
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2010

Reconfigurations of Logical Topologies for WDM
Mesh Networks
Aktaruzzaman AKM
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
AKM, Aktaruzzaman, "Reconfigurations of Logical Topologies for WDM Mesh Networks" (2010). Electronic Theses and Dissertations.
309.
https://scholar.uwindsor.ca/etd/309

https://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/309?utm_source=scholar.uwindsor.ca%2Fetd%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Reconfigurations of Logical
Topologies for WDM Mesh

Networks.

By

AKM, Aktaruzzaman

A Thesis

Submitted to the Faculty of Graduate Studies and Research through the School of Computer
Science in Partial Fulfillment of the Requirements for the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2010

© 2010 AKM Aktaruzzaman

iii

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,
quotations, or any other material from the work of other people included in my thesis,
published or otherwise, are fully acknowledged in accordance with the standard
referencing practices. Furthermore, to the extent that I have included copyrighted
material that surpasses the bounds of fair dealing within the meaning of the Canada
Copyright Act, I certify that I have obtained a written permission from the copyright
owner(s) to include such material(s) in my thesis and have included copies of such
copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis
has not been submitted for a higher degree to any other University or Institution.

iv

Abstract:

In static lightpath allocation, the logical topology of a WDM mesh network is

determined, based on the long-term traffic demands. These traffic demands change

with time. When a logical topology is incapable of supporting the current traffic

demands, the logical topology has to be changed. The change is made by adding a

minimum number of edges to the logical topology.

The objective of this research is to find an optimal new Logical Topology

which can support the current traffic demands with as little change to the existing

topology as possible. We have proposed a Hill-Climbing algorithm to solve the

reconfiguration problem of logical topologies in WDM networks. Our problem can be

divided into two sub-problems. The first is to find an optimal logical topology and the

second is to route the traffic optimally on the logical topology.

Keywords: Optical Networks, Mesh Networks, WDM Networks, Optimization,

Logical Topology, Reconfiguration, Heuristic.

v

Acknowledgement

It is my great pleasure to thank those who made this thesis possible. I am

thankful to my supervisor, Dr. Subir Bandyopadhyay, whose encouragement,

guidance and support from the initial to the final level enabled me to develop an

understanding of the subject. These studies could not be achieved without his wise

supervision and continuous encouragements. I would like to thanks to Mr. Quazi

Rahman, PhD student, who helped in all aspects throughout my thesis work. Also I

would like to thank our thesis committee members, Dr Dan Wu and Dr. Jagadish

Pathak for their valuable comments and suggestions.

Finally I would like to my wife Lipika Yasmin, my two daughters (Nosheen

and Noreen), my parents, my brothers-sisters, and my friends. Their love and care

always were with me during these years. Without their support it would be impossible

to make this thesis. I am deeply owed to all the people directly or indirectly has

supported.

Lastly, I offer my regards and blessings to all of those who supported me in

any respect during the completion of the project.

AKM, Aktaruzzaman

vi

Table of Contents

Author’s Declaration of Originality... iii

Abstract: ... iv

Acknowledgement .. v

List of Figures ... x

List of Tables ... xiii

Chapter 1: Introduction ... 1

1.1 Preamble.. 1

1.2 Problem Description.. 1

1.3 The Problem Investigation and motivation ... 2

1.4 Fundamentals of WDM Optical Networks.. 4

1.5 Thesis Outline ... 7

Chapter 2: Background study/ Review of literature. ..8

2.1 Preamble.. 8

2.2 Component and Key Terminology of WDM Networks...................................... 9

2.2.2 Wavelength Division Multiplexing (WDM) .. 11

2.2.2.1. Wavelength-Routed Networks ... 14

2.2.2.2 Single-hop and Multi-hop WDM Networks.. 15

2.2.3 Multiplexer and De-multiplexer ... 15

2.2.4 Add-drop multiplexer (ADM) .. 17

2.2.5. Wavelength Router .. 17

2.2.6 Physical Topology .. 18

2.2.7 Lightpath... 19

vii

2.2.8 Logical Topology ... 22

2.3 Route and Wavelength Assignment (RWA) ... 23

2.4 Logical Topology Design Problem ...24

2.5 Traffic Matrix.. 25

2.6 Congestion Minimization.. 26

2.7 MILP- based solution of the logical topology design and the routing problem 28

2.8 A Heuristic for Designing a Logical Topology... 31

2.9 Routing over a Logical Topology ... 31

2.10 Reconfiguration of Logical Topology... 33

2.10.1. Optimization .. 36

2.10.2. Optimization approach .. 37

2.11. CPLEX Optimizer .. 37

2.12 Hill Climbing Heuristic... 37

2.13 Overview from Previous Research Paper.. 38

Chapter 3: Problem Specification ... 42

3.1 Problem definition... 42

3.2 Identifying the move ... 43

3.3 Strategy 1... 45

3.4 Strategy 2... 49

3.5 Strategy 3... 54

3.6 Strategy 4... 55

3.7 Overall Scheme with Block Diagram.. 56

Chapter 4: Implementation Details ... 58

viii

4.1 Design initial logical topology... 58

4.1.2 An example of creating a 4-node logical topology..................................... 61

4.2 Generating a traffic matrix ... 68

4.2.1 A sorted traffic matrix... 69

4.3 Determining the Congestion.. 69

4.4 Creating a new Logical Topology using the Hill Climbing Search Technique 71

4.4.1. Implementation details and calculating the best move from Strategy 1.... 72

4.4.1.1. Implementation of Strategy 1... 73
4.4.1.2 Implementation details of determining the best move in Strategy 1 .. 74
4.4.1.3. Implementation for calculating the benefit of a move in Strategy 1.. 76

4.4.2 Implementation details and calculating the best move from Strategy 2..... 77

4.4.2.1: Implementation of Strategy 2 .. 79
4.4.2.2. Implementation detail of determining the potential moves from
Strategy 2 .. 80
4.4.2.3. Implementation of selecting the best move in Strategy 2 81

4.4.3. Implementation details and calculating the best move from Strategy 3.... 83

4.4.3.1. Implementation of Strategy 3... 84
4.4.3.2 Implementation details of determining the potential moves in Strategy
3... 85
4.4.3.3. Implementation of the scheme for calculating the benefit of a move in
Strategy 3 .. 87

4.4.4 Implementation details and calculating the best move from Strategy 4..... 89

4.4.4.1: Implementation of Strategy 4 .. 90
4.4.4.2. Determining the potential moves from Strategy 4............................. 91
4.4.4.3. Implementation of the scheme for selecting the best move in Strategy
4... 92

4.5 An Example of a 4 Node Network ..94

4.6 Implementation of LP formulation.. 97

Chapter 5: Experimental Results .. 104

5.1 Experimental Results with 6-Nodes.. 107

5.2 Experimental Results with 10-Nodes.. 108

ix

5.3 Experimental Results with 14-Nodes.. 109

5.4 Results with line chart graph... 110

5.4.1: Chart bar Graph for 6-Node Network ... 110

5.4.2: Chart bar Graph for 10-Node Network ... 111

5.4.3: Chart bar Graph for 14-Node Network ... 112

5.5 Observation ... 113

Chapter 6: Conclusions and Future work.. 114

6.1 Conclusion... 114

6.2 Future work ... 115

Appendix 1.. 116

1.1 The notation used in LP Formulation.. 116

1.2 C-Programming Code for LP Formulation ... 118

1.3. Notation used for the heuristic formulation in Section 2.4.2 119

1.4 Routing over logical topology described in Section 2.7 119

Appendix-2 ... 121

2.1 Reference... 121

Appendix 3.. 124

3.1 Details raw data of test results for 6- node network.. 124

3.2 Details raw data of test results for 10-node network....................................... 125

3.3 Details raw data of test results for 14-node network....................................... 126

Vita Auctoris………………………………………………………………………..127

x

List of Figures

Figure 1.4.1: The physical topology of a typical WDM network with four end-nodes
E1-E4 and four routers R1-R4. ... 5

Figure 1.4.2: Logical Topology .. 6

Figure 2.2.1.1: Optical Fiber... 9

Figure 2.2.1.2: The cross-section of a fiber [21]... 10

Figure 2.2.1.3: Optical Signal Propagation through a Fiber ... 10

Figure 2.2.2b: Signal bandwidth and channel spacing [21]..12

Figure 2.2.2.1: A Wavelength-Routed Network [22] ... 14

Figure 2.2.3.1: 4 – Input Multiplexer [21] .. 16

Figure 2.2.3.2: A Typical 4- Output De-Multiplexer [21].. 16

Figure 2.2.4.1: An Optical Add-Drop Multiplexer [21]. .. 17

Figure 2.2.5.1: Router Node [21]... 18

Figure 2.2.6.1: The physical topology of a typical WDM network with four end-nodes
E1-E4 and four routers R1-R4 .. 19

Figure 2.2.7.1: Lightpaths On the physical topology [21].. 20

Figure 2.2.8.1: Lightpath shown by dashed-line on Physical Topology 22

Figure 2.2.8.2: A logical topology drawn from physical topology has shown Fig.
2.2.8.1.. 23

Figure 2.6.1: Congestion of a Network... 27

Figure 2.10.1: Reconfiguration of Logical Topology... 34

Figure 2.12.1: Hill Climbing Algorithm... 38

Figure 2.13.1: Move Selection Procedure [5] ... 40

Figure 2.13.2: Move Selection Procedure in Tabu Search [17].. 41

xi

Figure 3.1.1: Schematic Description of the Problem.. 43

Figure 3.3.1: Adding edge from Strategy1 ... 45

Figure 3.3.2: Benefit calculation for case-1.. 47

Figure 3.3.3: Benefit calculation for case-2.. 48

Figure 3.4.1 Adding edge from Strategy 2. .. 49

Figure 3.4.2: Benefit Calculation for Strategy 2... 51

Figure 3.4.3a: Choice 2 - Traffic routing after removing 0.30 units. 53

Figure 3.4.3b: Choice 2 - Traffic routing after removing 0.35 units 53

Figure 3.5.1 Adding edge from Strategy 3. .. 54

Figure 3.6.1: Adding edge from Strategy 4. ... 55

Figure 3.7: Overall Scheme with Block Diagram... 56

Figure 4.1.1: Generate Initial Logical Topology. ... 60

Figure 4.1.2.2: Graph diagram of Logical Topology with two Edges.............................. 64

Figure 4.1.2.3: Graph diagram of Logical Topology with 6 Edges.................................. 65

Figure 4.1.2.4 Graph diagram of Logical Topology with 7 Edges. 67

Figure 4.4a: Generating new Logical Topology. .. 71

Figure 4.4.1.1a: Implementation details of Strategy 1.. 73

Figure 4.4.1.2a: Implementation of determining best move in Strategy1. 74

Figure 4.4.1.3a: Implementation for calculating the benefit of a move in Strategy 1. 76

Figure 4.4.1.3b: Benefit calculation for the edge x2 � imax in Strategy 1 77

Figure 4.4.2.1a: Implementation details of Strategy 2.. 79

Figure 4.4.2.2a: Implementation of determining best move in Strategy 2. 80

Figure 4.4.2.3a: Implementation of selecting the best move in Strategy 2...................... 81

xii

Figure 4.4.2.3b: Selecting the best move in Strategy 2. ... 82

Figure 4.4.3.1a: Implementation details of Strategy 3.. 84

Figure 4.4.3.2a: Implementation of determining best move in Strategy 3. 85

Figure 4.4.3.3a: Calculating the benefit of a move using Strategy 3................................ 87

Figure 4.4.3.3b: Benefit calculation for the edge jmax � x1 in Strategy 3. 88

Figure 4.4.4.1a: Implementation details of Strategy 4.. 90

Figure 4.4.4.2a: Implementation of determining potential moves in Strategy 4. 91

Figure 4.4.4.3a: Implementation of selecting the best move in Strategy 4...................... 92

Figure 4.4.4.3b: Benefit calculation for the edge x2 � jmax in Strategy 4. 93

Figure 4.5.1: Initial Logical Topology.. 95

Figure 4.5.2: New Logical Topology.. 97

Figure 4.6.1: Logical Topology .. 101

Figure 5.4.1a: Edge(s) Required for 6-Node Network ... 110

Figure 5.4.1b: Average Edge(s) Required for 6-Node Network..................................... 110

Figure 5.4.2a: Edge(s) Required for 10-Node Network... 111

Figure 5.4.2b: Average Edge(s) Required for 10-Node Network................................... 111

Figure 5.4.3a: Edge(s) Required for 14-Node Network... 112

Figure 5.4.3b: Average Edge(s) Required for 14-Node Network................................... 112

xiii

List of Tables

Table 1.4.1: A Typical [4 x 4] Traffic Matrix... 7

Table 2.5.1: A Traffic Matrix ... 26

Table 4.1.2.1: 4 Nodes logical topology (Initialize with zeros).. 62

Table 4.1.2.2: Sorted Traffic Request Matrix ... 62

Table 4.1.2.3: Logical Topology Matrix... 63

Table 4.1.2.4: Updates of Residual Lightpath Capacity, step1... 63

Table 4.1.2.5: Logical Topology Matrix... 64

Table 4.1.2.6: Updates of Residual Lightpath Capacity, step2... 64

Table 4.1.2.7: Source-Destination pair of requests... 65

Table 4.1.2.8: Update Traffic Matrix.. 65

Table 4.1.2.9: Updates of Residual Lightpath Capacity ... 66

Table 4.1.2.10: Update of Residual Lightpath Capacity... 67

Table 4.1.2.11: Logical Topology Matrix... 67

Table 4.2.1: Randomly Generated Traffic Matrix .. 68

Table 4.5.1: Initial Traffic Matrix... 94

Table 4.5.2: New Traffic Matrix... 95

Table 4.5.3: The possible move list .. 96

Table 4.6.1: Traffic Matrix ... 98

Table 4.6.2: Amount of traffic flowing on edges for the commodity............................. 102

Table 5.1: Experimental Results with 6-Nodes .. 107

xiv

Table 5.2: Experimental Results with 10-Nodes .. 108

Table 5.3: Experimental Results with 14-Nodes .. 109

1

Chapter 1: Introduction

1.1 Preamble

Wavelength division multiplexing (WDM) technology enables optical networks

to properly utilize the huge bandwidth capacity of optical fibers for carrying traffic

[2]. A major advantage of an optical network is that it is able to reconfigure its logical

topology to adapt to changing traffic patterns dynamically [3]. Another key feature of

second generation of optical networks is the use of tunable transmitters and/or

receivers, which allows the logical connectivity to be optimized to adapt to changing

traffic conditions. In this thesis we consider re-arrangeable multihop lightwave WDM

networks, where each node is equipped with a pre-determined number of transmitters

and receiver.

1.2 Problem Description

In static lightpath allocation, the logical topology of a WDM optical network is

determined, based on long-term traffic demands. These traffic demands however

change with time. When a logical topology is incapable of supporting the current

traffic demands, the logical topology has to be modified or reconfigured. The

objective is to find an optimal new logical topology which can support the current

traffic demands with as little change to the existing topology as possible. This is

known to be a difficult problem [14] and many researchers have studied this recently.

In this research, we have addressed the reconfiguration problem of the logical

topology of a WDM optical network.

2

Our main objective in this research is to observe how much the congestion can

be reduced by reconfiguring the logical topology when the traffic demand increases

beyond the capacity of the network. In order to compute the congestion value, the

policy of routing the traffic over the logical topology must be determined. Therefore,

the problem can be split into two sub-problems as follows:

i. Create a new logical topology by reconfiguring the existing logical

topology.

ii. Route the traffic demand over the new logical topology in an optimal

manner to determine the congestion.

We have used a hill climbing procedure [11] to create a new logical topology by

reconfiguring the existing logical topology as little as possible, such that the new

logical topology can handle the changing traffic patterns. In each iteration, we have

tried to find the best logical topology with relatively little change to the existing

logical topology, thus minimizing the disruption to the network and the

reconfiguration time. We have used the CPLEX optimizer to route the traffic over the

logical topology.

Many researchers have worked on this issue and we have summarized the work

briefly in Chapter 2. The problem and the motivation have been discussed in Section

1.3, the fundamentals of WDM optical networks are discussed in Section 1.4, and the

thesis outline is shown in Section 1.5.

1.3 The Problem Investigation and motivation

A lightpath in a logical topology carries certain amount of traffic (typically 10

Mbits/sec at the moment). When the traffic increases above this capacity, a new

logical topology needs to be determined, requisite lightpaths set up and traffic

grooming strategies determined to accommodate the increases in the traffic. The

3

second generation WDM network technology can dynamically change its logical

topology corresponding to the changing traffic conditions [4]. The problems for the

researcher are as follows:

• How frequently should reconfigurations be carried out?

• How to keep the network performance optimized?

• How much should be the cost due to reconfiguration in the transition period,

when the network is switched from one logical topology to another one?

• How to handle faults in the logical topology at the time of reconfiguration?

Many researchers have worked on different aspects of optimization in optical

networks, including optimizing network performances, improving the delay and the

throughput metrics, minimizing the hardware costs, minimizing the disruptions,

proposing heuristics to design logical topology and decreasing the congestion. The

term congestion is discussed later in this section.

In this thesis, we have investigated the reconfiguration of the logical topologies so

that the congestion of the networks can be minimized and we have tried to answer the

following questions:

i. How to find a “good” reconfiguration fairly quickly for logical

topology.

ii. How to minimize the disruptions of the network as little as

possible.

iii. How to ensure that the new topology is capable of carrying the

new traffic.

iv. How to route the traffic demand very effectively and find the

congestion.

4

Many methods for designing the logical topology and routing the traffic optimally

have been studied. Some of the studies are reviewed in Chapter 2. Mixed integer

linear programming (MILP) has been used in previous studies [2], for designing a

new logical topology. The MILP may take an exponential amount of time to obtain an

exact solution, even for small networks. As an alternative to using a MILP, a heuristic

algorithm may be used, although it is known that the quality of a heuristic solution is

unknown. The tabu search algorithm has been used to design a logical topology [17]

and properly designed tabu search [11] is known to be very effective on overcoming

the well-known problem of getting trapped in local optimum.

It is known that the CPLEX optimizer provides the power to solve linear

programs (LP) with many constraints and continuous variables, within a reasonable

amount of time. We have used LP to route the traffic over the logical topology. The

LP equations are used by the CPLEX optimizer tool as an input to find the congestion

of the network. The CPLEX optimizer tool expedites our process of routing quickly

and efficiently.

1.4 Fundamentals of WDM Optical Networks

An optical network is a network where computers or end nodes are connected

using optical fibers. A typical optical network is shown in Fig. 1.4.1 with 4 end nodes

E1-E4 and 4 routers R1-R4. An optical fiber is a thin glass cylinder or a filament

which carries signals in the form of light (optical signals). It is the replacement of

earlier computer networks, where copper wires were used as the communication

medium. The technology of using multiple optical signals on the same fiber is called

wavelength division multiplexing (WDM). Using this technique, it is possible to

utilize the bandwidth of optical network (50 tera-bits) in an efficient way.

5

Figure 1.4.1: The physical topology of a typical WDM network with four end-

nodes E1-E4 and four routers R1-R4.

In optical networks, the source or the destination of a data transmission is called

an end-node. It could be a computer, a router or any other device that stores and sends

data. An optical router is an important component of optical networks to route the

incoming data to an appropriate outgoing destination. Each optical router has a

number of incoming fibers and a number of outgoing fibers to carry one or more

incoming or outgoing optical signals. It is convenient to describe the Physical

Topology of an optical network as a graph G. Such a graph is shown in Figure 1.4.1

above, where an end-node or a router is a node of graph G, and the fiber from one

node to another can be defined as an edge of graph G.

A lightpath is an optical connection from one end node to another, used to carry

data in the form of encoded optical signals. It is also convenient to view the lightpaths

as edges of a directed graph GL shown in figure 1.4.2, where the nodes of GL are the

end nodes of the physical topology. Such a graph is called the logical topology of an

optical network and the edges of such a graph are called logical edges [21].

R4 R2

R1

R3

E4 E2

E1

E3

Router

Fiber

End
Node

6

Figure 1.4.2: Logical Topology

The routing over a logical topology determines, for each source destination pair(S,

D), which logical paths are to be used to communicate data from S to D and how

much data has to be carried out by each logical path from S to D.

In a network with N end nodes, an N x N traffic matrix may be used to define the

traffic requirement for all source-destination pairs. A traffic matrix shows how much

data is to be sent form one source end-node to another destination end-node. A typical

4 x 4 traffic matrix is shown in Table 1.4.1.

Node 1 2 3 4

1 0.00 0.30 0.5 0.30

2 0.20 0.00 0.30 0.20

3 0.55 0.10 0.00 0.30

4 0.00 0.20 0.10 0.00

E3

Logical edge/
lightpath

E2 E4

E1

Congestion

7

Table 1.4.1: A Typical [4 x 4] Traffic Matrix

Another very important research topic is congestion optimization in a logical

topology. The maximum total traffic on a logical edge defines the congestion of that

network for that traffic matrix. In the example shown in Table 1.4.1, the logical edge

from end node 3 to end node 1 is carrying 0.55 unit of traffic, which is the current

congestion for this particular network for this specific example. Here the unit of

traffic is the capacity of a lightpath.

1.5 Thesis Outline

In Chapter 2, we have discussed the background study and have reviewed the

literature. We have specified the problem in detail in Chapter 3. In Chapter 4 we have

discussed the implementation details. In Chapter 5, we have described the

experimental results and observation. Chapter 6, we have given our conclusion and

have discussed future works.

8

Chapter 2: Background study/ Review of literature.

2.1 Preamble

During the early stages of computer networks, copper wire was used as the

medium of communication. Due to the limitations of copper wire (such as high

attenuation, susceptibility to malicious attacks, and electromagnetic interference), for

the last twenty years, better ways of communication between computers have become

one of the most important research topics in the computer revolution. The tremendous

growth of the Internet and the ever increasing data transfer rates have made very

high-bandwidth optical networks a very important technology in network

infrastructure. This bandwidth property of optical fibers makes optical technology

very attractive for backbone networks. Multiple optical signals can be transported on

the same optical fiber [20] (explained in Section 2.2). Using this technique, the

bandwidth of optical network is 50 tera-bits per second and is useful for handling the

increasing demands for communication.

The nodes of an optical network are computers or any other devices (often

called end nodes) which can generate or store data in an electronic form. Selected

pairs of nodes are connected using optical fibers. Optical fibers are basically very thin

glass cylinders or filaments which carry signals in the form of light (optical signals).

Optical networks also include transmitters to generate optical signals for

communication, and receivers to detect the optical signals and to convert the signals

to electronic form. An optical Router is a device which routes signals from the

incoming fibers to the appropriate outgoing fibers of the router. A lightpath is an

optical connection from one end node to another, and is used to carry data in the form

of encoded optical signals. A directed graph to represent the lightpaths connecting

pairs of end nodes is called a logical topology. A path through a logical topology

9

from a source to a destination is known as a logical path. In the remaining sections in

this chapter, we have discussed some of the optical hardware components and key

terminology in detail.

2.2 Component and Key Terminology of WDM Networks

There are many devices used in second generation of WDM networks, such as

couplers, optical transmitters, optical receivers and filters, optical amplifiers, optical

routers, and switches are the most common. A few key devices are described below.

Figure 2.2.1.1: Optical Fiber

An optical fiber consists of a very fine cylinder of glass (core) of silica with

refractive index, say µ1, through which optical signals propagates. The core is

surrounded by a concentric layer of glass (cladding) of silica with a lower

refractive index, say µ2, which is protected by a thin plastic jacket. The buffer

shown in Fig. 2.2.1.1 surrounding the cladding encapsulates the fiber for

mechanical isolation and for protection from physical damage [21]. A cross-

section of a fiber is shown in Fig. 2.2.1.2.

Buffer

Cladding

Core

10

Figure 2.2.1.2: The cross-section of a fiber [21]

Figure 2.2.1.3: Optical Signal Propagation through a Fiber

If the angle of incidence (Fig. 2.2.1.3) is greater then the critical angle (sin-1

µ2/ µ1) then total internal reflection takes place and all the light is reflected back

into the medium. Total internal reflection forms the basis of optical transmission

through fibers.

Coating

Claddin

Core

 µ1

Angle of
incidence

µ
2

Core

Cladding

11

2.2.2 Wavelength Division Multiplexing (WDM)

The technology of using multiple optical signals using different carrier

wavelengths on the same fiber is called Wavelength Division Multiplexing

(WDM) [21].

 Fig. 2.2.2a shows a Multiplexer that combines 4 distinct signals (W0 –

W3) and sends them on an Optical Fiber. The De-multiplexer on the other side

splits those 4 signals from the fiber and generates 4 outputs. In WDM

networks, the available bandwidth of the fiber can be visualized as a set of

channels. Channel spacing (Fig. 2.2.2b) is the separation of one channel from

the next channel. Channel spacing is used to avoid interference between

different optical signals and must exceed a certain minimum bandwidth.

Optical Fiber

W0 W1, W2, W3

De-Multiplexer
Multiplexer

W0

W1

W2

W3

W0

W1

W2

W3

Figure 2.2.2a: WDM

12

Figure 2.2.2b: Signal bandwidth and channel spacing [21]

 The important advantages of WDM networks are as follows:

• Low signal attenuation- As a signal propagates through fibers; the signal

strength goes down at a low rate (0.2 dB/km). This means that the number

of optical amplifiers needed is relatively small.

• Low signal distortion - As a signal is sent along a fiber optic network, it

degrades with respect to shape and phase. Signal regenerators are needed

to restore the shape and timing. Low signal distortion means that signal

regeneration is needed infrequently.

• Low power requirement.

• Low material usage.

• Small space requirements.

• Low cost.

WDM networks can be classified into two types - wavelength-routed networks

and Broadcast-and-select networks. Since our study is based on wavelength-routed

WDM networks, a brief description of wavelength-routed WDM networks is given

13

below:

14

2.2.2.1. Wavelength-Routed Networks

 In a wavelength-routed network, a lightpath starts from an end-node, passes

through 0 or more routers and terminates at another end-node. This type of networks

may contain a large number of end nodes.

Figure 2.2.2.1: A Wavelength-Routed Network [22]

The network shown in Fig. 2.2.2.1 is a wavelength-routed network, since the

end nodes communicate using lightpaths where the routing of a lightpath to its

destination is based on its carrier wavelength. There are 4 end nodes E1 – E4,

connected with 4 optical routers respectively in a physical topology and dashed lines

show lightpaths which are sent over the physical topology. When an end node E1 tries

to communicate to end node E4, the signal passes through routers R1, R2, R3, and R4

using the path R1 � R2 � R3 � R4. The router R1 sends the signal at wavelength λ1 to

R2 and so on. When the router R4 receives this signal, it is passed to end node E4.

15

Since end node E4 is tuned at wavelength λ1, it receives the signal.

2.2.2.2 Single-hop and Multi-hop WDM Networks

In single-hop network, data remains in the form of an optical signal from the

time it leaves the source end node until it reaches its destination end node. All data

communication involves a path length of one logical edge. In other words, exactly

one lightpath is involved in each communication. Since the signal remains in the

optical domain all the way, such a network is also called an all-optical network [6]. In

a network with NE nodes, the number of end node pairs is NE (NE -1), so that the

number of lightpaths becomes impossibly large, even for moderate values of NE.

Since the number of available channels, the number of transmitters and receivers are

all limited, single-hop networks are not feasible even for moderate values of NE.

In a multi-hop network, the signal transmitted from a source end node to the

destination end node via one or more intermediate end nodes. Signals are converted

from the optical form to the electrical form at each intermediate end-node. If there is

no direct optical link available between a source end node and a destination end node,

multi-hop communication is used. In Figure 2.2.6.1 shows a typical multi-hop optical

network.

2.2.3 Multiplexer and De-multiplexer

 The use of multiplexers makes it possible to have multiple data streams on the

same fiber. A multiplexer combines different distinct signals on different input fibers

into one output which can be communicated using a single fiber. A typical

multiplexer is shown in Figure 2.2.3.1, which combines 4 input signals each using a

distinct channel from c1 – c4, and the combined signal can be transmitted through a

single fiber to the corresponding destinations.

16

Figure 2.2.3.1: 4 – Input Multiplexer [21]

A de-multiplexer splits the signals carried by an incoming fiber into different

outputs, each with a signal using a distinct channel. A typical de-multiplexer is shown

in Figure 2.2.3.2, in which the signals on the incoming fiber are separated by a de-

multiplexer into 4 outputs, each carrying a distinct signals and using one of the

channels c1, c2, c3 and c4.

Figure 2.2.3.2: A Typical 4- Output De-Multiplexer [21]

17

2.2.4 Add-drop multiplexer (ADM)

The ADM is an useful component of optical networks as it has the capability

to add one or more new wavelength channels to an existing multi-wavelength WDM

signal, and/or to drop (remove) one or more channels, passing those signals to another

network. A typical Add-drop multiplexer consists of a multiplexer and a de-

multiplexer as shown in Figure 2.2.4.1. This figure shows that signals using two

channels from the output of de-multiplexer c2 and c3 are dropped (in other words, are

not sent to the input of multiplexer). These two signals may be converted into

electrical signals and used in the end node attached to this ADM. The end node also

creates two signals using channels c2 and c3 and sends them to the inputs of the

multiplexer. The multiplexer generates the output, which is fed to an outgoing fiber.

Figure 2.2.4.1: An Optical Add-Drop Multiplexer [21].

2.2.5. Wavelength Router

 The Wavelength Router is a device used to route an optical signal to its output

destination according to its wavelength. An optical router has the same number of

18

input ports and output ports, each carrying many optical signals. The optical

router determines which incoming signal has to be routed to which outgoing fiber.

Figure 2.2.5.1: Router Node [21]

Fig. 2.2.5.1 shows a basic diagram of an optical router node with multiplexers

and de-multiplexers and having two input fibers and two output fibers. The figure

shows that input signal s1
1 is coming through input fiber 1, and passes through

demux1, routed by the 8 x 8 optical switches to the appropriate input of MUX2

and ultimately is routed to output fiber 2.

2.2.6 Physical Topology

The physical topology of a WDM network consists of many optical devices.

Figure 2.2.6.1 shown below is a simplified diagram of a typical physical topology

of an optical network. In the diagram an oval represents an end node which is the

source/destination of data generated by the user. A square represents a router

which directs the data signal to the proper destination. A directed line represents a

Input Fiber 2

Input Fiber 1
Output Fiber 1

Output Fiber 2

19

fiber. A fiber connection allows unidirectional communication and the arrow on

the line gives the direction in which optical signals can flow. It is convenient to

represent the simplified topology as a graph Gp = (V, E) in which each end node

or router in the network is a vertex in set V, each fiber optic link between two

nodes is an arc in set E.

Figure 2.2.6.1: The physical topology of a typical WDM network with four end-
nodes E1-E4 and four routers R1-R4

2.2.7 Lightpath

A lightpath is an optical connection from one end node to another, used to carry

data in the form of encoded optical signals. Such a lightpath always starts from an end

node, traverses a number of fibers and router nodes, and ends in another end node

[21]. Figure 2.2.7.1 shows a number of lightpaths using the physical topology. For

example lightpath L1 started from E1, terminated at node E3 and uses path E1 � R1 �

R4 � R4 � E3.

E4 E2 R4

R3

R2

E1

E3

R1

Fiber End Node

Router

20

Figure 2.2.7.1: Lightpaths On the physical topology [21]

The characteristics of a lightpath are as follows:

• A lightpath is an all-optical connection from one end-node to another that is

used to carry data in the form of encoded optical signals.

• The lightpath uses a path consisting of a sequence of physical links from the

source to destination of the lightpath.

• It is possible for a lightpath to have several wavelengths on different fibers in

its path. Such a lightpath must use an all-optical wavelength converter.

• Current optical networks do not have wavelength converters and a lightpath

must use the same wavelength on all fibers in its path.

An all-optical network refers to the class of networks where the information

remains in the optical domain in the entire path from the source node to the

destination node; in such networks, there is no conversion between optical signals to

21

electrical signals along the path used for data transmission.

22

2.2.8 Logical Topology

Since the lightpaths determine which end nodes can directly communicate

with other end nodes, once the lightpaths are settled up as shown in Fig. 2.2.8.1, the

physical topology is irrelevant for determining a strategy for communication. It is

convenient to view the lightpaths as edges of a directed graph GL where the nodes of

GL are the end nodes of the physical topology. Such a graph is called the logical

topology of an optical network and the edges of such a graph are called logical edges

[21]. The directed graph shown in the figure 2.2.8.2 is a logical topology. The

lightpath forms a basic data communication link from a given source end node to

destination end node in an optical network. In general, an optical network has many

lightpaths, defining optical connections between selected pairs of end nodes. In

Figure 2.2.8.1, a logical edge starts from end node E4 and ends at end node E1.

Another lightpath is from end node E1 to end node E3. When a lightpath is established

for data communication between one source end nodes to another destination end

node, it can pass through intermediate end nodes.

Figure 2.2.8.1: Lightpath shown by dashed-line on Physical Topology

E4 E2 R4

R3

R2

E1

E3

R1

Fiber End Node

Router

Lightpath

23

Figure 2.2.8.2: A logical topology drawn from physical topology has shown Fig.
2.2.8.1.

2.3 Route and Wavelength Assignment (RWA)

As we have mentioned in Section 2.2.2, WDM allows the same fiber to carry

many signals independently, as long as each uses a different carrier wavelength and

maintains sufficient channel spacing. The channel assigned to the lightpaths should be

such that two lightpaths sharing a fiber are never assigned the same channel.

Determining the path of a lightpath and the channel number is known as the routing

and wavelength Assignment (RWA) problem.

Two versions of the RWA problem have been considered by researchers [21].

If the set of lightpaths to be set up is known in advance, the problem is called the off-

line RWA problem. In this formulation the traffic demand is known in advance and is

not expected to change in the near future. This is also called static lightpath

allocation since the lightpaths, once established, are not modified until the traffic

pattern changes sufficiently to warrant a different set of lightpaths.

Lightpath

E4

E1

E3

E2

24

The other version of the problem is to set up the lightpaths on demand and is

called online RWA (also called dynamic lightpath allocation) problem [25]. In this

problem, requests for data communication are considered as and when they occur. In

dynamic allocation, lightpaths are set up when needed and are taken down when the

communication is over.

The following approaches primarily used for RWA problem:

• RWA as graph coloring problem

• Integer linear programming

• RWA using a heuristic.

The solutions for static lightpath allocation using mathematical programming are

computationally intractable even for medium-sized networks. Heuristics are useful for

solving the problem, within a reasonable amount of time [22].

2.4 Logical Topology Design Problem

The problem of designing logical topologies is to find a set of lightpaths

defining which pairs of end nodes are to be connected by logical edges, in order to

handle the expected traffic in an economic manner. In a WDM network, the optical

fibers can support a number of channels for data communication. The actual number

of channels supported by a fiber depends on the technology used and the type of fiber

used. To design an optimal logical topology, we need to consider the following:

• The set of lightpaths to be created,

• For each lightpath, the route through the physical topology and the channel

to be used on each fiber in its route,

• The strategy for routing the traffic over the logical topology.

25

All the points mentioned above are not independent. Some early researchers

solved these three problems in one formulation, using some MILP (Mixed Integer

Linear Programming) for logical topology design and for routing1. These

formulations are intractable for practical sized networks, since they involve large

numbers of integer variables. This fact has motivated the development of efficient

heuristic solutions that are “reasonably” good and solve the logical topology design

problem in a reasonable time frame [7]. The logical topology design problem has

been sub-divided into three sub-problems as follows:

i) Find the logical topology,

ii) Carry out RWA for each lightpath,

iii) Find the optimal traffic routing strategy.

2.5 Traffic Matrix

It is convenient to represent the traffic requirements in the form of a matrix T

= [t (i, j)], often called a traffic matrix. The entry t (i, j) in row i and column j of

traffic matrix T denotes the amount of traffic from end node Ei to Ej, where i ≠ j.

The signal rate is normally expressed, using the Optical Carrier level notation

(OC-n), where the base rate (OC-1) is 51.84 Mbps and OC-n means (n x 51.84)

Mbps, depends on the technology used. A typical traffic matrix is shown in Table

2.5.1 below.

1 MILP appears in Section 2.7.

26

 T =

Table 2.5.1: A Traffic Matrix

In our thesis, for simplicity, we have defined the traffic load as a fraction of the

capacity of a lightpath and the maximum is 1.0. As shown in table 2.5.1, the entry t

(1, 4) is 0.20, meaning that the amount of data to be communicated from end node E1

to end node E4 is 0.20 units. If a single lightpath can carry data at the rate of 10.0

Gbps (i.e., OC-192), the expected data communication rate from end node E1 to end

node E4 is 10 * 0.20 = 2 Gbps.

It is convenient to consider the traffic corresponding to each pair of end nodes as

a commodity and attach a distinct number k with such a commodity. We will

designate commodity Kk as the traffic corresponding to the pair of end nodes (Esk, Edk)

having t(sk, dk) > 0. In the above Figure 2.5.1, there are eleven (11) nonzero entries,

so that there are eleven commodities. For example, K1
 is for pair (E1, E2),

corresponding to row 1, column 2 and has traffic 0.30. Similarly commodity K11 is for

pair (E4, E3), corresponding to row 4, column 3 and has traffic 0.10.

2.6 Congestion Minimization

A request from a specific source to a specific destination constitutes a commodity.

Each entry of the traffic matrix t(s, d) > 0, is a distinct commodity as described in

Node 1 2 3 4

1 0.00 0.30 0.5 0.30

2 0.20 0.00 0.30 0.20

3 0.35 0.10 0.00 0.30

4 0.00 0.20 0.10 0.00

27

Section 2.5. The congestion is the value of the highest traffic that is flowing on any

particular edge of a logical link. The total traffic flowing on an edge is the sum of all

the flows for all the commodities on that edge. Figure 2.6.1, which is drawn from

Table 2.5.1, shows that there is a total of 0.60 unit of traffic flowing on the edge E2 �

E3 for two different commodities (C1 and C2) for a specific logical topology and

routing scheme. Since, the traffic flowing on this edge is the maximum traffic; this

edge is the congested edge.

Figure 2.6.1: Congestion of a Network

Congestion minimization helps to decrease the chances of a bottleneck in the

context of communication. Minimizing the value of congestion is one way to reduce

the cost of a network since each lightpath means additional cost due to the optical

(electrical) hardware at the source and the destination of the lightpath. A lower value

of congestion allows greater possibility of scaling up the traffic in the network

without changing the routing strategy - more traffic can be arranged to flow without

additional resources to the network and is therefore more economical.

E4

E1

E3

E2

C4 0.2

C1 0.3 + C4 0.2 = 0.5

C1 0.3 + C2 0.3 = 0.6

C1 0.2

C5 0.1 Congested
Edge

28

2.7 MILP- based solution of the logical topology design and the

routing problem

In a linear programming formulation, if some of the variables are constrained

to have integer values and others are continuous variables, the formulation is called a

mixed integer linear program (MILP). The problem of logical topology design is to

find which pairs of end nodes are to be connected by a lightpath. A lightpath may be

represented by using a binary variable having a value of 1 (0). This binary variable

may be used to denote whether a lightpath exists (does not exist). Therefore, these

variables are needed in each pair of end nodes. When the logical topology is known,

the problem of routing strategy is to determine how the traffic may be handled

optimally over the logical topology. The details of the routing problem are discussed

in Section 2.9.

The formulation of the MILP has been provided below [21]. The term L-

congestion used here to describe the maximum traffic maxΛ on a logical link2. To

determine the value of L-congestion, we first have to determine an optimal logical

topology and then find an optimal routing over the logical topology.

Objective function:

 Minimize maxΛ (7.1)

Subject to

1. Ensure that maxΛ is the L-congestion.

2 An explanation for the notation used in this thesis appears in appendix 1.

29

∑∑
= =

≠≤≤∀Λ≤
E EN

s
E

N

d

sd
ij jiNjijix

1
max

1

,,1,,, (7.2)

2. Part of the traffic t(s, d) can flow on the logical edge Ei ⇒ Ej only if the logical

edge exists. Also
sd
ijx , the part of the traffic t(s, d) flowing on the logical edge Ei ⇒

Ej cannot exceed the traffic t(s, d).

sd
ijx ≤ bij . t(s, d), dsjiNdsjidsji E ≠≠≤≤∀ ,,,,,1,,,, (7.3)

30

3. Apply the flow conservation rules.

∑
=

EN

i

sd
ijx

1
- ∑

=

EN

j

sd
jix

1
 =

≠≤≤∀=−
=

otherwise

dsNidsdsiidifdst

isifdst

E

0

,,,1,,,,),(

),(

 7.4)

4. The number of lightpaths ending at (starting from) a given end node cannot exceed

∆in (∆out).

 ∑
=

EN

i
ijb

1
≤ ∆in , E

Njj ≤≤∀ 1,

 (7.5)

∑
=

EN

j
ijb

1
≤ ∆out, E

Njj ≤≤∀ 1,

 (7.6)

Equation (7.2) ensures that maxΛ is greater or equal to the traffic on any edge. If a

lightpath from end node Ei to end node Ej exists (in other words, if bij is 1) then

equation (7.3) ensures that part of the traffic t (s, d) may be routed over logical edge

Ei � Ei. Equation (7.4) ensures that the total traffic flowing out from Ei is

∑
=

EN

i

sd
ijx

1
and the total traffic flowing into Ei is∑

=

EN

j

sd
jix

1
. If Ei is the source,

then there is no traffic flowing into Es. If Es is the destination, then there no traffic

flowing out of Es, otherwise for all intermediate node, the incoming and outgoing

traffic difference should be 0. Equations (7.5) and (7.6) ensure that the number of

31

lightpaths do not exceed the number of transmitters and/or receivers.

2.8 A Heuristic for Designing a Logical Topology

Heuristic is defined as any technique used to obtain an approximate (i.e., close

to the optimum value) solution of a given problem. As we have mentioned in our

problem definition in Chapter 1, we will be using a heuristic for designing the initial

logical topology. The pseudo code for a heuristic to solve the logical topology design

problem [21] is given below.

The steps of the heuristic are as follows:

Step 1: Find the entry t (imax,, jmax) in T having a maximum value among all the entries

in T. If there is no nonzero entry in T, stop.

Step 2: Using any RWA technique (Discussed in 2.3), check if it is possible to

establish a lightpath from Eimax to Ejmax. If RWA is not possible, set t (imax, jmax) to 0

and go to Step 1.

Step 3: Create a logical edge from end node Eimax to end node Ejmax. Set t(imax, jmax) to

t(imax, jmax) - clightpath or 0, whichever is greater. Go to Step 1.

Note: We did not consider any restrictions on ∆in (receiver) or ∆out (transmitter) when

designing our initial logical topology using this heuristic. We also assumed that it is

possible to carry out a RWA to set up a lightpath from any source to any destination.

2.9 Routing over a Logical Topology

 As we have mentioned in Section 2.5 that the traffic requirement of a NE node

network can be represented as a form of matrix T where, each individual entry of the

matrix can be presented as tij (0 ≤ i,j ≤ NE). This gives us the amount of traffic to be

32

routed from source end node Ei to destination end node Ej.

Now, if the logical topology is already known, then the other part of our

problem is to determine the routing optimally for the each traffic entry tij. This type of

problem may be viewed as MCNF (Multi-Commodity Network Flow) problem [7].

For each pair of end nodes, the distinct number of commodity has to be assigning for

transportation from one source node Es to destination node Ed. Therefore, we can say

that there is k commodity has single source Esk and a single destination Edk. In this

situation, a directed graph G = (V, E) may be viewed as the transportation network

where V is the set of vertices in G and each Vi (0 ≤ i ≤ N) represents possible source

(destination). Each i � j represents the logical edge (link) from source i to

destination j. If there are
light
sdn

 lightpaths from source node Es to destination node

Ed and Clightpath is the capacity of a link, then (
light
sdn * Clightpath) amount of data may

be handled from Es to Ed. In a transportation network when there is single commodity

to be considered, the problem is called a single commodity flow problem; otherwise,

it is called a multi commodity network flow problem.

Networks consisting of less than 30 end nodes are considered small to

medium-sized networks. Since, the first part of our problem is known, the logical

topology is fixed, and routing can be done by the formulation described below, since,

the values bij (1 ≤ i, j ≤ NE) are known, it is a LP program.

Routing this type of flow problem can be formulated as follows: [21]

Objective function:

 Minimize maxΛ (2.9.1)

33

Subject to

1. Ensure that maxΛ is the L-congestion.

Ljix
k

k
ij ∈∀Λ≤∑

=

),(,max
1

 (2.9.2)

2. Apply the flow conservation rules.

∑
∈ Ljij

k
ijx

),(:
- ∑

∈ Lijj

k
jix

),(:
 =

=−

=

otherwise

idestift

isrcift

k
k

k
k

0

,

,

 (2.9.3)

(2.9.3) has to be applied to node i, for all i, 1 ≤ i ≤ NE, and has to be repeated for each

commodity k , 1 ≤ k ≤ q.

The notation used in this formulation has been given in Appendix1.

2.10 Reconfiguration of Logical Topology

The motivation of logical topology design is to optimize the network

performance, improving the congestion, the delays and the throughput metrics. The

WDM networks have the property of dynamically changing its logical topology

corresponding to the changing traffic conditions [8]. This ability to dynamically

optimize the network for changing traffic patterns is one of the key features of multi-

34

wavelength optical network. As we have mentioned in Chapter 1, traffic does not

remain the same all the time. Therefore, when the given logical topology is incapable

of supporting changing traffic demands, the logical topology needs to be changed.

This can be viewed as a reconfiguration of the logical topology. The general

approach to the logical topology reconfiguration problem has been a two-phase

operation: the first phase being a logical topology design for the new traffic

conditions and the second phase being a routing scheme to handle the increased

traffic demand over the logical topology, in order to meet the objective function, such

as minimizing the congestion of the network.

In this discussion, we have an arbitrary logical topology based on some physical

topology, which was capable of handling the traffic that existed when the logical

topology was designed, but after a certain period of time, the traffic load will change

and the current logical topology cannot handle the new traffic. In this situation we

need to change the logical topology or reconfigure the logical topologies that can

handle the increased traffic in an optimal manner.

Figure 2.10.1: Reconfiguration of Logical Topology

Fig. 2.10.1b: New Topology

E4

E1

E3

E2

0.6

0.5

0.5

0.01

Fig. 2.10.1a: Old Topology

E4

E1

E3

E2

1.1

0.01

35

In Fig. 2.10.1a, end node E1 sending traffic of 1.1 (which is greater than the

maximum allowed value of 1.0) to end node E3 and end node E4 sending a

relatively very small traffic (0.01) to end node E3. The network shown in Fig.

2.10.1a is an overloaded network, since edge E1 � E3 is carrying more traffic

than its capacity. In this situation, two strategies could be considered to change

(reconfigure) the logical topology. One is to find the best logical edge (s) to be

added to the topology, another one is to remove one logical edge and add one

logical edge. If very little traffic is flowing on an edge, the edge is a candidate to

be deleted. As a result of the deletion, there will be no significant effect on the

traffic carried by the network. In our thesis, we have implemented the first option

only.

In Fig. 2.10.1b shows that we have added one edge from end node E1 to end

node E2 and then routed the traffic accordingly. The traffic flowing on every edge

is below the capacity of logical edge. Therefore, the reconfiguration has been

done on the existing logical topology.

In summary, when a lightpath is created from source to destination, a source

node communicates directly with the destination node. A lightpath can carry a

certain amount of traffic. When traffic increases more than the capacity of a

logical edge, the logical topology needs to be changed in order to get an optimal

logical topology capable of handling the new traffic. An optimal logical topology

is always desirable, because it improve the performance of the network.

Our main objective is to reconfiguration of logical topology, focusing on

minimizing the congestion of the network. There are a few key terminologies,

related to reconfiguration is described below.

36

 2.10.1. Optimization

In general, the optimization means, to find the best value of some objective

function. In optical networks, the optimization problem for a given logical

topology could be to find the optimum strategy to handle all the traffic for data

communication in the network. Some of the optimization strategy could be as

follows:

• The maximum number of hops from the source to any destination.

• The use of resources, such as the number of channels used.

• Some linear combination of the number of receivers and transmitters used.

• The set of lightpaths to be created.

• Minimizing the route through the physical topology.

• Minimizing the number of channels on each fiber in its route.

• Minimizing the total traffic load on a path from source to destination

37

2.10.2. Optimization approach

In general, logical topology design problems can be formulated as

optimization problems aimed at maximizing network throughput by minimizing

some objective function or other performance measure of interest. Routing the

traffic optimally on the lightpaths is also usually seen to be a part of the logical

topology design problem. For this purpose, the problem can be decomposed into

the following sub problems.

• Static traffic control

• Dynamic traffic control

2.11. CPLEX Optimizer

ILOG CPLEX (often informally referred to simply as CPLEX) is an

optimization software package. It is named for the simplex method and the C

programming language, although today it contains interfaces for the C++, C#, and

Java languages. It was originally developed by Robert E. Bixby and sold via CPLEX

Optimization Inc., which was acquired by ILOG in 1997; ILOG was subsequently

acquired by IBM in January 2009. The CPLEX tools solve integer linear

programming (ILP) problems in medium sized network very efficiently.

2.12 Hill Climbing Heuristic

The Hill climbing is a class of methods, which start with an initial solution to

be improved and generates a sequence of new solutions by perturbing the current

solution, and then accepting the new solution permanently, temporarily, or rejecting it

completely. A simple illustration of a hill climbing algorithm is given in fig. 2.12.1.

38

Figure 2.12.1: Hill Climbing Algorithm

 It is simply a loop that continually moves in the direction of increasing value.

The algorithm does not maintain a search tree, so the state data structure need only

record the state and its evaluation , which we can denoted by VALUE. In this solution

there is no guarantee that there are no local minima of the objective function. A

solution is called a local minimum if a better solution can be obtained only after a

sequence of perturbations, some of which are not improvements. A hill climbing

algorithm [11] also makes use of short-term memory of searching algorithm, if there

is no restrictions are applied. In our problem solution is a classic hill climbing is used

to search the neighborhood and select better solution in the each iteration.

2.13 Overview from Previous Research Paper

An overview of reconfiguration issues in virtual topology design is given in

[7]. Two approaches have been discussed, i) Cost approach: The concern is to

minimize the cost of the reconfiguration, in terms of the number of Wavelength

Routers that need to have their optical switching reprogrammed, or the total number

of optical switching that need to be changed to implement the new lightpath and

eliminate old ones. ii) Optimization Approach: In this approach, the virtual topology

39

is given, when the traffic changed, the reconfiguration necessary to optimize some

objective function is carried out.

Two sub-problems have been mentioned in this paper [9]. One is to find

connectivity and another is to route the traffic. Algorithms have been proposed in this

paper to iteratively reconfigure the logical topology to minimize the congestion in

response to changes in the traffic pattern using a local search technique. For routing

they have used a minimum hop routing algorithm. They have also worked on

minimizing the disturbance to the network at the time of reconfiguration by a

“branch-exchange” technique. The author claimed that since each change to the

logical topology is small, the disturbance to the network is small.

The reconfiguration issues arising in single-hop lightwave networks have been

studied in [13]. They claimed that this is the first in-depth study of the tradeoffs

involved in carrying out the reconfiguration process. They developed and compared

reconfiguration policies to determine when to reconfigure the network, and presented

an approach to carry out the network transition by describing a class of strategies that

determine how to retune the optical transceivers. The reconfiguration problem is

formulated in this paper as a Markovian decision process [28].

The complete logical topology design problem including traffic routing,

lightpath selection and RWA has been considered in [14]. The problem is formulated

as an MILP, where the objective is to minimize the congestion. For large networks, a

solution based on LP-relaxation of the integer variables is presented.

An MILP for optimal logical topology design and an evaluation of a number

of existing heuristics for logical topology design, in terms of both performance and

complexity, has been given in [18].

A tabu-search-based meta-heuristic for optimal logical topology design,

objective is to minimize the congestion of the multi-hop network, has been presented

in [5]. The paper assumes that the physical topology and a stochastic description of

40

the traffic pattern is given, and does not consider constraints on the number of

wavelengths per fiber. The move selection procedure has been given in the following

Fig.2.12.1 below:

Figure 2.13.1: Move Selection Procedure [5]

A tabu search heuristic for solving the routing and wavelength assignment

(RWA) problem in optical WDM networks has been proposed in this paper [15],

considering the wavelength continuity constraint and a given set of connections to

satisfy. For a number of available wavelengths on each link, this algorithm attempts

to maximize the number of routed connections. Using the tabu search algorithm, they

solved the problem of RWA in two steps. During Step 1, a set of paths is selected in

the graph. Then Step 2 uses paths selected during Step 1 to build a solution of the

problem.

The heuristic approach presented in this paper [16], adapts the tabu search

strategy proposed in [4] for throughput maximization, to the multi-criteria problem of

simultaneously minimizing congestion and total flow. Tabu search is implemented as

a two phase strategy dealing with diversification as well as intensification of search.

A local search based on branch-exchange and tabu strategy is used to explore

different virtual topologies.

A Tabu Search Algorithm have been proposed in this paper [17], to design a

logical topology for packet switched traffic over WDM mesh networks. The algorithm

evaluate the cost-performance trade-off between,

41

i) Designing logical topology with small congestion and large number of

lightpath.

ii) Designing a less expensive topology with higher congestion.

They have solved the routing problem with ILP formulation and Tabu Search

technique used for move selection procedure. The process used depicted below in Fig.

2.10.2.

Figure 2.13.2: Move Selection Procedure in Tabu Search [17]

42

Chapter 3: Problem Specification

3.1 Problem definition

In Section 2.4, we have discussed the problem of designing an initial logical

topology. We now define the problem of reconfiguring the logical topology in a

WDM optical network. Given an initial logical topology, when the traffic demand

increases and the current logical topology is incapable of handling the increased

traffic demand, our problem is to find a new logical topology, capable of handling the

current demand, with minimal changes to the original logical topology.

It is well known that the problem of determining an optimal logical topology is

computationally intractable [21]. Reconfiguring the logical topology is a variation of

the same problem and is intractable for the same reason. Our objective is to

reconfigure the topology so that the congestion is below the capacity of a lightpath.

We need to find an optimal logical topology with an acceptable congestion of the

network. This problem has two sub problems as follows:

1. Find Topology (FT): Find the new logical topology by reconfiguring the

initial logical topology.

2. Route Traffic (TR): Route the current traffic optimally over the logical

topology.

Fig. 3.1.1 shows a schematic description of the problem including the input

parameters and the output.

43

Figure 3.1.1: Schematic Description of the Problem

Since, we cannot route the traffic without determining a logical topology,

these two problems are interrelated and it should be solved simultaneously. The

problem of finding a new optimal logical topology can be viewed as a reconfiguration

of the logical topology since we start with the original topology and add a minimum

number of logical edges. In this search we can view the current logical topology as

the current state and a new logical topology as the new state - the result of a move.

The term “move” here means the application of a perturbation to the current logical

topology to create a new logical topology. The search space for a given logical

topology in a WDM network is, in general, vast. We have used a hill climbing

technique using four strategies to limit the time needed to find a candidate optimal

logical topology. Once a new optimal logical topology is determined, the CPLEX

optimizer program has been used to route the traffic over the logical topology to

determine the congestion. The CPLEX program can be used only on small to medium

sized networks for determining an optimal solution.

3.2 Identifying the move

We have mentioned in Chapter 2 that the congestion of a logical topology for

a given traffic matrix and routing strategy is the value of the traffic on the edge

carrying the maximum load [21]. Our objective is to reduce the congestion to a value

below the capacity of a light path. A move in our problem identifies an edge to be

FT- TR

Traffic Matrix

Initial Logical
Topology Congestion

Value

New Logical
Topology

44

added to the current logical topology to reduce the congestion. Let the logical edge

carrying the maximum load be the edge from source node imax to destination node jmax

(Figure 3.3.1). Traffic flowing on the edge imax to jmax could be due to the following:

1. The source for a communication could be imax itself, where part of the

traffic resulting from the communication is being routed, using the edge

imax � jmax. The arrow ‘�’ is used in between two nodes to describe a

logical edge in our thesis.

2. The source for a communication could be some other node where some or

all of the traffic for the communication is being routed, using the edge imax

� jmax.

3. Destination of the traffic flow could be jmax itself.

To keep the problem tractable, we have limited the search space we

investigated to four strategies involving the edges that either start from or end at

maxi or maxj as follows:

45

3.3 Strategy 1.

Figure 3.3.1: Adding edge from Strategy1

Condition for applying the strategy: This strategy is applicable if there is an edge

from node xi to imax but there is no edge from node xi to jmax, shown in Fig. 3.3.1a.

Details of the strategy: Strategy1 adds an additional edge from node xi to jmax as

shown, using a dashed line in Fig 3.3.1b.

The rationale for the strategy: Part of the traffic flowing on edge xi� imax is likely

being routed through the edge imax � jmax. In this case, adding an edge from end node

xi to jmax could be promising. Part of the traffic flowing to end node jmax using edge xi

� imax � jmax, could flow directly from node xi to node jmax as an alternative path

(Figure 3.3.1b) and may reduce the congestion of the network.

Potential benefit for the strategy: In this strategy, we calculate the potential benefit

for adding the edge xi � imax as follows.

In general, there are a number of commodities flowing on the edge xi � imax and imax

imax jmax

xi

Figure: 3.3.1b

imax jmax

xi

Figure: 3.3.1a

46

� jmax. The following process calculates the benefit for commodity k:

i. Let the traffic request t1 be flowing on the edge xi � imax for commodity ki

ii. Let traffic t2 be flowing on edge imax � jmax for commodity ki.

iii. Let tmin be the minimum of t1 and t2..

We can calculate the total benefit for all commodities, simply by adding up all the

tmin found from step iii for all the commodities. After we find out the total benefit for

the edge xi � imax using the Steps 1 to 3, we calculate the total benefit for all other

edges incoming to imax by using the same process. Finally we select the edge which

has the highest benefit among all the edges and save the information of that edge as

the best potential move from Strategy 1.

The rationale for considering the minimum traffic flow for a particular

commodity ki is illustrated by an example below. There are two cases to be

considered to achieve the best benefit.

Case-1: The edge imax � jmax is carrying a lesser amount of commodity ki compared

to the edge xi � imax.

Case-2: The edge imax � jmax is carrying a greater amount of commodity ki compared

to the edge xi � imax.

An example for Case-1:

Let 0.45 units of commodity ki flow on the edge imax � jmax and 0.55 units of

commodity ki flow on the edge xi � imax (Fig. 3.3.2). Now if we add an edge from the

end node xi to jmax, as shown using a bold dashed line, a maximum of 0.45 units of

commodity ki can be diverted to the alternative path (xi � jmax). After 0.55 units of

commodity ki reached the end node imax, 0.45 units flows on the edge imax � jmax and

0.10 units of commodity ki might be flowing to some other end node xn which is not a

concern, because our concern is to reduce the traffic load on the edge imax � jmax.

47

Therefore, the maximum benefit can be achieved by diverting 0.45 units of

commodity ki, which is the minimum of 0.55 and 0.45.

Figure 3.3.2: Benefit calculation for case-1.

An example for Case-2: For commodity ki, let 0.55 (0.45) units of commodity ki flow

on edge imax � jmax (xi � imax) (Fig. 3.3.3). Now if we add an edge from end node xi

to jmax, as shown using a bold dashed line, a maximum of 0.45 units of commodity ki

can be diverted to this alternative path (xi � jmax). Because 0.45 units of commodity ki

is flowing from xi to jmax, using the path xi � imax � jmax, which can be diverted using

the edge xi � jmax. The 0.10 units of commodity ki is added to the edge imax � jmax

from some other end node (xn), again which is not a concern. Therefore, we may

divert 0.45 units of commodity ki which is the minimum value of 0.55 and 0.45.

imax jmax

xi

0.55

0.45

0.10

xn

48

Figure 3.3.3: Benefit calculation for case-2.

Therefore, in both cases, it is beneficial to consider the minimum value of a particular

commodity that is flowing through the path xi � imax � jmax.

imax jmax

xi

0.45

0.55

0.10

xn

49

3.4 Strategy 2

Figure 3.4.1 Adding edge from Strategy 2.

Condition for applying the strategy: This strategy is applicable if there is an edge

from node imax to xi but there is no edge from node xi to jmax as shown in Fig. 3.4.1a.

Details of the strategy: Strategy 2 adds an additional edge from node xi to jmax as

shown in Fig 3.4.1b.

The rationale for the strategy: Part of the traffic flowing on the edge imax � jmax,

could be diverted using the edge xi � jmax as shown in Fig. 3.4.1b. In this case, adding

an edge from node xi to jmax could be promising, because part of the traffic could be

diverted through the path imax � xi � jmax as shown in Fig. 3.4.1b. As a result, it may

reduce the congestion of the network.

imax jmax

xi

Figure: 3.4.1b

imax jmax

xi

Figure: 3.4.1a

50

Potential benefit for the strategy: The process of calculating the benefit for this

strategy is as follows:

i. Let Lmax be the current congestion value,

ii. Let the total traffic flowing on the edge imax � xi be the minimum

traffic (Tmin),

iii. Therefore, the maximum benefit that can be achieved from Strategy 2

is the average of the difference between Lmax and Tmin..

The rationale for considering the edge which is carrying the minimum traffic

load is explained with an example below.

51

Let the traffic be flowing on the network shown in (Fig. 3.4.2).

Edge Data

imax � x1 0.45

imax � x2 0.35

imax� jmax 0.95

Figure 3.4.2: Benefit Calculation for Strategy 2.

In Fig 3.4.2, there are 3 outgoing edges from imax as follows:

• An edge from imax to jmax carrying a flow of 0.95

• An edge from imax to x1 carrying a flow of 0.45

• An edge from imax to x2 carrying a flow of 0.35

We note that, considering all the edges from imax, the edge from imax to x2 is carrying

the least amount of traffic and the edge from imax to x1 is carrying most amount of

traffic. In order to reduce the total flow from imax to jmax, under Strategy 2, there are

two choices:

i) add an edge from x1 to jmax

ii) add an edge from x2 to jmax

0.95

0.35

0.45

jmax

x1

x2

imax

52

Choice 1- adds an edge from x1 to jmax:

In this case, the traffic has to be routed through the path imax � x1 � jmax.

Note that the edge imax � x1 is carrying the most traffic. As per the process of

calculating the benefit from this strategy, the benefit can be achieved by the average

of the difference of traffic flow between the edges imax � x1 and imax � jmax , which is

0.25 [(0.95 – 0.45) / 2].

Choice 2- add an edge from x2 to jmax:

In this case, the traffic has to be routed through imax � x2 � jmax. As per the

process of calculating the benefit from this strategy, the benefit can be achieved by

the average of the difference of traffic flowing between the edges imax � x2 and imax

� jmax, which is 0.30 [(0.95 – 0.35) / 2].

We observed that the maximum benefit can be achieved from choice 2 by

adding an edge from x2 � imax and the benefit is the average of the difference of the

traffic flow between the edges imax � x2 and imax � jmax as mentioned above. Note

that the edge imax � x2 is carrying the least amount of traffic.

To justify the cases, let us reduce 0.30 units of data from the edge imax � jmax,

which is the average of the difference between Lmax and Tmin mentioned in step (iii),

and divert this traffic through the path imax � x2 � jmax. After routing the traffic, the

total load on the edge imax � x2 is 0.65 (0.35 + 0.30), and total load on the edge imax

� jmax is 0.65 (0.95 – 0.30) as shown in Fig. 3.4.3. It shows that, the corresponding

traffic on the edges imax � jmax and imax � x2 are uniformly distributed.

53

Figure 3.4.3a: Choice 2 - Traffic routing after removing 0.30 units.

In contrast, if we reduce 0.35 units of data from the edge imax � jmax, which is

0.05 units more then the average of the difference between Lmax and Tmin mentioned in

step (iii), and route that traffic through the path imax � x2 � jmax, the total load on the

edge imax � x2 is 0.70 (0.35 + 0.35) and total load on the edge imax � jmax is 0.60 (0.95

– 0.35). In this way, the corresponding traffic on the edge imax � x2 and imax � jmax is

not uniformly distributed. As a result, the edge imax � x2 becomes overloaded than

imax � jmax as shown in Fig. 3.4.3b.

Figure 3.4.3b: Choice 2 - Traffic routing after removing 0.35 units

0.95-0.35=0.60

0.35+0.35 = 0.75

0.45

jmax

x1

x2

imax

0.95 - 0.30=0.65

0.35 + 0.30 = 0.65

0.45

jmax

x1

x2

imax

54

Therefore, adding an edge from x2 to jmax is more beneficial then adding an

edge from x1 to jmax.

3.5 Strategy 3

Figure 3.5.1 Adding edge from Strategy 3.

Condition for applying the strategy: This strategy is applicable if there is an edge

from node jmax to xi but there is no edge from node imax to xi as shown in Fig. 3.5.1a.

Details of the strategy: Strategy 3 adds an additional edge from node imax to xi as

shown in Fig 3.5.1b.

The rationale for the strategy: Part of the traffic flowing to node xi, is also likely

being routed through the edge imax � jmax. In this case, adding an edge from node imax

to xi will be promising, since the traffic routing through the edge from node imax to jmax

imax jmax

xi

Figure: 3.5.1b

imax jmax

xi

Figure: 3.5.1a

55

could be diverted through the edge imax � xi.

Potential benefit for the strategy: The addition of the edge imax � xi could reduce the

traffic of the edge imax � jmax, and as a result it could reduce the congestion of the

network. The process of calculating the benefit for this strategy is similar to Strategy

1, discussed above.

3.6 Strategy 4

Figure 3.6.1: Adding edge from Strategy 4.

Condition for applying the strategy: This strategy is applicable if there is an edge

from node xi to jmax but there is no edge from node imax to xi as shown in Fig. 3.6.1a.

Details of the strategy: Strategy 4 adds an additional edge from imax to xi as shown in

Fig. 3.6.1b.

The rationale for the strategy: Part of the traffic flowing on the edge imax � jmax

imax jmax

xi

Figure: 3.6.1b

imax jmax

xi

Figure: 3.6.1a

56

could be diverted using the edge imax � xi.

Potential benefit for the strategy: In this case, adding an edge from node imax to xi will

be promising because there will be an alternative path to divert the traffic flowing

through the edge imax � jmax as shown in Fig. 3.6.1b. As a result, it may reduce the

congestion of the network. The process of calculating the benefit from this strategy is

similar to the Strategy 2, discussed above.

3.7 Overall Scheme with Block Diagram

Figure 3.7: Overall Scheme with Block Diagram.

CPLEX
Environment

Initial Logical Initial Traffic Matrix

Hill Climbing
Algorithm

New Logical
Topology

New Traffic Matrix,
created such that
congestion increased 5-
15% by scaling up on the
initial congestion.

Traffic on
Each Edge

LP File Generator

Congestion
Value

LP File

57

The overall scheme of our work is shown in Figure 3.7, where the input for LP

File Generator is an initial logical topology which is generated by the heuristic

mentioned in section 2.8, and an initial traffic matrix which is randomly generated

discussed in Section 2.5. The LP File Generator is a C program which generates a

Linear Programming (LP) specification file, discussed in section 2.9. The CPLEX3

environment is called with the LP file4 as an input to route the traffic over the logical

topology optimally.

In the first iteration, the CPLEX Optimizer calculates the initial congestion

value of the network. Then we create three new traffic matrices such that congestion

value increases to 1.05, 1.10 and 1.15 on the initial congestion by applying an

appropriate scaling factor to each entry in the traffic matrix. The lp file is then

converted to a file which shows how much traffic is flowing on an edge for a

commodity5. This file is an input to the Hill Climbing algorithm to generate a new

logical topology. The Hill Climbing algorithm is constructed using 4 strategies

designed in Section 3.6.

In the subsequent iterations, we run the CPLEX optimizer with new logical

topology and the new traffic matrix and observe the congestion of the network. This

task will be carried out with a number of iteration until the stopping-criterion6 is met.

3 The CPLEX in an optimization tools, discussed in Chapter 2.

4 A sample of lp file is discussed in Chapter 4 and also appeared in Appendix 1.

5 Multiple commodities are flowing on a logical edge; discussed in section 2.5.

6 The stopping criterion is to reduce the congestion value below 1 in our thesis.

58

Chapter 4: Implementation Details

The implementation details of our problem of reconfiguration of logical topology

have been discussed in this chapter. Various aspects of implementation of our thesis

have been pointed out below:

1. We have designed an “initial logical topology” using a heuristic algorithm.

2. Created a fractional traffic matrix and sorted traffic matrix (will be discussed

later in this chapter in detail).

3. Designed a CPLEX driver program (Linear Program Specification) for

routing the traffic optimally by calling the CPLEX environment.

4. Defined a reconfiguration algorithm based on the Hill-Climbing Search

methodology to create new logical topology.

4.1 Design initial logical topology

We have designed an initial logical topology based on a heuristic algorithm as

mentioned in Chapter 2. We could have used any heuristic for this purpose and we

chose to use the HDL heuristic [19]. We kept the design as simple as possible; we

have assumed that all resources such as transmitters or receivers have been used at

each end node properly at the time of designing the initial logical topology. The input

to this heuristic algorithm is a randomly generated sorted traffic matrix (discussed

later in this chapter); sorted in the sense that the largest traffic has to be handled first.

The straight forward approach of generating an initial logical topology has been given

below:

59

1. Read sorted traffic request matrix

2. For each request, get the source-destination pair.

3. Using Breadth-first Search algorithm, search for a path in the current logical

topology, which has sufficient residual capacity to send the request.

4. If a path is found, update the residual capacity of the path from the source to

the destination for that request.

5. If path cannot be found, create a new logical path, consisting of a single

logical edge from the source to the destination of the request and update the

residual capacity of the path.

60

The flow diagram shown in Fig. 4.1.1, describes the process of generating initial

logical topology.

Figure 4.1.1: Generate Initial Logical Topology.

No

Yes

First request from the
(descended ordered)
sorted traffic matrix

Path
found?

No

Update the residual capacity
of the path for the request

More
request?

Stop

Get next
request

Breadth-First Search to find the path from
source-destination and have sufficient

residual capacity of the path

Create new light
path

Yes

61

As mentioned, we have used the breadth-first search for finding a path from the

source to the destination of a traffic request. A brief algorithm for the Breadth-First

search is given below:

1. Enqueue the source node.

2. Search all neighboring nodes from source node

3. Dequeue a node from neighboring node and examine it.

o If the destination node is found, quit the search and return the path

from the source to the destination.

o Otherwise enqueue any successors nodes that have not yet been

visited.

4. If the queue is empty, every node on the networks has been examined – quit

the search and return "not found".

5. Repeat from Step 3 otherwise.

4.1.2 An example of creating a 4-node logical topology

We used an N x N matrix to represent the logical topology of a network with N

end nodes. In this representation, the element in row i and column j of the matrix, is

either a 0 or a 1. If the element in row i and column j is 1(0), it means that there is a

(no) logical edge from end node i to end node j. When the heuristic for creating a

logical topology starts, there is no logical edge and so the entries in the matrix are all

0’s. For instance, a network with 4 end-nodes may be represented by a matrix of size

4 x 4 with suitable elements. An initial 4 x 4 matrix M representing a logical

topology and a traffic matrix T is shown in Table 4.1.2.1 and Table 4.1.2.2 is

respectively. M is initialized with all zeros since there is no logical edge initially. The

62

traffic request matrix T is randomly generated and then sorted in descending order,

according to the amount of traffic to be communicated.

In the following example, the very first request is to send 0.5 units of traffic from

source node 0 to destination node 2; second request is 22 traffic units from source

node 1 to destination node 0 and so on.

Table 4.1.2.1: 4 Nodes logical topology (Initialize with zeros)

Source Destination Traffic

0 2 0.5
1 0 0.4583
1 3 0.4583
2 0 0.4375
2 3 0.3125
3 2 0.3125
3 0 0.2292
0 1 0.2083
1 2 0.2083
2 1 0.2083
3 1 0.1042
0 3 0.0833

Table 4.1.2.2: Sorted Traffic Request Matrix

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

63

Step1: According to the algorithm, we take the first request, which is to send

0.5 units of data. The breadth-first search looks for a path from 0 to 2, which is

sufficient to carry 0.5 units. In this case, there is no path. So we add a new logical

edge from 0 to 2. Now, we have a path from 0 to 2 with a capacity of 1 units7. We

draw a lightpath from the source node 0 to the destination 2 (0 � 2) shown in Fig.

4.1.2.1. In Table 4.1.2.3 shows that 1 has been entered in row 0, column 2, meaning

there is a logical edge from source node 0 to destination node 2. Table 4.1.2.4, shows

the all the updates.

Figure 4.1.2.1: Graph diagram of Logical
Topology with one Logical Edge

Table 4.1.2.3: Logical Topology Matrix

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

Source Destination Lightpath Current Load Residual Capacity

0 2 0 � 2 0.5 1.0 – 0.5 = 0.5

Table 4.1.2.4: Updates of Residual Lightpath Capacity, Step1

7 We assume, the capacity of a logical edge is OC-48.

0 2

64

Step2: Take the next request, which is 0.4583, and source-destination pair is (1, 0),

there is no path from node 1 to 0; we draw a new lightpath as show in Fig. 4.1.2.2,

update of traffic matrix and the residual lightpath capacity for the edge 1 to 0 is

0.5417 (1.0 – 0.4583) as shown in Table 4.1.2.5 and Table 4.1.2.6 respectively.

Figure 4.1.2.2: Graph diagram of Logical
Topology with two Edges

Table 4.1.2.5: Logical Topology Matrix

0 0 1 0

1 0 0 0

0 0 0 0

0 0 0 0

Source Destination Lightpath

Flow

Current

Load

Residual Capacity

0 2 0 � 2 0.5 1.0 – 0.5 = 0.5

1 0 1 � 0 0.4583 1.0 –0.4583 = 0.5417

Table 4.1.2.6: Updates of Residual Lightpath Capacity, Step2

0 2

1

65

Similarly, if no logical path exists for a source-destination pair of a request; a

new path will be created following the procedure mentioned in Step 1 and Step 2. The

next four such requests and their source-destination pairs are shown in the table

4.1.2.7 in our example is taken from table 4.1.2.1. The request 0.4583 is routing from

node 1 to node 3, request 0.4375 routing from node 2 to node 0 and so on.

1 3 0.4583
2 0 0.4375
2 3 0.3125
3 2 0.3125

Table 4.1.2.7: Source-Destination pair of requests

After handling the four requests, the graph diagram and the traffic matrix

update are shown in Fig. 4.1.2.3 and Table 4.1.2.8 respectively. The updates of

residual lightpath capacity are shown in Table 4.1.2.9.

0 0 1 0

1 0 0 1

1 0 0 1

0 0 1 0

Figure 4.1.2.3: Graph diagram of Logical
Topology with 6 Edges.

Table 4.1.2.8: Updated Logical
Topology

0 2

1 3

66

Source Destination Lightpath
Flow

Current
Load

Residual Capacity

0 2 0 � 2 0.5 1.0 – 0.5 = 0.5

1 0 1 � 0 0.4583 1.0 –0.4583 = 0.5417

1 3 1 � 3 0.4583 1.0 –0.4583 = 0.5417

2 0 2 � 0 0.4375 1.0 – 0.4375 = 0.5625

2 3 2 � 3 0.3125 1.0 – 0.3125 = 0.6875

3 2 3 � 2 0.3125 1.0 – 0.3125 = 0.6875

Table 4.1.2.9: Updates of Residual Lightpath Capacity

Step 3: In this step, I have demonstrated the procedure where a logical path exists for

a source-destination pair of a request. In this case, if the residual capacity of the

existing path is sufficient to handle the request, it will use that path instead of creating

a new link (path). For example, from the source node 3 to the destination node 0, the

request 0.2292 units of data to communicate as shown in table 4.1.2.2. In this case

since there is a logical lightpath (3 � 2 �0) as can be seen from Fig. 4.1.2.3, it does

not need a new lightpath from the source node 3 to the destination node 0. Since, the

residual capacity of lightpath 3 � 2 is 0.6875, and for the lightpath 2 � 0 is 0.5625,

it is sufficient to send the request (0.2292) using the path 3 � 2 �0 as shown in the

Table 4.1.2.10 in bold-italic text.

67

Source Destination Lightpath Flow Current Load Remaining Capacity

0 2 0 � 2 0.5 1.0 – 0.5 = 0.5

1 0 1 � 0 0.4583 1.0 – 0.4583 = 0.5417

1 3 1 � 3 0.4583 1.0 – 0.4583 = 0.5417

2 0 2 ���� 0 0.4375 + 0.2292 1.0 – 0.6667 = 0.3333

2 3 2 � 3 0.3125 1.0 – 0.3125 = 0.6875

3 2 3 ���� 2 0.3125 + 0.2292 1.0 – 0.5417 = 0.4583

3 0 3 � 2 � 0 Xxx Xxx

Table 4.1.2.10: Update of Residual Lightpath Capacity

Similarly, after handling the entire set of requests, using this heuristic, the following

logical topology and the corresponding logical topology matrix is generated as shown

in Fig. 4.1.2.4 and Table 4.1.2.11 respectively.

0 1 1 0

1 0 0 1

1 0 0 1

0 0 1 0

Figure 4.1.2.4 Graph diagram of Logical
Topology with 7 Edges.

Table 4.1.2.11: Logical Topology
Matrix.

0 2

1 3

68

4.2 Generating a traffic matrix

The traffic matrix is an N x N matrix, where N is the number of end nodes in

the networks. The matrix entries are randomly generated using the native C compiler.

Table 4.2.1 is an example which is generated for the network with 4 end nodes using

the random number generator. The diagonal entries are filled with 0’s, since there

cannot be any traffic from a node to itself. For example, the entry for source-

destination pair (0, 3) is 0.083333, which means that the source node 0 is sending

request (0.083333) units of data to the destination end node 3. Here the unit is the

capacity of a lightpath.

0.000000 0.208333 0.500000 0.083333

0.458333 0.000000 0.208333 0.458333

0.437500 0.208333 0.000000 0.312500

0.229167 0.104167 0.312500 0.000000

Table 4.2.1: Randomly Generated Traffic Matrix

The rationale for generating a fractional traffic matrix is discussed in Chapter 2.

Since the lightpath capacity has been fixed to OC-48 in our experiments, as

mentioned in Section 4.1, we have generated traffic in between OC-1 to OC-48

randomly and then divided each value by 48, which gives us entry with fraction

number in between 1/48 to 48/48. Below are the straight forward steps for generating

traffic matrix.

69

1. Initialize each cell of matrix M with zeros.

2. For each entry of N x N matrix M, generate a random number ni in between 1

to 48.

3. Divide n1 by edge-capacity (Edge-capacity = 48 OC).

4. Fill each entry with the value which is got from Step2, except the diagonal

entries.

4.2.1 A sorted traffic matrix

We have also generated the sorted traffic matrix as shown in Table 4.1.2.2,

using the native C compiler. The sorted traffic matrix has been used to generate the

initial logical topology as mentioned in section 4.1. As we have mentioned in our

problem definition in Chapter 2, the initial logical topology is needed to find the

initial congestion for a given traffic. The rationale for generating the sorted traffic

matrix in descending order is that we wish to handle the largest traffic first. For the

smaller requests, we may not need to create a new lightpath if the request can be send

by some existing logical path.

4.3 Determining the Congestion

We have used the CPLEX optimizer program to route the traffic optimally.

The input to the CPLEX optimizer is a file specifying the Linear Program (LP). The

LP file is generated using a logical topology matrix file and a traffic matrix file. The

CPLEX optimizer program routes the traffic through the logical topology and

calculates the routing strategy within a short period of time for a small or medium

size of networks. The routine CPXNETgetobj function is used to access the objective

function values in the network. The routine returns a zero when it is successful and a

nonzero value if an error occurs. The main predefined function of CPLEX used in our

70

problem is described briefly below:

1. The routine CPXopenCPLEX function initializes a CPLEX
environment. The routine returns a pointer to a CPLEX environment.

2. Next the CPXcreateprob function is called to create the problem. The

routine CPXcreateprob() creates a CPLEX problem object in the

CPLEX environment. The arguments to CPXcreateprob() define an LP

problem name. The problem that is created is an LP minimization

problem with zero constraints, zero variables, and an empty constraint

matrix. The CPLEX problem object exists until the routine

CPXfreeprob () is called. If successful, CPXcreateprob () returns a

pointer that can be passed to other CPLEX routines to identify the

problem object that is created. If not successful, a NULL pointer is

returned.

3. The routine CPXreadcopyprob () reads an LP file into an existing LP

problem object. The problem can then be optimized using any one of

the optimization routines. The routine returns a zero on success, and a

nonzero if an error occurs.

4. The routine CPXlpopt () is called after a linear program has been

created via a call to CPXcreateprob (), to find a solution to that

problem using one of CPLEX's linear optimizers.

5. The routine CPXgetstat () is used to access the solution status of the

problem after an LP or mixed integer optimization. If no solution

exists, CPXgetstat () returns the value 0.

6. The routine CPXNETgetobj function is used to access the objective

function values in the network stored in a network problem object. The

routine returns a zero on success, and a nonzero if an error occurs.

71

4.4 Creating a new Logical Topology using the Hill Climbing Search

Technique

The overall process of creating a new logical topology using the Hill-

Climbing search technique is given in Figure 4.4a. First, we have created the move8

list from four different strategies. Each strategy generates one best move by searching

all potential moves in the neighbourhood of the current move and calculates how

much benefit may be achieved from it. As a result, there are 4 moves generated from

four strategies. Finally, we calculated one best move from the 4 moves, based on the

move which has the highest benefit. We implemented the best move to the current

logical topology to create a new logical topology. The flow diagram is shown in Fig.

4.4a. The details of each process are discussed later in this chapter.

Figure 4.4a: Generating new Logical Topology.

8 The term “move” has been discussed in Chapter 3.

Generate the move list from 4
strategies using the Hill-Climbing

search technique

Modify the current logical
topology (create a new

logical topology)

Calculate the
best move

72

4.4.1. Implementation details and calculating the best move from Strategy 1

The details of designing Strategy 1 have been discussed in Chapter 3, Section

3.3. In this section, the implementation of this strategy and calculating the best move

is discussed in following subsections:

• Implementation of Strategy 1.

• Implementation of determining the best move in Strategy 1.

• Implementation of calculating benefit for a move (A logical edge).

73

4.4.1.1. Implementation of Strategy 1

To implement Strategy 1, we have executed the steps shown in Fig. 4.4.1.1a.

Figure 4.4.1.1a: Implementation details of Strategy 1.

In this process, our objective is to create the list of incoming end nodes, such

that if there is an edge from the end node xi to imax but there no edge from the xi node

to jmax as shown in Fig.3.3.1 in Chapter 3. We assume, the highest traffic flow is

taking place on edge imax � jmax in this particular network.

Start

No

No

xi = first end node in the
network

Is there logical
edge xi � imax

but no edge xi

� jmax?

Yes
Are there more
end nodes in the

network?

xi = next end node in
the network

Store xi in a List L as a
possible source node of
a logical edge (move)

Stop

Yes

No

Yes

74

4.4.1.2 Implementation details of determining the best move in Strategy 1

For determining the best move from all potential moves from Strategy 1, we

implement the process shown in Fig. 4.4.1.2a. Due to the lack of space, we use T(R)

to denote transmitter (receiver) in this diagram.

Figure 4.4.1.2a: Implementation of determining best move in Strategy1.

Yes

Yes

List (L)

xi = first node from L

Is a T available to xi

& a R available at

jmax for the edge xi

� jmax?

xi = next node from
the list L

No

Is List L
exhausted?

Legend:

T- Transmitter

R- Receiver

Stop

No

Store the edge xi � jmax as a potential move,

calculate the benefit for the move xi � jmax and
choose the best move based on the highest benefit.

75

We checked each node xi from the list L, such that there is a spare transmitter

at the node xi and a spare receiver at the node jmax available. The list L is created from

the previous section 4.4.1.1. We stored the edge xi � jmax considering a potential

move. Then we calculated the benefit9 for each such potential move (edge). Finally,

we considered a move which has the highest benefit.

9 The benefit calculation is shown later in the Section 4.4.1.3.

76

4.4.1.3. Implementation for calculating the benefit of a move in Strategy 1

The process of implementation of the scheme for calculating the benefit of the

move x2 � imax is shown in Fig. 4.4.1.3a.

Figure 4.4.1.3a: Implementation for calculating the benefit of a move in Strategy
1.

 For our discussions below, we have taken an example when discussing the

strategies we used. As we have mentioned in Section 2.9, routing the traffic over a

Yes

Yes

No

Is the commodity
k is flowing on

imax� jmax?

List of commodities, flowing

on the edge x2 � imax

Is commodity
list exhausted?

No

Accumulate the minimum traffic

flowing between two edges x2� imax &

imax� jmax for commodity k.

k = next commodity

k = First commodity on the edge x2 � imax

Stop

77

logical topology is a multi-commodity flow problem. An edge could have multiple

commodities flowing for a particular routing scheme. There are two edges x1 � imax

and x2 � imax to the node imax as shown in Fig.4.4.1.3b. We calculate the benefit for

all such incoming edges to end node imax and finally we consider the edge which has

the highest benefit. For example, we consider the edge x2 � jmax as a move for this

particular network shown in bold dashed line. Since we consider the edge x2 � jmax as

a potential move for this particular network, a part of the commodities flowing on the

edge x2 � imax are routed through the path x2 � imax � jmax. Therefore, we show the

calculation of the benefit for the edge x2 � imax.

Figure 4.4.1.3b: Benefit calculation for the edge x2 ���� imax in Strategy 1

In this implementation process, we assume that a commodity k is flowing on

the edge x2 � imax. If the same commodity k also flows on the edge imax � jmax, then

we calculate the minimum traffic value between the two edges x2 � imax and imax �

jmax for the commodity k. We calculated the minimum traffic value for all the other

commodities that is flowing between the two edges and accumulates by adding them

up. As a result, the accumulated value is the maximum possible benefit for the edge

x2 � imax. An example for calculating the benefit with a data flow and rationale for

choosing the minimum traffic flow for a commodity has been shown in Chapter 3.

4.4.2 Implementation details and calculating the best move from Strategy 2

imax

x1

x2

jmax

78

The details of designing Strategy 2 have been discussed in Section 3.4. In this

section, the implementation of this strategy and calculating the best move is discussed

in following subsections.

• Implementation of Strategy 2.

• Implementation of determining the potential moves.

• Implementation of selecting the best move and calculate the benefit.

79

4.4.2.1: Implementation of Strategy 2

To implement Strategy 2, we have executed the steps shown in Fig. 4.4.2.1a.

Figure 4.4.2.1a: Implementation details of Strategy 2

In this process, our objective is to create the list of end nodes xi, such that

there is an edge from node imax to end node xi but no edge from node xi to jmax as

shown in Fig. 3.4.1 in Chapter 3. We assume that the highest traffic flow is taking

place on the edge imax � jmax in the network.

Yes

No

No

Start

Yes

xi = first end node in the
network

Is there a logical edge

imax � xi & no edge

xi � jmax?

Are there more end
nodes in the
network?

xi = next end node in the
network

Store xi in a List L as
possible source node of
a logical edge (move)

Stop

80

4.4.2.2. Implementation detail of determining the potential moves from Strategy 2

For determining the potential moves using Strategy 2, we implemented the

process shown in Fig. 4.4.2.2a. Due to the lack of space, we use T (R) to denote

Transmitter (Receiver) in this diagram.

Figure 4.4.2.2a: Implementation of determining best move in Strategy 2.

We stored the information of the edge xi � jmax considering a potential move

if there is a spare transmitter at node xi and a spare receiver at node jmax available of

the edge xi � jmax. Node xi is a member of list L which is created from procedure

Yes

Yes

No

List (L)

xi = first node from L

Is a T available at xi
& a R available at

jmax for the edge xi

� jmax

xi = next node from
the list L

Store the information of
the edge xi � jmax as a

potential move

No

Is List L
exhausted?

Legend:

T- Transmitter

R- Receiver

Stop

81

outlined in Section 4.4.2.1. In this process, we checked all such moves and calculated

the benefit for each move. In the next section, we show how we calculate the benefit

for selecting the best potential move.

4.4.2.3. Implementation of selecting the best move in Strategy 2

 The details of how we selected the best move by calculating the benefit is

shown in Fig. 4.4.2.3a.

Figure 4.4.2.3a: Implementation of selecting the best move in Strategy 2.

Yes

Yes

No

 List of source nodes of the potential moves

(edges)

xi = first source node of first

move xi = next source node of
next move

Store the information of the

edge imax � xi as a potential

best move

No

Is List
exhausted?

Stop

Is the traffic
flowing on edge

imax� xi the

minimum?

82

An example of selecting the best move is shown in Fig. 4.4.2.3b. There are two

potential moves (x1 � jmax and x2 � jmax) in this particular example. The node x1 and

x2 are two source nodes of the two moves.

Figure 4.4.2.3b: Selecting the best move in Strategy 2.

In order to choose the best move, we checked edge imax � x1 and imax � x2.

Each edge is carrying a certain amount of traffic for different commodities. We

selected the edge which is carrying the least amount of traffic as the best move. For

example, if edge imax � x1 is carrying a smaller amount of traffic than edge imax � x2,

then we select the edge x1 � jmax as the best move in this particular network. The

rationale for choosing the edge which carrying least amount of traffic is discussed

with an example in Chapter 3, Section 3.4.

imax

x1

x2

jmax

83

4.4.3. Implementation details and calculating the best move from Strategy 3

The details of designing Strategy 3 have been discussed in Section 3.5. In this

section, we describe the following issues for implementing of this strategy and

calculating the best move:

• Implementation of Strategy 3

• Implementation of determining the best move in Strategy 3

• Implementation of calculating benefit for a move (A logical edge)

84

4.4.3.1. Implementation of Strategy 3

To implement Strategy 3, we have executed the steps shown in Fig. 4.4.3.1a.

Figure 4.4.3.1a: Implementation details of Strategy 3.

In this process, our objective is to create the list of outgoing end nodes from

jmax, such that if there is an edge from the end node xi to imax but there no edge from

the xi node to jmax as shown in Fig.3.5.1 in Chapter 3. We assume, the highest traffic

flow is taking place on edge imax � jmax in this particular network.

Start

No

No

xi = first end node in the
network

Is there a logical

edge jmax � xi
but no edge imax

� xi?

Yes
Are there more
end nodes in the

network?

xi = next end node in
the network

Store xi in a List L as a
possible source node of
a logical edge (move)

Stop

Yes

85

4.4.3.2 Implementation details of determining the potential moves in Strategy 3

For determining the best move from all potential moves from Strategy 3, we

implemented the process shown in Fig. 4.4.3.2a. Due to lack of space, we used T(R)

to denote a transmitter (receiver) in this diagram.

Figure 4.4.3.2a: Implementation of determining best move in Strategy 3.

We considered adding the edge imax � xi as a potential move, if a spare

transmitter at node imax and a spare receiver at node xi available. A list L is created

Yes

Yes

List (L)

xi = first node from L

Is a T available to

imax &a R available

at xi for the edge imax
� xi?

xi = next node from
the list L

No

Is List L
exhausted?

Legend:

T- Transmitter

R- Receiver

Stop

No

Store the edge imax � xi as a potential move,

calculate the benefit for the move imax � xi and
choose the best move based on the highest benefit.

86

with node xi in Section 4.4.3.1. We calculated the benefit for each potential move

(edge). Finally, we considered the move from which the highest benefit that can be

achieved.

87

4.4.3.3. Implementation of the scheme for calculating the benefit of a move in

Strategy 3

The process of calculating the benefit of the move x1 � imax (Fig. 4.4.3.3b) is
shown using the flow diagram shown in Fig. 4.4.3.3a.

Figure 4.4.3.3a: Calculating the benefit of a move using Strategy 3.

Yes

Yes

No

Is the commodity

k is flowing on

imax� jmax?

List of commodities, flowing

on the edge x1 � imax

Is commodity
list

No

Accumulate the minimum traffic

flowing between two edges x1� imax &

imax� jmax for commodity k.

k = next commodity

k = First commodity on the edge

x1 � imax

Stop

88

As we have mentioned when describing Strategy 1, routing the traffic over a

logical topology is a multi-commodity flow problem and an edge could have multiple

commodities flowing for a particular routing scheme. There are two edges jmax � x1

and jmax � x2 from the node jmax as shown in Fig.4.4.3.3b. We calculate the benefits

for all such edges that are outgoing from end node jmax and finally we considered the

edge which has the highest benefit. For example, we considered the edge imax � x1 as

a move for this particular network shown using a bold dashed line. Since, we

considered the end node x1 is a potential destination of commodities for this particular

network; the commodities are possibly being routed through the path imax � jmax �

x1.

Figure 4.4.3.3b: Benefit calculation for the edge jmax ���� x1 in Strategy 3.

The process for calculating the benefit for the edge jmax � x1 follows an

approach similar to Strategy 1 discussed above. An example for calculating the

benefit with a data flow has been shown in Chapter 3.

imax

x1

x2

jmax

89

4.4.4 Implementation details and calculating the best move from Strategy 4

The details of designing Strategy 4 have been discussed in Section 3.6. In this

section, the implementation of this strategy and calculating the best move is discussed

in the following subsections:

• Implementation of Strategy 4.

• Implementation of determining the potential moves.

• Implementation of selecting the best move and calculate the benefit.

90

4.4.4.1: Implementation of Strategy 4

To implement Strategy 4, we have executed the steps shown in Fig. 4.4.4.1a.

Figure 4.4.4.1a: Implementation details of Strategy 4.

In this process, our objective was to create the list of end nodes, such that

there is an edge from node xi to end node jmax but there is no edge from node imax to xi

(Fig. 3.6.1 in Chapter 3). We assumed that the highest traffic flow is on the edge imax

� jmax in the network.

Yes

No

No

Start

Yes

xi = first end node in the
network

Is there a logical edge

xi � imax & no edge

imax � xi?

Are there more end
nodes in the
network?

xi = next end node in the
network

Store xi in a List L as
possible source node of
a logical edge (move)

Stop

91

4.4.4.2. Determining the potential moves from Strategy 4

To determine the potential moves from Strategy 4, we implemented the

process shown in Fig. 4.4.4.2a. Due to lack of space, we have used T (R) to denote a

Transmitter (Receiver) in this diagram.

Figure 4.4.4.2a: Implementation of determining potential moves in Strategy 4.

We stored the information regarding the edge imax � xi after considering a

potential move, if there is a spare transmitter at the node imax and a spare receiver

Yes

Yes

No

List (L)

xi = first node from L

Is a T available at
imax & a R available
at xi for the move

imax � xi?

xi = next node from the
list L

Store the information of
edge imax � xi as a

potential move

No

Is list L
exhausted?

Legend:

T- Transmitter

R- Receiver

Stop

92

available at the node xi of the edge imax � xi. The node xi is a member of list L which

is created from Section 4.4.4.1. In this process, we check all such moves and calculate

the benefit for each move. In the next section, we show the benefit calculation for

selecting the best potential move.

4.4.4.3. Implementation of the scheme for selecting the best move in Strategy 4

The details of the process of selecting the best move by calculating the benefit is

shown in Fig. 4.4.2.3a.

Figure 4.4.4.3a: Implementation of selecting the best move in Strategy 4.

Yes

Yes

No

xi = first destination node of first move

xi = next destination
node of next move

Store the edge imax � xi
information as a potential

best move

No

Is List
exhausted?

Stop

List of destination nodes of
potential moves (edges)

Is traffic flow

on the edge xi

� jmax is least?

93

An example of selecting the best move is shown in Fig. 4.4.4.3b. There are two

potential moves imax � x1 and imax � x2 in this particular example. The node x1 and x2

are two destination nodes of the two moves.

Figure 4.4.4.3b: Benefit calculation for the edge x2 ���� jmax in Strategy 4.

In order to choose the best move, we checked edge x1 � jmax and x2 � jmax.

Each edge is carrying a certain amount of traffic for the different commodities. We

selected the edge which is carrying the least amount of traffic as the best move. For

example, if the edge x2 � jmax is carrying a lesser amount of traffic than the edge x1

� jmax, then we selected the edge x2� jmax as the best move in this particular network.

The process for calculating the benefit for the edge x2 � jmax follows an

approach similar to Strategy 2 discussed above. An example for calculating the

benefit with a data flow is shown in Chapter 3.

imax

x1

x2

jmax

94

4.5 An Example of a 4 Node Network

An example of a 4 node network is given below to show the overall basic

steps to solve a specified problem. Initially, we routed the traffic using the CPLEX

optimization tool for an initial logical topology to observe the initial congestion of the

network. As we have discussed in Section 4.3, the CPLEX is an optimization tool

which is used to route the traffic optimally over a logical topology.

Table 4.5.1 is an example of a randomly generated traffic matrix10 and Figure

4.5.1 is an initial logical topology11 shown as a graph. The traffic matrix generated

such that the congestion must be below 1.

0.000000 0.208333 0.500000 0.083333

0.458333 0.000000 0.208333 0.458333

0.437500 0.208333 0.000000 0.312500

0.229167 0.104167 0.312500 0.000000

Table 4.5.1: Initial Traffic Matrix

10 The details of traffic matrix is discussed in Section 4.2

11 The details of initial logical topology is discussed in Section 4.1

95

Figure 4.5.1: Initial Logical Topology.

Let the initial congestion of the network be 0.98 for initial logical topology

with randomly generated initial traffic matrix. We increased the congestion to 1.05 by

multiplying each entry of initial traffic matrix by an appropriate factor as shown in

Table 4.5.2. In the subsequent iterations we created a new logical topology using our

hill-climbing search algorithm and called the CPLEX optimizer with the new logical

topology and the new traffic matrix (Table 4.3.2) to observe the new congestion

value. We created a possible move list with 4 best moves from 4 strategies. Finally,

we selected one best move, based on the highest benefit. We have shown only

iteration to demonstrate the process.

0.000000 0.223214 0.535714 0.089285

0.491071 0.000000 0.223214 0.491071

0.468750 0.223214 0.000000 0.334821

0.245536 0.111607 0.334821 0.000000

Table 4.5.2: New Traffic Matrix

0 1

2 3

96

 Iteration 1:

Let the edge carrying the maximum traffic be 2 � 0 (imax � jmax) as shown in

Fig. 4.5.1 by a bold line at the beginning of the iteration.

Step 1- Find the possible move list: The Table 4.5.3 shows the possible move list

from 4 different strategies and the benefit of each move.

From To Benefit Strategy

3 0 0.330000 1

3 0 0.295000 2

2 1 0.310000 3

2 1 0.670000 4

Table 4.5.3: The possible move list

Step 2- Select the best move: The highest benefit can be achieved by adding the

edge from the source node 2 to the destination node 1 as shown in the Table 4.5.3

from the strategy 4.

Step 3- Create the new logical topology: As a result, the new logical topology is

created by adding the edge from node 2 to 1 and shown in dashed line in Figure 4.5.2.

97

Figure 4.5.2: New Logical Topology.

Step 4 – Calculate the congestion: We call the CPLEX environment with new

logical topology (Fig. 4.5.2) and new traffic matrix (Table 4.5.3). The new congestion

value is 0.9725.

The conclusion is that, the initial congestion was 0.98 for the initial logical

topology and the congested edge was 2 � 0 shown by bold line in Fig. 4.5.1. A new

traffic matrix created such that the congestion scaled up to 1.05 from 0.98, which is

5% more then the capacity of the edge. After the reconfiguration of the logical

topology, by adding an edge from node 2 to node 1, the new logical topology is

shown in Fig. 4.5.2. Then by calling the CPLEX optimizer, we observe the

congestion reduced to 0.9725 from 1.05 and new congested edge become 3 � 2 as

shown in bold line in Fig. 4.5.2. By adding an edge, we are able to reduce the

congestion below 1.

4.6 Implementation of LP formulation.

 The LP formulation has been implemented using a C program

discussed in Chapter 2, Section 2.9. The LP program generates the lp file as an input

to the CPLEX optimizer tool. A traffic matrix12 is shown in Table 4.6.1, where each

non-zero entry corresponds to a commodity and gives the amount of traffic for a

source-destination pair. In this table, we represented the commodity from i to j

12 Traffic matrix is discussed in Section 4.2

0 1

2 3

98

by
j

ik , where the value of
j

ik is the entry of i th row and j th column of the traffic

matrix. The first commodity
1
0k is in row 0, column 1 and has a value 0.21 and

denotes the data flowing from end node 0 to end node 1. Similarly, the second

commodity
2
0k is the entry in row 0, column 2 and has a value 0.50. This denotes the

traffic flowing from end node 0 to end node 2 and so on.

0.00 0.21 0.50 0.08

 0.46 0.00 0.21 0.46

0.44 0.21 0.00 0.31

0.23 0.10 0.31 0.00

Table 4.6.1: Traffic Matrix

The implementation of the LP formulation is informally discussed with an

example. Let us consider commodity
1
2k , where 0.21 units of traffic need to be routed

optimally from source node 2 to destination node 1 as shown in Table 4.6.1.

Some lines of an .lp file format are shown below. The line C3 corresponds to

the constraint of the form (2.9.2) and line C36, C37 and C38 corresponds to the

constraint of the form (2.9.3) in Section 2.9 of chapter 2.

99

C3: + X_0_1_0 + X_1_1_0 + X_2_1_0 + X_3_1_0 + X_4_1_0 + X_5_1_0 +

X_6_1_0 +

X_7_1_0 + X_8_1_0 + X_9_1_0 + X_10_1_0 + X_11_1_0 - Lmax <= 0

C36: +X_7_2_0 + X_7_2_3 - X_7_0_2 - X_7_3_2 = 0.21

C37: +X_7_1_0 + X_7_1_3 - X_7_0_1 = -0.21

C38: + X_7_0_1 + X_7_0_2 - X_7_1_0 - X_7_2_0 = 0

Explanations of the symbol:

i. C1…Cn (where n is an integer value) in the beginning of the equation represents the

constraint number of the LP file.

ii. X_k_i_j: a continuous variable used to define the amount of the traffic flowing for

commodity number k on the logical edge i � j (where k, i and j are integer values)

iii. Lmax: The congestion value of the network

The details of the form of LP formulation is discussed below with an example.

An example of constrain C3:

This equation corresponds to the LP form Ljix
k

k
ij ∈∀Λ≤∑

=

),(,max
1

(2.9.2). This LP constraint ensures that the congestion of the network is greater than

or equal to the total traffic on any edge. In other words, the summation of the amount

of the traffic is flowing through an edge for all the commodities is less than or equal

to the congestion value of the network. The line C3 of the .lp file (shown above) is an

example for such an equation. According to the traffic matrix (table 4.6.1), the

equation also shows that there are 11 commodities flowing on a particular 4-node

logical topology shown in Fig. 4.6.1. The variable “X_0_1_0” denotes that

commodity 0 flows on the edge 1 � 0, the variable “X_1_1_0” denotes that

100

commodity 1 flows on the edge 1 � 0 and so on.

Let the congestion value of a particular 4-node network be 0.98. As

mentioned, we would like to use commodity
1
2k for this example, this particular

commodity is flowing from source node 2 to destination node 1 using the path 2 � 0

� 1 with the value 0.21. Since there is no direct path from node 2 to 1 (Fig 4.6.1), the

total traffic flowing on the edge 2 � 0 and 0 � 1 is 0.98 (0.44 + 0.21 + 0.23 + 0.10)

and 0.52 (0.21 +0.21 + 0.10) respectively as per as data shown in table 4.6.2.

According to the formulation, the total traffic for all commodities flowing on

any edge must be less than or equal to the congestion value. From the above example,

the edge 2 � 0 carrying 0.98 units of data which is equal to the congestion value and

the edge 0 � 1 is carrying 0.52 units of data, which is less than the congestion value.

Therefore, the equation for this constraint in line C3 satisfies the condition.

An example of Constrain C36:

Constraint C36 corresponds to the first condition of the form 2.9.3 discussed

in Chapter 2, if an end node is a source of a commodity flowing from a source node i

to a destination node j.

This constraint ensures that if an end node is a source of a commodity, then

there is no traffic is flowing into that node and the traffic flowing out from this node

is equal to the entry of the traffic matrix for that source i to destination node j. The

line C36 is an example of such equation of the .lp file (shown above). This equation

represents the fact that the difference between the data flowing in and flowing out

must be equal to the entry of the traffic matrix for the given pair of source node i to

the destination node j.

For example, 0.21 units of data are flowing from the source node 2 to

destination node 1 for commodity12k , using the logical path 2 � 0 �1, as shown in

Fig. 4.6.1 and in Table 4.6.1. There are two incoming edges 0 � 2 and 3 �2 to the

101

source node 2 and two outgoing edges 2 � 0 and 2 � 3 from the source node 2 and

on traffic flowing on the edge 2 � 3, 0 � 2 and 3 �2 as per the data shown in Table

4.6.2. Therefore, if we plug-in the value of the four variables in C36, the result is 0.21

+ 0.0 - 0.0 - 0.0 = 0.21, which satisfies the condition of the equation.

Figure 4.6.1: Logical Topology

0 1

2 3

102

Commodity From To Traffic
0 0 1 0.21
7 0 1 0.21

10 0 1 0.1
1 0 2 0.5
2 0 2 0.08
4 0 2 0.21
3 1 0 0.46
4 1 0 0.21
5 1 3 0.46
6 2 0 0.44
7 2 0 0.21
9 2 0 0.23

10 2 0 0.1
2 2 3 0.08
8 2 3 0.31
9 3 2 0.23

10 3 2 0.1
11 3 2 0.31

Table 4.6.2: Amount of traffic flowing on edges for the commodity

An example of Constrain C37:

The constraint C37 corresponds to the second condition of the form 2.9.3

discussed in Chapter 2, if an end node is a destination of a commodity flowing from a

source node i to a destination node j.

This constraint ensures that if an end node is a destination for a commodity,

then there is no traffic flowing out from that node and the traffic flowing into the

destination node is the entry of the traffic matrix of the source i to the destination j

pair. The line C37 is an example of such an equation of the .lp file shown above.

For example, the destination of the commodity
1
2k is node 1. There are two

outgoing edges (1 � 3 and 1 � 0) and one incoming (0 �1) edge for the destination

103

node 1 (Fig.4.6.1) and no data flows on the edge 1 � 3 and 1 � 0 as per the data

shown in Table 4.6.2. Therefore, if we plug-in the value of 3 variables to the equation

C37, the results is 0.0 + 0.0 – 0.21 = -0.21. Thus the equation C37 satisfies the

condition.

An example of Constraint C38:

The constraint C38 corresponds to the third condition of the form 2.9.3

discussed in Chapter 2, when an end node is an intermediate node of a commodity

flowing from a source node i to destination node j.

This constraint ensures that for all intermediate nodes where the data is

flowing from the source node to the destination node, incoming flow must be

matched by the outgoing flow, so that the difference must be 0 (zero). The line C38 is

an example of such an equation of the .lp file shown above.

For example, commodity 1
2k is flowing from source node 2 to destination

node 1 using the path 2 � 0 � 1. Since there is no direct link from source node 2 to

destination node 1 (Fig. 4.6.1), the traffic is flowing through intermediate node 0. The

amount of data flowing into the node 0 is 0.21 from node 2 using the edge 2 � 0 and

the amount of data flowing out from node 0 to node 1 is also 0.21 using the edge 0 �

1 as per the data shown in the Table 4.6.2. Therefore, if we plug in the values of 4

variables into the equation C38 as per the data shown in table 4.6.2, such as 0.21 +

0.0 + 0.0 + 0.21 = 0. Thus it is satisfying the condition.

104

Chapter 5: Experimental Results

We carried out our experiments using networks having three sizes - 6 nodes,

10 nodes and 14 nodes. For networks of a given size, we created 5 initial logical

topologies. We tested each logical topology with 5 different traffic matrices, created

using a random number generator generating, for each pair of end-nodes, values

between 0 and 1. In this way we tested 25 cases for each size of network to observe

how many logical edge(s) is (are) required for reconfiguration. Finally we computed

the averages of the 25 tests cases. We generated the traffic matrices randomly as

discussed in Section 4.2.

 As we have mentioned in our problem definition, the set of requests

for data communication that the network has to handle does not remain the same and

changes with time. Therefore, when the traffic increases beyond the capacity of a

logical edge, the logical topology has to be augmented so that the new topology can

handle the new traffic. Our objective is to observe how many new logical edge(s) is

(are) required to reduce the congestion to the expected level that can be carried by a

lightpath. We fixed the expected congestion level after reconfiguration to 0.90,

meaning that no lightpath will carry a traffic more than 90% of the capacity of a

lightpath.

We carried out our experiments using the following steps:

1. Determine the initial congestion of the network, using the supplied logical

topology and traffic matrix.

2. Create a traffic matrix such that the edge carrying the maximum traffic was

x% above the capacity of a logical edge (we used three values of x – 5, 10 and

15).

3. Create a new logical topology by augmenting the initial logical topology by

105

adding a new logical edge using our Hill-Climbing algorithm as mentioned in

Section 4.4.

4. Determine the value of the congestion by using the CLEX optimization tool

with the traffic matrix created in Step 2 and the new logical topology

generated in Step 3.

5. If the congestion in the new topology is greater than the target value (0.9 in

our experiments), go to Step 3. Otherwise stop.

In Step 2, we accomplished this by multiplying each entry of the traffic matrix

with an appropriate factor, based on the initial congestion as mentioned in Chapter 4.

When the above process terminates, we noted how many edge(s) is (are) required to

reduce the congestion up the expected level.

As mentioned before, for each size of the network, we created five logical

topologies and five traffic matrices. For our discussion below, given a size of the

network, we will refer to the five logical topologies (traffic matrices) as logical

topology (traffic matrix) 1, 2…5. The first column represents the test case scenarios.

For example, in Table 5.1, 6-1-1 stand for the situation where the size of the network

is 6, logical topology number 1 and tested with traffic matrix number 2. Columns 2, 3

and 4 represents, how many edges are required when the traffic has increased, so that

the congestion is 5%, 10% and 15% over the capacity of a logical edge.

Table 5.1 represents the test results for networks with 6 nodes. We tested a total

of 75 test cases. We observed that approximately 2 (respectively 3 and 4) logical

edges are needed to reduce the congestion level below 0.90, when the starting

congestion was 5%, (respectively 10% and 15%). Similarly, Table 5.2 and 5.3

represents the test results for 10-node and 14-node networks. We have included the

detailed experimental data in Appendix 3.

A bar graph for 3 sizes of network are given in this section. The x-axis represents

106

the test case number and y-axis represents total edges required in 3 different

situations of data communications.

107

5.1 Experimental Results with 6-Nodes

Test_Case

Node# -#LT-#TM

New Edge Required-
Congestion increased 5%

above edge capacity

New Edge Required-
Congestion increased 10%

above edge capacity

New Edge Required-
Congestion increased 15%

above edge capacity

6-1-1 1 1 3

6-1-2 1 2 2

6-1-3 2 2 2

6-1-4 2 2 2

6-1-4 4 5 5

6-2-1 1 1 2

6-2-2 2 2 3

6-2-3 3 3 3

6-2-4 1 2 3

6-2-5 2 4 5

6-3-1 3 3 4

6-3-2 2 3 3

6-3-3 1 1 1

6-3-4 3 3 4

6-3-5 3 3 5

6-4-1 1 1 1

6-4-2 1 2 2

6-4-3 1 2 2

6-4-4 1 2 2

6-4-5 1 2 7

6-5-1 3 5 6

6-5-2 2 2 3

6-5-3 2 2 3

6-5-4 1 2 5

6-5-5 2 2 7

Average edge
required 1.84 2.36 3.4

Table 5.1: Experimental Results with 6-Nodes

108

5.2 Experimental Results with 10-Nodes

Test_Case

Node# -#LT-#TM

New Edge Required-
Congestion increased 5%

above edge capacity

New Edge Required-
Congestion increased 10%

above edge capacity

New Edge Required-
Congestion increased 15%

above edge capacity
10-1-1 3 3 7

10-1-2 4 6 6

10-1-3 3 6 8

10-1-4 4 7 11

10-1-5 2 2 3

10-2-1 4 9 10

10-2-2 4 12 27

10-2-3 10 11 12

10-2-4 9 10 19

10-2-5 3 5 7

10-3-1 10 12 14

10-3-2 2 4 7

10-3-3 5 11 24

10-3-4 7 8 9

10-3-5 7 7 11

10-4-1 8 20 21

10-4-2 8 13 18

10-4-3 11 16 18

10-4-4 7 7 12

10-4-5 7 9 16

10-5-1 14 16 19

10-5-2 4 18 20

10-5-3 4 6 11

10-5-4 7 9 14

10-5-5 3 4 6

Average edge
required 6 9.24 13.2

Table 5.2: Experimental Results with 10-Nodes

109

5.3 Experimental Results with 14-Nodes

Test_Case

Node# -#LT-#TM

New Edge Required-
Congestion increased 5%

above edge capacity

New Edge Required-
Congestion increased 10%

above edge capacity

New Edge Required-
Congestion increased 15%

above edge capacity
14-1-1 7 9 14

14-1-2 7 10 11

14-1-3 11 12 14

14-1-4 9 10 12

14-1-5 8 9 10

14-2-1 9 14 19

14-2-2 9 10 45

14-2-3 8 16 22

14-2-4 10 15 27

14-2-5 8 24 25

14-3-1 1 4 8

14-3-2 12 15 39

14-3-3 8 11 17

14-3-4 9 13 16

14-3-5 17 20 31

14-4-1 6 9 11

14-4-2 7 10 16

14-4-3 10 21 16

14-4-4 9 11 17

14-4-5 9 10 15

14-5-1 9 10 16

14-5-2 8 16 20

14-5-3 7 15 34

14-5-4 8 14 23

14-5-5 11 52 50

Average edge
required 8.68 14.4 21.12

Table 5.3: Experimental Results with 14-Nodes

110

5.4 Results with line chart graph

5.4.1: Chart bar Graph for 6-Node Network

6-Node Network

0

1

2

3

4

5

6

7

8

1 3 5 7 9 11 13 15 17 19 21 23 25

Test Cases

E
d

g
e(

s)
 R

eq
u

ir
ed

5% increase

10% increase

15% increase

Figure 5.4.1a: Edge(s) Required for 6-Node Network

6-Node Network

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

1

% increase

E
d

g
e(

s)
 R

eq
u

ir
ed

5% increase

10% increase

15% increase

Figure 5.4.1b: Average Edge(s) Required for 6-Node Network

111

5.4.2: Chart bar Graph for 10-Node Network

10-Node Network

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23 25

Test Cases

E
d

g
e(

s)
 R

eq
u

ir
ed

5% increase

10% increase

15% increase

Figure 5.4.2a: Edge(s) Required for 10-Node Network

10-Node Network

6

9

13

0

2

4

6

8

10

12

14

1

% Increase

E
d

g
e)

s)
 R

eq
u

ir
ed

5% increase

10% increase

15% increase

Figure 5.4.2b: Average Edge(s) Required for 10-Node Network

112

5.4.3: Chart bar Graph for 14-Node Network

14-Node Network

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25

Test Cases

E
d

g
e(

s)
 R

eq
u

ir
ed

5% increase

10% increase

15% increase

Figure 5.4.3a: Edge(s) Required for 14-Node Network

14-Node Network

8

14

21

0

5

10

15

20

25

1

% Increase

E
d

g
e)

s)
 R

eq
u

ir
ed

5% increase

10% increase

15% increase

Figure 5.4.3b: Average Edge(s) Required for 14-Node Network

113

5.5 Observation

There are some significant observations from our experiments:

1. The congestion reduced as new edges are added to an old logical topology in

the each iteration and the required number of edges increased when the traffic

increased gradually. As an example, shown in Table 5.2, case number 10-3-2,

the new edges required are 2 for 5%, 4 for 10% and 7 for 15% increase of

traffic.

2. When the traffic increases, the average number edges required also increases

for each type of network as shown in Table 5.3, the number of edges required

almost doubles from 5% to 15% increase of traffic in 14-node network.

Similarly, for 6-node and 10-node networks, the results are shown in Table

5.1 and 5.2.

3. In our problem specification, we mentioned that there are basically three steps

for reconfiguration of logical topology.

• Design an initial logical topology.

• Reconfigure the logical topology as necessary when traffic demand

changes with the time.

• Route the traffic optimally and determine the congestion of the

network.

Since, our initial step is to design a logical topology and we have used any

heuristic algorithm to design the initial logical topology, we can not claim that it is

optimal. The designing of initial logical topology has significant importance in our

problem solution, because we could not guarantee that initial congestion is minimal at

the time of designing initial logical topology; it could be either very high or very low.

114

Chapter 6: Conclusions and Future work

6.1 Conclusion

As we mentioned in Chapter 1, in static lightpath allocation, the logical

topology of a WDM optical network is determined, based on long-term traffic

demands. These traffic demands however do not remain the same at subsequent

points in time. When a logical topology is incapable of supporting the current traffic

demands, the logical topology has to be modified or reconfigured. Our objective is to

find an optimal new logical topology which can support the current traffic demands

with as little change to the original topology as possible.

In this Thesis, we have implemented a Hill-Climbing algorithm to solve the

problem of reconfiguring logical topologies. We have tried to determine how many

new edges are required when the congestion of a network exceeds beyond the

capacity of a logical edge. We have shown in Chapter 5, how many edges are

required when congestion increases above the capacity of a logical edge by a factor

that ranges from 5% to 15%.

Utilizing the Hill-Climbing algorithm we have described an iterative process

where we identify, in the each iteration, the “most promising” edge to be added to the

initial logical topology. We monitored the congestion value after routing the traffic

after adding the promising edge. Although the Hill-Climbing algorithm has the

problem of getting into the trap of local optima, we have found that our solution gives

fairly good results when traffic increases beyond the capacity of a lightpath. We have

compared 3 situations, and found out how many total new edges are required in each

situation.

115

6.2 Future work

 On the basis of our experimental observation discussed in Section 5.4, there

are at least two approaches that can be taken:

1. Design the initial logical topology optimally

2. Apply alternative strategic approaches in Hill-Climbing algorithm

It is well known that designing an optimal logical topology is considered to be

intractable using a mathematical programming approach. Since, it is very important

to have an optimal logical topology initially; we could use meta-heuristics instead of

any heuristics, such as the Tabu Search algorithm.

 For the logical topology reconfiguration, the Hill-Climbing algorithm has

been investigated. There are many alternatives strategic approaches can be taken to

improve the search criteria, in order to determine the best logical edge to be added to

change (reconfigure) the logical topology.

116

Appendix 1

1.1 The notation used in LP Formulation

EN : Number of end nodes in the network.

T: An EN x EN matrix, called the traffic matrix, giving the traffic requirements for

the network.

T(I, j): entry in row I and column j of matrix T. it represents the traffic from source

end node Ei to destination end node Ej.

maxΛ : The congestion of the network.

Bij : A binary variable such that

bij =

otherwise

NjnodeendtoNinodeendfromexistlightpathaif

0

1

sd
ijx : A continuous variable to denote the portion of traffic t(s, d) : t(s,d) > 0,

that is routed through the logical edge Ei ⇒ Ej.

∆in (∆out) : A constant denoting the number of transmitter or receiver at every end

node.

117

118

1.2 C-Programming Code for LP Formulation

119

1.3. Notation used for the heuristic formulation in Section 2.4.2

The inputs to the heuristic are the following:

• ∆i
in denoting the number of receivers at end node Ei, 1 ≤ I ≤ NE.

• ∆i
out denoting the number of transmitters at end node Ei,, 1 ≤ I ≤ NE.

• The traffic matrix T = [t(I, j)] giving the required volume of data so that t(I, j)

is the traffic from end node Ei to end node Ej in the traffic matrix T, for all I, j,

1 ≤ I, j ≤ NE.

• The physical topology of the network.

• The number of channels nch per fiber.

• clightpath is the capacity of a lightpath.

1.4 Routing over logical topology described in Section 2.7

NE: Number of end nodes

q: Number of commodities srck and destk : source sk and destination dk for

commodity k,

 1 ≤ k ≤ q)

tk : traffic t(sk, dk) for commodity k, (1 ≤ k ≤ q)

k
ijx : amount of traffic flowing on logical edge I ⇒ j for commodity k,

120

maxΛ : Congestion on the network

L: set of all pair of end node, lightpath exists on end node Ei to end node Ej.

121

Appendix-2

2.1 Reference

[1]. S. Sinha, N. Rammohan and C. S. Murthy. Dynamic Virtual Topology
Reconfiguration Algorithms for Groomed WDM Networks, Volume 9, No. 2, March,
2005.

[2]. D. Banerjee and B. Mukherjee. Wavelength-Routed Optical Networks: Linear
Formulation, Resource Budgeting Tradeoffs, and a Reconfiguration Study,
IEEE/ACM Transactions on Networking, Volume 8, No. 5, October 2000.

[3]. B. Mukherjee, Optical Communication Networks. New York: Mc-Graw Hill,
1997.

[4]. J-F. Labourdette, A. Acampora, Logically Rearrangeable Multihop Lightwave

Networks, IEEE Transactions on Communication 39(1991), P: 1223-1230.

[5]. A. Grosso, E. Leonardi, M. Mellia, and A. Nucci. Logical topologies design over
WDM Wavelength routed networks robust to traffic uncertainties. IEEE
Communications Letters, Volume 5, No. 4, P: 172-174, April 2001.

[6]. R. Ramaswami and K. N. Sivarajan. Routing and wavelength assignment in All-
Optical networks. IEEE/ACM Transactions on Networking, Volume 3, No. 5, P: 489-
500,October 1995.

[7]. R. Dutta and G. N. Rouskas. A survey of virtual topology design algorithms for
wavelength routed optical networks. SPIE Optical Networks Magazine, Volume 1,
No.1, P: 73-89, January 2000.

[8]. E. Medova. Network flow algorithms for routing in networks with wavelength
division multiplexing. IEE Proceedings Communications, Volume142, No. 4, P: 238-
242, August 1995.

[9]. A. N. Tam and E. Modiano. Dynamic load balancing in WDM based packet
networks with and without wavelength constraints. IEEE Journal on Selected Areas in
Communications, Volume 18, No.10, P: 1972-1979, October 2000.

122

[10]. A. Lokketangen and F. Flober. Solving zero-one mixed integer programming
problems using tabu search”, European Journal of Operations Research, P: 624-658,
1998.

[11]. Fred Glover. Tabu Search: A Tutorial, P: 74-94, in: Interface 20, 4 July-August
1990.

[12]. Fred Glover. Tabu Search and Adaptive Memory programming- Advance,
Applications and Challenges, in: Interfaces in Computer Science and Operation,
1996.

[13]. I. Baldine and G. N. Rouskas. Traffic adaptive WDM networks: a study of re-
configuration issues. IEEE/OSA Journal of Lightwave Technology, Volume19, No. 4,
P: 433-455, April 2001.

[14]. R. M. Krishnaswamy and K. N. Sivarajan. Design of logical topologies: A linear
formulation for wavelength-routed optical networks with no wavelength changers.
IEEE/ACM Transactions on Networking, Volume 9, No. 2, P: 186-198, April 2001.

[15]. C. Dzongang, P.Galinier, and S. Pierre. A Tabu Search Heuristic for the
Routing and Wavelength Assignment Problem in optical Networks, IEEE
Communications Letters, Volume 9, No. 5, MAY 2005.

[16]. V.Boljuncic, D. Skorin-Kapov, J. Skorin-Kapov, A Tabu Search Approach
Towards Congestion and Total Flow Minimization in Optical Networks, Journal of
Systems Science and Systems Engineering, Volume 13, No. 2, April, 2004.

[17]. J. Kuri, N. Puech and M. Gagnaire, A Tabu Search Algorithm to Solve a
Logical Topology Design Problem in WDM Networks considering Implementation
Cost, In SPIE Asian Pacific Optical Conference, Shangai, 2002.

[18]. E. Leonardi, M. Mellia, and M. A. Marsan. Algorithms for the logical topology
design in WDM all-optical networks. Optical Network Magazine, Volume 1, No. 1,
P: 35-46, January, 2000.

[19]. R. Ramaswami and K. N. Sivarajan, Design of Logical Topologies for
Wavelength-Routed Optical Networks, IEEE Journal on Selected Areas in
Communications, Volume 14, P: 840-851, 1996.

[20]. I. Chlamtac, A. Farago, and T. Zang. Lightpath (wavelength) routing in large
WDM networks. IEEE Journal on Selected Areas in Communications, Volume 14,
No. 5, P: 909-913, June, 1996.

123

[21]. Dr. S. Bandyopadhyay. Dissemination of Information in Optical Networks:
From Technology to Algorithms, Springer 2007.

[22]. A. Sood, Logical Topology Design for WDM Networks using Tabu Search,
Thesis work, University of Windsor.

[23]. R. Ramaswami and K. N. Sivarajan. Optical Networks: A Practical Perspective.
Morgan Kaufmann Publishers, 2002.

[24]. J. Kurki et al, Wavelength Router as a Transport Platform for IP, NOC 2000,
June 6-9, 2000.

[25]. O. Gerstel and S. Kutten. Dynamic wavelength allocation in all-optical ring
networks. In IEEE International Conference on Communications (ICC), Volume 1, P:
432-436, June 1997.

[26]. P. Garg, Genetic Algorithms, Tabu Search and simulated Annealing: A
Comparison between three approaches for the cryptanalysis of transposition cipher.

[27] F. Glover, “Tabu Search and Adaptive Memory Programming- Advances,
Applications and Challenges”, in: Interfaces in Computer Science and Operations
Research, 1996

[28] M. L. Puterman. Markov Decision Processes. Wiley, 1994

[29]. P.N.Tran, U. Killat, Distributed algorithm for dynamic logical topology
reconfiguration in IP over WDM networks, Computers and Communications, 2009.
ISCC 2009. IEEE Symposium on, P748 – 756

[30] P.N. Tran, U. Killat, Dynamic reconfiguration of logical topology for WDM
networks under traffic changes, Network Operations and Management Symposium,
2008. NOMS 2008. IEEE, P279 – 286, 2008.

[31]. R.J. Duran, R.M. Lorenzo, N. Merayo, I. Miguel, P. Fernandez, J.C. Aguado,
E.J Abril, Efficient reconfiguration of logical topologies: Multiobjective design
algorithm and adaptation policy, Broadband Communications, Networks and
Systems, BROADNETS 2008. 5th International Conference on 2008, P544 – 551.

124

Appendix 3

3.1 Details raw data of test results for 6- node network

Test_Case Congestion increased
5% above edge

capacity

Congestion increased
10% above edge

capacity

Congestion increased
15% above edge

capacity
Node# -#LT-#TM Initial

Congestion
New
Edge

Required

Final
Congestion

New
Edge

Required

Final
Congestion

New
Edge

Required

Final
Congestion

6-1-1 0.701389 1 0.845977 1 0.886262 3 0.871039

6-1-2 0.743056 1 0.736332 2 0.836703 2 0.862499

6-1-3 0.526042 2 0.873267 2 0.838614 2 0.850166

6-1-3 0.654948 2 0.809941 2 0.848510 2 0.654948

6-1-5 0.546875 4 0.762858 5 0.843333 5 0.744763

6-2-1 0.973959 1 0.752407 1 0.590588 2 0.824065

6-2-2 0.812500 2 0.8502135 2 0.813248 3 0.776282

6-2-3 0.677083 3 0.608462 3 0.637937 3 0.666412

6-2-4 0.901041 1 0.886127 2 0.727890 3 0.696243

6-2-5 0.770833 2 0.879731 4 0.772974 5 0.808109

6-3-1 0.838542 3 0.721428 3 0.658695 4 0.601241

6-3-2 0.753472 2 0.764170 3 0.696774 3 0.858527

6-3-3 0.927084 1 0.690168 1 0.723032 1 0.755897

6-3-4 0.692709 3 0.726315 3 0.898746 4 0.795487

6-3-5 0.756945 3 0.799542 3 0.696330 5 0.727981

6-4-1 0.989582 1 0.806844 1 0.845264 1 0.883686

6-4-2 0.947917 1 0.796154 2 0.834067 2 0.891978

6-4-3 0.979167 1 0.871276 2 0.867447 2 0.715692

6-4-4 0.927084 1 0.884830 2 0.840448 2 0.878650

6-4-5 0.875001 1 0.824999 2 0.864285 7 0.451786

6-5-1 0.585937 3 0.883556 5 0.829689 6 0.602311

6-5-2 0.729167 2 0.754286 2 0.788571 3 0.674999

6-5-3 0.656249 2 0.643334 2 0.673969 3 0.730160

6-5-4 0.609376 1 0.897433 2 0.699486 5 0.766666

6-5-5 0.807292 2 0.839998 2 0.879999 7 0.636645

125

Ave. edge
required

1.84

2.36

3.4

3.2 Details raw data of test results for 10-node network

Test_Case Congestion increased
5% above edge

capacity

Congestion increased
10% above edge

capacity

Congestion increased
15% above edge

capacity
Node# -#LT-#TM Initial

Congestion
New
Edge

Required

Final
Congestion

New
Edge

Required

Final
Congestion

New
Edge

Required

Final
Congestion

10-1-1 0.957532 3 0.849555 3 0.819707 7 0.875732

10-1-2 0.915720 4 0.794287 6 0.861307 6 0.840499

10-1-3 0.940972 3 0.688700 6 0.775857 8 0.838630

10-1-3 0.902778 4 0.742673 7 0.765253 11 0.880192

10-1-5 0.937500 2 0.633899 2 0.858611 3 0.858611

10-2-1 0.883333 4 0.848172 9 0.888562 10 0.619301

10-2-2 0.975695 4 0.867971 12 0.678790 27 0.675267

10-2-3 0.802828 10 0.608526 11 0.637503 12 0.882217

10-2-4 0.769097 9 0.839052 10 0.685327 19 0.778782

10-2-5 0.897569 3 0.864255 5 0.889556 7 0.880850

10-3-1 0.847373 10 0.822855 12 0.898225 14 0.863444

10-3-2 0.971875 2 0.863880 4 0.894070 7 0.872053

10-3-3 0.789062 5 0.884357 11 0.658306 24 0.834985

10-3-4 0.751157 7 0.733339 8 0.873305 9 0.893069

10-3-5 0.893995 7 0.862526 7 0.875828 11 0.744634

10-4-1 0.807870 8 0.618266 20 0.852242 21 0.756232

10-4-2 0.859373 8 0.871817 13 0.733333 18 0.766666

10-4-3 0.785416 11 0.6220116 16 0.699354 18 0.722505

10-4-4 0.718149 7 0.774059 7 0.791788 12 0.895002

10-4-5 0.756740 7 0.859980 9 0.787386 16 0.756740

10-5-1 0.828125 14 0.700000 16 0.733334 19 0.766667

10-5-2 0.776042 4 0.848701 18 0.720138 20 0.790765

10-5-3 0.655449 4 0.853694 6 0.878453 11 0.867203

10-5-4 0.631325 7 0.883559 9 0.870277 14 0.687203

10-5-5 0.737939 3 0.873699 4 0.899732 6 0.841539

Ave. edge
required

6

9.24

13.2

126

3.3 Details raw data of test results for 14-node network

Test_Case Congestion increased
5% above edge

capacity

Congestion increased
10% above edge

capacity

Congestion increased
15% above edge

capacity
Node# -LT-TM Initial

Congestion
New
Edge

Required

Final
Congestion

New
Edge

Required

Final
Congestion

New
Edge

Required

Final
Congestion

14-1-1 0.725356 7 0.898144 9 0.899189 14 0.888424

14-1-2 0.673129 7 0.877986 10 0.898554 11 0.896345

14-1-3 0.637555 11 0.896655 12 0.888146 14 0.884330

14-1-4 0.683989 9 0.870337 10 0.885141 12 0.894790

14-1-5 0.706597 8 0.878088 9 0.899663 10 0.896920

14-2-1 0.683323 9 0.891054 14 0.811109 19 0.897986

14-2-2 0.664394 9 0.864604 10 0.874732 45 0.779807

14-2-3 0.664931 8 0.859576 16 0.796997 22 0.833224

14-2-4 0.691406 10 0.806205 15 0.799624 27 0.814312

14-2-5 0.646388 8 0.891809 24 0.886336 25 0.776679

14-3-1 0.836805 1 0.899194 4 0.888590 8 0.894710

14-3-2 0.695234 12 0.845602 15 0.893997 39 0.745216

14-3-3 0.694762 8 0.887799 11 0.872763 17 0.894513

14-3-4 0.688836 9 0.897081 13 0.897798 16 0.894746

14-3-5 0.708334 17 0.862940 20 0.864779 31 0.884243

14-4-1 0.730841 6 0.899869 9 0.887521 11 0.898190

14-4-2 0.682589 7 0.893269 10 0.879248 16 0.895029

14-4-3 0.656250 10 0.888272 21 0.993198 16 0.876190

14-4-4 0.670139 9 0.897668 11 0.885884 17 0.896336

14-4-5 0.674306 9 0.855431 10 0.887110 15 0.860676

14-5-1 0.836805 9 0.862656 10 0.896889 16 0.878009

14-5-2 0.800000 8 0.875000 16 0.866339 20 0.862500

14-5-3 0.763889 7 0.822273 15 0.825000 34 0.730501

14-5-4 0.736458 8 0.888119 14 0.847950 23 0.842575

14-5-5 0.746817 11 0.870792 52 0.782488 50 0.818005

Ave. edge
required

8.68

14.4

21.12

127

Vita Auctoris

NAME: AKM Aktaruzzaman

PLACE OF BIRTH: Natore, Bangladesh

YEAR OF BIRTH: 1966

EDUCATION: Jigori High School, Natore, Bangladesh.
(1977-1982)

 Electrical Engineering, Polytechnic Institute,
Pabna, Bangladesh,
(1982- 1985)

 Department of Computer Science, University of
Windsor, Windsor, Ontario, Canada,
B.Sc. (Honourse), in Computer Science.
(2002-2006)

 Department of Computer Science, University of
Windsor, Windsor, Ontario, Canada,
M.Sc. in Computer Science.
(2007-2010)

	University of Windsor
	Scholarship at UWindsor
	2010

	Reconfigurations of Logical Topologies for WDM Mesh Networks
	Aktaruzzaman AKM
	Recommended Citation

	

