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Multi-spectral imagery provides a robust and low-cost dataset for assessing 

wetland extent and quality over broad regions and is frequently used for wetland 

inventories. However in forested wetlands, hydrology is obscured by tree canopy 

making it difficult to detect with multi-spectral imagery alone. Because of this, 

classification of forested wetlands often includes greater errors than that of other 

wetlands types. Elevation and terrain derivatives have been shown to be useful for 

modelling wetland hydrology. But, few studies have addressed the use of LiDAR 

intensity data detecting hydrology in forested wetlands. Due the tendency of LiDAR 

signal to be attenuated by water, this research proposed the fusion of LiDAR intensity 

data with LiDAR elevation, terrain data, and aerial imagery, for the detection of forested 

wetland hydrology. We examined the utility of LiDAR intensity data and determined 

whether the fusion of Lidar derived data with multispectral imagery increased the 

accuracy of forested wetland classification compared with a classification performed 

with only multi-spectral image. 

Four classifications were performed: Classification A – All Imagery, Classification 

B – All LiDAR, Classification C – LiDAR without Intensity, and Classification D – Fusion 

of All Data. These classifications were performed using random forest and each 

resulted in a 3-foot resolution thematic raster of forested upland and forested wetland 
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locations in Vermilion County, Illinois. The accuracies of these classifications were 

compared using Kappa Coefficient of Agreement. Importance statistics produced within 

the random forest classifier were evaluated in order to understand the contribution of 

individual datasets. Classification D, which used the fusion of LiDAR and multi-spectral 

imagery as input variables, had moderate to strong agreement between reference data 

and classification results. It was found that Classification A performed using all the 

LiDAR data and its derivatives (intensity, elevation, slope, aspect, curvatures, and 

Topographic Wetness Index) was the most accurate classification with Kappa: 78.04%, 

indicating moderate to strong agreement. However, Classification C, performed with 

LiDAR derivative without intensity data had less agreement than would be expected by 

chance, indicating that LiDAR contributed significantly to the accuracy of Classification 

B.   
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CHAPTER 1 INTRODUCTION 

1.1 BACKGROUND 

It is estimated that half of the world's total wetland area has been lost and what 

wetlands remain have been severely degraded (Zedler and Kercher 2005). Drainage 

and conversion to agricultural land has been the most significant cause of wetland loss 

in the United States. In Illinois, where the majority of wetlands are now forested, over 

90% of the wetlands have been drained due to agriculture (Dahl and Allord 1996). 

Although forested wetlands are the most common wetland type in Illinois, and in the 

United States, they have suffered greater loss in total area than any other wetland type 

(U.S. Fish and Wildlife Service 2002; Zedler and Kercher 2005; Lang et al. 2009). 

Research suggests that forested wetlands are also the most likely to be lost in the future 

(U.S. Fish and Wildlife Service 2002; Zedler and Kercher 2005; Lang et al. 2009).   

Although wetlands currently occupy a relatively small portion of the earth’s land 

(only 9% worldwide and 5% in the U.S.), ecosystem services provided by wetlands are 

estimated to be valued at upwards of $70 billion dollars annually (Wilen and Tiner 1989; 

Zedler and Kercher 2005). Wetlands contribute to ecological diversity, improve air and 

water quality, sequester carbon, and provide opportunities for recreational activities 

such as birding, fishing, boating, and hunting. Forested wetlands in particular support 

biodiversity by providing unique habitat that is vital for the lifecycle of some wildlife 

(Zedler and Kercher 2005; Töyrä and Pietroniro 2005). Wetlands are retention areas for 

floodwater storage, which can reduce downstream flooding, and therefor decreasing the 

cost of flood damages (Zedler and Kercher 2005; Töyrä and Pietroniro 2005; Lang et al. 
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2009). Additionally, forested wetlands have substantial potential for carbon 

sequestration (Huang et al. 2011).  

Clearly forested wetlands are a crucial component of the landscape. Due to their 

importance, it is necessary to accurately map and monitor these habitats so that their 

extent, and quality, can be better understood by natural resource managers. Wetland 

inventories, in general, can provide context for assessing ecosystem health at regional 

and landscape levels (Bourgeau-Chavez et al. 2008a; Bourgeau-Chavez et al. 2008b; 

Lang et al. 2009; Poulin, Davranche, and Lafebvre 2010). These inventories are 

particularly important for understanding how anthropogenic activities have influenced 

the abundance and composition of wetlands over time (Bourgeau-Chavez et al. 2008b; 

Poulin, Davranche, and Lafebvre 2010). Wetland inventories typically include the extent 

and location of wetlands, and also vegetation composition and hydrologic regime; 

information that may be used to assess potential productivity, determine flood storage 

potential, or be used to target restoration activities (Töyrä and Pietroniro 2005; Lang 

and McCarty 2009).  

Although many countries do not have wetland inventories, in the United States 

two federal agencies are tasked with inventorying wetlands, the Army Corps of 

Engineers (ACE) and the U.S. Fish and Wildlife Service (USFWS). A number of states 

(i.e. Wisconsin) even complete their own inventories. The U.S. Fish and Wildlife Service 

performs a wetland inventory, known as the National Wetland Inventory (NWI), to 

support informed management of wetlands as necessary habitat for numerous plants 

and animals (Cowardin 1979; Wilen and Tiner 1989). Inventories performed by the 

USFWS use the Cowardin classification system, a qualitative, hierarchical system, for 
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classifying wetlands and deep-water habitats (Cowardin 1979, FGDC 1992, FGDC 

2009). Within this system wetlands are defined as: 

 

...lands transitional between terrestrial and aquatic systems where the 
water table is usually at or near the surface or the land is covered by 
shallow water. For purposes of this classification wetlands must have one 
or more of the following three attributes: (1) at least periodically, the land 
supports predominantly hydrophytes; (2) the substrate is predominantly 
undrained hydric soil; and (3) the substrate is nonsoil and is saturated with 
water or covered by shallow water at some time during the growing 
season of each year (Cowardin 1979, 3). 
 

 The USFWS uses remote sensing as the primary method for performing 

the National Wetland Inventory. Remote sensing, through satellite and aerial 

photography, provides a cost effective method for conducting wetland inventories over a 

large geographic regions. The goal of updating the National Wetlands Inventory every 

10 years was set by the Emergency Wetland Resource Act of 1986 (Wilen and Tiner 

1989). Currently, lack of funding has affected the frequency with which the National 

Wetland Inventory is updated. The planned update interval is every 20 years, with 

federal funding that allows for less than 2% of the United States to be updated per year 

(Awl et al. 2009). In light of these insufficient resources, the USFWS has developed a 

strategy for continued updating of wetland maps that includes: 1) Prioritization of 

mapping and update efforts in the most critical regions; 2) Working with partner 

agencies (federal, state, local and non-governmental) to share data and funding for 

mapping efforts; 3) Serving as coordinator for mapping efforts done by partner 

agencies; and 4) Developing more efficient, and cost effective methods for inventorying 

wetlands (U.S. Fish and Wildlife Service 2002; Wright and Gallant 2007; Awl et al. 
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2009). This research addresses the 4th strategy by developing new methods for 

overcoming the inventory difficulty to map forested wetlands in Vermilion County Illinois. 

1.2 PROBLEM STATEMENT 

 Though hydrology is the major abiotic control of wetland location and extent, and 

one of the three indicators of wetland status based on the definition of the USFWS, few 

studies have addressed the methods for directly detecting wetland hydrology in forested 

areas (Lang and McCarty 2009). The intention of this research is to develop an 

innovative method for identifying forested wetland hydrology, and thus forested 

wetlands, within a remote sensing classification. Forested wetlands have historically 

been the most difficult to map due to the tree canopy obscuring wetland hydrology. 

Traditional optical remote sensors are not adequate for these purposes because they 

are unable to ‘see’ below the vegetated tree canopy (Corcoran et al. 2013). However, 

recent research has shown that LiDAR may be the solution to this problem.  

 LiDAR has the unique ability to penetrate the vegetation canopy and can be used 

to create high resolution, bare-ground elevation dataset in forested areas. These high-

resolution elevation datasets have been shown to identify wetlands with greater 

accuracy than low and moderate resolution datasets (Hogg and Holland 2007). Due to 

the absorption of LiDAR infrared signal by water, the LiDAR intensity data, exhibits 

uniquely low reflectance values in the areas of moist soils and open water (Silva et al. 

2008). Some researchers have noted this as a negative component of utilizing LiDAR 

data when in fact it may be useful. The LiDAR signal is unable to be reflected from open 

water surfaces, making these features evident in LiDAR intensity data. A number of 
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researchers have shown the utility of using such datasets for forested wetland mapping. 

Still, more research needs to be done to evaluate the predictive power of LiDAR derived 

datasets, particularly intensity, compared to multi-spectral aerial imagery. 

1.3  RESEARCH QUESTIONS 

The objective of this research was to address the following questions: 

 

1. What is the accuracy difference of a forested wetland classification using only 

multi-spectral imagery compared to a classification performed using LiDAR data?  

 

2. Can the fusion of LiDAR and Aerial Imagery datasets improve forested 

wetland classification accuracy compared with classification of a single data 

source?  

 

3. Is LiDAR ground return intensity data useful for forested wetland identification? 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 REMOTE SENSING OF WETLANDS 

Due to the frequent presence of dense vegetation, saturated soils, and uneven 

terrain, wetlands are particularly difficult to monitor in situ (Töyrä and Pietroniro 2005; 

Lang et al. 2009). Collecting extensive field observations of wetland conditions is quite 

time-consuming and thus it is cost-prohibitive to produce landscape scale wetland maps 

from field observations alone (Zhou et al. 2010; Xie et al. 2011). Successful wetland 

mapping efforts use methods that are robust, low-cost, and easily implemented 

(Bourgeau-Chavez et al. 2008a). Remote sensing fulfills these requirements by allowing 

for the detection of wetland characteristics, over a broad geographic region, without 

physically going to each wetland; providing a cost-effective method for performing 

wetland inventories on the landscape scale (Bourgeau-Chavez et al. 2008a; Bourgeau-

Chavez et al. 2008b; Lang et al. 2009). In addition to cost-effectiveness, remote sensing 

provides methods that can be easily and accurately replicated by other researchers 

(Töyrä and Pietroniro 2005; Zhou et al. 2010). Furthermore, remote sensing has the 

ability to classify the surrounding upland habitat, providing valuable information about 

factors that potentially affect the quality and quantity of wetlands (Bourgeau-Chavez et 

al. 2008a).  

Because of these properties, remote sensing techniques are the most commonly 

used methods for performing wetland inventories, and the method used by the U.S. Fish 

and Wildlife Service (Wilen and Tiner 1989; FGDC 1992; FGDC 2009 Klemas 2011). 

Wetland status, as determined by the USFWS, is based upon evidence of the presence 
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of one or more of the following wetland characteristics: hydric vegetation, hydric soils, 

and/or wetland hydrology. To be effective, remote sensing data must provide 

information about these characteristics. Accuracy of these wetland inventories depends 

on the type of remotely sensed data used, classification methods, as well as the 

landscape being classified (Lu and Weng 2007). A review of the literature pertaining to 

identification of wetlands, particularly forested wetlands, quickly reveals the many 

factors that must be considered before conducting a wetland inventory. The following 

discussion will focus on remotely sensed datasets and classification techniques used for 

the discrimination of wetland indicators - hydrophytic vegetation, hydric soils, and 

wetland hydrology.  

 

2.1.1. PASSIVE REMOTE SENSING 

Remote sensing can be accomplished using either passive or active sensors. 

Passive sensors rely on electromagnetic energy from the sun reflecting off the feature of 

interest to be recorded by the sensors. Examples of passive sensors include optical 

satellite and aerial imaging. Many studies have focused on the use of these sensors for 

wetland detection. However, a major drawback for the use of passive sensors for 

forested wetland identification is their inability to receive electromagnetic energy from 

obstructed features. Passive sensors may be able to identify forest tree species based 

on their signature, or unique reflectance in each channel of the remote sensing data. 

However, if foliage is present, the passive sensor cannot receive reflected radiation 

from below the tree canopy, making forested wetlands difficult to map with passive 
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remotely sensed data alone (Bourgeau-Chavez et al. 2008a; Lang and McCarty 2009; 

Lang et al. 2013).  

 

2.1.1.1 MULTI-SPECTRAL IMAGERY 

Multi-spectral imagery, sometimes referred to as visible/infrared, or color-infrared 

imagery, typically senses radiation within the visible (red, green, blue) and infrared 

spectrum, though they may also collect data from the ultra violet and thermal regions. 

Sensors that collect multi-spectral imagery are deployed by satellite or aircraft. These 

sensors record the spectral reflectance (and sometimes emittance) of surface features, 

including vegetation. This spectral information can then be used to detect wetland 

indicators such as hydrophytic vegetation (i.e. vegetation that is adapted to wet 

conditions) or vegetation that has undergone some stress due to inundation (Schmidt 

and Skidmore 2003; Bourgeau-Chavez et al. 2008b; Silva et al. 2008; Lang et al. 2013). 

Vegetation stress may provide information indicating soil moisture or inundation in 

locations that are not wetlands and do not have vegetation adapted to these conditions 

(Bourgeau-Chavez et al. 2008b; Lang et al. 2013).  

Vegetation monitoring using remote sensing can be accomplished using visible 

infrared satellite remote sensing systems such as Satellite Pour L’Observation de la 

Terre (SPOT), IKONOS, Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (Aster), Moderate-resolution Imaging Spectroradiometer (MODIS), Landsat, 

and aerial color-infrared sensor systems. Optical sensors deployed on earth-orbiting 

satellites are useful due to their capacity for monitoring very large areas at regular 

intervals, providing both the spatial and temporal coverage needed to detect and 
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classify wetlands (Jensen 1996; O’Hara 2002; Töyrä and Pietroniro 2005; Corcoran, 

Knight, and Gallant 2013). The key factors to consider when acquiring satellite data are 

obtaining cloud free scenes, pre-processing to account for atmospheric influence, and 

the spectral and spatial resolution of the potential data source (Töyrä and Pietroniro 

2005). Low and moderate resolution satellite imagery may have difficulty in spatially 

heterogeneous areas in which a single pixel receives the spectral reflectance of multiple 

cover types, resulting in classification confusion (Töyrä and Pietroniro 2005). This is 

known as the mixed pixel problem and may be reduced as the spatial resolution of the 

imagery is increased. Zhou et al. (2010) indicates that satellite spectral information 

tends to be noisy, and that noise increases with higher spatial resolutions, partially due 

to interference with the atmosphere. Satellite images require pre-processing procedures 

to account for atmospheric interference as well as to convert digital numbers to spectral 

reflectance values (Chandler, Markham, and Helder 2009). 

SPOT-5 is a French commercial satellite able to capture spectral information at 

2.5 to 20-meter resolution (Lillesand, Kiefer, and Chipman 2008; Klemas 2011). 

Unfortunately the expense of SPOT imagery makes it impractical for large-scale 

wetland mapping efforts (Töyrä and Pietroniro 2005; Klemas 2011). IKONOS imagery is 

a commercial high-resolution satellite optical sensor system whose 4 meter 

multispectral (red, green, blue, and infrared) bands can be pansharpened using the 1 

meter panchromatic band (Lillesand, Kiefer, and Chipman 2008; Zhou et al. 2010). A 

major benefit of IKONOS imagery is its fine spatial resolution (0.6 to 4 meters) (Klemas 

2011). However, IKONOS is expensive and implementation on a large project scale 
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may not be worth the cost, particularly where other sensors such as Landsat, can be 

used (Klemas 2011).  

ASTER is a moderate (15 to 90 meter) resolution commercial satellite optical 

sensor system that is not frequently used for wetland classifications (Pantaleoni et al. 

2009). However, Pantaleoni et al. (2009) was able to use this data to classify wetlands 

with some success. MODIS is a medium/coarse resolution multispectral sensor that 

provides full earth coverage almost every day (Pflugmacher, Krankina, and Cohen 

2007). This sensor consists of 36 spectral bands with resolution ranging from 250 

meters to 1 kilometer. The spectral, temporal, and spatial coverage of MODIS makes it 

an attractive choice for performing wetland assessments. However, due to the low 

spatial resolution of the sensor it is not ideal for monitoring smaller features such as 

forested wetlands (Pflugmacher, Krankina, and Cohen 2007).  

Gritzner (2009) showed the utility of Landsat 7 infrared bands for the detection of 

open water in the prairie pothole region. This was done by applying a thresholding 

technique to the near-infrared channel (band 5.) This technique identifies regions of low 

reflection in the infrared band of the Landsat 7 optical satellite sensor. This is useful for 

identifying surface water because the infrared frequency of electromagnetic radiation is 

attenuated by water ((Töyrä et al. 2002; Gritzner 2006; Lang et al. 2009). However, 

optical remote sensing methods have been shown to be ineffective for the identification 

of wetland hydrology when hydrologic characteristics are obscured by a vegetated 

canopy, as is the case with most forested wetlands in leaf-on conditions. (Tiner 1990; 

Töyrä and Pietroniro 2005; Lang et al. 2013). Landsat is the most commonly used 

satellite optical sensor system for land use and land-cover (LULC) classifications 
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(Jensen 1996; Klemas 2011). Landsat images are freely available and provide 

moderate resolution (30 meter) imagery every 16 days (Jensen 1996; Pflugmacher et 

al. 2007; Klemas 2011). It is because of the cost effectiveness, moderate spatial 

resolution, and multispectral capabilities that Landsat is so widely used for land cover 

mapping. 

Aerial imagery is obtained by mounting visible/infrared cameras on low flying 

aircraft. Aerial imagery is typically collected with spectral resolution that is comparable 

to satellite imagery and finer spatial resolution than satellite sensors. Although satellite 

images are useful for wetland classification, aerial imagery is the most common optical 

sensor used for wetland inventories in the United States (Lang et al. 2009). This is a 

result of moderate and low-resolution satellite images being outperformed by aerial 

imagery’s ability to detect fine-scale wetland details needed for visual identification and 

classification of wetlands according to the Cowardin Classification System (Nielsen, 

Prince, and Koeln 2008; Klemas 2011). The Federal Geographic Data Committee 

(FGDC), Wetlands Mapping Standards Subcommittee requires imagery used for 

mapping wetlands in the contiguous United States to have a minimum of 1ft spatial 

resolution and requires the inclusion of visible and infrared bands (FGDC 2009). These 

standards are easily met by multi-spectral aerial imagery. These standards have been 

established to ensure that wetlands a half acre in size (the target minimum mapping unit 

for the National Wetland Inventory) can be adequately mapped and included in wetland 

mapping efforts (FGDC 2009). 
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2.1.1.3 HYPERSPECTRAL IMAGERY 

The primary difference between multi-spectral and hyperspectral imagery is the 

number of channels, and the width of the spectral region in which reflected energy can 

be recorded.  Hyperspectral imagery contains many more bands than multi-spectral 

imagery, with each band collecting information in only a narrow region of the 

electromagnetic spectrum.  Although multi-spectral aerial imagery is the most common 

optical sensor used for wetland inventories in the United States, hyperspectral sensors 

provide the unique ability to distinguish very small differences in spectral reflectance 

that may be useful for discerning otherwise spectrally similar vegetation (Töyrä and 

Pietroniro 2005; Lang et al. 2009). Hyperspectral datasets, due to their high spectral 

resolutions, are excellent for identification of wetlands. They may even aid in estimating 

the carbon sequestration potential of wetlands (Klemas 2011). NASA’s Airborne 

Visible/Infrared Imaging Spectrometer (AVRIS) system is a satellite-deployed passive 

remote sensing system that collects 224 separate spectral channels of data. However, 

hyperspectral imaging is expensive to acquire, and requires complex processing, 

making operational use of this technology impractical (Lang et al. 2009).  

 

2.1.1.4 IMAGE INDICES 

Spectral information contained in multi-spectral and hyperspectral images can be 

analyzed on a channel-by-channel basis or by visualizing some combination of these 

bands.  However, it is frequently useful to calculate image indices and band ratios that 

combine information from two or more channels to evaluate vegetation, soil, and 

moisture characteristics. Image indices can be used for detecting open water, moist 



13 
 

 
 

soils, or hydrophytic vegetation based high leaf moisture content. Common image 

indices used for this purpose include the Simple Ratio, Normalized Difference 

Vegetation Index (NDVI), and Normalized Difference Water Index (NDWI) (Gao 1996; 

Jensen 1996; Poulin, Davranche, and Lafebvre 2010.)  

The simple ratio and NDVI are commonly used to distinguish healthy vegetation 

based on reflectance in the red and infrared regions. Red reflectance contains 

information about chlorophyll content in leaves at the surface with lower red reflectance 

indicating the presence of more chlorophyll than in regions with high reflectance (Gao 

1996; Jensen 1996). The infrared reflectance is absorbed by water and lower values 

indicate greater leaf water content (Gao 1996; Jensen 1996.) The simple ratio is 

calculated as the ratio of the near infrared to red channel. The NDVI is calculated as 

(near infrared – red) / (near infrared + red) produces similar results compared to the 

simple ratio. The primary difference is that the NDVI does not have the range to 

separate features in high-biomass areas whereas the simple ratio does (Jensen 1996; 

Poulin, Davranche, and Lafebvre 2010.) The NDWI is calculated as (green - near 

infrared) / (green + near infrared) and is complementary to the simple ratio and NDVI in 

that it improves the separation of open water and terrestrial features (Gao 1996; 

McFeeters 1996; Poulin, Davranche, and Lafebvre 2010.) 

 

2.1.2 ACTIVE REMOTE SENSING 

Active sensors do not rely on the sunlight as a source of energy; instead the 

sensor generates and emits its own signal and then records its return. The availability 

and quality of active remotely sensed data, such as Radio Detection and Ranging 
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(RADAR) and Light Detection and Ranging (LiDAR), have increased in recent years, 

providing unique opportunities for remotely sensing forested wetlands, particularly when 

the actively sensed data is combined with passively sensed data (Töyrä et al. 2002; 

Töyrä and Pietroniro 2005; Zedler and Kercher 2005; Bourgeau-Chavez et al. 2008b; 

Lang et al. 2009; Lang and McCarty 2009; Huang et al. 2011; Ellis, Mahler, and 

Richardson 2012; Lang et al. 2013). Bourgeau-Chavez et al. (2008a) showed that when 

passive remote sensing data is used, such as satellite optical imagery, along with 

complementary active sensor data, such as RADAR, the accuracy of the resulting 

wetland maps is greater than the accuracy of those produced only with optical data. The 

use of a multi-sensor, multi-temporal approach, is particularly important for the mapping 

of forested wetlands, where the use of optical imagery is not adequate (Bourgeau-

Chavez et al. 2008a; Bourgeau-Chavez et al. 2008b; Lang et al. 2009; Pantaleoni et al. 

2009; Corcoran, Knight, and Gallant 2013). 

 

2.1.2.1 RADAR 

A few researchers have used 30-meter resolution RADAR active remote sensing 

to detect wetland hydrology (Töyrä et al. 2002; Töyrä and Pietroniro 2005; Bourgeau-

Chavez et al. 2008a; Bourgeau-Chavez et al. 2008b; Lang et al. 2009). RADAR 

broadcasts long-wavelength microwaves through the atmosphere to the ground and 

then record back scattered energy. RADAR images may be collected in nearly any 

weather due to its ability to penetrate clouds. Additionally, at low incidence angles 

RADAR is able to penetrate most vegetation (Töyrä et al. 2002; Lang et al. 2009). The 

strength of the RADAR signal reflected and scattered back to the sensor is dependent 
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on the texture and characteristics of the reflecting features as well as the signal 

characteristics (wavelength, angle, and polarization) (Töyrä and Pietroniro 2005; 

Bourgeau-Chavez et al. 2008a; Bourgeau-Chavez et al. 2009.) The strength of this 

reflected signal, also known as signal intensity, can be used to discriminate open water 

from dry and flooded vegetation (Töyrä et al. 2002; Töyrä and Pietroniro 2005; 

Bourgeau-Chavez et al. 2008a; Bourgeau-Chavez et al. 2008b; Lang et al. 2009). L-

Band RADAR has been proven to discriminate between vegetation types such as 

cattail, Phragmites, and bulrush (Bourgeau-Chavez et al. 2008a). In forested wetland 

environments, RADAR intensity is quite high due to the signal double bouncing from the 

water, to the trees, and back to the sensor. This high backscatter can be used to locate 

inundated areas. In fact, RADAR cannot only identify forested wetland areas, but also it 

has been proven to discriminate between moist soil and surface water when optical 

imagery was unable to (Töyrä et al. 2002; Zedler and Kercher 2005; Bourgeau-Chavez 

et al. 2008a; Bourgeau-Chavez et al. 2008b; Land and Kasischke 2008.)  

While RADAR has been used successfully for the detection of wetland hydrology, 

and forested wetlands, RADAR may not be appropriate for every application. The cost 

of RADAR data acquisition is quite high and may outweigh its ability to detect inundation 

when compared with other datasets (Bourgeau-Chavez et al. 2008b). At 30-meter 

resolution, RADAR provides relatively coarse resolution datasets making these data 

less than ideal for detection of small features (Töyrä et al. 2002; Bourgeau-Chavez et al. 

2008a; Bourgeau-Chavez et al. 2008b; Lang et al. 2009). The sensitivity of RADAR 

sensor can result in data that is quite noisy, necessitating the use of noise filtering 

techniques before the data can be used (Töyrä et al. 2002). Additionally the bounce 
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effect of the RADAR signal can result in classification of inundated areas that are 

slightly removed from their actual locations (Bourgeau-Chavez et al. 2008b). 

Regardless, the use of RADAR data in combination with optical imagery has been 

shown to improve wetland classification compared to classification with optical imagery 

alone (Töyrä et al. 2002; Bourgeau-Chavez et al. 2008a; Bourgeau-Chavez et al. 

2008b; Lang et al. 2009). 

 

2.1.2.2 LIDAR 

LiDAR typically uses visible infrared laser energy to collect vegetation and 

ground elevation data (Wehr and Lohr 1999; Lang et al. 2009; Song et al. 2012). LiDAR 

emits dense pulses of laser energy, typically 900 to 1550 nm, and records the returned 

energy, documenting the time it takes for that energy to reflect off a surface and return 

to the sensor (Wehr and Lohr 1999; Töyrä and Pietroniro 2005; Lang and McCarty 

2009, Song et al. 2012). That time, along with information about the sensors height, is 

then used to calculate the elevation of the surface from which the signal reflected (Wehr 

and Lohr 1999). The laser energy is able to penetrate most vegetation canopies 

allowing for the identification of below vegetation terrain conditions at a finer resolution 

than could previously be detected (Töyrä and Pietroniro 2005; Lang and McCarty 2009; 

Ellis et al. 2012; Song et al. 2012). However, in some areas of dense vegetation, LiDAR 

signal may not be able to penetrate through all layers of vegetation to the ground below 

(Xie et al. 2011).  

Although LiDAR datasets require more computing power than lower resolution 

datasets, the high spatial resolution LiDAR is better able to identify potentially wet areas 
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than the datasets with coarser resolutions, due to increased accuracy and precision 

(Töyrä and Pietroniro 2005; Murphy et al. 2007; Bourgeau-Chavez et al. 2008; Remmel, 

Todd, and Buttle 2008; Huang et al. 2011; Lang et al. 2013). Hogg and Holland (2008) 

showed that the greater precision and accuracy of LiDAR elevation data (collected 

during leaf-on conditions) was able to improve the classification of forested wetlands 

from 76% to 84% when compared with a 20m resolution DEM. Lang et al. (2009) also 

showed that LiDAR increased forested wetland classification accuracy, but that the 

vertical accuracy of the LiDAR is reduced in forested areas. However, this error can be 

mitigated by collecting LiDAR measurements during leaf-off conditions (Lang et al. 

2013). LiDAR is a relatively new technology that cost substantially more compared with 

freely available USGS elevation products typically derived from RaDAR (Lang and 

McCarty 2009; Gallant, Marinova, and Andersson 2011). Even so, for some 

applications, the improved accuracy of the LiDAR data may justify increased costs 

(Murphy et al. 2007; Gallant, Marinova, and Anderson 2011). Fortunately, airborne 

LiDAR data is becoming increasingly available through Federal, State, and Local 

government agencies (Lang and McCarty 2009).   

While the usefulness of RADAR technology for mapping forested wetlands is well 

documented, very few researchers have addressed the utilization of LiDAR. There are 

two components of LiDAR point data: elevation and intensity (Song et al. 2012). LiDAR 

intensity, or the strength of the signal returned to the LiDAR sensor, is influenced by the 

properties of the material from which it reflects and may be useful for inferring 

information about the reflecting feature (Song et al. 2002; Lang et al. 2013). 

Unfortunately, because LiDAR is a relatively new and developing technology few 
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researchers have addressed the use of LiDAR intensity data for the classification of 

forested wetlands, or other land-cover features (Song et al. 2002; Lang and McCarty 

2009). Still, LiDAR intensity has shown potential for overcoming the limitations of optical 

and RADAR data.  

A LiDAR sensor may collect data using a laser signals within the green or 

infrared spectrum, depending on the project purpose. LiDAR data collected using a 

laser signal in the infrared spectrum provides a comparable ability for detecting flooded 

regions where the infrared signal is absorbed by water. Silva et al. (2008) indicated that 

even in areas with moist soil the LiDAR signal will be dampened, indicating that LiDAR 

intensity may also be able to separate dry and moist soils. Boyd and Hill (2007) found 

that in forested regions LiDAR intensity values were representative of the near-infrared 

reflections recorded by optical imagery and could be used similarly to traditional 

imagery. However, due to LiDAR’s active sensor technology, it has greater ability to 

distinguish between inundated and non-inundated forested areas than passive optical 

sensors (Lang and McCarty 2009). In fact, the use of intensity data can result in wetland 

classifications that are 30% more accurate than those performed with 1m optical 

imagery (Lang & McCarty 2009; Lang et al. 2013).  

Figure 2.1, modified from Lang and McCarty (2009) offers a visual comparison of 

30 meter DEM, LiDAR intensity, aerial color infrared imagery, and RADAR data for 

detecting forested wetlands. As you can see, LiDAR intensity has a superior ability to 

detect below canopy inundation at fine resolution. Lang and McCarty (2009) utilized 

LiDAR intensity for separating inundated from un-inundated areas. Using visual 

inspection and expert knowledge Lang and McCarty (2009) determined the inundated 
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areas were most accurately identified by thresholding intensity values ranging from 0 to 

50, while the un-inundated areas were well identified by thresholding intensity values 

from 80 to 255. Song et al. (2002) evaluated the feasibility of using LiDAR intensity data 

for LULC classification and found that the intensity data may be useful for enhancing the 

seperability of LULC classes but that more research is needed for standardizing, and 

filtering the noise in the intensity data.  

Researchers suggest that the utilization of LiDAR intensity data may increase if 

methods of standardization for this data were developed (Song 2002; Boyd and Hill 

2007; Lang and McCarty 2009; Hartfield, Landau, and Leeuwen 2011). Hartfield, 

Landau, and Leeuwen (2011) found that visibility of lack of intensity calibration between 

flight lines can result in classification confusion. Like RADAR, LiDAR intensity data 

tends to be noisy and should be filtered to reduce this noise, prior to classification. The 

usefulness of LiDAR data, including intensity, may increase if collected during both wet 

and dry periods allowing for modelling of flooding and dry ground (Töyrä et al. 2002). 

Töyrä and Pietroniro (2005) indicated that the difference between elevations collected 

during dry periods and elevations collected during wet periods could be used to 

estimate flood storage capacity. Although it has been acknowledged that LiDAR data 

can be costly, increasing utilization, including use of the intensity component may 

increase the cost-effectiveness (Song et al. 2002). 
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Figure 2.1: View of forested wetlands using four remote sensing data sources. A) 

1-meter resolution DEM; B) LiDAR intensity image; C) 1-meter Color Infrared 

Imagery; D) 30-meter resolution RADAR intensity image (Modified from Lang et al. 

2009). 

 

2.1.2.3 TERRAIN DERIVATIVES 

Active sensors are typically utilized in the creation of elevation data, derived as a 

function of the sensor height, signal speed, and signal return time. Where wetland and 

upland vegetation are spectrally similar, the identification of topographic features, such 

as depressions, may be used to indicate wetland status. Elevation and small variations 
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in topography have a significant influence over wetland location and so elevation 

datasets derived from the RADAR or LIDAR data can be used to create hydrologic 

models that predict soil moisture content and potential flooding associated with 

wetlands (Töyrä and Pietroniro 2005; Zedler and Kercher 2005; Murphy et al. 2007; 

Gallant, Marinova, and Andersson 2011). Traditionally digital elevation models (DEMs) 

were created using photo-interpretation techniques or field measurements-but this 

process was both time-consuming and costly (Remmel, Todd, and Buttle 2008). These 

methods resulted in very coarse, or low-resolution (1/10th degree and 9 second 

resolution), elevation datasets, with accuracy that decreased as distance from sample 

location increased (Gallant, Marinova, and Andersson 2011). The production of DEMs 

can now be created with sensors mounted on satellites and aircraft having evolved from 

topographic maps toward low and moderate spatial resolution elevation models derived 

from satellite borne RADAR data, and more recently to high spatial resolution LiDAR 

data (Gallant, Marinova, and Andersson 2011). An example of this is the Shuttle 

RADAR Topographic Mission (STRM) which has produced 90m resolution global DEMs 

(Gallant, Marinova, and Andersson 2011). ASTER has produced satellite image stereo 

pairs that can be used for the production of 30 DEMs (Gallant, Marinova, and 

Andersson 2011). TanDEM-X and TerraSAR-X both utilize RADAR technology to create 

a DEM that is up to 50% more accurate than STRM derived elevation models and at 12 

m resolution (Gallant, Marinova, and Andersson 2011).  

But, these elevation datasets are still very coarse for use in the identification of 

topographic features in areas where small-scale topographic variations are key to 

identifying forested wetlands (Töyrä and Pietroniro 2005; Lang and McCarty 2009; Lang 
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et al. 2013). The USGS produces 10-m and 30-m, moderate resolution DEMs. 

However, these datasets may have too low-resolutions for detecting wetland features in 

low-relief landscapes (Bourgeau-Chavez et al. 2008b; Huang et al. 2011). Kheir et al. 

(2009) found that moderate and coarse resolution elevation datasets result in over-

simplification of the landscape and can propagate inaccuracies to derivative datasets 

such as slope, aspect, curvature, and flow accumulation (Kienzle 2004; Remmel, Todd, 

and Buttle 2008). However, higher spatial resolution elevation datasets, such as LiDAR 

derived DEMs, are better able to identify potentially wet areas than datasets with 

coarser resolutions, due to increased accuracy and precision (Töyrä and Pietroniro 

2005; Murphy et al. 2007; Bourgeau-Chavez et al. 2008b; Remmel, Todd, and Buttle 

2008; Huang et al. 2011; Lang et al. 2013). Additionally, RADAR and LiDAR have been 

proven to successfully distinguish hydrophytic vegetation based on biomass and 

vegetation structural information obtained by these sensors (MacKinnon 2001; Song et 

al. 2002; Lang et al. 2009; Gallant, Marinova, and Andersson 2011; Corcoran, Knight, 

and Gallant 2013). 

Terrain information such as slope, curvature, aspect, and the topographic 

wetness index (TWI), can be derived from the elevation datasets and used to model soil 

moisture and wetland location (Kienzle 2004; Hogg and Todd 2007; Kheir et al. 2009; 

Lang et al. 2009; Lang et al. 2013). Incorporation of terrain information results in 

wetland classifications that are more accurate than those performed using optical 

imagery alone (Hogg and Todd 2007). The topographic wetness index (TWI), developed 

by Beven and Kirkby (1979), has been used to estimate the distribution of moist soils, 

and is one of the most widely used measures for identifying wetland hydrology (Kienzle 
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2004; Sörensen, Zinko, and Seibert 2006; Kheir et al. 2009; Ma et al. 2010). The TWI 

utilizes the slope and upslope contributing area to model runoff, and thus soil moisture 

(Beven and Kirkby 1979; Kienzle 2004; Remmel, Todd, and Buttle 2008; Ma et al. 

2010). It should be noted that TWI does not account for infiltration or evaporation rates 

(Beven and Kirkby 1979). High TWI values correspond to inundated areas or areas that 

are likely to be, or have been wetlands (Lang and McCarty 2009). As you would expect, 

there is a strong positive correlation between depressional areas and high TWI values 

(Remmel, Todd, and Buttle 2008). Ma et al. (2010) found that aspect has an effect on 

soil moisture content and that TWI calculations weighted by the aspect of the slope 

results in a more accurate prediction of soil moisture.  

 

2.1.3. ANCILLARY DATASETS 

In some cases, remotely sensed data cannot capture the full range of variables 

necessary for identifying wetlands. Ancillary datasets may be used to assist in the 

identification of wetlands where remotely sensed data is inadequate (Lang and McCarty 

2009). Data such as soils, elevation, and topographic indices derived from elevation 

datasets can provide additional information about wetland location and hydrology 

(Bourgeau-Chavez et al. 2008b).  

Soils data such as the State Soil Survey Geographic Database (STATSGO) and 

the Soil Survey Geographic Database (SSURGO) are available through the United 

States Department of Agriculture - Natural Resources Conservation Service (USDA-

NRCS) as part of the Soil Conservation Service (SCS). SSURGO provides more spatial 

detail than the STATSGO dataset and would be best for use in local scale wetland 
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inventories. This dataset consists of a tabular component containing detailed soil 

property information that can be joined with the spatial soil component. These datasets 

are frequently used to identify soils in which wetlands are likely to be found (Bourgeau-

Chavez et al. 2008b).  

 

2.2. DATA FUSION 

 Due to the utility of using both active and passive remote sensing data for the 

identification of forested wetlands methods have been developed to combine these 

datasets at some level within a classification in a process referred to as data fusion 

(Zhang 2010.)  The fusion of data from multiple dates and multiple sensors provides 

more information to a classification than a single dataset. This fusion can be 

accomplished at the pixel, feature, or decision level (Zheng 2010.) Pixel level data 

fusion includes techniques such as intensity, hue, and saturation (IHS) transformation 

and principal component analysis.  Extraction of features from multiple data sources to 

be combined into a single map is feature level data fusion. Data fusion at the decision 

level, or within classification fusion, is a more recent advance in data fusion techniques 

that have shown to improve classification accuracies, particularly when it is done within 

machine learning algorithms such as CART and random forest (Bourgeau-Chavez et al. 

2008b; Lang and Kasischke 2008; Lucas et al. 2008; Bourgeau-Chavez et al. 2009; Hall 

et al. 2009; Bwangoy et al. 2010; Erdody and Moskal 2010Zheng 2010.)  

 Studies have shown that data fusion allows for the improved discrimination of 

features such as forested wetlands, inundation levels, tree species, and forest biomass 

(Maxa and Bolstad 2009; Bwangoy et al. 2010; Dalpont, Bruzzone, and Gianelle 2012; 
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Maxwell et al. 2014.) The fusion of multi-sensor, multi-date remotely sensed data can 

improve the mapping of forested wetlands due to an increased capacity for monitoring 

temporal variations and the opportunity to use active sensors that penetrate vegetated 

forest canopies (Murphy et al. 2007; Bourgeau-Chavez et al. 2008b; Lang and 

Kasischke 2008; Lucas et al. 2008;  Bourgeau-Chavez et al. 2009; Hall et al. 2009; 

Bwangoy et al. 2010; Erdody and Moskal 2010; Corcoran, Knight, and Gallant 

2013).This is particularly true when data with high spectral and/or spatial resolution is 

used (Hall et al. 2009; Maxa and Bolstad 2009; Bwangoy et al. 2010). Most researchers 

interested in data fusion for the detection of forested wetland hydrology have focused 

on the fusion of RADAR and satellite or aerial imagery (Bwangoy et al. 2010). However, 

a number of researchers have investigated the fusion of multi-spectral and 

hyperspectral imagery with the elevation and terrain components of LiDAR data for 

identification of forested wetland areas (Maxa and Bolstad 2009; Hartfield, Landau, and 

Leeuwen 2011.)  

 

2.3. CLASSIFICATION METHODS 

Many methods exist for transforming remote sensing data into information about 

the discrete wetland classes. Traditionally, wetland classification has been done using 

photointerpretation methods. But, this method relies on the ability of the photo-

interpreter(s) to infer the location and extent of wetlands. This process is highly 

subjective, time-consuming, and may be inconsistent among photo-interpreters. A 

solution is to develop an automated decision method using GIS and remote sensing 
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data, and assess wetland probability based upon ancillary data. These methods can be 

divided into two main categories: unsupervised and supervised classification.  

Unsupervised classifications are typically done by grouping pixels with similar 

spectral signatures based on some user defined statistical criteria (Jensen 1996; 

Klemas 2011). Töyrä and Pietroniro (2005) used an image polygon-growing algorithm 

for mapping flooded regions. Zhou et al. (2010) utilized an unsupervised classification 

routine to detect wetlands with IKONOS 4m resolution imagery. Iterative Self-

Organizing Data Analysis (ISODATA), based on a database of known spectral 

signatures, was used to train the images and group pixels based on similarities of the 

spectral signatures. While it was found that the high-resolution imagery using ISODATA 

provided a good wetland classification, the resulting dataset was quite noisy requiring a 

post classification clumping and sieving routine. Clumping and sieving retained pixel 

groupings while discarding single, or small cell groupings, effectively reducing the noise 

in the classified image, and increasing accuracy (Zhou et al. 2010). Additionally, 

unsupervised classification methods rely on the accuracy and completeness of the 

ISODATA but it is possible to misclassify spectral signatures.  

Supervised classification relies on the input of homogenous training areas that 

are representative of the desired output classes (Jensen 1996; Klemas 2011). The 

supervised classification then uses these training data to establish a relationship 

between wetland classifications and model input data (Jensen 1996). The accuracy of 

supervised classification is dependent on the quality of the training data. Common 

methods for classifying wetlands include maximum likelihood, thresholding, Logistic 

Regression, and Classification and Regression Tree Analysis (CART) (Hogg and Todd 



27 
 

 
 

2007; Bourgeau-Chavez et al. 2008a ; Shaeffer 2008; Poulin, Davranche, and Lafebvre 

2010; Corcoran, Knight, and Gallant 2013).  

Thresholding incorporates professional expertise into the classification. (Lang et 

al. 2013). A range of values, likely to be found in a particular class, is extracted from the 

input data and used to indicate regions where that particular class is expected to be 

found. The ability to manipulate threshold value allows for a flexible classification (Lang 

et al. 2008). For example, Gritzner (2006) used thresholding to extract values from band 

5 of Landsat 7 to create a layer indicating open water. However, this method is not 

precise and would not be feasible with a large number of datasets.   

Classification algorithms can automate the classification process. These 

algorithms can be parametric or non-parametric. Parametric supervised classification 

methods assume the data have a normal distribution. For example, the maximum 

likelihood method is a parametric classification algorithm which assumes normal 

distribution of data and that each class has an equal probability of occurring in an area 

(Jensen 1996). The algorithm calculates the likelihood, or probability of a pixel 

belonging to a particular class based on the training data (Jensen 1996; MacAlister 

2009). These probabilities are then used to determine to which class each pixel belongs 

(Jensen 1996). However, maximum likelihood classification is computationally 

expensive and is not ideal if the distribution of input data is not normal (Lillesand, Kiefer, 

and Chipman 2008).  

Logistic regression is often used for discriminating uplands and wetlands based 

on the values of both continuous and discrete input variables (Pantaleoni et al. 2009). 

Shaeffer (2008) found that while logistic regression was able to evaluate the 
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significance of model predictors, the accuracy of logistic regression analysis for 

predictive modeling decreases as the study area becomes larger and more diverse due 

to its constant regression coefficients. Additionally, logistic regression as a type of 

probabilistic statistical classification assumes that there is a linear relationship between 

input and explanatory variables (Lawrence et al. 2001; Hogg and Todd 2007; Poulin et 

al. 2010). 

The Classification and Regression Tree (CART) method is non-parametric. The 

CART model has been shown to distinguish between explanatory and confounding 

variables without the assumptions of a linear relationship needed for logistic regression 

(Lawrence et al. 2001; Hogg and Todd 2007; Poulin, Davranche, and Lafebvre 2010). 

Hogg and Todd (2007) demonstrated that CART analysis outperformed logistic 

regression analysis, correlation matrices, and visual derivative thresholding. The use of 

CART method allows for the explanation of nonlinear relationships within the 

explanatory variables and the variable the model intends to predict, and has a clear 

benefit over the other two methods (Hogg and Todd 2007). Lawrence et al. (2001) 

claimed that CART decision methods were more readily available, accurate, and more 

user friendly than the more complex neural network and expert system methods. A 

benefit of CART, in addition to those already mentioned, is the production of class 

probability at each decision node, allowing for the significance of each predictor to be 

assessed at each node and in the overall classification (Lawrence et al. 2001; Hogg et 

al. 2007; Wright and Gallant 2007; Corcoran, Knight, and Gallant 2013). Similarly, Hogg 

et al. (2007) found that these node probabilities along with cross validation allowed for 
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the removal of some nodes as well as a terrain variable, reducing model complexity 

while retaining accuracy. 

Random Forest is a machine learning classification and regression tree algorithm 

advanced by Breiman (2001) and implemented in the R environment by Liaw and 

Wiener (2002). Random Forest performed in R is essentially a collection of smaller 

CART decision trees which utilizes bootstrapping techniques to circumvent the need for 

large sample sizes and assumptions about the relationship between variables (Brieman 

2006). Recursive partitioning techniques are used to draw random vector of remote 

sensing data from the training areas that have been classified as wetland or upland. 

These random vectors are iteratively drawn with replacement and the samples are used 

to build a collection of classification and regression trees referred to as the random 

forest classifier (Breiman 2001; Shih 2011). As the number of iterations increase, and 

many forests are built, the correlation between forests is decreased without decreasing 

the strength of the predictor due to the Law of Large Numbers (Breiman 2001). 

Recursive partitioning is ideal for classification using small sample sizes because the 

iterative random drawing of samples boosts the number of samples allowing for the 

assumption of a normal distribution. 

Of the randomly drawn samples (pixels), about one third will be reserved within 

the random forest classifier in order to estimate the error of the random forest 

classification. This estimate is commonly referred to as the out-of-bag error, or OOB, 

and can be used to improve the classifier before implementation (Breiman 1996; 

Breiman 2001). Unfortunately, the OOB is not a reliable assessment of the accuracy 

due to spatial autocorrelation between sample pixels used to build the forests and those 
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used to assess its accuracy. However this data is used to compute importance statistics 

and ranking of each variable. Assessment of this statistic along with OOB will allow for 

the removal of unimportant variables from the dataset used to train and build the forest 

resulting in increased predictor accuracy. 
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CHAPTER 3 

STUDY AREA AND DATA 

3.1 STUDY AREA 

The area in which this study was undertaken is located in Vermilion County, 

Illinois. Vermilion County primarily consists of agricultural land, though approximately 

6.5% of the county is forested, (Figure 3.1 and Table 3.1). A total of 9,784 acres of 

these forested lands are publicly accessible (USGS GAP 2013). Many of these 

accessible forested areas are located alongside or near the Vermilion and Little 

Vermilion rivers within the Vermilion and Middle Wabash-Little Wabash watersheds 

(Figure 3.2). Data from the IDNR (2015) (Table 3.1) describing land cover acreage and 

rankings as well data from the NWI (Figure 3.3) confirmed a substantial number (3,890 

acres) of forested wetlands in Vermilion County compared to other locations in East 

Central Illinois. The abundance of publicly accessible forested wetlands, along with the 

availability of spring LiDAR data, was the primary reasons for Vermilion County being 

chosen as the study area. However, due to the limited extent of the available LiDAR 

data the area of interest was limited to 532 square miles in the eastern portion of the 

county (Figure 3.4). 
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Table 3.1 Land Cover Acreage and Rankings for Vermilion County Illinois adapted from  

Illinois Department of Natural Resources (2015)  

Vermilion County, Illinois                                                                 

Land Cover Acreage and Rankings 

Land Cover Acres Rank 

Cropland 419,820 6 

Row Crops 406,643 6 

Small Grains 13,177 63 

Orchards/Nurseries 0 -- 

Grassland 86,636 30 

Urban 7,439 18 

Rural 79,197 28 

Forest/Woodland 37,370 42 

Deciduous 31,188 44 

Open Woods 6,164 24 

Coniferous 17 71 

Wetland 5,755 69 

Shallow Marsh/Wet Meadow 483 70 

Deep Marsh 116 47 

Bottomland Forest 3,890 67 

Swamp 0 -- 

Shallow Water 1,266 36 

Urban/Built-up Land 16,523 18 

High Density 2,714 20 

Medium Density 6,664 15 

Low Density 1,752 29 

Transportation 5,393 11 

Open Water 9,680 26 

Lakes and Rivers 5,176 33 

Streams 4,505 12 

Barren/Exposed Land 509 9 

      

Total Land 576,293 7 
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Figure 3.1 2006 National Land-Cover Dataset shows that Vermilion County, Illinois is 

primarily an agricultural landscape with some forested and developed areas. 
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Figure 3.2 Rivers and Watersheds within Vermilion County, Illinois 
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Figure 3.3 Wetlands in Vermilion County Illinois as identified in the National Wetland 

Inventory.   

 

 



36 
 

 
 

 

Figure 3.4 The area of interest for this study located in the eastern portion of Vermilion 

County. The availability of LiDAR data was the limiting factor for choosing the area of 

interest.    

 

In eastern Vermilion County there are two ecoregions: Illinois/Indiana Prairie and 

Glaciated Wabash Lowlands. Illinois/Indiana Prairies is characterized by the flat plain of 
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the ancient glacial lakebed marked in some places by prairie potholes. Along the Little 

Vermilion River, the Glaciated Wabash Lowlands are characterized by the rugged, 

rolling hills of the glacial till plane as well as terracing along the river (Omernik et al. 

2006.) Agriculture, urban settlement, and surface mining have disturbed this landscape 

from its’ original ecological composition. Danville, currently home to 33,027 residents, 

was once known for its large-scale surface coal mining. Figure 3.5 shows the location of 

former surface and underground coalmines within the county. In 1939, a majority of the 

mined lands were purchased by the State of Illinois. A portion of these lands were 

converted into Kickapoo State Park, one of the publicly accessible forested areas 

sampled for this study. Since the closure of these surface mines vegetation has 

reclaimed the land but rugged spoil ridges and mine ponds still exist below the forest 

canopy. This surface mining, along with glacial and riverine processes have created a 

landscape that averages 681 feet above sea level but ranges from 489.8 to 820.4 feet 

above sea level. Much of this 330-foot elevation change occurs in the forested areas 

along the current and historic river channel.  
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Figure 3.5 Former surface and underground coal mining locations 

 

3.2 DATA 

3.2.1 MULTI -SPECTRAL AERIAL IMAGERY 

Multi-spectral aerial imagery was selected as one of the input variables for this 

research due to this data’s well-documented ability to detect biophysical characteristics 
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that allow for the separation of wetlands and uplands (Table 3.2). Spring color-infrared 

multi-spectral imagery was included in utilized in order to capture information about the 

study area during leaf-off conditions when the passive sensor may be able to detect 

inundation below the forest canopy. The spring, four-band, 1-foot resolution aerial 

orthoimagery was obtained from the Illinois Department of Transportation (IDOT) 

through the Illinois Geospatial Data Clearinghouse (IGDC). These data were collected 

on March 16, 2011 when most of the vegetation in the study area had not produced 

foliage. The imagery was projected in North American Datum (NAD) 1983, Illinois State 

Plane East, FIPS 1201, and included red (598 to 675 nm), green (500 to 650 nm), blue 

(400 to 850 nm), and near infrared (675 to 875 nm) channels with 8-bit radiometric 

resolution (INRGD and ISGS 2013.) These data were obtained through the IGDC as 

10,000 m2 tiles in the JP2 format.  

Summer imagery was obtained from the United States Department of Agriculture 

(USDA) through the Natural Resources Conservation Service (NRCS) Data Gateway. 

This summer imagery was collected on June 06, 2012 using four channels: red (500 to 

650 nm), green (500 to 650 nm), blue (400 to 580 nm), and near infrared (675 to 850 

nm). The imagery had an 8-bit radiometric resolution and 1m horizontal resolution. The 

spatial reference for this data was Universal Transverse Mercator (UTM) zone 16. 
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Table 3.2 Summary of remote sensing datasets 

 

3.2.2 LIDAR 

Although multispectral imagery is the most commonly used remote sensing data 

for wetland detection its passive nature restricts its ability to detect features below the 

forest canopy. For this reason LiDAR data (Table 3.2), an active sensor that using laser 

pulses in the infrared spectrum, was included in this research. The Illinois Height 

Modernization program has been updating the elevation datasets to include high-

resolution (6 inches to 2 feet) LiDAR derived elevation models. This data is available at 

Dataset Date Collected Resolution Channels Source 

Spring 

Color-

Infrared 

March 16, 

2011 
1 foot, 8-bit 

red (598 to 675 nm) 

Illinois Department of 

Transportation – 

Illinois Geospatial 

Data Gateway 

green (500 to 650 nm) 

blue (400 to 850 nm) 

near-infrared (675 to 

875 nm) 

Summer 

National 

Agriculture 

Imagery 

Program 

(NAIP) 

June 12, 2012 1 meter, 8-bit 

red: 590-675nm United States 

Department of 

Agriculture (USDA) – 

Natural Resource 

Conservation Service 

(NRCS) Data 

Gateway 

green: 500-650nm 

blue: 400-580 nm 

near infrared: 675-850 

nm 

LiDAR 

(.LAS files) 

March 10, 

2012 

1 foot post 

spacing 

1064 nm Laser 

Pulse 

 

Illinois Height 

Modernization 

Program – Illinois 

Geospatial Data 

Gateway 
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the Illinois Geospatial Data Clearinghouse (ISGS, IDOT, and ISGS 2013). As part of this 

update, LiDAR data were collected using Leica ALS70 and Optech Gemini laser 

scanners. The Leica sensor was used to collect data in the western portion of the 

county and the Optech Gemini for the eastern portion. These data were collected for 

Vermilion County by AeroMetric, Inc. on February 17, 2012 and March 10, 2012, 

respectively. Due to the early collection date of the Leica ALS the ground and much of 

the surface water in the county was frozen resulting in incongruous return intensity 

values between the two LiDAR data collections. For this reason, only the eastern 

portion of the county (Figure 3.4) recorded by the Optech Gemini sensor data was used 

for this research.  

The Optech sensor was flown at a maximum altitude of 1600 meters above the 

mean terrain, utilizing a 1064 nm laser pulse with 167 kHz effective repetition rate to 

collect LiDAR data with a 40-degree swath width. These data are available as LAS tiles 

describing the x, y, and z coordinate of each LiDAR return, signal intensity, return 

number, and point class. The LAS files have 1-meter post spacing, vertical accuracy of 

0.6 feet, and horizontal accuracy of 0.3 meters. The North American Datum of 

1983/HARN was used and the data were projected into 1201 Illinois State Plane East. 

The LiDAR data returns were classified based on the standard set by The American 

Society for Photogrammetry and Remote Sensing. Points were classified into 5 

categories: Processed, but unclassified/ non-ground (code 1); Ground (code 2); Noise/ 

Low Points (code 7); Water (code 9); Ignored Ground (code 10) by AeroMetric, Inc. 

LiDAR intensity was recorded in 8-bit radiometric resolution. 
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3.2.3 FIELD DATA 

Field sampling locations were selected as locations based on their inclusion in 

the Federal, State, Tribal, and Protected Areas Database (USGS GAP 2013). Publicly 

accessible forested areas were identified using the Federal, State, Tribal, and Protected 

Areas Database (USGS GAP 2013). Publicly accessible lands identified in this 

database but containing no forested lands, or primarily consisting of the Vermilion or 

Salt River channels, were eliminated as potential sampling locations. In order to conduct 

research on land owned by the State of Illinois Department of Natural Resources an 

application was filed (APPENDIX X) and approved by the site superintendent, Mr. John 

Hott, allowing access to properties held by the state (Harry *babe* Woodyard State 

Natural Area, Kickapoo State Recreation Area, middle Fork State Fish and Wildlife 

Areas, Middle Fork Woods Nature Preserve, and the Dynergy Tract). The Vermilion 

County Conservation District (VCCD) was also contacted for approval of research on 

their properties (Doris Westfall Prairie Restoration Nature Preserve, Fairchild Cemetery 

Prairie/Savanna Nature Preserve, Forest Glen Preserve, Horseshoe Bottom Nature 

Preserve, Howard's Hollow Seep Nature Preserve, Kennekuk Cove County Park, 

Russell M. Duffin Nature Preserve, and Windfall Prairie Nature Preserve). A research 

contract was filed and approved by Mr. Gary Wilford, allowing access to these locations.  

Fieldwork to obtain training and validation data for the forested wetland 

classifications was conducted from May 12 through May 16, 2014. Ground reference 

data locations were selected using stratified random sampling to minimize bias in 

classification and accuracy assessment. However, due to access restrictions on private 

forested lands, ground truth data will only be collected on publicly accessible forested 
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land, and so the distribution of these ground sampling locations are influenced by 

accessibility. Transects were walked taking points at regular intervals (approximately 

100 m) and noting if the location is upland or wetland. Vegetation and soils will not be 

relied upon for making wetland determinations. An area will be considered a wetland 

based on the presence of one or more of the following characteristics: surface water, 

saturated soils, waterlines or other signs of recent inundation. Figure 3.6 depicts a 

subset of the forested wetlands identified in the field. For locations that are considered a 

wetland, additional information was recorded including location, the percentage canopy 

cover, the presence of a shrubby understory, the presence of aquatic vegetation, and 

whether the wetland is isolated or connected to a flowing water body. Points were only 

collected for forested wetland and forested upland locations that are greater than 5 feet 

across.  

Initially, GPS points were collected using a Magellan ProMark3 GPS unit and 

external GNSS antennae. The ProMark3 unit is capable of horizontal accuracy of 0.039 

feet and vertical accuracy of 0.049 feet using real-time differential correction and post-

processing. Unfortunately, this GPS unit malfunctioned on the second day of fieldwork 

and only 15 locations were collected: 7 forested wetland locations and 8 forested upland 

locations. Then, a Trimble eXplorist GPS unit, capable of 3m horizontal accuracy, was 

used to collect samples of 69 locations: 39 wetland locations and 30 upland locations. 

Because of the lower horizontal accuracy of this unit, three points were taken at each 

location and then averaged in post processing. The variance between the three latitude 

and longitude points at each location was then calculated and converted to feet. 

Forested wetland locations with an average (latitude/longitude) variance greater than 10 
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feet were eliminated from the sample, reducing the number of wetland locations 

collected with the eXplorist unit to 20. Fieldwork was undertaken once again from June 

20 through 22, 2014 using a Trimble GeoExplorer 6000 GPS unit, capable of sub-meter 

accuracy. This unit was used to collect 23 forested wetland locations and 12 forested 

upland locations. These points were then post-processed using base station data in the 

TerraSync software. In total, the number of field points was 100, with 50-forested 

wetland and 50-forested upland locations collected and retained for analysis.  
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Figure 3.6. Images of forested wetland locations taken in the field 
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CHAPTER 4 

METHODS 

4.1 DATA PREPROCESSING 

Prior to any data analysis it was necessary to preprocess the remote sensing 

datasets so that they shared a common extent, spatial resolution, coordinate system, 

and projection. Spring CIR imagery tiles were mosaicked within ERDAS IMAGINE 

Mosaic Pro Tool. These tiles were mosaicked into a single image and rescaled to 3-foot 

using bilinear interpolation resampling, a resampling method that is most appropriate for 

continuous datasets such as aerial imagery. Summer Imagery was also mosaicked and 

rescaled to 3-foot using bilinear interpolation resampling and overlapping pixels were 

averaged. The NAIP imagery was projected into NAD 83 State Plane Illinois East, 

FIPS1201, the projection shared by both the spring imagery and LiDAR data. After this 

projection, features in the summer imagery were still slightly offset from those in the 

spring imagery and lidar data and so the summer imagery was registered to the spring 

imagery using ground control points and a polynomial geometric transformation.   

LiDAR data was converted from the LAS tiles to 3-foot resolution GeoTIFF 

ground return elevation and intensity tiles in the open source LASTools ArcGIS toolbox 

developed by Martin Isenburg (2006). These tiles were then mosaicked in ERDAS 

IMAGINE 2013 using bilinear interpolation resampling. Finally, the intensity image was 

iteratively Lee filter to reduce noise with the window sizes 3, 3, 5, 7, & 9 (Lee 1987; 

Lang and McCarty 2009; Huang et al., 2014). This filtering method preserves mean 

values while reducing local variation; resulting in a smoother intensity raster dataset 

(Figure 4.1) 
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4.2 CALCULATION OF IMAGE INDICES AND TERRAIN DERIVATIVES 

Three image indices were calculated for both the spring and summer imagery: 1) 

simple ratio, 2) Normalized Difference Wetness Index (NDWI), and 3) Normalized 

Difference Vegetation Index (NDVI). These image indices were chosen for their ability to 

improve wetland detection based on a review of the relevant literature. The calculation 

of these image indices was performed in ERDAS Model Maker using the following 

formulas:   

 

𝑆𝑖𝑚𝑝𝑙𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝑛𝑒𝑎𝑟 𝑖𝑛𝑓𝑟𝑎𝑟𝑒𝑑

𝑟𝑒𝑑
     (4.1) 

 

𝑁𝐷𝑊𝐼 =
(𝑔𝑟𝑒𝑒𝑛−𝑛𝑒𝑎𝑟 𝑖𝑛𝑓𝑟𝑎𝑟𝑒𝑑)

(𝑔𝑟𝑒𝑒𝑛+𝑛𝑒𝑎𝑟 𝑖𝑛𝑓𝑟𝑎𝑟𝑒𝑑)
     (4.2) 

 

𝑁𝐷𝑉𝐼 =
(𝑛𝑒𝑎𝑟 𝑖𝑛𝑓𝑟𝑎𝑟𝑒𝑑−𝑟𝑒𝑑)

(𝑛𝑒𝑎𝑟 𝑖𝑛𝑓𝑟𝑎𝑟𝑒𝑑+ 𝑟𝑒𝑑)
      (4.3) 

 

  𝑇𝑊𝐼 = 𝑙𝑛 (
𝛼

𝑡𝑎𝑛𝛽
)       (4.4) 

 

Secondary terrain derivatives including slope (degrees), curvature, and aspect 

were calculated using the LiDAR derived elevation dataset as the input in ArcGIS 10.1 

Spatial Analyst tools. The topographic wetness index (TWI) was calculated using Raster 

Math in ArcGIS ModelBuilder: where α is the upslope contributing area and β is the 

local slope in radians (Kienzle 2004; Hogg and Todd 2007; Kheir et al. 2009; Lang et al. 
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2009; Lang et al. 2013.) An additional raster representing the difference in elevation 

between the first and last lidar return was created for use in the initial classification to 

separate the forested and non-forested areas. All 24 datasets with the exception of the 

difference LiDAR elevation return dataset were stacked into a single image (.img) file.   

Finally, forested wetland points were buffered with the minimum radius collected 

in the field (distance in feet to the closest dry ground from where the point was 

collected). Forested upland points were buffered with a radius of 15-feet – the minimum 

distance used in the field to assign upland points. Field points were then split 80/20 into 

training and validation datasets. The training dataset along with each of the remote 

sensing datasets was set aside to train the random forest classifier. This split was done 

in Excel by assigning each polygon record a random number and then reserving the 10 

lowest random values in each class as reference data.  
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Figure 4.2. Example of the multispectral and LiDAR datasets used for this study  
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4.3 CLASSIFICATION IN RANDOM FOREST 

Four classifications were performed: Classification A – All Imagery, Classification 

B – All LiDAR, Classification C – LiDAR without Intensity, and Classification D – Fusion 

of All Data. Table 4.1 describes the remote sensing datasets used as input variables for 

each classification. Classifications were performed in the R programming environment 

using the Random Forest package developed by Liaw and Wiener (2002.) The 

classification process requires 4 inputs: a shapefile containing polygon training areas 

with a field ‘type_id’ identifying the numeric class value, a raster stack containing the 

input remote sensing variables, the raster output location and name, and the number of 

samples to be select from within each training class. Due to memory limitations and the 

large size of the input raster stack (279 GB) the classification algorithm failed when a 

large sample size was used. For this reason, sample size was set at 250. Training 

polygons containing 30 forested wetland polygons (‘type_id’ = 1) and 30 forested upland 

polygons (‘type_id’ = 2) was used as the input training area shapefile. The stack 

containing all 24 multi-spectral and LiDAR datasets was set as the input raster and for 

each individual classification only the layers pertaining to that classification were read 

into memory and used as input variables. The output of each classification was the 

saved classification forest, a thematic GeoTIFF raster image, OOB results, and 

importance statistics.   
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Table 4.1 Description of data used as input variables for each classification  

Data 
Classification 

A B C D 

Spring Red x     x 

Spring Green x     x 

Spring Blue x     x 

Spring Infrared x     x 

Summer Red x     x 

Summer Green  x     x 

Summer Blue x     x 

Summer Infrared x     x 

Spring Simple Ratio x     x 

Spring NDVI x     x 

Spring NDWI x     x 

Summer Simple Ratio x     x 

Summer NDVI x     x 

Summer NDWI x     x 

Lee Filtered Intensity   x   x 

Raw Intensity   x   x 

Elevation   x x x 

Slope   x x x 

Aspect   x x x 

Combined Curvature   x x x 

Profile Curvature   x x x 

Planform Curvature   x x x 

TWI   x x x 

Normalized TWI   x x x 

 

 

4.4 ACCURACY ASSESSMENT  

Classifications were assessed for accuracy using the error matrices method, the 

Kappa Coefficient of Agreement, and Conditional Kappa Coefficient of Agreement. The 

Kappa statistic is a measure of agreement between the classification created by 

producer and the one obtained by chance and can be thought of as the difference 
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between the difference between the proportion of correctly assigned pixels to the 

proportion of pixels that would be correctly assigned by chance over the proportion of 

pixels that would be correctly assigned by chance (Jensen 1996; Congalton and Green 

1999; Froody 2004.)  

 

𝐾^ =
𝑃0−𝑃𝑐

1−𝑃𝑐
     (4.5) 

The Conditional Kappa Coefficient of Agreement statistic is a measurement of 

the agreement between the remotely sensed data and reference data for a particular 

class with chance agreement removed (Jensen 1996). After testing each classification 

Kappa for significance based on a 95% confidence level, the Kappa values were used 

to compare the accuracy of the classifications. The Kappa Coefficient of Agreement and 

Conditional Kappa Coefficient of Agreement may range in value from -1 to 1, with 1 

indicating perfect agreement and values less than or equal to zero indicating agreement 

that is less than that expected by chance. Table 4.2 describes common interpretation of 

Kappa values (Jensen 1996; Viera and Garrett 2005). 

Importance statistics for classes 1 and 2 (forested wetland and forested upland, 

respectively), Mean Decrease in Accuracy, and the Mean Decrease in Gini Coefficients 

derived from the random forest classification were used to assess the contribution of 

each layer to that classification. The Mean Decrease in Accuracy is the OOB error rate 

for each layer. The Mean Decrease in Gini Coefficient is a measurement of node 

impurities at each split in the Random Forest classification trees. Correlation between 
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bands was measured using Pearson’s Product-moment correlation coefficient (R) and 

used along with the importance statistics to determine the datasets which contributed 

useful unique information to each classification. A visual assessment of each classified 

layer was performed to determine, along with the importance statistics, which input data 

layer(s) contributed error to the classification.  

Table 4.2 Interpretation of Kappa Coefficient of Agreement Values (Jensen 1996; Viera 

and Garrett 2005)  

Kappa Level of Agreement 

< 0 Less than Chance 

0 to 0.20 Low 

0.21 to 0.40 Low to Moderate 

0.41 to 0.60 Moderate 

0.61 to 0.80 Moderate to Strong 

0.81 to 0.99 Strong 

1 Perfect 
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CHAPTER 5 

RESULTS 

5.1. SEPARATION OF FORESTED FROM NON-FORESTED AREA 

An initial classification was performed in random forest to separate the forested 

from non-forested areas. This classification used the both spring and summer NDVI and 

the LiDAR return difference raster as input variables. Six general land-cover classes 

were identified in the county: bare agriculture, forest, grassland, planted agriculture, 

urban, and water. Then, using visual interpretation of the summer NAIP imagery 10 

training polygons were created for each of the land-cover types. These polygons, along 

with the NDVI/LiDAR stack, were used to create a random forest classifier within R.   

Pixels within the output classification were clumped in the four cardinal directions 

and clumps less than 2 acres were eliminated. Then the resulting thematic raster was 

recoded to forest and non-forest. This binary raster was once again clumped, and 

clumps less than 5 acres were eliminated. The final thematic layer resulting from this 

clumping and elimination routine was evaluated within ERDAS Accuracy Assessment 

tool. Equalized random sampling was used to assign 30 random points to each class. 

Then, without viewing the classification value and using the summer false color 

composite imagery as the reference, these points were assigned a reference value 

based on photo-interpretation. The accuracy of this forested vs. non-forested 

classification was very good with a 96.67% Kappa Coefficient of Agreement (Table 5.1). 

A visual assessment of this data shows that it is in strong agreement with the 2006 

National Land Cover Dataset (NLCD) (Figure 3.1 and Figure 5.1). Then using the mask 

tool in ERDAS IMAGINE, all non-forested areas within the input remote sensing 
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datasets were recoded to 0. This masked image stack was used as input for 

subsequent classifications (Figure 5.2). 

  

Table 5.1 Accuracy Assessment of Forested vs. Non-Forested Classification 

  Forested 
Non-

Forested 
Row Total 

User's 
Accuracy 

Conditional Kappa 
Coefficient (Kc) 

Forested 30 0 30 100% 100% 

Non-Forested 1 29 30 96.67% 93.44% 

Column Total 31 29 59   

Producer's Accuracy 96.77% 100% Total 60   

Overall Accuracy 98.33% 

Kappa Coefficient of Agreement  96.67% 

 



58 
 

 
 

 

Figure 5.1 Final forested vs. non-forested classification 
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Figure 5.2 Imagery stack masked within the forested study area  
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5.2. FORESTED WETLAND CLASSIFICATIONS 

5.2.1 CLASSIFICATION A: ALL AERIAL IMAGERY AND IMAGE INDICES 

The thematic map resulting from the classification of all Aerial Imagery 

(Classification A) had a forested wetland producer’s accuracy of 82.5% and a Kappa 

coefficient of 56.10%, indicating moderate overall agreement. Conditional Coefficient of 

Agreement for forested wetland (FW) (KCA1) and forested upland (FU) (KCA2) classes in 

Classification A were 35.27% and 64.37%, respectively, indicating a low to moderate 

agreement for the forested wetland class and moderate agreement for the forested 

upland class. The error matrix for Classification A can be found in Table 5.2. Visual 

assessment of the classification indicates that much of the confusion is a result of the 

topography of eastern Vermilion County. Steeply sloped areas created a shadow effect 

that is visible in both the spring and summer imagery resulting in a large number of 

forested upland areas being misclassified as forested wetland. Shadows and texture 

within the forest canopy produced similar errors. 

Correlation between bands as measured by the Pearson’s product-moment 

correlation coefficients (R) was used to understand duplication of information between 

bands and in conjunction with the importance measures (Figure 5.3) to determine the 

contribution of each input variable or layer to Classification A. All measures of 

importance agreed that spring near Infrared and spring NDWI contributed the most 

information to this classification. Spring red, green, blue, and infrared layers were 

strongly correlated. Similarly, summer red, green, blue, and infrared layers were 

strongly correlated. Spring NDWI showed high importance and low correlation with 

spring red, green, and infrared layers. Spring simple ratio showed low correlation with 
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other layers. Summer NDVI had moderate importance values and low correlation with 

layers with high importance values (spring visible and infrared bands). Summer NDWI 

also showed low correlation with other layers. However, because of its low importance 

statistics it is likely that the summer NDWI layer did not contribute to the accuracy of this 

classification.   

 

Table 5.2 Accuracy Assessment of Classification A (All Imagery, FW-Forested wetland, 

FU-Forested upland) 

  1 - FW 2 - FU Row Total 
User's 

Accuracy 
Conditional Kappa 
Coefficient (KcA) 

1 - FW 33 13 46 71.74% 35.27% 

2 - FU 7 38 45 84.44% 64.37% 

Column Total 40 51 71     

Producer's Accuracy 82.50% 74.51% Total 91   

Overall Accuracy 78.02% 

Kappa Coefficient of Agreement  56.10% 
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Figure 5.3 Four measures of variable importance for Classification A: 1) Class 1 

(Forested Wetland) Marginal Importance; 2) Class 2 (Forested Upland) Marginal 

Importance; 3) Mean Decrease in Accuracy; and 4) Mean Decrease Gini Coefficient 

 

5.2.2 CLASSIFICATION B: ALL LIDAR AND TERRAIN DERIVATIVES 

Classification B consisted of LiDAR elevation, intensity, and topographic indices 

(lee filtered intensity, raw intensity, elevation, slope, aspect, combined curvature, 

planiform curvature, profile curvature, TWI, and normalized TWI) and resulted in a 

producer’s accuracy of 92.86% and a Kappa Coefficient of Agreement of 78.04%, 

suggesting moderate to strong agreement. Conditional Coefficient of Agreement for 

forested wetland (KCB1) and forested upland (KCB2) classes in classification B were 
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68.39% and 86.15%, respectively, indicating a moderate to strong agreement for the 

forested wetland class and strong agreement for the forested upland class. The results 

of this classification are described in more detail in Table 5.3. Visual assessment of 

Classification B showed that the primary source of error in this classified layer was the 

due to noise and errors in the unfiltered intensity data. These errors resulted in forested 

upland being misclassified as forested wetland, and a subsequent increase in the 

forested wetland commission error. Lee filtering of the intensity data appeared to reduce 

some of this error. 

 

Table 5.3 Accuracy Assessment of Classification B (All LiDAR, FW-Forested wetland, 

FU-Forested upland)  

  1 - FW 2 - FU Row Total 
User's 

Accuracy 
Conditional Kappa 
Coefficient (KcB) 

1 - FW 39 7 46 84.78% 68.39% 

2 - FU 3 42 45 93.33% 86.15% 

Column Total 42 49 81     

Producer's Accuracy 92.86% 85.71% Total 91   

Overall Accuracy 89.01% 

Kappa Coefficient of Agreement  78.04% 

 

Importance statistics (Figure 5.4) showed that lee filtered intensity had higher 

importance rankings than the unfiltered intensity data. All importance measures clearly 

show that the lee filtered intensity and slope variables contributed the most information 

to this classification. The elevation also ranked highly in the importance statistics and 

exhibited low correlation with the slope and intensity variables. Combined curvature was 

ranked moderately important compared with other layers. Despite the low importance 
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ranking of the TWI layer it exhibited low correlation with lee filtered intensity, elevation, 

slope, and aspect layers and moderate correlation with combined curvature. 

Surprisingly, raw TWI data was more important than the TWI normalized by elevation.  

 

 

Figure 5.4 Four measures of variable importance for Classification B: 1) Class 1 

(Forested Wetland) Marginal Importance; 2) Class 2 (Forested Upland) Marginal 

Importance; 3) Mean Decrease in Accuracy; and 4) Mean Decrease Gini Coefficient 

 

5.2.3 CLASSIFICATION C: LIDAR DATASETS WITHOUT INTENSITY 

Classification C consisted of all LiDAR datasets with the exception of the filtered 

and unfiltered intensity data. The purpose of this classification was to show the 
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contribution of the intensity datasets to the accuracy of the All LiDAR classification 

(Classification B). Classification C resulted in a forested wetland producer’s accuracy of 

65.93% and an overall Kappa Coefficient of agreement of 31.97% (Table 5.4), indicating 

low to moderate agreement. Every measure of accuracy for this classification was 

considerably less than that of Classification B and all other classifications. Specifically, 

there was a 46.07% decrease in the Kappa Coefficient of Agreement compared to 

Classification B. The Conditional Coefficient of Agreement for the forested wetland class 

(KCC1) was -18.01%. While negative Kappa values are possible, they generally indicate 

that there is less agreement between the remotely sensed data and the reference data 

than could be reasonably expected by chance (Viera and Garrett 2005). The low 

accuracy of this classification is surprising given the contribution of topographic location 

to wetland location. Importance statistics (Figure 5.5) did show that slope and elevation 

data contributed the most information to Classification C.  

 

Table 5.4 Accuracy Assessment of Classification C (All LiDAR without Intensity, FW-

Forested wetland, FU-Forested upland) 

  1 - FW 2 - FU Row Total 
User's 

Accuracy 
Conditional Kappa 
Coefficient (KcC) 

1 - FW 27 19 46 58.70% -18.01% 

2 - FU 12 33 45 73.33% 23.81% 

Column Total 39 52 60     

Producer's Accuracy 69.23% 63.46% Total 91   

Overall Accuracy 65.93% 

Kappa Coefficient of Agreement  31.97% 
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Figure 5.5 Four measures of variable importance for Classification C: 1) Class 1 

(Forested Wetland) Marginal Importance; 2) Class 2 (Forested Upland) Marginal 

Importance; 3) Mean Decrease in Accuracy; and 4) Mean Decrease Gini Coefficient 

5.2.4 CLASSIFICATION D: FUSION OF ALL AERIAL IMAGERY AND LIDAR 
DATASETS 

Input variables for Classification D consisted of 24 layers representing the fusion 

of all Imagery and LiDAR data. Classification D resulted in a forested wetland 

producer’s accuracy of 87.18% and a Kappa Coefficient of Agreement of 62.70%, 

indicating moderate to strong overall agreement. The accuracy of this classification is 

further described in Table 5.5. Forested wetlands appeared to be well classified with the 
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fusion of all imagery and LiDAR datasets. However, the forested wetland Conditional 

Kappa Coefficient of Agreement (KcD1) was 44.84% indicating only moderate agreement 

between this dataset and the reference data for forested wetlands. The forested upland 

conditional coefficient of agreement (KcD2) was 76.51%, demonstrating a moderate to 

strong agreement between the reference data and the remotely sensed datasets. 

Shadows created by trees and slopes perpendicular to the line of flight appeared to 

contribute to errors of commission within the forested wetland class. Visual inspection of 

the resulting thematic layer indicated spring simple ratio values, summer visible and 

infrared reflectance, and noise within the curvature and TWI datasets were the primary 

sources of error for both the forested wetland and forested upland classes.  

Importance statistics derived from the random forest classification (Figure 5.6) 

indicated that summer visible and infrared layers, combined curvature, profile curvature, 

and planiform curvature, as well as aspect, normalized TWI, TWI and summer NDWI 

were not important for the classification compared with other layers. Importance 

statistics indicate that spring near infrared, spring NDWI, and lee filtered LiDAR Intensity 

were the most important in the creation of this classification, despite the moderate 

correlation between the spring near infrared and lee filtered intensity layers. Based on 

these importance statistics, lee filtered intensity contributed the least amount of error, 

while spring IR resulted in the greatest decrease in node impurities. Spring red and 

elevation also ranked highly in the importance statistics and showed low correlation with 

one another. Although spring blue and spring green ranked moderately high in the 

importance statistics they were highly correlated with spring red and spring IR data. 

Slope ranked moderately in the importance statistics and had low correlation values 
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with other important layers. Spring NDVI and summer NDVI had moderate importance 

rankings and correlation values. Summer simple ratio had low to moderate importance 

rankings but showed low correlation with other selected bands. Because of the high 

correlation between lee filtered intensity and raw Intensity, and the high importance 

ranking of the filtered intensity data, raw Intensity was considered less useful than the 

lee filtered intensity for forested wetland classification.  

 

Table 5.5. Accuracy Assessment of Classification A (Fusion of All Data, FW-Forested 

wetland, FU-Forested upland) 

  1 - FW 2 - FU Row Total 
User's 

Accuracy 
Conditional Kappa 
Coefficient (KcD) 

1 - FW 34 12 46 73.91% 44.84% 

2 - FU 5 40 45 88.89% 76.51% 

Column Total 39 52 74     

Producer's Accuracy 87.18% 76.92% Total 91   

Overall Accuracy 81.32% 

Kappa Coefficient of Agreement  62.70% 
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Figure 5.6 Four measures of variable importance for Classification D: 1) Class 1 

(Forested Wetland) Marginal Importance; 2) Class 2 (Forested Upland) Marginal 

Importance; 3) Mean Decrease in Accuracy; and 4) Mean Decrease Gini Coefficient 

 

5.3 COMPARISON OF CLASSIFICATION ACCURACIES 

Given the null hypothesis H0: K1
^ = 0, Z score values greater than or equal to the 

critical value of 1.96 for the two sided 95% confidence interval would allow us to reject 

the null hypothesis that the kappa value of an individual classification is equal to 0. 

Analysis of individual classification K^ significance indicates that results from All Data, 

All Imagery, All LiDAR, and the Fusion of Selected Imagery and LiDAR classifications 

were better than a random classification (Table 5.6).  
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Table 5.6 Z-Scores used for testing the significance of the Kappa Coefficient of 

Agreement (K^) of each classification. Agreement between the remote sensing and 

reference data, as measured by K^, is not significant for classifications with z-scores 

less than the 1.96 critical value at the 95% confidence level (Congalton and Green 

1999) 

 𝒁 = 
|𝑲𝟏

^|

√𝒗𝒂𝒓(𝑲𝟏
^)

 

A – ALL IMAGERY 20.6660 

B – ALL LIDAR 16.0271 

C -  LIDAR NO INTENSITY 5.0804 

D – ALL DATA FUSION 16.3169 

 

The paired z-test, H0: (K1
^ - K2

^) = 0, showed that all classifications could be 

reliably compared with the exception of Classifications A and D (All Imagery and the 

Fusion of All Data) (Table 5.7). Results from this two-sided test can be found in Table 

5.8. The All LiDAR Classification ranked highest in accuracy as measured by the Kappa 

Coefficient of Agreement, as well as the Overall Accuracy and Forested Upland 

Producer’s Accuracy. Notably, the paired z-test revealed that the accuracy of the All 

LiDAR classification was significantly different from all other classifications. 

Classification C, LiDAR without intensity had the lowest classification accuracy using all 

measures of agreement. The fusion of Imagery and LiDAR datasets (Classification D) 

appeared to result in improved accuracy over the classification using just Imagery 

(Classification A). However, due to the failure of the paired z-test it cannot be said that 

there is a significant difference between these classifications.  
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Table 5.7 Summary of accuracy assessment results for all classifications 
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A – ALL 
IMAGERY 

82.50% 71.74% 74.51% 84.44% 78.02% 56.10% 35.27% 64.37% 

B – ALL 
LIDAR 

92.86% 84.78% 85.71% 93.33% 89.01% 78.04% 68.39% 86.15% 

C – LIDAR 
WITHOUHT 
INTENSITY 

69.23% 58.70% 63.46% 73.33% 65.93% 31.91% -18.01% 23.81% 

D – ALL DATA 87.18% 73.91% 76.92% 88.89% 81.32% 62.70% 44.84% 76.51% 
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Table 5.8 Z-Scores used for testing the significance of the difference between two 

classification Kappa Coefficient of Agreement statistics. The difference between the 

agreement between the remote sensing and reference data, as measured by K1
^ and 

K2
^, is not significant if their corresponding z-score is less than the 1.96 critical value at 

the 95% confidence level (Congalton and Green 1999)  

 

𝒁 = 
 
 

|𝑲𝟏
^ −  𝑲𝟐

^|

√𝒗𝒂𝒓(𝑲𝟏
^) + 𝒗𝒂𝒓(𝑲𝟐

^)

 A
 –

 A
L

L
 

IM
A

G
E

R
Y

 

B
 –

 A
L

L
 L

ID
A

R
 

C
 -
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D
 –
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F
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A – ALL IMAGERY 0.0000   
 

B – ALL LIDAR 1.4015 0.0000 
  

C -  LIDAR NO 
INTENSITY 

2.4738 3.9352 0.0000 
 

D – ALL DATA FUSION 4.1672 3.5212 5.7901 0.00 

 

A visual comparison of the four classifications alongside forested wetlands 

identified in the NWI (Figure 5.7) showed that Classification B and D were similar in the 

areas identified as forested wetland and forested upland. Classification C appeared to 

have moderately strong agreement with the NWI data, particularly in low-lying areas 

that could be considered floodplain, or bottomland forest. Though, there was some 

obvious forested wetland omission and forested upland commission error. Classification 

A appeared to agree with the areas classified as forested upland in Classification B and 
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D, however a large amount of forested upland commission error was present in this 

classification.  

 

 

Figure 5.7 A comparison of four wetland classifications along with an area identified as 

forested wetland by the National Wetland Inventory (scale = 1:9,000.) 
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CHAPTER 6 

DISCUSSION 

6.1 RESEARCH FINDINGS 

This study proposed three research questions in order to evaluate the accuracy 

of LiDAR data, multi-spectral aerial imagery, and their fusion for detecting forested 

wetland hydrology in eastern Vermilion County, Illinois. The classifications, accuracy 

assessment and comparison allowed us to determine 1) If LiDAR ground return intensity 

data can be useful for identifying forested wetlands, 2) How different is the accuracy of 

a forested wetland classification performed with traditional multi-spectral imagery 

compared with that performed with LiDAR data, and 3) If the fusion of LiDAR and multi-

spectral aerial imagery datasets improved forested wetland classification. 

Due to the low accuracy of classification performed without intensity 

(Classification C) it was concluded that LiDAR ground return intensity data was useful 

for forested wetland identification. Classification C had not only the lowest Kappa but 

also the worst accuracy across all other measures. The Kappa Coefficient of Agreement 

decreased 46.07% compared to Classification B (Kappa = 78.04%). This moderate to 

strong accuracy of Classification B, compared to the low accuracy of Classification C, is 

meaningful because it shows that without the intensity data, the LiDAR elevation and 

terrain datasets were unable to identify forested wetland hydrology accurately. 

Importance statistics showed that slope and elevation contributed the most information 

to Classification C. But, Figure 6.1 shows that while uplands were most likely to be 

found in areas with little to no slope, there was not much difference between the 
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elevations found in forested upland and forested wetland-training areas. Figure 6.1 also 

shows intensity values in forested wetland locations are most often lower than intensity 

values found in forested upland areas, indicating the ability of this dataset to distinguish 

between these features. Noise filtering of intensity data appeared to increase the 

seperability of these classes. Overall, with inclusion of the intensity data, data derived 

from LiDAR data is capable of accurately mapping forested wetlands where surface 

water is present.  
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Figure 6.1 Histograms of spectral refletance values found within forested wetland and 

forested upland training polygons 

 

The accuracy of the forested wetland classification performed with multi-spectral 

imagery (Classification A) was less accurate than that performed with all LiDAR data 

(Classification B) (Kappa = 56.10% vs. Kappa = 78.04%). Importance statistics from 

Classification A indicated a heavy reliance on information from the spring imagery; 

particularly the near infrared and spring NDWI input variables. This makes sense 

considering the frequency distributions (Figure 6.1) of these datasets which show that 

although there is some overlap in the values found in upland and wetland areas, 

wetland areas likely have low spring near infrared intensity and high spring NDWI. In the 

spring visible and infrared bands, forested upland reflectance values were relatively 

normally distributed while wetland values were negatively skewed. Considering the 

distribution of the values in each of the imagery datasets alongside the importance 

statistics, it is clear that the summer imagery data contributed the least information to 

Classification A. Most of the forested upland and wetland summer reflectance values 

were very similar due to the presence of the forest canopy.  

It was not conclusively proven whether the fusion of LiDAR and aerial multi-

spectral imagery data improved forested wetland classification accuracy. Evidence 

points to these classifications resulting in similar levels of accuracy. The Kappa 

Coefficients of Agreement for Classification B and D were 62.70% and 56.10%, 

respectively. Although Classification D had a slightly higher Kappa value, due to the 
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failure of the two-sided test for a difference between the Kappa values of Classification 

B and D (Table 5.8), we cannot say that these accuracy measures are significantly 

different. This could be interpreted as the accuracy of these classifications being 

statistically similar. Visual assessment of these classifications (Figure 5.7) shows many 

of the same areas identified as forested wetland, indicating that these classifications did 

result in similar accuracy. This finding, along with the increased accuracies of 

Classification B and Classification C, indicates that LiDAR intensity and terrain 

information provides superior ability to detect forested wetland hydrology compared with 

multi-spectral imagery due to absorption of the LiDAR signal where surface water is 

present..  

 

6.2 LIMITATIONS 

Disagreement between classifications, or even disagreement between remote 

sensing data and reference data, may be a result of the inconsistency of time remote 

sensing data and field data collected. Each of the datasets and field data were collected 

on different dates, and in some cases different years. 2011 and 2012, the years in 

which the reference aerial orthophotos were taken, were drier than the 10 and 100-year 

average (Figure 6.2). Data collected in conditions that are wetter than average would 

likely result in identification of a larger area of forested wetlands, particularly along the 

Vermilion River floodplain. If moisture conditions were very different during the periods 

when spring imagery, LiDAR data, and field data were collected this may result in 

errors. Specifically, due to the collection of LiDAR data during the very dry spring of 
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2012 may have resulted in forested wetland omissions compared to the wetter 

conditions in the March of 2011, when spring imagery was collected.  

 

Figure 6.2 The Palmer Z index measures short-term moisture conditions on a monthly 

scale by taking into account the precipitation, evapotranspiration, and runoff (NCDC 

NOAA 2014) 

 

Additionally, errors within the remote sensing datasets may contribute to 

classification confusion. Despite the accuracy achieved using LiDAR data, some 

aspects of the intensity component introduced errors into the classification. Specifically, 

in a few forested wetlands abnormally high intensity values were found due to the 
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reflection rather than absorption of the LiDAR signal where ice was present. However, 

despite these anomalies in the intensity data post-classification visual assessment of 

Classification B and D showed that, these areas were still identified as forested wetland. 

Classification D, in particular showed improved classification over Classification B likely 

due to the use of both imagery and terrain data. 

Within the intensity data there was also a loss along the boundaries of .LAS files and 

diagonal strips of missing intensity data within a number of the .LAS tiles that appeared 

to be an artifact of data processing by Aerometric. Noise filtering decreased these errors 

to some extent; however, many of these areas were still misclassified as forested 

wetland contributing to the forested wetland commission error. In some areas of the 

study area dense tree canopy and understory may have affected the ability of the 

LiDAR signal to penetrate fully to the ground. This would have resulted in errors of 

elevations about their real world height and inaccuracies within the derived terrain data. 

Without further analysis, it is unclear whether this affected the accuracy of 

classifications performed using LiDAR data. 

There is very likely some amount of error in the training and reference datasets 

due to collection of field data with multiple GPS units of differing accuracy capabilities 

as well as the fact that LiDAR positional error is increased in forested areas. Care was 

taken to minimize these errors with real-time correction, post-processing, and point 

averaging. If errors in the classifications have occurred due to shifts within the training 

or reference data, the errors are consistent across all classifications and do not affect 

the comparison of classification accuracies.  



84 
 

 
 

Finally, this study’s limited definition of a forested wetland (presence of moist 

soils or surface water) may have resulted in pixels identified as forested wetland in 

Classification A and D to be considered incorrect. These areas may in fact have water 

at or near the surface in the spring of most years, however if this hydrology was not 

present during field data collection, the locations would have been identified as upland. 

Classifications A and D which include aerial imagery as input data may be detecting 

water tolerant tree species associated with the training areas. Because this work based 

wetland determination on only the presence of hydrology, areas identified based on the 

spectral signature of water-tolerant tree species, but without obvious wetland hydrology, 

would be identified as a classification error when they may be correctly mapped. 

However, it is unlikely that this is the reason for the high forested wetland commission 

error in Classification A. 

 

6.3 FUTURE RESEARCH  

Future research should address the following questions: 

 

1. Can LiDAR derived data be used to identify wetland hydrology in other 

ecosystem types such as coniferous forest, scrub/shrub, or emergent wetlands.  

 

2. Could multi-date LiDAR intensity be used for understanding seasonal changes in 

wetland extent? 
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3. What results would an object based classification method have on the accuracy 

of these classifications? 

 

This ability to distinguish wetland hydrology difficultly to map forested regions 

leads us to believe that this data should be included when mapping other wetland types. 

Although this research focused on the identification of forested wetland hydrology in 

broad-leaved, deciduous, forest LiDAR derived datasets may prove useful for other 

wetland types. Hogg and Holland (2008) successfully applied LiDAR derived 

topographic indices to the classification of wetland areas in the coniferous forests of 

Canada. It makes sense that the intensity data would also be useful in coniferous 

forests. Additionally, evaluating the ability of spring and fall LiDAR for monitoring 

temporal variations in forested wetland hydrology may result in new methods for 

quantifying these temporal variations and result in more accurate classification of 

forested wetlands.  

 

6.4 CONCLUSION 

This research was able to verify the utility of LiDAR intensity data for the 

identification of forested wetlands and establish the ability of LiDAR derived datasets to 

improve forested wetland classification compared to multi-spectral aerial imagery due to 

the ability of the intensity data to distinguish between dry soil and open water below the 

forest canopy. These results are in agreement with the work of Lang and McCarty 

(2009,) Stevens and Wolfe (2012,) and Huang et al (2014). Although the intensity data 

contribute meaningful information to the forested wetland classification, the errors due 
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to lack of calibration, and artifacts of data processing by AeroMetric also contributed 

some uncertainty to even the most accurate classification. Although, methods exist for 

calibrating intensity data the required information is rarely provided with the deliverable 

product. As the body of literature proving the utility of LiDAR intensity data grows 

perhaps calibration of intensity data will be performed along with the elevation 

component, or else, the necessary calibration data will be provided along with the raw 

.LAS files.   

This research aligned with the U.S. Fish and Wildlife goal of developing more 

efficient and cost effective methods of inventorying wetlands, specifically for difficult to 

map forested wetlands. It is expected that by identifying the most significant predictors 

of forested wetlands the number of datasets needed to complete an accurate forested 

wetland inventory will be reduced, effectively reducing the cost of inventorying these 

resources. By increasing the utility of the LiDAR dataset, the cost of LiDAR data 

collection may be better justified. Thus, increasing the cost effectiveness of LiDAR data 

by increasing its utilization may lead to an increased number of inventories performed 

using this high-resolution dataset - ultimately resulting in the increased accuracy of 

forested wetland mapping.  

Given that this research has shown the utility of LiDAR intensity data and 

benefits of including lidar data in wetland classifications, similar studies should be 

undertaken to explore the use of LiDAR data for identifying wetland hydrology in other 

wetland ecosystems and in areas of high ecological importance. For example, LiDAR 

data have recently become available for all counties in Illinois, including Pulaski County 

in Southern Illinois where the Cache River RAMSAR Wetland Area is located. Use of 
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this methodology may be helpful in identifying isolated or degraded forested wetland 

habitat for potential restoration and reconnection. The increased accuracy of wetland 

detection in the difficult to map forested wetland ecosystem indicates that the use of 

LiDAR intensity data alongside other remote sensing datasets may also improve the 

classification accuracy of wetland maps in other ecosystems, including estuarine, 

riverine, lacustrine, and other palustrine wetland types (shrubby, emergent, and open 

water.)  
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