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MAJOR PROFESSOR: Dr. Justin Schoof 

 
 The components of the northern hemisphere cryosphere and their relationship to Atlantic 

tropical cyclone activity are investigated in this study. Multiple ordinary least-squares regression 

with a stepwise selection procedure is used to develop a new statistical forecasting scheme for 13 

seasonal tropical cyclone parameters at four lead times for the period 1980-2010. Sea ice area 

and sea ice extent in 10 geographic regions, snow cover extent in three geographic regions and 

five indices reflecting major modes of climate variability were analyzed as possible predictors. 

Three model groups, based on predictors, were constructed and evaluated: 1) only climate mode 

predictors, 2) only cryosphere predictors, and 3) both cryosphere and climate mode predictors. 

Models using only climate mode predictors showed poor predictability of the tropical cyclone 

parameters across all four lead times while the models using only cryosphere predictors and those 

using both sets of predictors showed improved predictability. Baffin Bay and Hudson Bay sea ice 

area were found to be the most significant predictors, exhibiting an inverse relationship with 

overall tropical cyclone activity. The developed models were also compared to current 

operational statistical models of tropical cyclone activity. While the operational models were 

generally more skillful, June hindcasts of major hurricanes outperformed the operational models 

by as much as 20%.
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Atlantic tropical cyclones (TCs) are among the costliest natural disasters that threaten the 

United States resulting in annual damages of $10 billion (Pielke et al., 2008). Atlantic TCs also 

feature the largest interannual variability of any ocean basin making seasonal forecasts an 

important area of research (Klotzbach and Gray, 2004). The first regularly issued seasonal 

forecasts for the Atlantic were issued on 1 June and 1 August in 1984 by Dr. William Gray 

(Gray, 1984a, b). Dr. Gray discovered that large-scale atmospheric and oceanic features like El 

Niño-Southern Oscillation (ENSO) and the Quasi-Biennial Oscillation (QBO) were linked to 

Atlantic TC activity through their effects on the environmental conditions within the Atlantic’s 

TC main development region [MRD: 10-20°N, 20-70°W] (Gray, 1968; 1984a, b). In the time 

since Gray’s first forecasts, seasonal forecasting research has increased considerably. Forecasts 

are now being issued for all seven TC producing ocean basins at lead-times greater than 6 

months (Camargo et al., 2007). Though our understanding of the large-scale features that govern 

overall TC activity has improved, additional forecast improvements are needed. In particular, the 

predictors used by many forecasting groups often incorporate complex model projections of 

atmospheric and oceanic modes of climate variability (Klotzbach and Gray, 2012c; Saunders and 

Lea, 2005) that can increase the amount of uncertainty within the final forecast and these 

predictors can also be difficult to comprehend by the forecast readers (e.g., general public). 

Having a forecasting scheme that relies upon more simple, straight-forward predictors could 

allow for reduced forecast uncertainty and greater understanding for the forecast readers. 
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The average global near-surface air temperature (SAT) increased by 0.74 
º
C between 

1906-2005 (IPCC, 2007), with especially pronounced warming in the high latitudes of the 

northern hemisphere. The Arctic has seen a 2 to 3 
º
C

 
increase in SATs since 1950 (ACIA, 2005), 

making this region particularly important for climate research. This enhanced regional warming, 

often referred to as “polar amplification,” has been mainly linked to the ice-albedo feedback 

(Johannessen et al., 2004), where reductions in the highly reflective surfaces of sea ice (SI) and 

snow cover (SC) have led to decreases in surface albedo and consequently increases in solar 

radiation absorption by the much darker (i.e., less reflective) surfaces of open ocean and bare 

ground causing an increase in SATs, which then ultimately leads to more reductions in SI and SC 

(Robock, 1980). Polar amplification in the Arctic is manifesting itself regionally through drastic 

increases in SAT and reductions in SI and SC (Screen and Simmonds, 2010), but these changes 

also have serious consequences for regions outside of the Arctic due to the Arctic’s ability to 

influence the global energy budget (IPCC,2007). 

Regions outside of the Arctic are being affected by polar amplification through changes to 

large-scale atmospheric and oceanic features like the Arctic Oscillation (AO) and North Atlantic 

Oscillation (NAO: Budikova, 2009; Bader et al., 2011) and ocean currents (Holland and Bitz, 

2003). These large-scale features may able influence the weather and climate of regions outside 

of the Arctic by altering atmospheric and oceanic circulation patterns (Kushnir, 1994; Hurrell and 

Van Loon, 1997). Variability in these atmospheric and oceanic oscillations, referred to as climate 

modes (CMs), have been associated with the rapid changes experienced within the Arctic (IPCC, 

2007). Since Arctic SI and SC variability are associated with changes in CMs, further 

investigation into the role the cryosphere plays in atmospheric and oceanic variability is 



 

3 

 

warranted. Especially, if many of the CMs used within seasonal TC forecasting are the same ones 

known to be associated with cryospheric variability.    

If many of the CMs being used for TC forecasting (Camargo et al., 2007) also interact 

with SI and SC (Deser et al., 2000; Bartolini et al., 2010), then why hasn’t the inclusion of SI and 

SC data within seasonal forecast models been thoroughly investigated? Only three studies have 

incorporated either SI data (Ke, 2007), SC data (Yan et al., 2012), or both (Choi et al., 2010) 

when investigating seasonal TCs. Of these studies, Chio et al. (2012) and Ke (2007) investigated 

the link between cryospheric variability and overall TC frequency within the Western North 

Pacific, while Yan et al. (2012) investigated this link for the Atlantic. Though, these studies 

investigated the link between the cryosphere and TC activity none of them investigated the 

potential forecast application of this relationship.  

These three studies did not directly investigating the potential forecast application of this 

cryosphere-TC relationship nor did they investigate: 

 both SI and SC variations as they relate to the Atlantic TC season, 

 how SI and SC variations in multiple regions throughout the Northern 

Hemisphere are related to Atlantic TC activity, 

  using sea ice area (SIA) as opposed to SIE as a predictor (since SIA is a more 

representative measure of the actual SI present in a specific region,) and 

 combining CM and cryospheric data within a statistical forecasting scheme. 

This study will directly address this lack of research by investigating the inclusion of SI and SC 

data in seasonal Atlantic hurricane forecasts.  



 

4 

 

1.2 Problem Statement and Research Questions 

SI and SC are completely absent from current Atlantic TC seasonal forecasting schemes 

even though many schemes use CMs that have been linked with variability in SI and SC. For 

example, the AO (Bamzai, 2003; Rigor et al., 2002), ENSO: Seager et al., 2010; Mysak et al., 

1996), the Pacific North American Pattern (PNA: L'Heureux et al., 2008; Cohen and Entekhabi, 

2001) and the NAO (Seager et al., 2010; Mysak et al., 1996) all exhibit significant correlations 

during years with anomalous SI and SC. These covariations between SI and SC during different 

phases of these CMs have been known for many years, but there is still some uncertainty 

regarding the exact causal mechanisms governing these relationships. Much of this uncertainty is 

centered on two key questions: 1) Do variations in SI and SC cause changes to CMs or do 

changes in CMs cause variations in SI and SC? and 2) What are the direct and indirect feedbacks 

between the cryosphere and CMs that enhance or suppress these variations? These questions and 

others are still not completely resolved and require further research. Most seasonal forecasting 

schemes for TCs use one or more of these CMs as predictors without considering the possible 

influence of the cryosphere.  

For this study, the aim will be to quantify the cryosphere-TC relationship for the Atlantic 

by developing a new statistical seasonal forecasting scheme that utilizes SIA, SCE, and CM data 

to predict 13 different seasonal tropical cyclone parameters (TCPs). Unlike the three previously 

mentioned studies that only investigated the cryosphere in a particular geographic region, this 

study will consider a total of 13 separate geographic regions that encompass the entire Northern 

Hemisphere as well as indices of five CMs as predictors of TC activity. By including multiple 

geographic regions, specific locations within the cryosphere that lead to an enhanced or 

suppressed TC season can be identified. Additionally, by including both cryospheric and CM 
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data into the forecast model, quantifying the relationships between the cryosphere, the CMs and 

the TCPs will be possible. Analyzing these statistical relationships will allow for the 

identification of the geographic regions throughout the Northern Hemisphere that have 

associations with TC activity allowing for the physical mechanisms that govern these 

relationships to be explored.  

This study is guided by four primary research questions: 

1. Which components of the cryosphere have the strongest associations with North 

Atlantic TC activity? 

2. What geographic areas within the cryosphere are the most influential to the 

statistical forecast models? How do these regions relate to the CMs?   

3. What are the physical mechanism governing theses significant relationships? 

4. How does the forecasting scheme incorporating cryospheric information compare 

to current operational forecasting schemes? 

Answering these research questions will: a) lead to a better understanding of relationship 

between the cryosphere and the CMs known to influence Atlantic TC activity, b) allow for the 

identification of specific geographic regions within the cryosphere whose variability has an effect 

on CMs and TCs, and c) allow for the first quantitative comparison of forecast models with and 

without cryospheric predictors. Some initial hypotheses are that only a few regions within the 

cryosphere will have statistically significant relationships to the CMs and TCPs; those significant 

relationships will feature coinciding geographical regions; and that a forecasting scheme that 

includes cryospheric information will be comparable, if not superior, to current models at a 

variety of lead times. 
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 This thesis will be divided into four remaining chapters. A literature review will be 

presented in Chapter 2 in which a brief history of Atlantic seasonal TC forecasting will be given, 

followed by a climatology of the Atlantic’s TC season, a brief summary on each Atlantic TC 

forecasting groups and lastly an overview of the cryosphere-TC relationship. In Chapter 3 the 

methodology used in this study will be presented as well as the methodology used by current 

forecasting groups. In Chapter 4 the findings of this study will be presented as well as a 

comparative analysis of these findings to current forecasting groups. Finally, in Chapter 5 a 

summary of this study and future research directions will be presented. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction to Seasonal Forecasting of Tropical Cyclones 

In tropical meteorology seasonal forecasting refers to the forecasts aimed at predicting the 

overall activity of a TC season compared to climatology (i.e., above- or below-normal activity). 

Overall TC activity can be assessed by a variety of measures. Some of the most popular being the 

total number of tropical storms (TSs) and TCs, the annual accumulated cyclone energy index 

value (ACE; Bell et al., 2000) or the power dissipation index value (PDI; Emanuel, 2005).This 

chapter aims to synthesize the research on Atlantic TC forecasting.  

The first attempt to produce a seasonal forecast of TC activity was by Nicholls (1979) for 

the Australian TC basin in 1979 when he discovered a -0.6 correlation between winter pressure at 

Darwin, Australia and the subsequent TC frequency. The first Atlantic seasonal forecasts were 

issued in June and August of 1984 by Gray (1984a, b) using ENSO, Quasi-Biennial Oscillation 

(QBO), and Caribbean Sea level pressure (SLP) as predictors. Both Gray (1984a) and Nicholls 

(1979) used statistical methods to produce their forecasts, where statistical relationships between 

TC frequency and oceanic/atmospheric conditions were used to predict the TC season. There are 

also dynamical forecasts that use general circulation models (GCMs) and regional climate 

models to predict TC activity. Statistical forecasts are still the most frequently utilized forecast 

type and the most accurate, though dynamical forecasts (Camargo and Zebiak, 2002; LaRow et 

al., 2008) are showing improvements (Camargo et al., 2007). See Table 2.1 for a list of many of 

the top forecasting groups. This chapter will be divided into four remaining subsections: 1) a 

general climatology of the Atlantic TC season (A climatology of the study period will be 

presented in Chapter 4) including a description of tropical cyclogenesis requirements, 2) a brief 
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overview of current forecasting groups, 3) a description of various forecast/hindcast skill 

measures, and 4) an overview of the cryosphere-TC relationship including summaries of current 

studies investigating this relationship. 

Table 2.1 List of current forecasting groups issuing seasonal tropical cyclone forecasts for the 

North Atlantic by forecast type (Adapted from Camargo et al., 2007 Table I). 

Forecasting Group Type  Website 

Colorado State University, USA 

(CSU) 

Statistical http://hurricane.atmos.colostate.edu 

Tropical Storm Risk, UK (TSR) Statistical http://tsr.mssl.ucl.ac.uk 

National Oceanic and Atmospheric 

Administration, USA (NOAA) 

Statistical http://www.cpc.noaa.gov 

Cuban Meteorological Institute 

(INSMET) 

Statistical http://www.met.inf.cu 

North Carolina State University, 

USA (NCSU) 

Statistical http://cfdl.meas.ncsu.edu/index.html 

European Centre for Medium-

Range Weather Forecasts 

(ECMWF) 

Dynamical http://www.ecmwf.int 

(collaborating agencies only) 

International Research Institute for 

Climate and Society (IRI) 

Dynamical http://iri.columbia.edu/forecast/tc_fcst/ 

Meteorological Office, UK 

(MetOffice) 

Dynamical http://www.metoffi ce.gov.uk/weather/ 

tropicalcyclone/northatlantic 

 

2.2 Atlantic Basin Climatology 

The North Atlantic TC Basin includes the Atlantic Ocean north of the equator, the 

Caribbean Sea, and the Gulf of Mexico. Its TC season officially runs between 1 June and 31 

November, with 90% of the activity occurring being between mid-August and late October (See 

Figure 2.1). The term tropical cyclone is a generic term for a warm core low-pressure system 

with organized convection and defined cyclonic surface winds that form in barotropic 

environments over tropical and subtropical waters (Holland, 1993). TCs are described by a 

variety of terms depending on the ocean basin in which they form. For example, in the western 

North Pacific the term typhoon is used, while in the North Indian Ocean the term very severe 

cyclonic storm is used, and in the Atlantic the term hurricane (H) is used (Neumann et al., 1993). 
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Since this study is focused on the Atlantic the terms describing TCs will be those that are 

regionally specific to the Atlantic. In the Atlantic when a TC has winds less than 17 ms
-1

, greater 

than 17 ms
-1

, greater than 33ms
-1

, and greater than 50ms
-1

 it is called a tropical depression, 

tropical storm (TS), hurricane (H), and major hurricane (MajH), respectively (Neumann et al., 

1993). Hs that have winds greater than 33ms
-1

 and less than 50ms
-1

 are often termed minor 

hurricanes (MinHs) while Hs that have wind speeds greater than 50ms
-1

 are termed MajHs. Since 

1950, TCs that meet TS wind speed criteria are given a name. The term “TC activity” will 

represent all TSs, Hs, MinHs, and MajHs in a given season. For the period of 1966-2009 there 

were on average 11.3, 6.2, and 2.3 TSs, Hs, and MajHs, respectively (NOAA, 2012a).  

There are six environmental conditions that are required for TC formation (tropical 

cyclogenesis): 1) warm ocean waters of at least 26.5ºC throughout a depth of least 50m, 2) an 

atmosphere that rapidly cools with height leading to conditional instability, 3) abundant mid- to 

low-level tropospheric moisture, 4) a minimum distance of at least 500 km from the equator so 

that the Coriolis force becomes non-negligible, 5) a pre-existing near-surface disturbance with 

sufficient vorticity and low-level convergence, and 6) low values of vertical wind shear of 

typically less than 10ms
-1 

between the upper and lower troposphere (Gray, 1979). The aim of any 

forecasting group is to predict one or more of these environmental conditions for an upcoming 

TC season in order to gauge the likelihood of tropical cyclogenesis. 
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Figure 2.1 Number of tropical cyclones that have occur since 1851 by date of cyclogenesis. The 

Atlantic’s tropical cyclone season officially runs from June 1 to November 31. 

 

2.3 Seasonal Forecasting Groups 

In this subsection an overview of the top statistical forecasting groups for the Atlantic 

will be presented. Many of these groups are university research groups or government agencies. 

Regardless of the forecasting group, the process of producing a forecasting scheme is very 

similar from group to group. Each group uses multiple regression techniques in order to develop 

their models with some groups using an analog approach to further refine their model output. 

Predictors for their models are can either be past or forecasted environmental conditions with 

known associations with TC activity. Based on their forecasting scheme, groups will either 

produce forecasts every month, generally starting in the December prior to the TC season, or 
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every few months leading up to the TC season. Regardless of forecasting scheme, each group 

produces a forecast at the start of the TC season in June.  

2.3.1 Colorado State University 

Colorado State University (CSU) currently issues quantitative forecasts at four issuance 

dates – early December, April, June, and August. Early June and August forecasts have been 

issued since 1984 (Gray 1984a, b) and the extended-range forecasts of December and April have 

been issued since 1992. The quantitative December forecast was discontinued in 2011 and 

replaced with a qualitative forecast due to a lack of operational skill (Gray et al., 1992; Klotzbach 

2008; Klotzbach and Gray, 2010). The CSU group uses multiple OLS regression equations to 

produce their forecasts. CSU use a tropical cyclone parameter (TCP) called Net Tropical Cyclone 

(NTC) activity in order to predict how active a TC season will be. NTC is an aggregate measure 

of the following six parameters: named storms (NSs [Same as the term TCs]), named storm days 

(NSD), hurricanes (H), hurricane days (HD), intense hurricanes (IH [Same as the term MajHs]), 

and intense hurricane days (IHD; Gray et al., 1994). These six parameters are normalized by their 

climatologies resulting in a normal annual NTC being 100. Above (below) average TC seasons 

will have an NTC of greater (less) than 100. NTC is forecasted by CSU instead of the six 

individual TCPs because modeled NTC has shown greater agreement with observations than the 

individual TCPs (Gray et al., 1994). Once an NTC is forecasted the six parameters are then 

derived empirically from the NTC value.  

The most recent quantitative early December forecast was issued in 2010 (Klotzbach and 

Gray, 2010) and had three predictors (See Table 2.2 and Figure 2.2). Predictors were selected by 

using the National Centers for Environmental Prediction/National Center for Atmospheric 

Research (NCEP/NCAR) reanalysis dataset (Kistler et al., 2001). A time series from 1950-2007 



 

12 

 

for NTC was created and then the reanalysis fields of SLP, sea surface temperature (SST) and 

500-mb height were correlated against the observed NTC values from 1950-1989. The years 

1990-2007 were left out in order the test the hindcast skill of the model. Predictors had to meet 

four criteria for selection: 1) predictors had to be significantly correlated at the 95% confidence 

level with NTC over the period 1950-1989, 2) the correlation between the predictors and NTC 

had to remain at the 95% level for the left out 1990-2007 period, 3) the predictors had to be 

significantly correlated with physical features known to effect Atlantic Basin TC activity through 

alterations to wind shear, SLP, and SST patterns during the following August-October period, 

and 4) when the predictors were added into the stepwise regression model they had to increase 

the variance explained by 3% over the three time periods of 1950-1989, 1990-2007, and 1950-

2007 (Klotzbach, 2008). The NTC hindcasts are then ranked from highest (1) to lowest (58), and 

then the corresponding observed NTC values are assigned to the predicted NTC ranks. Using 

these three predictors the ranked hindcasts were able to explain 54% of the variance in the 

observed NTC record (Klotzbach, 2008). 

 October-November SSTs (December predictor 1: DP1) was selected because warm fall 

North Atlantic SSTs are correlated (r > 0.5) with the following August-October SSTs throughout 

the North Atlantic, and warm North Atlantic SSTs are indicative of an active AMO and a strong 

Atlantic thermohaline circulation (Goldenber et al., 2001). With an active AMO in place the 

Atlantic’s MDR generally experiences anomalously low vertical wind shear and low SLP, and 

anomalously warm STTs. The reduced wind shear is not only linked to the phase of the AMO but 

also to a weakened Tropical Upper Tropospheric Trough (TUTT) in the central Atlantic, which 

leads to reductions the upper-level westerlies and low-level easterlies further enhancing the 
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likelihood of anomalously low vertical wind shear being experienced during the peak TC peaks 

(Klotzbach, 2008). 

Table 2.2 List of predictors and their locations for the CSU quantitative forecasts at the four lead 

times (Adapted from Klotzbach and Gray, 2010,2012a,b,c).Acronyms used are : SLP (sea level 

pressure) and SST (sea surface temperature).  

 

November 500 mb geopotential height (December predictor 2: DP2) was selected because 

DP2 correlates highly with AO values at r = -0.73 (Thompson and Wallace, 1998) and with NAO 

values at r = -0.55 (Barnston and Livezey, 1987). When the AO and NAO are in their negative 

phase, reductions in the strength of the westerlies across the central Atlantic occur because more 

blocking/ridging is experienced throughout the central Atlantic. Additionally, a negative NAO is 

associated with a weaker Azores High causing positive SSTs anomalies and reduced easterly 

trade winds in the tropical Atlantic (Marshall et al., 2001). Finally November 500-mb heights are 

December Predictors And Locations 

1. October-November SST 

2. November 500 mb geopotential height 

3. November SLP 

1. (55-65˚N, 60-10˚W) 

2. (67.5-85˚N, 50˚W-10˚E) 

3. (7.5-22.5˚N, 175-125˚W) 

April Predictors And Locations 

1. January-March Atlantic SST  

2. March SLP  

3. February-March SLP 

4. ECMWF 1 March SST Forecast for September 

Nino 3 

1. (5˚S-35˚N, 10-40˚W) 

2. (20-40˚N, 20-35˚W) 

3. (5-20˚S, 85-120˚W) 

4. (5˚S-5˚N, 90-150˚W).  

June Predictors And Locations 

1. April-May SST 

2. April-May 200-mb zonal winds  

3. ECMWF 1 June SST Forecast for September Nino  

4. May SLP 

1. (15-55˚N, 15-35˚W) 

2. (0-15˚S, 150˚E-120˚W) 

3. (5˚S-5˚N, 90-150˚W) 

4. (20-40˚N, 30-50˚W) 

August Predictors And Locations 

1. July Surface zonal Wind  

2. July Surface Temperature  

3. July 200-mb zonal Wind 

4. (10-17.5˚N, 60-85˚W) 

5. (20-40˚N, 15-35˚W) 

6. (5˚-15˚N, 0-40˚E) 
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also correlated with anomalously low summer and early fall Caribbean SLPs and easterly 

anomalies at the 200mb level. Both of which reduce vertical wind shear in the tropical Atlantic. 

November SLP (December predictor 3: DP3) was selected because high SLP in the 

subtropical Northeast Pacific usually occurs during the fall and winter prior to a La Nina event 

because the higher SLP strengthens the trade winds in the East Pacific leading to more upwelling 

in the East Pacific, increasing the likelihood of La Nina (Larkin and Harrison, 2002). When a La 

Nina event is in place TC activity is expected to increase because the majority of Pacific tropical 

convection is shifted westward causing more vertical wind shear to be present in the Pacific and 

less in the Atlantic (Gray, 1984a). Low vertical wind shear is crucial for tropical cyclogenesis in 

any tropical ocean basin (Gray, 1968).  

As of December 2011 CSU has been providing a qualitative rather than a quantitative 

forecast due to the lack of real-time forecast skill between 1992-2011 (Klotzbach and Gray, 

2011). The quantitative forecast was discontinued because there was a breakdown of several 

long-term relationships that worked on hindcast data but not in real-time forecasting and because 

no statistical or dynamical models have shown any skill at predicting ENSO at the 9-12 month 

lead times needed at the early December timeframe. The current 2012 December forecast is 

issued with four possible TC activity scenarios dictated by the strength of the Atlantic 

thermohaline circulation (THC) and the phase of ENSO and how likely changes to those physical 

parameters are for the upcoming TC season.  
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Figure 2.2 Locations of the predictors used in the early December quantitative forecast for the 

2011 TC season issued by CSU (From Klotzbach and Gray, 2010). 

 

The April forecast model is built using data from 1982-2010 and utilizes four predictors 

from the NCEP/NCAR reanalysis dataset (See Table 2.2 and Figure 2.3). The validated hindcast 

of NTC is correlated with observations at r = 0.68 (Klotzbach and Gray, 2012a).  

 

 

Figure 2.3 Locations of the predictors used in the early April quantitative forecast for the 2012 

TC season issued by CSU (From Klotzbach and Gray, 2012a) 
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January-March Atlantic SST (April predictor 1: AP1) was selected because above 

average SSTs in the tropical and subtropical eastern Atlantic during January-March are correlated 

strongly (r = 0.65) with August-October values of the Atlantic Meridional Mode (AMM; Kossin 

and Vimont 2007). The AMM impacts Atlantic TCs by altering the position and intensity of the 

Inter-Tropical Convergence Zone (ITCZ) and in doing so causing changes to vertical and 

horizontal wind shear patterns and SST patterns throughout the tropical Atlantic.   

March SLP (April predictor 2: AP2) was selected because March SLP in the subtropical 

Atlantic is used to evaluate the strength of the Azores High. It has been observed that a 

strengthened Azores High corresponds with increased trade winds across the Atlantic causing 

increased ocean surface mixing and upwelling leading to cooler-than-normal SSTs. These SST 

anomalies cause a positive feedback that results in higher SLP and stronger trade winds and 

further SST cooling (Knaff 1998). All these changes lead to a less active TC season.  

February-March SLP (April predictor 3: AP3) was selected because above average 

February-March SLP in the southeastern tropical Pacific is correlated with a positive Southern 

Oscillation Index (SOI) and stronger trade winds across the eastern Pacific leading to an 

increased likelihood of La Nina conditions in August-October.  

ECMWF 1 March SST forecast for September Nino 3 (April predictor 4: AP4) is the first 

time that CSU has used a dynamical model prediction as a predictor in their forecasts. The 

ECMWF forecast of September Niño 3 by 1 March has shown considerable skill in predicting the 

phase of ENSO several months in advance with ensemble averages for the September Niño 3 

region and observations correlating at r =0.63 (Stockdale et al., 2011).  

Along with these four predictors CSU now includes an analog approach within their April 

forecast. The analog approach analyzes prior environmental conditions back to 1949 that show 
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similarities to current February and March conditions. Years that feature similar environmental 

conditions are analyzed and their TC activity compared to model output. The current model 

output is then refined using the historical analogs. 

The early June forecast uses a new forecasting scheme that has been in use since 2010. It 

has four predictors (See Table 2.2 and Figure 2.4) that are chosen from the newly developed 

Climate Forecast System Reanalysis dataset (CFSR: Saha et al., 2010) over the period 1982-

2010. Hindcast correlation between model and observed NTC are r = 0.74 after cross validation 

(Klotzbach and Gray, 2012b). All four predictors are associated with affecting wind shear 

throughout the troposphere across the Atlantic’s MDR.  

 

Figure 2.4 Locations of the predictors used in the early June quantitative forecast for the 2012 TC 

season issued by CSU (From Klotzbach and Gray 2012b). 

 

April-May SST (June predictor 1: JP1) is very similar to AP1 with only slight temporal 

and spatial differences. Above average April-May SSTs in the eastern Atlantic are correlated 

with a weakened subtropical high throughout the spring, which is correlated with weaker trade 

winds and upper tropospheric westerlies, below-normal SLP, and above-normal SSTs in the 

MDR in the following August-October period. JP1 is also correlated with August-October values 
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of the AMM over the 1982-2010 period with the AMM primarily influencing TC activity through 

changes in the position and intensity of the ITCZ.  

April-May 200-mb zonal winds (June predictor 2: JP2) was selected primarily because 

increased April-May 200-mb zonal winds in the south-central tropical Pacific are typically 

associated with La Nina conditions and decreased odds of having a La Nina transition to an El 

Niño event. With the odds of La Nina conditions likely, above-average SSTs, and below-average 

SLPs and zonal wind shear throughout the Atlantic during the August-October period are 

expected.  

ECMWF 1 June SST forecast for September Nino 3 (June predictor 3: JP3) was selected 

because, much like AP3, the ECMWF seasonal forecast system has shown considerable forecast 

skill as evident by correlations (r = 0.81) between model Niño 3 Region SSTs and observations. 

Knowing SST values in the eastern tropical Pacific during the August-October TC period will 

allow for ENSO conditions during that period to be included in the forecast.  

May SLP (June predictor 4: JP4) was selected because anomalously low SLP in the 

central Atlantic in May is associated with reduced trade winds across the Atlantic, which 

promotes reduced oceanic upwelling and sustains warm SST anomalies in the tropical Atlantic. 

Low SLP in May also tends to persist into the peak TC months. Much like the early April 

forecast scheme, early June uses an analog approach to refine the statistical model output.  

The early August forecast is developed from ERA-Interim Reanalysis data using the years 

1979-2011. The current forecast scheme uses three predictors (See Table 2.2 and Figure 2.5) and 

has shown a correlation of 0.91 between hindcast and observed NTC model validation 

(Klotzbach and Gray, 2012c).  
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Figure 2.5 Locations of the predictors used in the early August quantitative forecast for the 2012 

TC season issued by CSU (From Klotzbach and Gray 2012c). 

 

July surface zonal wind (August predictor 1: AP1) was selected because reduced surface 

zonal winds in the Caribbean are associated with weakened trade winds in the Atlantic leading to 

a larger-than-normal Atlantic Warm Pool (AWP: Wang and Lee, 2007) This change to the trade 

winds and AWP lead to less vertical wind shear increasing the likelihood of tropical 

cyclogenesis, and anomalously warm SSTs lead to more latent heat being available for the 

intensification of TCs into MajHs (Goldenberg and Shapiro, 1998).  

July SST (August predictor 2: AP2) was selected because anomalously warm SSTs in the 

northeastern subtropical Atlantic are associated with the positive phase of the AMM leading to 

an altered ITCZ and consequently reduced trade winds across the tropical Atlantic (Kossin and 

Vimont, 2007) and warmer SSTs during August-October. 

July 200-mb zonal wind (August predictor 3: AP3) was selected because anomalously 

eastern flow at the 200-mb level over northern tropical Africa creates an environment conducive 

to easterly wave development. These easterly waves are very important for tropical cyclogenesis, 

especially in MajHs (Gray 1968). This anomalous eastern flow tends to persist into August-

October leading to reduced wind shear over the MDR and AP3 also correlates well with ENSO 
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conditions. Much like the early April and June forecast schemes, early August also uses an 

analog approach to refine the statistical model output.  

All of the CSU quantitative forecast schemes utilize pressure, temperature, and wind 

fields from reanalysis datasets, apart from the April and June forecasts also utilizing the ECMWF 

Niño Region 3 predictions. All the forecasting schemes have shown good agreement between 

modeled NTC and observations with correlations at 0.68, 0.74, and 0.91 for April, June, and 

August hindcasts, respectively. Since 2011 the early December forecast has been qualitative 

rather than quantitative due to the lack of real-time forecast skill. All the quantitative forecasts 

also feature landfall probabilities for 11 U.S. coastal regions and every island in the Caribbean 

based on the principle that during a more active TC season there is a greater probability of 

landfall (Klotzbach and Gray, 2012a, b, c).  

2.3.2 Tropical Storm Risk 

The Tropical Storm Risk (TSR) group is based out of the Benfield Hazard Research 

Centre within University College London and has been issuing forecasts of the following TCPs 

for the Atlantic since 2000: 1) ACE, 2) number of TCs, 3) Hs, and 4) MajH, 5) ACE of land 

falling TCs, 6) number of land falling TSs, 7) Hs, and 8) MajHs (Camargo et al., 2007). Monthly 

leads out to 10 months from 1 August are considered. Forecasts are developed using linear OLS 

regression modeling with predictors being updated at each new monthly issuance. The forecast 

model is constructed using NCEP/NCAR reanalysis data from 1950-2011. The two predictors are 

July-September forecast 925-mb zonal wind over the Caribbean and the North Atlantic and, 

secondly, August-September forecast SST for the MDR (Saunders and Lea, 2005). 

July-September forecast 925-mb zonal wind is predicted by using August-September 

forecasts of ENSO SSTs from the consolidated 18-member ensemble version of the ENSO-
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CLIPER model (Llyod-Hughes et al., 2004). 925-mb zonal wind was selected because it reflects 

the speed of the trade wind over the Caribbean and North Atlantic and because it is a good proxy 

for vertical wind shear over these same regions. If 925-mb zonal wind is predicted to weaken 

then vertical wind shear will be reduced causing a greater likelihood of an enhanced TC season. 

August-September SST is forecasted using the same model as aforementioned with warmer-than-

normal SSTs in the MDR being linked to high ACE values. The forecast skill of the ENSO-

CLIPER model for these two predictors at the early August issuance are 73% and 86%, 

respectively (Saunders and Lea, 2012). Modeled and observed ACE from 1950-2003 are 

significantly correlated (r = 0.78) at the early August issuance (Saunders and Lea, 2004). Since 

2005 TSR has also issued landfall probabilities for the US coastline using winds patterns at 

heights between 750 and 7,500 meters across six regions of North America, the East Pacific and 

Atlantic Oceans during July for the August forecast (Klotzbach et al., 2011). 

2.3.3 National Oceanic and Atmospheric Administration 

The National Oceanic and Atmospheric Administration (NOAA) has been issuing 

seasonal forecasts, which they call seasonal outlooks, since 1998 with outlooks being issued in 

late May and early August each year (Klotzbach et al., 2011). Their outlooks include predictions 

of the total number of TSs, Hs and MajHs, and ACE for the upcoming TC season. Their 

statistical model is based on four predictors: 1) an August-October ENSO forecast, 2) the tropical 

multi-decadal signal, 3) a forecast of August-October Atlantic basin SSTs, and 4) a forecast of 

August-October vertical wind shear across the tropical Atlantic (Klotzbach, 2007). The August-

October ENSO forecast takes into account the model predictions of ENSO from the following 

dynamical models: NOAA’s Coupled Forecast System (CFS), NOAA’s Geophysical Fluid 

Dynamics Laboratory (GFDL), the European Centre for Medium-Range Weather Forecasting 
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(ECMWF), the United Kingdom Meteorology office (UKMET), and the European Seasonal to 

Interannual Prediction ensemble (EUROSIP). The tropical multi-decadal signal is determined by 

incorporating the observations of the AMO and the magnitude of the West African monsoon 

(NOAA, 2012b). When the AMO is in its positive phase vertical wind shear is reduced, above-

average SSTs, and below-average SLP are experienced throughout the Atlantic leading to greater 

instability and enhanced low-level convergence (Goldenberg et al., 2001). Both the August-

October SSTs and vertical wind shear forecasts come from the CFS model. The forecast model 

output is then qualitatively refined by incorporating an analog forecasting approach and gathering 

the consensus of forecasters from the following NOAA climate and weather centers: the Climate 

Prediction Center (CPC), the National Hurricane Center (NHC), and the Hurricane Research 

Division (HRD).  

2.3.4 Cuban Meteorological Institute 

The Cuban Meteorological Institute (INSMET) has been issuing seasonal forecasts since 

1996 (Camargo et al., 2007). Their forecasts include predictions of: 1) number of TSs  and TCs 

in the Atlantic MDR, Caribbean and Gulf of Mexico (separately), 2) first date of TC genesis, 3) 

last day with TC activity, and 4) number of TCs that form in the Atlantic MDR and impact the 

Caribbean (Camargo, et al., 2007). These predictions are based on five environmental 

parameters: 1) North Atlantic winds, 2) observed and predicted ENSO, 3) intensity of the 

Atlantic subtropical ridge, 4) North Atlantic SSTs, and 5) observed QBO (Camargo et al., 2007, 

Klotzbach, 2007). As with many of the other forecasting groups INSMET also utilizes an analog 

method in combination with their statistical regression model outputs to refine their forecasts.   
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2.3.5 North Carolina State University 

North Carolina State University (NC State) has been issuing seasonal forecasts since 

2006 (Camargo et al., 2007) for predictions of the total number of TSs, Hs, and MajHs for the 

Gulf of Mexico, Caribbean, and Atlantic basins separately, as well as the total number of 

landfalls for the Gulf, Southeast, and Northeast coasts of the USA (Xie et al., 2012). All the 

predictors except for the ENSO index are gathered from the CPC while the ENSO index is a 

forecast value from the CFS model (See Table 2.3). The statistical model utilizes a log-linear 

OLS regression approach, which works under the assumption that the log of the prediction 

parameters are linearly related to the selected climate indices.  

Table 2.3 NC State’s list of indices and their monthly averages that were used as predictors in 

their seasonal forecast of the 2012 TC season (Adapted from Xie et al., 2012). 

 

 

 

 

 

 

 

2.3.6 Florida State University  

Florida State University (FSU) does not issue any operational seasonal forecasts for the 

Atlantic but FSU researchers developed some pioneering methods in the statistical modeling of 

Atlantic TC activity and landfall. In 1993 FSU researchers showed that using a nonlinear Poisson 

regression model instead of the linear model when modeling MajH occurrences had a 40% 

increase in hindcast skill when compared to a linear model (Elsner and Schmertmann, 1993). 

Index Months Averaged Over 

1) Atlantic Meridional Mode  January-March  

2) Atlantic Multidecadal 

Oscillation  

January-February 

3) Dipole Mode  January-March 

4) North Atlantic Oscillation  January-March 

5) Forecasted El-Niño-Southern 

Oscillation Region 1 & 2  

July-September 

6) Tropical North Atlantic  January-February 

7) Tropical Southern Atlantic  November-January 

8) Western Hemisphere Warm 

Pool  

August-November 
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FSU researchers also discovered that the phase of the NAO influenced the tracks of TCs showing 

that when the NAO is positive (excited) TCs tended to recurve into the higher latitudes of the 

North Atlantic making the US East Coast more susceptible to TC strikes while in its negative 

(relaxed) phase TCs tended to be nonrecurving and stay in lower latitudes making the US Gulf 

Coast more susceptible to strikes (Elsner et al., 2000). FSU researchers were also the first to 

build a Bayesian model of seasonal TC activity and landfalls over the USA using May-June 

values of the NAO, SOI, and the AMO as predictors (Elsner and Jagger, 2004; 2006).  

2.4 Forecast Skill Metrics  

Testing the skill of the various forecasts produced by the different groups is of critical 

importance in order the show the accuracy of their models. Models that have good skill are 

validated models that consistently make correct TCP predictions. Validated models are those that 

have been tested against historical data, referred to as hindcasting, to assess how well the model 

has predicted past TC seasons. If a model’s hindcast is similar to historical TC observations, then 

the model is said to have skill. Models that show substantial hindcast skill allow for greater 

confidence in future TCP predictions. In recent years, there has been a call for a standardization 

of model output (i.e., TCPs) and verification skill measure used to judge model performance 

(Camargo et al., 2007; WMO, 2002). Camargo et al. (2007) proposed seven possible verification 

skill scores that could be used for deterministic model assessment: 1) mean root square error skill 

score, 2) Pearson correlation coefficient, 3) Spearman rank correlation coefficient, 4) uncentered 

correlation coefficient, 5) bias compared to climatology, 6) percentage improvement over trend, 

and 7) normalized natural categories skill score. Table 2.4 summarizes all the statistical 

forecasting groups by their TCPs predicted, predictors, and validations methods.  
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Table 2.4 Statistical forecasting groups’ predictors, predictands, and validation and skill methods 

used to provide their Atlantic seasonal tropical cyclone forecasts. (Table adapted from Camargo 

et al., 2007 Table II). 

 

 

GROUP  PREDICTORS PREDICTANDS VALIDATION/SKILL 

METHODS 

CSU  Sea surface temperatures in the North and 

South Atlantic 

  Sea level pressure at Atlantic and Pacific 

Oceans 

 Upper- and low-level zonal winds over 

the Pacific and Atlantic Oceans 

 ENSO forecasts 

 Tropical storm count 

 Tropical storm day count 

 Tropical cyclone count 

 Tropical cyclone day 

count 

 Intense tropical cyclone 

count 

 Intense tropical cyclone 

day count 

 Accumulated cyclone 

energy 

 Net tropical cyclone 

activity 

 Jackknife cross-

validation 

 Pearson correlation 

between modeled and 

observed NTC 

 Improvement over  

climatology 

INSMET  North Atlantic winds 

 ENSO 

 Intensity of the Atlantic subtropical ridge 

 SST North Atlantic 

 Quasi Biennial Oscillation 

 Number of named TCs 

 Number of hurricanes 

 Number of TCs in the 

Atlantic Main 

Development Region, 

Caribbean, and Gulf of 

Mexico (separately) 

 First day with a TC 

formation 

 Last day of TC 

formations 

 Cross validation 

 Pearson correlation 

between modeled and 

observed? 

 Comparison to 

climatology 
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Table 2.4 (Continued) 

 

 

All six of the forecast groups presented used predictors that were taken from continental 

and/or oceanic temperature, pressure, and/or wind fields that relate back to large-scale 

atmospheric and oceanic CMs such as AMO, ENSO, or NAO. Many of these CMs are based on 

atmosphere-ocean interactions. SI and SC are both capable of e\affecting these interactions by 

altering the energy fluxes between the surface types. With rapid changes in SI (Stroeve et al., 

2012) and SC (Dery and Brown, 2007) being experienced throughout the Northern Hemisphere 

NC 

STATE 
 Atlantic Meridional Mode 

 Atlantic Multidecadal Oscillation 

 Dipole Mode 

 North Atlantic Oscillation 

 Forecasted El-Niño-Southern Oscillation 

region 1 & 2 

 Tropical North Atlantic 

 Tropical Southern Atlantic 

 

 Number of tropical 

storms, hurricanes, and 

major hurricanes in the 

Atlantic, Caribbean, and 

gulf of Mexico 

(separately) 

 Number of landfalls for 

the gulf, southeast, and 

northeast coasts of the 

USA 

 

 Cross validation 

 Comparison of the 95% 

prediction intervals to  

climatologies at >50, 

20, 15 year values 

 

NOAA  ENSO forecast 

 Tropical Multi-Decadal Signal 

 Atlantic sea surface temperatures 

 Forecast of vertical wind shear over 

tropical Atlantic 

 Number of tropical 

storms, hurricanes, and 

major hurricanes 

 Accumulated Cyclone 

Energy 

 Cross-validation 

 Mean absolute error 

 Comparison to 

climatology 

 Contingency tables 

TSR  Forecast of sea surface temperatures in 

the Atlantic main development region 

 Forecasts of 925 mb zonal wind over the 

Caribbean and North Atlantic 

  

 Accumulated Cyclone 

Energy 

 Number of tropical 

storms, hurricanes, and 

major hurricanes 

 ACE of land falling 

Tropical cyclones 

 Numbering of land 

falling tropical storms, 

hurricanes, and major 

hurricanes 

 Cross validation using 

block elimination 

 Pearson correlation 

coefficient with p-value  

between hindcast and 

observations 

 Mean square error  

 Improvement over 

climatology 
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some researchers have started to investigate the possible linked between SI and SC variability 

and TCs (Ke, 2007, Choi et al., 2010, Yan et al., 2012).  

2.5 The Cryosphere and Tropical Cyclones 

The cryosphere is the frozen part of the climate system consisting of: snow cover, river 

and lake ice, sea ice, glaciers and ice caps, ice shelves and sheets, and frozen ground, but for the 

purpose of this study the cryosphere will only refer to SI and SC since their interactions with 

CMs and TCs are of primary interest. Fresh SC has a very high albedo (0.8-0.9) that leads to a 

direct snow-albedo feedback that influences the surface energy budget and Earth’s total radiative 

balance (IPCC, 2007) as well as indirect feedbacks on atmospheric circulation at varying 

timescales (Bojariu and Gimeno, 2003; Bartolini et al., 2010). SI plays an important role in the 

cryosphere because: 1) its direct ice-albedo feedback is crucial to the climate response at high 

latitudes, 2) it modifies the exchange of heat, gases, and momentum between the atmosphere and 

the ocean, and 3) it alters ocean buoyancy by redistributing freshwater via the movement and 

melting of SI through the polar oceans (IPCC, 2007).  

Beyond having multiple direct and indirect feedbacks on the atmosphere and the ocean 

the cryosphere also exhibits high annual and decadal variability. Since 1979 when satellite 

observations became available, Arctic SI has shown an average maximum areal extent of 

approximately 15.86×10
6 

km
2 

in March (NSIDC, 2012a) and an average minimum of 

approximately 6.14×10
6 

km
2
 in September (NSIDCb, 2012). In recent years though, minimums 

have been closer to 4×10
6 

km
2
 with 3.41×10

6 
km

2
, 4.33×10

6 
km

2
, and 4.17×10

6 
km

2
 being 

experienced in 2012, 2011, 2007, respectively (NSIDCb, 2012). Figure 2.7 reveals that 

September SI minimums have experienced a rapid downward trend of 12.4% per decade between 

1979-2010 (Stroeve et al., 2012). Maximums are also on the decline with the last nine years 
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(2004-2012) being the lowest on satellite record (NSIDC, 2012a). SC features even more 

variability than SI with an average maximum of approximately 46.7×10
6 

km
2
 in December and a 

minimum of approximately 3.1×10
6 

km
2
 in August (Robinson, 2012). SC not only features 

greater variability then SI but also a greater decline with Northern Hemisphere June SC between 

1979 and 2012 declining at -17.6% per decade (NOAA, 2012c). The cryosphere exhibits large 

variability (NSIDIC, 2012a; Robinson, 2012) and has known impacts on surface energy fluxes 

that lead to changes in temperature, pressure, and wind fields (IPCC, 2007; Budikova, 2009; 

Bartolini et al., 2010). As previously mentioned, these three atmospheric fields are the primary 

predictors in seasonal forecasts of TCs, so further research into the cryosphere’s influence on 

these fields is required 

Currently there are three studies that investigate the link between the cryosphere and TCs 

(Ke, 2007, Choi et al., 2012, Yan et al., 2012). Of these studies Ke (2007) and Choi et al. (2010) 

investigated the cryosphere and TC activity only for the western North Pacific, while Yan (2012) 

provided the only study that investigated the Atlantic. A brief description of each study and their 

findings will be given. 

 

Figure 2.6 A -12.4% linear trend in the average minimum Arctic sea ice extent that occurs 

annually in September (adapted from Stroeve et al., 2012 Figure 1). 
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Ke (2007) investigated North Pacific SIE in March-April-May (MAM) and how it related 

to subsequent annual TC counts in the tropical western North Pacific (TWNP) between 1965-

2004. Correlation analysis between MAM-SIE and annual TCs revealed a correlation coefficient 

of -0.49. Correlation analysis was also used to investigate high and low SIE years and how they 

relate to SLP, SST, and atmospheric circulation anomalies. Years with ENSO events featuring 

±0.5˚C SST anomalies and lasting for six months during December through May were removed 

from the correlation analysis in order to better isolate the SIE signal on these three atmospheric 

fields. High MAM-SIE years were shown to reduce the TC activity through increases in SLP and 

vertical wind shear, and reductions in SSTs through the TWNP’s MDR. Low MAM-SIE years 

were shown to exhibit the opposite pattern with decreases in SLP and vertical wind shear and 

increases in SSTs within the MDR. These patterns correspond well with the North Pacific 

Oscillation (NPO) with a positive phase occurring during low MAM-SIE years and the negative 

phase occurring during high MAM-SIE years.  

The Choi et al. (2010) study was the first to develop multiple regression models for 

seasonal forecasting of TC frequency in the western North Pacific using three CMs for the period 

1951-2007 while incorporating cryospheric data. The three predictors chosen for the models were 

April 500 hPa meridional wind and 850 hPa zonal wind, and May 200 hPa zonal wind. Each of 

these predictors correspond to a different CM with April 500 hPa meridional wind, April 850 

hPa zonal wind, and May 200 hPa zonal wind corresponding to the Siberian High Oscillation 

(SHO), Antarctic Oscillation (AAO), and the NPO, respectively. The hindcast model output 

correlate well (r = 0.65) with observed TC frequency. The 17 highest and lowest TC frequency 

years were then synoptically analyzed by looking at large-scale environmental features present 

during the April and May proceeding the TC season. During high TC frequency years the SHO 
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and NPO tended to be in their positive phase and the AAO in its negative phase. Low TC years 

experience the opposite conditions. The strength of the SHO can be influenced by SC anomalies 

across eastern Asia with anomalous anticyclonic circulation (positive SHO) over eastern Asia 

being experienced during boreal springs with above-average SC and the opposite condition 

during below-average SC. Atmospheric circulation anomalies were also seen in the North 

Pacific, where SI has been shown to influence the strength of the NPO during winter and spring 

by altering the strength of the Aleutian low (Tachibana et al., 1996). When spring SI is more 

(less) expansive the Aleutian low tends to be stronger (weaker) resulting in a positive (negative) 

NPO.  

Lastly, Yan et al., (2012) investigated North American SCE in January-February and 

Atlantic TC activity between 1950-2009 with the ENSO signal detrended from the data. North 

American SCE was chosen due to previous studies looking into SCE variability as it relates to 

the intensity of the North American monsoon (Hawkins et al., 2002) and atmospheric circulation 

anomalies over the tropical and subtropical Americans and adjacent oceans during monsoon 

seasons (Ellis and Hawkins, 2001). Correlation coefficients between January SCE and North 

Atlantic TCs and January SCE and ACE are -0.29 and -0.24, respectively. During high and low 

SCE years different atmospheric circulation anomalies were present during the peak TC months 

of August and September across the Atlantic’s MDR. When anomalously low SCE was present 

during January and February an increase in TC activity was observed due to the following: 1) an 

amplified subtropical ridge, 2) weaker TUTT, 3) anomalous 200 hPa easterly winds, 4) weaker 

low-level easterly trade winds, along with an anomalous cyclonic circulation, 5) below-average 

1000 hPa geopotential heights, 6) warmer SSTs, 7) decreased vertical wind shear, and 8) a 

strengthening and northward shift of the ITCZ across the eastern tropical Pacific and Atlantic 
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Oceans. Conversely, when anomalously high SCE was present a decrease in TC activity was 

expected due to the following: 1) near average strength of the TUTT, 2) increased low-level 

easterly trade winds, 3) below-average SSTs, 4) near normal vertical wind shear, and 5) an 

overall weaker ITCZ confined to the deep tropics. Many of these environmental conditions have 

been linked to the persistence of the AO from spring into summer. Walland and Simmonds 

(1996) showed that anomalous snow boundary conditions can lead to a change in meridional 

temperature gradients over the North Atlantic Ocean thereby influencing the phase of the AO 

through alterations to baroclinic zones and upper-level circulation anomalies.  

Of the three studies that investigated cryosphere-TC relationship only Choi et al. (2010) 

developed statistical models using wind field data at various heights. However, Choi et al. (2010) 

only indirectly related the cryosphere to these predictors, while Fe (2007) and Yan et al., (2012) 

directly investigated the cryosphere-TC relationship, but without developing a statistical model. 

Though only looking at the cryosphere indirectly, Choi et al. (2010) conducted the only study that 

analyzed both SC and SI data as they pertain to the strength of various CMs, while Fe (2007) 

only investigated North Pacific SI and Yan et al. (2012) investigated only North American SCE. 

There are no statistical modeling studies directly investigating the link between SC and SI 

throughout the entire Northern Hemisphere to Atlantic TC activity. Both Ke (2007) and Yan et 

al. (2012) mentioned that further modeling, both statistical and dynamical, would be helpful in 

improving our understanding of how the cryosphere can influence atmospheric circulation that 

conducive to tropical cyclogenesis. A better understanding of the physical mechanisms linking 

the cryosphere and TCs may lead to the inclusion of cryospheric data into current operational 

seasonal forecasting schemes. 
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CHAPTER 3 

METHODOLOGY 

3.1 Introduction to Methodology 

This study utilizes multiple datasets and analytical methods in order to investigate the 

cryosphere-CM-TC relationships. This chapter will present the datasets, analytical methods, the 

statistical forecasting scheme, and the model evaluation techniques used for this study.  

3.2 Datasets and Study Period 

There were a total of four datasets used in this study. The TC data came from the 

HURDAT “best track” dataset, which is maintained by NOAA’s National Hurricane Center 

(NHC: Jarvinen et al., 1984). HURDAT has observational data on each Atlantic TC from 1851 to 

2010 (NHC, 2012). HURDAT features 6-hourly (0000, 0600, 1200, 1800 UTC) observations of 

storm center location given in latitude and longitude, the intensity of the storm as measured by its 

maximum 1-minute surface wind speed in knots, and the storm’s minimum central pressure in 

millibars. Additionally, starting in 1950, each storm is given a name according to the naming 

convention specified for that given year. Monthly CM indices since 1950 for the AO, ENSO, 

NAO, PNA, and QBO were downloaded from NOAA’s Earth System Research Laboratory 

(ESRL) – Physical Science Division (ESRL, 2012). 

SIA and SIE data came from the National Snow and Ice Data Center’s (NSIDC) Sea Ice 

Trends and Climatologies dataset (Stroeve, 2003). The NSIDC dataset features SIA and SIE for 

10 geographic regions (See Figure 3.1) throughout the Northern Hemisphere for each month 

between November 1978 and December 2010. SIA is defined as the actual amount of SI present 

on the surface of the ocean. It is calculated by determining the concentration of SI within a given 

satellite data pixel. The NSIDC uses a 15% concentration threshold within each pixel, which 
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means that if 15% or more SI is present in a pixel then that percentage is multiple by the total 

area of that pixel. For example, if a pixel covers 1000 km
2
 and has an observed SI concentration 

of 64% then the resulting SIA for that pixel would by 640 km
2
, but if pixel has a concentration 

less than 15% than that pixel is considered ice-free. Conversely, SIE is defined simply as if the 

pixel is ice covered or not. The threshold again is 15%, so a 1000 km
2
 pixel is covered by 64% 

then that entire pixel is considered ice covered, meaning the SIE value would be 1000 km
2
. SCE 

data came from Rutgers University’s Global Snow Lab’s (GSL) Monthly Area of Extent dataset 

and features SCE for four geographic regions in the Northern Hemisphere for each month since 

November 1966 (GSL, 2013). SCE is defined in a similar manner as SIE (e.g., in that the pixel is 

considered snow covered or not, but with a 50% concentration threshold instead of 15% 

(Robinson et al., 1993). See Table 3.1 for a summary of all datasets and parameters derived. 

Since the datasets described above have different observation periods, a common period 

was chosen to encompass all the datasets – 1980-2010. 1980 is the start of the study period 

because the 1980 TC season was the first that had complete SIA and SIE data for the preceding 

year (i.e., 1979). 2010 is the last year of the study period because 2010 is the latest available year 

in the HURDAT and NSIDC datasets.  
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Figure 3.1 The nine geographic regions for which sea ice area and sea ice extent data are 

available. The 10
th

 geographic region is the total Northern Hemisphere sea ice (NSIDC, 2013b). 
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Table 3.1 Summary of the datasets used in this study and the parameters derived from them. 

Acronyms are: ESRL (Earth System Research Laboratory), GSL (Global Snow Lab), HURDAT 

(hurricane database), NSIDC (National Snow and Ice Data Center), TCs (tropical cyclones), and 

TSs (tropical storms). The term seasonal mean stands for the four meteorological seasons (DJF, 

MAM, JJA, SON). 

 

3.3 Predictors and Predictands 

 

From the datasets listed in Table 3.1, 13 TCPs were calculated from HURDAT and four 

seasonal averages for the CMs, SIA/SIE, and SCE from ESRL, NSIDC, and GSL data, 

respectively. The 13 TCPs were chosen in order to comprehensively describe TC climatology and 

to allow for comparison between current forecasting groups (Klotzbach and Gray, 2012c; 

Saunders and Lea, 2005). Seasonal averages were calculated using the meteorological definition 

of the seasons (DJF, MAM, JJA, and SON). Seasonal averages were chosen instead of shorter 

time scales (e.g., monthly or weekly) because the goal was to analyze the overall seasonal 

Datasets 

HURDAT ESRL: Climate Modes NSIDC: Sea Ice Area and 

Extent 

GSL: Snow Cover 

Extent 

TC season parameters 3 month seasonal mean derived from datasets 

 Annual TCs 

 TSs 

 Hurricanes 

 Minor TCs 

 Major TCs 

 Accumulated 

Cyclone Energy  

 Power Dissipation 

Index 

 Landfalls 

 Annual mean peak 

wind 

 Lifetime mean 

duration of storm 

 First cyclogenesis  

 Last cyclogenesis 

 Total Season 

Length 

 

 Arctic Oscillation  

 El Niño-Southern 

Oscillation 

 North Atlantic 

Oscillation 

 Pacific North 

American Pattern 

 Quasi-Biennial 

Oscillation 

 

 Arctic Ocean 

 Baffin Bay 

 Barents and Kara Seas 

 Bering Sea 

 Canadian Archipelago 

 Greenland Sea 

 Gulf of St. Lawrence 

 Hudson Bay 

 Seas of Okhotsk and Japan 

 Total Northern Hemisphere 

 

 Eurasian 

 North American 

and Greenland 

 Total Northern 

Hemisphere 

 

Total number of parameter derived from each dataset 

13 20 80 12 
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environmental characteristics preceding a given TC season. To further justify the use of seasonal 

averages, Overland and Wang (2010) showed that seasonal changes in summer SIE are 

associated with changes in the phase of the AO that tended to persist into late fall and winter, 

suggesting that environmental changes in one season can influence subsequent seasonal climate 

variations. In the statistical forecast scheme the 13 TCPs are the predictands (i.e., dependent 

variables) while the seasonal averages of each CM and of the 13 cryospheric regions are the 

predictors (i.e., independent variables). The statistical forecast scheme therefore included 13 

predictands and 112 possible predictors.  

3.4 Analytical Methods and Forecasting Scheme 

Cross correlation and linear correlation coefficient tables have appeared in numerous 

statistical forecasting studies in the past (Klotzbach and Gray, 2004; Gray et al., 1994). 

Therefore, before the forecasting scheme was developed, cross correlation analysis was 

conducted between the seasonal SIE values, SIA values, seasonal CMs values, and 13 TCPs, 

with the aim of identifying relationships among the predictors and predictands. Following the 

cross correlation analysis, hindcasts were developed at four lead times before and within the 

Atlantic TC season based on the passing of each season. Thirteen separate statistical models, one 

for each TCP, were developed after each season’s averages were derived leading to a hindcast 

issued in December, March, June, and September as the fall, winter, spring , and summer 

averages became available. For example, for any given TC season (1 June through 31 November) 

three hindcasts (December, March, and June) were issued before the start of the TC season while 

one was issued during the season (September).  

Each forecast was created using of multiple linear OLS regression within the statistical 

software program MATLAB 2007a. In order to develop the regression equations that governed 



 

37 

 

each model, a stepwise procedure was used to select the most statistically significant predictors 

from the various subsets of seasonal averages determined by the hindcast issuance. The stepwise 

selection procedure used a statistical significance value of α = 0.05 in order to determine which 

predictors were going to be included within the models. Within the 1980-2010 study period three 

groups of models were constructed based on the available predictors (See APPENDIX D for 

MATLAB code). These groups were the CM-only models, CRYO models, which only had SIE, 

SIA, and SCE data, and CM-CRYO models, which had both the CM and cryospheric data 

available during the stepwise selection procedure. These three model groups were chosen to 

indentify which variables best predicted the TCPs. The number of predictors available for the 

selection procedure at each hindcast varied from 20 (four seasonal averages of five CMs) for the 

CM models to 92 predictors (four seasonal averages of 23 cryosphere regions) for the CRYO 

models to 112 (four seasonal averages of five CMs and four seasonal averages of 23 cryosphere 

regions) for the CM-CRYO models. For each model group’s hindcasts, the number of predictors 

the stepwise procedure was able to choose from increased by five for the CM models, by 23 for 

the CRYO models, and by 28 for the CM-CRYO models (See Table 3.2). For example, the 

March hindcast of the CM-CRYO models utilized both fall and winter seasonal averages of the 

23 regional cryospheric values and five CM values giving the stepwise procedure a maximum 

number of 56 predictors to choose from, but for the March forecast of the CM models only the 

fall and winter averages of the five CMs would be available allowing for a maximum of ten 

possible predictors. Regardless of the model group, a total of 52 models were developed one for 

each TCP and at each of the four lead times resulting in 156 total models.  
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Table 3.2 Forecast scheme in terms of month of hindcast issuance and maximum possible 

seasonal predictors included for a particular hindcast. Acronyms are: CM (climate modes), SC 

(snow cover), SIA (sea ice area), and SIE (sea ice extent). 

SEASONAL 

MEANS OF 

PREDICTORS 

1980-2010 STUDY PERIOD FORECAST ISSUANCE 

December March June September 

Fall CM: 5 

SIA: 10 

SIE:10 

SC: 3 

CM: 5 

SIA: 10 

SIE:10 

SC: 3 

CM: 5 

SIA: 10 

SIE:10 

SC: 3 

CM: 5 

SIA: 10 

SIE:10 

SC: 3 

Winter  CM: 5 

SIA: 10 

SIE:10 

SC: 3 

CM: 5 

SIA: 10 

SIE:10 

SC: 3 

CM: 5 

SIA: 10 

SIE:10 

SC: 3 

Spring   CM: 5 

SIA: 10 

SIE:10 

SC: 3 

CM: 5 

SIA: 10 

SIE:10 

SC: 3 

Summer    CM: 5 

SIA: 10 

SIE:10 

SC: 3 

Total possible 

predictors 

28 56 84 112 

 

3.5 Model Evaluation 

Before the models were evaluated, their hindcast skill was assessed using a cross 

validation technique (see Elsner and Schmertmann, 1994), which is standard practice in 

statistical forecasting (see Xie et al., 2012; Klotzbach and Gray, 2012b; Klotzbach et al., 2011; 

Klotzbach, 2007; Camargo et al., 2007; Saunders and Lea, 2005). For this study, cross validation 

was performed using a leave-one-out (i.e., jackknifing) approach, so that one year worth of data 

were left out and the remaining years’ data were used to build the model and produce a hindcast 

for the year that was left out. This process was then repeated until data for each year were left out 

producing a final hindcast for each of the 156 models. The evaluation techniques used to test 
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model performance were the Pearson correlation coefficient, R
2
 value, mean absolute error value, 

and mean square error skill score (MSSS) in addition to comparing each model with climatology. 

After model evaluation, the best performing models were then compared to the current, 

operational models to analyze the effects of including cryospheric data into a statistical 

forecasting scheme. Once the top performing models were identified the top eight most 

frequently selected predictors were analyzed to determine the physical mechanisms driving the 

relationship. 

3.6 Physical Mechanism Investigation 

 The top eight predictors were analyzed in order to determine their role in TCP variability. 

The top eight predictors included of the four top CM predictors and the four top cryospheric 

predictors. These predictors were chosen because a comparison between CM and cryospheric 

predictors was necessary to investigating the role CMs and the cryosphere played in the TCPs 

variability. The top eight predictors were comprised of roughly the top 20% of the total chosen 

predictors from the best performing model group. To further analyze these key predictors, each 

predictor were analyzed through NOAA’s Earth System Research Laboratory – Physical Sciences 

Division’s interactive plotting and analysis tool, which allowed for maps of linear correlations 

between the key predictors and gridded NCEP reanalysis data to be created (ESRL, 2013). The 

interactive plotting and analysis tool was very user friendly allowing the user to specify 

correlations between 24 predefined atmospheric variables at 24 levels and 45 predefined time 

series. Users are also able to upload their own custom time series. Correlation maps could be 

produced for any study period between January 1948 and February 2013 for any user defined 

month or season with the user being able to plot correlations on three map projections for any 

region of the globe.  
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This interactive plotting tool allowed for spatial correlation plots to be created between 

the key predictors and seasonal environmental factors known to influence TC activity, such as 

SSTs, SLP, and wind speed/wind shear. If any of the key predictors showed strong correlations 

with any of these environmental variables within the Atlantic’s MDR, then composite maps were 

constructed, again, using the interactive plotting tool. The top seven lowest and highest years 

[Roughly the top third and bottom third of the study period] of these key predictors were used to 

construct the composite maps. Composite maps were constructed using the same environmental 

variables as the correlation plots, which allowed for the determination of differing environmental 

conditions present in the Atlantic’s MDR between the lowest and highest years. The key 

predictors that showed both strong correlation plots and agreement between the composite maps 

were then further analyzed to determine why these key predictors might be causing these 

correlations plots and composite maps to highlight the environmental conditions leading to an 

enhanced or suppressed TC season.  

3.7 Chapter Summary 

In this chapter the methodology that was used for this study was presented. NOAA’s 

HURDAT and ESRL datasets were used for the calculation of the 13 TCPs and four seasonal 

averages for each of the 5 CMs, respectively. The NSIDC and GSL datasets were used in the 

calculation of the four seasonal averages of each of the ten regional SIA/SIE values and three 

regional SCE values, respectively. Stepwise multiple OLS regression was used to select the most 

statistically significant CM, SIA/SIE, and SCE parameters as predictors for the models. A total of 

156 models were built – one for each of the 13 TCPs, at each of the four hindcast issuance dates 

(December, March, June, September), and for the three model groups (CM, CRYO, CM-CRYO). 

Models were then validated using a jackknife approach to create hindcasts for each of the TCPs. 
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These hindcasts were evaluated using a variety of hindcast skill measures (e.g., R
2
 values, MSSS 

values, comparison to climatology) to identify the best performing models. The eight most 

frequently selected predictors were analyzed using an interactive plotting tool from NOAA’s 

ESRL to construct correlation plots and composite maps of environmental variables known to 

influence TC activity to determine possible physical mechanisms that are causing these key 

predictors to influence TC activity. These models were then compared to current operational 

statistical models to assess the effects of including cryospheric data in a forecasting scheme.  
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CHAPTER 4 

RESULTS 

4.1 Introduction to Results 

In this chapter the results of the statistical models, outlined in the previous chapter, will 

be presented along with an interpretation of the results. This chapter is divided into six 

subsections: 1) climatology of the study period, 2) model diagnostics and key predictors, 3) 

correlation analysis between the key predictors and environmental conditions known to influence 

TC activity in the Atlantic, 4) composite analysis of the key predictors and the environmental 

conditions identified in the previous subsection, 5) possible physical mechanisms governing the 

SIA and TC relationship, and 6) model comparison against current operational statistical models.  

4.2 Climatology of Study Period 

A climatology of the study period is provided in Table 4.1 as a frame of reference for the 

relative skill of the models. Statistical models of seasonal TC activity are frequently compared to 

climatology in order to gauge whether models provide more information about the upcoming TC 

season then a simple average (climatology). Statistical models of TC activity are considered 

helpful when, for example, the known climatology (Table 4.1) of the total number of TCs for the 

upcoming Atlantic TC season is 12, and the model predicts 16 but the actual number of TCs the 

season observed was 15. This prediction of 16 by the model is very close to the observed number 

of TCs of 15, which means the model accurately predicted above-normal activity for TCs for that 

particular season. Predicting TCPs is extremely difficult due to the highly nonlinear behavior of 

the climate system, but being able to predict the likelihood that a TCP will be above- or below-

average is possible and is very important to coastal city planners, government agencies, the 

economy, and community members. Knowing the likelihood of TC activity allows decision 



 

43 

 

makers to appropriately allocate resources before and during the TC season. Because of the 

destructive nature of TCs, modeling of TC activity will continue to be an active area of research, 

and with increasing global near SATs the relationship between global warming and TC activity is 

of critical importance.   

Table 4.1 Climatology for each of the seasonal tropical cyclone parameters between 1980-2010. 

Acronyms and units for each of the 13 TCPs are: ACE (Accumulated Cyclone Energy; 10
4
kt

2
), H 

(hurricanes), LF (landfalls), LMD( lifetime mean duration; days), MAD (maximum day of year), 

MajH (major hurricanes), MID (minimum day of year), MinH (minor hurricanes), PDI (Power 

Dissipation Index; 10
6
kt

3
), PW (mean peak wind, ms

-1
), TC (tropical cyclones), TS (tropical 

storms), and TSL (total season length: days). 

TC TS H MinH MajH ACE PDI LF PW LMD MID MAD TSL 

12 5.4 6.6 3.9 2.7 121.8 94.3 1.6 37.8 8.4 177.8 304.8 127.4 

 

4.3 Model Diagnostics  

 This subsection investigates the performance of the models for each of the seasonal TCPs 

at the four hindcast issuance dates based on the variance explained (R
2
) and mean squared skill 

score (MSSS) of the models. MSSS is the percentage reduction in mean square error of the 

model hindcasts compared to the hindcasts made with the climatology values, meaning higher 

values of MSSS represent larger reductions in mean square error over climatology and a more 

accurate model.  

 Figures 4.1 and 4.2 are examples of the hindcasts created by the models for total number 

of TCs and MajHs, respectively, at the four issuance dates [For the hindcasts of the other TCPs 

see Appendix – A). There are three hindcasts present at each lead time, one for each model group 

(i.e., CM, CRYO, and CM-CRYO). The hindcasts show that the CM-CRYO and CRYO models 

produced identical hindcasts at all issuances for MajHs and at the December and March 
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issuances for TCs, which shows that the stepwise procedure identified the same predictors for the 

CRYO and CM-CRYO models. Another feature of the hindcasts is that the CRYO and CM-

CRYO models do not have similar hindcasts to that of the CM models. This highlights the fact 

that differences in the predictors greatly influence the resulting hindcasts. 

 

Figure 4.1 December (a), March (b), June (c), and September (d) hindcasts of the three model 

groups compared to historical observations and climatology for tropical cyclone frequency. The 

three model groups are climate mode only (CM), cryosphere only (CRYO), and both datasets 

(CM-CRYO). 
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Figure 4.2 December (a), March (b), June (c), and September (d) hindcasts of the three model 

groups compared to historical observations and climatology for major hurricanes. The three 

model groups are climate mode only (CM), cryosphere only (CRYO), and both datasets (CM-

CRYO). 

 Figures 4.1 and 4.2 also clearly reveal the large interannual variability of the TCPs with 

the TCPs never exhibiting climatology. This variability in the TCPs clearly highlights the 

importance of seasonal forecasts in providing additional information regarding above- or below-

normal activity of these TCPs with respect to climatology. Hindcasts are useful for quickly 

evaluating years when models did well predicting the observed TCPs by locating when hindcasts 

overlapped observations (e.g., June forecast of MajH in 2001 [Figure 4.1] and June forecast of 

TCs in 2008 [Figure 4.2]). Hindcasts can also show when models correctly predicted seasons 

with below- or above-average values of the TCPs by locating when the hindcasts and 
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observations are both above or below the climatology marker (e.g., June forecast of MajH 

between 1982-1984 [Figure 4.1] and March forecast of TCs between 2003-2005 [Figure 4.2]). 

Though analyzing hindcasts against observations and climatology markers can be useful in 

determining specific periods when the models did well, verification measures must be computed 

in order to quantify the overall accuracy of the models and allowing for confidence in the models 

for operational forecasting. 

 Figure 4.3 shows the variance explained by the models, based on R
2
, for 12 TCPs. The 

TCP lifetime mean duration of storm (LMD) was not included because no significant 

relationships were present during the stepwise procedure resulting in no regression coefficients to 

build a model (See Appendix –A). Figure 4.3 highlights one of the key challenges in seasonal 

forecasting, which is accurate forecasting at long lead times. This challenge is clearly 

demonstrated when examining the R
2
 of the MinH models. There are no data points for all three 

model groups at the December and March hindcasts because no significant relationships between 

the possible predictors and MinH variability exist at these lead times resulting in no regression 

coefficients. Even when models are built, R
2
 values are low at the longer lead times of December 

and March and tend to increase as the start of the TC season approaches as evidenced by the 

increasing R
2
 values at the June and September hindcasts. Also evident in Figure 4.3 is that 

CRYO and CM-CRYO models often have the same R
2
, which shows, (just like in the hindcasts 

Figures 4.1 and 4.2), that the CRYO and CM-CRYO models are frequently using the same 

predictors. The R
2
 of the CM models are almost always lower than those of the other models 

highlighting the fact that the CM models are the poorest performing models of the three model 

groups when only R
2
 is considered, and that CMs, alone, are not good predictors for the TCPs.  
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Figure 4.3 Variance explained, based on R
2
, by the model groups for 12 tropical cyclone seasonal 

parameters at the four issuance dates. Missing data points indicate that no models were created. 

Acronyms are: ACE (accumulated cyclone energy), CM (climate mode only models), CM-CRYO 

(cryospheric and climate mode models), CRYO (cryospheric predictors only models), DOY (day 

of year), and PDI (power dissipation index). 
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 Figure 4.4 shows the MSSS of the models at the four lead times for the 12 TCPs. Again, 

the CRYO and CM-CRYO models perform identically in most cases, while the CM models have 

lower values. The power of evaluating MSSS instead of R
2
 is that MSSS quantifies the skill of 

models relative to climatology. MSSS values also increase as the lead times become shorter with 

the highest MSSS values occurring during the September hindcasts.  

 

Figure 4.4 Mean squared skill score (MSSS) of the model groups for 12 tropical cyclone seasonal 

parameters across the four issuance dates. Solid black line represents the skill of climatology. 

The acronyms are: ACE (accumulated cyclone energy), CM (climate mode only models), CM-

CRYO cryospheric and climate mode models), CRYO (cryospheric predictors only models), 

DOY (day of year) and PDI (power dissipation index). 

 When analyzing the June hindcast MSSS values, the CM-CRYO models were the best 

performing group, followed by the CRYO models, and then the CM models. Within the CM-
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CRYO models, MajHs had the highest MSSS value with the models performing 54% better than 

the mean square error of climatology followed by TSL at 50%, Pwind at 45% and TCs and Hs 

both having MSSS values of 42%. These models also have the largest R
2
 values at the June 

hindcast with 0.54, 0.51, 0.49, 0.44, and 0.43 for MajHs, TSL, Pwind, TCs, and Hs, respectively. 

When comparing these top performing models to the other model groups for the same TCPs, the 

CRYO (CM) models had, on average, MSSS values 19% (28%) lower than those of the CM-

CRYO models. These results clearly show that a combination of CM and cryospheric 

information is essential for a model to produce an accurate hindcast while models using 

information from only one of the predictor categories leads to greater model error and 

uncertainty.  

 In order to better understand the specific predictors involved in producing a more 

accurate model, the frequency of predictor occurrence was analyzed. Within each model group a 

model was constructed for the 13 TCPs at the four lead times causing there to be a total of 52 

models. Key predictors were identified by analyzing the number of times each predictor was 

chosen by a model with key predictors being those chosen most frequently. Figure 4.5 shows all 

the predictors that were chosen by at least one of the 52 models within the CM model group and 

the percentage of occurrence for each of the chosen predictors. The CM models only had seven 

predictors from a possible total of 25 that had statistically significant relationships between at 

least one of the TCPs based on the stepwise procedure. Of these seven predictors the Fall NAO 

seasonal mean was chosen by 21% of the 52 total models while Spring NAO was chosen by 19% 

of the models followed by Summer ENSO at 8%. Knowing the key predictors within the three 

model groups helps direct the investigation into the underlying physical mechanisms that are 

causing these key predictors to be selected.  
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Figure 4.5 The most frequently chosen predictors that where included within the CM models. 

Acronyms are: AO (Arctic Oscillation), ENSO (El Niño-Southern Oscillation), NAO (North 

Atlantic Oscillation), and PNA (Pacific-North American Pattern). 

Figure 4.6 shows the frequency of the 22 selected predictors within the CRYO models 

from the possible 92 total predictors with Winter Bering Sea SIA being chosen most frequently at 

21% followed by Spring Baffin Bay SIA at 15% and Fall Baffin Bay SIE at 13%. Even with 92 

possible predictors at the September hindcast, only 22 predictors showed significance and even 

fewer of these 22 predictors were included within multiple models indicating that there must be 

some underlying physical mechanisms that cause these predictors to be frequently chosen, and 

since the CM-CRYO models were the best performing model group their key predictors will be 

thoroughly investigated.  
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Figure 4.6 The most frequently chosen predictors that where included within the CRYO models. 

Acronyms are NA (North America), SCE (snow cover extent), SIA (sea ice area), and SIE (sea 

ice extent). 

 The key predictors within the CM-CRYO models showed similarities to the key 

predictors chosen within the two other model groups leading to higher confidence that the chosen 

key predictors do have some sort of underlying physical mechanisms that cause the different 

model groups to consistently chose the same predictors. Figure 4.7 shows that of the 112 possible 

predictors available for the September hindcasts only 37 predictors were selected. The top four 

CM predictors are Fall NAO (19%), Spring NAO (13%), Spring AO (8%), and Summer ENSO 

(8%), which is consistent with the top two predictors of the CM models. The top four cryospheric 

predictors in the CM-CRYO models were Fall Baffin Bay SIE (19%), Fall Bering Sea SIA 

(13%), Spring Baffin Bay SIA (13%), and Spring Hudson Bay SIA (10%), which is fairly 

consistent with the key predictors of the CRYO models. The CRYO models had Winter Bering 

Sea SIA being the top predictor at 21% while that predictor was only chosen by 10% of the CM-

CRYO models. Fall Bering Sea SIA, Spring Baffin Bay SIA, and Spring Hudson SIA were still 

top predictors in both the CM-CRYO model and CRYO models.  
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Figure 4.7 The most frequently chosen predictors that were included within the CM-CRYO 

models. Acronyms are: AO (Arctic Oscillation), ENSO (El Niño-Southern Oscillation), NA 

(North America), NAO (North Atlantic Oscillation), SCE (snow cover extent), SIA (sea ice 

area), SIE (sea ice extent), PNA (Pacific North American Pattern), and QBO (Quasi-Biennial 

Oscillation). 

4.4 Correlation analysis 

 

 By analyzing the predictor histograms key CM and cryospheric predictors were identified. 

This began the investigation into the possible physical mechanisms that determined why these 

predictors were chosen. A correlation analysis was conducted on the top four CM predictors (i.e., 

Fall NAO, Spring AO and NAO, and Summer ENSO) and the top four cryospheric predictors 

(i.e., Fall Baffin Bay SIE, Fall Bering Sea SIA, Spring Baffin Bay and Hudson Bay SIA) within 

the CM-CRYO models. Correlation analysis was conducted by investigating the linear 

correlations between the key predictors and known environmental factors that influence TC 

activity, as well as between the key predictors and the TCPs themselves. Each of the eight key 

predictors was analyzed to see which ones showed the most significant statistical relationships 

between the 13 TCPs. They were also compared to the environmental factors known to influence 

TC activity such as anomalies in SSTs, SLP, and 1000 mb wind vector. Key predictors that were 
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well correlated with the environmental factors and exhibited multiple statistically significant 

relationships to the TCPs will now be analyzed.  

 Table 4.2 shows the linear correlations between the top eight predictors and the 13 TCPs 

in the CM-CRYO models with the significant relationships in bold. The predictors with the most 

significant relationships were Spring Baffin Bay SIA and Fall Baffin Bay SIE with nine followed 

by Summer ENSO with eight, Spring Hudson Bay SIA with seven, and Spring NAO with six. 

The remaining predictors Fall NAO and Spring AO only had three and two significant 

relationships, respectively, while Fall Bering Sea SIE had none. Correlation plots created using 

NOAA’s ESRL further supported why the key predictors have significant relationships with the 

TCPs. The numerous atmospheric variables known to influence Atlantic TC activity were tested 

against the key predictors in order to determine if there are any correlations within the tropical 

Atlantic. Key predictors were tested against the SST, SLP, 500 mb geopotential height, and 

outgoing longwave radiation at the tropopause between 1980 and 2010 for the peak TC months 

of July, August, and September. The key predictors that showed strong correlations with multiple 

atmospheric variables within the tropical Atlantic will now be presented.  
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Table 4.2 Linear correlations between the top four climate mode and top four cryosphere 

predictors in the CM-CRYO models with significant correlations ( =0.05) in bold. Acronyms 

are: ACE (accumulated cyclone energy), AO (Arctic Oscillation), BB (Baffin Bay), BS (Bering 

Sea), ENSO (EL Niño-Southern Oscillation), H (hurricane), HB (Hudson Bay), LMD (lifetime 

mean duration of storm), MajH (major hurricane), MaxDOY (latest cyclogenesis day), MinDOY 

(earliest cyclogenesis day), MinH (minor hurricane), NAO (North Atlantic Oscillation), PDI 

(power dissipation index), Pwind (peak wind), SIA (sea ice area), SIE (sea ice extent), TC 

(tropical cyclone), TSL (total season length), and TS (tropical storm). 

  Fall 

NAO 

Spring 

AO 

Spring 

NAO 

Summer 

ENSO 

Fall BS 

SIA 

Spring 

HB 

SIA 

Spring 

BB 

SIA 

Fall 

BB 

SIE 

TC -0.28 -0.35 -0.46 -0.44 -0.20 -0.58 -0.59 -0.52 

TS -0.24 -0.03 -0.34 -0.12 0.06 -0.46 -0.39 -0.40 

H -0.14 -0.15 -0.12 -0.14 -0.32 -0.05 -0.23 -0.34 

Minor -0.05 -0.25 -0.10 -0.18 -0.19 -0.30 -0.48 -0.27 

Major -0.15 -0.49 -0.59 -0.42 -0.28 -0.51 -0.56 -0.49 

ACE -0.02 -0.11 -0.39 -0.43 -0.06 -0.58 -0.35 -0.27 

PDI -0.15 -0.30 -0.26 -0.60 -0.32 -0.32 -0.35 -0.46 

Landfall 0.50 -0.17 0.02 -0.03 0.20 0.06 0.28 0.46 

Pwind -0.42 -0.09 -0.21 -0.37 -0.32 -0.29 -0.42 -0.35 

LMD -0.62 0.07 -0.15 -0.20 -0.34 -0.22 -0.46 -0.56 

MinDOY -0.31 -0.34 -0.40 -0.42 -0.26 -0.55 -0.59 -0.55 

MaxDOY -0.19 -0.25 -0.55 -0.39 -0.10 -0.65 -0.54 -0.49 

 TSL -0.11 -0.36 -0.58 -0.51 -0.20 -0.66 -0.54 -0.45 

 

 Of 32 correlation plots created, only Spring Baffin Bay and Spring Hudson Bay SIA 

showed strong correlation with multiple atmospheric variables known to influence TC activity. 

Figures 4.8 and 4.9 show the correlation plots between Spring Baffin Bay and SST and Spring 

Hudson Bay SIA and SST, respectively (See Appendix – B for all the correlation plots). These 

plots show that these predictors are inversely correlated with SSTs throughout the tropical and 

North Atlantic. This inverse relationship is strong (r < -0.5) within the Atlantic’s MDR. The 

direct thermodynamic effect of SST on TCs has been known since the 1960s with above average 

SSTs leading to enhanced convection and below average SSTs leading to suppressed convection 
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(Malkus and Riehl, 1960). As mentioned in Chapter 2, above average SSTs and preexisting 

convection are two of the six key environmental factors necessary for tropical cyclogenesis. The 

fact that these predictors are correlated with SST within the MDR is an indicator that these 

predictors are skillful, assuming seasonal persistence, of environmental factors known to 

influence TC activity at the start of the TC season. SST can also indirectly influence vertical 

wind over the MDR, also a key environmental factor for tropical cyclogenesis, through its strong 

inverse relationships with SLP (Sharpiro, 1982; Gray 1984b).This relationship is evident when 

comparing the strong inverse correlations present between the predictors and SST (Figures 4.8 

and 4.9) to the strong positive correlations present between the predictors and SLP (Figures 4.10 

and 4.11). In general, above average SSTs are accompanied with below average SLP, which 

leads to weaker trade winds and ultimately reduced wind shear (Landsea et al., 1998). The 

relationships between SSTs, SLP, and trade wind strength will be addressed more thoroughly in 

section 4.5. 
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Figure 4.8 Correlation plot between July-September sea surface temperature and Spring Baffin 

Bay SIA from 1980 to 2010. Image provided by the NOAA/ESRL Physical Sciences Division, 

Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 



 

57 

 

 

Figure 4.9 Correlation plot between July-September sea surface temperature and Spring Hudson 

Bay SIA from 1980 to 2010. Image provided by the NOAA/ESRL Physical Sciences Division, 

Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 Figures 4.10 and 4.11 show correlation plots for Spring Baffin Bay SIA and SLP and 

Spring Hudson Bay SIA and SLP, respectively. Both plots show strong (r > 0.4) positive 

correlations between the predictors and SLP throughout much of the MDR. As noted, above 

average SSTs and SLP have a strong inverse correlation, which is supported when comparing the 

correlation plots of SSTs (Figures 4.8 and 4.9) and of SLP (Figure 4.10 and 4.11). The SST plots 

have strong inverse (negative) correlations with the predictors while the SLP plots feature strong 

positive correlations. This implies an inverse relationship between SSTs and SLP. SLP variations 

across the Atlantic are known to influence TC activity with below average pressure being 

associated with an enhanced TC season and above average pressure associated with a suppressed 
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season (Gray, 1984b). In general, below average SLP in the MDR is associated with a weakening 

of the meridional pressure gradient between the MDR and equator, which leads to a weakening 

of the trade winds over the MDR while above average SLP is associated with the opposite 

conditions leading to strengthened trade winds (Gray et al., 1993). Additionally, it has also been 

hypothesized that below average SLP in the MDR indicate a poleward shift and/or strengthening 

of the ITCZ with either of these scenarios contributing to less subsidence and drying in the MDR 

(Gray et al., 1993). An enhanced ITCZ is also associated with increases in large-scale low-level 

cyclonic vorticity, often as westward moving easterly waves, which is a necessary component for 

tropical disturbances to form – the beginning stage of tropical cyclogenesis (Gray, 1968). With 

above average SLP in place, the ITCZ is closer to the equator thus causing more subsidence and 

drying within the MDR and reductions in large-scale low-level cyclonic vorticity. All of these 

factors being unfavorable for TC development and leading to a suppressed TC season. Finally, 

below average SLP is usually associated with more low- to mid-tropospheric moisture, which is 

essential to TCs since the energy that fuels TCs comes from the release of latent heat during the 

condensation of low- to mid-level tropospheric water vapor (Knaff, 1997).  
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Figure 4.10 Correlation plot between July-September sea level pressure and Spring Baffin Bay 

SIA from 1980 to 2010. Image provided by the NOAA/ESRL Physical Sciences Division, 

Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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Figure 4.11 Correlation plot between July-September sea level pressure and Spring Hudson Bay 

SIA from 1980 to 2010. Image provided by the NOAA/ESRL Physical Sciences Division, 

Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 The correlation plots for SST and SLP indicate that Spring Baffin Bay SIA and Hudson 

Bay SIA have strong correlations with environmental factors known to be present during 

enhanced or suppressed TC activity. None of the other six key predictors had such strong 

correlation plots. This does not mean that these six predictors do not have environmental 

conditions associated with them that lead to changes in Atlantic TC activity, it simply means that 

these six predictors did not have significant correlations with the four NCEP reanalysis variables 

that were investigated.  

All four of the key CM predictors have known effects on TC activity, which is most 

likely why they are included in the models. ENSO is currently used in almost every operational 

statistical forecasting scheme (Camargo et al., 2007) because of its large, well-documented, 
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impact on Atlantic TC activity. The state of ENSO influences the interannual variability of 

vertical wind shear throughout the MDR mainly through changes to the 200 mb westerlies over 

the tropical Atlantic brought on by changes in Pacific equatorial convection that influence upper-

level flow (Gray, 1984a; Landsea et al., 1998). El Niño events are typically associated with 

increases in 200 mb westerlies and wind shear over the Atlantic causing suppressed TC activity 

while La Nina events are generally associated with reductions in the strength on the 200 mb 

westerlies and wind shear causing an enhanced TC season (Gray, 1984a; Goldenberg and 

Shapiro, 1996).  

The NAO has also been used as a predictor in numerous statistical models, mainly being 

used for predicting the number of MajHs and number of US land falling TCs (Elsner et al., 2000; 

Elsner and Jagger 2006; Xie et al., 2012). These modeling studies have shown that the intensity 

of the NAO in spring and early summer influences of the amounts of ridging across the 

subtropical Atlantic and the position of the Bermuda high that leads to changes in the number 

and tracks of TCs. A strong (positive) NAO is associated with a more northeastward positioning 

of the Bermuda high which causes more TCs to recurve northward causing the East Coast of the 

US to be more susceptible to TC landfalls. A weak/neutral (negative) NAO is associated with a 

more southwestward positioning of the Bermuda high leading to less recurving causing TCs to 

track across the lower latitudes and causing the Gulf Coast of the US to be more susceptible to 

landfalls (Elsner et al., 2006).  

The AO has been shown to be associated with overall TC activity and TC landfall counts 

through its effects on the zonal wind anomalies in the tropics (Larson et al., 2005). A positive 

AO is associated with enhanced midlatitude ridging across the North Atlantic and anomalies in 

the upper-level easterlies within the tropics. These easterly wind anomalies lead to reductions in 
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vertical wind shear that is associated with enhanced TC activity, while a negative AO leads to the 

opposite conditions and a suppressed TC season.  

 Although the top CM predictors do not have strong correlation plots they all have well 

documented effects on TC activity and landfall strike variability. Additionally, Fall Baffin Bay 

SIE and Fall Bering Sea SIA did not have strong correlation plots, but Fall Baffin Bay SIE is 

highly correlated (r = 0.62) with Spring Baffin Bay SIA, which does have strong correlation 

plots, meaning that some persistence from fall to spring can be inferred. Fall Bering Sea SIA 

does not feature the same seasonal persistence that fall and spring Baffin Bay SI does, but Bering 

Sea SIA has been shown to fluctuate according to the intensity of the North Pacific Oscillation 

(NPO), which is an SLP oscillation located within the Gulf of Alaska (Rogers, 1981). Changes in 

SLP in the Gulf of Alaska have been observed as precursors of a state change of ENSO with 

below average SLP occurring with a decaying El Niño event and above average SLP occurring 

with a weakening La Nino event (Larkin and Harrison, 2002). Fall Bering Sea SIA may be then 

associated with a changing state of ENSO causing it to be included within the top key predictors.   

 

4.5 Composite analysis 

 

Now that possible physical association between environmental conditions known to 

influence TC activity and the six other key predictors have been discussed the focus will shift 

back to the two predictors (Spring Baffin Bay and Hudson Bay SIA) that did show strong 

correlation plots for SST and SLP. Though these two predictors are well correlated with SST and 

SLP, these correlations do not suggest a physical mechanism that explains the relationship. To 

investigate the potential physical mechanisms causing these correlations a composite analyze was 

performed to better understand the relationship between these two predictors and TC activity. 
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Figure 4.12 compares the mean differences between the seven years of lowest and highest 

SIA for Spring Baffin Bay and Hudson Bay to the means of seven TCPs (See Appendix – C for 

additional comparison tables). Each of the means between the high and low SIA years were 

found to be statistically significant at α = 0.05 based on a paired sample 2-tailed Student’s T-test. 

A noteworthy feature of Figure 4.12 is that it indicates that even small variations to SIA in 

Hudson Bay during the spring are associated with large variations in the percentage change from 

climatology of the seven TCPs. The mean SIA of the seven highest years for spring Hudson Bay 

was only 3.5% above climatology while the mean of the lowest SIA years was 5% below 

climatology, but these small deviations are associated with large variations in the TCPs. During 

low SIA years a 45% increase in the number of MinHs is observed and a 42% increase in the 

PDI, while during high SIA years a 20% reduction in MinHs and a 46% lower PDI are observed 

compared to climatology. In fact all seven TCPs show higher (lower) seasonal averages during 

low (high) Spring Hudson Bay SIA years. 
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Figure 4.12 The percentage change from climatology (0 line) of means of seven tropical cyclone 

parameters between the top seven and bottom seven years of anomalous sea ice area (SIA) for 

Spring Baffin Bay (a) and Spring Hudson Bay (b). Acronyms are: ACE (accumulated cyclone 

energy), H (hurricane), MajH (major hurricane), MinH (minor hurricane), PDI (power dissipation 

index), TC (tropical cyclone), and TS (tropical storm),). Each of the parameter means were 

significantly different based on a paired sample 2-tailed T test at α = 0.05. 

 Spring Baffin Bay SIA also shows significantly different seasonal means for the seven 

TCPs during high and low SIA years though variations in SIA are larger in Baffin Bay. SIA in 

Baffin Bay shows a mean reduction of 15% during low SIA years, and a 19% increase during 

high SIA years. These changes are associated with even large variations in the seven TCPs than 

those of Hudson Bay. During low SIA years increases of 67% and a 49% over climatology are 

observed for PDI and the number of MajHs, respectively, while during high SIA years a 56% and 
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57% reduction is observed for PDI and MajHs, respectively. Just like with Hudson Bay, increases 

in all the TCPs are observed during low SIA years and reductions during high SIA years. None of 

the other six key predictors revealed contrasts in the TCPs during low and high years. Spring 

Baffin Bay and Hudson Bay SIA reveal clear differences in TC activity which supports the 

findings in section 4.4 that the strong relationships between these predictors and SST and SLP 

are associated with changes in TC activity. 

 The correlation plots in section 4.4 revealed strong positive correlations between spring 

Baffin Bay and SLP and Hudson Bay and SLP across the tropical Atlantic meaning that low SIA 

values are generally associated with low SLP. As mentioned in the previous section, below 

average SLP is conducive to tropical cyclogenesis and tends to be present during high TC activity 

years. This established relationship between below average SLP and enhanced TC activity is 

supported by the findings in Figure 4.12 which reveals that during low SIA years increased TC 

activity is observed. When low (high) Baffin Bay and Hudson SIA is observed during the spring 

the subsequent July-September SLP across the tropics is also usually below (above) average 

leading a more (less) active TC season. During years with above average spring SIA, SLP will 

also be above average leading a reduction in TC activity because of the SLP-TC relationship, 

which is supported by the correlation plots and composite analysis.  

 The correlation plots in section 4.4 also reveal strong negative (inverse) correlations with 

July-September SSTs across the tropical Atlantic. Tropical SST is known to influence TC 

activity, just like SLP, with above average SSTs associated with enhanced TC activity. This 

inverse relationship between SIA and SST is evident in the composite analysis with low SIA 

years being associated with enhanced TC activity. When SIA is low in spring the subsequent 

peak TC months of July-September are correlated with above average SSTs leading to an 
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increased likelihood of experiencing an active TC season. During years with high spring SIA, the 

pattern is reversed with below average SSTs being experienced during July-September, which is 

associated with decreased TC activity. To further support these relationships between SIA, SST, 

SLP, and TC activity, composite maps of SST and SLP will be presented for the seven lowest 

and highest years in spring SIA across Baffin Bay and Hudson Bay in order to confirm that 

during years with low (high) spring SIA anomalously low (high) SLP and high (low) SSTs are 

experienced during the following July-September leading to years with high (low) TC activity.  

 Figures 4.13 and 4.14 show SLP anomalies for the seven lowest and highest Spring 

Baffin Bay SIA years, respectively, while Figures 4.15 and 4.16 show the seven lowest and 

highest Spring Hudson Bay SIA years, respectively. The strong positive correlation between 

spring SIA and July-September SLP is clearly supported by Figures 4.13-4.16 with the seven 

lowest SIA years for Baffin Bay and Hudson Bay revealing anomalously low SLP through the 

MDR and the opposite during the seven highest SIA years. This further supports the hypothesis 

that anomalously low Spring Baffin Bay and Hudson Bay SIA is associated with decreases in 

SLP throughout the tropical Atlantic, which can lead to a more active TC, while anomalously 

high spring SIA is associated with increases in SLP and less TC activity.  
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Figure 4.13 The anomalies in sea level pressure compared to 1981-2010 climatology during the 

seven lowest spring Baffin Bay sea ice area years. Image provided by the NOAA/ESRL Physical 

Sciences Division, Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ 

(Kalnay et al., 1996). 
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Figure 4.14 The anomalies in sea level pressure compared to 1981-2010 climatology during the 

seven highest spring Baffin Bay sea ice area years. Image provided by the NOAA/ESRL Physical 

Sciences Division, Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ 

(Kalnay et al., 1996). 
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Figure 4.15The anomalies in sea level pressure compared to 1981-2010 climatology during the 

seven lowest spring Hudson Bay sea ice area years. Image provided by the NOAA/ESRL 

Physical Sciences Division, Boulder Colorado from their Web site at 

http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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Figure 4.16 The anomalies in sea level pressure compared to 1981-2010 climatology during the 

seven highest Spring Hudson Bay sea ice area years. Image provided by the NOAA/ESRL 

Physical Sciences Division, Boulder Colorado from their Web site at 

http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 Figures 4.17 and 4.18 show SST anomalies for the seven lowest and highest Spring 

Baffin Bay SIA years, respectively, while Figures 4.19 and 4.20 show the seven lowest and 

highest Spring Hudson Bay SIA, respectively. Figures 4.17-4.20 show that during years of low 

spring SIA average to slightly above average SSTs are experienced throughout the MDR while 

during years of high SIA average to below average SSTs are experienced. Though these SST 

anomalies are not as widespread as those for SLP they are still consistent with the hypothesis that 

during years of low (high) spring SIA anomalously high (low) SSTs are present in the tropical 

Atlantic during July-September. Multiple environmental factors are necessary for the tropical 
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cyclogenesis, and since the SST composite did not reveal a strong SIA-SST relationship, 1000mb 

wind vector anomalies were investigated to test the hypothesis that Spring Baffin Bay and 

Hudson Bay SIA are related to changes in environmental factors conducive to tropical 

cyclogenesis. Wind vectors were also analyzes because of the SLP-trade wind strength 

relationship presented in section 4.4. 

 

 

Figure 4.17 The anomalies in sea surface temperature compared to 1981-2010 climatology during 

the seven lowest Spring Baffin Bay sea ice area years. Image provided by the NOAA/ESRL 

Physical Sciences Division, Boulder Colorado from their Web site at 

http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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Figure 4.18 The anomalies in sea surface temperature compared to 1981-2010 climatology during 

the seven highest Spring Baffin Bay sea ice area years. Image provided by the NOAA/ESRL 

Physical Sciences Division, Boulder Colorado from their Web site at 

http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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Figure 4.19 The anomalies in sea surface temperature compared to 1981-2010 climatology during 

the seven lowest Spring Hudson Bay sea ice area years. Image provided by the NOAA/ESRL 

Physical Sciences Division, Boulder Colorado from their Web site at 

http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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Figure 4.20 The anomalies in sea surface temperature compared to 1981-2010 climatology during 

the seven highest Spring Hudson Bay sea ice area years. Image provided by the NOAA/ESRL 

Physical Sciences Division, Boulder Colorado from their Web site at 

http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 Vertical wind shear across the MDR of the Atlantic is an extremely important factor in 

tropical cyclogenesis variability with the strength of the easterly trade winds being a large 

contributing factor in the amount of wind shear present in the MDR (Gray et al., 1993). The 

strength of the trade winds across the MDR is governed by the meridional pressure gradient 

between the MDR and the equator with below average SLP in the MDR leading to a decline in 

the pressure gradient and a weakening of the trade winds and ultimately less wind shear, while 

above average SLP leads to an increasing pressure gradient and a strengthening of the trade 

winds and more wind shear (Gray, 1994). Since the composite maps of SLP (Figures 4.13-4.16) 
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revealed strong changes in SLP between low and high SIA years, composite maps of the 1000 

mb wind vector anomalies will aid in confirming that changes in SLP influence the strength of 

the trade winds across the MDR.  

 Figures 4.21 and 4.22 show the composite maps for 1000 mb vector wind anomalies for 

the seven lowest and highest Spring Baffin Bay SIA years, respectively, while Figures 4.23 and 

4.24 show the composite maps for the seven lowest and highest Spring Hudson Bay SIA years, 

respectively. By analyzing the 1000 mb vector wind anomalies the relative strength of the 

easterly trade wind can be inferred with easterly vector wind anomalies indicating strengthened 

easterly trade winds and increased wind shear, while westerly vector wind anomalies indicate 

weakened trade winds. Figures 4.21 and 4.23 reveal that during years of low SIA westerly vector 

wind anomalies are present throughout the MDR indicating weakened trade winds. The 

composite maps of SLP indicate that a pattern of anomalously low SLP is present during low SIA 

years. This leads to the conclusion that low SLP is associated with weakened trade winds and 

reduced wind shear. Low SLP, weakened trade winds, and reduced wind shear are all key factors 

leading to an above average TC season. During years of high Spring SIA the opposite pattern is 

present with 1000 mb vector wind anomalies (Figures 4.22 and 4.24) being more easterlies 

meaning strengthened trade winds and increased wind shear. The composite maps of SLP 

support this finding by revealing that during years with high SIA SLP is anomalously high. This 

leads to an enhanced meridional pressure gradient resulting in strengthened easterly trade winds 

and increased wind shear in the MDR. All these conditions favor a suppressed TC season.  
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Figure 4.21 The anomalies in 1000 mb vector wind compared to 1981-2010 climatology during 

the seven lowest Spring Baffin Bay sea ice area years. Image provided by the NOAA/ESRL 

Physical Sciences Division, Boulder Colorado from their Web site at 

http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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Figure 4.22 The anomalies in 1000 mb vector wind compared to 1981-2010 climatology during 

the seven highest Spring Baffin Bay sea ice area years. Image provided by the NOAA/ESRL 

Physical Sciences Division, Boulder Colorado from their Web site at 

http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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Figure 4.23 The anomalies in 1000 mb vector wind compared to 1981-2010 climatology during 

the seven lowest Spring Hudson Bay sea ice area years. Image provided by the NOAA/ESRL 

Physical Sciences Division, Boulder Colorado from their Web site at 

http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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Figure 4.24 The anomalies in 1000 mb vector wind compared to 1981-2010 climatology during 

the seven highest Spring Hudson Bay sea ice area years. Image provided by the NOAA/ESRL 

Physical Sciences Division, Boulder Colorado from their Web site at 

http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 By using correlation plots and composite maps a clear relationship between Spring Baffin 

Bay and Hudson Bay SIA and the key factors known to influence TC activity in the Atlantic is 

revealed. Many of the environmental factors influencing TC activity are related to variations in 

SLP, SSTs, 1000 mb vector wind, and wind shear across the MDR. These changes directly 

influence tropical cyclogenesis by affecting the environmental conditions present during the peak 

months of the TC season. Though this relationship between Spring SIA and these key 

environmental factors is now well established, the exact physical mechanisms that allow 
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variations in the SI and SC across the high latitudes to influence atmospheric circulation in the 

tropics are still unresolved (Yan et al., 2012; Budikova, 2009). 

4.6 Sea Ice Area and Tropical Cyclone Activity Relationship 

 Results from the correlation and composite analyze have shown that Spring Baffin Bay 

and Hudson Bay SIA have an association with changes to SST, SLP, and trade wind strength 

throughout the Atlantic’s MDR that lead to TC variability from season to season. From other 

studies that have investigated the link between high-latitude climate changes and low-latitude 

climate variations a variety of physical mechanisms have been proposed. In this subsection two 

previously proposed physical mechanism regarding the high-low latitude climate link will be 

presented as well a newly proposed mechanism directly linking Baffin Bay and Hudson SIA to 

changes in TC activity. 

4.6.1 Wind, evaporation, sea surface temperature feedback 

 It has been shown by modeling studies that a coupled feedback between wind, 

evaporation, and SST (WES feedback) could be a possible mechanism of energy transfer 

between high and low latitudes (Xie, 1999; Chiang and Bitz, 2005). The coupled feedback starts 

with anomalously high SI reducing local latent and sensible heat fluxes that leads to a drying and 

cooling of the air mass over the SI. The cooler and drier air is then advected into the mid-

latitudes via extratropical cyclones, which in turn cause anomalous surface pressure gradients 

that strengthen surface easterlies. These surface easterlies then promote increased evaporation 

over the oceans thereby cooling the ocean surface. This cooled ocean surface is then pushed 

towards the equator via the trade winds. Once the cooled ocean waters reach the equator an 

anomalous meridional pressure gradient is induced, which displaces the ITCZ southward.  
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This mechanism is consistent with the hypothesis proposed by Gray et al. (1993) in which 

they suggest that an anomalous meridional pressure gradient across the Atlantic MDR is often 

associated with displacement of the ITCZ to the north (south) during enhanced (suppressed) TC 

activity. The composite maps (Figures 4.13-4.16) within this study also suggest this mechanism 

by revealing that during high SIA years anomalously high SLP is experienced in the MDR, which 

sets up a strengthened meridional pressure gradient force as evidenced by the enhanced easterly 

vector wind anomalies. The anomalies in SLP and vector wind imply that the ITCZ is in a more 

southward position, which leads to decreased TC activity. The composite analysis supports this 

SLP-vector wind-ITCZ relationship by showing statistically significant differences in the means 

of seven TCPs between high and low SIA year.  

4.6.2 Wave Train Teleconnection 

 Ke (2007) also proposed a physical mechanism after investigating North Pacific SI as a 

predictor of western North Pacific TC activity. The author proposed that an atmospheric wave 

train teleconnection is responsible for the link between high latitude SIE changes and low 

latitude tropical atmospheric circulation. In his study the author found a correlation coefficient of 

-0.49 between March-May North Pacific SI and TC frequency in the western North Pacific. To 

isolate the March-May SI influence on TC frequency years with strong ENSO event were 

removed. Figure 4.25 shows the time series between Spring Baffin Bay SIA, TC, and ACE with 

values during years with strong ENSO events also removed. The correlation coefficients between 

SIA and TC and SIA and ACE are -0.56 and -0.64, respectively, showing that this study’s and 

Ke’s (2007) study produced similar results. Ke (2007) analyzed the March-May North Pacific SI 

in terms of its relationship to SLP anomalies and concluded that SI could be influencing tropical 

circulation through modulation of the NPO leading to a well-organized teleconnection wave 
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pattern in the 200 mb zonal wind field. Ke (2007) conducted composite and correlation analysis 

between March-May SI and environmental conditions linked to TC activity, similar to those 

conducted in subsections 4.4. and 4.5 of this study, and found that high (low) SI years are 

associated with cold (warm) SST, high (low) SLP, and enhanced (suppressed) vertical wind shear 

anomalies across the western North Pacific MDR all of which lead to decreases (increased) in TC 

activity. These results are consistent with the findings of this study, and since Spring Baffin Bay 

and Hudson Bay SIA are also associated with the NAO, an atmospheric wave train 

teleconnection could also be the physical mechanism linking SIA variations in Baffin Bay and 

Hudson Bay to changes in tropical atmospheric circulation  
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Figure 4.25 Time series of Spring Baffin Bay sea ice area, tropical cyclones, and accumulated 

cyclone energy with strong ENSO events removed.  
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4.6.3 Sea ice area as an indicator of climate mode states 

 Though the WES feedback has been found as the connection between high and low 

latitude climate within GCM studies, this mechanism usually takes around 12-15 months after 

the introduction of additional SI to displace the ITCZ southward (Hughen et al., 2000; Budikova 

2009) making this mechanism an unlikely the link between spring SIA and the following July-

September TC activity. The atmospheric wave train physical mechanism could operate at the 

timescales present between spring changes in SIA and subsequent July-September TC activity, 

but more analysis into the role of Baffin Bay and Hudson Bay SIA influencing the NAO’s 

possible teleconnection wave train must be conducted in order to confirm this hypothesis. An 

alternative hypothesis is that spring SIA in Baffin Bay and Hudson Bay is not a physical 

mechanism governing tropical atmospheric circulation but rather is an indicator of current/near 

future atmospheric and oceanic oscillations, which is not captured by any one CM index. Wand 

et al. (1994) noted that Hudson Bay SI variability is almost completely due to atmospheric 

forcing because it exhibits features of an inland sea not influenced by ocean currents, while 

Baffin Bay experiences both oceanic and atmospheric forcings. Spring Hudson Bay SIA is 

significantly correlated with the key CM predictors of Summer ENSO (r = 0.41) and Spring 

NAO (r = 0.43), and since Spring NAO is correlated with Spring AO at r = .64 the two 

oscillations are often viewed as the same phenomenon with the NAO being a regional expression 

of the AO (Wallace, 2000).  

Figures4.26 and 4.27 show the composite maps of SLP for March-May for the seven 

years of lowest and highest Spring Hudson Bay SIA, respectively. These figures clearly reveal 

the distinct dipole of the NAO pattern with a stronger NAO present during years of high SIA and 

weaker NAO during years with low SIA. The NAO pattern in the spring can persist into the 
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summer months meaning spring SIA can be an indicator of the spring state of the NAO that will 

likely persist into the summer months. Also August-October La Nina events occurred during four 

of the seven lowest Hudson Bay SIA years ( La Nina events defined by Climate Prediction 

Center).In addition, Mysak et al. (1996) showed that simultaneously strong NAO and El Niño 

events lead to above average SI in Hudson Bay, Baffin Bay, and the Labrador Sea. 

 It has been shown that the states of the NAO, AO, and ENSO leading into a TC season 

influences TC variability through changes to the environmental factors influencing tropical 

cyclogenesis, such as SLP, SSTs, and wind shear across the MDR (Grey et al., 1984; Elsner et 

al., 2000; Xie et al., 2005). It has also been shown that Spring Baffin Bay and Hudson Bay SIA 

are often forced by these same CMs (Mysak et al., 1996), but since these CMs are not suggested 

by the correlation or composite analysis it can be hypothesized that SI may be a better indicator 

of these CMs than the CM index values themselves. CMs are often measured by a variety of 

methods causing the index values to differ greatly from one study to another, but the 

measurement of SIA is very straight forward and is very consistent (NSIDC, 2013a). CMs are 

also often expressed at a variety of timescales making them difficult to predict at lead times 

necessary for seasonal forecasting, but SI tends to be more predictable, due to its thermodynamic 

properties, possibly allowing SI to represent the seasonal state of CMs and their likely persistence 

into the following season. Observing seasonal changes in SI may allow for the future changes in 

CMs to be inferred, since the current state of many CMs can be captured by SI. This is the case 

for Spring Baffin Bay and Hudson Bay SIA, since these were among the top predictors for the 

CM-CRYO models and they are strongly correlated with environmental conditions known to 

influence the TC season. This capacity to record and future state of CMs may be why the CRYO 

models almost always outperformed the CM models and why the CYRO models were almost 
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always identical to the CM-CRYO models. Since the CYRO and CM-CRYO models were so 

similar in model performance, comparing the CM-CRYO models to current operational seasonal 

TC activity models will show how effect SI can be for the seasonal forecasting of TCs.  

 

 

Figure 4.26 Composite map of sea level pressure anomalies for March-May for the seven years 

with the highest Hudson Bay sea ice area. Image provided by the NOAA/ESRL Physical 

Sciences Division, Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ 

(Kalnay et al., 1996). 
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Figure 4.27 Composite map of sea level pressure anomalies for March-May for the seven years 

with the lowest Hudson Bay sea ice area. Image provided by the NOAA/ESRL Physical Sciences 

Division, Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 

1996). 

4.7 Comparison with existing operational models 

 In order to understand how models that include cryospheric information compare to those 

that do not, the CM-CRYO models skill measures of R
2
 and MSSS will now be compared to the 

current operational models of CSU and TSR for the TCPs TC, H, MajH, and ACE. Figure 4.28 

shows the R
2
 values at the four issuance dates for the CSU and CM-CRYO models. Since the 

modeling groups issue spring hindcasts in different months, CSU’s April forecast will be 

compared to our March hindcast and CSU’s August forecast will be compared to our September 
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hindcast. The December and June hindcast issuance dates are the same between CSU and our 

models. Figure 4.28 reveals that the CSU models outperform our models in every TCP and at 

every hindcast issuance besides the June hindcast of MajHs. The differences in R
2
 are largest at 

longer lead times, attenuated at the June hindcasts and again larger at the September hindcasts.  

 

Figure 4.28 Comparison of R
2 

for forecasts of tropical cyclone, hurricanes, major hurricanes, and 

accumulated cyclone energy between the statistical models of Colorado State University (CSU) 

and the CM-CRYO models. 

 Figure 4.29 shows the MSSS for the hindcasts of TC, H, MajH, and ACE for the 

statistical models of CSU, TSR, and the CM-CRYO models. As in Figure 4.28, the other two 

model groups tend to have better MSSS values then the CM-CRYO models with CSU often 

having the highest MSSS values. The CM-CRYO models and the TSR models both slightly 
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outperformed CSU at the June hindcast of MajHs. Large variations in MSSS are seen in the ACE 

hindcasts while the smallest variations occurring at the TC hindcasts at the longer lead times of 

December and March. Model agreement tends to be greatest at the shorter lead times of June and 

September.  

 

Figure 4.29 Comparison of the mean square skill score for forecasts of tropical cyclone, 

hurricanes, major hurricanes, and accumulated cyclone energy between the statistical models of 

Colorado State University, Tropical Storm Risk, and this study. 

 Both comparison figures (Figure 4.28 and 4.29) show that the largest hindcast errors are 

present at the longest lead times of December and March and decrease as the start of the TC 

season approaches in June. Though the CSU and TSR models do outperform the CM-CRYO 

models in most cases it is important to keep in mind the key predictors used between the models. 
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To highlight these differences in predictors between the modeling groups, the June hindcasts of 

MajHs and the December hindcasts of TCs will be examined.  

Table 4.4 Forecast predictors and skill for tropical cyclones (TC) and major hurricanes (MajH) 

between the 3 modeling groups. Acronyms are: CM-CRYO (cryospheric and climate mode 

models), CSU (Colorado State University), ENSO (El Niño-Southern Oscillation), MDR (main 

development region), MSSS (mean square skill score), SIA (sea ice area), SIE (sea ice extent), 

SLP (sea level pressure), SST (sea surface pressure), TSR (Tropical Storm Risk), and U (zonal). 

Modeling Group December Predictors for 

TC 

 

June Predictors for MajH 

CSU 

 

Dec. MSSS:24% 

 

Jun. MSSS:33% 

1) Oct-Nov. SST in N. 

Atlantic 

2) Nov. 500mb heights in N. 

Atlantic 

3) Nov. SLP in NE Pacific 

1) April-May SST E. 

Atlantic  

2) April-May 200mb U 

wind tropical Pacific 

3)  Sep. ENSO forecast 

4) May SLP in MDR 

TSR  

 

Dec. MSSS:25% 

 

Jun. MSSS:42% 

1) July-Sep. 925mb height 

forecast  over Caribbean 

and tropical Atlantic 

2) Aug-Sep. SST forecast 

for the MDR 

3) Aug-Sep. ENSO forecast 

1) July-Sep. 925mb height 

forecast over Caribbean 

2) Aug-Sep. SST forecast 

for the MDR 

3) Aug-Sep. ENSO forecast 

CM-CRYO 

 

Dec. MSSS:19% 

 

Jun. MSSS:53% 

1) Fall Baffin Bay SIA 

2)  Fall Baffin Bay SIE 

1) Spring Hudson Bay SIA 

2) Fall Canadian 

Archipelago SIA 

 

 Table 4.4 compares the December TC and June MajH hindcasts between the three 

modeling groups. Table 4.4 reveals for the December hindcast the MSSS values between the 

three groups are quite similar at 24%, 25%, and 19% for CSU, TSR, and CM-CRYO, 

respectively, even though the predictors used for the December forecasts are quite different. CSU 

uses SST, SLP, and 500mb geopotential height data as predictors (Klotzbach and Gray, 2010) 

while TSR uses 925mb geopotential height, SST, and ENSO forecasts (Saunders and Lea, 2011). 

Both CSU and TSR use a variety of predictors to construct their models. TSR even uses an 18 
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ensemble member statistical model for ENSO forecasts (Lloyd-Hughes et al., 2004) while the 

CM-CRYO model only uses two predictors that are both from similar geographic regions, yet the 

modeling groups all have similar MSSS values. For the June MajH hindcast the CM-CRYO 

model uses only two predictors (Spring Hudson Bay SIA and Fall Canadian Archipelago SIA) 

but actually outperforms the other modeling groups with a MSSS of 53% while the TSR had 

42% and CSU had 33%. Both CSU and TSR utilized ENSO forecasts in their models and a 

variety of globe-scale predictors (Klotzbach and Gray, 2012b; Saunders and Lea, 2012), but they 

were unable to outperform the simple two-predictor model used in this study. Though the CSU 

and TSR models did show increased skill over the CM-CRYO models for most TCPs and lead 

times, the CM-CRYO model was comparable to these other models at the December and June 

hindcasts of TCs and the September ACE hindcast, while being superior at the June MajH 

hindcast. These results confirm that a forecasting scheme using easy to measure predictors, such 

as SI, can be comparable those using complex predictors, such as ENSO forecasts.  
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CHAPTER 5  

CONCLUSION 

 In this study three model groups – CM models, CRYO models, and CM-CRYO models – 

were used in order to investigate the effects of including SIA, SIE, and SCE in the statistical 

forecasting of 13 TCPs. Model groups were based on the predictors available to them during 

model construction. Models were constructed using multiple OLS regression with a jackknife 

procedure for model validation. A stepwise selection procedure was carried out for each of the 

models to identify the most influential predictors for the regression equations. These predictors 

were seasonal averages of SIA and SIE for ten geographic regions, SCE for three regions, and 

five CMs. The study period 1980-2010 was chosen for this study because of the temporal 

resolution of high quality SIA and SIE data from satellites. The official Atlantic TC season runs 

from 1 June to 31 November, so hindcasts of the 13 TCPs were created in December, March, and 

June leading up to the TC season and a September hindcast for the peak of the season. This led to 

four hindcasts being created for each of the 13 TCPs for each of the three model groups resulting 

in 156 models. Model evaluation was based on R
2
 and MSSS to quantify the skill of the 

hindcasts in predicting the observed TCPs for the 31 year study period. These skill measures 

allowed for the comparison of model performance between not only the three model groups but 

also between the current operational models of CSU and TSR. In addition to the model 

comparisons, the top eight most frequently selected predictors of the best performing model 

group, CM-CRYO, were used in correlation and composite analysis in order to determine how 

these “key” predictors may be associated with the environmental factors known to influence TC 

activity. These environmental factors are anomalies in SST, SLP, and wind vectors/wind shear 
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throughout the Atlantic’s MDR between the peak TC months of July-September, when 90% of 

annual TC activity is experienced.  

A review of the proposed research questions and the resulting conclusions will now be 

presented followed by a further summary of the key findings. The first research question posed 

was, “Which components of the cryosphere have the strongest associations with North Atlantic 

TC activity?” This question is aimed at determining if SIA, SIE, or SCE is the most strongly 

associated with the 13 TCPs and therefore allowing for a cryosphere-TC relationship to be 

defined. It turns out that SIA has most significant relationships with the 13 TCPs than either SC, 

SIE, or the CMs do. Of the top predictors, Spring Baffin Bay SIA is significantly correlated with 

nine of the 13 TCPs (TC, TS, MinH, MajH, Pwind, LMD, MinDOY, MaxDOY, and TSL) while 

Spring Hudson Bay SIA is significantly correlated with seven TCPs (TC, TS, MajH, ACE, 

MinDOY, MaxDOY, and TSL). It is now possible to hypothesize that SIA is a more informative 

measure of the cryosphere’s interaction with atmospheric circulation then SIE or SCE due to the 

finding of the correlations table (Table 4.2) and plots (Figures 4.8-4.11), and the composite 

analysis (Figure 4.12-4.24).  

The second research question posed was, “What geographic areas within the cryosphere 

are the most influential to the statistical forecast models? How do these regions relate to the 

CMs?” This two part question is an extension of Question 1 and is aimed at identifying the 

geographic regions of SIA that are most significantly related to the 13 TCPs as well as 

determining if these geographic regions are similar to the known areas of influence of CMs. 

Answers to these questions are suggest by the fact that the top four cryosphere predictors are 

located within Baffin Bay and Hudson Bay or the Bering Sea, which are near the AO, NAO and 

NPO, and/or close to the North Atlantic. Many of the most significant cryospheric predictors are 
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closely related to CMs that have well documented associations with TC variability, which helps 

explain why the CM-CRYO models represent the best performing model group. 

The third research question posed was, “What is the physical mechanism governing the 

cryosphere-TC relationship?” The aim of this question is to determine how the most significant 

predictor (i.e., SIA) influences TC variability The physical mechanism governing each of the 13 

TCPs remains unresolved but three possible mechanisms have been presented regarding overall 

TC activity: 1) WES feedback, 2) atmospheric teleconnection wave train, and 3) Baffin Bay and 

Hudson Bay SIA as an indicator of current and future states of CMs. All of these proposed 

mechanisms are capable of influencing tropical atmospheric circulation and thus the 

environmental factors governing tropical cyclogenesis. The WES feedback is not a likely 

mechanism because of the long time period necessary to influence tropical atmospheric 

circulation after the initial change in SI. The atmospheric wave train mechanism proposed by Ke 

(2007) operates at the timescales used in this study and since the correlation analysis findings 

within Ke (2007) are so similar to those of this study, this mechanism is a likely candidate, 

though further investigation into the NAO’s influence on tropical atmospheric circulation is 

required to support this mechanism. SIA as an indicator of current and future states of CMs is a 

completely new mechanism presented in this study so further investigation into how SIA stores 

CM information is required.  

The fourth research question posed was, “How does a forecasting scheme incorporating 

cryospheric information compare to current operational forecasting schemes?” The aim of this 

question is to determine whether incorporating cryospheric data into a forecasting scheme 

represents a fruitful future research area. The CM-CRYO models comparably performed (within 

6%) the TSR and CSU June hindcasts of TCs, and was 11%  points better than the top 
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performing model for June hindcasts of MajHs. In general, model performance featured large 

deviations from the TSR and CSU models during the December and March hindcasts and smaller 

deviations during the June and September hindcasts. Though the CM-CRYO model in most 

cases was outperformed by the current models, this simple model does show promise in 

forecasting of MajHs and TCs. By further refining the CM-CRYO and including an ENSO 

forecast, like the current (i.e., CSU and TSR) models, the CM-CRYO model could exceed the 

skill level of current models for certain TCPs and lead times. Additionally, with future SI 

reductions expected (Stroeve et al., 2012) incorporating cryospheric information into a 

forecasting scheme could provide valuable insight into the unresolved question of how TCs will 

be effected in a warming world. 

 Key findings from this study can be summarized as: 

1. When comparing the three model groups of CM, CRYO, and CM-CRYO the top 

performing group was the CM-CRYO followed by the CRYO and lastly CM. On 

average the MSSS values for the 13 TCPs of the CRYO and CM groups were 19% 

and 28% lower than those of the CM-CRYO group, respectively. 

2. Of the top eight most frequently selected predictors of the CM-CRYO, Spring Baffin 

Bay and Hudson Bay SIA had the most significant relationships with the 

environmental conditions known to influence TC activity based on the correlation and 

composite analysis. These predictors have strong (r > 0.5) correlations with SST, 

strong (r > -0.5) inverse correlations with SLP, and an inverse relationship between 

1000 mb wind vector [proxy for wind shear] anomalies throughout the Atlantic’s 

MDR.  



 

96 

 

3. Composite analysis revealed that during the seven highest and lowest SIA years in 

1980-2010 small seasonal variations (<± 20% of climatology) in SIA were associated 

with large changes (>±40% of climatology) in the TCPs. During years of high (low) 

Spring Hudson Bay SIA there were decreases (increases) of 20% (45%) in MinHs and 

46% (42%) in the PDI, while during high (low) Spring Baffin Bay SIA years 

decreased (increases) of 57% (46%) in MajHs and 56% (67%) in the PDI were 

experienced. A total of seven TCPs (TC, TS, H, MinH, MajH, ACE, and PDI) had 

statistically significant differences in their means between high and low SIA years. 

5. The CM-CRYO model group’s June hindcast of MajHs outperforms the June 

hindcasts of TSR and CSU by 11 and 20 percentage points, respectively, based on 

MSSS values when using only two SIA predictors while TSR and CSU use three and 

four predictors from a variety of atmospheric observations and ENSO forecasts, 

respectively.  

The main goal of this study was to support the hypothesis that the cryosphere has some 

association with Atlantic seasonal TC activity, and based on the findings presented, this study 

provides a strong argument for this hypothesis. This allows a new forecasting scheme to be 

created, and lays out a foundation for future studies investigated the interactions between the 

cryosphere and TCs.  



 

97 

 

REFERENCES 

 

ACIA (Arctic Climate Impact Assessment). 2005. C. Symon, L. Arris, and B. Heal (eds.) 

Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 

 

Bamzai, A. S. 2003. Relationship between snow cover variability and arctic oscillation index on 

a hierarchy of time scales. International Journal of Climatology 23, 131-142.  

 

Bader, J , M. D. S., Mesquita, K. I. Hodges, N. Keelnyside, S. Osterhus, and M. Miles. 2011. A 

review on Northern Hemisphere sea-ice, storminess and North Atlantic Oscillation: 

Observations and projected changes. Atmospheric Research 101, 809-834  

 

Barnston, A. G. and R. E. Livezey. 1987. Classification, seasonality and persistence of low-

frequency atmospheric circulation patterns. Monthly Weather Review 115, 1083-1126. 

 

Bartolini, E., P. Claps, and P. D’Odorico. 2010. Connecting European snow cover variability 

with large scale atmospheric patterns. Advances in Geosciences 26, 93-97. 

 

Bekryaev, R. V., I. V. Polyakov, and V. A. Alexeev. 2010. Role of polar amplification in long-

term surface air temperature variations and modern Arctic warming. Journal of Climate 

23, 3888-3906. 

 

Bell, and Coauthers, 2000. Climate assessment for 1999. Bulletin of the American 

Meteorological Society 81, 1-50. 

 

Bell, G. D. and M. Chelliah, 2006. Leading tropical modes associated with interannual and multi-

decadal fluctuations in North Atlantic hurricane activity. Journal of Climate 19, 590-612. 

 

Bojariu, R. and L. Gimeno, 2003. The role of snow cover fluctuations on multiannual NAO 

persistence. Geophysical Research Letters 30, 1156-1160. 

 

Budikova, D., 2009. Role of Arctic sea ice in global atmospheric circulation: a review. Global 

and Planetary Change 68, 149-163. 

 

Camargo, S. J., A. G. Barnston, P. J. Klotzbach, and C. W. Landsea. 2007. Seasonal tropical 

cyclone forecasts. World Meteorological Organization Bulletin 56, 297-309. 

 

Camargo, S. J. and S. E. Zebiak. 2002. Improving the detection and tracking of tropical storms in 

atmospheric general circulation models. Weather and Forecasting 17, 1152-1162. 

 

Chiang, J. C. H. and C. M. Bitz. 2005. Influence of high latitude ice cover on the marine 

intertropical convergence zone. Climate Dynamics 25, 477-496. 

 



 

98 

 

Choi, K.S., J. Y. Moon, D. W. Kim, and P. S. Chu, 2010. Seasonal predictions of tropical 

cyclone genesis frequency over the western North Pacific using teleconnections. 

Theoretical and Applied Climatology 100, 191-206. 

 

Cohen J. and D. Entekhabi. 2001: The influence of snow cover on northern hemisphere climate 

variability. Atmosphere-Ocean 39, 35-53. 

 

Deser, C., J. E. Walsh, and M. S. Timlin. 2000. Arctic sea ice variability in the context of recent 

atmospheric circulation trends. Journal of Climate 13, 617-633. 

 

Dery, S. J. and R. D. Brown. 2007. Recent northern hemisphere snow cover extent trends and 

implications for the snow-albedo feedback. Letters of Geophysical Research 34, L22504. 

DOI:10.1029/2007GL031474. 

 

Elsner, J. B. and C. P. Schmertmann. 1993. Improving extended-range seasonal predictions of 

intense Atlantic hurricane activity. Weather and Forecasting 8, 345-351. 

 

Elsner, J. B. and C. P. Schmertmann. 1994. Assessing forecast skill through cross validation. 

Weather and Forecasting 9, 619-624. 

 

Elsner, J. B., K. B. Liu, and B. Kocher. 2000. Spatial variations in major U.S. hurricane activity: 

statistics and a physical mechanism. Journal of Climate 13, 2293-2305. 

 

Elsner, J. B. and T. Jagger. 2004. A hierarchical Bayesian approach to seasonal hurricane 

modeling. Journal of Climate 17, 2813-2827. 

 

Elsner, J. B. and T. Jagger. 2006. Prediction models for annual U.S. hurricane counts. Journal of 

Climate 19, 2935-2952. 

 

Emanuel, K. 2005. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 

436, 686-688. 

 

ESRL (Earth System Research Laboratory). 2013. Physical Sciences Division – PSD Interactive 

Plotting and Analysis Pages. Webpage. [http://www.esrl.noaa.gov/psd/cgi-

bin/data/getpage.pl]. 

 

ESRL (Earth System Research Laboratory). 2012. Climate Indices: Monthly Atmsopheric and 

Oceanic Timeseries . Webpage. [http://www.esrl.noaa.gov/psd/data/climateindices/list/] 

 

Ke, k. 2007. North Pacific sea ice cover, a predictor for the Western North Pacific typhoon 

frequency. Science in China Series D: Earth Science 50, 1251-1257. 

 

Gray, W. M. 1968. Global view of the origin of tropical disturbances and storms. Monthly 

Weather Review 96, 669–700. 

 



 

99 

 

Gray, W. M. 1979. Hurricanes: Their formation, structure and likely role in the tropical 

circulation" Meteorology Over Tropical Oceans. D. B. Shaw (Ed.), Roy. Meteor. Soc., 

James Glaisher House, Grenville Place, Bracknell, Berkshire, RG12 1BX, pp.155-218 

 

Gray,W. M. 1984a. Atlantic seasonal hurricane frequency. Part I: El Niño and 30mb quasi-

biennial oscillation influences. Monthly Weather Review 112, 1649-1668. 

 

Gray, W. M., 1984b. Atlantic seasonal hurricane frequency. Part II: Forecasting its variability. 

Monthly Weather Review 112, 1669-1683. 

 

Gray, W. M., C. W. Landsea, P. W. Mielke Jr., and K. J. Berry. 1992. Predicting Atlantic 

seasonal hurricane activity 6-11 months in advance. Weather and Forecasting 7, 440-455. 

 

Gray, W. M. C. W. Landsea, P. W. Mielke Jr., and K. J. Berry. 1993. Predicting Atlantic basin 

seasonal tropical cyclone activity by 1 August. Weather and Forecasting 8, 73-86. 

 

Gray, W. M., C. W. Landsea, P. W. Mielke Jr., and K. J. Berry. 1994. Predicting Atlantic basin 

seasonal tropical cyclone activity by 1 June. Weather and Forecasting 9, 103-115. 

 

Gray, W., C. W. Landsea, P.W. Mielke Jr., and K. J. Berry. 2000. Extended range forecast of 

Atlantic seasonal hurricane activity and US landfall strike probability for 2001. 

Department of Atmospheric Science Report, Colorado State University, Fort Collins, CO, 

22pp 

 

Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray. 2001. The recent 

increase in Atlantic hurricane activity: causes and implications. Science, 293, 474-479. 

 

Goldenberg, S. B. and L. J. Shapiro. 1996. Physical mechanisms for the association for El Niño 

and West African rainfall with Atlantic major hurricane activity. Journal of Climate 9: 

1169-1187. 

 

Gong, C., D. Entekhabi, and J. Cohen. 2003. Orographic constraints on a modeled Siberian 

snow-tropospheric-stratospheric teleconnection pathway. Journal of Climate 17, 1176-

1188. 

 

GSL (Rutgers University Global Snow Lab). 2013. Monthly Area Extent Dataset. Webpage. 

[http://climate.rutgers.edu/snowcover/table_area.php?ui_set=1&ui_sort=0] 

 

Holland, M. M. and C. M. Bitz. 2003. Polar amplification of climate change in coupled models. 

Climate Dynamics 21, 221-232. DOI: 10.1007/s00382-003-0332-6. 

 

Holland, G. J. 1993. “Ready Reckoner” – Chapter 9, Global Guide to Tropical Cyclone 

Forecasting. WMO/TC-No. 560, Report No. TCP-31, World Meteorological 

Organization, Geneva, Switzerland.  

 



 

100 

 

Hughen, K.A., J. R. Southon, S. J. Lehman, and J. T. Overpeck. 2000. Synchronous radiocarbon 

and climate shifts during the last deglaciation. Science 290, 1951-1954. 

 

Hurrell, J. W. and H. Van Loon. 1997. Decadal variations in climate associated with the North 

Atlantic Oscillation. Climate Change 36, 301-326.  

 

IPCC (Intergovernmental Panel on Climate Change). 2007. Contribution of Working Group I to 

the Fourth Assessment Report. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, 

K.B. Averyt, M. Tignor and H.L. Miller (eds.) Cambridge University Press, Cambridge, 

United Kingdom and New York, NY, USA. 

 

IPCC (Intergovernmental Panel on Climate Change). 2007. Lemke, P. J. and coauthors, 

Observations: Changes to snow, ice, and frozen ground. In Contribution of Working 

Group I to the Fourth Assessment Report. Solomon, S., D. Qin, M. Manning, Z. Chen, M. 

Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.) Cambridge University Press, 

Cambridge, United Kingdom and New York, NY, USA. 

 

Jarvinen, B. R., C. J. Neumann, and M. A. S. Davis. 1984. A tropical cyclone data tape for the 

North Atlantic Basin., 1886-1983: Contents , limitations, and uses. NOAA Technical 

Memorandum NWS NHC 22, Coral Gables, FL, 21 pp. 

  

Johannessen, O. M., L. Bengtsson, M. W. Miles, S. I. Kuzmina, V. A. Semenov, G. V. Alekseev, 

A. P. Nagurnyi, V. F. Zakharov, L. P. Bobylev, L. H. Pettersson, K. Hasselmann, and H. 

P. Cattle. 2004. Arctic climate change: observed and modelled temperature and sea-ice 

variability. Tellus A 56, 328–341. DOI: 10.1111/j.1600-0870.2004.00060.x 

 

Kalnay, E. and Coauthors, 1996: The NCEP/NCAR Reanalysis 40-year Project. Bulletin of the 

American Meteorological Society 77, 437-471. 

 

Ke, F. 2007. North Pacific sea ice cover, a predictor for the Western North Pacific typhoon 

frequency? Science in China Series D: Earth Sciences 50, 1251-1257. 

 

Kistler, R., and Coauthers, 2001. The NCEP-NCAR 50-year reanalysis: Monthly means CD-

ROM and documentation. Bulletin of the American Meteorological Society 82, 247-267. 

 

Klotzbach, P. J, and W. M. Gray. 2004. Updated 6-11 month prediction of Atlantic basin 

seasonal hurricane activity. Weather and Forecasting 9, 917-933. 

 

Klotzbach, P. J. 2007. Recent developments in statistical prediction of the seasonal Atlantic 

basin tropical cyclone activity. Tellus 59A, 511-518.  

 

Klotzbach, P. J. 2008. Refinements to Atlantic basin seasonal hurricane prediction from 1 

December. Journal of Geophysical Research 113. DOI: 10.1029/2008JD010047 

 



 

101 

 

Klotzbach and Coauthers. 2011. Seasonal forecasting of tropical cyclones. Lamont-Doherty Earth 

Observatory Webpage. Accessed: 12/1/12. 

[http://www.ldeo.columbia.edu/~suzana/papers/Global_Guide_Seasonal_Forecast_Chapt

er.pdf]. 

 

Klotzbach, P. J. and W. M. Gray. 2011. Qualitative discussion of Atlantic basin seasonal 

hurricane activity for 2012. Department of Atmospheric Science Report, Colorado State 

University, Fort Collins, CO, 27pp. 

 

Klotzbach, P. J. and W. M. Gray. 2012a. Extended range forecast of Atlantic seasonal hurricane 

activity and landfall strike probability for 2012 – 4 April Forecast. Department of 

Atmospheric Science Report, Colorado State University, Fort Collins, CO, 43pp. 

 

Klotzbach, P. J. and W. M. Gray. 2012b. Extended range forecast of Atlantic seasonal hurricane 

activity and landfall strike probability for 2012 – 1 June Forecast. Department of 

Atmospheric Science Report, Colorado State University, Fort Collins, CO, 42pp. 

 

Klotzbach, P. J. and W. M. Gray. 2012c. Extended range forecast of Atlantic seasonal hurricane 

activity and landfall strike probability for 2012 – 3 August Forecast. Department of 

Atmospheric Science Report, Colorado State University, Fort Collins, CO, 40pp. 

 

Knaff, J. A. 1997. Implications of summertime sea level pressure anomalies. Journal of Climate 

10, 789-804. 

 

Knaff, J. A. 1998. Predicting summertime Caribbean sea level pressure. Weather and 

Forecasting 13, 740-752. 

 

Kossin, J. P. and D. J. Vimont. 2007. A more general framework for understanding Atlatnci 

hurricane variability and trends. Bulletin of the American Meteorological Society 88, 

1767-1781. 

 

Kushnir, Y. 1994. Interdecadal variations in North Atlantic sea surface temperature and 

associated atmospheric conditions. Journal of Climate 7, 141-157. 

 

LaRow, T. E., Y-K. Lim, D. W. Shin, E. P. Chassignet, and S. Cocke. 2008. Atlantic basin 

seasonal hurricane simulations. Journal of Climate 21, 3191-3206. 

 

Landsea, C. W., G. D. Bell, W. M. Gray, and S. B. Goldenberg. 1998. The extremely active 1995 

Atlantic hurricane season: environmental conditions and verification of seasonal 

forecasts. Monthly Weather Review 126, 1174-1193. 

 

Larkin, N. K. and D. E. Harrison. 2002. ENSO warm (El Niño) and cold (La Niña) event life 

cycles: Ocean surface anomaly patterns, their symmetries, asymmetries, and implications. 

Journal of Climate 15, 1118-1140. 

 



 

102 

 

Larson, J, Y. Zhou, R. W. Higgins. 2005. Characteristics of landfalling tropical cyclones in the 

United States and Mexico: climatology and interannual variability. Journal of Climate 18, 

1247-1262. 

 

Lea, A. S. and M. A. Saunders. 2004. Seasonal predictability of accumulated cyclone energy in 

the north Atlantic. Proceedings of the 26
th

 conference of hurricanes and tropical 

meteorology, Miami, USA, May 3-7, pp. 419-420. 

 

Lea, A. S. and M. A. Saunders, 2011. August forecast update for Atlantic hurricane activity in 

2012 – issued 6
th

 August 2012. Department of Space and Climate Physics, University 

College London, UK, 5pp. 

 

Liebmann, B. and C. A. Smith. 1996: Description of a Complete (Interpolated) Outgoing 

Longwave Radiation Dataset. Bulletin of the American Meteorological Society 77, 1275-

1277. 

 

L'Heureux, M. L., A. Kumar, G. D. Bell, M. S. Halpert, and R. W. Higgins. 2008. Role of the 

Pacific-North American (PNA) pattern in the 2007 Arctic sea ice decline. Geophysical 

Research Letters 35, L20701. DOI:10.1029/2008GL035205. 

 

Lloyd-Hughes, B., M. A. Saunders, and P. Rockett. 2004. A consolodiated CLIPER model for 

improved August-September ENSO prediction skill. Journal of Climate 19, 1089-1105. 

 

Malkus, J. S. and H. riehl. 1960. On the dynamics and energy transformation in steady-state 

hurricanes. Tellus 12, 1-20. 

 

Marshall, J. and Coauthers. 2001. North Atlantic climate variability: Phenomena, impacts, and 

mechanisms. International Journal of Climatology 21, 1863-1898. 

 

Mysak, L. A., R. G. Ingram, J. Wang, and A. van der Baaren. 1996. The anomalous sea‐ice 

extent in Hudson bay, Baffin bay and the Labrador sea during three simultaneous NAO 

and ENSO episodes. Atmosphere-Ocean 34, 313-343. 

 

Neumann, C.J., B.R. Jarvinen, C.J. McAdie, and J.D. Elms.1993. Tropical Cyclones of the North 

Atlantic Ocean, 1871-1992, Prepared by the National Climatic Data Center, Asheville, 

NC, in cooperation with the NHC, Coral Gables, FL, 193pp 

 

Nicholls, N. 1979. A possible method for predicting season tropical cyclone activity in the 

Australian region. Monthly Weather Review107, 1221:1224. 

 

NOAA (National Oceanic and Atmospheric Administration). 2012a. Tropical Cyclone 

Climatology webpage of the National Hurricane Center website. Last modified: 

6/18/2012. Accessed: 12/28/12.[http://www.nhc.noaa.gov/climo/]. 

 



 

103 

 

NOAA (National Oceanic and Atmospheric Administration). 2012b. NOAA 2012 Atlantic 

Hurricane Season Outlook Update: Issued 9 August 2012. From the Climate Prediction 

Center website. Last Modified: 8/9/12. Accessed: 12/28/12. 

[http://www.cpc.ncep.noaa.gov/products/outlooks/hurricane.shtml]. 

 

NOAA (National Oceanic and Atmospheric Administration). 2012c. Climate Watch Magazine: 

Record low spring snow cover in Northern Hemisphere 2012. Released: December 5, 

2012. Accessed: 1/7/13. [http://www.climatewatch.noaa.gov/image/2012/record-low-

spring-snow-cover-in-northern-hemisphere-2012]. 

 

NSIDC (National Snow and Ice Data Center). 2012a. Monthly Archives: Arctic sea ice 

maximum marks beginning of melt season. NSIDC webpage. Released: March 26, 2012. 

Accessed: 1/7/13. [http://nsidc.org/arcticseaicenews/2012/03/]. 

 

NSIDC (National Snow and Ice Data Center). 2012b. Monthly Archives: Arctic sea ice extent 

settle at record seasonal minimum. NSIDC webpage. Released: September 19, 2012. 

Accessed: 1/7/13. [http://nsidc.org/arcticseaicenews/2012/09/]. 

 

NSIDC (National Snow and Ice Data Center). 2013a. Frequently asked questions about Arctic 

sea ice. NSIDC webpage. Accessed 2/7/13. 

[http://nsidc.org/arcticseaicenews/faq/#area_extent]. 

 

NSIDC (National Snow and Ice Data Center). 2013b. Sea ice trends & climatologies from 

SMMR & SSM/I-SSMIS. Metadata webpage. Accessed 2/24/13. 

[http://nsidc.org/data/smmr_ssmi_ancillary/area_extent.html]. 

 

Overland, J. E. and M. Wang. 2010. Large-scale atmospheric circulation changes are associated 

with the recent loss of Arctic sea ice. Tellus 62A,1-9. 

 

Pielke, R. A. Jr., J. Gratz, C. S. Landsea, D. Collins, M. A. Saunders, and R. Musulin. 2008. 

Normalized hurricane damage in the United States: 1900-2005. Natural Hazards Review 

9, 29-42. DOI: 10.1061/(ASCE)1527-6988(2008)9:1(29) 

 

Rigor, I. G., J. M. Wallace, R. L. Colony. 2002. Response of sea ice to the arctic oscillation. 

Journal of Climate 15, 2648–2663  

 

Robinson, D. 2012. Northern hemisphere continental snow cover extent 2011 Update. Global 

Snow Lab, Rutgers University, New Jersey, 3 pp. 

 

Robock, Alan. 1980. The seasonal cycle of snow cover, sea ice and surface albedo. Monthly 

Weather Review 108, 267–285. 

 

Rogers, J. C. 1981. The North Pacific Oscillation. International Journal of Climatology 1, 39-57. 

 



 

104 

 

Saunders, M. A. and A. S. Lea. 2011. Extended range forecast for Atlantic hurricane activity in 

2012 – 7
th

 June, 2011 Forecast . Department of Space and Climate Physics, University 

College London, United Kingdom, 3pp. 

 

Saunders, M. A. and A. S. Lea. 2012. Extended range forecast for Atlantic hurricane activity in 

2012 – 6
th

 June, 2012 Forecast. Department of Space and Climate Physics, University 

College London, United Kingdom, 3pp. 

 

Saunders, M. A., and A. S. Lea. 2005. Seasonal prediction of hurricane activity reaching the 

coast of the United States. Nature 434, 1005-1008. 

 

Screen, J. A. and Ian Sommonds. 2010. The Central Role of Diminishing Sea Ice in Recent 

Arctic Temperature Amplification. Nature 464, 1334-1337. DOI, 10.1038/nature0905 

 

Seager, R., Y. Kushnir, J. Nakamura, M. Ting, and N. Naik. 2010. Northern hemisphere winter 

snow anomalies: ENSO, NAO and the winter of 2009/10. Geophysical Research Letters 

37, L14703. DOI:10.1029/2010GL043830 

 

Shapiro, L. J. 1982. Hurricane climatic fluctuations. Part II: relation to large-scale circulation. 

Monthly Weather Review 110, 1014-1023. 

 

Stroeve, J. C., M. C. Serreze, M. M. Holland, J. E. Kay, J. Malanik, and A. P. Barrett. 2012. The 

Arctic’s rapidly shrinking sea ice cover: a research synthesis, Climatic Change 110, 1005-

1027. 

 

Tachibana, Y, M. Honda, and K. Takeuchi. 1996. The abrupt decrease of the sea ice over the 

southern part of the Sea of Okhotsk in 1989 and its relation to the recent weakening of the 

Aleutian low. Journal of the Meteorological Society of Japan, Vo. 74: 579-584. 

 

Thompson, D. W. J., and J. M. Wallace. 1998. The Arctic oscillation signature in the wintertime 

geopotential height and temperature fields. Geophysical Research Letters 25, 1297-1300. 

 

Wallace, J. M. 2000. North atlantic oscillation/annular mode: Two paraidgms – one 

phenomenon. Quarterly Journal of the Royal Meteorological Society 126, 791-805. 

 

Walland, D. J., and I. Simmonds. 1996. Modeled atmospheric response to changes in Northern 

Hemisphere snow extent. Climate Dynamics 13, 25-34. 

 

Wang, J. L. A. Mysak, and R. G. Ingram. 1994. Interannual variability of sea-ice cover in the 

Hudson Bay, Baffin Bay and the Labrador Sea. Atmosphere-Ocean 32, 421-447. 

 

WMO (World Meteorological Organization). 2002. Standardized verification system (SVS) for 

long-range forecasts (LRF). New Attachment II-9 to the Manual on the GDPS (WMO-

No. 485), Vol. 1 Geneva, Switzerland. 

 



 

105 

 

Xie, L, T. Yan, L. J. Pietrafesa, J. M. Morrison, and T. Karl. 2005. Climatology and interannual 

variability of North Atlantic hurricane tracks. Journal of Climate 18, 5370-5381. 

 

Xie, L., M. Lennon, and M. Fuentes. 2012. Summary of 2012 Forecast Results. Department of 

Marine, Earth, and Atmospheric Sciences and Department of Statistics, North Carolina 

State University, USA 

 

Xie, S. P. 1999. A dynamic ocean-atmosphere model of the tropica Atlantic decadal variability. 

Journal of Climate 12, 64-70. 

 

Yan, T., L. J. Pietrafesa, G. D. Bell, and D. A. Dickey. 2012. On the inverse relationship between 

North American snow extent and North Atlantic hurricane activity, International Journal 

of Climatology. DOI:10.1002/joc.3485 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDICES 

 

 

 



106 

 

 

APPENDIX A – HINDCASTS  

  

1980-2010 hindcasts for tropical storms (TS) between the 3 model groups 

 
 

1980-2010 hindcasts for hurricanes between the 3 model groups 
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APPENDIX A – HINDCASTS 

 
1980-2010 hindcasts for minor hurricanes (Minor) between the 3 model groups 

 
 

1980-2010 hindcasts for accumulative cyclone energy (ACE) between the 3 model groups 
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APPENDIX A – HINDCASTS 

1980-2010 hindcasts for power dissipation index (PDI) between the 3 model groups 

 

1980-2010 hindcasts for annual mean peak wind (Peak Wind) between the 3 model groups 
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APPENDIX A – HINDCASTS 

1980-2010 hindcasts for US landfalling tropical cyclones between the 3 model groups 

 

 

1980-2010 hindcasts for lifetime mean duration (LMD) between the 3 model groups 
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APPENDIX A – HINDCASTS 

1980-2010 hindcasts for latest tropical cyclogenesis day-of-year (MaxDOY) between the 3 model 

groups 

 

1980-2010 hindcasts for earliest tropical cyclogenesis day-of-year (MinDOY) between the 3 

model groups 
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APPENDIX A – HINDCASTS 

1980-2010 hindcasts total season length (TSL) measured in days between the 3 model groups 

 

 



112 

 

 

APPENDIX B – CORRELATION ANALYSIS – SPRING AO  

Correlation plot between July-September 500 mb geopotential height and the Spring Arctic 

Oscillation for 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, 

Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 

Correlation plot between July-September sea level pressure (SLP) and the Spring Arctic 

Oscillation for 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, 

Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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APPENDIX B – CORRELATION ANALYSIS – SPRING AO  

Correlation plot between July-September sea surface temperature (SST) and the Spring Arctic 

Oscillation for 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, 

Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 

Correlation plot between July-September outgoing longwave radiation (OLR) at the tropopause 

and the Spring Arctic Oscillation for 1980-2010. Image provided by the NOAA/ESRL Physical 

Sciences Division, Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ 

(Liebmann and Smith, 1996). 
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APPENDIX B – CORRELATION ANALYSIS – FALL BAFFIN BAY SIE  

Correlation plot between July-September 500 mb geopotential height and Fall Baffin Bay SIE for 

1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder Colorado 

from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 

Correlation plot between July-September sea level pressure (SLP) and Fall Baffin Bay SIE for 

1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder Colorado 

from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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APPENDIX B – CORRELATION ANALYSIS – FALL BAFFIN BAY SIE  

Correlation plot between July-September sea level pressure (SLP) and Fall Baffin Bay SIE for 

1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder Colorado 

from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 

Correlation plot between July-September outgoing longwave radiation (OLR) at the tropopause 

and Fall Baffin Bay SIE for 1980-2010. Image provided by the NOAA/ESRL Physical Sciences 

Division, Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Liebmann and 

Smith, 1996). 
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APPENDIX B – CORRELATION ANALYSIS – SPRING BAFFIN BAY SIA 

Correlation plot between July-September 500 mb geopotential height and Spring Baffin Bay SIA 

for 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder 

Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 

Correlation plot between July-September outgoing longwave radiation (OLR) at the tropopause 

and Spring Baffin Bay SIA for 1980-2010. Image provided by the NOAA/ESRL Physical 

Sciences Division, Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ 

(Liebmann and Smith, 1996). 
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APPENDIX B – CORRELATION ANALYSIS – FALL BERING SEA SIA 

Correlation plot between July-September 500 mb geopotential height and Fall Bering Sea SIA 

for 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder 

Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 

Correlation plot between July-September sea level pressure (SLP) and Fall Bering Sea SIA for 

1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder Colorado 

from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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APPENDIX B – CORRELATION ANALYSIS – FALL BERING SEA SIA 

Correlation plot between July-September sea surface temperature (SST) and Fall Bering Sea SIA 

for 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder 

Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 

Correlation plot between July-September outgoing longwave radiation (OLR) at the tropopause 

and Fall Bering Sea SIA for 1980-2010. Image provided by the NOAA/ESRL Physical Sciences 

Division, Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Liebmann and 

Smith, 1996). 
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APPENDIX B – CORRELATION ANALYSIS – SUMMER ENSO  

Correlation plot between July-September 500 mb geopotential height and Summer ENSO for 

1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder Colorado 

from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 

Correlation plot between July-September sea level pressure (SLP) and Summer ENSO for 1980-

2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder Colorado from 

their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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APPENDIX B – CORRELATION ANALYSIS – SUMMER ENSO  

Correlation plot between July-September sea surface temperature (SST) and Summer ENSO for 

1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder Colorado 

from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 

Correlation plot between July-September outgoing longwave radiation (OLR) at the tropopause 

and Summer ENSO for 1980-2010. Image provided by the NOAA/ESRL Physical Sciences 

Division, Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Liebmann and 

Smith, 1996). 
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APPENDIX B – CORRELATION ANALYSIS – SPRING HUDSON BAY SIA 

Correlation plot between July-September 500 mb geopotential height and Spring Hudson Bay 

SIA for 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder 

Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 

Correlation plot between July-September outgoing longwave radiation (OLR) at the tropopause 

and Spring Hudson Bay SIA for 1980-2010. Image provided by the NOAA/ESRL Physical 

Sciences Division, Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ 

(Liebmann and Smith, 1996). 
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APPENDIX B – CORRELATION ANALYSIS – FALL NAO 

Correlation plot between July-September 500 mb geopotential height and the Fall NAO for 1980-

2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder Colorado from 

their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 

Correlation plot between July-September sea level pressure (SLP) and the Fall NAO for 1980-

2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder Colorado from 

their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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APPENDIX B – CORRELATION ANALYSIS – FALL NAO 

Correlation plot between July-September sea surface temperature (SST) and the Fall NAO for 

1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder Colorado 

from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 

Correlation plot between July-September outgoing longwave radiation (OLR) at the tropopause 

and the Fall NAO for 1980-2010. Image provided by the NOAA/ESRL Physical Sciences 

Division, Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Liebmann and 

Smith, 1996). 
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APPENDIX B – CORRELATION ANALYSIS – SPRING NAO 

Correlation plot between July-September 500 mb geopotential height and the Spring NAO for 

1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder Colorado 

from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 

Correlation plot between July-September sea level pressure (SLP) and the Spring NAO for 1980-

2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder Colorado from 

their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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APPENDIX B – CORRELATION ANALYSIS – SPRING NAO 

Correlation plot between July-September sea surface temperature (SST) and the Spring NAO for 

1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder Colorado 

from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 

Correlation plot between July-September outgoing longwave radiation (OLR) at the tropopause 

and the Spring NAO for 1980-2010. Image provided by the NOAA/ESRL Physical Sciences 

Division, Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Liebmann and 

Smith, 1996). 
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APPENDIX C – COMPOSITE ANALYSIS – TABLES 

 

Composite analysis table highlighting the difference between the 7 highest and lowest Baffin Bay 

sea ice area years during the spring preceding the tropical cyclone season. Acronyms used are: 

SIA (sea ice area), ACE (accumulated cyclone energy), and PDI(power dissipation index). All 

means were tested using a two-tailed paired sample T test and were all found to be significantly 

different at alpha 0.05. 

Parameters 7 Lowest SIA Years Climatology 7 Highest SIA Years 

SIA (km
2
) 838,671 981,859 1,169,114 

Tropical Cyclones 17 12 9 

Tropical Storms 7 5 4 

Hurricanes 9 7 4 

Minor Hurricanes 5 4 3 

Major Hurricanes 4 3 1 

ACE (10
4
kt

2
) 190 122 62 

PDI (10
6
kt

3
) 158 94 41 

 

 

Composite analysis table highlighting the difference between the 7 highest and lowest Hudson 

Bay sea ice area years during the spring preceding the tropical cyclone season. Acronyms used 

are: SIA (sea ice area), ACE (accumulated cyclone energy), and PDI(power dissipation index). 

All means were tested using a two-tailed paired sample T test and were all found to be 

significantly different at alpha 0.05. 

Parameters 7 Lowest SIA Years Climatology 7 Highest SIA Years 

SIA (km
2
) 1049114 1105284 1144343 

Tropical Cyclones 16 12 8 

Tropical Storms 7 5 3 

Hurricanes 9 7 5 

Minor Hurricanes 6 4 3 

Major Hurricanes 4 3 1 

ACE (10
4
kt

2
) 169 122 68 

PDI (10
6
kt

3
) 134 94 51 
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APPENDIX C – COMPOSITE ANALYSIS – SPRING AO 

Composite map for sea surface pressure (SLP) anomalies during the 7 highest Spring AO years 

between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder 

Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 

Composite map for sea surface pressure (SLP) anomalies during the 7 lowest Spring AO years 

between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder 

Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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APPENDIX C – COMPOSITE ANALYSIS – SPRING AO 

Composite map for sea surface temperature (SST) anomalies during the 7 highest Spring AO 

years between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, 

Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 

Composite map for sea surface temperature (SST) anomalies during the 7 lowest Spring AO 

years between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, 

Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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APPENDIX C – COMPOSITE ANALYSIS – SPRING AO 

Composite map for 1000 mb vector wind anomalies during the 7 highest Spring AO years 

between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder 

Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 

Composite map for 1000 mb vector wind anomalies during the 7 lowest Spring AO years 

between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder 

Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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APPENDIX C – COMPOSITE ANALYSIS – FALL BERING SEA SIA 

Composite map for sea level pressure (SLP) anomalies during the 7 highest Fall Bering Sea SIE 

years between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, 

Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 

Composite map for sea level pressure (SLP) anomalies during the 7 lowest Fall Bering Sea SIE 

years between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, 

Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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APPENDIX C – COMPOSITE ANALYSIS – FALL BERING SEA SIA 

Composite map for sea surface temperature (SST) anomalies during the 7 highest Fall Bering Sea 

SIE years between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, 

Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 

Composite map for sea surface temperature (SST) anomalies during the 7 lowest Fall Bering Sea 

SIE years between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, 

Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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APPENDIX C – COMPOSITE ANALYSIS – FALL BERING SEA SIA 

Composite map for 1000 mb vector wind anomalies during the 7 highest Fall Bering Sea SIE 

years between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, 

Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 

Composite map for 1000 mb vector wind anomalies during the 7 lowest Fall Bering Sea SIE 

years between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, 

Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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APPENDIX C – COMPOSITE ANALYSIS – FALL BAFFIN BAY SIE 

 

Composite map for sea level pressure (SLP) anomalies during the 7 highest Fall Baffin Bay SIA 

years between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, 

Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 
Composite map for sea level pressure (SLP) anomalies during the 7 lowest Fall Baffin Bay SIA 

years between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, 

Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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APPENDIX C – COMPOSITE ANALYSIS – FALL BAFFIN BAY SIE 

Composite map for sea surface temperature (SST) anomalies during the 7 highest Fall Baffin Bay 

SIA years between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, 

Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 

Composite map for sea surface temperature (SST) anomalies during the 7 lowest Fall Baffin Bay 

SIA years between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, 

Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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APPENDIX C – COMPOSITE ANALYSIS – FALL BAFFIN BAY SIE 

Composite map for 1000 mb vector wind anomalies during the 7 highest Fall Baffin Bay SIA 

years between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, 

Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 
Composite map for 1000 mb vector wind anomalies during the 7 lowest Fall Baffin Bay SIA 

years between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, 

Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 



136 

 

 

APPENDIX C – COMPOSITE ANALYSIS – SUMMER ENSO 

Composite map for sea level pressure (SLP) anomalies during the 7 highest Summer ENSO years 

between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder 

Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 

Composite map for sea level pressure (SLP) anomalies during the 7 lowest Summer ENSO years 

between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder 

Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 



137 

 

 

APPENDIX C – COMPOSITE ANALYSIS – SUMMER ENSO 

Composite map for sea surface temperature (SST) anomalies during the 7 highest Summer 

ENSO years between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences 

Division, Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 

1996). 

 

Composite map for sea surface temperature (SST) anomalies during the 7 lowest Summer ENSO 

years between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, 

Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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APPENDIX C – COMPOSITE ANALYSIS – SUMMER ENSO 

Composite map for 1000 mb vector wind anomalies during the 7 highest Summer ENSO years 

between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder 

Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 

Composite map for 1000 mb vector wind anomalies during the 7 lowest Summer ENSO years 

between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder 

Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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APPENDIX C – COMPOSITE ANALYSIS – FALL NAO 

Composite map for sea level pressure (SLP) anomalies during the 7 highest Fall NAO years 

between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder 

Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 

Composite map for sea level pressure (SLP) anomalies during the 7 lowest Fall NAO years 

between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder 

Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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APPENDIX C – COMPOSITE ANALYSIS – FALL NAO 

Composite map for sea surface temperature (SST) anomalies during the 7 highest Fall NAO 

years between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, 

Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 

Composite map for sea surface temperature (SST) anomalies during the 7 lowest Fall NAO years 

between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder 

Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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APPENDIX C – COMPOSITE ANALYSIS – FALL NAO 

Composite map for 1000 mb vector wind anomalies during the 7 highest Fall NAO years 

between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder 

Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 

Composite map for 1000 mb vector wind anomalies during the 7 lowest Fall NAO years between 

1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder Colorado 

from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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APPENDIX C – COMPOSITE ANALYSIS – SPRING NAO 

Composite map for sea level pressure (SLP) anomalies during the 7 highest Spring NAO years 

between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder 

Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 

Composite map for sea level pressure (SLP) anomalies during the 7 lowest Spring NAO years 

between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder 

Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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APPENDIX C – COMPOSITE ANALYSIS – SPRING NAO 

Composite map for sea surface temperature (SST) anomalies during the 7 highest Spring NAO 

years between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, 

Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 

Composite map for sea surface temperature (SST) anomalies during the 7 lowest Spring NAO 

years between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, 

Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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APPENDIX C – COMPOSITE ANALYSIS – SPRING NAO 

Composite map for 1000 mb vector wind anomalies during the 7 highest Spring NAO years 

between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder 

Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 

 

Composite map for 1000 mb vector wind anomalies during the 7 lowest Spring NAO years 

between 1980-2010. Image provided by the NOAA/ESRL Physical Sciences Division, Boulder 

Colorado from their Web site at http://www.esrl.noaa.gov/psd/ (Kalnay et al., 1996). 
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APPENDIX D – MATLAB CODE 

%Load the input data. 

  

%Cryosphere. 

load 1980_2010_SCE.txt 

load 1980_2010_SIA.txt 

load 1980_2010_SIE.txt 

  

%Teleconnections. 

load tele_all_indices_by_season.txt 

  

%Cyclone characteristics. 

load TC_character_mindoy_maxdoy.txt 

load TC_character_annual_landfall.txt 

load TC_character_annual_ACE.txt 

load TC_character_annual_peak_wind.txt 

load TC_character_annual_lmd.txt 

load TC_character_annual_cat0_count.txt 

load TC_character_annual_MAJOR_count.txt 

load TC_character_annual_minor_count.txt 

load TC_totalseasonlength.txt 

load TC_character_annual_PDI.txt 

load TC_annual_counts.txt 

load TC_character_annual_hurricane.txt 

  

%Assign data to master arrays. 

predictor(1:60,1:112)=NaN; 

predictand(1:60,1:13)=NaN; 

  

predictor(1:60,1:20)=tele_all_indices_by_season(:,2:21); 

predictor(30:60,21:32)=X1980_2010_SCE(:,2:13); 

predictor(30:60,33:72)=X1980_2010_SIA(:,2:41); 

predictor(30:60,73:112)=X1980_2010_SIE(:,2:41); 

  

predictand(1:60,1)=TC_annual_counts(:,2); 

predictand(1:60,2)=TC_character_annual_cat0_count(:,2); 

predictand(1:60,3)=TC_character_annual_hurricane(:,2); 

predictand(1:60,4)=TC_character_annual_minor_count(:,2); 

predictand(1:60,5)=TC_character_annual_MAJOR_count(:,2); 

predictand(1:60,6)=TC_character_annual_ACE(:,2); 

predictand(1:60,7)=TC_character_annual_PDI(:,2); 

predictand(1:60,8)=TC_character_annual_landfall(:,2); 

predictand(1:60,9)=TC_character_annual_peak_wind(:,2); 

predictand(1:60,10)=TC_character_annual_lmd(:,2); 

predictand(1:60,11:12)=TC_character_mindoy_maxdoy(:,2:3); 

predictand(1:60,13)=TC_totalseasonlength(:,2); 

  

  

  

%Specificy which predictors belong to which lead times. Climate modes only 

dec_predictors_modes=1:5; 

mar_predictors_modes=1:10; 

jun_predictors_modes=1:15; 

sep_predictors_modes=1:20; 

  

%Define the predictor arrays for cryosphere and climate modes at different 

%lead times.  

dec_predictors_all=[1 2 3 4 5 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 

85 89 93 97 101 105 109]; 
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mar_predictors_all=[1 2 3 4 5 6 7 8 9 10 21 22 25 26 29 30 33 34 37 38 41 42 

45 46 49 50 53 54 57 58 61 62 65 66 69 70 73 74 77 78 81 82 85 86 89 90 93 94 

97 98 101 102 105 106 109 110]; 

jun_predictors_all=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 21 22 23 25 26 27 29 

30 31 33 34 35 37 38 39 41 42 43 45 46 47 49 50 51 53 54 55 57 58 59 61 62 63 

65 66 67 69 70 71 73 74 75 77 78 79 81 82 83 85 86 87 89 90 91 93 94 95 97 98 

99 101 102 103 105 106 107 109 110 111]; 

sep_predictors_all=1:112; 

  

%Define predictor arrays for cryosphere predictors only at different lead 

%times 

dec_predictors_cryo=[21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 

97 101 105 109]; 

mar_predictors_cryo=[21 22 25 26 29 30 33 34 37 38 41 42 45 46 49 50 53 54 57 

58 61 62 65 66 69 70 73 74 77 78 81 82 85 86 89 90 93 94 97 98 101 102 105 106 

109 110]; 

jun_predictors_cryo=[21 22 23 25 26 27 29 30 31 33 34 35 37 38 39 41 42 43 45 

46 47 49 50 51 53 54 55 57 58 59 61 62 63 65 66 67 69 70 71 73 74 75 77 78 79 

81 82 83 85 86 87 89 90 91 93 94 95 97 98 99 101 102 103 105 106 107 109 110 

111]; 

sep_predictors_cryo=21:112; 

preddec_modes_31(1:31,1:13)=NaN; 

predmar_modes_31(1:31,1:13)=NaN; 

predjun_modes_31(1:31,1:13)=NaN; 

predsep_modes_31(1:31,1:13)=NaN; 

predictand_31=predictand(30:60,1:13); 

predictor_31=predictor(30:60,1:112); 

%models for climate modes only 31 Study period 

for v=1:13 

    

[b,se,pval,inmodel,stats,nextstep,history]=stepwisefit(predictor(30:60,dec_pre

dictors_modes),predictand(30:60,v)); 

    b=regress(predictand(30:60,v),[ones(length(predictand(30:60,v)),1) 

predictor(30:60,dec_predictors_modes(find(inmodel==1)))]); 

    preddec_modes_31(1:31,v)=b'*[ones(length(predictand(30:60,v)),1) 

predictor(30:60,dec_predictors_modes(find(inmodel==1)))]'; 

    for w=1:31 %hindcast models 

        include(1:31)=1; 

        include(w)=0; 

        g1=find(include==1); 

        

hind_b=regress(predictand_31(g1,v),[ones(length(predictand_31(g1,v)),1) 

predictor_31(g1,dec_predictors_modes(find(inmodel==1)))]); %finds coefficients 

for g2 

        hind_preddec_modes_31(w,v)=hind_b'*[ones(length(predictand_31(w,v)),1) 

predictor_31(w,dec_predictors_modes(find(inmodel==1)))]';%hindcast result for 

excluded row 

        clear g1; 

        clear include; 

    end 

    

[b,se,pval,inmodel,stats,nextstep,history]=stepwisefit(predictor(30:60,mar_pre

dictors_modes),predictand(30:60,v)); 

    b=regress(predictand(30:60,v),[ones(length(predictand(30:60,v)),1) 

predictor(30:60,mar_predictors_modes(find(inmodel==1)))]); 

    predmar_modes_31(1:31,v)=b'*[ones(length(predictand(30:60,v)),1) 

predictor(30:60,mar_predictors_modes(find(inmodel==1)))]'; 

    for w=1:31 %hindcast models 

        include(1:31)=1; 

        include(w)=0; 

        g1=find(include==1); 
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hind_b=regress(predictand_31(g1,v),[ones(length(predictand_31(g1,v)),1) 

predictor_31(g1,mar_predictors_modes(find(inmodel==1)))]); %finds coefficients 

for g2 

        hind_predmar_modes_31(w,v)=hind_b'*[ones(length(predictand_31(w,v)),1) 

predictor_31(w,mar_predictors_modes(find(inmodel==1)))]';%hindcast result for 

excluded row 

        clear g1; 

        clear include; 

    end 

    

[b,se,pval,inmodel,stats,nextstep,history]=stepwisefit(predictor(30:60,jun_pre

dictors_modes),predictand(30:60,v)); 

    b=regress(predictand(30:60,v),[ones(length(predictand(30:60,v)),1) 

predictor(30:60,jun_predictors_modes(find(inmodel==1)))]); 

    predjun_modes_31(1:31,v)=b'*[ones(length(predictand(30:60,v)),1) 

predictor(30:60,jun_predictors_modes(find(inmodel==1)))]'; 

    for w=1:31 %hindcast models 

        include(1:31)=1; 

        include(w)=0; 

        g1=find(include==1); 

        

hind_b=regress(predictand_31(g1,v),[ones(length(predictand_31(g1,v)),1) 

predictor_31(g1,jun_predictors_modes(find(inmodel==1)))]); %finds coefficients 

for g2 

        hind_predjun_modes_31(w,v)=hind_b'*[ones(length(predictand_31(w,v)),1) 

predictor_31(w,jun_predictors_modes(find(inmodel==1)))]';%hindcast result for 

excluded row 

        clear g1; 

        clear include; 

    end 

    

[b,se,pval,inmodel,stats,nextstep,history]=stepwisefit(predictor(30:60,sep_pre

dictors_modes),predictand(30:60,v)); 

    b=regress(predictand(30:60,v),[ones(length(predictand(30:60,v)),1) 

predictor(30:60,sep_predictors_modes(find(inmodel==1)))]); 

    predsep_modes_31(1:31,v)=b'*[ones(length(predictand(30:60,v)),1) 

predictor(30:60,sep_predictors_modes(find(inmodel==1)))]'; 

    for w=1:31 %hindcast models 

        include(1:31)=1; 

        include(w)=0; 

        g1=find(include==1); 

        

hind_b=regress(predictand_31(g1,v),[ones(length(predictand_31(g1,v)),1) 

predictor_31(g1,sep_predictors_modes(find(inmodel==1)))]); %finds coefficients 

for g2 

        hind_predsep_modes_31(w,v)=hind_b'*[ones(length(predictand_31(w,v)),1) 

predictor_31(w,sep_predictors_modes(find(inmodel==1)))]';%hindcast result for 

excluded row 

        clear g1; 

        clear include; 

    end 

end 

  

preddec_all(1:31,1:13)=NaN; 

predmar_all(1:31,1:13)=NaN; 

predjun_all(1:31,1:13)=NaN; 

predsep_all(1:31,1:13)=NaN; 

predictand_31=predictand(30:60,1:13); 

predictor_31=predictor(30:60,1:112); 

%models for climate modes and cryosphere 31 study period 
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for v=1:13 

    

[b,se,pval,inmodel,stats,nextstep,history]=stepwisefit(predictor(30:60,dec_pre

dictors_all),predictand(30:60,v)); 

    b=regress(predictand(30:60,v),[ones(length(predictand(30:60,v)),1) 

predictor(30:60,dec_predictors_all(find(inmodel==1)))]); 

    preddec_all(1:31,v)=b'*[ones(length(predictand(30:60,v)),1) 

predictor(30:60,dec_predictors_all(find(inmodel==1)))]'; 

    for w=1:31 %hindcast models 

        include(1:31)=1; 

        include(w)=0; 

        g1=find(include==1); 

        

hind_b=regress(predictand_31(g1,v),[ones(length(predictand_31(g1,v)),1) 

predictor_31(g1,dec_predictors_all(find(inmodel==1)))]); %finds coefficients 

for g2 

        hind_preddec_all(w,v)=hind_b'*[ones(length(predictand_31(w,v)),1) 

predictor_31(w,dec_predictors_all(find(inmodel==1)))]';%hindcast result for 

excluded row 

        clear g1; 

        clear include; 

    end 

    

[b,se,pval,inmodel,stats,nextstep,history]=stepwisefit(predictor(30:60,mar_pre

dictors_all),predictand(30:60,v)); 

    b=regress(predictand(30:60,v),[ones(length(predictand(30:60,v)),1) 

predictor(30:60,mar_predictors_all(find(inmodel==1)))]); 

    predmar_all(1:31,v)=b'*[ones(length(predictand(30:60,v)),1) 

predictor(30:60,mar_predictors_all(find(inmodel==1)))]'; 

    for w=1:31 %hindcast models 

        include(1:31)=1; 

        include(w)=0; 

        g1=find(include==1); 

        

hind_b=regress(predictand_31(g1,v),[ones(length(predictand_31(g1,v)),1) 

predictor_31(g1,mar_predictors_all(find(inmodel==1)))]); %finds coefficients 

for g2 

        hind_predmar_all(w,v)=hind_b'*[ones(length(predictand_31(w,v)),1) 

predictor_31(w,mar_predictors_all(find(inmodel==1)))]';%hindcast result for 

excluded row 

        clear g1; 

        clear include; 

    end 

    

[b,se,pval,inmodel,stats,nextstep,history]=stepwisefit(predictor(30:60,jun_pre

dictors_all),predictand(30:60,v)); 

    b=regress(predictand(30:60,v),[ones(length(predictand(30:60,v)),1) 

predictor(30:60,jun_predictors_all(find(inmodel==1)))]); 

    predjun_all(1:31,v)=b'*[ones(length(predictand(30:60,v)),1) 

predictor(30:60,jun_predictors_all(find(inmodel==1)))]'; 

    for w=1:31 %hindcast models 

        include(1:31)=1; 

        include(w)=0; 

        g1=find(include==1); 

        

hind_b=regress(predictand_31(g1,v),[ones(length(predictand_31(g1,v)),1) 

predictor_31(g1,jun_predictors_all(find(inmodel==1)))]); %finds coefficients 

for g2 

        hind_predjun_all(w,v)=hind_b'*[ones(length(predictand_31(w,v)),1) 

predictor_31(w,jun_predictors_all(find(inmodel==1)))]';%hindcast result for 

excluded row 
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        clear g1; 

        clear include; 

    end 

    

[b,se,pval,inmodel,stats,nextstep,history]=stepwisefit(predictor(30:60,sep_pre

dictors_all),predictand(30:60,v)); 

    b=regress(predictand(30:60,v),[ones(length(predictand(30:60,v)),1) 

predictor(30:60,sep_predictors_all(find(inmodel==1)))]); 

    predsep_all(1:31,v)=b'*[ones(length(predictand(30:60,v)),1) 

predictor(30:60,sep_predictors_all(find(inmodel==1)))]'; 

    for w=1:31 %hindcast models 

        include(1:31)=1; 

        include(w)=0; 

        g1=find(include==1); 

        

hind_b=regress(predictand_31(g1,v),[ones(length(predictand_31(g1,v)),1) 

predictor_31(g1,sep_predictors_all(find(inmodel==1)))]); %finds coefficients 

for g2 

        hind_predsep_all(w,v)=hind_b'*[ones(length(predictand_31(w,v)),1) 

predictor_31(w,sep_predictors_all(find(inmodel==1)))]';%hindcast result for 

excluded row 

        clear g1; 

        clear include; 

    end 

end 

  

preddec_cryo(1:31,1:13)=NaN; 

predmar_cryo(1:31,1:13)=NaN; 

predjun_cryo(1:31,1:13)=NaN; 

predsep_cryo(1:31,1:13)=NaN; 

  

%models for cryosphere only 31 Study period 

for v=1:13 

    

[b,se,pval,inmodel,stats,nextstep,history]=stepwisefit(predictor(30:60,dec_pre

dictors_cryo),predictand(30:60,v)); 

    b=regress(predictand(30:60,v),[ones(length(predictand(30:60,v)),1) 

predictor(30:60,dec_predictors_cryo(find(inmodel==1)))]); 

    preddec_cryo(1:31,v)=b'*[ones(length(predictand(30:60,v)),1) 

predictor(30:60,dec_predictors_cryo(find(inmodel==1)))]'; 

    for w=1:31 %hindcast models 

        include(1:31)=1; 

        include(w)=0; 

        g1=find(include==1); 

        

hind_b=regress(predictand_31(g1,v),[ones(length(predictand_31(g1,v)),1) 

predictor_31(g1,dec_predictors_cryo(find(inmodel==1)))]); %finds coefficients 

for g2 

        hind_preddec_cryo(w,v)=hind_b'*[ones(length(predictand_31(w,v)),1) 

predictor_31(w,dec_predictors_cryo(find(inmodel==1)))]';%hindcast result for 

excluded row 

        clear g1; 

        clear include; 

    end 

    

[b,se,pval,inmodel,stats,nextstep,history]=stepwisefit(predictor(30:60,mar_pre

dictors_cryo),predictand(30:60,v)); 

    b=regress(predictand(30:60,v),[ones(length(predictand(30:60,v)),1) 

predictor(30:60,mar_predictors_cryo(find(inmodel==1)))]); 

    predmar_cryo(1:31,v)=b'*[ones(length(predictand(30:60,v)),1) 

predictor(30:60,mar_predictors_cryo(find(inmodel==1)))]'; 
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    for w=1:31 %hindcast models 

        include(1:31)=1; 

        include(w)=0; 

        g1=find(include==1); 

        

hind_b=regress(predictand_31(g1,v),[ones(length(predictand_31(g1,v)),1) 

predictor_31(g1,mar_predictors_cryo(find(inmodel==1)))]); %finds coefficients 

for g2 

        hind_predmar_cryo(w,v)=hind_b'*[ones(length(predictand_31(w,v)),1) 

predictor_31(w,mar_predictors_cryo(find(inmodel==1)))]';%hindcast result for 

excluded row 

        clear g1; 

        clear include; 

    end 

    

[b,se,pval,inmodel,stats,nextstep,history]=stepwisefit(predictor(30:60,jun_pre

dictors_cryo),predictand(30:60,v)); 

    b=regress(predictand(30:60,v),[ones(length(predictand(30:60,v)),1) 

predictor(30:60,jun_predictors_cryo(find(inmodel==1)))]); 

    predjun_cryo(1:31,v)=b'*[ones(length(predictand(30:60,v)),1) 

predictor(30:60,jun_predictors_cryo(find(inmodel==1)))]'; 

    for w=1:31 %hindcast models 

        include(1:31)=1; 

        include(w)=0; 

        g1=find(include==1); 

        

hind_b=regress(predictand_31(g1,v),[ones(length(predictand_31(g1,v)),1) 

predictor_31(g1,jun_predictors_cryo(find(inmodel==1)))]); %finds coefficients 

for g2 

        hind_predjun_cryo(w,v)=hind_b'*[ones(length(predictand_31(w,v)),1) 

predictor_31(w,jun_predictors_cryo(find(inmodel==1)))]';%hindcast result for 

excluded row 

        clear g1; 

        clear include; 

    end 

    

[b,se,pval,inmodel,stats,nextstep,history]=stepwisefit(predictor(30:60,sep_pre

dictors_cryo),predictand(30:60,v)); 

    b=regress(predictand(30:60,v),[ones(length(predictand(30:60,v)),1) 

predictor(30:60,sep_predictors_cryo(find(inmodel==1)))]); 

    predsep_cryo(1:31,v)=b'*[ones(length(predictand(30:60,v)),1) 

predictor(30:60,sep_predictors_cryo(find(inmodel==1)))]'; 

    for w=1:31 %hindcast models 

        include(1:31)=1; 

        include(w)=0; 

        g1=find(include==1); 

        

hind_b=regress(predictand_31(g1,v),[ones(length(predictand_31(g1,v)),1) 

predictor_31(g1,sep_predictors_cryo(find(inmodel==1)))]); %finds coefficients 

for g2 

        hind_predsep_cryo(w,v)=hind_b'*[ones(length(predictand_31(w,v)),1) 

predictor_31(w,sep_predictors_cryo(find(inmodel==1)))]';%hindcast result for 

excluded row 

        clear g1; 

        clear include; 

    end 

end 
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