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Abstract: 

 

In static lightpath allocation, the logical topology of a WDM mesh network is 

determined, based on the long-term traffic demands. These traffic demands change 

with time. When a logical topology is incapable of supporting the current traffic 

demands, the logical topology has to be changed. The change is made by adding a 

minimum number of edges to the logical topology.  

 

The objective of this research is to find an optimal new Logical Topology 

which can support the current traffic demands with as little change to the existing 

topology as possible. We have proposed a Hill-Climbing algorithm to solve the 

reconfiguration problem of logical topologies in WDM networks. Our problem can be 

divided into two sub-problems. The first is to find an optimal logical topology and the 

second is to route the traffic optimally on the logical topology.  
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Chapter 1: Introduction 

 

1.1 Preamble 

 

Wavelength division multiplexing (WDM) technology enables optical networks 

to properly utilize the huge bandwidth capacity of optical fibers for carrying traffic 

[2]. A major advantage of an optical network is that it is able to reconfigure its logical 

topology to adapt to changing traffic patterns dynamically [3]. Another key feature of 

second generation of optical networks is the use of tunable transmitters and/or 

receivers, which allows the logical connectivity to be optimized to adapt to changing 

traffic conditions. In this thesis we consider re-arrangeable multihop lightwave WDM 

networks, where each node is equipped with a pre-determined number of transmitters 

and receiver.   

1.2 Problem Description  

 

In static lightpath allocation, the logical topology of a WDM optical network is 

determined, based on long-term traffic demands. These traffic demands however 

change with time. When a logical topology is incapable of supporting the current 

traffic demands, the logical topology has to be modified or reconfigured. The 

objective is to find an optimal new logical topology which can support the current 

traffic demands with as little change to the existing topology as possible. This is 

known to be a difficult problem [14] and many researchers have studied this recently. 

In this research, we have addressed the reconfiguration problem of the logical 

topology of a WDM optical network. 
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Our main objective in this research is to observe how much the congestion can 

be reduced by reconfiguring the logical topology when the traffic demand increases 

beyond the capacity of the network. In order to compute the congestion value, the 

policy of routing the traffic over the logical topology must be determined. Therefore, 

the problem can be split into two sub-problems as follows: 

i. Create a new logical topology by reconfiguring the existing logical 

topology. 

ii. Route the traffic demand over the new logical topology in an optimal 

manner to determine the congestion.  

We have used a hill climbing procedure [11] to create a new logical topology by 

reconfiguring the existing logical topology as little as possible, such that the new 

logical topology can handle the changing traffic patterns. In each iteration, we have 

tried to find the best logical topology with relatively little change to the existing 

logical topology, thus minimizing the disruption to the network and the 

reconfiguration time. We have used the CPLEX optimizer to route the traffic over the 

logical topology. 

Many researchers have worked on this issue and we have summarized the work 

briefly in Chapter 2. The problem and the motivation have been discussed in Section 

1.3, the fundamentals of WDM optical networks are discussed in Section 1.4, and the 

thesis outline is shown in Section 1.5. 

1.3 The Problem Investigation and motivation 

 

A lightpath in a logical topology carries certain amount of traffic (typically 10 

Mbits/sec at the moment). When the traffic increases above this capacity, a new 

logical topology needs to be determined, requisite lightpaths set up and traffic 

grooming strategies determined to accommodate the increases in the traffic. The 
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second generation WDM network technology can dynamically change its logical 

topology corresponding to the changing traffic conditions [4]. The problems for the 

researcher are as follows: 

• How frequently should reconfigurations be carried out? 

• How to keep the network performance optimized? 

• How much should be the cost due to reconfiguration in the transition period, 

when the network is switched from one logical topology to another one? 

• How to handle faults in the logical topology at the time of reconfiguration? 

Many researchers have worked on different aspects of optimization in optical 

networks, including optimizing network performances, improving the delay and the 

throughput metrics, minimizing the hardware costs, minimizing the disruptions, 

proposing heuristics to design logical topology and decreasing the congestion. The 

term congestion is discussed later in this section.  

In this thesis, we have investigated the reconfiguration of the logical topologies so 

that the congestion of the networks can be minimized and we have tried to answer the 

following questions: 

i. How to find a “good” reconfiguration fairly quickly for logical 

topology. 

ii. How to minimize the disruptions of the network as little as 

possible. 

iii.  How to ensure that the new topology is capable of carrying the 

new traffic. 

iv. How to route the traffic demand very effectively and find the 

congestion. 
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Many methods for designing the logical topology and routing the traffic optimally 

have been studied. Some of the studies are reviewed in Chapter 2. Mixed integer 

linear programming (MILP) has been used in previous studies [2], for designing a 

new logical topology. The MILP may take an exponential amount of time to obtain an 

exact solution, even for small networks. As an alternative to using a MILP, a heuristic 

algorithm may be used, although it is known that the quality of a heuristic solution is 

unknown. The tabu search algorithm has been used to design a logical topology [17] 

and properly designed tabu search [11] is known to be very effective on overcoming 

the well-known problem of getting trapped in local optimum. 

It is known that the CPLEX optimizer provides the power to solve linear 

programs (LP) with many constraints and continuous variables, within a reasonable 

amount of time. We have used LP to route the traffic over the logical topology. The 

LP equations are used by the CPLEX optimizer tool as an input to find the congestion 

of the network. The CPLEX optimizer tool expedites our process of routing quickly 

and efficiently.  

1.4 Fundamentals of WDM Optical Networks 

 

An optical network is a network where computers or end nodes are connected 

using optical fibers. A typical optical network is shown in Fig. 1.4.1 with 4 end nodes 

E1-E4 and 4 routers R1-R4.  An optical fiber is a thin glass cylinder or a filament 

which carries signals in the form of light (optical signals). It is the replacement of 

earlier computer networks, where copper wires were used as the communication 

medium. The technology of using multiple optical signals on the same fiber is called 

wavelength division multiplexing (WDM). Using this technique, it is possible to 

utilize the bandwidth of optical network (50 tera-bits) in an efficient way.  
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Figure 1.4.1: The physical topology of a typical WDM network with four end-

nodes E1-E4 and four routers R1-R4. 

 

In optical networks, the source or the destination of a data transmission is called 

an end-node. It could be a computer, a router or any other device that stores and sends 

data. An optical router is an important component of optical networks to route the 

incoming data to an appropriate outgoing destination. Each optical router has a 

number of incoming fibers and a number of outgoing fibers to carry one or more 

incoming or outgoing optical signals. It is convenient to describe the Physical 

Topology of an optical network as a graph G. Such a graph is shown in Figure 1.4.1 

above, where an end-node or a router is a node of graph G, and the fiber from one 

node to another can be defined as an edge of graph G.  

A lightpath is an optical connection from one end node to another, used to carry 

data in the form of encoded optical signals. It is also convenient to view the lightpaths 

as edges of a directed graph GL shown in figure 1.4.2, where the nodes of GL are the 

end nodes of the physical topology. Such a graph is called the logical topology of an 

optical network and the edges of such a graph are called logical edges [21].  

R4 R2 

R1 

R3 

E4 E2 

E1 

E3 

Router 

Fiber 

End 
Node 
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Figure 1.4.2: Logical Topology 

 

The routing over a logical topology determines, for each source destination pair(S, 

D), which logical paths are to be used to communicate data from S to D  and how 

much data has to be carried out by each logical path from S to D.  

In a network with N end nodes, an N x N traffic matrix may be used to define the 

traffic requirement for all source-destination pairs. A traffic matrix shows how much 

data is to be sent form one source end-node to another destination end-node. A typical 

4 x 4 traffic matrix is shown in Table 1.4.1.  

 

 

 

 

 

 

Node 1 2 3 4 

1 0.00 0.30 0.5 0.30 

2 0.20 0.00 0.30 0.20 

3 0.55 0.10 0.00 0.30 

4 0.00 0.20 0.10 0.00 

E3 

Logical edge/ 
lightpath 

E2 E4 

E1 

Congestion 
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Table 1.4.1: A Typical [4 x 4] Traffic Matrix 

 

Another very important research topic is congestion optimization in a logical 

topology. The maximum total traffic on a logical edge defines the congestion of that 

network for that traffic matrix. In the example shown in Table 1.4.1, the logical edge 

from end node 3 to end node 1 is carrying 0.55 unit of traffic, which is the current 

congestion for this particular network for this specific example. Here the unit of 

traffic is the capacity of a lightpath. 

1.5 Thesis Outline 

 

In Chapter 2, we have discussed the background study and have reviewed the 

literature. We have specified the problem in detail in Chapter 3. In Chapter 4 we have 

discussed the implementation details. In Chapter 5, we have described the 

experimental results and observation. Chapter 6, we have given our conclusion and 

have discussed future works.  
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Chapter 2: Background study/ Review of literature. 

 

2.1 Preamble  

 

During the early stages of computer networks, copper wire was used as the 

medium of communication. Due to the limitations of copper wire (such as high 

attenuation, susceptibility to malicious attacks, and electromagnetic interference), for 

the last twenty years, better ways of communication between computers have become 

one of the most important research topics in the computer revolution. The tremendous 

growth of the Internet and the ever increasing data transfer rates have made very 

high-bandwidth optical networks a very important technology in network 

infrastructure. This bandwidth property of optical fibers makes optical technology 

very attractive for backbone networks. Multiple optical signals can be transported on 

the same optical fiber [20] (explained in Section 2.2). Using this technique, the 

bandwidth of optical network is 50 tera-bits per second and is useful for handling the 

increasing demands for communication.  

The nodes of an optical network are computers or any other devices (often 

called end nodes) which can generate or store data in an electronic form. Selected 

pairs of nodes are connected using optical fibers. Optical fibers are basically very thin 

glass cylinders or filaments which carry signals in the form of light (optical signals). 

Optical networks also include transmitters to generate optical signals for 

communication, and receivers to detect the optical signals and to convert the signals 

to electronic form. An optical Router is a device which routes signals from the 

incoming fibers to the appropriate outgoing fibers of the router. A lightpath is an 

optical connection from one end node to another, and is used to carry data in the form 

of encoded optical signals. A directed graph to represent the lightpaths connecting 

pairs of end nodes is called a logical topology. A path through a logical topology 
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from a source to a destination is known as a logical path. In the remaining sections in 

this chapter, we have discussed some of the optical hardware components and key 

terminology in detail.   

2.2 Component and Key Terminology of WDM Networks  

 

There are many devices used in second generation of WDM networks, such as 

couplers, optical transmitters, optical receivers and filters, optical amplifiers, optical 

routers, and switches are the most common. A few key devices are described below. 

 

 

 

 

   

 

Figure 2.2.1.1: Optical Fiber 
 

An optical fiber consists of a very fine cylinder of glass (core) of silica with 

refractive index, say µ1, through which optical signals propagates. The core is 

surrounded by a concentric layer of glass (cladding) of silica with a lower 

refractive index, say µ2, which is protected by a thin plastic jacket. The buffer 

shown in Fig. 2.2.1.1 surrounding the cladding encapsulates the fiber for 

mechanical isolation and for protection from physical damage [21]. A cross-

section of a fiber is shown in Fig. 2.2.1.2.  

Buffer 

Cladding 

Core 
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Figure 2.2.1.2: The cross-section of a fiber [21] 
 

 

 

 

 

 

Figure 2.2.1.3: Optical Signal Propagation through a Fiber 
 

If the angle of incidence (Fig. 2.2.1.3) is greater then the critical angle (sin-1 

µ2/ µ1) then total internal reflection takes place and all the light is reflected back 

into the medium. Total internal reflection forms the basis of optical transmission 

through fibers.  

Coating 

Claddin

Core 

         µ1 

Angle of 
incidence 

µ
2 

Core  

Cladding  



 

11 

 

 

2.2.2 Wavelength Division Multiplexing (WDM) 

 

The technology of using multiple optical signals using different carrier 

wavelengths on the same fiber is called Wavelength Division Multiplexing 

(WDM) [21].  

 

 

 

 

  

 

 

 Fig. 2.2.2a shows a Multiplexer that combines 4 distinct signals (W0 – 

W3) and sends them on an Optical Fiber. The De-multiplexer on the other side 

splits those 4 signals from the fiber and generates 4 outputs.  In WDM 

networks, the available bandwidth of the fiber can be visualized as a set of 

channels. Channel spacing (Fig. 2.2.2b) is the separation of one channel from 

the next channel. Channel spacing is used to avoid interference between 

different optical signals and must exceed a certain minimum bandwidth.  

Optical Fiber 

W0 W1, W2, W3 

De-Multiplexer 
Multiplexer 

W0 

W1 

W2 

W3 

W0 

W1 

W2 

W3 

Figure 2.2.2a: WDM 
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Figure 2.2.2b: Signal bandwidth and channel spacing [21] 
 

 The important advantages of WDM networks are as follows: 

• Low signal attenuation- As a signal propagates through fibers; the signal 

strength goes down at a low rate (0.2 dB/km).  This means that the number 

of optical amplifiers needed is relatively small. 

• Low signal distortion - As a signal is sent along a fiber optic network, it 

degrades with respect to shape and phase. Signal regenerators are needed 

to restore the shape and timing. Low signal distortion means that signal 

regeneration is needed infrequently. 

• Low power requirement. 

• Low material usage. 

• Small space requirements. 

• Low cost.  

WDM networks can be classified into two types - wavelength-routed networks 

and Broadcast-and-select networks. Since our study is based on wavelength-routed 

WDM networks, a brief description of wavelength-routed WDM networks is given 
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below: 
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2.2.2.1. Wavelength-Routed Networks  

 

 In a wavelength-routed network, a lightpath starts from an end-node, passes 

through 0 or more routers and terminates at another end-node. This type of networks 

may contain a large number of end nodes.  

 

Figure 2.2.2.1: A Wavelength-Routed Network [22] 
  

The network shown in Fig. 2.2.2.1 is a wavelength-routed network, since the 

end nodes communicate using lightpaths where the routing of a lightpath to its 

destination is based on its carrier wavelength. There are 4 end nodes E1 – E4, 

connected with 4 optical routers respectively in a physical topology and dashed lines 

show lightpaths which are sent over the physical topology. When an end node E1 tries 

to communicate to end node E4, the signal passes through routers R1,  R2,  R3, and  R4 

using the path R1 � R2 � R3 � R4. The router R1 sends the signal at wavelength λ1 to 

R2 and so on. When the router R4 receives this signal, it is passed to end node E4. 
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Since end node E4 is tuned at wavelength λ1, it receives the signal. 

2.2.2.2 Single-hop and Multi-hop WDM Networks 

 

In single-hop network, data remains in the form of an optical signal from the 

time it leaves the source end node until it reaches its destination end node. All data 

communication involves a path length of one logical edge. In other words, exactly 

one lightpath is involved in each communication. Since the signal remains in the 

optical domain all the way, such a network is also called an all-optical network [6]. In 

a network with NE nodes, the number of end node pairs is NE (NE -1), so that the 

number of lightpaths becomes impossibly large, even for moderate values of NE. 

Since the number of available channels, the number of transmitters and receivers are 

all limited, single-hop networks are not feasible even for moderate values of NE. 

In a multi-hop network, the signal transmitted from a source end node to the 

destination end node via one or more intermediate end nodes. Signals are converted 

from the optical form to the electrical form at each intermediate end-node. If there is 

no direct optical link available between a source end node and a destination end node, 

multi-hop communication is used. In Figure 2.2.6.1 shows a typical multi-hop optical 

network. 

2.2.3 Multiplexer and De-multiplexer 

 

 The use of multiplexers makes it possible to have multiple data streams on the 

same fiber. A multiplexer combines different distinct signals on different input fibers 

into one output which can be communicated using a single fiber. A typical 

multiplexer is shown in Figure 2.2.3.1, which combines 4 input signals each using a 

distinct channel from c1 – c4, and the combined signal can be  transmitted through a 

single fiber to the corresponding  destinations.  



 

16 

 

 

 

Figure 2.2.3.1: 4 – Input Multiplexer [21] 
 

A de-multiplexer splits the signals carried by an incoming fiber into different 

outputs, each with a signal using a distinct channel. A typical de-multiplexer is shown 

in Figure 2.2.3.2, in which the signals on the incoming fiber are separated by a de-

multiplexer into 4 outputs, each carrying a distinct signals and using one of the 

channels c1, c2, c3 and c4. 

 

Figure 2.2.3.2: A Typical 4- Output De-Multiplexer [21] 
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2.2.4 Add-drop multiplexer (ADM) 

 

The ADM is an useful component of optical networks as it has the capability 

to add one or more new wavelength channels to an existing multi-wavelength WDM 

signal, and/or to drop (remove) one or more channels, passing those signals to another 

network. A typical Add-drop multiplexer consists of a multiplexer and a de-

multiplexer as shown in Figure 2.2.4.1. This figure shows that signals using two 

channels from the output of de-multiplexer c2 and c3 are dropped (in other words, are 

not sent to the input of multiplexer). These two signals may be converted into 

electrical signals and used in the end node attached to this ADM. The end node also 

creates two signals using channels c2 and c3 and sends them to the inputs of the 

multiplexer. The multiplexer generates the output, which is fed to an outgoing fiber.   

 

 

Figure 2.2.4.1: An Optical Add-Drop Multiplexer [21]. 

 

2.2.5. Wavelength Router 

 

 The Wavelength Router is a device used to route an optical signal to its output 

destination according to its wavelength. An optical router has the same number of 
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input ports and output ports, each carrying many optical signals. The optical 

router determines which incoming signal has to be routed to which outgoing fiber. 

 

 

Figure 2.2.5.1:  Router Node [21] 
 

Fig. 2.2.5.1 shows a basic diagram of an optical router node with multiplexers 

and de-multiplexers and having two input fibers and two output fibers. The figure 

shows that input signal s1
1  is coming through input fiber 1, and passes through 

demux1, routed by the 8 x 8 optical switches to the appropriate input of MUX2 

and ultimately is routed to output fiber 2. 

2.2.6 Physical Topology 

 

The physical topology of a WDM network consists of many optical devices. 

Figure 2.2.6.1 shown below is a simplified diagram of a typical physical topology 

of an optical network. In the diagram an oval represents an end node which is the 

source/destination of data generated by the user. A square represents a router 

which directs the data signal to the proper destination. A directed line represents a 

Input Fiber 2 

Input Fiber 1 
Output Fiber 1 

Output Fiber 2 
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fiber. A fiber connection allows unidirectional communication and the arrow on 

the line gives the direction in which optical signals can flow.  It is convenient to 

represent the simplified topology as a graph Gp = (V, E) in which each end node 

or router in the network is a vertex in set V, each fiber optic link between two 

nodes is an arc in set E. 

 

 

Figure 2.2.6.1: The physical topology of a typical WDM network with four end-
nodes E1-E4 and four routers R1-R4 

 

2.2.7 Lightpath 

 

A lightpath is an optical connection from one end node to another, used to carry 

data in the form of encoded optical signals. Such a lightpath always starts from an end 

node, traverses a number of fibers and router nodes, and ends in another end node 

[21]. Figure 2.2.7.1 shows a number of lightpaths using the physical topology. For 

example lightpath L1 started from E1, terminated at node E3 and uses path E1 � R1 �  

R4 � R4  � E3.  

E4 E2 R4 

R3 

R2 

E1 

E3 

R1 

Fiber End Node 

Router 
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Figure 2.2.7.1: Lightpaths On the physical topology [21] 
 

The characteristics of a lightpath are as follows: 

• A lightpath is an all-optical connection from one end-node to another that is 

used to carry data in the form of encoded optical signals. 

• The lightpath uses a path consisting of a sequence of physical links from the 

source to destination of the lightpath.  

• It is possible for a lightpath to have several wavelengths on different fibers in 

its path. Such a lightpath must use an all-optical wavelength converter. 

• Current optical networks do not have wavelength converters and a lightpath 

must use the same wavelength on all fibers in its path. 

An all-optical network refers to the class of networks where the information 

remains in the optical domain in the entire path from the source node to the 

destination node; in such networks, there is no conversion between optical signals to 
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electrical signals along the path used for data transmission.  
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2.2.8 Logical Topology 

 

Since the lightpaths determine which end nodes can directly communicate 

with other end nodes, once the lightpaths are settled up as shown in Fig. 2.2.8.1, the 

physical topology is irrelevant for determining a strategy for communication. It is 

convenient to view the lightpaths as edges of a directed graph GL where the nodes of 

GL are the end nodes of the physical topology. Such a graph is called the logical 

topology of an optical network and the edges of such a graph are called logical edges 

[21]. The directed graph shown in the figure 2.2.8.2 is a logical topology. The 

lightpath forms a basic data communication link from a given source end node to 

destination end node in an optical network. In general, an optical network has many 

lightpaths, defining optical connections between selected pairs of end nodes. In 

Figure 2.2.8.1, a logical edge starts from end node E4 and ends at end node E1. 

Another lightpath is from end node E1 to end node E3. When a lightpath is established 

for data communication between one source end nodes to another destination end 

node, it can pass through intermediate end nodes.  

 

Figure 2.2.8.1: Lightpath shown by dashed-line on Physical Topology 
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Figure 2.2.8.2: A logical topology drawn from physical topology has shown Fig. 
2.2.8.1. 

 

2.3 Route and Wavelength Assignment (RWA) 

 

As we have mentioned in Section 2.2.2, WDM allows the same fiber to carry 

many signals independently, as long as each uses a different carrier wavelength and 

maintains sufficient channel spacing. The channel assigned to the lightpaths should be 

such that two lightpaths sharing a fiber are never assigned the same channel. 

Determining the path of a lightpath and the channel number is known as the routing 

and wavelength Assignment (RWA) problem. 

Two versions of the RWA problem have been considered by researchers [21]. 

If the set of lightpaths to be set up is known in advance, the problem is called the off-

line RWA problem. In this formulation the traffic demand is known in advance and is 

not expected to change in the near future. This is also called static lightpath 

allocation since the lightpaths, once established, are not modified until the traffic 

pattern changes sufficiently to warrant a different set of lightpaths. 

Lightpath 
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The other version of the problem is to set up the lightpaths on demand and is 

called online RWA (also called dynamic lightpath allocation) problem [25]. In this 

problem, requests for data communication are considered as and when they occur. In 

dynamic allocation, lightpaths are set up when needed and are taken down when the 

communication is over. 

The following approaches primarily used for RWA problem: 

• RWA as graph coloring problem 

• Integer linear programming  

• RWA using a heuristic. 

The solutions for static lightpath allocation using mathematical programming are 

computationally intractable even for medium-sized networks. Heuristics are useful for 

solving the problem, within a reasonable amount of time [22]. 

2.4 Logical Topology Design Problem 

 

The problem of designing logical topologies is to find a set of lightpaths 

defining which pairs of end nodes are to be connected by logical edges, in order to 

handle the expected traffic in an economic manner. In a WDM network, the optical 

fibers can support a number of channels for data communication. The actual number 

of channels supported by a fiber depends on the technology used and the type of fiber 

used. To design an optimal logical topology, we need to consider the following: 

• The set of lightpaths to be created, 

• For each lightpath, the route through the physical topology and the channel 

to be used on each fiber in its route, 

• The strategy for routing the traffic over the logical topology. 
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All the points mentioned above are not independent. Some early researchers 

solved these three problems in one formulation, using some MILP (Mixed Integer 

Linear Programming) for logical topology design and for routing1. These 

formulations are intractable for practical sized networks, since they involve large 

numbers of integer variables. This fact has motivated the development of efficient 

heuristic solutions that are “reasonably” good and solve the logical topology design 

problem in a reasonable time frame [7]. The logical topology design problem has 

been sub-divided into three sub-problems as follows: 

i) Find the logical topology, 

ii) Carry out RWA for each lightpath, 

iii) Find the optimal traffic routing strategy. 

2.5 Traffic Matrix 

 

It is convenient to represent the traffic requirements in the form of a matrix T 

= [t (i, j)], often called a traffic matrix. The entry t (i, j) in row i and column j of 

traffic matrix T denotes the amount of traffic from end node Ei to Ej, where i ≠ j. 

The signal rate is normally expressed, using the Optical Carrier level notation 

(OC-n), where the base rate (OC-1) is 51.84 Mbps and OC-n means (n x 51.84) 

Mbps, depends on the technology  used. A typical traffic matrix is shown in Table 

2.5.1 below. 

                                                

1 MILP appears in Section 2.7. 
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Table 2.5.1: A Traffic Matrix 
 

In our thesis, for simplicity, we have defined the traffic load as a fraction of the 

capacity of a lightpath and the maximum is 1.0. As shown in table 2.5.1, the entry t 

(1, 4) is 0.20, meaning that the amount of data to be communicated from end node E1 

to end node E4 is 0.20 units. If a single lightpath can carry data at the rate of 10.0 

Gbps (i.e., OC-192), the expected data communication rate from end node E1 to end 

node E4 is 10 * 0.20 = 2 Gbps.  

It is convenient to consider the traffic corresponding to each pair of end nodes as 

a commodity and attach a distinct number k with such a commodity. We will 

designate commodity Kk as the traffic corresponding to the pair of end nodes (Esk, Edk) 

having t(sk, dk) > 0. In the above Figure 2.5.1, there are eleven (11) nonzero entries, 

so that there are eleven commodities. For example, K1
 is for pair (E1, E2), 

corresponding to row 1, column 2 and has traffic 0.30. Similarly commodity K11 is for 

pair (E4, E3), corresponding to row 4, column 3 and has traffic 0.10.    

2.6 Congestion Minimization 

A request from a specific source to a specific destination constitutes a commodity. 

Each entry of the traffic matrix t(s, d) > 0, is a distinct commodity as described in 

Node 1 2 3 4 

1 0.00 0.30 0.5 0.30 

2 0.20 0.00 0.30 0.20 

3 0.35 0.10 0.00 0.30 

4 0.00 0.20 0.10 0.00 
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Section 2.5. The congestion is the value of the highest traffic that is flowing on any 

particular edge of a logical link. The total traffic flowing on an edge is the sum of all 

the flows for all the commodities on that edge. Figure 2.6.1, which is drawn from 

Table 2.5.1, shows that there is a total of 0.60 unit of traffic flowing on the edge E2 � 

E3 for two different commodities (C1 and C2) for a specific logical topology and 

routing scheme.  Since, the traffic flowing on this edge is the maximum traffic; this 

edge is the congested edge.  

 

Figure 2.6.1: Congestion of a Network 
 

Congestion minimization helps to decrease the chances of a bottleneck in the 

context of communication. Minimizing the value of congestion is one way to reduce 

the cost of a network since each lightpath means additional cost due to the optical 

(electrical) hardware at the source and the destination of the lightpath. A lower value 

of congestion allows greater possibility of scaling up the traffic in the network 

without changing the routing strategy - more traffic can be arranged to flow without 

additional resources to the network and is therefore more economical. 
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2.7 MILP- based solution of the logical topology design and the 

routing problem 

  

In a linear programming formulation, if some of the variables are constrained 

to have integer values and others are continuous variables, the formulation is called a 

mixed integer linear program (MILP). The problem of logical topology design is to 

find which pairs of end nodes are to be connected by a lightpath. A lightpath may be 

represented by using a binary variable having a value of 1 (0). This binary variable 

may be used to denote whether a lightpath exists (does not exist). Therefore, these 

variables are needed in each pair of end nodes. When the logical topology is known, 

the problem of routing strategy is to determine how the traffic may be handled 

optimally over the logical topology. The details of the routing problem are discussed 

in Section 2.9. 

The formulation of the MILP has been provided below [21].  The term L-

congestion used here to describe the maximum traffic maxΛ  on a logical link2. To 

determine the value of L-congestion, we first have to determine an optimal logical 

topology and then find an optimal routing over the logical topology.   

Objective function: 

     Minimize maxΛ    (7.1) 

Subject to  

1. Ensure that maxΛ  is the L-congestion. 

 

                                                

2 An explanation for the notation used in this thesis appears in appendix 1. 
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2. Part of the traffic t(s, d) can flow on the logical edge Ei ⇒  Ej only if the logical 

edge exists. Also
sd
ijx , the part of the traffic t(s, d) flowing on the logical edge Ei ⇒  

Ej cannot exceed the traffic t(s, d). 
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3. Apply the flow conservation rules. 
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4. The number of lightpaths ending at (starting from) a given end node cannot exceed 

∆in (∆out). 
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 (7.5) 
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ijb

1
≤  ∆out, E

Njj ≤≤∀ 1,               

 (7.6) 

Equation (7.2) ensures that maxΛ  is greater or equal to the traffic on any edge. If a 

lightpath from end node Ei to end node Ej exists (in other words, if bij  is 1) then 

equation (7.3) ensures that part of the traffic t (s, d) may be routed over logical edge 

Ei � Ei. Equation (7.4) ensures that the total traffic flowing out from Ei is 

∑
=

EN

i

sd
ijx

1
and the total traffic flowing into Ei is∑

=

EN

j

sd
jix

1
. If Ei is the source, 

then there is no traffic flowing into Es. If Es is the destination, then there no traffic 

flowing out of Es, otherwise for all intermediate node, the incoming and outgoing 

traffic difference should be 0. Equations (7.5) and (7.6) ensure that the number of 
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lightpaths do not exceed the number of transmitters and/or receivers.  

2.8 A Heuristic for Designing a Logical Topology 

 

Heuristic is defined as any technique used to obtain an approximate (i.e., close 

to the optimum value) solution of a given problem. As we have mentioned in our 

problem definition in Chapter 1, we will be using a heuristic for designing the initial 

logical topology. The pseudo code for a heuristic to solve the logical topology design 

problem [21] is given below. 

The steps of the heuristic are as follows: 

Step 1: Find the entry t (imax,,  jmax) in T having a maximum value among all the entries 

in T. If there is no nonzero entry in T, stop. 

Step 2: Using any RWA technique (Discussed in 2.3), check if it is possible to 

establish a lightpath from Eimax to Ejmax. If RWA is not possible, set t (imax,  jmax) to 0 

and go to     Step 1. 

Step 3: Create a logical edge from end node Eimax to end node Ejmax. Set t(imax,  jmax) to            

t(imax,  jmax) - clightpath  or 0, whichever is greater. Go to Step 1. 

Note: We did not consider any restrictions on ∆in (receiver) or ∆out (transmitter) when 

designing our initial logical topology using this heuristic. We also assumed that it is 

possible to carry out a RWA to set up a lightpath from any source to any destination.   

2.9 Routing over a Logical Topology 

 

 As we have mentioned in Section 2.5 that the traffic requirement of a NE node 

network can be represented as a form of matrix T where, each individual entry of the 

matrix can be presented as tij (0 ≤ i,j ≤ NE). This gives us the amount of traffic to be 
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routed from source end node Ei to destination end node Ej.   

Now, if the logical topology is already known, then the other part of our 

problem is to determine the routing optimally for the each traffic entry tij. This type of 

problem may be viewed as MCNF (Multi-Commodity Network Flow) problem [7]. 

For each pair of end nodes, the distinct number of commodity has to be assigning for 

transportation from one source node Es to destination node Ed. Therefore, we can say 

that there is k commodity has single source Esk and a single destination Edk. In this 

situation, a directed graph G = (V, E) may be viewed as the transportation network 

where V is the set of vertices in G and each Vi (0 ≤ i ≤ N) represents possible source 

(destination). Each i �  j represents the logical edge (link) from source i to 

destination j. If there are 
light
sdn

 lightpaths from source node Es to destination node 

Ed and Clightpath is the capacity of a link, then (
light
sdn  * Clightpath) amount of data may 

be handled from Es to Ed. In a transportation network when there is single commodity 

to be considered, the problem is called a single commodity flow problem; otherwise, 

it is called a multi commodity network flow problem. 

Networks consisting of less than 30 end nodes are considered small to 

medium-sized networks. Since, the first part of our problem is known, the logical 

topology is fixed, and routing can be done by the formulation described below, since, 

the values bij   (1 ≤ i, j ≤ NE) are known, it is a LP program.  

Routing this type of flow problem can be formulated as follows: [21] 

Objective function: 

     Minimize maxΛ    (2.9.1) 
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Subject to  

1. Ensure that maxΛ  is the L-congestion. 
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2. Apply the flow conservation rules. 
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 (2.9.3) 

(2.9.3) has to be applied to node i, for all i, 1 ≤ i  ≤ NE, and has to be repeated for each 

commodity k , 1 ≤ k  ≤ q. 

The notation used in this formulation has been given in Appendix1. 

2.10 Reconfiguration of Logical Topology 

 

The motivation of logical topology design is to optimize the network 

performance, improving the congestion, the delays and the throughput metrics. The 

WDM networks have the property of dynamically changing its logical topology 

corresponding to the changing traffic conditions [8]. This ability to dynamically 

optimize the network for changing traffic patterns is one of the key features of multi-
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wavelength optical network. As we have mentioned in Chapter 1, traffic does not 

remain the same all the time. Therefore, when the given logical topology is incapable 

of supporting changing traffic demands, the logical topology needs to be changed. 

This can be viewed as a reconfiguration of the logical topology. The general 

approach to the logical topology reconfiguration problem has been a two-phase 

operation: the first phase being a logical topology design for the new traffic 

conditions and the second phase being a routing scheme to handle the increased 

traffic demand over the logical topology, in order to meet the objective function, such 

as minimizing the congestion of the network. 

In this discussion, we have an arbitrary logical topology based on some physical 

topology, which was capable of handling the traffic that existed when the logical 

topology was designed, but after a certain period of time, the traffic load will change 

and the current logical topology cannot handle the new traffic. In this situation we 

need to change the logical topology or reconfigure the logical topologies that can 

handle the increased traffic in an optimal manner.  

 

 

Figure 2.10.1: Reconfiguration of Logical Topology 

Fig. 2.10.1b: New Topology 
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In Fig. 2.10.1a, end node E1 sending traffic of 1.1 (which is greater than the 

maximum allowed value of 1.0) to end node E3 and end node E4 sending a 

relatively very small traffic (0.01) to end node E3. The network shown in Fig. 

2.10.1a is an overloaded network, since edge E1 � E3 is carrying more traffic 

than its capacity. In this situation, two strategies could be considered to change 

(reconfigure) the logical topology. One is to find the best logical edge (s) to be 

added to the topology, another one is to remove one logical edge and add one 

logical edge. If very little traffic is flowing on an edge, the edge is a candidate to 

be deleted. As a result of the deletion, there will be no significant effect on the 

traffic carried by the network. In our thesis, we have implemented the first option 

only. 

In Fig. 2.10.1b shows that we have added one edge from end node E1 to end 

node E2 and then routed the traffic accordingly. The traffic flowing on every edge 

is below the capacity of logical edge. Therefore, the reconfiguration has been 

done on the existing logical topology. 

In summary, when a lightpath is created from source to destination, a source 

node communicates directly with the destination node. A lightpath can carry a 

certain amount of traffic. When traffic increases more than the capacity of a 

logical edge, the logical topology needs to be changed in order to get an optimal 

logical topology capable of handling the new traffic. An optimal logical topology 

is always desirable, because it improve the performance of the network.  

Our main objective is to reconfiguration of logical topology, focusing on 

minimizing the congestion of the network. There are a few key terminologies, 

related to reconfiguration is described below. 
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 2.10.1. Optimization 

 

In general, the optimization means, to find the best value of some objective 

function. In optical networks, the optimization problem for a given logical 

topology could be to find the optimum strategy to handle all the traffic for data 

communication in the network. Some of the optimization strategy could be as 

follows: 

• The maximum number of hops from the source to any destination. 

• The use of resources, such as the number of channels used. 

• Some linear combination of the number of receivers and transmitters used. 

• The set of lightpaths to be created. 

• Minimizing the route through the physical topology. 

• Minimizing the number of channels on each fiber in its route. 

• Minimizing the total traffic load on a path from source to destination 
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2.10.2. Optimization approach 

 

In general, logical topology design problems can be formulated as 

optimization problems aimed at maximizing network throughput by minimizing 

some objective function or other performance measure of interest. Routing the 

traffic optimally on the lightpaths is also usually seen to be a part of the logical 

topology design problem. For this purpose, the problem can be decomposed into 

the following sub problems. 

• Static traffic control 

• Dynamic traffic control 

2.11. CPLEX Optimizer 

 

ILOG CPLEX (often informally referred to simply as CPLEX) is an 

optimization software package. It is named for the simplex method and the C 

programming language, although today it contains interfaces for the C++, C#, and 

Java languages. It was originally developed by Robert E. Bixby and sold via CPLEX 

Optimization Inc., which was acquired by ILOG in 1997; ILOG was subsequently 

acquired by IBM in January 2009. The CPLEX tools solve integer linear 

programming (ILP) problems in medium sized network very efficiently. 

2.12 Hill Climbing Heuristic  

 

The Hill climbing is a class of methods, which start with an initial solution to 

be improved and generates a sequence of new solutions by perturbing the current 

solution, and then accepting the new solution permanently, temporarily, or rejecting it 

completely. A simple illustration of a hill climbing algorithm is given in fig. 2.12.1. 
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Figure 2.12.1: Hill Climbing Algorithm 
 

 It is simply a loop that continually moves in the direction of increasing value. 

The algorithm does not maintain a search tree, so the state data structure need only 

record the state and its evaluation , which we can denoted by VALUE. In this solution 

there is no guarantee that there are no local minima of the objective function. A 

solution is called a local minimum if a better solution can be obtained only after a 

sequence of perturbations, some of which are not improvements. A hill climbing 

algorithm [11] also makes use of short-term memory of searching algorithm, if there 

is no restrictions are applied. In our problem solution is a classic hill climbing is used 

to search the neighborhood and select better solution in the each iteration.  

2.13 Overview from Previous Research Paper 

 

An overview of reconfiguration issues in virtual topology design is given in 

[7]. Two approaches have been discussed, i) Cost approach:  The concern is to 

minimize the cost of the reconfiguration, in terms of the number of Wavelength 

Routers that need to have their optical switching reprogrammed, or the total number 

of optical switching that need to be changed to implement the new lightpath and 

eliminate old ones. ii) Optimization Approach: In this approach, the virtual topology 
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is given, when the traffic changed, the reconfiguration necessary to optimize some 

objective function is carried out. 

Two sub-problems have been mentioned in this paper [9]. One is to find 

connectivity and another is to route the traffic. Algorithms have been proposed in this 

paper to iteratively reconfigure the logical topology to minimize the congestion in 

response to changes in the traffic pattern using a local search technique. For routing 

they have used a minimum hop routing algorithm. They have also worked on 

minimizing the disturbance to the network at the time of reconfiguration by a 

“branch-exchange” technique. The author claimed that since each change to the 

logical topology is small, the disturbance to the network is small.  

The reconfiguration issues arising in single-hop lightwave networks have been 

studied in [13]. They claimed that this is the first in-depth study of the tradeoffs 

involved in carrying out the reconfiguration process. They developed and compared 

reconfiguration policies to determine when to reconfigure the network, and presented 

an approach to carry out the network transition by describing a class of strategies that 

determine how to retune the optical transceivers. The reconfiguration problem is 

formulated in this paper as a Markovian decision process [28]. 

The complete logical topology design problem including traffic routing, 

lightpath selection and RWA has been considered in [14]. The problem is formulated 

as an MILP, where the objective is to minimize the congestion. For large networks, a 

solution based on LP-relaxation of the integer variables is presented.  

An MILP for optimal logical topology design and an evaluation of a number 

of existing heuristics for logical topology design, in terms of both performance and 

complexity, has been given in [18]. 

A tabu-search-based meta-heuristic for optimal logical topology design, 

objective is to minimize the congestion of the multi-hop network, has been presented 

in [5]. The paper assumes that the physical topology and a stochastic description of 
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the traffic pattern is given, and does not consider constraints on the number of 

wavelengths per fiber. The move selection procedure has been given in the following 

Fig.2.12.1 below: 

 

Figure 2.13.1: Move Selection Procedure [5] 
 

A tabu search heuristic for solving the routing and wavelength assignment 

(RWA) problem in optical WDM networks has been proposed in this paper [15], 

considering the wavelength continuity constraint and a given set of connections to 

satisfy. For a number of available wavelengths on each link, this algorithm attempts 

to maximize the number of routed connections. Using the tabu search algorithm, they 

solved the problem of RWA in two steps. During Step 1, a set of paths is selected in 

the graph. Then Step 2 uses paths selected during Step 1 to build a solution of the 

problem. 

The heuristic approach presented in this paper [16], adapts the tabu search 

strategy proposed in [4] for throughput maximization, to the multi-criteria problem of 

simultaneously minimizing congestion and total flow. Tabu search is implemented as 

a two phase strategy dealing with diversification as well as intensification of search. 

A local search based on branch-exchange and tabu strategy is used to explore 

different virtual topologies. 

A Tabu Search Algorithm have been proposed in this paper [17], to design a 

logical topology for packet switched traffic over WDM mesh networks. The algorithm 

evaluate the cost-performance trade-off between, 
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i) Designing logical topology with small congestion and large number of 

lightpath. 

ii) Designing a less expensive topology with higher congestion. 

They have solved the routing problem with ILP formulation and Tabu Search 

technique used for move selection procedure. The process used depicted below in Fig. 

2.10.2. 

 

 

Figure 2.13.2: Move Selection Procedure in Tabu Search [17] 
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Chapter 3: Problem Specification 

 

3.1 Problem definition 

 

In Section 2.4, we have discussed the problem of designing an initial logical 

topology. We now define the problem of reconfiguring the logical topology in a 

WDM optical network. Given an initial logical topology, when the traffic demand  

increases and the current logical topology is  incapable of handling the increased 

traffic demand, our problem is to find a new logical topology, capable of handling the 

current demand, with minimal changes to the original logical topology.  

It is well known that the problem of determining an optimal logical topology is 

computationally intractable [21]. Reconfiguring the logical topology is a variation of 

the same problem and is intractable for the same reason. Our objective is to 

reconfigure the topology so that the congestion is below the capacity of a lightpath. 

We need to find an optimal logical topology with an acceptable congestion of the 

network.  This problem has two sub problems as follows: 

1. Find Topology (FT): Find the new logical topology by reconfiguring the 

initial logical topology. 

2. Route Traffic (TR): Route the current traffic optimally over the logical 

topology. 

Fig. 3.1.1 shows a schematic description of the problem including the input 

parameters and the output. 
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Figure 3.1.1: Schematic Description of the Problem 
 

Since, we cannot route the traffic without determining a logical topology, 

these two problems are interrelated and it should be solved simultaneously. The 

problem of finding a new optimal logical topology can be viewed as a reconfiguration 

of the logical topology since we start with the original topology and add a minimum 

number of logical edges. In this search we can view the current logical topology as 

the current state and a new logical topology as the new state - the result of a move. 

The term “move” here means the application of a perturbation to the current logical 

topology to create a new logical topology.  The search space for a given logical 

topology in a WDM network is, in general, vast. We have used a hill climbing 

technique using four strategies to limit the time needed to find a candidate optimal 

logical topology. Once a new optimal logical topology is determined, the CPLEX 

optimizer program has been used to route the traffic over the logical topology to 

determine the congestion. The CPLEX program can be used only on small to medium 

sized networks for determining an optimal solution.  

3.2 Identifying the move 

 

We have mentioned in Chapter 2 that the congestion of a logical topology for 

a given traffic matrix and routing strategy is the value of the traffic on the edge 

carrying the maximum load [21]. Our objective is to reduce the congestion to a value 

below the capacity of a light path.  A move in our problem identifies an edge to be 

 

FT- TR 
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added to the current logical topology to reduce the congestion. Let the logical edge 

carrying the maximum load be the edge from source node imax to destination node jmax 

(Figure 3.3.1). Traffic flowing on the edge imax to jmax could be due to the following:  

1. The source for a communication could be imax itself, where part of the 

traffic resulting from the communication is being routed, using the edge 

imax  � jmax. The arrow ‘�’ is used in between two nodes to describe a 

logical edge in our thesis. 

2. The source for a communication could be some other node where some or 

all of the traffic for the communication is being routed, using the edge  imax  

� jmax. 

3. Destination of the traffic flow could be jmax itself. 

To keep the problem tractable, we have limited the search space we 

investigated to four strategies involving the edges that either start from or end at 

maxi or maxj  as follows: 
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3.3 Strategy 1. 

 

 

 

 

 

 

Figure 3.3.1: Adding edge from Strategy1 
 

Condition for applying the strategy: This strategy is applicable if there is an edge 

from node xi to imax but there is no edge from node xi to jmax, shown in Fig. 3.3.1a. 

Details of the strategy: Strategy1 adds an additional edge from node xi to jmax as 

shown, using a dashed line in Fig 3.3.1b.  

The rationale for the strategy:  Part of the traffic flowing on edge xi� imax is likely 

being routed through the edge imax �  jmax. In this case, adding an edge from end node 

xi to jmax could be promising. Part of the traffic flowing to end node jmax using edge xi 

� imax � jmax, could flow directly from node xi to node jmax as an alternative path 

(Figure 3.3.1b) and may reduce the congestion of the network. 

Potential benefit for the strategy:  In this strategy, we calculate the potential benefit 

for adding the edge xi � imax as follows.  

In general, there are a number of commodities flowing on the edge xi � imax and imax 

imax jmax 

xi 

Figure: 3.3.1b 

imax jmax 

xi 

Figure: 3.3.1a 
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� jmax. The following process calculates the benefit for commodity k: 

i. Let the traffic request t1 be flowing on the edge xi � imax for commodity ki  

ii.  Let traffic t2 be flowing on edge imax � jmax for commodity ki. 

iii.  Let tmin be the minimum of t1 and t2.. 

We can calculate the total benefit for all commodities, simply by adding up all the 

tmin found from step iii for all the commodities. After we find out the total benefit for 

the edge xi � imax using the Steps 1 to 3, we calculate the total benefit for all other 

edges incoming to imax by using the same process. Finally we select the edge which 

has the highest benefit among all the edges and save the information of that edge as 

the best potential move from Strategy 1.  

The rationale for considering the minimum traffic flow for a particular 

commodity ki is illustrated by an example below. There are two cases to be 

considered to achieve the best benefit. 

Case-1: The edge imax �  jmax is carrying a lesser amount of commodity ki compared 

to the edge xi � imax. 

Case-2: The edge imax �  jmax is carrying a greater amount of commodity ki compared 

to the edge xi � imax. 

An example for Case-1:  

Let 0.45 units of commodity ki flow on the edge imax � jmax and 0.55 units of 

commodity ki flow on the edge xi � imax (Fig. 3.3.2). Now if we add an edge from the 

end node xi to jmax, as shown using a bold dashed line, a maximum of 0.45 units of 

commodity ki can be diverted to the alternative path (xi � jmax). After 0.55 units of 

commodity ki reached the end node imax, 0.45 units flows on the edge imax � jmax and 

0.10 units of commodity ki might be flowing to some other end node xn which is not a 

concern, because our concern is to reduce the traffic load on the edge imax � jmax. 
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Therefore, the maximum benefit can be achieved by diverting 0.45 units of 

commodity ki, which is the minimum of 0.55 and 0.45.  

 

 

Figure 3.3.2: Benefit calculation for case-1. 

 

An example for Case-2:  For commodity ki, let 0.55 (0.45) units of commodity ki flow 

on edge imax � jmax  ( xi � imax ) (Fig. 3.3.3). Now if we add an edge from end node xi 

to jmax, as shown using a bold dashed line, a maximum of 0.45 units of commodity ki 

can be diverted to this alternative path (xi � jmax). Because 0.45 units of commodity ki 

is flowing from xi to jmax, using the path xi � imax � jmax, which can be diverted using 

the edge xi � jmax. The 0.10 units of commodity ki is added to the edge imax � jmax 

from some other end node (xn), again which is not a concern. Therefore, we may 

divert 0.45 units of commodity ki which is the minimum value of 0.55 and 0.45.  

 

imax jmax 

xi 
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0.10 

xn 



 

48 

 

 

 

Figure 3.3.3: Benefit calculation for case-2. 
  

Therefore, in both cases, it is beneficial to consider the minimum value of a particular 

commodity that is flowing through the path xi � imax � jmax. 

imax jmax 

xi 

0.45 

0.55 

0.10

xn 
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3.4 Strategy 2 

 

 

 

 

 

 

Figure 3.4.1 Adding edge from Strategy 2. 
 

Condition for applying the strategy: This strategy is applicable if there is an edge 

from node imax to xi but there is no edge from node xi to jmax as shown in Fig. 3.4.1a. 

Details of the strategy: Strategy 2 adds an additional edge from node xi to jmax as 

shown in Fig 3.4.1b. 

The rationale for the strategy:  Part of the traffic flowing on the edge imax � jmax, 

could be diverted using the edge xi � jmax as shown in Fig. 3.4.1b. In this case, adding 

an edge from node xi to jmax could be promising, because part of the traffic could be 

diverted through the path imax � xi � jmax as shown in Fig. 3.4.1b. As a result, it may 

reduce the congestion of the network. 

imax jmax 

xi 

Figure: 3.4.1b 

imax jmax 

xi 

Figure: 3.4.1a 



 

50 

 

 

Potential benefit for the strategy:  The process of calculating the benefit for this 

strategy is as follows: 

i. Let Lmax be the current congestion value,  

ii. Let the total traffic flowing on the edge imax � xi  be the minimum 

traffic (Tmin),  

iii.  Therefore, the maximum benefit that can be achieved from Strategy 2 

is the average of the difference between Lmax and Tmin.. 

The rationale for considering the edge which is carrying the minimum traffic 

load is explained with an example below.  
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Let the traffic be flowing on the network shown in (Fig. 3.4.2).  

 

 

Edge Data 

imax �  x1 0.45 

imax �  x2 0.35 

imax�  jmax 0.95 

 

 

Figure 3.4.2: Benefit Calculation for Strategy 2. 
 

In Fig 3.4.2, there are 3 outgoing edges from imax as follows: 

• An edge from imax  to jmax carrying a flow of 0.95 

• An edge from imax  to x1 carrying a flow of 0.45 

• An edge from imax to x2 carrying a flow of 0.35 

We note that, considering all the edges from imax, the edge from imax to x2 is carrying 

the least amount of traffic and the edge from imax to x1 is carrying most amount of 

traffic. In order to reduce the total flow from imax to jmax, under Strategy 2, there are 

two choices: 

i) add an edge from x1 to jmax 

ii)  add an edge from x2 to jmax 

0.95 

0.35 

0.45 

jmax 

x1 

x2 

imax 
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Choice 1- adds an edge from x1 to jmax: 

In this case, the traffic has to be routed through the path imax � x1 � jmax. 

Note that the edge imax � x1 is carrying the most traffic. As per the process of 

calculating the benefit from this strategy, the benefit can be achieved by the average 

of the difference of traffic flow between the edges imax � x1 and imax � jmax , which is 

0.25 [(0.95 – 0.45) / 2].  

Choice 2- add an edge from x2 to jmax: 

In this case, the traffic has to be routed through imax � x2 � jmax. As per the 

process of calculating the benefit from this strategy, the benefit can be achieved by 

the average of the difference of traffic flowing between the edges imax �  x2 and imax 

� jmax, which is 0.30 [(0.95 – 0.35) / 2].  

We observed that the maximum benefit can be achieved from choice 2 by 

adding an edge from x2 � imax and the benefit is the average of the difference of the 

traffic flow between the edges  imax �  x2 and imax � jmax as mentioned above. Note 

that the edge imax � x2 is carrying the least amount of traffic. 

To justify the cases, let us reduce 0.30 units of data from the edge imax � jmax, 

which is the average of the difference between Lmax and Tmin mentioned in step (iii), 

and divert this traffic through the path imax � x2 � jmax. After routing the traffic, the 

total load on the edge imax � x2 is 0.65 (0.35 + 0.30), and total load on the edge imax 

� jmax is 0.65 (0.95 – 0.30) as shown in Fig. 3.4.3. It shows that, the corresponding 

traffic on the edges imax � jmax and imax � x2 are uniformly distributed.  
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Figure 3.4.3a: Choice 2 - Traffic routing after removing 0.30 units. 
 

In contrast, if we reduce 0.35 units of data from the edge imax � jmax, which is 

0.05 units more then the average of the difference between Lmax and Tmin mentioned in 

step (iii), and route that traffic through the path imax � x2 � jmax, the total load on the 

edge imax � x2 is 0.70 (0.35 + 0.35) and total load on the edge imax � jmax is 0.60 (0.95 

– 0.35). In this way, the corresponding traffic on the edge imax � x2 and imax � jmax is 

not uniformly distributed. As a result, the edge imax � x2 becomes overloaded than 

imax � jmax as shown in Fig. 3.4.3b. 

 

 

Figure 3.4.3b: Choice 2 - Traffic routing after removing 0.35 units 
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Therefore, adding an edge from x2 to jmax is more beneficial then adding an 

edge from x1 to jmax.  

3.5 Strategy 3 

 

 

 

 

 

 

 

 

Figure 3.5.1 Adding edge from Strategy 3. 
 

Condition for applying the strategy: This strategy is applicable if there is an edge 

from node jmax to xi but there is no edge from node imax to xi as shown in Fig. 3.5.1a. 

Details of the strategy: Strategy 3 adds an additional edge from node imax to xi as 

shown in Fig 3.5.1b.  

The rationale for the strategy:  Part of the traffic flowing to node xi, is also likely 

being routed through the edge imax � jmax. In this case, adding an edge from node imax 

to xi will be promising, since the traffic routing through the edge from node imax to jmax 

imax jmax 

xi 

Figure: 3.5.1b 

imax jmax 

xi 

Figure: 3.5.1a 
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could be diverted through the edge imax � xi. 

Potential benefit for the strategy:  The addition of the edge imax � xi could reduce the 

traffic of the edge imax � jmax, and as a result it could reduce the congestion of the 

network. The process of calculating the benefit for this strategy is similar to Strategy 

1, discussed above. 

3.6 Strategy 4  

 

 

 

 

 

 

 

Figure 3.6.1: Adding edge from Strategy 4. 
 

Condition for applying the strategy: This strategy is applicable if there is an edge 

from node xi to jmax but there is no edge from node imax to xi as shown in Fig. 3.6.1a. 

Details of the strategy: Strategy 4 adds an additional edge from imax to xi as shown in 

Fig. 3.6.1b.  

The rationale for the strategy:  Part of the traffic flowing on the edge imax � jmax 

imax jmax 

xi 

Figure: 3.6.1b 

imax jmax 

xi 

Figure: 3.6.1a 
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could be diverted using the edge imax �  xi. 

Potential benefit for the strategy:  In this case, adding an edge from node imax to xi will 

be promising because there will be an alternative path to divert the traffic flowing 

through the edge imax �  jmax as shown in Fig. 3.6.1b. As a result, it may reduce the 

congestion of the network. The process of calculating the benefit from this strategy is 

similar to the Strategy 2, discussed above. 

 

3.7 Overall Scheme with Block Diagram  

 

 

Figure 3.7: Overall Scheme with Block Diagram. 
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The overall scheme of our work is shown in Figure 3.7, where the input for LP 

File Generator is an initial logical topology which is generated by the heuristic 

mentioned in section 2.8, and an initial traffic matrix which is randomly generated 

discussed in Section 2.5. The LP File Generator is a C program which generates a 

Linear Programming (LP) specification file, discussed in section 2.9. The CPLEX3 

environment is called with the LP file4 as an input to route the traffic over the logical 

topology optimally.  

In the first iteration, the CPLEX Optimizer calculates the initial congestion 

value of the network. Then we create three new traffic matrices such that congestion 

value increases to 1.05, 1.10 and 1.15 on the initial congestion by applying an 

appropriate scaling factor to each entry in the traffic matrix. The lp file is then 

converted to a file which shows how much traffic is flowing on an edge for a 

commodity5. This file is an input to the Hill Climbing algorithm to generate a new 

logical topology. The Hill Climbing algorithm is constructed using 4 strategies 

designed in Section 3.6.  

In the subsequent iterations, we run the CPLEX optimizer with new logical 

topology and the new traffic matrix and observe the congestion of the network. This 

task will be carried out with a number of iteration until the stopping-criterion6 is met.  

                                                

3 The CPLEX in an optimization tools, discussed in Chapter 2. 

4 A sample of lp file is discussed in Chapter 4 and also appeared in Appendix 1. 

5 Multiple commodities are flowing on a logical edge; discussed in section 2.5. 

6 The stopping criterion is to reduce the congestion value below 1 in our thesis. 
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Chapter 4: Implementation Details 

  

The implementation details of our problem of reconfiguration of logical topology 

have been discussed in this chapter. Various aspects of implementation of our thesis 

have been pointed out below: 

1. We have designed an “initial logical topology” using a heuristic algorithm. 

2. Created a fractional traffic matrix and sorted traffic matrix (will be discussed 

later in this chapter in detail). 

3.  Designed a CPLEX driver program (Linear Program Specification) for 

routing the traffic optimally by calling the CPLEX environment. 

4. Defined a reconfiguration algorithm based on the Hill-Climbing Search 

methodology to create new logical topology. 

4.1  Design initial logical topology 

 

We have designed an initial logical topology based on a heuristic algorithm as 

mentioned in Chapter 2. We could have used any heuristic for this purpose and we 

chose to use the HDL heuristic [19].  We kept the design as simple as possible; we 

have assumed that all resources such as transmitters or receivers have been used at 

each end node properly at the time of designing the initial logical topology. The input 

to this heuristic algorithm is a randomly generated sorted traffic matrix (discussed 

later in this chapter); sorted in the sense that the largest traffic has to be handled first. 

The straight forward approach of generating an initial logical topology has been given 

below: 
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1. Read sorted traffic request matrix 

2. For each request, get the source-destination pair. 

3. Using Breadth-first Search algorithm, search for a path in the current logical 

topology, which has sufficient residual capacity to send the request. 

4. If a path is found, update the residual capacity of the path from the source to 

the destination for that request. 

5. If path cannot be found, create a new logical path, consisting of a single 

logical edge from the source to the destination of the request and update the 

residual capacity of the path. 



 

60 

 

 

The flow diagram shown in Fig. 4.1.1, describes the process of generating initial 

logical topology. 

 

Figure 4.1.1: Generate Initial Logical Topology. 
 

 

 

No 

Yes 

First request from the 
(descended ordered) 
sorted traffic matrix  

Path 
found? 

No 

Update the residual capacity 
of the path for the request  

More 
request? 

Stop 

Get next 
request 

Breadth-First Search to find the path from 
source-destination and have sufficient 

residual capacity of the path 

Create new light 
path  

Yes 



 

61 

 

 

 

As mentioned, we have used the breadth-first search for finding a path from the 

source to the destination of a traffic request. A brief algorithm for the Breadth-First 

search is given below: 

1. Enqueue the source node.  

2. Search all neighboring nodes from source node 

3. Dequeue a node from neighboring node and examine it.  

o If the destination node is found, quit the search and return the path 

from the source to the destination.  

o Otherwise enqueue any successors nodes that have not yet been 

visited.  

4. If the queue is empty, every node on the networks has been examined – quit 

the search and return "not found".  

5. Repeat from Step 3 otherwise.  

4.1.2 An example of creating a 4-node logical topology 

 

We used an N x N matrix to represent the logical topology of a network with N 

end nodes. In this representation, the element in row i and column j of the matrix, is 

either a 0 or a 1. If the element in row i and column j is 1(0), it means that there is a 

(no) logical edge from end node i to end node j. When the heuristic for creating a 

logical topology starts, there is no logical edge and so the entries in the matrix are all 

0’s. For instance, a network with 4 end-nodes may be represented by a matrix of size 

4 x 4 with suitable elements.   An initial 4 x 4 matrix M representing a logical 

topology and a traffic matrix T is shown in Table 4.1.2.1 and Table 4.1.2.2 is 

respectively. M is initialized with all zeros since there is no logical edge initially. The 
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traffic request matrix T is randomly generated and then sorted in descending order, 

according to the amount of traffic to be communicated.  

 

In the following example, the very first request is to send 0.5 units of traffic from 

source node 0 to destination node 2; second request is 22 traffic units from source 

node 1 to destination node 0 and so on.  

 

 

 

 

 
 

Table 4.1.2.1: 4 Nodes logical topology (Initialize with zeros) 
 

Source Destination Traffic 

0 2 0.5 
1 0 0.4583 
1 3 0.4583 
2 0 0.4375 
2 3 0.3125 
3 2 0.3125 
3 0 0.2292 
0 1 0.2083 
1 2 0.2083 
2 1 0.2083 
3 1 0.1042 
0 3 0.0833 

      

Table 4.1.2.2: Sorted Traffic Request Matrix 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 
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Step1:  According to the algorithm, we take the first request, which is to send 

0.5 units of data. The breadth-first search looks for a path from 0 to 2, which is 

sufficient to carry 0.5 units. In this case, there is no path. So we add a new logical 

edge from 0 to 2. Now, we have a path from 0 to 2 with a capacity of 1 units7. We 

draw a lightpath from the source node 0 to the destination 2 (0 � 2) shown in Fig. 

4.1.2.1. In Table 4.1.2.3 shows that 1 has been entered in row 0, column 2, meaning 

there is a logical edge from source node 0 to destination node 2. Table 4.1.2.4, shows 

the all the updates. 

 

 

 

 

Figure 4.1.2.1: Graph diagram of Logical 
Topology with one Logical Edge 

 

 

 

 

 

 

 

Table 4.1.2.3: Logical Topology Matrix 

0 0 1 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

 

Source Destination Lightpath Current Load Residual Capacity 

0 2 0 � 2 0.5 1.0 – 0.5 = 0.5 

 

Table 4.1.2.4: Updates of Residual Lightpath Capacity, Step1 
 

                                                

7 We assume, the capacity of a logical edge is OC-48. 

0 2 



 

64 

 

 

Step2: Take the next request, which is 0.4583, and source-destination pair is (1, 0), 

there is no path from node 1 to 0; we draw a new lightpath as show in Fig.  4.1.2.2, 

update of traffic matrix and the residual lightpath capacity for the edge 1 to 0 is 

0.5417 (1.0 – 0.4583) as shown in Table 4.1.2.5 and Table 4.1.2.6 respectively.  

 

           

 

Figure 4.1.2.2: Graph diagram of Logical 
Topology with two Edges 

 

 

 

 

 

 

 

Table 4.1.2.5: Logical Topology Matrix 
 

0 0 1 0 

1 0 0 0 

0 0 0 0 

0 0 0 0 

 

 

Source Destination Lightpath 

Flow 

Current 

Load 

Residual Capacity 

0 2 0 � 2 0.5 1.0 – 0.5 = 0.5 

1 0 1 � 0 0.4583 1.0 –0.4583 = 0.5417 

 

Table 4.1.2.6: Updates of Residual Lightpath Capacity, Step2 

0 2 

1 
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Similarly, if no logical path exists for a source-destination pair of a request; a 

new path will be created following the procedure mentioned in Step 1 and Step 2. The 

next four such requests and their source-destination pairs are shown in the table 

4.1.2.7 in our example is taken from table 4.1.2.1. The request 0.4583 is routing from 

node 1 to node 3, request 0.4375 routing from node 2 to node 0 and so on. 

1 3 0.4583 
2 0 0.4375 
2 3 0.3125 
3 2 0.3125 

 

Table 4.1.2.7: Source-Destination pair of requests 
 

After handling the four requests, the graph diagram and the traffic matrix 

update are shown in Fig. 4.1.2.3 and Table 4.1.2.8 respectively. The updates of 

residual lightpath capacity are shown in Table 4.1.2.9. 

 

 

 
 

 

0 0 1 0 

1 0 0 1 

1 0 0 1 

0 0 1 0 

Figure 4.1.2.3: Graph diagram of Logical 
Topology with 6 Edges. 

Table 4.1.2.8: Updated Logical 
Topology 

 

0 2 

1 3 
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Source Destination Lightpath 
Flow 

Current 
Load 

Residual Capacity 

0 2 0 � 2 0.5 1.0 – 0.5 = 0.5 

1 0 1 � 0 0.4583 1.0 –0.4583 = 0.5417 

1 3 1 � 3 0.4583 1.0 –0.4583 = 0.5417 

2 0 2 � 0 0.4375 1.0 – 0.4375 = 0.5625 

2 3 2 � 3 0.3125 1.0 – 0.3125 = 0.6875 

3 2 3 � 2 0.3125 1.0 – 0.3125 = 0.6875 

 

Table 4.1.2.9: Updates of Residual Lightpath Capacity 
 

Step 3: In this step, I have demonstrated the procedure where a logical path exists for 

a source-destination pair of a request. In this case, if the residual capacity of the 

existing path is sufficient to handle the request, it will use that path instead of creating 

a new link (path).  For example, from the source node 3 to the destination node 0, the 

request 0.2292 units of data to communicate as shown in table 4.1.2.2. In this case 

since there is a logical lightpath (3 � 2 �0) as can be seen from Fig. 4.1.2.3, it does 

not need a new lightpath from the source node 3 to the destination node 0. Since, the 

residual capacity of lightpath 3 � 2 is 0.6875, and for the lightpath 2 � 0 is 0.5625, 

it is sufficient to send the request (0.2292) using the path 3 � 2 �0 as shown in the 

Table 4.1.2.10 in bold-italic text. 
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Source Destination Lightpath Flow Current Load Remaining Capacity 

0 2 0 � 2 0.5 1.0 – 0.5 = 0.5 

1 0 1 � 0 0.4583 1.0 – 0.4583 = 0.5417 

1 3 1 � 3 0.4583 1.0 – 0.4583 = 0.5417 

2 0 2 ���� 0 0.4375 + 0.2292 1.0 – 0.6667 = 0.3333 

2 3 2 � 3 0.3125 1.0 – 0.3125 = 0.6875 

3 2 3 ���� 2 0.3125 + 0.2292 1.0 – 0.5417 = 0.4583 

3 0 3 � 2 � 0 Xxx Xxx 

 

Table 4.1.2.10: Update of Residual Lightpath Capacity 
  

Similarly, after handling the entire set of requests, using this heuristic, the following 

logical topology and the corresponding logical topology matrix is generated as shown 

in Fig. 4.1.2.4 and Table 4.1.2.11 respectively.  

 

 

  

 

0 1 1 0 

1 0 0 1 

1 0 0 1 

0 0 1 0 

Figure 4.1.2.4 Graph diagram of Logical 
Topology with 7 Edges. 

Table 4.1.2.11: Logical Topology 
Matrix. 

 

0 2 

1 3 
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4.2 Generating a traffic matrix 

 

The traffic matrix is an N x N matrix, where N is the number of end nodes in 

the networks. The matrix entries are randomly generated using the native C compiler. 

Table 4.2.1 is an example which is generated for the network with 4 end nodes using 

the random number generator. The diagonal entries are filled with 0’s, since there 

cannot be any traffic from a node to itself. For example, the entry for source-

destination pair (0, 3) is 0.083333, which means that the source node 0 is sending 

request (0.083333) units of data to the destination end node 3. Here the unit is the 

capacity of a lightpath. 

 

0.000000 0.208333 0.500000 0.083333 

0.458333 0.000000 0.208333 0.458333 

0.437500 0.208333 0.000000 0.312500 

0.229167 0.104167 0.312500 0.000000 

 

Table 4.2.1: Randomly Generated Traffic Matrix 
 

The rationale for generating a fractional traffic matrix is discussed in Chapter 2. 

Since the lightpath capacity has been fixed to OC-48 in our experiments, as 

mentioned in Section 4.1, we have generated traffic in between OC-1 to OC-48 

randomly and then divided each value by 48, which gives us entry with fraction 

number in between 1/48 to 48/48. Below are the straight forward steps for generating 

traffic matrix. 
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1. Initialize each cell of matrix M with zeros. 

2. For each entry of N x N matrix M, generate a random number ni in between 1 

to 48. 

3. Divide n1 by edge-capacity (Edge-capacity = 48 OC). 

4. Fill each entry with the value which is got from Step2, except the diagonal 

entries.  

4.2.1 A sorted traffic matrix 

 

We have also generated the sorted traffic matrix as shown in Table 4.1.2.2, 

using the native C compiler. The sorted traffic matrix has been used to generate the 

initial logical topology as mentioned in section 4.1. As we have mentioned in our 

problem definition in Chapter 2, the initial logical topology is needed to find the 

initial congestion for a given traffic. The rationale for generating the sorted traffic 

matrix in descending order is that we wish to handle the largest traffic first. For the 

smaller requests, we may not need to create a new lightpath if the request can be send 

by some existing logical path.  

4.3 Determining the Congestion 

 

We have used the CPLEX optimizer program to route the traffic optimally. 

The input to the CPLEX optimizer is a file specifying the Linear Program (LP). The 

LP file is generated using a logical topology matrix file and a traffic matrix file. The 

CPLEX optimizer program routes the traffic through the logical topology and 

calculates the routing strategy within a short period of time for a small or medium 

size of networks. The routine CPXNETgetobj function is used to access the objective 

function values in the network. The routine returns a zero when it is successful and a 

nonzero value if an error occurs. The main predefined function of CPLEX used in our 
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problem is described briefly below: 

1. The routine CPXopenCPLEX function initializes a CPLEX 
environment. The routine returns a pointer to a CPLEX environment.  

2. Next the CPXcreateprob function is called to create the problem. The 

routine CPXcreateprob() creates a CPLEX problem object in the 

CPLEX environment. The arguments to CPXcreateprob() define an LP 

problem name. The problem that is created is an LP minimization 

problem with zero constraints, zero variables, and an empty constraint 

matrix. The CPLEX problem object exists until the routine 

CPXfreeprob () is called. If successful, CPXcreateprob () returns a 

pointer that can be passed to other CPLEX routines to identify the 

problem object that is created. If not successful, a NULL pointer is 

returned. 

3. The routine CPXreadcopyprob () reads an LP file into an existing LP 

problem object. The problem can then be optimized using any one of 

the optimization routines. The routine returns a zero on success, and a 

nonzero if an error occurs. 

4. The routine CPXlpopt () is called after a linear program has been 

created via a call to CPXcreateprob (), to find a solution to that 

problem using one of CPLEX's linear optimizers.  

5. The routine CPXgetstat () is used to access the solution status of the 

problem after an LP or mixed integer optimization. If no solution 

exists, CPXgetstat () returns the value 0. 

6. The routine CPXNETgetobj function is used to access the objective 

function values in the network stored in a network problem object. The 

routine returns a zero on success, and a nonzero if an error occurs. 
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4.4 Creating a new Logical Topology using the Hill Climbing Search 

Technique  

 

The overall process of creating a new logical topology using the Hill-

Climbing search technique is given in Figure 4.4a. First, we have created the move8 

list from four different strategies. Each strategy generates one best move by searching 

all potential moves in the neighbourhood of the current move and calculates how 

much benefit may be achieved from it. As a result, there are 4 moves generated from 

four strategies. Finally, we calculated one best move from the 4 moves, based on the 

move which has the highest benefit. We implemented the best move to the current 

logical topology to create a new logical topology. The flow diagram is shown in Fig. 

4.4a. The details of each process are discussed later in this chapter. 

 

Figure 4.4a: Generating new Logical Topology. 
 

                                                

8  The term “move” has been discussed in Chapter 3. 

Generate the move list from 4 
strategies using the Hill-Climbing 

search technique 

Modify the current logical 
topology (create a new 

logical topology) 

Calculate the 
best move  
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4.4.1. Implementation details and calculating the best move from Strategy 1 

 

The details of designing Strategy 1 have been discussed in Chapter 3, Section 

3.3. In this section, the implementation of this strategy and calculating the best move 

is discussed in following subsections: 

• Implementation of Strategy 1. 

• Implementation of determining the best move in Strategy 1. 

• Implementation of calculating benefit for a move (A logical edge). 
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4.4.1.1. Implementation of Strategy 1 

 

To implement Strategy 1, we have executed the steps shown in Fig. 4.4.1.1a.  

 

Figure 4.4.1.1a: Implementation details of Strategy 1. 
 

In this process, our objective is to create the list of incoming end nodes, such 

that if there is an edge from the end node xi to imax but there no edge from the xi node 

to jmax as shown in Fig.3.3.1 in Chapter 3. We assume, the highest traffic flow is 

taking place on edge imax � jmax in this particular network. 

Start 

No 

No 

xi = first end node in the 
network 

Is there logical 
edge xi � imax 

but no edge xi 

� jmax? 

Yes 
Are there more 
end nodes in the 

network? 

xi = next end node in 
the network 

Store xi in a List L as a 
possible source node of 
a logical edge (move)  

Stop 

Yes 

No 

Yes 
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4.4.1.2 Implementation details of determining the best move in Strategy 1 

 

For determining the best move from all potential moves from Strategy 1, we 

implement the process shown in Fig. 4.4.1.2a. Due to the lack of space, we use T(R) 

to denote transmitter (receiver) in this diagram. 

 

 

Figure 4.4.1.2a: Implementation of determining best move in Strategy1. 

Yes 

Yes 

List (L) 

xi = first node from L 

Is a T available to xi 

&  a R available at 

jmax for the edge xi 

� jmax? 

xi = next node from 
the list L 

No 

Is List L 
exhausted? 

Legend: 

T- Transmitter 

R- Receiver 

Stop 

No 

Store the edge xi � jmax as a potential move, 

calculate the benefit for the move xi � jmax and 
choose the best move based on the highest benefit. 
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We checked each node xi from the list L, such that there is a spare transmitter 

at the node xi and a spare receiver at the node jmax available. The list L is created from 

the previous section 4.4.1.1. We stored the edge xi � jmax considering a potential 

move. Then we calculated the benefit9 for each such potential move (edge). Finally, 

we considered a move which has the highest benefit.  

                                                

9 The benefit calculation is shown later in the Section 4.4.1.3.  
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4.4.1.3. Implementation for calculating the benefit of a move in Strategy 1 

  
The process of implementation of the scheme for calculating the benefit of the 

move x2 � imax is shown in Fig. 4.4.1.3a.  

 

 

Figure 4.4.1.3a: Implementation for calculating the benefit of a move in Strategy 
1. 
 

                For our discussions below, we have taken an example when discussing the 

strategies we used. As we have mentioned in Section 2.9, routing the traffic over a 

Yes 

Yes 

No 

Is the commodity 
k is flowing on 

imax� jmax? 

List of commodities, flowing 

on the edge x2 � imax 

Is commodity 
list exhausted?  

No 

Accumulate the minimum traffic 

flowing between two edges x2� imax & 

imax� jmax for commodity k. 

k = next commodity  

k = First commodity on the edge x2 � imax 

Stop 
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logical topology is a multi-commodity flow problem. An edge could have multiple 

commodities flowing for a particular routing scheme. There are two edges x1 � imax 

and x2 � imax to the node imax as shown in Fig.4.4.1.3b. We calculate the benefit for 

all such incoming edges to end node imax and finally we consider the edge which has 

the highest benefit. For example, we consider the edge x2 � jmax as a move for this 

particular network shown in bold dashed line. Since we consider the edge x2 � jmax as 

a potential move for this particular network, a part of the commodities flowing on the 

edge x2 � imax  are routed through the path x2 � imax � jmax.  Therefore, we show the 

calculation of the benefit for the edge x2 � imax.  

 

Figure 4.4.1.3b: Benefit calculation for the edge x2 ���� imax in Strategy 1 
 

In this implementation process, we assume that a commodity k is flowing on 

the edge x2 � imax. If the same commodity k also flows on the edge imax � jmax, then 

we calculate the minimum traffic value between the two edges x2 � imax and imax � 

jmax for the commodity k. We calculated the minimum traffic value for all the other 

commodities that is flowing between the two edges and accumulates by adding them 

up. As a result, the accumulated value is the maximum possible benefit for the edge 

x2 � imax. An example for calculating the benefit with a data flow and rationale for 

choosing the minimum traffic flow for a commodity has been shown in Chapter 3. 

4.4.2 Implementation details and calculating the best move from Strategy 2 

imax 

x1 

x2 

jmax 
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The details of designing Strategy 2 have been discussed in Section 3.4. In this 

section, the implementation of this strategy and calculating the best move is discussed 

in following subsections. 

• Implementation of Strategy 2. 

• Implementation of determining the potential moves. 

• Implementation of selecting the best move and calculate the benefit. 
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4.4.2.1: Implementation of Strategy 2 

 

To implement Strategy 2, we have executed the steps shown in Fig. 4.4.2.1a.  

 

Figure 4.4.2.1a: Implementation details of Strategy 2 
 

In this process, our objective is to create the list of end nodes xi, such that 

there is an edge from node imax to end node xi but no edge from node xi to jmax as 

shown in Fig. 3.4.1 in Chapter 3. We assume that the highest traffic flow is taking 

place on the edge imax � jmax in the network. 
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Stop 
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4.4.2.2. Implementation detail of determining the potential moves from Strategy 2 

 

For determining the potential moves using Strategy 2, we implemented the 

process shown in Fig. 4.4.2.2a. Due to the lack of space, we use T (R) to denote 

Transmitter (Receiver) in this diagram. 

 

Figure 4.4.2.2a: Implementation of determining best move in Strategy 2. 
 

We stored the information of the edge xi � jmax considering a potential move 

if there is a spare transmitter at node xi and a spare receiver at node jmax available of 

the edge xi � jmax. Node xi is a member of list L which is created from procedure 
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outlined in Section 4.4.2.1. In this process, we checked all such moves and calculated 

the benefit for each move. In the next section, we show how we calculate the benefit 

for selecting the best potential move. 

4.4.2.3. Implementation of selecting the best move in Strategy 2 

 

 The details of how we selected the best move by calculating the benefit is 

shown in Fig. 4.4.2.3a. 

 

Figure 4.4.2.3a:  Implementation of selecting the best move in Strategy 2. 
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An example of selecting the best move is shown in Fig. 4.4.2.3b. There are two 

potential moves (x1 � jmax and x2 � jmax) in this particular example. The node x1 and 

x2 are two source nodes of the two moves. 

 

 

Figure 4.4.2.3b: Selecting the best move in Strategy 2. 
 

In order to choose the best move, we checked edge imax � x1 and imax � x2. 

Each edge is carrying a certain amount of traffic for different commodities. We 

selected the edge which is carrying the least amount of traffic as the best move. For 

example, if edge imax � x1 is carrying a smaller amount of traffic than edge imax � x2, 

then we select the edge x1 � jmax as the best move in this particular network. The 

rationale for choosing the edge which carrying least amount of traffic is discussed 

with an example in Chapter 3, Section 3.4. 

imax 

x1 

x2 

jmax 
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4.4.3. Implementation details and calculating the best move from Strategy 3 

 

The details of designing Strategy 3 have been discussed in Section 3.5. In this 

section, we describe the following issues for implementing of this strategy and 

calculating the best move: 

• Implementation of Strategy 3 

• Implementation of determining the best move in Strategy 3 

• Implementation of calculating benefit for a move (A logical edge) 
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4.4.3.1. Implementation of Strategy 3 

 

To implement Strategy 3, we have executed the steps shown in Fig. 4.4.3.1a.  

 

Figure 4.4.3.1a: Implementation details of Strategy 3. 
 

In this process, our objective is to create the list of outgoing end nodes from 

jmax, such that if there is an edge from the end node xi to imax but there no edge from 

the xi node to jmax as shown in Fig.3.5.1 in Chapter 3. We assume, the highest traffic 

flow is taking place on edge imax � jmax in this particular network. 
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4.4.3.2 Implementation details of determining the potential moves in Strategy 3 

  
For determining the best move from all potential moves from Strategy 3, we 

implemented the process shown in Fig. 4.4.3.2a. Due to lack of space, we used T(R) 

to denote a transmitter (receiver) in this diagram. 

 

Figure 4.4.3.2a: Implementation of determining best move in Strategy 3. 
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with node xi in Section 4.4.3.1. We calculated the benefit for each potential move 

(edge). Finally, we considered the move from which the highest benefit that can be 

achieved. 
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4.4.3.3. Implementation of the scheme for calculating the benefit of a move in 

Strategy 3 

 

The process of calculating the benefit of the move x1 � imax (Fig. 4.4.3.3b) is 
shown using the flow diagram shown in Fig. 4.4.3.3a. 

 

 

Figure 4.4.3.3a: Calculating the benefit of a move using Strategy 3. 
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As we have mentioned when describing Strategy 1, routing the traffic over a 

logical topology is a multi-commodity flow problem and an edge could have multiple 

commodities flowing for a particular routing scheme. There are two edges jmax � x1 

and jmax �  x2 from the node jmax as shown in Fig.4.4.3.3b. We calculate the benefits 

for all such edges that are outgoing from end node jmax and finally we considered the 

edge which has the highest benefit. For example, we considered the edge imax � x1 as 

a move for this particular network shown using a bold dashed line. Since, we 

considered the end node x1 is a potential destination of commodities for this particular 

network; the commodities are possibly being routed through the path imax � jmax � 

x1.   

 

Figure 4.4.3.3b: Benefit calculation for the edge jmax ����  x1 in Strategy 3. 
 

The process for calculating the benefit for the edge jmax � x1 follows an 

approach similar to Strategy 1 discussed above. An example for calculating the 

benefit with a data flow has been shown in Chapter 3. 
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4.4.4 Implementation details and calculating the best move from Strategy 4 

 

The details of designing Strategy 4 have been discussed in Section 3.6. In this 

section, the implementation of this strategy and calculating the best move is discussed 

in the following subsections: 

 

• Implementation of Strategy 4. 

• Implementation of determining the potential moves. 

• Implementation of selecting the best move and calculate the benefit. 
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4.4.4.1: Implementation of Strategy 4 

 

To implement Strategy 4, we have executed the steps shown in Fig. 4.4.4.1a.  

 

Figure 4.4.4.1a: Implementation details of Strategy 4. 
 

In this process, our objective was to create the list of end nodes, such that 

there is an edge from node xi to end node jmax but there is no edge from node imax to xi 

( Fig. 3.6.1 in Chapter 3). We assumed that the highest traffic flow is on the edge imax 

� jmax in the network. 
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4.4.4.2. Determining the potential moves from Strategy 4 

 

To determine the potential moves from Strategy 4, we implemented the 

process shown in Fig. 4.4.4.2a. Due to lack of space, we have used T (R) to denote a 

Transmitter (Receiver) in this diagram. 

 

Figure 4.4.4.2a: Implementation of determining potential moves in Strategy 4. 
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available at the node xi of the edge imax � xi. The node xi is a member of list L which 

is created from Section 4.4.4.1. In this process, we check all such moves and calculate 

the benefit for each move. In the next section, we show the benefit calculation for 

selecting the best potential move.  

4.4.4.3. Implementation of the scheme for selecting the best move in Strategy 4 

The details of the process of selecting the best move by calculating the benefit is 

shown in Fig. 4.4.2.3a. 

 

Figure 4.4.4.3a:  Implementation of selecting the best move in Strategy 4. 
 

Yes 

Yes 

No 

xi = first destination node of first move 

xi = next destination 
node of next move 

Store the edge imax � xi 
information as a potential 

best move 

No 

Is List 
exhausted? 

Stop 

List of destination nodes of 
potential moves (edges) 

Is traffic flow 

on the edge xi 

� jmax is least?  
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An example of selecting the best move is shown in Fig. 4.4.4.3b. There are two 

potential moves imax � x1 and imax � x2 in this particular example. The node x1 and x2 

are two destination nodes of the two moves. 

 

Figure 4.4.4.3b: Benefit calculation for the edge x2 ���� jmax in Strategy 4. 
 

In order to choose the best move, we checked edge x1 � jmax and x2 � jmax. 

Each edge is carrying a certain amount of traffic for the different commodities. We 

selected the edge which is carrying the least amount of traffic as the best move. For 

example, if the edge x2 � jmax is carrying a lesser amount of traffic than the edge x1 

� jmax, then we selected the edge x2� jmax as the best move in this particular network.  

The process for calculating the benefit for the edge x2 � jmax follows an 

approach similar to Strategy 2 discussed above. An example for calculating the 

benefit with a data flow is shown in Chapter 3. 
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x1 

x2 

jmax 
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4.5 An Example of a 4 Node Network 

 

An example of a 4 node network is given below to show the overall basic 

steps to solve a specified problem. Initially, we routed the traffic using the CPLEX 

optimization tool for an initial logical topology to observe the initial congestion of the 

network. As we have discussed in Section 4.3, the CPLEX is an optimization tool 

which is used to route the traffic optimally over a logical topology.  

Table 4.5.1 is an example of a randomly generated traffic matrix10 and Figure 

4.5.1 is an initial logical topology11 shown as a graph. The traffic matrix generated 

such that the congestion must be below 1. 

 

0.000000 0.208333 0.500000 0.083333 

0.458333 0.000000 0.208333 0.458333 

0.437500 0.208333 0.000000 0.312500 

0.229167 0.104167 0.312500 0.000000 

 

Table 4.5.1: Initial Traffic Matrix 
 

 

                                                

10 The details of traffic matrix is discussed in Section 4.2 

11 The details of initial logical topology is discussed in Section 4.1 
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Figure 4.5.1: Initial Logical Topology. 
 

Let the initial congestion of the network be 0.98 for initial logical topology 

with randomly generated initial traffic matrix. We increased the congestion to 1.05 by 

multiplying each entry of initial traffic matrix by an appropriate factor as shown in 

Table 4.5.2. In the subsequent iterations we created a new logical topology using our 

hill-climbing search algorithm and called the CPLEX optimizer with the new logical 

topology and the new traffic matrix (Table 4.3.2) to observe the new congestion 

value. We created a possible move list with 4 best moves from 4 strategies. Finally, 

we selected one best move, based on the highest benefit. We have shown only 

iteration to demonstrate the process. 

 

0.000000 0.223214 0.535714 0.089285 

0.491071 0.000000 0.223214 0.491071 

0.468750 0.223214 0.000000 0.334821 

0.245536 0.111607 0.334821 0.000000 

 

Table 4.5.2: New Traffic Matrix 
 

0 1 

2 3 
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 Iteration 1:  

Let the edge carrying the maximum traffic be 2 � 0 (imax � jmax) as shown in 

Fig. 4.5.1 by a bold line at the beginning of the iteration.  

Step 1- Find the possible move list:  The Table 4.5.3 shows the possible move list 

from 4 different strategies and the benefit of each move. 

 

From To Benefit Strategy 

3 0 0.330000 1 

3 0 0.295000 2 

2 1 0.310000 3 

2 1 0.670000 4 

 

Table 4.5.3: The possible move list 
 

Step 2- Select the best move:  The highest benefit can be achieved by adding the 

edge from the source node 2 to the destination node 1 as shown in the Table 4.5.3 

from the strategy 4. 

Step 3- Create the new logical topology:  As a result, the new logical topology is 

created by adding the edge from node 2 to 1 and shown in dashed line in Figure 4.5.2. 
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Figure 4.5.2: New Logical Topology. 
 

Step 4 – Calculate the congestion: We call the CPLEX environment with new 

logical topology (Fig. 4.5.2) and new traffic matrix (Table 4.5.3). The new congestion 

value is 0.9725.  

The conclusion is that, the initial congestion was 0.98 for the initial logical 

topology and the congested edge was 2 � 0 shown by bold line in Fig. 4.5.1. A new 

traffic matrix created such that the congestion scaled up to 1.05 from 0.98, which is 

5% more then the capacity of the edge.  After the reconfiguration of the logical 

topology, by adding an edge from node 2 to node 1, the new logical topology is 

shown in Fig. 4.5.2. Then by calling the CPLEX optimizer, we observe the 

congestion reduced to 0.9725 from 1.05 and new congested edge become 3 � 2 as 

shown in bold line in Fig. 4.5.2. By adding an edge, we are able to reduce the 

congestion below 1.  

4.6 Implementation of LP formulation. 

 

 The LP formulation has been implemented using a C program 

discussed in Chapter 2, Section 2.9. The LP program generates the lp file as an input 

to the CPLEX optimizer tool. A traffic matrix12 is shown in Table 4.6.1, where each 

non-zero entry corresponds to a commodity and gives the amount of traffic for a 

source-destination pair. In this table, we represented the commodity from i to j 

                                                

12 Traffic matrix is discussed in Section 4.2 

0 1 

2 3 



 

98 

 

 

by
j

ik , where the value of 
j

ik is the entry of i th row and j th column of the traffic 

matrix. The first commodity 
1
0k  is in row 0, column 1 and has a value 0.21 and 

denotes the data flowing from end node 0 to end node 1. Similarly, the second 

commodity 
2
0k is the entry in row 0, column 2 and has a value 0.50. This denotes the 

traffic flowing from end node 0 to end node 2 and so on.  

 

0.00 0.21 0.50  0.08 

 0.46 0.00 0.21 0.46 

0.44 0.21 0.00 0.31 

0.23 0.10 0.31 0.00 

 

Table 4.6.1: Traffic Matrix 
 

The implementation of the LP formulation is informally discussed with an 

example. Let us consider commodity
1
2k , where 0.21 units of traffic need to be routed 

optimally from source node 2 to destination node 1 as shown in Table 4.6.1.  

Some lines of an .lp file format are shown below. The line C3 corresponds to 

the constraint of the form (2.9.2) and line C36, C37 and C38 corresponds to the 

constraint of the form (2.9.3) in Section 2.9 of chapter 2. 
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C3: + X_0_1_0 + X_1_1_0 + X_2_1_0 + X_3_1_0 + X_4_1_0 + X_5_1_0 + 

X_6_1_0 +  

X_7_1_0 + X_8_1_0 + X_9_1_0 + X_10_1_0 + X_11_1_0 - Lmax <= 0 

C36: +X_7_2_0 + X_7_2_3 - X_7_0_2 - X_7_3_2 = 0.21 

C37: +X_7_1_0 + X_7_1_3 - X_7_0_1 = -0.21 

C38: + X_7_0_1 + X_7_0_2 - X_7_1_0 - X_7_2_0 = 0 

Explanations of the symbol:  

i. C1…Cn (where n is an integer value) in the beginning of the equation represents the 

constraint number of the LP file.  

ii. X_k_i_j: a continuous variable used to define the amount of the traffic flowing for 

commodity number k on the logical edge i �  j (where k, i and j are integer values) 

iii. Lmax:  The congestion value of the network 

The details of the form of LP formulation is discussed below with an example. 

An example of constrain C3:  

This equation corresponds to the LP form Ljix
k

k
ij ∈∀Λ≤∑

=

),(,max
1

 

(2.9.2). This LP constraint ensures that the congestion of the network is greater than 

or equal to the total traffic on any edge. In other words, the summation of the amount 

of the traffic is flowing through an edge for all the commodities is less than or equal 

to the congestion value of the network. The line C3 of the .lp file (shown above) is an 

example for such an equation. According to the traffic matrix (table 4.6.1), the 

equation also shows that there are 11 commodities flowing on a particular 4-node 

logical topology shown in Fig. 4.6.1. The variable “X_0_1_0” denotes that 

commodity 0 flows on the edge 1 � 0, the variable “X_1_1_0” denotes that 
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commodity 1 flows on the edge 1 � 0 and so on. 

Let the congestion value of a particular 4-node network be 0.98. As 

mentioned, we would like to use commodity 
1
2k  for this example, this particular 

commodity is flowing from source node 2 to destination node 1 using the path 2 � 0 

� 1 with the value 0.21. Since there is no direct path from node 2 to 1 (Fig 4.6.1), the 

total traffic flowing on the edge 2 � 0 and 0 � 1 is 0.98 (0.44 + 0.21 + 0.23 + 0.10) 

and 0.52 (0.21 +0.21 + 0.10) respectively as per as data shown in table 4.6.2. 

According to the formulation, the total traffic for all commodities flowing on 

any edge must be less than or equal to the congestion value. From the above example, 

the edge 2 � 0 carrying 0.98 units of data which is equal to the congestion value and 

the edge 0 � 1 is carrying 0.52 units of data, which is less than the congestion value. 

Therefore, the equation for this constraint in line C3 satisfies the condition.  

An example of Constrain C36:  

Constraint C36 corresponds to the first condition of the form 2.9.3 discussed 

in Chapter 2, if an end node is a source of a commodity flowing from a source node i 

to a destination node j.  

This constraint ensures that if an end node is a source of a commodity, then 

there is no traffic is flowing into that node and the traffic flowing out from this node 

is equal to the entry of the traffic matrix for that source i to destination node j. The 

line C36 is an example of such equation of the .lp file (shown above). This equation 

represents the fact that the difference between the data flowing in and flowing out 

must be equal to the entry of the traffic matrix for the given pair of source node i to 

the destination node j.  

For example, 0.21 units of data are flowing from the source node 2 to 

destination node 1 for commodity12k , using the logical path 2 � 0 �1, as shown in 

Fig. 4.6.1 and in Table 4.6.1. There are two incoming edges 0 � 2 and 3 �2 to the 
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source node 2 and two outgoing edges 2 � 0 and 2 � 3 from the source node 2 and 

on traffic flowing on the edge 2 � 3, 0 � 2 and 3 �2 as per the data shown in Table 

4.6.2. Therefore, if we plug-in the value of the four variables in C36, the result is 0.21 

+ 0.0 - 0.0 - 0.0 = 0.21, which satisfies the condition of the equation. 

 

 

Figure 4.6.1: Logical Topology 
 

0 1 

2 3 
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Commodity From To Traffic 
0 0 1 0.21 
7 0 1 0.21 

10 0 1 0.1 
1 0 2 0.5 
2 0 2 0.08 
4 0 2 0.21 
3 1 0 0.46 
4 1 0 0.21 
5 1 3 0.46 
6 2 0 0.44 
7 2 0 0.21 
9 2 0 0.23 

10 2 0 0.1 
2 2 3 0.08 
8 2 3 0.31 
9 3 2 0.23 

10 3 2 0.1 
11 3 2 0.31 

 

Table 4.6.2: Amount of traffic flowing on edges for the commodity 
 

An example of Constrain C37:   

 

The constraint C37 corresponds to the second condition of the form 2.9.3 

discussed in Chapter 2, if an end node is a destination of a commodity flowing from a 

source node i to a destination node j.  

This constraint ensures that if an end node is a destination for a commodity, 

then there is no traffic flowing out from that node and the traffic flowing into the 

destination node is the entry of the traffic matrix of the source i to the destination j 

pair. The line C37 is an example of such an equation of the .lp file shown above.  

For example, the destination of the commodity 
1
2k   is node 1. There are two 

outgoing edges (1 � 3 and 1 � 0) and one incoming (0 �1) edge for the destination 
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node 1 (Fig.4.6.1) and no data flows on the edge 1 � 3 and 1 � 0 as per the data 

shown in Table 4.6.2. Therefore, if we plug-in the value of 3 variables to the equation 

C37, the results is 0.0 + 0.0 – 0.21 = -0.21. Thus the equation C37 satisfies the 

condition. 

An example of Constraint C38:  

The constraint C38 corresponds to the third condition of the form 2.9.3 

discussed in Chapter 2, when an end node is an intermediate node of a commodity 

flowing from a source node i to destination node j. 

This constraint ensures that for all intermediate nodes where the data is 

flowing from the source node to the destination node, incoming flow must be 

matched by the outgoing flow, so that the difference must be 0 (zero). The line C38 is 

an example of such an equation of the .lp file shown above.  

For example, commodity 1
2k is flowing from source node 2 to destination 

node 1 using the path 2 � 0 � 1. Since there is no direct link from source node 2 to 

destination node 1 (Fig. 4.6.1), the traffic is flowing through intermediate node 0. The 

amount of data flowing into the node 0 is 0.21 from node 2 using the edge 2 � 0 and 

the amount of data flowing out from node 0 to node 1 is also 0.21 using the edge 0 � 

1 as per the data shown in the Table 4.6.2. Therefore, if we plug in the values of 4 

variables into the equation C38 as per the data shown in table 4.6.2, such as 0.21 + 

0.0 + 0.0 + 0.21 = 0. Thus it is satisfying the condition.  
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Chapter 5: Experimental Results 

 

We carried out our experiments using networks having three sizes - 6 nodes, 

10 nodes and 14 nodes. For networks of a given size, we created 5 initial logical 

topologies. We tested each logical topology with 5 different traffic matrices, created 

using a random number generator generating, for each pair of end-nodes, values 

between 0 and 1. In this way we tested 25 cases for each size of network to observe 

how many logical edge(s) is (are) required for reconfiguration. Finally we computed 

the averages of the 25 tests cases. We generated the traffic matrices randomly as 

discussed in Section 4.2.  

 As we have mentioned in our problem definition, the set of requests 

for data communication that the network has to handle does not remain the same and 

changes with time. Therefore, when the traffic increases beyond the capacity of a 

logical edge, the logical topology has to be augmented so that the new topology can 

handle the new traffic.  Our objective is to observe how many new logical edge(s) is 

(are) required to reduce the congestion to the expected level that can be carried by a 

lightpath.   We fixed the expected congestion level after reconfiguration to 0.90, 

meaning that no lightpath will carry a traffic more than 90% of the capacity of a 

lightpath.  

We carried out our experiments using the following steps: 

1. Determine the initial congestion of the network, using the supplied logical 

topology and traffic matrix. 

2. Create a traffic matrix such that the edge carrying the maximum traffic was 

x% above the capacity of a logical edge (we used three values of x – 5, 10 and 

15). 

3. Create a new logical topology by augmenting the initial logical topology by 
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adding a new logical edge using our Hill-Climbing algorithm as mentioned in 

Section 4.4. 

4. Determine the value of the congestion by using the CLEX optimization tool 

with the traffic matrix created in Step 2 and the new logical topology 

generated in Step 3. 

5. If the congestion in the new topology is greater than the target value (0.9 in 

our experiments), go to Step 3. Otherwise stop.  

In Step 2, we accomplished this by multiplying each entry of the traffic matrix 

with an appropriate factor, based on the initial congestion as mentioned in Chapter 4. 

When the above process terminates, we noted how many edge(s) is (are) required to 

reduce the congestion up the expected level. 

As mentioned before, for each size of the network, we created five logical 

topologies and five traffic matrices. For our discussion below, given a size of the 

network, we will refer to the five logical topologies (traffic matrices) as logical 

topology (traffic matrix) 1, 2…5. The first column represents the test case scenarios. 

For example, in Table 5.1, 6-1-1 stand for the situation where the size of the network 

is 6, logical topology number 1 and tested with traffic matrix number 2. Columns 2, 3 

and 4 represents, how many edges are required when the traffic has increased, so that 

the congestion is 5%, 10% and 15% over the capacity of a logical edge.  

Table 5.1 represents the test results for networks with 6 nodes. We tested a total 

of 75 test cases. We observed that approximately 2 (respectively 3 and 4) logical 

edges are needed to reduce the congestion level below 0.90, when the starting 

congestion was 5%, (respectively 10% and 15%). Similarly, Table 5.2 and 5.3 

represents the test results for 10-node and 14-node networks.  We have included the 

detailed experimental data in Appendix 3.  

A bar graph for 3 sizes of network are given in this section. The x-axis represents 
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the test case number and y-axis represents total edges required in 3 different 

situations of data communications.  
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5.1 Experimental Results with 6-Nodes 

 

Test_Case  

Node# -#LT-#TM 

New Edge Required- 
Congestion increased 5% 

above edge capacity 

New Edge Required- 
Congestion increased 10% 

above edge capacity 

New Edge Required- 
Congestion increased 15% 

above edge capacity 

6-1-1 1 1 3 

6-1-2 1 2 2 

6-1-3 2 2 2 

6-1-4 2 2 2 

6-1-4 4 5 5 

6-2-1 1 1 2 

6-2-2 2 2 3 

6-2-3 3 3 3 

6-2-4 1 2 3 

6-2-5 2 4 5 

6-3-1 3 3 4 

6-3-2 2 3 3 

6-3-3 1 1 1 

6-3-4 3 3 4 

6-3-5 3 3 5 

6-4-1 1 1 1 

6-4-2 1 2 2 

6-4-3 1 2 2 

6-4-4 1 2 2 

6-4-5 1 2 7 

6-5-1 3 5 6 

6-5-2 2 2 3 

6-5-3 2 2 3 

6-5-4 1 2 5 

6-5-5 2 2 7 

Average edge 
required 1.84 2.36 3.4 
 

Table 5.1: Experimental Results with 6-Nodes 
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5.2 Experimental Results with 10-Nodes 

 

Test_Case  

Node# -#LT-#TM 

New Edge Required- 
Congestion increased 5% 

above edge capacity 

New Edge Required- 
Congestion increased 10% 

above edge capacity 

New Edge Required- 
Congestion increased 15% 

above edge capacity 
10-1-1 3 3 7 

10-1-2 4 6 6 

10-1-3 3 6 8 

10-1-4 4 7 11 

10-1-5 2 2 3 

10-2-1 4 9 10 

10-2-2 4 12 27 

10-2-3 10 11 12 

10-2-4 9 10 19 

10-2-5 3 5 7 

10-3-1 10 12 14 

10-3-2 2 4 7 

10-3-3 5 11 24 

10-3-4 7 8 9 

10-3-5 7 7 11 

10-4-1 8 20 21 

10-4-2 8 13 18 

10-4-3 11 16 18 

10-4-4 7 7 12 

10-4-5 7 9 16 

10-5-1 14 16 19 

10-5-2 4 18 20 

10-5-3 4 6 11 

10-5-4 7 9 14 

10-5-5 3 4 6 

Average edge 
required 6 9.24 13.2 

 

Table 5.2: Experimental Results with 10-Nodes 
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5.3 Experimental Results with 14-Nodes 

 

Test_Case  

Node# -#LT-#TM 

New Edge Required- 
Congestion increased 5% 

above edge capacity 

New Edge Required- 
Congestion increased 10% 

above edge capacity 

New Edge Required- 
Congestion increased 15% 

above edge capacity 
14-1-1 7 9 14 

14-1-2 7 10 11 

14-1-3 11 12 14 

14-1-4 9 10 12 

14-1-5 8 9 10 

14-2-1 9 14 19 

14-2-2 9 10 45 

14-2-3 8 16 22 

14-2-4 10 15 27 

14-2-5 8 24 25 

14-3-1 1 4 8 

14-3-2 12 15 39 

14-3-3 8 11 17 

14-3-4 9 13 16 

14-3-5 17 20 31 

14-4-1 6 9 11 

14-4-2 7 10 16 

14-4-3 10 21 16 

14-4-4 9 11 17 

14-4-5 9 10 15 

14-5-1 9 10 16 

14-5-2 8 16 20 

14-5-3 7 15 34 

14-5-4 8 14 23 

14-5-5 11 52 50 

Average edge 
required 8.68 14.4 21.12 

 

Table 5.3: Experimental Results with 14-Nodes 
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5.4 Results with line chart graph 
 

5.4.1: Chart bar Graph for 6-Node Network 
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Figure 5.4.1a: Edge(s) Required for 6-Node Network 
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Figure 5.4.1b: Average Edge(s) Required for 6-Node Network 
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5.4.2: Chart bar Graph for 10-Node Network 
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Figure 5.4.2a: Edge(s) Required for 10-Node Network 
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Figure 5.4.2b: Average Edge(s) Required for 10-Node Network 
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5.4.3: Chart bar Graph for 14-Node Network 
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Figure 5.4.3a: Edge(s) Required for 14-Node Network 
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Figure 5.4.3b: Average Edge(s) Required for 14-Node Network  
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5.5 Observation 

 

There are some significant observations from our experiments: 

1. The congestion reduced as new edges are added to an old logical topology in 

the each iteration and the required number of edges increased when the traffic 

increased gradually. As an example, shown in Table 5.2, case number 10-3-2, 

the new edges required are 2 for 5%, 4 for 10% and 7 for 15% increase of 

traffic.  

2. When the traffic increases, the average number edges required also increases 

for each type of network as shown in Table 5.3, the number of edges required 

almost doubles from 5% to 15% increase of traffic in 14-node network. 

Similarly, for 6-node and 10-node networks, the results are shown in Table 

5.1 and 5.2. 

3. In our problem specification, we mentioned that there are basically three steps 

for reconfiguration of logical topology. 

• Design an initial logical topology. 

• Reconfigure the logical topology as necessary when traffic demand 

changes with the time. 

• Route the traffic optimally and determine the congestion of the 

network. 

Since, our initial step is to design a logical topology and we have used any 

heuristic algorithm to design the initial logical topology, we can not claim that it is 

optimal. The designing of initial logical topology has significant importance in our 

problem solution, because we could not guarantee that initial congestion is minimal at 

the time of designing initial logical topology; it could be either very high or very low. 
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Chapter 6: Conclusions and Future work 

 

6.1 Conclusion 

 

As we mentioned in Chapter 1, in static lightpath allocation, the logical 

topology of a WDM optical network is determined, based on long-term traffic 

demands. These traffic demands however do not remain the same at subsequent 

points in time. When a logical topology is incapable of supporting the current traffic 

demands, the logical topology has to be modified or reconfigured. Our objective is to 

find an optimal new logical topology which can support the current traffic demands 

with as little change to the original topology as possible.  

In this Thesis, we have implemented a Hill-Climbing algorithm to solve the 

problem of reconfiguring logical topologies. We have tried to determine how many 

new edges are required when the congestion of a network exceeds beyond the 

capacity of a logical edge. We have shown in Chapter 5, how many edges are 

required when congestion increases above the capacity of a logical edge by a factor 

that ranges from 5% to 15%.  

Utilizing the Hill-Climbing algorithm we have described an iterative process 

where we identify, in the each iteration, the “most promising” edge to be added to the 

initial logical topology. We monitored the congestion value after routing the traffic 

after adding the promising edge. Although the Hill-Climbing algorithm has the 

problem of getting into the trap of local optima, we have found that our solution gives 

fairly good results when traffic increases beyond the capacity of a lightpath. We have 

compared 3 situations, and found out how many total new edges are required in each 

situation.   
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6.2 Future work 

 

 On the basis of our experimental observation discussed in Section 5.4, there 

are at least two approaches that can be taken: 

1. Design the initial logical topology optimally 

2. Apply alternative strategic approaches in Hill-Climbing algorithm 

It is well known that designing an optimal logical topology is considered to be 

intractable using a mathematical programming approach.   Since, it is very important 

to have an optimal logical topology initially; we could use meta-heuristics instead of 

any heuristics, such as the Tabu Search algorithm. 

 For the logical topology reconfiguration, the Hill-Climbing algorithm has 

been investigated. There are many alternatives strategic approaches can be taken to 

improve the search criteria, in order to determine the best logical edge to be added to 

change (reconfigure) the logical topology.  
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Appendix 1 

 

1.1 The notation used in LP Formulation 

 

EN  : Number of end nodes in the network. 

T: An EN  x EN  matrix, called the traffic matrix, giving the traffic requirements for 

the network. 

T(I, j): entry in row I and column j of matrix T. it represents the traffic from source 

end node Ei to destination end node Ej. 

maxΛ : The congestion of the network. 

 

Bij  : A binary variable such that  

bij = 













otherwise

NjnodeendtoNinodeendfromexistlightpathaif

0

1

 

sd
ijx : A continuous variable to denote the portion of traffic t(s, d) : t(s,d) > 0, 

that is routed through the logical edge Ei ⇒  Ej. 

∆in (∆out) : A constant denoting the number of transmitter or receiver at every end 

node.  
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1.2 C-Programming Code for LP Formulation  
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1.3. Notation used for the heuristic formulation in Section 2.4.2 

 

The inputs to the heuristic are the following: 

• ∆i
in denoting the number of receivers at end node Ei, 1 ≤ I ≤ NE. 

• ∆i
out denoting the number of transmitters at end node Ei,, 1 ≤ I ≤ NE. 

• The traffic matrix T = [t(I, j)] giving the required volume of data so that t(I, j) 

is the traffic from end node Ei to end node Ej in the traffic matrix T, for all I, j, 

1 ≤ I, j ≤ NE. 

• The physical topology of the network. 

• The number of channels nch per fiber. 

• clightpath is the capacity of a lightpath.  

1.4 Routing over logical topology described in Section 2.7 

 

NE: Number of end nodes 

q: Number of commodities srck and destk : source sk and destination dk for 

commodity k,   

    1 ≤ k ≤ q)  

tk : traffic t(sk, dk) for commodity k, (1 ≤ k ≤ q) 

k
ijx : amount of traffic flowing on logical edge I ⇒  j for commodity k, 
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maxΛ : Congestion on the network 

L: set of all pair of end node, lightpath exists on end node Ei to end node Ej. 
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Appendix 3 

 

3.1 Details raw data of test results for 6- node network 

 
 

Test_Case   Congestion increased 
5% above edge 

capacity 

Congestion increased 
10% above edge 

capacity 

Congestion increased 
15% above edge 

capacity 
Node# -#LT-#TM Initial 

Congestion 
New 
Edge 

Required 

Final 
Congestion 

New 
Edge 

Required 

Final 
Congestion 

New 
Edge 

Required 

Final 
Congestion 

6-1-1 0.701389 1 0.845977 1 0.886262 3 0.871039 

6-1-2 0.743056 1 0.736332 2 0.836703 2 0.862499 

6-1-3 0.526042 2 0.873267 2 0.838614 2 0.850166 

6-1-3 0.654948 2 0.809941 2 0.848510 2 0.654948 

6-1-5 0.546875 4 0.762858 5 0.843333 5 0.744763 

6-2-1 0.973959 1 0.752407 1 0.590588 2 0.824065 

6-2-2 0.812500 2 0.8502135 2 0.813248 3 0.776282 

6-2-3 0.677083 3 0.608462 3 0.637937 3 0.666412 

6-2-4 0.901041 1 0.886127 2 0.727890 3 0.696243 

6-2-5 0.770833 2 0.879731 4 0.772974 5 0.808109 

6-3-1 0.838542 3 0.721428 3 0.658695 4 0.601241 

6-3-2 0.753472 2 0.764170 3 0.696774 3 0.858527 

6-3-3 0.927084 1 0.690168 1 0.723032 1 0.755897 

6-3-4 0.692709 3 0.726315 3 0.898746 4 0.795487 

6-3-5 0.756945 3 0.799542 3 0.696330 5 0.727981 

6-4-1 0.989582 1 0.806844 1 0.845264 1 0.883686 

6-4-2 0.947917 1 0.796154 2 0.834067 2 0.891978 

6-4-3 0.979167 1 0.871276 2 0.867447 2 0.715692 

6-4-4 0.927084 1 0.884830 2 0.840448 2 0.878650 

6-4-5 0.875001 1 0.824999 2 0.864285 7 0.451786 

6-5-1 0.585937 3 0.883556 5 0.829689 6 0.602311 

6-5-2 0.729167 2 0.754286 2 0.788571 3 0.674999 

6-5-3 0.656249 2 0.643334 2 0.673969 3 0.730160 

6-5-4 0.609376 1 0.897433 2 0.699486 5 0.766666 

6-5-5 0.807292 2 0.839998 2 0.879999 7 0.636645 
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Ave. edge 
required 

 
1.84 

 
2.36 

 
3.4 

 

3.2 Details raw data of test results for 10-node network 

 
 

Test_Case   Congestion increased 
5% above edge 

capacity 

Congestion increased 
10% above edge 

capacity 

Congestion increased 
15% above edge 

capacity 
Node# -#LT-#TM Initial 

Congestion 
New 
Edge 

Required 

Final 
Congestion 

New 
Edge 

Required 

Final 
Congestion 

New 
Edge 

Required 

Final 
Congestion 

10-1-1 0.957532 3 0.849555 3 0.819707 7 0.875732 

10-1-2 0.915720 4 0.794287 6 0.861307 6 0.840499 

10-1-3 0.940972 3 0.688700 6 0.775857 8 0.838630 

10-1-3 0.902778 4 0.742673 7 0.765253 11 0.880192 

10-1-5 0.937500 2 0.633899 2 0.858611 3 0.858611 

10-2-1 0.883333 4 0.848172 9 0.888562 10 0.619301 

10-2-2 0.975695 4 0.867971 12 0.678790 27 0.675267 

10-2-3 0.802828 10 0.608526 11 0.637503 12 0.882217 

10-2-4 0.769097 9 0.839052 10 0.685327 19 0.778782 

10-2-5 0.897569 3 0.864255 5 0.889556 7 0.880850 

10-3-1 0.847373 10 0.822855 12 0.898225 14 0.863444 

10-3-2 0.971875 2 0.863880 4 0.894070 7 0.872053 

10-3-3 0.789062 5 0.884357 11 0.658306 24 0.834985 

10-3-4 0.751157 7 0.733339 8 0.873305 9 0.893069 

10-3-5 0.893995 7 0.862526 7 0.875828 11 0.744634 

10-4-1 0.807870 8 0.618266 20 0.852242 21 0.756232 

10-4-2 0.859373 8 0.871817 13 0.733333 18 0.766666 

10-4-3 0.785416 11 0.6220116 16 0.699354 18 0.722505 

10-4-4 0.718149 7 0.774059 7 0.791788 12 0.895002 

10-4-5 0.756740 7 0.859980 9 0.787386 16 0.756740 

10-5-1 0.828125 14 0.700000 16 0.733334 19 0.766667 

10-5-2 0.776042 4 0.848701 18 0.720138 20 0.790765 

10-5-3 0.655449 4 0.853694 6 0.878453 11 0.867203 

10-5-4 0.631325 7 0.883559 9 0.870277 14 0.687203 

10-5-5 0.737939 3 0.873699 4 0.899732 6 0.841539 

Ave. edge 
required 

 
6 

 
9.24 

 
13.2 
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3.3 Details raw data of test results for 14-node network 

 
 

Test_Case   Congestion increased 
5% above edge 

capacity 

Congestion increased 
10% above edge 

capacity 

Congestion increased 
15% above edge 

capacity 
Node# -LT-TM Initial 

Congestion 
New 
Edge 

Required 

Final 
Congestion 

New 
Edge 

Required 

Final 
Congestion 

New 
Edge 

Required 

Final 
Congestion 

14-1-1 0.725356 7 0.898144 9 0.899189 14 0.888424 

14-1-2 0.673129 7 0.877986 10 0.898554 11 0.896345 

14-1-3 0.637555 11 0.896655 12 0.888146 14 0.884330 

14-1-4 0.683989 9 0.870337 10 0.885141 12 0.894790 

14-1-5 0.706597 8 0.878088 9 0.899663 10 0.896920 

14-2-1 0.683323 9 0.891054 14 0.811109 19 0.897986 

14-2-2 0.664394 9 0.864604 10 0.874732 45 0.779807 

14-2-3 0.664931 8 0.859576 16 0.796997 22 0.833224 

14-2-4 0.691406 10 0.806205 15 0.799624 27 0.814312 

14-2-5 0.646388 8 0.891809 24 0.886336 25 0.776679 

14-3-1 0.836805 1 0.899194 4 0.888590 8 0.894710 

14-3-2 0.695234 12 0.845602 15 0.893997 39 0.745216 

14-3-3 0.694762 8 0.887799 11 0.872763 17 0.894513 

14-3-4 0.688836 9 0.897081 13 0.897798 16 0.894746 

14-3-5 0.708334 17 0.862940 20 0.864779 31 0.884243 

14-4-1 0.730841 6 0.899869 9 0.887521 11 0.898190 

14-4-2 0.682589 7 0.893269 10 0.879248 16 0.895029 

14-4-3 0.656250 10 0.888272 21 0.993198 16 0.876190 

14-4-4 0.670139 9 0.897668 11 0.885884 17 0.896336 

14-4-5 0.674306 9 0.855431 10 0.887110 15 0.860676 

14-5-1 0.836805 9 0.862656 10 0.896889 16 0.878009 

14-5-2 0.800000 8 0.875000 16 0.866339 20 0.862500 

14-5-3 0.763889 7 0.822273 15 0.825000 34 0.730501 

14-5-4 0.736458 8 0.888119 14 0.847950 23 0.842575 

14-5-5 0.746817 11 0.870792 52 0.782488 50 0.818005 

Ave. edge 
required 

 
8.68 

 
14.4 

 
21.12 
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