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MAJOR PROFESSOR: Dr. Tonny J. Oyana 

The Kagera basin in East Africa has experienced major land surface loss in tropical 

forests, woodlands, and savannas due to the conversion of land for agricultural purposes. This 

has resulted in soil degradation, siltation, eutrophication, desertification, biodiversity loss, and 

climate change. Damages in the Kagera have also led to pollution and sedimentation in Victoria 

Lake which receives water from the basin.  These environmental changes have an effect on 

people in this region who largely depend on the natural resources. It has been indicated that these 

problems are mainly due to population growth as this region has the highest population growth 

and density when compared to sub-Saharan countries. However, previous studies conducted in 

this region have not investigated the spatial relationship between population growth and LULC 

changes. The aim of this study was to quantify LULC changes that occurred from 1984 to 2011, 

and predict future scenarios. Another goal of this study was to investigate the spatial relationship 

between population growth/density and LULC changes, and its socioeconomic influences. A 

post classification change detection method and Markov chain model of LULC change were 

used to analyze the past and future LULC dynamics. Administrative level census data of Kagera 
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was used to calculate population growth and density, and these were overlaid to LULC change. 

The assessment of change for the period of 1984-2011 overall showed a major expansion of 

agriculture at the expense of woodland savanna. This was mainly attributed to demographic and 

socioeconomic/political changes prior to and during the study period.  Population growth and 

density were linked to transitions to agriculture, and agriculture dominance during the study 

period. In addition, the oil price shocks of the 1970's that led to the adoption of Structural 

Adjustment Program were implicated as the major global macroeconomic influence in the use of 

resources, mainly in the agriculture sector. Internal policies such as Tanzania’s “Ujama” 

villagization of production, and biophysical factors such as precipitation and proximity to water 

bodies were also implicated to the LULC changes.  The findings in this study imply that 

understanding inter-relationship of factors is critically important, and the issue of LULC change 

must be approached in a holistic manner.  
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CHAPTER 1 

INTRODUCTION 

 

Land use and land cover (LULC) describes the economic use of land and surface 

features, respectively (Campbell, 2007). Humans play a major role as forces of change in the 

environment, inflicting environmental change at all levels ranging from the local to the global 

scale (Gamble et al., 2003). The various uses of land for economic purposes have greatly 

transformed land cover at a global scale (Turner et al., 1994). Over the last 10,000 years, almost 

half of the ice-free earth surface has changed and most of the result was due to the use of land by 

humans (Lambin et al., 2003; Turner et al., 2007). The production of agricultural and forest 

goods specifically have caused agriculture and forestry to become the most transformative events 

globally; with agricultural land rivaling forest cover and occupying 35% of the ice free land 

surface in 2000 (Foley et al., 2007). In using land to yield goods and services, humans alter 

ecosystems and their interactions with the atmosphere, aquatic systems, and surrounding land 

(Vitousek et al, 1997). 

LULC is one of the environmental issues mostly tightly linked to climate change in a 

complex manner, and changes in both can have profound effect on an ecosystem’s ability to 

provide goods and services to society (Loveland et al., 2003). Land use and cover plays a key 

role in climate changes through the exchange of greenhouse gases, sensible heat, and local 

evapotranspiration (Vitousek et al., 1997; Foley et al., 2005; Loveland et al., 2007). 

Approximately 35% of the CO2 emissions to the atmosphere were from land use (Foley et al., 

2005). In addition to climate change, growth of human population and land cover changes have 
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an effect on the biogeochemical cycles, habitat availability, biodiversity, soil erosion, water 

quality, water flow, and sediment flows (Vitousek et al., 1997; Dale 1997; Turner et al., 1994). 

Africa occupies one-fifth of the global land area and many of the continent’s resources 

such as forests, water, biodiversity, marine eco-systems have experienced changes due to both 

human and climate change drivers (Mosha, 2011). The deforestation of tropical rain forests of 

central Africa in general was higher in the 1980’s than in the 1990’s, and cropland expansion by 

small holders is a more prevalent form of land cover conversion in Africa (Lambin et al., 2003; 

Justices et al., 2001; Brink and Eva., 2009). 

The Kagera basin in east Africa has been one of the major locations around the world 

experiencing change in tropical forests, woodlands and savannas due to agricultural land use. 

Some of the consequences of these changes include soil degradation, siltation, eutrophication, 

desertification, biodiversity loss, and climate change. These changes have likewise been 

implicated with population growth, economic, and policy changes arising from the bordering 

countries of Burundi, Uganda, Tanzania, and Rwanda (Wasige et al., 2013). The population is 

projected to increase rapidly and the consequences of LULC changes remain a threat (NBI, 

2008). 

1.1. Rationale and problem statement 

 

In Kagera, the resources and ecosystems are under pressure due to fast population growth, 

agricultural expansion and intensification (progressive reduction of farm sizes), and 

unsustainable use of land (FAO, 2013).  This has caused persistence in land degradation 

accompanied by a serious loss of biodiversity. The impacts on the agro-ecosystems are also 
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affecting the livelihoods of the local populous since they largely depend upon natural resources 

for their living (FAO, 2013). Moreover, degradation in water quality, the loss of wetlands, 

sedimentation of aquatic systems, and reduced ground and surface water supply are being 

observed. Off site, the Kagera basin is also a major contributor of inflow to Victoria Lake (the 

second largest fresh water lake in the world). The changes in the Kagera basin have contributed 

to the pollution and sedimentation of Victoria Lake (Tamatamah, 2004).  

The above mentioned problems have been related to population growth,  as well as economic 

and policy changes arising from the bordering countries of Burundi, Uganda, Tanzania and 

Rwanda (Wasige et al., 2013; Tolo et al., 2012). Kagera is a heavily populated basin in the east 

African Rift Valley Lakes sub-region (NBI, 2008). The total population is around 15 million 

which accounts for 40% of the total Lake Victoria basin population (NBI, 2008). The population 

density of Kagera basin is 248    , more than 8 times the average of sub-Saharan Africa (NBI, 

2008).  The future population is projected to increase at rates of 3.4% (Rwanda), 2.3% 

(Tanzania) and 3.2% (Uganda), which are relatively higher compared to the average rate of other 

sub-Saharan countries (2.5%) (NBI, 2008).  

For these reasons, the Kagera basin was selected for a visual study of the physical LULC 

changes at a regional level. Regional studies provide adequate spatial and temporal resolution 

and account for variations in cause to cover relationships that are not explained at the global 

level (Turner et al., 1994). Past studies have attributed population growth/density as a key driver, 

but none have tried to link them together. This study links population to land cover transitions 

with an explicit spatial component. It is also clear that causes of environmental degradation or 

change cannot be discussed in isolation from socioeconomic and political dynamics of the 
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country; especially for the agriculture sector of Sub-Saharan Africa, which most of the 

population relies on. Usually the formulation and implementation of economic reforms does not 

take into consideration the effects on natural resource use. Thus, this study aims to assess the 

socioeconomic/political and demographic factors' effect on the LULC changes of the Kagera 

basin. 

1.2. Aim of the study 

 

Projections of the consequences of current and future LULC change necessitates the 

reconstruction of past land cover changes (Love land et al., 2003). Good change detection 

research should provide change, spatial distribution of changed types, and change trajectories of 

land cove types (Lu et al., 2011).  This study’s general aim was to investigate the LULC changes 

in the Kagera basin, while also looking at the implication of human activities on the observed 

LULC dynamics.  Specifically, this study aimed to: 

 Identify LULC changes for the duration of  28 years (1984-2011) using Land Sat images  

 Quantify LULC changes using IDRSI’s Land Change Modeler 

 To predict future LULC changes using the Markov chain model 

 Investigate the spatial relationship between population growth/density and LULC 

changes 

 Qualitatively assess the implication of socioeconomic factors on LULC changes 
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1.3. Research questions 

 

  To complement the above objectives, the study was guided by 3 specific research 

questions; 

i. What is the magnitude and dynamics of land cover change? 

ii. What will future land cover types be like? 

iii. What are the major factors that have driven the changes of LULC? 
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CHAPTER 2 

LITERATURE REVIEW 

 

This chapter presents the literature review in two sections: (1) Human-environment 

interactions (2) LULC. The human-environment interaction section investigates how humans 

drive environmental changes and how environmental changes affect them in return.  The next 

section focuses on environmental change (LULC change) in terms of causes and assessment 

methods. 

2.1 Human-environment Interaction 

 

The human dimension of geography and the environment study how technological, 

socioeconomic, and cultural drivers affect the environment and in turn the adaptation of the 

society (Gamble et al., 2003). This is one of the main components in the study of environmental 

changes (Gamble et al., 2003); namely, interactions between changes in the atmosphere, climate, 

the carbon cycle, the water cycle, and LULC.  The DPSIR (Driving forces, Pressure, State, 

Impacts and Responses) model (Figure 2.1) shows the relationship between environmental 

indicators (Smeets E. and Weterings R., 1999).  
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Figure 2.1  DPSIR framework  

Source: Global International waters Assessment (GIWA), 2001; European Environment 

protection Agency (EEA); Copenhagen 

 

  Figure (2.1) illustrates the relationship between the environment and human activities. 

Smeets E. and Weterings R., (1999) describe the process as follows: Socioeconomic 

development puts pressure on the environment and will change the state of the environment (e.g. 

the presence of pollutants in water which indicate the status of water quality). As a consequence, 



 

8 

 

these changes will be manifested as impacts on human health, ecosystems, and materials. Society 

will then respond (e.g. regulation, conservation etc.) in a way that feeds back on the driving 

forces or the state of the environment or impacts. Though the real world is much more complex 

than can be expressed in simple causal relationships, the communication necessitates simplicity 

to provide critical information about the phenomena (Smeets E. and Weterings R., 

1999).Gabrielsen and Bosch (2003) describe the DPSIR indicators as follows (Table 2.1):  

Table 2.1 DPSIR frame work elements 

 

Indicator type  Description of indicator type 

Driving forces Describes the social, demographic and economic developments in 

societies, corresponding life style, and levels of consumption and 

production patterns. 

Pressure Describes the pressure exerted by society through the release of 

substances (emission), physical and biological agents, use of resources 

and the use of land by human activities. 

State Gives a description of the quantity and quality of physical phenomena, 

biological phenomena and chemical phenomena (e.g. CO2 

concentration) 

Impact Pressure changes the state of the environment which in turn has impacts 

on the function of the environment as human and ecosystem health, 

resources availability, biodiversity, etc. 

Response Describes the responses by groups (individuals) in society and 

government in attempt to prevent, ameliorate, or adapt to changes. 

 

The dynamics of the DPSIR are expressed when the relationships between the elements 

(“in-between” indicators) are introduced (Figure 2.2). Smeets E. and Weterings R., (1999) 
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explains as follows:  Eco-efficiency indicators indicate whether or not there is technological 

progress (i.e. they indicate technologies’ degree of efficiency).  The pathways and dispersion 

patterns are useful for modeling current and future changes in the state of the environment and 

impacts by indicating the time of delay in natural processes and time bombs in the environment. 

Similarly, the dose response indicators between impact and state help quantify the consequences 

or act as early warnings. The costs and benefits to society in responding are governed by the 

degree of impact, which requires economic data. There is little information available in regards 

to the policy effectiveness indicator explaining the relationship of response with other elements 

(Gabrielsen and Bosch, 2003) 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Indicators and their relationship  

Source (Gabrielsen and Bosch, 2003) 
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2.2. Land use and Land cover 

This section reviews the causes of LULC change and the methods involved in assessing 

the dynamics of LULC. Additionally, the LULC dynamics of the Kagera basin from previous 

studies are reviewed. 

2.2.1. Causes of land use land cover change 

 

LULC change is most important in understanding environmental change; necessitating 

the investigation of cause to cover relationship (Tuner et al., 1994). LULC changes are 

manifested through conversion and modification, which are caused by interactions between 

climatic and anthropogenic forces owing to its inherently complex nature (Lambin et al., 2003; 

Turner et al., 1994). Even though LULC change is affected by climatic change, it is primarily 

LULC change which drives environmental and climatic changes (Gamble et al., 2003; Loveland 

et al., 2003). LULC change and its relation to cause is very important as it has the greatest 

implications on the environment (Turner et al., 1994). Understanding the causes of land cover 

changes involves looking at proximate or direct causes at the local level and the decisions 

formed as a result of complex social, economic, political, demographic, technological, cultural, 

and biophysical factors at a regional/global level (Lambin et al., 2003). Turner et al. (1994) 

indicates there are variations in the observed cause to cover relationships at different levels as a 

result of different socioeconomic characteristics, politics, levels of affluence, and technological 

development as well as culture in different parts of the world. An individual look at the regional 

and local levels provides greater details in order to identify and account for these variations. As a 

result, the simplistic assumption that LULC is driven by only a few forces has moved to a 

complicated understanding that involves interactions among a large number of factors at 
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different spatio-temporal scales (Lambin et al. 2003). Lambin et al. (2003) and Dale et al (1997) 

further indicate that the complexity of these factors can be simplified to themes that relate 

various drivers to particular LULC changes (i.e., limited paths ways), but the problem is finding 

a dominant path way or primary cause of land use change. This is because the importance of 

these factors depends on the situation and spatial scale of study. Nevertheless, the past 

understanding of these forces acting from a local to a global level becomes very important as this 

improves our ability to predict LULC changes and its consequences. These predictions are 

crucial in order to propose successful management options for a given 

biophysical/socioeconomical/political situation (Loveland et al., 2003). Lambin et al. (2003) 

describes the main drivers of LULC changes which are summarized in Table 2.2. 

Table 2.2 Factors that influence land management decision of land use and land cover change 

Drivers (factors) Description 

Multiple causes 

A mix of driving forces that varies in time and space and acts on 

different levels. They are specific to human environmental conditions. 

They are biophysical and socioeconomic factors which can be slow 

and/or fast in nature. Usually, land use change occurs through a 

combination of both natures. 

Natural variability 

Natural environments interact with human causes of land use change. 

This could be in a synchronous or independent manner which leads to 

socioeconomic unsustainability. Usually, climatic driven ecosystem 

conditions amplify the pressure due to demands on the resources 

Economic and 

technological factors 

Land use change is predominantly the result of society responding to 

the opportunities and constraints created by markets and policies 

which in turn are influenced by global factors. This works on a 

decadal time scale. Access to technology for efficient land 

management is determined by distribution of wealth as a result it has 

an impact on geographical differences of economic opportunities and 

constraints. 
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Table 2.2 (Continued) 

Demographic factors 

This also is another factor which has a great impact on land use 

change over a longer time scale. It is a shift in rates of fertility and 

mortality, but it also means associated development of households life 

cycle. The life cycle is related to labor availability, migration, 

urbanization, and the breakdown of extended families into several 

families. This life cycle is mainly a response to economic 

opportunities and constraints which affect land use change and which 

in turn affect household economy. Migration, on the other hand, is 

also a significant driver coupled with non-demographic factors (e.g. 

government polices) and some policies could trigger migration. 

Institutional factors 

Local and national policies and institutions (political, legal, economic, 

and traditional) affect decision making as they usually constrain the 

access to land, labor, capital, technology, and information and thus 

determine the land managers capabilities to participate and define 

institutions. e.g. decision making systems(decentralization, inclusion 

of local communities in decision making) and institution control over 

distribution of resources. Ill-defined policies and weak institutional 

enforcement are causes of land use change. Some policies that 

influence land use change are policies of self-sufficiency, price control 

on agricultural inputs and outputs, structural adjustments, landholding 

consolidation, as well as investments in monitoring and guarding 

natural resources. 

Cultural factors 

The individual land managers’ beliefs, attitudes, motives, collective 

memories, knowledge, skills, individual perceptions, and personal 

histories influence land use decisions. Cultural factors can be linked to 

political and economic inequalities (e.g. status of women and ethnic 

minorities affects access to land use). 

Globalization 

This is the process that underlies the other drivers and it amplifies or 

attenuates their impact by removing regional barriers, weakening 

national connections, and increasing the interdependency among 

people and between nations. The most effect is from economic/trade 

liberalization and reforms to open up the agro-industrial sector. 
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Though these are the general factors influencing land use change, Lambin et al., (2003) 

specifies the most frequent causes of land use change such as resource scarcity (which causes 

pressure on resources), market opportunities, outside policy interventions, loss of capacity and 

increased vulnerability, changes in social organization, changes in resource access, and changes 

in attitude. 

Generally, in sub-Saharan countries, the most important drivers of forest degradation 

have been identified as the extraction of fuel wood, where 80% of the population uses wood as its 

main source of energy, and agriculture, which represents the primary source of income for 70% 

of the population. Additionally, forest policy, persistent conflict and war, demography and 

population movement, low economic growth and poverty, debt and dependence on development 

assistance, constraints arising from globalization, predominance of the informal sector, and 

inadequate investment also are underlying drivers (Henry et al., 2011). Several studies have been 

done in Africa at the watershed, regional, and local level to look into LULC dynamics, and 

required looking at the population growth and socioeconomic influence in cause-cover 

relationships. Dale (1997) indicates that the effects of population growth modified by the local 

situation can be considered as an ultimate cause of LULC changes. Cadjoe (2007) points out that 

most of the studies in developing countries place a majority of their emphases on the local level, 

where direct causes of the land use /cover changes are observed. In studying cause-cover 

relationship, Cadjoe (2007) further indicates that linking people to the appropriate level to 

describe LULC changes is a challenge. However, population data can be linked easily at the 

regional, national, and district or municipal level and smaller (i.e., village level that makes the 

linkage difficult as it needs household survey data). 
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A study on land cover change was done on the Sub-Saharan Africa region for a 25-year 

period by Brink and Eva (2009). This region shows a wide range of climatic and ecological 

diversity with differences in land cover types, population, and land management techniques. The 

study showed that agriculture increased at the expense of forests and natural vegetation and 

concluded that population increase (with the majority living in rural areas) was the main driving 

force. At a smaller scale, Mundia and Aniya (2006) studied Kenya’s Nairobi city as it had 

experienced rapid growth in population and spatial extent compared to other major cities in the 

region, and was showing disappearance of vegetation giving way to urban sprawl and 

agriculture.  They found that rapid economic development and urban population growth were the 

main reasons for the observed changes.  Southern Burkina Faso has also experienced rapid 

increased population density and growth especially at the district level due to immigration of 

peasants from other regions of the country. As a result, there was an expansion of agriculture at 

the expense of open woodland and dense forest cover. The study by Ouedraogo et al., (2010) of 

these districts showed that there was a highly significant Pearson Product Moment Correlation 

between area of cropland and population density. At the municipality level in Tanzania, 

Musamba et al. (2011) assessed the impact of such socioeconomic activities as fishing, tourism, 

crop production and livestock on LULC changes. The results showed that there was a strong 

relationship between the LULC changes and anthropogenic activities. Another study in South 

Africa (Giannecchini et al., 2007) involved three villages (at the local and household level) to see 

the relationship between land cover change and socioeconomics. The villages consistently 

showed an exponential increase in human settlement as a result of refugees in the mid 80's and a 

decrease in vegetation.  In addition, weakening of institutional control at the local level over 

natural resources was observed in each village during times of political change. As a result, 
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population growth, the weakening of control of property, and increased dependency of household 

livelihood on cash income enabled individuals to harvest live wood without impunity. Other 

studies using watersheds to assess the land cover changes and its drivers were also completed in 

Africa. These studies were employed on the Kagera basin (Wasige et al., 2013; Tolo et al., 

2012), Malagarasi catchment in Tanzania (Kashaigili and Majaliwa, 2010), and the Barekese 

catchment in Ghana (Boakye et al., 2008). Their findings indicated that land use was influenced 

by policy changes, lack of education, population growth, and socioeconomic issues. 

2.2.2. Land use and land cover detection 

 

Land use and cover data is collected through the combination of direct observation and 

remote sensing, with the latter being the most widely used method (Campbell, 2007). Data has 

been mapped at different scales using panchromatic, medium-scale aerial photographs since the 

1940’s and more recently by using small-scale aerial photographs and satellite images (Lillesand 

et al., 2008). Satellite data has been valuable in partnership with socioeconomic surveys and 

census data for a better understanding of land use/cover dynamics and the factors that drive them 

(Codjoe, 2007).  

2.2.2.1. Image classification 

 

Image classification is an important part of remote sensing, one which assigns pixels to 

classes to produce land cover information. It involves image selection, preprocessing, algorithm 

selection, and training data (Lu et al., 2011; Campbell, 2007). Lu et al. (2011) indicate there are 

different classification approaches such as Supervised, Unsupervised and Hybrid; Parametric and 
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Non parametric; Hard and Soft (Fuzzy) classification; and Per pixel, Sub-pixel, and Per field. 

The techniques used, however, are typically influenced by users’ needs, the spatial resolution of 

satellite images, the complexity of the study area’s landscape, available image processing and 

classification algorithms, and time constraints (Lu et al., 2011).  . 

Medium resolution images (e.g. Land sat) are most commonly used in LULC 

classification even though they have low time frequency, and rarely have cloud-free images 

(Henry et al., 2011). As spectral information is important for medium resolution image data, 

parametric classification algorithms such as maximum likelihood are often used, but Per pixel 

classifiers have repeated difficulties in dealing with mixed pixel problems (Lu et al., 2011). 

Lillesand et al. (2008) mention that the minimum distance classifier or algorithm has limitations 

where you have close spectral classes in measurement space and have high variance. In other 

words, it is insensitive to different degrees of variance in the spectral response of the data. The 

coarse resolution satellite images are not readily adapted; especially in estimation of 

deforestation at a national level (Henry et al., 2011). Lu et al. (2011), on the other hand, indicate 

that high resolution images such as QuickBird and IKONOS bring about high spectral variation 

within land cover class and as a result, Per pixel classifiers perform poorly. In such cases, Per 

field or object-oriented algorithms are appropriate (Lu et al., 2011) 

In classification, three methods are used: (1) Supervised (2) Unsupervised (3) Hybrid 

classification. Unsupervised classification is used to aggregate initially unknown pixels based on 

image values which are later compared to reference values to determine identity (Lillesand et al., 

2008). The most commonly used clustering algorithm in unsupervised classification is 

ISODATA. In a supervised classification method, pixels categorization is done by image analyst 
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who specifies samples of known cover types to numerical interpretation that distinguishes each 

class’s spectral attribute (Lillesand et al., 2008). This classification may include classifier 

algorithms such as minimum distance or Gaussian maximum likelihood.  Lillesand et al. (2008) 

mention that hybrid classification is very effective where land cover types’ spectral responses are 

highly variable, especially in vegetation species mapping. This method uses a combination of 

supervised and unsupervised approaches to improve the accuracy of purely supervised or 

unsupervised LULC classification (Lillesand et al., 2008). The unsupervised method is used to 

identify spectral classes present in the image which are later differentiated in supervised 

classification. 

Different studies have used different techniques in LULC mapping.  Mundia and Aniya 

(2006) used unsupervised classification method using ERDAS because it allowed spectral 

clusters to be identified with a high degree of objectivity. As a result of mixed pixels and same 

spectral responses (from moderate resolution images), the clusters were spectrally confused. 

They were then reclassified based on visual interpretation (local knowledge) and removed using 

the majority filter. A minimum distance algorithm was used during the classification. It showed 

an overall accuracy greater than 85% for each image classified. They used different images 

(ETM, TM and MSS) and used a modified version of Anderson’s classification scheme. Brink 

and Eva (2009) also used an unsupervised method using sampled images from TM and MSS 

images to assess a 25 year land cover change for continental Africa. This study had an issue with 

incompatibility of the images in terms of radiometric and spatial resolutions. In another study in 

Ghana, Boakye et al. (2008) used TM data in assessing the LULC changes using the 

unsupervised classification method.  
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Ouedraogo et al. (2010) also used a combination of satellite images (land sat scenes and 

ASTER) in studying the land cover dynamics of Sissili province of Burkina Faso. They 

classified the images using training data supported by topographic maps and ground-truthing to 

assign pixels to identified categories. A Maximum Likelihood algorithm was used on a tasseled 

cap transformed image, and the overall accuracy of the classified images ranged from 87.6% to 

94.4% for all land sat images and 92.5% to 94.8% for ASTER images. Others also used the 

supervised method and the maximum likelihood classifier in assessing the land use and cover 

dynamics. Wasige et al. (2013) validated their classified maps against aerial photograph 

topographic maps and field observation. They had an overall classification accuracy > 85%. In a 

similar study in Angola, Cabral et al. (2010) achieved an accuracy of 80%. The classification 

included ancillary data from Google Earth high resolution photography, visual interpretation of 

satellite images, vegetation maps and expert local knowledge. In both studies, Wasige et al. 

(2013) and Cabral et al. (2010) used a mosaic of TM/ETM images to encompass the study area, 

and the maps were made with images dated as closely to each other as possible.  

Studies have also used hybrid classification, which is the combination of both supervised 

and unsupervised classification. It is a valuable approach, although there is complex variability 

in the spectral response patterns for individual cover types present. This arises from different 

cover types or conditions (Lillesand et al., 2008).  Were et al. (2013) conducted land cover 

change detection for the Nakuru drainage basin in Kenya. They utilized TM, ETM and MSS 

images for different years and used supporting data from Google Earth imagery, thematic layers 

(Africover), field data, and topographic maps. They achieved an overall accuracy of 80% and 

above for the image classified and the change detection maps were above 70%. They attributed 

some of the classification errors they encountered to spectral confusion between croplands and 
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grasslands and among forests, shrub lands, and croplands. Similar studies which employed 

hybrid classification also generated successful classification performance (Paiboonvorachat and 

Oyana, 2010; Torahi and Rai, 2011). 

2.2.2.2. Change detection 

 

Change detection involves quantitatively identifying the differences between multi-

temporal data sets to see the dynamics of the phenomena of interest. The repetitive and synoptic 

data acquired from remote sensing has been a major source for change detection in past decades 

(Lu et al., 2011). Lu et al. (2011) point out that change detection gives an in-depth understanding 

of the relationships between human and natural phenomena for better management of resources. 

Accordingly, studies should involve the following information: change and rate of change, 

spatial distribution of change, and change trajectories of land cover types.   

Many change detection algorithms are available: those giving change or no change 

information as image differencing, image rationing, Principal Components Analysis (PCA), as 

well as those giving detailed ‘from-to’ information as hybrid change detection and post- 

classification methods (Singh,1989; Lu et al.,2011; Lillesand et al.,2008; Campbell, 2007). The 

pitfall of implementing the detailed ‘from to’ change detection is that accuracy of such 

procedures depends upon the accuracy of each of the independent classifications used in the 

analysis (Lillesand et al., 2008). That is to say accuracies arising from the classification images 

will affect the change detection results (Singh, 1989). As a result, the accurate classification of 

images is a critical step in image classification (Lu et al., 2011). Nevertheless, post-classification 

change detection is widely used, as it circumvents problems associated with multi-date images 

such as radiometric and atmospheric differences and registration errors (Singh, 1989).  This 
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method further provides useful information using matrices of from-to changes than those 

methods which provide only change or no change information such as image differencing 

(Campbell, 2007).  

Different studies have used different change detection methods. In assessing land cover 

changes and its effects on soil erosion in the Nan watershed in Thailand, Paiboonvorachat and 

Oyana (2010) used the post classification method for change detection. They used IDRISI to 

generate the cross tabulation matrices (cross tabulation) and cross classification to observe the 

‘from-to’ change. Shalaby and Tateishi (2007) in Egypt used the same technique in (post 

classification change detection) IDRISI to produce cross-tabulation and assess the changes that 

occurred in the north western coast. In studying the land cover and forest change in the 

mountainous area of Dehdez, Iran, Torahi and Rai (2011) used the post classification change 

method in INVI. Other studies in Africa which sought to quantify LULC dynamics also applied 

the post classification detection technique (Were et al., 2013; Kashaigili and Majaliwa, 2010; 

Boakye et al., 2008; Mundia and Aniya, 2006; Wasige et al., 2013; Shiferaw, 2011). 

Researchers have used a variety of other methods in their studies as well. In assessing the 

potential of high resolution land satellite data for the horn of Africa, Brink and Eva (2011) 

overlaid two grid images and used the change or no change method using 7x7 gird 

boxes(300mby 300m) and  visual interpretation. In Mozambique, Jansen et al. (2008) used 

object-oriented GIS overlay between images to assess the change that had occurred in the 

Manica province.  Giannecchini et al. (2007) used raster images of cover (derived from aerial 

photographs) to compare the relative frequency of cover between the years of the study period.  
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2.2.3. Land cover changes in Kagera 

 

Studies of LULC changes in the Kagera basin have previously been performed.  Tolo et 

al. (2012) assessed the degradation of natural resources of the Kagera basin and sub-basin 

(Uganda) for the period between 1984 and 2002. In their studies for the Kagera basin, they 

identified and mapped 8 major land use and cover types; urban areas, forest, water bodies, 

woodlands of different types, cultivated land with different crops, bush land of different types, 

open land, and grassland with different types. This was done using Landsat, aerial photography, 

and ground-truthing. The results indicate that there are variations in the dynamics observed for 

woodland areas and bush land. The forest, cultivated land, and urban areas showed increases in 

areal coverage whereas water bodies showed a loss or decrease in areal coverage for the study 

period.  

A similar study of the Kagera basin was done by Wasige et al. (2013). The researchers 

examined LULC dynamics for the period between 1901 and 2010 using historical thematic maps, 

topographic sheets, interviews, ground truthing, literature review, and satellite images. They 

identified the land cover classes as dense forest, degraded forest, woodlands, savannas, tea, 

plantation forest, bamboo, water bodies, farmlands, urban and built up areas, and permanent 

wetlands. Their findings show that the dominant LUCC change was by farm land, which 

increased to 60% of the total watershed area.  They also found there was a decrease in dense 

forest (from 7% to 2.6%), woodlands (from 51% to 6.9%), and savannas (from 35% to 19.6%). 

As for the water bodies and wetlands, their study showed no change for the study period. 
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CHAPTER 3 

DATA AND METHODOLOGY 

3.1. Study area   

 

The Kagera river basin is located in Eastern Africa. It is located between 29
0
1’37” E and 

31
0
 40’19” and between 3

0
57’ 21” S and 0

0
39’ 32” S and covers an area of 63,500 km

2
 

(6,350,400 ha) (Figure 3.1a). The watershed spans across four countries; Burundi (23%), 

Rwanda (36%), Uganda (7%), and Tanzania (35%) (NBI, 2008).

 

Figure 3.1a Map of Kagera basin showing neighboring countries: Uganda, Tanzania, Democratic 

Republic of Congo, and Burundi  
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Approximately 15 million people live in Kagera and 90% of the population consists of 

subsistence farmers who live in rural areas and depend directly on farming, herding, and fishing 

activities (FAO, 2013; NBI, 2008). The mean annual growth rate (2.7%) and fertility rate (6.34) 

of this region is higher compared to other sub-Saharan countries (NBI, 2008). 

The climate of the Kagera basin is characterized by humid, sub-humid, and semi-arid 

climates with two dry seasons (June to September and December to February) and two rainy 

seasons per year, the wettest months being in April and November (FAO, 2013). Being a tropical 

location, temperatures are very constant. The average annual temperature is lower in the western 

and north western areas (15 to 18
 0 

C), with an average of 22 
0
 C in the central part of the 

watershed (NBI, 2008).  The mean minimum temperature is 14.5 
0
 C and the mean maximum 

temperature is 27.5 
0
 C (NBI, 2008). The pattern of rainfall is distributed in such a way that the 

western parts of Rwanda and Burundi receive higher rainfall (over 1800 mm), with most of the 

eastern part receiving less than 1000 mm; with the exception of an area near Lake Victoria (NBI, 

2008). 

Kagera basin has an important river called Kagera River running through it, forming part 

of Tanzania’s border with Rwanda and Uganda.  This basin is part of the Lake Victoria basin and 

drains into Victoria Lake, contributing up to almost one-fourth of the inflow (FAO, 2013). Water 

from Lake Victoria eventually flows to the Mediterranean. 

The Kagera has two major topographical zones; the West Rift Zone Scarp and Lake 

Victoria Basin. The West Rift Zone is on the eastern side of the Western Rift valley which forms 

the boundary between Rwanda and the Democratic Republic of Congo. The Nile Basin Initiative 

(2008) indicates that there are four hydro-geographical zones based on shared similarity in 
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geology, landforms, relief, climate and stream flow. These zones are the Congo Nile Divide, 

Hills and Mountain Foot Ridges, Swamp and Lake Terrain, and West Victoria Lake region 

(Figure 3.1.b). The Congo Nile Divide encompasses the western part of the basin along the 

border with the DR Congo and is characterized by a heavily dissected mountainous area with 

steep slopes. The hill and mountain foot ridges are located mostly in Burundi. The majority of 

the Swamp and Lake Terrain region is located in the central part of the watershed. This is 

characterized by plain, plateaus mixed with some mountain and hills. Lastly, the West Victoria 

Lake region is in the eastern part of the basin (mostly in Tanzania) and is characterized by 

alluvial plains and plateaus.  

The basin has a general elevation of 1200 to 1600 m. The west part of the basin has a 

higher general elevation of 2500 m with peaks in the north western corner reaching up to 4500 m 

in elevation. The eastern portion has an elevation lower than 1300 m (Shahin, 1985; NBI, 2008). 

Most of the Kagera area is cultivated agricultural lands. Natural vegetation follows with 

only 2% of Kagera being covered by closed forest, the largest of which is Nyungwe forest. 

Nyungwe forest is one of the largest mountainous rain forests remaining in Africa (GWP, 2011).  

Natural vegetation types include forests and woodlands, savannas, shrub lands, pasture lands, 

and aquatic vegetation in wetlands (NBI, 2008). 
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Figure 3.1.b Hydro geographical zones of Kagera (Source: NBI, 2008) 



 

26 

 

3.2. Data description and collection 

 

 In this study Landsat images, ancillary data (reference maps and Google 

photography), and administrative level census data from the four countries (Uganda, Burundi, 

Rwanda and Tanzania) were used. 

3.2.1. Image acquisition and preparation 

 

The selection of remotely sensed data depends on factors such as the scale of study area, 

availability of image data, and cost/time. Landsat thematic mapper (TM) data is frequently used 

at a regional scale (Lu et al., 2011).The Landsat TM images used for this study were accessed for 

free from the Earth Resources Observation and Science Center (EROS) of the United States 

Geological Survey (http://glovis.usgs.gov/).  The path and rows for the scenes covering the study 

area were identified (Table 3.1). Discrimination of change involved the use of multi-temporal 

images. Ideally all the images should be acquired from the same sensor, be recorded with the 

same spatial and radiometric resolution, viewing geometry, and time of day (Lillesand et al., 

2008). 

Different considerations were taken when selecting the study period such as the 

availability of images for the intended years,  predominately cloud free images in each scene or 

study area, and availability and closeness (in terms of month) of each scene involved for a single 

year. Images were selected from the dry season; when cloud coverage is usually found to be at a 

minimum. However, complete Landsat TM data for the period of interest was not available, with 

available scenes containing cloud cover. Thus, it was not possible to compile a consistent dataset 

for the watershed. Henry et al. (2011) indicate the difficulty in obtaining cloud free images as 

http://glovis.usgs.gov/
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one of the limitations inherent to Land Sat. Therefore, this study used scenes from those years 

closest to the year of interest (previous or next). In addition to image selection criteria, the time 

points 1984, 1994, and 2011 from TM 4 and 5 were selected to allow for adequate period gaps 

and range to detect land cover change. Also the years or time points chosen were meant to 

coincide with major socioeconomic and political changes for the study region in order to best 

capture change. Once the scenes were selected, the images were downloaded and 6 bands, 

excluding the thermal band (bands 1 through 5 and 7), were stacked to form multi-band images 

using ERDAS IMAGINE 2011. 

Table 3.1 Predominantly cloud free Landsat scene chosen for the land cover classification. 

Source: USGS 

Year Sensor Path / Row Acquisition Date 

1984 

 

Landsat TM 173/61 19thJuly 1986 

Landsat TM 173/62 19th July 1986 

Landsat TM 172/61 6th June 1984 

Landsat TM 172/62 20th June 1984 

Landsat TM 172/63 20th June 1984 

1994 

 

Landsat TM 173/61 Jan 1st 1995 

Landsat TM 173/62 25th July 1994 

Landsat TM 172/61 4th Sept 1994 
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Table 3.1 (Continued) 

1994 Landsat TM 172/62 3rd Aug 1994 

Landsat TM 172/63 3rd Aug 1994 

2011 

 

Landsat TM 173/61 8th July 2011 

Landsat TM 173/62 8th July 2011 

Landsat TM 172/61 25th June 2009 

Landsat TM 172/62 8th Feb 2011 

Landsat TM 172/63 1st July 2011 

 

3.2.2. Population data 

 

 To estimate the population of Kagera, the districts (administrative regions) from the 

four sharing countries were selected by over-laying them on the watershed. Then population data 

was acquired for each district in the Kagera basin. These were collected from the different 

government websites of Tanzania (www.geohive.com), Uganda Bureau of Statistics 

(www.ubos.org), National Institute of Statistics of Rwanda (www.statistics.gov.rw), and United 

Nations development program Burundi (www.bi.undep.org) (See Appendix B). The national 

census is conducted at different times for each country so the population during the inter-census 

periods was estimated for each district in each country. Interpolation/extrapolation was done to 

fill the gaps and harmonize the data for the four countries’ districts. The growth trend calculation 

was used to fill in a series of missing values (interpolate and extrapolate) using the series 
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command in Microsoft Excel. This assumes that a population will increase or decrease 

exponentially (See appendix B). 

Exponential growth estimation formula is shown below; 

Growth rate 1/( ) (( ) ) 1nPl
r

Pb
  where Pl= population at launch year; Pb= population at base year 

and n is period of time 

*(1 )zPt Pb r  Where Pt= is the population in the target year, and z is the number of years in 

the projection horizon.  

   

3.2.3. Ancillary data 

 

Ancillary data were used to support the classification. Thematic maps of the Kagera basin 

for the years 1985, 1995, and 2010 were scanned and geo referenced using ArcGIS 10 to 

Universal Transverse Mercator grid (zone 36 N, WGS 84 ellipsoid and datum). These data were 

prepared to support classification and assess the accuracy of the classified images. High 

resolution Google imagery and local knowledge were also used to support the classification. 
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3.3.3 Flow chart of the methodology 

 

The figure below shows the methodology followed during this study.  Two parallel 

procedures were followed for population data and satellite TM images. 
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Figure 3.2 Flow chart of a methodology 
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3.3. Image preprocessing 

 

Level 1T images were used, which are systematically processed for radiometric and 

geometric accuracy using ground control or elevation data. In addition, DEMs were used for 

topographic accuracy and to prevent distortions in the images (USGS, 2013). Radiometric 

correction was conducted on the mosaicked image by removing haze in ERDAS. Further 

correction was done using ATCOR software. ATCOR is one of the most popular commercially 

available atmospheric correction codes for land imagery (Lu et al., 2011). It removes the effects 

(e.g. bi-directional reflectance) of solar illumination and viewing geometry of different sensors 

by way of normalizing the data to nadir reflectance values with its sensor-specific atmospheric 

database look-up tables. ATCOR also removes the atmospheric and topographic effects using its 

physical model which is advantageous for multi-temporal data (Richter and Schlapfer, 2013). 

Figure 3.2 shows the image after atmospheric/radiometric correction. Though the image for 1994 

shows some cloud coverage, it was the best mosaic available for this area and period. However 

the majority of cloud coverage was outside of the watershed. 
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Figure 3.3 Mosaicked Landsat images after radiometric correction and haze reduction 
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3.4. Land use and Land cover classification and accuracy assessment 

 

Classification of remotely sensed data uses image processing software, and for this study 

ERDAS IMAGINE 2011 version 11.0 was used. Once the images were classified, the newly 

classified maps were evaluated for classification performance using an error matrix. 

3.4.1. Image classification 

 

For this study, the USGS classification system was used. This is a widely used general-

purpose LULC classification system (Campbell, 2007). The system is a reasonable and enduring 

classification scheme which allows interpretation of features from remotely sensed images 

(Lillesand et al, 2008).  Having images with a resolution of 30, the more generalized level I 

classification system was used for this study. Anderson et al., (1976) mentions that this is more 

appropriate for nationwide information gathering and designed for use with Landsat satellite 

data. In other words, it is applicable to images having a resolution of 20 to 100 (Lillesand et al, 

2008). 

Based on the combination of ancillary data (a thematic reference map and high resolution 

Google earth photography), literature provided, close visual inspection of remotely sensed data, 

and the local knowledge of Dr. Oyana; five easily identifiable broad classes were identified 

(Table 3.2). Detailed land cover classes could not be completed due to limitations in the data. 

However, these broad classes give a general trend or dynamics of LULC at the scale of the study 

area. Also, urban areas could not be classified due to their very small size and spectral similarity 

with woodland savanna. As a result, they were not included in the interpretation of land cover 
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dynamics. The woodland and savannas were categorized into one as it was difficult to 

differentiate between the two using the data provided. 

Table 3.2 Land use and land cover classes 

ID Class Name 

1 Forest 

2 Water bodies 

3 Wetland 

4 Woodland Savanna 

5 Agriculture 

 

Different methods are available for classification and choosing a method depends on the 

resolution of the image and availability of classification software, among many factors (Lu et al., 

2011).   For this study a supervised approach was used.  In supervised classification, known 

representative training areas are picked by the image analyst to describe the spectral attributes of 

each feature type of interest (Lille sand et al. 2008). A Minimum distance algorithm (a traditional 

Per pixel classifier) was used for the classification of the images. Lu et al (2011) mention that 

spectral information is important in medium resolution images as there is a loss of spatial 

information, and parametric classification algorithms are often used if imagery is spectral based. 

Guided by the ancillary data, spectral signatures were acquired to train the classification through 

visual interpretation of the satellite images (notable classes as lakes, wetland and forest) and 
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local/expert/interpreter knowledge of area. This information was coupled with temporally 

invariant land cover types (e.g. national parks) and high resolution Google imagery. The Area of 

Interest (AOI) tools (such as a polygon) and Seed Growing tool in ERDAS IMAGINE were used 

in acquiring the signatures. 

After supervised classification of the images, the next step involved recoding of land use 

covers and further modification. Ancillary data (thematic map and Google high resolution 

photography), visual interpretation of the satellite image in comparison to thematic maps, and 

knowledge of the area were integrated to improve the accuracy of the land cover maps. 

Modification of land use cover is one of the processing roles after classification (Lu et al., 2011). 

The next step was the removal of the “salt and pepper effect”. The salt and pepper effect is the 

result of a spectral signature-based, per pixel classification of a complex or heterogeneous 

landscape. Often a majority filter is used to reduce this effect (Lu et al., 2011; Lillesand et al., 

2008).  

The Kagera study area covers a large area with complex land forms and will inevitably 

have noise due to LULC cover and classification. A 15 x 15 thematic pixel aggregation tool in 

ERDAS IMAGINE was used to reduce this noise by down sampling so as to be comparable to 

the reference thematic map for accuracy assessment. Areas for each category for the three years 

were then calculated using ArcGIS 10. 
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3.4.2. Accuracy assessment 

 

A quantitative approach to accuracy assessment based on sampling strategy was used in 

this study. Accuracy assessments measure how close an image of unknown quality is to a 

standard image assumed to be correct (Campbell, 2007). An error matrix is the most commonly 

used method, with its assessment elements including overall accuracy, omission error, 

commission error, and kappa coefficient. Generating this requires, among other things, the 

consideration of sampling size, sample unit, and the collection of reference data (Lu et al, 2011; 

Lillesand et al 2008).  A random stratified distribution parameter was used to circumvent the 

problem of under sampling of smaller classes associated with random sampling (Lillesand et al, 

2008). In total, 350 pixel samples were used in the accuracy assessment of the classified images 

of 1984, 1994 and 2011, and scanned thematic maps of 1985, 1995 and 2010 were used as 

reference data.  Each of the 5 categories was used as stratum to generate the random sampling 

points. 50 random points were used for each forest, water body, and wetland as they represented 

smaller proportions of the watershed. 100 random points were generated for each woodland 

savanna, and agricultural area as these represented larger proportions of the watershed area. 

Lillesand et al. (2008) recommend as a general guideline that a minimum of 50 samples per 

category be used in error matrix, and 75 to 100 samples per category if an area is more than one 

million acre, or has a large amount of vegetation. 

During the accuracy assessment, pixels that fell on or near the boundaries of the LULC 

class or watershed were removed to lessen the influence of potential registration errors. Using 

ERDAS IMAGINE 2011, the pixel class values for reference data were put in the accuracy 

assessment table and finally, an assessment report was generated. 
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3.5. Post-classification analysis 

 

After the image was classified for each year, the change in LULC was assessed for the 

period of 1984-2011 and a future trajectory was computed in IDRISI.  Since detailed land cover 

trajectory was one of the objectives, and geometric correction of the images was not possible, a 

post classification change detection method was used. Post classification change detection 

provides a complete matrix of change directions, and bypasses any registration, radiometric and 

atmospheric errors (Singh, 1989). 

3.5.1. Past land cover change analysis 

 

To analyze the changes that had occurred for the period of 1984-2011 in the Kagera 

basin, the change analysis tab of land change modeler and CROSS TAB GIS analysis operation 

of IDRISI Selva were used. Contributors to the change experienced by each category were 

investigated using the change analysis tab, the gain and losses by each category, and the net 

change experienced by each category. Furthermore, the change map option was used to provide 

spatial distribution of the changes (from-to). The CROSS TAB was also used also calculate the 

frequency of the pixels for each category by comparing two images to provide a from-to analysis. 

For ease of analysis, the frequency of pixels was converted to hectare units. 

3.5.2 Major land cover transition 

After the past land cover categories were analyzed, the dominant land cover transition for 

the period of study was chosen to map the land cover transition using IDRISI’s Land Cover 

Modeler. Next, the raster images from IDRISI showing the transition were over laid with 
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population maps (per district) of the watershed. This was done to see the relationship between 

population change and land use change (the dominant land use change of the watershed) 

3.5.3. Land use and cover change prediction 

 

In order to further estimate land cover transition, a Markov chain analysis in the Markov 

module of IDRISI Selva was implemented. The Markov model predicts the state system at time 2 

based on state system 1 (Eastman, 2012). The predictive model in IDRISI (Markov module) 

considers previous land cover changes between two cover maps as input to produce a transition 

probability matrix showing the likelihood of each category to change or remain the same in the 

next period (Eastman, 2012). In turn, it uses the probability matrix to produce a transition area 

matrix which shows the quantity (in number of cells, hectares, etc.) that is expected to change. 

For this study, the classified images of 1984 and 1994 were used to predict LULC change in 

2011 and this was compared to the actual land use calculated from the classified map to validate 

the prediction. Once it was validated, a prediction for the year 2020 was done using the 

transitions between 1994 classified image and 2011 classified image as well as the transitions 

between 1984 classified image and 2011 classified image.  

3.5.4. Land cover-population relationship analysis 

 

In this section, the population cover relationship was analyzed. In doing so, three 

transition maps were prepared for three periods (1984 to 1994, 1994 to 2011, and 1984 to 2011) 

using the IDRISI land cover change modeler.  The population map was prepared by joining the 

population data to each district shapefile falling within the watershed. Selection by location and 

overlaying was used in the analysis of population-cover analysis. 
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CHAPTER 4 

RESULTS 

 

The results are organized in two sections. The first section shows the result of the 

classification after the Landsat images of the three years have been preprocessed. The second 

section presents the observed changes between the three temporal periods.   

4.1. Image classification and accuracy assessment 

 

The results of the classified images depicted and quantified the LULC categories in the 

Kagera watershed. Moreover it gave a generalized and preliminary view on the changes that 

occurred.  The accuracy assessment showed an overall good classification for the classified 

images. 

4.1.1. Land use and land cover 

 

Based on the table (Table 4.1.), the largest LULC categories were agriculture and 

woodland; both covering almost 90% of the watershed in all the study years.  Forest, water 

bodies, and wetland accounted for the rest of the land use and cover in the watershed. The 

dominancy of agriculture and woodland savanna is also evident from the classified images 

(Figure 4.1) 

Looking at the pattern or distribution of the land use cover categories, the classified 

images show that woodland savanna is a major land cover type on the eastern part of the 

watershed along with the major permanent wetland. Agriculture was found to be consistently 

dominant in the central and western part of the watershed for the study period.  The major dense 
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forest (Nyungwe forest) found in the western lower part of the watershed and other smaller 

patches of dense forest are located in the northeastern part of the watershed  

Change in LULC for the period of 1984-2011 is also visually evident. This also can be 

verified from the dynamics observed in terms of the proportion (area) of the land use categories 

shown in the table. The agriculture and the woodland savanna categories showed major changes. 

Specifically, agriculture increased at the expense of woodland savanna. Water and wetland 

showed insignificant change or fluctuation. The general change observed exhibited a southward 

pattern of agriculture expansion. 

Table 4.1 The areas and proportions of each land use and land cover category of the Kagera 

basin for each study year. 

Land cover 

classes 
1984 (ha) % 1994(ha) % 2011(ha) % 

Forest 341556.75 5.37 364824 5.74 360713.25 5.67 

Water 

bodies 
109329.75 1.72 127190.25 2 105138 1.65 

Wetland 255069 4.01 247900.5 3.9 254461.5 4 

Woodland 

Savanna 
2778219 43.7 2271969 35.74 1990332 31.31 

Agriculture 2873434.5 45.2 3345725.25 52.63 3646964.25 57.36 

Total 6357609 100 6357609 100 6357609 100 
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Figure 4.1 The land use and land cover classification of Kagera basin for the years 1984, 1994 

and 2011. 
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4.1.2. Accuracy Assessment 

 

This section presents the evaluation of classification performance for the classified 

images of 1984, 1994, and 2011.  The error matrix for each year is shown along with measures 

of accuracy. For each class the producer’s accuracy, user’s accuracy, overall accuracy, kappa 

coefficient, and the overall kappa value is calculated. A stratified random sampling design and 

350 pixel sample units were used during the accuracy assessment.  

  For the 1984 classified image, water bodies showed a100% accuracy in classification 

(Table 4.2). Forest, wetland, woodland, savanna, and agriculture all showed both commission 

and omission error. A number of pixels of forest and wetland were misclassified as wetland, 

agriculture and forest. As for woodland, savanna, and agriculture, the majority of the pixels were 

misclassified to one another. This is has to do with spectral similarity of agriculture, wetland and 

agriculture. 

Table 4.2 Error matrix of 1984 classified image 

                                                              Reference Data  

 

 

 

 

Classified Data 

Class names  Forest  Water 

bodies 

 Wetland Woodland 

savanna 

Agriculture Row 

total 

Forest 38 0 8 0 4 50 

Water bodies 0 50 0 0 0 50 

Wetland 3 0 38 4 5 50 

Woodland savanna 0 0 1 80 19 100 

Agriculture 2 0 2 14 82 100 

Column total 43 50 49 98 110 350 
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Looking at the accuracy measurement for 1984 (Table 4. 3), an overall high classification 

accuracy of 82.29% and overall Kappa statistic of 0.77 (which is near the borderline of good 

classification performance) was achieved.  The Kappa statistic indicates that the1984 classified 

image is almost as accurate as the other classified images. There was a slight difference in the 

Kappa value between the classified images, with 1984’s being the smallest and 2011’s being the 

highest.  

A further look at the distribution of error among each category is examined from a 

producer’s and user’s perspective and Kappa value of each category. Forest, water bodies, and 

woodland savanna have a high producer’s accuracy of 88.37%, 100% and 81.63% respectively, 

whereas, wetland and agriculture showed a moderate classification performance of 77.5% and 

74.5%, respectively. On the other hand, the user’s accuracy for water bodies, woodland savanna, 

and agriculture was high (100%, 80% and 82% respectively) whereas, forest and wetland 

showed moderate classification of 76% each. Generally, water bodies and woodland savanna 

showed good accuracy from both perspectives.  The kappa value of water bodies showed good 

classification performance and moderate performance of the rest.  

Table 4.3 Accuracy totals and Kappa Statistics result for 1984 classified image 

Class name Producers Accuracy (%) Users Accuracy (%) Kappa Statistic 

Forest 88.37 76 0.73 

Water bodies 100 100 1 
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Table 4.3 (Continued) 

Wetland 77.55 76 0.72 

Woodland Savanna 81.63 80 0.72 

Agriculture 74.55 82 0.73 

 

Overall classification accuracy = 82.29%                         overall kappa statistics = 0.77 

 

Table 4.4 shows the error matrix for the 1994 classified image. From the user and 

producer perspective, the majority of pixels were misclassified between woodland/savanna and 

agriculture. Generally, forest and wetland were also misclassified as wetland, agriculture and 

forest.  

Table 4.4 Error matrix of 1994 classified image 

                                                              Reference Data  

 

 

 

 

Classified Data 

Class names  Forest  Water 

bodies 

 Wetland Woodland 

savanna 

Agriculture Row 

total 

Forest 37 0 9 2 2 50 

Water bodies 0 40 0 5 5 50 

Wetland 2 0 41 3 4 50 

Woodland savanna 0 0 1 84 15 100 

Agriculture 0 0 1 10 89 100 

Column total 39 40 52 104 115 350 
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For the 1994 classified image, the overall classification was also high (83.14%) (Table 

4.5). The overall kappa statistic (0.78) was also near the border line of good classification 

performance. There was a slight improvement in both accuracy measurements from the previous 

year’s classification. The producer’s accuracy of forest, water bodies, and woodland savanna was 

high; 94.87%, 100%, and 80.77%, respectively. Wetland and agriculture also showed a 78.85% 

and 77.39% producer’s accuracy, respectively. This is near the borderline of good classification. 

From the user’s perspective, all the categories showed accuracy over 80% except for forest, 

which showed a moderate classification performance of 74%. In general, woodland/ savanna and 

water bodies showed a high user’s and producer’s accuracy measurement. The kappa value of 

each category also shows that all had a moderate classification performance except for 

agriculture which showed a high classification kappa value of 0.84.  Even though the kappa 

values of the categories showed moderate performances, it was close enough to the threshold of 

good classification in the case of water bodies, wetland, and woodland savanna. 

Table 4.5 Accuracy totals and Kappa Statistics result for 1994 classified image 

Class name Producers Accuracy (%) Users Accuracy (%) Kappa Statistic 

Forest 94.87 74 0.71 

Water bodies 100 80 0.77 

Wetland 78.85 82 0.79 

Woodland Savanna 80.77 84 0.77 

Agriculture 77.39 89 0.84 

 

Overall classification accuracy = 83.14%                         overall kappa statistics = 0.78 
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The classified image of 2011 generally showed a similar confusion among forest, 

wetland, and agriculture based on the results observed from other years (Table 4.6). Also, 

agriculture and woodland savanna both showed that the majority of pixels were confused 

between them. 

Table 4.6 Error matrix of 2011 classified image 

 

 

                                                             Reference Data  

 

 

 

 

Classified Data 

Class names  Forest  Water 

bodies 

 Wetland Woodland 

savanna 

Agriculture Row 

total 

Forest 38 0 6 3 3 50 

Water bodies 0 50 0 0 0 50 

Wetland 4 0 35 5 6 50 

Woodland savanna 0 0 0 82 18 100 

Agriculture 1 0 0 9 90 100 

Column total 43 50 41 99 117 350 

 

The overall classification and kappa values for 2011 were 84.29% and 0.79, respectively 

(Table 4.7). These values indicate an overall high classification performance (0.79 is near the 

border of good classification) and showed slight improvement from previous years’ 

classification.  A look at the producer’s accuracy tells that all of the categories classification 

performances were high (over 80%) except for the agriculture, which showed a moderate 

classification performance of 76.92%. User’s accuracy for water bodies, woodland savanna, and 

agriculture, on the other hand, had a high accuracy of over 80% compared with forest and 
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wetland in which moderate classification performance was observed. In terms of kappa values, 

water bodies (1) and agriculture (0.85) had good classification performance. Forest, wetland, and 

woodland savanna had a moderate classification performance of 0.73, 0.66, and 0.75, 

respectively. 

Table 4.7 Accuracy totals and Kappa Statistics result for 2011 classified image 

Class name Producers Accuracy (%) Users Accuracy (%) Kappa Statistic 

Forest 88.37 76 0.73 

Water bodies 100 100 1 

Wetland 85.37 70 0.66 

Woodland Savanna 82.83 82 0.75 

Agriculture 76.92 90 0.85 

 

Overall classification accuracy = 84.29%                         overall kappa statistics = 0.79 

 

Looking at the entire research period, there was overall consistency in the LULC 

classification of the three periods. Each period exhibited good classification performance. This 

was supported in terms of close values of overall classification and overall kappa values.  

A further comparison of accuracy assessment of all categories between the three temporal 

periods reveals that generally, the producer’s accuracy for all categories for the entire study 

period showed consistent accuracy measures except for forest and wetland. The inconsistency 

observed for forest had to do with 1994’s accuracy measurement. In 1984 and 2011 it was 

88.37% but in 1994 it was 94.87%. There was an increase in forest from 1984 to 1994 and a 
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decrease in 2011. This indicates that forest might have been underestimated in 1984 and 2011 

and as a result, part of the changes detected can also be attributed to the differences in 

accuracies.   

In terms of the classification performance, producer’s accuracies of over 80% were 

observed for forest, water bodies, and woodland savanna across all the years; hence it had good 

classification performance as it implies the omission error was smaller. Agriculture had moderate 

classification performance for the entire period according to its producer’s accuracy (74.55%, 

77.39%, and 76.92%, for 1984, 1994 and 2011 respectively). Also wetland showed moderate 

classification for 1984 and 1994 and good classification performance in 2011 (77.55%, 78.85%, 

and 85.37%, respectively). 

Regarding the user’s accuracy, all categories in all the periods showed consistency except 

for water bodies in 1994, agriculture in 1984, and wetland in all years. The accuracy in 1994 was 

80% for water bodies and 100% in other years. Agriculture was 82% in 1984 and in the other 

two years it was 89% and 90%. Wetland showed moderate performance in 1984 (76%) and 2011 

(70%) and good performance in 1994 (82%). It showed more variability of the accuracy’s 

measurement throughout the study period. 

Looking at the classification performance from a user’s perspective, water bodies, 

agriculture, and woodland savanna all had user’s accuracy of over 80%. This implies there was 

less commission error or more than 80% of the pixels were identified correctly in the classified 

images. Both forest and wetland showed a moderate classification performance.  
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4.2. Land use and land cover changes in Kagera basin 

 

This section provides additional insight into the changes that had occurred in the past and 

also gives projections into what the future scenario would look like for the Kagera basin. 

4.2.1. Past land use and land cover changes 

 

The results from the Change analysis tab of the IDRISI LCM are presented here. The 

outputs are organized for each temporal period in three sections based on the options given in the 

tab. The first section shows the overall gains and losses by land cover category. This gives a 

rapid quantitative assessment (Eastman, 2012). Cross tabulation is also presented to show the 

results in hectares. 

The second section shows the net change experienced by each category. This is a result of 

taking the earlier land cover areas, adding the gains, and then subtracting the losses. This 

indicates whether a class showed an overall increase or decrease. The last section shows the 

contributors to the net changes by each land cover classes. Selected land cover results are 

presented in this section (Please refer to appendix A for the rest of the figures). 

For each section the results are shown using different units: percentage change and 

percentage of area.  

 Percentage change = (number of pixels changed for a class / area of a class in the later land 

cover image) x 100 

Area of percentage= (number of pixels changed for a class / total area of the land cover map) x 

100 
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Looking at the three periods (from 1984 to 1994, from 1994 to 2011, and from 1984 to 

2011), woodland savanna and agriculture have experienced the greatest change as shown by their 

gain from and loss to other land cover types (Figure 4.2). The comparison between these two 

categories reveals that agriculture gained a greater percentage of the basin than woodland 

savanna, and vice versa when considering the loss. The tables (Table 4.8, Table 4.9 and Table 

4.10) show the corresponding results in hectare for the three periods.  On the other hand, 

percentage of change (loss and gain) each category from their previous amount (Figure 4.2) 

shows wetland had the greatest change followed by forest during the three periods.  This was 

because the biggest proportions of wetland was lost to and gained from agriculture, and this was 

higher than the proportion that remained wetland (Table 4.8, Table 4.9 and Table 4.10). Even 

though spectral confusion had a role in the result, this indicated encroachment of agriculture into 

wetland. Water bodies’ high gain and loss (from 1984 to1994 and from 1994 to 2011), on the 

other hand, was mainly due to misclassification that was visually evident in the 1994 classified 

image (Figure 4.1).   

However the net percentage changes (both in terms of basin area and base year amount) 

indicate major dynamics were observed for agriculture and woodland/savanna because they 

showed the highest net increase and decrease, respectively. Water bodies’ high net gain and loss 

was due to misclassification of cloud to water in 1994, which increased the apparent size of the 

water bodies. The entire period (from 1984 to 2011) in fact showed small loss. Forest showed a 

net loss after 1994 but gained in area overall for the entire period of study .Wetland, on the other 

hand, indicated net loss for the entire period. 
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 The results (net change and gains/losses) point to the fact that woodland savanna and 

agriculture showed the greatest dynamics. Therefore, looking at the contributors to the net 

changes of these two categories indicates both contributed largely to the dynamics of the other 

for three periods. Agriculture gained from woodland savanna which contributed to agriculture’s 

net increase. Agriculture at the same time was the biggest contributor to the net decrease of 

woodland savanna by net gaining from it. A look at the cross tabulation (Table 4.8, Table 4.9 and 

Table 4.10) reveals the amount (in hectare) gained by agriculture from woodland savanna was 

higher than which was lost to woodland savanna. The rest of the categories combined 

contributed very little to the changes. The wetland, though very small, contributed positively to 

the net change of woodland savanna whereas water and forest contributed negatively in 1984-

1994 period (i.e. woodland savanna lost area to both water and forest). An opposite effect was 

observed in the 1994-2011 period. The entire period, however, shows that forest was the only 

contributor to woodland savanna’s net loss. In agriculture, other classes’ contribution to 

agriculture was very small. Overall, the contributions from forest, water bodies and wetland were 

negligible compared to the contribution made by the woodland savanna and agriculture to each 

other. For figures showing the contribution to net changes of other classes refer to Appendix A. 
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Figure 4.2 Gain and losses, net changes and contributors of each class for three periods  



 

53 

 

Table 4.8 Cross tabulation for the period between 1984 and 1994 showing gain and losses. 

  1984 

1
9
9
4
 

Class name Forest Water Wetland 
Woodland 

Savanna 
Agriculture Total Gain 

Forest 
199240 1802.25 38535.8 39244.5 86001.8 364824 165584.3 

Water 
1518.75 90902.3 2835 22497.8 9436.5 127190.3 36288 

Wetland 
38049.8 810 64455.8 33594.8 110990 247900.5 183444.7 

Woodland/ 

Savanna 

9578.25 11745 41512.5 1758713 450421 2271969 513256.5 

Agriculture 
93170.3 4070.25 107730 924170 2216585 3345725 1129140 

 Total 
341556.8 109329.8 255069 2778219 2873435 

6357609 

 

 

 Loss 
142317 18427.5 190613.3 1019507 656849.3 

  

 

Table 4.9 Cross tabulation for the period between 1994 and 2011 showing gain and losses. 

  1994 

2
0
1
1
 

Class name Forest Water Wetland 
Woodland 

Savanna 
Agriculture Total Gain 

Forest 
202297.5 3746.25 37077.75 23044.5 94547.25 360713.3 158415.8 

Water 
1923.75 86953.5 708.75 11238.75 4313.25 105138 18184.5 

Wetland 
35012.25 2389.5 51759 50847.75 114453 254461.5 202702.5 

Woodland/ 

Savanna 

35437.5 23591.25 46696.5 1241852 642755.3 1990332 748480.5 

Agriculture 
90153 10509.75 111658.5 944986.5 2489657 3646964 1157308 

 Total 364824 127190.3 247900.5 2271969 3345725 6357609  

 Loss 
162526.5 40236.75 196141.5 1030118 856068.8   
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Table 4.10 Cross tabulation for the period between 1984 and 2011 showing gains and losses. 

  1984 

2
0
1
1
 

Class name Forest Water Wetland 
Woodland 

Savanna 
Agriculture Total Gain 

Forest 
215601.8 3564 36288 32035.5 73224 360713.3 145111.5 

Water 
911.25 99427.5 870.75 2045.25 1883.25 105138 5710.5 

Wetland 
38657.25 1944 81303.75 46554.75 86001.75 254461.5 173157.75 

Woodland/ 

Savanna 

15531.75 1154.25 47911.5 1340003 585731.3 1990332 650328.8 

Agriculture 
70854.75 3240 88695 1357580 2126594 3646964 1520370 

 Total 341556.8 109329.8 255069 2778219 2873435 6357609  

 Loss 
125955 9902.25 173765.3 1438216 746840.3   

 

 

4.2.2. Land use and cover change prediction 

 

 

After the past land cover changes of Kagera were assessed, future land cover change was 

determined. First, prediction for the land cover change probability was done for 2011 from the 

land change transition of 1984 to 1994. The output tables show both the probability matrix and 

transition areas matrix calculated in hectares for 2011. The probability matrix (Table 4.11) shows 

the probability of a pixel from an earlier year changing or remaining the same for a given 

category (Eastman, 2012). This was used to predict the amount of each category expected in 

2011. Results show that the probability of a pixel remaining the same is higher compared to the 

probability of a category changing. The exception to this case was for wetland. It showed a much 

higher probability (0.5) of changing to agriculture in 2011. The corresponding hectare value 

(127,595.3) in Table 4.12 shows that it is the greatest proportion of wetland that changed to 

agriculture. This change trend for wetland relates to the LULC change analysis (Table 4.8, Table 
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4.9 and Table 4.10) showing the highest proportion gain from and loss to agriculture. In the 

remaining categories, forest had a large probability of changing to agriculture, and woodland 

savanna had higher probability of changing to agriculture than agriculture to woodland savanna. 

 

Table 4.11 The probability of change in 2011 based on the land transition between 1984 and 

1994. 

Class name Given 

  Forest Water Wetland 
Woodland 

Savanna 
Agriculture 

P
ro

b
ab

il
it

y
 o

f 
ch

an
g
e 

to
 

Forest 0.4125 0.0245 0.1501 0.0247 0.0447 

Water 0.0075 0.7308 0.0145 0.0119 0.0059 

Wetland 0.1107 0.0111 0.1145 0.0220 0.0445 

Woodland/ 

Savanna 
0.0744 0.1525 0.2061 0.4905 0.2148 

Agriculture 0.3949 0.0811 0.5147 0.4509 0.6901 

 

 

 

The prediction in terms of hectares (transition area matrix) for 2011 based on the 

transition between 1984 and 1994 was calculated from the transition probability matrix (Table 

4.12). The transition area matrix predicts how much an area is expected to change (Eastman, 

2012). The diagonals values show the amount in hectares of each category that did not change 

whereas the remaining numbers show the amounts lost to another category.  The comparison 

between the amount that remained unchanged to the actual amount from the transition between 

1994 and 2011(Table 4.9) shows that it was lower for all categories except for water. The 

transition from forest to water bodies and agriculture was overestimated, while the transition 

from forest to woodland savanna was underestimated.  The conversion of water to wetland and 

the wetland that remained the same was considerably underestimated as well. Some extreme 
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estimated values (over predictions) were observed for transition of woodland savanna to forest 

and agriculture, and also for transition of agriculture to forest and water. The estimations from 

agriculture to wetland and woodland savanna, and woodland savanna to water were higher than 

actual calculations. The remaining classes were fairly close to the actual values. Overall, the 

Markov chain model was effective. 

 

Table 4.12 The amount expected to transition in 2011 based on the land transition between 1984 

and 1994 

Class name Given 

  Forest Water Wetland 
Woodland 

Savanna 
Agriculture 

E
x
p
ec

te
d
 t

o
 t

ra
n
si

ti
o
n
  

to
 

Forest 
150477.8 3118.5 37219.5 56072.25 149607 

Water 
2733.75 92947.5 3604.5 27114.75 19865.25 

Wetland 
40398.75 1417.5 28370.25 49936.5 148736.3 

Woodland 

Savanna 
27155.25 19399.5 51111 1114398 718672.5 

Agriculture 
144058.5 10307.25 127595.3 1024468 2308844 

 

The prediction for the year 2020 from two transition periods was also calculated (Table 

4.13 and Table 4.14.). The results show the prediction based on the transition between the 1994 

and 2011. For the year 2020, all categories can be expected to experience changes to other 

categories, but the greater proportions of forest, water bodies, woodland savanna, and agriculture 

will remain unchanged (Table 4.13). This is also supported by their calculated high probability to 

remain unchanged (Table 4.14). Wetland, on the other hand, has a low probability to remain 

unchanged and therefore will show changes. Looking at each categories transition, some forest 

will likely change to agriculture, to wetland, and a small amount to woodland savanna. Water 
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bodies are likely to change to woodland savanna. The probability of wetland changing to 

agriculture is higher than the probability of wetland remaining the same. As a result, Table 4.15 

shows a bigger proportion of the wetland will be lost to agriculture and some will be converted 

to forest. Both woodland savanna and agriculture will retain bigger areas, but will lose some area 

to each other. Only a few portions of agriculture will transition to forest and wetland.  

Table 4.13 The amount expected to transition in 2020 based on the land transition between 1994 

and 2011 

Class name Given 

  Forest Water Wetland 
Woodland 

Savanna 
Agriculture 

E
x
p
ec

te
d
 t

o
 t

ra
n
si

ti
o
n
  

to
 

Forest 
251059.5 2146.5 39912.75 2470.5 66440.25 

Water 
1336.5 85009.5 425.25 7431.75 1397.25 

Wetland 
36045 1478.25 78185.25 31752 109998 

Woodland 

Savanna 
18589.5 14762.25 38353.5 1310297 533506.5 

Agriculture 
53682.75 1741.5 97584.75 638381.3 2935622 

 

Table 4.14 The probability of change in 2020 based on the land transition between 1994 and 

2011 

Class name Given 

  Forest Water Wetland 
Woodland 

Savanna 
Agriculture 

P
ro

b
ab

il
it

y
 o

f 
ch

an
g
e 

to
 

Forest 0.6960 0.0204 0.1568 0.0012 0.0182 

Water 0.0037 0.8086 0.0017 0.0037 0.0004 

Wetland 0.0999 0.0141 0.3073 0.0160 0.0302 

Woodland 

Savanna 
0.0515 0.1404 0.1507 0.6583 0.1463 

Agriculture 0.1488 0.0165 0.3835 0.3207 0.8050 
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The next two tables show predictions for 2020 calculated from the transition of the entire 

period (1984-2011). The amount (in hectares) in Table 4.15 shows that most of the forest, water 

bodies, wetland, agriculture, and woodland savanna will remain essentially unchanged. That is 

shown in table (4.16) by their higher probabilities to remain unchanged. Few portions of the 

forest will change to wetland and agriculture. Wetland is also predicted to change to agriculture, 

woodland savanna, and forest. On the other hand, agriculture and woodland savanna will lose 

area to each other. There is also the possibility of agriculture changing to wetland and forest. 

 

Table 4.15 The amount expected to transition in 2020 based on the land transition between 1984 

and 2011 

Class name Given 

  Forest Water Wetland 
Woodland 

Savanna 
Agriculture 

E
x
p
ec

te
d
 t

o
 t

ra
n
si

ti
o
n
  

to
 

Forest 
294880.5 1478.25 32116.5 0 41411.25 

Water 
344.25 101817 526.5 526.5 567 

Wetland 
34769.25 1032.75 131726.3 10287 79197.75 

Woodland 

Savanna 
0 141.75 37219.5 1267832 534762 

Agriculture 
30719.25 648 52872.75 711666 2991047 
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Table 4.16 The probability of change in 2020 based on the land transition between 1984 and 

2011 

Class name Given 

  Forest Water Wetland 
Woodland 

Savanna 
Agriculture 

P
ro

b
ab

il
it

y
 o

f 
ch

an
g
e 

to
 

Forest 0.8175 0.0141 0.1262 0.0000 0.0114 

Water 0.0010 0.9684 0.0020 0.0003 0.0002 

Wetland 0.0964 0.0098 0.5176 0.0052 0.0217 

Woodland 

Savanna 
0.0000 0.0014 0.1463 0.6370 0.1466 

Agriculture 0.0852 0.0062 0.2078 0.3576 0.8201 

 

4.3. Population growth 

 

The figure below shows the population growth from 1984 to 2011 (Figure 4.3).  This is 

the total population of the Kagera basin aggregated from each administrative region of the four 

countries. Obviously, the population of Kagera shows an increasing trend. A further look at the 

four individual countries’ populations within the basin shows Rwanda and Burundi have higher 

populations compared to Tanzania and Uganda (Figure 4.4). This is because the highest numbers 

of districts in the watershed are found within Burundi and Rwanda. Generally, Rwanda’s and 

Burundi’s districts also have higher densities in the Kagera basin (Figure 4.7). 
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Figure 4.3 Total population of Kagera basin for the period between 1984 and 2011 

 

Figure 4.4 The population in each country in the basin  
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The population density shows that almost all areas of Rwanda and Burundi in the basin 

have higher densities. Uganda also shows some districts with higher densities. This is consistent 

throughout the study period and that also explains the dominancy of agriculture in this portion of 

the basin for the entire period of the study. 

However the interpretation of the population should be taken with caution as this study 

was not focused on population. A rough estimate of the population was done with limited census 

data of the districts to obtain a general trend of the population growth in this region. The figures 

below (Figure 4.5. and 4.6.) show better modeling to predict the population  

 

 

Figure 4.5 Actual and predicted population for the year 2002 for Rwanda 
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Figure 4.6 Actual and predicted for the year 2012 for Rwanda 
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Figure 4.7 Population densities of the districts within the Kagera basin 
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 4.4. Population change and Land use patterns 

 

The three periods (1984, 1994, and 2011) LULC analysis showed that the major changes 

observed were between agriculture and woodland savanna. Both were the major contributors to 

the net changes of the other, more than the rest of LULC categories. Agriculture showed a net 

gain at the expense of woodland savanna (i.e. the net decrease of the woodland savanna was 

primarily due to its conversion to agriculture). Comparing the loss and gain between agriculture 

and woodland savanna, the gain of agriculture from woodland savanna was consistently much 

higher than woodland savanna’s gain from agriculture. Therefore the transition to agriculture 

cover category was chosen to analyze its relationship with population change at an 

administrative/district level. 

Figure 4.8 shows high and low population density districts. A similar spatial pattern is 

observed for the three time periods. The districts with low population density (20 percentile) are 

located in the western part whereas the districts with high population densities (80 percentile) are 

in the north western part of the watershed. Figure 4.7 also shows that higher population densities 

are located mainly in the Rwanda and Burundi portion of the watershed. Major conversion to 

agriculture had occurred in high population density districts from the beginning of the study 

period. Thus, most transitions occurred in the low population density districts which had 

primarily consisted of woodlands savanna. 
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Population change was analyzed for the three time points (Figure 4.9). Districts in the 

20% percentile had population change ranging from 13% to 43% during the study period (1984-

2011). Six of them were located in the northwest, one in the northeast, and another one in south 

of the Kagera Basin whereas the districts in the 80% percentile had population change ranging 

from 173% to 412%. The districts with high population change are found at the center of the 

watershed, mainly in Rwanda close to the border with Tanzania. A similar spatial pattern was 

also observed for the other two time periods (1984-1994 and 1994-2011). These two time 

periods are also shown. The highest population change range was from 45% to 83% and from 

88% to 179% for the periods of 1984-1994, and 1994-2011, respectively. Their corresponding 

low population change range was from 2% to 15 % and from 8% to 25%. Notably, most 

transitions occurred within the districts where there was high population change as compared to 

those areas with low population change districts. 
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Figure 4.8 High and low population density districts and the Land use and cover transitions 
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Figure 4.9 Land cover transitions for the three periods and districts with high and low population 

change 
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4.5. Land cover transitions and Hydro-geographical zones 

 

The figure below (Figure 4.10) shows that transitions to agriculture in close proximity to 

water bodies. Woodland savanna cover in 2011 was dominant throughout the West Victoria Lake 

region, and Swamp and Lake Terrain region. The changes (transitions) during the study period 

are observed in the hydro geographical zone, Hill/Mountains Ridges, and Swamp and Lake 

Terrain region. Most transitions in the hydro-geographical zones are observed in close proximity 

to rivers. Agriculture has been dominant in the Congo Nile Divide and Hills and Mountains Foot 

Ridges (located mainly in Rwanda and some portion of Burundi) which will be further discussed 

in section 5.2.3. 
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 Figure 4.10 Hydro geographical zones of Kagera in relation to the land cover transition (Source: 

NBI, 2008) 
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CHAPTER 5 

DISSCUSION AND CONCLUSION 

 

5.1. Image Classification and analysis 

 

Based on the availability of data and the rendered capability of discriminating cover 

types, five major classes were identified for the Kagera region for the study period between 1984 

and 2011. The key findings from the image classification showed that agricultural activities were 

the dominant land use change followed by woodland savanna cover type. Both occupied nearly 

90% of the watershed area for all three years under the study. The remaining 10% was occupied 

by the water bodies, wetland, and forest. Among these, forest was the dominant and water bodies 

occupied ≥ 2% of the watershed.  These results are consistent with studies conducted in this 

region indicating a similar pattern (Wasige et al., 2013; Tolo et al., 2012). Features in the basin 

that were easily identified included Nyungwe Forest National Park (West), Ruvubu National 

Park (South East), Akagera National Park (North east). These parks were established in the early 

1930’s with Ruvubu being the earliest (1980). The lakes in the region that were consistently 

identifiable were the Rweru, Cyohoha Sud, Burera, and the Ruhondo. There has been a persistent 

dominancy of cultivation in the central and western part of the watershed since 1984 (beginning 

of the study period) where the Rwandan and Burundi lie. Throughout the study they showed an 

eastward pattern of expansion. This dominancy may be explained by the region’s high 

population density, mild climate, good soil fertility, and predominance of farmers among 

residents. Brink and Eva (2009) showed that agricultural expansion was the main phenomena 



 

71 

 

observed in Sub-Saharan countries at the continental level. This result, in conjunction with 

previous studies, reaffirms the dominancy of cultivation at the regional level.  

The accuracy assessment of the classified images was good despite observed 

inconsistences. An overall accuracy (above 80%) was achieved for the classified maps of 1984, 

1994 and 2011. These accuracy levels were 82.29%, 83.14 % and 84.29%,   respectively. The 

overall kappa value was moderately good as it showed a near 0.8 Khat value. The values were 

0.77, 0.78, and 0.79 for 1984, 1994 and 2011, respectively. Water bodies and woodland savanna 

consistently had good performance (over 80%) for both perspectives (users and producers) in all 

three years. The only inconsistency observed in water bodies was in 1994 which exhibited an 

80% user’s accuracy compared to 100% for other years. This implies there was an 

overestimation or commission error, likely due to lack of a data for the interiors of water bodies. 

They were therefore automatically classified to water. The presence of cloud shadows in 1994 

with the same spectral value (no data) associated with water led to misclassification of cloud 

shadows to water bodies. This resulted in overestimations and played a role in the changes 

observed in 1994. The inconsistency is noteworthy when the classified image and amount of 

hectare of 1994 is compared with the other two years’ amount and classified images (Table 4.1 

and Figure 4.1). For this reason, it is assumed that there were small or insignificant changes in 

1994 for water bodies based on the amount in 2011. This is further supported by Wasige et al. 

(2013), whose study indicates no change in water for the area. Tolo et al. (2012) did note a slight 

increase for the period 1984-2002. It is possible that this is due to the effect of seasonal 

variations rather than long term changes. The same conclusion was made for water bodies by 

Brink and Eva (2009) during their study of the land cover changes for sub-Saharan countries.  
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Wetland overall showed moderate performance in both perspectives except for user’s 

accuracy in 1994 and producer’s accuracy in 2011.There were inconsistencies in wetland areas 

when comparing both measures in all years. This may be explained in part by the changes or 

fluctuations observed for this category. Forest, on the other hand, had consistently good 

producer’s accuracy (over 80%) and moderate user’s accuracy in all years. Agriculture had 

inconsistent user’s accuracy, but consistently moderate producer’s accuracy. It is possible that all 

of the observed inconsistencies played a role in the observed changes in their respective 

categories. 

  The accuracy assessment (section 3.4.2) for forest, wetland, and agriculture categories 

showed inconsistencies but also exhibited moderate accuracy. This was due to the confusion 

arising from spectral similarity between classes. Misclassifications between these categories 

were pronounced and visually evident during classification. This is due to the Kagera basin 

having a complex tropical landscape (Lu et al, 2011). Spectral similarities between classes may 

also be a source of the inaccuracies observed (Paiboonvorachat and Oyana, 2008; Were et al., 

2013; Cabral et al., 2010; and Mundia and Aniya, 2006).  

Interestingly, the classified images show an agricultural and savanna dynamic with the 

conversion of savanna woodland to agriculture and vice versa. This also might have had a role in 

the classification error for woodland savanna or agriculture. Similar problems were noted by 

Were et al. (2013) between grassland and crop land. A possible explanation for this dynamic in 

the Kagera is the practice of fallow, where land is left unsown for a period to restore fertility. 
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5.2. Implications of human activities on land use and land cover changes in Kagera 

 

The key observations of the land cover and population analysis are as follows: 

1. During the 28 year period, the most dynamic LULC change was agriculture followed 

by woodland savanna. 

2. Future scenarios indicate that: 

 i) The greater proportion of forest, water bodies, and woodland savanna will remain 

the same. Woodland savanna and agriculture will lose area to each other, with 

woodland savanna loss being bigger.  

 ii) Forest also will change mainly to agriculture.  

 iii) Wetland, on the other hand, will lose the biggest proportion to agriculture. 

3. Potential driver factors indicated in the study include population change and 

population density.  

4.  Identified  policy drivers factors in the study include: 

i)  Oil price shocks that happened in the 1970’s. 

ii) National policies as Ujama (of Tanzania). 

iii) Outside policy intervention as SAP (Structural Adjustment Policy). 

5. Potential biophysical factors indicated were precipitation and proximity to water 

bodies. 
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The discussion is divided based on endogenous (demography) causes and underlying factors 

(such as globalization and structural policy interventions). Discussion on the biophysical factors 

influencing the LULC transition is also included. 

5.2.1. Demographic factor 

 

The results show that the predominant past and future change is in agriculture with future 

change consisting of forests converted into agriculture. This result is consistent with Henry et 

al.’s (2011) findings as the Kagera is shared by sub-Saharan countries. The researchers indicated 

that agriculture in sub-Saharan countries is the main source of income where a large percentage 

of the population is directly dependent on agriculture causing it to be one of the drivers of forest 

degradation. Indeed, the majority of the population in Kagera lives in rural areas and are directly 

engaged in farming and other activities (FAO, 2013).  

The primary endogenous cause is population growth. In Rwanda and Burundi, the most 

influential factor has been population growth which mounted even more pressure on the 

available arable land. Lambin et al. (2003) mentioned resource scarcity and natural population 

growth as major causes of land use change in tropic areas, taking their toll over a series of 

decades. The populations of the countries sharing the Kagera basin are among the highest of sub-

Saharan countries (NBI, 2008) with Rwanda and Burundi generally having the highest 

population densities (Figure 4.7 and Figure 4.8). This is persistent throughout the study period 

and parallels the agriculture dominancy in this area. This further confirms that population 

pressure had a high impact on the agricultural expansion.  
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The REMA (2009) report for the Rwandan portion of the basin notes that farmers have 

multiple and tiny scattered plots. The owned land by each house hold ranged from 0.7 ha to 0.2 

ha. As a result, intensive cultivation with no fallow is practiced. The report further indicates the 

land scarcity problem is exacerbated by the cultural (inheritance) practice of dividing land 

among sons. Lambin et al. (2003) mention breakdown of extended family as one of the main 

causes of the land use change in tropics. Figure 4.9 shows the link between the population 

change at the district level within the Kagera basin to the land cover transitions observed for the 

entire period of study (from 1984 to2011). Results showed the high population districts were 

significantly falling into transition of land cover to agriculture. This also affirms the connection 

of population to the land cover dynamics observed in this area. 

Moodley et al. (2010) conducted a study in three towns of Rwanda to investigate the 

causes and effects of the 1994 genocide on land cover. They attributed overpopulation (land 

scarcity) along with poverty and unemployment as facilitators in the recruitment of militia and 

ethnic tension rather than as causes. After the genocide, the attempt by the government to resettle 

people by making land more available had negative effects on forests and woodlands in Nyngwe 

and Akagera national forests (Moodley et al., 2010). This is consistent with LULC changes 

observed in this period as it showed an increase of agriculture at the expense of woodlands. 

Looking at the Akagera National Forest Park also reveals the same trend. Moodley et al. (2010) 

further specify that after the genocide, forests were cleared for their needs and resettlement 

purposes (forests and woodlands decreased ), wetlands were converted to agriculture due to 

scarcity of agricultural land (through drainage, irrigation and reclamation), and there was an 

increase in subsistence agriculture in areas surrounding houses and on the outskirts of cities.  
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The largest contributor to agricultural change during the entire study period (in terms of hectare 

area coverage) for the entire basin was woodland savanna (Figure 4.8).On the other hand,  in 

terms of probability of  future and amount expected to transition, wetland  showed  high 

contribution (Figure 4.6). This could be a result of spectral similarity between agriculture and 

wetland. Forest decreased during the study period (Figure 4.6) which can be attributed to the 

1994 genocide and its consequences of displacement, overpopulation, and scarcity of land. 

REMA (2009) report indicates that cultivated land in Rwanda in general, increased from 64.5% 

to 74% between 1984 and 2002, and this increase was mainly at the expense of pasture, fallow, 

and woodlots.  

Similarly, Uganda's economy is heavily dependent on the agricultural sector as is evident 

in its high land usage (4,450 Sq.Km) and employment of 89% of the population living in rural 

areas (FAO, 2013). Uganda has been showing an upward trend in population and has one of the 

highest population growths (3.4%) in the world (FAO, 2013). The unregulated expansion of 

agriculture at the expense of forests, savannas, and wetlands can be partially contributed to 

population growth and low agricultural productivity (IFRI, 2002). Specifically, smallholder 

farmlands have been the dominant cause of land conversion in Uganda since the 1960’s, but 

most of the forest areas were cleared prior to that (IFRI, 2002). In addition to projected increases 

in the population (NBI, 2008), all of these endogenous factors have impacted the land use 

change, with agriculture at the fore-front. 

 

 



 

77 

 

5.2.2. Global macro-economic influences/implications 

 

Land use change is mainly due to society’s response to economic factors (Lambin et al., 

2003). Undoubtedly the influence of the economic reform funded by the International Monetary 

Fund and the World Bank has been and will be a dominant driving force in Africa's economic 

policy (Loxley, 1990). This economic reform, known as the Structural Adjustment Program 

(SAP), was geared toward sustained economic growth of the developing nations by 

implementing economic policies (more market oriented) acceptable to the institutions supporting 

them (Mohan et al., 2000). SAP originated as a result of two major global economic crises 

(Figure 5.1) that influenced these developed nation’s institutions. These include two major oil 

price increases imposed by OPEC (1973 and 1979/80) which led to a global economic recession 

and increased interest rates between 1973-80 and 1980-1986 that were spurred by the adoption of 

neo-liberal economic policies in western industrial nations as deflationary measures in response 

to oil price shocks (Mohan et al., 2000). Such oil price crises bring about macro-economic and 

trade conditions, or rapid changes that lead to changes in prices as a result changes in market 

opportunities. These changes often result in changes in land use (Lambin et al. 2003). The 

outcome of these crises was an increased demand on raw materials (stemming from a price boom 

for raw commodities) that initially proved beneficial to many developing countries. The 

appearance of SAP coincided with a time when many developing nations were experiencing 

rapidly deteriorating economies which led many developing countries to accept the program. 

These outside policy interventions from the IMF and World Bank likely exacerbated changes in 

land use (Lambin et al., 2003).  
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Most developing nations had adopted SAP by the 1980's (Mohan et al., 2000) as a 

precondition to receiving financial assistance or low interest subsidies. African countries were in 

economic crises in early 1980’s due to the global economy crises of late 1970’s. This was a 

result of reliance on export earnings in a deteriorating global economy which left them unable to 

pay back their debts (Kingston et al.2011). They accepted SAP funds with the broad agenda of a 

minimized role of the state, reducing taxes on high incomes, cuts in social spending or subsides, 

currency devaluation, price liberalization and increased privatization (Mohan et al., 2000; 

Kingston et al., 2011).   

It is important to discuss Tanzania’s SAP to shed light on the implication of the SAP for 

Burundi and Uganda, and Rwanda’s SAP is important to discuss due to its unique history of 

genocide. Tanzania experienced changes in its socioeconomic/political sector before and after 

the adoption of SAP which had an impact on agriculture. From 1961-1980, Tanzania attempted 

to reduce its dependency on external economies and withdraw from international markets 

(Wobst, 2001). In 1967 (after independence in 1961), Tanzania passed an economic declaration 

(also called Ujamaa policy) which followed self-reliance, a state controlled socialist economy, 

price controls, nationalization, and instituted villagization which resettled 17 million citizens 

from scattered villages to larger villages with better access to markets (Wobst, 2001). The 

agricultural policy of this time was geared towards satisfying national food requirements through 

self-sufficiency. This had a detrimental effect on the resources which resulted in environmental 

degradation. The villagization and political interference further led to declining agricultural 

production and increased debt. The extremely overvalued exchange rate decreased the country’s 

competitiveness, diminishing agricultural export earnings. Consequently, the trade deficit 

increased, foreign capital inflows decreased, and overall indebtedness reached critical levels 



 

79 

 

(Wobst, 2001). Enforcement was also poor because staffing was limited and fines were 

continually eroded by inflation. Indeed, state polices to attain self-sufficiency, price controls on 

agricultural inputs and outputs, and nationalization are institution factors mentioned by Lambin 

et al. (2003) as influential in land use change. Though some positive economic performance was 

achieved, the advance was short-lived as a result of two oil price shocks in 1973-1974 and 1979. 

The breakup of the East African Community in 1977 and the 1978 war with Uganda also 

contributed to the countries collapse (Wobst, 2001).  From 1979 to 1986, with no aid from the 

IMF and World Bank, and a failed Stand by Arrangement with the IMF, Tanzania turned to SAP 

(1981) which emphasized increasing agricultural production, particularly for exports, to alleviate 

both food and foreign exchange shortages (Wobst, 2001). However, this did not result in any 

significant changes in Tanzania’s economic performance because the government was reluctant 

to implement the policy measures (Wobst, 2001) resulting in more political and economic 

transitions and eventual outside policy intervention.  

New reforms were enacted in 1986 and again in 1996. These programs were based on a 

free market economy with its main internal changes as domestic tax system (less tax on higher 

producers), infrastructure investment (especially to give impetus to rural agricultural 

development), devaluation of exchange rate (shilling was depreciated by 40%), increase in 

agriculture producer price by 46-55% (for food and export crops), and privatization (by 

deregulating investment and taking government control) (Wobst, 2001). 
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1970                                       1980                                               1990                                      2000 

  

Figure 5.1 The major socioeconomic events 

 

  During the enactment of these new reforms, cultivated area increased in 47.5% of 

households due to either increased consumption or cash needs necessitating the clearing of more 

land and a shift in land area allocated from cash crops to food crops (Peters et al., 1994). This 

was due to SAP’s favorable price and marketing system to food crops. Inputs were improved due 

to privatization, but availability was poor primarily because of high prices. In addition, 

marketing operations, after the partial abolition of state owned marketing boards, were also poor. 

This was due to poor organization stemming from the high cost of transportation and neglect of 

cooperatives under the SAP. 

In Rwanda, the most important conflict occurred in 1994, leading to genocide. The cause 

of genocide was mainly due to socio-political factors. Colonial powers (Germany and Belgium) 

caused the division between the two ethnic groups in Rwanda serving as an underlying cause to 

the genocide (Moodley et al., 2010; Storey, 2001). This occurred through the manipulation of the 
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hierarchal structure as a means to gain economic and political power (i.e. through a divide and 

rule strategy).  Manipulation also continued through political powers after independence 

(Moodley et al., 2010). The implementation of SAP also deepened the situation (Storey, 2001 

and Moodley et al., 2010). The support that Rwanda was receiving through SAP (from the World 

Bank and other entities) meant a discursive support for the Rwanda state, increasing available 

resources which led to repressive situation (Storey, 2001).  

Rwanda received substantial aid from Canada and Belgium during the 1980’s and it was 

in 1990 (post 1980 economic crisis) that SAP was adopted, but with it the same standard policy 

package (Storey, 2001). Following the genocide there were refugees returning to Rwanda and 

this led to increased competition on resources for survival (The ensued consequences are listed in 

section 5.2.1) (Moodley et al., 2010). In general, economic policy changes such as SAP have 

driven the expansion of agriculture. Forced population displacement and mounting pressure also 

drove change (Lambin et al., 2003). 

Lambin et al. (2003) mention outside policy intervention as exogenous and as a major 

cause of most of land use changes mediated by local factors in tropics which cause land 

managers to respond in a manner further degrading the environment. This creates opportunities 

and constraints for new land use. This has implication on the expansion of agriculture and further 

degradation of the environment. Lambin et al. (2003) again mention opportunities and 

constraints as major cause in change that are created by markets and policies (influenced by 

global factors such as changes in global macroeconomics, leading to surges in energy prices). 

This is achieved by slowly increasing commercialization of the agro-industry and improving 

access by road construction. As a result, road construction and agriculture production are thought 
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to cause substantial impediments to environmental sustainability and thus more prominent land 

degradation occurs (Lambin et al., 2003). Moreover, the impact of this structural adjustment can 

be more devastating as this implies borrower nations should export more to pay off debt, keep 

currencies stable, concentrate on cash crops and commodities, and earn foreign exchange. This 

forces them into the global market before they are economically and socially stable. This will 

keep the developing nations dependent on developed/donor nations, and poor. Lambin et al. 

(2003) suggest loss of adaptive capacity and increased vulnerability as major causes for land use 

change and mention impoverishment and dependence on external assistance to be slow factors 

leading to loss of capacity. Generally, Lambin et al. (2003) sees economic liberalization, 

globalization (trade liberalization) and reform to open agro industrial sectors as triggers to land 

degradation from unsustainable production methods. It also marginalizes the poor rural farmers 

to the forest frontier. 

5.2.3. Bio-physical factors 

 

Bio-physical factors include predisposing environmental conditions for land use change 

such as climate, soils, lithology, topography, relief, hydrology and vegetation (Geist et al., 2006). 

The variability of these factors interacts with human causes of land use change. The Nile Basin 

Initiative (2008) identified four hydro-geographical zones based on shared similarity in geology, 

landforms, relief, climate, and stream flow (Figure 3.1.b). The soil types in the Congo Nile 

Divide are limited in fertility whereas the Hill and Mountain Foot Ridges have little weathered 

recent soil which is favorable. The dominant soil type in the watershed is ferrasol which is 

limited in fertility (USDA, 2013: NBI, 2008). Despite its dominance, which necessitates the 

practice of shifting cultivation and the use of fertilizer, the area is mostly covered by agriculture. 
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This could be driven by a higher population density and high dependence on subsistence 

agriculture.  

The Congo Nile Divide and mountain and Hills Ridges (which are in the western part of 

the watershed) receive the highest rainfall with an average annual rainfall of over 1400 mm 

(NBI, 2008). This likely contributes to the intensity of agriculture in this region of the watershed 

for the period of the study. Geist et al. (2006) indicate precipitation, topography, presence or 

proximity of water bodies, and soil conditions are prominent factors in cropland changes or in 

zones of intensified agricultural production.  The central part of the watershed (Swamp and Lake 

Terrain hydro-geographical zone) is where the lakes and wetlands are concentrated (Figure 4.10). 

This region is found in Rwanda and a very small portion is found in Uganda. This figure (4.10) 

shows that most transitions occurred in close proximity to wetlands and lakes. Woodland 

savanna close to the wetland and lakes along Kagera river (forming the border between Rwanda 

and Tanzania), mostly remain unchanged because this is a reserved environment (Akagera 

National park found within Rwanda).  Similar observations (transitions) are seen around Lake 

Rweru (a lake located at the center of the watershed) in Rwanda, and in the Uganda where there 

are wetlands. Looking at the Hills and Mountain Foot Ridges hydro-geographical zone (most of 

the south portion of the watershed), the transition is concentrated along the Ruvubu River (Runs 

to south towards Burundi and along the Ruvubu National park). The West Victoria Lake region 

zone (in Tanzania) also shows some transition in the North eastern corner close to Lake Victoria 

where there are wetlands. In addition, this area receives the highest precipitation in the basin, i.e. 

average annual rain fall is over 1400 mm (NBI, 2008). This could also contribute to the transition 

to cropland.  
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Through this general analysis, hydro-geographical zones seem to have transition to 

cropland mainly in regard to precipitation and proximity to rivers (in addition to population). A 

further local study might reveal the influences of soil and topography. 

5.3. Limitations 

 

Lack of data was the major obstacle during this research. Ground data, aerial 

photographs, and topo-sheets for image classification were not available which negatively 

affected the accuracy of the classified images. This limits both the classification accuracy as well 

as their location for use in accuracy, as reference data is itself another classification (Foody, 

2010). In the preprocessing of the scenes from the land sat images, ATCOR software was used to 

substantially correct the atmospheric, topographic, and sensor effect. Radiometric relative 

calibration of the scenes could not be performed and this also might have had a negative effect 

on classification accuracy. The population data as mentioned in the result section was based on 

limited census data for the district. Better modeling and interpolation of the data should be done 

for improved accuracy. Lastly, during classification, major urban centers (the most notable being 

Kigali which is the Capital of Rwanda) could not be classified due to spectral similarity with the 

woodland savanna, and as result were not included.  

5.4. Further studies 

 

This study can be improved with better modeling of the population for the regions 

(districts) to observe the relationships between land cover and population dynamics. This study 

was based on LULC change in relation to human dimension factors. Land cover change is driven 
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by not only human dimension, but also by biophysical factors. Both interact in the process of 

LULC change. Therefore, biophysical aspects should also be further investigated. Various 

biophysical factors such as geology, topography (elevation), soil, and climate (rainfall) can be 

used to thoroughly and accurately investigate its spatial relationship with the LULC transitions 

observed. Furthermore, urban/towns (both vector and raster) could be incorporated in the 

investigation as a land cover change by itself and its relation to transitions to agriculture. 

In addition, studies linking the biomass dynamics to the indirect effect that land use cover 

has on carbon sequestration and other environment degradation (such as soil erosion and its 

subsequent effects off site) should be performed. 

5.4. Conclusion  

 

The overall result of the LULC change was consistent with the changes observed in the 

Kagera region. Agriculture was and is the dominant change in the Kagera basin, as most of the 

population heavily relies on this sector for survival and economy. Even though the drivers of the 

LULC are complex in nature, the study further affirms and shows that socioeconomic and 

politics play an important role in influencing decision making, especially in the agricultural 

sector as this is the main economy of the developing countries of east Africa. This study supports 

the idea that institutional and economic factors play a role at multiple levels (from local to 

global) and are interconnected in a complex ways.  This implies that the need for addressing the 

issue of land use cover, which has been a global issue, cannot only be approached at the local 

level, but must also be addressed holistically by addressing the socio- economic/politics from a 

global perspective. This is critically important to the developing nations (where agriculture is the 

major means of survival) as these are the ones which are heavily affected as is evident by the 
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structural adjustment policy and global crisis of this study period. Understanding the 

socioeconomic implications will help in better decision making with sound and sustainable 

outcomes. Furthermore, additional factors influencing land cover changes are related in a 

complex manner and this study provides a better understanding of the process. 
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APPENDIX A 

 

 

Figure 4.16. Contributors to net change experienced by wetland by percentage of the area for the 

period between 1984 and 1994 

 

Figure 4.17. Contributors to net change experienced by wetland by percentage of the area for the 

period between 1994 and 2011 

 

Figure 4.18 Contributors to net change experienced by wetland by percentage of the area for the 

period between 1984 and 2011 
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Figure 4.19 Contributors to net change experienced by water by percentage of the area for the 

period between 1984 and 1994 

 

Figure 4.20 Contributors to net change experienced by water by percentage of the area for the 

period between 1994 and 2011 

 

Figure 4.21 Contributors to net change experienced by water by percentage of the area for the 

period between 1984 and 2011 



 

96 

 

 

 

Figure 4.22 Contributors to net change experienced by forest by percentage of the area for the 

period between 1984 and 1994 

 

 

 

Figure 4.23 Contributors to the net change experienced by forest by percentage of the area for the 

period between 1994 and 2011 

 

 

Figure 4.24 Contributors to the net change experienced by forest by percentage of the area for 

the period between 1984 and 2011 
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APPENDIX B 

Population data 

Burnidi districts within the watershed  and its population  

Province 1990 8/16/2008 

Cankuzo 142,797 228873 

Gitega 565,174 725223 

Karuzi 287,905 436443 

Kayanza 443,116 585412 

Kirundo 401,103 628256 

Muramvya 230,771 292589 

Muyinga 373,382 632409 

Mwaro 209,882 273143 

Ngozi  482,246 660717 
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Rwanda districts within the watershed  and its population  

 

district 2002 2012 

NYARUGENGE 236,990 284,860 

GASABO 320,516 530,907 

KICUKIRO 207,819 319,661 

NYANZA 225,209 323,388 

GISAGARA 262,128 322,803 

NYARUGURU 231,496 293,424 

HUYE 265,446 328,605 

NYAMAGABE 280,007 342,112 

RUHANGO 245,833 322,021 

MUHANGA 287,219 318,965 

KAMONYI 261,336 342,792 

NYABIHU 268,367 295,580 

NGORORERO 282,249 334,413 

RULINDO 251,266 288,452 

GAKENKE 322,043 338,586 

MUSANZE 307,078 368,563 

BURERA 320,759 336,455 

GICUMBI 359,716 397,871 

RWAMAGANA 220,502 310,238 

NYAGATARE 255,104 466,944 

GATSIBO 283,456 433,997 

KAYONZA 209,723 346,751 

KIREHE 229,468 338,562 

NGOMA 235,109 340,983 

BUGESERA 266,775 363,339 
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Tanzania districts within the watershed  and its population  

 

 

District 1988 2002 

Ngara 159,546 334,409 

Muleba 273,329 385,184 

Karagwe 284,137 424,287 

Bukoba 

Rural 340,800 394,020 

 

Uganda districts within the watershed  and its population  

 

district 1980 1/12/1991 9/12/2002 

Kabale 328,757 417,218 458,318 

Ntungamo 213,161 305,199 379,987 
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Interpolation and extrapolation  for missing years. 

Burnidi 

province(B) 1984 1985 1986 1987 1988 1989 1990 

Cankuzo  122018.9426 125259.083 128585.264 131999.769 135504.944 139103.197 142797 

Gitega  520098.6299 527353.445 534709.456 542168.076 549730.736 557398.887 565174 

Karuzi  250624.255 256484.299 262481.36 268618.644 274899.429 281327.07 287905 

Kayanza  403833.834 410130.27 416524.878 423019.188 429614.755 436313.158 443116 

Kirundo 345378.7913 354097.102 363035.487 372199.502 381594.842 391227.345 401103 

Muramvya  213217.237 216047.277 218914.881 221820.547 224764.779 227748.091 230771 

Muyinga  313236.1107 322541.362 332123.043 341989.365 352148.784 362610.007 373382 

Mwaro  192236.9646 195071.257 197947.338 200865.822 203827.337 206832.514 209882 

Ngozi  434196.5333 441858.688 449656.055 457591.02 465666.011 473883.5 482246 

 

province(B) 1991 1992 1993 1994 1995 1996 1997 

Cankuzo 
146588.9 150481.5 154477.42 158579.47 162790.5 167113.3 171550.9 

Gitega  
573057.6 581051.1 589156.14 597374.23 605707 614155.9 622722.7 

Karuzi  
294636.7 301525.9 308576.08 315791.14 323174.9 330731.3 338464.4 

Kayanza  
450024.9 457041.5 464167.57 471404.71 478754.7 486219.3 493800.2 

Kirundo 
411227.9 421608.5 432251.03 443162.23 454348.9 465817.9 477576.4 

Muramvya  
233834 236937.7 240082.6 243269.23 246498.2 249769.9 253085.1 

Muyinga  
384474 395895.5 407656.3 419766.47 432236.4 445076.8 458298.6 

Mwaro  
212976.4 216116.5 219302.88 222536.23 225817.2 229146.6 232525.1 

Ngozi  490756.1 499416.3 508229.39 517197.98 526324.8 535612.8 545064.6 

 

 

province(B) 1998 1999 2000 2001 2002 2003 2004 

Cankuzo  176106.28 180782.68 185583.258 190511.311 195570.23 200763.48 206094.63 

Gitega  631409.04 640216.51 649146.843 658201.741 667382.95 676692.22 686131.34 

Karuzi  346378.31 354477.25 362765.564 371247.672 379928.11 388811.51 397902.62 

Kayanza  501499.38 509318.59 517259.705 525324.637 533515.32 541833.7 550281.78 

Kirundo 489631.75 501991.4 514663.045 527654.556 540974.01 554629.68 568630.06 

Muramvya  256444.34 259848.14 263297.115 266791.867 270333.01 273921.15 277556.91 

Muyinga  471913.19 485932.24 500367.74 515232.079 530537.99 546298.59 562527.39 

Mwaro  235953.41 239432.24 242962.371 246544.546 250179.54 253868.12 257611.08 

Ngozi  554683.2 564471.55 574432.634 584569.499 594885.25 605383.03 616066.07 
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province(B) 2005 2006 2007 8/16/2008 2009 2010 2011 

Cankuzo  211567.35 217185.4 222952.626 228873 234950.59 241189.56 247594.2 

Gitega  695702.14 705406.43 715246.089 725223 735339.08 745596.27 755996.53 

Karuzi  407206.29 416727.5 426471.337 436443 446647.82 457091.24 467778.86 

Kayanza  558861.58 567575.16 576424.589 585412 594539.54 603809.39 613223.78 

Kirundo 582983.85 597699.96 612787.556 628256 644114.91 660374.14 677043.8 

Muramvya  281240.94 284973.86 288756.326 292589 296472.54 300407.64 304394.96 

Muyinga  579238.29 596445.62 614164.132 632409 651195.87 670540.83 690460.47 

Mwaro  261409.24 265263.39 269174.362 273143 277170.15 281256.68 285403.45 

Ngozi  626937.63 638001.04 649259.681 660717 672376.5 684241.76 696316.4 

 

Rwanda 

district® 1984 1985 1986 1987 1988 1989 1990 1991 

NYARUGENGE 170179.57 173339.51 176558.12 179836.5 183175.76 186577.01 190041.43 193570.17 

GASABO 129224.84 135913.58 142948.54 150347.64 158129.71 166314.59 174923.13 183977.24 

KICUKIRO 95736.451 99948.842 104346.58 108937.81 113731.06 118735.21 123959.54 129413.75 

NYANZA 117418.64 121744.93 126230.61 130881.57 135703.9 140703.9 145888.13 151263.37 

GISAGARA 180197.99 183989.21 187860.2 191812.63 195848.21 199968.7 204175.88 208471.58 

NYARUGURU 151087.88 154712.3 158423.67 162224.06 166115.63 170100.55 174181.06 178359.45 

HUYE 180767.28 184667.14 188651.13 192721.08 196878.83 201126.27 205465.36 209898.05 

NYAMAGABE 195240.51 199191.08 203221.58 207333.63 211528.9 215809.05 220175.8 224630.92 

RUHANGO 151217.12 155355.04 159606.2 163973.69 168460.69 173070.47 177806.39 182671.91 

MUHANGA 237826.04 240332.44 242865.25 245424.76 248011.24 250624.97 253266.25 255935.37 

KAMONYI 160362.44 164772.9 169304.67 173961.07 178745.54 183661.6 188712.87 193903.06 

NYABIHU 225541.48 227730.41 229940.58 232172.2 234425.47 236700.62 238997.85 241317.37 

NGORORERO 207998.92 211556.39 215174.71 218854.91 222598.06 226405.23 230277.51 234216.02 

RULINDO 195993.67 198717.46 201479.1 204279.12 207118.06 209996.45 212914.84 215873.79 

GAKENKE 294275.85 295753.67 297238.9 298731.6 300231.79 301739.52 303254.81 304777.72 

MUSANZE 221093.13 225165.35 229312.57 233536.17 237837.57 242218.19 246679.5 251222.98 

BURERA 294328.42 295737.92 297154.17 298577.2 300007.05 301443.74 302887.32 304337.8 

GICUMBI 300020.69 303060.58 306131.28 309233.09 312366.33 315531.31 318728.37 321957.82 

RWAMAGANA 119262.55 123404.89 127691.09 132126.17 136715.29 141463.81 146377.25 151461.35 

NYAGATARE 85927.408 91282.277 96970.854 103013.93 109433.61 116253.35 123498.09 131194.31 

GATSIBO 131669.06 137399.08 143378.47 149618.07 156129.21 162923.7 170013.88 177412.61 

KAYONZA 84835.392 89210.144 93810.49 98648.065 103735.1 109084.46 114709.68 120624.97 

KIREHE 113939.2 118458.11 123156.23 128040.69 133118.87 138398.45 143887.42 149594.09 

NGOMA 120402.36 124962.97 129696.33 134608.98 139707.72 144999.58 150491.89 156192.23 

BUGESERA 152983.55 157783.44 162733.93 167839.74 173105.75 178536.98 184138.61 189916 
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district® 1992 1993 1994 1995 1996 1997 1998 1999 

NYARUGENGE 197164.43 200825.435 204554.417 208352.64 212221.39 216161.97 220175.73 224264.01 

GASABO 193500 203515.668 214049.75 225129.08 236781.88 249037.84 261928.18 275485.72 

KICUKIRO 135107.93 141052.662 147258.96 153738.33 160502.8 167564.9 174937.73 182634.97 

NYANZA 156836.66 162615.298 168606.85 174819.16 181260.36 187938.89 194863.49 202043.23 

GISAGARA 212857.65 217336.005 221908.58 226577.36 231344.36 236211.66 241181.37 246255.63 

NYARUGURU 182638.09 187019.359 191505.732 196099.73 200803.93 205620.98 210553.58 215604.51 

HUYE 214426.37 219052.393 223778.212 228605.99 233537.91 238576.24 243723.27 248981.33 

NYAMAGABE 229176.18 233813.408 238544.47 243371.26 248295.72 253319.82 258445.59 263675.07 

RUHANGO 187670.57 192806.011 198081.981 203502.32 209070.99 214792.04 220669.63 226708.07 

MUHANGA 258632.62 261358.295 264112.693 266896.12 269708.88 272551.28 275423.64 278326.27 

KAMONYI 199235.99 204715.603 210345.918 216131.08 222075.36 228183.12 234458.87 240907.22 

NYABIHU 243659.4 246024.168 248411.882 250822.77 253257.05 255714.96 258196.73 260702.58 

NGORORERO 238221.89 242296.28 246440.352 250655.3 254942.34 259302.7 263737.64 268248.43 

RULINDO 218873.86 221915.624 224999.661 228126.56 231296.91 234511.32 237770.4 241074.78 

GAKENKE 306308.28 307846.517 309392.483 310946.21 312507.74 314077.12 315654.37 317239.55 

MUSANZE 255850.15 260562.538 265361.723 270249.3 275226.9 280296.19 285458.84 290716.58 

BURERA 305795.24 307259.648 308731.073 310209.54 311695.1 313187.76 314687.58 316194.57 

GICUMBI 325219.99 328515.207 331843.818 335206.15 338602.56 342033.38 345498.96 348999.65 

RWAMAGANA 156722.04 162165.446 167797.917 173626.02 179656.55 185896.54 192353.26 199034.24 

NYAGATARE 139370.14 148055.481 157282.08 167083.67 177496.07 188557.37 200307.98 212790.88 

GATSIBO 185133.32 193190.02 201597.339 210370.53 219525.52 229078.92 239048.06 249451.05 

KAYONZA 126845.31 133386.405 140264.812 147497.92 155104.02 163102.35 171513.14 180357.65 

KIREHE 155527.09 161695.397 168108.342 174775.63 181707.34 188913.98 196406.43 204196.04 

NGOMA 162108.5 168248.859 174621.806 181236.15 188101.03 195225.94 202620.73 210295.61 

BUGESERA 195874.65 202020.262 208358.69 214895.99 221638.39 228592.35 235764.48 243161.64 
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district® 2000 2001 2002 2003 2004 2005 2006 

NYARUGENGE 228428.21 232669.725 236990 241390.5 245872.7 250438.13 255088.34 

GASABO 289745.01 304742.37 320516 337106.08 354554.88 372906.83 392208.69 

KICUKIRO 190670.88 199060.372 207819 216963.01 226509.35 236475.73 246880.63 

NYANZA 209487.5 217206.054 225209 233506.81 242110.36 251030.9 260280.12 

GISAGARA 251436.65 256726.677 262128 267642.96 273273.96 279023.42 284893.85 

NYARUGURU 220776.61 226072.781 231496 237049.32 242735.85 248558.79 254521.43 

HUYE 254352.84 259840.227 265446 271172.71 277022.97 282999.44 289104.85 

NYAMAGABE 269010.36 274453.609 280007 285672.76 291453.16 297350.53 303367.22 

RUHANGO 232911.74 239285.168 245833 252560.01 259471.09 266571.3 273865.79 

MUHANGA 281259.5 284223.628 287219 290245.94 293304.78 296395.85 299519.51 

KAMONYI 247532.91 254340.837 261336 268523.55 275908.78 283497.13 291294.18 

NYABIHU 263232.75 265787.479 268367 270971.56 273601.39 276256.75 278937.87 

NGORORERO 272836.37 277502.78 282249 287076.4 291986.36 296980.29 302059.65 

RULINDO 244425.08 247821.935 251266 254757.93 258298.39 261888.05 265527.59 

GAKENKE 318832.69 320433.822 322043 323660.26 325285.64 326919.18 328560.93 

MUSANZE 296071.15 301524.357 307078 312733.93 318494.04 324360.24 330334.49 

BURERA 317708.78 319230.249 320759 322295.07 323838.5 325389.32 326947.56 

GICUMBI 352535.82 356107.813 359716 363360.75 367042.42 370761.4 374518.06 

RWAMAGANA 205947.27 213100.411 220502 228160.67 236085.34 244285.26 252769.99 

NYAGATARE 226051.69 240138.899 255104 271001.7 287890.13 305831.02 324889.95 

GATSIBO 260306.76 271634.887 283456 295791.55 308663.92 322096.48 336113.6 

KAYONZA 189658.25 199438.452 209723 220537.9 231910.49 243869.54 256445.29 

KIREHE 212294.58 220714.326 229468 238568.85 248030.65 257867.7 268094.91 

NGOMA 218261.21 226528.53 235109 244014.48 253257.29 262850.19 272806.46 

BUGESERA 250790.89 258659.504 266775 275145.12 283777.86 292681.45 301864.39 
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district® 2007 2008 2009 2010 2011 2012 

NYARUGENGE 259824.89 264649.386 269563.468 274568.8 279667.07 284860 

GASABO 412509.62 433861.343 456318.242 479937.52 504779.35 530907 

KICUKIRO 257743.34 269084.011 280923.67 293284.27 306188.74 319661 

NYANZA 269870.13 279813.483 290123.196 300812.77 311896.2 323388 

GISAGARA 290887.79 297007.833 303256.639 309636.92 316151.43 322803 

NYARUGURU 260627.09 266879.23 273281.348 279837.04 286550 293424 

HUYE 295341.98 301713.661 308222.808 314872.38 321665.42 328605 

NYAMAGABE 309505.66 315768.308 322157.675 328676.33 335326.88 342112 

RUHANGO 281359.89 289059.062 296968.914 305095.21 313443.88 322021 

MUHANGA 302676.08 305865.916 309089.371 312346.8 315638.55 318965 

KAMONYI 299305.68 307537.516 315995.753 324686.62 333616.51 342792 

NYABIHU 281645.02 284378.443 287138.393 289925.13 292738.91 295580 

NGORORERO 307225.87 312480.453 317824.908 323260.77 328789.6 334413 

RULINDO 269217.72 272959.129 276752.534 280598.66 284498.23 288452 

GAKENKE 330210.92 331869.196 333535.801 335210.78 336894.16 338586 

MUSANZE 336418.77 342615.118 348925.593 355352.3 361897.37 368563 

BURERA 328513.27 330086.477 331667.216 333255.53 334851.44 336455 

GICUMBI 378312.79 382145.961 386017.974 389929.22 393880.09 397871 

RWAMAGANA 261549.42 270633.783 280033.671 289760.04 299824.24 310238 

NYAGATARE 345136.61 366645.017 389493.792 413766.47 439551.78 466944 

GATSIBO 350740.72 366004.393 381932.315 398553.39 415897.8 433997 

KAYONZA 269669.54 283575.729 298199.028 313576.41 329746.77 346751 

KIREHE 278727.73 289782.249 301275.203 313223.97 325646.64 338562 

NGOMA 283139.85 293864.644 304995.678 316548.33 328538.58 340983 

BUGESERA 311335.45 321103.664 331178.359 341569.15 352285.95 363339 
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Tanzaina 

District(tz) 1984 1985 1986 1987 1988 1989 1990 1991 

Ngara 129139.66 136149.55 143539.94 151331.5 159546 168206.39 177336.88 186962.99 

Muleba 247810.26 253957.41 260257.04 266712.95 273329 280109.17 287057.52 294178.24 

Karagwe 253382.03 260743.69 268319.23 276114.87 284137 292392.2 300887.25 309629.1 

Bukoba 

Rural 326959.72 330366.18 333808.14 337285.95 340800 344350.66 347938.31 351563.35 

 

 

         District(tz) 1992 1993 1994 1995 1996 1997 1998 1999 

Ngara 197111.62 207811.12 219091.42 230984.02 243522.17 256740.92 270677.19 285369.95 

Muleba 301475.59 308953.95 316617.83 324471.81 332520.62 340769.09 349222.17 357884.93 

Karagwe 318624.94 327882.14 337408.3 347211.23 357298.96 367679.78 378362.2 389354.98 

Bukoba 

Rural 355226.15 358927.11 362666.63 366445.11 370262.95 374120.58 378018.39 381956.82 

 

District(tz) 2000 2001 2002 2003 2004 2005 2006 2007 

Ngara 300860.25 317191.38 334409 352561.21 371698.75 391875.11 413146.67 435572.88 

Muleba 366762.58 375860.45 385184 394738.83 404530.67 414565.41 424849.07 435387.83 

Karagwe 400667.15 412307.97 424287 436614.06 449299.27 462353.03 475786.05 489609.35 

Bukoba 

Rural 385936.27 389957.19 394020 398125.14 402273.05 406464.17 410698.96 414977.87 

 

District(tz) 2008 2009 2010 2011 2012 

Ngara 459216.41 484143.36 510423.37 538129.9 567340.38 

Muleba 446188.01 457256.09 468598.73 480222.74 492135.09 

Karagwe 503834.26 518472.46 533535.95 549037.09 564988.59 

Bukoba 

Rural 419301.36 423669.9 428083.95 432543.98 437050.49 
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Uganda 

district(ug) 1984 1985 1986 1987 1988 1989 1990 1991 

Kabale 358,515 366,366 374,389 382,588 390,966 399,528 408,277 417,218 

Ntungamo 242,879 250,934 259,257 267,856 276,740 285,918 295,401 305,199 

 

district(ug) 1992 1993 1994 1995 1996 1997 1998 1999 

Kabale 420,797 424,406 428,047 431,719 435,422 439,157 442,924 446,723 

Ntungamo 311,341 317,607 323,998 330,519 337,170 343,956 350,878 357,939 

 

district(ug) 2000 2001 2002 2003 2004 2005 2006 2007 

Kabale 450,555 454,420 458,318 462,249 466,215 470,214 474,247 478,315 

Ntungamo 365,142 372,491 379,987 387,634 395,435 403,393 411,511 419,793 

 

district(ug) 2008 2009 2010 2011 2012 

Kabale 482,418 486,556 490,730 494,939 499,185 

Ntungamo 428,241 436,859 445,651 454,619 463,768 
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