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ABSTRACT 

 

ENSO FORCED CHANGES IN PRECIPITATION DISTRIBUTIONS AND RELATED 

GLOBAL CIRCULATION PATTERNS: GULF OF MEXICO REGION 

by  

Robert Munroe 

July, 2010 

Chair: Dr. Burrell Montz 

Major Department: Geography 

The El Nino Southern Oscillation (ENSO) forced precipitation is well documented in 

several regions around the world. Mid-latitude atmospheric circulations contribution towards 

extreme precipitation during ENSO is less well understood. One area that has a strong ENSO 

signal in extratropical and tropical storminess is the Gulf of Mexico.  This region is influenced 

by high SSTs, the subtropical jet, and even polar intrusions. The objective of this research is to 

improve understanding of the link between ENSO, extreme precipitation, and the role of regional 

atmospheric circulations.  

The probability density function, cumulative density function, Kolmogorov-Smirnov 

(KS) test and a hotspot analysis are employed to explore the independent and spatial statistics of 

precipitation distributions between phases of ENSO across the Gulf of Mexico region. The 

months of August through January are examined, but October and December display significant 

spatial patterns and are selected for a synoptic analysis of six grid boxes to represent five regions 

of large scale ENSO forcing. Our primary finding indicates subtropical jet stream winds are 

significantly different and stronger during El Nino, especially for the month of October. This 

 



2 
 

would suggest that El Nino would lead to more extremes throughout the Gulf of Mexico, which 

is not the case from the spatial autocorrelation analysis.  Thus, other synoptic scale forcings must 

be at work.  Differences in the cumulative distribution function (CDF) at lower rain rates seem to 

be more related to the strength and position of the polar jet and may be influenced by jet-

interactions.  Extreme precipitation during La Nina was traced to a weaker polar jet and the 

subtropical jet positioned away from the region of interest. 
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1. Introduction 

 

 The El Nino Southern Oscillation (ENSO) is an air-sea interaction over the Pacific 

Ocean. During an ENSO, anomalous sea surface temperatures (SST) and atmospheric 

circulations drive global climate change. In particular, changes in precipitation patterns 

frequently result in flooding and drought in various parts of the world that are detrimental to 

society. 

 Flooding can occur rapidly or over a few weeks. In contrast, a drought takes months or 

even years to develop and mature. This difference in spatial and temporal scales makes impacts 

difficult to trace back to the root atmospheric and oceanic mechanisms. The link between the 

ENSO in the Pacific to floods and droughts globally is an important teleconnection. The term 

teleconnection is used to describe changes in atmospheric circulations indirectly forced by 

distant sources such as the anomalous sea surface temperatures experienced during ENSO. 

Across longer time scales, ENSO explains some of the variation in precipitation patterns, in 

particular at low latitudes (e.g. Ropelewski and Halpert 1987, 1989, Curtis et al. 2007). 

Deviations in atmospheric circulations and sea surface temperatures (SST) during an ENSO 

event result in an increased tendency for extreme precipitation across certain regions of the world 

(e.g. Ropelewski and Halpert 1987, 1989, Curtis et al. 2007). For example, the Gulf of Mexico is 

one region that has experienced significant changes in the distribution of precipitation during the 

positive and negative phases of ENSO (e.g. Ropelewski and Halpert 1986, Gershunov and 

Barnett 1998, Curtis et al. 2007).  

 The following research questions are focused on gaining a better understanding of ENSO 

forced precipitation over the Gulf of Mexico.  
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1.1. Research Questions 

1) What are the changes in precipitation distributions for ENSO events in the Gulf of Mexico 

region? 

2) How do changes relate to: 

 a) characteristics of the subtropical jet streams  

 b) characteristics of polar jet streams 

 c) interaction of the jet streams 

 

 

Figure 1. Schematic of Jet Stream Interaction and ENSO over the Study Area. 

 

 This schematic of the research design (Figure 1), describes the interaction of the 

subtropical and polar jet stream over the study region. The rectangle in the bottom left hand 

corner outlines the Nino 3.4 region, used to estimate ENSO. 
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2. Literature Review 

There are close ties in existing research between ENSO and global warming, and the two 

climate phenomena have similar impacts. Both phenomena are accompanied by warming waters 

near the equator and exhibit an increase in extreme precipitation. Similar modifications to global 

circulations have also been suggested (e.g. Wentz et al. 2007, Allan and Soden 2008). In a 

similar capacity the global warming signal is suggested to be imbedded in the ENSO signal 

given the recent trend in the frequency, longevity, and intensity of the warm phase. However, 

this claim is difficult to verify. The Pacific Decadal Oscillation (PDO) (Mantua et al. 1997) 

forces anomalous sea surface temperatures, predominately in the northern Pacific, similar to 

ENSO (Zhang et al. 1997), but at higher latitudes. The PDO plays a significant role in a 20-30 

year alternating trend of dominant positive and negative phases of ENSO. A positive PDO trend 

across the past several decades coincides with global warming. The positive phase of the PDO 

and global warming can explain the recent El Nino dominated trend. Consequently, isolation of 

the two signals is difficult. 

 Other studies suggest that ENSO and global warming impact global circulations in 

different ways. Some suggest that ENSO and global warming have an opposite impact on the 

Hadley Cell and midlatitude westerlies. These studies using ocean-atmospheric coupled models 

state that longitudinal warming of SSTs (ENSO alias) is responsible for Hadley Cell 

strengthening and contraction, while latitudinal warming (global warming alias) expands and 

weakens the Hadley Cell circulation while broadening and weakening the midlatitude westerlies 

(Lu et al. 2008, Gastineau et al. 2009). Some studies also suggest the frequency of extremes 

could increase. Understanding how this would impact precipitation distributions becomes a 

challenge, since spatial patterns of precipitation are likely to respond to changes in global 
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circulations. Despite possible dissimilarities between ENSO and global warming, ENSO has 

been used as an alias for global warming due to the similarities of sea surface temperatures (SST) 

near the equator. For this reason, research comparing the positive and negative phases of ENSO 

may also be applied towards the understanding of global climate change. 

 

2.1 Precipitation 

 Precipitation provides valuable water resources. There are many different physical 

mechanisms in the atmosphere that produce precipitation, from small scale precipitation events, 

such as convectively driven thunderstorms, to large scale events such as tropical and 

extratropical cyclones. Regardless of the scale at which precipitation occurs, there are two main 

ingredients necessary to enable the process of precipitation.  They are moisture and lift. The 

availability of moisture is sensitive to geographical location. For example, distance from large 

bodies of water, elevation, and latitude are important factors for seasonal precipitation over the 

long term. In addition to moisture, lift is necessary to produce clouds and precipitation. There are 

three lifting mechanisms; fronts, upslope flow over physical barriers, and convection.    

2.1.1 Measurement 

 A traditional method of measuring precipitation is rain gauges. Gauges come in many 

shapes and forms from the relatively primitive wedge shaped gauges to the popular tipping 

buckets. Despite the many potential drawbacks of using rain gauges, it is still a direct, reliable 

form of measuring precipitation. Rain gauges also offer the capability of high resolution 

measurements both spatially and temporally. The one severe limitation is that rain gauge 
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networks are relatively sparse globally and only available over land with a strong bias towards 

dense population (Curtis et al. 2007). 

 More recent advancement in the understanding and production of satellite data has 

allowed for increasingly accurate precipitation estimates from space (Adler et al. 2003). The 

bird’s eye viewpoint of satellites enables a nearly global coverage of data. Satellite derived 

precipitation datasets are void of common errors and biases found in measurements from rain 

gauges. However, a whole new set of errors and biases arise. The most noteworthy distinction 

between rain gauges and satellite estimated rainfall is that rain gauges measure precipitation 

directly, while satellites measure precipitation indirectly. Satellite data can use available gauge 

data to modify their algorithms. A second distinction lies in the point versus areal rainfall 

dilemma. Rain gauges offer point specific precipitation amounts while satellite data estimates 

precipitation across relatively large areas, adding a spatial component to precipitation estimates.      

2.1.2 Physical Constraints 

Beyond the physical properties of precipitation and its impact on humanity, it also acts as 

a tracer for climate modes (i.e. ENSO, PDO, etc.). The availability of nearly global satellite 

derived precipitation datasets has enabled scientists to pursue broader research questions. Such 

research endeavors include closing representations of the water budget and exploring trends in 

precipitation data. Precipitation is one of the climate variables used to describe changes in 

atmospheric circulations. The resulting precipitation tendencies are known as a signal. An ENSO 

signal is present across many parts of the world, implying a significant impact on global 

circulations. 
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 Precipitation is an important part of the hydrologic cycle that not only provides 

invaluable water to humanity but also is an easily quantifiable aspect of the global climate 

system. As a result, it is often used as a parameter to assess climate sensitivity to global and 

regional circulations. Global climate models (GCM) are often dependent upon model oscillations 

in climate and climate change. GCMs are used to constrain different spatial, temporal, and 

physical parameters. Spatial and temporal constraints are chosen based on the scope of the 

problem being researched, available data, and computer resources and limitations. In particular, 

precipitation as a physical process is examined in a number of studies to observe and predict 

changes in climate (e.g. Allen and Ingram 2002, Wentz et al. 2007, Allan and Soden 2008). An 

example of a physical constraint includes the Clausius-Clapeyron’s relationship with the 

atmosphere’s ability to hold moisture in the form of water vapor.  This relationship suggests that 

warming ocean surfaces will lead to a ~2 percent increase in precipitation per degree Kelvin at 

mid and high latitudes assuming little change in relative humidity (Allen and Ingram 2002).    

 

2.2 The El Nino Southern Oscillation 

The Southern Oscillation (SO), or see-saw in pressure between the East and West Pacific, 

was largely forgotten until the 1960s. In 1969, Bjerknes among others, revived interest in the SO. 

Bjerkness (1969) was a pioneer in realizing the air-sea interaction in the Pacific that today is 

known as the El Nino Southern Oscillation (ENSO). ENSO is forced by a coupling of the Pacific 

Ocean circulation and the Walker Circulation (Figure 2). During periods of neutral ENSO 

conditions, high pressure persists across the Eastern Pacific Ocean. Low pressure persists across 

the western Pacific Ocean. The sinking air from the subtropical high pressure feeds into the low 
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pressure at low levels, via low level east winds. The persistent winds act to pile up the warmest 

SST’s into the western Pacific Ocean region. The warm waters and large scale low pressure 

create the ideal environment for widespread convection and precipitation. Across the eastern 

Pacific east winds create upwelling just offshore of the South American coastline. East winds 

spread the cold water originating from below the sea surface westward. The cold sea surface 

temperatures in combination with high pressure across the region result in the development of a 

strong inversion near the surface and sinking motion aloft.  

             

Figure 2. Walker Circulation during (1) El Nino (left) and (2) La Nina (right). (Images Courtesy 

of NOAA) 

 

This combination is ideal for drought conditions across the region, confirmed by deserts 

across the western edge of South America. West winds aloft connect the upper level feature of 

the low and high pressure coupling.  During the warm phase of ENSO the atmospheric 

circulations are weak leading to warm waters spreading eastward.  During the cold phase of 

ENSO the atmospheric circulations are strong and the east-west gradients are magnified. 
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2.3 ENSO – Precipitation 

A link between ENSO and global precipitation has been hypothesized ever since the 

discovery of the SO by Walker (1923). However, the relationship between ENSO and 

precipitation was largely ignored until the 1960s.  Several studies through the early 1980s (e.g. 

Horel and Wallace 1981, Rasmusson and Carpenter 1982, Arkin 1982) further developed the 

conceptual model of ENSO through the exploration of global circulations to explain anomalous 

precipitation and temperature trends. Precipitation patterns in relation to ENSO were first placed 

into a geographic context in the mid 1980’s.  

Ropelewski and Halpert (1986) identified several regions of the United States with a 

significant ENSO signal through the use of harmonic vectors. Harmonic vectors use rank ordered 

monthly precipitation totals averaged over some number of ENSO events, which are aggregated 

together to create vectors with magnitude and direction. The direction refers to the time of 

greatest precipitation and the magnitude accounts for the amplitude of the ENSO signal. That 

analysis focused on the rank order of monthly total precipitation.  

Of the regions identified, the ENSO signal in the southeast United States was shown to be 

the strongest. The central Rockies and the Ohio River Valley also experienced a significant 

precipitation effect according to Ropelewski and Halpert (1986). Ropelewski et al (1987, 1989) 

extended this study to the global scale. One severe limitation of these studies is the dependence 

upon available rain gauges. Since rain gauges are only available over land, two thirds of the 

Earth is immediately void of ENSO analysis. Of the remaining land mass, the availability of 

reliable rain gauges is strongly biased towards areas of dense, wealthy populations. However, 

these were the first studies to perform a comprehensive analysis of precipitation patterns globally 

in relation to ENSO. Ropelewski’s research validated ENSO’s far reaching influence.  
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Following the establishment of a global ENSO – precipitation relationship, several 

studies focused on improving and better understanding this relationship.  For example, 

Gershunov and Barnett (1998) examined ENSO forced precipitation with a focus on the right tail 

(extreme precipitation) of the probability density function over the United States. Similarly, 

Cayan et al. (1999) examine the precipitation distribution relative to ENSO in the western United 

States.  

 Once the geography of ENSO forced precipitation was mapped out, more detailed 

questions remained related to the precipitation distributions. For instance, how does ENSO 

impact daily precipitation events? To answer this question and others, various aspects of the 

precipitation distributions are examined in a series of research papers.  

Ropelewski and Halpert (1995) focused on the annual distribution of rainfall. The 10
th

, 

30
th

, 50
th 

(median), 70
th

, and 90
th

 percentiles were examined, and mean changes were noted 

during ENSO. Findings for the Gulf of Mexico and Northern Mexico suggest increased 

precipitation during the positive ENSO phase and decreased precipitation during the cold phase. 

Observed relationships were restricted to land due to the location of rain gauges.  

Curtis et al. (2007) examined extreme precipitation defined larger than one standard 

deviation of the probability density function. Daily and monthly extremes were examined using 

TRMM (Huffman et al. 2007) satellite derived datasets. As indicated earlier, satellite data can be 

nearly global in coverage. Curtis et al. (2007) identify differences in precipitation trends over 

land, ocean, and both.  Their results over the Gulf of Mexico were consistent with Ropelewski 

and Halpert (1995), but included the open waters. 

Ropelewski and Bell (2008) focused on ENSO forced precipitation using median values 

of monthly ranked precipitation, suggesting that the entire precipitation distribution needs to be 
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studied.  The study of changes in mean, variance, and standard deviation provide important 

information for precipitation distributions. Improving the resolution of GCMs requires more 

detailed information about the behavior of precipitation distributions (Ropelewski and Bell 

2008).  

 

2.4 Global Circulations 

 

Figure 3. Hadley Cell Circulation. (Image courtesy of www.newmediastudio.org) 

The Hadley Cell (Figure 3) is a nearly symmetric circulation centered near the equator. It 

is similar to the Walker circulation with respect to the high/low pressure coupling. A significant 

difference lies in the orientation and the scale of the Hadley Cell. The Hadley Cell is a 

meridional circulation that crosses the equator. It extends from the equator to the subtropics 

around the earth. The Hadley cell consists of rising air near the equator in the form of the Inter-

Tropical Convergence Zone (ITCZ) and sinking air in the subtropics which result in the 

formation of subtropical high pressure. The circulation migrates seasonally.   

The subtropical jet extends around the world in the subtropics at the poleward boundary 

of the Hadley cell (Held and Hou 1980). The subtropical jet is driven by angular momentum 
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transport from the deep tropics. The intensity and mean latitudinal position of the subtropical jet 

is proportional to the strength of the Hadley Cell (Lee and Kim 2003).      

 The mid-latitude westerlies, also known as the polar front, are baroclinic, eddy-driven 

zonal winds within the mid-latitudes. In the northern hemisphere the westerlies vary in latitude 

intra- and inter-seasonally. The largest variation occurs annually with the mean flow receding 

north and dissipating during the summer while strengthening and expanding southward during 

the winter. Potential vorticity advection and local baroclinicity are responsible for the 

progression and intensity of the polar front (Lee and Kim 2003, L’Heureux et al. 2006). 

 The mid-latitude westerlies are nearly symmetric about the equator suggesting that 

energy from the tropics transported by the Hadley Cell, and the subtropical jet explain much of 

the variation present in the mid-latitudes (e.g. Seager et al. 2003). Hoerling and Kumar (2003) 

demonstrate the symmetry about the equator using the 1998-2002 drought that impacted nearly 

every continent. They described the symmetry by examining the banding of subtropical highs 

exhibiting nearly a mirror image across the equator. This suggests a significant interaction 

between the Hadley Cell and the mid-latitude westerlies (e.g. Seager 2003, Hoerling and Kumar 

2003).  

Son and Lee (2005) find that the meridional width and gradient of the extratropical 

baroclinic zone impact the state of the jet stream. A strong temperature gradient generated by 

strong tropical heating and high latitude cooling produces a strong single jet. A more extensive 

meridional extra-tropical baroclinic zone that develops from weak tropical heating and strong 

high latitude cooling is favorable for a double jet state. The work of Son and Lee (2005) has 

important implications for understanding possible circulation trends during global warming. 
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Although not specified in Son and Lee (2005), it is not a stretch to employ some of these general 

findings towards possible ENSO induced changes in circulation. 

2.4.1 North America 

 The mean climatology of the polar jet stream across North America is described by the 

Pacific-North American (PNA) Oscillation. The PNA neutral phase or mean climatology places 

a broad weak ridge across the eastern Pacific Ocean, into the western United States and across 

the United States Rockies into the high plains. A broad weak trough is typically prevails across 

the eastern half of the United States. A general trend for this pattern is increased precipitation 

and cooler temperatures in the vicinity of the trough and warmer drier conditions in the vicinity 

of the upper level ridge. An active subtropical jet stream typically extends from the tropical 

Pacific into the United States and/or Mexico. Interaction of the two jet streams increases the 

likelihood extratropical cyclone development and strengthening.  

 During the warm season, the polar jet stream recedes northward and weakens while the 

subtropical jet dissipates. As a result the polar and subtropical jets have a minimal impact in 

apparent weather across the United States into Mexico and the Gulf of Mexico. Diurnal 

convection over land, tropical cyclones, and occasional front’s become the main drivers for 

precipitation across North America during the warm season. 

 

2.5 ENSO – Global Circulation 

 The 1998-2002 global drought was forced by anomalously cold SSTs. It was, in fact a 

prolonged La Nina that is considered by Hoerling and Kumar (2003) to be the main driver for the 

global drought.  
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 A significant feedback between the mid-latitude westerlies and the Hadley Cell during 

ENSO is the topic of several research papers (e.g. Lee and Kim 2003, Son and Lee 2005, Allan 

and Soden 2008). The general consensus is that warmer SSTs strengthen the Hadley Cell. An 

increased transport of moisture and angular momentum from the subtropical jet ensues as the 

Hadley Cell contracts equatorward (Lu et al. 2008, Gastineau et al. 2009). Baroclinicity and 

phasing of the two jets are the two mechanisms that enable a stronger polar front, equatorward of 

its mean position (Lee and Kim 2003). This energized polar front is likely to produce more 

precipitation as discussed in the following sub-section. 

2.5.1 U.S. Southeast 

Horel and Wallace (1980) find below normal atmospheric heights in the Southeast during 

El Nino.  During El Nino, east coast cyclogenesis is favored, while during La Nina storm 

development and movement tends to occur further west over the Ohio River Valley (Eichler and 

Higgins 2006). Curtis (2006, 234) finds a similar trend, showing a concentration of extra-tropical 

cyclones near the east coast during El Nino events. Curtis (2006) finds that El Nino years have 

twice as many extra-tropical cyclones as either La Nina or neutral events over an entire winter 

season. This observation supports the theory that El Nino and its associated warming of SSTs 

strongly influences the mid-latitude westerlies. Curtis (2006) also finds that there are four times 

as many intense storms (lower than 1000 hPa in pressure) during El Nino years. In combination 

with the increased frequency, this provides further evidence of increased precipitation and 

increased extreme precipitation across the southeastern region during El Nino. 

 

 



14 
 

3. Data and Methodology 

3.1 ENSO Index 

ENSO is typically defined by averaged SST anomalies in the equatorial Pacific (Figure 

4). The National Oceanic and Atmospheric Administration’s (NOAA) Oceanic Nino Index 

(ONI) is used to reveal El Nino and La Nino events. ONI is defined as a three month floating 

mean of Nino 3.4 centered over the month for calculation. The Nino 3.4 region (Figure 4) 

extends from 120°W-170°W and 5°S- 5°N. An average value 0.5 over the three month period is 

defined as a positive (El Nino) and -0.5 as negative (La Nina) phase of ENSO, respectively. The 

months fitting this threshold for the ONI index are called ENSO months. Other studies such as 

Ropelewski et al. (1987, 1989) have used a five month average of SSTs and the variation of 

different Nino regions to define ENSO over longer time periods. 

 

Figure 4. Nino Regions. Courtesy of NOAA.  

 

Months that do not have three or more El Nino or La Nina events in the 12 year study 

period are discarded to control for sample size. February through July do not meet the 

requirements and are discarded. Neutral months are likewise discarded. The selected months 

(Table 1) are displayed below. 
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Month  El Nino  La Nina  

August  97, 02, 04, 09   98, 99, 07  

September  97, 02, 04, 06  98, 99, 07  

October  97, 02, 04, 06  98, 99, 00, 07  

November  97, 02, 03, 04 ,06   98, 99, 00, 07  

December  97, 02, 04, 06  98, 99, 00, 05, 07, 08  

January  98, 03, 05, 07  99, 00, 01, 06, 08, 09  

  

Table 1. ENSO months. 

 

3.2 Satellite Derived Datasets. 

3.2.1 Geostationary Operational Environmental Satellite 

 

 The Geostationary Operational Environmental Satellite (GOES) is a geosynchronous 

orbiting satellite approximately 35,000 meters above the Earth. Its fixed position relative to the 

Earth’s surface enables a nearly continuous full disc scan. The GOES consists of an imager and a 

sounder. The GOES imager is a five channel (one visible, four infrared) imaging radiometer 

designed to sense radiant and solar reflected energy from sampled areas of the Earth. The GOES 

sounder consists of nineteen channels (long to short wave infrared 1-18, and visible 19) designed 

to approximate vertical profiles of temperature and moisture. Additionally the GOES sounder 

estimates total precipitable water (TPW) and stability indices. 

3.2.2 The Global Precipitation Climatology Project 

The World Climate Research Program (WCRP) established the Global Precipitation 

Climatology Project (GPCP) with the goal of producing a new global precipitation product using 

available satellite datasets (WCRP 1986). The one degree daily (1DD) dataset is one product of 

the GPCP. 
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The 1DD dataset of the GPCP is a global dataset at a resolution of 1°x1° lat/lon grid.  

One degree daily is composed of the Threshold-Matched Precipitation Index (TMPI) with gaps 

filled by polar orbiting satellite sounding data. The TMPI product utilizes infrared radiometer 

data, collected by geostationary satellites with the best coverage between 40 degrees north and 

40 degrees south. The GOES Precipitation Index (GPI: Arkin and Meisner 1987) is modified to 

approximate rainfall rates from satellite estimated cloud top temperatures in TMPI. The 

modification corrects for inconsistency between cloud top temperatures, precipitation estimates 

using the GPI, and observed/expected precipitation distributions. The indirect estimation of 

precipitation using infrared geo-stationary satellite data is not ideal. Measurement errors are 

unavoidable and are largest at fine scales. The Television and Infrared Observation Satellite 

(TIROS) Operational Vertical Sounder (TOVS) provides the pathfinder Path A dataset (Susskind 

et al. 1997). This main polar orbiting satellite data is merged with TMPI to produce the GPCP 

1DD dataset (Huffman et al. 2001).  

One drawback of the GPCP 1DD data is the relatively short period of available data when 

compared to its 2.5 degree resolution monthly counterpart. The 1DD dataset is only available 

from October 1996 until the present. As mentioned above, a distinct advantage of the GPCP 

1DD dataset is the global extent and its relatively high resolution, both spatially and temporally. 

However it should be noted that the spatial averaging within the 1°x1° boxes, a symptom of 

gridded satellite data, might reduce the ENSO signal when compared to those derived from rain 

gauges (Ropelewski and Bell 2008).  
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3.3 Statistical Distributions 

3.3.1 Cumulative Distribution Function 

The cumulative distribution function (CDF example – Figure 5) is the running summation 

of a variable x, summed across all x from x-min to x-max until f(x) equals the total sum of all x. 

On the y-axis this total sum is represented by 1.0 or 100% (i.e. it’s a relative distribution or 

density). In the example the F(x2) distribution (dashed line) is skewed to higher precipitation 

rates with ~80% of the distribution greater than x=1. This is far greater than F(x1) (solid line), 

where only 30% of the distribution is greater than x=1 (Figure 5).  

 
Figure 5. Cumulative Distribution Function - Calculation of D statistic. 

 

3.3.2 Kolmogorov-Smirnov Test 

 The Kolmogorov-Smirnov (KS) test, examines the largest vertical differences between 

the cumulative distribution functions (CDF) of two variables. The difference of the two CDF 

functions is the D statistic (Figure 5). The D statistic is described by Equation 1, where D is the 

D statistic and S(x) represents each CDF function, N1 and N2. 

Equation 1. The D Statistic. 

D  =  max (-∞<x<∞) |  SN1 (x) – SN2 (x) | 
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Thus, in Figure 5, D would equal approximately 0.5.  The KS test compares two CDFs to 

determine if the two curves are significantly different. A D-statistic below a dynamic threshold, 

obtained from a lookup table for any month, at a given grid box, is used to determine the percent 

chance that the distributions are from the same population. The D-statistic lookup table requires 

information on the type of distribution (Gamma), the level of significance (5%), and the sample 

size (large n). The Gamma distribution provides the best fit for precipitation distributions.   

  

3.3.3 Probability Distribution Function 

 The probability distribution function (PDF) graphs bin data (x-axis) against the frequency 

of occurrence of each bin occurring in a dataset (Figure 6). The area under the function is 

standardized to equal one and centered on the mean. Once this step is performed, any x-interval 

area under the curve represents the probability of observing that range of data. This is a normally 

standardized PDF (Figure 6). The PDFs used in this study are empirical.  

 

Figure 6. Probability distribution function. 

 

3.4 Global Precipitation Plots 

The global coverage of the GPCP 1DD dataset makes it a valuable input to create global 

precipitation plots (Figure 7). Similar to Curtis et al. (2006) a KS test is used to compare the two 
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monthly precipitation distributions, La Nina versus El Nino composites, calculated as La Nina 

minus El Nino, at each grid box, for each month, globally. Positive values (red) indicate the El 

Nino CDF is significantly different and has a larger proportion of heavy precipitation events than 

La Nina. Similarly, negative values (blue) indicate the La Nina CDF is significantly different and 

has a larger proportion of heavy precipitation events than El Nino. Additionally, contours of 

average precipitation differences (positive – negative phase of ENSO) are plotted at 1.0 mm/day 

increments to provide additional information on changes in average precipitation during ENSO.  

It should be noted that as expected there is a strong spatial correlation for both positive and 

negative D statistic values. 
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Figure 7. ENSO Monthly Precipitation KS Derived Signal. August – January from left to right, 

top to bottom. Red (blue) indicate that the La Nina CDF is larger (smaller) at D than the El Nino 

CDF.  Solid (dashed) contours indicates that the mean rainfall is larger (smaller) for El Nino as 

compared to La Nina. 

 

 

3.5 Region 

Following the production of global precipitation plots, a study region is selected, based 

on several conditions: 

 -An ENSO signal is present. 

 -The region is at latitudes favorable for interactions with the subtropical and polar jet. 

 -Data availability. 

 -Support of literature. 
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 Two regions are identified that meet these criteria, southern South America and the Gulf 

of Mexico region (Figure 8). Both regions possessed an ENSO signal during several of the 

months used in this study. They also are located at latitudes favorable for interactions with the 

subtropical and polar jets. Southern South America and the Gulf of Mexico are within 35 degrees 

north/south which is desirable for the most reliable TMPI rainfall estimates. Ropelewski and 

Halpert (1996) identify the Gulf of Mexico and Southern South America as regions impacted by 

ENSO using rain gauge data. Curtis et al. (2006) show an ENSO signal using GPCP and TRMM 

satellite derived precipitation data for the same regions.  

The Gulf of Mexico is selected over South America for a few key reasons. Most notably, 

Ropelewski and Bell (2008) performed a similar study analyzing the ENSO signal in South 

America using rain gauge data. As a result, the Gulf of Mexico region (Figure 8) is selected to 

avoid redundancy. Additional considerations are related to the geographical relevance to the 

United States. Conveniently, this region is important to climate in the United States. Data 

availability and accessibility are improved for this region. Local knowledge of climate and 

synoptic weather patterns is another advantage in selecting the Gulf of Mexico.  

Finally, earlier studies (Curtis 2006, Eichler and Higgins 2006) noted that extratropical 

storms are more abundant and stronger in the Gulf of Mexico during El Nino as compared to La 

Nina, yet little is understood about the controlling mechanisms, in particular the placement and 

strength of the polar jet and subtropical jet (see literature review).  Thus, the study area selected 

extends from 20° to 35° N latitude and 75° to 100° W longitude.   
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Figure 8. Gulf of Mexico Study Region. (20  – 35 ° N, 75 – 100 ° W), 1° Grid Superimposed. 

 

 

3.6 Precipitation Distributions and Analysis 

   Interactive Data Language (IDL) software is used to examine the impact of ENSO on 

precipitation distributions. Intensity versus duration analysis is used to examine precipitation 

distributions. For clarity, bin size is defined as the period of time or window in which 

precipitation is accumulated as one event. The study region is made up of 375, 1°x1° grid boxes.   
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3.6.1 Intensity Versus Duration 

 The intensity/ duration method varies the time period of the bins of precipitation in order 

to extract precipitation anomalies occurring on different temporal and indirectly, spatial scales. 

This adds another dimension to the spatial analysis of precipitation distributions by analyzing the 

impact of different scales on precipitation distributions in the study region. Analysis of longer 

time scales beyond the temporal resolution of the 1DD dataset offers a more dynamic 

understanding of precipitation occurring at larger time and spatial scales. Bins used in this study 

are 24, 48, and 72 hours. 

3.6.2 Bin Data Analysis 

Precipitation events within the 24 hour bin (Equation 2) are examined using a similar 

methodology as the global precipitation plots discussed earlier to highlight differences in the 

precipitation distribution between El Nino and La Nina over the Gulf of Mexico. The native 1DD 

dataset 24 hour bin is chosen to represent synoptic scale precipitation. The 48 and 72 hour 

(Equations 3, 4) bin sizes (running total of 2 and 3 days of 1DD, respectively) are calculated in a 

similar manner. Although, due to the larger bin size, a moving window of the 48 and 72 hour 

bins is performed in order to increase the sample size and exhaust possible combinations of 

precipitation in each bin. The 48 and 72 hour bins are selected to represent synoptic scale 

precipitation events. 
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Equation 2: 24 Hour Precipitation Bin. 

D24ij = EL24ij - LA24ij 

Where:  

EL24ij = cumulative 24 hour rainfall values within cell i and month j 

LA24ij = cumulative 24 hour rainfall values within cell i and month j 

i = 1, 2, 3, … , 375 (in a 15*25 grid) 

j = August, … , January  

If D24ij  >0, then El Nino has greater frequency of heavy events (wet El Nino) 

  <0, then La Nina has greater frequency of heavy events (wet La Nina) 

 

Equation 3: 48 Hour Precipitation Bin.   

 

D48ij = EL48ij - LA48ij 

Where:  

EL48ij = cumulative 48 hour rainfall values within cell i and month j 

LA48ij = cumulative 48 hour rainfall values within cell i and month j 

i = 1, 2, 3, … , 375 (in a 15*25 grid) 

j = August, … , January  

If D48ij  >0, then El Nino has greater frequency of heavy events (wet El Nino) 

  <0, then La Nina has greater frequency of heavy events (wet La Nina) 

 

Equation 4: 72 Hour Precipitation Bin.   

 

D72ij = EL72ij - LA72ij 

Where:  

EL72ij = cumulative 72 hour rainfall values within cell i and month j 

LA72ij = cumulative 72 hour rainfall values within cell i and month j 

i = 1, 2, 3, … , 375 (in a 15*25 grid) 

j = August, … , January  

If D72ij  >0, then El Nino has greater frequency of heavy events (wet El Nino) 

  <0, then La Nina has greater frequency of heavy events (wet La Nina) 
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3.6.3 Spatial Analysis 

 To supplement analysis of independent grid boxes, a hotspot analysis is performed to 

provide information on the spatial autocorrelation between grid boxes, beyond visual inspection. 

Accounting for the correlation or dependence between grid boxes will provide an improved 

understanding of the spatial distribution of significant precipitation. It may also offer a structure 

of values (large scale signal) to compare to ENSO and the synoptic scale forcing that impacts 

precipitation across the region.  The method used is a hotspot analysis in the Geoda (Anselin 

2006) statistical package using Univariate Local Indicators of Spatial Association (LISA) to 

analyze spatial autocorrelation of D values within the study region (Anselin, 2003). Hotspot 

analysis consists of positive and negative spatial autocorrelation. Positive spatial autocorrelation 

is a grouping of similar values. Conversely, negative positive spatial autocorrelation is a 

grouping of alternating or opposite values.  

3.6.4 Exploratory Hot Spot Analysis  

 A combination of ArcMap and Geoda are used to produce and visualize a spatial analysis 

of the D values, monthly mean precipitation, and precipitation rates that occur at the D statistic 

for the KS test. Data is imported as a raster grid into ArcGIS from a text file. Each grid box is 

1°x1°. Grid boxes were converted to vector polygons containing attribute values for rainfall in 

the form of D values. Then the converted data was used to perform a local spatial autocorrelation 

analysis established by the Local Moran LISA statistics (Equation 5) within the GeoDa statistical 

package.  

 

Equation 5. Univariate LISA Statistic. 

Li =  f (yi , yji) 
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For variable yi observed at location i, where Li is the LISA statistic 

f describes a function such that yji are observed values in a neighborhood of j and i. A weighting 

scheme described later is used to define the neighborhood (Anselin, 1995).   

 After examining several weighting schemes in the Univariate LISA analysis, the Arc 

Distance Weight was selected.  The Arc Distance Weight develops the spatial weights from the 

distance between the points on the grid. The Arc Distance Weight was used (rather than 

Euclidian) because the grid used is unprojected. For this study, two threshold values were 

analyzed; the values 64.72 and 100 miles. 64.72 miles is the default distance setting for GeoDa, 

which ensures that all cells have at least one neighbor included. The threshold value of 100 miles 

increases the cut-off distance (Anselin, 2003). 

A Cluster Map (illustrated as a Chloropleth map), Significance Map, and Moran’s I graph 

were produced to better understand the spatial autocorrelation of the cells. A Cluster Map shows 

four types of spatial autocorrelation: high-high and low-low which translates to clustering of 

similar values (positive spatial autocorrelation); high-low and low-high which shows spatial 

outliers (negative spatial autocorrelation). A Significance map shows significant Moran’s I 

values with different shades of green. The Significance map is based on 999 randomized 

permutations, which provide a reference distribution for both the Significance map and the 

Moran’s I graph. The Moran’s I graph plots values of a variable against its neighbors (or 

weighted) values. A linear fit of these points provides the slope, which is the Moran’s I value. 

The Moran’s I graph has the same classifications as the Cluster Map. The high-high and low-low 

values represent positive spatial autocorrelation, and the high-low and low-high values represent 

negative spatial autocorrelation. A positive Moran’s I value indicates positive spatial 

autocorrelation, while a negative value indicates negative spatial autocorrelation. Values near 
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zero suggest spatial independence or a random spatial distribution, signifying no significant 

relationship.   

After the Univariate LISA statistics were calculated, the results were deposited into 

ArcMap and maps representing the Cluster and Significance maps were created.  

3.6.5 Spatial Weight 

This spatial analysis using Arc Distance Weight is executed 18 times in total, for the 

months of August through January at the 24, 48 and 72 hour bins (Equation 6) for D values and 

the rate of precipitation at D. The analysis is performed six times for mean precipitation. 

 

Equation 6. Number of Hotspot Analysis Maps. 

AUG 

      SEP 

  

24 hr 

   OCT (6) * 48 hr (3) =  18 (MAPS) 

NOV 

  

72 hr 

   DEC 
      JAN 

       

 

3.6.6 Grid Box Selection  

Following this in depth analysis of independent and hotspot analysis patterns of the 

precipitation distributions related back to ENSO, several grid boxes are selected that meet a few 

criteria. Selected grid boxes must be independently and spatially significant at the five percent 

level for all three bin sizes (24, 48, and 72 hour).  Independent D value maps are produced using 

the KS test, and hotspot analysis significance is determined using the univariate Local Indicator 

for Spatial Autocorrelation (LISA) hot spot analysis (as described earlier). Grid boxes with the 

largest KS derived D located at high precipitation rates are preferred during the selection 

process. 
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3.6.7 Precipitation Rates  

 

 

                    

 

 

 

  

                                                                   Level of Precipitation (Pij) 

Figure 9. Absolute Value of the Difference of Two CDF Precipitation Distributions. El Nino and 

La Nina. 
 

          For each selected grid box (displayed later), precipitation rates of interest are selected for 

each bin size. The absolute value of the CDF (Diff’24ij) is plotted and the range of precipitation 

rates are selected in the vicinity of the D statistic (Figure 9). 

           For example, a threshold value, T, of |Diff’24ij| is selected depending upon month and cell 

(usually between 0.2 and 0.5).  Precipitation range, R, can then be used to identify events that 

make up a greater proportion of the distribution during El Nino/La Nina and may be responding 

to different drivers.  As an illustration, suppose when it rains during an El Nino, 80% of the time 

it occurs at rates greater than 1 to 9 mm/day, while during a La Nina only 50% of the time it 

occurs beyond that range.  This shift in the distribution means that the same rain rates are likely 

being caused by different preferential synoptic forcings during El Nino and La Nina.   For 

purposes of discussion, imagine three distinctive outcomes in R values (Figure 10): low level 

precipitation differences between the two drivers (Type A), mid-level differences (Type B), and 

high level differences (Type C). 

Threshold (Tij) 

 (Tij) 

Range (Rij) 

RR(Rij) 

D 
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Figure 10. CDF. Low-Level(A), Mid-Level(B), and High-Level(C) Precipitation Ranges (Left to 

Right). 

There are 18 possible outcomes for each cell (i) and month (j): 

Diff’24ij > 0, and Type A B or C;      Diff’48ij > 0 and Type A B or C;     Diff’72ij > 0 and Type A B or C 

Diff’24ij < 0, and Type A B or C;      Diff’48ij < 0 and Type A B or C;     Diff’72ij < 0 and Type A B or C 

 

3.7 Synoptic Analysis 

 From the above analysis, the dates corresponding to the precipitation range (low-level, 

mid-level, and high-level) are selected for synoptic analysis. For selected dates, mean 24 hour 

250 hPa wind velocities are acquired from the NCEP Reanalysis dataset (Kalnay et al. 1996) 

online. The Integrated Data Viewer (IDV) program is used to open and visualize streamlines and 

wind speed for synoptic analysis (Figure 11). 

                          

  Figure 11. Jet stream analysis. Wind speed and streamlines.  

 

Type A Type B Type C 
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The polar and subtropical jet features are treated differently due to difference in structural 

and physical processes that drive the two jets. The polar jet is analyzed at the nearest significant 

long wave trough or the trough that is most likely to influence the study region. Trough tilt 

provides tendencies of advection and trough movement. Typically a positive tilting trough is 

faster with weaker advection relative to a negatively tilted trough which is slower and has 

stronger temperature and moisture advection (Figure 12). Due to increased advection and 

divergence aloft, negatively tilted troughs are more favorable for developing stronger, slower 

moving extra-tropical cyclones which often result in more precipitation.  

In this study the trough is measured from the center of the base of the trough toward cold 

air. The angle (in degrees) of this measurement and location at the base of the trough are 

recorded. The subtropical jet location and strength is measured at the maximum jet streak near 

the study area. The tilt is measured using the range and bearing tool across the length of the 

subtropical jet at this location.   A manual query is performed to find maximum wind speeds 

(m/s) associated with either jet.  

 

 

 

 

 

 

 

Figure 12. Trough Tilt. Positive (Left) and Negative (Right) Tilting Troughs (Dashed Lines). 

Black Curves are Isobars. Red Arrows Represent Temperature (Warm) and Moisture Advection. 

N 
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3.7.1 Data Entry and Analysis 

Jet stream tilt, strength, and location are entered in Microsoft Excel for each selected grid 

box and at each bin for El Nino and La Nina precipitation events. Once the data is entered, 

simple statistics are calculated on the data such as mean, median, max/ min, and standard 

deviation to search for patterns or deviations for the measures of the two jet streams. A T-Test is 

performed to further analyze between populations (El Nino versus La Nina) using a two tailed T-

Test. The t-test describes the probability that two distributions are from the same population. A 

small value (value < 0.1) suggests that the jet stream circulations are responsible for similar 

precipitation events that occur at selected grid boxes. The grid boxes are chosen to represent a 

larger area with similar precipitation distributions as defined by the univariate LISA hotspot 

analysis.  

 

 

4. Results 

4.1 D Value Analysis 

 Independent grid box analysis of D values for each month at each bin is performed to 

display location and value of significant grid boxes. For this analysis, only grid boxes that have 

significantly different precipitation distributions between El Nino and La Nina at the five percent 

level are selected. Below are the maps of independent D values for each month, August through 

January (Figures 13-18).  Even though D is defined as the absolute value of the maximum 

difference in CDF, since La Nina is consistently subtracted from El Nino, the sign is added for 

clarity.  Thus, positive D values means that the La Nina histogram is weighted to having more 
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extremes and the negative D value means that the El Nino histogram is weighted to having more 

extremes. 

4.1.1 August 

 The month of August (Figure 13) shows a relatively low number of significant grid 

boxes. At the 24 hour bin large and positive significant D values (more extreme precipitation in 

La Nina) are scattered in the southwest and south central areas of the study region. A few 

significant large and negative significant D values (more extreme precipitation in El Nino) occur 

north of the Gulf of Mexico. The same general trend can be said for the 48 and 72 hour bins. The 

spatial coverage of significant grid boxes expands considerably from the 24 to 48 and from the 

48 to 72 hour bins.  
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Figure 13. August D Values (Independent). 24, 48, and 72 hour bins (left to right).  Red are 

positive D values (La Nina with more extremes) and blue are negative D values (El Nino with 

more extremes).  The scale is the same for all maps. 
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Figure 14. September D Values (Independent). 24, 48, and 72 hour bins (left to right). Red are 

positive D values (La Nina with more extremes) and blue are negative D values (El Nino with 

more extremes).  The scale is the same for all maps. 
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4.1.2 September 

 September (Figure 14) also displays few significant grid boxes within the 24 hour bin.  

The only clear trends at this bin duration are a group of high values (more La Nina extreme 

precipitation) off the southeast coast of the United States and in the southwest corner of the study 

region with an area of negative values (more extreme precipitation in El Nino) in northern 

Alabama and Georgia.  At the longer durations the aforementioned areas continue to expand, 

most notably off the southeast coast. Also a new area of positive values (more La Nina extreme 

precipitation) emerges in the northwest corner of the study region to Louisiana and along the 

Gulf coast into the western Panhandle of Florida. Another smaller area of high values (more 

extreme precipitation in La Nina) appears in the southeast corner of the study region. A small 

region of negative values is observed in southern Texas, especially at the 72 hour bin length. In 

addition to expanding areas of significant grid boxes, there is an increase in the number of grid 

boxes with large (> |0.25|) values of D. 
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Figure 15. October D Values (Independent). 24, 48, and 72 hour bins (left to right). Red are 

positive D values (La Nina with more extremes) and blue are negative D values (El Nino with 

more extremes).  The scale is the same for all maps. 
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4.1.3 October 

  The month of October (Figure 15) has a relative minimum in the number of grid boxes 

significant at the five percent level. Two concentrations of D values do emerge to form a dipole 

of D values across the Gulf of Mexico. In the southeast Gulf of Mexico high D values (more La 

Nina precipitation extremes) are close together suggesting substantial spatial organization. 

Similarly, negative D values (more El Nino extreme precipitation) in the northwest Gulf of 

Mexico are in close proximity.  Important patterns to note moving to 48 and 72 hour bins are an 

expansion of the significant D values in and around the established dipole of D values and an 

expansion northward of the negative (more extreme precipitation during El Nino) values in 

particular from the northwest Gulf of Mexico into Texas, east to Alabama. Also note the 

appearance of negative values in northern Florida in the 48 and 72 hour analysis. Additionally, 

there is an increase in the absolute value of D at large bin lengths. 
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Figure 16. November D Values (Independent). 24, 48, and 72 hour bins (left to right). Red are 

positive D values (La Nina with more extremes) and blue are negative D values (El Nino with 

more extremes).  The scale is the same for all maps. 
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4.1.4 November 

 November (Figure 16) has a relatively low number of significant grid boxes. Of the few 

significant grid boxes at the 24 hour bin length, only one is a positive D value (more extreme 

precipitation in La Nina). Most of the negative values are scattered from Cuba north to the 

Carolina’s. The 48 and 72 hour bin length follow a similar trend with negative D values (more 

extreme precipitation in El Nino) concentrated, but expanding in the eastern half of the study 

region.  Interestingly, at longer bin lengths there is a noticeable absence of significant D values 

off the southeast coast as compared to the southeast United States and Bahamas. This means that 

there is little change in precipitation distributions off the southeast coast during ENSO. In 

addition to expanding areas of significant grid boxes, there is an increase in the number of grid 

boxes with large (> |0.25|) values of D.  
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Figure 17. December D Values (Independent). 24, 48, and 72 hour bins (left to right). Red are 

positive D values (La Nina with more extremes) and blue are negative D values (El Nino with 

more extremes).  The scale is the same for all maps. 
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4.1.5 December 

 December (Figure 17) conveys three main regions of significant D values. Positive values 

(more La Nina precipitation extremes) persist over the southeast portion of the study region, 

while negative values (more El Nino precipitation extremes) occur predominately from Texas 

into the northwest Gulf of Mexico and in a separate area from the eastern Gulf and in particular, 

off the southeast coastline. The same general trend is present into the 48 and 72 hour bins 

lengths. However, negative values expand in the 72 hour bin, allowing for D values to converge 

over the central Gulf of Mexico to result in a long swath of significantly negative D values (more 

extreme precipitation in El Nino) from Texas and northern Mexico east to the Atlantic Ocean. 

Additionally, large D (> |0.25|) values also increase in coverage. On the other hand, positive 

values in the southeast portion of the region remain largely unchanged at the 48 and 72 hour 

bins. 
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Figure 18. January D Values (Independent). 24, 48, and 72 hour bins (left to right). Red are 

positive D values (La Nina with more extremes) and blue are negative D values (El Nino with 

more extremes).  The scale is the same for all maps. 
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4.1.6 January 

 The month of January (Figure 18) has the smallest number of significant boxes at all bins. 

A discernable large scale pattern cannot be determined at the 24 hour bin. At 48 hours, and in 

particular the 72 hour bin, show some spatial cohesion between grid boxes. Most notably, Texas 

is covered with negative D values (more La Nina extreme precipitation). All other patterns are 

weak and difficult to describe at best. 

4.1.7 Independent Grid Box Summary 

D value independent significance at 5 % displays a consistent pattern at larger bin lengths 

from 24 to 48 and 72 hours. The number of significant grid boxes at the 5 % level increases with 

increasing bin duration. A general trend shows the additional significant grid boxes are located in 

or near areas of concentrated significant grid boxes at 24 hours. Additionally, the number of 

significant boxes with low D values (-0.25 to 0.25) remain the same (August, September) or 

increase (October - January) at higher bins suggesting more widespread synoptic scale 

precipitation during October through January.  A visual inspection suggests an organization 

spatially of locally significant grid boxes, which is supported by the spatial analysis of D values 

discussed at length in the next section. 

August through December have a moderate to large number of significant grid boxes, 

especially at large bins. However, October, and in particular, December display the greatest 

consistency between bin lengths, improved spatial organization and a large number of significant 

grid boxes in general. All months except January, show a noticeable increase in the number of 

significant grid boxes with large D values (> |0.25|). Significant grid boxes with increasing D 

values over large scales suggest that there is a relationship with larger synoptic systems 

producing extremes as the time bin increases from 24 to 72 hours because larger storms cover a 
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larger area, often move slower and produce precipitation over longer periods of time. This also 

suggests a greater difference between ENSO precipitation distributions at the synoptic scale.  

4.1.7.a D Value Trend 

Looking at mean D values as a whole (Figure 19), there is a decreasing trend region-

wide. In August and September mean D values are positive suggesting more La Nina extreme 

precipitation. In November and December a negative D value means that El Nino produces more 

extremes in general.  Maximum positive values occur in August and September at a D value of 

around 0.05, with the minimum value at -0.15 in December. October and January have relatively 

neutral D values. Furthermore, for each month the average has a higher absolute value as the bin 

size increases from 24 to 72 hours.  From August through January there is a decreasing trend in 

the standard deviation of D values (Figure 20), implying that there is less variation in D values 

and hence less variation in precipitation distributions during ENSO moving into the cold season. 

This is likely due to the expanding area of El Nino favored extreme precipitation (negative D 

values) moving into December. The standard deviation is also larger as the bin size increases.   
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Figure 19. Monthly Mean D Values. 24, 48, and 72 Hour Bins. 

 

Figure 20. Monthly D Value Standard Deviations. 24, 48, and 72 Hour Bins.  
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4.2 Moran’s I Values 

As previously discussed in the methods section, the Moran’s I is a linear fit between 

actual variable values and spatially weighted values. Values range from -1 to 1. Values 

correspond to negative (-1 to 0) and positive (0 to 1) autocorrelation in the study region. The 

further from 0, the stronger the positive or negative spatial autocorrelation with a value of 0 

indicating no spatial autocorrelation using the assigned weighting scheme. The Moran’s I values 

for each month at each bin and accompanying statistics (Table 2) demonstrate that the mean 

precipitation differences (La Nina minus El Nino months) show the strongest spatial 

autocorrelation.  This is not surprising considering the mean state should be spatially smoother 

than any individual day (i.e. D value). 

  Mean   D Values   

Month Diff. 24hr 48hr 72hr 

AUG 0.775 0.580 0.615 0.610 

SEP 0.788 0.549 0.577 0.662 

OCT 0.872 0.688 0.699 0.760 

NOV 0.778 0.474 0.500 0.496 

DEC 0.894 0.732 0.682 0.730 

JAN 0.772 0.459 0.554 0.509 

Stats:         

Mean: 0.813 0.580 0.605 0.628 

Min: 0.772 0.459 0.500 0.496 

Max: 0.894 0.732 0.699 0.760 

Range: 0.121 0.273 0.199 0.263 

 

Table 2. Moran’s I Values and Statistics.  Largest values are bolded. 

 

One consistency throughout all measures of spatial analysis is the largest absolute values 

of D occur in October and December. December has its largest values in the mean and 24 hour 

bins, while October has the largest values in the 48 hour and 72 hour bins.  Interestingly, the 
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month in between, November has the lowest value in all D value spatial analyses and nearly the 

lowest value for the mean difference spatial analysis. This suggests that November could 

represent a transition month between two different synoptic forcings in fall (October) and winter 

(December) that lead to similar patterns of precipitation distribution.  January has the next lowest 

Moran’s I, followed by September, then August at the 24 hour bin. At longer bin lengths an 

interesting trend emerges. The months of August, November and January max out at the 48 hour 

bin. September and October increase by a fair margin at each bin, suggesting large spatial/ 

temporal scale patterns have a significant effect on the spatial organization of D values for those 

months. December is an outlier, in that the 24 and 72 hour bins represent approximately the same 

high Moran’s I value, while the 48 hour bin marks a minimum. The mean statistic demonstrates 

that the Moran’s I values increase with bin size. The 24 and 72 hour bins display the greatest 

range of Moran’s I values, both 0.07 greater than the 48 hour bin range. This may suggest a 

greater monthly change in spatial patterns of precipitation at these scales during ENSO.  

 

4.3 Hotspot Spatial Analysis  

 A hotspot spatial analysis provides evidence of the connectivity between grid boxes, 

while independent grid box analysis provided important grid box significance. A spatial analysis 

provides information on larger spatial patterns that could only be inferred using an independent 

grid box analysis of D values. A hotspot analysis of mean precipitation is produced to support 

the D value analysis. Mean precipitation plots are calculated at each grid box with the mean of 

La Nina minus El Nino. This is reversed to the typical El Nino minus La Nina difference, since a 

positive D value is nearly always associated with La Nina having more precipitation than El 
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Nino (see Fig. 7). The August through January mean precipitation difference and d value hotspot 

spatial analysis maps are displayed in the following (Figures 21-26). 

   

  

Figure 21 (left to right). August Hotspot Analysis of (1) Mean Precipitation; D Values at (2) 24 

Hour, (3) 48 Hour, and (4) 72 Hour Bins. 

 

4.3.1 August 

4.3.1.a Mean Precipitation 

The August mean precipitation map (Figure 21.1) reveals positive correlation in the form 

of low – low values (more El Nino extreme precipitation) in the northwest and southeast corners 

of the study region. Positive autocorrelation is also present in the form of high – high values 

(more La Nina extreme precipitation) in the south and southwest portion of the study region. 
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Additionally there is a small area of high – high values in southern Texas into the Gulf of 

Mexico. 

4.3.1.b 24 Hour Bin 

The August hot spot analysis of D values for the 24 hour bin (Figure 21.2) reveals a 

broad area of scattered high – high values (more La Nina extreme precipitation) across the 

southwest Gulf of Mexico. Low – low values (more El Nino extreme precipitation) are prevalent 

in northern Texas along the red river into portions of Louisiana and northern Mississippi. There 

are four scattered low – low values to the east of Florida. Note the small grouping of high – low 

values in the Dallas, TX area.   

4.3.1.c 48 Hour Bin 

The August hot spot analysis of D values for the 48 hour bin (Figure 21.3) shows similar 

patterns to the 24 hour bin. Noticeable differences include an expanding area of the high – high 

positive autocorrelation (more La Nina extreme precipitation) in the southeastern Gulf of Mexico 

and an expanding area of low – low values (more El Nino extreme precipitation) east of Florida. 

4.3.1.d 72 Hour Bin 

The 72 hour bin (Figure 21.4) displays somewhat similar patterns to the 24 and 48 hour 

bins. However, noticeable changes include a division of high – high values (more La Nina 

extreme precipitation) in the southwestern portion of the study region and a decrease in the 

spatial extent of low – low values (more El Nino extreme precipitation) east of Florida. This is 

intriguing, considering the general trend is for an increase in the spatial extent of positive 

autocorrelation at larger bin sizes. 
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Figure 22 (left to right). September Hotspot Analysis of (1) Mean Precipitation; D Values at (2) 

24 Hour, (3) 48 Hour, and (4) 72 Hour Bins. 

 

4.3.2 September 

4.3.2.a Mean Precipitation 

The September mean precipitation hot spot analysis (Figure 22.1) shows areas of low – 

low positive spatial autocorrelation (more El Nino extreme precipitation) in the north and south 

central portion of the study region. High – high positive spatial autocorrelation (more La Nina 

extreme precipitation) is prevalent in the southwest and northeast corners of the study region. 
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4.3.2.b 24 Hour Bin 

The September hot spot analysis of D values for the 24 hour bin (Figure 22.2) reveals low 

– low values of positive spatial autocorrelation (more El Nino extreme precipitation) in the 

northern and southern portion of the study region, along with south-central Texas. High – high 

values (more La Nina extreme precipitation) are more spread out with the highest concentrations 

focused in the southwest and northeastern section of the study region. Also, there is a 

concentration of high – high values along the Gulf coast from Louisiana to the panhandle of 

Florida. 

4.3.2.c 48 Hour Bin 

The 48 hour bin (Figure 22.3) is similar to the 24 hour bin. The most noticeable 

differences revolve around an expanding area of high – high positive spatial autocorrelation 

values (more La Nina extreme precipitation) off the southeast coastline and a decrease in spatial 

extent of high – high values in the southwest corner of the study region. 

4.3.2.d 72 Hour Bin 

There are similar patterns between the 48 and 72 hour (Figure 22.4) bins. However, there 

tends to be more areas of positive spatial autocorrelation in the northern half of the study region. 

The high – high positive spatial autocorrelation (more La Nina extreme precipitation) off the 

southeast coast continues to expand at the 72 hour bin. The low – low positive spatial 

autocorrelation (more El Nino extreme precipitation) likewise expands across northern Alabama 

and Georgia.  The significant boxes in the southern region largely disappear with no large scale 

positive spatial autocorrelation. 
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Figure 23 (left to right). October Hotspot Analysis of (1) Mean Precipitation; D Values for (2) 24 

Hour, (3) 48 Hour, and (4) 72 Hour Bins. 

 

4.3.3 October 

4.3.3.a Mean Precipitation 

The October hot spot analysis of mean precipitation (Figure 23.1) exhibits positive spatial 

autocorrelation across two large organized areas. High – high positive spatial autocorrelation 

values (more La Nina extreme precipitation) are prevalent from southern Florida into the 

Caribbean Sea. Low – low positive spatial autocorrelation values (more El Nino extreme 

precipitation) are present in the northwest Gulf of Mexico north and east into Louisiana. Across 

the panhandle hook of Florida there is another small area of low – low values. 
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4.3.3.b 24 Hour Bin 

The 24 hour spatial analysis (Figure 23.2) shows a large area of high – high positive 

spatial autocorrelation (more La Nina extreme precipitation) across the southeastern portion of 

the Gulf of Mexico. The northwest Gulf of Mexico into Texas and east to Alabama displays a 

similarly sized area of low – low positive spatial autocorrelation (more El Nino extreme 

precipitation). 

4.3.3.c 48 Hour Bin 

The 48 hour bin (Figure 23.3) shows a remarkably similar size and extent of positive 

spatial autocorrelation values (more La Nina extreme precipitation). The only discernable pattern 

change is a polarizing effect, separating the opposing values of positive spatial autocorrelation. 

4.3.3.d 72 Hour Bin 

The 48 and 72 hour (Figure 23.4) bins of October are essentially the same. No significant 

pattern change emerges.  
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Figure 24 (left to right). November Hotspot Analysis of (1) Mean Precipitation; D Values for (2) 

24 Hour, (3) 48 Hour, and (4) 72 Hour Bins. 

 

4.3.4 November 

4.3.4.a Mean Precipitation 

The November mean precipitation hot spot analysis (Figure 24.1) exhibits two main areas 

of positive autocorrelation; the southeastern United States (low – low: more El Nino extreme 

precipitation) and the southeast corner (high – high: more La Nina extreme precipitation) of the 

study region. Additionally, there is a small area of high – high positive spatial autocorrelation 

north of the Yucatan Peninsula. 
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4.3.4.b 24 Hour Bin 

November exhibits sporadic organization of positive spatial autocorrelation. At the 24 

hour bin (Figure 24.2) high – high positive spatial autocorrelation values (more La Nina extreme 

precipitation) are scattered from Louisiana towards the panhandle of Texas. Another small area 

resides near the Yucatan Peninsula. Low – low values (more El Nino extreme precipitation) are 

scattered in a checker like pattern across the southeastern study region along with the Carolinas. 

4.3.4.c 48 Hour Bin 

The 24 and 48 hour (Figure 24.3) bins are similar in structure.  

4.3.4.d 72 Hour Bin 

The 72 hour bin (Figure 24.4) is similar likewise, though there is an increase in high – 

high (more La Nina extreme precipitation) coverage in Louisiana and a decrease in coverage 

over Texas/Oklahoma. 
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Figure 25 (left to right). December Hotspot Analysis of (1) Mean Precipitation; D Values for (2) 

24 Hour, (3) 48 Hour, and (4) 72 Hour Bins. 

 

4.3.5 December 

4.3.5.a Mean Precipitation 

The mean precipitation hot spot analysis (Figure 25.1) for December displays two large 

organized areas of positive spatial autocorrelation. High – high positive spatial autocorrelation 

values (more La Nina extreme precipitation) are concentrated across the southeast corner of the 

study region. Low – low values (more El Nino extreme precipitation) are focused from Texas to 

Louisiana. This pattern resembles the October map.  A second smaller area of low – low values 

are in central Florida and off the southeast coast. 
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4.3.5.b 24 Hour Bin 

The 24 hour hot spot analysis (Figure 25.2) also shows two similar areas of organized 

positive spatial autocorrelation.  The southeast corner of the study region has an organized area 

of high – high positive (more La Nina extreme precipitation) spatial autocorrelation values. 

Grouping of low – low values (more El Nino extreme precipitation) occurs over Texas as well as 

a smaller scattered grouping across south Florida into the Atlantic Ocean. 

4.3.5.c 48 Hour Bin 

The 48 hour bin hot spot analysis (Figure 25.3) displays a similar pattern to the 24 hour 

analysis. One noticeable difference is an increase in coverage of high – high values (more La 

Nina extreme precipitation) over land in Alabama and Georgia. 

4.3.5.d 72 Hour Bin 

The 72 hour bin (Figure 25.4) is also similar to the 24 hour bin. The general area of 

values is the same. However, the smaller regions from Mississippi to Georgia (high – high: more 

La Nina extreme precipitation) and the low – low area (more El Nino extreme precipitation) 

around Florida have expanded in coverage across those regions. 
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Figure 26 (left to right). January Hotspot Analysis of (1) Mean Precipitation; D Values for (2) 24 

Hour, (3) 48 Hour, and (4) 72 Hour Bins. 

 

4.3.6 January 

4.3.6.a Mean Precipitation 

In January mean precipitation hot spot analysis (Figure 26.1) areas of positive spatial 

autocorrelation are relegated to the northern half of the study region, mainly over land. High – 

high values of positive spatial autocorrelation (more La Nina extreme precipitation) dominate 

from northern Mississippi southeast to northern Florida.  Low-Low values (more El Nino 

extreme precipitation) are centered on the Louisiana coast. 
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4.3.6.b 24 Hour Bin 

The 24 hour bin January hot spot analysis (Figure 26.2) shows a greater coverage of 

spatial autocorrelation. Areas of organized high – high values of positive spatial autocorrelation 

(more La Nina extreme precipitation) are present in northern Mississippi, South Carolina and the 

southeastern corner of the study region. Areas of organized low – low values of positive spatial 

autocorrelation (more El Nino extreme precipitation) are present in southeast Texas into 

Louisiana, off the east coast of Florida and the southwest corner of the study region. 

4.3.6.c 48 Hour Bin 

The 48 hour bin (Figure 26.3) is drastically different than the 24 hour bin. The only 

similarities are an area of low – low positive spatial values (more El Nino extreme precipitation) 

in Texas. All other significant organized areas of positive spatial autocorrelation from the 24 

hour analysis disappear, and high-high positive spatial values (more La Nina extreme 

precipitation) emerge in the southeast corner of the study area. 

4.3.6.d 72 Hour Bin 

The January the 72 hour (Figure 26.4) bin is similar to the 48 hour bin. However the 72 

hour bin shows a decrease in coverage in high – high values (more La Nina extreme 

precipitation) in the southeast portion of the study region while the low – low positive spatial 

autocorrelation values (more El Nino extreme precipitation) in Texas become more numerous. 

4.3.7 Summary Hotspot Analysis of D values 

Large areas of positive spatial autocorrelation occur at each month. One exception is a 

linear pattern of positive spatial autocorrelation grid boxes along the Gulf Coast in September. 

October and December display the most coherent spatial patterns with eerily similar location, 
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extent and values of positive spatial autocorrelation, with large areas of El Nino driven extreme 

precipitation across the northwestern Gulf of Mexico and La Nina driven extreme precipitation 

across the southeastern part of the study region. January also follows a similar pattern, although 

weaker. November displays a considerably weaker spatial pattern. The stronger patterns and 

general similarities between October and December confirm the Moran’s I statistic. A shift 

towards more spatial dependence between grid boxes and larger a difference between ENSO 

precipitation distributions likely follows a change in synoptic forcing across the Gulf of Mexico 

region. 

  

4.4 Independent Grid Box and Hotspot Analysis Summary 

 The independent grid box and hotspot spatial analysis displayed similar results. However, 

the spatial analysis is preferred for identifying large spatial patterns. The hotspot analysis was 

able to identify larger areas of positive spatial autocorrelation at shorter bin lengths (ex. 

October). The spatial analysis is also significant at the one percent level, while the independent 

grid box analysis is only significant at the five percent level, adding to the confidence in the 

hotspot analysis. Finally, the Moran’s I statistic adds more information to the quality of the 

overall spatial fit.  In summary, the independent grid box analysis suggests spatial 

autocorrelation, and the hotspot analysis confirms it, while the Moran’s I values communicate 

the strength of the spatial patterns for the Gulf of Mexico as a whole. 
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4.5 Precipitation Rate at D 

 The previous hot spot analysis is now performed for the precipitation rate at D.  This is 

important because when selecting grid boxes based on precipitation ranges (i.e. low-level, mid-

level, and high-level), they should represent their neighborhood, giving more confidence to the 

synoptic forcing analysis. 

4.5.1 Moran’s I Values 

 Similar to the Moran’s I values for the hotspot analysis of D values, Moran’s I values for 

the rate of precipitation at D (Table 3) are most significant in general at higher bins. Exceptions 

include December and January where the highest Moran’s I values occur at the 48 hour bin. Also 

similar, October and December exhibit the largest Moran’s I values. None of the Moran’s I 

values reach significance. January exhibits much larger Moran’s I values at the 48 hour bin. In 

fact, January has the maximum Moran’s I value.  This will be supported with the inspection of 

the large area of positive spatial autocorrelation over the Gulf States. 

Month 24 48 72 

AUG 0.017 0.106 0.273 
SEP 0.177 0.242 0.246 
OCT 0.127 0.165 0.350 
NOV 0.110 0.208 0.331 
DEC 0.297 0.357 0.278 
JAN 0.275 0.429 0.288 

        

Mean: 0.167 0.251 0.294 
Min: 0.017 0.106 0.246 
Max: 0.297 0.429 0.350 

Range: 0.280 0.323 0.104 

 

Table 3. Precipitation Rate at D Moran’s I Values. 24, 48, and 72 hour bins.  Largest values are 

bolded. 
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Figure 27. August Precipitation Rate at D (left) and Hotspot Analysis (right). 24, 48 and 72 Hour 

Bins (top to bottom). 
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4.5.2 Hotspot Analysis of the Precipitation Rate at D 

4.5.2.a August 

 For August (Figure 27), the rain rate spatial distribution is sporadic, especially at the 24 

hour bin length. Organized areas of the high precipitation rates at the D statistic are prevalent off 

the southeast coast with low precipitation rates at D present through much of the Gulf of Mexico 

into the southeast area of the study region. The 48 and 72 hour precipitation rates offer new 

trends. In particular there is a noticeable increase in spatial autocorrelation. Interestingly the 48 

hour and particularly the 72 hour bin shows increased spatial coverage of high precipitation rates 

at D over Florida and off the southeast coast. A general trend of lower precipitation rates occur 

over the Gulf of Mexico, especially for the 48 hour bin. 
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Figure 28. September Precipitation Rate at D (left) and Hotspot Analysis (right). 24, 48 and 72 

hour bins (top to bottom). 
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4.5.2.b September 

 September (Figure 28) has a slight increase in spatial autocorrelation. Most notably, there 

is a well organized area of high – high positive spatial autocorrelation values (higher rates of 

precipitation at D) at the 24, 48, and 72 hour bin sizes over the southwest portion of the study 

region. A coastline bias towards higher values seems to be a trend, especially at high bin sizes. 

This suggests there is a tendency for a substantial change in high precipitation rates along the 

coastline.  

 

 



66 
 

  

  

  

Figures 29. October Precipitation Rate at D (left) and Hotspot Analysis (right). 24, 48 and 72 

hour bins (top to bottom). 
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4.5.2.c October 

 The month of October (Figure 29) shows an area of scattered high precipitation values 

from the southwest portion of the study region, through the western gulf into Louisiana. This is 

supported at all three bins by the scattered high – high positive autocorrelation values in the hot 

spot analysis for the precipitation rates. A costal linear bias towards high values is noticeable at 

all bins.  
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Figure 30. November Precipitation Rate at D (left) and Hotspot Analysis (right). 24, 48 and 72 

hour bins (top to bottom). 
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4.5.2.d November 

 The month of November (Figure 30) displays a clear northern bias towards high rates of 

precipitation. The region with the highest rates occurs along the northern Gulf of Mexico and 

southeast United States coastline, northward into an area from Louisiana into Georgia. High rates 

of precipitation occur predominately north of 25 degrees north latitude. Also note how most of 

the high rates of precipitation at D occur over land.  
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Figure 31. December Precipitation Rate at D (left) and Hotspot Analysis (right). 24, 48 and 72 

hour bins (top to bottom). 
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4.5.2.e December 

 December (Figure 31) has a cluster of high rates of precipitation at D from east Texas to 

Mississippi and over southern Florida. Low values persist over most of the Gulf of Mexico and 

South of Florida. Similar to November, entering the cold season, there is a distinct northern 

region, over land that experiences a change in precipitation distributions at high end precipitation 

rates. Moving into December, notice how the greatest precipitation rates at D become focused 

along the coast and inland in the northwestern Gulf of Mexico. 
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Figure 32. January Precipitation Rate at D (left) and Hotspot Analysis (right). 24, 48 and 72 hour 

bins (top to bottom). 
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4.5.2.f January 

 The 24 bin for January (Figure 32) displays two main clusters of high rates of 

precipitation at D. One area is focused across southeastern Alabama and another area across 

eastern Texas into Louisiana. A substantial shift takes place for D values at the 48 and 72 hour 

bins. The highest rate of precipitation at D becomes focused over southeastern Louisiana at 

larger bin lengths. In general the high precipitation rates continue to merge westward focused in 

southern Mississippi and Louisiana  

4.5.7 Precipitation Rate at D Summary 

 A trend emerges over the six month period for clusters of high rates of precipitation at D. 

From August into September high – high positive spatial autocorrelation values (large 

precipitation rates at D) expand across the western Bay of Campeche. By October high rates of 

precipitation at D become more scattered and shift northward into the western Gulf of Mexico 

and into Louisiana. In November high values are prevalent across the Deep South from 

Louisiana east to Georgia. December shows a similar trend, though values are displaced north 

and westward into eastern Texas east to Mississippi. December also has more significant positive 

spatial autocorrelation as shown by the larger grouping of high – high positive spatial 

autocorrelation values than any of the previous months. In January the high – high values shift to 

the south over southern Mississippi and Louisiana and into the adjacent grid boxes off shore. 

This pattern suggests a possible connection to a northward and strengthening subtropical jet 

stream with eventual polar jet interaction as the max precipitation rates stall along the southern 

Gulf of Mexico.  

Interestingly, from November through December the largest difference in precipitation 

rates over land occurs predominately at high precipitation rates, while outside of the north Gulf 
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of Mexico the largest difference in the precipitation cumulative distribution functions occurs at 

low precipitation rates. This is an important finding for a couple reasons. From an atmospheric 

viewpoint it suggests that in November ENSO forced changes in regional and global circulations 

may affect land differently than the ocean and provide more or less high precipitation rates 

depending on the phase on ENSO. Since this occurs over land it creates increased precipitation 

variability for people to adapt to.   

   

4.6 Grid Box Selection 

Areas of large scale positive autocorrelation of D values are evident from August – 

January, most notably in October and December. The strong spatial patterns suggest that there 

are large scale changes in global circulations resulting in the large spatially dependent area of 

changing precipitation distributions during ENSO. For this reason, October and December are 

chosen for a synoptic analysis. Six grid boxes in total are selected to represent five regions of 

positive spatial autocorrelation. 

In October grid boxes 179 and 242 (Figure 33) are selected for synoptic analysis.  Both 

grid boxes are significant at the independent and hotspot spatial analyses. Grid box 179 is located 

off the coast of Texas in an area of negative D values (more extremes in El Nino). Grid box 242 

is located to the west of Miami, Florida in an area of positive D values (more extremes in La 

Nina).  
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Figure 33. October Grid Boxes for Synoptic Analysis. 

 

 Grid box 179 (Figure 33) has considerably different ranges of precipitation rates in the 

absolute difference plots of the ENSO CDF curves (Figure 34) as depicted by the blue boxes. 

The 24 (Figure 34.1) and 72 hour bins (Figure 34.3) display two ranges of precipitation rates. 

The 48 hour bin has only one at the low end of precipitation, suggesting that the largest 

difference in precipitation distributions during ENSO occurs at light precipitation events.  
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Figure 34. Grid Box 179 Difference CDF of ENSO Precipitation Distributions. Bins (1) 24, (2) 

48 and (3) 72 from top to bottom. 

 

 Grid box 242 in contrast has relatively similar ranges of precipitation rates at each bin 

(Figure 35). The precipitation rates selected for this grid box range from about 8 mm per day at 

the 24/48 hour bins to 35 mm per day at the 72 hour bin.  
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Figure 35. Grid Box 242 Difference CDF of ENSO Precipitation Distributions. Bins 24, 48 and 

72 from top to bottom. 

 

In December four grid boxes are selected (Figure 36) to represent three areas of positive 

spatial autocorrelation. Grid box 25 is located in an area of spatially autocorrelated negative D 

values (blue, El Nino with more extremes) in northern Texas. Grid box 170 is also located in an 

area of negative values off the east coast of Florida. Grid boxes 348 and 371 are side by side in 

the south east portion of the study region at the center of an area of positive values of D (red, La 

Nina with more extremes). They represent the same large area of positive D values, but have 

different precipitation distrubtions (see Figure 31). The greatest difference in the CDF of grid 

348 occurs at high rain rates, while grid 371’s greatest difference occurs at low rain rates. Two 
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samples in an area of positive D values (more extremes in La Nina) offers a comparison between 

synoptic conditions at adjacent grid boxes and how different rain rates may contribute.  

 

Figure 36. Selected Grid Boxes for December. 

 

The difference between ENSO precipitation distributions for December (Figure 37-40) is 

similar at each bin length. The selected range of precipitation events runs from 7 to about 12 mm 

for each bin, despite an overall increase in precipitation events at larger bins. The overall result is 

the 48 and 72 hour bins capture a relatively lower range of precipitation for synoptic analysis, 

since at higher bins higher rates of precipitation are more common.  
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Figure 37. Grid Box 25 Difference CDF of ENSO Precipitation Distributions. Bins 24, 48 and 72 

from left to right. 

 

Grid box 25 displays a consistent, but minimal increase in precipitation rates 

accompaying the largest differences in ENSO CDFs (Figure 37). The increasing precipitation 

rates at higher bins, owning primarily to the fact that there is  a greater amount of time to 

accumulate precipitation, essentially results in a constant range of precipitation rates. 
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Figure 38. Grid Box 170 Difference CDF of ENSO Precipitation Distributions. Bins 24, 48 and 

72 from left to right. 

 

Grid Box 170 (Figure 38) displays a consitently increasing trend for selected precipitation 

rate values. The 72 hour bin has the largest range of nearly 12 mm/day. 

Grid boxes 348 and 371 (Figures 39-40) are located in the same positive spatially 

autocorrelated area south of Florida. The two grid boxes are diagonally adjacent and each are 

independently and spatially significant in regards to the El Nino and La Nina precipitation 

distributions. However, they display different rain rates at D (see Figure 31).   
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Figure 39. Grid Box 348 Difference CDF of ENSO Precipitation Distributions. Bins 24, 48 and 

72 from left to right. 

 

Grid box 348 (Figure 39) has the largest CDF difference with a shift to higher rain rates 

with increasing bin size. It is one of the most interesting difference CDFs as the greatest change 

in precipitation distributions corresponds to high rain rates, suggesting that ENSO is an 

important driver for precipitation in this area. La Nina produces ample precipitation with 

flooding a good possibility, while a lack of extreme precipitation during El Nino and subsequent 

drought is likely more of a concern.  
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Figure 40. Grid Box 371 Difference CDF of ENSO Precipitation Distributions. Bins 24, 48 and 

72 from left to right. 

 

Grid box 371 CDF difference (Figure 40) shows the greatest separation at low 

precipitation rates with the high end of selected rates upwards of 9 mm/day at the 72 hour bin. 

4.6.1 General CDF Observations 

Red grid boxes (more La Nina extremes) tend to have the CDF difference maxima at 

higher values of precipitation and the range tends to expand towards higher precipitation rates 

with longer bins. This shift towards higher rain rates at red boxes may suggest more successive 

days of precipitation for La Nina. Unrelated, the highest D values for all grid boxes occurred at 

48 or 72 hour bin sizes except for grid box 242 in October.  
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4.7 Synoptic Analysis 

At each selected grid box, a synoptic analysis is performed to quantify the strength, tilt 

and location of the polar and subtropical jet streams at precipitation events that fall within the 

areas defined using the CDF difference plots. The following charts (Figures 41-48) describe the 

mean for strength, tilt and location of the polar and subtropical jet streams. Along the x-axis, grid 

boxes are coded; for grid box L_179 (D at low precipitation rates) and H_179 (D at high 

precipitation rates). All other grid boxes start with the number of the grid box, followed by an o 

= El Nino or a = La Nina. 

 

Figure 41. Trough Mean Maximum Wind Speed for 24, 48, and 72 Hour Bins. 
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Figure 42. Trough Mean Tilt for 24, 48, and 72 Hour Bins. 

 

Figure 43. Trough Mean Location (Latitude) for 24, 48, and 72 hour bins.  
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Figure 44. Trough Mean Location (Longitude) for 24, 48, and 72 hour bins.  

 

 

Figure 45. Subtropical Jet Mean Wind Speed for 24, 48, and 72 hour bins. 
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Figure 46. Subtropical Jet Mean Tilt for 24, 48, and 72 hour bins.  

 

 

Figure 47. Subtropical Jet Mean Location (latitude) for 24, 48, and 72 hour bins.   
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Figure 48. Subtropical Jet Mean Location (longitude) for 24, 48, and 72 hour bins.  

 

  

4.7.1 The Polar Jet Stream 

The polar jet max wind speeds (Figure 41) are generally higher during the month of 

December as compared to October. This is attributed to the equatorward movement and 

strengthening of the polar jet stream during the cold season. No apparent trends between ENSO 

composites are evident across all grid boxes. Grid boxes L_179, 242 and 25 disply noticeable 

decreases in maximum wind duing La Nina during the 24 hour bin. In fact grid L_179 is 

significantly different at the one percent level at the 24 hour bin, according to a two tailed T-test 

(Table 4). On the other hand, grid boxes H_179, 170, 348, and to a lesser extent 371 experience 

moderate increases in wind speed.  Interestingly, for October the 24-hour bin seems to have the 

largest ENSO differences, but the 24 hour differences become comparable to the 48 and 72 hour 

differences in December.  Also, grid boxes 348 and 371, which are similar spatially but represent 
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different rain rates, show similar changes in the maximum wind speed for each ENSO phase and 

bin size. 

 The polar jet tilt (Figure 42) at the nearest trough indicates a decrease in tilt during La 

Nina in October, while the tilt is mixed in December.  Grid boxes 170 and 348 show a higher tilt 

for La Nina as compared to El Nino. Grid 179 (October) at the 48 hour bin is not only lower, but 

significantly different at the two percent level (Table 4).  

 The polar jet location measured in latitude and longitude (Figure 43, 44) are roughly the 

same for ENSO composites. The latitude chart displays a large discrepency between 24 and 

48/72 hour bins upwards of 12 degrees latitude difference for grid box L_179_a. December is 

more consistent in this regard. The mean trough position longitudinally is consistently between 

about 90 to 100 degrees west for the month of October (Figure 44). In December there is 

considerably more variation in mean trough location from 80 to around 110 degrees west. Most 

interestingly, there is an eastern bias of the trough axis location during the La Nina months. In 

fact the 48 hour bin of grid 348 is significantly different at the one percent level (Table 4). 

4.7.2 The Subtropical Jet Stream 

 The subtropical jet maximum wind speeds (Figure 45) exhibit one of the more interesting 

patterns of this synoptic analysis. For each grid box the wind speed during El Nino is greater 

than or approximately equal to the winds during La Nina at every bin length, with only a few 

exceptions. In fact, grid box 170 is significantly different at the ten percent level for the 24 hour 

bin (Table 5). Most notably, grid box 242 has significantly different subtropical jet maximum 

winds speeds at the one percent level at each bin length (Table 5). 
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 Subtropical jet stream tilt (Figure 46) is highly variable. Other then grid 179, there is a 

large range of tilt values at different bins at individual grid boxes. So much so, that it is difficult 

to discern important patterns. For instance the 242 grid has the lowest values at the 48/72 hour 

bins, but also has nearly the highest 24 hour bin value in the El Nino composites. However one 

trend does emerge. The 48 hour bin is the minimum or near the minimum value for every grid 

box and has a relatively minimal change in values at each grid box.  

 The subtropical jet stream location displays no definitive trends for latitude (Figure 47), 

except a southward position of the subtropical jet at the 24 hour bin for grid boxes L_179, 242, 

and 170. At grid box L_179 for the 24 hour bin, the latitude is significantly different between El 

Nino and La Nina at the two percent level (Table 5). The longitudinal component of the 

subtropical jet stream (Figure 48) exhibits a neutral or westward shift during La Nina at all grid 

boxes except 348 and 371. In fact grid box 170 shows a significant difference between the 

longitude distributions of the opposing phases of ENSO (Table 5). 
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4.7.3 Synpotic Summary 

Polar Jet Stream 
     Grid Bin Precip. Range Max wind tilt Lat (N) long (W) 

179 L_24 Low 15.19 9.42 5.00 -3.47 

  H_24 High -9.27 -2.67 2.10 1.30 

  48 Low 3.54 24.69 -2.60 -3.13 

  L_72 Low 7.86 8.90 -4.72 -3.44 

  H_72 High 2.53 -9.67 3.50 -0.88 

242 24 Low 11.71 14.42 4.23 5.19 

  48 Middle 3.74 8.18 2.68 -11.27 

  72 Middle 6.02 11.01 1.93 -9.69 

25 24 Middle 11.38 7.80 -5.31 11.98 

  48 Middle -5.71 15.30 -4.99 15.09 

  72 Middle 1.31 -3.44 0.94 -18.06 

170 24 Low -5.22 -2.84 -1.79 10.43 

  48 Middle -6.08 -1.36 -6.58 26.07 

  72 Middle -9.61 -13.13 -2.32 1.75 

348 24 Middle -10.46 -8.53 2.19 5.79 

  48 High -13.52 -13.31 -1.51 22.64 

  72 High 0.47 -22.18 -1.27 6.59 

371 24 Low -3.22 4.98 0.50 -4.85 

  48 Low -5.39 2.04 -2.67 7.18 

  72 Low -1.12 -5.82 0.37 -3.25 

 

Table 4. Polar Jet Stream Synoptic Analysis Results. El Nino Minus La Nina. Grid numbers are 

color coded to reflect their origin: Blue = El Nino extremes | Red = La Nina extremes. 

Underlined and italized values indicate significance at ten percent level, bolded values indicate 

significance at the five percent level, and bolded and underlined values identify values 

significant at the two percent level for a two tailed T-Test.  

 

  The polar jet stream synoptic analysis (Table 4) for maximum winds shows a distinct 

trend between October and December. October displays a general increase in polar jet max 

winds during Ocotober. In December winds are slightly lower during El Nino. The December 

grid box 25 is the only exception with a large positive, though insignificant value at the 24 hour 
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bin. Interestingly at grid 348 all bins are significant and the 24 and 48 hour bins have large 

negative values, indicating a large increase in winds during La Nina.  A general increase in 

winds from October to December agrees with climatology. The trough tilt shows no consistent 

trend over all grid boxes. Interestingly, of the two significantly different values, the October grid 

179 has a larger tilt by 25 degrees at the 48 hour bin when El Nino has more extreme rain rates. 

December grid 348 has a large negative value meaning La Nina has a more negative tilt 

accompanying more extreme rain rates as compared to El Nino.   No significant trend was 

observed for a displacement in latitude between ENSO phases. The longitudinal position showed 

a strong eastern bias for December La Nina composites. In contrast, October trended westward 

during La Nina composites. Note the contrast in longitudinal values between grid box 348 and 

371. Despite their close proximity, the position of the polar jet during different phases of ENSO 

seems to vary greatly for the different precipitaiton rates.  

In summary, there is a general trend towards a neutral tilt and eastern bias for the polar jet 

stream trough complexes during La Nina selected precipitation events. Often times a neutral to 

negative tilting trough results in a more robust wind field associated with the upper level jet 

stream. However the analysis of maximum winds near the trough does not support this theory. 
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Grid Bin Precip. Range Max wind tilt Lat (N) long (W) 

179 L_24 Low 22.65 2.63 11.64 -8.16 

  H_24 High 2.49 -2.47 0.35 -14.51 

  48 Low 11.65 -2.19 -0.26 6.19 

  L_72 Low 10.46 4.50 -1.65 4.03 

  H_72 High -1.20 5.54 -0.53 1.36 

242 24 Low 21.64 12.50 1.78 -2.56 

  48 Middle 17.87 0.36 0.63 -9.63 

  72 Middle 17.34 3.11 2.96 -14.73 

25 24 Middle 8.58 -7.97 -0.80 1.20 

  48 Middle -0.74 -1.15 -0.28 5.04 

  72 Middle 8.73 -0.24 2.78 -0.28 

170 24 Low 19.27 -4.11 6.30 -37.49 

  48 Middle 0.66 -1.55 -0.88 -2.37 

  72 Middle -1.85 -12.23 -3.35 4.70 

348 24 Middle -3.21 2.40 0.14 11.63 

  48 High -11.61 -2.40 -3.01 0.98 

  72 High 10.93 5.80 0.28 -19.77 

371 24 Low 13.71 2.98 -0.98 18.02 

  48 Low -3.15 15.13 -3.93 10.26 

  72 Low 3.44 21.99 -2.77 11.41 

   

Table 5. Subtropical Jet Stream Synoptic Analysis Results. El Nino Minus La Nina. Grid 

numbers are color coded to reflect their origin: Blue = El Nino extremes | Red = La Nina 

extremes. Underlined and italized values indicate significance at ten percent level, bolded values 

indicate significance at the five percent level, and bolded and underlined values identify values 

significant at the two percent level for a two tailed T-Test.  

 

Possibly the most intriguing result in this study is tied into the subtropical jet stream 

winds (Table 5). There is a decrease of maximum winds during the negative phase of ENSO at 

nearly every grid box at each bin length. In October six of the eight values are significant at the 

ten percent level, all positive increases suggesting El Nino has a strong postive correlation with 

subtropical jet stream winds.  Exceptions to this trend are grids 348 and 371, which are located in 

the far southeast portion of the study area, the furthest from the mid-latitude westerlies. The tilt 
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shows an intriguing trend. Grid boxes that occur in areas where El Nino had less extreme rainfall 

display a decrease in tilt during El Nino, while grid boxes where La Nina had fewer extremes 

exhibited a decrease in tilt during La Nina. The latitude of the subtropical jet does not display a 

significant trend. Grid boxes 170 and 179 display a westward trend in the position of the 

subtropical jet. Grid 371 show an eastward progression to the jet stream during La Nina. In 

summary, there is a tendency for a slight westward progression and weakening of the subtropical 

jet during La Nina months. Interestingly the subtropical jet stream tilt is biased towards the phase 

of ENSO that produced the highest precipitation events at each bin. This suggests that a stronger 

north/south component to the subtropical jet stream results in higher precipitation events. 
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Polar Jet         Subtropical Jet     

Grid Bin Size Max wind tilt Latitude Longitude   Max wind tilt Latitude Longitude 

179 L_24 0.008 0.383 0.092 0.638   0.016 0.769 0.012 0.631 
  H_24 0.795 0.248 0.254 0.841   0.701 0.864 0.808 0.486 
  48 0.365 0.020 0.421 0.574   0.093 0.836 0.840 0.493 
  L_72 0.157 0.419 0.129 0.644   0.047 0.695 0.548 0.612 
  H_72 0.746 0.452 0.196 0.878   0.573 0.909 0.848 0.870 

242 24 0.160 0.420 0.400 0.585   0.009 0.150 0.658 0.848 
  48 0.477 0.484 0.411 0.061   0.007 0.971 0.820 0.240 
  72 0.262 0.310 0.489 0.078   0.007 0.724 0.350 0.036 

25 24 0.163 0.347 0.036 0.237   0.282 0.608 0.846 0.921 
  48 0.313 0.778 0.145 0.165   0.922 0.904 0.924 0.675 
  72 0.846 0.511 0.830 0.171   0.438 0.987 0.524 0.984 

170 24 0.407 0.856 0.663 0.575   0.076 0.774 0.253 0.054 
  48 0.178 0.904 0.006 0.150   0.908 0.819 0.737 0.750 
  72 0.146 0.246 0.453 0.791   0.799 0.124 0.158 0.420 

348 24 0.067 0.285 0.303 0.553   0.745 0.877 0.977 0.528 
  48 0.009 0.217 0.561 0.006   0.155 0.849 0.439 0.924 
  72 0.020 0.000 0.430 0.233   0.633 0.666 0.925 0.041 

371 24 0.634 0.583 0.805 0.487   0.053 0.762 0.712 0.054 
  48 0.373 0.783 0.084 0.176   0.671 0.063 0.108 0.160 
  72 0.795 0.346 0.802 0.514   0.514 0.000 0.368 0.197 

 
                    

 
Sign.  Max wind tilt Latitude Longitude   Max wind tilt Latitude Longitude 

 
10 % 4 2 4 3   8 2 1 4 

 
5 % 3 2 2 1   5 1 1 2 

 
2 % 3 2 1 1   4 1 1 0 

 

Table 6. Synoptic Analysis T-Test Results. Underlined and italized values indicate significance 

at ten percent level, bolded values indicate significance at the five percent level, and bolded and 

underlined values identify values significant at the two percent level. Below the main table is a 

count of the number of grid boxes under each level of significance. 

 

4.7.4 Individual Grid Box Significance 

 In addition to looking at overall difference values obtained from the synoptic analysis. A 

closer look at a T-Test statistics (Table 6) compares the relative importance between the tropics 

and extratropics. At first glance it is obvious that the maximum wind statistic is important, 

especially for the subtropical jet stream, where four of twenty values (twenty percent) are 
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significant at the two percent level and eight of twenty values (fourty percent) are significant at 

the ten percent level. Thus, El Nino instigates an increase in the speed of the subtropical jet, 

regardless of the days examined.  This is especially true for October (179, 242) as compared to 

December.  The polar jet stream maximum wind speed is a close second with three out of twenty 

values (fifteen percent) are significant at the two percent level. The location of the jet streams in 

the form of latitude and longitude contribute many significant T-Test statistics as well. 

Especially, the latitude and longitude of the polar jet stream and the longitude of the subtropical 

jet stream,where a combined ten of sixty values (seventeen percent) are significant at the ten 

percent level. Tilt has the least evidence towards a significant change between phases of ENSO 

using the T-Test statistic. Though at the polar jet stream, two of twenty (ten percent) of the tilt 

statistics are significant at the two percent level. 

 A few other patterns become obvious with close inspection of the T-Test values chart 

(Table 6). Grid box L_179 is significant for the 24 hour bin for maximum wind speed and 

latitude for both jet streams, combining for fifty percent of the variables examined. Grid 348 is 

significant at all bins for the polar jet stream maximum wind speed, which skews the totals found 

at the bottom of the chart (Table 6). Also interesting, that grid box 242 contributes three 

significant values at the one percent level to the subtropical jet stream maximum winds. Though 

this does skew the totals for the number of significant values similar to grid 348, it’s not as much 

of a concern, as all but two grid boxes contribute at least one significant T-Test statistic to the 

total values.  

Another trend between grids 348 and 371 becomes apparent. Notice how 348 (high rates 

of precipitation) has nearly all significant differences for the polar jet stream portion of the 
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synoptic analysis, while grid 371 (low rates of precipitation) has nearly all significant differences 

occuring for the subtropical jet stream synoptic analysis. This suggests that for ENSO forced 

precipitation over this region, low precipitation rates are predominately forced by changes in the 

subtropical jet, while high precipitation rates are caused by changes in the polar jet stream 

structure.    

Actual  NINO   NINA   Actual   MONTHLY 

  T. Storm Hurricane T. Storm Hurricane T. Storm Hurricane TOTAL 

AUG 6 3 2 5 8 8 16 

SEP 3 8 4 7 7 15 22 

OCT 1 2 1 3 2 5 7 

NOV 0 0 1 1 1 1 2 

DEC 0 0 1 0 1 0 1 

  

  

  

 

  

 

  

TOTAL 10 13 9 16 19 29 48 

 

  

      
Adjusted NINO   NINA   

     T. Storm Hurricane T. Storm Hurricane 

   
AUG 6 3 2.67 6.67 

   SEP 3 8 5.33 9.33 

   OCT 1 2 1 3 

   NOV 0 0 1 1 

   DEC 0 0 1 0 

   
  

  

    

   
TOTAL 10 13 11 20 

    

Table 7.  ENSO Tropical Cyclone Count (Top). Adjusted Tropical Cyclones (Bottom). 
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4.7.5 Tropical Cylcones  

4.7.5.a Summary 

The ENSO tropical cyclone chart (Table 7) counts all tropical storms and hurricanes that 

occured during an ENSO month between 1997 and 2009 that intersect any part of the study 

region. The intensity is based off of the maximum strength reached during the tropical cyclones 

life cycle, disregarding intensity through the Gulf of Mexico region. From August through 

October the frequency of tropical cyclones is very similar between El Nino and La Nina 

composites. November and December yield a total of three tropical cyclones, three more then 

during El Nino during the same two months. Month by month frequency of tropical cyclones 

combining the two composites shows a typical distribution of tropical cyclones during the 

summer with a peak in activity in September (22), followed closely by August (16) and then 

falling off for the last three months of the year (7, 2, 1). Overall La Nina records two more 

tropical cyclones and three more hurricanes, in spite of a shorter composite.  

Adjusting the tropical storm and hurricane frequency to account for difference in the 

number of months between ENSO phases further skews tropical cyclone activity towards La 

Nina months. Under the adjusted values (Table 7) notice that La Nina now has 7 more 

hurricanes, a 54 percent increase in hurricanes and 8 more tropical cyclones, a 35 percent 

increase. This points to a substantial influence from ENSO on tropical cyclone precipitation 

across the Gulf of Mexico region.    

 

 



104 
 

4.7.5.b Hurricane Irene – Grid 242 

 

Figure 49. Hurricane Irene Storm Track. Courtesy of NOAA. 

 There was only one strom during October or December that significantly effected a grid 

boxed selected. Hurricane Irene (Figure 48) passed nearby grid box 242 October 15
th

 and 16
th

 

1999 during La Nina. The storm maxed out with winds of 95 knots and a minimum pressure of 

958 millibars. The storm produced GPCP satellite estimated precipitation amounts of 105.7 

mm/day, 131.5 mm in two days, and a storm total of 146 mm (5.75 inches) over a three day 

period. This single storm has a significant impact on the ENSO precipitation distribution. In 

October of 98, 99, 00, and 07 (La Nina months), this was the highest precipitation event by 43.8 

mm. Even more impressive, this event beats out any El Nino event by almost 70 mm. Irene 

provide one example of how important tropical cyclones can be to precipitation distributions and 

providing needed water to humanity.  The impact of Irene puts into question the results for grid 

box 242, as discussed in the synoptic analysis section of the discussion. 
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5. Discussion 

Here the research questions are revisted and answered in order.  

 Research Questions 

1) What are the changes in the precipitation distributions for ENSO events in the Gulf of 

Mexico region? 

 

2) How do changes relate to: 

  a) characteristics of the subtropical jet streams  

  b) characteristics of polar jet streams 

  c) interaction of the jet streams 

 To address each research question each section of the results with be summarized while 

making some assertions as to the importance of each analysis towards better understanding 

ENSO in the Gulf of Mexico. 

 

5.1 Precipitation Distributions 

In addressing the first research question the independent grid box and spatial analysis of 

D values and the spatial analysis of precipitation rates are examined. Similar to Curtis (2007) and 

Ropelewski (1995) the Gulf of Mexico exhibits an ENSO signal which will be described below.  

5.1.1 Independent Grid Box Analysis 

 The independent grid box analysis of D values from August through January provides 

important information about independent changes in precipitation. Displayed grid boxes are 
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significant at the five percent level. This contributes a ninety-five percent confidence that these 

grid boxes have received significantly different precipitation distributions between El Nino and 

La Nina.  

At the 24 hour bin length there is a minimal number of grid boxes that are significant at 

any month. Most notably August, September and January all show little difference between the 

phases of ENSO except at a few select grid boxes. In October and December and to a lesser 

extent November this is far from the case, with large scale areas covered in significant grid 

boxes. At the 24 hour bin, and especially larger bins, spatial patterns between grid boxes 

becomes clear, even if it is not the sole purpose of the independent grid box analysis.  

At larger bins, the number of significant grid boxes increases substantially and in October 

and December in particular, they continue to draw large regions of similar D values. The D 

values themselves also generally increase at larger bins. There are likely two mechanisms at 

work here. One, the temporal patterns of precipitation are likely different in each phase of 

ENSO. So, expanding the 24 hour bin to 48 and 72 hours will likely emphasize the precipitation 

distributions in the form of a changing D statistic. Two, and likely the stronger of the two forces 

at work, is an increase of the number of precipitation events due to the running 48 and 72 hour 

bins, effectively compounding the difference between the ENSO precipitation distributions.   

5.1.1.a Trend of D Values 

Looking at the D values as a whole, there is a decreasing trend for region-wide averaged 

D values. The standard deviation of D values also decreases markedly going into the cold season. 

We will explore this further in the next section. 
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5.1.2 Hotspot Analysis  

5.1.2.a D Values 

 A hotspot analysis of the D values confirms what we already witnessed from the 

independent grid box analysis of D values. Large areas of positive spatial autocorrelation 

dominate the months of October and December.  November in particular sticks out as it has 

relative poor spatial autocorrelation when compared with October and December. October and 

December have similar spatial patterns according to the hotspot analysis. Negative D values 

across the northern Gulf of Mexico into parts of the southern United States indicates that there 

are more extreme precipitation events and more precipitation during an El Nino, as shown by the 

mean precipitation hot spot analysis. In December another area of negative D values is centered 

over Florida, east into the adjacent portion of the Atlantic Ocean. Positive D values persist across 

the southeastern portion of the study region. In general negative D values (more extremes in El 

Nino) typically occurred over land while positive D values (more extremes in La Nina) persisted 

over water. November and January are outliers of this trend.  

5.1.2.b Precipitation rate at D 

 As described earlier a northward trend and expansion of high rates of precipitation that 

occur at the D statistic occurs from August through December, with a slight regression 

southward in January. The beginning portion of this trend is likely sparked by tropical 

convection across the Gulf of Mexico in September and even into October. By November and 

especially December tropical disturbances are extremely rare. A possible cause for the migration 

of these high values into the northern Gulf of Mexico and eventually in the Texas Louisiana area 

is the formation of Gulf Lows and the establishment of a stronger and northward position of the 

subtropical jet stream across the region during El Nino, sometimes working in concert to produce 
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high precipitation events. The southward movement of high precipitation rates in January may be 

explained by a southward progression of the polar jet and associated polar high pressure systems. 

 

5.2 Synoptic Analysis 

5.2.1.a Jet Streams 

 Polar and subtropical jet streams experienced a significant change in position according 

to the synoptic analysis. Additionally, maximum wind speeds were strongly affected by the 

presence of ENSO. Subtropical jet stream winds are in particular faster during El Nino than La 

Nina. The only notable exceptions are grid boxes 348 and 371 which had the reverse effect. 

From a physical standpoint, ENSO forced changes in jet stream configurations seems all but 

certain.  

Warming SSTs at the equator during El Nino does appear to increase max jet winds, 

likely from an influx of energy and increased interaction between the polar and subtropical jet 

streams. Furthermore, strong equator heating present during El Nino increases poleward energy 

transport in the subtropical jet and increases the likelihood of a single jet state (Lee and Kim 

2003). Both of these mechanisms increase the likelihood of a stronger jet stream. A stronger jet 

subsequently fuels stronger and more frequent surface low pressure systems. This change in 

storm intensity, coupled with the tendency for a shift in position for both jet streams explains the 

changes in precipitation patterns across the region. This effectively mirrors the information 

gathered about the precipitation distributions for each grid box. There is a change in both 

precipitation distributions and jet stream strength and location. 
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5.2.1.b Grid Box Summary 

   Grid 179 is located on the coast of Texas and has a negative D, indicating that El Nino 

would have more extreme precipitation (denoted as; El Nino > La Nina).  This is consistent with 

the faster jet.  At the low precipitation end, the latitude of the subtropical jet shifts north, to a 

similar latitude as grid 179 further emphasizing the impact of the jet stream.  Also, the polar jet 

and subtropical jet are in close proximity (latitude) suggesting interaction between the jets, which 

could lead to widespread light rain with an increased likelihood for heavy precipitation events. 

   Grid 242 is located on the west coast of Florida and has a positive D (La Nina > El Nino). 

This grid box has a strong increase in subtropical jet stream winds at all bin sizes at the one 

percent level. This is counterintuitive to the expected result. Typically a stronger jet results in 

heavier precipitation. A westward shift of both jet streams may be the culprit. More likely ENSO 

forced CDF distributions were skewed because of the extreme precipitation (105.7 mm) 

produced by Irene as discussed previously. 

   Grid 25 is located in North Texas and has a negative D (El Nino > La Nina). A slight 

increase in both jet stream max winds is evident, though neither distributions show a significant 

difference at any bin size. The polar jet stream shifts to the south in El Nino.  The southward 

shift places the polar jet closer to this area and closer to the subtropical jet, increasing the 

likelihood of important precipitation during El Nino. 

   Grid 170 is located on the east coast of Florida and has a negative D (El Nino > La Nina). 

Subtropical jet strength is important, but the location is shifted far to the east in El Nino. Also 

notable, the polar jet shifts to the south, increasing the likelihood of a coupling of the jet streams. 

The increased jet stream winds and eastward movement of the subtropical jet stream along with a 
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southward progression of the polar jet stream increases the chances for large precipitation events 

in El Nino. 

   Grid 348 is located on the northern side of Cuba and has a positive D (La Nina > El 

Nino).  This is the only grid box that displays no significant difference for subtropical jet stream 

winds. However, the polar jet stream is weaker in El Nino.  This could in part, explain more 

extremes during La Nina. 

  Grid 371 is located on the southern side of Cuba and has a positive D (La Nina > El 

Nino).  For this grid box there is no difference in the polar jet stream maximum winds. The 

subtropical jet is faster in El Nino.  However, it is further west, away from the location.  This 

may explain the decrease in extreme precipitation during El Nino. 

 Grid boxes 348 and 371 are an interesting case. They are diagonally adjacent in the same 

area of positive D values (La Nina > El Nino) but according to the synoptic analysis precipitation 

at the high precipitation range (348) and low precipitation range (371) have different 

atmospheric drivers. At Grid box 348, polar jet changes significantly for maximum winds, tilt, 

and longitudinal position while there is little change to subtropical jet stream components. In 

contrast, grid box 371 shows a significant difference in subtropical jet stream maximum winds, 

tilt, and longitude.  

This may somehow be related to the position of the grid boxes on either side of Cuba. 

Grid box 348 is exposed to the north making the progression of cold fronts and associated 

precipitation important. Conversely, the large mountain range to the north of grid box 371 may 

reduce the impact from cold fronts related to the polar front, while exposing the area to 

subtropical jet stream induced precipitation. 
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5.2.2 Tropical Cyclones 

 Tropical disturbances produce copious amounts of precipitation over the time scale that is 

investigated in this research. From August through December nearly the same number of tropical 

cyclones occurred in each phase of ENSO. However, La Nina experienced three more hurricanes 

and two more tropical cyclones despite fewer La Nina ENSO months. The adjusted numbers 

magnify the difference between La Nina and El Nino, contributing seven more hurricanes and 

eight more tropical cyclones during La Nina. This strong bias for large scale tropical 

precipitation events during the late summer for La Nina may explain the spatial patterns during 

this time. It may also partially explain the discontinuity in spatial patterns of precipitation 

shifting from the warm to cold season. 

  5.3 Conclusion 

 The independent grid box and spatial analysis, synoptic analysis and tropical cyclone 

frequency work in concert to describe ENSO forced changes in precipitation distributions. 

 The independent grid box and spatial analysis of the D values and of the precipitation 

rates creates a picture of the areas influenced the greatest by ENSO. Understanding these 

precipitation distributions at each grid box and spatially are paramount to understanding what 

large scale systems(s) may be responsible for the ENSO signal. The spatial analysis of 

precipitation rates at D, coupled with synoptic scale analysis provides telling clues from October 

through January. The northward progression of high rates of precipitation across an area with 

higher El Nino extremes suggests heavy precipitation events occur more often and are more 

important for describing differences between the two phases of ENSO. Increased winds of the 
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subtropical jet suggest a more active weather pattern during El Nino, resulting in increased 

precipitation over areas impacted the greatest by the mid-latitude westerlies.  

Precipitation rates at D display a trend of northward progression in heavy rainfall. A 

possible explanation for this is the poleward movement of the subtropical jet. In December the 

area of high precipitation rates stall and move slightly southward in January. This area coincides 

with a southern storm track (Gulf Lows) which may be favored during El Nino possibly due to a 

more active subtropical jet stream. 

 This provides explanation for much of the cold season, but it does not explain patterns 

found in the late summer. This is where the tropical cyclone frequency becomes important. In 

August an area of positive D values are present in the independent grid box and spatial analysis. 

In September a similar area appears off the east coast. Tropical disturbances are prevalent in both 

areas. The signal likely shows up because a high frequency of intense storms moved through the 

region skewing the CDF of the La Nina precipitation distributions at these locations towards 

higher precipitation rates. The overall Moran’s I is weaker in August and September, correctly 

indicating that the spatial patterns of precipitation are more variable than October or December. 

One explanation could be the sporadic nature of warm season convection in general.  

 The transition to stronger spatial trends in October, or a greater difference in ENSO 

phases over large areas, may be due to a general lack of precipitation during La Nina across the 

region with a limited tropical precipitation signal. By November there is a weak trend spatially. 

This could be related to the progression of cold fronts that generally produce small scale (spatial 

and temporal) light precipitation events every few days/weeks. Another argument might be that 

the progression of the subtropical jet stream poleward and the polar jet stream equatorward 
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during this month dilutes the overall signal over a larger area. Both theories are supported by the 

hotspot analysis of D values, with the large area of blue (El Nino > La Nina extremes) values 

spread across the eastern half of the study region for November. By December tropical cyclones 

are all but out of the picture. The polar jet stream and subtropical jet stream become more active 

over the region as evidenced by the stronger winds for selected December grid boxes. This is 

likely accompanied by an increase in the frequency of extra-tropical cyclone development and 

movement across the northern tier of the study region. 

5.3.1 Final Remarks 

 The general findings described here indicate that ENSO forced changes at the synoptic 

scale during the warm and cold season impact precipitation distributions at smaller scales, both 

locally and spatially. This has important implications for local emergency management. People 

are largely susceptible to seasonal changes in precipitation. Seasonal averages and individual 

storm contributions are important towards economic and hazard preparation. Finally, changes in 

global and regional circulations and precipitation distributions forced by ENSO may provide an 

analogue to describe potential changes in a warming climate. This may in turn help people adapt 

for future changes in climate. 
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