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ABSTRACT 
 
 Climate change will have a significant impact on the productivity of 

agricultural lands and ecosystem services in the coming decades.  Variability in 

temperature and precipitation will alter many central U.S. watersheds.  Simulation 

models such as the Soil and Water Assessment Tool (SWAT) offer the ability to 

model changes in watersheds by varying inputs. Unfortunately, SWAT requires a 

large number of input parameters and computation time to process the output data. 

Regression metamodels offer an alternative that seeks to replace the simulation 

model with a regression equation. This research created a linear regression 

metamodel to approximate SWAT in crop yield prediction. Results show that 

regression models can account for 45-84 percent of variance in yields for corn, 

soybean, alfalfa, switchgrass, and cotton in Big Creek Watershed. The coefficient of 

variation for each of these models ranged from 13 to 41 percent. These metamodels 

were able to reduce simulation time from hours to minutes. The tradeoff for 

utilizing metamodels is computation time versus accuracy. The results of this 

research indicate that the considerable reduction in computation time coupled with 

a moderate degree of accuracy in predicting crop yields leads to the use of 
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metamodels over SWAT. Regression coefficients for each metamodel can reveal how 

various weather and farm management techniques impact crop yields.  These 

metamodels will be utilized by the Agent Based Model to determine how farmers 

will respond to future economic policies and crop prices based on a series of climate 

scenarios.  
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CHAPTER 1 
 

INTRODUCTION 
 

Climate change will have a significant impact on the productivity of 

agricultural lands and ecosystem services in the coming decades (Baker & Allen, 

1993; Meehl et al., 2007). Possible global warming scenarios for the future range 

from 0.2°C to 0.5°C increase per decade (Meehl et al., 2007). This will lead to 

variability in temperature and precipitation, which will potentially alter many 

Central U.S. watersheds.  Changes associated with the timing and intensity of 

weather events will lead to variation in crop yields (Porter and Semenov, 2005). 

Crop yields are predicted to increase under the lowest assumed increase in 

temperature of 2°C, but yields will decrease if temperatures increase more than 3°C.  

(Parry et al., 2007; Schlenker and Roberts, 2009; Lobell et al., 2012). The sensitivity 

of corn, soybean, alfalfa, switchgrass and cotton crops to climate change will need to 

be measured in order to understand the severity of impacts associated with climate 

change.  

One approach to study the climate dynamics of a watershed is through the 

use of hydrologic models.  These models are beneficial in that they quantify and 

simplify the varying processes occurring within the watershed and allow the user to 

predict how various factors affect the makeup of the watershed. Simulation models 

are parameter and computationally intensive, which often necessitates the use of 

metamodels over simulation models (Wu & Babcock, 1994; Galelli et al., 2010). The 
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goal of this study is to create a metamodel for multiple crops at the hydrologic 

response unit (HRU) scale.  These metamodels will use output data from a 

deterministic watershed model, Soil and Water Assessment Tool (SWAT), and input 

data from various scripts and equations to simplify and reduce the amount of time 

needed to assess land use and climatic scenarios for Big Creek Watershed.  Output 

data from the metamodel will be used to construct an agent-based model to 

determine how farmers will respond to future economic policies and crop prices 

based on a series of climate change scenarios.  This research is a part of the Coupled 

Natural-Human Systems (CNH) grant funded by the National Science Foundation, 

which has one of the goals to model Central U.S. watersheds to determine impacts 

on the landscape associated with climate change.  The research performed in this 

study will serve as part of the foundation for modeling on the HRU scale.  Having 

metamodels for each watershed in the selected Central U.S. watersheds will greatly 

decrease computation time and assist in determining how watersheds will be 

affected as a result of climate change. 

1.1 Study Area 
 

This research created a series of crop-specific metamodels for Big Creek 

Watershed, located in Southern Illinois with a diverse range of land cover and land 

uses. Big Creek watershed has an area of 133 km2 and is part of the larger Cache 

River Watershed (Figure 1.1). Mean annual precipitation is 1220 mm and mean 

yearly temperature is 14.2° Celsius (C) with the coldest month being January at 1°C 

and hottest July with 26.2°C (NOAA 2013). The predominant farmed crops are corn 

and soybeans, but the dominant land use types within the watershed are 



3 
 

pastureland and forestland.  Big Creek lies near the Shawnee National Forest, and, 

has land that is varied topographically, ranging from a low elevation of 50 meters to 

a high elevation of 192 meters, and contains many areas with highly erodible soil. 

Up to 70 percent of sediment loads in the Cache River can be traced back to Big 

Creek, and, therefore, this watershed has a significant impact on the Cache, which is 

an ecologically sensitive river that is part of the Cypress Creek National Wildlife 

Refuge (Guetersloh, 2001).  This refuge contains an ecologically diverse swampland 

unique in Illinois, and sedimentation can have a significant impact on water quality 

and wildlife habitat within the swampland. 
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Figure 1.1 Big Creek Watershed 
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1.2 Research Questions 
 

The goal of this research is to circumvent the Soil and Water Assessment 

Tool in crop yield prediction in Big Creek Watershed. There are three specific 

research questions that this thesis seeks to investigate. 

 

1) What factors can significantly explain crop yields in Big Creek Watershed? 

2) How accurately can a statistical equation such as regression reproduce the 

results of a sophisticated process-based watershed model such as SWAT? 

3) How will crop yields in Big Creek Watershed respond to climate change 

scenarios? 

 
The main need to replace SWAT is linked to computational and 

parameterization efficiency.  In order to run all the climate scenarios in a timely 

manner, the metamodel is needed to quickly derive the output of crop yield without 

having to run the simulation through SWAT. SWAT also requires a large number of 

parameters to perform its calculations.  Efficiency can be increased by having a 

small number of statistically significant parameters in a regression-based 

metamodel. The key is to measure the sensitivity of each crop to changes in climate 

and measure those changes with the variables in the regression model. These are 

some of the key reasons why metamodels are used for this research. 

1.3 Justification 
 

This research is part of a Coupled Natural-Human Systems (CNH) grant 

funded by the National Science Foundation.  There is limited time to process the 
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large amount of data associated with this project so metamodels are needed.  This 

research represents a critical part of the project by decreasing computation time by 

replacing SWAT with a metamodel.  Figure 1.2 represents a conceptual framework 

for the entire CNH project and this research will replace SWAT calculations in the 

watershed environment box. Once this part of the project is complete, then the 

output from the metamodel will be used to construct an Agent- Based Model to 

determine how farmers will react to changes in government policies and crop 

prices, which will vary in the coming decades because of global climate change. 

 

Figure 1.2 CNH Project Conceptualization (Lant. et al. 2009) 
 
 
 Two main sections will make up the literature review for this research. The 

first section will discuss the main factors that affect crop yields in Big Creek 

Watershed. Determining possible variables for the metamodel will be needed 

through a combination of a priori information found in the literature and variable 
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selection during model creation. A thoughtful review of the literature will help lead 

to a model that maximizes explained variance of crop yield, while at the same time 

remaining parsimonious. The second section will detail the capabilities of the 

simulation model SWAT and how it has come to be widely used. Then the discussion 

will turn to metamodels and detail why and how they are used for various fields of 

research. 
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CHAPTER 2 
 

LITERATURE REVIEW 

 

2.1 Agricultural Landscape 
 

2.1.1 Agricultural Management 
 
 There are a variety of factors that are vital for both crop growth and 

maximizing crop yields. Factors such as weather, soil properties and farm 

management techniques all play a role. In order to achieve high crop yields there are 

certain farm management practices that can be implemented.  Farm management 

represents tillage choices, fertilizer applications, and crop rotation schemes. 

Altering any one of these management options can affect the yields for a given crop. 

Nitrogen fertilizer represents one of the major factors contributing to crop 

yields for certain crops such as corn and cotton that are not nitrogen-fixers (Reidell 

et al., 2009). Fertilizer amounts can vary depending on the type of crop and if the 

crop is grown in continuous rotation or rotated with other crops. Corn grown in 

continuous rotation requires more nitrogen over corn-soybean rotations due to the 

lack of nitrogen that is in the soil for the crop to use. Varying the amount of nitrogen 

fertilizer also plays a key role in crop yields with high rates of fertilizer leading to 

significantly higher yields for corn crops (Reidell et al., 2009; Coulter et al., 2011). 

Farmers play a key role in the management choices they make such as rotation 

possibilities and fertilizer amounts. The choices of these farmers can ultimately 

impact crop yields and the health of streams and lakes in the watershed. Many 

Midwestern watersheds that are under intense monoculture farming techniques can 
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significantly affect the water quality of the streams and lakes due to the amount of 

nitrogen and phosphorous that runoff from the farm field (Guetersloh, 2001). In the 

Midwest, corn and soybean are dominant crops. Around 43 percent of acres planted 

with corn are treated with 25 percent more fertilizer than the crop actually needs, 

though this has decreased from 59 percent in 1996 (USDA, 2013). Not only does the 

amount of fertilizer applied to a farm field make a difference, but the tillage regime 

also plays a part in not only the crop yield but also the transfer of the nitrogen into 

streams and lakes.  

Tillage practices can have a significant effect on crop yields. Three main types 

of tillage practices that farmers employ are no-till, conservation tillage, and 

conventional tillage. In order for a farm plot to be classified as conservation tillage , 

there needs to be at least thirty percent crop residue left on the field following 

harvest. No-till indicates that one hundred percent of crop residue was left on the 

field following harvest, and conventional tillage indicates that less than fifteen 

percent residue was left on the field (Horowitz et al. 2010). Conventional tillage has 

the greatest impact on the landscape because leaving the soil tilled can lead to 

excessive rates of erosion and sediment loss during intense storm events . This can 

lead to a loss of key soil nutrients and impair the streams, rivers, and lakes with 

sediments along with nitrogen and phosphorous fertilizers (Horowitz et al. 2010). 

These benefits along with subsidies from the federal government has led farmers to  

increasingly use conservation tillage and no-till techniques, which can significantly 

reduce erosion and act as a carbon sink (West & Marland, 2002; Yadev et al., 2007). 

Edwards et al., (1988) studied the effect of tillage and crop rotation on corn, 
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soybean, and wheat crops. Their research indicated that soybean yields were higher 

when no-till and conservation practices were employed as opposed to conventional 

tillage. Conservation and no-till practices helped maintain soil moisture and soil 

organic matter, which have a net positive impact on yields.  Around 35 percent of 

cropland planted in the U.S. associated with eight major crops (corn, soybean, oat, 

wheat, barley, rice, sorghum and cotton) employed no till practices (USDA, 2013). 

Around 45 percent of planted soybean cropland employed no-till while only 25 

percent did for corn cropland (USDA, 2013,).  Not only does tillage have an impact 

on crop yields but use of rotation also impacts crop yield. 

Crop rotation is another management technique that can impact agricultural 

yields. In the Midwest, corn and soybeans are rotated to cycle nitrogen and break 

pest cycles. Employing crop rotation benefits the environment because it improves 

soil properties such as bulk density, organic matter, and available water capacity 

(Grover et al., 2009). Employing crop rotation techniques has led to a boost in yields 

for various crops. Edwards et al. (1988) discovered that a corn-soybean rotation 

with conservation tillage resulted in 12 percent higher yields for corn.  Grover et al. 

(2009), studied long term crop yield variability on four crops---corn, soybeans, 

alfalfa and oats. They found that crops that were rotated produced yields 10-12 

percent higher than crops that were grown continuously without rotation. These 

studies have demonstrated the boost in yield with crop rotations and farmers have 

responded by adopting these practices. Around 84 percent of corn and 94 percent of 

soybeans planted in the U.S. is rotated with other crops (USDA, 2013).  While the 

majority of farmers employ crop rotation schemes, there is still a small percentage 
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that maintains continuous cropping practices.  Continuous cropping practices 

impact yields by what is known as yield drag or penalty. This refers to the effect of 

the yield of a crop depending on what was planted the year prior or two years prior. 

Nitrogen availability along with weather and crop residue accumulation are the 

main factors that encourage yield penalties (Gentry et al. 2013). Gentry et al. (2013) 

studied the effects of crop rotation on corn yield and found continuous corn crops to 

have lower yields over a soybean-corn rotation in all years except one. An accurate 

representation of farming practices in Big Creek necessitates incorporating all 

possible rotations that farmers utilize.  

2.1.2 Soil and Topography 
 

 Soil physical, biological, and chemical properties are key factors that affect 

crop yield. Physical properties such as bulk density, soil organic carbon, and soil 

texture directly impact how well a crop can grow. Without sufficient soil organic 

carbon, the plant will not be able to extract the necessary nutrients to achieve 

maximum growth (Kravchencko and Donald, 2000; Yadev, 2007). In addition, soil 

texture impacts what type of crops can be planted. For instance, soils high in clay 

content are poor soils for crop growth because these soils have low infiltration rates 

and often lead to oversaturation.  On the other hand, soils high in silt and loam are 

very good for plant growth.  In poorer soils, perennial crops such as switchgrass and 

alfalfa are better alternatives than corn or soybeans. The texture of the soil can also 

impact how well water is held by the soil and how well it can move into and out of 

the soil profile.  One measure to determine how much water is held in the soil is 
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with available water capacity (AWC). AWC is calculated by taking the difference 

between field capacity (fully saturated) and wilting point --  the deficit of water in 

the soil that will lead to the plant beginning to wilt (Neitsch et al., 2011).  Available 

water capacity determines how well a plant will grow because the crop needs 

sufficient water to reach maturation and the crop cannot be exposed to prolonged 

water stress, otherwise, crop yield will be significantly impacted.  The moisture 

content of the soil plays a critical role in the water stress of the plant. If there is a 

water deficit due to drought and the soil is dry then the plant will begin to 

experience water stress due to evapotranspiration exceeding precipitation. 

Hydraulic conductivity measures how well water can move through the soil; this is 

based on the distribution of macropores and micropores within the soil structure. 

Soils with higher hydraulic conductivity can move water through the soil column 

faster --aiding crop yields -- as opposed to waterlogged soils, which are not suitable 

for crops. Soil temperature is another factor that affects crop yields and the planting 

date of the crop. If the soil temperature is not warm enough, the seedlings will not 

sprout and crop development will be hindered. This is the case for corn when 

temperatures are below 12.5°C and where there is also high soil saturation, which 

can decrease yields considerably (Dwyer et al., 2000).  

 Topography is another factor that can affect crop yields. Topography has a 

direct impact on soil physical, biological and chemical properties. It can influence 

the distribution of soil particles and it can affect the water holding capacity of the 

soil (Kravchenko and Bullock, 2000). Numerous studies have been performed that 

analyze the impact of topography on crop yields. For instance, topographic variables 
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such as slope and elevation have been significantly correlated with crop yields. 

Steeper slopes lead to less organic matter and more erosion, which leads to poorer 

crop yields. Generally, slopes steeper than 5 percent are not suitable for crop 

production (Kravchenko and Bullock, 2000; Jiang and Thelen, 2004). 

2.1.3 Weather and Climate 
 
 Weather and climate are a major factor affecting crop yield variability across 

the Central U.S (Grover et al., 2009). A plant’s ability to grow and mature depends on 

how much water and temperature stress it experiences during the growth cycle. As 

precipitation falls on the watershed, plants and the soil intercept the water and it is 

evapo-transpired back into the atmosphere. Precipitation that makes it to the 

ground is available for plant use, but evapotranspiration represents the majority of 

water loss in a watershed. About sixty percent of the precipitation that falls on a 

given parcel of land is evapo-transpired back into the atmosphere (Neitsch et al., 

2011). Direct measurements of evapotranspiration can be done with evaporation 

pans or lysimeters, but when time and resources are not available there are 

empirical equations that can be used to calculate it. Thornthwaite (1948) is credited 

with the first calculation of evapotranspiration and he used the term potential 

evapotranspiration to describe the amount of water that a plant would transpire if it 

was not at a loss of water and was at a certain height above ground. He also studied 

the effect of water deficit on plants as the difference between precipitation and 

potential evapotranspiration, which varies depending on the soil moisture 

(Thornthwaite, 1948). Over time though, Thornthwaite’s evapotranspiration 
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equation began to be replaced with newer methods that incorporated additional 

parameters.  

Many other methods were introduced to calculate evapotranspiration and 

were either based on temperature methods or solar radiation methods. The 

Penman-Monteith method was the most widely used method and takes into account 

variables such as air temperature, solar radiation, relative humidity, and wind 

speed. It is widely used because it has been tested and measured against empirical 

data and performed well among all the different reference evapotranspiration (RET) 

methods (Jensen et al., 1990). More recently, the Penman-Monteith method has 

been measured against not so well known methods. Yoder et al. (2005), measured 

the Penman-Monteith method against seven other RET methods in the Cumberland 

Plateau of the Southeastern U.S. He compared both radiation based RET methods 

and temperature based methods. His results indicated that the Penman-Monteith 

method was the best method with a coefficient of determination of 0.91 against 

measured lysimeter readings in the field. The next best method was the original 

Penman method with a 0.91 r2 and the Turc method with a 0.90 r2 (Yoder et al., 

2005). For scientists wishing to employ simpler methods who lack the necessary 

data, the Turc method is an attractive alternative. The Turc method only requires 

daily solar radiation along with average daily temperature.  Accurately measuring 

PET is crucial for predicting crop yields in simulation models and metamodels. 

Another weather variable that directly impacts crop yields is temperature. In 

order for crops to begin growing, there needs to be a temperature threshold that 

must be reached. This is known as a crop base temperature and varies from crop to 
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crop and determines when a crop will begin to grow. Once the air temperature and 

soil temperature remain above the base temperature, the crop will grow. Not only 

do low temperatures affect crop growth, but extreme high temperatures can also 

stunt crop growth. If the temperature exceeds the high temperature threshold then 

the crop will begin to experience heat stress and this decreases crop growth and 

yield depending on how many days the crop experiences stress (Nietsch et al., 

2011). This is especially the case when crops are in their early phenological growth 

cycle.  

While day-to-day weather patterns affect the crop there are also long term 

climatic trends that impact the growth and yield of a crop. As climate change is 

estimated to impact average precipitation and temperature levels across the planet, 

there is increasing research into how climate change will impact individual 

watersheds.  IPCC assessments indicate that the timing and intensity of precipitation 

and temperature events will become more volatile with increasing CO2 in the 

atmosphere (Meehl et. al, 2007). This will play out not only on a global scale but at a 

regional and local scale. Climatic variability will be enhanced in the Midwest due to 

the wide range of precipitation and temperature regimes that exist in different 

locations across the Midwest.  Each region in the US has a dominant crop or series of 

crops that grows best with regard to precipitation, temperature and soil conditions.  

For example, the Midwest is dominated by corn and soybean agriculture. The 

appropriate rates of evapotranspiration, precipitation, temperature, and soil type 

make this region ideal for growing these two crops.  Another example is the Great 

Plains region.  The soils there are less ideal and the precipitation is drastically less, 
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so as a result, this region grows a lot of wheat.  Simulation modeling can help 

determine how severe the impacts associated with climate change will be in 

watersheds all across the Midwest. 

The key factor in long-term climatic trends that impact crop yields will be the 

timing and intensity of precipitation and temperature events. Current CO2 levels of 

400 parts per million will continue to increase through the end of the century. 

Higher CO2 levels alone lead to higher crop yields due to increased photosynthesis 

and decreased transpiration, but this will be offset by increased temperatures, 

which will decrease yields (Baker and Allen, 1993).  Enhanced CO2 levels in the 

future will not only affect the mean temperatures, they will also affect variability 

(Porter & Semenov, 2005). Extreme events will become more extensive and 

unpredictable than past climates. Crop yields will be affected depending on the 

timing of the event. Different climatic events can alter the growth of the crop 

depending on the growth stage that the crop is in. Slight increases in temperature 

are problematic for crops such as wheat during the flowering phenological stage 

(Wheeler, 2012). Vital plant processes such as photosynthesis and 

evapotranspiration will also be impacted. The optimum temperature range for 

photosynthesis is between 20°C and 25°C for agricultural crops such as corn, 

soybeans, and wheat (Qaderi & Reed, 2009). Any deviation from this range will 

affect yield potential and the nutrients in the crops. Increases in minimum 

temperatures will also allow crops to be planted earlier, thus, leading to the 

possibilities of corn and soybean crops expanding north in the central US towards 

the Canadian border (Butler and Huybers, 2013). 
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Measuring the sensitivity of these climatic changes in crops represents a 

major area of interest. The delicate interplay of temperature, precipitation, and CO2 

can affect different crops in different ways across many different regions. Butler and 

Huybers  (2013) measured the sensitivity of corn to high temperatures in the 

central US. They measured the sensitivity of corn to a 2°C increase in temperature. 

Results indicated that yield losses will vary depending on the region and the 

adaptations that the farmer implements. Counties located in warmer parts of the 

country are less sensitive to yield losses due to cultivar adaptation. Furthermore, 

yield losses from increased temperatures can be decreased by a factor of two with 

adaptation (Butler & Huybers, 2013). This of course relates to the hypothesized 2°C 

increase, but these results can vary depending on how extreme future climates will 

be. 

A key way to measure and analyze impacts on agricultural land and 

ecosystem services are through the use of software models.  Mapping of a watershed 

can be done through Geographic Information Systems software.  The use of high 

powered computers and advanced programs can lead to better  prediction and 

understanding of climate change impacts on agricultural land in the future under 

varying climatic scenarios. 

2.2 Modeling 
 

2.2.1 Simulation Models 
 

Many different types of software can model watersheds but one type of 

software that is widely used is the Soil and Water Assessment Tool (SWAT).  SWAT 
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was developed by Dr. Jeff Arnold of the USDA for the Agricultural Research Service 

in the early 1990’s. It is used by water resource managers, scientists and 

governmental officials to model a variety of watershed characteristics depending on 

the input variables (Couckuyt et al., 2009).  SWAT is a physically-based continuous 

time model.  Instead of modeling based on probability theory, it models the physical 

processes occurring in the watershed and uses a priori theory and mathematical 

equations to model these processes. The major components in SWAT are climate, 

hydrology, erosion, nutrients, plant growth, and management practices (Neitsch et 

al., 2011). The SWAT model is highly flexible and can be used to determine long-

term impacts associated with land use change, and climate change or it can model 

short-term impacts such as crop rotation impacts on non-point source pollution in 

streams and lakes. It can also model at different scales from the HRU scale to sub-

basin to watershed scale. The watershed is divided into sub-basins and HRU’s, 

which are not spatially explicit in SWAT. The HRU’s represent similar soil, 

topographic and land use properties. Since they are not spatially explicit they 

represent percentages of the sub-basins.  The ability to be used at different scales 

and model different processes makes this model a powerful tool.  

SWAT is a product of numerous legacy models, specifically Chemicals, Runoff, 

and Erosion from Agricultural Management (CREAMS), Groundwater Loading 

Effects on Agricultural Management Systems (GLEAMS), and Environmental Impact 

Policy Climate (EPIC). CREAMS modeled how daily rainfall affected the hydrology of 

the watershed. GLEAMS modeled the pesticide impacts on the watershed. EPIC 

modeled the crop growth in the watershed and how the crops responded to various 
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inputs and soil erosion. These three models led to the creation of the Simulation of 

Water Resources in Rural Basins (SWRRB) model and ultimately SWAT (Gassman et 

al., 2007).  Because of its outgrowth from these models it is used by non-

governmental and governmental organizations such as the USDA and EPA.  It is also 

used around the world to address watershed questions and help in watershed 

management and this wide rate of use has led to its success as a watershed 

simulation model.  The SWAT model also has wide support by a community of 

developers and users.  Because SWAT is open source and free, anybody has the 

ability to look at the source code and alter it to their specific needs.  

There are a few reasons why SWAT is so widely used by many different 

people. One primary reason is that it has the ability to predict how certain variables 

such as land use and management affects water quality, sediment transport, and 

agricultural yields.  It also is physically-based, which means the model utilizes 

empirical equations to describe the physical processes occurring in the watershed 

(Grayson et al., 1992). This is more advantageous to use over stochastic models 

when modeling complex physical processes across the watershed. SWAT was also 

created with the idea of utilizing readily available data such as stream gauge data 

from the USGS or weather data from NOAA.  This has lead to a diverse array of 

applications. 

Numerous peer-reviewed studies document the benefits and uses of SWAT. 

Applications of SWAT range from climate change modeling (Stonefelt et al., 2000; 

Fontaine et al 2001; Jha et al., 2006), to hydrologic predictions (Harmel et al., 2006; 

Cao et al., 2006), and farm pollutant effects (Saleh et al., 2000; Stewart 2006).  In 
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addition, there are numerous studies that relate to the robustness of the SWAT 

model in its ability to accurately model stream flow characteristics along with 

sedimentation and nutrients (Arnold et al., 1999; Rosenthal and Hoffman, 1999; 

Santhi et al., 2006). 

The majority of published literature relating to SWAT has to do with the use 

of farm management techniques and how these practices affect the watershed from 

erosion to water quality in streams and lakes. The advantage of SWAT deals with its 

ability to measure these changes at the sub-basin and HRU scale. Tillage and 

fertilizer applications are managed by SWAT for each crop that is grown. These 

practices are implemented at certain points within the growing season based on the 

fraction potential heat unit index that SWAT uses when implementing these 

practices (Neitsch et al., 2011). The user can control what type of tillage is used and 

how much fertilizer is to be applied. Conservation practices can also be 

implemented to determine how techniques such as terracing and riparian buffers 

will affect sedimentation and nutrient losses into streams within the watershed. 

The robustness of the model has also been tested by comparing different 

calibration and validation techniques (Bekele & Nicklow, 2007; Zhang et al., 2009; 

Moriasi et al., 2012). Bekele and Nicklow (2007), looked at the automatic calibration 

of SWAT using a genetic algorithm.  They calibrated the daily stream flow and 

sediment concentration in the Big Creek Watershed.  Their findings indicated that 

automatic calibration of SWAT using a genetic algorithm does a good job of 

depicting the parameters, but it tended to overestimate the parameters, which could 

be due to a lack of data given the small scale of the Big Creek watershed. SWAT has 
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been tested for many different applications and its wide use as a watershed 

simulation model lends itself as a capable and robust model. 

2.2.2 Metamodels 

2.2.2.1 What is a metamodel 

  
 A metamodel is essentially a model of a model (Broad et al., 2010).  

Metamodels are created because there is often a need to approximate real world 

systems and simulation models with a mathematic equation.  The metamodel can 

perform at higher speeds than the simulation model and most of the time can 

approximate the real world system nearly as accurately.  The metamodel mirrors 

the input and output processes that take place in the simulation model.  Often the 

simulation model requires large amounts of inputs and the metamodel is more 

attractive because it reduces the amount of inputs necessary and aims to achieve a 

similar result with the output. By operating in this manner, it makes it more efficient 

to create a metamodel than to run the simulation model.  This is especially the case 

if the time and resources for a project are limited. Metamodels have many different 

forms and they are applied in a wide variety of fields from engineering to 

agriculture. 

2.2.2.2 Metamodel Form 

 
The modeling process begins by deciding what metamodel form will best fit 

the data at hand. The researcher must determine the appropriate metamodel class 

and form. Metamodel classes such as neural networks, kriging, polynomial and 

linear regression are frequently used in the literature and provide robust 
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techniques for creating the metamodel.  Multiple linear regression is the simplest 

form to use (Equation 2.1) and is a common metamodel technique. Polynomial 

metamodels apply a higher order polynomial fit to the data depending on the order 

chosen by the researcher (Equation 2.2). Depending on the polynomial order of the 

independent variable there will be K coefficients for each independent variable. 

Kriging models utilize a general linear regression form to measure the correlation in 

the residuals of the observations with the regression model (Equation 2.3). Jin et al. 

(2007), studied the various metamodelling techniques to discover which one was 

the most efficient and robust, and in terms of model construction and efficiency the 

polynomial regression was suggested by the authors as the first metamodel class to 

use. Pineros Garcet et al. (2005), assessed how a kriging metamodel performed 

against a neural network model in nitrate leaching prediction, and found that the 

kriging model performed better in terms of RMSE and model efficiency than the 

neural network metamodel. If one metamodel class does not perform adequately, 

the researcher can choose another class to reach the desired results. 

 

        Equation 2.1 Multiple Linear Regression Equation 

 

Equation 2.2 Polynomial Regression Equation 
 
 

 

Equation 2.3 Kriging Equation 
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 There are several approaches to selecting independent variables in the 

process of fitting regression models.  One approach is known as all-possible-subsets 

regression. In this method the researcher examines all the potential combinations of 

independent variables and measures their goodness-of-fit with each other.  This 

function can be utilized in the R software and the all-subsets can be based on R2, 

adjusted R2 or Mallows C. Variables that have the highest goodness-of-fit should be 

included in the equation, whereas, variables with low goodness-of-fit should be 

omitted from the final equation due to the lack of explanatory or predictive power, 

unless they have theoretical justification.  

Another approach in variable selection is stepwise regression, which is an 

alternative to all subsets regression. This procedure examines the contribution of 

each variable and if the variable has a significant contribution to the equation then it 

is added, whereas, if the variable does not have a significant contribution then it is 

omitted. Stepwise is usually based on Akaike Information Criterion (AIC). The 

variable with the greatest contribution is added first along with subsequent 

variables, and this is known as forward addition.  Another approach is backward 

elimination, which adds all the variables first and then systematically eliminates 

them using AIC.  Both of these methods are not exclusive but are often used in 

tandem in the beginning stages of model identification.  

 Models that are intended for predictive purposes have two primary goals.  

The first is that the model should be developed with the best possible predictors.  A 

model that is not efficient or robust will not have good predictive power.  The 

second goal is that the model should be a parsimonious model -- it should limit the 
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explanatory variables and have as few variables as possible while trying to 

maximize variance explained (Burt et al., 2009).  This research intends to use these 

models for predictive purposes and will seek a balance between being parsimonious 

and including the necessary variables in crop yield prediction. 

2.2.2.3 Metamodel Applications 
 
 

Numerous studies utilize metamodels as a means to replace a simulation 

model. Metamodels are primarily used in the fields of engineering and computer 

science, but there are numerous studies where metamodels are applied to 

agricultural issues. For agricultural applications, metamodels have been employed 

for measuring irrigation needs, along with nonpoint source pollution (Bouzaher et 

al., 1992; Wu & Babcock, 1996; Galelli et al., 2010). Galelli et al. (2010), built a 

metamodel to measure water demand for the Muzza-Bassa irrigation district. They 

utilized crop parameters along with soil and meteorological parameters as inputs to 

the metamodel. For metamodel class they chose a state-dependent parameter model 

and achieved a high R2 of around 80 percent for the calibration and validation 

datasets (Galelli et al., 2010). Wu & Babcock (1996), modeled nitrate water pollution 

in the Central US using a regression metamodel to approximate the EPIC simulation 

model. Input parameters utilized for the model included management systems, soil 

properties, and weather parameters. They found that most of the coefficients were 

significant at the 0.1 alpha level and that the model was able to predict 75 percent of 

nitrogen runoff and 73 percent of nitrogen leaching. Bouzaher et al. (1992) also 

looked at modeling non-point source pollution using a nonlinear regression 
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metamodel. Their metamodel approximated the PRZM and STREAM simulatio n 

models.  Most of the explanatory variables for the metamodel represented soil 

properties such as organic matter and bulk density. The metamodel form they used 

was a non-linear regression metamodel that was able to explain more than 80 

percent of the variance in non-point source pollution amounts (Bouzaher et al., 

1992).  These studies demonstrate that metamodels are able to explain their chosen 

phenomena with a moderate-high degree of accuracy. 
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CHAPTER 3 
 

METHODOLOGY 
 

3.1 Parameter Selection 
 
 The parameters that were used in each of the eight watersheds were: 

weather, tillage, soil, topography, fertilizer, and crop rotation.  Each of these 

parameters was justified based on theory or empirical evidence as found in the 

literature. Variables were calculated at different temporal scales from yearly 

variables to seasonal and monthly variables. These were varied in order to capture 

certain weather impacts on crop phenological stage during the course of the 

growing season. The methodology followed the workflow in Figure 3.1. 

 
Figure 3.1 Metamodel Methodology Framework 
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3.1.1 Weather 
 

Weather variables represent the dominant influence on crop yields. Daily 

mean temperature and precipitation were used from both historical records from 

1974-2010 and future climate data for the Anna, IL weather station. The future 

climate data was downscaled to Big Creek Watershed by Dr. Justin Schoof. Daily 

weather data were provided for precipitation, solar radiation, wind speed, relative 

humidity, and minimum and maximum temperature for the time period 2006-2095. 

In order to approximate the crop growth model in SWAT, the metamodel 

utilizes mean daily temperature data or maximum daily temperature to derive 

values for temperature stress. Daily temperature values were input into the python 

script to calculate temperature stress as an output. These data were then brought 

into excel and aggregated using pivot tables to apply the final value for the specific 

year and applied to the whole watershed. Monthly sums and seasonal sums are used 

as potential explanatory variables in the model. Temperature stress is a function of 

three components. Daily average air temperature, the optimal temperature of the 

crop, and the base temperature of the crop are all utilized to derive temperature 

stress. Under optimal conditions, the temperature stress for a given crop is zero and 

approaches one as temperature stress increases (Neitsch et al., 2011). The crop 

receives a temperature stress of 1 if the daily average air temperature is below the 

base temperature and above the high temperature threshold. For daily temperature 

between the base temperature and high temperature threshold, the temperature 
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stress value ranges from 0-1 for the day.  The data needed for optimal temperature 

and base temperature for each plant was extracted from the SWAT plant database. 

Table 3.1 shows the base, optimal, and high temperatures for each crop.  

Table 3.1 Crop Temperature Thresholds 

Crop Temperature Thresholds Celsius 

  Corn Soy Cotton Alfalfa Switch grass 

Base 8 10 15 4 12 

Optimum 25 25 30 20 25 

High 42 40 45 36 38 

 

Equation 3.1 details the formulas that were used to calculate temperature 

stress.  This is the same formula that SWAT uses to calculate temperature stress. 

Due to the lack of sensitivity of the temperature stress in the hot months of the 

growing season, there were two monthly temperature stress variables created for 

July and August that were based on daily maximum temperature instead of daily 

average temperature.  April and May temperature stress were calculated using daily 

average temperature to capture the effects of the cool temperatures on the gro wth 

of the crop in the early phenological stage. 

tstress = 1        when  

tstress = 1-exp  when  

tstress = 1- exp  when  

tstress = 1      when  

 
 
Equation 3.1 Temperature Stress Equation Utilized by SWAT (Neitsch et al. 2011) 
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An alternative temperature variable was used in addition to temperature 

stress.  The growing degree day (GDD) method was used to calculate GDD’s for each 

month of the growing season from April through September along with total annual 

GDD’s. Each day where the temperature rises above the base temperature of the 

crop, the GDD value was the difference between the daily average temperature and 

base temperature. Each positive daily GDD was summed over the month to get the 

monthly value (McMaster and Smika, 1997). Once temperature reaches the high 

temperature threshold for the crop, GDD was not added. Table 3.1 shows the base, 

optimal and high temperature thresholds for each crop that were used in the GDD 

calculation. 

Moisture variables were represented by total annual precipitation, monthly 

precipitation during the summer months and the water surplus (WS) method. WS 

was calculated by taking the difference between precipitation and the potential 

evapotranspiration method developed by Thornthwaite (Thornthwaite, 1948). Each 

day of the growing season WS was calculated and then summed up over the entire 

season to derive a monthly and yearly WS. WS was calculated for the May-August 

time period due to the importance of precipitation on the crop during its maximum 

growth stage. If the water surplus for a crop is too low then there will be a negative 

impact on the yields of that specific crop, but if precipitation exceeds potential 

evapotranspiration then there will be a water surplus in the watershed and the crop 

will have higher yields. Potential evapotranspiration was derived according to the 

Turc method (Yoder et al., 2005). The Turc method (Equation 3.2) incorporates 

daily average air temperature and solar radiation as detailed in the literature review 
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section. This formula was implemented in excel to calculate that daily reference 

evapotranspiration. 

 

Equation 3.2 Turc Reference Evapotranspiration Formula 

Where: 

At = 1.0 for RHmean = 50% 

Tavg = daily average temperature in °C 

Rs = solar radiation (MJ m2/day) 

λ = 2.49 

3.1.2 Tillage 
 

Tillage was a categorical variable in the model that takes the value of no-till, 

conservation tillage, or conventional tillage. Dummy codes generated by R are used 

to indicate the level of tillage in the model. The baseline value for the tillage dummy 

variable was set to conventional tillage. Tillage varies with each crop rotation that is 

input into SWAT in order to achieve the full range of possible input values.  

3.1.3 Fertilizer 
 

Fertilizer represents the amount of nitrogen fertilizer applied to the crop.  

Data for fertilizer are available at the national level from the USDA Economic 

Research Service. Data are also utilized at the county level from the Conservation 

Technology Information Center (CTIC) databases. Fertilizer amounts vary 

depending upon the crop being modeled. Corn was modeled with a nitrogen 

fertilizer range of 112-222 kg/ha, cotton with a range of 33-96 kg/ha (Roberts et al. 
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1999), switchgrass from 0-134 kg/ha (Schmer et al, 2008). For the winter wheat 

rotation in the soybean model, 75 kg/ha of fertilizer was applied to winter wheat. 

Soybeans and alfalfa generally do not require nitrogen fertilizer so the amount was 

set to zero for both crops. 

3.1.4 Soil 
 
 Soil properties utilized for the metamodel were determined by reviewing the 

literature to determine which soil properties correlate highest with crop yields.  The 

soil properties also had to be utilized by the SWAT input file. For the metamodel to 

be consistent, soil organic carbon, available water holding capacity, and hydraulic 

conductivity are three variables that were chosen based on their correlation with 

high crop yields. Bulk density was considered, but it has a high correlation with soil 

organic carbon so this variable was excluded from the model. These data were 

obtained by the Natural Resources Conservation Service (NRCS) SSURGO soils 

database, which contains extensive information on soil physical, biological, and 

chemical properties for every county in the United States. Soil property data are 

extracted from the soils table stored in the SWAT access database. Soil data are 

provided for each horizon or as a total for the entire soil column.  

3.1.5 Crop Rotation 
 

Crop rotation represents the crop choices that farmers have over a given 

time frame.  A three-year crop rotation scheme was employed for Big Creek 

Watershed.  Examples of three-year crop rotations would be corn-soybean-corn, 

corn-corn-soybean or alfalfa-alfalfa-alfalfa. Corn was rotated with cotton and 
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soybeans. Soybean was rotated with corn and cotton. Cotton was rotated with corn 

and soybeans.  Switchgrass and alfalfa, both perennials, were planted continuously. 

Table 3.2 details the crop rotations used in the models. The first column represents 

the crop that was planted in the first year and the second and third columns 

represent the crops in the second and third years of the three-year crop rotation. 

Crops and rotations were determined based on the cropland data layer from the 

National Agricultural Statistics Service (NASS) and potential future crops were 

added to the rotation based on hypothesized climate conditions in the future. For 

example, cotton or switchgrass could be grown in Big Creek watershed under a 

warmer climate and, as a result, cotton was added to the rotation possibilities for 

Big Creek. Crop rotations were stored in a lookup table, which the python script 

read from to generate the desired permutation that was simulated through SWAT. 

Crop rotation dummy variables were generated by the R statistical software. 

Baseline dummy rotation was corn-corn-corn for the corn model, corn-corn-

soybean for the soybean model, and corn-corn-cotton for the cotton model. 

Table 3.2 Crop Rotations Used in the Models 

First Year (C-2) Second Year (C-1) Third Year (C) 

Corn Corn Corn 

Corn Soybean Corn 

Soybean  Soybean Corn 

Corn Corn Soybean 

Soybean Corn Soybean 
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Table 3.2 (Continued) 

 
Soybean Soybean Soybean 

Cotton Corn Soybean 

Cotton Soybean Soybean 

Corn Soybean/WW Soybean 

Corn Cotton Corn 

Soybean Cotton Corn 

Cotton Corn Corn 

Cotton Soybean Cotton 

Soybean Cotton Cotton 

Corn Corn Cotton 

Corn Soybean Cotton 

Alfalfa Alfalfa Alfalfa 

Switchgrass Switchgrass Switchgrass 

 

3.2 SWAT 
 

3.2.1 SWAT Data 
 
 Three initial data sources were needed to begin the SWAT procedure. These 

data sources were topographic, land use, and soils data. Topographic data were 

derived from a 30-meter digital elevation model (DEM). This DEM was obtained 

from the USGS National Elevation Dataset. Land use data came from the USGS 

National Land Cover dataset. Soils data came from the NRCS SSURGO database, 
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which is based on a 1:24,000 scale.  All three of these datasets were projected into 

the World Geodetic System Datum UTM Zone 15N and overlaid to begin the 

watershed delineation process. 

 

3.2.2 SWAT Setup 
 
 The next step in setting up SWAT is to load in the necessary layers to create 

the HRU’s. First, SWAT creates sub-basins within the watershed based on the digital 

elevation model (DEM) that the user inputs. SWAT then delineates those sub-basins 

into smaller HRU’s with a unique combination of land use, soils, and slope (Figure 

3.2). 
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Figure 3.2 Anatomy of Big Creek Hydrologic Response Units 
 
 

HRU’s are not spatially explicit by default in the SWAT model, but for this 

project the HRU’s were made to be spatially explicit. In order for SWAT to accurately 

model watershed conditions, the model has to be calibrated to existing conditions 

within the watershed using three steps. The first step is to use part of the 

observation data that the user obtains. The second step is run the model over a 

range of values for the unknown parameters in order to achieve best-fit results. The 

third step is to apply the calibrated model to the remaining observation data that 

was held out in the first step (Neitsch et al., 2011).  

3.2.3 SWAT Calibration & Validation 
 

 Big Creek had a total of 1644 HRU’s after calibration (Figure 3.3). Big Creek 

watershed was calibrated according to data in the years 1999, 2000, and 2001  and 

validated on the years 2002 and 2003. After SWAT was calibrated and validated it 

was ready to run simulations with different climate scenarios. Historical climate 

data and future scenarios were run through SWAT (Table 3.4-3.5). Since SWAT 

operates at a daily time step, daily data were required to run a three-year crop 

rotation simulation for solar radiation, maximum and minimum temperature, 

precipitation, relative humidity, and wind speed. These data were formatted in excel 

files and then output to the necessary SWAT files. SWAT simulations were able to 

output accurate yield values compared against historical averages. Utilizing 

historical yield data for Union County from NASS, the mean corn and soybean yields 

of the SWAT runs were compared against historical averages from 1974-2010. The 
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historical average for corn was 6.71 t/ha, while the SWAT simulation was 7.9 t/ha. 

For soybeans, the historical average was 2 t/ha, and the mean yield for the SWAT 

runs was 2.5 t/ha. These mean yields overestimate the historical averages, but they 

also incorporate potential future climate scenarios not just historical climate.  

 

 

Figure 3.3 Big Creek Hydrologic Response Units 
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3.3 Python 
 

The python programming language was instrumental in the replacement of 

SWAT and ultimately in the creation of the metamodel itself. Numerous python 

scripts were created for pre-processing, post-processing, SWAT automation, and 

calculating the independent variables. Table 3.3 shows the python scripts that were 

used along with the dedicated task that each script performed. How python was 

used will be detailed according to the tasks that the script performed. 

Table 3.3 Python Scripts Used in this Research 
Python Scripts 

Name Task 

TempSplit.py preprocessing 

CombinationsV10.py SWAT automation 

Extract.py post processing 

CRN_tstress.py Variable Creation 

CRN_GDD.py Variable Creation 

Soy_tstress.py Variable Creation 

Soy_GDD.py Variable Creation 

CTN_tstress.py Variable Creation 

CTN_GDD.py Variable Creation 

Alf_tstress.py Variable Creation 

Alf_GDD.py Variable Creation 

SWG_tstress.py Variable Creation 

SWG_GDD.py Variable Creation 

 

3.3.1. Pre-processing Script 
 
 Pre-processing involves taking the raw weather data in a text file format and 

bringing it into Microsoft Excel to format it for SWAT use. SWAT requires that each 

daily observation in the weather file have a year value, unique ID value, and value 

associated with the specific weather variable. All three of these values must be 

concatenated and then output into the appropriate SWAT text file. The raw weather 



38 
 

data must be bounded by zeroes and this is where the python script was 

implemented. The script ensured quality control for the data that were fed into 

SWAT. 

 

3.3.2. SWAT Automation Script 
 

The automation script was a rotation generator script to generate all the 

permutations possible in the population dataset.  These permutations represented 

the possible rotations for each crop along with the tillage application. The number of 

possible permutations varied according to the crop. For example, soybeans and corn 

incorporated cotton as a possible rotation while alfalfa and switchgrass did not 

because they are perennial crops and are implemented in 5-year cycles. The 

possible rotations were based on available empirical data regarding farmer 

practices and potential rotations that might exist under a future climate scenario. 

The second script replaced all the rotations in each of the mgt files (Figure 3.4) 

within SWAT. The mgt file is where the management information for each HRU is 

stored for SWAT to process when the simulation is run. Figure 3.4 represents a 

sample mgt file where the python script replaces the bottom half of the file where 

the operation schedule is listed. Those numbers changed depending on the unique 

permutation that is called up by the script. The third script was used to call up 

SWAT to run all of the rotations for a given scenario. 
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Figure 3.4 Sample MGT File Representing One HRU 
 

 

3.3.3. Independent Variable Construction 
 
   The last script was used to extract the data from the input and output files.  

Python was also used to calculate temperature stress and growing degree days. 

Because these variables need to be calculated based on certain conditions, such as 

average temperature, python was necessary to implement conditional statements. 

Python is a fundamental part of the methodology and these scripts helped reduce 

the time necessary to extract the data and run all the scenarios. 
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3.4 Metamodels 
 
 Once the data were sampled using a simple random sample technique, a 

regression-based metamodel was used to mimic SWAT. Methodology for metamodel 

creation was based on previous research. The metamodel class linear regression 

was used to estimate the parameters. Linear regression was chosen because of the 

interpretability of the coefficients and the ability to incorporate categorical 

variables into the model, which other metamodel forms cannot (e.g. Kriging and 

ANN).  The data were input into a regression equation to derive the necessary 

output. The output dependent variable represents crop yield derived from SWAT 

output HRU files. The explanatory variables were derived from SWAT files and 

python scripts.  The process of creating these metamodels was performed utilizing 

the open source statistics software R.  These equations were applied to each HRU to 

determine various crop yields under various climate scenarios in any given HRU 

within Big Creek Watershed.  

3.4.1 Metamodel Calibration 
 

In order to estimate the metamodel coefficients, the simulation model SWAT 

must be run over the entire range of input values used by the metamodel. SWAT 

runs were chosen based on their ability to maximize the variance of the climate 

variables and management practices. With each permutation, SWAT generated a 

yearly crop yield value that was placed into a database along with the explanatory 

variables associated with the crop yield. Once the population dataset was created, a 

simple random sample was taken from the dataset in order to create the 

metamodel. The sample size used was 20 percent. The statistical software R was 
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used in order to perform an all-subsets regression procedure on the sampled 

dataset. All-subsets regression performs an exhaustive forward and backward 

search through all of the variables and outputs the best predictors for each number 

of variables (Burt et al., 2009). For example, the user can select to output the best 

three predictors so R would output the top three variable combinations for each 

number of predictors based on some criteria such as R2 or AIC. The best regression 

model was chosen based on the coefficient of determination, and root mean square 

error. The signs of the coefficients were analyzed along with any potential problems 

arising from multicollinearity between the variables. The calibration model was 

then measured against a validation model. 

3.4.2 Metamodel Validation 
 
 The metamodel was validated by taking another sample from the population 

dataset in order to compare the results from the first sample with that of the second 

sample. The models were compared based on their R2 and RMSE. Corn and soybean 

yields produced by the metamodel were compared against historical average corn 

and soybean yields in Union County. Once the metamodel was validated, it was used 

for predicting crop yields in Big Creek Watershed under various climate scenarios. 

3.4.3 Climate Scenarios 
 
  Climate scenarios were employed in order to capture variability associated 

with temperature and precipitation. Dr Justin Schoof provided downscaled climate 

data that corresponded with a low, medium, and high scenario for CO2 levels in the 

atmosphere. He utilized regional climate projections RCP 26, RCP 45, and RCP 85 for 
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each of the four climate models: IPSLCM, CNRM, MRI, and MPI. For 48 years in 

historical, MRI, and IPSLCM weather scenarios, SWAT was run and the output data 

were collected and combined into one large population dataset. In order to capture 

the possible realizations with future climate, some of the data were adjusted to 

account for a wide range of weather. These data were varied beyond what the 

models predicted. Annual precipitation was varied from a low of 200 mm to a high 

of 2000 mm (Table 3.4). Temperature was varied from a low annual average 

temperature of around 12°C to a high annual average temperature near 18°C (Table 

3.5).  

  The year column in Table 3.4 represents the final year used to calibrate the 

metamodel from the historical and downscaled data. Years run with historical 

weather include: 1974-1976, 1978-1980, 1980-1982, 1986-1988, 1995-1997, 1998-

2000, and 2004-2006.  Years that were run under the RCP85 carbon scenario of the 

IPSLCM model were: 2016-2018, 2044-2046, 2059-2061, and 2082-2084. Years that 

were run through the RCP26 carbon scenario for the IPSLCM model were 2050-

2052. Years that were run through the RCP85 carbon scenario of the MRIC model 

were 2044-2046, and 2072-2074.  The years with altered precipitation values 

include 1988B, 2052A, and 2052B.  The years where mean annual temperature was 

altered were 2018 and 2084.  A total of 48 years were run through SWAT. Multiply 

that by the number of permutations for each crop and the dataset was populated 

with hundreds of thousands of observations that represent HRU’s in Big Creek 

Watershed. 
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Table 3.4  Sixteen Years Run Through SWAT with the Year Representing the Final 

Year in the Three Year Rotation Sequence 

Year Total Precip (mm) 
Total PET 
(mm) 

1976 895.8 443.763 

1980 805.5 450.987 

1982 1407 454.170 

1988A 988.6 467.627 

1988B 743.3 467.627 

1997 1145 446.596 

2000 1243 439.352 

2006 1540 444.888 

2046 1776 395.589 

2074 2030 399.615 

2093 1615 404.653 

2052A 217.3 401.715 

2052B 308.3 401.715 

2061 888.4 399.140 

2084 1362.1 418.469 

2018 1050.3 363.384 

 

 

Table 3.5 Average Air Temperature °C For Each Month in the Growing Season 

  Temperature Variables ( All averages of daily avg air temp Celsius)     

Year April May June July Aug Sept Annual 

1976 15.583 17.377 23.212 26.211 23.740 20.355 13.804 

1980 14.008 19.647 25.053 28.816 28.529 23.563 14.622 

1982 12.467 22.355 23.035 26.881 24.768 20.730 14.534 

1988A 15.047 20.337 24.918 26.979 27.589 21.952 14.716 

1988B 15.047 20.337 24.918 26.979 27.589 21.952 14.716 

1997 11.205 16.735 22.713 25.592 23.792 20.323 13.333 

2000 13.088 20.747 23.697 24.685 25.723 20.405 13.948 

2006 17.048 18.874 24.068 25.629 25.679 18.590 14.705 

2046 18.325 21.816 25.565 27.166 24.795 20.220 15.025 

2074 20.755 23.897 25.618 26.840 23.692 20.167 15.265 

2093 19.538 22.894 28.338 28.110 24.861 16.630 15.856 

2052A 17.368 25.274 26.598 29.568 26.947 19.318 15.751 
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Table 3.5 (Continued) 

2052B 17.368 25.274 26.598 29.568 26.947 19.318 15.751 

2061 19.77333333 25.07903226 25.4 25.89032 26.9371 20.83833 16.15356 

2084 22.8805 27.15935484 30.096 31.075 26.74419 21.703 17.750 

2018 13.105 16.688 19.957 23.048 20.040 17.208 12.144 
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CHAPTER 4 
 

RESULTS 
 
 
 Table 4.1 details the five crop models with their associated explanatory 

variables and coefficients for each variable. R2, RMSE, and the coefficient of variation 

are reported for each model at the end of the table. The variables included in the 

model are: nitrogen, slope length, available water capacity, May water surplus, 

August water surplus, April growing degree days, June growing degree days, and 

annual potential evapotranspiration. Dummy variables in the model to account for 

management techniques are: first year rotation as cotton (C-2), first year rotation as 

soy (C-2), second year rotation as cotton (C-1), second year rotation as soy (C-1), 

second year rotation as winter wheat (C-1), conservation tillage and no-till. Each of 

the regression models were validated by taking a new sample and comparing the 

results against the calibration model. 

Table 4.1 Regression Models For Each Crop 
 

Variables Corn Soy Alfalfa SWG Cotton 

Intercept -2.396 -7.601 -1.92092 -43.48 -7.634 

Nitrogen (kg) 0.0318 0 0 0.08068 0.0181 

Slope Length (m) -0.0787 -0.01459 -0.03543 -0.06845 -0.008 

Available Water Capacity (mm) 0.00731 0.001159 0.002248 0.01119 0.002 

May Water Surplus (mm) 0.00942 0.006381 -0.00296 -0.01681 0.006 

August Water Surplus (mm) 0.00905 0.004245 0.0309 0.0413 0.001 

April Growing Degree Days (Days) 0.01615 0.00581 0.006883 0.004744 0.004 

June Growing Degree Days (Days) -0.0351 -0.00064 -0.0277 -0.01309 -0.005 

PET (mm) 0.0401 0.02758 0.053334 0.115 0.021 

First year rotation cotton (C-2) 0.2499 0.01352     0.062 

First year rotation soy (C-2) 0.1097 0.007692     0.168 
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Table 4.1 (Continued) 

Second year rotation cotton (C-1) 0.08394 -0.1278     -0.175 

Second year rotation soy (C-1) 0.3518 0.01228     0.065 

Second year rotation winter wheat 
 

-0.5487 
   Conservation till 0.1351 -0.0045 -0.01208 0.4525 -0.006 

No-till 0.1211 -0.01051 0.007657 0.1277 -0.16 

Calibration R2 0.7059 0.6233 0.8381 0.7672 0.4745 

Calibration RMSE 1.679 0.7563 0.9077 2.363 0.844 

Validation R2 0.7074 0.6263 0.8405 0.7593 0.4735 

Validation RMSE 1.669 0.7534 0.8953 2.4 0.841 

Mean Yield (t/ha) 7.976 2.556 6.635 8.804 2.037 

Coefficient of Variation 0.21050 0.298 0.136804 0.26840 0.4143 

 
 
 

Table 4.2 Standardized Coefficients For Each Explanatory Variable 
 

Standardized Coefficients 

  Corn Soy Alfalfa SWG Cotton 

Nitrogen 0.341 0 0 0.608 0.24 

AWC 0.182 0.073 0.077 0.172 0.154 

SLOPE -0.226 -0.105 -0.145 -0.135 -0.046 

April GDD 0.429 0.451 0.247 0.076 0.233 

June GDD -0.747 -0.557 -0.841 -0.186 -0.5 

MAYWS 0.156 0.269 -0.064 -0.195 0.246 

AUGWS 0.159 0.17 0.462 0.442 0.048 

PET 0.379 0.792 0.688 0.686 0.431 

 
 
 
 
 Results for each model are reported with univariate, bivariate, and 

multivariate statistics. 

 

4.1 Soybean Model 
 
 
 Univariate Statistics 
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Table 4.3 details the summary statistics for each of the explanatory variables 

along with the dependent variable. 

 
Table 4.3 Summary Statistics for Soybean Model Explanatory Variables 

 

Variable Min Mean Median Max 

Precipitation (mm) 217.3 1063.8 988.6 2029.7 

Nitrogen (Kg/ha) 0 0 0 0 

Slope Length (meters) 0.1907 11.4117 8.5028 66.7935 

AWC (millimeters) 7.428 291.121 243.2 443.1 

AprilTS (Days) 3.468 13.244 14.864 25.658 

MayTS (Days) 0.2791 4.1927 2.0181 14.8085 

JulyTS (Days) 0.0416 15.3963 16.445 21.230 

AugTS (Days) 0.3284 15.225 18.988 20.528 

AprilGDD (Days) 57.0 194.6 169.8 397.7 

MayGDD (Days) 142.7 348.2 333.1 531.9 

JuneGDD (Days) 223.9 449.2 602.9 602.9 

JulyGDD (Days) 315.2       519.7 523.3 653.3 

AugGDD (Days) 233.6 470.5 486.1 574.4 

GDD (Days)        1164 2589 2586 3465 

PET (mm) 338.2 417.6 402.8 467.6 

AprWS (mm) -31.449 33.584 25.557 143.429 

MayWS (mm) -36.31 50.81 41.74 141.25 

JuneWS (mm) -58.2 25.96 33.18 114.29 

JulyWS (mm) -34.844 22.304 24.576 110.61 

AugWS (mm) -38.35 24.49 23.08 126.95 

WS (mm) -185.05 668.3 686.9 1380.41 

YLD (t/ha) 0.00 2.556 2.685 7.275 

 
 

 
Bivariate Statistics 
 

Figures 4.1-4.7 display the bivariate plots of soybean yields for each 

explanatory variable. 
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.  

Figure 4.1 Bivariate Plot of Soybean Yield and Available Water Capacity 

 

 

Figure 4.2 Bivariate Plot of Soybean Yield and Slope Length 
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Figure 4.3 Bivariate Plot of Soybean Yield and April Growing Degree Days 

 
 

 
Figure 4.4 Bivariate Plot of Soybean Yield and June Growing Degree Days 
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Figure 4.5 Bivariate Plot of Soybean Yield and May Water Surplus 

 
 

 
Figure 4.6 Bivariate Plot of Soybean Yield and August Water Surplus 
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Figure 4.7 Bivariate Plot of Soybean Yield and Potential Evapotranspiration 
 
 
 
 Multivariate Statistics 

 
The soybean regression model was able to explain 62 percent of the variance 

in yield. The mean yield for the model was 2.3 t/ha. The RMSE of the model was 

0.75t/ha. The explanatory variables and their corresponding coefficients are listed 

in Table 4.4.  All variables were significant at the 0.05 alpha level except for first 

year rotation soybean, second year rotation soybean, conservation tillage and no-

till. 

Table 4.4 Regression Model for Soybean 
 

Soybean Model 

Coefficients Estimate Std. Error t value Pr(>|t|) 

(Intercept) -7.601 0.03434 -225.64 <2e-16 

SLOPE -0.0138 0.0002805 -52.014 <2e-16 

AWC 0.001136 0.00003131 37.008 <2e-16 



52 
 

Table 4.4 (Continued) 

MayWS 0.006439 0.00007806 81.748 <2e-16 

AugWS 0.004071 0.00008436 50.317 <2e-16 

AprGDD 0.00581 0.00005133 113.2 <2e-16 

JuneGDD -0.007 0.0000495 -140.24 <2e-16 

PET 0.02758 0.0000803 343.496 <2e-16 

FYRCT 0.0239 0.008477 1.595 0.008 

FYRS 0.002897 0.005775 1.332 0.60 

SYRCT -0.1326 0.009564 -13.364 <2e-16 

SYRS 0.0028 0.005774 2.126 0.61 

SYRWW -0.5487 0.01223 278.986 <2e-16 

TillCSV -0.00207 0.006054 -0.739 0.73 

TillNT -0.00039 0.006044 -1.738 0.94 

 
 
 

4.2 Corn Model 
 
 
 Univariate Statistics 
 
 
 Table 4.5 details the summary statistics for each of the explanatory variables 

along with the dependent variable. 

 
Table 4.5 Summary Statistics for each Variable 

 

Variable Min Mean Median Max 

Precipitation (mm) 217.3 1063.8 988.6 2029.7 

Nitrogen (Kg/ha) 100 159.7 156.0 223 

Slope Length (meters) 0.1907 11.4117 8.5028 66.7935 

AWC (millimeters) 7.428 291.121 243.2 443.1 

AprilTS (Days) 2.188 8.764 9.722 15.488 

MayTS (Days) 0.2002 1.9296 1.2245 6.0975 

JulyTS (Days) 0.1582 4.2992 3.5535 16.6153 

AugTS (Days) 0.9094 3.792 2.6041 8.6627 

AprilGDD (Days) 153.2 260.5 227.5 426.1 

MayGDD (Days) 269.3 410.6 395.1 593.9 

JuneGDD (Days) 358.7 514.9 511.6 610.1 

JulyGDD (Days) 466.5       579.6 588.4 645.3 
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Table 4.2 (Continued) 

AugGDD (Days) 373.2 540.8 549.4 636.4 

GDD (Days)        2098 3101 3096 3815 

PET (mm) 363.4 424.1 418.5 467.6 

AprWS (mm) -28.02 31.439 21.642 143.429 

MayWS (mm) -41.22 47.78 40.27 141.25 

JuneWS (mm) -58.2 21.02 30.36 114.29 

JulyWS (mm) -35.844 22.304 4.576 110.61 

AugWS (mm) -38.35 19.83 11.10 126.95 

WS (mm) -195.05 617.3 521.0 1380.41 

YLD (t/ha) 0.142 7.976 8.442 15.984 

 
 
 
 
 Bivariate Statistics 
 
 Figures 4.8-4.15 display the explanatory variables plotted against crop yield 

along with the regression line. 

 

Figure 4.8 Bivariate Plot of Corn Yield and Nitrogen 
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Figure 4.9 Bivariate Plot of Corn Yield and Available Water Capacity 

 
 

 
Figure 4.10 Bivariate Plot of Corn Yield and Slope Length 
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Figure 4.11 Bivariate Plot of Corn Yield and Potential Evapotranspiration 

 
 

 
Figure 4.12 Bivariate Plot of Corn Yield and April Growing Degree Days 
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Figure 4.13 Bivariate Plot of Yield and June Growing Degree Days 

 
 

 
Figure 4.14 Bivariate Plot of Yield and May Water Surplus 
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Figure 4.15 Bivariate Plot of Corn Yield and August Water Surplus 
 

 
 
 
Multivariate Statistics 
 

The corn regression model was able to explain 70 percent of the variance in 

yield. The mean yield for the model was 7.976 tons per hectare. The root mean 

square error of the model was 1.679 tons per hectare. The explanatory variables 

and their corresponding coefficients are listed in Table 4.6. All variables were 

significant at the 0.05 alpha level.  

Table 4.6 Corn Regression Mode 

Coefficients Estimate 
Std. 
Error t value Pr(>|t|) 

(Intercept) -2.396 0.1243 -19.282 < 2e-16 

N 0.03185 0.000166 191.911 < 2e-16 

SLOPE -0.07871 0.000598 -131.643 < 2e-16 

AWC 0.007305 6.9E-05 105.89 < 2e-16 

AprGDD 0.01615 0.000108 149.456 < 2e-16 
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Table 4.6 (Continued) 

JuneGDD -0.03512 0.000124 -282.624 < 2e-16 

MayWS 0.009416 0.000255 36.918 < 2e-16 

AugWS 0.009047 0.000331 27.352 < 2e-16 

PET 0.0401 0.000298 134.438 < 2e-16 

FYRCT 0.2499 0.01817 13.751 < 2e-16 

FYRS 0.1097 0.01152 9.528 < 2e-16 

SYRCT 0.08394 0.01429 5.873 <4.3E-09 

SYRS 0.3518 0.0141 24.946 < 2e-16 

TillCSV 0.1351 0.01302 10.375 < 2e-16 

TillNT 0.1211 0.01303 9.292 < 2e-16 

 

 

4.3 Switchgrass Model 
 
 Univariate Statistics 
 
 Table 4.7 details the summary statistics for each of the explanatory variables 

along with the dependent variable. 

Table 4.7 Switchgrass Explanatory Variable Summary Statistics  
 

Variable Min Mean Median Max 

Precipitation (mm) 217.3 1063.8 988.6 2029.7 

Nitrogen (Kg/ha) 1.00 66.89 68.00 125.00 

Slope Length (meters) 0.1907 11.412 8.503 66.794 

AWC (millimeters) 7.428 291.121 243.2 443.1 

AprilTS (Days) 5.116 15.442 16.996 27.145 

MayTS (Days) 0.3594 5.0416 3.7537 14.7176 

JulyTS (Days) 0.3218 11.6303 11.6164 29.900 

AugTS (Days) 0.087 8.630 8.274 22.403 

AprilGDD (Days) 32.40 144.29 111.30 347.74 

MayGDD (Days) 145.3 279.5 271.1 469.9 

JuneGDD (Days) 238.7 394.5 391.6 542.9 

JulyGDD (Days) 342.5      459.0 464.4 591.3 

AugGDD (Days) 249.2 414.2 425.4 512.4 

GDD (Days)       1220 2129 2120 2999 

PET (mm) 363.4 424.1 418.5 467.6 

AprWS (mm) -31.449 33.439 22.642 143.429 

MayWS (mm) -41.22 50.78 40.27 141.25 
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Table 4.7 (Continued) 

JuneWS (mm) -58.2 27.02 42.36 114.29 

JulyWS (mm) -35.844 24.304 9.576 110.61 

AugWS (mm) -38.35 18.83 2.10 126.95 

WS (mm) -185.05 621.3 686.0 1380.41 

YLD (t/ha) 0.00 8.804 9.654 23.205 

 
 

 
 Bivariate Statistics 
 
 Figures 4.16-4.23 display the plots of the explanatory variables against 

switchgrass yield with the regression line. 

 
 

Figure 4.16 Bivariate Plot of Switchgrass Yield and Nitrogen 
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Figure 4.17 Bivariate Plot of Switchgrass Yield and Available Water Capacity 

 
 
 

 
Figure 4.18 Bivariate Plot of Switchgrass Yield and Slope Length 
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Figure 4.19 Bivariate Plot of Switchgrass Yield and Potential Evapotranspiration 
 

 
Figure 4.20 Bivariate Plot of Switchgrass Yield and June Growing Degree Days 
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Figure 4.21 Bivariate Plot of Switchgrass Yield and April Growing Degree Days 

 
 
 
 
 
 

 
Figure 4.22 Bivariate Plot of Switchgrass Yield and May Water Surplus 
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Figure 4.23 Bivariate Plot of Switchgrass Yield and August Water Surplus 
 
 
 Multivariate Statistics 
 
 

The switchgrass regression model was able to explain 77 percent of the 

variance in yield. The mean yield for the model was 8.804 tons per hectares. The 

root mean square error of the model was 2.363 tons per hectare. The explanatory 

variables and their corresponding coefficients are listed in table 4.8. All the 

variables are significant at the 0.05 alpha level. 

Table 4.8 Switchgrass Regression Model 
 

Switchgrass Model 

Coefficient Estimate 
Std. 
Error t value Pr(>|t|) 

(Intercept) -43.48 0.4133 -105.197 < 2e-16 

N 0.08068 0.000581 138.871 < 2e-16 

SLOPE -0.06845 0.002251 -30.405 < 2e-16 

AWC 0.01119 0.000259 43.273 < 2e-16 
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Table 4.8 (Continued) 

AprGDD 0.004744 0.000437 10.857 < 2e-16 

JuneGDD -0.01309 0.000442 -29.601 < 2e-16 

MayWS -0.01681 0.000859 -19.572 < 2e-16 

AugWS 0.0413 0.001129 36.588 < 2e-16 

PET 0.115 0.001003 114.698 < 2e-16 

 
 
 
 

4.4 Alfalfa Model 
 
 Univariate Statistics 
 
 Table 4.9 displays the summary statistics for each of the explanatory 

variables along with the dependent variable. 

 
Table 4.9 Alfalfa Explanatory Variable Summary Statistics  

 

Variable Min Mean Median Max 

Precipitation (mm) 217.3 1063.8 988.6 2029.7 

Nitrogen (Kg/ha) 0 0 0 0 

Slope Length (meters) 0.1907 11.4117 8.5028 66.7935 

AWC (millimeters) 7.428 291.121 243.2 443.1 

AprilTS (Days) 0.1026 2.917 1.809 9.259 

MayTS (Days) 0.054 0.400 0.230 0.986 

JulyTS (Days) 0 0 0 0 

AugTS (Days) 0 0 0 0 

AprilGDD (Days) 216.2 371.1 347.5 568.4 

MayGDD (Days) 393.3       525.7 506.4 717.9 

JuneGDD (Days) 478.7 633.4 627.5 782.9 

JulyGDD (Days)      590.5       706.0 708.0 839.3 

AugGDD (Days)       497.2 661.6 672.0 760.4 

GDD (Days)        3167 4211 3167 5137 

PET (mm) 363.4 424.1 418.5 467.6 

AprWS (mm) -31.449 33.439 21.642 143.429 

MayWS (mm) -36.22 51.78 40.27 141.25 

JuneWS (mm) -58.2 27.02       42.36 114.29 

JulyWS (mm) -35.844 25.304 38.576 110.61 

AugWS (mm) -38.35 18.83 11.10 126.95 
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Table 4.9 (Continued) 

WS (mm) -185.05       623.3       686.0 1380.41 

YLD (t/ha) 0.481      6.635 7.00 9.02 

 
 
 
 Bivariate Statistics 
 
 Figures 4.24-4.30 display the explanatory variables plotted against the alfalfa 

yield along with the regression line. 

 

 
Figure 4.24 Bivariate Plot of Alfalfa Yield and Available Water Capacity 
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Figure 4.25 Bivariate Plot of Alfalfa Yield and Slope Length 

 
 

 
Figure 4.26 Bivariate Plot of Alfalfa Yield and Potential Evapotranspiration 
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Figure 4.27 Bivariate Plot of Alfalfa Yield and April Growing Degree Days 

 
 

 
Figure 4.28 Bivariate Plot of Alfalfa Yield and June Growing Degree Days 
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Figure 4.29 Bivariate Plot of Alfalfa Yield and May Water Surplus 

 
 
 

 
Figure 4.30 Bivariate Plot of Alfalfa Yield and August Water Surplus 

 
 

 Multivariate Statistics 
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The alfalfa regression model was able to explain 84 percent of the variance in 

yield. The mean yield for the model was 6.635 tons per hectares. The RMSE of the 

model was 0.9077 t/ha. The explanatory variables and their corresponding 

coefficients are listed in Table 4.10. All the variables are significant at the 0.05 alpha 

level except for the tillage dummy variables.  

Table 4.10 Alfalfa  RegressionModel 
 

Alfalfa Model 

Coefficient Estimate Std. Error t value Pr(>|t|) 

(Intercept) -1.9209214 0.1629349 -11.79 <2e-16 

SLOPE -0.0354903 0.0008595 -41.292 <2e-16 

AWC 0.0022667 0.0001003 22.609 <2e-16 

AprGDD 0.0062184 0.0001597 38.943 <2e-16 

JuneGDD -0.02663 0.0001649 -161.523 <2e-16 

MayWS -0.0029632 0.0003372 -8.787 <2e-16 

AugWS 0.0208292 0.0004598 45.3 <2e-16 

PET 0.053334 0.0003849 138.572 <2e-16 

 
 
 

4.5 Cotton Model 
 
 
 Univariate Statistics 
 
 Table 4.11 displays the summary statistics for the explanatory variables 

along with the dependent variable in the cotton model. 

Table 4.11 Cotton Explanatory Variable Summary Statistics  
 

Variable Min Mean Median Max 

Precipitation (mm) 217.3 1063.8 988.6 2029.7 

Nitrogen (Kg/ha) 33.0 55.1 53.0 99.0 

Slope Length (meters) 0.1907 11.4117 8.5028 66.7935 

AWC (millimeters) 7.428 291.121 243.2 443.1 

AprilTS (Days) 8.335 19.971 21.866 29.447 

MayTS (Days) 0.2791 9.134 6.918 23.6031 
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Table 4.11 (Continued) 

JulyTS (Days) 0 0 0 0 

AugTS (Days) 0 0 0 0 

AprilGDD (Days) 8.1 104.2 75.1 262.6 

MayGDD (Days) 73.3       238.2 228.0 473.7 

JuneGDD (Days) 231.4 361.3 318.6 589.0 

JulyGDD (Days) 300.2       424.5 393.4 610.4 

AugGDD (Days)       269.4 380.2 332.4 563.1 

GDD (Days)        1159 1878 1600 3322 

PET (mm) 363.4 424.1 418.5 467.6 

AprWS (mm) -31.449 48.439 52.642 140.429 

MayWS (mm) -36.22 69.78 79.27 141.25 

JuneWS (mm) -58.2 46.02       50.36 114.29 

JulyWS (mm) -35.844 38.304 38.576 110.61 

AugWS (mm) -38.35 30.83 30.10 126.95 

WS (mm) -185.05       804.3       935.3 1380.41 

YLD (t/ha) 0.00      1.658 1.735 11.307 

 
 
 Bivariate Statistics 
 
 Figures 4.31-4.38 display the plots of the explanatory variables against the 

cotton yield along with the regression line. 
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Figure 4.31 Bivariate Plot of Cotton Yield and Slope Length 

 

 
 

 
 

Figure 4.32 Bivariate Plot of Cotton Yield and Available Water Capacity 
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Figure 4.33 Bivariate Plot of Cotton Yield and Nitrogen 

 
 

 
 

Figure 4.34 Bivariate Plot of Cotton Yield and Potential Evapotranspiration 
 
 

 
 

Figure 4.35 Bivariate Plot of Cotton Yield and April Growing Degree Days 
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Figure 4.36 Bivariate Plot of Cotton Yield and June Growing Degree Days 
 
 

 
 

Figure 4.37 Bivariate Plot of Cotton Yield and May Water Surplus 
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Figure 4.38 Bivariate Plot of Cotton Yield and August Water Surplus 
 
 
 
 
 Multivariate Statistics 
 

The cotton regression model was able to explain 48 percent of the variance 

in yield. The mean yield for the model was 2.037 t/ha. The RMSE of the model was 

0.8444 tons per hectare. The explanatory variables and their corresponding 

coefficients are listed in Table 4.12.  All variables were significant at the 0.05 alpha 

level except for conservation tillage. 

Table 4.12 Cotton Regression Model 
 

Cotton Model 

  Estimate 
Std. 
Error t value Pr(>|t|) 

(Intercept) -7.634 0.081 -93.708 < 2e-16 

SLOPE -0.008 0.000 -17.118 < 2e-16 
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Table 4.12 (Continued) 

N 0.018 0.000 91.1 < 2e-16 

AWC 0.002 0.000 59.743 < 2e-16 

AprGDD 0.004 0.000 46.826 < 2e-16 

JuneGDD -0.005 0.000 -109.944 < 2e-16 

MayWS 0.006 0.000 71.542 < 2e-16 

AugWS 0.001 0.000 12.997 < 2e-16 

PET 0.021 0.000 125.51 < 2e-16 

FYRCT 0.062 0.008 8.191 2.62E-16 

FYRS 0.168 0.011 15.613 < 2e-16 

SYRCT -0.175 0.012 -15.166 < 2e-16 

SYRS 0.065 0.008 8.317 < 2e-16 

TillCSV -0.006 0.007 -0.792 0.4283 

TillNT -0.016 0.007 -2.166 0.0303 
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CHAPTER 5 
 

DISCUSSION 
 

5.1 Discussion of Research Questions 
 
 
1) What factors can significantly explain crop yields in Big Creek Watershed? 

 

Thirty explanatory variables were originally created for the metamodel. This 

was reduced to fourteen explanatory variables that have been found to significantly 

explain crop yields for Big Creek Watershed. These variables were chosen utilizing 

an all-subsets regression function. The variables were further reduced by analyzing 

the multicollinearity of the variables and the variance inflation factor (VIF) of these 

variables. The VIF is an index that is used to measure the degree of multicollinearity 

between variables. In addition, variables were added and dropped depending on 

how much they increased R2 and decreased RMSE. The final list of variables were: 

annual potential evapotranspiration, nitrogen fertilizer, slope length, available 

water capacity, April growing degree days, June growing degree days, May water 

surplus, August water surplus, rotation dummy variables, and tillage dummy 

variables. The dummy variables were not significant for every model, but they were 

still included in the final model due to the importance of farm management 

practices on crop yields and in the agent-based model to which these metamodels 

are to be applied. The variables were the same for each of the models in order to 

measure the effects of the variables on each of the crops. Each of the explanatory 

variables will be discussed to detail their relationship with yield.  
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Nitrogen Fertilizer 

Nitrogen fertilizer was found to have a positive influence on crop yields 

across all of the models. This is validated both by the coefficients in the model and 

by theory. Increasing nitrogen fertilizer will lead to higher yields, but this is the case 

up to a threshold where crop yields will no longer respond to increases in nitrogen 

fertilizer. Due to that reason, this research narrowed the range of fertilizer 

application for each crop as discussed in the methods section. By narrowing the 

range, this variable had a linear relationship with yield.  Figures 4.8, 4.16 and 4.33 

display the relationship between nitrogen and crop yield. Nitrogen had the largest 

influence on switchgrass yields with a coefficient of 0.608 compared to 0.341 for 

corn and 0.24 for cotton (Table 4.2).  Switchgrass nitrogen amount was varied with 

a larger range than corn or cotton and this could be an explanation as to why 

nitrogen had the largest influence on switchgrass yields.  In these models yields 

responded strongly to increases in nitrogen fertilizer. This can be seen in corn yields 

where a nitrogen fertilizer of 68 kg/ha lead to yields of around 5 t/ha, whereas, 

increasing nitrogen fertilizer to 174 kg/ha lead to yields of around 10 t/ha. In those 

simulations the weather was the same and the only variable that changed between 

the simulations was the fertilizer amount. A potential explanation is that the SWAT 

model is sensitive to changes in nitrogen fertilizer amounts. 
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Slope Length 

Slope length was found to have a negative influence on crop yields across all 

of the models. Crop yield and slope length had a negative relationship and this is 

confirmed in the coefficients and in theory. Figures 4.2, 4.10, 4.18, 4.25, and 4.31 

detail the relationship between slope length and crop yield. For the majority of the 

crops, yields start to decrease with slope length greater than 30 meters. Slope had 

the largest influence on corn yields with a coefficient of -0.226 compared to -0.135 

for switchgrass, -0.145 for alfalfa, -0.105 for soybeans, and -0.046 for cotton (Table 

4.2). This would suggest that switchgrass, alfalfa, soybeans, and cotton are better 

suited to be grown on steeper slopes than corn. 

 

Available Water Capacity 

Available water capacity has a positive relationship with crop yield as 

supported by theory and the coefficients in the model. The larger values of AWC 

represent more water that the plant has access to.  In Big Creek watershed, rates of 

available water capacity were not highly variable. Even with limited variability, 

AWC was a significant variable for each of the models. Figures 4.1, 4.9, 4.17, 4.24, 

and 4.32 detail the relationship of available water capacity with crop yield. 

Generally, as water capacity increases, the greater the yield; this is demonstrated by 

the regression line. AWC had the largest influence on corn yields with a coefficient of 

0.182 compared to 0.172 for switchgrass, 0.154 for cotton, 0.077 for alfalfa, and 

0.073 for soybeans (Table 4.2).  Implications under future climate would indicate 
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that maintaining sufficient soil moisture is key for corn and switchgrass and less 

crucial for soybean and alfalfa yields in Big Creek Watershed. 

 

April Growing Degree Days 

April GDD’s had a positive influence on yields across most of the models. This 

is in line with theory where increasing number of GDD’s will lead to better yields. 

This is especially the case in April, which is a crucial month for farmers to be able to 

get into the field and plant the crops. For many crops, April is generally the first 

month where farmers will begin to plant crops if soil and weather conditions allow. 

Future climate scenarios will lead to a greater number of GDD’s, which will lead 

farmers to plant their crops sooner, thus, extending the growing season and 

increasing yields. Figures 4.3, 4.12, 4.21, 4.27, and 4.35 display the relationship 

between April GDD’s and yield. The coefficient for alfalfa is positive in the model, 

whereas, the plot in Figure 4.4 displays a negative relationship. This indicates that 

there is multicollinearity that exists with June GDD’s. Multicollinearity was 

measured by the VIF of the variable and commonly if the VIF is above 5 or 7.5 it 

should be dropped from the model. The VIF for the variables were not above 5 and 

in order to maintain comparability with each of the models the variable was kept in 

the model. While April GDD’s did not have as strong of an influence in most of the 

models it was kept in the model to examine the effect of climate change on early 

season temperature variability. April GDD’s had the biggest influence on soybean 

yields with a coefficient of 0.451 compared to 0.429 for corn, 0.247 for alfalfa, 0.233 
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for cotton and 0.076 for switchgrass (Table 4.2). These results suggest that a 

warmer April will benefit corn and soybean yields.  

 

June Growing Degree Days 

 June GDD’s had a negative relationship on yields across all of the models. 

This can be attributed to the hotter June having a negative influence on yields. 

Figures 4.4, 4.13, 4.20, 4.28, and 4.36 reveal this relationship clearly. Since the 

lowest value of GDD’s for the month starts relatively high, the increasing number of 

GDD’s leads to lower yields indicating the negative effect of higher temperatures on 

the crops for the month of June. Yields start to decrease around 500 GDD’s for corn 

and soybean and around 350 GDD’s for switchgrass. Alfalfa yields start to decrease 

around 600 GDD’s and cotton yields start to decrease around 250 GDD’s. Since many 

crops are still in the early phenological stage in this month, it is possible that the 

hotter climate will reduce yields in June. June growing degree days had a greater 

influence on alfalfa yields with a coefficient of -0.841 compared to -0.747 for corn, -

0.557 for soybeans, -0.5 for cotton, and -0.186 for switchgrass (Table 4.2). The 

results suggest that a warmer June will negatively influence alfalfa and corn the 

most. 

 

May Water Surplus 

May water surplus had a positive influence on corn, soybean, and cotton 

yields as shown in Figures 4.5, 4.14, 4.22, 4.29, and 4.37. It had a negative 

relationship with alfalfa and switchgrass yields as shown in Figures 4.2 and 4.3. This 
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suggests that a wetter May will influence corn, soybean, and cotton positively, but it 

will negatively influence alfalfa and switchgrass yields. Under future climate 

scenarios a wetter or drier May could affect crops differently depending on the 

severity of water deficit or surplus.  May WS had a greater influence on soybean 

yields with a coefficient of 0.269 compared to 0.246 for cotton, -0.195 for 

switchgrass, 0.156 for corn, and -0.064 for alfalfa. A wetter May would be beneficial 

for corn and soybean crops and have a negative influence over switchgrass and 

alfalfa crops. 

 

August Water Surplus 

August water surplus had a positive influence on crop yields across all of the 

models. This can be attributed to a wetter August being beneficial for each of these 

crops. Often, soil water deficits reach their peak in August so this variable is in the 

model to better predict the effect of climate change on weather condition later in the 

growing season. Figures 4.6. 4.15, 4.23, 4.30, and 4.38 display the relationship 

between August water surplus and crop yield. August water surplus had the 

greatest influence on alfalfa yields with a coefficient of 0.462 compared to 0.442 for 

switchgrass, 0.17 for soybean, 0.159 for corn, and 0.048 for cotton (Table 4.2). This 

suggests that a wetter August will benefit alfalfa and switchgrass crops the most.  

 

Annual Potential Evapotranspiration  

Annual potential evapotranspiration had a positive influence on yields across 

every model. This is in line with theory because potential evapotranspiration is a 
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proxy for warmth and the higher the PET the warmer the climate and the positive 

impact on crop yield. Figures 4.7, 4.11, 4.19, 4.25, and 4.34 display the relationship 

between PET and crop yield. Generally, PET values around 440 mm and higher lead 

to the highest yields for each of the crops. PET had the greatest influence on soybean 

yields with a coefficient of 0.792 compared to 0.688 for alfalfa, 0.696 for 

switchgrass, 0.431 for cotton, and 0.379 for corn yields (Table 4.2). 

 

Dummy Variables First Year Rotation (C-2) 

 The first year rotation cotton dummy variable had a positive influence on 

crop yields across all of the metamodels. This suggests that if you plant co tton in the 

first year of the three year rotation then there will be a boost to the yield of the corn, 

soybean, and cotton crops two years later. Planting cotton two years prior would 

lead to an increase of 250 kg of corn compared to planting soybean or corn. This is 

similar to findings by Reddy et al. (2006), where corn yields increased 5-13 percent 

when rotated with cotton in the Mississippi River floodplain. The soybean rotation 

dummy variable had a positive influence on crop yields across all of the models. If 

the farmer planted soybean as the first crop in the three year rotation, there will be 

a positive influence on the yield two years later for corn, cotton, and soybeans. This 

is consistent with yield drag theory where switching from a continuously cropped 

practice to a rotated crop practice will be beneficial for crop yields the following 

year and two years in the future.  Planting soybean two years prior would lead to an 

increase of 110 kg of corn compared to planting corn or cotton two years prior.  
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Dummy Variables Second Year Rotation (C-1) 

 The second year rotation cotton dummy variable had a positive influence on 

corn yields, and a negative influence on soybean and cotton yields. This suggests 

that if you plant cotton the year before it would be beneficial for corn yields but not 

for the other crops. Planting cotton the previous year would lead to an increase of 

84 kg of corn compared to soybean or cotton being planted the previous year. The 

soybean dummy variable had a positive influence on yields across all of the models. 

This suggests that if the farmer planted soybean the year before there would be a 

boost in yields for all of the crops. This is expected since soybeans are a nitrogen 

fixer and can be beneficial for crops such as corn or cotton. The magnitude of yield 

boost varies from crop to crop. The biggest boost was associated with corn where 

soybeans would lead to 352 kg increase compared to corn or cotton being planted 

the previous year.  The winter wheat coefficient came out to be significant and had a 

negative effect on soybean yields. Soybean yields are expected to decrease with 

double cropping due to the shortened season soybeans have when they are planted 

with winter wheat. 

 

Tillage Dummy Variables  

 The dummy variable for conservation tillage was found to be significant in 

both the corn and cotton model. Conservation tillage was found to be insignificant 

for the soybean model. The coefficients for corn and cotton were both positive, 

which is what was expected. Conservation tillage should have a positive impact on 

yields and increase them compared to conventional tillage. The dummy variable for 
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no-till was found to be significant in the corn model at a 0.05 alpha value. It was 

found to be insignificant in the cotton and soybean model. The coefficients were 

positive for the corn and switchgrass models, but negative for the cotton model. 

Even though these coefficients were not statistically significant they still have some 

practical significance associated with them. In the literature, tillage practices are 

beneficial for soil properties, but not as strongly for crop yields as are other farm 

management practices. 

 

2) How accurately can a statistical equation such as regression reproduce the 

results of a sophisticated process based watershed model such as SWAT? 

 

The results suggest that the metamodels can reproduce the results of SWAT in 

predicting crop yields with a moderate degree of accuracy for corn, soybeans, alfalfa, 

switchgrass, and cotton. The models were able to explain between 48-85 percent of 

the variance in crop yield across the different crops. The RMSE of the models ranged 

from 0.75 to 2.53. The coefficient of variation for each of these models ranged from 

13 to 41 percent. The corn model was able to capture 70 percent of the variability in 

yields. The soybean model was able to capture 63 percent of the variability in yields. 

The switchgrass model was able to capture 77percent of the variability in yields, the 

alfalfa model was able to capture 84 percent of the variability in yields, and the 

cotton model was able to capture 48 percent. The cotton model captured the least 

amount of variability in cotton yields compared to the other models. Potential 

explanations could relate to the selected variables and to the climate conditions run 
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through SWAT. For numerous SWAT runs, yields were considerable lower and were 

simulated near 0 t/ha. This could be due to the poor growing conditions for cotton 

under historical and current climate conditions. A diagnostic of weather conditions 

revealed a high amount of temperature stress days accumulated by cotton 

throughout the growing season. This indicates that there is considerable 

temperature stress on cotton yields associated with colder temperatures in Big 

Creek. There was also a lack of variability in the soil variables such as available 

water capacity. AWC less than 200 mm and slopes greater than 3 percent lead to 

poor cotton yields. The HRU’s with those conditions had the lowest cotton yields. 

There is potential for cotton to be grown in Big Creek Watershed under future 

climate conditions, but topographic and soil limitations will lead to cotton being 

planted only in certain parts of Big Creek Watershed such as the lowland areas near 

the Cache River.  

The results from the corn, switchgrass, and alfalfa model are in line with results 

from previous agricultural metamodel literature. Additionally, the metamodels are 

able to capture the sensitivity of crop yields in response to various weather and 

farm management scenarios. This is key to capture the sensitivity and magnitude of 

change in yields from scenario to scenario in order for the Agent Based Model to 

predict how climate will affect farmer’s decisions. The metamodels were a 

computationally efficient alternative to running the simulation model SWAT. A small 

set of statistically significant variables is more advantageous than setting up and 

running SWAT in order to derive one output variable from the model. This was 

demonstrated by the runtime of the model. The SWAT model can take hours to 
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process various scenarios depending on the computer used. At the minimum it took 

a half hour to run through the 14 corn permutations for one three-year rotation 

sequence. This was on a Core i5 laptop, whereas, running the simulations on older 

computers took a least an hour to run through one three-year rotation sequence. 

Multiply that by the various climate scenarios and it can take hours to a whole day 

to run through all the scenarios. This is in contrast to the metamodel, which can be 

run in seconds to minutes by feeding in the data into the regression equation. The 

results of this research indicate that metamodels offer a 99 percent reduction in 

computation time coupled with a moderate degree of accuracy. The reduction in 

time and parameters demonstrates that metamodels represent a valuable 

alternative to running large computationally intensive simulation models. 

 

3) How will crop yields in Big Creek Watershed respond to various climate 

scenarios? 

 

Crop yields in Big Creek Watershed will vary depending on the severity of 

climate change over the course of the century. Figure 5.1 details the effect on 

yield under various climate scenarios. Future climate data were derived from 

downscaled climate data associated with the IPSLCM model at a high (RCP85) 

carbon scenario. The figures demonstrate that crop yields will decrease under 

various climate scenarios. Under baseline climatic conditions, corn yields range 

from 2.73 to 7.51 t/ha. Climate A represents a possible climate scenario for mid-

century and climate B represents a possible climate scenario in late century. For 
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climate A, the data for precipitation and temperature were averaged over the 

decade in the 2050’s utilizing data from the IPSCLM model. For climate B, data 

for precipitation and temperature were averaged over the decade in the 2080’s 

from the IPSLCM model. For climate A, yields decrease drastically from a low of 0 

to a high of 4.71 t/ha. In climate B, the yields rebound somewhat from 0.83 to 

5.77 t/ha. This could be due to the effect of higher CO2 levels in the atmosphere 

by late century, which leads to increased water use efficiency due to stomata 

conductance. Assessments by the IPCC indicate that the effects of CO2 in mid-

century might not be high enough to counteract the extreme temperature and 

precipitation events that will decrease yields.  This is especially the case for C3 

crops such as soybeans and wheat, which respond greatest to CO2 fertilization. 

Figures 5.2-5.4 display the average crop yield for soybeans, alfalfa, and 

switchgrass. The trend holds similar for these crops where the average yields 

decrease from historical to climate A and then remain the same or increase in 

climate B. Table 5.1 details average yields for each crop under additional climate 

variability scenarios. The scenarios were based on the climate data that were 

used to calibrate the metamodel. Data were defined from the upper and lower 

limits of the variables to determine how varying moisture and temperature will 

impact the crops. All crops see larger yields with a warmer April, and see 

decreases under a hotter June. Alfalfa and switchgrass have the highest yields 

under a wet August scenario. This demonstrates that the variability in the early 

and late part of the growing season will affect crops differently and possibly 



88 
 

encourage farmers to plant certain crops over others depending upon future 

climate change. 

 

Table 5.1 Crop Yields Under Various Climate Scenarios 
 

Crop Yields (t/ha) 

Scenario Corn Soybean Alfalfa Switchgrass 

Cold April 4.77 2.12 6.03 6.93 

Hot June 2.96 1.95 3.32 5.54 

Dry August 5.97 2.65 5.88 4.97 

Dry May 5.65 2.39 7.17 8.67 

Wet May 7.34 3.41 6.70 5.90 

Hot April 9.06 4.04 8.05 8.13 

Wet August 7.37 3.34 9.03 11.37 

Baseline 7.97 2.55 6.63 8.8 

 

 

 

Figure 5.1 Corn Yields Under Various Climates 
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Figure 5.2 Soybean Yields Under Various Climates 

 

Figure 5.3 Switchgrass Yields Under Various Climates 
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Figure 5.4 Alfalfa Yields Under Various Climates 

 
 
 

Conclusion 
 
 

Five metamodels were created for corn, soybean, switchgrass, alfalfa, and cotton 

crops in Big Creek watershed. This research has demonstrated that metamodels can 

be used to approximate SWAT. These metamodels can be used to predict historical 

crop yields and crop yields under future climate scenarios. These metamodels can 

also capture the variance associated with climate change impacts on temperature 

and precipitation.  The accuracy of the metamodels in this research is consistent 

with results achieved by other agricultural metamodel studies. Additionally, 

metamodels are more advantageous to use than the simulation model by reducing 

computation time and utilizing fewer statistically significant parameters. Utilizing 
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crop yield metamodels will lead to a more extensive analysis of climate change 

scenarios for Big Creek Watershed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



92 
 

REFERENCES 
 
Adams, Richard M., Cynthia Rosenzweig, Robert M. Peart, Joe T. Ritchie, Bruce A. 

McCarl, J. David Glyer, R. Bruce Curry, James W. Jones, Kenneth J. Boote, and 
L. Hartwell Allen. 1990. Global Climate Change and US Agriculture.  Nature 
345 (627): 219–224.   

 
Arnold, J.G., and P.M. Allen. 1999. Automated methods for estimating baseflow and 
 groundwater recharge from streamflow records. Journal of the American 
 Water Resources Association. 35(2): 411-424 
 

 Baker, J. T., and L. H. Allen Jr. 1993. Contrasting Crop Species Responses to CO2 and 

 Temperature: Rice, Soybean and Citrus. Vegetation 104 (1): 239–260. 
 
Bekele, E.G., and J.W. Nicklow. 2005. Multiobjective management of ecosystem     
 services by integrative watershed modeling and evolutionary algorithms. 
 Water  Resources Research 41(10): 1-10. 
 
Bekele, E.G., and J.W. Nicklow. 2007. Multi-objective automatic calibration of SWAT 
 using NSGA-II. Journal of Hydrology 341: 165-176. 
 
Broad, D.R., H.R. Maier., and G.C. Dandy.  2010. Optimal Operation of Complex Water 
 Distribution Systems Using Metamodels. Journal of Water Resources Planning 
 and Management 136(4): 433-443. 
 
Brown, R.A., N.J. Rosenberg, C.J. Hays, W.E. Easterling, and L.O. Mearns. 2000. 
 Potential production and environmental effects of switch grass and 
 traditional crops under current and greenhouse altered climate in the central 
 United States: A simulation study. Agriculture, Ecosystems and Environment 
 78: 31-47. 
 
Bouzaher, A., R. Cabe, A. Carriquiry, P. Gassman, P.G. Lakshminarayan, J.F. and 

Shogan. 1992. Metamodels and Nonpoint Pollution Policy in Agriculture. 
Working Paper 92-WP 97. 

 
Burt, J.E., G.M. Barber, and D.L. Rigby. 2009. Elementary Statistics for Geographers.  

New York: The Guilford Press. 
 
Butler, E.E., and P, Huybers. 2013. Adaptation of US Maize to Temperature  

Variations. Nature (3): 68-72. 
 
Cao, W., W.B. Bowden, T. Davie, and A. Fenemor. 2006. Multi-variable and multi-site 
 calibration and validation of SWAT in a large mountainous catchment with 
 high spatial variability. Hydro. Proc. 20(5): 1057-1073. 
 



93 
 

 Caviglia, O.P., V. O., Sadras, and F. H., Andrade. 2011. Yield and Quality of Wheat 
  and Soybean in Sole- and Double-Cropping. Agronomy  Journal 103 (4): 
 1081. 
  
Christensen, J.H., B. Hewitson, A. Busuioc, A. Chen, X. Gao, I. Held, R. Jones, R.K. Kolli, 
 W.-T. Kwon, R. Laprise, V. Magaña Rueda, L. Mearns, C.G. Menéndez, J. 
 Räisänen, A. Rinke, A. Sarr and P. Whetton, 2007. Regional Climate Projections 
 In: Climate Change 2007: The Physical Science Basis. Contribution of Working 
 Group I to the Fourth Assessment Report of the Intergovernmental Panel on 
 Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. 
 Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, 
 Cambridge, United Kingdom and New York, NY, USA. 
 
Couckuyt, I. D. Gorissen, H. Rouhani, E. Laermans, and T. Dhaene. 2009. Evolutionary 
 Regression Modeling with Active Learning: An Application to Rainfall Runoff 
 Modeling. International Conference on Adaptive and Natural Computing 
 Algorithms.548-558. 
 
Coulter, J.A. C, Sheaffer. D, Wyse. M, Haar. P, Porter. S, Quiring. and D. Klossner.  

2011.  Agronomic Performance of Cropping Systems with Contrasting Crop 
 Rotations and External Inputs. Agronomy Journal 103: 182-192. 
 

 Edwards, JH, DL Thurlow, and JT Eason. 1988. Influence of Tillage and Crop Rotation 
 on Yields of Corn, Soybean, and Wheat. Agronomy Journal. 80: 76–80. 

 

 Ewert, F. 2012. Opportunities in Climate Change? Nature Climate Change 2:153-157. 
 
Fontaine, T.A., J.F. Klassen, T.S. Cruickshank, and R.H. Hotchkiss. 2001. Hydrological 
 response to climate change in the Black Hills of South Dakota, USA. 
 Hydrological Sciences Journal. 46(1): 27-40 
 
Galelli, S., C. Gandolfi, R. Soncini-sessa, and D. Agostani. 2010. Building a metamodel  

of an irrigation district distributed-parameter model. Agricultural Water 
 Management 97: 187-200. 
 

 Gentry, Laura F., Matias L. Ruffo, and Fred E. Below. 2013. Identifying Factors 
 Controlling the Continuous Corn Yield Penalty. Agronomy Journal 105(2): 
295- 303.  
 

 Gassman, P. W., M. R. Reyes, C. H. Green, and J. G. Arnold. 2007. The Soil and Water 
 Assessment Tool: Historical Development, Applications, and Future Research 
 Directions. Transactions of the ASABE 50(4): 1211-1250.  
 
Gorissen, D., W. Hendrickx, K. Crombecq, and T. Dhaene. 2006. Integrated Grid 
 Computing and Metamodeling. Proceedings of the Sixth IEEE International 
 Symposium on Cluster Computing and the Grid. 



94 
 

 
Grayson, R.B., I.D. Moore, and T.A. McMahon. 1992. Physically Based Hydrologic 
 Modeling 2. Is the Concept Realistic? Water Resources Research 26(10): 
 2659-2666. 
 
Grover, K. H, Karsten. and G, Roth. 2009. Corn Grain Yields and Yield Stability in 

 Four Long-Term Cropping Systems. Agronomy Journal 101: 940-946. 
 
Guetersloh, M. 2001. Big Creek Watershed Restoration Plan: A Component of the 
 Cache River Watershed Plan. 52. Springfield, IL. Illinois Department of 
 Natural Resources. 
 

 Horowitz, J. R, Ebel., and K, Ueda. 2010. “NoTill” Farming Is a Growing Practice.  
USDA  ERS. Economic Information Bulletin 70. 

 
Jha, M., J.G. Arnold, P.W. Gassman, F. Giorgi, and R. Gu. 2006. Climate change 
 sensitivity of water yield in the Upper Mississippi River Basin. Journal of 
 American Water Resource Association 42(4): 997-1015. 
 
Jiang, P.T., and others. 2004. Effect of Soil and Topographic Properties on Crop Yield  

in a North-Central Corn–soybean Cropping System. Agronomy Journal 96 (1): 
252. 

 
Jin, R., X. Du, and W. Chen. 2003. The Use of Metamodeling Techniques for 
 Optimization Under Uncertainty.  Structural and Multidisciplinary 
 Optimization 25 (2): 99–116.  
 
Harmel, R.D., R.J. Cooper, R.M. Slade, R.L. Haney, and J.G. Arnold. 2006. Cumulative 
 uncertainty in measured stream flow and water quality data for small 
 watersheds. Trans. ASABE 49(3): 689-701. 
 
Krishna N. Reddy, Martin A. Locke, Clifford H. Koger, Robert M. Zablotowicz, and L. 
 Jason Krutz (2006) Cotton and corn rotation under reduced tillage 
 management: impacts on soil properties, weed control, yield, and net return. 
 Weed Science 54(4): 768-774. 
 
Kravchenko, A.N.B., and G. Donald. 2000. Correlation of Corn and Soybean Grain 
 Yield with Topography and Soil Properties. Agronomy Journal 92 (1): 75. 
 
Lant, C.L., S. Secchi, G. Misgna. 2009. Climate Change, Hydrology, and Landscapes  

 of America’s Heartland: A Multi-Scale Natural-Human System. National 
 Science Foundation Grant Proposal. 

 
 Lobell, D. B., Adam Sibley, and J. Ivan Ortiz-Monasterio. 2012. Extreme Heat  Effects 

 on Wheat Senescence in India. Nature Climate Change 2 (3): 186–189.  
 



95 
 

Lobell, D.B., M. Banzinger, C. Magorokosho, and B. Vivek. 2011. Nonlinear Heat 
  Effects on African Maize As Evidenced By Historical Yield Trials. Nature 
 Climate Change 1:42-45. 

 
McMaster, G.S. and D.E. Smika. 1997. Growing Degree-Days: One Equation, Two 
 Interpretations. Agriculture Forest Meteorology 87: 291-300. 
 
Meehl, G.A., T.F. Stocker, W.D. Collins, P. Friedlingstein, A.T. Gaye, J.M, A. Kitoh, R. 
 Knutti, J.M. Murphy, A. Noda, S.C.B. Raper, I.G. Watterson, A.J. Weaver and 
 Z.C. Zhao. 2007. Global Climate Projections. In: Climate Change 2007: The  
 Physical Science Basis. Contribution of Working Group I to the Fourth  
 Assessment Report of the Intergovernmental Panel on Climate Change 
 [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor 
 and H.L. Miller (eds.)]. Cambridge University Press, UK. 
 
Moriasi, D.N., B.N. Wilson, K.R. Douglas-Mankin, J.G. Arnold and P.H. Gowda. 2012. 
 Hydrologic and water quality models: Use, calibration, and validation. 
 Transactions of the ASABE. 55(4): 1241-1247. 
 
Muleta, M., and J. Niklow. 2005. Sensitivity and uncertainty analysis coupled with       

 automatic calibration for a distributed watershed model. Journal of 
 Hydrology 206: 127-145. 

 
Neitsch, S.L., J.G. Arnold, J.R. Kiniry, and J.R. Williams. 2011. Soil and Water 

 Assessment Tool Theoretical Documentation Version 2009. Texas Water 
 Resources Institute Technical Report No. 406. 

 
NowData NOAA Online Weather Data. 2013. 

 http://www.nws.noaa.gov/climate/xmacis.php?wfo=pah 
 
Parry, M.L., O.F. Canziani, J.P. Palutikof and Co-authors 2007. Technical Summary 
 Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of 
 Working Group II to the Fourth Assessment Report of the Intergovernmental 
 Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof , P.J. van der 
 Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 
 23-78. 
 
Peterson, T.A., and GE Varvel. 1989. Crop Yield as Affected by Rotation and Nitrogen 
 Rate. I. Soybean. Agronomy Journal 81: 727-731. 
 
Piñeros Garcet, J.D., A. Ordoñez, J. Roosen, and M. Vanclooster. 2006. Metamodelling: 
 Theory, Concepts and Application to Nitrate Leaching Modelling. Ecological 
 Modelling 193 (3-4): 629–644.  
 

http://www.nws.noaa.gov/climate/xmacis.php?wfo=pah


96 
 

 Porter, J. R., and M. A. Semenov. 2005. Crop Responses to Climatic Variation.
 Philosophical Transactions of the Royal Society B: Biological Sciences 360 
 (1463): 2021–2035.  
 
Qaderi, M.M., and D.M., Reid. 2009. Crop Responses to Elevated Carbon Dioxide and 
 Temperature. Climate Change and Crops: 1-9. 
 
R version 2.15.2. 2012. The R Foundation for Statistical Computing  
 
Riedell, W.E., J.L. Pikul Jr, A.A. Jaradat, and T.E. Schumacher. 2009. Crop Rotation and 
 Nitrogen Input Effects on Soil Fertility, Maize Mineral Nutrition, Yield, and 
 Seed Composition. Agronomy Journal 101(4): 870-879. 
 
Rosenthal, W.D., and D.W. Hoffman. 1999. Hydrologic modeling/GIS as an aid in 
 locating monitoring sites. Transactions of the ASAE. 42(6): 1591-1598. 
 
Saleh, A., J.G. Arnold, P.W. Gassman, L.W. Hauck, W.D. Rosenthal, J.R. Williams, and 
 A.M.S. McFarland. 2000. Application of SWAT for the upper north Bosque 
 Watershed. Trans. ASAE 43(5): 1077-1087. 
 
Santhi, C., R. Srinivasan, J.G. Arnold, and J.R. Williams. 2005. A modeling approach  

to evaluate the impacts of water quality management plans implemented in a 
 watershed in Texas. Environmental Modelling & Software. 21: 1141-1157. 
 
Stonefelt, M. D., Fontaine, T. A. and Hotchkiss, R. H. 2000. Impacts Of Climate Change 
 On Water Yield In The Upper Wind River Basin. JAWRA Journal of the 
 American Water Resources Association 36: 321–336 
 
Thornthwaite, C.W. 1948. An Approach Toward a Rational Classification of Climate. 
 Geographical Review 38(1): 55-94. 
 
USDA Crop and Livestock Practices. 2013. http://www.ers.usda.gov/topics/farm-
 practices-management/crop-livestock-practices.aspx#.UZPq3kpvB-I 
 
Walter, R.E. J, Pikul. A, Jaradat. and T, Schumacher. 2009. Crop Rotation and  

Nitrogen Input Effects on Soil Fertility, Maize Mineral Nutrition, Yield, and 
Seed Composition. Agronomy Journal 101: 870-879. 

 
 West, T.O., and G. Marland. 2002. A Synthesis of Carbon Sequestration, Carbon  

Emissions, and Net Carbon Flux in Agriculture: Comparing Tillage Practices 
in the United States. Agriculture, Ecosystems & Environment 9 (1): 217–232. 

 
 Wheeler, Tim. 2012. Agriculture: Wheat Crops Feel the Heat. Nature Climate Change 

 2 (3): 152–153. 
 

http://www.ers.usda.gov/topics/farm-
http://www.ers.usda.gov/topics/farm-


97 
 

 Wilhelm, W. W., J. W. Doran, and James F. Power. 1986. Corn and Soybean Yield 
 Response to Crop Residue Management Under No-tillage Production 
 Systems. Agronomy Journal 78 (1): 184–189. 
 
Wu, J., P.G. Lakshminarayan, and B.A. Babcock. 1996. Impacts of Agricultural  

Practices  and Policies on Potential Nitrate Water Pollution in the Midwest 
and Northern Plains of the United States. Working Paper 96-WP 148. 

 
Yadev, V., and G.P. Malanson, 2007. Progress in soil organic matter research: litter 

 decomposition, modeling, monitoring and sequestration. Progress in Physical  
 Geography 31(2): 131-154. 

 
Yadev, V., and G. Malanson, 2008. Spatially explicit land use land cover and soil 

 organic carbon transformations in Southern Illinois. Agriculture, Ecosystems 
 and Environment 123: 280-292. 

 
Yadev, V., G.P. Malanson, E. Bekele, and C. Lant. 2009. Modeling watershed-scale  
  sequestration of soil organic carbon for carbon credit programs. Journal of 

 Applied Geography 29:488-500. 
 
Yoder, R.E., L.O., Odhiambo, and W.C., Wright. 2005. Evaluation of Methods For 
 Estimating Daily Reference Crop Evapotranspiration At A Site In The Humid 
 Southeast United States. Applied Engineering in Agriculture 21(2): 197-202. 
 
Zhang, X., R. Srinivasan, and M. Van Liew. 2008. Multi-Site Calibration of the SWAT 
 Model for Hydrologic Modeling, Transactions of the ASABE. 51(6): 2039-
 2049. 

 

 
 



 

 
 

 

 

 

 

 

 

 

APPENDIX 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



98 
 

 

 
 

APPENDIX A – PYTHON SCRIPTS 
 
 

Growing Degree Day Script 
 
#### GDD.py 
####Created by Andrew Johnson 
####Date: 3/20/13 
''' 
 This script calculates growing degree days for corn 
''' 
 
####Corn SPECIFIC PARAMETERS 
top = 42.00 
base = 8.00 
 
myPath = "C:\\BigCreek\\TIN.txt" 
inFile = open(myPath,'r') 
myList = inFile.readlines() 
outPath = "C:\\BigCreek\\TOUT.txt" 
outFile = open(outPath,'w') 
 
for day in myList: 
 
    day.strip(",!?;:&*'=></#@)('\n'") 
 
    day = float(day) 
     
    if day <= base: 
        GDD = 0 
        outFile.write(str(GDD)+'\n') 
 
    elif day >= base and day <= top: 
        GDD = day-base 
        outFile.write(str(GDD)+'\n') 
        
    elif day >= top: 
 
        GDD = 0 
        outFile.write(str(GDD)+'\n') 
         
    else: 
        print "Error GDD did not calculate correctly" + str(day) 
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inFile.close() 
outFile.close() 
 
 
 

Temperature Stress Script 
 
###CREATED BY: ANDREW JOHNSON 
###CREATED ON: 3/22/13 
### This script was created to calculated temperature stress given an 
###input of daily average temperature 
 
 
### CORN SPECIFIC PARAMETERS 
optimal = 25.00 
base = 8.00 
### Corn starts to experience heat stress at 42 celsius when tavg > 2*Topt-Tbase 
 
myPath = "C:\\BigCreek\\TIN.txt" 
inFile = open(myPath,'r') 
myList = inFile.readlines() 
outPath = "C:\\BigCreek\\TOUT.txt" 
outFile = open(outPath,'w') 
 
for day in myList: 
    day.strip(",!?;:&*'=></#@)('\n'") 
    day = float(day) 
     
    if day <= base: 
        '[0] == "-":' 
        tstress = 1 
        outFile.write(str(tstress)+'\n') 
        
    elif day >= 42.00: 
        tstress = 1 
        outFile.write(str(tstress)+'\n') 
         
    elif day >= base and day <= optimal:  
        tstress = 1-(2.7818281828**((-0.1054*((optimal-day)**2))/((day-base)**2))) 
        outFile.write(str(tstress)+'\n') 
         
    elif day >= optimal and day <= 42.00: 
        tstress = 1-(2.7818281828**((-0.1054*((optimal-day)**2))/((50-day-
base)**2))) 
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        outFile.write(str(tstress)+'\n') 
        
    else: 
        print "Error temp stress did not calculate correctly" 
 
inFile.close() 
outFile.close() 
 
     
 

Extract Output Data Script 
 
from numpy import * 
import os 
import glob 
 
workspace = "C:\\Documents and Settings\\siu850895153\\My 
Documents\\Dropbox\\SIUC\\SWAT\\outputfiles\\WW" 
outfile = "C:\\Documents and Settings\\siu850895153\\My 
Documents\\Dropbox\\SIUC\\SWAT\\outputfiles\\WW\\AllOut.txt" 
 
for file in glob.glob(os.path.join(workspace,'*.hru')): 
     
    mylist = open(file,'r') 
 
    fout = open(outfile, 'a+') 
 
    mylines = mylist.readlines() 
     
    for line in mylines[3297:4941]: 
        mystr =  str(line) 
        fout.write(mystr) 
         
 
 
    mylist.close() 
    fout.close() 
 
 

Temperature Formatting Script 
 
# This script replaces the zero in the second position with the negative sign 
 
myPath = "C:\\BigCreek\\TIN.txt" 
myFile = open(myPath,'r') 
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outPath = "C:\\BigCreek\\TOUT.txt" 
outFile = open(outPath,'w') 
 
myList = myFile.readlines() 
 
for eachLine in myList: 
 
    if eachLine[0] == "-": 
        outFile.write("-"+eachLine[2:]) 
    else: 
        outFile.write(eachLine) 
 
myFile.close() 
outFile.close() 
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