding is the problem of

determining a series of moves or transformations (the path) that results in a solution

state. Examples include moving through an environment in a computer game to

some desired destination, a series of commands to manipulate a robotic arm to a

given configuration, or the fewest moves to a checkmate of an opponent in chess.

Pathfinding algorithms can be applied to any problem that can be expressed in terms

of a weighted, directed graph where each possible state of a problem is expressed in

terms of a node. In general, a pathfinding problem can be expressed by the tuple

{P ,S,G, E , h}, where:

• P is the problem space or domain. The complete set of possible states, or nodes,

of the problem.

• S is the initial or start state or node.

• G is the goal node(s).

• E is the succession operator, which gives a set of valid transitions and associated

costs in P .

1

Figure 1.1: Game trees and Virtual Spaces, two types of problem domains where
pathfinding applies.

• h is a heuristic function.

Two examples of problem domains are illustrated in Figure 1.1. On the left is a

portion of a game tree for Tic-Tac-Toe. From the initial empty board at the beginning

of the game, a series of moves are possible alternating the placement of X’s and O’s

on the board, creating successive configurations. Each possible configuration of X’s

and O’s comprises a single state in this game tree. A goal state would be any state

with three X’s or 3 O’s in a row, depending on which is desired. If the symmetrical

configurations† are collapsed into a single state, then the game tree for Tic-Tac-Toe

is actually quite small [Dew89]. Other examples of games that are readily described

by game trees include Chess, Checkers, Go, or puzzles like the 8-puzzle or a Rubik’s

Cube.

On the right is an example of a virtual space: a grid-based map taken from a

computer game [CSE00] that is used later in this thesis. In a virtual space such as

this, states are each (x, y) coordinate cell, and edges defined for each move between

adjacent cells.

This thesis works in a subset of pathfinding, known as real-time pathfinding.

Real-time pathfinding algorithms incorporate an agent performing transformations

†For example, the topmost state represents four different legal moves in the game, if one rotates
the board to see the other moves.

2

alongside the search for a solution. Also, by the definition in [BSLY07], a real-time

pathfinding algorithm is one that can perform a constant amount of work between a

given time interval, regardless of the size of the problem space. More detail on the

definition is in [Koe01].

[BSLY07] notes that the real-time pathfinding algorithms remain important in

robotics (citing [KS98, Koe98, KTN+99, KTS03]) and video games. Robotics systems

are known to use variants of the D* algorithm [Ste94], including D*-Lite and AD*

[KL02, LFG+05, FHL08], especially autonomous vehicle navigation.

1.2 Contribution of this Thesis

In this thesis we introduce a variant of real-time heuristic search dubbed Salient

Search. This algorithm builds on the Time Bounded A* (TBA*) algorithm [BBS09].

Salient Search allows for targeted expansions of a chosen subset of the open list

through the use of a secondary data structure, while preserving the constant time

guarantees that define real-time pathfinding. Also used is a secondary function called

a strategy to influence intermediate goal selection and weighting of the open list. In

addition to describing Salient Search, this thesis provides the results of an empirical

analysis of Salient Search versus TBA*.

All real-time pathfinding algorithms suffer from some degree of suboptimal be-

haviour on the part of the agent. A consequence of the need to perform a move

before it is guaranteed to be optimal, this is inversely proportional to the amount of

effort given to planning between each move. In certain applications like large scale

crowd simulation or real-time strategy computer games, computing time devoted to

pathfinding must be further divided up amongst many agents, each with their own

separate search problems. As a result, the limited computational budget magnifies

the scale of this suboptimal behaviour.

For TBA*, multiple paths are created over the lifetime of a search. With more

3

difficult search and/or small planning windows, the paths can be wildly divergent,

sharing no common portion beyond their starting location. In this circumstance, an

agent would make little progress before requiring a return to the starting location

to continue forward. This indecisiveness or ‘squirreliness’ on the part of the agent is

undesirable in the context of computer games. A user witnessing such behaviour may

issue an additional search command thinking something is wrong, effectively throwing

away any progress made as search begins anew.

The algorithm proposed in this thesis, Salient Search, performs better than TBA*

in avoiding this behaviour for small planning windows. The experiments presented

in Chapter 4 show that the features introduced in Salient Search cause an agent to

change direction fewer times than they would using TBA*. Further, the effect is

stronger with more difficult problems.

1.3 Organization of this Thesis

The rest of this thesis is organised as follows: in Chapter 2 a brief overview of real-

time pathfinding is provided. Several milestone techniques in the field are described,

showing the evolution of real-time pathfinding. An in-depth look at TBA* finishes

the review of past techniques. TBA* is a recent algorithm from which Salient Search

is derived. Chapter 3 introduces the Salient Search algorithm itself, which forms the

main contribution of this thesis. The two distinguishing features of the algorithm

are the Salient List and Salient Strategy. Chapter 4 presents an empirical study

of Salient Search. This study compares the behaviour of Salient Search against its

parent algorithm, TBA*. Chapter 5 provides some concluding remarks, as well as

observations on possible future work with Salient Search.

Ending this thesis are appendices with additional information. Appendix A con-

tains tables of additional data not directly discussed in the body of the thesis. Ap-

pendix B is an index of all the maps that were used to conduct the empirical study.

4

Chapter 2

Real-time Pathfinding

2.1 A*

The most widely known best-first search algorithm is the A* algorithm, introduced

by Hart in [HNR68].

Algorithm 1 A*

1: add Start to OPEN
2: goalFound← false

3: while OPEN 6= empty AND Goal not found do
4: next← OPEN with lowest f
5: neighbours← expand next

6: add next to CLOSED
7: for all neighbour in neighbours do
8: if CLOSED contains neighbour then
9: continue
10: else if OPEN contains neighbour then
11: update neighbour

12: else
13: add neighbour to OPEN
14: end if
15: end for
16: end while

Algorithm 1 is the pseudocode for A*. At the beginning of A* search, the closed

list is empty, and the only node on the open list is the starting node. This first node is

5

expanded - its neighbors have their f -scores calculated and are placed onto the open

list (lines 7-15).

The next node from the open list is the one with the best (e.g. lowest) f -score,

and similarly processed (lines 4-6). This process is repeated until either the goal is

reached or the open list is first exhausted (line 3).

When the goal is found to be reachable from the start, a path is traced backwards

from the goal. This is accomplished by having each node maintaining a parent refer-

ence to the node that produced it. In this way the open and closed lists form a tree

data structure, with the open list forming the leaf nodes, and the starting location as

the root.

S

G

���
���
���

���
���
���

��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���

���
���
���

��
��
��
��
���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

S

G

Figure 2.1: A snapshot of A* in action finding a solution from S to G. A* uses the
open list to process or ‘expand’ nodes in a best-first fashion, adding to or updating
neighbouring nodes on the open list where necessary. Processed nodes are put onto
the closed list. Here, closed list nodes are shaded gray, surrounded by open list nodes
(the hatched nodes) to be processed.

Calculating f(n)

As mentioned, determining the ordering of expansion is determined by calculating a

score for each node n. In A* this equation takes the form of f(n):

f(n) = g(n) + h(n)

6

g(n) is the traversal cost, exactly how much it costs to transition to n from the starting

state by adding up all costs in between. This is determined by g(n) for the parent

state plus the transition cost to this state from the parent state. For the starting

node g(n) = 0.

h(n) is the heuristic function. This function is an informed ‘guess’ as to how

much it will cost to transition to the goal state from n. In other words, an estimate of

g(goal)− g(n). Heuristics are usually described in terms of the transition costs. For

example, for a Rubik’s cube where each state describes a configuration of the faces,

the cost and transitions can be the number of and type of planar rotations of the toy.

A (not efficient) example of a heuristic for a Rubik’s cube would be a count of the

number of faces solved; positioned and oriented as they would be in the finished cube.

In a computer game, it may be the Euclidean† distance between two coordinates. In

chess, it could be the number of legal moves between the current and desired layout

of pieces on the board.

2.2 Learning Real-Time Algorithms

2.2.1 LRTA*

Richard Korf noted the exponential running time to find a solution as a serious

drawback of A*. Also problematic was the need to wait for the complete solution to

be found by the algorithm before an agent could make any move. Noting that solutions

that can be found quickly but are not necessarily optimal (such an algorithm is often

both satisfactory and sufficient, or satisficing according to Herbert Simon [Sim96]),

Korf addressed these limitations in [Kor90] by introducing one of the first real-time

search algorithms, Learning Real-Time A* (LRTA*).

In LRTA*, every iteration from the beginning involves a search from the agent’s

†Straight line.

7

Algorithm 2 LRTA*

1: while loc 6= goal do
2: breadth-first search to depth d from loc

3: identify S ′ with lowest f -score from loc
4: h(loc, goal)← max(h(loc, goal), g(loc, S ′) + h(S ′, goal))
5: move towards S ′

6: end while

current location out to all nodes up to d states away.

It is in setting a maximal depth bound that LRTA* claims real-time performance.

Although breadth-first search is known for a branching factor b to be of complexity

O(bd), fixing the depth places a constant upper bound on the number of expansions

for a given branching factor. The search tree produced in iteration is not carried over

to the next iteration. By not retaining the tree, the amount of time to perform a

certain number of expansions does not change across iterations. Adjusting the value

of d however is still subject to the expected combinatorial explosion.

During expansion, every node is evaluated with the same scoring function used in

A*, f(n) = g(n) + h(n). However, the values for g and h take on a slightly different

meaning. In A*, g(n) is the actual optimum cost to arrive at n from the starting

location. In LRTA* however, g is the cost to n from the agent’s current location.

Thus, this score is only valid until a move is made by the agent‡.

For h(n), initially this value is the heuristic cost from n to the goal, the same as

A*. However, this changes after the agent makes a move. Once all the nodes with

the agent’s d-neighbourhood are evaluated, LRTA* chooses the node with the lowest

f -value as the subgoal for that iteration, and the agent makes a move towards this

goal. It is here where LRTA* differs from A* for heuristic scores.

If the agent was at node a and LRTA* dictates a move towards node b, the value

of h(a) is updated to match h(b)§. Doing so serves the following purpose: if the

‡This is also technically the case for A* since the agent does not move until the algorithm
completes.

§Current h scores for every node get stored in a hash table for later lookup.

8

Figure 2.2: An example of a heuristic depression [Ish92] encountered with LRTA*.
Moving from S to G, an agent will be ‘trapped’ in the shaded area until heuristic
scores within it become sufficiently high.

progression of the algorithm causes the agent to return to a, the extra work needed

to return is remembered in the heuristic score. This key insight allows an agent using

LRTA* to search out of a local minimum if no path to the goal is found within it.

Since LRTA* assumes the use of an admissible heuristic, the initial heuristic value

is assured to be no more than the true cost h∗ for a node. Because of this, over time

the subsequent updates to the heuristic for n approach h∗(n). Over multiple runs,

heuristic scores are updated less and less as they approach the true cost to the goal,

and the agent follows a more optimal path to the goal. The optimal path from start

to goal is found when no updates are necessary in a given run.

It has been noted however that the first-run performance of LRTA* can be quite

poor. Korf noted that if an agent is inside a local minimum surrounded by states

with higher scores, then LRTA* will ‘bounce back and forth ... until it “fills in the

hole”, ... at which point it will escape to the rest of the graph.’ Ishida has shown that

the number of runs to determine an optimal path (the convergence process) can take

quite some time due to what he termed heuristic depressions [Ish92]. These are areas

in the problem space that have to be ‘filled’ with the true heuristic scores before an

agent can learn its way out. Figure 2.2 shows an example of such a depression.

Because first-run performance in turn affects the rate of convergence to an optimal

path, subsequent work in real-time pathfinding has been largely devoted to developing

9

variants to LRTA* that return better results after the initial run.

2.2.2 K LRTA*

Koenig introduced a variant LRTA* to improve first-run performance in [Koe04] that

has since been referred to as K LRTA*. In this new algorithm, the breadth-first local

search approach of LRTA* is replaced with an A*-shaped search that terminates

after n expansions. This local A* is conducted from the agent’s current location

towards the goal state. Once search is concluded, the minimum path between the

current location and the node with the minimum score along the local search fringe is

followed, much like LRTA*. However, instead of a single step the agent moves along

this path until it reaches the end at the fringe of the A* search, or it is found that

the path is invalid due to an obstacle because of the freespace assumption. Updates

of heuristic scores are done within the local space defined by the closed list after the

A*’s n iterations. The h scores are updated for all nodes in the closed list. The scores

of these nodes are updated using Dijkstra’s algorithm [Dij59].

2.2.3 LRTA*(k)

LRTA*(k) was proposed by Hernández and Meseguer in [HM05] to speed up changes

to heuristic scoring. They proposed allowing up to k updates to heuristic scores per

step, beyond the single heuristic update in LRTA*. In this variant, when the heuristic

value of some node v is updated, then the successor states of v are also considered,

up to a maximum of k successors. This bound of k contrasts K LRTA* where, in

the worst case, the number of potential updates are the complete closed list of the

A* space, which is bounded by the branching factor of the search space after the n

expansions. It is not necessarily the case that the k nodes are distinct; a single node

can be reconsidered multiple times, with each consideration counting towards the k

updates. An additional condition is that updates can only occur on nodes that have

10

been previously visited by the agent. The order of consideration is handled with a

queue. The authors note that with k = 1, their algorithm is simply LRTA*, as the

only heuristic considered for some iteration is the one being left by the agent.

Later in [HM07], Hernández and Meseguer relaxed the constraint on updates only

applied to previously visited nodes. Instead, the k updates can apply anywhere

in the local space. This updated variant was termed LRTA*LS(k). Relaxing this

constraint increased the convergence speed to an optimal path over their original

implementation.

2.2.4 RTAA*

Koenig proposed another variant called Real-time Adaptive A* (RTAA*) in [KL06].

This variant builds on the previous K LRTA* in [Koe04]. Instead of conducting a

second Dijkstra search inside the space explored by each A* shaped search to update

heuristics, Koenig proposed that RTAA* utilise scores from the A* search directly.

This was a further improvement over K LRTA*.

2.2.5 P-LRTA*

Rayner et al. proposed Prioritised-LRTA* (P-LRTA*) in [RDB+07]. The pseudocode

of P-LRTA* is shown in Algorithm 3. At the start of each search iteration, P-LRTA*

examines only the immediate neighbours of the current state (i.e., breadth-first search

of depth 1) and looks at the neighbour with the best f -score. This node is placed into

a priority queue, with priority equal to the magnitude of the heuristic change. Local

search is conducted by processing this priority queue, with a node’s neighbors being

placed onto the queue when it is processed. The agent chooses a move to the most

promising neighboring node of its current location after the queue has been processed

up to n times. P-LRTA* has several differences to other LRTA*-based algorithms.

The queue is not emptied after every move (lowest magnitude nodes are dropped

11

if the queue is full), and unlike LRTA*(k) duplicate entries are not allowed in the

queue. Rayner also notes that because the queue persists across moves, the ‘shape’

of the update space is not well defined or necessarily contiguous, unlike K-LRTA*’s

A* shaped space.

Algorithm 3 P-LRTA*

1: while loc 6= goal do
2: update(loc)
3: for 1..N , queue not empty do
4: next ← queue.pop()
5: update(next)
6: queue.push(successors(next))
7: end for
8: loc← minneighbor(loc)
9: end while

2.3 Hierarchical Real-Time Algorithms

There has also been a body of work into real-time heuristic search that leverages the

use of abstraction techniques. This has led to multiple additions to the family of

algorithms, some of which are also based on the work of LRTA*.

Hierarchical pathfinding draws its motivation from the way people naturally plan

out trips at different levels of detail. [BMS04] gives the example of planning a trip

from a particular address in Los Angeles to one in Toronto. Given a complete, high

detail map of the entire North America road network, A* would be used to determine

the shortest route down to the metre, but given the scale of the problem this would

be highly impractical. Instead, a human planner plans a more abstract route between

cities, with the low level detail of navigating individual streets left undetermined until

they enter a particular city.

It is this style of planning that is used in Hierarchical Path-Finding A* (HPA*)

applied to two-dimensional grids. The problem space is separated into rectangular

12

Figure 2.3: An example of graph abstraction. The grid cells are partitioned into
rectangular clusters, denoted by the dashed lines.

spaces in a regular fashion, with all nodes inside a rectangle comprising a cluster,

as seen in Figure 2.3. An abstraction of these clusters is produced by identifying

nodes along the border of these clusters that are adjacent to other such nodes in

neighboring clusters. Nodes of the abstracted graph are correlated to these cells.

Edges are between all nodes common to a cluster by identifying an optimal path

between these points. Valid paths are limited to those that are enclosed entirely

within the cluster. The cost of the edge is defined as the cost of the optimum path

between the nodes. Intra-cluster connections are defined by joining the two adjacent

nodes of a cluster pair with an edge.

The resultant collection of nodes and edges produces a highly relaxed version

of the original grid. This abstract grid itself can be abstracted again producing

an even more abstract grid; the process could be repeated until the entire problem

space is abstracted to a single node, producing a hierarchy of abstraction levels. The

underlying grid is level 0 (L0). For a full detail map of the North American road

network, L0 would correspond to the individual streets. The initial abstraction is L1,

and subsequent abstractions L2, L3, and so on. This could correspond to abstractions

to the level of individual cities, then counties, then abstracted to states and provinces,

13

then countries. The topmost abstraction would encompass the entire network.

Pathfinding on this hierarchy of abstractions occurs in a top-down approach.

Given start and goal locations S and G, the cluster(s) they belong to are identi-

fied and a path is planned between them using the edges of the abstract level. This is

followed by a series of refinements as each path edge is defined by a path traversing

the cluster(s) at the next lowest level of abstraction. This refinement continues down

to L0.

If Sk
u is understood to be a node u in level k, with the cost of an edge Ek

uv between

u and another node v, the path for this edge on level k − 1 can be cached.

HPA* however does not qualify as a real-time pathfinding algorithm. While the

grid abstractions bring a divide and conquer approach to heuristic search, there is no

constant bound on planning for any given level. At the lowest level, paths between

grid clusters are still traced out with classic A*. This style of pathfinding remains

subject to problem size.

2.3.1 PR LRTA*

State abstraction for real-time search was applied in [BSLY07] which introduced a

new LRTA* variant called Path Refinement Learning Real-Time Search (PR-LRTS,

later referred to as PR-LRTA* [BBS09]).

Instead of producing an abstraction by cutting up the L0 grid into rectangular

clusters, PR LRTA* abstracts groups of nodes by cliques of completely connected

nodes, a technique described in [SB05].

PR LRTA* builds of abstraction hierarchy using the clique technique from HPA*,

up to l levels of abstraction. LRTA* search is then conducted in this abstract space.

Because the states that LRTA* are working on are at an abstract level, this single

move is potentially a path of multiple moves at the ground level grid. In this corridor

at the ground state, A* search is conducted to determine how the agent should move

to complete the move at the higher abstraction. Figure 2.4 illustrates this. L0 is

14

(a) L2 (b) L1 (c) L0

Figure 2.4: Corridor produced by applying LRTA* to an abstract hierarchy in PR
LRTA*. A move determined by LRTA* at the top-level abstraction (a) defines a
corridor for A* search at the ground-level abstraction (c).

the original search graph, with successive abstraction layers L1 and L2. If LRTA*

determines a move between the two unshaded nodes in L2, this defines the unshaded

corridor in L0 to define the boundary for A* search. This process repeats until the

top level LRTA* search defines a corridor reaching the goal.

Real-Time performance is guaranteed the same way it is assured for LRTA*. With

the LRTA* search limited to a maximum depth, an upper bound is effectively placed

on the maximum size of the corridor at the ground level, regardless of the actual

layout. This places a constant bound on the number of A* expansions performed at

the ground level.

2.3.2 D LRTA*

D LRTA* [BLS+08] is a rather significant departure from classic LRTA*, incorpo-

rating several ideas into a single algorithm. Whereas LRTA* searches out all nodes

up to d steps away, D LRTA* searches out to d′ steps, where d′ can be dynamically

adjusted every iteration. The value to use for d′ on any particular iteration is de-

15

termined though the use of a classifier. This classifier takes in information about

the agent’s recent performance and makes a constant time decision as to what the

depth should be. The classifier described uses several statistics easily computed in

real-time, including the heuristic estimate of the agent’s current distance to the goal.

Real time behaviour is assured by placing an upper bound on d′, which thus places

a constant upper bound on the number of expansions for a branching factor. This is

the same idea behind the real-time claims of LRTA* or PR LRTA*.

The second characteristic to D LRTA* is the use of a database to store previously

computed partial solutions. Here, the problem space is abstracted to some level Ll

using a clique abstraction. Then, for each pair of l nodes, the first action to take

between each is calculated and stored. Because the l nodes are an abstraction of

many nodes at L0, a representative node from L0 is chosen here for its respective l

node.

2.4 Time-Bounded A*

While the introduction of abstraction hierarchies produced results with an order of

magnitude improvement over LRTA*, this does come at some cost. Abstraction

hierarchies are resistant to use on dynamic maps. Any change at the base grid L0

can affect edge costs for the next level, forcing re-computation of the abstract graph.

In the worst case the change of a cut-edge can affect the abstraction hierarchy in

its entirety. With algorithms like D LRTA*, which relies quite heavily on the off-

line computation of a pattern database, extensive re-computation happens for even a

single map [BBS09].

This led to the introduction of TBA*, a real-time algorithm that does not use

the abstraction hierarchies or learning approaches described in the previous sections.

Rather, TBA* is best described as a version of time-sliced A* (A* that can be halted

and resumed) that meets the guarantees of a real-time search algorithm. This sec-

16

tion will provide a somewhat detailed explanation of how TBA* works. As it is a

recently introduced algorithm, much of the following information in this section is

taken directly from [BBS09].

Algorithm 4 TBA* (start, goal, P) from [BBS09]

1: solutionFound← false

2: solutionFoundAndTraced← false

3: doneTrace← true

4: loc← start

5: while loc 6= goal do
6: if not solutionFound then
7: solutionFound← A∗(lists, start, goal, NE)
8: end if
9: if not solutionFoundAndTraced then
10: if doneTrace then
11: pathNew ← lists.mostPromisingState()
12: end if
13: doneTrace← traceBack(pathNew, loc,NT)
14: if doneTrace then
15: pathFollow ← pathNew

16: if pathFollow.back() = goal then
17: solutionFoundAndTraced← true

18: end if
19: end if
20: end if
21: if pathFollow.contains(loc) then
22: loc← pathFollow.popFront()
23: else
24: if loc 6= start then
25: loc← lists.stepBack(loc)
26: else
27: loc← loc.last

28: end if
29: end if
30: loc.last← loc

31: moveagenttoloc

32: end while

The pseudocode of Time Bounded A* is shown in Algorithm 4, as it appears in

their paper. Lines 5 through 32 constitute the main portion of the algorithm. The

17

algorithm is broken down into distinct planning and execution sections. With every

iteration, lines 6 through 20 encompass the planning portion, where a round of search

is carried out. Lines 21 through 31 cover the execution phase, which determines the

move an agent will perform. The algorithm continues to run until the agent has

reached the goal (line 5).

2.4.1 Planning

The planning portion of TBA* is broken down into two distinct steps, expansion and

tracing. On line 7, expansions are performed by running A* search if the solution has

not been found in some previous iteration. The parameter lists encompasses both the

open and closed lists, which are reused across iterations to facilitate global search. If

A* finds the goal, this is recorded and search is suspended for subsequent iterations,

if any.

Lines 9 through 19 handle the generation of paths for the agent to follow. On

the first iteration, the most promising node on the open list - the node that will be

expanded next when A* resumes - is used to begin tracing a path on line 13. Paths

are constructed by following the parent references of each node until the starting node

is reached, or the node where the agent is currently located.

Tracing a path may take multiple iterations. When a path is traced out, it becomes

the current path an agent is following (line 15). The process repeats until a path

ending at the goal is traced out. Figure 2.5 shows an example of the different paths

TBA* can produce for a search.

To claim real-time performance, there must be a limit on the amount of planning

in a given iteration. In TBA* one of the parameters defined is the resource limit, R¶.

R is broken down into limits on the amount of work allocated per iteration to node

expansion and path tracing respectively. The limit on the number of expansions (NE)

¶R is never given a unit definition in the paper, but it generally understood to represent the effort
in CPU time to expand a single node, subject to the particulars of platform and implementation.

18

Figure 2.5: A depiction of successive subgoals for Time Bounded A* at different
intervals. Each number represents the node returned from mostPromisingState, along
the search fringe at that point with the arrow being the path traced to it from the
start S. The algorithm terminates when the agent (not shown) arrives at the goal G.
The shaded area is the area covered by the open/closed lists for that iteration.

for an iteration is:

NE = ⌊R× r⌋ r ∈ [0, 1]

For example, with R = 200, and r = 0.75, NE = 150, or 150 node expansions

are performed in the A* portion of the algorithm every iteration. The remainder is

allocated to performing to tracing out paths (NT), determined as:

NT = (R−NE)× c

Here, c is a coefficient. The authors of TBA* pointed out that tracing out a path

usually involves following pointers, an operation that is faster than node expansion.

Hence, c = 5 would mean tracing a single step on a path is 5 times faster than

expanding a node. Thus, using the earlier values of R, r and c, NT would be 250.

19

2.4.2 Execution

The second half of the algorithm is concerned with execution, where moves are ac-

tually performed by the agent in accordance with a simple rule. The agent checks if

it is on the path it is currently following, if so, it takes a step along the path (line

22), otherwise it takes a step backwards (line 25). This assures that the agent will

eventually return to the path that TBA* has selected for the agent to follow. Because

the closed list an acyclic tree and all paths are built from this tree, if the agent keeps

stepping back it is assured to eventually end up on the path it is currently set to

follow.

Figure 2.6: When TBA* switches paths to a newer one, the agent may be required
to retrace steps by moving backwards until it reaches the latest path. In the worst
case, the agent returns to the starting node.

For clarification, it is not necessarily true that the new path TBA* that the agent

backtracks towards is the same path the agent will reach and begin following. It is

conceivable that TBA* will identify and trace out any number of paths while the

agent is backtracking. The decision to take a step along a path or backtrack is always

made relative to the current path referenced by pathFollow.

Once the algorithm identifies a path from the starting node to the goal, no more

path switching occurs. If the agent is not somewhere along this path, it will backtrack

until it is, and follow this final path to the goal. The agent is guaranteed to end up

on this path; in the worst case it will return to the starting node.

2.4.3 Real-Time Claim

To claim that TBA* is a real-time algorithm, the amount of search the algorithm

is able to perform in the expansion phase should remain constant despite problem

20

size. In other words, the algorithm should be able to perform the same number of

expansions with each successive iteration and not taking longer to do so. To do this,

the authors have constant-bounded state expansion.

For A* based search, the open list is typically implemented as a priority queue

using a binary heap. Nodes on the open list are prioritised based on f -score. While

retrieval of the next state to expand is an O(1) operation, insertion of successors is

O(log n), with n being the number of nodes on the heap. Because n grows with the

problem size, any algorithm that maintains an open list across iterations using a heap

cannot be real-time.

To claim real-time, TBA* uses a variation of a data structure used in the Fringe

Search algorithm [BEHS05], which is an evolution of Iterative-Deepening A* (IDA*)

[Kor85]. Fringe search was focused on improving the run-time performance of IDA*

type algorithms by facilitating the reuse of the open list (the search fringe) across

successive iterations, negating the rework normally necessary.

Key to this algorithm was the introduction of two lists, the now and later lists,

to collectively store the nodes of the Open List. Each iteration, the algorithm runs

over all nodes in the now list, either deferring their expansion by moving them to the

later list, or performing an expansion, with the successors going into the later list for

the next iteration. On the next iteration, the later list is now the now. The authors

mention that IDA* iterates in a left-to-right fashion, whereas A* is best-first, which

requires sorting. Fringe Search can sort or partial sort by using multiple buckets for

the later list based on f -score. This notion was carried over to TBA*. Instead of now

and later buckets, TBA* uses a bucket for each f -score. These buckets are stored in

a hash table, keyed by f . Add and Remove operations on these buckets are O(1).

With the open list being a constant-time data structure, the bound on real-time

now hinges on how many nodes are expanded each planning stage. TBA* runs A*

for a fixed number of iterations. The number of iterations is the parameter NE.

21

2.5 Summary

This chapter examined several algorithms that define the current state of real-time

pathfinding applied to grid-based problem spaces. Since Korf defined the area with the

introduction of LRTA*, much of the work since has focused on improving the rate at

which LRTA* based algorithms converge on an optimal solution. This has typically

been achieved by developing variants that feature improved first-run performance.

This is important in the context of video games since subsequent trials are not likely

to occur, and any occurrence of poor behaviour is to be avoided if possible.

Time-Bounded A* brings first-run optimal solutions to real-time pathfinding by

integrating classic time-sliced A* with a simple set of rules to govern agent behaviour.

But, while the first-run performance of TBA* is an improvement over previous algo-

rithms, the binary advance-or-retreat nature of execution means improvements can

still be made.

22

Chapter 3

Salient Search

3.1 Motivation

With TBA*, it was noticed that the agent could often spend time moving back and

forth as the (current) path changes from one subgoal to another. The agent would

have to backtrack in order to put itself back on a path to follow, like in Figure 3.1.

If arriving on the current path requires k steps backwards, those k steps add to the

total travel cost of the agent without necessarily moving the agent any closer to the

goal. This increases the Travel Ratio of the search, work the agent is performing that

adds up above the cost from the start to the goal.

Salient Search began with the following idea: at time t, the agent may be closer

to the goal than the cost of that return trip to follow the optimal path found for S,G.

Since the cost is already expended by the agent to reach its current location, it may

be cheaper to move forward if such a path exists and can be found in time. This is

like the expression ‘the point of no return’.

Figure 3.2 illustrates this idea. The agent A is moving towards a subgoal g by

following a given path. Suppose a solution is found from the start to the goal G, given

by the solid arrow. If the path isn’t defined through the agent’s current location, the

algorithm dictates the agents backs up along the path it has travelled until it is. But,

23

Figure 3.1: Each successive path shares no common section with the previous one.
The agent will likely have to backtrack to the start.

it is possible that there is a path from g to the goal that is short enough that, if

known about, is more desirable than backing up. In other words, if A → g → G ≤
A→ S → G, backing up is undesirable.

Finding such a path requires search. However, search is halted when the goal is

found. Also, since TBA* is running A* search, it is known that A* finds the optimum

path before any other. A* on its own will not find a path through g first.

This calls into question the notion of what now constitutes an optimum path.

There is no question that from S, A* and thus TBA* will find the best path. But

not taken into consideration is reality that the agent is no longer at S, and such an

optimum path may no longer be so. Starting A* over again from the agent’s current

location will not do; the search horizon imposed by real-time requirements invites

isolating the agent in a heuristic trap of oscillating moves. This is the very thing

real-time algorithms like TBA* avoid, and LRTA* eventually does when the heuristic

cost updates converge. Updating all scores in the search space to reflect the current

position cannot be done in real time. Thus, without a change to the ‘best from S’

24

Figure 3.2: The agent is moving towards g when a solution is found. In TBA*, the
agent backs up along the path A → S → G. However, it may be desirable to move
A→ g → G.

search order, a solution passing through g will not be found.

As well, on harder problems or problems involving a poor heuristic, A* perfor-

mance tends to degrade. The search frontier expands outward in a more uniform

fashion resembling breadth-first search as the best-first strategy of A* is weighed

down by many nodes sharing the same score. When this happens, the lengths of

successive paths from subgoals increases more slowly. These paths are also more

divergent, possibly sharing only the start as a common node. When this happens,

agent behavior becomes erratic. The effect on the agent resembles more of a random

walk than a real attempt to move towards the goal.

Salient Search is proposed to attempt to address this situation, by allocating search

from the last subgoal, while retaining the information provided from the global search.

The rationale behind this concept takes two forms.

Salient Search is Time Bounded A* with the application of two new concepts:

• An additional data structure to allow us to define the salient and force search

to occur along its fringe.

• The introduction of strategies to facilitate choice of subgoals, not simply relying

on the open list’s next node.

25

3.1.1 Why ‘Salient’ Search

The use of the word salient is derived from the military notion of the phrase, where it

describes a projection into enemy territory along a front line, a spot in the topology

of the battlefield where a force has broken through the front to advance towards some

objective. Comparatively, in pathfinding the progression of search using a consistent

heuristic can be visualised with contour lines [RN03], and a contour defined by the

Open List of a search, which is sometimes called a fringe. The analogy here is

as follows: A* search produces a series of contours as search progresses. Salient

Search breaks through the contour by performing search at one point of the contour,

producing a salient.

Figure 3.3: A visual representation of a salient applied to heuristic search. The salient
is the bulge of explored space beyond the border that would be defined once time t+1
is reached.

This concept is illustrated in Figure 3.3. Here the search space between the start

and goal has been transformed into a 2-dimensional corridor. Normal A* search is

26

seen progressing as a straight line sweeping across this corridor at the top of the

figure. As the algorithm iterates from time t to time t+1, this sweep line has moved

forward, much like an army moving a front line forward with a collective advance.

Eventually, this line reaches the end as the goal is reached and a path can be traced

back.

With Salient Search however, the normal progression is interfered with. In the

bottom portion of Figure 3.3, at time t a point along the fringe is chosen, and in the

next iteration work is applied to expand this node and its successors. As a result,

space that may not have been searched out by time t+1 instead has been, distorting

the normal progression of search. This is illustrated with the search line reaching

past the original A* line in one area. This is the salient: attention was focused at

one point to move the frontier beyond where it would be expected to be. This comes

at the expense of other areas, where the line is not as far to the right as it would

otherwise be.

3.2 Salient Expansion

Applied to our real-time pathfinding algorithm, the salient itself begins as a single

node in the search space. Recall that TBA* builds a path by choosing a suitable

candidate from the open list, with the mostPromisingState function, which becomes

the endpoint of said path. The salient begins from this same node. Every time a

salient is initially defined, it begins with this single node, which we term the salient

root. But where the path is built by backtracking through the search tree, the salient

is defined by moving deeper through the growing search tree.

Also recall that on the next iteration of the A* search, this candidate node will be

the next to be expanded, possibly generating successor nodes that will then be placed

into the open list. Because their parent (the root) is part of the salient, successors

will be part of the salient as well. This process continues - new salient nodes coming

27

from the successors of previous nodes - until a new root is defined, at which point

membership in the salient is no longer defined. Subsequent additions to the salient

begin from the new root.

The salient list then is to be understood as all nodes currently on the open list

that are descendents of the current salient root. Salient expansion is conducted with

every node expansion when the node is itself on the salient.

Algorithm 5 shows pseudocode of the Salient Search algorithm. This is the same as

TBA* in Algorithm 4. However, two lines are changed. On line 7, the A* search has

been replaced with a version called SalientA*, which takes in an additional parameter.

The other change is on line 11. In TBA*, pathNew was set to the head node of the

Open List. Here, a function is called that takes in a strategy parameter.

A node on the open list is chosen as the salient root on line 11 of Algorithm 5. At

this point, the salient is the root itself. When this node is expanded, it is removed

from the open list, and its successors (if any) are now members of the salient when

they are inserted onto the open list. This is true for their successor nodes, and so on.

The definition of the salient in this way is illustrated in Figure 3.4.

These expansions happen up to NS times. NS itself is described in 3.2.1. The

remaining work is done following the order dictated by the open list. If a node to be

expanded normally is referenced in the salient, it is treated like a salient node as a

means of preserving the structure of the salient - its successors are placed onto the

salient list.

3.2.1 The Salient List

The data structure of the salient list is a modified version of the bucket structure that

TBA* adapted from [BEHS05]. This altered structure incorporates a second version

of the bucket list to reference nodes as belonging to the salient. In this salient list,

pointers to nodes are stored, as opposed to search nodes themselves. Each value in a

bucket is a pointer to a corresponding node in the open list. These pointer buckets

28

(a) (b)

(c)

Figure 3.4: The salient on the search tree. At some point R is chosen as the salient
root when R is in the open list for the tree on the left. From then on, all successors of
R on the open list define the border of the salient. If nodes A through G are the open
list, then the salient is defined by {C,D,E,F} in the tree on the right. The bottom
portion illustrates what the open and salient lists look like at this point, with each set
of blocks corresponding to a bucket, and the number above each being the f scores
(and hash key of the bucket) of the nodes therein.

are notated with the same f scores as the parent bucket they contain references for.

For the open list, node order within a particular bucket is dictated by insertion

order. This is because the bucket itself is implemented as a queue†.

†Specifically, a Last-In, First-Out (LIFO) queue, or stack.

29

Algorithm 5 Salient Search (start, goal, P)

1: solutionFound← false

2: solutionFoundAndTraced← false

3: doneTrace← true

4: loc← start

5: while loc 6= goal do
6: if not solutionFound then
7: solutionFound← SalientA∗(lists, start, goal, NE, NS)
8: end if
9: if not solutionFoundAndTraced then
10: if doneTrace then
11: pathNew ← lists.nextSubGoal(loc, strategy)
12: end if
13: doneTrace← traceBack(pathNew, loc,NT)
14: if doneTrace then
15: pathFollow ← pathNew

16: if pathFollow.back() = goal then
17: solutionFoundAndTraced← true

18: end if
19: end if
20: end if
21: if pathFollow.contains(loc) then
22: loc← pathFollow.popFront()
23: else
24: if loc 6= start then
25: loc← lists.stepBack(loc)
26: else
27: loc← loc.last

28: end if
29: end if
30: loc.last← loc

31: moveagenttoloc

32: end while

Ordering

To ensure that the salient list can be used in a consistent manner, expansions on

the salient list follow the same best-first approach applied to the open list. In fact,

expansion on the salient is done using the same A* search, with expanded nodes being

30

Algorithm 6 SalientA∗(lists, start, goal, NE, NS)

1: i← NS

2: goalFound← false

3: while i > 0 and salientList is not empty and not goalFound do
4: i← i− 1
5: if salientList.next() = goal then
6: goalFound← true

7: end if
8: expandSalient()
9: end while
10: for remaining NE −NS + i and not goalFound do
11: goalFound← A∗

12: end for

Algorithm 7 expandNext()

1: next← openList.next()
2: if salientList.contains(next) then
3: expandSalient()
4: else
5: move next to closedList

6: for successor in next.successors() do
7: if not closedList.contains(successor) then
8: updateOrInsert(successor)
9: end if
10: end for
11: end if

placed onto the same global closed list.

A node is added to the open list at its creation in the search, when its parent node

is expanded. In Salient Search, there are two separate cases where expansion occurs:

when a node is expanded on the open list, and when it is expanded on the salient

list. If salient expansion is occurring then we know the successors will also be part of

the salient and the successors are also added to the salient. If open list expansion is

occurring, the node is checked for membership on the salient before it is expanded,

and switching to salient expansion if it is. This ensures the successors are added to

the salient list.

31

Algorithm 8 expandSalient()

1: if salientList not empty then
2: next← salientList.next()
3: move next to closedList

4: for successor in next.successors() do
5: if not closedList.contains(successor) then
6: updateOrInsertSalient(successor)
7: end if
8: end for
9: end if

(a)

(b)

Figure 3.5: The next node to be expanded by salient expansion is always identified
by the head of the salient list. Here it is node C. It is removed from the open list,
and its successors are put into both lists in the preferred order.

In TBA*, nodes are only removed from the open list in best-first order. In Salient

Search however, the best of the salient may be located in a different location.

When successors are generated, the node generated may match another node

already on the open list, but with a better f -score. This is possible in Salient Search

32

even if a consistent heuristic is being used since Salient Search does not follow A*’s

expansion order globally‡.

With a heap based open list, this would involve updating the node’s key, a Θ(log n)

operation. However, because the open list in this algorithm uses constant time (O(1))

operations for adding and removing nodes, those operations can be used to achieve

an update.

Thus, with all actions appropriately mirrored on the salient list, it is assured to

be a subset of the open list with the following properties:

• All nodes on the salient list are descendents of the salient root

• All descendents of the salient root that are on the open list are also in the salient

list

• The salient list maintains the same ordering as the open list

3.2.2 Allocating Work - NS

To control the amount of expansion limited to the salient, a new parameter is in-

troduced. NS controls the number of expansions per iteration that are allocated to

ensuring work is done in the salient, being a value 0 ≤ S ≤ E. Any remaining work

is used to perform expansions as normal by the ordering of the open list.

A particular value for NS however is not a guarantee that NS salient expansions

will be performed. First, if the salient list is exhausted, then salient expansion obvi-

ously cannot be performed. This is possible if for example the salient root expands

into a closed off space search and is exhausted within it. Secondly, through regular

expansion, a salient node could be selected for expansion through regular A* search

when the node is at the top of the lowest scored bucket. If this occurs, it is treated

as a salient expansion, with successors being placed on the salient list (Algorithm 7,

‡For this reason, it was decided to exclude ‘A*’ from the name of the algorithm, unlike TBA*
or LRTA*.

33

lines 2-3). Detecting this is a trivial operation because the node will be at the head

of both the open and salient lists. With these two situations, the number of salient

expansions in any given iteration can exceed or be less than NS.

When NS is 0, no action will be taken to perform node expansions out of order,

effectively turning off salient expansion. Search will proceed exactly as it would in

TBA*. That is to say, the planning portion of the algorithm will remain unchanged,

proceeding in the same way A* does. This is not to say that the salient will not

exist. The definition of the salient list is maintained from R like in Figure 3.4, there

is simply no explicit allocation of work to produce successors from the members of

this list. The list remains maintained for use with the strategy, which is described

in Section 3.3. Strategies affect the choice of paths, so even with search proceeding

exactly as it would under TBA*, Salient Search can result in different behaviour for

an agent given the same problem.

3.3 Subgoal Selection by Strategy

Recall that TBA* produces paths by choosing a subgoal. These subgoals are always

the most promising node currently residing on the open list. This subgoal becomes

the endpoint of a new path. As long as this node is not the goal, search will continue,

because the subgoal is always the next node to be expanded. This remains true in

Salient Search. But, the salient list now provides additional information regarding

this decision. We know which nodes are descendents of the path that has just finished

being traced back, allowing us to know if a prospective subgoal will produce a path

which lengthens the current one. This information can be used to modify the selection

of a subgoal; the decision can be made to instead selected the most promising node

of the salient list instead.

This choice is made by using a heuristic termed a salient strategy. A strategy is

any function which uses the head nodes of the open and salient lists along with any

34

other parameters necessary, and returns which one will serve as the next subgoal.

The decision will decide not only if the next path is an extension of the current one,

but also whether the new salient will be an extension of the current salient.

Trivially, if the salient list is empty or the head of the salient list is the same node

as the head of the open list then the decision is moot. The only other restriction on

a strategy is that it satisfies the realtime requirements.

What follows are two example strategies. The first is a simple tie-breaking strategy

for nodes with the same f score. The second strategy makes use of the agent’s

location.

3.3.1 Simple Tie-Breaking

In the Tie-Breaking (TB) strategy, the preference for a subgoal with the best f score

remains the same. However, as mentioned in 3.2.1, the salient list allows constant time

determination of whether a potential subgoal extends the current path. Extending

the current path means the agent will not require backtracking if it is following the

current path. Given the lack of sorting between all nodes with the same f -score, we

can use this information to choose a subgoal. If the head nodes of lists are nOpen and

nSalient respectively, the strategy is:

TB(nOpen, nSalient) =

nOpen, if f(nOpen) < f(nSalient)

nSalient, Otherwise

Since by definition nOpen is the head of the lowest f -bucket on the open list, nSalient

will be in the same bucket, or have a higher f -score. Because the salient list has the

same ordering as the open List, nOpen is not a descendent of the (current) subgoal

unless the two are the same node.

35

3.3.2 Agent Heuristic Distance

In the Agent Distance (AD) strategy, the heuristic used in planning is used to answer

the question of which subgoal is closer to the agent at that point in time. The heuristic

estimates are taken, and the subgoal with the lower distance is chosen.

AD(loc, nOpen, nSalient) =

nOpen, if h(loc, nOpen) < h(loc, nSalient)

nSalient, Otherwise

The rationale behind this strategy is that a goal that is farther away from the

agent will take longer to reach, increasing the likelihood that movement towards the

subgoal will be wasted effort when the subgoal again changes.

Heuristic distance is used because discovering the actual travel distance is an

application of the Lowest Common Ancestor (LCA) problem. The traversal involves

backtracking from the current agent location A to the lowest common ancestor C,

and then forwards to the desired subgoal ng. The total cost would correspond to:

TravelCost(A, ng) = g(A) + g(ng)− 2g(C)

No constant time solution exists to identify C. In the general case, finding a

solution takes O(h) where h is tree height§. Constant time queries can be devised

but this requires an O(n) scan of the tree, which is unfeasible with the lists (and thus

the trees) in constant flux as they grow. Work on the LCA problem can be found in

[HT84, AHU73, BFc00].

§The tree used is the closed list.

36

3.4 Summary

In this Chapter the Salient Search Algorithm was introduced. Salient Search is a vari-

ation of Time Bounded A* that attempts an opportunistic tradeoff between planned

solution quality and the realised agent path. Salient Search differs from TBA* by

using a salient list to maintain an ordered reference to all descendents of the current

subgoal. Salient Search uses this list to conduct Salient expansion - deliberate search

from the current subgoal.

Salient Search also modifies the subgoal selection technique of TBA* with the in-

troduction of the salient strategy. Strategies allow for dynamic control of the selection

of a subgoal. Doing so can result in an agent executing a different travel path. In

conjunction with salient expansion, the order of search is influenced in a purposeful

fashion.

37

Chapter 4

Experimental Setup and Analysis

The following chapter will provide an empirical analysis of the Salient Search algo-

rithm.

4.1 Problem Domain

All testing is done in the domain of two-dimensional grids. For real-time algo-

rithms, grid-based testing has been used since at least early work on LRTA* [IK91],

and remains a popular choice for testing pathfinding algorithms in recent literature

[BBS09, BSLY07, Stu07, ZSH+09, SYCK09].

In this thesis, we used a collection of grid-based maps taken from a collection

of video games. These are taken from a larger collection of maps taken from the

Hierarchical Open Graph (HOG) Framework [Stu10]. The appeal of using these

maps is they are sourced from several real successful computer games, adding practical

appreciation to the results. This set is also utilised in other literature [BSLY07, BB09,

BEHS05], including Time Bounded A* [BBS09].

From the set of maps found in HOG, a total of 50 different maps were used in

the experiments, one of which can be seen in Figure 4.1. Thirty-five of the maps are

taken from the Baldur’s Gate collection [CSE98, CSE00], and an additional 15 from

the Warcraft 3 collection [Ent02]. A complete listing of these maps along with visual

38

Figure 4.1: AR0701SR, an example map (derived from [Stu10, CSE00])

representations can be found in Appendix B.

All maps are scaled to 320x320 cells in size. Scaling was accomplished by taking a

bitmap representation of the problem space† and resampling to the target dimensions

via nearest neighbour interpolation. For scaling up to a larger size this resampling

technique preserves the graph homomorphism. The cells themselves are all in one of

two states: either freely traversable by an agent or blocked.

Figure 4.2: Different grid types. Left: The Cardinal grid. Right: The Octile grid

The maps themselves merely describe blocked and unblocked spaces. Also needed

is a description of legitimate moves the agent can perform, which are described by a

topology. Two different grid topologies were used in this experiment: cardinal and

octile.

†Each pixel corresponds to a single grid cell.

39

In a cardinal grid, there are only 4 possible moves from a given grid cell, up, down,

left, and right. The octile grid is an extension of this by allowing moves in diagonal

directions. These types can be seen in Figure 4.2. On the cardinal grid, all moves

incur a cost of 1. On octile grids, this is the same for cardinal moves. However,

diagonal moves are assigned a cost of
√
2‡.

It is worth testing with differing topologies because each produces a different

effective branching factor, which directly influences the rate of growth of the search

space. This in turn can influence the effectiveness of some pathfinding algorithms,

with some algorithms outperforming others for a given topology. Further reading on

this can be found in [Yap02, BEH+03].

Figure 4.3: An illustration of corner cutting. The dashed lines on the left show valid
moves on the grid. An agent cannot move diagonally if doing so would cross a corner
of the grid shared by a blocked cell. If corner cutting is allowed, an agent could move
‘through’ the blocked cells in the example on the right.

Diagonal moves have an additional constraint. They are only permitted if the

neighbour(s) common to both cells of the move are unblocked. This situation is

commonly known as corner cutting. This also means that a diagonal move is only

allowed if moving to the node can be made with two sets of cardinal moves. See

Figure 4.3. While there are computer games that permit corner cutting for their

agents (e.g. [GG05]), other literature tends to forbid it, so we have done the same.

‡In code, this is approximated to 1.42.

40

4.1.1 Assumptions

There are several assumptions in the testing environment that should be noted:

1. Both Time-Bounded A* and Salient Search are episodic. There are no trials or

convergence process as with the LRTA*-based approaches; subsequent runs of

either algorithm on the same problem do not influence performance, as no infor-

mation is preserved once the algorithm completes. Thus there is no utilisation

of any database of partial or complete solutions for any search instance.

2. The problem environment is static§, not dynamic. Cells do not transition be-

tween a blocked or unblocked state. Similarly, edges between grid cells are not

added or removed, and the cost incurred moving between cells does not change.

3. Each search is single-agent. Multiple agents are not conducting search simulta-

neously on a common map.

4. All maps keep the safety assumption. From [BBS09]: “The goal state can be

reached from any state reachable from the start state”. In fact, the maps used

have been modified where necessary to prevent any ‘islands’, so every unblocked

state is reachable by every other unblocked state. This was verified by running

a breadth-first search with duplicate detection over each map and checking that

every unblocked cell was visited by the search.

5. There is no freespace assumption as it appears in algorithms like RTAA*. Node

expansion involves the true state and cost on the map, not open space beyond

a search horizon perceived by an agent. Rather, search proceeds with perfect

information of the map.

§Technically, Time Bounded A* and Salient Search’s agent can be said to inhabit a semidynamic

environment. Since the agent is potentially incurring a nonzero travel cost with every step before
the solution is found, the passage of time with each iteration is antagonistic to a performance score
(the travel ratio). The concept is discussed in [RN03].

41

4.1.2 Search Pair Generation

For each of the 50 maps, start and location pairs were generated. Classic A* was run

between these points to determine an optimal path between these points, and the pair

was kept if the path found by the search had a cost between 50 and 500. This was

repeated until 100 pairs were generated for each map, for a total of 5000 problems. A

particular coordinate could be used as a start or goal location in multiple problems,

and there was no prohibition against a particular pair used in reverse. This process

was repeated separately for each of the grid topologies.

4.1.3 Heuristics Used

A separate heuristic was used for each of the grid topologies. Each heuristic is consid-

ered perfect in an unblocked grid of its type. With no obstacles, the heuristics used

give the true cost h∗ between the start and goal locations.

Cardinal Maps

The Manhattan heuristic¶ is the sum of the distance between two points along the

axis of each dimension. In a two dimensional grid world it is simply:

Manhattan : ∆x+∆y

Octile Maps

For octile grids the heuristic of the same name is used: a cost of 1 for NSEW moves,

and
√
2‖ for diagonal moves. Because the agent can move in both x and y dimensions

in a single step, the heuristic is the minimum number of diagonal steps to finish

moving in one dimension, plus the remaining number of steps to complete travel in

¶May also be referred to as the Cardinal or Taxi-cab or City block distance.
‖In code, this is approximated to 1.42.

42

the remaining dimension. In equation form, this is:

Octile : min(∆x,∆y)×
√
2 + |∆x−∆y|

For the given topology, the same heuristic was used regardless of the particular

algorithm (A*, TBA*, or SS) being run.

4.1.4 Parameters

As described in [BBS09], the parameter NE is defined as a ratio of the resource limit

R by NE = ⌊R× r⌋, where r ∈ [0, 1]. The authors elected to fix r at 0.9, and we have

done the same for our experiment. As well, the parameter c is fixed at a value of 10.

The values of the resource limit (R limit) used in the experiments were R = {25, 50,
100, 500, 1000}.

Table 4.1: NS expansion by percentage of NE, r = 0.9

R Limit
% 25 50 100 500 1000
30 7 13 27 135 270
50 11 22 45 225 450
75 16 34 67 338 675

NS, the parameter used to control the number of expansions inside the salient,

took on values corresponding to 30%, 50% and 75% of the value of NE. The number

of expansions this corresponds to for each permutation can be found in Table 4.1.

For example, With an R limit of 50, there will be 45 expansions in an iteration, and

if 30% should be directed towards the salient, NS takes on a value of 13.

For Salient Search’s strategy parameter, both the Agent Distance (AD) and Tie-

Breaking (TB) strategies described in 3.3 were tested for each NS/R limit combina-

tion.

43

Thus, with 5000 different searches across the 50 maps, there are 25000 datapoints

created using TBA* (5000 problems × 5 R Limits), and 150000 using Salient Search

(5000 problems × 5 R Limits × 3 Salient expansion settings × 2 strategies).

4.2 Results

All experimental results were collected using the same hardware and environment

for both TBA* and Salient Search. The hardware was an Intel R©CoreTMi5 750 CPU

at 2.67GHz with 4GB of RAM installed. The operating environment was the 64bit

edition of Windows 7 Professional. All test code including the algorithms under test

were implemented in the C# language, targeting version 3.5 of the .NET Common

Language Runtime. Figures and tables regarding the results and statistical analysis

of the experiments were created using the R programming language environment

[R D10] using the Rcmdr package [Fox05].

A* Solution Cost − Octile Maps

Solution Cost

F
re

q
u
e
n
c
y

100 200 300 400 500

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

(a)

A* Solution Cost − Cardinal Maps

Solution Cost

F
re

q
u
e
n
c
y

100 200 300 400 500

0
2
0
0

4
0
0

6
0
0

8
0
0

(b)

Figure 4.4: Histogram of A* costs for different map styles

As mentioned in Section 4.1.2, classical A* was used to determine the optimum

cost for each start/goal pair. Figure 4.4 shows a histogram of the optimum costs

44

across the entire problem set. It is apparent from this histogram that the cost of the

optimum paths are not uniform, but distributed around a mean cost between 150

and 200. The histogram for the cardinal grid type appears flatter, with thousands

more paths with a cost > 350. This can be attributed to the lower branching factor

of cardinal maps. This is not unexpected; it has been shown previously that a larger

branch factor can lower the search depth [BEH+03].

Alongside the distribution of long and short paths, it is useful to note the relative

difficulty each path presents. This can be done by recording the heuristic error. Using

heuristic error as a difficulty measure is described in [MK10] as the difference between

the heuristic and real cost for some search at the start. If h∗(S) is the true cost to

travel from S to G then the heuristic error is:

h∗(S)− h0(S)

The sum of all n2 search pairs for a map the total initial heuristic error, and [MK10]

uses this as a difficulty metric for comparing two maps. We have used this concept to

measure the difficulty of our problem set based on heuristic error for the beginning

of search.

Figure 4.5 is a scatterplot of heuristic error for every search in the experiment,

broken down by topology. The x-axis represents the range of least-cost paths found

through A* search, whereas the y-axis plots the difference between the cost and the

heuristic value for the beginning of the search at S0. The boxplots along the margins

show the inter-quartile ranges.

From this plot, it is seen that the octile set has a lower mean cost, but longer

paths are more prone to heuristic error on these maps. Note on the octile plot that

all but two paths with a cost above 400 have heuristic error greater than 100. In

contrast to this, the cardinal collection has on average higher cost paths, but much

less error, with some initial heuristics having no error at all. A thick collection of

45

100 200 300 400 500

0
1
0
0

2
0
0

3
0
0

4
0
0

A* Cost

H
e
u
ri

s
ti
c

E

rr
o
r

(a)

100 200 300 400 500

0
1
0
0

2
0
0

3
0
0

4
0
0

A* Cost

H
e
u
ri

s
ti
c

E

rr
o
r

(b)

Figure 4.5: Scatterplot of heuristic error for different map styles. Scatterplot (a) plots
octile measures. (b) shows cardinal measures.

points with no error can be seen along the bottom of the plot, almost all the way

along to the cost ceiling. As well, there is only a single point on the cardinal plot

with error > 400, whereas the octile plot has 8 over 400.

This hardness measure can be adapted to isolate the performance of Salient Search

against TBA* to a subset of problems considered difficult. Not computing all the

values for some map, we instead calculate the heuristic error ratio for our subset of

100 searches on each map. For a given start/goal pair Pu, this error ratio is defined

as:

1− hu

h∗
u

This produces a mean error score for each of the 50 maps. From this calculation, we

selected several maps with the highest mean to be representative of ‘hard’ problems

in our sample set. Analysis specific to this set can be found in Section 4.4.

46

4.3 Analysis of Results

4.3.1 Path Quality

Since Salient Search admits the possibility of finishing with a suboptimal path, an

immediate question is: Does Salient Search produce more costly paths? If so, how

much worse are they?

There does not appear to be a strong indication that Salient Search returns poorer

quality paths. Looking at the raw data on the octile set of searches, 46.72% of the

paths were optimal; there was no reduction in path quality, with Salient Search

match A* for cost using the same heuristic. The 5-number summary (minimum, Q1,

median, Q2, maximum) of the suboptimality of path quality for Salient Search is

(1.000, 1.000, 1.003, 1.015, 1.528). This shows that at least 75% of the problems had

a solution within 2% of the optimum value. With single steps on these maps costing

at most 1.42, for a path of optimum cost 100 this is no worse than one or two steps

divergence from the optimum. In a video game this could be easily unnoticed by a

player.

Further, only 1.08% of the paths returned were more than 10% longer than the

optimum††. For this small percentage of the total, most of the paths were found

when a higher R limit was used (646 and 804 paths for R = {500, 1000} respectively
for 89.8% of the total). Larger values for the NS parameter also played a factor,

with 1028 or 63.7% of the longest paths appearing when NS was set to apply 75% of

expansions inside the salient.

These results seem to indicate that only in the extreme circumstances - high

resources for search in conjunction with a great emphasis on forcing expansion inside

the salient - does the Salient Search algorithm produce poorer paths. With smaller

time slices preferred anyways, we can conclude that in general Salient Search produces

quality paths.

††1614 of 150000 paths

47

4.3.2 Suboptimality of Travel

More important than the solution path either algorithm ends up with is the actual

path followed by the agent over the course of the search. This section provides an

analysis of the travel path compared to the optimal.

Table 4.2: Average Expansions and Travel Ratio of TBA*

R Exp./Move Suboptimality
25 10.98042 1.497127
50 13.66260 1.232140
100 15.86997 1.094670
500 17.81902 1.013893
1000 18.06391 1.006509

Table 4.3: Average Expansions and Travel Ratio of Salient Search by strategy

AD TB
R NS% Exp./Move Suboptimality R NS% Exp./Move Suboptimality

25
30 10.91907 1.541986

25
30 11.10009 1.519612

50 10.97588 1.572389 50 11.15048 1.540335
75 11.11479 1.597097 75 11.21977 1.571833

50
30 13.73711 1.250812

50
30 13.80344 1.245030

50 13.82555 1.262895 50 13.84636 1.256882
75 14.02849 1.276260 75 13.93842 1.267801

100
30 15.94294 1.103526

100
30 15.96143 1.104827

50 15.96384 1.110234 50 15.91587 1.108191
75 16.03795 1.114515 75 15.91056 1.112261

500
30 17.60272 1.014343

500
30 17.59812 1.014265

50 17.48617 1.014317 50 17.44961 1.014366
75 17.43319 1.014873 75 17.33247 1.014253

1000
30 17.73254 1.006207

1000
30 17.71119 1.006334

50 17.58462 1.006269 50 17.51687 1.006247
75 17.70115 1.006541 75 17.54741 1.006289

Table 4.2 is a table of run time efficiency for TBA*. Each row is the mean value

for the set of searches performed for the given R value in the left column. The second

48

11 12 13 14 15 16 17 18

1
.0

1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

Avg. Expansions per Move

S
u
b
o
p
ti
m

a
lit

y

Type

30

50

75

TBA

Figure 4.6: Relative quality of agent’s travel paths for Salient Search, using the AD
strategy.

column is the mean number of nodes expanded for every step the agent takes until it

arrives at the goal and the algorithm terminates. The final column gives the relative

quality of the path the agent travelled against the path found from start to goal. Put

another way, it is the suboptimality ratio between travel cost and solution cost. For

instance, if a path is found between start and goal that has a cost of 100, and the

sum total of the costs for every move the agent makes to reach the goal is 145, the

suboptimality is 1.45.

Table 4.3 shows the same data, but for Salient Search. This table is broken down

further to show the mean values across the extra parameters used for Salient Search.

The left side of the table is the data using the Agent Distance strategy, with the

49

11 12 13 14 15 16 17 18

1
.0

1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

Avg. Expansions per Move

S
u
b
o
p
ti
m

a
lit

y

Type

30

50

75

TBA

Figure 4.7: Relative quality of agent’s travel path for Salient Search, using the TB
strategy.

right side showing results for the Tie-Break strategy. Each R limit is broken down

by the three different settings employed for NS, expressed here as a percentage of NE

(Refer back to Table 4.1 for the precise values corresponding to each R/NS pair). In

Figures 4.6 and 4.7 the values are plotted against TBA* for comparison. The values

for TBA* are the same in each graph. Each point on the graph is the average of a

run of 5000 searches: 100 searches on each of the 50 maps. Points closer to the origin

signify better performance.

The strongest trend obvious in this data is the effect of how much work is allowed

per iteration. Distinct clusters can be seen in the data, as each corresponds to a

different R value. The leftmost values are R = 25, and the values in the lower right

50

correspond to R = 500 and 1000. Each group of points produces a downward sloping

curve.

This is not unexpected; the effect of increasing the resource limit is intuitive.

More expansions are performed for every iteration. This leads to a solution being

discovered in fewer iterations. Consequently, the agent spends less time wandering

between different paths, and travel quality improves.

For each strategy, increasing the amount work focused on salient expansion ap-

pears to have a negative effect on suboptimality. For instance, for R = 25 and using

the AD strategy, travel quality goes from 1.531 to 1.572 to 1.597 as NS is increased,

compared to the suboptimality of TBA* of 1.497. This trend in quality is reflected

across all parameter values, though the effect rapidly diminishes with larger values of

R, with all variations approaching optimal path quality.

For expansions per move the trend is a little more complex. With small R values

the work average has some variance, again with larger NS producing worse numbers.

But from R = 500 onward, Salient Search produces lower values relative to TBA*.

For example, with R = 500, TBA* produces a mean of 1̃7.819 moves per agent

action, where Salient Search varies from 17.332 to 17.603. Suboptimality scores are

marginally improved at high R limits, but this could be noise.

Based on these results, the conclusion is that for the strategies tested Salient

Search incurs a penalty to total travel cost within a few percent of TBA*, but given the

cost constraints involved, the added travel cost is minimal. For small resource limits

agents perform extra moves, but the difference rapidly diminishes as R is increased.

A low level of salient expansion seems to offer some benefit over none at all as in

TBA*, but there is a point where the effect becomes deleterious to the search effort.

4.3.3 Back-stepping Behaviour

It is not just the path followed that is of interest when studying these algorithms, but

also how precisely the path is being followed by the agent. The travel ratio was one

51

such consideration. But that metric only compares the length of the resulting path.

There are many ways an agent can move about to produce a travel path of a certain

length.

(a) (b)

Figure 4.8: Two travel paths with similar travel ratios but very different behaviour.

For example, imagine the two lines in Figure 4.8 are the paths followed by an

agent in two separate searches, with the travel ratio of both being the same. One path

involved the agent oscillating around the start point, then moving towards the goal in

a relatively straight line. The other is a more leisurely path that generally speaking

is always making progress towards a goal, if slowly. Both paths have the same value

in length, but can be said to produce vastly different behavioural characteristics for

the agent. It is interesting then to determine the behavioural characteristics of both

TBA* and Salient Search by examining the related statistics.

Backtracking

In TBA* and Salient Search, any move not made by the agent following some path

is a step backwards towards the starting node (line 25 in the respective pseudocodes,

Algorithms 4 and 5).

Table 4.4 shows the mean and deviation for the number of backwards steps for

Salient Search and TBA*. For each cell, the top value is the mean, and the deviation

is the value enclosed in brackets.

These numbers indicate that an agent using TBA* will on average take fewer

steps backwards than an agent using Salient Search. As would be expected, small R

limits result in a much greater incidence of backtracking, with more subgoals chosen

52

Table 4.4: Mean backwards steps for agents in SS, TBA*

Algo R Limit
NS% 25 50 100 500 1000

SSAD

30 52.4532 25.1072 10.6588 1.5562 0.6730
(72.71234) (42.82833) (22.21770) (4.307221) (1.916352)

50 55.3902 26.3782 11.3808 1.5562 0.6852
(73.89290) (44.01201) (23.39013) (4.111912) (1.970197)

75 58.3542 27.8424 11.9184 1.5988 0.7136
(74.60884) (44.90504) (24.09462) (4.209155) (2.046561)

SSTB

30 50.2070 24.5968 10.9150 1.5582 0.6894
(70.17360) (42.47888) (23.67314) (4.413265) (2.041314)

50 52.4502 25.7856 11.3106 1.5762 0.6870
(71.04922) (42.99851) (24.19639) (4.386575) (2.017287)

75 55.8340 27.2578 11.7648 1.5628 0.6874
(72.13635) (45.07297) (24.34368) (4.379348) (1.963480)

TBA*
48.1688 23.3884 9.8780 1.4724 0.6892

(69.9099) (41.7811) (22.5055) (4.1774) (1.9863)

Table 4.5: ANOVA for backwards steps

Sum Sq Df F value Pr(>F)
NS% 91588 2 29.5717 1.444e-13 ***
R Limit 59464143 4 9599.8536 < 2.2e-16 ***
Strategy 14675 1 9.4767 0.002081 **
NS% : R Limit 117166 8 9.4576 3.667e-13 ***
NS% : Strategy 330 2 0.1065 0.898985
R Limit : Strategy 37190 4 6.0039 7.937e-05 ***
NS% : R Limit : Strategy 532 8 0.0429 0.999968
Residuals 232238895 149970

before the goal is found, and an agent therefore moving backwards towards the path

to follow at that time. As the R limit is increased, there are fewer iterations and

therefore fewer subgoals to move between. At the highest R limit a solution is found

quickly, and most movement is forward towards the goal. The level of NS appears to

correlate with the mean as well. With each strategy, the mean climbs with the level

of salient expansion.

53

To determine if Salient Search’s new parameters are in fact influencing the number

of back steps, a multi-way analysis of variance was performed. Table 4.5 shows the

results of an analysis of variance (ANOVA) for Salient Search with the number of

backwards steps as the response. The table can be read as follows: the first column

denotes the factors examined - the level of NS, the resource limit used, and the

particular Salient Strategy used. Interaction effects between factors are denoted with

the associated factors separated by a colon (e.g. The row with “NS% : R Limit” is

the interaction between those two factors). The second column is the sum of squares.

The third column is the degree(s) of freedom for the given factor(s). F value is the

value of the F-test used for the factor and the final column is the calculated p-value.

ANOVA appears to confirm the significance of Salient Search’s parameters in

influencing the rate of backtracking. The amount of salient expansion is significant to

the p < 0.001 level. The R limit is as well, but this was expected. The two strategies

are significant to the p < 0.01 level. Also highly significant is the interaction between

the resource limit and the other treatments, each to the p < 0.001 level.

Based on the higher observed means and confirmed significance of parameters,

we can conclude that Salient Search incurs a penalty on the number of backwards

steps taken. As expected, the rate of backtracking drops rapidly with the increasing R

limit. This result can explain the slightly higher travel ratio, since backtracking would

generally increase the distance between the agent and the goal instead of reducing it.

Changes in Direction

A related statistic is how many times an agent reverses direction; moving forward

along a path when the path changes and backtracking is now required. The converse

is also relevant, when an agent stop backtracking and instead moves forward.

To clarify, change in direction is not described in terms of agent moves within

the problem space, but the paths themselves, whether forward or backward moves

in the context of paths. Figure 4.9 represents two paths A and B originating at S

54

Figure 4.9: A forking path.

and forking at C. Suppose an agent was following A and past C when the algorithm

switches the path to follow to B. The agent will change direction and backtrack. If

B is still the path to follow when the agent reaches C, then it will begin to take steps

forward along B. This is the second change in direction, even though the headings

of all moves the agent makes is to the right.

Table 4.6 lists the figures for this statistic. Table 4.7 is the ANOVA with the

number of direction changes as the response. A mean value of 5 indicated the agent on

average reversed direction from forward to back or vice versa 5 times before reaching

the goal.

The table of means illustrates a marked performance change between the two

strategies. TB has a slightly lower value at most R limits as opposed to the AD

strategy, as well as a smaller deviation. As expected, this statistic also drops quickly

with increases to the R limit.

The analysis confirms this observation. All three treatments are significant to the

p < 0.001 level, so there is an effect on the number of direction changes. There is also

an interaction between the resource limit and each of the other treatments, both to

the p < 0.001 level.

When considering the results of these two statistics, it appears the following be-

haviour is occurring: When choosing interim subgoals, Salient Search exerts a slight

pressure on choosing subgoals that for the most part will produce a path that is an

extension of the previous path. This was the intended effect of the TB strategy. If

55

Table 4.6: Mean changes in direction of travel for agents in SS, TBA*

Algo R Limit
NS% 25 50 100 500 1000

SSAD

30 5.0252 2.9752 1.9404 0.9000 0.6024
(4.8648) (3.3072) (2.3759) (1.5865) (1.2331)

50 5.1728 3.0252 2.0356 0.8952 0.6028
(4.8953) (3.1761) (2.4962) (1.5917) (1.2449)

75 5.3244 3.1392 2.0604 0.8888 0.5964
(4.7666) (3.1384) (2.4406) (1.5968) (1.2569)

SSTB

30 4.5644 2.7372 1.8512 0.8872 0.5940
(4.5428) (3.0852) (2.3627) (1.5836) (1.2199)

50 4.6444 2.8112 1.9444 0.8784 0.5964
(4.5286) (3.0670) (2.4078) (1.5753) (1.2428)

75 4.8244 2.8720 1.9668 0.8484 0.5812
(4.4458) (3.0289) (2.4385) (1.5636) (1.2545)

TBA*
4.7356 2.7480 1.8236 0.8928 0.6184

(4.920380) (3.264265) (2.496343) (1.574358) (1.227796)

Table 4.7: ANOVA for changes in direction of travel

Sum Sq Df F value Pr(>F)
NS% 263 2 15.7788 1.406e-07 ***
R Limit 369132 4 11087.9545 < 2.2e-16 ***
Strategy 1111 1 133.5445 < 2.2e-16 ***
NS% : R Limit 327 8 4.9133 4.320e-06 ***
NS% : Strategy 3 2 0.1733 0.8409
R Limit : Strategy 1235 4 37.0990 < 2.2e-16 ***
NS% : R Limit : Strategy 8 8 0.1152 0.9987
Residuals 1248171 149970

the agent was on and following the previous path when the new one is produced, no

backtracking is necessary to switch over, and the agent will continue moving forward

without interruption. No direction change, no backtracking. However, if there is a

bigger shift (if the new path is not an extension at all, or the new path branches

off the current one ‘behind’ the agent), the agent will have more ground to recover,

reversing direction and having that much further to walk backwards.

56

Figure 4.10: An illustration of backtracking behaviour for both algorithms. Salient
Search (a) changes direction less, but incurs a larger movement penalty for doing so.
TBA* (b) wastes less time on alternative paths at the expense of more changes.

Direction changes must occur in pairs - when the agent changes direction to move

backwards it will necessarily change direction again to follow a path - this backtrack-

ing/direction change for Salient search is likely caused by an agent following a path

for a longer period of time before a newer path branches off. Figure 4.10 illustrates

the idea. This can be seen described as a characteristic of ‘stubbornness’, where an

agent is prone to following a path longer than would occur with TBA*. If the path

forced by the salient doesn’t produce a solution, the agent would then have to spend

additional steps backtracking.

4.4 Performance on Harder Problems

In Section 4.2 we described the heuristic error ratio as a means of describing the

relative difficulty of searching on a map. Comparing a sample of errors for two maps

allows a comparison of difficulty. This information was compiled and from this list

several maps were identified as being more difficult. This section is analysis of the

algorithms limited to the set of searches done on these maps.

The particular maps are AR0202SR, AR0307SR, AR0602SR and AR0705SR, for

400 searches. Figure 4.11 is an illustration of these maps. A complete table of the

relative heuristic error for all 50 of the maps can be found in Table A.1. Characteristic

57

(a) AR0202SR (b) AR0307SR

(c) AR0602SR (d) AR0705SR

Figure 4.11: Four maps featuring harder search. The set of problems for each features
high heuristic error.

to these maps are plenty of long corridors and little open space.

Note that not every one of these 400 problems in this set featured a large heuristic

error. Given the random nature of creating the problems, some in fact have no

heuristic error at all, being trivial, straight line paths. Rather, the 100 searches for

these maps as a set had some of the worst mean heuristic error.

Unsurprisingly, the paths themselves in this set are of higher cost than the general

population. Optimum cost for the harder maps has a median of 272.3, with an IQR

of 199.2, compared to 170.1 and 123.6 respectively for the full set of problems.

58

Path Quality on Harder Maps

In Section 4.3.1 the cost of the paths returned by Salient Search was compared to

the cost of the path found by classical A*. Similar to the results found there, the low

incidence of poorer quality paths persists in the subset of harder maps. Only 1.54%‡‡

of the paths have a solution cost that is more than 10% over the optimum cost. Thus,

a comparison of the travel ratios for TBA* and Salient Search remains meaningful

for the harder problems.

Figure 4.12: Performance of Salient Search against TBA* on the harder maps

Figure 4.12 shows the performance of Salient Search against TBA* these four

‡‡185 of 12000 paths

59

maps. This is the same type of graph found in Figures 4.6 and 4.7. For clarity, the

lines are drawn to demonstrate the grouping of point clusters for each map.

Compared to the results in Section 4.3.2, the performance profile appears similar.

Salient Search appears to be producing a sharper slope of values, dropping below the

trend of TBA* as R increases. One notable difference from the general results are the

values for average expansions for Salient Search at the lower values for R. Referring

back to Figures 4.6 and 4.7, Salient Search’s values were firmly to the right of the

equivalent point of TBA*. However on this plot the values for Salient Search are

more in line with the TBA* plot, appearing to adhere to the curve plotted by the

TBA* points.

Looking between the two groups of Salient Search points, it appears that there is

a tradeoff between the two strategies. Especially at the lower values for R, the AD

strategy has a slightly lower move average, coming at a slightly higher travel ratio.

Backtracking on Harder Maps

With a high heuristic error suggesting that the expansion of the search space will

spread out in a somewhat inefficient fashion, there is an expectation that successive

paths produced by TBA* can vary wildly in direction. This would necessitate more

backtracking by the agent as it often finds the path it is following to be replaced by

one without a common element. This is apparent for the harder maps.

Table 4.8 shows the mean and deviation for the number of backwards steps for

Salient Search and TBA* on the harder maps.

One somewhat surprising result here is the lack of a difference in the scores for

the different strategies. There is one curious value (86.2 for SSAD, R = 25, NS% =

75), but otherwise no significant difference. There does appear to be a trend of TBA*

having an advantage at lower R limits, with the scores converging to 0 as R grows.

Compared to the general set of searches however, the difference between TBA*

and Salient Search is smaller. In the general set, mean backwards moves varied from

60

Table 4.8: Mean backwards steps for agents in SS, TBA* on harder maps

Algo R Limit
NS% 25 50 100 500 1000

SSAD

30 80.5100 38.5375 16.3075 2.7050 1.215
(78.64998) (46.97932) (23.00698) (4.626715) (2.066264)

50 83.3000 39.1200 16.7950 2.6525 1.200
(80.85694) (48.88163) (24.08533) (4.585773) (2.099051)

75 86.2325 39.7825 17.3750 2.6950 1.250
(83.49975) (48.99123) (24.31012) (4.506411) (2.230457)

SSTB

30 79.5700 38.0150 16.9525 2.7200 1.3000
(79.75021) (48.03069) (25.03262) (4.680424) (2.343872)

50 81.6825 37.2725 16.9525 2.6275 1.2025
(83.33173) (46.93480) (25.13981) (4.612150) (2.162912)

75 80.7450 39.7675 17.1650 2.6650 1.2375
(78.60255) (50.43692) (25.52580) (4.750177) (2.286737)

TBA*
79.5550 37.3825 16.5875 2.7100 1.2675

(82.215268) (48.136566) (24.983049) (4.671237) (2.235719)

48.16 to 58.35 at R = 25, whereas in the harder set it varies from 79.55 to 86.23, a

smaller range in both relative and absolute terms.

Table 4.9: ANOVA for backwards steps on harder maps

Sum Sq Df F value Pr(>F)
NS% 2465 2 0.6487 0.5227
R Limit 10828947 4 1424.9371 <2e-16 ***
Strategy 1281 1 0.6743 0.4116
NS% : R Limit 4010 8 0.2638 0.9774
NS% : Strategy 508 2 0.1336 0.8749
R Limit : Strategy 3437 4 0.4522 0.7709
NS% : R Limit : Strategy 2333 8 0.1535 0.9964
Residuals 22741793 11970

Table 4.9 is the analysis of variance for this data. Here, it is seen that the features

of Salient Search failed to influence the variable. The only significant parameter is

the R Limit, to the p < 0.001 level.

61

Changes in Direction on Harder Maps

Table 4.10 shows the mean and deviation of the number of times an agent changed

direction on the hard maps for TBA* and Salient Search. It would be expected that

more difficult searches would increase the incidence of direction changes, and the

results indicate this.

Table 4.10: Mean changes in direction of travel for SS, TBA* on harder maps

Algo R Limit
NS% 25 50 100 500 1000

SSAD

30 7.685 4.455 3.115 1.66 1.170
(5.057145) (3.278696) (2.779585) (2.148474) (1.548255)

50 7.830 4.355 3.100 1.66 1.145
(5.073011) (3.106138) (2.861901) (2.176291) (1.557253)

75 7.905 4.425 3.105 1.67 1.135
(4.741009) (3.139110) (2.772760) (2.200729) (1.608803)

SSTB

30 7.100 4.240 2.865 1.565 1.185
(4.832015) (3.219988) (2.588150) (2.066750) (1.640886)

50 7.430 4.035 2.950 1.580 1.140
(4.815920) (3.119793) (2.652374) (2.003406) (1.589565)

75 7.305 4.265 3.050 1.555 1.105
(4.654152) (3.185143) (2.915261) (2.035272) (1.573265)

TBA*
7.73 4.39 3.01 1.64 1.19

(5.156897) (3.417176) (2.774734) (1.969797) (1.609464)

These results seem to indicate that Salient Search enjoys an advantage over

TBA* when it comes to the number of changes in direction. The means, while only

marginally lower, are nonetheless lower for the majority of test cases.

The Tie-Breaking strategy in particular appears to have a positive influence here:

for the smallest R levels, this strategy appears to have 10% fewer direction changes

(7.100 against 7.73), along with a smaller deviation. The effect diminishes as the R

limit grows, but this can be attributed to the practical bound on map/problem size

resulting in a solution in fewer cycles.

This is in line with the performance discussed in Section 4.3.3. In fact, the larger

62

difference between the two algorithms on these harder maps is a suggestion that

Salient Search is more effective at controlling this behaviour when a difficult search

problem is applied.

Table 4.11: ANOVA for changes in direction of travel on harder maps

Sum Sq Df F value Pr(>F)
NS% 5 2 0.2425 0.7846889
R Limit 63080 4 1631.0757 < 2.2e-16 ***
Strategy 124 1 12.7867 0.0003505 ***
NS% : R Limit 39 8 0.5073 0.8517583
NS% : Strategy 1 2 0.0411 0.9597703
R Limit : Strategy 95 4 2.4692 0.0426159 *
NS% : R Limit : Strategy 11 8 0.1415 0.9972688
Residuals 115731 11970

Surprisingly, ANOVA in Table 4.11 indicates that different levels of salient expan-

sion are not significant at affecting the rate of direction change. Referring back to

Table 4.7, NS is highly significant with a positive correlation between the two values,

whereas here it is not.

Strategy however, plays a larger role, being significant to the p < 0.001 level.

4.5 Summary

In this chapter we described and presented the results of an experiment to determine

the performance characteristics of Salient Search. This experiment involved 5000

distinct pathfinding problems taken from 50 maps. These maps are derived from

several successful computer games. The experiment involved a total run of 150000

searches uses the Salient Search algorithm, and 25000 searches using TBA*.

The results indicate that contrary to initial expectations, Salient Search does not

outperform TBA* in terms of travel ratio when small work windows are used. There

does appear to be a point where the suboptimality to work ratio of Salient Search

63

surpasses TBA*, but only with larger planning times where both algorithms are

converging to the optimum.

Beyond the cost of the solution itself, Salient Search’s use of strategies for selecting

subgoals appears significant in affecting some secondary statistics, which in turn pro-

duce apparent behavioural differences for an agent. The Tie-Breaking strategy, which

for equally scored alternatives prefers the choice in the salient, appears to produce an

agent that tends to change direction less. The decision to choose based on heuristic

distance between the agent and subgoal was expected to have similar results, but in

fact had a slight negative impact on performance.

64

Chapter 5

Conclusion

In this thesis we have introduced Salient Search, a real-time pathfinding algorithm

derived from the TBA* algorithm. To review, TBA* is notable for being a real-time

algorithm, in that it diverges from the main body of real-time search algorithms. The

main body of work builds on the LRTA* approach of repeated local search to build

a perfect heuristic. TBA* differs in this regard by conducting a global search effort

to determine an optimal solution.

Salient Search keeps the same benefit introduced by TBA*: high-quality paths

without the need for convergence trials or extensive precomputation. It differs through

the introduction of two concepts:

• The Salient. Copying open list node references into a temporary open list,

beginning with a single open list node (the salient root) allows a portion of

planning effort to be directed exclusively onto a subset of the open list. This

can be done without losing the amortised constant time operation necessary to

claim real-time performance.

• The use of Strategy in choosing interim paths. This thesis introduced two

strategies: a same-score tie-breaking strategy to force selection of an equally

best-first node in the salient, and a strategy based on estimating the agent’s

65

distance to the candidates. Other strategies are possible, provided the strategy

function returns a choice in O(1) running time.

In this thesis we also compared Salient Search against TBA* through an extensive

empirical trial, running both algorithms against a range of pathfinding problems taken

from popular computer games. From this, we are able to come to two conclusions

regarding the algorithm:

First, we are able to conclude that Salient Search’s features are effective at influ-

encing the progression of the search. Strategies in particular were highly significant,

with one strategy outperforming the other across the statistics we were concerned

with. Further, when restricting ourselves to more complex environments, Salient

Search coped with the increasing difficulty of the problems better than TBA*.

The effect was strongest with the smallest planning slices, which is an antagonistic

but desired setting. Smaller planning slices is a tradeoff when planning effort needs

to be spread across multiple agents. Thus, Salient Search could be an effective choice

where many agents are involved with planning complex routes. An example may be

planning for thousands of agents in a simulated shopping mall.

Secondly, the results of the experiment showed that the choice of strategy is quite

significant in the resulting behaviour an agent displays as the algorithm progresses.

The tie-breaking strategy in particular was effective in lowering the incidence of di-

rection switching, producing a ‘stubbornness’. This change in behaviour on the part

of the agent is significant, as it demonstrates that behavioural models can be incor-

porated directly into real-time algorithms. Strategies can be classified according to

the movement behaviours that emerge from their use. This could be useful where

‘believable’ supercedes the need for an optimal path. An obvious choice is in video

games, where constant optimal behaviour on the part of an agent can be seen as

‘cheating’.

66

5.1 Future work

Further investigation can be done in finding an appropriate value for the expansion

parameter NS. The results of our empirical study indicate that lower levels produce

result that may be desired, but there is a crossing point where the effect becomes

antagonistic. This would suggest that there is some non-zero value for NS yielding

maximum benefit, depending on other factors like the branching factor.

Additional work could be done to look at a strategy-only approach, where expan-

sion is left to occur exactly as A* or TBA* (i.e. NS = 0) and looking at the effect

of strategy alone on performance. This may be worthwhile since the experiments

performed in this thesis show that compared to NS, strategy plays a greater role on

its own as well as in conjunction with other factors in influencing the behaviour of

the algorithm.

There could also be more effective strategies. The strategies presented in this

thesis are rudimentary decisions, but demonstrate the strategy function has a mea-

surable impact on performance criteria. Strategies could be devised that attempt to

focus on improving a single statistic deemed important to a particular class of agent.

For example, a vehicle agent reversing course in a driving simulation could require

slowing down. In the context of a game involving a pursuing agent, slowing down at

all may be undesirable to following a longer course but at full speed. In this way,

a strategy could be tailored to incorporate such domain specific information. Thus

in some domains Salient Search may be capable of producing behaviour altogether

preferable to other real-time algorithms like TBA*.

67

References

[AHU73] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. On finding lowest common

ancestors in trees. In Proceedings of the fifth annual ACM symposium on

Theory of computing, STOC ’73, pages 253–265, New York, NY, USA,

1973. ACM.

[BB09] Vadim Bulitko and Yngvi Björnsson. kNN LRTA*: Simple subgoaling

for real-time search. In Christian Darken and G. Michael Youngblood,

editors, AIIDE. The AAAI Press, 2009.

[BBS09] Yngvi Björnsson, Vadim Bulitko, and Nathan R. Sturtevant. TBA*:

Time-bounded A*. In Craig Boutilier, editor, IJCAI, pages 431–436, 2009.

[BEH+03] Yngvi Björnsson, Markus Enzenberger, Robert Holte, Jonathan Schaeffer,

and Peter Yap. Comparison of different grid abstractions for pathfinding

on maps. In Georg Gottlob and Toby Walsh, editors, IJCAI, pages 1511–

1512. Morgan Kaufmann, 2003.

[BEHS05] Yngvi Björnsson, Markus Enzenberger, Robert C. Holte, and Jonathan

Schaeffer. Fringe search: Beating A* at pathfinding on game maps. In

CIG. IEEE, 2005.

[BFc00] Michael A. Bender and Martn Farach-colton. The LCA problem revis-

ited. In In Latin American Theoretical INformatics, pages 88–94. Springer,

2000.

68

[BLS+08] Vadim Bulitko, Mitja Lustrek, Jonathan Schaeffer, Yngvi Björnsson, and

Sverrir Sigmundarson. Dynamic control in real-time heuristic search. J.

Artif. Intell. Res. (JAIR), 32:419–452, 2008.

[BMS04] Adi Botea, Martin Mller, and Jonathan Schaeffer. Near optimal hierar-

chical path-finding. Journal of Game Development, 1:7–28, 2004.

[BSLY07] Vadim Bulitko, Nathan R. Sturtevant, Jieshan Lu, and Timothy Yau.

Graph abstraction in real-time heuristic search. J. Artif. Intell. Res.

(JAIR), 30:51–100, 2007.

[CSE98] Bioware Corp, Black Isle Studios, and Interplay Entertainment. Baldur’s

gate. [CD-ROM], 1998.

[CSE00] Bioware Corp, Black Isle Studios, and Interplay Entertainment. Baldur’s

gate II: Shadows of amn. [CD-ROM], 2000.

[Dew89] A. K. Dewdney. A tinkertoy computer that plays tic-tac-toe. Scientific

American, pages 120–123, October 1989.

[Dij59] E. W. Dijkstra. A Note on Two Problems in Connection With Graphs.

Numerische Mathematik, 1(1):269–271, 1959.

[Ent02] Blizzard Entertainment. Warcraft III: Reign of chaos. [CD-ROM], 2002.

[FHL08] Dave Ferguson, Thomas M. Howard, and Maxim Likhachev. Motion plan-

ning in urban environments. J. Field Robotics, 25(11-12):939–960, 2008.

[Fox05] John Fox. The R commander: A basic-statistics graphical user interface

to R. Journal of Statistical Software, 14(9):1–42, 8 2005.

[GG05] Firaxis Games and 2K Games. Sid meier’s civilization IV. [CD-ROM],

2005.

69

[HM05] Carlos Hernández and Pedro Meseguer. LRTA*(k). In IJCAI, pages 1238–

1243, 2005.

[HM07] Carlos Hernández and Pedro Meseguer. Improving LRTA*(k). In IJCAI,

pages 2312–2317, 2007.

[HNR68] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A Formal Basis for

the Heuristic Determination of Minimum Cost Paths. IEEE Transactions

on Systems Science and Cybernetics, 4(2):100–107, 1968.

[HT84] Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest

common ancestors. SIAM Journal on Computing, 13(2):338–355, 1984.

[IK91] Toru Ishida and Richard E. Korf. Moving target search. In IJCAI, pages

204–211, 1991.

[Ish92] Toru Ishida. Moving target search with intelligence. In AAAI, pages

525–532, 1992.

[KL02] Sven Koenig and Maxim Likhachev. D*-Lite. In AAAI/IAAI, pages 476–

483, 2002.

[KL06] Sven Koenig and Maxim Likhachev. Real-time adaptive A*. In Hideyuki

Nakashima, Michael P. Wellman, Gerhard Weiss, and Peter Stone, editors,

AAMAS, pages 281–288. ACM, 2006.

[Koe98] Sven Koenig. Exploring unknown environments with real-time search or

reinforcement learning. In NIPS, pages 1003–1009, 1998.

[Koe01] Sven Koenig. Agent-centered search. AI Magazine, 22(4):109–132, 2001.

[Koe04] Sven Koenig. A comparison of fast search methods for real-time situated

agents. In AAMAS, pages 864–871, 2004.

70

[Kor85] Richard E. Korf. Depth-first iterative-deepening: An optimal admissible

tree search. Artificial Intelligence, 27:97–109, 1985.

[Kor90] Richard E. Korf. Real-time heuristic search. Artif. Intell., 42(2-3):189–

211, 1990.

[KS98] Sven Koenig and Reid G. Simmons. Solving robot navigation problems

with initial pose uncertainty using real-time heuristic search. In AIPS,

pages 145–153, 1998.

[KTN+99] Hiroaki Kitano, Satoshi Tadokoro, Itsuki Noda, Hitoshi Matsubara, To-

moichi Takahashi, Atsuhi Shinjou, and Susumu Shimada. Robocup res-

cue: Search and rescue in large-scale disasters as a domain for autonomous

agents research. In SMC, pages 739–746. IEEE Computer Society, 1999.

[KTS03] Sven Koenig, Craig A. Tovey, and Yury V. Smirnov. Performance bounds

for planning in unknown terrain. Artif. Intell., 147(1-2):253–279, 2003.

[LFG+05] Maxim Likhachev, David I. Ferguson, Geoffrey J. Gordon, Anthony

Stentz, and Sebastian Thrun. Anytime Dynamic A*: An anytime, re-

planning algorithm. In ICAPS, pages 262–271, 2005.

[MK10] Masataka Mizusawa and Masahito Kurihara. Hardness measures for grid-

world benchmarks andperformance analysis of real-time heuristic search

algorithms. Journal of Heuristics, 16:23–36, 2010.

[R D10] R Development Core Team. R: A Language and Environment for Statisti-

cal Computing. R Foundation for Statistical Computing, Vienna, Austria,

2010. ISBN 3-900051-07-0.

[RDB+07] D. Chris Rayner, Katherine Davison, Vadim Bulitko, Kenneth Anderson,

and Jieshan Lu. Real-time heuristic search with a priority queue. In

IJCAI, pages 2372–2377, 2007.

71

[RN03] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-

proach. Prentice-Hall, Englewood Cliffs, NJ, 2nd edition edition, 2003.

[SB05] Nathan R. Sturtevant and Michael Buro. Partial pathfinding using map

abstraction and refinement. In AAAI, pages 1392–1397, 2005.

[Sim96] Herbert A. Simon. The Sciences of the Artificial. MIT Press, Cambridge,

MA, USA, 3rd edition, 1996.

[Ste94] Anthony Stentz. Optimal and efficient path planning for partially-known

environments. In ICRA, pages 3310–3317, 1994.

[Stu07] Nathan R. Sturtevant. Memory-efficient abstractions for pathfinding. In

AIIDE, pages 31–36, 2007.

[Stu10] Nathan Sturtevant. HOG - Hierarchical Open Graph, June 2010.

http://webdocs.cs.ualberta.ca/ nathanst/hog.html.

[SYCK09] Xiaoxun Sun, William Yeoh, Po-An Chen, and Sven Koenig. Simple opti-

mization techniques for A*-based search. In AAMAS (2), pages 931–936,

2009.

[Yap02] Peter Yap. Grid-based path-finding. In Robin Cohen and Bruce Spencer,

editors, Canadian Conference on AI, volume 2338 of Lecture Notes in

Computer Science, pages 44–55. Springer, 2002.

[ZSH+09] Zhifu Zhang, Nathan R. Sturtevant, Robert C. Holte, Jonathan Schaeffer,

and Ariel Felner. A* search with inconsistent heuristics. In IJCAI, pages

634–639, 2009.

72

Appendix A

Additional Figures and Tables

A.1 is a full breakdown of the heuristic error encountered for each map. Given a

heuristic H and a problem 〈S,G〉, heuristic error is the difference between the score

returned byH(S,G) and the A* optimal path. Each value is the mean of 100 searches.

Map mean mean % σ %

adrenaline 38.444 18.51 19.14

Battleground 12.064 7.87 9.92

blastedlands 4.148 2.93 4.47

darkforest 7.582 5.36 5.82

divideandconquer 8.728 4.91 5.25

dragonfire 9.888 6.66 6.79

gardenofwar 18.248 11.19 9.23

gnollwood 6.370 4.69 6.22

harvestmoon 7.792 4.96 6.05

icecrown 4.672 2.72 3.93

mysticisles 18.162 9.37 11.08

petrifiedforest 12.110 6.57 8.70

scorchedbasin 7.522 5.61 6.37

Continued on Next Page. . .

73

Map mean mean % σ %

thecrucible 11.160 6.90 5.01

tranquilpaths 13.516 8.17 7.10

AR0011SR 51.976 19.82 19.21

AR0202SR 111.238 36.58 21.12

AR0204SR 60.324 19.41 17.95

AR0205SR 44.630 20.30 16.23

AR0300SR 57.478 22.17 16.22

AR0307SR 131.048 41.17 20.89

AR0400SR 102.806 30.62 23.70

AR0404SR 68.972 27.70 17.53

AR0405SR 89.270 33.90 22.19

AR0406SR 83.750 30.12 19.77

AR0411SR 107.028 32.05 22.48

AR0414SR 15.046 8.81 13.40

AR0500SR 43.838 16.61 18.40

AR0516SR 25.184 12.80 11.97

AR0602SR 115.160 37.50 19.01

AR0603SR 91.360 27.87 21.74

AR0700SR 29.734 15.01 13.77

AR0701SR 18.462 11.24 10.03

AR0012SR 26.714 14.97 13.64

AR0013SR 14.610 9.14 8.99

AR0014SR 16.884 11.44 11.37

AR0070SR 131.658 36.50 27.87

AR0071SR 83.522 30.58 20.66

AR0308SR 19.778 9.05 14.35

Continued on Next Page. . .

74

Map mean mean % σ %

AR0309SR 31.184 17.01 17.53

AR0412SR 15.366 8.02 12.40

AR0413SR 39.960 20.22 13.05

AR0504SR 21.818 12.64 13.93

AR0505SR 21.650 12.58 12.98

AR0510SR 11.852 7.31 7.25

AR0511SR 16.720 10.56 13.73

AR0600SR 20.448 9.93 10.81

AR0601SR 23.954 9.73 14.64

AR0705SR 100.904 32.38 20.05

AR0711SR 37.108 14.94 10.49

Table A.1: Heuristic error breakdown by map

Table A.2: Travel Ratio of Salient Search on cardinal grid-type

AD TB
R NS% Exp./Move Ratio R NS% Exp./Move Ratio

25
30 8.053635 1.369197

25
30 8.249332 1.342698

50 8.129356 1.385923 50 8.305299 1.360589
75 8.204448 1.405837 75 8.365007 1.383436

50
30 9.792802 1.164522

50
30 9.845291 1.156884

50 9.962391 1.173848 50 9.941612 1.165815
75 10.179030 1.183557 75 10.096441 1.177184

100
30 11.050755 1.065947

100
30 11.045822 1.062087

50 11.154335 1.068111 50 11.039262 1.064304
75 11.297010 1.070144 75 11.032585 1.065987

500
30 11.761439 1.008413

500
30 11.701709 1.007428

50 11.735883 1.008454 50 11.534619 1.007529
75 11.735735 1.009019 75 11.307667 1.007709

1000
30 11.847371 1.003523

1000
30 11.750441 1.003168

50 11.795003 1.003485 50 11.564756 1.003130
75 11.879790 1.003693 75 11.453937 1.002990

75

Table A.3: Travel Ratio of TBA* on Cardinal grid-type

R Exp./Move Ratio
25 8.288570 1.312557
50 9.842781 1.140516
100 10.994856 1.054609
500 11.905271 1.006960
1000 11.994006 1.003201

76

Appendix B

Maps

The following is a complete listing of all 50 maps used in the experiment found in

Chapter 4. This set is derived from a collection found in [Stu10], which in turn are

originally sourced from [CSE98, CSE00, Ent02].

Baldur’s Gate Maps

(1) ar0011sr (2) ar0012sr (3) ar0013sr

77

(4) ar0014sr (5) ar0070sr (6) ar0071sr

(7) ar0202sr (8) ar0204sr (9) ar0205sr

(10) ar0300sr (11) ar0307sr (12) ar0308sr

(13) ar0309sr (14) ar0400sr (15) ar0404sr

78

(16) ar0405sr (17) ar0406sr (18) ar0411sr

(19) ar0412sr (20) ar0413sr (21) ar0414sr

(22) ar0500sr (23) ar0504sr (24) ar0505sr

(25) ar0510sr (26) ar0511sr (27) ar0516sr

79

(28) ar0600sr (29) ar0601sr (30) ar0602sr

(31) ar0603sr (32) ar0700sr (33) ar0701sr

(34) ar0705sr (35) ar0711sr

80

Warcraft 3 Maps

(1) adrenaline (2) battleground (3) blastedlands

(4) darkforest (5) divideandconquer (6) dragonfire

(7) gardenofwar (8) gnollwood (9) harvestmoon

81

(10) icecrown (11) mysticisles (12) petrifiedforest

(13) scorchedbasin (14) thecrucible (15) tranquilpaths

82

Vita Auctoris

NAME Jonathan Vermette

PLACE OF BIRTH Windsor, Ontario

YEAR OF BIRTH 1984

EDUCATION

2003 - 2008 B. Sc.[H]

School of Computer Science

University of Windsor

Windsor, Ontario, Canada.

83

	University of Windsor
	Scholarship at UWindsor
	2011

	Salient Search
	Jonathan Vermette
	Recommended Citation

	Ghostscript wrapper for C:\thesis work\dissertation\Thesis\thesis.pdf

