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Abstract

Probabilistic reasoning methods, Bayesian networks (BNs) in particular, have emerged as

an effective and central tool for reasoning under uncertainty. In a multi-agent environment,

agents equipped with local knowledge often need to collaborate and reason about a larger

uncertainty domain. Multiply sectioned Bayesian networks (MSBNs) provide a solution

for the probabilistic reasoning of cooperative agents in such a setting.

In this thesis, we first aim to improve the efficiency of current MSBN exact inference

algorithms. We show that by exploiting the calculation schema and the semantic meaning

of inter-agent messages, we can significantly reduce an agent’s local computational cost as

well as the inter-agent communication overhead. Our novel technical contributions include

1) a new message passing architecture based on an MSBN linked junction tree forest (LJF);

2) a suite of algorithms extended from our work in BNs to provide the semantic analysis

of inter-agent messages; 3) a fast marginal calibration algorithm, designed for an LJF that

guarantees exact results with a minimum local and global cost.

We then investigate how to incorporate approximation techniques in the MSBN frame-

work. We present a novel local adaptive importance sampler (LLAIS) designed to apply

localized stochastic sampling while maintaining the LJF structure. The LLAIS sampler

provides accurate estimations for local posterior beliefs and promotes efficient calculation

of inter-agent messages.

We also address the problem of online monitoring for cooperative agents. As the MSBN

model is restricted to static domains, we introduce an MA-DBN model based on a combina-

tion of the MSBN and dynamic Bayesian network (DBN) models. We show that effective

multi-agent online monitoring with bounded error is possible in an MA-DBN through a

new secondary inference structure and a factorized representation of forward messages.
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Chapter 1

Introduction

An intelligent agent is usually defined as a computational or natural system that senses its

environment and takes actions intelligently according to its own goals [92]. Such an agent

can process local observations, generate appropriate decisions and execute the chosen ac-

tion. Some examples include autonomous mobile robots, internet infobots and intelligent

tutors. A probabilistic agent uses probabilistic knowledge representations and reasons ex-

plicitly with regard to the state of the domain. For instance, the driverless car, which won

the DRAPA Grant Challenge in 2005, has demonstrated the power of a real world proba-

bilistic application on a single-agent mobile robot.

In recent years, systems involving multiple agents that communicate with each other

in a distributed fashion have become more prevalent. Cooperative agents need to reason

collectively about the states of an uncertain domain based on their local knowledge and

inter-agent communication. This can happen either in a static time-invariant or a dynamic

temporal environment. For instance, one problem is how four driverless cars on a city street

can collaborate with each other and coordinate their actions, in order to avoid any collision

and safely pass a four-way-stop intersection. We are facing the challenge of how to fully

utilize and extend the existing representation models and inference algorithms for a single

probabilistic agent to multi-agent settings.

One well-studied model for cooperative multi-agent probabilistic reasoning is the Mul-

tiply Sectioned Bayesian Network (MSBN) extended from the traditional Bayesian network

(BN) model. With an MSBN, we can decompose a larger problem domain into subdomains,

1



CHAPTER 1. INTRODUCTION 2

each individually represented and managed by a relatively lightweight single agent. Multi-

ple agents can collectively reason about the state of the global domain based on their local

knowledge, local observation, and limited inter-agent communication. Existing inference

calculation in MSBN is carried out in some secondary structures, typically a linked junc-

tion tree forest (LJF). An LJF consists of local junction trees (JT) each for an agent’s local

domain and linkage trees connecting a pair of neighboring agents.

In this thesis, we show that while an LJF provides a coherent framework for exact in-

ference with MSBNs, it is too costly to carry out efficient computation with the current

Hugin-based message passings. We introduce techniques extending the BN Shenoy-Shafer

architecture to the LJF inference structure for improved efficiency of exact global propa-

gation. Not only is our method able to avoid the repeated local updates, but it also avoids

full rounds of local message passing completely. Still, in larger and more complex prob-

lem domains, the exponential computation of LJF global inference could render any exact

representation and calculation mostly impractical. It is thus natural to consider the possi-

bility of trading off exact inference against the calculation speed and communication cost

with approximate approaches. Unfortunately, although approximate techniques have been

well-developed in traditional BNs, their extension to MSBNs has been very limited. In the

second part of this thesis, we thus focus on the design of alternative approximate solutions

to the existing MSBN based multi-agent probabilistic inference. Last but not the least, we

move on to the dynamic problem domain and present a novel model that describes the tem-

poral evolvement of dynamic agents. Our new model supports effective online monitoring

for a group of cooperative agents with bounded errors.

Overall, we propose solutions to the following three questions in this thesis:

1. How to improve the efficiency and robustness of existing exact inference algorithms;

2. How to apply practical approximation techniques in an MSBN model;

3. How to effectively model and reason with a group of dynamic probabilistic agents.

Our solutions are based on the issues and difficulties addressed below.
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1.1 Improving Message Passing in LJFs

Most existing inference algorithms are applied on an LJF with Hugin-based recursive mes-

sage scheduling schema for inter-agent communication. This results in excessive amount

of local computation because each agent’s local belief has to be updated repeatedly, and

each update triggers a round of message propagation in the agent’s LJF local JT. Extending

from the BN Shenoy-Shafer message passing, we propose a new message oriented archi-

tecture for LJFs, such that all inter-agent messages are explicitly calculated and buffered.

We will show that although the total number of external messages remains the same, it is

much more efficient to compute these messages with our new architecture. This improve-

ment is due to that repeated local updates are no longer needed, and local message passings

are conducted more efficiently through a partial propagation. We completely avoid any full

round passings of local messages.

With the traditional recursive methods, inter-agent message passing is very sensitive to

unreliable communication channels. Also, periodical off-line times can prevent each agent

from observing local evidence continuously. We thus try to support the exact MSBN belief

updating with iterative message passing. We present an iterative version of our new ar-

chitecture, along with a scheme that avoids repeated multiplications during message com-

putation. We show that the convergence of iterative message passing to exact results is

guaranteed. More importantly, temporary communication errors can be tolerated without

causing global belief updating failures.

1.2 Marginal Calibration

The marginal distribution, or prior marginal distribution, of an MSBN subnet’s local vari-

ables is essential for an agent to reason about its own problem subdomain. Marginal cali-

bration refers to the process of forming the prior marginal in each local domain. The initial

potential assignment of MSBN subnets does not provide such information. This is because

the agent’s local junction tree is not consistent after the construction, and more importantly,

each subnet’s initial potential does not necessarily contain all the required information to

form the prior marginal.



CHAPTER 1. INTRODUCTION 4

A fast calibration ensures efficient global inference. With all existing algorithms, the

marginal calibration is carried out through standard inter-agent messages passings. Such

a calibration process is implicit and is usually expensive in both time and space. In this

thesis, we introduce a marginal calibration algorithm based on the theories developed for

the cluster calibration in traditional BN junction trees and our new LJF message passing

architecture.

The global propagation (GP) method used in the Hugin architecture is arguably one

of the best methods for exact probabilistic inference method in BNs. Passing messages

between clusters (cliques) in a JT is the basic operation in the GP method. It is traditionally

considered that the messages passed are simply potentials without any specific semantic

meaning. We study the factorizations of a joint probability distribution defined by a BN

before and after the GP method is performed, and we investigate the messages passed

algebraically. We reveal that the messages are actually separator marginals or their factor-

izations, thus passing messages in the GP method can be equivalently considered as the

problem of allocating separator marginals. This novel perspective of propagation gives

rise to a more efficient way of computing cluster marginals with both the Hugin and the

Shenoy-Shafer message passings.

Extending the above results, we design an MSBN marginal calibration algorithm that

requires the minimum inter-agent message passing and local computation. We introduce

the concept of prior marginal (PM) factors for a complete prior distribution of MSBN

subnets. Based on a distributed analysis of these factors at the compile time, we can guide

the actual runtime inter-agent communication by sending only the necessary messages.

1.3 Localized Stochastic Sampling in MSBNs

Although stochastic sampling has been successfully used in BN approximation, applica-

tion of these techniques to the MSBN global context has been proven to be problematic.

Earlier attempts of MSBN approximation algorithms forgo the LJF structure and sample

an MSBN directly in the global context [93]. It has been shown that such approximation

indeed requires more inter-agent message passing, and at the cost of revealing more pri-

vate knowledge of each local subnet. Furthermore, MSBN global sampling schema tend to
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explore only a small part of the entire multi-agent domain space.

We thus aim to maintain the LJF framework and explore localized approximation,

which is realized through an individually carried out sampling process at an agent’s subnet.

In a calibrated local JT, such local approximation is possible, but standard BN sampling

algorithms can not be applied directly. One major obstacle is the need for supporting the

inter-agent message calculation over linkage trees. We should be able to obtain an inter-

agent message, which is composed of a set of extended linkage potentials, accurately and

efficiently with the local sampling algorithm.

As we study the extension of BN importance sampling techniques to JTs, we present a

novel LJF-based Local Adaptive Importance Sampler (LLAIS). We design our importance

function as tables of posterior probabilities over the clusters of an LJF local JT. We adopt

the adaptive importance sampling, such that the importance functions are learned sequen-

tially to approach the optimal sampling distribution. One innovative feature of the LLAIS

is that it facilitates inter-agent message calculation. We can obtain an approximation of

a linkage tree message from the learned importance function before the local sampling is

completed.

1.4 Multi-agent Probabilistic Reasoning in Dynamic Do-

mains

Another problem investigated in this thesis is the representation models and inference al-

gorithms for a dynamically evolving multi-agent system. Cooperative agents often need to

reason about the states of a domain that changes over time. For example, in many appli-

cations, agents need to track the state of such systems, a problem known as tracking, or

monitoring. Essentially, each agent needs to determine the posterior probability for nodes

of interest, given a set of accumulated evidence from the agent’s own observation and those

of other agents. Online monitoring requires the calculation of monitoring results at each

time step at runtime.

Our goal is to provide a fast and accurate online monitoring calculation for a group

of cooperative agents. Although the MSBN model has been applied successfully in the
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multi-agent probabilistic reasoning, it is restricted to static problem domains. On the other

hand, the dynamic Bayesian network (DBN) model is well known for modeling dynamic

(temporal) domains involving a single agent. We are thus motivated to search for a possible

combination of the two for representing dynamic uncertainty knowledge in a multi-agent

setting. However, several obstacles to such integration exist. In particular, a decomposed

representation of joint JPD does not guarantee efficient inference calculation in dynamic

domains. The spatial distribution of the multi-agent systems could conflict with the tempo-

ral message passing for dynamic multi-agent probabilistic reasoning.

Our solution to a compact representation and effective inference framework is to ex-

ploit weak interactions between each dynamic agent’s individual evolvement over time. By

assuming certain level of independency among the temporal advance of the cooperative

agents, we can take the advantage of both MSBN and DBN models and provide an ap-

proximate solution to the multi-agent online monitoring problem with a new model named

as Multi-Agent Dynamic Bayesian Networks (MA-DBN). While agents are organized ac-

cording to an underlying hypertree structure to facilitate inter-agent communication, each

dynamic agent maintains an individual chain of evolution. We introduce a new secondary

structure of an MA-DBN called LDJF, which enables a factorized and more efficient com-

putation of the cooperative online monitoring.

1.5 Thesis Overview

The organization of the thesis is summarized below:

• Chapter 2: Background This chapter presents an introduction to probabilistic graph-

ical models, particularly, the Bayesian network (BN) model and the multiply sec-

tioned Bayesian network (MSBN) model. We discuss major exact and approximate

inference algorithms for BNs. We also introduce the secondary structure of MSBNs,

a linked junction tree forest (LJF), as well as existing algorithms for calculating the

posterior probability distribution with an MSBN LJF.
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• Chapter 3: An Improved LJF Message Passing Architecture In this chapter, we

present a new message passing architecture for MSBN LJFs. Different from the tra-

ditional Hugin-based message passing, our new approach adopts from the Shenoy-

Shafer architecture by utilizing linkage trees as message buffers. An inter-agent mes-

sage can be originated from either a consistent or inconsistent local JT, and a full local

update is never issued. The new architecture can be extended to allow asynchronized

passing of iterative messages; such a scheme maintains the correctness of the exact

message calculation with improved robustness of inter-agent communication.

• Chapter 4: BN Prior Marginal Factors In this chapter, we examine the problem of

JPD factorization in traditional single-agent BNs. We investigate the semantic mean-

ing of messages passed over the separator of each pair of neighbouring JT clusters.

We present a procedure named Allocate Separator Marginal(ASM) to determine the

actual information a cluster requires to form the marginal in the JT. We show how

the ASM procedure can help to form the marginal with a minimum messages passing.

• Chapter 5: Fast Marginal Calibration Current MSBN calibration methods are per-

formed implicitly and expensively in terms of both inter-agent messages passing and

local computation. They are not suitable when an explicit prior marginal is needed

for certain subnets. In this chapter, we present a new marginal calibration algorithm

that is based upon informed message passing; not only does it provide a correct prior

explicitly, but it also requires a minimum amount of inter-agent messages and local

calculation.

• Chapter 6: Local Adaptive Importance Sampling In this chapter, we address the

problem of approximate inference with an MSBN. We show that localized approx-

imation can be combined with the existing MSBN LJF framework, thus providing

a practical solution to inference in larger and more complex MSBNs. We present

an LJF local importance sampler that delivers good approximation for the posterior

distribution of an MSBN subnet’s local JT, as well as for the estimates of inter-agent
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messages.

• Chapter 7: MA-DBN: Modeling Agents’ Dynamic Evolvement In this chapter

we turn to dynamic problem domains. We present a dynamic model, MA-DBN, that

supports distributed multi-agent probabilistic inference. We model the dynamics of

a group of cooperative agents approximately by utilizing weak interactions among

them. We show that the error resulting from such assumption of independency is

bounded over time during the course of online monitoring. We also introduce a

method of re-factorization to reduce the correlation between two adjacent dynamic

agents.

The thesis concludes with a summary and a discussion of directions for future research.



Chapter 2

Background

This chapter presents a brief introduction to probabilistic graphical models, particularly,

the Bayesian network model and the multiply sectioned Bayesian network model. We

discuss major exact and approximate inference algorithms for BNs. We also introduce the

secondary structure of MSBNs, a linked junction tree forest, as well as its existing inference

algorithms.

2.1 Probabilistic Graphical Models

Probabilistic graphical models have become an important tool in helping an intelligent

agent to reason with its uncertainty knowledge and to take proper actions. They utilize

graphs to compactly represent a complex probabilistic distribution, such that data are mod-

eled as a set of nodes representing random variables, and their connecting arcs, directed or

undirected, encode the dependencies between the variables. Probabilistic graphical models

combine the representation and algorithmic powers of both the probability theory and the

graph theory. We will present a brief introduction that is pertinent to our work in later

chapters. A more comprehensive introduction can be found in [41] [45].

9
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2.1.1 Basic Probability Theory

Based on probability theory, a random variable is a variable whose outcomes (values) are

given by chance. The possible outcomes of a discrete random variable are mutually exclu-

sive and collectively exhaustive, and together as a set, called the domain of the variable.

The probability of a random variable is measured by a function that maps each possible

outcome, or instantiation, of this variable into the interval of [0,1].

In this thesis, we restrict our discussion to multiple-valued discrete random variables.

Capital letters or indexed capital letter, such as A, B, or Xi denote random variables, un-

less otherwise specified. Bold capital letters, such as X, or Y, denote sets of variables.

Bold capital letter E is usually used to denote the set of evidence variables. Lower case

letters, such as a and x denote particular instantiation of variable A and X respectively,

unless specified otherwise. Bold lower case letters, such as x and y, denote particular in-

stantiations of sets X and Y respectively. Bold lower case letter e is used to denote the

observation for the set of evidence variables E.

Given a set of random variables V = {V1, V2, ..., Vn}, the probabilities of all com-

binations of the possible outcomes of each variable in V is called the joint probability

distribution (JPD) of V, which is denoted as

P (V) = P (V1 = v1, V2 = v2, ..., Vn = vn) = P (v1, v2, ..., vn),

where v1, v2, ..., vn are the respective values those variables take. The domain of V is the

cross join of the domains of all variables in {V1, V2, ..., Vn}. Each element from the domain

of a set of variables is referred to as an instantiation of these variables.

The probability distribution of a subset X of V can be obtained by summing out all

variables in set of V excluding X (denoted by V\X):

P (X) =
∑

V\X
P (V),

where P (X) is called the marginal probability distribution (MPD) of X from P (V). It can

also be written as P ↓x(V). In general, the process of summing out some variables from a

probability distribution is called marginalization.
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Given that we have some random variables observed with certain values, the probability

distribution of other random variables may change. This relationship of dependency is

expressed by a conditional probability distribution (CPD). Let X and Y be two disjoint

subsets of V and x and y be their instantiations. The CPD of X = x given Y = y,

denoted by P (X = x|Y = y) and abbreviated as P (x|y), is defined as

P (x|y) =
P (x,y)

P (y)
. (2.1)

where P (y) 6= 0.

Equation 2.1 defines the probability of X = x given Y = y, where X is the head and

Y is the tail of this CPD.

The conditional probability distribution of some variables X with given evidence e ,

denoted as P (X|E = e), is also known as the posterior probability distribution of X. In

this thesis, we will consider only hard evidence such that each evidence is an instantiation

of a variable. The marginal probability distribution can be viewed as a special case of

conditional probability distribution when evidence is not yet observed for any variables.

Thus, it is also referred to as the prior marginal distribution or just the prior in this thesis.

2.1.2 Dependency Model

A complete specification of JPD defines a probabilistic model for a set of random variables.

However, to specify a probability model using a full JPD table is impractical. For a domain

described by n boolean variables, it requires a table of size O(2n) and takes O(2n) time to

process the table. By taking advantage of the dependence and independence relationship

among variables, this cost can be reduced greatly.

Let X, Y and Z be disjoint subsets of V. X and Y are unconditionally independent if

the following holds:

P (X|Y) = P (X), P (Y) 6= 0. (2.2)
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X and Y are conditionally independent given Z if the following holds:

P (X|Y,Z) = P (X|Z), P (Z) 6= 0. (2.3)

The conditional independency relationship in Equation 2.3 can be denoted as a condi-

tional independency statement (CIS) I(X,Z,Y) or I(X,Y|Z). The unconditional inde-

pendency relationship in Equation 2.2 can be denoted as CIS I(X, ∅,Y) or I(X,Y|∅). A

dependency model is any model M of a set of variables V = {V1, V2, ..., Vn} from which

one can decide whether I(X,Y|Z) is true or not for all possible disjoint subsets X, Y and

Z.

An easy and intuitive approach to model some dependency models is the use of directed

acyclic graphs (DAG). A DAG consists of a set of nodes as the random variables, and a set

of directed links between nodes but with no directed cycles. The independency relationship

in a DAG can be identified by a graphical criteria called d-separation.

Definition 1 D-separation

Variables X and Y in a DAG are d-separated if for all paths connecting X and Y , there

is an intermediate variable Z such that one of the following statement is satisfied.

1. Z is the middle variable in one or a serial of diverging connections, and Z is instan-

tiated as an evidence.

2. Z is the middle variable in a converging connection, and neither Z nor any of its

descendants have been instantiated.

If Z d-separates X and Y in the graph G, then the CIS I(X,Z,Y) is said to be derived

from G. A causal network is a directed graph constructed based on a special list of CIS

called causal input list, where the random variables are ordered such that a cause always

precedes its effect.

2.2 Bayesian Networks

Bayesian networks (BNs) [70] is a probabilistic graphical model for reasoning under uncer-

tainty. It has been well accepted as a coherent and effective framework for decision support



CHAPTER 2. BACKGROUND 13

systems that must function with uncertain knowledge, such as machine learning, speech

recognition, bioinformatics, error-control codes, medical diagnosis and so on.

Denoted as a triplet B = (V,D, P ), a BN consists of a set of random variables V, a

DAG D where each variable in V corresponds one to one to a node in D. Each variable

Vi in V is represented as a node in the DAG and is associated with a CPD P (Vi|Pa(Vi)),

where Pa(Vi) denotes the parents of Vi in the DAG. The product of these CPDs defines a

JPD as:

P (V) =
∏

Vi∈V

P (Vi|Pa(Vi)), (2.4)

and we call this factorization (in terms of CPDs) a Bayesian factorization. The BN model

captures the independency among random variables and provides a compact representation

of JPD. Alternatively and equivalently, a BN can be defined in terms of the CPD factoriza-

tion of a JPD.

Definition 2 Let V = {V1, . . . , Vn}. Consider the CPD factorization of P (V) as below:

P (V) =
∏

Vi∈V, Vi 6∈Ai, Ai⊆V

P (Vi|Ai), (2.5)

If (1) each Vi ∈ V appears exactly once as the head of one CPD in the above factoriza-

tion, and (2) the graph obtained by depicting a directed edge from vertex X to Vi for each

X ∈ Ai is a DAG, i = 1, . . . , n, then the obtained DAG and the CPDs P (Vi|Ai) in Equa-

tion (2.5) define a BN. In fact, the factorization in Equation 2.5 is a Bayesian factorization

of the defined BN.

The graphical structure of DAG encodes CIs that are satisfied by the JPD defined by

the Bayesian factorization. In particular, the Markov independence statement states that

every vertex Vi in a DAGD is independent of its non-descendants (denoted NonDesc(Vi))

given its parents Pa(Vi), i.e., I(Vi, Pa(Vi), NonDesc(Vi)). We will use Markov(D) to

denote all the Markov independence statements induced by a DAG D. Any JPD P (V) that

satisfies each CI in Markov(D) can be factorized as a Bayesian factorization with respect

to D and vice versa.
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Figure 2.1: A simple BN: the Asia travel network.

Consider the Asia travel BN [52] defined over V = {a, . . . , h}. Its DAG and the

CPDs associated with each node are shown in Figure 2.1. The JPD P (V) is obtained as:

P (V) = P (a) · P (b) · P (c|a) · P (d|b) · P (e|b) · P (f |cd) · P (g|ef) · P (h|f). The DAG

encodes CI information, for instance, given b, d and e are independent, i.e., I(d, b, e);

given f , h and abcdeg are independent, i.e., I(h, f, abcdeg).

2.2.1 Exact Inference with Junction Trees

A Bayesian network provides not only a natural and compact way to model causal struc-

tures, but also a computational basis for probabilistic inference [81]. The most common

inference task performed on BNs is the calculation of posterior distribution P (X|E = e)

for a set of variables X given evidence set E. We call the set of variables H = V\X\E
hidden variables. Since a Bayesian network specifies a complete representation of JPD

over all random variables, any probabilistic inference can be calculated by summing out

hidden variables with a sequence of multiplication and addition operations, should the full

joint distribution obtained from Equation 2.4 become available. That is
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P (X|E = e) =
P (X, e)

P (e)
= αP (X, e) = α

∑
H

P (X, e,H), (2.6)

where α is a normalization value 1/P (e).

The above inference calculates the result exactly according to the probability theory.

This is known as exact inference calculation. However, such brute force calculation is

computationally infeasible. In fact, many algorithms have been developed that are based

on the same notion of a BN, but with considerably different underlying concepts. A group

of exact algorithms perform the task of probabilistic inference on a secondary structure of

a JT. A JT is a tree graph whose nodes are subsets of the domain variables called clusters,

or cliques. The steps of constructing a JT are sketched as follows.

Step 1. Moralizing the original graph: A moral graph is constructed by first connecting every

pair of nodes in each node’s parent set if they are not connected; then replacing the

directed edges with undirected edges.

Step 2. Triangulating the moralized graph: Add necessary edges so the moral graph is trian-

gulated. In a triangulated graph, every cycle of length 4 or more has at least one

link between two non-adjacent nodes on the cycle. Different triangulation algo-

rithm may have different results. The problem of finding an optimal triangulation

is NP-complete [105], but fast algorithms that produce high quality results are avail-

able [19] [8].

Step 3. Identifying and joining cliques to construct a JT: A clique or just a cluster is a com-

plete and maximal subgraph of a triangulated graph. Once the clusters are identified,

they are arranged to form a JT. A method to construct an optimal JT is discussed

in [37] where the clique intersection with largest state space (the number of configu-

rations) is preferred at each construction step.

In a JT, an important property called the running intersection property holds. That is,

if a variable belongs to two distinct JT clusters, then it must belong to every cluster on

the path connecting the two clusters. Based on this property, we define the set of common

nodes to a pair of neighboring clusters as their separator.
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Once a JT is constructed, each JT cluster will be quantified with an initial function Φ,

known as the potential of the cluster. 1 As each CPD P (Xi|Pa(Xi)) is assigned to a JT

cluster containing {Xi} ∪ Pa(Xi), the initial potential of a cluster is then the product all

CPD the cluster has received. If a cluster does not receive any CPD, it will be initialized to

a unity potential 1.

After the JT initialization, the potential of each cluster does not represent the cluster

marginal. In order to transform the cluster potential into the cluster marginal, the prob-

ability information of each cluster must be updated to be consistent to other clusters. In

particular, when evidence is observed, they are entered into some clusters and need to be

propagated throughout the JT. The property of running intersection ensures the coherent in-

formation exchange among JT clusters through message passings over the separators. The

Hugin architecture [40] [59] and the Shenoy-Shafer architecture [82] [83] [84] are the two

major variations for the JT-based exact inference calculation.

The Hugin Architecture

Under the Hugin architecture, there is a message buffer for each separator to enforce the

consistency between adjacent clusters on common variables. The potential associated with

each separator is initialized to unity potential 1, and the Hugin global propagation (GP) is

carried out based on message passings. First, an arbitrary cluster in the JT is chosen as the

root cluster and all the edges of the JT are directed toward the root. Then, messages between

clusters are calculated and propagated in the cluster tree through two stages, namely, the

inward and outward passing stages, also known as the Collect-Evidence stage, and the

Distribute-Evidence stage. During the inward pass, each JT cluster passes a message to

its neighbor towards the root’s direction, beginning with the cluster farthest from the root.

During the outward pass, each cluster in the JT passes a message to its neighbor away from

the root’s direction, beginning with the root itself.

1A potential is just a non-negative function.
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Suppose a message is to be sent from cluster C1 to cluster C2, and the potential associ-

ated with sender C1 is Φ(C1). The message MC1→C2 is calculated as

MC1→C2 = Φ(C1)
↓C1∩C2 , (2.7)

where C1 ∩ C2 is the set of nodes in the separator between C1 and C2.

In Hugin architecture, a message calculated by Equation 2.7 is not directly multiplied

to the receiving neighbor, but is divided by the existing potential in the separator and then

stored as a new separator potential. This updated potential on the separator is the actual

value to be absorbed in the receiving cluster. We illustrate a single message passing under

the Hugin architecture in Figure 2.2. Note that passing a Hugin message will result in

updated potential values for the receiving cluster as well as the separator.

C2

C1

Mold

Potential = Potential * M / Mnew old

Mnew
Message

direction

separator

BEFORE

Potential does not change

AFTER

C1

C2

Figure 2.2: Before and after a single message passing in the Hugin architecture.

Once the GP is completed, the JPD of all variables is equal to the product of potentials

on all clusters divided by the product of potentials on all separators. Meanwhile, the po-

tential of each cluster and separator has transformed into marginal. The marginal of some

variable of interest X can be calculated by first locating a cluster C that contains X. Then,

we marginalize the cluster potential Φ(C) on X to obtain

P (X, e) = Φ(C)↓X, (2.8)
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where e is the evidence incorporated before applying the GP method. Given P (X, e) and

P (e), The posterior distribution can then be calculated following Equation 2.6.

The message passing on the Hugin architecture can be improved by the method of Lazy

inference [57] [58] [56]. Instead of maintaining a single potential for each cluster and sep-

arator in the Hugin architecture, we keep a multiplicative decomposition of potential tables

for the clusters and separators in the Lazy inference. We can thus delay the actual com-

bination of potential tables during the multiplication calculation, so we are able to exploit

independence relations introduced by evidence during the message calculation.

The Shenoy-Shafer Architecture

In the Shenoy-Shafer architecture, the global propagation is also executed as message

exchanges over the separators, but each separator is associated with two message buffers

for storing messages passed in each direction between the two clusters.

With the Shenoy-Shafer message passing scheme, each cluster waits to send its mes-

sage to a given neighbor until it has received messages from all other neighbors. Unlike the

typical rooted recursive scheduling for Hugin message passings, no root cluster is selected

in the Shenoy-Shafer architecture. When a cluster is ready to send its message to a particu-

lar neighbor, it computes the message by collecting all the buffered messages from its other

neighbors, multiplying its own table by these messages and marginalizing the product over

the separator between itself and the neighbor to whom it is sending [84].

Figure 2.3 shows the calculation of a Shenoy-Shafer message. Suppose we have a JT

cluster C and NC is the set of its neighboring clusters. The message C has received from

any neighboring cluster N is denoted as MN→C , then the message C sent to a specific

neighbor C ′ is given by

MC→C′ = (Φ(C) ·
∏

N∈NC\C′
MN→C)↓C∩C′ . (2.9)

Note that in the Shenoy-Shafer architecture, a message calculated by Equation 2.9 is

not immediately absorbed by the receiving cluster. Instead, it is stored in one of the two

message buffers associated with the separator. The potential of the sender and receiver
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Figure 2.3: Message passing in the Shenoy-Shafer architecture.

clusters do not change during a single Shenoy-Shafer message passing.

The global propagation is completed when all clusters have sent and received messages

from all their neighbors, or equivalently, when each message buffer is filled with a message.

The marginal on a cluster C, with evidence e incorporated before the propagation, can be

calculated as

P (C, e) = P (V)↓C = Φ(C)
∏

N∈NC

MN→C . (2.10)

The original potential table and all the messages it receives from all its neighbors are

multiplied together to obtain the cluster marginal. The marginal of some certain variables

can be calculated by marginalizing the JT cluster that contains the variables, followed by

normalization as described in Equations 2.8 and 2.6.

Both the Hugin and the Shenoy-Shafer architectures avoid the explicit calculation of

the joint probability distribution over the complete domain. Instead, marginals for vari-

ables of interest are obtained through message passing and cached computation. In the

Hugin architecture, the division operation is needed to calculate each message, whereas

the Shenoy-Shafer requires no division but needs additional multiplication operations for

all messages originated from one cluster. Essentially, the message passed between two
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neighboring clusters, under either the Hugin or the Shenoy-Shafer architecture, contains

essentially the same information. The difference lies in the message calculation schema

adopted by the two architectures: the explicit form of messages which a cluster receives

does not appear in the Hugin architecture, whereas each message is individually stored in

the Shenoy-Shafer architecture.

According to the comparison conducted by Lepar [53], the overall computational effi-

ciency between the Shenoy-Shafer and the Hugin architectures depends on the structure of

the original BNs. The Hugin architecture is faster on arbitrary JTs. However, the Shenoy-

Shafer architecture answers queries for a wider variety of applications, and it delivers better

performance in a special tree structure, binary join trees, in which each cluster has at most

three neighbors [67].

Exact inference in BN is NP-hard in the worse case [16]. JT algorithms, including both

the Hugin and the Shenoy-Shafer architectures, do not solve the problem of NP-hardness as

well. Exponential time and space are required when these algorithms are applied to JTs that

are constructed from densely connected networks. The network density is usually captured

by a graph parameter called tree-width, which represents the size of the largest JT cluster.

2.2.2 Approximation Methods

In larger BNs, exact inference, including the JT algorithms, become impractical. An al-

ternative is to use approximate inference to obtain a result that is close to exact. Although

approximation with guaranteed error bounds is also NP-hard in worse cases [18], the class

of solvable problems is wider and some approximation strategies work well in practice.

Two approximation methods pertinent to this thesis are briefly introduced as follows.

Stochastic Sampling

Stochastic sampling algorithms, also known as Monte Carlo algorithms, are the most

well-known class of approximation techniques. These methods generate randomly selected

instantiations of the network according to the probabilistic distribution of the model. Then,

the frequencies of instantiations for the query nodes are calculated as an approximation
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of the inference task. The accuracy depends on the size of samples; the execution time is

linear in the sample size and is mostly independent of the network topology. Stochastic

algorithms have a nice any-time property such that the computation can be interrupted at

any given time to yield an approximation. [33].

Probabilistic logic sampling is the first and simplest sampling algorithm [34]. Samples

are obtained in a BN following the directed edges from the root; any samples that are

inconsistent with the observed evidence values (if any) are discarded. The probabilities

of query nodes are obtained by counting the frequencies with which relevant events occur

in the sample set. Logic sampling works very well in the absence of evidence. But with

evidence, the number of accepted samples decreases exponentially with the number of

evidence variables, resulting in a large amount of wasted samples.

The algorithms of likelihood weighting or evidence weighting [80] [29] solve the prob-

lem of sample waste in logic sampling. In likelihood weighting, when an evidence node is

encountered in the sampling process, the observed value of the evidence node is recorded,

and the sample is weighed by the likelihood of evidence conditional on the samples. Like-

lihood weighting algorithm can be applied in larger networks and converges faster then

logic sampling. However, the main difficulty with likelihood weighting, and indeed with

most stochastic sampling algorithms, is that it takes a long time to converge for unlikely

events [33] [15].

Importance sampling algorithms improve these sampling approaches by using a revised

sampling distribution to approximate the posterior distributions. Such a sampling distribu-

tion can be generated in many ways. A successful method is the Adaptive Importance

Sampling for Bayesian networks (AIS-BN) [15], which reduces the sampling variance by

learning a sampling distribution that is as close as possible to the optimal importance sam-

pling function.

The main problem of stochastic sampling algorithms is that the convergence deterio-

rates when given extreme probabilities in the CPTs and the probability of evidence is low.

It is also difficult to judge how close of the simulation results to the exact results, especially

when the probability of evidence is very low [33].
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Structure Simplification

These methods approximate the inference calculation by applying a certain level of

simplification to the original model. These algorithms try to weaken or ignore some of the

networks dependencies, forcing the generated dependencies of the network to result in a

bounded error during the inference calculation. Such a simplification could involve reduc-

ing the cardinality of the size of JT clusters [48], or fitting parameters to a simple logistic

function [62]. Another widely applied method is to reduce edges of an original network.

For example, the edges representing weak dependencies can be removed to simplify the

inference calculation [43].

2.3 Multi-agent Probabilistic Reasoning with MSBNs

In a multi-agent setting, the problem domain is naturally distributed among agents, and

typically with increased size and complexity. Modeling such a domain as a single BN

and performing inference tasks have been known to be difficult [92]. It is thus natural

to consider decomposing one single large and complex domain into subdomains, which

can be individually represented and managed by a relatively lightweight single agent. We

assume that agents are cooperative such that they provide only truthful information about

their local domains to other agents.

Multiply Sectioned Bayesian Network (MSBN) [92] [100] extends the traditional BN

model from single-agent oriented paradigm to distributed multi-agent paradigm. The MSBN

model is introduced based on following five basic assumptions that describe some ideal

knowledge representation formalisms for multi-agent uncertain reasoning [99] [101].

1. Agent’s belief is represented as probability.

2. Agents communicate their beliefs based on a small set of shared variables.

3. A simpler agent organization is preferred.

4. A DAG is used to structure each agent’s knowledge.
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5. An agent’s local JPD admits the agent’s belief of its local variables and the shared

variables with other agents.

It has been shown that based on this small set of requirements, the resultant representa-

tion of a cooperative multi-agent system is an MSBN [101]. Formally, an MSBN is defined

as the followings [92].

Definition 3 Let G = (V,E) be a connected graph, with the set of random variables V

and connecting edges E, sectioned into subgraphs {Gi = (Vi, Ei)}. Let the subgraphs be

organized into an undirected tree H where each node is uniquely labeled by a Gi and each

link between Gk and Gm is labeled by the non-empty interface Vk ∩Vm such that for each

i and j, Vi ∩Vj is contained in each subgraph on the path between Gi and Gj in H. Then

H is a hypertree over G. Each Gi is a hypernode and each interface is a hyperlink.

Definition 4 Let G be a directed graph such that a hypertree over G exists. A node x

contained in more than one subgraph with its parents Pa(x) in G is a d-sepnode if there

exists at least one subgraph that contains Pa(x). An interface I is a d-sepset if every x ∈ I

is a d-sepnode.

Definition 5 A hypertree MSDAG G = ∪iGi, where each Gi is a DAG, is a connected DAG

such that (1) there exists a hypertree H over G, and (2) each hyperlink in H is a d-sepset.

Definition 6 An MSBN M is a triplet (V, G, P). V = ∪iVi is the domain where each Vi is

a set of variables. G = ∪iGi (a hypertree MSDAG) is the structure in which nodes of each

DAG Gi are labled by elements of Vi. Let x be a variable and Pa(x) be all the parents

of x in G. For each x, exactly one of its occurrences (in a Gi containing {x} ∪ Pa(x) ) is

assigned P (x|Pa(x)), and each occurrence in other DAGs is assigned a uniform potential.

P =
∏

i Pi is the JPD, where each Pi is the product of the potentials associated with nodes

in Gi. A triplet Ni = (Vi, Gi, Pi) is called a subnet of M. Two subnets Ni and Nj are said

to be adjacent if Gi and Gj are adjacent on the hypertree MSDAG.

An MSBN is composed of a set of BN subnets organized into a hypertree. Each agent

maintains its own local BN subnet that represents a partial view of a larger problem do-

main. The union of all subnet DAGs must be a DAG, and these subnets are organized into



CHAPTER 2. BACKGROUND 24

a tree structure. Each hypertree node corresponds to a subnet, and each hypertree link cor-

responds to a d-sepset, which is the set of shared variables between adjacent subnets. A

hyperlink renders two sides of the network conditionally independent similar to a separator

in a JT. A hypertree H is purposely structured so that (1) for any variable x contained in

more than one subnet with its parents Pa(x) in G, there must exist a subnet containing

Pa(x); (2) the shared variables between any two subnets Ni and Nj are contained in each

subnet on the path between Ni and Nj in H.

One small example of MSBN for digital equipment monitoring, borrowed from Xiang’s

paper [94], is shown in Figure 2.4. The digital equipment consists of 5 individual physical

components. Each component contains the logical gates along with the labels for its input

and output signals as shown enclosed in a box in Figure 2.4 (a). A set of 5 agents, each

maintaining one component, cooperate to monitor the equipment and trouble-shoot. The

hypertree of the constructed MSBN is shown in Figure 2.4 (b). Each agent is responsible

for its own subdomain knowledge regarding the gates of the component and local obser-

vation. For example, Figure 2.5 shows a subnet maintained by one agent. Agents share

information over the gates that connects two components. Thus, through limited local ob-

servation and communication, agents can cooperate to determine the current functioning

status of the equipment, and identify faulty gates when mal-functioning occurs [96].

MSBNs provide a framework for uncertainty reasoning in cooperative multi-agent sys-

tems, so that a distributed problem domain can be modeled modularly and the inference to

be performed coherently. MSBNs have been successfully applied in areas such as building

surveillance [31], medical and equipment diagnosis [103] [96], distributed collaborative

design [95] and multi-agent ambiguous context clarification in pervasive environments [3].

MSBNs also provide support for object-oriented Bayesian networks [47].

2.3.1 Linked Junction Tree Forests (LJFs)

A derived dependence structure called linked junction tree forest (LJF) is typically adopted

for distributed probabilistic inference in MSBNs. An LJF is constructed through a pro-

cess of cooperative and distributed compilation so that each hypernode in a hypertree H is

transformed into a local JT and each hyperlink into a linkage tree.
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Figure 2.4: An example of digital equipment monitoring system. (a) The equipment,
(b)The hypertree of corresponding MSBN.

A linkage tree is just a special name for the JT constructed from a d-sepset. In a linkage

tree, each cluster is called a linkage, and each separator, a linkage separator. The cluster in

a local JT that contains a linkage is called a linkage host. Two adjacent subnets will each

maintain its own linkage tree that corresponds to the same d-sepset. These two linkage

trees may be different, but only at their topologies. As they span over the same d-sepset

and have an identical set of clusters and separators, it has been proven that the result of

message passing is not affected [92].

For example, the three BN subnets, namely G0, G1, and G2 in Figure 2.6 (b), together
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Figure 2.5: One subnet of the MSBN in Figure 2.4.

with the hypertree Figure 2.6 (c), comprise an MSBN. Two hyperlinks in Figure 2.6 (c)

consist of the d-sepsets {a, b, c} and {a, b, c, d}. The subnets are maintained by agents A0,

A1 and A2 respectively. Note that the union of the three DAGs in Figure 2.6 (b) gives rise

to the DAG in Figure 2.6 (a).

Figure 2.7 shows an LJF constructed from the MSBN in Figure 2.6 (b) and Figure 2.6

(c). Local JTs, T0, T1 and T2 constructed from BN subnet G0, G1 and G2 respectively, are

enclosed by boxes with solid edges. Linkage trees, converted from d-sepsets, are enclosed

by boxes with dotted edges. Note that each pair of adjacent subnets maintain the identical

linkage trees in this example. The linkage tree L02 contains two linkages abc and bcd and

their linkage hosts in T0 are the clusters {abc} and {bcd}.

During the initialization of an LJF, exactly one of all occurrences of a variable x (in a

subnet containing {x} ∪ Pa(x)), is assigned the CPD P (x|Pa(x)). All other occurrences

are assigned a unity potential. Also, a unity potential is assigned to each separator (in each

local JT) and each linkage (in each linkage tree). Thus, the initial potential of a local JT

cluster is either the product of all of its assigned CPDs, or unity potential 1 if no CPD is

assigned. An example of the initialization of an LJF is shown in Figure 2.7. Within the total

seven occurrences of the variable b in all three subnets, only one occurrence, which is in
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Figure 2.6: (a) A BN. (b) A small MSBN with three subnets. (c) The corresponding MSBN
hypertree.

cluster bcd of G2, is assigned the CPD P (b|cd). All other occurrences are assigned a unity

potential (not shown in the figure). In most cases, the initial potential does not provide the

complete information for an agent to correctly reason about its own problem subdomain.

This is because the local JTs are not yet consistent, but more importantly, the potential of

each subnet does not represent the prior marginal distribution, which is the JPD of the local

variables without any observed evidence.

For example, the initial potentials of all three subnets in Figure 2.7 are: Φ(G0) =

P (a) · P (c) · P (d) · P (k|ab), Φ(G1) = P (i|ab) and Φ(G2) = P (b|cd) · P (e|c) · P (f |ac).

None of these potentials forms the JPD over the corresponding local variables. Even though

local consistence can be achieved through message passing in the local JT, inter-agent

communication is necessary to provide each MSBN subnet the missing information to form

the prior marginal. This process is known as marginal calibration.
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Figure 2.7: An LJF constructed for the MSBN in Figure 2.6.

2.3.2 MSBN Distributed Inference

A major task of MSBN inference is to supply the correct global posterior probabilistic

knowledge to each agent given some locally observed evidence. The most dominant group

of algorithms for distributed probabilistic inference in an MSBN utilize secondary infer-

ence structures [92, 93, 98]. Among them, the LJF-based algorithms, extending from JT-

based inference methods for single-agent BNs, have proven to be the most successful [92].

LJF-based inference algorithms are superior to methods based on global loop-cutset con-

ditioning and global stochastic sampling [93], as they provide a higher level of autonomy

than those alternatives.

However, the existing LJF-based algorithms are based mostly on the extension from

Hugin message passings. The typical propagation process requires two rounds of global

messages exchange in the corresponding LJF. This can be viewed at a high level as the

Hugin message propagation in the context of an MSBN.

Within an LJF framework, inter-agent messages passed between two adjacent agents are

calculated over their connecting linkage tree. 2 During LJF global propagation, inter-agent

2A detailed discussion of the linkage tree construction will be presented in Chapter 3.
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messages are passed recursively inward and outward, relative to a randomly selected root

subnet. During the inward message passing, each agent passes a message to its neighbor

toward the root’s direction, starting with the leaf subnets. During the outward passing, each

agent passes a message to its neighbor away from the root’s direction, originating from the

root itself.

With the existing Hugin-based methods, an agent’s local computation is costly. The

consistency of the local JT must be achieved in the sender before passing an inter-agent

message, and also in the receiver afterward. This local consistency is obtained through the

standard JT message passing in the LJF local JT. The number of such local updates in an

MSBN subnet is not relative to the root selection during the LJF global propagation, but

depends on the hypertree topology. In fact, the existing Hugin-based methods all require

repeated updates of the local beliefs. Whenever an agent receives an inter-agent message,

a full round of message passing in its local JT must be performed, which includes two

complete stages of message passings (inward and outward) among the local JT clusters,

2.4 Discussion

A BN, as an example of graphical probabilistic model, has been well accepted as a powerful

tool for uncertainty reasoning. Although exact inference as well as approximate inference

with guaranteed precision are NP-hard, there have been many practical algorithms that can

solve a wide range of inference tasks.

As an extension to the original BN model, the MSBN provides a specific model for

probabilistic reasoning in multi-agent systems. A large and distributed problem can be

modeled as a set of organized subdomains, following certain constraint of domain sec-

tioning. As an MSBN maintains a hypertree structure, the BN JT inference algorithm is

naturally extended to an MSBN secondary structure LJF. Essentially, the current inference

algorithms in LJF follows the same principle of the Hugin message passing of a JT, but

carries out the inference calculation in two levels, the LJF global level and the LJF local

JT level. Although exact results are guaranteed, these algorithms could be too costly to

be applied in larger systems. In particular, the local computational cost at some MSBN

subnets may become significantly high, possibly halting the LJF global inference.
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To date, there has been little research of extending non-Hugin message passings to the

MSBN context. Despite the similarities of the tree structure in both a BN JT and an MSBN

hypertree, current research has not offered effective solutions for LJF global inference. In

the next chapters, we will investigate methods to improve the existing distributed inference

calculation by adopting some novel inference architectures. Furthermore, we will use ap-

proximation techniques, such as stochastic sampling and model simplification, to trade in

certain levels of accuracy for more efficient computation.



Chapter 3

An Improved LJF Message Passing
Architecture

The existing LJF inference algorithms are extensions to the Hugin-based message passing

architecture. They are similarly composed of rooted, recursive message passing schema

at both the global and the local levels [92]. The global inference is first called upon a

randomly selected agent, and two rounds of inter-agent messages passing are recursively

carried out among all agents in a restricted order. A message passed between two adjacent

agents, known also as an external message or a global message, is transmitted over the

linkage trees between the agents. The update of local belief during the local propagation

involves passing of intra-agent messages, each known as an internal message or a local

message in the LJF local JT1.

The original Hugin architecture supports the inference computation in a BN JT with

exact results, but its extended version in MSBN LJFs could incur an extensive amount of

internal messages passing. This is because each Hugin message is no longer passed be-

tween two JT clusters, but instead between two MSBN subnets each with its own internal

structure of a local JT. Upon receiving an incoming inter-agent message, an agent must

absorb it immediately, followed by an update of its local belief that involves two rounds

of intra-agent message passings. Also, with the Hugin-based propagation, it is well-known

1Hereinafter, we use inter-agent, external and global message, intra-agent, internal and local message
interchangeably

31



CHAPTER 3. AN IMPROVED LJF MESSAGE PASSING ARCHITECTURE 32

that periodical off-line time prevents each agent from observing local evidence continu-

ously [88]. The recent improvement of the LJF Hugin-based method extends from the lazy

inference algorithm [58]. The calculation of extended linkage potentials is more efficiently

carried out with a lazy-based division [98]. Nevertheless, the local computation remains

costly, as an agent with s neighbors will still conduct s times local belief updates, each with

a complete round of inward and outward local message passings.

Our goal is to improve the local computational efficiency for LJF global propagations.

We argue that, as an LJF represents a high level JT, the inference algorithm for LJFs should

not be restricted to the extension of a certain class of JT inference algorithms, i.e. the Hugin

architecture. In particular, by adopting some new message calculation and passing scheme,

we could avoid the repeated local updates.

In this chapter, we introduce an LJF-based inference architecture extending from the

Shenoy-Shafer message passing. The main obstacle to such an integration of the Shenoy-

Shafer message passing and LJF is the usage of message buffers. Since Shenoy-Shafer

messages must always be buffered, an earlier attempt of Shenoy-Shafer extension is applied

on a special secondary structure of an MSBN, named double linked junction tree forest

(DLJF) [97]. A DLJF provides the needed message buffers, but its construction requires

a more sophisticated, message direction dependent compilation process compared to the

construction of an LJF. More importantly, extra storage is needed in a DLJF since we need

to maintain two sets of JTs (as the term “double” stands for) in order to pass the two

messages between each pair of adjacent agents.

Our new approach aims to fully utilize the existing LJF structure. The reduction of

local computation are realized through 1) the adopting of the Shenoy-Shafer architecture

to avoid repeated local updates, and 2) the introduction of partial propagation to limit the

number of needed local message passing during each local update. In order to support the

Shenoy-Shafer message calculation, we treat each linkage tree as a message buffer. Given

that an incoming message will be buffered, no repeated local propagation is conducted.

Moreover, we introduce a new method of partial local update, which greatly reduces the

amount of intra-agent messages while maintaining the correctness of inter-agent message

passings and LJF global propagation. A non-rooted inter-agent message scheduling scheme

is adopted so that the calculations of inter-agent messages are not carried out recursively
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based on a given root, but initiated simultaneously at all nodes. Our asymptotic analysis

shows that the time complexity of our new message passing architecture is superior than

the current Hugin-based as well as the Lazy extension to LJF inference methods.

Later in this chapter, we introduce an extension of our new global propagation archi-

tecture to iterative message passing. Since more than one message are passed toward each

direction between a pair of adjacent agents, a temporary missing inter-message will not halt

the global propagation. It has been shown that the current Hugin-based message passing

architecture cannot be extended successfully to support exact calculation with an iterative

scheme [2], whereas our message oriented LJF architecture provides the needed support

for such extension.

Under our iterative scheme, each agent performs the local calculation in complete par-

allel with other agents. Inter-agent messages are delivered iteratively and as batch. An

agent has more autonomy as to decide the time interval for processing received messages

and perform local updates. Since the iterative message passing is conducted among agents

organized into a hypertree structure, the convergence of inter-agent messages is guaranteed.

Meanwhile, each agent’s local belief can be obtained exactly. Such a scheme could be more

costly in terms of message calculation, but it is more suitable in a multi-agent environment

with unreliable communication channels due to its fault tolerance ability.

3.1 Hugin-based Recursive Inference

3.1.1 Linkage Tree as Separator

In an MSBN, the exchange of the shared information of adjacent agents is through mes-

sages passed over their corresponding d-sepset. A linkage tree is an alternative representa-

tion of the d-sepset between adjacent agents in an LJF [89]. A linkage tree is constructed

with an explicit internal structure, containing clusters (linkages) smaller than the domain

of d-sepset in order to reduce the cost of message calculation. A linkage tree, a linkage and

a linkage host are defined by Definition 7 [92].

Definition 7 Let I be the d-sepset between JTs Ti and Tj in an LJF. A linkage tree L of Ti

with respect to Tj is constructed as follows:
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Initialize L to Ti. Repeat the following on a cluster of L until no nodes can be removed:

1. Remove a node x /∈ I if x is contained in a single cluster C.

2. If C becomes a subset of an adjacent cluster D after step 1., union C into D.

Each cluster l in L is a linkage. Define a cluster in Ti that contains l as its linage host

and break the tie arbitrarily.

Current LJF inference algorithms [88, 92] are extensions of the Hugin architecture.

Inter-agent messages passed between two adjacent agents are calculated over their con-

necting linkage trees, which are used as a Hugin separator. For an LJF local JT Ti to

deliver a message to Tj over Ti’s linkage tree Lij , each linkage Qi in Lij is assigned first a

linkage potential, which is

Φ(Qi) =
∑

Ci\Qi

Φ(Ci), (3.1)

where Ci is Qi’s linkage host in Ti.

For example, consider the LJF with local JTs and linkage trees shown in Figure 3.1.

The message originated from G0 to be delivered to G2 is calculated over the linkage tree

L02, and should consist of the potentials over two linkages abc and bcd.

Figure 3.1: Message Calculation over an LJF.
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As the linkage tree construction enables a more compact representation of d-sepset, it

also introduces redundancy over linkage separators. This is because the separator nodes in

the linkage tree may appear more than once in different linkages. For example, consider

again the example in Figure 3.1. Using Equation 3.1, we have linkages abc and bcd both

carrying information over bc, causing errors in the message propagation.

In order to solve this problem, the concept of extended linkage potential is intro-

duced [92]. That is, we first randomly select a linkage as the root linkage and direct all

linkages accordingly. Then, we associate each linkage separator with one of its two neigh-

boring linkages, which is farther away from the root linkage, as the linkage’s peer separator.

The extended linkage potential is defined as follows:

Definition 8 Suppose in a linkage tree, for each linkage Q with peer separator R, the

extended linkage potential is defined as follows:

Φ∗(Q) = Φ(Q)/Φ(R) (3.2)

for all non-root linkages, and

Φ∗(Q) = Φ(Q) (3.3)

if Q is the root linkage.

Therefore, as the extended linkage potential for root linkage remains the same, the

redundancy of the separator information over other linkages is removed by division [92].

For example, in linkage tree L02 from Figure 3.1, we can select the cluster abc as the

root linkage, then associate the separator bc with the linkage bcd as the peer separator.

Meanwhile, abc has no peer assigned. The extended linkage potentials on each linkage are

Φ∗(abc) = Φ(abc) and Φ∗(bcd) = Φ(bcd)/Φ(bc). The extended linkage potential defined

in Equation 3.2 is actually used to calculate external messages.

The delivery of an inter-agent message is done through the passing of extended link-

age potentials of each linkage over the corresponding linkage tree. An operation, named

Absorb Through Linkage Orig [96], is used to propagate the belief from one linkage
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host in the sender agent to the other linkage host in the receiver agent. The operation is

described in the following algorithm.

Algorithm 1 Absorb Through Linkage Orig

Let Q be a linkage in a linkage tree L between two LJF local JTs Ti and Tj , and let Ca

and Cb be the corresponding linkage host of Q in Ti and Tj . Let Φ∗
Q(Q) be the extended

linkage potential associated with Q, and Φ∗
Cb

(Q) be the extended linkage belief on Q defined

in Cb. When Algorithm Absorb Through Linkage Orig is called on Ca to absorb from

Cb through Q, the following operations are performed.

1. Updating host belief: Φ′
Ca

(Ca) = ΦCa(Ca) ∗ Φ∗
Cb

(Q)/Φ∗
Q(Q)

2. Updating linkage belief: Φ∗′
Q(Q) = Φ∗

Cb
(Q)

Algorithm Absorb Through Linkage Orig delivers a message, in the form of an ex-

tended linkage potential, through a single linkage. The message is immediately absorbed

(multiplied) into the potential maintained at the linkage host of the receiver agent. The

linkage potential receiver host is updated to be consistent with the sender host. Such con-

sistency between the linkage host and the linkage is defined as follows.

Definition 9 Let Q be a linkage between two LJF local JTs Ti and Tj . Let Ca be the linkage

host of Q in Ti. Ca and Q are said to be consistent if
∑

Ca\Q Φ(Ca) = ΦQ(Q).

Note that in Definition 9, ΦQ(Q) is linkage potential, not the extended linkage potential

used during the message passing. After Algorithm Absorb Through Linkage Orig is

performed in the sender host, Cb and l are consistent. Also, if Ca and Q are consistent

before the operation is performed, the same consistency is maintained afterward as well.

In fact, although each of the two adjacent agents maintains its own linkage tree, the two

linkage trees have exactly the same value. They are used in the place of a separator of the

Hugin architecture.

An actual external message is delivered over a linkage tree, which is constructed typ-

ically with multiple linkages. Algorithm Update Belief Orig propagates belief from a

local JT to another adjacent local JT through a set of extended linkage potential.
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Algorithm 2 Update Belief Orig

Let Ti and Tj be two adjacent local JTs, and L be the linkage tree between them. When

Update Belief Orig is called on Ti relative to Tj , the following is performed:

1. For each linkage Q in L, absorb the corresponding extended linkage potential by

calling the linkage host of Q in Ti to perform Absorb Through Linkage Orig.

2. Perform a full round of local propagation in Ti.

It is important to note that the delivery of each inter-agent message will trigger local

propagation, which is typically conducted as standard BN JT inference [96]. We call such

local propagation in an LJF local JT as agent’s local updates.

3.1.2 Rooted Recursive Scheduling

The current LJF-based inference algorithms are similarly composed of a rooted, recursive

message passing schema. The global inference algorithm is first called upon a randomly

selected agent, and two rounds of inter-agent messages passing are recursively carried out

amongst all agents in a restricted order. During the inward message passing, each agent

in the hypertree passes an external message to its neighbor toward the root’s direction,

beginning with the hypertree’s leaf nodes. During the outward passing, each agent in the

hypertree passes a message to its neighbor away from the root’s direction, beginning with

the root itself. This scheduling scheme is realized with the following set of algorithms [96].

Algorithm 3 Collect Belief Orig

Suppose an agent A with a local JT T. When Collect Belief Orig is called in A, A

does the following:

1. If A has no neighbor except the caller, it performs local propagation and returns.

2. Otherwise, for each adjacent local JT T ′ except the caller, call Collect Belief Orig

in T ′. After T ′ finishes, T performs Update Belief Orig relative to T ′.

Algorithm 4 Distribute Belief Orig

Suppose an agent A with a local JT T. When Distribute Belief Orig is called in A, A

does the following:
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Figure 3.2: Inter-agent message passing in MSBNs.

1. If the caller is a local JT, performs Update Belief Orig relative to the caller.

2. For each adjacent local JT T ′ except the caller, call Distribute Belief Orig in T ′.

Algorithm 5 Communicate Belief Orig

When Communicate Belief Orig is initiated at an LJF, Collect Belief Orig is

called at any chosen local JT T, followed by a call of Distribute Belief Orig at T.

Algorithm Communicate Belief Orig brings an LJF into global consistency such

that all local JTs are consistent and each linkage tree is consistent with each of the two

corresponding local JTs as defined in Def. 9. The LJF global propagation is analogous to

the Hugin-based GP method in a BN JT. While the above set of algorithms realize exact

inference in an LJF, its drawback is the cost for each agent to maintain local consistency.

An agent must perform multiply times of local updates during the LJF global message

propagation.

For example, in Figure 3.2, suppose the shaded node represent an agent A0 and is se-

lected as the root node. The solid arrows indicate the direction of inward messages flow

starting from all the leaf nodes, and the dashed arrows indicate the direction of outward

messages flow originated from A0. Consider the stage of inward message passing. A4

receives one inter-agent message from each of the three neighboring agents, A6, A8 and

A9. These three nodes must maintain their local consistency through local message passing
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before the inter-agent message to A4 can be calculated. The receiver node A4 will need to

update its local belief and maintain its own consistency upon the arrival of each inter-agent

message, for a total of three times, in order to prepare an outgoing message to be delivered

to A1. Next, during the outward message passing initiated at A0, A4 will receive an in-

coming message from A1, which is absorbed by A4 by another round of local propagation.

Afterward, since A4 has received all incoming messages, its local belief become globally

consistent as well locally consistent.

3.2 An Improved LJF Inference Architecture

Aiming at improving the efficiency of local computation, we introduce a new architecture

for LJFs global inference, which extends from the Shenoy-Shafer architecture. Compared

with the Hugin calculation, Shenoy-Shafer messages between JT clusters are stored in mes-

sage buffers, rather than multiplied directed into the receiver cluster. The belief of each JT

cluster is consistently updated in the Hugin architecture, whereas the Shenoy-Shafer ar-

chitecture is message-oriented, and the original belief of each cluster remains unchanged.

With the latter, the JPD of a JT cluster is obtained by an explicit call to multiply all buffered

messages with the original potential of the cluster.

The Shenoy-Shafer architecture has been shown to out-perform the Hugin architecture,

particularly in a special JT structure named binary joint tree [53]. Although an MSBN

hypertree does not resemble a binary joint tree, we extend the Shenoy-Shafer message

passing in order to take the advantage of delayed manipulation of inter-agent messages.

Such an approach will results in reduced number of local updates currently needed in the

Hugin architecture. So far, the only extension of the Shenoy-Shafer architecture to MSBNs

is applied on a special secondary structure: a double linked junction tree (DLJF) [97].

We present a new architecture that allows the Shenoy-Shafer message passing based on a

standard LJF.
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3.2.1 Linkage Tree as Message Buffer

In an LJF, each of the two adjacent agents maintains its own linkage tree. The linkage trees

are constructed over the same d-sepset, resulting in the same set of linkages and linkage

separators. Currently, the potential stored in the two linkage trees are identical during the

belief propagation, these two separate linkage trees are used to serve the purpose of a single

Hugin separator. Indeed, this treatment guarantees the correctness of the Hugin message

passing, but each incoming message must be immediately processed followed by a com-

plete round of inference in the local JT, as described in Algorithm Update Belief Orig.

The main novel idea of our architecture lies in the usage of linkage trees as message

buffers. In order to conduct the Shenoy-Shafer message calculation in JTs, two message

buffers must be allocated for each pair of adjacent clusters. Similarly, we need two message

buffers for each adjacent pair of agents in an LJF to store the messages for both directions.

Since an agent maintains a linkage tree to each of its neighboring agents, there are two

linkage trees associated with each pair of adjacent agents. Thus, naturally enough, we

use each individual linkage tree as a message buffer, such that a message delivered from

a neighboring agent can be buffered into the linkage tree corresponding to that agent. We

describe the delivery of an inter-agent message over a linkage tree as follows.

Algorithm 6 Deliver Through Linkage

Let Ti and Tj be two adjacent local JTs in an LJF, and let their corresponding linkage

trees be Li and Lj . Let Qk
i , Qk

j (k=1,...,n) each be a pair of corresponding linkages in

Li and Lj , and Ck
i and Ck

j be their linkage hosts in Ti and Tj . Φ(Qk
j )

cur is the current

potential in linkage Qk
j . When Algorithm Deliver Through Linkage is called on Ti to

obtain a message from Tj , the following is performed:

1. For each linkage Qk
j in the linkage tree Lj

2. Calculate the extended linkage potential Φ∗(Qk
j ) from linkage host potentialΦ(Ck

j );

3. Compose the message potential as Φ(Msg) = Φ∗(Qk
j )/Φ(Qk

j )
cur;

4. Assign linkage potential Φ(Qk
i ) = Φ(Msg);

5. Maintain the current belief of linkage hosts Φ(Ck
i ) and Φ(Ck

j );

6. End for

7. Flag the linkage tree Li as message received;
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The operation defined in Algorithm Deliver Through Linkage delivers an inter-agent

message that is still composed of extended linkage potential. Compared with Algorithms

Absorb Through Linkage Orig and Update Belief Orig, a message passed with Algo-

rithm Deliver Through Linkage is only buffered without being absorbed into the poten-

tial of the corresponding linkage host. Note the actual calculation of the message includes

a division to remove the potential initially assigned to the linkage tree. This is due to the

new local update schema that will be introduced in the next sections.

We illustrate our inter-agent message calculation and buffering with an example. Con-

sider an agent A0 with its local JT T0 and n neighbors A1,..., An shown in Figure 3.3. The

inter-agent message passings are marked with arrows. Linkage trees are used as buffers,

e.g. buf1, buf2,..., bufn to store messages coming from A0’s n adjacent agents.

Figure 3.3: Incoming message buffers. The agent A0 maintains n message buffers each
responding to an adjacent agent.

In our new architecture, the local belief update is not triggered by a new incoming

message. Instead, an agent decides when the local message calculation is to be performed

following certain global message passing protocols (which will be presented Section 3.2.3).

An update of local belief can be achieved with Algorithm Update Belief .

Algorithm 7 Update Belief
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Let T be a local JT of an agent A with n adjacent JTs. Let Li (i=1,...,n) be the n linkage

trees maintained by T to its neighbors. In a linkage tree Li, let Qi be the set of linkages,

and let their set of linkage hosts in T be CQi
. When Algorithm Update Belief is called in

T , A performs the following:

1. For each linkage tree Li that is marked with a message received

2. For each linkage host in CQi

3. Absorb the extended linkage potential Φ(l) for each Q ∈ Qi;

4. Φ′(CQi
) = Φ(CQi

) ∗ Φ(Q);

5. End for

6. End for

7. Perform a full round of local propagation in T;

The call to Algorithm Update Belief is issued by an agent to update the local belief

with regards to the inter-agent messages that are received. The local JT will absorb all

currently buffered messages, and a round of local belief update is performed. Note that al-

though the JT is locally consistent after a call to Algorithm Update Belief , the local belief

might not be globally consistent unless messages have arrived from all of the neighboring

agents.

3.2.2 Message Calculation and JT Local Consistency

The goal of LJF inference is to propagate each agent’s local belief over the whole network.

An agent’s coherent local belief, with regards to the LJF global domain, is obtained through

incoming messages from its adjacent agents. Under the current Hugin-based architecture,

an inter-agent message is always calculated in a locally consistent JT, as such a message is

always obtained after a full round of local JT propagation is performed. However, since the

agent might not have received messages from all its neighbors, local propagation performed

at this moment does not guarantee global consistency. Repeated internal message passing

is conducted only for the purpose of message calculation.

We try to reduce the local computational cost in terms of intra-agent (internal) message
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passing. We argue that local propagation, with a full round of inward and outward pass-

ing of internal message, is not always necessary. Although the correct belief of local JT

depends on all the messages delivered to the JT, a message sent by that local JT actually

depends on all but one of these messages. With a Shenoy-Shafer message passing scheme,

we are able to obtain a message in a non-consistent JT, which is of the same content as one

from a consistent local JT, through a partial belief update. We first introduce the concept of

a linkage host tree and an extended linkage host tree to facilitate such message calculation.

Definition 10 Let Ti be a local JT and a linkage tree Li connecting to a neighboring local

JT. In Ti, H is the set of linkage host clusters for Li. Then a tree Th constructed with H is

called a linkage host tree of Ti with regards to Li.

Proposition 1 A linkage host tree is a JT.

Proof:

Based on the linkage tree property, a linkage tree is a JT representation of the d-sepset.

Also, each of the linkage tree clusters is a linkage, and each linkage corresponds to a

linkage host, which is a cluster of the local JT. A linkage host cluster may contain additional

nodes to its corresponding linkages, and these nodes are not d-sepset nodes.

If we construct a tree Th with linkage host clusters following the same structure of the

linkage tree, the running intersection property for each d-sepset is preserved since the d-

sepset is not changed in Th. Also, as in T , all clusters are local JT clusters, so the running

intersection property holds also for none d-sepset nodes. Therefore, the linkage host tree

Th is also a JT. ¤

Definition 11 Let Ti be a local JT and its linkage host tree Th that corresponds to a linkage

tree Li. The minimum subtree of Ti that contains all clusters in Th is called an extended

linkage host tree Te of Ti with regards to Li.

Note that a linkage host tree is a conceptually defined structure that contains only link-

age host clusters. It may not be a subtree of the local JT. Meanwhile, an extended linkage

host tree is a subtree within the local JT, but it may contain clusters other than the linkage

hosts for the connecting linkage tree.
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For example, consider the local JT T0 with the root cluster Cr shown in Figure 3.4. The

linkage hosts for linkage tree L0 are clusters Cr, C1 and C3 each with a bold border. These

three clusters can construct a JT which is the linkage host tree of T0 with regard to L0 and is

not shown in the figure. Also, Cr, C1 and C3 together with a non-host cluster C2, construct

an extended linkage host tree Te as a subtree of T0. Te is shown in shaded area in T0.

T0

L0

Cr

C3

C2

C1

Te

Figure 3.4: An example of partial propagation for calculating a single outgoing message.
Shown with the local JT T0, linkage tree L0 and extended linkage host tree Te.

In our new architecture, an agent Ai can deliver a single outgoing message to a neigh-

boring agent Aj , if Ai has received all incoming message from its other neighbors except

Aj . Such a message is composed over extended linkage potential from the corresponding

linkage hosts that are locally consistent with all the messages that Ai has received. Typ-

ically, this can be achieve by calling Algorithm Update Belief . However, we show that

such a complete round of local belief update can be avoided. An algorithm designed to

obtain an outgoing inter-agent message with only a partial local propagation is shown as

follows.

Algorithm 8 Cal Single MSG

Let Ai and Aj be two adjacent agents. Ai’s local JT is Ti with the set of clusters C.

Ti maintains a linkage tree L to Aj . In Ti,, H is the set of linkage hosts of L and the
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extended linkage host tree is Te. When called, an external message passed from Ai to Aj is

calculated as the follow steps:

1. For all linkage trees of Ai connecting to neighboring agents except Aj , absorb the

extended linkage potential and update the belief on corresponding linkage hosts.

2. Randomly select a linkage host Cr ∈ H ⊂ C as the root of Te as well as Ti. Direct

all clusters away from Cr in Ti.

3. Perform a full inward message passing on Cr in Ti, such that Cr calls recursively all

child clusters to send an inward message.

4. Perform a partial outward message passing on Cr within the context of Te, such that

Cr sends outward messages to all linkage hosts recursively.

5. For each linkage in L, obtain corresponding extended linkage potential.

Consider again Figure 3.4. Suppose we need to calculate the outgoing message of local

JT T0 over linkage tree L0. After step 1 of Algorithm Cal Single MSG, we select Cr and

perform an inward message passing toward Cr in the local JT T0. Each inward message,

marked by an arrow in the figure, shows that the messages are passed from all leave nodes

first recursively toward the root node in the whole local JT. Next, an outward message

passing is originated from root Cr, but with outward messages reaching only the clusters

within the extended linkage host tree Te. Once this partial message passing is over, we can

calculate the outgoing message over L0 through the linkage host of each linkage in L0 by

step 5 of the algorithm, as shown with the shaded thick arrows in the figure.

The following proposition shows that an inter-agent message calculated with Algorithm

Cal Single MSG is consistent to the JT’s local belief.

Proposition 2 Let T over the set of local variables N be a local JT of an agent A. Let L

be T ’s linkage tree connecting to an adjacent agent A′ over their d-sepset I. The extended

linkage host tree is H , with Cr being the root cluster. For each linkage Q ∈ L, let Φ∗(Q)

be the extended linkage potentials. After a call of Cal Single MSG to calculate an inter-

agent message to A′, we have

∏
Q∈L

Φ∗(Q) = const
∑

N\I
Φ(N)
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where Φ(N) is the local belief including its initial belief and all messages received except

the one from A′.

Proof:

First, consider the root cluster Cr in linkage host tree H as well as local JT T . After

step 2 of Cal Single MSG, the messages except from A′ are absorbed. Next, an inward

propagation is performed in the local JT with regard to Cr as the root. Therefore, the

potential associated with root cluster Cr defines the marginal of Φ(N) onto Cr. For Cr’s

corresponding linkage QCr in L, Φ(QCr) = const
∑

N\QCr
Φ(N).

Next, consider all other linkage host clusters in H . Step 4 performs a partial outward

JT message passing within H . After each Ci ∈ H has received an outward message, the

potential associated with Ci defines the marginal of Φ(N) onto Ci, and we have Φ(QCi
) =

const
∑

N\QCi
Φ(N).

Since all clusters in H are consistent with the local belief, the correct linkage potentials

can be obtained. Therefore, based on the definition of extended linkage potential, we have∏
Q∈L α(Q) = constΦL(I) = const

∑
N\I Φ(N).

¤

Note that we need to always choose a linkage host as the root cluster during the propa-

gation. Given such a root, we conduct a full inward passing so the local messages carrying

the probability information of all JT clusters flow towards the root. Next, a partial outward

passing is performed only in the context of the extended linkage host tree to distribute belief

originated from the root within the clusters of the extended linkage host tree. The local JT

is not consistent because not all clusters are consistent with the local belief. Nevertheless,

the extended linkage host tree is consistent, so that all linkage hosts are equipped with the

complete local knowledge to form the correct outgoing message. Overall, no full round of

local belief, with both inward and outward message passing, is required for the message

calculation.
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3.2.3 Global Belief Updates

We now describe the message passing protocol in our new architecture using a non-rooted

message scheduling scheme in the LJF global context. Agents no longer follow a recursive

call during the global inference, but each simultaneously starts to process incoming and

outgoing inter-agent messages. The coordination of the inter-agent message passing is

controlled by two simple rules, which elaborate the scheduling scheme of standard Shenoy-

Shafer messages.

Rule 1. When an agent has received all except one messages from its adjacent agents,

the agent composes an outgoing message to that particular neighbor.

Rule 2. When an agent has received the last message from its adjacent agents, the

agent absorbs the message, updates the local belief and calculates all outgoing mes-

sages to its other neighbors.

Following the above rules, the message passing order is implicitly defined. We present

a global propagation algorithm Communicate Belief I as a set of operation defined for

each individual agent.

Algorithm 9 Communicate Belief I

Let Ti(i = 1, ..., n) be the local JTs andH the corresponding hypertree of an LJF L, which

is populated by n agents with one at each subnet. Each agent Ai has Ki adjacent subnets.

When called, each agent Ai performs the following:

1. Set cnt= Ki;

2. while( cnt 6= 0)

3. { Wait for incoming messages;

4. If an incoming message is received

5. Set cnt = cnt− 1;

6. If ( cnt == 1 && ∃ Aj such that no incoming message has arrived from agent Aj )

7. Send a message to Aj with Cal Single MSG; }
8. Call Update Belief in Ti;

9. Send all remaining outgoing messages with Deliver Through Linkage;
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The belief propagation with Algorithm Communicate Belief I is controlled by an

implicit order of inter-agent message calculation. An agent absorbs the buffered incom-

ing message only when it has received all messages except one neighbor, followed by the

calculation of the outgoing message based on Rule 1 with Algorithm Cal Single MSG.

Once the agent receives all the messages, the local belief is updated and all outgoing mes-

sages are calculated based on Rule 2. Note that as an incoming message is not guaranteed

to be processed right way (if the agent has not received all except one), repeated local

propagation is avoided.

In fact, we could even forgo completely the full local update, as described in Line 8

of Algorithm Communicate Belief I , during the global communication. Recall that the

partial local propagation is conducted to send a message to a neighbor from whom the last

incoming message is originated. When this last incoming message has arrived, we only

need to conduct another partial local propagation, just enough to update the local belief

with regards to this message. Algorithm Cal Single MSG consists of a full inward (in

the context of local JT) and a partial outward (in the context of the extended linkage host

tree) local message passing. Similarly, we can analogously design an algorithm to conduct

a partial local propagation in order to achieve local consistence upon receiving the very last

message.

Algorithm 10 Update Belief onLastMSG

Let Ai and Aj be two adjacent agents. Ai’s local JT is Ti with the set of clusters

C. Ti maintains a linkage tree L to Aj . In Ti,, H is the set of linkage hosts of L and

the extended linkage host tree is Te. Suppose Ai has calculated an outgoing message to Aj

with Algorithm Cal Single MSG with selected root Cr. Ai, on receiving the last incoming

message from Aj , performs the following.

1. Ai absorbs message from Aj by updating belief of all clusters in H with the extended

linkage potential of each linkage in L.

2. Perform a partial inward message passing on Cr in Te, such that Cr calls recursively

all clusters in H to send an inward message.

4. Perform a full outward message passing on Cr in local JT Ti, such that Cr sends

outward messages to all linkage hosts recursively.
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T0

L0

Cr

C3

C2

C1

Te

Figure 3.5: An example of partial propagation for updating local calculating a single out-
going message. Shown with the local JT T0, linkage tree L0 and extended linkage host tree
Te.

The process of the partial belief update is illustrated in Figure 3.5. Suppose the last

incoming message arrives over linkage tree L0. The linkage hosts Cr, C1 and C3 have

absorbed the message and the updated potentials of these clusters need to be propagated

in the local JT T0. As the modified potentials are only for clusters in the extended linkage

host tree Te, we first issue a partial inward pass in Te for Cr to collect all inward messages.

Next, outward messages are propagated from Cr to all the cluster in T0, which brings all

clusters to locally consistent with regard to the received incoming message.

We now incorporate Algorithm Update Belief onLastMSG to replace the call of a

full local belief update in Algorithm Communicate Belief I and obtain our final global

propagation algorithm as follows.

Algorithm 11 Communicate Belief

Let Ti(i = 1, ..., n) be the local JTs andH the corresponding hypertree of an LJF L, which

is populated by n agents with one at each subnet. Each agent Ai has Ki adjacent subnets.

When called, each agent Ai performs the following: 1. Set cnt= Ki;

2. while( cnt 6= 0)
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3. { Wait for incoming messages;

4. If an incoming message is received

5. Set cnt = cnt− 1;

6. If ( cnt == 1 && ∃ Aj such that no incoming message has arrived from agent Aj )

7. Send a message to Aj with Cal Single MSG; }
8. Call Update Belief onLastMSG in Ti;

9. Send all remaining outgoing messages with Deliver Through Linkage;

Theorem 1 Let F be over domain N the LJF of an MSBN and Communicate Belief is

performed in F. Let A be the agent of a local JT T with clusters Tc over local variables N.

A has n neighboring agents A1, A2, ..., An. Let

Φ(N) =
∏

C∈Tc

Φ(C)
n∏

i=1

Φ(MAi→T ),

where Φ(C) is the potential initially assigned to a cluster C, and an incoming message

received from T’s one neighboring agent is denoted by Φ(MAi→T ). Then,

Φ(N) = const
∑

N\N
ΦF (N )

,

where ΦF (N ) represents the global belief of F over N .

Based on Theorem 1, after a call to Communicate Belief in an LJF is finished with

all inter-agent messages delivered, each agent’s local belief can be obtained as the product

of its initial local belief with all its incoming messages, and the local belief is also globally

consistent. The most intuitive way to verify its validity is to view our global message pass-

ing in LJF as the Shenoy-Shafer message passings in JTs. Although partial propagations are

utilized during local updates, we have shown that the message computed with Algorithm

Cal Single MSG is consistent to local belief, and Algorithm Update Belief onLastMSG

updates the local belief coherently. Therefore, a proof to Theorem 1 can be simply lifted

from the Shenoy-Shafer JT global propagation to our new LJF message passing architec-

ture.
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Complexity Analysis

Our global inference algorithm can be divided into three parts: the initialization of an

LJF; the calculation of all external and internal messages; and the computation of the belief

for each LJF local JT. The cost of constructing an LJF through the cooperative compilation

is typically overshadowed by the cost to compute inter-agent messages and local beliefs.

Extending the complexity analysis of message propagation JT, we can consider the asymp-

totic complexity as the cost of computing the most expensive inter-agent message. This

cost is determined by the size of the largest local JT in the LJF. Thus, the time complexity

of our new architecture is exponential in the largest local JT of the LJF.

In a more detailed analysis with a comparison to other LJF inference algorithms, we

use the follow parameters:

• n: the total number of agents.

• c: the maximum number of clusters in a local JT.

• d: the maximum number of clusters in an extended linkage host tree.

• s: the maximum number of adjacent agents.

• q: the cardinality of the largest cluster.

First, we consider the complexity of the local calculation with our global propaga-

tion algorithm. During a call to Algorithm Cal Single MSG, as only partial propa-

gation is performed, the time complexity with message passing among local clusters is

between O(c + d) and O(c + d)2q), which is also the cost during a call to Algorithm

Update Belief onlastMSG. In a local JT, both Algorithms Update Belief onlastMSG

and Cal Single MSG are called only once. Therefore, the total cost for local calculation

is between O(2(c + d)) and O(2(c + d)2q).

With Hugin-based LJF inference, Algorithm Update Belief Orig is called to unify

local belief. In local JT, each cluster sends a message to, and receives a message from
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Local JT Global LJF
Hugin-based O(4cs2q) O(4ncs2q)
Lazy-based O(4cs) - O(4cs2q) O(4ncs) - O(4ncs2q)

Our architecture O(2(c + d)) - O(2(c + d)2q) O(2n(c + d)) - O(2n(c + d)2q)

Table 3.1: Comparison of time complexity: local and global cost.

each of its adjacent clusters. The complexity is linear in c. In the simplest case, the mes-

sage is empty and its computation trivial. In the most complex case, the potential over

the cluster needs to be obtained by multiplication and marginalization. Therefore, the time

complexity of Update Belief is O(2c2q) [98]. Due to the fact that an agent must call

Update Belief Orig whenever a message is delivered from its adjacent agent during the

inward and outward pass. Thus, the local time complexity is O(4cs2q). The time complex-

ity for the Lazy-based global inference in LJFs and DLJFs, as well as the Shenoy-Shafer

extension in DLJFs, can be obtained similarly. That is between O(4cs) and O(4cs2q). It

is clear that the local computation in our new architecture is more efficient than the other

methods, and particularly it does not depends on the topology of the network, e.g. the

number of neighboring nodes.

Next, consider the time complexity of Communicate Belief . Each of the n agent will

perform calls to Cal Single MSG and Update Belief onlastMSG. Thus, we have the

time complexity of our global inference as between O(2n(c + d)) and O(2n(c + d)2q).

This result can be compared with the Hugin-based global inference in LJFs, which has the

time complexity of O(4ncs2q), and with the Lazy-based global inference and the Shenoy-

Shafer extension in DLJFs, which has the complexity between O(4ncs) and O(4ncs2q). It

is obvious that the Hugin-based inference has a much higher complexity than the lower-

bound result for our new architecture. As a linkage tree usually spans over a small number

of clusters in a local JT, in larger networks, typically we have c >> d. Therefore, based on

our analysis, the global inference in our new architecture is also more time efficient than

all existing LJF or DLJF exact inference algorithms. The time complexity comparison of

the three inference algorithms is listed in Table 3.1.

For space complexity, each agent maintains a linkage tree, following the standard LJF

construction. The message buffers do not require extra memory, as the linkage trees are
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utilized for this purpose. We need additional storage to keep copies of the original local

beliefs in order to form the correct posterior distribution during each global propagation.

However, it is still less than the space required with DLJF-based methods. In a DLJF with

n agents, there must be 2(n− 1) sets of message JTs each over a local subdomain, whereas

in an LJF, we only need to maintain 2(n − 1) linkage trees, each over the d-sepset that is

generally much smaller than the size of a local domain.

3.3 Towards Fault-Tolerant Exact Belief Propagation

Existing MSBN inference methods, extending either from the Hugin or the Shenoy-Shafer

architecture, have difficulties in dealing with unreliable communication channels that often

exist in a multi-agent environment. One prominent problem is that the loss of inter-agent

messages can halt global message passings. For example, in the recursive Hugin-based

architecture, if any message originated from an LJF leaf node is missing during the inward

pass, the global belief updating fails immediately. A similar problem also exists in our new

architecture. Although the messages are not initiated at a root node, there is exact one inter-

agent message passed over each pair of adjacent agents at one direction. Therefore, a lost

message will also prevent Algorithm Communicate Belief from finishing successfully.

In fact, with the LJF message passing algorithms we have so far described, the message

from an agent Ai to Aj could only be computed after all messages to Ai (except that from

Aj) have been computed. Such message passing algorithms are synchronized since there

is a partial order constrained by the message passing protocol with which messages are

calculated. It is possible, however, to define an LJF asynchronous algorithm that forgoes

the restricted message passing rules. In such an algorithm, the messages are initialized

with arbitrary values and then updated iteratively. Essentially, there could be more than

one message sent over a hyperlink in one direction.

In BNs, iterative algorithms can be applied to multiply connected networks to per-

form approximate inference, known as loopy belief propagation, or iterative belief propaga-

tion [65] [49] [23] [36]. The JT message propagation has iteratively applied to join-graph

to perform approximate inference. Loopy belief propagation is extended to generalized
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belief propagation [106] by clustering some of the nodes in BNs into super nodes and ap-

ply message passing among the super nodes. Iterative algorithms have been developed for

decoding problems which are viewed as an instance of the belief propagation [60] [79].

It is important to note that in a cycle-free graph, the iterative message passing among all

vertices will eventually converge, but such convergence is not always possible in a multiply

connected graph [50] [74] [86]. Applying this result to an MSBN LJF, the convergence of

iterative passing of inter-agent message is also guaranteed to converge.

Recently, LJF fault-tolerant exact propagation [2] has been discussed. It is suggested

that the iterative message passing is not suitable in the Hugin architecture, as an agent’s

belief may not converge correctly. It also has been shown that with the use of buffering, it is

possible to conduct asynchronous message passing based on lazy propagation in both LJFs

and DLJFs [2]. Although these methods are exact and less sensitive to message lost, they

are computational expensive. Each agent needs to update the local belief and re-send all

outgoing messages whenever triggered by one new incoming message, which is analogous

to the flooding schedule [5] [50]. Moreover, the delivery of a single inter-agent message

is also costly. In order to send a message to a neighboring agent, an agent’s local belief

must be combined with messages coming from all its other neighbors. This process must

be repeated again for each of message during each iteration at a local JT. Such a schema

causes agents to be interrupted frequently for message computation, which indeed limits

the agent’s autonomy.

Therefore, we consider an improved asynchronized message passing schema based on

our extended Shenoy-Shafer architecture. The goal is to perform exact computation with

better fault tolerance as to message loss, and to reduce local computational cost from exist-

ing iterative passing algorithms. Instead of allowing the message calculation to be triggered

at each incoming message, agents now have a higher degree of control as how to process

the incoming and outgoing messages.

3.3.1 Calculation of Iterative Messages

We first present our method for the calculation of iterative messages, which forms the

foundation of our fault-tolerant message passing. We introduce a control factor for message
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processing. We consider the original synchronized schema as one extreme, with which an

outgoing message is formed only after all except one incoming messages have arrived.

Meanwhile, we consider the current LJF iterative schema [2] as the other extreme, such

that one incoming message will trigger the recalculation of all outgoing messages. Our new

method balances the both and provides an agent the flexibility to control its own schedule

for message recalculation.

An agent can also decide on the number of incoming messages that must be received

to start processing outgoing messages. In fact, such message calculation can be easily sup-

ported with our extended Shenoy-Shafer architecture, due to the use of linkage trees as

buffers. An agent’s outgoing messages (to all its adjacent agents) can be formed periodi-

cally and as a batch. We call an incoming message valid if the message carries additional

information compared with the previous buffered message (from the same sender). The

income messages are batch processed only when a certain number of valid messages have

arrived. For each batch messages, we combine the current buffered incoming messages

with the agent’s local belief once to obtain the updated local belief, and then produce each

outgoing message by removing the redundant factors.

Algorithm 12 Cal Iter Msg

Let A be an agent with local JT J and m adjacent agents. For each of A’s neighboring

subnet Ai(i = 1, ..., m), the linkage trees Li and L′i are maintained respectively by A and

Ai. Let li, l′i (i=1,...,n) each be a corresponding pair of linkages in the linkage trees, and Ci

and C ′
i be the linkage hosts. ΦCi

(li)
cur is the current potential in linkage li. When called,

A does the following:

1. Identify all valid incoming messages;

2. Absorb the linkage potentials ΦCi
(li)

cur of the messages to linkage hosts.

3. Call Update Belief ;

4. For each Ai(i = 1, ...,m)

5. Calculate the extended linkage Φ∗
Ci

(li) from Ci

6. Compose the message potential as Φ(Msg) = Φ∗
Ci

(li)/ΦCi
(li)

cur

7. Assign Φ∗
Ci

(li)′ = Φ(Msg).

8. End for.
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With Algorithm Cal Iter Msg, each inter-agent message can be viewed as a Shenoy-

Shafer message, calculated with a modified scheme to avoid the repeated multiplications.

The batched message calculation requires only one call to Update Belief , and the divi-

sion operation is required for each message instead of repeated multiplication. Clearly,

compared to the repeated message passing of current methods, the local computational

cost is much less. Even though the division operation introduces certain computational

overhead, the saving is still significant considering the total number of local propagation

and message calculation avoided.

3.3.2 Global Iterative Message Passing

It is well known that message passing in a factor graph is guaranteed to converge if the

graph contains no cycles [50]. In a message-oriented architecture, if the messages are

calculated iteratively over edges of a tree graph, each message will eventually become un-

changed (converged) after enough round of message passings. The local belief of each node

converges and the result is exact. This result is consistent with the original belief propaga-

tion with the Pearl’s algorithm in BNs [69]. An LJF, as a high level JT, can be viewed as a

factor graph where each local JT represents a node with a local function. Thus, the message

passing over each hyperlink will converge, provided the messages are explicitly calculated

and maintained. In the existing Hugin-based architecture, such message convergence is not

possible as the Hugin messages are not individually maintained [92]. A detailed discussion

of the non-convergence property of the Hugin architecture can be found in some recent

literature [2].

With our extended Shenoy-Shafer architecture, the extension to LJF iterative message

passing is simple and straightforward. Most importantly, the result of message passing will

converge to exact values. As most practical systems are finite, in which the propagation is

expected to finish after a certain time, we design our iterative message passing algorithm

with finite message passing which is contrary to other existing LJF iterative algorithms [2].

The basic principle in our new message passing schema is that each agent batch-processes

the buffered message in a predetermined interval until all messages converge. We keep

track of all the converged messages and terminate the propagation after all messages have
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become stable. That is, the propagation is finished when no new incoming message is valid,

e.g. it does not carry any additional information to effect an agent’s local belief. The global

propagation with iterative message passing is presented in Algorithm Iter Msg Prop.

Algorithm 13 Iter Msg Prop

An MSBN LJF is populated by multiple agents with one at each local JT. An arbitrary

agent Ai has a JT Ti constructed locally. Ai has n adjacent local subnets. V is denoted as

the number of valid messages, and UPDATE INTERV AL is the update time interval.

When called, agent Ai performs the following:

1. Initialize all incoming message buffers ;

2. Set V = n;

3. while(true)

4. Absorb local evidence if any;

5. Sleep(UPDATE INTERVAL);

6. Update V with the current number of valid incoming messages;

7. If V == 0

8. Update local belief;

9. Retrun;

10. Else

11. Call Cal Iter Msg to calculate outgoing messages;

12. For each of n adjacent agents

13. Deliver corresponding inter-agent messages;

14. End if

15. End while

When Algorithm Iter Msg Prop is called, each agent processes incoming and out-

going messages in complete parallel with each other, till no more new message arrives

from adjacent agents. This scheme is more desirable in a multi-agent setting as all agents

carry out local computation and message calculation in parallel. Compared with the exist-

ing schema with which an agent must be interrupted by each incoming message, now the

agent gains a higher level of autonomy as to batch-process all incoming messages with a
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self-determined interval.

More importantly, the iterative message passing with Algorithm Iter Msg Prop will

terminate and messages are guaranteed to converge. This is due to the non-cyclic agent

organization structure of an LJF, as well as the message buffering in our extended Shenoy-

Shafer architecture. Even though an agent’s belief may be skewed temporally by a missing

or corrupted message, the correct result will eventually be recovered once the communi-

cation is restored. The convergence of an inter-agent message can be easily verified by

compared the new message with the current value in the buffer, and flag the buffer ac-

cordingly. Once all messages have converged, an agent’s updated local belief is obtained

exactly by multiplying the messages into the original local belief.

3.4 Discussion

Exact posterior calculation is one of the most important tasks of multi-agent probabilistic

inference. The existing algorithms, based on an MSBN secondary structure call LJF, typ-

ically extend the Hugin-based message scheduling which requires an extensive amount of

local computation in each LJF local JT. In this chapter, we have presented an improved LJF-

based global inference architecture based on the Shenoy-Shafer message passing schema.

As the passing of a JT Shenoy-Shafer message requires the buffering of each message over

a separator toward each direction, we use the LJF linkage trees for this purposed. Our new

architecture is message-oriented as all inter-agent messages are explicitly calculated and

buffered. We have discovered that, although the total number of external messages remains

the same in our extended Shenoy-Shafer architecture, the calculation of such messages

have become much less expensive.

This reduction in local calculation cost is first realized through the elimination of re-

peated local updates. Whereas an incoming Hugin message is immediately absorbed and

propagated in the local JT, an incoming Shenoy-Shafer message is buffered and absorbed

when all messages (or except one) have arrived. Secondly, we have designed algorithms to

conduct only partial local propagation during the LJF global inference. The calculation of

the first outgoing message does not invoke a full round of local propagation, either does the

calculation of all other outgoing messages. A local JT becomes locally consistent as well
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as globally consistent without the need to conduct any full round of local message passings

in our new architecture.

Our complexity analysis has shown that the cost for internal message passing in a local

JT is significantly lower than other existing methods. Moreover, the global inference in our

new architecture is also more time efficient than all existing LJF or DLJF exact inference

algorithms. Beside a small cost incurred from keeping a copy of the original local belief,

our improved architecture does not require additional memory for the message buffers.

Moreover, we have maintained the existing LJF which is a more compact and easier-to-

built structure than a DLJF.

Another advantage of our new architecture is its support for asynchronized message

passings. Although non-rooted, the current message passing scheme is still considered

synchronized because there is an implicit order of how the inter-agent messages are cal-

culated. However, our architecture can be easily extended to exact belief updating with

iterative message passing. We take advantage of the buffered message calculation and the

LJF tree-like structure so that the iterative updates of inter-agent message are guaranteed to

converge. During iterative global propagation, each agent is able to reason about its locally

observed evidence continuously, and update the local belief with regards to all incoming

inter-agent messages at self-determined intervals. It is more robust compared to the re-

cursive methods in that temporary communication errors can be tolerated without causing

global belief updating failure. Also, comparing to other recent LJF iterative algorithms,

our iterative algorithm is finite and each agent is provided with a higher level of autonomy.

In our next work, an implementation of the proposed architecture is called for, along

with an empirical comparisons with the existing recursive and iterative algorithms. In

particular, we will evaluation our method as a concurrent program, for which the issues

like the deadlocks need to be addressed.



Chapter 4

BN Prior Marginal Factors

In this chapter, we examine the problem of JPD factorization for single-agent oriented BNs,

with a goal to develop more efficient JT inference algorithms. The exact inference calcu-

lation of a BN is typically carried out in a secondary structure, a JT. We will focus on the

message passing scheme of the Hugin architecture, which is described by the Hugin global

propagation (GP) [40] [59]. The GP method has been well received and widely applied.

However, the semantic meaning of the messages has never been under close investigation.

We will take a new algebraical approach to analyze the GP messages. By studying the

factorizations of a JPD both before and after the GP method, we are able to reveal the actual

meaning of the GP messages. This result will help us in designing a procedure named

Allocate Separator Marginal (ASM). The procedure determines the actual information a

cluster requires to form the cluster marginal. The concept of marginal factors, defined

in this chapter for BN JT clusters, allows us to design an algorithm to calculate the prior

marginal for each JT cluster in an informed and more efficient way. This result also prepares

the theoretical basis of the fast LJF marginal calibration technique that will be introduced

in Chapter 5.

Moreover, the current initialization of a BN JT assigns CPDs randomly to one qualified

cluster. An initial CPD assignment could affect the composition of the marginal factors in

each of the clusters, resulting in variations of the message composition and flows. There-

fore, we present a simple heuristic for the JT initialization phase, such that we assign the

initial CPDs in a more controlled way, resulting in further reduced number of required

60
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messages.

Incorporated with the initialization heuristic and the ASM procedure, we are able to

realize the minimum messages passing to calculate the prior marginal distribution. Our

experiments have shown that our algorithms can significantly improve the standard Hugin

global propagation.

4.1 Semantic Meaning of GP Messages

The viability of BNs very much depends on the development of its inference algorithms.

Among various methods developed, the GP algorithm in the Hugin architecture [40] [59]

has been very well received and implemented. With the GP method, BN inference is real-

ized on a JT through a coordinated series of local manipulations called message passings.

The following highlights pertinent facts of the GP method relevant to the discussions in this

chapter, with an example.

c de

ef

efg

f

d,f

ac

cdf

bde

def

f

d,f

c de

ef

ac

cdf

fh fh

bde

efg

def

(a) (b)

efg

f

d,f

c de

ef

ac

cdf

fh

bde

def

(c)

Figure 4.1: (a) The JT constructed from the BN in Figure 2.1. (b) Inward message passing,
and (c) Outward message passing with cluster def as the root.

Consider again the Asia travel BN. The DAG in Figure 2.1 is moralized and triangulated

so that a JT such as the one in Figure 4.1 (a) is constructed. This JT consists of six clusters

(shown with rounded boxes) that are denoted as C1 = ac, C2 = bde, C3 = cdf , C4 =
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def , C5 = fh, C6 = efg. Five separators (shown with smaller boxes) are attached to

the edge connecting two neighboring clusters, and are denoted as S1 = c, S2 = de, S3 =

df , S4 = f , S5 = ef .

Every CPD P (ai|Pa(ai)) in Figure 2.1 is assigned to a cluster Cj if {ai}∪Pa(ai) ⊆ Cj

to form the cluster potential Φ(Cj) before the GP method is applied. If {ai} ∪ Pa(ai) is

a subset of two or more clusters, then we arbitrarily assign P (ai|Pa(ai)) to one of the

clusters. If no CPD is assigned to a cluster Cj , then Φ(Cj) = 1. In our example, the

following cluster potentials will be obtained before the GP is applied:

ΦC1(ac) = P (a) · P (c|a), ΦC4(def) = 1

ΦC2(bde) = P (b) · P (d|e) · P (e|b), ΦC5(fh) = P (h|f)

ΦC3(cdf) = P (f |cd), ΦC6(efg) = P (g|fe)

(4.1)

Meanwhile, a separator potential is also formed for each separator with an initial value 1.

That is, Φ(Si) = 1, (i = 1, . . . , 5). It is easy to verify that the following equations hold

before the GP method is performed on the JT:

P (V ) = Φ(C1) · Φ(C2) · Φ(C3) · Φ(C4) · Φ(C5) · Φ(C6).

=
Φ(C1) · Φ(C2) · Φ(C3) · Φ(C4) · Φ(C5) · Φ(C6)

Φ(S1) · Φ(S2) · Φ(S3) · Φ(S4) · Φ(S5)
. (4.2)

Note here the separator potentials Φ(Si)(·) are unity potential (Φ(Si) = 1).

Message passing is the basic operation in the GP method. Consider two adjacent clus-

ters Ci and Cj with the separator Sij , that Ci passes a message to Cj (or Cj absorbs the

message from Ci) means a two-step computation: (1) updating the separator cluster Φ(Sij)

by setting Φ(Sij) = (
∑

Ci\Sij

Φ(Ci))/Φ(Sij); (2) updating the cluster potential Φ(Cj) by set-

ting Φ(Cj) = Φ(Cj) · Φ(Sij), where the potential Φ(Sij) is an actual Hugin “message”

passed from Ci to Cj .

The GP method typically consists of a coordinated sequence of message passes. Con-

sider a JT with n clusters. First, a cluster in the JT is randomly selected as the root. Then
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a sequence of message passes is performed through the two stages, the inward stage and

the outward stage. The inward stage causes n − 1 messages to be passed. Similarly, the

outward stage causes another n − 1 messages to be passed. Altogether, there are exactly

2(n − 1) messages to be passed [35, 39]. The sequence of message passes is shown in

Figure 4.1 (b) and (c) when the cluster C4 = def is the root.

With the GP message passing, there are exactly two messages passed over each separa-

tor: one in the inward stage and one in the outward stage. After passing a total of 2(n− 1)

messages, the potentials Φ(Ci) and Φ(Sj) will be transformed into marginals P (Ci) and

P (Sj) respectively. Thus, the following equation holds in our example [35].

P (V ) =
P (C1) · P (C2) · P (C3) · P (C4) · P (C5) · P (C6)

P (S1) · P (S2) · P (S3) · P (S4) · P (S5)
. (4.3)

Although the mechanism of the GP method is well understood, the semantic content of

the messages Φ(Si) is not clearly defined, and the messages are passed as meaningless po-

tentials. By comparing Equation 4.2 with Equation 4.3, however, we can view the message

passing of the GP method as a process to transform Equation 4.2 to Equation 4.3. This

unique view of transformation provides us a chance to analyze the messages algebraically,

which indeed leads to the demystification of the semantic meanings of GP messages.

Recall that the cluster potentials in Equation 4.2 are in fact composed of the original

CPDs from the BN shown in Figure 2.1. If we substitute the actual contents for the cluster

potentials in Equation 4.2, we obtain the following:

P (V ) =

Φ(C1)︷ ︸︸ ︷
[P (a) · P (c|a)] ·

Φ(C2)︷ ︸︸ ︷
[P (b) · P (d|e) · P (e|b)] ·

Φ(C3)︷ ︸︸ ︷
[P (f |cd)] ·

Φ(C4)︷︸︸︷
[1] ·

Φ(C5)︷ ︸︸ ︷
[P (h|f)] ·

Φ(C6)︷ ︸︸ ︷
[P (g|fe)] (4.4)

Essentially, Equation 4.4 shows an initial potential assignment in each JT cluster. Com-
paring Equation 4.4 with Equation 4.3, one may immediately notice that Equation 4.4 does
not have any denominators while Equation 4.3 does. Thus, we multiply and divide the term
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Π5
j=1P (Sj) at the same time to Equation 4.4, and we obtain

P (V ) = P (c)·P (de)·P (df)·P (f)·P (ef)·

Φ(C1)︷ ︸︸ ︷
P (a)P (c|a) ·

Φ(C2)︷ ︸︸ ︷
P (b)P (d|e)P (e|b) ·

Φ(C3)︷ ︸︸ ︷
P (f |cd) ·

Φ(C4)︷︸︸︷
1 ·

Φ(C5)︷ ︸︸ ︷
P (h|f) ·

Φ(C6)︷ ︸︸ ︷
P (g|fe)

P (c)·P (de)·P (df)·P (f)·P (ef) .(4.5)

Now, the Equation 4.5 and Equation 4.3 both have exactly the same denominators but

differ in the numerators. In particular, we now have some extra dangling marginals in

the numerator of Equation 4.5, which are added as the term Π5
j=1P (Sj) is multiplied to

Equation 4.4. In order to reach Equation 4.3 from Equation 4.5, we need to transform

the initial cluster potential in Equation 4.5 into a cluster marginal on its respective cluster.

The extra marginals thus play an important role in the transformation. Essentially, such

transformation can be viewed as the multiplication of separator marginals to appropriate

cluster potentials in Equation 4.1.

Given the initial CPD assignment, our goal is to form the cluster marginal. First of

all, it is possible to obtain directly the cluster marginal from the initial assignment in some

clusters. In the Asia example, we have ΦC1(ac) = P (a) ·P (c|a) = P (ac) and ΦC2(bde) =

P (b) · P (d|b) · P (e|b) = P (bde). In other words, no separator marginal is needed to be

mingled with the initial cluster potentials.

Secondly, some cluster potentials can also be easily transformed into the cluster marginal

by multiplying whole terms of separator potential. For the cluster potential ΦC5(fh) =

P (f |h), we can multiply it with the separator marginal P (f) which results in ΦC5(fh) =

P (h|f) · P (f) = P (fh). For the cluster potential ΦC6(efg) = P (g|ef), we can multiply

it with the separator marginal P (ef) which results in ΦC6(efg) = P (g|ef) · P (ef) =

P (efg). So far, we have successfully obtained marginals for clusters C1, C2, C5, and C6.

The separator marginals P (f) and P (ef) have been used during this process.

Finally, we need to investigate the factorization of separator potential in order to achieve

certain cluster potentials, which is different than the above two situations. For example,

we need to transform the cluster potentials ΦC3(cdf) = P (f |cd) and ΦC4(def) = 1 into

marginals, with the remaining separator marginals, i.e., P (c), P (de) and P (df) at hand. In

order to make ΦC3(cdf) = P (f |cd) marginal, we need to multiply it with P (cd), which

is not available as separator marginals. However, if we factorize the separator potential



CHAPTER 4. BN PRIOR MARGINAL FACTORS 65

potential initial assignment receives result
Φ(C1) P (a), P (c|a) nothing P (a) · P (c|a) = P (ac)
Φ(C2) P (b), P (d|b), P (e|b) nothing P (b) · P (d|b) · P (e|b) = P (bde)
Φ(C3) P (f |cd) P (c), P (d) P (f |cd) · P (c) · P (d) = P (cdf)

Φ(C4) 1 P (de), P (f |d) P (de) · P (f |d) = P (def)

Φ(C5) P (h|f) P (f) P (h|f) · P (f) = P (fh)

Φ(C6) P (g|ef) P (ef) P (g|ef) · P (ef) = P (efg)

Table 4.1: Allocating separator marginals, the underlined terms are either the separator
marginal or from the factorization of a separator marginal.

P (df) as the multiplication of two terms P (d) and P (f |d), we are able to assemble all

necessary terms, P (d) from the factorization and P (c) from the separator marginal. Given

CI I(d, ∅, c) holds in the original DAG in Figure 2.1, ΦC3(cdf) = P (cdf), we thus obtain

the marginal potential ΦC3(cdf) = P (f |cd) ·P (d) ·P (c). The remaining term P (f |d) from

the separator factorization and the separator P (de) can now be multiplied to ΦC4(def) =

P (de)·P (f |d). As the CI I(f, d, e) holds in the original DAG in Figure 2.1, we thus obtain

marginal P (cdf). So far we have successfully and algebraically used all separate marginals

to transform each cluster potential Φ(Ci) into a marginal P (Ci). Table 4.1 summarizes the

allocation scheme for the multiplied separator marginals in our example.

4.2 JT Marginal Factors

4.2.1 Allocate Separator Marginals

At the JT initialization stage, every JT cluster Ci is associated with an initial cluster poten-

tial Φ(Ci. During the course of propagation, the GP method transforms the cluster potential

Φ(Ci into a cluster marginal P (Ci). This algorithmic phenomena of the GP method can be

explained algebraically. Consider Equation 4.5, in which the numerators are the original

cluster potentials together with the multiplied separator marginals. The messages received

by all the clusters in the GP method as a whole, which algorithmically transform each

cluster potential into a cluster marginal, have the same effect as the separator marginals

we multiplied in Equation 4.5, which algebraically transform each cluster potential into a
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cluster marginal. This analysis leads to the following proposition.

Proposition 3 The product of the messages received by every cluster in the GP method

equals to the product of all separator marginals.

The example in the previous section has demonstrated that each separator marginal or

its factorization was used exactly once and allocated to an appropriate cluster potential.

This perfect arrangement of separator marginals is not a simple coincidence. Assigning

either a separator marginal or its factorization to a cluster potential, as shown in Sect 4.1,

must satisfy one necessary condition, namely, condition (1) of Definition 2, in order for the

product of the cluster potential with the allocated separator marginal or its factorization to

be a marginal. That is, for each Φ(Ci), we need a CPD with aj as head for each aj ∈ Ci.

If a variable, say aj , appears m times in m clusters in the JT, then each of these m clusters

will need a CPD with aj as head. However, the original BN provides only one CPD with

aj as head, and we are short of m − 1 CPDs (with aj as head). Fortunately, m clusters

containing aj implies the JT must have exactly m − 1 separators containing the variable

aj [35], therefore the m − 1 needed CPDs with aj as the head will be supplied by the

m − 1 separator marginals (or their factorizations). Based on this analysis, we present the

following procedure.

Procedure: Allocate Separator Marginals (ASM)

Step 1. Consider each CPD P (ai|Pa(ai)) assigned to a cluster Ck to form Φ(Ck). If the

variable ai appears in a separator Skj between Ck and Cj , then draw a small arrow

originating from ai in the separator Skj and pointing to the cluster Cj . If variable ai

also appears in other separators in the JT, draw a small arrow on ai in those separators

and point to the neighboring clusters away from Ck’s direction. Repeat this for each

CPD P (ai|Pa(ai)) of the given BN.

Step 2. Examine each separator Si in the JT. If the variables in Si all point to one neighbor-

ing cluster, then the separator marginal P (Si) will be allocated to that neighboring

cluster.

Step 3. For a separator P (Si) that has nodes allocated to both connecting clusters, then P (Si)
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has to be factorized so that the obtained factors can be assigned to appropriate cluster

indicated by the arrows in the separator.

The procedure for allocating separator marginals is illustrated in Figure 4.2. In Step 1,

a total of eight CPDs are originally assigned to respective clusters to form the cluster po-

tentials as in Equation 4.1. As the CPDs P (a), P (b), P (g|f) and P (h|f) are not contained

in any separators, they are not considered in the allocation procedure. For the remaining

CPDs, we first consider the CPD P (c|a) assigned to cluster C1 = ac. Since the variable

c is contained only in the separator between cluster C1 and cluster C3 = cdf , we draw a

directed arrow from c in the separator, pointing away from to cluster C1 to cluster C3. The

other three CPDs, P (d|b), P (e|b) and P (f |cd), are all contained in more than one separa-

tor. Thus, we draw arrows over all their occurrences in all the separators, away from the

cluster to which each CPD is originally assigned. Following Step 2 in the procedure, we

combine all arrows that point in the same direction. For example, for separator de and ef ,

they are allocated completely to the cluster def and efg respectively. In other words, no

factorization is needed for both separators. This complete allocation, however, does not

apply to separator df following Step 3. The separator marginal of df must be factorized to

accommodate both connecting clusters.

p(a), p(c|a) p(b), p(d|b), p(e|b)

p(f|cd)

p(g|ef)p(h|f)

p(ef)p(f)

p(c) p(de)
p(d)

p(f|d)

c d e

e f

ac

fh

cdf

bde

def

efg

f

d,f

Figure 4.2: Allocating separate marginals according to the ASM procedure.
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For each separator in a JT, one can always assign either the separator marginal or some

factors in its factorization to an appropriate cluster Ci as dictated by the procedure, such that

for each variable aj ∈ Ci, there is a CPD assigned or allocated to the cluster Φ(Ci) in which

aj is the head. Essentially, the ASM procedure provides a high level understanding of how

the marginal information of separators flows during the GP propagation process. Indeed,

each arrow over a separator node c indicates which cluster potential requires a CPD, one

with c as head, to complete the cluster marginal calculation. If a CPD P (ai|Pa(ai)) is

already assigned to a cluster Ck and ai appears in a separator of Ck connecting to other

clusters, the cluster potential Φ(Ck) obviously does not need an extra CPD with ai as head,

and the arrow over ai in the separators indicates this CPD information must be incorporated

to the other clusters.

The ASM procedure, however, does not provide the actual messages flowing over a

separator if arrows of both direction present in the separator. In this situation, we need to

determine the proper factorization as for the proper information to be sent to each of the two

clusters. For example, according to the ASM procedure, the separator df must be factorized

into two CPDs, each containing d or f as the head. As df can be factorized as either

P (d)Ṗ (f |d) or P (f)Ṗ (d|f), both satisfy the requirement based on the ASM procedure.

This leads to the question: which factorization represents the correct message information?

Proposition 4 If the procedure ASM indicates that a separator marginal P (Si) has to be

factorized before it can be allocated to its neighboring clusters, then P (Si) must be fac-

torized based on a topological ordering of the variables in Si with respect to the original

DAG.

This proposition provides a method to determine the correct factorization of the sepa-

rator marginals. Although an appropriate allocation of the separator marginals can always

be guaranteed to satisfy condition (1) of Definition 2, one still needs to show that such an

allocation will not produce a directed cycle when verifying condition (2) of Definition 2. It

is important to note that a directed cycle can be created in a directed graph if and only if

one draws a directed edge from the descendant of a node to the node itself.

Consider a cluster Ci in a JT and its neighboring cluster Cj; their connecting separator is

Sij with separator marginal P (Sij). Suppose the separator marginal is allocated as a whole
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to Ci. Following the rule of condition (2) in Definition 2, we can obtain directed edges

based on the original CPDs assigned to Ci and the newly allocated separator marginal

P (Sij). The edges will not result in any directed cycle. This is because 1) the original

CPDs assigned to Ci are from the given BN without any cycles, and 2) the variables in Sij

will be ancestors with regard to all other cluster variables, which create no cycles either.

It is important to determine the proper factorization based on proposition 2 if the separa-

tor marginal P (Sij) has to be factorized as a product of CPDs. Consider again the example

shown in Figure 4.2. If we decompose the separtor as P (df) = P (f)·P (d|f) and assign the

factor P (d|f) to C3, this would result in Φ(C3(cdf) = P (c) ·P (d|f) ·P (f |cd). It is easy to

verify that Φ(C3), after incorporating the allocated CPD P (d|f), satisfies the condition (1)

but not (2) of Definition 2, which means that Φ(C3(cdf) = P (c)·P (d|f)·P (f |cd) 6= P (cdf)

and it is not a Bayesian factorization.

In fact, the factorization P (df) = P (f)·P (d|f) does not follow the topological ordering

of the variables d and f (d should precede f in the ordering) with respect to the original

DAG, in which f is a descendant of d. Drawing a directed edge from f to d, as dictated

by the CPD P (d|f), would mean a directed edge from the descendant of d, namely, the

variable f to the variable d itself, and this is exactly the cause of creating a directed cycle.

However, if we follow the topological ordering of the variables d and f with regard to the

original DAG, the resulting factorization of P (df) is P (df) = P (d) · P (f |d). This way,

the heads of the CPDs in the factorization are guaranteed to be the non-ancestors of their

respective tails in the original DAG.

4.2.2 Marginal Factors for JT Clusters

In Proposition 3, we have established a rough connection between the messages passed in

the GP method and the separator marginals. We have pointed out that the product of all

the messages is equal to the product of all separator marginals. Proposition 4 has further

explored this rough connection and suggested that all the separator marginals or their fac-

torizations can be appropriately allocated to cluster potentials. By doing this, each cluster

potential, multiplying with the allocated, results also in the desired cluster marginal. The
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messages received by each cluster algorithmically in the GP method are equal to the al-

located separator marginal or its factors received by each cluster potential algebraically.

That is, the message received by a cluster Ci from its neighbor Cj is in fact the separator

marginal P (Sij) or factors in its factorization or 1, where Sij is the separator between Ci

and Cj .

Let Ci and Cj be two clusters in a JT constructed from the DAG of a BN, and Sij be the

separator between Ci and Cj . Regardless of which cluster in the JT is chosen as the root,

there are two messages that will be passed between Ci and Cj . Without loss of generality,

suppose a message denoted Mi→j is passed from Ci to Cj in the inward stage, and another

message denoted Mi←j is passed in the outward stage.

Theorem 2 Consider the result of applying the ASM procedure to the JT. There are three

possible outcomes regarding the separator marginal P (Sij).

(a) If P (Sij) as a whole is allocated to Cj , then Mi→j = P (Sij) and Mi←j = 1.

(b) If P (Sij) as a whole is allocated to Ci, then Mi→j = 1 and Mi←j = P (Sij).

(c) If P (Sij) must be factorized (following a topological ordering of variables in Sij),

then Mi→j = the product of factors allocated to Cj and Mi←j = the product of

factors allocated to Ci, both based on the results from the ASM procedure.

The proof of above theorem is straightforward based on the JT message passing scheme.

We use an example to illustrate this theorem. Consider the JT in Figure 4.1 (a). If cluster

C4 = def is chosen as the root for the GP method, then C3 = cdf will send a message to C4

during the inward stage and C4 will send a message to C3 during the outward stage. Before

C3 can send the message to C4, clusters C1 = ac and C5 = fh have to pass messages to

C3. The message from C1 to C3 is Φ(c) = (
∑

a

P (a) · P (c|a))/1 = P (c), which coincides

with (a) in the above theorem. The message from C5 to C3 is Φ(f) = (
∑

h

P (h|f))/1 = 1,

which coincides with (b) in the above theorem . The cluster C3, after absorbing these two

messages, becomes Φ(C3) = P (f |cd)·P (c)·1 = P (f |cd)·P (c). The message sent from C3
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to C4 is Φ(df) = (
∑

c

P (f |cd) ·P (c))/1 =
∑

c

P (fcd)

P (cd)
·P (c) =

∑
c

P (fcd)

P (c) · P (d)
·P (c) =

∑
c

P (fcd)

P (d)
= P (fd)/P (d) = P (f |d), which coincides with (c) in the above theorem.

The following corollary can be immediately established if we consider messages of

unity potential as trivial messages.

Corollary 1 The ASM procedure provides the minimum set of non-trivial messages for

marginal calibration.

Also, one may expect that messages passed in the GP method should be different if a

different root if chosen. The following corollary, based on Theorem 2 reveals an interesting

property of the messages.

Corollary 2 Let Mi←j and Mi→j be the messages passed between Ci and Cj when Ck is

chosen as the root. Let M
′
i←j and M

′
i→j be the messages passed when C

′
k (6= Ck) is chosen

as root. Then we have

Mi←j = M
′
i←j and Mi→j = M

′
i→j.

That is, given a rooted message passing scheme, the messages passed between a given

pair of neighboring clusters remains the same no matter which cluster is chosen as the root.

4.3 JT Cluster Prior Calculation

4.3.1 Minimum Messages for Prior

As we have revealed the semantic meaning of the messages in the GP method, it is straight-

forward to determine how many messages a cluster requires to form the cluster marginal

from its neighbouring clusters. We apply this result with the Hugin GP message passing

to establish the correctness of our marginal calibration method. Then, we present an algo-

rithm based on the Shenoy-Shafer message passing architecture for computing the cluster

prior marginal.

First we consider the Hugin GP message passings, which originally requires the passing

of two messages over each separator. By applying the ASM procedure before any evidence
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is incorporated, we are able to determine the messages required passing over a Hugin sep-

arator for forming the prior marginal. We call one such message an ASM message, which

contains the potential of either the complete separator marginal, or the factorization of the

separator marginal.

We can thus form the prior marginal for each cluster in a JT following the same message

calculation procedure, as described in the inward and outward stages, but with only ASM

messages calculated.

Theorem 3 Given the result of applying the ASM procedure to a JT T. After the Hugin GP

method with only ASM messages passed, the potential of each cluster C of T forms the

prior marginal.

The proof is straightforward based on Theorem 3 and Corollary 1. During the Hugin

GP message passing, all non-ASM messages can be ignored as they contain unity potential

1. Also, the content of an ASM message is the same as a Hugin GP message, thus the

correctness of each message calculation holds. This results in a consistent JT with each

cluster representing the prior after passing only ASM messages during the GP propagation.

We now turn to the Shenoy-Shafer architecture with the application of the ASM pro-

cedure. The result of Theorem 3 holds in the Shenoy-Shafer architecture as each message

between a pair of neighboring clusters, no matter Hugin or Shenoy-Shafer, contains essen-

tially the same potential. The difference between the two approaches lies in just how these

messages are absorbed and manipulated over the separator. Thus, the Shenoy-Shafer mes-

sage passing with ASM messages will guarantee prior marginal in each JT cluster as well.

Moreover, the calculation of an ASM message is the same as one for a regular Shenoy-

Shafer message.

Algorithm 14 Cal JT Marginal

Let Ci(i = 1, ..., n) be a cluster of a JT T. Based on the result of the ASM procedure, the

set of Ci’s incoming messages and outgoing ASM messages are P i
in and P i

out respectively.

When called, the calculation is carried out at each cluster Ci as follows:

1. while( {P i
in} 6= ∅)

2. { wait for incoming messages;



CHAPTER 4. BN PRIOR MARGINAL FACTORS 73

3. if received an incoming message Pi

4. set {P i
in} = {P i

in}\{Pi};

5. if ( |{P i
in}| == 1 with Pj ∈ P i

in from cluster Cj &&

6. ∃ Pk ∈ P i
out to agent Cj )

7. send a Shenoy-Shafer message to Cj}
8. send remaining outgoing Shenoy-Shafer messages;

9. output cluster prior marginal

By maintaining the two message buffers between each pair of adjacent clusters, we can

form the marginal for each cluster by combining the originally assigned CPDs of a cluster

with the ASM messages. This informed message passing allows more efficient message

propagation among all clusters under the Shenoy-Shafer architecture.

Consider the example in Figure 4.2, it is noted that for every cluster in the JT, either

it needs to send the separator marginal or the factors in its factorization to its neighboring

clusters once the cluster marginal is known, or it needs to receive the allocated separator

marginal or the factors in its factorization from its neighboring clusters in order to transform

the cluster potential into the cluster marginal. For the former case, cluster C1 = ac must

send P (c) to cluster C3 = cdf if P (ac) is known. For the latter case, cluster C3 = cdf must

receive P (c) and P (f |d) from clusters C1 and C4 = def , respectively.

Some cluster potentials are cluster marginals automatically, without the need to receive

anything from its neighboring separators. For example, the cluster potentials for C1 = ac

and C2 = bde in Equation 4.1 are already marginals, as shown in the first two rows in

Table 4.1. Once P (ac) and P (bde) are available, they can then send the needed separator

marginals P (c) and P (de) to the cluster potentials C3 and C4, respectively.

At this point, cluster potentials for C3 and C4 further need the factors in the factorization

of the separator marginal P (df) from each other. Cluster C3 needs the factor P (d) to

transform Φ(C3 into P (C3), and cluster C4 needs P (f |d) to transform Φ(C4 into P (C4). If

P (C4) is known, then P (d) can be supplied to C3; if P (C3) is known, then P (f |d) can be

supplied to C4. Both P (C3) and P (C4) are unknown at this point, but based on the Shenoy-

Shafer message calculation the messages between C3 and C4 can be easily obtained. Recall

that in order to obtain a Shenoy-Shafer message from cluster Cj to Ck, we multiply together
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the original assigned CPDs at Cj and all messages from Cj’s neighboring clusters except

the one from Ck, then we sum out of this product all attributes that are not in the connecting

separator between Cj and Ck. Thus, the messages passed between C3 and C4 are computed

directly with this rule counting only the ASM messages.

Once P (C3) and P (C4) are available, they can then send the separator marginals P (f)

and P (ef) to clusters C5 and C6 respectively. Receiving the needed separator marginals

P (f) and P (ef), Φ(C5) and Φ(C6) become P (C5) and P (C6) as shown in the 5th and 6th

row in Table 4.1.

4.3.2 Informed JT Initialization

The current initialization of a BN JT assigns the CPD of a node randomly to any qualified

clusters, which contain the node itself and its parents. If multiple options exist, assign

arbitrarily. For example, consider the BN and its JT in Figure 4.3. The CPD for some

nodes can be assigned optionally. For example, the CPD of a, P (a), can be assigned to

clusters abc, ace or ade, and the CPD of e, P (e|c) can be assigned to either cluster ace or

cluster ceg. With the existing initialization, the choice is made randomly.

a

b c

d e

f

g

h

abd ace

ceg

eghdef

ade

ad ae ce

egde

(a) (b)

p(a)

p(c|a)

Figure 4.3: (a) A sample BN. (b) The corresponding JT with multiple initialization options.
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In order to improve its efficiency, many modifications on both the Hugin and the Shenoy-

Shafer inference architectures have been proposed [21] [78] [67]. However, the initializa-

tion stage has remained the same. We are thus motivated to exploit further savings on

message passing by assigning the CPD more deterministically. For example, if we assign

the CPDs P (a), P (c|a) and P (e|c) to cluster ace, its cluster potential forms the marginal

over the three nodes, a, c, and e, immediately. This observation leads to the following

proposition whose validity is straightforward.

Proposition 5 If a cluster C in a JT has n nodes, and during the initialization phase if it

receives n CPDs then the cluster potential will be the cluster marginal automatically before

the GP method is performed. That is

Φ(C) = P (C) =
n∏

i=1

P (xi|Pa(xi))

Our heuristic is based on the above proposition. When a node’s CPD can be assigned

to more than one cluster of the JT, i.e. the node itself and its parents are present in more

than one cluster of the JT, we assign the node according to the rule below.

Initialization heuristic

Among the clusters of the JT where the node itself and its parents are present, the CPD

of that node should be assigned to a cluster that has the least number of nodes, but with the

most CPDs already assigned.

During the initialization phase, with this heuristic, we first try to identify the CPDs of

nodes that can be assigned to more than one cluster. Meanwhile, the CPDs of nodes, which

have only one cluster to be qualified for receiving the node, are assigned to that particular

cluster immediately. Then, for each node with optional clusters, we search for the cluster

that is smallest in terms of number of nodes but has the highest number of CPDs already

assigned to it. This simple rule helps us to form the marginal for certain clusters before the

GP method is applied, and simplifies message passing to the greatest extent.

If we consider the allocated marginal or the factors in its factorization received by a
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cluster from its neighboring cluster as a message, then it is easy to verify that there is no

need to pass 2(n − 1) messages as in the GP method (recall that n denotes the number

of clusters in a JT). For example, applying the GP method on the example in Figure 4.3

requires passing 10 messages. The GP method neglects the fact that messages can be

saved because the semantic meanings of the messages in the GP method are irrelevant.

By applying the ASM procedure on the same example only 8 messages are needed. Then

applying the informed assignment of CPDs with our heuristic, we need only 7 messages

for the same example. In a real life network, this saving of the number of messages could

result in significantly less arithmetic computation compared with the GP method.

To summarize, our method of marginal calculation is based on the procedure of ASM

and informed initialization. The ASM procedure provides us with the actual potential

needed to form the marginal so there is no need to pass blindly two messages over each

separator. We can achieve the minimum message passing given a certain JT initialization.

Moreover, the initialization heuristic increases the chance of a cluster to form the marginal

automatically, thus further reducing the messages to be passed between the clusters. Com-

bining the two techniques, our method can significantly improve the cost for JT marginal

calculation.

4.4 Experimental Results

We conducted experiments on a number of BNs, collected from the publicly available

HUGIN repository. These networks can be located at the http://www.cs.huji.ac.il/labs/compbio

/Repository/ and http://forum.HUGIN.com/index.php?board=12.0. All the implementa-

tions were done with C/C++ Eclipse IDE on Windows operating system, with 512MB

of RAM and an Intel 1.4 GHz processor.

As the message passing is the most important operation in the HUGIN architecture, the

number of messages occurring during GP has a direct impact on the performance. Thus,

in our first experiment, we used the criteria of the total message required to evaluate the

efficiency of our method. We implemented the traditional HUGIN architecture as the base

for the comparison, the ASM procedure alone applied on HUGIN architecture, and our

complete method with ASM and initialization heuristic applied.
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Total Messages
Network Hugin ASM Our % of savings

nodes clusters Method Method(Only) Method Hugin v.s. Our Method
Asia 8 6 10 6 6 40 %

Diabetes 413 337 672 621 609 9.38 %
Car ts 12 6 10 5 5 50 %

Mildew 35 29 56 47 44 21.43 %
4sp 58 41 80 58 55 31.25 %

Barley 48 36 70 59 56 20 %
Munin2 1003 866 1730 1190 1171 32.31 %
Munin3 1044 904 1806 1220 1207 33.17 %
Munin4 1041 872 1742 1163 1143 34.39 %
water 32 19 36 22 18 50 %

studfarm 12 9 16 15 13 18.75 %
pigs 441 368 734 713 698 4.91 %

Table 4.2: Comparison of message counts on various networks

From the experiment results presented in Table 4.2, it is clear that when ASM is ap-

plied, the total amount of message passing was reduced considerably. Further saving was

achieved if our initialization heuristic was also used. The results also confirmed that by uti-

lizing the semantic meaning of the messages, we saved up to 50% of messages compared to

the use of the Hugin method. As fewer message counts would result in fewer computations,

our methods definitely have improved the performance of the HUGIN architecture.

In our second experiment, we looked into the actual arithmetic operation in the Hugin

and our method. A single message pass in HUGIN requires three arithmetic operations:

summations, multiplications and division. The summation operation sums out the variables

in the given set and returns a potential defined over a smaller set of variables. The division

operator acts on two potentials and returns a quotient potential. By simply applying the

ASM procedure, a single message passing is carried out by multiplying the originally as-

signed CPDs, with the allocated separator marginals or the factor in its factorization. That

is, whereas HUGIN requires a substantial number of the divisions along with summation

and multiplication, our method with ASM procedure only requires 2 operations: summa-

tions and multiplications. Table 4.3 shows the number of arithmetic operations needed by
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Network Hugin Method(+, *, /) Our Method( +, *) % of savings
(+, *, /) ( +, *)

Asia 159 86 45.66%
Diabetes 64233781 57615326 10.30%

Car ts 202 96 52.48%
Mildew 21157394 16589402 21.59%

4sp 199732 135640 32.09%
Munin2 27797088 18392860 33.83%
Munin3 33698532 22130570 34.33%
Munin4 661845513 249624860 35.34%
water 21323694 10657956 50.02%

studfarm 504 371 26.49%
pigs 6343971 5952050 6.18%

Table 4.3: Comparison of arithmetic operation counts on various networks

the GP method of HUGIN architecture and our method. Clearly, fewer messages indeed re-

sult in less computation as demonstrated with this experiment. It is worthwhile to note that,

while the saving of message count was no more than 50%, the saving of actually arithmetic

operation can exceed that limit, as in Car ts and Water networks.

Finally, we measured the time efficient of the Hugin propagation and our method in the

calculation of the prior marginal with all the networks. The experimental data is shown in

Table 4.4. We can see that the saving in percentage is consistent with the result comparing

arithmetic operations, and the saving could be over 50% in certain networks. Again, it is

confirmed that the propagation based on the separator analysis and informed initialization

is considerably more efficient than the GP method.

4.5 Discussion

The global propagation (GP) [35] method used in the Hugin architecture [53] is arguably

one of the best methods for probabilistic inference in Bayesian networks. Passing mes-

sages between clusters in a JT is the basic operation in the GP method. It is traditionally

considered that the messages passed are simply potentials without any specific semantic

meaning. We studied the factorizations of a joint probability distribution defined by a
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Network Propagation Time(sec) % of savings
Hugin Method Our Method

Asia 0.003 0.0016 46.67%
Diabetes 29.037 25.29 12.91%

Car ts 0.003 0.0013 56.67%
Mildew 5.057 3.51 30.60%

4sp 0.05 0.02 60%
Munin2 16.494 11.16 32.34%
Munin3 14.317 10.204 28.73%
Munin4 221.353 195.095 11.86%
water 16.394 8.03 51.02%

studfarm 0.006 0.0042 30%
pigs 4.186 3.09 26.18%

Table 4.4: Comparison of propagation time on various networks

Bayesian network before and after the GP method is performed, we investigated the mes-

sages passed algebraically, and we make the following two contributions. (a) We reveal

that the messages passed are not mere potentials, but in fact separator marginals or factors

in their factorizations. (b) We demonstrate that the revealed semantics of the messages can

be utilized to avoid passing up to half of the messages that could have required passing by

the GP method during prior calculation.

We have studied the messages passed in the GP method algebraically. It was revealed

that the messages are actually separator marginals or factors in their factorizations. Passing

messages in the GP method can be equivalently considered as the problem of allocating

separator marginals. This different perspective of propagation gives rise to a different idea

of computing cluster marginals, which is realized in the ASM procedure. When applied,

the ASM procedure provides the detailed information of the messages a cluster requires

to form the marginal, thus avoiding passing two messages over each JT separator blindly.

Also, we have presented an initialization heuristic, based on the observation that cluster

potential could be the cluster marginal automatically during initialization. This enables us

to pass even fewer messages during propagation.

In our next work, we will extend the ASM procedure to the calculation of posterior
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distribution. Observed evidence affects the CIs in the original network, such that the d-

separation between sets of node may change based on Definition 1. This also influences

the semantic meaning of messages, which will contain different information than the ones

passed during the prior calculation. In fact, the content of such messages will vary depends

on the given set of evidence. The Lazy inference [57] has used some induced dependency to

facilitate message passing during posterior calculation. Our plan is to extend an algebraical

approach from our current results to conduct a formal analysis of these messages.



Chapter 5

Fast Marginal Calibration

In Chapter 4, we described how to calculate the marginal in JTs of single agent Bayesian

networks, and presented an algorithm that forms the prior in a JT cluster with informed

message passing. The results will be extended in this chapter to solve the problem of

MSBN LJF marginal calibration.

Although the existing MSBN LJF-based exact inference algorithms [91, 92, 98] use

different message calculation schema, or storage allocation, they typically consist of an

LJF initialization process conducted before the global propagation. During this initializa-

tion stage, the CPDs of all domain variables are assigned to appropriate LJF subnets and

in each of them forms an initial potential. However, this initial potential does not provide

the complete information, thus preventing the agent to reason about its own problem sub-

domain correctly at this stage. Obviously, the agent’s local JT is not yet consistent. Even

with local message passing, each subnet’s local potential still does not represent the JPD,

or prior marginal, over the local variables.

MSBN LJF marginal calibration refers to the process during which each LJF subnet is

supplied with the necessary information to form a complete prior marginal representation

for local variables. The calibration process must be conducted before the global propaga-

tion can be performed in an MSBN LJF. Furthermore, an MSBN subnet equipped with its

local prior can potentially admit a wide range of approximation techniques. For example,

a calibrated subnet is essential if we intend to apply stochastic sampling techniques in an

agent’s local subnet.

81
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All MSBN LJF inference algorithms perform an implicit marginal calibration process,

which is typically expensive in terms of external and internal message passings. With

the existing Hugin-based global propagation architecture, the calibration process requires

the calculation of two inter-agent messages over each LJF hyperlink. Moreover, each

of such message passings requires local consistency in the sender’s local subnet, which

calls for repeated calculation of intra-agent messages. Overall, extensive amount of inter-

agent runtime communication and local calculation is necessary. Even with our extended

Shenoy-Shafer architecture, although the total number of local messages is reduced, the

same amount of inter-agent messages, which are two over each hyperlink in the LJF, are

still needed during the calibration process.

In this chapter, we present a method of fast MSBN LJFs calibration which optimizes

the messages passing among agents. Based on the concept of LJF local prior marginal

(PM) factors, we can greatly reduce the amount of inter-agent messages required. These

factors, which are information required to form a complete prior marginal distribution in

each LJF local subnet, consist of the initially assigned CPDs and some factorization of the

subnet’s hyperlinks connecting to its neighbors. Based on a compile time analysis of these

factors, called hyperlink analysis, we can guide the actual message passing at runtime with

the minimum inter-agent communication. Moreover, we utilize our new LJF inference

architecture for the message calibration process, so we are able to compose inter-agent

messages more efficiently with partial local updates. 1

5.1 Hyperlink Analysis

5.1.1 Local PM Factors

Recall that during initialization of an LJF, exactly one of all occurrences of a variable x (in

a subnet containing {x} ∪ Pa(x)) is assigned the CPD P (x|Pa(x)). All other occurrences

are assigned a unity potential. Also, a unity potential is assigned to each separator in each

local JT and each linkage in each linkage tree. The initial potential of a local JT is either

1For clarity, the term global propagation or global message passing used for a JT in Chapter 3 will be
used to refer to the inter-agent message passing in the LJF.
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the product of all of its assigned CPDs, or 1 if no CPD is assigned. In general, the initial

potential does not provide the complete information for an agent to correctly reason about

its own problem subdomain.

The main purpose of inter-agent message passing is to perform MSBN multi-agent

belief update with some observed evidence. However, with all existing algorithms, the

same method is also used to calibrate the prior marginal in each local subnet. The inter-

agent messages passed for marginal calculation and for evidence propagation are not dis-

tinguished. Agents are thus penalized with the high cost of message calculation during the

process of marginal calibration, which indeed should be treated as part of the LJF initializa-

tion stage. This motivated us to extend our results from Chapter 3 in order to investigate the

composition of the prior marginal of each subnet and the semantic meaning of messages

between agents. Given the saving on the local computational cost already achieved with

our extended Shenoy-Shafer architecture, we hope to further reduce the 2(n−1) inter-agent

message passings in an MSBN of n agents during the marginal calibration process.

We first introduce the concept of prior marginal (PM) factors and explain how these

factors contribute to the marginal calibration of each MSBN subnet. We show that the

inter-agent message passing during calibration is essentially the transmission of the PM

factors. Through a process of hyperlink analysis at compile time, an agent is provided with

the knowledge of the exact composition of its incoming and outgoing PM factors. This

information will facilitate the actual message passings during the calibration.

Essentially, an MSBN hypertree can be viewed as a JT which is constructed from a

high level BN. This JT integrates all MSBN subnets, such that the JT clusters correspond

to the hypernodes and the JT separators correspond to the hyperlinks. For example, the

three MSBN subnets in Figure 2.6 (b) can be combined into a BN like the one shown

in Figure 2.6 (a). The hypertree shown in Figure 2.6 (c) may also be considered a JT

constructed from this BN. For simplicity, we ignore the internal structure of local JTs and

linkage trees, and explain the idea of MSBN marginal calibration using this BN example.

Consider Figure 5.1 (a), which shows a JT of the BN in Figure 2.6 (a) and its initial CPD

assignment. Let V represent all the random variables. The JPD P (V ) can be factorized as

follows:
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P(i|ab)P(i|ab)

P(f|ac)P(e|c) P(a)P(c)P(b|cd)P(k|ab) P(b|cd)P(f|ac)P(e|c) P(a)P(c)P(d)P(k|ab)

Figure 5.1: Conceptual view of PM factors in an LJF.

P (V ) =

Φ(G1)︷ ︸︸ ︷
[P (i|ab)] ·

Φ(G2)︷ ︸︸ ︷
[P (f |ac) · P (e|c)] ·

Φ(G0)︷ ︸︸ ︷
[P (a) · P (b|cd) · P (c) · P (d) · P (k|ab)] . (5.1)

Each square bracket in Equation 5.1 expresses the composition of a potential for the clusters

in the JT.

Furthermore, P (V ) can also be factorized as follows [92]:

P (V ) =
P (abci) · P (abcdef) · P (abcdk)

P (abc) · P (abcd)
. (5.2)

In order to transform Equation 5.1 into Equation 5.2 algebraically, one first needs to

multiply P (abc)·P (abcd)
P (abc)·P (abcd)

to the right hand side of Equation 5.1. By doing so, we get

P (V ) =

Φ(G1)︷ ︸︸ ︷
[P (i|ab)] ·

Φ(G2)︷ ︸︸ ︷
[P (f |ac) · P (e|c)] ·

Φ(G0)︷ ︸︸ ︷
[P (a) · P (b|cd) · P (c) · P (d) · P (k|ab)] ·
P (abc) · P (abcd)

P (abc) · P (abcd)
. (5.3)
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Obviously, Equation 5.3 is almost identical to Equation 5.2, except that it has a different

numerator. Therefore, we try to group the terms P (abc) and P (abcd) with other terms of

the numerator in Equation 5.3, in order to reach Equation 5.2. A careful examination

reveals that in Equation 5.1 the potential Φ(G0) = P (abcdk) already. Next, once the term

P (abcd) in Equation 5.3 is assigned to Φ(G2), we have Φ(G2) · P (abcd) = P (abcdef).

Finally, the term P (abc) in Equation 5.3 is assigned to Φ(G1), which results in Φ(G1) ·
P (abc) = P (abcdi). These assignments are shown below, where the newly assigned terms

are underlined:

Φ(G1)=P (abci)︷ ︸︸ ︷
[P (i|ab) · P (abc)] ·

Φ(G2)=P (abcdef)︷ ︸︸ ︷
[P (f |ac) · P (e|c) · P (abcd)] ·

Φ(G0)=P (abcdk)︷ ︸︸ ︷
[P (a) · P (b|cd) · P (c) · P (d) · P (k|ab)] . (5.4)

From this example, we can see that the prior marginal P (G) of a JT cluster G consists

of terms from G’s initially assigned CPDs and terms from the separator factorization. We

define the prior marginal (PM) factors of an MSBN subnet N as all the terms required in

order to form a marginal representation, or JPD, over N ’s local variables. They include

N ’s original CPD assignment and/or some factorizations of N ’s hyperlinks.

Definition 12 Prior Marginal(PM) Factors

Let L be an MSBN LJF and N be a subnet of L with local variables V . Let B be a BN

with the identical DAG of N . The factorized JPD representation of B is P (V ) =
∏i=1

N Φi,

where Φi, i ∈ N is the set of CPDs in the form of P (Xi|Pa(Xi)).

The prior marginal factors Ψi(1 ≤ i ≤ k) is the set of CPD or product of CPDs of Φi,

such that P (V ) =
∏i=1

k Ψi.

If each variable in an MSBN subnet is assigned a CPD during the initialization process,

the prior marginal of this subnet can be obtained immediately once it is locally consistent.

In this case, the subnet’s PM factors are complete and no other terms are required. Indeed,

such a local JT represents the prior distribution of the corresponding BN for the DAG of

the MSBN subnet. This observation is described in the following proposition, whose proof

is trivial.
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Proposition 6 Suppose a local JT in an LJF contains n nodes, and during the LJF ini-

tialization phase it receives n CPDs. Then, the local JT will be calibrated as marginal

automatically after a round of local propagation, and without any inter-agent message

passings.

Unfortunately, in most situations, the assigned CPDs compose only partial PM factors

of an MSBN subnet. The rest of the PM factors are in the form of hyperlink factorization

and must be provided by adjacent subnets through inter-agent message passing. That is,

even the local JT can become consistent with a round of local propagation, the resulting

potential of each cluster is not a prior marginal distribution.

For example, the Equations 5.3 and 5.4 demonstrate the algebraic transformation from

Equation 5.1 to Equation 5.2. From an algorithmic perspective, this algebraic transforma-

tion amounts to two external message passings for the missing PM factors, one from G0

to G2 and the other from G2 to G1 over their corresponding hyperlinks. Therefore, by an-

alyzing algebraically the PM factors of each agent’s subnet, we can identify all non-unify

messages that need to be calculated during the marginal calibration process. This enables us

to carry out the inter-agent communication more efficiently and in a well-informed manner.

5.1.2 Hyperlink Analysis: Centralized v.s. Distributed

By ignoring the internal structure of local JTs and linkage trees during the discussion of

this above example, we have followed the idea of the ASM procedure in Chapter 3 in our

analysis. Indeed, we can naturally extend the ASM procedure to the context of an LJF. The

goal of hyperlink analysis is to provide us information at the compilation time regarding

how external messages flow, in order to guide actual message passings at runtime. This

process can be conducted either through a system coordinator with a certain amount of

centralized control, or through the collaboration of all agents.

With the first solution, we conduct the hyperlink analysis similar to the ASM procedure

by treating each hyperlink as a JT separator in an MSBN hypertree. Then hyperlink analysis

is initiated by an MSBN system coordinator, who first selects candidate nodes in each

subnet that are assigned a CPD and contained in at least one hyperlink connecting to an

adjacent subnet. For each of these nodes, the system coordinator marks the direction of the
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node over the hyperlink toward the adjacent subnet, and repeats the process in the adjacent

subnet until the node is no longer on any hyperlink connecting to other neighboring subnets.

All nodes over each hyperlink will be marked with a direction. The final result is obtained

by simply combining all nodes of the same direction over each hyperlink. It provides the

total number of external messages required and the direction of each of them.

Algorithm 15 Hyperlink Analysis Centralized

Suppose an agent A with local JT T. When called after the LJF initialization process, A

performs the following:

1. For each CPD P (ai|Pa(ai)), locate the local JT T to which it has been assigned. In

all hyperlinks containing variable ai, draw an arrow pointing away from T over ai in the

hyperlink.

2. Examine each hyperlink l in the LJF. If the variables in li all point to one neighboring

subnet, then the linkage will be allocated as a whole to that neighboring subnet.

3. For a linkage l that has nodes pointing to both connecting subnets, then the linkage must

be factorized so the resulting factors will be assigned to the appropriate subnet indicated

by the arrows in the hyperlink.

For example, let us consider the initial CPD assignment shown in Figure 5.1(b). The

CPD P (b|cd) is assigned to the variable b in the subnet G2. Therefore, we direct the variable

b away from G2 toward its two adjacent subnets G0 and G1. The CPDs P (a) and P (c) are

assigned to the variables a and c in G0 and exist on the hyperlink connecting G0 and G2 as

well as G2 and G1. Thus, we direct the variables a and c away from G0 to G1. The final

result of linkage analysis is shown with arrows in Figure 5.1(b), which indicates that two

external messages are required between G0 and G2 during inference, but only one external

message is needed from G2 to G1.

For the second solution, we forgo the centralized control. By examining the locally

assigned CPDs and analyzing the hyperlinks connecting to their adjacent agents, agents

can determine collaboratively the exact flow of PM factors.

Algorithm 16 Hyperlink Analysis Distributed
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Suppose an agent A with its local JT T. When called after the LJF initialization process,

A performs the following:

1. Determine based on proposition 6, if the T’s assigned CPDs have a guaranteed marginal.

If yes, exit.

2. In T, for each assigned CPD P (ai|Pa(ai)), if the head ai presents in any of T’s hyper-

links, send ai over these hyperlinks to adjacent agents.

2. Upon receiving a node x from an adjacent agent, sent x to other agents if x presents on

the corresponding hyperlinks.

3. Combine all the incoming nodes from a single neighboring agent. The set indicates a

set of PM factors.

With Algorithm Hyperlink Analysis Distributed, an agent first determines if its set

of PM factors is completed by simply matching all the head nodes of the assigned CPDs to

its local variables. Consider the three subnets from the hypertree shown in Figure 5.1 (a).

G0’s PM factors are complete with all the assigned CPDs, since the head nodes of all the

CPDs are already equal to the set of local variables. On the other hand, the assigned CPDs

of subnets G1 and G2 contribute only the partial PM factors, and the rest will be provided

by hyperlink factorizations. For example, the PM factor over variable {a, b, c} is missing

in G1 and needs to be obtained from the factorization of its hyperlink to G2.

In order to decide the actual flow of PM factors, agents collaborate to provide each

other their already obtained PM factors through corresponding hyperlinks. First, each agent

selects all the local variables that are assigned CPDs and are also contained in at least one

hyperlink. Then the agent will “push” these variables over the hyperlinks towards the

adjacent agents. The set of variables that are “push”ed away represent the PM factors the

agent will provide to its neighbors. Upon receiving some “push”ed-in variables over a

hyperlink, an agent checks if the variables are contained in its other hyperlinks. If so, it

means the same factors are also required by other agents, and the agent will “push” these

variables further toward them. This whole process can be viewed as broadcasting each

agent’s relevant CPD information to its immediate neighbors, and eventually across the

whole network.
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Once the PM factor analysis is finished, every variable on each hyperlink is “push”ed

toward one of the hyperlink’s two connecting agents. The variables that are going in the

same direction over a hyperlink represent a single inter-agent message. From an agent’s

point of view, this analysis result provides the number and context of the agent’s runtime

inter-agent messages. This process is illustrated in Figure 5.1 (a). Once G2 receives the

information over {a, b, c, d} from G0, it will push further to its neighbor G1 the variables

{a, b, c} contained in the hyperlink. The flow of PM factors is shown by arrows over the

hyperlinks. A total of two runtime inter-agent message passings will be transmitted.

In Algorithm Hyperlink Analysis Distributed, no centralized control is needed, and

thus it is more preferable in a multi-agent environment. Although some inter-agent com-

munication is required, the amount of information exchanged is negligible compared to

actual runtime cost of inter-agent message passings.

5.2 LJF Marginal Calibration

5.2.1 PM Messages

Once agents have the knowledge of their current and missing PM factors, we can carry

out the LJF marginal calibration process to supply each agent the corresponding missing

factors. We call the inter-agent message passed during this process the PM messages. A PM

message is the message that needs to be delivered over one direction of a hyperlink during

the marginal calibration. It can consist the potential of one PM factor, or the product of a

set of PM factors. Given each LJF hyperlink and the hyperlink analysis result, we further

define two types of PM messages to facilitate message calculation.

• PM message type I: A PM message that is composed of all variables over the corre-

sponding hyperlink.

• PM message type II: A PM message that is composed of a subnet of variables of the

corresponding hyperlink.
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For example, based on the result of hyperlink analysis in Figure 5.2(a), we obtain three

PM messages, which are marked by the arrows. The PM message over the hyperlink be-

tween G1 and G2 is a type I message. The two PM messages over the hyperlink between

G2 and G0 are of type II.

PM2-0

PM0-2

PM2-1

(a)

(b)

P(i|ab)

P(a)P(c)P(d)P(k|ab)P(b|cd)P(f|ac)P(e|c)

Figure 5.2: Passing of PM messages. (a) A conceptual view, and (b) Actual calculation.

A type II message needs to be prepared when the local JT has not received the complete

set of incoming PM Messages. We can easily notice the similarity between the situations

when a type II message is calculated and Rule 2 of the LJF global propagation in our
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extended Shenoy-Shafer architecture. Therefore, we use the operation described in Al-

gorithm Cal Single MSG from Chapter 3, with only a minor modification. That is, we

change step 1 of Algorithm 8 Cal Single MSG, such that we absorb only the buffered

PM messages. We present the algorithm for calculating a type II PM message as follows:

Algorithm 17 Cal PM MSG II

Let Ai and Aj be two adjacent agents. Ai’s local JT is Ti with the set of clusters C.

Ti maintains a linkage tree L to Aj . In Ti,, H is the set of linkage hosts of L and the

extended linkage host tree is Te. L(i = 1, ..., n) are Ti’s linkage trees that are connecting

to adjacent agents except Aj , and over which PM messages will arrived. Based on the

result of hyperlink analysis, Ai calculates a type II PM message to Aj is calculated as

follows.

1. For all linkage trees l ∈ L, Ai absorb the extended linkage potential and update host

belief:

2. In Ti, randomly select a linkage host Cr ∈ H ⊂ C as the root of Te as well as Ti.

Direct all clusters away from Cr in Ti.

3. Perform a full inward message passing on Cr in Ti, such that Cr calls recursively all

child clusters to send an inward message until reaching the leaf clusters.

4. Perform a partial outward message passing on Cr within the context of extended

linkage host tree Te, such that He sends outward messages to all linkage hosts recursively.

5. For each linkage in L, calculate corresponding extended linkage potential to com-

pose the PM message to Aj .

5.2.2 Calibration with Minimum PM Messages

Guided with the result of PM factor analysis, agents process only the necessary PM mes-

sages during the marginal calibration. We have presented how to calculate a type II PM

message without maintaining the local consistency. Here we present our fast marginal cal-

ibration algorithm described as follows.

Algorithm 18 Marginal Calibration

Let Ni(i = 1, ..., n) be the subnets and H the corresponding hypertree of an MSBN M,

which is populated by multiple agents with one at each subnet. Each agent Ai has a JT Ti
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constructed in its local subnet Ni. Based on the result of hyperlink analysis, the set of Ai’s

incoming PM messages and outgoing PM messages are Pin and Pout respectively. When

called, each agent Ai performs the following:

1. while( {Pin} 6= ∅)

2. { wait for incoming PM messages;

3. if received an incoming PM message Pi

4. set {Pin} = {Pin}\{Pi};

5. if ( |{Pin}| == 1 with Pj ∈ Pin from agent Aj &&

6. ∃ Pk ∈ Pout to agent Aj )

7. send a message to Aj with Cal PM MSG II ; }
8. perform local message passing in Ai;

9. send all remaining outgoing PM messages;

In our calibration algorithm, agents with missing PM factors wait for the arrival of

these factors as incoming PM messages. A type II message can be calculated at this stage

if an agent has received all except one PM message. When an agent has received all PM

messages, it has complete its set of PM factors, which includes the ones that are initially

assigned and ones that arrive as PM messages. Then, the local JT is able to send out its

outgoing PM messages, which could consist both type I and type II messages. A simple

solution is to perform local propagation in the JT to achieve local consistency, then deliver

all the messages through the standard message passing operation described in Algorithm

Deliver Through Linkage under our new architecture. The complete local propagation,

which is to be carried out to form the local prior marginal, is only performed after all PM

factors have arrived.

For example, consider the MSBN LJF shown in Figure 5.2 (b). Even though none of

the three subnets is initialized with a complete set of PM factors, G0 and G2 are able to

send each other a type II message with Algorithm Cal PM MSG II . The messages,

consisting of PM factors over {a, c, d} and {b}, bring the potential of subnets Φ(G0) and

Φ(G2) into prior marginal P (abcdk) and P (abcdef) respectively. Next, G2 will pass a

type I message to G1 so the potential Φ(G1) becomes marginal P (abci) as well. A total

of three PM messages are passed, compared to the four messages required by Hugin-based

LJF inference architectures.
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The following theorem states the correctness of our algorithm.

Proposition 7 All local JT subnets in an LJF will be calibrated with a complete prior

marginal when Algorithm Marginal Calibration terminates.

Proof:

The proof can be easily extended from JT cluster marginal calculation in Chapter 4.

As an LJF can be viewed as a high level JT, each local JT as a whole can also be viewed

as a JT cluster. The process of hyperlink analysis correctly produces the PM factors miss-

ing from each cluster, similar to the ASM procedure. The correctness of PM message

calculation, particularly Algorithm Cal PM MSG II , is based on the extended Shenoy-

Shafer message calculation in Chapter 3. Algorithm Cal Single MSG differs from Al-

gorithm Cal PM MSG II only at the number of incoming message buffers that are in-

corporated during the calculation, and thus its proof extends immediately to Algorithm

Cal PM MSG II . ¤

Proposition 8 Algorithm Marginal Calibration requires only the minimum inter-agent

message passing in an LJF for marginal calibration.

We can verify the validity of the above proposition extending from Corollary 1 in Chap-

ter 4. It is easy to verify that the messages that we have avoided calculation indeed consists

of all unity potential. The inter-agent messages that are required passing with Algorithm

Marginal Calibration are the minimum set for the calculation of prior marginal marginal.

It is worthwhile to mention that, we could utilize an optimal CPD initialization to

further reduced the number of required messages. For example, the assignment of CPD

P (b|cd) to either G2 or G0 in Figure 5.1 will result in different number of PM messages. If

P (b|cd) is assigned to G0 as shown in (a), there will be total two messages, whereas three

messages are needed if P (b|cd) is assigned to G2 as shown in (b). Based on our initializa-

tion heuristic in Chapter 4, we can extend a similar method in the context of an LJF. We

omit further discussion as such an extension is straightforward.
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No. of External Messages No. of Local Propagation
MSBNs GP Our GP Our

Subnets Variables Method Method Method Method
(a) 3 5 4 2 6 3
(b) 3 15 4 2 5 3
(c) 4 16 6 3 9 4
(d) 5 12 8 4 11 5

Table 5.1: Comparison of the MSBN GP and the MSBN SA-GP methods on various MSBN
networks

5.3 Experimental Results

The computational efficiency of different propagation algorithms may be compared by the

actual number of arithmetic operations. In [53], the number of additions, multiplications

and divisions are used as a measure for the comparison of different BN propagation algo-

rithms. We apply a similar approach and use the number of internal and external messages

as a crude measurement to the real calculation. In particular, we count the number of ex-

ternal messages generated over the whole network and the number of local propagations

required. We have conducted preliminary experiments on four MSBN networks to compare

our method to the Hugin-based method.

Table 5.1 shows the counting of external messages and local propagation. Given an

MSBN network with n subnets, the number of external messages is 2(n− 1) in the MSBN

GP method. With our method, this number is reduced by 50% in all 4 networks. Con-

sidering the number of local propagations, our method requires local propagations to be

performed once only in each subnet. However, since Algorithm Cal PM MSG II in-

volves internal message passings, we roughly count each of its invocations as half local

propagation for the purpose of fair comparison. The result shows that the total number of

local propagations has also been reduced by an average of 50% in our SA-GP method com-

pared to the GP method with a randomly selected root. These preliminary tests on small

networks have shown substantial savings of external and internal messages using our fast

calibration method.
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Networks Actual Exec Time(sec)
No. of Variables No. of Clusters GP Method Our Method

(a) 4sp 58 41 0.02 0.01
(b) link 724 581 69.219 54.568
(c) mildew 35 29 2.764 2.023
(d) munin3 1044 904 5.838 3.725

Table 5.2: Fast marginal calibration: performance comparison in execution time.

In our second experiment, we compared our method to the standard LJF message pass-

ing algorithm in [92]. Recall that an MSBN hypertree can be viewed as a high level BN JT,

where each cluster corresponds to a hypernode and each separator to a hyperlink. There-

fore, we have implemented a partial version of both calibration algorithms and tested them

on several BN networks as preliminary experiments.

The two implementations, both written in C, were tested on a WindowsXP platform. In

our experiments, we focused on the comparison of inter-agent communication costs, which

can be indicated by the amount of message passing among BN JT clusters. We randomly

initialized all networks in order to avoid any specific CPD assignments that would favor our

algorithm. We counted the number of messages generated during runtime communication,

and the actual CPU time of running the two programs.

The test results are reported in Table 5.2 with the standard algorithm named as the LJF-

GP method. It shows that, in each network, the reduced number of inter-agent messages

are consistent with the savings of actual execution time. The saving on number of all PM

messages as well as the execution time is listed in Table 5.3.

Networks Savings of our method
No. of PM MSG Exec Time

(a) 4sp 31% 50%
(b) link 29% 21.17%
(c) mildew 17% 26.81%
(d) munin3 31% 36.19%

Table 5.3: Fast marginal calibration: Savings in total inter-agent message and execution
time.
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5.4 Discussion

In multi-agent probabilistic systems, such as an MSBN, agents need to be calibrated with

a complete marginal in order to reason about their own problem subdomains immediately

and correctly. In the existing algorithms, however, this process has been carried out simply

through standard inter-agent message passings, resulting in costly inter-agent communica-

tion and local calculation.

In this chapter, we have introduced the concept of PM factors for a complete prior

marginal distribution BN subnets. Based on a distributed analysis of these factors at com-

pile time, we were able to guide the actual runtime inter-agent communication by sending

only the necessary messages. Although the result of hyperlink analysis applies to both

Hugin and Shenoy-Shafer message passing architecture, the latter is more suitable to a

fast calibration algorithm. In particular, an agent could send an outgoing message with an

inconsistent local JT. Given an MSBN LJF with an arbitrary CPD initialization, our dis-

tributed calibration algorithm requires the minimum inter-agent communication and local

computation.

The improved time efficiency of our proposed algorithm was confirmed in the prelim-

inary experiments. In our experiments, we were not able to investigate the local compu-

tational cost in our preliminary test. Nevertheless, considering that the current savings

are obtained without taking into account the improved message calculation without local

consistency, we would expect a more favorable result from a complete implementation.



Chapter 6

Local Adaptive Importance Sampling

The MSBN provides an exact model for cooperative agents to reason about the states of

a distributed uncertain domain. Such a problem domain can be decomposed into subdo-

mains, each individually represented and managed by a relatively lightweight single agent.

Typically, inference in MSBN is carried out in an LJF. Agents communicate through mes-

sages passed over LJF linkage trees, and belief updates in each LJF local JT are performed

upon the arrival of a new inter-agent message. The LJF provides a coherent framework for

exact inference with MSBNs, and is known to support consistent local inference in the ab-

sence of MSBN system-wide message passing [93]. However, the computational costs may

render such exact calculation impractical for larger and more complex problem domains.

For example, a network may contain subnets that are too large to admit exact local repre-

sentation. In fact, the global inference is exponential to the largest node of the LJF, which

is the largest local JT. It is natural to consider the possibility of trading off exact inference

against the calculation speed and communication cost with approximate approaches.

Although approximate techniques have been well developed in traditional BNs, the ex-

tension of these solutions to MSBNs has been very limited. The methods of two stochastic

sampling techniques, forward sampling and Markov sampling, have been extended and

compared with the LJF-based exact inference algorithms [93]. Both proposed algorithms

forgo the LJF structure and sample an MSBN directly in the global context. It has been

shown that such approximation indeed requires more inter-agent messages passing, and at

the cost of revealing more private knowledge of each local subnet. Furthermore, MSBN

97



CHAPTER 6. LOCAL ADAPTIVE IMPORTANCE SAMPLING 98

global sampling schema tend to explore only a small part of the entire multi-agent domain

space.

We thus aim to maintain the LJF framework and explore localized approximation, a

technique that has been applied in the propagation of hybrid BNs [54], and in large net-

works to approximate hard to compute messages [46] [20] [44]. In an MSBN, the com-

putational cost for global inference is exponential to the size of the largest node in the

hypertree [92]. Therefore, approximation in the larger nodes of an MSBN would improve

the global inference efficiency. Local sampling in MSBNs would be straightforward if the

subnets were valid BNs. Unfortunately, we have either an original subnet of a DAG struc-

ture with no marginal representation guaranteed, or an LJF local JT that is calibrated, but

in the form of a JT. In the case of the former, local sampling is not feasible due to the lack

of prior marginal information. We can only resort to the local sampling of calibrated local

JTs.

Standard BN JTs algorithms have been combined with sampling in order to perform

fast and accurate approximate inference algorithms. In one group of algorithms, samples

can be obtained with a Markov chain Monte Carlo sampler combined with some exact

calculations. Among them, we can have a Gibbs sampler [30] combined with JT exact

message passing [44] [38] or use Rao-Blackwellized approximation [25] to improve the

sampling generation [68] [7] [6]. A different approach is to use importance sampling

based technique to sample a JT [11] [51]. In our case, we find motivation for an LJF local

JT-based sampler that operates in a multi-agent context. We prefer an important sampler

with an explicit form of importance function so that it can be integrated with the existing

inter-agent communication schema, and to support the efficient message calculation over

the LJF linkage trees.

Importance sampling algorithms have been well applied in BN approximations [29] [80]

[13] [66] [15] [108]. As we study the extension of BN importance sampling techniques to

JTs, we present an LJF-based local adaptive importance sampler(LLAIS), which is viewed

as the main contribution of this chapter. We design our importance function as tables of pos-

terior probabilities over the clusters of an LJF local JT. We adopt the adaptive importance

sampling [15], such that the importance functions are learned sequentially to approach the

optimal distribution. One innovative feature of the LLAIS is that it facilitates inter-agent
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message calculation. We obtain an approximation of messages over linkage trees from

the learned importance function. Our experiments results have shown that the LLAIS algo-

rithm converges much faster compared to the other two local JT-based importance samplers

we implemented. Also, with the LLAIS, a good approximation of inter-agent messages is

available before the local sampling is completed.

6.1 Importance Sampling for BNs

A prominent subclass of BN approximate algorithm is the family of stochastic sampling

algorithms, also known as the Monte Carlo algorithms. These algorithms sample the prob-

ability distribution and compute the probability required based on the obtained samples by

calculating the frequencies of instantiations of the interest. The execution time is mostly

independent of the topology of the network and is linear in the number of samples. Fur-

thermore, these algorithms have an any-real-time property such that the computation can

be interrupted at anytime with a guaranteed result.

Importance sampling is a class of Monte Carlo algorithms for approximate reasoning in

BNs. As a commonly used simulation technique, importance sampling samples a modified

distribution, known as the importance function, to estimate a hard-to-sample target distri-

bution. The underlying idea of importance sampling is to approximate the average over a

set of numbers by an average over a set of sampled numbers.

In order to evaluate a sum I =
∑
x∈X

g(x) for some real function g, samples are generated

from an importance function f such that g(x) 6= 0 =⇒ f(x) 6= 0. We have

I =
∑
x∈X

g(x) =
∑
x∈X

g(x)

f(x)
f(x) = Ef

[
g(x)

f(x)

]

by the definition of expected value. We estimate I as

Î =
1

N

N∑
i=1

w(xi),
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where

w(xi) =
g(xi)

f(xi)

is called the sample weight or the score.

In order to compute the probability of evidence P (E = e) from a JPD P (X) =∏n
i=1 P (Xi|Pa(Xi)) of a BN model, we need to sum over all non-evidence nodes:

P (E = e) =
∑

X\E
P (X\E,E) (6.1)

=
∑

X\E

n∏
i=1

P (Xi|Pa(Xi),E = e)

Let Z = X\E, we simplify Equation 6.1 as

P (E = e) =
∑
Z∈Z

P (Z = z,E = e) (6.2)

and we can apply the principle of importance sampling.

Suppose we choose a distribution Q as the importance function such that P (Z =

z,E = e) 6= 0 =⇒ Q(Z = z) 6= 0. Such an importance function is also known as the

sampling distribution or the proposal distribution. Then, Equation 6.2 can be rewritten as

P (E = e) =
∑
Z∈Z

P (Z = z,E = e)

Q(Z = z)
Q(Z = z). (6.3)

By the definition of expected value, we have

EQ[Z] =
∑
Z∈Z

z Q(Z = z)

and from Equation 6.3

P (E = e) = EQ

[
P (Z = z,E = e)

Q(Z = z)

]
= EQ[w(Z = z)]



CHAPTER 6. LOCAL ADAPTIVE IMPORTANCE SAMPLING 101

where w(Z = z) is the score of each sample and

w(Z = z) =
P (Z = z,E = e)

Q(Z = z)
.

Thus, if we sample from Q and obtain a sample set (z1, ..., zn), then

P̂ (E = e) =
1

N

N∑
i=1

P (Z = zi,E = e)

Q(Z = zi)
=

1

N

N∑
i=1

w(Z = zi).

As the sample size increases, the expect value approaches the true average. That is, as

N →∞, P̂ (E = e) = P (E = e). Thus, such an estimator is unbiased.

We can obtain the posterior probability distribution P (X|E) by separately computing

the two terms P (X,E) and P (E), and then combining them by the definition of conditional

probability.

P̂ (Xi = xi|E = e) =
P̂ (Xi = xi,E = e)

P̂ (E = e)
=

N∑
j=1

δ(xi, zj)w(zj)

N∑
j=1

w(zj)

(6.4)

where δ(xi, zj) = 1 if and only if the sample zj contains Xi = xi. Otherwise, δ(xi, zj) = 0.

It is important to note that while the two terms P(E = e) and P (Xi = xi|E = e) can

be separately estimated unbiasedly, the estimation obtained by combining them through

Equation 6.4 is not a unbiased estimator [15].

The quality of an importance sampling estimator mostly depends on how close is

the sampling distribution to the target distribution [45]. Essentially, various importance

sampling algorithms for BNs only differ in the way they obtain the importance function,

which represents the sampling distribution. Many successful importance sampling algo-

rithms [15, 61, 108, 12] have been proposed in recent years. Several choices of the impor-

tance function are available ranging from the prior distribution as in the likelihood weighing

algorithm [45], to more sophisticated alternatives. The latter includes algorithms that up-

date the importance function through a learning process [15], or calculate the importance

function directly with loopy belief propagation [108]. These methods try to gradually
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approach the optimal importance function, which is usually a function proportional to the

posterior distribution, and preferably with a thick tail [55] [107].

6.2 Basic Importance Sampling for LJF local JT

Earlier research has suggested difficulties in applying stochastic sampling to MSBNs at a

global level [93]. Direct local sampling in an MSBN subnet is also not feasible due to the

absence of a valid BN structure. However, an LJF local JT, the secondary structure of a

subnet, can be calibrated with a marginal over all the local variables, making local sampling

possible. Algorithms have been proposed to combine sampling with JT belief propagation

[44, 68, 45]. Although generally applicable to a calibrated LJF local JT, these algorithms

are based on Markov chain Monte Carlo, thus do not support efficient inter-agent message

calculation in the context of MSBNs.

We now introduce a JT-based importance sampler, which will be extended in the next

sections. Importance sampling in JTs was previously studied [51], such that the importance

function was composed of some factors of JT clusters. In our case, however, an explicit

form of the importance function is necessary as it facilitates the learning of the optimal

sampling distribution, as well as the efficient calculation of inter-agent messages.

The JPD over all the variables in a calibrated local JT can be recovered as a decompos-

able model similar to the BN DAG factorization. Let C1, ..., Cm be the m JT clusters given

in an ordering that satisfies the running intersection property. The separator is Si = ∅ for

i = 1 and Si = Ci ∩ (C1 ∪ ...∪Ci−1) for i = 2, ...,m. Since Si ⊂ Ci, we have the residual

defined as Ri = Ci\Si. The JT running intersection property guarantees that the separator

Si separates the residual Ri from the set (C1 ∪ ... ∪ Ci−1)\Si in the JT.

We apply the chain rule to partition residuals given by the separators and have the JPD

expressed as

P (C1, ..., Cm) =
m∏

i=1

P (Ri|Si). (6.5)

Essentially, we select a root from the JT clusters and direct all links(separators) away

from the root to form a directed sampling JT. This directed tree is analogous to a BN due
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to their similar forms of recursive factorization.

Given a JPD factorization of an LJF local JT, we define the importance function P ′ in

our basic sampler as

P ′(X\E) =
m∏

i=1

P (Ri\E|Si)|E=e (6.6)

Here, the vertical bar in P (Ri\E|Si)|E=e indicate the substitution of e for E in P (Ri\E|Si).

This importance function is factored into a set of local components, each corresponding to

a JT cluster. Given the calibrated potential on each JT cluster Ci, we can calculate P (Ri|Si)

for each cluster directly. For the root cluster, that is

P (Ri|Si) = P (Ri) = P (Ci), i = 0. (6.7)

We traverse a sampling JT and sample variables of the residue set in each cluster cor-

responding to the local conditional distribution. This is done similarly to the sampling of

BNs, except that we now sample a group of nodes in a cluster instead of an individual node.

If we encounter a cluster that contains a node in the evidence set E, we simply assign to the

node the value given by the evidence assignment. A complete sample consists of assign-

ments to all non-evidence nodes according to the local JT’s prior distribution. The score of

each sample si is calculated as

Scorei =
P (si,E)

P ′(si)
. (6.8)

Consider the example shown in Figure 6.1 in order to generate a sample for the local JT

T0 with cluster bce as the root cluster and the evidence observed at g, we first sample over

variables bce according to its local importance function. For the cluster bcg, no sampling

is necessary since g is an evidence node and b and c have already been sampled. Next,

we need to sample ad and f from the local importance functions for clusters abd and bfg,

given the already determined values of b and g.

Unfortunately, using the prior distribution as the sampling distribution, our basic sam-

pler may perform poorly if the posterior distribution of the network bears little resemblance



CHAPTER 6. LOCAL ADAPTIVE IMPORTANCE SAMPLING 104

d

S0 S1

S2

a b c

f

e

g

a

a b

b c

c

h i

j k ml

S0

S1

S2

abc

abc

(a) (b)

a,b

b,cb,c

a,b

T1T0

T2

b,c,i

a,b,h

b,c,l

a,b,j

b,kc,m

a,b,d

b,c,e

b,c,g

b,f,g

(c)

L02

(L20)
L21

(L12)

Figure 6.1: An LJF with (a) the subnets, (b) the hypertree and (c) the LJF with linkage trees
and local JTs.

to the prior. It is proven that the optimal importance function for BN importance sampling

is the posterior distribution P (X|E = e) [15]. Applying this result to JTs, we can define

the corresponding optimal importance function as

ρ(X\E) =
m∏

i=1

P (Ri\E|E = e). (6.9)

Equation (6.9) takes into account the influences of all evidence from all clusters in the

sample of the current cluster, whereas Equation (6.6) only counts the influence from the

precedent cluster, thus causing poor sampling results. Moreover, as there are potentially
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large differences between the two distributions, we can not exploit the form of the impor-

tance function Equation 6.6 in our basic sampler for inter-agent message estimation.

6.3 LJF Local Adaptive Importance Sampler (LLAIS)

Our objectives in designing an LJF local JT importance sampler are: 1) search for a good

importance function for the best approximation, and 2) facilitate inter-agent message cal-

culation over LJF linkage trees. There are several methods in BN importance sampling to

adaptively approach the optimal importance function. The loopy belief propagation can be

conducted to calculate an approximate version of local posterior distribution [108]. The

updating process can also be viewed as one of learning a separate BN, by minimizing some

error criterion, and use the learned BN for sampling [66]. In this section, we introduce

the LLAIS sampler which follows the principle of adaptive importance sampling for learn-

ing factors of the importance function. We incorporates a learning process to update the

importance function in Equation 6.6 of our basic sampler. We also show that inter-agent

messages can be composed directly from the learned importance function.

6.3.1 Updating the Sampling Distribution

Although we know that the posterior distribution is the optimal sampling distribution, it

is usually difficult to compute the optimal importance function in Equation 6.9 directly.

We can, however, parameterize the sampling distribution to be as close as possible to the

posterior distribution. We choose a sub-optimal importance function

ρ(X\E) =
m∏

i=1

P (Ri\E|Si,E = e) (6.10)

and represent it as a set of local tables which is learned to approach the optimal sampling

distribution. These tables are called the Clustered Importance Conditional Probability Ta-

ble(CICPT).

The CICPT tables, one for each local JT cluster, are tables of probabilities indexed by

the separator to the precedent cluster (based on the cluster ordering in the sampling tree)



CHAPTER 6. LOCAL ADAPTIVE IMPORTANCE SAMPLING 106

and conditioned by the evidence. For non-root JT clusters, they are in the form of

P (Ri|Si,E), (6.11)

and for the JT root cluster, the CICPT table is

P (Ri|Si,E) = P (Ci|E). (6.12)

The CICPT tables have a similar structure to the factored importance function in our

basic importance sampling algorithm. However, the CICPT tables are updated periodically

by the scores of samples generated from the previous tables. A CICPT table is analogous

to an ICPT table of BN adaptive importance sampling [15], but applied in the context of

LJF local JTs.

A simple learning strategy is to re-calculate the CICPT table based on the most recent

batch of samples, so we count the influence of all evidence through the current sample set.

But such a learning process could oscillate as we completely ignore the previous CICPT

tables at the calculation of new ones. Therefore, we adopt a smooth learning function and

our algorithm takes the form:

Algorithm 19 Algorithm LLAIS

Step 1. Specify the total sample number M, total updates K and update interval L. Initialize

CICPT tables as in Equation 6.6.

Step 2. Generate L samples with scores according to the current CICPT table. Estimate

P ′(Ri|Si, e) by normalizing the score for each residue set given the states of the separator

set.

Step 3. Update the CICPT tables based on the following learning function [15]:

P k+1(Ri|Si, e) = (1− η(k))P k(Ri|Si, e) + η(k)P ′(Ri|Si, e),

where η(k) is the learning function.

Step 4. Modify the importance function if necessary, with the heuristic of ε-cutoff. For the

next update, go to step 2.
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Step 5. Generate the M samples from the learned importance function and calculate scores

as in Equation 6.8.

Step 6. Output posterior distribution for each node.

In LLAIS, the importance function is dynamically tuned from the initial prior distri-

bution. New samples are obtained from the current importance function and then used to

gradually refine the distribution. The learning overhead is expected to be compatible with

that of the BN adaptive importance sampling [15].

It is well known that thick tails are desirable for importance sampling in BNs. This is

because the quality of approximation deteriorates in the presence of zero probabilities due

to the generation of a large number of samples having zero weights [15] [108] [32]. We

solve this issue by a simple heuristic of ε-cutoff [14]. If less than a threshold ε, the small

probabilities will be replaced by ε, and the change will be compensated by subtracting the

difference from the largest probability entry.

6.3.2 Handling Evidence

In BN JTs, if an observed node is contained in more than one cluster, the evidence is typ-

ically inserted randomly into any of the clusters. With our LLAIS sampler, however, we

enter the observation into a local JT cluster which contains the evidence node and is also

the nearest to the local JT’s root cluster. This simple rule is based on the following theorem.

Theorem 4 In a sampling tree T , Anc(E) is the ancestor cluster(s) to the clusters that

contain evidence E. Then, for a cluster Ci /∈ Anc(E) =⇒ P (Ri|Si,E) = P (Ri|Si)

Proof: Suppose for cluster Ci, the values of its corresponding Si of Ri are set. Then Ri

is dependent on evidence E given Si only when Ri is d-connecting with E given Si. Since

T is a directed tree, this happens only when there exists a cluster of Ci’s descendants that

belongs to the clusters containing evidence E. That is, Ci /∈ Anc(E).

Based on Theorem 4, if a cluster is not the ancestor of clusters with evidence entered,

its CICPT table remains unchanged. That is, after the CICPT tables are initialized in Step
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1 of our algorithm, we simply need to update the tables for clusters that are the ancestors

of the evidence.

For example, if all the evidence are observed for nodes in the root cluster of the sample

JT, then we already have the CICPT table for each cluster. Our LLAIS algorithm becomes

the same as the basic importance sampler with no learning steps and the initial prior dis-

tribution as the sampling distribution. In general, by entering new evidence into a cluster

nearest to the root, we maximize the number of CICPT tables that require no updates with

regard to the evidence node. This will result in considerable savings in the learning process

of the importance function.

6.3.3 Calculating Inter-agent Message over Linkage Tree

In an MSBN LJF, agents propagate the impact of their local observations through inter-

agent messages passing. Originated from one LJF local JT to one of its adjacent local JTs,

an inter-agent message consists of extended linkage potentials over their corresponding

linkage tree. With the basic importance sampler, we can only estimate these potentials

from the complete sample set. By exploiting the adaptive feature of our LLAIS sampler,

however, we are able to obtain an approximation of the extended linkage potentials directly

from the learned importance function.

Theorem 5 Suppose we have a linkage tree L that spans over a set of linkage hosts in-

cluding the root cluster Cr of a local JT T . For each linkage Q in L, there exists at least

one linkage host CQ with a CICPT table P ′(RQ|SQ,E), such that the extended linkage

potential of Q can be estimated as

Φ∗(Q) ≈
∑

Ni /∈Q

P ′(RQ|SQ,E) (6.13)

Proof: Based on Definition 10 in Chapter 3, a linkage host tree Th can be formed over

all linkage hosts. As the local JT root cluster Cr is included in the Th, we select the linkage

associated with Cr as the root linkage Qr in L.

First, we consider the root linkage Qr in L. Based on the definition of extended linkage

potential, we have Φ∗(Qr) = Φ(Qr). Since Cr is the linkage host for Qr, and Equation 6.12
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Figure 6.2: Estimation of extended linkage potentials for non-root linkages.

holds, the linkage potential given observed evidence can be obtain as follows:

Φ∗(Qr) = Φ(Qr) =
∑

Cr /∈Qr

P (Cr|E) ≈
∑

Ci /∈Qr

P ′(Cr|E)

Next, consider any non-root linkage Q in L with peer separator S connecting to its

parent linkage Q′. The linkage host for Q and Q′ are C and C ′ respectively. Suppose the

linkage host tree Th is an actual subtree of T . Based on the definition of linkage trees, we

have C and C ′ as two neighboring clusters in T , and separator SQ between C and C ′ is

an actual separator of T . Thus, SQ = C ′ ∩ C, and S ⊂ SQ.

If the linkage host tree Th is not a subtree of T as shown in Figure 6.2, then C and C ′

may not be neighboring clusters T and their intersection S ′Q between C and C ′ may not be

an actual separator of T . However, for each node x ∈ S, x ∈ Q and also x ∈ Q′ as L is

a JT. Moreover, because C and C ′ are the linkage hosts for Q and Q′, we have x ∈ C and

x ∈ C ′ as well. Thus, S ⊂ S ′Q still holds. Based on the running intersection property of a

JT, any node in both C and C ′ will be on the path between C and C ′. Therefore, we have

S ⊂ S ′Q ⊂ SQ, where SQ is the separator between C and its parent cluster in T .
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Thus, for the non-root linkage Q,

Φ∗(Q) = Φ(Q)/Φ(S) =
∑

Ni /∈Q

P (C|SQ,E) =
∑

Ni /∈Q

P (RQ|SQ,E) ≈
∑

Ni /∈Q

P ′(RQ|SQ,E).

¤
Based on Theorem 6.13, we always have a linkage host CQ for each linkage Q from

which an approximation of the extended linkage potential of Q can be obtained by sum-

ming out all irrelevant variables from CQ’s CICPT table. Consider the example shown in

Figure 6.3(a). T0 is the local JT and L0 is the linkage tree. The root cluster of T0 is {b, c, e}
(marked as shaded). L0 spans over two linkage hosts {b, c, e} and {a, b, d} of T0. By se-

lecting the linkage {b, c} as the root linkage of L0, we can estimate the extended linkage

potential of both linkages {b, c} and {a, b} by marginalization from each corresponding

linkage host’s CICPT table.

If a linkage tree is not hosted in the local JT’s root cluster, we can still apply the same

method of estimation for all linkages except the root linkage. As shown in Figure 6.3(b),

the local JT T0 is now rooted at cluster {b, f, g}, instead of {b, c, e} from Figure 6.3(a). This

change of rooting in local JT will affect the calculation of L0’s root linkage {b, c}. While

we can still obtain the extended linkage potential of L0’s all non-root linkages directly

with Equation 6.13, the root linkage {b, c}’s extended linkage potential P (bc|E) cannot be
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marginalized directly from P (e|bc,E), which is the CICPT table of {b, c}’s linkage host

{b, c, e}. However, several solutions are available to solve this special case. One option is

to obtain the estimation from the most recent update of the linkage host’s CICPT table.

The main advantage of our message estimation schema is that we can estimate inter-

agent messages before the complete set of samples is available. The approximation error

decreases as the importance function approaches the optimal distribution. Essentially, the

closer the CICPT table is to the true posterior distribution, the less error there is in our

message estimation. Overall, the compromised accuracy can be properly compensated by

the increased efficiency of LJF global communication.

6.4 Experimental Results

We conducted our preliminary experiments by comparing the LLAIS algorithm with two

other variations of LJF local JT importance samplers, which are the basic importance sam-

pler described in Section 6.2 and the adaptive importance sampler described in Section 6.3.

We have not located in literature any previous application of importance sampling to MS-

BNs LJFs, or JT-based importance sampling with explicit forms of importance function.

We implemented the algorithms in Matlab under Kevin Murphy’s Bayesian network tool-

box [64]. We performed initial tests on a sampling JT constructed from the Alarm network

(total 37 nodes).

We evaluated the approximation accuracy in terms of the Mean Square Error(MSE)

MSE =

√√√√ 1∑
Xi∈X\E Ni

∑

xi∈x\E

n∑
j=1

(P ′(xij)− P (xij))2

where N is the set of all nodes, E is the set of evidence and Ni is the number of

outcomes of node i. P ′(Xij) and P (Xij) are the sampled and exact marginal probability

of the state j of a node i. We obtained the gold standard potential using the standard JT

propagation.

We generated a total of 30 test cases which include three sequences of 10 test cases each.
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LLAIS LLS1 LLS2
Minimum 0.0056 0.0098 0.0307
Median 0.0094 0.0297 0.1401

Maximum 0.0270 0.1874 0.2465

Table 6.1: Summary of all 30 test cases for comparing LLAIS, LLS1 and LLS2.

The three sequences had 9, 11 and 13 evidence nodes respectively. Most evidence nodes

were in the leaf clusters of the sampling JT. Each algorithm was evaluated with M = 5000

samples. With LLAIS, we used the learning function [15] η(k) = a( b
a
)k/kmax and set

a = 0.4, b = 0.14 and the total updates K = 5. In each updating step, L = 2000. We also

separately ran the basic local JT importance sampler without evidence in the same network

with 5000 samples for 10 times, resulting in an average MSE of 0.006. This result reflected

the optimal accuracy since the results of probabilistic logic sampling without evidence

approach the limit of how well stochastic sampling can perform.

Figure 6.4 and Table 6.1 shows the results for all test cases of our first experiment. Each

test case was run 10 times and the average MSE was recorded as a function of the prob-

ability of the evidence. As far as the magnitude of difference was concerned, the LLAIS

performed much better and with significantly better stability than the other two importance

samplers, named as LLS1 and LLS2 respectively. In particular, the performance of LLAIS

does not degenerate with less likely evidence, which is consistent with the results reported

with the BN adaptive importance sampling. The minimum MSE of 0.0056 is within the

range of the optimal result. The average MSE of LLAIS is 0.0106 with a medium of

0.0093, which is much smaller than the average MSE of 0.1376 and 0.0551 with the other

two samplers. Although the average result for the LLAIS was larger than the optimal ac-

curacy, it was understandable since we updated our importance function for only 5 times,

and used a small set of 2000 samples. This short process imposed a small learning over-

head, but might not have included enough iterations required for converging to the optimal

distribution.

We also performed simulations to evaluate the accuracy of inter-agent message estima-

tion. We randomly selected a subtree from the sampling JT and treated it as a linkage tree.

We assumed each linkage host contained the same nodes as the corresponding linkage, and
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Figure 6.4: Performance of LLAIS, compared with two variations of LJF local importance
samplers: MSE for each of 30 test cases plotted against the probability of evidence.

the JT root cluster was included as a linkage host. We used a test case from the previous

experiment, which contained 11 evidence nodes. We compared the estimates with the exact

results of extended linkage potentials for a total of 4 linkages.

Figure 6.5 shows the convergence of the extended linkage potentials with K=10 and

L=2000. At each update, the average MSE of 10 runs was recorded for each linkage. It

showed that although minor conciliation occurred at the early stage, all 4 linkage potentials

had converged to an average of 0.0314. The error for non-root linkages L2, L3 and L4,

however, was larger than we had seen in the first experiment. We believe it was due to the

simple method we used to calculate P (Ri|Si, E = e). We estimated P (Ci, E) and P (Si, E)

separately from the same set of samples, and combine them by conditional probability. This
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Figure 6.5: Convergence of extended linkage potentials of 4 linkages simulated in a test run of
LLAIS.

method may introduce a large variance if the numeric value of P (Ri|Si, E = e) is extreme.

Nevertheless, our message approximation scheme enables the propagation of local beliefs

at a much earlier stage of the whole sampling process, which promotes efficient inter-agent

communication at the LJF global level.

6.5 Discussion

In this chapter, we have studied the application of importance sampling in MSBN subnets.

We have presented the LLAIS sampler, which integrates local importance sampling with

the existing LJF framework. The LLAIS sampler adopts the adaptive importance sampling

technique for improved sampling accuracy. The dynamic tuning of our importance function

also facilitates inter-agent message calculation over LJF linkage trees. In our preliminary

experiments, the LLAIS sampler demonstrated promising results for the estimations of

both local posterior belief and linkage tree messages. We believe our algorithm represents
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an important step in solving MSBN communication bottlenecks and realizing practical

inference for larger scale multi-agent probabilistic systems.

One direction of our future work will be improving the LLAIS algorithm, which in-

cludes methods to estimate posterior distribution with better accuracy, and to improve the

learning process for importance functions.

Moreover, an important question that remains unanswered is how local accuracy will

affect the overall performance of the entire network. As currently we have only simulated

LJF local JTs from BN JTs, further experiments are necessary in full scale MSBNs.



Chapter 7

MA-DBN: Modeling Agents’ Dynamic
Evolvement

In many applications, cooperative agents need to reason about the states of a complex

uncertain domain that evolves over time. An agent often needs to determine the posterior

probability for some local nodes of interest, given a set of accumulated evidence from the

agent’s own observation and those of other agents. A similar problem under the single

agent paradigm is often known as the monitoring problem [63] [45]. Online monitoring

requires the calculation of monitoring results at each time step at runtime.

Although the MSBN model has been applied successfully in multi-agent probabilistic

reasoning [92], it is restricted to static problem domains, and is insufficient when it comes

to modeling dynamic temporal systems. Meanwhile, dynamic Bayesian network (DBN)

model is a standard representation for dynamic systems, but it does not provide sufficient

support for cooperative reasoning in a distributed multi-agent setting. For example, a cou-

pled HMM [77] [85] can be used to model several parallel chains of evolvement over time,

but chain(agent)s must be arranged linearly and they interact only with the neighboring

upstream and downstream chains. In fact, reasoning techniques under the DBN model

typically have been centralized.

We find motivation to extend the original MSBNs model to represent and reason about

the states of a distributed multi-agent dynamic domain. It is natural to search for a combi-

nation of the MSBN and DBN models, hoping to take the best of the two worlds. However,

116
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the extension of MSBN to the temporal problem domain leads to special challenges. We

need to model both the organization and the temporal evolvement of agents. More im-

portantly, as agents’ local domains are organized with an underlying structure, variables

become highly correlated very quickly. The online monitoring based on the calculation

of a forward message over the global forward interface is infeasible since such a forward

message must be represented as a joint probabilistic distribution for all temporal variables

of all agents.

One solution to approximate monitoring of dynamic system is based on structure fac-

torization. The Boyen-Koller algorithm [9] [10] [64] approximates the exact belief states

with a set of independent factors. It has been confirmed that accurate monitoring is possi-

ble by decomposing a larger network into weakly interacting subsystems [73][72]. These

works are mostly focused on solving efficient monitoring for single-agent DBNs.

Another approximation approach is to utilize distributed particle filtering. Basic BN

particle filter [26] has been extended to a distributed multiple platform environment, e.g.

sensor networks. Zhao [109] used mostly independent particle filters to track moving ob-

jects. Rosencrantz [75] ran particle filters in parallel, sharing measurements as appropriate

in a query-response protocol. However, since the sensors (agents) are usually loosely struc-

tured, it is difficult to decide the exact information to be shared to reach a global agreement.

Dynamic MSBN(DMSBN) [1] [4] is the most recent extension of MSBNs to dynamic

problem domains. A DMSBN models one time slice of a dynamic multi-agent domain as an

MSBN, with the assumption that each slice is stationary. Although temporal dependencies

are only allowed within an agent’s subdomain in a DMSBN, an agent’s individual evolution

is not explicitly represented. More importantly, DMSBNs do not support efficient moni-

toring of a group of cooperative agents as a mega MSBN needs to be constructed period

by period with a preselected time interval. The online calculation is difficult as the multi-

period MSBN usually covers several time steps. Recently, a method has been proposed

to solve the time forecast (monitoring) problem with DMSBN by making the interface

observability assumption [104]. That is, variables of all agents’ d-sepsets are always ob-

served. Such an assumption simplifies the online monitoring calculation by the introduced

independencies among agents, but is generally too strong to hold in practical problems.
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Our goal is to provide a modeling tool that supports effective online monitoring cal-

culations for a group of cooperative agents. Since exact inference is often impractical in

dynamic multi-agent environment, we focus on approximate techniques. In this chapter, we

describe a model for dynamic multi-agent probabilistic inference from the original MSBN.

Named as the Multi-Agent Dynamic Bayesian Networks(MA-DBN), our new framework

aims at modeling the dynamics of a multi-agent domain by individual chains of evolvement

at each agent. The temporal advance of each agent is individually and explicitly repre-

sented with a set of local transition graphs, while agents communicate through the existing

MSBN organization structure represented as a system organization graph. An MA-DBN

can be applied to systems with a mixture of dynamic and non-dynamic agents.

An MA-DBN allows a more efficient and a natural calculation of forward messages

through the factorization of an agents’ global forward interface. Inspired by the Boyen-

Koller algorithm [9] for dynamic Bayesian networks, we also make the assumption of weak

interactions among agents’ dynamic evolution. In an MA-DBN, each dynamic agent will

first calculate and forward the message over its own local forward interface individually.

Then, arriving into the new time slice, agents exchange their local information through

common nodes similar to the global propagation in static MSBNs, and obtain an approx-

imate cooperative monitoring result. Although the MA-DBN model factorization is based

on conditional independency among neighboring agents, we show that the monitoring er-

ror is expected to be bounded over time in terms of mutual information shared among

two neighboring dynamic agents. Moreover, we propose a method of re-factorization to

improve accuracy by enhancing weak correlations among dynamic agents.

Since an MA-DBN models the dynamic of a multi-agent domain with individual chains

of evolution, we can adopt existing DBN approximate monitoring techniques in an agent’s

local domain. As an example, we present an MA-DBN online monitoring algorithm that

consists of a set of particle filters, each running individually in a dynamic agent’s local

domain.
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7.1 Dynamic Bayesian Networks

In a single agent setting, the state of a temporal domain can be represented as a dynamic

Bayesian network (DBN) [22][63]. A DBN, like a BN, admits a compact representation of

the belief state by utilizing conditional independency assumptions among state variables.

Although the dynamics of a stochastic system are usually unpredictable, we can assume

the system to be Markovian and time-invariant.

Consider a distribution over domain X during the time period t = 0, ..., T , which is

denoted as P (X(0:T )). With the Markov assumption, for all t, we have I(Xt+1, X(0:t−1)|Xt).

That is, the future is independent of the past given the present. We also assume such a

Markovian dynamic system is stationary such that the rules that govern the change do not

change over time [76]. With these two assumptions, we can model the temporal distribution

with the following three components: a prior probability distribution representing the initial

state, a transition model representing the probability that the system will evolve in a single

time step, and an observation model describing the observation entered at each time slice.

As defined in [42, 90], a DBN is a quadruplet

GT = (
T⋃

t=0

Vt,

T⋃
t=0

Et,

T⋃
t=0

E→
t ,

T⋃
t=0

Pt). (7.1)

Each Vt is a set of nodes labelled by random variables. Vt represents the state of a

dynamic domain at time interval t (0 ≤ t < T ), where T is the total number of clock

times. Each Et is a set of arcs between nodes in Vt, representing conditional dependencies

among domain variables at the given time interval t. Each E→
t is a set of temporal arcs,

each arc connecting a node in Vt−1 to a node in Vt (t = 1, ..., T ). These arcs represent

temporal dependencies between two consecutive time slices. The subset of Vt (0 ≤ t < T ),

FIt = {x ∈ Vt|(x, y) ∈ E→
t+1} is called the forward interface of Vt. Each Pt is a set of

probability distributions such that Pt = {P (v|Pa(v))|v ∈ Vt}. A slice of the DBN is the

pair St = (Dt, Pt), where Dt is a DAG and Dt = (Vt

⋃
FIt−1, Et

⋃
E→

t ). Collectively,

consecutive slices of a DBN define a BN, whose structure is the union of slice structures

and whose joint probability distribution is the product of probability tables in all slices.
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Based on the assumption of time-invariant, the variables and their links are exactly

replicated from slice to slice. Therefore, a DBN can be represented alternatively as a pair

(B0, B→). Suppose each DBN slice is represented in terms of a set of random variables V i
t ,

i ∈ {1, ..., N} B0 is a standard one slice BN representing the initial state distribution and

B→ is a two-slice temporal Bayesian network (2TBN) which defines the transition model.

Overall, a 2TBN represents the conditional distribution

P (Vt+1|Vt) = P (Vt+1|FIt) =
N∏

i=1

P (V i
t+1|π(V i

t+1)) (7.2)

where V i
t is the i’th node in slice t, and π(V i

t ) are the parents of V i
t in the same or

previous time slice. Thus, B0 and B→ together define the DBN. The joint probability

distribution for time length T can be obtained by unrolling the network until T slices, and

then multiplying all CPDs.

7.1.1 BK Approximation

One major task with a DBN is to track the state of a system over time as new evidence

becomes available, which is known as monitoring. Suppose at each time slice t, evidence

et is observed for the set of observable variables. We need to calculate the belief state

P (Xt|e1, ..., et) at time t, where Xt = Vt\et, representing the set of non-observable vari-

ables.

The monitoring problem can be solved exactly with the naive approach of unrolling

a 2TBN T and applying BN variable elimination algorithms. In order to reduce storage

requirements, Kjaerulff [42] proposed to dynamically add new slices and cut off old slices

during monitoring. Xiang [90] utilized a temporally invariant template of a fixed length to

be reused at runtime, thus saving on the cost of dynamic expansion and reduction. Mur-

phy’s interface algorithm [63] creates slice fractions known as the 1.5DBN, which is a

slice plus its forward interface to the next slice. The interface algorithm is based on the

Markov assumption which implies that all the historical information needed to monitor the

system’s evolvement is contained in its present state. Thus, we have the DBN forward in-

terface encapsulates all necessary information about previous time slices to perform online
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monitoring.

While exact monitoring is simple in principle, the computation could be very expensive

in practice. The state variables, unless totally decoupled as non-interacting nodes, will all

become correlated over time. This results in a belief state that needs to be represented as an

explicit joint distribution, rendering exact calculation impractical. Even with the Markov

assumption, sometimes the forward interface is too large to be compactly represented.

The Boyen-Koller algorithm [9] utilizes factorization during the process of online mon-

itoring. Given a discrete-time finite-state Markov process, BK approximation factors the

exact belief state into a product of clusters based on the assumption of independence be-

tween chosen sets of variables [64]. That is, the belief state at time t,

ϕt = P (Xt|y1:t) ≈
C∏

c=1

P (Xc
t |y1:t), (7.3)

where Xc
t is a subnet of the variables {X i

t}. With such approximation, the single potential

over all variables is replaced by a product of potentials over some subsets. A BK cluster

is a set of nodes that forms such a partition. Based on this factorized belief representation,

the forward interface of the DBN can thus be represented as factors as well. That is,

P (FIt) ≈
N∏

c=1

P (FIc
t ), (7.4)

where FIc
t is the set of N clusters partitioning the original forward interface. The single

potential over a DBN’s forward interface is replaced approximately by a product of poten-

tials. The BK approximation scheme assumes independence among the BK clusters, thus

resulting in faster monitoring calculation at each time step.

For example, consider the simple DBN in Fig 7.1. With the BK approximation, the

forward interface in time slice 1 is {a1, c1, d1} and a set of chosen BK cluster is {a1, d1}
and {c1}. The belief state Φ(a1c1d1) is approximated as Φ(a1d1)×Φ(c1). Thus, the belief

table over 3 inference nodes can be more compactly represented by two tables of smaller

domains, with the assumption of independency between a1d1 and c1.

The main steps of the BK algorithm are summarized as follows.
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BK clusters

b1

a1

c1

d1

b2

d2

a2

c2

Φ(a c d1 1 1)=Φ Φ( (a d c1 1 1) )×

t=1 t=2

Figure 7.1: BK approximation in a small DBN with a forward interface as {a1, c1, d1}

Step 1. A factorized representation of the exact belief state is chosen as input to the algo-

rithm. Such representation is an approximate belief state based on the decomposition

of the true belief state, resulting in a set of BK clusters.

Step 2. The approximate belief state is propagated forward at time slice t through the transi-

tion model for each BK cluster.

Step 3. Given a factored prior in time slice t, the posterior in time slice t + 1 is computed

with exact Bayesian updating, while taking into consideration the evidence at the

new time slice.

The BK algorithm exploits factorized belief states by momentarily ignoring the weak

correlations among state variables during the propagation of forward interfaces. Intuitively,

although some error is introduced by propagating the factorized forward interface at each

time slice, the stochastic nature of the process and the informative nature of the evidence

prevent the error from building up.

The errors in a properly factorized belief state contract exponentially as the process

evolves with BK approximation. The errors taken over the lifetime of the process are
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bounded under the two conditions. First, the process is stochastic, so the errors from the

past can be forgotten to certain extend. Mixing rate is used to bound the rate at which

error with approximation from the past are forgotten. It measures the amount of similarity

between two distributions [9].

Definition 13 Let Y be a BK cluster at time t + 1, and X be set of parent node of Y in time

slice t. The mixing rate of the generalized transition X 7→ Y is defined as

γ[X 7→ Y ] , minx1,x2

∑
y

[[y|x1], [y|x2]]

Intuitively, the mixing rate represents the minimal amount of mass that two distributions

over a cluster Y are guaranteed to have in common: one is the distribution we would

get starting at x1, and the other starting at x2 [9]. Secondly, the error introduced at each

propagation step is bounded. A set of BK clusters with less degree of dependency will result

in better approximation accuracy. Empirical evaluation has shown that huge computation

savings is obtained at the cost of a very low error with the BK algorithm [9] [28].

7.2 Online Monitoring for Organized Agents

In a multi-agent probabilistic system, agents often need to deal with uncertainties that

evolve over time. One major task is to track a cooperative belief state during runtime.

It is similar to the task of monitoring in DBNs, but with considerably increased complexity

due to the multi-agent setting.

For a group of cooperative agents A0, A1, ..., Ai, suppose at time t, evidence ei
t is ob-

served at agent Ai. The multi-agent online monitoring problem is to calculate the current

belief state p(X i
t) at time t for an agent i’s local domain, given partial observation from

Ai’s own past and the past of all other agents. 1 We use obt
i to denote the agent i’s obser-

vation in its local domain up to time t, such that obt
i = {e0

i , e
1
i , ..., e

t
i}. Thus, the task is to

calculate p(X t
i |obt

1, ..., ob
t
n) at each time slice t where n is the total number of agents.

1In the following definition, subscripts are used to index spatial distribution and superscripts are used to
index temporal evolution.
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For the problem of online monitoring in a multi-agent setting, the most challenging is-

sue is the problem of high correlation. Since temporal dependencies exist in each agent’s

local domain and agents communicate with each other for their shared information, the do-

mains of all agents will become correlated quickly during the monitoring process. There-

fore, the global belief of the system, which passed over consecutive time slices through

a global system transition model, can only be represented as an explicit joint distribution

over all system variables. This results in prohibitive amount of computation, and renders

attempts to track exactly a general multi-agent system impractical.

The dynamic MSBN (DMSBN), first proposed in [92] and formalized in [4], is the most

recent extension from the original MSBNs. A DMSBN models one time slice of a dynamic

multi-agent domain as an MSBN, with the assumption that each of such clustered MSBN

slice is stationary. Agents are organized by a hypertree structure, and maintain temporal

dependencies in their local domains. In a DMSBN, a mega forward interface needs to be

maintained for all temporal dependencies.

With an DMSBN, the calculation for all system variables over this mega forward inter-

face is mostly impossible. Observing such difficulty, a method was proposed by An [4] to

combine a dynamic multi-agent domain over a selected period of time into a global clus-

ter of static MSBNs, and then reason about its state period by period. The calculation is

approximated by considering a graphical observable Markov boundary (GOMB), which

captures all relevant and observable variables regarding the state of a set of interested vari-

ables. The main limitation of this method is that the monitoring of system states is not

performed online at each time step. Moreover, a significant amount of centralized control

is required as to maintain the super MSBN clusters and to adjust the optimal length of each

reasoning period. Recently, a method has been proposed to solve the time forecast (mon-

itoring) problem in DMSBN by making the interface observability assumption [104]. By

assuming all interface variables (d-sepsets) are observed, we can have each agent’s local

evolvement as totally decoupled from others. Such an assumption enables a fast calculation

of the online monitoring result among cooperative agents, but it is generally too strong to

hold in practical problems.
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7.3 Multi-Agent Dynamic Bayesian Network(MA-DBN)

We are motivated to search for a more suitable model to support the online calculation of

the multi-agent monitoring task. As we aim to achieve approximate results with bounded

accuracy, such model should exploit structured representations based on some assumption

of independency, both for agent organization and temporal evolution.

As previously discussed, the key to many DBN inference algorithms, e.g., the interface

algorithm, is the Markov assumption. A set of Markovian separators, e.g., the forward

interface, separate the future of the process from its past. Unfortunately, the nodes in such

a separator could be of a large amount in a complex system in order to block the flow of

influence. As a consequence, inference algorithms must maintain a joint distribution over

all the separator nodes, rendering the cost exponential in the number of nodes. With the

multi-agent online monitoring problem, the cost to maintain the joint distribution over the

forward interface of the global domain could be extremely high. Thus, simply using the

Markovian assumption is not enough to achieve a practical algorithm.

The work of Boyen and Koller [9] is particularly relevant to our discussion. The BK

approximation provides an approximate solution for DBN inference based on the factor-

ization of a complex system into subprocesses that weakly interact. Such a decomposition

is utilized to approximate the joint distribution over the forward interface by assuming the

subprocesses are independent. They provide bounds on the error incurred by such approxi-

mation, and it has been confirmed that accurate monitoring is possible by such decomposi-

tion of a larger system into weakly interacting subsystems [72]. For example, BK approx-

imation has been successfully applied in dynamic object-oriented Bayesian network [27],

which combines the object-oriented Bayesian network [47] and dynamic Bayesian network.

In static domains, the MSBN framework provides a structure representation based on

a set of conditional independent sub-domains. These local sub-domains can be viewed as

a form of factorization that naturally occur in the composition of a multi-agent system.

They are formed with the MSBN model construction, instead of being a selected set of

input in the BK approximation algorithm. Nevertheless, we can apply the same underlying

idea of BK approximation to represent a dynamic evolving multi-agent system as a set of

weakly interacting subprocesses. We thus take a factorization approach to model a dynamic
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multi-agent domain.

Definition 14 MA-DBN

Given a set of n agents A0, A1, ..., Ai each populated with a local domain represented

by a BN. An agent Ai is a dynamic agent if temporal dependencies Di exist between its

local domain V t
i at time t and V t+1

i at time time t + 1; otherwise, the agent is non-dynamic

and its local domain Vi is static. The agents compose a Multi-Agent Dynamic Bayesian

Networks(MA-DBN) if the combination of all agents’ local domains at each time slice

constructs an MSBN and the temporal evolution of each dynamic agent is represented as a

DBN.

An MA-DBN has the following properties:

• Static property of MA-DBN: In any given time slice, an MSBN hypertree structure

exists among all agents. We use spatial interface, or simply interface to refer to the

interface between a pair of adjacent agents in the hypertree.

• Dynamic property of MA-DBN: Temporal dependencies exist only within a dynamic

agent’s local domain. Each temporal dependency is represented by a temporal arc

from the agent’s local domains V t
i to V t+1

i in the agent’s local DBN. The forward

interface of the agent’s local DBN is thus called the agent’s local forward interface.

Based on the definition 14, we represent an MA-DBN with a system organization graph

and a set of agent local transition graphs. The system organization graph, analogous to

an MSBN hypertree, describes the static property of the MA-DBN. That is, how agents

are organized and the interface between pair of adjacent agents. The agent local transition

graph describes the dynamic property of the MA-DBN, which is each agent’s local structure

and how it evolves over two consecutive time slices. A two-slice DBN is used for the

representation based on the assumptions of Markovian and time invariant.

Figure 7.2 shows a simple MA-DBN for three agents A0, A1 and A2, with the organiza-

tion graph in Figure 7.2(a), and the agent transition graphs in Figure 7.2(b). Figure 7.2(a)

also shows the hypertree structure, and the interface variables, {a, b} and {e, g}, are marked

in curly brackets on the corresponding hyperlinks. Each local transition graph in Fig-

ure 7.2(b) describes an agent’s local evolution. The local forward interface for each agent
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is {a, c}, {a} and {h} respectively. All observable variables are marked with an under-

score.

By definition, an MA-DBN admits an MSBN at each time slice. Thus, a static BN can

be composed by combining each agent’s MSBN subnet in the same time slice. Moreover,

each dynamic agent in an MA-DBN maintains a local DBN. Hence, temporal dependencies

exist between two consecutive time slices in the composed BN, resulting a DBN. Such

DBN describes the agents’ cooperative belief based on the underlying MSBN, and also

describes the dynamic evolution of the whole system since it maintains all the temporal

dependencies. For clarity, we use the name global DBN to refer to this DBN constructed

from all agents’ local domains and the name global forward interface to refer to the forward

interface of the global DBN.

Although both MA-DBNs and DMSBNs are extensions of MSBNs, an MA-DBN dif-

fers from a DMSBN as an MA-DBN is a more general model which can be used for prob-

lem domains with a mixture of static and dynamic agents. Also, it is important to note that
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Figure 7.2: A sample MA-DBN.(a) The organization graph, and (b) the local transition
graphs.
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the global DBN and its forward interface are only used as a conceptual term, and they are

never explicitly represented in an MA-DBN.

7.4 Approximate Online Monitoring

As a global DBN represents the dynamic evolution of the entire multi-agent temporal do-

main, the task of online monitoring translates into the calculation of the message over the

global forward interface at each time advance. With an MA-DBN, we approximate this

calculation through factorization. That is, we approximate the belief state of the global

forward interface as a product of the belief state in each dynamic agent’s local forward

interface. Let V t
G denote the state of the multi-agent system and V t

i the state of a dynamic

agent i at time t. FIG and FIi are the global forward interface and the agent i’s local

forward interface respectively. We have

P (V t
G|FI t−1

G ) ≈
n∏

i=1

P (V t
i |FI t−1

i ), (7.5)

where n is the number of dynamic agents.

This way, a message passed over the global forward interface is decomposed into a set

of messages each over a dynamic agent’s local forward interface. Based on Equation 7.5,

online monitoring in an MA-DBN can be approximated by a number of individual chains

of monitoring in each dynamic agent’s local DBN. At each time step after the advance of

dynamic agent is finished, global inference is then conducted over the spatial interface of

all agents, similar to the global updates in MSBNs.

Obviously, the MSBN LJF structure is no more suited for the calculation of online

monitoring with an MA-DBN, because an LJF local JT does not support the advance of

each time step in an dynamic agent’s local domain. Our solution is to construct a special

secondary structure of MA-DBN, named as Linked Dynamic Junction Forest (LDJF). An

LDJF consists of two LJFs: an LDJF1 representing the time slice t = 1, and an LDJFT

representing the time slice t > 1. A special JT, similar to the 1.5DBN [63], is constructed

in each dynamic agent’s local domain in the LDJFT , and used to propagate the message

over the corresponding local forward interface.
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The construction of an LDJF from an MA-DBN is similar to the construction of a

standard LJF, with distributed moralization and triangulation. The major modification is

that we need to complete the nodes from the local forward interface during the triangulation

stage, so that they are contained in one JT cluster. In LDJF1, the cluster that contains the

forward interface is used as both an in-cluster and out-cluster for propagating the forward

message. In LDJFT , the forward interface in time slices 1 and 2 are included in the two

clusters that contains the set of interface nodes. The two clusters are also named as the

in-cluster and out-cluster respectively.
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Figure 7.3: An MA-DBN compiled into an LDJF. (a) the MA-DBN (b) LDJF1 (c) LDJFT

For example, consider the MA-DBN with two agents in Fig 7.3. The structure of the

MA-DBN is shown in (a) such that A0 is a static agent and A1 is a dynamic one. The LDJF

is shown in (b) and (c), representing the two LJFs: LDJF1 and LDJFT . While the local

JT remains the same for A0 in both LJFs, the dynamic agent A1 maintains two different
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local JTs which together define a local 1.5DBN with the local forward interface {a, d}. The

spacial interface between A0 and A1 is {b}.

Given a constructed LDJF, our online monitoring algorithm is described as follows:

Algorithm 20 Online Monitoring Basic

An LDJF is populated by cooperative agents including n dynamic agents.

1. At time t = 0, load LDJF1;

2. For each dynamic agent Ai(i = 0, 1,..., n − 1 )

3. update local evidence and update local belief;

4. obtain the forward message from the out-cluster of local JT;

5. End for

6. At time t >= 1, load LDJFT ;

7. For each dynamic agent Ai(i = 0, 1,..., n − 1 );

8. multiply forward message into the in-cluster of each local JT;

9. Condition local belief on local evidence;

10. Respond to a call for global propagation on LDJFT ;

11. Calculate posterior probability for nodes of interest;

12. Obtain the forward message from the out-cluster;

13. Set t=t+1; and go to step 6;

14. End for

Our proposed online monitoring algorithm avoids the calculation of messages over the

global forward interface. This approach utilizes a factorized approximation which can

significantly reduce the cost for maintaining the potential over the global forward interface.

An MA-DBN also takes the advantage of MSBN organization structure. At each time

step, once all dynamic agents have advanced in their local dynamic domains, inter-agent

communication is carried out over the underlying hypertree to propagate an agent’s own

beliefs throughout the network and thus establish a consistent global belief.
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7.4.1 On Approximation Quality

An MA-DBN models the dynamic evolution of a multi-agent system by assuming weak

interaction among agents’ local processes. Hence, the cooperative evolution of all agents is

carried out as a parallel set of local evolutions. This assumption of independency exploits

the intuition that a complex system can be decomposed into weakly interacting subsystems.

However, during each propagation step, errors are introduced by approximating the single

message of global forward interface with a set of message each over the local forward

interface. We need to access whether the errors accumulate unboundedly during the whole

course of monitoring.

The measure of KL distance [17] will be used as a measure to quantify the error between

two distributions.

Definition 15 Given two probability distribution µ and µ̃ over the same space Ω, the KL

distance, or relative entropy of µ to µ̃ is

D[µ ‖ µ̃] , Eµ

[
ln

µ(s)

µ̃(s)

]
=

∑
s∈Ω

µ(s) · lnµ(s)

µ̃(s)
.

We first outline the error bounds for BK approximation as our error analysis for MA-

DBN extends from Boyen and Koller’s work [9] [10].

Suppose at time t, µ̃(t) is the approximate belief state of the true state µ(t). The BK

approximation results in a projection error εµ with respect to µ(t) at each time step.

Definition 16 The projection error of approximating ϕ by ψ with respect to a true distri-

bution µ(t) is defined as

εµ(ϕ 7→ ψ) , D[ϕ ‖ ψ] = Eµ

[
ln

ϕ(s)

ψ(s)

]

It has been shown that the error resulting from BK approximation is bounded in terms

of projection error and the mixing rate of each subprocess. For L independent subprocesses

T1, ..., TL, assume each process depends on at most r others, and each influences at most q
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others. Let γ be the minimum mixing rate for Tl, ..., TL, then

γ∗ = (
γ

r
)q.

Theorem 6 Boyer-Koller Bounded Error Theorem [9]

Let T be stochastic process with mixing rate γ∗. Suppose we have an approximation

scheme that, at each time slice t, incurs a projection error which is bounded by ε∗ for all

time t, Then, on expectation over the sequence of observations, by the process T for all t,

ETD[µ(t) ‖ µ̃(t)] ≤ ε∗

γ∗
.

The above theorem guarantees the error of BK approximation in terms of KL distance

bounds between the entire true and approximate distributions. In fact, the property of

belief being bounded indefinitely over time applies to any approximation schema for belief

state representation. The term of mixing rate indicates that higher the stochastic of the

subprocesses, the more likely old errors from BK factorization will be reduced. The term

of projection error depends on the configuration of BK clusters. Indeed, properly selected

BK clusters result in significantly smaller error bounds, and it has been confirmed with

empirical evaluations [9].

Extending the BK Theorem to the analysis of MA-DBN model factorization, we focus

on the project error resulting from the factoring of an MA-DBN global forward interface.

Since agents in an MA-DBN are organized by an MSBN hypertree and temporal depen-

dencies exist only in dynamic agents’ local domains, an MA-DBN can also be viewed as

a single global DBN in which each dynamic agent’s local domain corresponds to a BK

cluster. Our MA-DBN model approximation is thus analogous to the application of BK

approximation. However, agents’ local domains overlap over the d-sepsets, rather than be-

ing a disjoint set of variables as in BK clusters. Indeed, the MA-DBN model factorization

results in an approximation distribution that is conditionally independent. Therefore, the

key to our error analysis is to prove that the projection error through such a conditional

independent decomposition is still bounded.
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First consider the situation when d-sepset variables of the spacial interface connecting

all dynamic agents are always observed. As the d-sepset variables d-separate the adjacent

pair of local domains, having these variables observed will result in totally independent

local process in each dynamic agent, and thus removing the undesirable domain correla-

tion. In fact, such a configuration of MA-DBN results in an optimal BK factorization with

which the bound of projection error holds tight. A recent study has confirmed that in such

situation, the monitoring with totally independent chains of evolution produces optimal

results [104].

In more general cases, however, the variables over an MA-DBN spatial interface are

non-observable or partially observable. We base our formal analysis on the relationship

between the projection error and the mutual information between the adjacent subnets.

Without lost of generality, here we assume an MA-DBN contains only dynamic agents.

The conditional mutual information between two sets of variables X and Y given Z, is

defined as [17]:

I[X; Y |Z] , EZD[P [X, Y |Z] ‖ P [X|Z]⊗ P [Y |Z]],

where ⊗ is the outer product.

Given a factorization of the global forward interface with an MA-DBN at each time

slice, we use ϕ to represent the distribution of the global forward interface, and use ψ to

represent the factorized distribution. Let Gi and Gj be two adjacent local subnets. Then,

the projection error defined in Definition 16 can be obtained as

ε(ϕ 7→ ψ) =
∑

(i,j)∈R

I[Gi; Gj|Mij]

where Mij denotes the intersection Gi

⋂
Gj .

Thus, we have the projection error decomposed as a sum of conditional mutual infor-

mation, each for a pair of adjacent subnets. The bounds of the error can be derived based

on the terms of conditional mutual information.
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Suppose the conditional entropy of X given Y , denoted as H[X|Y], is defined as [17]

H[X|Y ] , EY EX|Y

[
ln

1

P [X|Y ]

]

Extending the Theorem of conditional weak interaction [10], we arrive to the following

theorem.

Theorem 7 Let M be an MA-DBN and Gi and Gj be two adjacent dynamic local subnets.

Let µ̃ be the factorized distribution according to MA-DBN factorization. Let ϕ be the distri-

bution obtained from µ̃ by propagation each local forward message through the transition

model. Then, with respect to ϕ,

I[Gi, Gj|Mij] ≤ 3 · ln|dom(Gi\j∪Gj\i)| · (1−min[γij, γji])+H[Mij|M ′
ij]+H[M ′

ij|Mij],

where the mixing rate γij , reflecting the mutual influence between Gi and Gj , is defined as

γij , γ[(Gi\Mij) 7→ (G′
i\M ′

ij)]

Based on Theorem 7, the projection error is bounded at each time step. Intuitively,

either two adjacent dynamic agents interact directly, or only weakly, their d-sepset usually

evolves more slowly than the two local processes it separates. In real world, this translates

to many example of processes whose primary interaction is through some more slowly

evolving process [10]. In fact, in a general MA-DBN with static agents, the interaction

between dynamic agent is usually weaker, resulting much lower error than the presented

bound.

Applying this result to the BK Theorem, we thus establish error bounds for the MA-DBN

global factorization during the whole course of online monitoring calculation. That is, even

our approximation of global forward interface introduces error at each time step, such error

does not accumulate over time.
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7.4.2 Method of Re-factorization

For the best approximation quality in BK algorithm, one needs to choose an optimal BK

decomposition among all possible ones at the initial step of the BK algorithm. That is,

within a single time slice, no node in any BK cluster is the parent of a node in a different

BK cluster. This way, an approximation structure is chosen in advance, in which each

BK cluster contains most likely the highly correlated temporal dependencies. In the case

of MA-DBN, the factorization is decided on the network static structure. Nevertheless,

we propose a method of re-factorization for improving approximation accuracy in an MA-

DBN. Our method refactorizes temporal dependencies in order to promote weak interaction

among all agents. Our situation is different from the one seen with the BK algorithm, since

each agent’s local composition is static such that no nodes can be added or removed from

its local domain. Still, the static property of an MA-DBN allows us to maintain highly

correlated temporal dependencies within one agent’s local domain.

An MA-DBN admits a static MSBN in each time slice, so the following MSBN prop-

erty holds: for any node contained in more than one subnet with its parents, there must

exist a subnet containing the node and its parents. This ensures the minimum interaction

between two neighboring MSBN subnets. We utilize this property to reduce the influence

between two neighboring chains of temporal evolution.

Definition 17 Interface temporal dependency DIx is a temporal dependency represented

by a temporal arc connecting a (spatial) interface node x in time slice t to another interface

node in time slice t + 1.

Definition 18 Given an interface temporal dependency DIx, the set of temporal depen-

dency for node x and the parents of x from time slice t to time slice t + 1 are called close

temporal dependencies.

Given the above definitions, the method of re-factorization is described as follows:

Algorithm 21 MADBN Refactorization

Given an MA-DBN, for each pair of neighboring agents,

1. Duplicate the set of interface temporal dependencies in the two neighboring local do-

mains.
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2. Choose one local domain that contains more close temporal dependencies.

3. Remove all redundant interface temporal dependencies in other local domains.

For example, the MA-DBN shown in Figure 7.2 has one set of close dependency over

the interfaces, {ct → dt+1, at → at+1}. This MA-DBN can be refactorized as shown

in Figure 7.4. Note that temporal dependencies only exist in agents A0 and A2 after re-

factorization.
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Figure 7.4: MA-DBN re-factorization.

Clearly, the temporal dependencies in the global multi-agent temporal domain are not

affected by the procedure of re-factorization. It is due to the fact that the global DBN for the

multi-agent domain consists the same temporal dependencies after re-factorization. This

operation can be easily implemented through standard message based inter-agent com-

munication. In fact, it requires only the exchange of information over the public spatial

interface nodes without revealing an agent’s private knowledge.



CHAPTER 7. MA-DBN: MODELING AGENTS’ DYNAMIC EVOLVEMENT 137

7.4.3 Distributed Particle Filters

In an MA-DBN, agents gain an increased level of autonomy for their local computation.

Instead of performing an exact calculation for its temporal advance as described in Al-

gorithm Basic Online Monitoring, one can adopt various DBN approximation algorithms,

combined with the MA-DBN model approximation. In this section, we present an exam-

ple of this method: a general algorithm that incorporates particle filtering [24] under the

MA-DBN framework.

The particle filter algorithm is an important approximation technique based on stochas-

tic sampling; it approximates a belief state by a set of weighed samples. For online mon-

itoring in DBNs, the algorithm starts by generating N particles(samples) according to the

prior distribution. Then, at each time slice, the algorithm generates the next state for each

particle by sampling from the transition model. Next, it weighs these samples according to

the likelihood that they assign to the observation model, and resamples N particles from

this weighted distribution. The particles will thus tend to stay clustered in more probable

regions of the state space according to the observation at each time slice.

The main advantage of particle filtering is that it provides consistent estimates with

a proper size of particles. Therefore, it can be applied to problems of moderately-high

dimensions with better performance than traditional numerical methods [24]. We hope to

take advantage of particle filtering by reducing local computation and communication costs

for an MA-DBN agent, especially if the agent’s local domain is non-trivial. We propose

to use a set of particle filters, each running in a dynamic agent’s local domain. Our basic

algorithm is described as follows:

Algorithm 22 Dist Particle Filtering

An MA-DBN is populated by n cooperative agents. Each agent Ai(i = 0 , 1 ,..., n − 1 )

maintains a particle filter PFi(i = 0 , 1 ,..., n − 1 ). When called, Ai does the following:

1. At time t=0, generate an initial set of particles with PFi according to the local evidence.

2. Set t=t+1 and extend the particle set to next time slice.

3. Incorporate local evidence and perform global propagation to update local belief.

4. Resample and calculate posterior probability for nodes of interest.
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5. Go to step 2.

In our proposed algorithm, three main operations need to be implemented after the

generation of an initial set of particles: incorporation of new evidence, forward propagation

and inter-agent communication. The first two operations are the same as standard DBN

particle filter operations [24]. For the last operation, the inter-agent communication, special

consideration is needed in designing an appropriate scheme.

Although the local beliefs are now represented as a set of particles, we can still compose

an inter-agent message as an ordinary potential. This enables us to reuse the standard

MSBN linkage tree communication schema. Particularly, if we generate samples based on

our local JT importance sampler, we can calculate separate messages efficiently over the

dynamic agent’s linkage trees. Given two adjacent dynamic agents, an alternative solution

is to compose a message over the d-sepset as a list of samples together with their weights.

Thus, we could forgo the linkage tree structure and transmit messages directly over the

agent interface. We need, however, to define additional operations, e.g., the join operation

over sets of samples, in order to manipulate directly in the sample space.

7.5 Discussion

The main contribution of this chapter is the extension of the MA-DBN model to approxi-

mate online monitoring of a cooperative multi-agent dynamic system. Our work is based

on the idea of factorization among weakly interacting subdomains, similar to the success-

ful BK approximation algorithm applied in DBNs. An MA-DBN models the dynamics of

a multi-agent domain by individual chains of evolution at each agent, thus resulting in a

factorized and more efficient calculation of the global forward message. We have shwon

that the approximation errors to be bounded during the monitoring process. A method of

re-factorization is proposed to improve the quality of the MA-DBN model approximation.

in many situations of practical interest, our proposed MA-DBN model gives rise to ap-

proximate online monitoring algorithms that provide effective and accurate estimates for

dynamic multi-agent systems.
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Although both MA-DBNs and DMSBNs are extensions of MSBNs, an MA-DBN dif-

fers from a DMSBN in several aspects. First, an MA-DBN is a more general model such

that it can be used to model problem domains with a mixture of static and dynamic agents.

A DMSBN can be viewed as a special case of MA-DBN such that all agents must be dy-

namic. Secondly, an MA-DBN no longer represents an explicit mega forward interface

between consecutive slices of the global MSBNs. Finally, MA-DBNs support effective

online monitoring through a factorization based approximation that can be naturally dis-

tributed, whereas a centralized computation of the global GOMB is typically adopted in

the monitoring calculation of a DMSBN.

An MA-DBN provides the flexibility of adopting existing DBN monitoring algorithm

for an agent’s local evolution. For example, an agent may choose from exact computation

or stochastic sampling according to the accuracy requirements and local resources. In par-

ticular, we presented an approximate online monitoring algorithm with a set of distributed

particle filters under the MA-DBN framework.

In our future work, the quality of MA-DBN model factorization and the method of

re-factorization need to be evaluated through experiments. One straightforward approach

is to use the exact monitoring result of the global DBN as the baseline, comparing the

cooperative monitoring of the MA-DBN with individual chains of exact evolution in local

DBNs. We also hope to extend our work to the case of reasoning backward in time, which

allows to apply approximate inference to the task of computing the belief state of a time

slice given both the past and future evidence.

Moreover, we need to further investigate the interaction corresponding to the level of

correlation between agents. In DBNs, a property of separability for a representational

structure has been proposed [71]. It has shown that based on the separability between

subsystems, some decomposed dynamic system can allow exact calculation of marginal

probabilities without propagating the complete joint distribution, but such result does not

extend to online monitoring. Once we are able to identify the level of dependency among

agents, given an MA-DBN, we can cluster the highly correlated subdomains during the

monitoring process. That is, agents in a cluster will propagate forward their belief into

the next time slice as a whole. Arriving in the new time slice, all agents cooperate to
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arrive to an updated global belief through message passing. Although the current moni-

toring method momentarily overlooks the weak correlations, we use clustering to improve

the approximation quality when the interaction between some subsystem too large to be

ignored.

Further analysis is also required to investigate the combined errors resulting from in-

corporating DBN approximation schemes for each agent’s local evolution. For example,

we need to consider the errors introduced by typical particle filtering. The basic algorithm

described so far may result in large variances in the particles’ importance weights. Such

variances can cause some weights to drop to zero, reducing the effective number of parti-

cles in the filter and causing waste of computation [75]. This problem could be solved by

periodically restarting each agent’s particle filter. Thus, by generating a new set of particles

with the evidence in the current time slice, we can discount part of the filter’s history and

run the filter forward again from the present time. This method is related to the existing

methods for improving sample diversity in standard particle filters [87].



Chapter 8

Conclusion

After summarizing the thesis, we will discuss some additional directions for future research

and then give some closing remarks.

Thesis Summary

In this thesis, we have presented several improvements over the current inference algo-

rithms of MSBN-based multi-agent probabilistic systems.

We presented an improved message passing architecture for MSBN LJFs. Different

from the traditional Hugin-based message passing, our new approach utilized the linkage

tree as a message buffer so that an inter-agent message is not absorbed immediately. As a

consequence, no repeated local updates are needed. Moreover we always issue partial local

updates to calculate an outgoing message or to absorb the last incoming message. There-

fore, we are able to forgo any complete local updates, each consisting of two rounds of

local message passings. Our new architecture can easily be extended to the iterative mes-

sages passing, which maintains the correctness and exactness of the message calculation

with improved robustness and fault tolerance.

We then examined the problem of JPD factorization in traditional single-agent BNs.

Through the discovery of the semantic meanings of messages passed over JT separators,

we presented a procedure to determine the actual information a cluster requires to form the

marginals. We have designed a method to form the clique marginal with a minimum set

141
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of messages. A simple heuristic was also introduced to further optimize required message

passings.

We went on to solve the problem of LJF marginal calibration. Current MSBN calibra-

tion methods are performed implicitly and expensively in both inter-agent messages pass-

ing and local computation. This makes them unsuitable when an explicit prior marginal is

needed for certain nodes. We have presented a new marginal calibration algorithm based

upon informed message passing; not only does it provide a correct prior explicitly and ex-

actly, but also it requires then minimum amount of inter-agent message passing and local

calculation given an LJF initialization.

Next, we applied approximate inference techniques within an MSBN framework. We

have shown that localized approximation can be combined with the existing LJF struc-

ture, thus providing a practical solution to the inference in larger MSBNs. We designed a

novel LJF local importance sampler with an adaptive feature. Our sampler delivers good

approximation on the posterior distribution of an MSBN subnet’s local JT. Moreover, the

inter-agent messages, originated from the subnet and to be propagated globally in the LJF,

can be obtained directly from the learned importance function, before the sampling process

is fully completed.

Finally, we addressed the problem of cooperative online monitoring. We extended a

model, MA-DBN, from the original MSBN to support distributed multi-agent probabilis-

tic inference in dynamic domains. We modeled the dynamics of a group of cooperative

agents approximately by assuming not only the Markov assumption, but also the weak in-

teraction among all agents’ local evolvements. The online monitoring is calculated based

on the existing conditional independency of agents’ local domains, which resulted in a

factorized representation of the global forward interface. Our MA-DBN model supports

online monitoring calculation with an approximate result and the error is bounded over

time. Meanwhile, we have also introduced a re-factorization technique to further improve

the approximation quality.

Direction for Future Research

Many of the preceding chapters have concluded with a discussion of directions for
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future work on their specific topics. Here we discuss some additional directions that are

more general in scope.

• As we have been focused on the inference calculation based on an LJF, there have

been issues concerning the effective usage of the current single form of an LJF. In

the case of our extended Shenoy-Shafer architecture, a modified LJF with a hypertree

structure resembling a binary join tree would be more suitable and more efficient for

the computation of inter-agent messages with our new schema. Another example is

the calculation of the online monitoring problem in MA-DBNs. We have shown that

the local JT must be built to support the passing of the forward message in a local

domain, resulting in a special LJF which is indeed an LDJF consisting of two LJFs.

Therefore, we will investigate the distribution compilation of some special forms of

LJFs to serve the purpose of various inference tasks.

• The current agent organization based on a hypertree guarantees the exact probabilis-

tic inference calculation in static domains. However, it is sometimes difficult for a

large system to admit a tree-like representation without modifying its specific struc-

ture [102]. As approximations are crucial for complex systems in either static or

dynamic domains, it seems natural to relax the hypertree restriction in MSBNs. This

opens up a vast number of research possibilities for the more flexible modeling of a

multi-agent system and effective inference algorithms.

Concluding Remarks

Observing the limitation of the current exact calculation, we have introduced several

BN-based techniques to the current MSBN modeling and its exact inference algorithms.

We have shown that a Shenoy-Shafer message passing scheme is indeed a more suitable

inference architecture for MSBN LJFs. By exploiting the semantic meaning of inter-agent

messages and informed scheduling of global message passings, we are able to improve

significantly the exact calculation for the marginal calibration problem.

We have applied some approximation techniques while maintaining the MSBN under-

lying agent organization. To the best of our knowledge, our local importance sampler is
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the first to realize practical approximation inference with an MSBN-based representation.

Our proposed dynamic model, MA-DBN, also gives rise to a new effective method of on-

line monitoring of cooperative agents, which is based on approximations from assumed

structural independencies.

In spite of the concerns regarding the restriction of the MSBN model construction, we

believe that a proper combination of exact and approximate inference, either at an agent’s

local level or a global agents societal level, will result in a much more effective and practical

inference calculation in larger and more complex domains.
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