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 This retrospective study assesses invasive breast cancer counts reported at the Illinois ZIP 

code scale during the study period of 1996 to 2000.  The research objective is to evaluate the 

spatial and statistical associations between breast cancer risk and sources of potential 

environmental contamination.  A thorough literature review illustrates a profound list of cancer 

risk factors within the study space.  Public health principles are utilized to prepare breast cancer 

incidence for analysis, accompanied with the development of a case/control ecological model.  

Exploratory analyses suggest that breast cancer intensity is predominantly a rural problem.   A 

generalized linear mixed model is employed, illustrating statistical associations between 

environmental risk factors and breast cancer risk.  Coal Mines, Oil/Gas Wells, and Large 

Quantity Hazardous Waste Generators, display high statistical significance (p<0.001) in 

association with increased breast cancer risk.  Unique socioeconomic attributes distinguish 

urban risk from rural risk, as can be seen in a discriminant function analysis.  The modeling 

techniques utilized in this research display classic spatial epidemiological approaches that 

account for particular types of confounding effects, while also defining zones of disease risk 

through cluster detection.  Results from this analysis are useful for future studies intended to 

account for epidemiological, clinical, chemical and biological disease-related information.  
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1  Background 

 

 

In the United States, 12.15 percent of the female population (or one out of eight females) 

is expected to battle breast cancer at some point during life (Jemal 2010; SEER 2010a).  An 

estimated 209,060 new cases of invasive breast cancer were estimated for the year 2010, with a 

minor constituent frequency of 1,970 cases occurring in males (ACS 2010).  Breast cancer is the 

first and second leading cause of cancer-related death in women ages 40-59 and 60-79, 

respectively (Jemal 2010).  Demographically, US women who report as White-Hispanic, 

Asian/Pacific Islander, Black, and White non-Hispanic accounted for the four highest breast 

cancer risk ethnicities, with rates of 92.7, 97.2, 121.7 and 148.3 cases per 100,000 women, 

respectively (SEER 2010b).  Wealthier socioeconomic status has also been shown to express 

higher breast cancer morbidity (Brody and Rudel 2003).  

Nationally, from 1996 to 2000, the US age and population-adjusted breast cancer rate 

for all women was 137.1 cases per 100,000 women (SEER 2010b), slightly higher than the 

Illinois breast cancer rate of 133.3 cases per 100,000 women (Dolecek et al. 2003).   From 2002 

to 2006, Illinois’ female breast cancer incidence rate (123.1 cases per 100,000 women) was 

slightly above the US female breast cancer rate of 121.8 cases per 100,000 women.  At the same 

time, Iowa was reported as the only state in the central US to exceed Illinois’ breast cancer 

incidence (ACS 2010).  Approximately sixty-eight (68) percent of Illinois females report as 

White non-Hispanic (US Census Bureau 2010a), and 44 percent of Illinois females report as a 
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member of the 40 and older age group (Census Scope 2010), placing a large percentage of 

Illinois women at higher socioeconomic and intrinsic risk for breast cancer.  

A common problem inherent to epidemiologic studies of environmental cancer risk is 

that environmental exposure measures do not necessarily reveal etiology (Brody and Rudel 

2003).  This is plausible given the myriad of factors that serve etiologically in breast cancer 

incidence.  More discontented researchers position themselves against epidemiologic studies of 

environmental risk, claiming that epidemiologic science fails to serve its purpose when it 

associates cancer risk with environmental exposure to man-made chemicals such as endocrine 

disrupting chemicals (Ames and Gold 2000).   

During the past decade, a number of cancer epidemiologists have brought to light many 

of the suspected environmental risk factors (i.e. volatile organic compounds, inorganic 

compounds, radionuclide isotopes, and heavy metals) that operate as carcinogens or endocrine 

disrupting factors within different geographic populations (Birnbaum and Fenton 2003; Brody 

and Rudel 2003; Lichtenstein 2000; Rudel et al. 2007).  216 potential mammary carcinogens 

have been identified via recent studies on animals, in addition to 250 estrogen mimics 

(resembling human body hormones) in animals (Brody et al. 2007).   

A spatial epidemiological focus on environmental risk factors does take into 

consideration -albeit limited at times- risk factors such as lifestyle behaviors, hereditary 

dynamics, and other individually isolated space-time variables.  To better understand the nature 

of a cancer epidemic, it is necessary to understand how individuals interact with their spatial 

environments as individual organisms.  In the case of environmental risk, this study adheres to 

the perspective that people are frequently subjected to exposure from environmental phenomena 

such as groundwater contamination, soil and air pollution, and local industrial activities.  These 
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are exposure pathways for which most communities cannot control without major restorative 

assistance or government regulation.   

In essence, everything shares a spatial relationship with everything, and more 

approximate objects tend to relate more with each other (Tobler 1979).  I argue that individuals 

who are in closer proximity to cancer causing agents will in turn experience higher causal 

effects from those carcinogenic substances.  This type of perspective perceives disease 

outcomes as phenomena that are dependent upon the geographic scales at which they are 

observed –with variations in scale associating with variations in observed disease outcomes 

(Moore and Carpenter 1999).  Moore and Carpenter (1999) also note that spatial analysis and 

GIS have many current uses in epidemiology, including the investigation of environmental risk, 

detection of clusters, and assessments of distance dependent phenomena. 

The total treatment costs of US cancer for the year 2006, estimated at $104.1 billion 

(NCI 2010a), juxtapose ironically with the fiscal year 2010 US Department of Defense budget 

authorization of $104.9 billion; this budget being used to support all fiscal military operations in 

Afghanistan (Belasco 2010).  The predominantly allopathic medical industry of the US is in the 

midst of the largest [exponential] medical cost increase in history, displaying absolutely no 

tendency toward financial equilibrium (Cutler 2007; KFF 2010; NCI 2010a; WHO 2010). 

Under current circumstances, approximately 37.76 percent of women and 44.29 percent 

of men in the US will acquire cancer at some point during life (SEER 2010a).  This helps to 

explain the $263.8 billion in total direct and indirect cancer costs that the US was estimated to 

absorb in the year 2010 (ACS 2010).  Perhaps, the US would be on a more economically 

sustainable and medically viable path if more resources were directed toward the prevention, 
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identification, and eradication of cancer risks prevalent in the US, especially in the midst of a 

wide-spread national recession (Inman 2010; Pincus-Nielsen et al. 2010).    

On February 26
th

, 2009, it was considered a major improvement to Environmental 

Protection Agency (EPA) policy when the US President, Barack Obama, proposed a $3 billion 

increase in the Environmental Protection Agency’s FY 2010 budget, moving the budget from 

$7.5 billion to $10.5 billion and including provisions for new environmental protections (EPA 

2009).  Despite the White House’s new environmental health approach (PCP 2010; Cone 2010), 

all environmental agendas are minuscule in financial comparison to elevations in US healthcare 

expenditures that occurred from 2000 to 2006.  During this time period, US per capita health 

expenditures increased 47 percent from $4,570 per person to $6,719 per person (WHO 2010).  

When factored into US population estimates (US Census Bureau 2010b), this 47 percent 

increase was equivalent to $716 billion in new health costs, bringing fiscal healthcare 

expenditures in the US to over $2 trillion by the end of 2006.  Also in 2006, breast cancer 

treatment -the most expensive histologic site for cancer treatment- cost the US $13.88 billion 

(NCI 2010a), exceeding the US’s modern EPA budget.  Most of these phenomena suggest a 

systematic bias toward ‘health symptom treatment’ instead of ‘health symptom prevention’.   

Financial arguments against the cost of eliminating environmental risks, i.e. Ames and 

Gold (2000), fail to realize the financial benefits of a healthier population.   As a result of lower 

lifetime pollutant exposure, fewer per capita dollars would be spent treating medical problems, 

and more per capita work hours would be spent productively in the US labor force.  We must 

also consider the value of human life and love, both of which for many people exceed all things 

measured in dollars. 
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It is possible to preserve financial and emotional resources by identifying and reducing 

health endangering risks.  Much work has been performed in the fields of spatial epidemiology 

and medical geography, and these efforts have helped with the better evaluation of 

environmental health.  

 

1.2  Problem Statement 

 

 

“The overwhelming majority of chemicals identified as animal mammary 

carcinogens or endocrine-disrupting compounds have never been included in an 

epidemiologic study of breast cancer (Brody et al. 2007).” 

 

 

The goal of this research is to determine the spatial and statistical associations that are 

shared between the locations of environmental risk factors and the locations of breast cancer 

risk.   An emerging bedrock of evidence has revealed that many locations in Illinois are exposed 

to a wide field of environmental risk factors.  The issue might be explainable by private and 

public drinking water supplies in Illinois, which are susceptible to both anthropogenic and 

naturally occurring contamination.  Private drinking water supplies, which predominantly occur 

in rural areas, are not subject to regulations outlined in the US Safe Drinking Water Act (EPA 

2010a).  For this reason, private drinking water supplies are believed to be more vulnerable to 

carcinogenic and endocrine disrupting contamination.  Public supplies pose their own degree of 

risk, given the potential for naturally occurring inorganic and radionuclide particulates to bypass 

municipal filtration.   

I argue that through a more complete spatial and statistical understanding of 

environmental risk factor exposure, we will gain a better understanding of etiological 

associations with breast cancer risk in Illinois. 
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1.3 Research Questions 
 

1) Which Illinois ZIP codes displayed breast cancer clustering during the study period?  

 

2) Can environmental contaminants with a known or suspected etiologic role in breast 

cancer be found within Illinois?  

 

3)  Are breast cancer clusters associated with the locations of suspected environmental 

contaminants?  

 

1.4        Significance of the Study 

 

 

This research is an attempt to re-examine and build upon previous cancer research 

(Wang 2004) that illustrated a variety of cancer gradients (including breast cancer) in Illinois by 

ZIP code for the years of 1996 through 2000.  Wang (2004)’s research did not associate 

environmental risk factors that might have influenced breast cancer outcomes.  My intent is to 

re-evaluate data from this 1996-2000 timeframe and apply statistical analyses that measure 

spatial associations between incidence locations and environmental risk factor locations.  This 

analysis will fill a gap in research by providing a better understanding of Illinois as a landscape 

that presents numerous breast cancer risks.  It is also the intent of this research to identify –or at 

least empirically challenge- risk factors that could require remedial actions or stricter control 

measures. 

I hypothesize that this study will reveal breast cancer risk to be higher in areas where 

exposure to environmental risk factors is prevalent.  This hypothesis is presented as a 
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consequence of the older-age female demographic in Illinois and the wide array of 

environmental risk exposures that these women could have encountered throughout the latter 

half of the 20
th

 century.  This study has the potential to provide empirical insights to researchers 

and policy-makers who can influence environmental health protection, epidemiological 

intervention, and public health administration. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1   Breast Cancer 

 

Global estimates showed that in 2002, 1,152,000 women were diagnosed positively for 

breast cancer (equaling 37.4 percent of all global female cancer diagnoses), and 4,408,000 

women were living with breast cancer; making breast cancer the leading histologic site for 

human cancer incidence and human cancer prevalence (Parkin et al. 2005).  Without 

considering melanoma of the skin, breast cancer is the most common type of female cancer in 

the US, accounting for at least 1 in 4 cancer diagnoses in US females (ACS 2009; Parkin et al. 

2005).  

The incidence rate for breast cancer in the US has risen steadily at a rate of 1 percent per 

year since 1940 (Miller et al. 1994); however, much of that incidence data was obtained prior to 

standardized diagnosis procedures in the early 1970s.   A dramatic increase in breast cancer 

occurred from 1980 to 2000, with a total increase of 33.3 percent.  Rates increased from 102.22 

to 136.28 cases per 100,000 women during this timeframe, peaking at 140.3 cases per 100,000 

women in 1998 (SEER 2010).  From 2002 to 2006, 95 percent of new breast cancer diagnoses 

and 97 percent of breast cancer deaths occurred in US women greater than 40 years of age (ACS 

2009).  Nearly 44 percent of the 6,338,957 women in Illinois comprise the age bracket of 40-

85+ (Census Scope 2010), meaning that 2,769,464 women in Illinois are at highest risk for 

breast cancer morbidity and subsequent mortality.  From 2003 to 2007, the incidence of ‘in situ’ 

and invasive breast cancer in Illinois increased 3.4 percent and 1.3 percent, respectively (NCI 
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2010c), revealing the need for increased medical screening, treatment, and prevention in 

Illinois.  Although white women in the US have a higher incidence of breast cancer, black 

women in the US have a higher incidence among women before age 45 and are most likely to 

die from breast cancer at every age (Jemal 2010).  From 1996 to 2000, the population-adjusted 

breast cancer rate in Illinois was 133.3 cases per 100,000 women, with white and black women 

showing rates of 134.3 and 121.9 cases per 100,000 women, respectively (Dolecek et al. 2003).  

Pertinent to the period of 1996-2000, Wang (2004) performed a county level and ZIP 

code level analysis of cancer clusters.  The ZIP code analysis revealed that higher gradients of 

breast cancer incidence occurred within the three primary metropolitan statistical areas (MSAs) 

of Illinois. This outcome reinforces the ability of ZIP code level data to reveal information that 

cannot be seen at lower resolutions.   

 

2.2   Exposure to Environmental Cancer Risk 

 

During a pesticide exposure assessment, the US EPA Federal Register 2005 (EPA 2007) 

illustrated four primary exposure pathways to pesticides.  These pathways were identified as 

food, drinking water, residential use, and occupational contact.  This master’s research adopts a 

similar perspective where exposure to chemical contaminants can occur through an assortment 

of environmental pathways. The etiological sources of contaminant exposure could include 

water supply wells, agricultural chemical application areas, petroleum wells, waste-water 

release sites, power generation plants, hazardous waste generators, and numerous other sources.  

For example, a nuclear power plant could be responsible for releasing radioactive contaminants 
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into a local watershed, providing the opportunity for contaminants to enter local water supplies, 

which could then be consumed or utilized by women via drinking, bathing and cooking.   

The Safe Drinking Water Act was passed by the US Congress in 1974 (and later 

amended in 1986 and 1996), in a nationwide effort to guard public health by allowing the US 

Environmental Protection Agency to govern the chemical constituents of municipal drinking 

water sources such as rivers, lakes, reservoirs, springs, and ground water wells, excepting 

private wells that serve less than 25 individuals (EPA 2010a).  More than four million Illinois 

residents (approximately 35 percent of the state’s population) utilize groundwater (private 

wells) as their primary water source; and, in rural areas, approximately 90 percent of Illinois 

residents utilize private wells to obtain their primary water supply (ISWS 2009a).  The EPA 

does not have the authority to govern private wells, meaning that 15 percent of US wells (all 

private) are not subject to EPA regulation and are often unchecked by water experts for water 

contamination.  However, these private wells could still be subject to state and local government 

regulation (EPA 2010a).   

Since health officials are concerned with chronic health effects such as cancer, the US 

EPA’s Primary Standards or Maximum Contaminant Levels (MCLs) for carcinogenic 

substances tend to be as close as possible to zero, without actually reaching zero (Stewart et al. 

2001).  Of utmost importance, Stewart et al. (2001) also stress that EPA Primary Standards do 

not guarantee that water with a contaminant level below the standard is risk free, just as they 

infer that water in excess of prescribed MCLs is not necessarily dangerous.  MCLs are mostly 

the results of scientific estimates based on available information.  It can be argued that 

environmental studies of cancer are direly needed, because the MCL enforcing authorities need 

concise information off of which to base their water contaminant policies. 
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2.3  Environmental Risk Factors 

 

Predominant medical perspectives about breast cancer etiology support intrinsic factors 

such as age, genetics, family history, personal history, race, hormones, exercise, obesity, alcohol 

use and ionized radiation, as primary breast cancer risk factors (E-Medicine 2010; NCI 2010c; 

E Health MD 2010).  However, growing numbers of environmentally aware communities (i.e. 

Breast Cancer Fund; Environmental Health Perspectives Journal; and President’s Cancer Panel) 

have begun to consider the etiologic influence of environmental risk factors and how such risks 

play a role in cancer outcomes.  Similarly, Lichtenstein et al. (2000)’s analysis of Swedish, 

Danish and Finish twin registries suggests that at least 60 percent of cancer incidence can be 

attributed to discrete, non-heritable, environmental factors.  Such research suggests that intrinsic 

human factors are viable -but minor- etiologic associates of breast cancer incidence, prompting 

an influx in environmental risk research.    

Carcinogenic substances are frequently referred to as ‘mutagens’, because they are 

capable of interrupting the chemical constituency and shape of deoxyribonucleic acid (DNA) 

molecules, promoting patterns of DNA replication that are preparatory for carcinogenesis 

(Campbell et al. 2008; Greenblatt et al. 1994).  This is why carcinogenic substances are 

typically DNA mutagens, just as DNA mutagens are typically carcinogenic substances 

(Campbell et al. 2008).   Volatile organic compounds (e.g. halogenated and polycyclic aromatic 

hydrocarbons from petroleum components) have been recognized for their carcinogenic and 

endocrine disrupting roles during mammary gland neoplasia (Brody and Rudel 2003; Rudel et 

al. 2007).  Substances such as volatile and non-volatile organic compounds, inorganic 

compounds, radioactive isotopes, heavy metals, water disinfectants, hormones, and other 
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suspected chemicals, can function as carcinogens and/or endocrine disrupting agents when 

vertebrate animals (i.e. humans, rats, rabbits) encounter them (Brody and Rudel 2003; Brody et 

al. 2007; Birnbaum and Fenton 2003; Crisp et al. 1998; Ejaz 2004; EPA 2010b; Gray 2010; 

Rudel et al. 2007).  Many of these substances act directly as DNA mutagens in animal tissues, 

but some operate indirectly as endocrine disruptors within the endocrine system, promoting 

alternate pathways and conditions for carcinogenesis (Birnbaum and Fenton 2003; Crisp et al. 

1998).  Brody and Rudel (2003) urge that endocrine disrupting compounds, through their ability 

to mimic the molecular shape of estrogen, can initiate gene expressions just as natural hormones 

would.  Rudel et al. (2007) have written one of the most exhaustive lists of breast cancer 

carcinogens and endocrine disruptors, including a substance-specific means of encountering 

these carcinogens; for example, polycyclic aromatic hydrocarbons (PAHs) can be encountered 

through first and second-hand tobacco smoke, crude oil runoffs, coal tar residues, vehicle 

exhausts, industrial combustion byproducts, and waste disposal or waste incineration (Rudel et 

al. 2007).   

According to the EPA (2010c), endocrine disrupting chemicals have the ability to mimic 

natural hormones by causing exaggerated bodily responses (i.e. growth hormones that stimulate 

increased muscle mass) or by causing bodily responses at inappropriate times.  Endocrine 

disruptors can also interrupt hormone receptors and cause overproduction or underproduction of 

certain hormones within endocrine glands (EPA 2010c).  For instance, Birnbaum and Fenton 

(2003) suggest that dioxin (TCDD) exposure can be associated with decreased levels of 

pituitary-released prolactin, and therefore, increased levels of circulating estrogen can be found 

in the female’s blood plasma.  These elevated levels of blood-estrogen are considered a 

prolonging of the ‘window of sensitivity to neoplasia’, extending the opportunity to develop 
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cancer (Birnbaum and Fenton 2003).  Birnbaum and Fenton (2003) also refer to TCDD dioxin 

as the most toxic carcinogen ever produced, as it can encourage neoplastic cellular development 

in practically all histologic sites of the human body. 

 

Agriculture as Environmental Risk 

Following World War II (WW2), organochlorines such as PCBs, DDT, toxaphene, 

heptachlor, heptachlor epoxide, and dieldren, became very bio-available in the United States 

and globally through agricultural insect control and paper or plastic generating industries (Wolff 

and Toniolo 1995; Voldner and Li 1995).  During the post-WW2 timeframe, concentrations of 

pesticide and PCB residues in human adipose tissue in the US have shown temporally parallel 

increase (Wolff and Toliolo 1995).  The potential problem is that many organochlorines can 

mimic estrogens, which means they potentially serve as cancer promoters in the same fashion as 

steroid hormones (Wolff and Toliolo 1995).  Substances that promote estrogen activity within 

the female body have the potential to cause earlier menses and earlier breast development, both 

of which associate with higher breast cancer risk (Davis et al. 1998).  The irony that a dramatic 

gradient of breast cancer incidence occurred in the US during the 1970s, 1980s and 1990s 

(SEER 2010b), warrants etiologic investigation of agricultural residues (from organochlorines) 

in association with elevated breast cancer incidence.  Given the developmentally latent nature of 

breast cancer, it would be scientifically interesting perform a cohort analysis of rurally located 

girls who were exposed to organochlorines in the 1950s and 1960s.  Krieger (1989) considers 

this type of scenario to be a typical -yet dangerous- situation in which environmentally related 

breast cancer occurs; mainly because the woman’s exogenous carcinogen exposure occurred 

while her pre-pubescent breast cells were still undifferentiated as a child.   
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Heavily associated with Illinois agricultural production is a geographic area known as 

the Lower Illinois River Basin (LIRB), which includes 17,960 square miles of central and 

western Illinois.  This region extends from the downstream end of the 10,950 square miles of 

the Upper Illinois River Basin (UIRB) at Ottawa, Ill., to the confluence of the Illinois and 

Mississippi Rivers at Grafton, Illinois (NAWQA 1994).  Flowing directly through the LIRB is 

the Illinois River, a key mode of aqua-transport for Illinois’ human, animal, industrial and 

agricultural wastes (NAWQA 1994).  The distinct chemical characteristics of sediment from the 

UIRB have been identified in sediments of the LIRB (NAWQA 1994).  The problem then 

becomes the potential for river pollutants to enter river alluvia and contaminate aquifers and 

water supply wells (Groschen et al. 2000).    During an observation of LIRB monitoring wells 

and water-supply wells, Groschen et al. (2000) observed that six herbicides (atrazine, 

metolachlor, prometon, bentazon, cyanazine and dicamba) could be readily detected.  Of these 

chemicals, atrazine can be detected in almost 100 percent of water samples from the LIRB.  

Perhaps this is possible, because approximately 9-million pounds of atrazine were applied to 

Illinois agricultural fields in 1990 (nearly one-sixth of the national total of applied atrazine), 

clearly more than any other US State (NAWQA 1994).  This represents Illinois’ deep reliance 

upon industrial herbicides.  Groschen et al. (2000) report that during a 1995-1998 assessment of 

water quality in the LIRB, dieldrin residues (a prohibited insecticide) were detected in the 

tissues of every sampled fish and one-third of bed-sediment samples.  From this collection of 

samples, the Sangamon River produced the highest dieldren concentrations reported within the 

NAWQA’s nation-wide water assessment.   

Water-resources Investigations Report 99-4229 (Morrow 1999) discussing volatile 

organic compounds (VOCs) in groundwater of the LIRB identified VOCs in five out of 30 
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sampled wells, four of them occurring in shallow, glacial-drift aquifers of the Galesburg, 

Springfield Plain.  Morrow (1999) concluded that these substances were the result of both 

external and internal contamination; internal coming from well water treatment chemicals, and 

external coming from possible alluvial recharge from the Illinois River.  Polycyclic aromatic 

hydrocarbons such as benzo(a)pyrene in the LIRB were detected in concentrations at or above a 

common reporting level of 50 μg/L in as much as 50 percent of riverbed sediment samples, 

predominantly near urban areas in locations such as the Vermillion River by Decatur and 

upstream from Peoria (Groschen et al. 2000).  River sediments pose a potential threat of 

entering aquifer alluvia, which would then allow contaminants to reach water wells depending 

upon aquifer uptake. 

 

Crude Oil Welling as Environmental Risk 

Illinois belongs to a vast geologic structure known as the Illinois Basin.  The Illinois 

Basin, an oval depression covering approximately 60,000mi
2 

(155,000km
2
) within the US Mid-

Continent, includes southern Illinois, southwestern Indiana, western Kentucky, far northern 

Tennessee, and sections of northern and western Illinois (Buschbach and Kolata 1990).  The 

Illinois Basin has produced over 9 billion tons of coal and 4 billion barrels of oil (USGS 1997).  

Illinois has approximately 650 operating oil fields, including 32,100 active wells 

(predominantly stripper wells), 12,000 Class II Injection Wells, and 1,700 gas storage sites, the 

vast majority of which are concentrated in the southern half of the state (IDNR 2010).  Since the 

mid 1980s, oil production in Illinois has declined consistently from production levels of 

30,265,000 barrels for the year 1985 (DOE 2010) to just over 15,000,000 barrels of oil for the 

year 1996 (ISGS 2010a).  This suggests that a plentitude of oil wells in Illinois have been either 
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abandoned or capped due to low oil yields.  Currently, some of the biggest oil fields in Illinois 

are connected to over 2,000 oil wells pulling from ground reservoirs containing over 

200,000,000 barrels of oil (ISGS 2010a).  These wells and capped sites are another source of 

environmental risk exposure to carcinogenic substances within the category of aromatic amines 

and hydrocarbons (Rudel et al. 2007).  Many of these substances act directly as DNA mutagens 

and have the ability to interrupt genetic coding.  In addition to benzene, polycyclic aromatic 

hydrocarbons, and other Total Petroleum Hydrocarbons (ATSDR 1999; Gray 2010; Rudel et al. 

2007), the EPA states that upper Midwestern US soils are more prone to radioactive 

contamination during the oil extraction process (EPA 2010d), because of the higher geologic 

tendency for substances such as radium-226, radium-228, and radon, in the upper Midwest.  

This phenomenon only compounds the already carcinogenic risk of crude oil welling. 

 

Crude Oil Refineries as Environmental Risk 

In addition to oil welling sites, Illinois also has four of the ‘top-40’ US oil refineries 

(Wood River, Joliet, Robinson, and Lemont refineries), refining up to 973,600 barrels of oil per 

day (DOE 2010).  Unlike the majority of hydrocarbons that are typically hydrophobic (water 

fearing), a wide variety of liquid aromatic hydrocarbons such as Benzene 1800 PPMV, Toluene 

470, Ethyl Benzene 150, and Xylenes 150 (BTEX) are highly soluble in water and are the 

primary volatile effluents released with desalter waste when refinery tanks are cleared of tank-

damaging salt (Worrall and Zuber 2010).   Benzene concentrations within desalter effluents can 

often range from 20 milligrams per liter (mg/L) to 200 mg/L (Worrall and Zuber 2010), which 

is in great excess of the EPA’s MCL of 0.005 mg/L for benzene (Stewart et al. 2001).  This 

does not discount the fact that other aromatic substances could still be present in the effluents as 
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well.  In addition to aromatic hydrocarbons, toxic elements such as lead and mercury were 

noted to be present in refinery effluents (IEPA 2009) of the Wood River Crude Oil Refinery 

(located in Roxana, IL) discharged from effluent outfalls or stored on-site in ponds and sludge 

areas (IEPA 2009).  One could argue that oil refinery wastewater represents an opportunity for 

ground water and surface water to interact with toxic substances and known carcinogens.  

 

Hazardous Wastes as Environmental Risk 

 The EPA classified hazardous waste into four categories, as follows (EPA 2012a): 

 

1) Listed Wastes: Hazardous; typically the result of manufacturing, industrial, commercial or 

chemical byproduct 

2) Characteristic Wastes: Ignitable, corrosive, reactive, and/or toxic 

3) Universal Wastes: Batteries, pesticides, mercury and lamps 

4) Mixed Wastes: Both radioactive and hazardous chemicals 

 

 

 The predominant pathways for exposure to hazardous wastes include inhalation, 

ingestion and physical skin contact (EPA 2012d).  It suffices to say that living within a certain 

distance of a putative source increases the likelihood of exposure.  Often, hazardous waste 

exposure results from low intensity, chronic exposure to locations such as commercial landfill 

sites, which was the case in the classic Love Canal scandal where a residential area in Niagara 

Falls, NY, was exposed to toxic waste dumps (Meade and Emch 2010).   

 The persisting question regards the pathway of exposure to hazardous waste (Vrijheid 

2000).  It is possible to be located immediately adjacent to a landfill site, but your drinking 



18 
 
 

water could be imported from a far away water reservoir.  In other words, it is difficult to 

pinpoint the potential route of exposure when different routes are possible. 

 

Power Plants as Environmental Risk 

Over one-half of the United States’ electricity is the result of thermal coal plant activity, 

resulting in a tremendous quantity of coal combustion byproducts such as fly ash, bottom ash 

and boiler slag (Kalyoncu 1997).  Coal processing plants produce large volumes of solid and 

liquid waste, and the majority of these wastes are stored in on-site impoundments such as 

wastewater reservoirs or subterranean pits (IEPA 2010; Jüngten and Klein1977; Union of 

Concerned Scientists 2009).  In 1997, approximately 4,600 metric tons of coal ash (including 

fly and bottom ash) were stored on-site at coal combustion plants in the United States.  Illinois, 

Indiana, Kentucky, Ohio, Wisconsin and Michigan comprised the highest coal ash producing 

region of the US (Kalyoncu 1997).  Given an ever-increasing demand for electricity, the 

advanced Integrated Gasification Combined Cycle (IGCC) –a method whereby gas circulates 

through a combusting turbine to generate electricity- has become a central electricity generating 

technique in the US (Union of Concerned Scientists 2009).  However, waste products of coal 

gasification are concentrated with toxic, refractory organic compounds that must be converted 

to other substances such as methane and carbon dioxide to minimize toxicity (Khan et al. 1981).   

The issue then becomes discarding residual compounds and metals without contaminating 

surface or ground water sources.  

In 1997, the United States produced 45,480 metric tons of coal ash byproduct, 37,196 

metric tons (68 percent) of which were disposed within locations such as wastewater reservoirs, 

subterranean pits, and abandoned coal mines (Kalyoncu 1997).  During this same year, roughly 
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10 percent of total disposal ash (or 4,600 metric tons) were stored on-site at the same location 

responsible for combusting the coal (Kalyoncu 1997).  This is to say that US power plants and 

industrial facilities stored 9,800,000 lbs of ash waste on-site during the year of 1997.  As of 

April 2010, there were 24 power plants with a total of 83 ash impoundments in Illinois, 31 of 

which had low-permeability liners to help prevent leaching into groundwater (IEPA 2010).  

These 24 power plants were assessed for the likelihood of ash precipitate to recharge into 

aquifers, and ten (10) of the 24 plants were recommended as high priority (priority 1) areas for 

aquifer recharge potential, and five (5) of the 24 areas were recommended as medium-high 

priority (priority 2) areas for aquifer recharge potential (IEPA 2010).            

 The effluent constituents of coal waste impoundment sites comprise any combination of 

unusable coal rejects, coal ash residues, and coal coking or coal gasification condensates 

(Huggins et al. 2009).  These effluents often contain MCL exceeding levels of metals and 

inorganic compounds (i.e. mercury, lead, copper, selenium, sulfate, arsenic and ammonia) 

(Huggins et al. 2009), as well as polycyclic aromatic hydrocarbons and other volatile and non-

volatile organic compounds (i.e. phenols, benzenes, naphthalenes, and cyanide) (Jüngten and 

Klein 1977).   

At a typical #6 Herrin Coal processing plant in southern Illinois, unusable mineral refuse 

is rejected from the plant at both the rotary breaker (initial processing) phase and at the coal 

tailings (post-processing) phase; rejects are then forwarded to highly toxic wastewater 

impoundment sites such as ponds and artificial bodies of water (Huggins et al. 2009).  Similar 

to fly ash impoundment sites, coal wastewater impoundments can threaten aquifers and other 

water table sources, since effluents can leach and plume from holding areas. 
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Coal Borings as Environmental Risk 

Of the roughly 200 billion tons of coal that are estimated to lie underneath Illinois, an 

approximate 38 billion tons are considered economically recoverable (ISGS 2010f).  Since the 

mid-19
th

 century, Illinois has hosted 6,649 productive coal borings (see Figure 2.1), including 

strip, shaft, slope, drift, abandoned, or other uncertain types of coal borings (ISGS 2010b). The 

majority of Illinois’ geolithic rock is saturated with a variety of seams and pockets of 

bituminous coal (ISGS 2010b; Treworgy and Jacobson 1986).  However, not all coal seams are 

active due to high sulfur concentrations that surpass technological filtration capabilities.  

Multitudinous elements can be withdrawn from the earth through coal borings, to include 

arsenic, chlorine, mercury, uranium, thorium, lead, selenium, and more (ISGS 2010c).  The 

same principle applies for inorganic and organic compounds such as sulfate, benzene, 

naphthalene, phenol, cyanide (ISGS 2010c; Jüngten and Klein 1977; Huggins et al. 2009).    

Given the vast quantity of coal borings (many being surface mines) that have proliferated 

throughout Illinois, it is easy to assume plethoric chemical exposure from mineral boring 

activity. 

 

Radium in Illinois Aquifers as Environmental Risk 

    

Alpha and gamma radiation are released during the decay of radium-226, while low-

energy gamma radiation and beta particles are released during the decay of radium 228 (EPA-e 

2010).  Exposure to these energy types increases the risk of cancer (EPA 2010d), just like most 

other forms of radiation.  Throughout a majority of northern Illinois, public water supplies have 

tested positive for naturally occurring radium concentrations in excess of the EPA’s MCL of 5 

picocuries per liter (pCi/L) for radium-226 and 228 (USGS 1999).   



21 
 
 

Deep granite bedrock aquifers in northern Illinois often contain radium 226 and radium 

228 concentrations in excess of the EPA’s radium MCL of 5pCi/L (IDPH 2008). Similarly, in 

northeastern Illinois (the most densely populated region of Illinois), naturally occurring radium 

levels in the Ironton/Galesville, Mount Simon, Ancell (St. Peters group), and Gelena/Platteville 

sandstone aquifers exceed the EPA standards for radium (Kelly 2008).  Some of these wells, 

such as those sampled in Lake County withdrawing from the Mt. Simon aquifer, produce 

radium concentrations in excess of 60 pCi/L (USGS 1999), providing high radium exposure risk 

in drinking water.  A potentially offsetting factor to this dilemma is that the majority of water 

supplies in the Chicago metropolitan district are municipally managed and placed under greater 

standards for contaminant monitoring, restriction, and filtration.   

It is still worthy to note that women who are exposed to radiation for longer periods of 

time have a higher risk of breast cancer development (Cole and Macmahon 1969).  Given the 

likelihood of women in the Chicago-land area to remain within the Chicago metropolitan 

statistical area during their lifetimes, it could be argued that they are at a higher lifetime risk of 

cumulative radium exposure.  However, Davis et al. (1998) suggest that the timing of exposure 

to radioactive substances (such as during pre-menarche in early childhood) is more important 

than the concept of ‘cumulative lifetime’ exposure to carcinogenic substances.   

The Mahomet Aquifer is another location in Illinois that presents waterborne 

radionuclide risk exposure.  During a 1995-1998 assessment of Mahomet Aquifer water quality, 

all (30) aquifer samples tested positive for radon detection, with concentrations ranging from 

110 to 730 pCi/L and a mean concentration of 190 pCi/L (Groschen et al. 2000).  The EPA 

MCL for radon in drinking water is 300 pCi/L 
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Arsenic in Illinois Aquifers as Environmental Risk 

As of January 23
rd

, 2006, the EPA lowered the MCL for arsenic in public water supplies 

from 50 micrograms per liter (μg/L) to 10 μg/L (EPA 2010b).  The USGS (2006) claims that 

prolonged consumption of drinking water in great excess of arsenic health standards is the most 

serious arsenic-related health hazard in the United States and throughout the world.  Naturally 

occurring arsenic shares a strong geochemical association with basin-fill deposits of alluvial-

lacustrine origin, as well as with mining wastes and landfills (Welch et al. 1988; Korte and 

Fernando 1991).  Alluvial and glacial aquifers of the upper Midwest are known to contain high 

sulfide mineral concentrations associated with glacio-fluvial deposits of ferric-oxide, altogether 

contributing to the litho-chemical constituency (or higher arsenic concentration) of Midwestern 

groundwater (Welch et al. 2000).   Almost 50 percent of the community-supply wells in Illinois 

are open to this Midwestern aquifer system, exposing people to concentrations of arsenic 

commonly in excess of the EPA’s MCL (Warner et al. 2003).  This suggests that roughly 50 

percent of the state’s private well users are at high risk for exposure to toxic levels of arsenic.   

Surface and groundwater can experience high arsenic concentrations due to mining of 

sulfide-bearing rocks (Welch et al. 2000); such rocks occur in Illinois at concentrations of 3-5 

percent dry weight in many Pennsylvanian rocks (ISGS 2010d).  Hard rock mining research 

(Moore 1994) has shown that the mining of sulfur-bearing rocks can -through watershed 

transportation- result in higher arsenic concentrations in groundwater and sediment for hundreds 

of kilometers downstream from mining areas.  This suggests that Illinois surface water and 

groundwater could have a general, topographical vulnerability to arsenic originating from coal 

mining activities.       
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In east-central Illinois, the Mahomet aquifer is the primary groundwater resource for 

public and private water supplies (ISWS 2009b).  During an IEPA study of 2,771 community 

water supply wells from 1978 to 2001, the highest and most frequent [municipally detected] 

arsenic concentrations were from deep bedrock valley portions of the Mahomet aquifer underly-

ing central Illinois (Warner et al. 2003).  Many communities, industries, and irrigators depend 

on the Mahomet Aquifer for their water supply.  Withdrawals for irrigation, principally in 

Mason and Tazewell Counties (also referred to as the Havana Lowlands area), put usage well 

beyond 100 million gallons per day (Mgal/d) (ISWS-a 2009).  One-third, or roughly 71 Mgal/d, 

of this quantity is utilized municipally (ISWS 2009b), which is significant given that population 

projections for the Mahomet Aquifer region may increase by 100,000 people to a total of 

900,000 by 2020 (ISWS 2009c). 

Also, the potential for agricultural chemical and nutrient contamination of groundwater 

is of concern in the sandy areas of Mason and Tazewell Counties (ISWS 2009c).  A hydraulic 

window connecting the Mahomet aquifer to the Sangamon River allows Mahomet aquifer water 

to discharge to the river under normal conditions, but allows the Sangamon River to recharge 

the aquifer when the river is high or when the aquifer is pumped (Mehnert et al. 2004). In 1985, 

the Tazewell County Health Department sampled 590 water wells (municipal and private) for 

arsenic contamination; 202 of the samples (34 percent) had arsenic concentrations at or above 

50 μg/L, and 350 of the samples (59 percent) had arsenic concentrations at or above 10 μg/L 

(ISWS 2009c).  Treatment of these water supplies has been a recommended means to decrease 

arsenic concentrations. 

As mentioned before, arsenic has been found in some wells of the Mahomet Aquifer, 

approaching or exceeding drinking standards (ISWS 2009c).  During a specific assessment of 
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Mahomet Aquifer constituents from 1996 to 1998, arsenic levels were found in well samples as 

high as 83 μg/L, with 83 percent of the wells exceeding 1 μg/L and 43 percent of the wells 

exceeding the EPA’s MCL of 10 μg/L for arsenic (Warner 2001).  An area northeast of Decatur 

has been found to contain elevated concentrations of dissolved minerals, possibly as a result of 

upwelling from the underlying bedrock (ISGS 2010d).   

 

2.4  Spatial and Statistical Analytics of Health Hazards 

 

 Retrospective analyses of health outcomes in association with pollution sources 

commonly rely upon surrogate pollution measures or proxies to account for data not collected 

during or prior to disease morbidity (Lawson 2006).  Lawson (2006) encourages analysts to 

evaluate a sufficiently large number of pollutant surrogates, in order to reduce unaccounted 

residual effect in models.  All applied inferences drawn from models must regard the ecological 

effects of spatial scale and data aggregation.  These effects can lead analysts to commit 

ecological fallacies, particularly when modeled significance is extrapolated to different spatial 

scales and levels of data aggregation (Waller and Gotway 2004).  Many limitations pertaining to 

the analysis of health data stem from the level of aggregation in data, and unfortunately it can be 

difficult to acquire individual level health data (Lawson 2006).  Lower resolution spatial groups, 

such as census tracts, ZIP codes, or counties are more easily obtainable due to the better 

upholding of confidentiality concerns. 

 Classic spatial epidemiologic thought encourages the consideration of outliers in space, 

because spatial outliers could illustrate locations of confounding effects (Waller and Gotway 

2004).  One such spatial outlier is the statistically significant cluster of disease incidence.  
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Clustering is a derivative of spatial autocorrelation that measures how clumped or sparse a 

spatial feature is with respect to its attribute values (Lee and Wong 2005).  The guiding 

assumption of clustering hypothesis tests is that locations and variable attributes occur 

independently across space, or that clustering does not occur within the study area (Anselin 

1995).  In order to calculate Local Indicator of Spatial Autocorrelation (LISA) statistics, it is 

necessary to quantify a Local Moran’s Index (Ii) value for each spatial feature within the study 

extent. Moran’s Indices must be compared with expected Index values and interpreted through 

their standardized z-scores (Anselin 1995), to determine which Moran’s Indices occurred either 

deliberately or via haphazard chance.   The LISA technique was utilized previously by Oyana 

and Margai (2010) to identify Chicago neighborhoods at high risk for exposure to waterborne 

lead, helping to identify risk associations within an environmental/demographic framework.  

Focused clustering tests have also recently been utilized to help researchers confirm or refute 

increased disease risk around sources of environmental exposure (Guajardo and Oyana 2009; 

Oyana and Lwebuga-Mukasa 2004).  Guajardo and Oyana (2009)  and Oyana and Lwebuga-

Mukasa (2004) utilized the Lawson Waller Score Test (Lawson 1989) and Bithell’s Linear Risk 

Test (Bithell 1995 and 1999)  to illustrate increased risk for breast cancer and asthma, 

accordingly, in close proximity to putative sources of pollution.   

 

2.5  Exploratory Data Analysis 

 

 

 Enhanced interactivity empowers the map inspector to visualize spatial patterns and 

formulate richer hypotheses (Adrienko et al. 2000).  Combinations of graphic visuals can be 

employed to help facilitate exploratory data analysis.  In most instances, exploratory data 



26 
 
 

analysis is a visual process where the majority of pattern recognition is derived from visual 

tools such as scatterplots, histograms, and other graphic figures (Edsall et al. 2008; Gelman 

2004; Tukey 1972).  Adrienko and Adrienko (1999) illustrate the process of “making multiple 

comparisons of a dataset within the map interface.”  This technique represents a process where 

mapmakers use scatterplots or other graphic figures to enhance visualization. This can help 

analysts to uncover spatial patterns; it also assists in the generation of focused research 

questions.  Other investigations have led to competing conclusions about the usefulness or 

validity of graphic visuals, favoring other graphics such as statistical tables (Gelman 2011).  

However, it could be argued that statistical tables (like sophisticated legends) push the level of 

map involvement beyond what is normally conducive to exploratory data analysis.  The concept 

of map involvement was introduced by Alan MacEachren (1982), who focused primarily on the 

geometric complexities of polygonal data structures.  Maps that provide too much information 

can be cumbersome to interpret and potentially lead audiences toward unintended conclusions 

(Slocum et al. 2009).   

  

2.6  Limitations of the Study 

 

 

 Exposure measurement error is worthy of discussion within an epidemiologic study.  

Jurek et al. (2006) illustrated through an assessment of 57 epidemiological studies conducted by 

other researchers that 22 of the studies (39 percent) failed to analyze exposure measurement 

error, and, of the other 35 studies (61 percent) only one of them performed this analysis 

quantitatively.  Jurek et al. (2006) recommends (because of the inherent possibility of random 

and systematic error in analysis) that individuals address exposure measurement error.  The 
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measure of exposure error in this study is complicated by the uncertainty of whether breast 

cancer incidence in a given ZIP code was the result of exposure to putative risk factor(s) in the 

observed ZIP code or the result of exposure that occurred in distant locations that are 

unobserved or uncorrelated by the study.  

 Medical researchers recognize a latency period where cancerous cells accumulate for 

periods that extend to multiple decades before cancer detection typically occurs (Nordling 1953; 

Goldsmith 1987).  In order to conduct a retrospective analysis of environmental cancer risk it is 

important to model exposures as they would have occurred during the cancer latency period.  

This is perhaps the single largest challenge during a retrospective study, because data are 

frequently not recorded during the cancer latency period (Lawson 2006).  Such instances 

commonly require surrogate measurements of environmental exposure.  In other words, a 

retrospective analysis is potentially vulnerable to type 1 errors where the null hypothesis of no 

association is arbitrarily rejected.  The clinical detection of cancer occurs many years after the 

onset of carcinogenesis, inferring that related exposures occur 20 to 40 years before clinical 

detection.  This study is concerned with exposures that could have occurred from the 1940s to 

the 1980s.   

 It is notable that all ISGS Well coordinates in this study could in some instances be 

incorrect by +/- 100 feet, or in rare cases as much as one mile (ISGS 2010e).  This would affect 

the count of wells per ZIP code, predominantly as a result of Wells located near ZIP code 

boundaries.     

 The ZIP code scale of disease measurement leaves uncertainty about individual 

exposures, because the ecological fallacy prohibits areal inference to be extrapolated to the 

individual.  The data in this analysis cannot prove that individuals were exposed to modeled 



28 
 
 

environmental risk factors or whether the individuals resided in a given ZIP code for a specific 

length of time.  Additionally, chemical information such as soil contents or water constituency 

was not observed in this research.   

 Another confounding limitation is the possibility that discrete, non-environmental risk 

factors played an etiological role in breast cancer incidence.  Clinical information and 

biographical information were not observed in this research.   Patient information was restricted 

to ZIP code case counts provided by the Illinois Department of Public Health.  Personal risk 

factors (genetic or behavioral) can be attributed to breast cancer risk, such as age, inherited 

genetics, adipose tissue density, one first degree relative with breast cancer history, late age at 

first full term pregnancy (>30 years of age), early menarche (<12 years of age), late menopause 

(greater than 55 years of age), never breastfed a child, postmenopausal obesity, alcohol 

consumption, height (tall), and high socioeconomic status (ACS 2009).   

 In contrast to human intrinsic etiology, prior research (Lichtenstein et al. 2001) has 

argued (in a cohort analysis of twins) that over 60 percent of cancer outcomes are correlated 

with discrete, environmental risk factors.  The other 40 percent of outcomes were attributed to 

either discrete, human intrinsic factors or human intrinsic factors associated with environmental 

risk factors (Lichtenstein et al. 2000).  There are a vast number of ways that cancer etiology can 

be considered (Krieger 1989).  It is sensible to consider cancer as a complex epidemiologic 

variable.  Through spatial analysis, biostatistics, and GIS, it is possible to evaluate cancer 

outcomes in association with environmental risk factors and extend our understanding of 

environmental breast cancer risk.  
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CHAPTER 3 

 

METHODOLOGY 

 

3.1  Study Design  

 

 

 This research is a retrospective case/control analysis of Illinois breast cancer incidence 

during a study window of 1996 to 2000.  The study is designed to evaluate the spatial and 

statistical associations between potential sources of environmental pollution and breast cancer 

incidence at the Illinois ZIP code scale.  Breast cancer health data for this study reflect the time 

period of 1996 to 2000.  The purpose of this study is not to prove causation between breast 

cancer incidence and environmental risk factors, but rather the purpose is to illustrate 

associations between breast cancer incidence and suspected environmental risk factors (Figure 

3.1 illustrates these factors).    

   

3.2      Software and Data for Study 

 

 

Software 

 

            The software utilized to conduct this research included Microsoft Office Excel 2010 ™, 

Microsoft Excel Poptools™ Add-in, Environmental Science Research Institute ArcGIS 10 ™, 

Biomedware SpaceStat 3.5 ™, Biomedware ClusterSeer 2.3 ™, and SAS Institute SAS 9.2 ™.   
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Breast Cancer Data 

 

            Breast cancer count data were obtained from the Illinois Department of Public Health 

(IDPH), representing breast cancer cases that were recorded at the ZIP code scale during the 

study period of 1996 to 2000.  Breast cancer counts represented this five year window.  

Individual annual counts were not provided.  Breast cancer data were provided in three specific 

age groups: 18 to 44, 45 to 64, and 65 and over.    

 

 

Figure 3.1.  Total list of environmental risk factors (and sources) considered in this study. 
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Population Data 

 ZIP code population data were acquired from the US Census Bureau’s data download 

center (US Census Bureau 2010d), reflecting Illinois ZIP code populations from the US 2000 

Census.   The sampling space for this research included 1343 Illinois ZIP codes and a total of 

4,803,505 females who were 18 years of eight and older.   

 

Study Area Feature Class 

 A polygon feature class of Illinois ZIP code tabulation areas (ZCTAs) for the year 2000 

was acquired through the US Census Bureau (US Census Bureau 2010c), enabling the spatial 

evaluation of data in a GIS.  

 

Environmental Risk Factors 

 The independent variables analyzed in this study included georeferenced sources of 

environmental risk recorded by the Illinois State Geologic Survey (ISGS 2010e); the US 

Department of Agriculture’s National Agricultural Statistics Service (USDA-NASS 2012); the 

EPA’s Geospatial Data Entry Project (EPA 2012b), the US Energy Information Administration 

(USEIA 2009), Nuclear Energy Information Service (NEIS 2010), and the Illinois 

Environmental Protection Agency (IEPA 2009). 

 The ISGS’ wells and borings database includes longitude and latitude point coordinates 

for over 556,541 observations, including recorded types such as plugged and abandoned wells, 

oil and gas producing wells, oil injection wells, mineral borings, water wells, and gas 

storage/observation wells.  Data from the EPA Geospatial Data Entry Project (for the state of 

Illinois) includes 5,800 point coordinates of potential pollution sources such as wastewater 



32 
 
 

releases (NPDES), air pollution facilities (AFS), large quantity hazardous waste generators 

(RCRA), toxic release inventories (TRI), and pesticide producing facilities (SSTS).  Data from 

the USEIA, NEIS, and IEPA, provide locational information for major power generation plants 

in Illinois.  The types of power plants selected for this study included nuclear, coal, and gas 

fueled power plants. 

 Remotely sensed land cover classification data for Illinois were classified by United 

States Department of Agriculture-NASS using LandSat 5 TM and LandSat 7 ETM+ images 

from 1999 and 2000 (USDA-NASS 2012).  The spatial resolution was 30 meters x 30 meters, 

making this imagery appropriate for GIS analysis.   Classification accuracy of the aerial 

imagery was rated at 85 percent to 95 percent for agricultural classes (i.e. corn, soybean, and 

wheat).  For this research, corn and soybean pixel counts were extracted from the USDA-NASS 

(2012) aerial mosaic using Zonal Statistics in ArcMap and summarized as “percentage Corn and 

Soybean Land Cover” within ZIP codes.   

 

Modeling of Risk Factors   

 Due to the prevalence of crop rotation cycles, Corn and Soybean Land Cover proportions 

were summed into a single land cover proportion per ZIP code, representing both crop types.  

The modeling of Corn and Soybean Land Cover was employed as a surrogate measure for 

exposure to pesticides, herbicides, and fertilizers.  It was further assumed that the intensity of 

agricultural practice would associate with an increased likelihood of exposure to agricultural 

chemicals. 



33 
 
 

 Exposure to Water Wells was modeled as the number of “wells per ‘at risk’ female”.  To 

calculate this, the frequency of Water Wells within any given ZIP code was divided by the 

population of ‘at risk’ females.   

 The maximum frequency of Power Plants per ZIP code was 1 (one); therefore, power 

plants were modeled in absolute frequency per ZIP code.  Essentially, the Power Plant effect 

was either “on” or “off” given the binary scale of Power Plant frequency.   

 All other risk factors (Mineral Borings, Oil/Gas Wells, Oil/Gas Storage Observation 

Sites, Oil/Gas Injection Wells, Hazardous Waste Generators, Air Release Facilities, Pesticide 

Producing Facilities, Wastewater Releases, Superfund Sites, and Toxic Release Inventories) 

were modeled as a product of ‘at risk’ population density per ZIP code.  In these exposures, risk 

factor frequencies were multiplied by the population density of the ‘at risk’ population in each 

ZIP code.  The justification for this approach was two-fold.  First, the ZIP code scale of the 

disease data promoted the modeling of areal-level exposure (and population density is area 

dependent).  Second, it was assumed that exposure likelihood would increase as the frequency 

of risk factors increased in relation to population density.  This helped to account for population 

dynamics that commonly distinguish rural populations from urban populations, and vice versa.  

See Appendix A for a cartographic library of the spatial distributions of environmental risk 

exposures as they were modeled within this research. 

 

Retrospective Modeling of Risk Factors 

 To a very large degree, the majority of environmental risk factors in the study have 

maintained a consistent presence during the 20
th

 century or earlier.  Coal mining has been a 

consistently prevalent activity since the 19
th

 century (ISGS 2010b), just as Oil and Gas Welling 
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has been a common place Illinois industry since the 19
th

 century (USGS 1997).  Peak oil 

production occurred in Illinois from 1955 to 1963 (IDNR 2010), suggesting that a large 

proportion of the ‘at risk’ population was exposed to peak oil exploration and production during 

the earlier stages of the latency window.  The vastness of production wells and dry/abandoned 

wells is a testament to oil welling proliferation in the southeastern Illinois Basin.  It is assumed 

that the majority of Power Plants have been in operation since at least the 1950s, given the long 

history of coal power generation.  Furthermore, Illinois’ Nuclear Power plants have been in 

operation since the 1960s, with two-thirds of them commissioning in the 1980s.   Residential 

use of private Water Wells is another historic phenomenon in Illinois, in which rural dwellers 

utilize well water for consumption (ISWS 2009a).   It is assumed that the intensity of Water 

Well usage during the cancer latency window is reflective of current data on Water Wells in 

Illinois.  Oil Injection Wells came to popularity in the United States during the 1930s, and their 

application was not federally regulated until the 1970s (EPA 2012c).  Given the lower levels of 

oil productivity in Illinois, it was sensible to argue that oil injection welling has been used to 

enhance productivity.  This helps to explain the approximate 12,000 Class II injection wells that 

are utilized in Illinois (IDNR 2010).  Corn and Soybean Land Cover was optimized in Illinois 

by the 1950s and has remained steady (Ramankutty and Foley 1999).  As such, the aerial 

imagery used to model Corn and Soybean Land Cover is likely representative of Illinois’ 

agricultural surface during the cancer latency period. 

 See Table 4.2 for a partial list of EPA registered companies (not all are shown) that were 

operational in high risk zones during the latency period.  The formation dates of these 

organizations were screened in order to filter out organizations that started after the 1980s. 
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3.3   Data Processing and Preparation 

 

 

Preparing Breast Cancer Data 

 

Crude breast cancer incidence rates were calculated with breast cancer count data from 

the Illinois Department of Public Health.  Crude incidence can be calculated by dividing the 

number of disease cases that occur within a set population over a given period of time (Rothman 

1998).  Given that female breast cancer is 130 times more frequent than male breast cancer 

(Greenlee et al. 2000), this study only modeled breast cancer incidence for females.  

Furthermore, breast cancer incidence was calculated in relation to the ‘at risk’ female 

population within ZIP code areas.  The ‘at risk’ population was treated as females age 18 and 

older.   

The formula used to calculate crude breast cancer incidence per 100,000 ‘at risk’ 

females within any given ZIP code was as follows: 

  

Incidence = [ 
            

       
 x 

       

                             
 ] 

 

In order to reduce the potentially confounding effects of unequal age distributions 

among age groups (NYDPH 2006), crude incidence data were adjusted to the US 2000 standard 

population.  Age adjusted incidence was calculated utilizing census data from the 2000 US 

Census.  The following age-standardization formula was utilized as recommended by 

Surveillance Epidemiology and End Results (SEER 2011): 

 

AA Rate =    
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          95 percent confidence intervals for incidence were calculated for each age group using the 

formula outlined by the New York Department of Public Health (NYDPH 2006): 

95 % CI = +/- 1.96 x standard error, 

= +/- 1.96 x rate /                 

 

 

Surrogate Control for Potential Frailty and Resistance 

 

 In an effort to control for what Lawson (2006) referred to as genetic frailty (a potentially 

confounding effect), a correlation analysis between US ancestry groups and associated ZIP code 

breast cancer incidence was conducted.  Most researchers utilize gene foci information, 

inheritance data, clinical data, and otherwise cohort information (Kruglyak et al. 1996, Lander 

and Green 1987, Locatelli et al. 2004, Struewing et al. 1997) to derive frailty models, but this 

research accounted for frailty by using Census ancestry data, randomization methods, and Local 

Indicators of Spatial Autocorrelation.  The sample size within this study is essentially 

deterministic of the Illinois population, allowing observations to be associated with a large 

number of females, ancestry groups, and breast cancer outcomes.  This enabled the evocation of 

central limit theorem arguments. 

 First, ZIP code breast cancer incidence was log10 transformed to reduce the degree of 

over-dispersion.  Using Microsoft Excel Poptools, a global mean was declared by using 

Bootstrap reshuffling (with replacement) and Monte Carlo simulations (all Monte Carlo 

simulations involved 4,999 iterated reshufflings).  Bootstrap reshuffling and Monte Carlo 

simulations were also used to declare a most likely standard deviation.  The Z-scores for 

incidence were calculated using the following equation:  
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Z-score Incidence = [(log10 INCIDENCE) – (Bootstrapped MEAN)] / (Bootstrapped 

STANDARD DEVIATION) 

 

 

 Z-score Incidence was then correlated with ZIP code Ancestry Group Percentages (i.e. 

percent Greek, percent Sub-Saharan, etc) reported by the US Census.  Table 3.1 illustrates these 

correlated associations.  The Bootstrap Reshuffling and Monte Carlo simulation method was 

then used to calculate the mean and standard deviation of correlations between Z-score 

Incidence and Ancestry Group Percentages. These correlations were then converted to Z-scores.  

Z-scores of the correlations were intended to represent the standardized association between 

ancestry and breast cancer risk.   

 ZIP code ancestry percentages were then multiplied by the Z-scores of risk correlations, 

yielding Ancestry Risk Betas for each ancestry group within ZIP codes.   Ancestry Risk Betas 

were then summated within each ZIP code, yielding Ancestry Sum Betas.  Ancestry Sum Betas 

represented the total level of ancestry-related risk for a given ZIP code.  Ancestry Sum Betas 

were then converted to Ancestry Sum Beta Z-scores, using Bootstrap reshuffling and Monte 

Carlo simulations. 

 Next, a Local Moran’s I procedure was utilized to evaluate Ancestry Sum Beta  Z-scores 

as the input attribute, to obtain the Moran Index values representing neighborhood levels of 

ancestry-related risk.  After obtaining these Moran Index values, a Bivariate Local Moran’s I 

procedure was utilized to evaluate the previously acquired Moran Index values as the ego 

attribute and the Z-standardized Log10 Age-Adjusted Incidence as the neighborhood attribute.  

Clusters were identified with p<0.05 significance, using Simes correction.  Locations with a 

high ego value and high clustered neighborhood were considered locations of ancestral frailty, 



38 
 
 

and locations with a low ego value and low clustered neighborhood were considered locations 

of ancestral resistance.  Results of the Bivariate Local Moran’s I can be seen in Figure 3.2. 

 Lastly, the regression coefficient between the Moran Index Values and Age-Adjusted 

Incidence was observed in a Generalized Linear Model to analyze the significance of the effect 

of Moran Index Values on Age-Adjusted Incidence.  Moran Index Values had a highly 

significant effect on Age-Adjusted Incidence (F 1, 1342 = 6.72, p<0.0096), with an estimated 

parameter coefficient of 6.7056.  Breast cancer incidence was then scaled by using this 

parameter coefficient to decrease incidence in ZIP codes identified as High-High and Low-Low 

members in the Bivariate Local Moran’s I.  Incidence was increased in ZIP codes that were 

identified as Low-Low members and decreased in ZIP codes identified as High-High members, 

using the following formulae: 

   

[(Moran’s Index Value * 6.7056) - Age-Adjusted Incidence] 

[(Moran’s Index Value * 6.7056) + Age-Adjusted Incidence] 

 

 The algorithmic process for scaling incidence by associated ancestral risk can be 

observed in Figure 3.3. 
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Table 3.1.  Correlation between ancestry group and Z-score Log10 Incidence. 

 

   

  

 

Ancestry Group

Correlation with         

Incidence Ancestry Group

Correlation with         

Incidence

Arab 0.11 Polish 0.13

Czech 0.11 Portuguese -0.01

Danish 0.05 Russian 0.13

Dutch -0.02 Scotch 0.05

English 0.02 Scottish 0.08

French -0.03 Slovak 0.08

French Canadian 0.07 Subsaharan 0.12

German 0.05 Swedish 0.02

Greek 0.17 Swiss 0.03

Hungarian 0.18 Ukrainian 0.10

Irish 0.15 United States -0.07

Italian 0.08 Welsh 0.03

Lithuanian 0.13 West Indian 0.10

Norwegian 0.01



40 
 
 

 

Figure 3.2.  Bivariate Local Moran’s I evaluating the spatial clustering of age-adjusted breast 

cancer incidence and Census-derived ancestry risk. 
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Figure 3.3.  Algorithmic flow chart detailing the ancestral frailty/resistance measurement. 

 

 

3.4  Statistical Analysis 

 

Hypothesis Testing and Case/Control Study Space Development 

 According to Luc Anselin (1993), exploratory spatial data analysis -when performed in 

conjunction with GIS techniques- should focus on “measuring and displaying local patterns of 
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spatial association.”  This encourages the analyst to look for spatial clustering.  It is already 

known that gradients of breast cancer incidence occurred at the ZIP code level in Illinois during 

the study period (Wang 2004).  

 In order to challenge the null hypothesis of no spatial clustering, the spatial statistics tool 

Getis Ord Gi* (Getis and Ord 1995) was used in ArcGIS 10 ™.  Polygon contiguity was used to 

conceptualize spatial relationships within the testing space.  All of the 1343 ZIP codes were 

entered into the clustering test.  The overall objective was to identify statistically significant 

clusters of breast cancer with GiZ Scores greater than or equal to 1.96, and with p-values less 

than or equal to 0.05.  The meaningfulness of spatial autocorrelation hypothesis testing is that 

locations of clustering reject the null assumption of Poisson or homogenous spatial variability 

(Waller and Gotway 2004).  Spatial analysts suggest that locations of clustering can be 

influenced by confounding factors such as environmental pollutants or genetic frailty (Lawson 

2006; Waller and Gotway 2004). 

 Clustering analysis identified 57 ZIP codes belonging to spatial clusters.  Cluster ZIP 

codes were marked as binary ones (1’s) for evaluation in the case/control model.  All non-

cluster ZIP codes that were below the global mean (Mu = 126.53 cases per 100,000 ‘at risk’ 

females) were marked as binary zeros (0’s) for evaluation in the model.  All other ZIP codes 

(e.g. non-cluster ZIP codes greater than the global mean) were withdrawn from the model.  In 

sum, the case/control model contained 57 case ZIP codes and 674 reference ZIP codes.  The 

developmental goal was to isolate breast cancer risk zones from non-risk zones, so that 

environmental risk factors could be evaluated in terms of association with risk and non-risk.   
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Generalized Linear Mixed Model (GLMM) for Binary Responses 

Generalized linear mixed models (GLMMs) for binary outcomes are somewhat similar 

to logistic regression models, with regard to predicting dichotomous responses to continuous or 

categorical independent variables (Hosmer and Lemeshow 2000).  GLMMs allow parameter 

estimation within a restricted estimate maximum likelihood (REML) framework, reducing 

estimation bias of variance/covariance constructs (Meza et al. 2007).  GLMMs enable the 

analyst to evaluate dependent responses to a combination of fixed and random effects.  The Proc 

GLIMMIX program was utilized in SAS 9.2 to test whether risk factors expressed a statistically 

significant outcome with Case or Control groups.  Proc GLIMMIX is unique in that it allows 

the modeling of a random error component that can represent the spatial or temporal covariance 

within the model (SAS 2012a).    As such, a random statement was utilized to account for the 

spatial structure of residuals, and an exponential type of spatial covariance was selected.   

The objective was to test the null hypothesis of no association between independent 

variables and Case/Control outcomes.   If a statistically significant effect was detected between 

the independent variable and the Case/Control model, then an alternative hypothesis of 

empirical slope association (βi > 0 < βi) would have been supported.   

 

Discriminant Function Analysis 

 Lewicki and Hill (2007) utilized statistical methods, such as analysis of variance and 

mean difference, to exercise what is known as discriminant function analysis.  Discriminant 

function analysis allows a researcher to analyze if a variable discriminates between two or more 

groups by calculating a variable known as the standardized function coefficient (Lewicki and 

Hill 2007).  In the discriminant function analysis, the reverse process of a Multivariate Analysis 
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of Variance (MANOVA) takes place, in which the predictor variables are used to estimate the 

grouping of observed outcomes.  Standardized beta coefficients are given for each variable in 

each discriminant function, and the larger the standardized coefficient, the greater is the 

contribution of the respective variable to the discrimination between groups (Poulsen and 

French 2012).  For this research, five predictor variables were observed:  Percentage Black 

Population, Percentage Hispanic Population, Percentage Asian Population, Percentage Without 

a High School Diploma, and Percentage Employed within Managerial Labor.  The variable of 

Managerial Labor was included in this assessment as a surrogate for financial income.  Since 

Median Household Income was used in the stratification process of random sampling, another 

variable was chosen in order to prevent redundancy in variable effects.  Furthermore, given the 

high prevalence of Managerial Labor and the normalcy of its distribution, it was a strong 

variable for the discriminant function.  Percent Black Population, Percent Hispanic Population, 

Percent Asian Population, and Without High School Diploma were successfully transformed to 

meet the discriminant function analysis assumptions as outlined by Lewicki and Hill (2007), 

such as low-correlation and lack of influential outliers.  Many other socioeconomic predictor 

variables were considered for the analysis, but they ultimately failed to meet assumptions, even 

after transformation. 

The discriminant function analysis included five case groups comprising 57 case ZIP 

codes (Figure 3.4) and one reference group comprising 160 reference ZIP codes.  The reference 

group was selected by conducting a stratified random sampling of the original 674 reference 

ZIP codes.  References were stratified into four quantiles according to Median Household 

Income.  Median Household Income was used for stratification because Median Household 

Income separated risk zones into somewhat discrete areas.  (Figure 3.5; counties were used in 
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this figure to assist with visualization).   The first ZIP code within each stratum was randomly 

selected using a random number generator.  From each of the four strata, 40 ZIP codes were 

randomly selected (without replacement), yielding a total of 160 randomly sampled reference 

ZIP codes.  The scatterplot matrix of predictor variable correlations can be observed in Figure 

3.6, revealing that collinearity was absent from the model. 

Given that risk zone sizes varied between 15 and 6 ZIP codes per zone, it was decided to 

evaluate the ‘within group variances’ instead of ‘pooled variances’.  The pooled variance 

criterion was set to false, forcing the discriminant function analysis to assume unequal variances 

among groups (due to unequal zone population sizes).    
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Figure 3.4. Five risk zones observed in the discriminant function analysis. Risk areas represent 

the locations of statistically significant (p<=0.05) breast cancer incidence clustering. 
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Figure 3.5.  Median household income in Illinois and breast cancer risk zones.  Notice  that the 

stratification of median household income separates each of the risk zones into distinct areas.   
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Figure 3.6. Scatterplot matrix showing correlations between predictor variables used in the 

Discriminant Function Analysis; produced with SAS 9.2. 
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3.5  Spatial Analysis 

 

 

Focused Clustering Tests 

 The Lawson and Waller Score Test and the Bithell’s Linear Risk Score Test were used to 

test the distance decay behavior of breast cancer incidence in spatial relation to focused point 

sources of potential contamination.  Both tests were performed via Biomedware’s ClusterSeer 

2.3 ™ software.  Locations were selected for these tests according to a 20 and 30 mile radial 

bandwidth placed around the center of potential contamination.   

 

Lawson Waller Score Test 

 Lawson (1989) and Waller et al. (1992) implemented a scoring method that measures the 

intensity of disease frequency around a central location of exposure risk.  The test statistic for 

the Lawson Waller Score Test is calculated as follows: 

Ti =    
   ij (cj – nj 

 

  ), 
 

where c is the number of cases occurring in each at risk population, n.  W is a weight that 

expresses an inverse distance effect, where disease risk is weighted less as distance between the 

‘at risk’ population and the focus point increases.   

 

Bithell’s Linear Risk Score Test 

 Bithell (1995 and 1999) implemented a focused cluster detection method that was 

designed to sense excess disease risk near nuclear plants in the U.K. The test results are 

dependent upon a relative risk function (RRF) that measures linearity in relative risk in relation 
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to the distance between population and point source of risk.  The RRF implemented in this 

research is as follows: 

f(d)=1 + β/(1+d/φ), 
 

 

where d is the distance between the focus point and the ‘at risk’ population, φ (phi) is the rate of 

decay of cases with distance to the source, and (1 + β (beta)) represents the ratio of risk at the 

focus normalized by an infinitely far ratio of risk. 
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CHAPTER 4 

 

RESULTS 

 

4.1 Breast Cancer Incidence in the Study Area 

 

 

 Table 4.1 illustrates a summary of breast cancer incidence by age distribution, including 

crude incidence, age-adjusted incidence, and empirically Bayesian filtered incidence.  As 

expected, the rates of breast cancer increased as age increased.  The degree of over-dispersion 

decreases across crude, age-adjusted, and empirical Bayesian incidence.  It appeared that the 

age-adjusted and the empirical Bayesian datasets displayed the most Poisson random variation; 

however, an excessively high frequency of zero counts acted to undermine this initial 

assumption of Poisson randomness (Lawson 2006) within the crude and age-adjusted 

distributions.   

 The US age-adjustment served different useful functions.  The initial function was to 

control for age confounding affects resulting from unstable age distributions across space 

(Figure 4.1).   The second utility of the age-adjustment was to account for the ‘old-age 

population’ effect in which cancer risk was elevated in ZIP codes with higher proportions of 

older females (Figure 4.2).  In this instance, the proportion of females age 65 and older had a 

highly significant effect on breast cancer incidence (F 1342, 1 = 27.18, p<0.0001).  The linear 

trend in Figure 4.3 illustrates the flattened old-age effect that results from the age-adjustment to 

the US standard population.  
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Table 4.1. Female breast cancer incidence by age distribution. 
†
 

 

 

 

95% Zero 

Age Group Mean Rate c.i., +/- Variance Counts 

18 to 44 42.71 2.28 12463 608 

45 to 64 237.18 12.69 70636 312 

65 and Over 436.90 23.37 298682 273 

18 and Over 182.07 9.74 20234 183 

95% Zero 

Age Group Mean Rate c.i., +/- Variance Counts 

18 to 44 18.68 1.00 2378 608 

45 to 64 52.69 2.82 3485 312 

65 and Over 55.21 2.95 4771 273 

18 and Over 126.57 6.77 12729 183 

95% Zero 

Age Group Mean Rate c.i., +/- Variance Counts 

18 to 44 18.24 0.98 56 29 

45 to 64 54.86 2.93 160 5 

65 and Over 55.03 2.94 136 0 

18 and Over 129.31 6.92 780 0 

Crude incidence  

US age-adjusted incidence 

Empirical Bayesian filtered US age-adjusted incidence 

†  Rates are normalized per 100,000 females within the age group. 



53 
 
 

 
 

  Figure 4.1.  Spatial distribution of female population proportions (age 65 and older).  
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Figure 4.2. Relationship between the proportion of female population (age 65 and older) and 

Crude breast cancer incidence.  The linear trend expresses increased risk due to older age 

effects, helping to justify the SEER age-adjustment. 

 

 

 

 
 

Figure 4.3. Relationship between the proportion of female population (age 65 and older) and US 

age-adjusted breast cancer incidence.  The linear trend illustrates the removal of risk associated 

with older age effects.  Notice that the slope is flatter than the Crude incidence slope. 
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4.2  Exploratory Data Analysis 

 

 After observing the linear association between ZIP code female population and ZIP code 

breast cancer counts (Figure 4.4), it was apparent that the count range was more unstable as 

female population increased.  The linear regression of female population size on breast cancer 

counts displayed a highly significant effect (F1341, 1 = 9714.88, p<0.0001), as expected.  Figure 

4.4 illustrates a noticeable sub-trend (or potential sub-population) occurring below what was 

expected by the linear trend.  This sub-trend suggests that higher populated ZIP codes expressed 

overall lower breast cancer risk.  Figure 4.5 presents the residual output from the regression 

applied in Figure 4.4.  Over- prediction of counts in larger populated zones is apparent in the 

residual pattern.  Figure 4.6 provides a powerful cartographic visual of this phenomenon, 

illustrating US age-adjusted, ancestry-scaled breast cancer incidence during the study period.  A 

noticeably lower breast cancer risk prevails throughout the majority of the Chicago region.     

 In Figure 4.7, ZIP code populations are regressed against ZIP code breast cancer counts 

with a best fit polynomial line expressing a slight quadratic trend.  The negative quadratic trend 

suggests a parabolic effect of decreasing breast cancer counts as populations become large.   

Furthermore, the coefficient of determination for the quadratic best fit trend (Figure 4.7) was 

slightly improved from the linear best fit trend (Figure 4.4), as could have been anticipated.   
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Figure 4.4.  Bivariate regression of ZIP code population and ZIP code breast cancer counts.  

The blue line below illustrates a potential subpopulation. 

  

 

  
 

Figure 4.5.  Residual plot of ZIP code population regressed against breast cancer counts. 

The dotted line illustrates a trend of over-prediction occurring in higher populated zones.  
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Figure 4.6.  US age-adjusted, ancestry scaled breast cancer incidence (ages 18 and older) 

during the study period. 
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Figure 4.7.  Bivariate regression of ZIP code population and ZIP code breast cancer counts, with 

a quadratic best fit polynomial line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y = -1E-07x2 + 0.0109x - 0.936, R2 = 0.8999 
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 According to Figure 4.8, as the size of the female population increased, the ratio of Water 

Wells per female tended to asymptotically decrease, suggesting that Water Well exposure was 

predominantly a rural phenomenon.  This is similar to the previously illustrated pattern of 

elevated breast cancer counts in rural ZIP codes.  Perhaps there is an association between 

increased Water Well exposure and increased breast cancer incidence in rural zones. 

 The scatterplot of ‘at risk’ female population size and breast cancer incidence (Figure 

4.9) expresses as strong message in terms of where risk gradients are located.  According to this 

figure the majority of excess risk is located in lower populated zones.   

 

 

 

Figure 4.8.  Ratios of Water Wells per female by ZIP code female population size.   

 

 

 



60 
 
 

 

Figure 4.9. Breast cancer incidence by ZIP code ‘at risk’ population. 
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4.3  Clustering Test and Case/Control Design 

 

 

 Figure 4.10 shows the results from the Getis Ord Gi* cluster analysis.  Results from this 

analysis culminated in the rejection of the null assumption of Poisson spatial variance.  In total, 

57 case ZIP codes and 674 reference ZIP codes were identified.   

 Table 4.2 illustrates EPA registered organizations that operated within Case ZIP codes 

during the cancer latency period.  Some of these companies date back to the early 1900s, while 

others began operation in the 1980s.  Since it takes many years for cancer to become clinically 

detectable, it is plausible to question the etiologic roles that these companies could have played 

in disease outcomes. 
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Figure 4.10.  Case/control study surface derived from Getis-Ord Gi* cluster analysis.    Map 

depicts 57 case ZIP codes and 674 reference ZIP codes.  
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Table 4.2.   EPA registered facilities with environmental contamination potential.  These 

facilities were located in Case ZIP codes and operated prior to the start of the study period. 
  

 
 

 

 

ZIP code City Facility Name X Y Contaminant* 

60611 Chicago Chicago Sun-Times -87.6267 41.8892 3 

60611 Chicago Northwestern Memorial Hospital -87.6215 41.8950 2, 3 

60611 Chicago Northwestern University, Chicago -87.6201 41.8968 2 

60611 Chicago Rehabilitation Institute of Chicago -87.6195 41.8958 2 

60654 Chicago Blommer Chocolate Company -87.6428 41.8891 4 

60654 Chicago Watersaver Faucet Company -87.6460 41.8934 4 

61401 Galesburg Archer Daniels Midland Company -90.3837 40.9352 3, 4 

61401 Galesburg Butler Manufacturing Company -90.3837 40.9352 3, 4 

61401 Galesburg Crop Production Services -90.3977 40.9192 1 

61401 Galesburg Galesburg Sewage Treatment Plant -90.4222 40.9401 5 

61401 Galesburg Inness Farm Supply, Inc. -90.3447 40.9181 1 

61401 Galesburg Koppers, Inc. -90.3958 40.8958 2, 4 

61401 Galesburg National Coatings Inc. -90.3251 40.9264 4 

61401 Galesburg Sun Opta Ingredients -90.3822 40.9306 4 

61401 Galesburg Tri States Water -90.3834 40.9517 1 

61402 Galesburg Gates Corporation -90.3414 40.9473 4 

61402 Galesburg Maytag Refrigeration Products -90.3990 40.9351 3, 4 

61341 Marseilles Exelon-LaSalle Nuclear Power -88.6645 41.2383 5 

61341 Marseilles Field Container Company LP -88.7096 41.3263 4 

61341 Marseilles Marseilles Sewage Treatment Plant -88.7222 41.3296 5 

60447 Minooka Grainco FS, Inc. -88.2617 41.4600 1 

60447 Minooka Minooka Sewage Treatment Plant -88.2389 41.4398 5 

60450 Morris Akzo Nobel Chemicals, Inc. -88.3198 41.4175 1 

60450 Morris Akzo Nobel Surface Chemistry LLC -88.3360 41.4065 2, 3, 4 

60450 Morris Exelon-Dresden Nuclear Power -88.2686 41.3807 2, 5 

60450 Morris Midwest Generation LLC -88.3404 41.3447 3, 4 

60450 Morris Morris Community Landfill -88.4026 41.3714 3 

60450 Morris Northfield Block Company -88.3643 41.3879 2 

60450 Morris Technical Propellants, Inc. -88.2963 41.3857 4 

*1=Pesticide Producer, 2=Hazardous Waste Generator, 3=Air Release Facility, 

 4=Toxic Release Inventory, 5=Wastewater Discharge 
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4.4 Statistical Analysis 

 

 

Generalized Linear Mixed Model 

 

 Proc GLIMMIX in SAS 9.2 was used to evaluate the statistical association between 

case/reference ZIP codes and independent variables.  In order to account for the spatial 

covariance within the model, three separate spatial covariance structures (Spherical, 

Exponential, and Gaussian) were evaluated using model fitness statistics.  According to -2 Log 

Likelihood, Akaike Information Criterion, and Bayesian Information Criterion, the optimal 

spatial covariance structure was exponential decay (Table 4.2).  The exponential spatial 

covariance formula is as follows (SAS 2012b): 

σ2 exp(-di,j / θ), 

where negative distance (-d) is the ultimate governing factor in determining the intensity of 

covariance.  As distance increases, the meaningfulness or size of the residual vector (θ) is 

reduced exponentially.  At smaller distances, the residual vector is more influential.  

 Figure 4.11 illustrates the spatial covariance produced from analyzing the Case/Control 

design with ordinary Kriging (fitted very well with exponential decay).   In further support of an 

exponential fitting, Ezra et al. (2006) and Jakhani et al. (2009) suggest that contaminant 

attenuation tends to be first-order linear up to 300 to 1000 meters from contaminant point 

sources.  Beyond these distances, attenuation accelerates dramatically with further increases in 

empirical distance.  Given the nature of exponential pollution decay, model fitness statistics 

(Table 4.3), and modeled spatial covariance (Figure 4.11), it was considered wise to implement 

an exponential spatial covariance.  
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 The robust GLMM output (Table 4.4) expresses positive risk associations between breast 

cancer risk and Power Plants, Corn & Soybean Land Cover, Water Wells, Oil/Gas Wells, 

Hazardous Waste Generation Sites, and Mineral Borings.  The cartographic results of the robust 

GLMM (Figure 4.12) illustrate the probability of breast cancer risk in association with 

environmental risk factors.  Among these positive risk associations, Oil/Gas Wells, Mineral 

Borings and Large Quantity Hazardous Waste Generators express high statistical significance in 

association with increased breast cancer risk.  Pesticide Producing Facilities, Wastewater 

Releases, Oil/Gas Injection Wells, and Oil/Gas Storage Observation Sites, express a negative 

association with breast cancer risk.  Among these negative associations, Pesticide Producing 

Facilities expressed high statistical significance in association with reduced breast cancer risk. 

 

  
 

Figure 4.11. Exponential line fitted through the case/control model’s spatial covariance (using 

ordinary Kriging on the binary response variable). 
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 The model fitness statistics for the reduced GLMM (Table 4.5) suggest a similar pattern 

within spatial covariance.  Results from the reduced GLMM (Table 4.6) display nearly identical 

results in comparison to the robust model, with regard to the significant variables.  Hazardous 

Waste Generation Sites, Oil/Gas Welling Sites and Mineral Borings each displayed high 

statistical significance in association with increased breast cancer risk.  Whereas, Pesticide 

Producing Facilities displayed high statistical significance in association with reduced breast 

cancer risk.   The interactions between significant covariates from the reduced model were all 

non-significant (Table 4.7). 
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 Table 4.3. Robust GLMM fitness statistics. 
 

 

 

Table 4.4. Model solution from the robust GLMM. 
 

 

Spatial Covariance Structure -2LogL AIC BIC

Spherical 158.7 160.7 165.25

Exponential* 65.4 69.4 78.55

Gaussian 141.2 145.2 154.4

None 158.7 170.7 198.1

Fitness Statistics

*Best covariance structure

Effect Estimate Std. Error t Value p Value, <

Intercept 0.015890 0.022050 0.72 0.4715

Power Plants 0.122900 0.071570 1.72 0.0863

Water Wells 0.070500 0.053230 1.32 0.1857

Corn/Soybean Land Cover 0.049540 0.037290 1.33 0.1844

Oil/Gas Wells 0.000041 0.000009 4.40 0.0001**

Hazardous Wastes 0.000029 0.000008 3.59 0.0003**

Mineral Borings 0.000029 0.000006 4.93 0.0001**

Oil/Gas Injection Wells -0.000040 0.000303 -0.12 0.9015

Pesticide Producing Facilities -0.000050 0.000019 -2.46 0.0142*

Wastewater Releases -0.000100 0.000073 -1.32 0.1881

Oil/Gas Storage Observation Sites -0.000210 0.000347 -0.61 0.5400

GLIMMIX Model Solution 
†

†Exponential spatial covariance structure, **Highly Significant, *Significant
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Figure 4.12. Breast cancer risk prediction map resulting from the robust GLMM.  Model 

processed through ArcMap’s Raster Calculator. 
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Table 4.5. Reduced GLMM fitness statistics. 
 

 

 
 

Table 4.6. Model solution from the reduced GLMM. 
 

 

 

 

Table 4.7. Interactions within the reduced model. 
 

 

 

 

Spatial Covariance Structure -2LogL AIC BIC

Spherical 65.4 77.4 104.9

Exponential* -28.1 -14.1 17.9

Gaussian 47.8 61.8 93.9

None 65.4 77.4 104.9

Fitness Statistics

*Best covariance structure

Fit Statistics

Effect Estimate Std. Error t Value p Value, <

Intercept 0.056060 0.010130 5.53 0.0001**

Oil/Gas Wells 0.000040 0.000009 4.41 0.0001**

Mineral Borings 0.000029 0.000006 4.97 0.0001**

Hazardous Wastes 0.000024 0.000008 3.10 0.0020**

Pesticide Producing Facilities -0.000050 0.000019 -2.62 0.0089**

GLIMMIX Model Solution 
†

†Exponential spatial covariance structure, **Highly Significant

Effect F value p value, <

Hazardous Wastes * Mineral Borings 3.29 0.0701

Hazardous Wastes * Oil/Gas Wells 0.35 0.5571

Hazardous Wastes * Pesticide Producers 0.62 0.4306

Mineral Borings * Pesticide Producers 1.42 0.2346

Mineral Borings * Oil/Gas Wells 1.75 0.1866

Oil/Gas Wells * Pesticide Producers 1.26 0.2611

Type 3 Tests of Fixed Effects
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Discriminant Function Analysis 

 

The multivariate F-tests of differences between group means proved to be highly 

significant (Table 4.8), suggesting that prediction model has the ability to distinguish between 

risk zones.  Furthermore, the differences of means across groups were statistically significant 

for all variables (Table 4.9), with high statistical significance occurring in Black Population, 

Asian Population, High School Diploma and Managerial Employment.  Hispanic population 

was slightly significant at the 0.05 α level.   The spatial distributions for race by risk zone can 

be observed in Appendix B.  Race was effective at discriminating between the Chicago risk 

zone and the remainder of risk zones, suggesting that race is an important factor when 

comparing urban disease outcomes incidence to rural disease outcomes, in Illinois.  

 From analysis of group means and standardized function coefficients (Table 4.10), the 

five predictor variables functioned as a contrast.  Black Population, Asian Population, and 

Managerial Employment worked strongly together as group distinguishing factors.   Hispanic 

Population and Without High School Diploma worked mildly together as group distinguishing 

factors.  The contrast between these two sets of variables suggests that there could be two 

socioeconomic linkages within the model.  One of the linkages appears to be between race and 

employment, and the other appears to be between race and education.  The linkage between race 

and employment expresses the strongest canonical association.   

 According to Table 4.11, the discriminant function was good at classifying ZIP codes 

into risk zones 3 and 5.  It performed mediocre with classification back into risk zones 2 and 4, 

and the reference group.  The discriminant function performed poorly with regard to 

classification back into risk zone 1. 
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 Cartographically, the association between Managerial Employment and cancer risk is 

most apparent in the northern zones of Illinois, with the Chicago zone expressing the strongest 

managerial gradient (Figure 4.13).  Similarly, higher academic achievement expresses a strong 

association with breast cancer risk in the northern portion of the state (Figure 4.14), while breast 

cancer risk in southern Illinois is associated with lower academic achievement. 
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Figure 4.13.  The proportion of Illinois females engaged in managerial employment.  The map 

also illustrates modeled breast cancer risk. 



73 
 
 

 
 

Figure 4.14. The proportion of Illinois females who do not possess a high school diploma.  The 

map also illustrates modeled breast cancer risk. 
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Table 4.8. Multivariate tests of mean differences from the Discriminant Function Analysis. 

 

 
  **Highly significant 

 

 

 

Table 4.9. Univariate test for variable mean differences across groups. 

 

 
  ** Highly significant, *Significant 

   

  

Table 4.10. Analysis of group means and standardized discriminant coefficients. 

 

 
 

 

 

Statistic Value F-value p-value, <

Wilks' Lambda 0.5258 5.71 0.0001**

Pillai's Trace 0.5387 5.00 0.0001**

Hotelling-Lawley Trace 0.7827 6.32 0.0001**

Roy's Greatest Root 0.6032 24.97 0.0001**

Multivariate Test of Mean Differences

Predictor Variable R-Square F-value p-value, <

Black Population (%) 0.1886 9.62 0.0001**

Hispanic Population (%) 0.0574 2.52 0.0306*

Asian Population (%) 0.3000 17.74 0.0001**

Without High School Diploma (%) 0.1287 6.12 0.0001**

Managerial Employment (%) 0.1324 6.32 0.0001**

Univariate Test Statistics

Reference Function

Predictor Variable Group Mean (%) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Coefficient*

Black Population 4.69 1.32 0.11 16.45 0.24 0.00 0.5673

Hispanic Population 3.90 1.11 2.86 5.20 0.63 1.18 -0.1497

Asian Population 0.81 0.24 0.17 11.01 0.34 0.10 0.5709

Without High-School Diploma 18.62 11.42 12.33 4.33 19.96 23.78 -0.4934

Managerial Employment 30.04 30.73 28.27 54.71 31.26 28.20 0.6220

*Derived from a highly significant canonical correlation (F=5.74, p<0.0001)

Group Means & Standardized Function Coefficients

Risk Zone Group Mean (%)
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Table 4.11. Classification summary from the Discriminant Function Analysis. 
 

 

 
 

4.5  Spatial Analysis 

 

 

Focused Clustering Tests 

 Focused clustering tests were conducted in various areas expressing gradient levels of 

contaminant exposure.  Results from focused tests suggest elevated breast cancer risk near the 

LaSalle Nuclear Power Facility (Figure 4.15) and near ZIP codes 61529, 61536 and 61569 

(Figure 4.16). 

 This LaSalle Nuclear Power Plant became operational in 1982, fourteen years prior to the 

opening of the study window.   ZIP codes 61529, 61536 and 61569 were selected for focused 

clustering tests due to extreme frequencies of mineral borings.   

 

From group Reference Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Total % Correct

Reference 102 5 14 0 31 9 161 0.63

Zone 1 6 3 0 0 5 0 14 0.21

Zone 2 2 0 8 0 1 2 13 0.62

Zone 3 0 0 0 6 0 0 6 1.00

Zone 4 4 0 1 0 8 2 15 0.53

Zone 5 0 0 0 0 0 5 5 1.00

TOTAL 114 8 23 6 45 18 214 0.62

PERCENT 0.53 0.04 0.11 0.03 0.21 0.08

PRIORS 0.75 0.06 0.06 0.02 0.07 0.02

RATIO 0.71 0.62 1.79 1.40 3.00 4.21

Resubstitution Summary

Classification
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Figure 4.15.  Focused clustering tests surrounding the LaSalle Nuclear Power Facility. 
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Figure 4.16.  Focused clustering tests surrounding the locations of ZIP codes 61569, 61536 and 

61529.  This area represents the most intense zone of coal mining activity for the entire state of 

Illinois. 
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 CHAPTER 5 

 

 DISCUSSION 

 

 

Environmental Risk Patterns 

 Breast cancer clustering occurred in four distinct geographic zones.  These zones 

consisted of the Lower Illinois River Basin (LIRB), Upper Illinois River Basin (UIRB), inner 

Chicago, and in the southeastern area of the Illinois Basin.   

 The LIRB and UIRB are host to environmental risk factors and carcinogens as 

highlighted in Brody and Rudel (2003), Davis et al. (1998), Gray (2010), Groschen et al. 

(2000), Huggins et al. (2009), ISGS (2010c), Jüngten and Klein (1977), Kolyoncu (1997), Korte 

and Fernando (1991), Morrow (1999), NAWQA (1994), NIH (2002, 2011), Rudel et al. (2007), 

Voldner and Li (1995), Warner (2001), Warner et al. (2003),Welch et al. (1988) and Wolff and 

Toniolo (1995).  These risk factors include volatile organic compounds (e.g. chloroform, 

MTBE, BTEX), dioxins, organochlorines and soil fumigants (e.g. PCBs, DDT, nitromethane, 

dieldren), herbicides (e.g. atrazine, alachlor), commercial hazardous wastes, inorganic 

compounds (e.g. arsenic and radium contaminated aquifers) and toxic metals from mining (e.g. 

mercury, manganese, etc).  

 In the LIRB, just to the west of Peoria, IL (ZIP codes 61517, 61569, and 61529) 

contained 373, 2434, and 4411 historic Mineral Borings, accordingly.  The 75
th

 percentile for 

Mineral Borings was seven (7) throughout the entire state.  This research illustrated that 

despairingly high frequencies of Mineral Borings associate with increased breast cancer risk.  

Slightly further to the west (in Galesburg, IL), in ZIP codes 61401 and 61402 displayed a wide 
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variety of commercial environmental risks.  Toxic Release Inventories and Air Release 

Facilities accounted for the majority of exposure risk within the Galesburg area. 

 Within the UIRB, approximately 75 to 100 kilometers southwest of Chicago, an extreme 

zone of risk emerged near the confluence of the Des Plaines and Kankakee Rivers.  This area 

included ZIP codes mostly within LaSalle, Grundy, and Livingston Counties.  The dominant 

commercial cities in this risk area appeared to be Morris, Minooka, and Marseilles, IL.  This 

zone is host to Nuclear Power Plants, Corn & Soybean Land Cover, Mineral Borings, 

Hazardous Waste Generators, Wastewater Discharges, and Pesticide Producers.  Three (3) of 

the six (6) Nuclear Power Plants in Illinois were located in this risk region; furthermore, the 

LaSalle Nuclear Facility tested significantly for increased focused risk at both a 20 and 30 mile 

bandwidth.  In many ways, this region expressed a unique environmental risk portfolio, where 

most types of environmental risk were present at high levels.   

 The southeastern portion of the Illinois Basin expressed high risk associated with Oil/Gas 

Welling, Injection Welling, Corn/Soybean Agriculture, and Coal Mining.  The ZIP codes 

involved in this association were members of Saline County, Hamilton County, White County, 

Wayne County, Edwards County, Wabash County, Richland County, and Lawrence County.   

Relevant to this zone of risk, Rudel et al. (2007), Gray (2010), ATSDR (1999), EPA (2010d), 

ISGS (2010c), Jüngten and Klein (1977), and Huggins et al. (2009), outline a variety of 

associated chemical risk factors such as polycyclic aromatic hydrocarbons, heavy metals, 

radioactive isotopes, and inorganic and organic compounds, that compliment risk factors 

identified by the GLMM.  Overall, the GLMM indicated that this region was highly susceptible 

to risk associated with hydrocarbon exposure, due to the high prevalence of Oil/Gas Welling.  

EPA literature (EPA 2010d) suggests that chronic exposure to radon is associated with oil 
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welling in the Midwestern United States.  It is possible that hydrocarbon exposure in the midst 

of radioactive isotope and heavy metal exposure increases the risk that occurs in this zone.     

 In the Chicago zone of risk, there was a high likelihood of exposure to Hazardous Waste 

Generators, Air Release Facilities, Toxic Release Inventories, as well as nearby Power Plants.  

The per capita potential for exposure was high in Chicago ZIP codes, given the drastically 

elevated population densities.  According to the GLMM, Hazardous Wastes provided the most 

risk association in Chicago.  One specific chemical, Ethylene Oxide, a noted breast cancer risk 

factor (Rudel et al. 2007), appeared to be a chemical risk in the Chicago zone via medical 

equipment exposure and intense vehicle exhaust exposure.  Additional occupational risk in this 

zone could be related to chronic radioactive (x-ray) exposure at the previously mentioned health 

treatment facilities. 

  

Hydrologic Trends 

 Visual analysis of the Case/Control Study Area displayed that breast cancer clusters 

occurred in close proximity to major water sources.  These water sources included the Illinois 

River, the Des Plaines River, the Kankakee River, the Mississippi River, the Wabash River, and  

Lake Michigan.  Three of the five risk zones occurred near river confluences (the Des Plaines 

and Kankakee Rivers, the Illinois and Mississippi Rivers, and the Wabash and Ohio Rivers).   

This suggests a potential systematic pattern of risk where rivers merge.  It has already been 

noted that the Illinois River functions as a transportation network for Chicago’s wastes and 

refuse (NAWQA 1994).  Pollution of the Illinois River could intensify as tributary waters leave 

the Chicago area and eventually merge into the Illinois River –and ultimately continue toward 

the Mississippi River.  The same principal could apply as the Wabash River flows toward the 
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confluence with the Ohio River.  Overall, it appeared that the greatest proximal risk was 

associated with the Illinois River system and the Wabash River.  Similar hydrologic 

associations were observed by Guajardo and Oyana (2009) during an assessment of breast 

cancer clusters near the Tittabawassee and Saginaw Rivers, in Michigan. 

 

Socioeconomic Trends  

 The vast majority of breast cancer risk occurred in rural zones accompanied mostly with 

lower economic status and lower educational status.  Economic status could be a non-

contributing factor, given that the costs of living could be adjusted to account for differences 

between urban and rural zones.  Education appears to be prevalently low across the southern 

half of the state Illinois, with increasing education attainment closer to Chicago.  New research 

questions could be hypothesized from this observation.  For instance, is education associated 

with personal behaviors such as smoking, alcohol consumption and obesity (breast cancer risk 

factors)?  Common rhetoric about breast cancer risk states that higher socioeconomic status 

(SES) commonly accompanies greater risk (Brody et al. 2003).   Breast cancer risk within the 

Chicago zone supported this opinion, because higher education and higher employment status 

were expressed in the Chicago zone.  Racially, the risk in Chicago appeared to be diverse.  

 This research does not fully support the argument that higher socioeconomic status 

correlates with increased breast cancer risk.  Instead, this research suggests that breast cancer 

risk is a problem across a variety of socioeconomic statuses, some higher or lower than others.  

Breast cancer risk expressed a strong association with Black and Asian Populations within 

urban communities; whereas, in rural communities, breast cancer risk associated with lower 

economic/employment status and low educational attainment.       
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 The highest human exposure to hazardous waste generation does occur in the Chicago 

area. If hazardous waste exposure was more evenly dispersed across Illinois, then this exposure 

would not be unique to Chicago residents.  However, it is unique to Chicago residents, which 

further supports the concept that Asian, Black, Higher Education, and Managerial Employment 

are associated with more intense zonal exposure to Hazardous Waste Generation Facilities. 

 Similarly, the discriminant function analysis suggested that exposure to Agricultural 

Chemicals, Coal Mining, Oil/Gas Welling, Pesticide Producers, Water Wells, and Power Plants 

was predominantly a rural phenomenon experienced by members of the White Population (this 

was not modeled statistically, but it is intuitive) who tended to be less engaged in Managerial 

Employment and also less educated. 

 

Potential Confounding Effects 

 It is possible that the higher incidence in rural Illinois is a result of ‘the small population 

problem’.  Different incidence filtering techniques (i.e. Ordinary Kriging, Bayesian Smoothing, 

Spline Interpolation, etc) are commonly used when such a problem is suspected; however, these 

techniques can induce excessive information borrowing (over-smoothing) and can complicate 

Poisson assumptions, if such assumptions are meaningful.  The best alternative might be to 

extend the study temporally and look for consistencies within apparent ‘small population’ zones 

(Jacquez 2011).  Temporal consistencies could be used to support the idea of a true risk in a 

small population zone and help to bypass ‘denominator-based quotient problems’.   

 It is the opinion of the researcher that the data observed in this analysis were prepared in 

a way that controlled for population effects, age effects, and ancestry associations, while still 

preserving a meaningful spatial estimate of disease risk.   



83 
 
 

 Potential ‘edge effects’ might have influenced the clusters identified in the Chicago zone 

and the Calhoun County zone.  ZIP codes located adjacent to water sources (just as these two 

zones were) tend to have fewer neighbors, causing neighborhood index contributions to be 

provided by fewer neighbors.  Under these conditions, outliers can have the ability to spuriously 

cause clusters, particularly when areal adjacency is used to conceptualize spatial relationships 

within cluster analysis. 

 

GLMM Power Analysis 

 It can be argued that the reduced model possesses a level of power that is able to reliably 

estimate regression coefficients.  The ‘k+1’ value (number of independent variables plus the 

intercept) in the reduced model is less than one-tenth of the size of the smallest binary group 

(the Case group was smallest with n=57).  The ‘k+1’ value of the reduced model (k+1=5) is less 

than one-tenth of the Case group size.  Specifically, [(k+1)/n(smallest group) < 0.10] or 5/57=0.0877.  

This approach can be referred to as a ‘rule of thumb’ or, perhaps, as a ‘golden rule of one-tenth’ 

(Hosmer and Lemeshow 2000; Peduzzi et al. 1996) that can be applied to generalized linear 

models for binary outcomes.  

 

Zero Counts in the Disease Data 

 

 Bimodality was an initial challenge in approaching this disease dataset, since 13.6 percent 

of ZIP codes presented zero counts of breast cancer.  This complicated the ability to achieve a 

random type of distribution needed to fully approach the research under a null assumption of 

Poisson variation.  Disease data for this research could have been inaccurately reported (i.e. 

under-reported) by local physicians, county health departments, state offices, or etcetera, 
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causing an over-prevalence of zero counts and a subsequently clumped distribution.  In 

instances as these it can prove beneficial to employ a risk filter that estimates disease incidence 

based off of neighboring values (see Table 4.1 to observe the effects of employing an empirical 

Bayesian filter), thus reducing zero count prevalence and narrowing the gap between variance 

and mean.  
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CHAPTER 6 

 

CONCLUSION AND RECOMMENDATIONS 
 
 

 Future research should attempt to include longitudinal cohort data or geographic lifeline 

information.  Such data would partially account for individual dwelling times and help to 

validate the timing and length of exposure to environmental risk factors.  The ZIP code scale of 

resolution within this study complicates attempts to provide more precise details about 

variables.  It would be beneficial in future research to target the five zones that have been 

identified in this research and seek to synthesize additional confounding information.  The task 

of synthesizing would be made easier if future research is afforded higher resolution disease 

data (i.e. census tract or individual level data). 

 In many ways, this research is a good example of how a variety of spatial data can be 

utilized within a scientific research design to draw spatial inferences.  For instance, the Illinois 

wells and borings dataset contained 52 Point Feature Classes and over 500,000 records.  It is 

unknown whether the ISGS, USDA-NASS, or EPA intended for their datasets to be included in 

a spatial epidemiologic study of breast cancer.  The power of data mining, imagination, 

scientific understanding, literature review, and spatial and statistical analysis, have the ability to 

make potentially arbitrary data useful.  The key factor is geocoding and georeferencing the data 

elements, in order to evaluate them spatially. 

 The focused clustering techniques stand to be criticized.  The scale effects of ZIP code 

data prevent the employment of a biologically meaningful attenuation buffer in rural areas.  For 

instance, the large sizes of rural ZIP codes require a radial buffer of 20 miles from a focused 

point of exposure, in order to achieve a sample size of n > 30.  On the other hand, the nature 
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radioactive attenuation would compliment a 20 mile buffer.  Therefore, focused tests around 

Nuclear Power Plants are sensible.  However, exposure to hydrocarbons and inorganic/organic 

chemicals would likely be physiologically non-responsive past one or two miles of radial buffer.    

 There are still confounding factors and random effects that need to be explained in this 

study surface.  This represents another downfall of large, aggregated data (i.e. ZIP code data).  

Individual level data would undoubtedly resolve the issue of ‘unobserved confounding’ effects.  

 With regard to using Proc GLIMMIX in SAS 9.2, it should be noted that raw UTM 

coordinates produced convergence problems due to infinite likelihoods.  Thus, a UTM 

conversion factor was applied to crude coordinates.  UTM (in meters) was multiplied by 0.0025, 

giving a geometric conversion close to kilometers (3/4 km) that allowed SAS to converge after 

four or five iterations.   

 Furthermore, future studies should evaluate how SAS can implement spatial referencing 

systems such as UTM 16N within a GLMM.  The GLMM within this research was applied to a 

non-projected surface or, at best, to a “smooth spheroidal” world.  It is unknown how the 

geodesic conceptualization of space impacted standard errors and regression coefficients.  

Perhaps these effects would be unnoticeable.  Future research should consider geodesic 

conceptualizations within SAS. 

 

 

Future Directions 

 

 The IDPH, ISGS, ISWS, IDNR, ILEPA, USEPA, and CDC, should be aware that 

environmental breast cancer risk (when population standardized) is unequivocally a rural 

problem in Illinois.  The long history of agricultural industry, fossil fuel mining, private water 

welling, waste transportation, power generation, and chemical production and subsequent 
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discarding, is a story about rural geography.  In addition to increased environmental risk, rural 

Illinois is also host to a higher proportion of older age females who are more susceptible to 

neoplasia 

 Future environmental risk assessments within Illinois should attempt to account for 

behavioral risk factors and other intrinsic risk factors.  Behavioral factors should include 

tobacco smoking, alcohol consumption, exercise frequency and breast feeding.  Intrinsic factors 

should include body fat composition (obesity), genetic predisposition, breast feeding, age of 

menarche/menopause and viral disease encounters during lifetime.  It would be beneficial to 

observe chemical profile information within high risk zones, looking specifically at soil 

constituents, dissolved chemicals, water quality, and human tissues.  A thorough investigation 

of clinical data would clarify many questions about disease Cases.  Length of residency within 

risk zones should also be evaluated.  This would help to determine the likelihood of exposure to 

modeled putative sources during the cancer latency period.  

 If individual level data is not obtainable in future research, then it would behoove of the 

researcher to employ spatial computing algorithms to develop disease surfaces that are more 

biologically meaningful than political enumeration districts such as ZIP codes, census tracts, 

etc.  This is suggested since there is little to no inherent relationship between political 

boundaries and physiological outcomes.   

 The modifiable areal unit problem remains an issue with areal based spatial analysis, such 

as the events of this research.  Political boundaries are typically non-stationary over time.  

Periodic changes in political zoning can associate with shifts in disease intensity, thus 

spuriously causing the relocation of disease clusters (Lawson 2006).  Thus, it again behooves of 

future researchers to utilize computing algorithms that can calibrate best conceptual models of 
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spatial boundaries, based on combinations of physiologically meaningful covariates.  These 

variables should come from biographical, clinical, biological, and chemical data.  A 

subsequently related challenge would be to communicate research findings to state 

policymakers, because algorithmically synthesized disease areas might prove to be conceptually 

vague to politicians and non-scientists.   

 Lastly, the need for individual-level disease data and high resolution census data cannot 

be overstated.  These types of higher resolution data elevate the certainty of research findings 

substantially.  Point-level data alleviate many of the research nuisances originating from the 

modifiable areal unit problem.  The capabilities of the interdisciplinary scientific community to 

employ GIS, spatial analysis and public health principles during an epidemiologic investigation 

warrant access to better resolution health data.  In the end, it is likely to become a debate about 

the protection of a population’s health versus the protection of a population’s confidentiality.  

We must find the middle ground and push forward. 
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