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The increasing interest of modeling global carbon cycling during the past two decades 

has driven this research to map leaf area index (LAI) at multiple spatial resolutions by combining 

LAI field observations with various sensor images at local, regional, and global scale. This is due 

to its important role in process based models that are used to predict carbon sequestration of 

terrestrial ecosystems. Although a substantial research has been conducted, there are still many 

challenges in this area. One of the challenges is that various images with spatial resolutions 

varying from few meters to several hundred meters and even to 1 km have been used. However, 

a method that can be used to collect LAI field measurements and further conduct multiple spatial 

resolution mapping and accuracy assessment of LAI is not available. In this study, a pilot study 

in a complex landscape located in the Southern Illinois was carried out to map LAI by combining 

field observations and remotely sensed images. Multi-scale mapping and accuracy assessment of 

LAI using aerial photo, Landsat TM and MODIS images were explored by developing a multi-

scale sampling design.  
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The results showed that the sampling design could be used to collect LAI observations to 

create LAI products at various spatial resolutions and further conduct accuracy assessment. It 

was also found that the TM derived LAI maps at the original and aggregated spatial resolutions 

successfully characterized the heterogeneous landscape and captured the spatial variability of 

LAI and were more accurate than those from the aerial photo and MODIS. The aerial photo 

derived models led to not only over- and under-estimation, but also pixilated maps of LAI. The 

MODIS derived LAI maps had an acceptable accuracy at various spatial resolutions and are 

applicable to mapping LAI at regional and global scale. Thus, this study overcame some of the 

significant gaps in this field. 
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

Combining remotely sensed imagery and ground truth data to study terrestrial vegetation 

and land cover changes has been practiced for several decades. Such studies help to develop 

climate models in terrestrial ecosystems at a regional and global scale (Chen 2005). Moreover, 

plant vegetation plays a vital role in the assimilation of carbon-dioxide (Turner et al. 2004) and 

sequestering carbon compounds from atmosphere. Quantifying the presence of vegetation cover 

in the terrestrial landscape often requires accurately mapping of above ground biomass. Multi-

scale mapping in conjunction with biomass variables such as Leaf Area Index (LAI) has a great 

significance for future research and applications (Wulder et al. 2004). Such variables coupled 

with remote sensing helps to compute above ground biomass or vegetation cover by building 

empirical relationship between vegetation cover with spectral variables from remotely sensed 

images (Friedl et al.  1994; Zha et al. 2003; Gray and Song 2012).  In doing so, among several 

vegetation variables, LAI as a primary variable is crucial for characterizing energy and mass 

exchange for modeling carbon change and phenology, evapo-transpiration, and estimating 

primary productivity of ecosystems at global scale (Spanner et.al. 1990; Turner et al. 2004; 

Valdez et al. 2012).  

According to Chen & Black (1992), LAI is defined as the total one-sided leaf area per 

unit ground area. Its values range from 0 (bare ground) to over 10 (dense forest) and depending 

upon the plant types, canopy cover and vegetation structure. LAI is dimensionless. The higher 

the vegetation canopy density and biomass, the larger the values of LAI. LAI is responsible for 
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exchange of water, carbon and other compounds that involve all process based models (Running 

et al. 1989; Chen 2013). At canopy level, the radiation portions of specific wavelengths are 

intercepted, absorbed and reflected by plant leaves, which can be determined by the amount of 

LAI. LAI data collected at landscape scales provides analysis of canopy architecture, light 

intercepted at canopy level and spectral reflectance of canopy structure and ground (Valdez et al. 

2012). This reflectance of canopy will produce a remote sensing signal that depends on the 

amount of leaf presence and its architecture (Chen 2013). Thus, remotely sensed images provide 

the great potential to develop spatial explicit estimates of LAI.  

Although the use of remotely sensed images provides a feasible measure for mapping 

LAI continuously over terrestrial landscapes, accurate estimation of LAI for a study area is a 

challenging task (Gray and Song, 2012). First of all, mapping LAI at landscape, regional and 

global scale requires collection of LAI ground observations and this is often money-consuming. 

Secondly, multiple spatial resolution images have been widely used to map LAI from a local 

scale to a regional and global scale. For example, Landsat Thematic Mapper ™ images with 

medium spatial resolution of 30 m x 30m have been employed to map LAI at local and national 

level whereas MODIS (moderate resolution imaging spectro-radiometer) images lead to lower 

spatial resolution LAI products at 250 m, 500 m and 1000 m. However, LAI observations are 

often collected at sample plots that have spatial resolutions from 1 m × 1 m to 30 m × 30 m. 

Thus, there is an inconsistency of spatial resolutions between the sample data and images, which 

leads to the difficulty of combining the sample data and remotely sensed images to create LAI 

maps.  A typical example is how to combine the MODIS images at a spatial resolution of 1000 m 

× 1000 m with LAI measurements that are collected at sample plots of 10 m × 10 m. Moreover, 

the relationships of LAI observations with spectral variables from remotely sensed images vary 
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depending on spatial resolutions and thus different algorithms may be needed for mapping LAI 

at multiple scales (Jonckheere et al. 2004; Chen 2013). In addition, there is no an effective 

method to assess the accuracy of LAI estimates at multiple scales.   

This study focused on derivation of LAI estimates and accuracy assessment at multiple 

spatial resolutions by combining LAI observations from sample plots and various remotely 

sensed images including aerial photographs, Landsat TM images, and MODIS at the Southern 

Illinois. Furthermore, this study investigated and analyzed an efficient sampling design for 

collecting LAI measurements for mapping and validation of LAI at multiple spatial resolutions 

across a heterogeneous landscape in the Southern Illinois. Theoretically, this study attempted to 

overcome some of the gaps that currently exist in this field. 

 

1.2 PROBLEM STATEMENT 

 

With the advent of remote sensing technologies in late 20
th

 century, land surface 

processes and global carbon modeling have been studied frequently. The primary goal of remote 

sensing is to continuously observe land surface conditions and processes at various scales (Huete 

et al. 2002). For carbon cycle modeling at local, regional and global scales, there has been a 

strong need to map spatial distributions and patterns of vegetation canopy across heterogeneous 

landscape. There is also a gap in the study of quantification and effective mapping of the spatial 

distributions and patterns of biomass or carbon that is driven by LAI (Wang et al. 2009). The 

inconsistency of spatial resolutions when remotely sensed images and LAI observations are used 

to map LAI largely impedes the development of models and algorithms that are used to combine 

remotely sensed images and LAI observations and ultimately affects the accuracy of maps. 

Moreover, it is important to apply multiple spatial resolution images to explore vegetation 
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structures and patterns. For doing this, an effective sampling design to collect in situ LAI 

measurements at multiple spatial resolutions are required (Chen 2013).  

Carbon mapping for heterogeneous landscapes like Southern Illinois where the vegetation 

is sporadically populated is itself challenging and tedious. Vegetation cover of Southern Illinois 

is comprised of forests, grass lands, and crop lands. The forested region represents hardwood 

lands dominated by oak-hickory species. Although debates have been still persisted to know if 

the forests are sinks or sources of carbon however, there is a significant need to identify whether 

the hardwood forests are carbon sinks or sources (Luyssaert et al. 2008; Pregitzer and Euskirchen 

2004). For this research, a pressing need is to map spatial distribution of LAI and monitor its 

spatial variability in terms of vegetation structure for example, hardwood forests. Owing to the 

fragmented landscape of Southern Illinois, it is important to know the amount of vegetation 

condition that can be achieved by measuring Leaf Area Index parameter in Southern Illinois. 

Furthermore, no studies that deal with mapping LAI in Southern Illinois have been carried out. 

Thus, this research will certainly help provide information on these topics.  

In addition, there is also a need to clarify if the accuracy of MODIS derived LAI maps 

are compatible with that of Landsat TM image derived LAI estimates. Landsat TM images have 

a spatial resolution of 30 × 30 m and usually can be used to map LAI at local and regional scales, 

while MODIS images have a range of spatial resolutions from 250 × 250 m to 1000 × 1000 m 

and are often applied to map LAI at regional and global scales. That means that the coarse spatial 

resolutions of MODIS do not allow for spatial details to be mapped as much as landsat TM 

(Cohen et al. 2003). On the other hand, the MODIS derived LAI maps may be problematic for 

their applications at the local scale. Because of larger pixel sizes in MODIS images, it is 

expected that smoothing of spatial variance of pixel values could result in lesser spectral 
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sensitivity to LAI (Woodcock & Strahler 1987; Cohen et al. 2003). In an earlier investigation, 

Doraiswamy et al. (2004) found that MODIS images at 1-km resolution couldn’t be able to 

specify crop LAI because the 1-km spatial resolution is a limiting factor in accurately retrieving 

crop-specific biophysical parameters at field and local scales.  In order to address the accuracy of 

MODIS product, there is a strong need to assess the quality of MODIS derived LAI maps. In this 

study, the comparison of MODIS and Landsat TM derived LAI maps will provide the 

fundamental information on assessing its quality and the linkage from local LAI maps to regional 

and global LAI maps. Thus, this research will further clarify these issues. 

 

1.3 STUDY OBJECTIVES 

 

The purpose of this study was to develop an effective sampling design for collecting 

ground measurements of LAI at different spatial resolutions across the heterogeneous landscape 

of Southern Illinois. This design aimed at successfully combining field sample plot data with 

aerial photographs, Landsat TM images, and MODIS images and performing accuracy 

assessment at different spatial resolutions that vary from 1m x 1m to 30 m x 30 m, 90 m x 90 m, 

250 m x 250 m, 500 m x 500 m, and 1000 m x 1000 m. Moreover, this research explored the 

correlations of LAI measurements with the used images and their various transformations and 

investigated the development of models that account for the relationships at multiple spatial 

resolutions. A best regression model was obtained for each spatial resolution. This study also 

analyzed the relationships of LAI spatial distributions with vegetation types including grass land, 

cropland, and forests, and thus provided estimates of LAI as a vital source of information in 

process based models that are used to clarify if the hardwood forests in this area are carbon sinks 
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or sources. In addition, this study undertook a comparison of spatial details and accuracy of LAI 

maps derived by aerial photos, Landsat TM and MODIS in Southern Illinois and thus clarified 

whether MODIS derived LAI maps can be used to provide LAI information for vegetation 

carbon cycle modeling at local and regional scales. 

 

1.4 RESEARCH QUESTIONS 

 

This study tested the following hypotheses: i) the spectral variables from Landsat TM and 

MODIS images are significantly correlated with LAI; and ii) MODIS derived LAI maps have 

significantly lower accuracy and less details than the Landsat TM derived LAI maps. Moreover, 

this study tried to answer following questions: 

1) What sampling design method is effective to collect measurements of LAI for the 

heterogeneous landscape in Southern Illinois so that the obtained LAI observations can 

be used to map LAI and validate the accuracy of the maps at different spatial resolutions? 

2)  How does LAI vary over space depending on different vegetation types and canopy 

structures, including forests, crop lands and grass lands? 

3) Does a MODIS derived LAI map have significantly lower accuracy and less details than 

a Landsat TM derived LAI map? 

  



 

7 
 

CHAPTER 2 

REVIEW OF LITERATURE 

2.1 BACKGROUND 

Various studies have been done regarding the application of remote sensing to vegetation 

carbon modeling at various spatial and temporal scales. However, there are still some great 

challenges in generating continuous time series of vegetation products from multiple sensor 

instruments (Ganguly et al. 2008). There are also global concerns regarding climate change and 

how carbon cycling affects climate change. Some studies on LAI coupled with remote sensing 

technologies provide an insight of dynamic changes in productivity and climate impacts on 

vegetation ecosystem (Zheng and Moskal 2009). The abundance of vegetation cover on 

terrestrial surface plays an important role on mitigation of carbon concentration in atmosphere. 

Vegetation types, canopy structures, and plant physical characteristics are the important factors 

taken into consideration for modeling biophysical variables in terrestrial surface. Especially, LAI 

is useful to study plant photosynthesis, growth and energy exchange between the surface of the 

earth and atmosphere. LAI is considered as an important variable in biomass study (Watson 

1947; Chen and Black 1992) as the most important biophysical parameter and critical indicator 

of terrestrial ecosystems because of its significant role in photosynthesis, transpiration, carbon 

and nutrient cycling (Chen and Cihlar 1996; Breda 2003). 

 

2.2 IMPORTANCE OF LAI AND ROLE OF REMOTE SENSING 

Chen et al. (1997) highlighted the importance of LAI estimates as eco-physiological 

measure and remote sensing measure to understand the photosynthetic and transpiration activity 

as well as its spectral reflectance within canopy. Such reflectance is largely influenced by the 
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optical properties of leaf and surrounding, topography, spatial resolution and look angle of 

sensors (Wulder et al. 2004; Chen 2013). Given the higher density of canopy structure, more 

absorption at blue and red wavelengths and more reflectance at green and near infrared of solar 

radiation occur and less energy can be transmitted to ground surface (Gobron et al. 1997; Zheng 

and Moskal 2009). Also it is noted that healthy plant leaves absorb most visible solar radiation 

and scatter non visible component. Various remote sensing technologies and sensors help in 

mapping LAI by developing a suitable relationship between spectral response and magnitude of 

LAI (Wulder et al. 2004). On developing the relationship, recent years LAI research is 

profoundly geared towards practical and process based modeling (Running and Gower 1991; 

Running and Hunt 1993). The process based models simulate biophysical processes and carbon 

sinks of plants by using LAI as a primary variable (Breda 2003). However, the process based 

models used for modeling vegetation carbon dynamics do not account for spatial variability of 

LAI and other parameters and variables. Remote sensing provides a powerful mechanism for the 

spatial estimation of LAI. The use of remote sensing provides the potential to create LAI 

products of vegetative growth conditions at various spatial resolutions (Chen 2005). The 

combination of the process based models and remotely sensed image derived LAI can lead to 

maps that account for spatial distribution of vegetation carbon and can be used to improve 

decision-making on carbon science management (Running and Gower 1991; Running and Hunt 

1993; Wang et al. 2009).   

 

2.3 TECHNIQUES AND MEASUREMENT OF LAI 

Direct and indirect estimations are commonly two ways to quantify LAI of vegetation 

canopy in terrestrial landscape. The direct estimation known as destructive sampling method is 
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based on the field based measurement and done by defoliation of leaf or litter fall collection, or 

point contact sampling (Chen et al. 1997). It basically involves collection and removal of green 

leaves or some representative trees from a sample plot (Zeng and Moskal 2009). This is accurate 

but labor intensive, time consuming and costly (Peduzzi et al. 2012) and hence adopted less 

frequently these days. One of the examples is the estimation of LAI using destructive sampling 

to obtain ground truth data in Yosemite National Park (Schiffman et al. 2008). Chen et al. (1997) 

also mentioned the direct destructive sampling method used in agricultural practice. However, 

sampling associated with this technique is less significant to evergreen forests because of 

absence of needle fall (Chen et al. 1997; Jonckheere et al. 2004). Also, it is difficult to directly 

perform LAI measurement over large spatial extents (Zheng and Moskal, 2009). 

Non contact method of measurement based on light below and above the canopy 

(Eklundh et al. 2001) is more efficient and pragmatic compared to the aforementioned direct 

method.  This indirect method holds a great promise because of its potential to obtain quick and 

low-cost measurements over large areas (Chen et al. 1997). This type of measurements can be 

collected for any heterogeneous surface of terrestrial ecosystems using airborne and satellite 

systems. Indirect estimation behind LAI measurement is guided basically by Radiative transfer 

model and commercial canopy analyzers. 

The mechanism of radiative transfer model is based on measuring transmission of 

radiation through the canopy and is termed as radiative transfer theory (Ross 1981). This process 

is based on gap fraction that is guided by amount of light not penetrating to the understory from 

the canopy (Zeng and Moskel 2009). The gap fraction helps to measure amount of light 

penetration and gaps in the canopy (Zeng and Moskel 2009) and is determined by leaf 
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distribution and arrangement at canopy level (Campbell 1986). The radiative transfer model can 

be written as: 

)(/)cos())(ln(  GPLAI                                                      (1) 

Where P( ) is the gap fraction, G( ) represents foliage projected to the leaf angle distribution. 

According to Breda (2003), radiative measurement method is based on Beer-lambert equation 

that involves measuring incident radiation I₀ (Yang et al. 1993; Zheng and Moskal 2009). The 

below-canopy radiation is measured as: 

LAIkeII  0

                                   
                                                         (2) 

Where k is the extinction coefficient and is function of leaf angle distribution. Previous studies 

show various ways of measuring LAI of canopy that is influenced by canopy distribution pattern. 

Chen et al. (1997) formulated effective LAI for in situ measurement that is used for nonrandom 

dispersion of canopy is given as: 

LLe                                                                                          (3)                               

Where Le represents the effective plant area index, L is the actual biomass area, and Ω is the 

clumping index and its value attains a unit when biomass is randomly distributed. Similarly, in 

other study of random distribution pattern by Chen et al. (1997), canopy gap fraction is derived 

to obtain “effective” LAI estimate using radiative transfer model. The model expressed as: 

eLL )1(                                                                                     (4) 

Where α is the critical component in optical LAI measurement, L is the actual LAI and Le 

represents the effective LAI.  
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Moreover, the study of LAI has been widely conducted by plant canopy analyzers. The 

study by Breda (2003) mentioned four types of plant canopy analyzers that are used on 

estimating LAI by measuring light transmitted through canopy. Instrument such as Accupar 

(Decagon devices, USA) and Sunscan (Delta-T Devices, UK) are used to measure the incident 

photosynthetically active radiation (PAR) and transmitted PAR above canopy and below canopy. 

Similarly, other two kinds of instrument like LAI-2000 (Li-Cor, Nebraska) and DEMON 

(CSIRO, Australia) are used for above canopy with fixed below canopy in range of 320 – 490 

nm and 430 nm, respectively.     

However, there is no clear understanding as to which approach produces best results for a 

given land cover type. Qi et al. (2000) suggested two common approaches which are similar to 

the notion developed by Chen et al (1997) to estimate LAI using remote sensing imagery: (1) 

vegetation index approach and (2) modeling approach. Vegetation index approach is associated 

with spectral transformation of two or more bands in order to understand vegetation properties 

such as normalized difference vegetation index (NDVI) (Rouse et al. 1974; Qi et al. 2000; Huete 

et al. 1997). Modeling approach is based on determination of spatio-temporal dynamics of 

vegetation variable such as LAI, across the wide range of areas by establishing empirical 

relationship (Chen and cihlar 1996; Myneni et al. 1997; Hassan and Bourque 2010; A.Vina et al. 

2011).  

Several algorithms have been derived by using multiple band combinations from spectral 

data and deriving vegetation indices (Vina et al. 2011). Since the portion of LAI is composed of 

green leaf area as photosynthetically functional component (Vina et al. 2011), the most common 

vegetation index to measure the greenness is NDVI that is based on red and near-infrared 

reflectance: )/()( ReRe dNIRdNIRNDVI   , where ρ is the spectral reflectance (Rouse et al. 
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1974; Heute et al 2002). Given the high reflectance of RED and low in NIR, a small value can be 

obtained for NDVI (Turner et al. 1999). Plant foliage will have relatively low reflectance of red 

energy when there is high absorption of red wavelength (Turner et al. 1999). Conversely, dense 

vegetation canopy will have high reflectance in near infrared band, which leads to greater NDVI 

value. The reflectance and absorption of spectral data is guided by leaf optical properties which 

allows optical remote sensor to capture detailed information on photosynthetically active 

vegetation canopy structure (Zheng & Moskal 2009) and will help to understand energy 

exchange and carbon sequestration.   

NDVI is affected by both canopy structure of plant and source-sensor geometry (Goetz 

1997). Though NDVI is commonly used for global long-term vegetation monitoring, generally 

its relationship with LAI can be established on specific site, time and biome (Sellers et al. 1996). 

Therefore, it is important to analyze the relationship between LAI measured in the field and 

NDVI derived from Landsat TM images to generate LAI maps (Xavier and Vettorazzi 2004). 

Compared to other spectral variables, NDVI is often better correlated with LAI. In the recent 

study of Hassan and Bourque (2010) in Boreal Forest region of Northern Alberta, the results 

showed relatively strong linear correlation between LAI and vegetation index. 

Huete et al. (1997) compared the capability of vegetation index products derived from 

MODIS images and found that NDVI is high dependent on red band in the forested region rather 

than the Soil adjusted Vegetation Index (SAVI). Huete et al. (2002) suggested high match 

between the values obtained from airborne and canopy reflectance with MODIS images. There is 

indeed a need to enhance the understanding of the correlations between LAI and various 

vegetation indices from satellite data from fine spatial resolutions to coarser ones. 
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Chen et al. (1997) gave an overview of estimating LAI for boreal forests, including 

theory, techniques and measurements. Zheng et al. (2009) summarized theories, methods and 

sensors for mapping LAI using remote sensing methods. They concluded that Landsat TM 

images have been widely used to map LAI of vegetation canopy (Cohen et al. 2003; Chen and 

Black 1992; Chen and Cihlar 1996; Xavier and Vettorazzi 2004). For example, Eklundh et al. 

(2001) investigated the relationships between Landsat ETM+ data and LAI in a boreal conifer 

forest. In the similar research by Cohen et al. (2003), an increasing correlation was obtained 

between reflectance and LAI data with increasing pixel size of MODIS imagery and they 

clarified the similarities and distinction between LAI estimates from MODIS and Landsat ETM 

plus images. Chen and Black (1992) mapped LAI of boreal conifer forests using Landsat TM 

images. Turner et al. (1999) investigated the relationship between LAI and Landsat TM spectral 

vegetation indices across three temperate zone sites. However, the methods to map LAI using 

remote sensing technologies greatly vary depending on spatial resolutions of images and the 

sizes of study areas.  

Zha et al. (2003) conducted a spectral reflectance-based approach in western China and 

quantified percentage of grassland cover from Landsat TM imagery. They found significant 

statistical relationship between grass cover and NDVI with a small sample size. When a study 

area is large, such as the whole US or the earth surface, finer or medium spatial resolution 

images often lead to huge amounts of data and difficulties of calculation. Thus, coarser spatial 

resolution images such as MODIS are recommended. Chen et al. (2002) derived Canada-wide 

coarse-resolution LAI maps using satellite imagery and ground measurements. MODIS and 

AVHRR (Advanced Very High Resolution Radiometer) images at coarser spatial resolutions 

such as 1 km × 1 km have been widely used to map vegetation index and LAI at regional and 
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global scales. However, the MODIS products that render the coarse-resolution images at a large 

scale require integrated approach to validate them based on the field measurements because LAI 

measurements are often collected at finer spatial resolution such as 30 m × 30 m (Cohen et al. 

2003). In previous study by Spanner et al. (1990), TM images are sensitive to small scale 

variations in canopy closure, understory vegetation and background reflectance due to fine 

spatial resolution. On the other hand, finer spatial resolution images can record much complexity 

of land surface feature, while MODIS images lack of this type of spatial detail due to coarser 

spatial resolution (Cohen et al. 2003).  It is important for regular and ongoing assessment of 

quality of remotely sensed image products at regional and global scale. But, the methods for the 

quality assessment are still lacking. 

2.4 LAI ESTIMATION 

Regression modeling is the most common method to estimate and map forest biomass 

characteristics (Jensen and Hardin 2005) and has been widely used for modeling the relationship 

between spectral data and LAI (Chen and Cihar 1996; Turner et al. 1999; Cohen et al. 2003). 

With the regression based approach, spectral values of remotely sensed data are paired with in 

situ LAI measurements (Fernandes et al. 2005). This is especially true when finer or medium 

resolution images are used. The performance of the method varies greatly depending on the 

correlation of LAI with spectral variables (Turner et al. 1999; Yang et al. 2006, 2007). The 

regression models often help to identify the strength of correlation between ground data with 

image bands.  Xavier & Vettorazzi (2004) established the relationship between LAI with NDVI 

derived from Landsat TM images to obtain LAI map. They concluded that 72 percent of LAI 

variance could be explained by NDVI. In a similar study by Yang et al. (2007), regression model 

was developed between LAI of winter wheat and vegetation indices. They found that 70 percent 
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variation of LAI was explained by the spectral variables from TM images. Zarate-Valdex et al. 

(2012) found a high correlation of LAI derived from hemispherical photography with MASTER 

Vegetation index. Multivariate stepwise regression is often used to select important predictor 

variables. Cohen et al. (2003) did OLS (Ordinary Least Square) and RMA (Reduced Major Axis) 

regression in multiple SVI to investigate the relationship between ETM+ and MODIS images. 

Hassan and Bourque (2010) used data fusion technique to establish linear correlation between 

LAI and EVI (Enhanced Vegetation Index).  Similarly, Huang et al. (2006) used OLS regression 

model to generate a 30 m resolution LAI map for a 900 sq.km study area. But, regression 

modeling often leads to overestimation and underestimation of LAI (Ganguly et al. 2008). 

Wang et al. (2009) proposed an image based co-simulation to map forest carbon stock 

and this method can also be used to map LAI by combining sample plot data and remotely 

sensed images. The shortcoming of this method is its complexity and hard to apply. Another kind 

of methods is nonparametric, such as K-Nearest Neighbors that examines each pixel to be 

estimated and identifies k-nearest training samples measured in multispectral space and then 

calculates and assigns a weighted average to the estimated pixel. Regardless of spatial 

resolutions and interpolation methods, the important principle to map LAI is that the spatial 

resolutions of plot data must be consistent with those of remotely sensed images (Wang et al. 

2001 and 2009). Because of lack of field data at coarser spatial resolutions, the MODIS image 

derived LAI products are not often based on in situ measurements of LAI and currently there is 

also no effective way to valid the MODIS LAI products. 

Various remotely sensed images from high resolution aerial photographs to medium 

resolution Landsat TM images and coarse resolution images such as MODIS have been widely 

used for mapping LAI. High spatial resolution images such as aerial images and Ikonos and Geo-
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Eye images can provide the details of vegetation canopy structures and be often used as 

reference maps to assess medium and coarse resolution products (Wulder et al. 2004). This type 

of LAI maps at higher resolution can be used to enhance the understanding of above ground 

biomass at local scale. Yang et al. (2006) developed medium resolution LAI products to 

investigate spatial distribution and dynamics of land cover types. Landsat derived LAI maps 

provide more detailed information of LAI compared to MODIS derived LAI products and thus 

can be used as reference. However, an algorithm is required on how to validate the coarser LAI 

products using finer resolution maps because of different resolutions (Yang et al. 2006). Chen et 

al. (2002) mentioned that validation of LAI products from coarse resolution is challenging task 

due to limited collection of ground plot data. Usually, coarser resolution images like MODIS are 

employed to map LAI of large biomes at regional and global level (Cohen et al. 2006). The 

MODIS derived LAI products would help to understand the global dynamics of carbon cycling 

(Cohen et al. 2003). On the other hand, unlike Landsat TM images that have coarser temporal 

resolution, high temporal resolution MODIS images provide information in a timely basis 

(Schiffman et al. 2008).  But, in terms of accuracy assessment, medium resolution image derived 

LAI maps are often more accurate (Chen et al. 2002). Therefore, there is a tradeoff between 

spatial and temporal resolution (Gray and Song 2012). 

 

2.5 ACCURACY ASSESSMENT of LAI MAPS 

The accuracy assessment of LAI maps can be quantified using root mean square error 

(RMSE) or Pearson product moment correlation coefficient between the estimated and observed 

LAI values (Wang et al. 2005, 2009; Wang and Gertner 2013). The focus is often put on the 

acquisition and use of sample plot data. There are three widely used methods (Congalton 1991; 
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Congalton and Green 2009). First of all, sometimes one uses a portion of a set of sample plots for 

model development and the rest for validation of obtained models. This method is limited 

because the sample plots used for accuracy assessment are not independent from those used for 

developing models. Secondly, cross-validation is another widely used method for accuracy 

assessment. In this method, each time one kicks out one sample plot and uses it as reference and 

then applies all the plots left to develop models. The obtained model is used to calculate an 

estimate for the plot that is removed and its square difference between the estimated and 

observed value is calculated. This process is repeated until the square differences for all the 

sample plots are obtained. This method leads to a RMSE and greatly saves time and money for 

collection of ground truth data, but implies a great load of computation. The best way for 

accuracy assessment is the acquisition and use of independent sample plots. However, this 

method is time and money consuming. Additionally, Wang and Gertner (2013) suggested the use 

of spatial uncertainty and error budget in which various sources of errors are identified and 

quantified and linked with the output uncertainties and the uncertainties of estimates are then 

partitioned into the input components of errors.  

In addition to selection of methods, we are facing several other challenges for the 

accuracy assessment of LAI maps. First of all, the inconsistency of spatial resolutions for the 

sample plot data and used remotely sensed images often leads to difficulties of accuracy 

assessment (Wang and Gertner 2013). A typical example is that MODIS images produce 1 km 

×1 km LAI products while the sample plot data are often collected at spatial resolutions that are 

much finer. Secondly, how to simultaneously assess the quality of LAI maps at multiple spatial 

resolutions is another great challenge and so far there are no studies that have been reported in 
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this area (Wang and Gertner 2013). This obviously needs a multi-scale sampling design. This is 

one goal of this study. 

Many studies reported that the LAI values derived from MODIS coarse-resolution 

images usually have lower accuracy than those from fine-resolution images (Chen et al. 2002; 

Yang et al. 2007). Busetto et al. (2007) combined medium and coarse spatial resolution images 

to estimate sub-pixel NDVI. Their result showed higher correlation and lower RMSE between 

MODIS and TM NDVI. Therefore, assessing the accuracy of LAI map is driven by the 

validation of using LAI estimates. There has been a significant error on coarse resolution 

MODIS products. This is especially true on estimation of LAI for forested biomes and LAI is 

often over-estimated compared to in situ observations (Kauwe et al. 2011). Therefore, accurate 

validation of using representative samples should be considered for assessing the quality of LAI 

maps. It is given by the confidence errors of prediction of the regression transfer function 

(Fernandes et al. 2005). Moreover, likely noticeable error considerably occurs due to sampling 

and measuring of LAI, algorithms, geometric correction and atmospheric correction and 

calibration of remotely sensed images, etc. (Fernandes et al. 2003). If there are no measurement 

errors, the model is a true representation of the ground characteristics and the estimates from it 

should be highly correlated with the ground truth (Wang et al. 2001).  
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CHAPTER 3 

MATERIALS AND METHODOLOGY 

3.1 STUDY AREA 

The study area is located at Southern Illinois, which extends from southern part of 

Jackson County to northern part of Union county. It is joined with the Giant City State Park in 

the east and Shawnee National Forest in Northwest. This study area has a center at X-coordinate 

of 301380 m and Y-coordinate of 4165140 m under NAD 1983 Universal Transverse Mercator 

(UTM) 16N, and covers a total of 25 sq.km (Figure 1). The climatic pattern is continental, 

generally with hot summers and cold winters (Hosner and Minckler 1963). The average 

temperature ranges from a high of 30.6
0
 C degrees to a low of 2.2

0
 C degrees 

(http://www.netstate.com/states/geography/ il_geography.htm). Average precipitation is 29 cm in 

winter and 31 cm in summer (Illinois State Water Survey). The elevation ranges from 91 m to 

325 m above sea level. The major soil types include Alfisols, Entisols, Inceptisols, Mollisols and 

Ultisols (Thompson 2004). The land use and land cover types include forests, shrubs, grasslands, 

and croplands. The land cover categories of Jackson County comprise agricultural land (91736 

ha), rural grassland (31134 ha), forested land (37103 ha), wetland (16610 ha), and urban built-up 

land (5443 ha) (Land cover of Illinois Statistical Summary 1999-2000).  

 

3.2 VEGETATION COVER TYPES 

The study area consists of private, state, and federally owned land located in the vicinity 

of Shawnee National Forest and Interior Highlands of Ozark. The vegetation cover types include 

crops, shrubs, and forests. Common agricultural crops in this area are corn, soybean, and fruits. 

http://www.netstate.com/states/geography/%20il_geography.htm).
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The understory vegetation mainly consists of vascular plant communities like mosses and fern. 

The top canopy vegetation comprises of shrubs with native and invasive species such as 

honeysuckle (Lonicera maackii), Autumn olive (Elaeagnus umbellate), Common Reed 

(Phragmites australis), Nepalese browntop (Microstegium vimineum), Japanese knowtweed 

(Polygonum cuspidatum), Sawtooth oak (Quercus acutissima), etc.  

The forested lands are dominated by species of Oaks and Hickories (Braun 1950). 

Because of the un-dissected till plain of southern Illinois, the oak- hickory association has also 

been influenced by the local soil type (Braun 1950). About ninety-eight percent of Illinois forests 

are composed of hardwood species (Illinois Department of Natural Resources 2008). The mixed 

forested lands in the study area are overwhelmingly dominated by deciduous hard wood species 

across the landscape (Fralish 2003) where most of the original stands of oak-hickory have been 

cleared and fragmented for agriculture purpose (Yates et al. 2003; Pande et al. 2006). Among the 

hard wood species, 43 percent are composed of white and red (Quercus rubra) oak (Illinois 

Department of Natural Resources 2008). Oak-hickory stands are the most common community 

that constitutes about 65% of the forested lands (USDA Forest Service 2009). The species are 

Acer saccharum, Asimina triloba, Staphylea trifolia, Asplenium platyneuron, Botrychium 

dissectum, Fagus grandifolia (Illinois Department of Natural Resources 2008).  

A sampling design to collect LAI field observations was conducted in the summer of 

2012. The sample consists of 175 plots (Figure 1). The sampling design method and data 

collection were described in the section of methods. 
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Figure 1: The study area illustrates the heterogeneous landscape of Southern Illinois. The red 

mark shows sampling grid in Jackson and Union county. 

 

3.3 DATA SETS 

 

3.3.1 HIGH RESOLUTION IMAGES: AERIAL PHOTOGRAPH 

 

A high spatial resolution aerial photograph of Southern Illinois dated back on 2007 was 

obtained from Illinois Spatial Data Center (Figure 1). This aerial photograph had a spatial 
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resolution of 1m and consisted of visible bands, i.e., red, green, and blue. This photo was geo-

referenced with NAD 83 UTM Zone 16 coordinate system. Each visible band was extracted to 

form band ratios. Pixels values from all the bands and their ratios were extracted to match with 

the sampling plots. The aerial photograph did not match the sample plot data in terms of 

acquisition time very well. However, because there were no clearing cuttings and urbanizations 

that took place in this area, it can be assumed that the inconsistency of time would not lead to 

great uncertainty of the results and thus not affect the conclusions made from this study. 

 

3.3.2 MEDIUM RESOLUTION IMAGES: LANDSAT TM IMAGERY 

Landsat TM images have an appropriate spatial resolution of 30 m and thus provide the 

potential to create LAI vegetation products for the Southern Illinois. Landsat TM images with 16 

days temporal resolution allow discriminating growth of vegetation and dynamics of land cover 

types such as grasses, shrubs, and forests. Given the high temporal period, it is better to obtain 

TM data for vegetation cover during summer because vegetation cover is particularly enhanced 

by plant growth that results in high biomass and PAR values (Chen et al. 2010). TM images 

consist of blue band 1 : 0.45 - 0.515 µm, green band 2: 0.525 - 0.605 µm, red band 3: 0.630 - 

0.690 µm, near infrared (NIR) band 4: 0.74 - 0.90 µm, middle infrared (MIR) band 5: 1.55 - 1.75 

µm and band 7: 2.08-2.35 µm. The appropriate spatial, spectral, and temporal resolution from 

TM images provides useful information to map LAI for southern Illinois (Schiffman et al. 2008; 

Zheng and Moskel 2009).  

The entire study area was covered by a Landsat 5 TM scene: Path 23 and Row 34. 

Although it was attempted to acquire the Landsat TM image of 2011 and 2012, due to high cloud 

cover, none of the TM scenes for the entire summers could be acquired for the study area. 
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Finally, a cloud free TM image was acquired on August 17, 2010 to conduct estimation of LAI 

(Figure 2). This image was radiometrically corrected and digital numbers were converted to 

reflectance values using Emperical Line Calibration (ELC) in order to reduce the effects 

associated with atmospheric interference including clouds and noise (Jensen 2005). The subset 

TM image was geometrically corrected with acceptable accuracy and was geo-referenced to the 

aerial photo that had NAD1983 UTM 16N coordinate system. The root mean square (RMS) error 

obtained was less than 0.5 pixel (<15m). After the pre-processing of TM image, the converted 

reflectance values were extracted from each band using the coordinates of LAI sample plots.  In 

addition, the TM image data at the spatial resolution of 30 m × 30 m were aggregated to spatial 

resolutions 90 m × 90 m, 250 m × 250 m, 500 m × 500 m, and 1000 m × 1000 m using a window 

averaging method. 

 

Figure 2: Landsat TM 5 image of Southern Illinois acquired on August 17, 2010. Upper red 

boundary shows Jackson County and lower red boundary shows Union County. 

 



 

24 
 

3.3.3 COARSE RESOLUTION IMAGES: MODIS IMAGERY 

 

MODIS, aboard in the Aqua (EOS PM) and Terra (EOS AM) satellite platforms, 

provides the robust and pragmatic measures for monitoring dynamics of terrestrial vegetation 

ecosystems at regional and global scale. With its high temporal resolution (1 to 2 days), it 

monitors biophysical activity and vegetation parameter like LAI in routinely manner and 

performs time-series analysis. This remote instrument provides data of land, atmosphere, 

cryosphere, and ocean in 36 spectral bands. These bands have spatial resolution of 250 m (bands 

1 - 2), 500 m (bands 3 - 7) and 1km (bands 8 - 36). Given the time of the day, on which the field 

data was collected, MODIS aboard Aqua platform dated on August 17, 2012 was downloaded in 

HDF format to produce multiple LAI products of different resolutions. This Aqua platform 

aboard MODIS sensor passes from south to north over the equator in the afternoon which was 

corresponded with the time of the day for data collection. The grided image of tile units (h-10, v-

5) that centered the study area showed spatial and temporal variation of LAI at 16 days 

composite. The LAI products of different spatial and temporal resolution obtained (Figure 3) are 

given as: 

 MYD13Q1: 16-day 250m VI 

 MYD13A1: 16-day 500m VI 

 MYD13A2: 16-day 1000m VI 

 MOD 15A2: 8-day 1000m LAI 

The vegetation products of each resolution obtained from the tile units that are in 

sinusoidal grid projection were re-projected to convert into UTM coordinate system using 

MODIS Re-projection Tool (MRT). This made a direct comparison and avoided large-scale 

distortions in the native projection system (Kauwe et al. 2011).The individual band layers were 
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subset and layers stacked. The output file for each composite imagery contained red (620 - 670 

nm), blue (459 - 479 nm), near infrared (841 - 876 nm), and middle infrared (1230 – 1250 nm, 

1628 – 1652 nm, 2105 - 2155 nm). Similarly it also consisted of NDVI and enhanced vegetation 

index (EVI) images with parameters of view zenith, solar zenith, and relative azimuthal angles.  

The purposes of acquiring and using the MODIS images included (1) conducting an analysis of 

LAI estimates derived from each MODIS resolution image and (2) comparing the MODIS 

results with the TM derived LAI maps. 

 

Figure 3: MODIS images of Southern Illinois acquired on August 17, 2012. 
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3.4 FLOW CHART OF THE METHODOLOGY 

Figure 4 shows the flow chart of the methodology that consisted of study area, image 

acquisition, sampling design and collection of LAI in situ measurements, regression model at 

multiple spatial resolution, and accuracy assessment. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Flow chart of the methodology. 
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3.5 SAMPLING DESIGN AND LAI FIELD MEASUREMENTS 

A systematic sampling for effective collection of measurements of LAI was designed so 

as to cover the study area (Figure 1) at varied grids and spatial resolutions including 1m, 30 m, 

250 m, 500 m, and 1000 m. This design undertook series of steps and provided a potential to 

match the obtained field LAI measurements with remotely sensed images at multiple spatial 

resolutions for mapping LAI and conducting corresponding accuracy assessments of LAI maps.  

A total of 25 blocks having 1 sq.km each was designed to stratify the landscape to collect 

LAI field measurements on different vegetation types. A systematic sampling design was 

conducted to generate a total of 175 sample plots. Each of the blocks corresponded to the pixel 

size of MODIS 1 km x 1 km spatial resolution images. Each of the blocks contained 7 sampling 

plots of 30 m x 30 m. The sampling plots were allocated along the diagonal line of the block to 

cover most of the portion inside the block so as to create a good representation of sample 

measurements. Each block was further divided into sub-blocks of sizes 500 m x 500 m, 250 m x 

250 m, and 30 m x 30m in which a sample plot of 30 m x 30m that matched pixel size of Landsat 

TM images was centered. The blocks of 1000 m x 1000 m, 500 m x 500 m, and 250 m x 250 m 

matched three spatial resolutions of MODIS images. In each 250 m sub-block, 3 sample plots 

were allocated at the center and one at the half way of the diagonal line each side from the center 

to form systematic sample plots. In the same way, a total of 5 sample plots were allocated within 

each of the 500 m x 500 m sub-blocks and eventually, a total of 7 sample plots within each of the 

1000 m x 1000 m blocks (Figure 5). Within each sample plot of 30 m x 30m, 5 transect lines 

were laid out to get 5 LAI field measurements in an interval of 6 m (Figure 6). A AccuPAR Lp-

80 plant ceptometer (Decagon Devices, Inc., Pullman, WA, USA) was used to obtain LAI values 

in perpendicular to the transect line. The measurements had a spatial resolution of 1 m transect 

line that matched the pixel size of the used aerial photo. Considering each biomass vegetation 
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canopy in transect line, the LAI value was recorded in variable landscape. Lastly, the coefficient 

of variation was calculated based on the number of observations and samples to be collected.  

 

 

 

Figure 5: Allocation of sample plots along a transect line within each 1 km × 1 km block and 

collection of LAI measurements within each of 30 m × 30 m sample plot. 

 

 

 

 

 

 

 LAI measurements 
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(a) 

 

(b) 

 

( C) 

 

 

 

Figure 6: (a) A sample plot used to collect 

grassland LAI measurements taken in  

Southern Illinois; (b) Apple orchard standing 

in the transect line; and (c) A sample plot in 

crop land. 

 

 

3.5.1 INDIRECT MEASUREMENT OF LAI 

Field sampling was conducted at post morning and afternoon time periods in June of 

2012. Prior to the ground measurement, a hand-held GPS device was used to precisely geo-locate 

(accuracy <5m) the designated area for obtaining ground-truth data through specified coordinates 

of the plot center. Once a sampling plot was fixed, the transect line was designated in every 6-m 

interval distance. The AccuPAR Lp-80 plant Ceptometer (Decagon Devices, Inc., Pullman, WA, 
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USA) was placed perpendicular to the transect line under the canopy to measure light intercepted 

in the plant canopy. This equipment is a lightweight, portable photosythetically active radiation 

(PAR) sensor that consists of 80 sensors, spaced 1cm apart with a data storage capacity of 1MB 

RAM (over 2,000 measurements) and provides minimum spatial resolution of 1 cm. It measures 

canopy gap fraction and calculates LAI by measuring the difference between light levels above 

the canopy and at ground level. The data obtained from the AccuPAR LP-80 was used to map 

LAI by combining them with remotely sensed images. This sampling design provided the LAI 

measurement data at multiple spatial resolutions that were consistent with the pixels sizes of the 

used aerial photo, TM and MODIS images. 

The PAR value were recorded by keeping the probe outside of canopy cover to make sure 

that it fully received incoming solar radiation that intercepted in tree canopy region. For 

measuring the PAR valued in shrubs and small trees, the external sensor was mounted above its 

canopy to determine the solar flux. The AccuPAR plant Ceptometer was placed beneath the 

canopy layer that measured the radiation beneath the canopy region. Eventually those LAI values 

were obtained from LP-80 plant ceptometer that measures the difference between light levels 

above the canopy and at ground level. From each of the sample plots, 5 LAI values were 

recorded. Mathematically, the in situ LAI relationship derived from the AccuPAR instrument is 

given by:  

L = 
    

 

  
         

            
        (5) 

where   is the ratio of PAR measured below the canopy to PAR above the canopy, f is the beam 

fraction of incident PAR, K is the extinction coefficient and A is the leaf absorptivity in canopy. 

This AccuPAR instrument employs this equation in order to calculate LAI automatically. The 
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measurements vary depending on several parameters including local time, date, leaf distribution 

parameter, zenith angle, and beam fraction.  

Assuming the LAI value for each vegetation type, (forest >=5, shrubs/crops = 3-5, 

grassland 1-3, and baresoil=<1) each grid cell of size 30m were measured. Due to mixed type of 

vegetation in southern Illinois, the LAI value observed was not observed in consistent fashion.  

That said, within a closed interval of 6m to next transect line, patches and dispersed type of plant 

canopy was noticed. 

 

3.5.2 CALCULATION OF LAI MEASUREMENTS 

A total of 875 field LAI in situ measurements were obtained over the 5 km × 5 km study 

region in the heterogeneous landscape. The vegetation canopies of the study area included bare 

soil that had low LAI value, grasslands and shrubs that had medium LAI values and forests that 

had high LAI values. There were 5 LAI values to be collected and each matched the pixel value 

of 1 m resolution aerial photo. The 5 LAI values for each sample plot were averaged to get the 

mean LAI value that matched the pixel values of 30 m resolution TM image. Similarly, to obtain 

the LAI value for each 250m, 500m, and 1000m block, the corresponding mean values of 3 

sample plots, 5 sample plots, and 7 sample plots were calculated respectively to comply with the 

pixel values of Landsat TM and MODIS images at 250 m, 500 m, and 1000 m spatial resolution. 

This aggregation of field data from 30m resulted in a total of 25 LAI average values for each of 

the spatial resolution. The corresponding central coordinate for each LAI value was obtained and 

used to extract the pixel values of the remotely sensed images.    

3.6 CORRELATION AND REGRESSION MODELING 
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The ultimate aim of this methodology was to build regression models at multiple spatial 

resolutions. The extraction of spectral variables was very important. To do so, various image 

transformations were calculated and would be listed in the section of results. Typical examples 

for the image transformations were simple ratio (NIR/R), Normalized Difference Vegetation 

Index (NDVI) (NIR – R / NIR + R), Enhanced Vegetation index (EVI: 

LCCG BluedNIRdNIR  )/()( 2Re1Re  ), and Ratio Vegetation Index (RVI: Red / NIR) 

(Rouse et al. 1974; Jordan 1969; Huete et al. 1996). The purpose of calculating the image 

transformation was to mitigate the effects of topographic features (slope and aspect) and 

atmosphere and thus increase the correlation of the images with LAI. Using the central 

coordinates of the sample plots, the pixel values of all the bands and their transformed images for 

the aerial photo, Landsat TM and MODIS images were extracted using extraction tool from 

ArcGIS (Esri, Redlands, CA). Pearson product moment correlation coefficients between the 

original images and transformed images and the in situ LAI measurements at collected locations 

were calculated. The correlation coefficients were statistically tested for their significant 

differences from zero using the equation:
)2( 2

2




 tn

t
r


  based on the student’s distribution 

at a risk level α = 5%, where n is number of sample plots used. 

Regression analysis has been widely used for modeling the relationship between spectral 

variables and LAI (Chen & Cihar 1996; Turner et al. 1999; Cohen et al. 2003). In this study, it 

was assumed that linear relationship of LAI with the spectral variables was significant at a risk 

level of 5% at each spatial resolution. Multivariate regression has the following format:  

  ppii XXXY ......110      (6) 
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Where Y is the LAI,   ₀, is the intercept, 
i are regression coefficients for spectral variable Xi     

represents the random error - difference between the values estimated by the model and the LAI 

observations. p is the number of spectral variables.  

The regression models were developed to account for the relationships of LAI in situ 

measurements with spectral variables (original images and their transformations) for the aerial 

photo, Landsat TM images, and MODIS images at multiple spatial resolutions. For the aerial 

photo and Landsat TM images, a total of 175 LAI sample plots were available and the sample 

plots were divided into two sets with 125 plots and 50 plots respectively. The 125 plots were 

used to develop regression models and the rest 50 plots to assess the accuracy of the resulting 

LAI maps. For the MODIS images, a total of 25 LAI average values were available and all of 

them were used for building regression models while the accuracy of the resulting maps was 

assessed using a cross-validation method to be described in the section of accuracy assessment. 

Moreover, all the regression models were generated using multivariate step-wise 

algorithm that helps select the spectral variables that had significant correlation with LAI at a 

risk level of 5%. When the stepwise regressions were conducted, the spectral variables were 

selected based on the significance of regression variances. The significant test of variance was 

made based on the following criteria. When the probability of F distribution was equal to or less 

than 0.05, a spectral variable was selected. When the probability was equal to or larger than 0.1, 

the spectral variable was removed. In addition, the spectral variables that had a correlation 

coefficient larger than 0.9 with at least one of other spectral variables that were involved in the 

regression model was removed. The reason of removing the larger coefficient of the variable 

involved in the model provides an opportunity of less duplication and homogeneity between 

similar spectral variables. Therefore values of spectral variable with less correlation coefficient 
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were substituted for the other one to get the best regression model. Regression models were built 

for every resolution image in order to find an accurate site-specific relationship between the 

measured LAI and spectral variables. The statistical coefficients of multiple determinations (R
2
) 

were output. The models obtained were used to generate LAI maps. The regression modeling 

was conducted using a statistical software R studio (Rstudio, Boston, MA). 

 

3.7 ACCURACY ASSESSMENT OF MODELS 

In this study, the obtained regression models were assessed in several ways. First of all, 

the statistical coefficients of multiple determinations (R
2
) were used. Secondly, a RMSE between 

the observed and estimated LAI values was calculated for each model and furthermore relative 

RMSE was obtained by dividing the RMSE with the LAI sample mean. For the aerial photo and 

Landsat TM images, a total of 50 sample plots were randomly selected from the 175 sample 

plots and used to assess the accuracy of the resulting models. For the MODIS images, a cross-

validation method was used at each spatial resolution. In the cross-validation process, out of 25 

random sample plots, initially 5 sample plots were randomly generated for first group cross 

validation and the model was obtained using the rest 20 sample plots. The obtained model was 

applied to validate the LAI estimates of the selected 5 sample plots. Similarly, out of remaining 

20 sample plots, next 5 sample plots were generated for second group to perform second cross 

validation. Previously selected sample plots were placed back in the sample pool to develop the 

second model for cross validation. This process was repeated 5 times and a total of 25 LAI 

estimates were obtained and used to assess the quality of the model.  
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CHAPTER 4 

RESULTS 

 

4.1 HIGH RESOLUTION: AERIAL PHOTO 

A total of 175 collected sample plots were extracted to get the pixel values of the aerial 

photo derived spectral variables and the correlation coefficients of LAI with the spectral 

variables are listed in Table 1. In addition to three bands, a total of 21 ratios of bands or band 

groups were calculated. Based on the t student distribution, the significant correlation coefficient 

was 0.159 at the risk level of 5%. Obviously, all the correlation coefficients were significant 

except for the ratio Red/Green+Blue/Green. The highest correlations were 0.51 and 0.50 and 

obtained using (Red-blue)*Green and (Red-Green)*Blue, respectively. 

 

           Table 1: Correlation coefficients between LAI and aerial photo derived spectral variables. 

Band Correlation Band Correlation 

Blue -0.43 Blue+Green -0.42 

Green -0.41 Blue+Green+Red -0.41 

Red -0.36 blue+Red -0.41 

Blue/Red -0.44 Green+Red -0.39 

Blue/Green -0.37 (Blue+Green)/Red -0.40 

Green/Red -0.32 (Green/Red)*Blue -0.45 

Red/Green 0.31 (Red/Green)-Blue 0.43 

Red-Green 0.43 (Red-Blue)/Green 0.42 

Red-Blue 0.49 (Red-Green)/Blue 0.27 

(Red-blue)*Green 0.51 (Blue/Red)+Green -0.41 

(Red-Green)*Blue 0.50 Green/Red+Blue/Red -0.40 

Red*Green -0.42 Red/Green+Blue/Green 0.03 
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All the spectral variables from the 1m resolution aerial photo were input the multivariate 

regression and the stepwise regression led to a model: 

)321(0012.01*)23(11.0212.099.4 bandbandbandbandbandbandbandLAI   (7) 

This model had a low coefficient of determination (R
2
 = 0.23) and a relative RMSE error 

of 39.7% with a residual error of 1.81. Figure 7 shows the validation results using 50 sample 

plots and most of the LAI values were underestimated and few were overestimated, which led to 

a larger residual error. The linear model didn’t show a good fit between the observed and 

estimated LAI values because only 23 percent of the variation in the LAI was explained by the 

model. 

This model was used to create a LAI map at 1 m resolution (Figure 8) that shows that the 

LAI estimates had a relative small spatial variability over the heterogeneous area. The LAI 

estimates for most of the pixels ranged from 4.4 to 5.63 and considerable LAI estimates also had 

a range of 3.6 - 4.2 (Figure 8). The higher LAI estimates indicated the forested areas. There were 

some areas in which the LAI estimates were smaller than 3.5, implying the presence of shrubs 

and lower canopy biomass.  
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Figure 7: Relationship between observed and estimate LAI values at the 1 m resolution aerial 

photo. 
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Figure 8: Aerial photo derived LAI map at 1m resolution. 

 

4.2 MEDIUM RESOLUTION: TM IMAGES 

A total of 30 ratios of bands and band groups were calculated using the TM bands. The 

absolute correlation coefficients of the TM derived spectral variables with LAI ranged from 0.18 

to 0.71. Based on the significant values 0.159 at a risk level of 5%, all the coefficients were 

statistically significantly different from zero. The original TM band 5, band 1 and band 7 and 
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their transformations appeared highly correlated with the LAI observations (Table 2). Obviously, 

three widely used vegetation indices including the simple ratio (SR: NIR/Red), NDVI, and EVI 

did not show the highest correlation with LAI and they were removed from the obtained model. 

The multivariate stepwise regression resulted in a model at the 30 m resolution: 

 

7/39.60)5/7(41.47756.1529.152.45 TMTMTMTMTMLAI    (8) 

This model had a relative RMSE of 25.4% and a coefficient R
2
 = 0.61 of determination 

with a residual error of 1.1. The 50 sample plots were used to validate the regression model 

generated from 125 sample plots. That is, 61 percent of the variation in the LAI was explained 

by the spectral variables (Figure 9). Compared to the results from the aerial photo at the 1 m 

resolution, the predictions from this model were more reasonable although few over- and under-

estimates took place. The LAI map developed from this model showed considerable variation of 

LAI values over the landscape (Figure 10). The predicted values ranged from 0.18 to 7.29. The 

lowest value was observed along the roads and within the bare lands. The higher LAI values 

dominated the forested areas.  

 

Table 2: Correlation coefficients of LAI with TM image derived spectral variables at the spatial 

resolution of 30 m. 

Bands Correlation Bands Correlation Bands Correlation 

TM1 -0.67 TM7/TM5 -0.60 

(TM5-

TM1)*TM1/TM5 -0.69 

TM2 -0.64 TM1/TM7 0.18 TM5+TM7 -0.70 

TM3 -0.64 TM4/TM7 0.58 (TM5+TM7)-TM1 -0.70 

TM4 0.39 TM5/TM7 0.58 (TM5-TM7/TM1) -0.71 

TM5 -0.71 1/TM1 0.63 

(TM5-

TM1)/TM5*TM1 0.62 

TM7 -0.66 1/TM2 0.57 TM5-(TM1/TM7) -0.71 
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SR 0.43 1/TM5 0.68 TM7-(TM5/TM1) -0.67 

NDVI 0.63 1/TM7 0.66 

(TM5/TM2-

TM7/TM5 -0.71 

EVI 0.55 TM(2+4+5)/7 0.58 TM5*TM1/TM7 -0.66 

TM1/TM4 -0.62 TM(2+3+5)/4 -0.62 TM5*TM1/TM5 -0.67 

TM2/TM4 -0.63 TM(2+3+7)/4 -0.62 (TM5/TM4)+TM7 -0.66 

TM3/TM4 -0.61 TM5*TM4 -0.65 TM7/TM5-TM2 0.64 

TM5/TM4 -0.59 

TM(4-

5)/(4+5) 0.59 TM7/TM2-TM5 0.71 

TM7/TM4 -0.60 

TM(4-

7)/(4+7) 0.62 

TM5/TM4-

TM5/TM7 -0.61 

TM1/TM5 -0.55 TM(4/5)/(4/7) -0.60 TM7/TM3-TM5 0.71 

TM2/TM5 -0.42 TM(4/5)+(4/7) 0.58 TM7/TM1-TM5 0.71 

TM3/TM5 -0.55 TM(4/7+2/4) 0.57 TM7/TM4-TM5 -0.71 

TM4/TM5 0.57 TM5-TM1 -0.72 TM7/TM5-TM1 0.67 

 

 

 

 

Figure 9: Relationship between observed and estimate LAI values at the 30m resolution of TM 

image. 
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Figure 10: TM image derived LAI map at 30m resolution. 

 

4.2.1 AGGREGATED TM IMAGES 

The TM images at the 30 m resolution were aggregated to spatial resolutions of 90 m, 

250 m, 500 m, and 1 km. At the 90 m resolution, the absolute correlation coefficients of the 

spectral variables with LAI varied from 0.33 to 0.64. Although all the coefficients were 

statistically significant (larger than 0.159 at a risk level of 5%), the coefficients were slightly 
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smaller than those at the original 30 m resolution (Table 3). The correlation coefficients 

continuously became slightly smaller when the aggregated TM images had spatial resolutions of 

250 m and 500 m (Table 4 and Table 5). When the spatial resolution was 1 km, the absolute 

correlation coefficients ranged from 0.01 to 0.47 and became much smaller (Table 6). This 

implied the aggregation of TM images decreased their correlations with LAI. Moreover, three 

widely used vegetation indices did not show the highest correlation with LAI at all the spatial 

resolutions. 

 

Table 3: Correlation coefficients of LAI with the aggregated TM images at the spatial resolution 

of 90 m. 

Bands Correlation Bands Correlation Bands Correlation 

TM1 -0.60 TM7/TM5 -0.65 

(TM5-

TM1)*TM1/TM5 -0.64 

TM2 -0.60 TM1/TM7 0.38 TM5+TM7 -0.63 

TM3 -0.57 TM4/TM7 0.50 (TM5+TM7)-TM1 -0.63 

TM4 0.55 TM5/TM7 0.63 (TM5-TM7/TM1) -0.61 

TM5 -0.62 1/TM1 0.51 

(TM5-

TM1)/TM5*TM1 0.50 

TM7 -0.63 1/TM2 0.47 TM5-(TM1/TM7) -0.62 

SR 0.33 1/TM5 0.57 TM7-(TM5/TM1) -0.63 

NDVI 0.57 1/TM7 0.58 

(TM5/TM2-

TM7/TM5 -0.62 

EVI  0.52 TM(2+4+5)/7 0.53 TM5*TM1/TM7 -0.50 

TM1/TM4 -0.57 TM(2+3+5)/4 -0.57 TM5*TM1/TM5 -0.60 

TM2/TM4 -0.60 TM(2+3+7)/4 -0.60 (TM5/TM4)+TM7 -0.63 

TM3/TM4 -0.57 TM5*TM4 -0.57 TM7/TM5-TM2 0.59 

TM5/TM4 -0.52 

TM(4-

5)/(4+5) 0.50 TM7/TM2-TM5 0.62 

TM7/TM4 -0.60 

TM(4-

7)/(4+7) 0.61 

TM5/TM4-

TM5/TM7 -0.62 

TM1/TM5 -0.50 TM(4/5)/(4/7) -0.65 TM7/TM3-TM5 0.61 

TM2/TM5 -0.47 TM(4/5)+(4/7) 0.49 TM7/TM1-TM5 0.61 

TM3/TM5 -0.48 TM(4/7+2/4) 0.49 TM7/TM4-TM5 -0.62 

TM4/TM5 0.43 TM5-TM1 -0.62 TM7/TM5-TM1 0.59 
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Table 4: Correlation coefficients of LAI with the aggregated TM images at the spatial resolution 

of 250 m. 

Bands 

Correlatio

n Bands 

Correlatio

n Bands 

Correlatio

n 

TM1 -0.65 TM4/TM5 0.52 TM(4-5)/(4+5) 0.56 

TM2 -0.64 TM7/TM5 -0.66 TM(4-7)/(4+7) 0.64 

TM3 -0.65 TM1/TM7 0.09 TM(4/5)/(4/7) -0.66 

TM4 -0.30 TM2/TM7 0.01 TM(4/5)+(4/7) 0.56 

TM5 -0.66 TM3/TM7 -0.33 TM(4/5+2/4) 0.47 

TM7 -0.67 TM4/TM7 0.57 TM(4/7+2/4) 0.56 

SR 0.35 TM5/TM7 0.64 TM5-TM1 -0.65 

NDVI 0.61 1/TM1 0.46 TM5-TM7 -0.33 

EVI  0.56 1/TM2 0.44 TM5+TM7 -0.67 

TM1/TM

4 -0.62 1/TM3 0.31 TM7+TM5/TM4 -0.61 

TM2/TM

4 -0.64 1/TM4 0.24 (TM5-TM7)/TM5 0.66 

TM3/TM

4 -0.63 1/TM5 0.54 TM5+TM7/TM7 0.64 

TM5/TM

4 -0.57 1/TM7 0.56 (TM5/TM4)+TM7 -0.67 

TM7/TM

4 -0.64 

TM(2+3+5)/

7 0.55 

(TM5-

TM4)/(TM+TM4) -0.56 

TM1/TM

5 -0.58 

TM(2+4+5)/

7 0.59 

(TM5-

TM4)/(TM4) -0.57 

TM2/TM

5 -0.52 

TM(2+3+5)/

4 -0.61 TM5+TM7/TM5 -0.66 

TM3/TM

5 -0.56 

TM(2+3+7)/

4 -0.64     

    TM5*TM4 -0.58     

 

Table 5: Correlation coefficients of LAI with the aggregated TM images at the spatial resolution 

of 500 m. 

Bands Correlation Bands Correlation Bands Correlation 

TM1 -0.58 TM4/TM5 0.39 TM(4-5)/(4+5) 0.41 

TM2 -0.60 TM7/TM5 -0.59 TM(4-7)/(4+7) 0.52 

TM3 -0.58 TM1/TM7 0.08 TM(4/5)/(4/7) -0.59 

TM4 -0.37 TM2/TM7 -0.08 TM(4/5)+(4/7) 0.46 
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TM5 -0.57 TM3/TM7 -0.30 TM(4/5+2/4) 0.34 

TM7 -0.59 TM4/TM7 0.48 TM(4/7+2/4) 0.47 

SR 0.30 TM5/TM7 0.58 TM5-TM1 -0.56 

NDVI 0.51 1/TM1 0.39 TM5-TM7 -0.26 

EVI  0.50 1/TM2 0.39 TM5+TM7 -0.58 

TM1/TM4 -0.49 1/TM3 0.25 TM7+TM5/TM4 -0.47 

TM2/TM4 -0.54 1/TM4 0.28 (TM5-TM7)/TM5 0.59 

TM3/TM4 -0.51 1/TM5 0.45 TM5+TM7/TM7 0.58 

TM5/TM4 -0.42 1/TM7 0.48 (TM5/TM4)+TM7 -0.58 

TM7/TM4 -0.51 TM(2+3+5)/7 0.47 

(TM5-

TM4)/(TM+TM4) -0.41 

TM1/TM5 -0.52 TM(2+4+5)/7 0.50 (TM5-TM4)/(TM4) -0.42 

TM2/TM5 -0.54 TM(2+3+5)/4 -0.48 TM5+TM7/5 -0.59 

TM3/TM5 -0.52 TM(2+3+7)/4 -0.52     

    TM5*TM4 -0.57     

 

 

 

 

Table 6: Correlation coefficients of LAI with the aggregated TM images at the spatial resolution 

of 1km. 

Bands Correlation Bands Correlation Bands Correlation 

TM1 -0.17 TM4/TM5 0.35 TM(4-5)/(4+5) 0.39 

TM2 -0.34 TM7/TM5 -0.26 TM(4-7)/(4+7) 0.37 

TM3 -0.16 TM1/TM7 -0.27 TM(4/5)/(4/7) -0.26 

TM4 0.23 TM2/TM7 -0.43 TM(4/5)+(4/7) 0.32 

TM5 0.03 TM3/TM7 -0.29 TM(4/5+2/4) 0.28 

TM7 -0.04 TM4/TM7 0.31 TM(4/7+2/4) 0.29 

SR 0.33 TM5/TM7 0.27 TM5-TM1 0.09 

NDVI 0.41 1/TM1 0.18 TM5-TM7 0.10 

EVI 0.28 1/TM2 0.39 TM5+TM7 0.01 

TM1/TM4 -0.43 1/TM3 0.23 TM7+TM5/TM4 -0.39 

TM2/TM4 -0.47 1/TM4 -0.40 (TM5-TM7)/TM5 0.26 

TM3/TM4 -0.40 1/TM5 -0.27 TM5+TM7/TM7 0.27 

TM5/TM4 -0.39 1/TM7 -0.08 (TM5/TM4)+TM7 -0.06 

TM7/TM4 -0.38 TM(2+3+5)/7 -0.06 

(TM5-

TM4)/(TM+TM4) -0.39 

TM1/TM5 -0.44 TM(2+4+5)/7 0.27 (TM5-TM4)/(TM4) -0.39 
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TM2/TM5 -0.52 TM(2+3+5)/4 -0.43 TM5+TM7/5 -0.26 

TM3/TM5 -0.37 TM(2+3+7)/4 -0.43     

    TM5*TM4 0.02     

 

Table 7 listed the models obtained by multivariate stepwise regression using the 

aggregated TM images at spatial resolutions of 90 m, 250 m, 500 m, and 1 km. Figure 11 showed 

the validation results of the models for estimating LAI values for 50 sample plots at these spatial 

resolutions. It seemed that the spatial resolution of 1 km led to the smallest relative RMSE and 

highest values of R
2
, while the spatial resolution of 250 m resulted in the largest relative RMSE 

and smallest values of R
2
 and the LAI values were seriously underestimated.  

 

Table 7: Regression models and their accuracies for the spectral variables derived from the 

aggregated TM images at spatial resolutions of 250 m, 500 m, and 1 km, respectively. 

Resolutio

n 

MODEL R
2
 Residu

al 

Relativ

e 

RMSE 

90m LAI=-82.8+2.19TM7-

173.2(TM3/TM4)+61.42(TM5/TM4)+99.37(TM3/TM5)-

0.015(TM5*TM4+75.09(TM4-TM7/TM4+TM7) 

0.66 0.92 19.8 

250m LAI=6.4152-0.15938*TM7 0.44 1.18 25.3 

500m LAI=-492.91629TM5+2.1723TM5*TM4+0.0301(TM4-

TM5/TM4+TM5)+452.20(TM4-

TM7/TM4+TM7)+562.49TM7/TM5+484.90TM7/TM4+

8.62TM4/TM5+TM4/TM7) 

0.56 0.91 18.9 

1km LAI=-13.38+10.57TM5-5.47(TM5-

TM1)+1.40(TM7/TM5-TM2) -4.11(TM5/TM4-

TM5/TM7)+5.98(TM7/TM1-TM5) 

0.67 0.71 14.7 
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(a) (b) 

 

 

(c) (d) 

 

Figure 11: Relationship between observed and estimate LAI values at the spatial resolutions of 

90 m, 250 m, 5000 m, and 1 km. 

The LAI estimation maps derived using the models from the aggregated TM images at 

the spatial resolutions of 90 m, 250 m, 500 m, and 1km were presented in Figure 12. The LAI 

estimates varied from 1 to 6.9. Compared to those at the spatial resolution of 30 m, the minimum 

estimate got slightly larger and the maximum estimate got slightly smaller, as the spatial 

resolution became coarser. The LAI estimates were smoothed and their spatial distribution and 

patterns became not noticeable.  
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Figure 12: LAI estimation maps using the models obtained using the aggregated TM images at 

the spatial resolutions of 90 m, 250 m, 500 m, and 1km. 

 

4.3 COARSE RESOLUTION: MODIS IMAGES 

The correlation coefficients between the MODIS derived spectral variables and LAI were 

listed in Table 8, Table 9, and Table 10 for spatial resolutions of 250 m, 500 m, and 1 km, 
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respectively. The highest correlation was -0.51 obtained by blue*red / NIR) at the spatial 

resolution of 250 m, -0.49 obtained by blue band at the spatial resolution of 500 m, and -0.48 

obtained by blue band at the spatial resolution of 1 km. Overall, most of the coefficients were not 

significantly different from zero at a risk level of 5%. The correlations were much lower than 

those using TM images and decreased as the spatial resolution became coarser. At the spatial 

resolution of 250 m, the red channel and its relevant ratios including NDVI and EVI led to higher 

correlation. At the spatial resolutions of 500 m and 1 km, the blue channel and its relevant ratios 

resulted in higher correlation and the coefficients from three widely used vegetation indices (SR, 

NDVI and EVI) became moderate although not significant. 

  

Table 8: Correlation coefficients of MODIS derived spectral variables with LAI at 250 m spatial 

resolution. The significant value was 0.381 at a risk level of 5% and the symbol * indicate the 

coefficient is significantly different from zero. 

Bands Correlation Bands Correlation 

blue -0.38 1/red 0.00 

red -0.45* nir/mir 0.14 

nir 0.30 mir/nir -0.24 

mir -0.20 mir*nir -0.06 

ndvi 0.48* mir-nir/mir+nir -0.22 

evi 0.44* (mir-red)/mir -0.14 

SR 0.30 

(blue+red 

+nir)/mir -0.13 

  

blue+red/nir -0.42* 

blue*red/nir -0.51* nir/red+nir/mir 0.26 

red/nir -0.41* nir/blue 0.41* 

1/blue 0.20 nir/red+mir/red 0.29 

    mir/blue 0.39* 
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Table 9: Correlation coefficients of MODIS derived spectral variables with LAI at 500 m spatial 

resolution. The significant value was 0.381 at a risk level of 5% and the symbol * indicate the 

coefficient is significantly different from zero. 

Bands Correlation Bands Correlation 

blue -0.49* nir/mir 0.26 

red -0.35 mir/nir -0.27 

nir 0.30 mir*nir -0.21 

mir -0.26 mir-nir/mir+nir -0.27 

ndvi 0.37 (mir-red)/mir -0.26 

evi 0.36 (blue+red +nir)/mir -0.01 

SR 0.45* blue+red/nir -0.42* 

  

nir/red+nir/mir 0.39* 

blue*red/nir -0.38 nir/blue 0.40* 

red/nir -0.36 nir/red+mir/red 0.47* 

1/blue 0.40* mir/blue 0.25 

1/red 0.46*     

 

Table 10: Correlation coefficients of MODIS derived spectral variables with LAI at 1 km spatial 

resolution. The significant value was 0.381 at a risk level of 5% and the symbol * indicate the 

coefficient is significantly different from zero. 

Bands Correlation Bands Correlation 

blue -0.48* 1/red 0.33 

red -0.38 nir/mir 0.25 

nir 0.35 mir/nir -0.19 

mir -0.41* mir*nir -0.22 

ndvi 0.37 mir-nir/mir+nir -0.38 

evi 0.33 (mir-red)/mir 0.01 

SR 0.33 (blue+red +nir)/mir 0.21 

  

blue+red/nir -0.17 

blue*red/nir -0.14 nir/red+nir/mir 0.30 

red/nir -0.15 nir/blue 0.27 

1/blue 0.27 nir/red+mir/red 0.33 

    mir/blue 0.25 
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Three regression models were obtained using the step-wise regression method with all the 

25 sample plots (Table 11) and the relationships of the estimated LAI with the observed LAI 

were shown in Figures 13, 14, and 15, respectively. Although the spatial resolution of 250 m led 

to the highest coefficient of determination, R
2 

= 0.7, the spatial resolution of 1 km resulted in the 

smallest relative RMSE, 17.5%. Three widely used vegetation indices (SR, NDVI and EVI) were 

involved in the models. 

 

Table 11: Regression models from MODIS derived spectral variables at the spatial resolutions of 

250 m, 500 m, and 1 km. 

Spatial 

Resolutio

ns 

Model RMSE Relativ

e 

RMSE 

R
2
 

MODIS 

250m 

LAI= -7.81-0.049MIR+0.10EVI-1.36SR+6.33MIR/NIR 0.86 18.54 0.70 

MODIS 

500m 

LAI=26.37-0.32Red+0.48NIR+0.05MIR-0.56EVI-

4.45SR-349.64(1/Blue)+1432(1/Red) 

0.90 18.79 0.56 

MODIS 

1km 

LAI=2.47+0.02NDVI+5.63(Red/NIR)-

0.19(Blue+Red+NIR)/MIR-2.69(Blue+Red)/NIR 

0.84 17.52 0.53 
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Figure 13: Relationship between the estimated and observed LAI values at the 250 m spatial 

resolution. 

 

      

 

Figure 14: Relationship between the estimated and observed LAI values at the 500 m spatial 

resolution. 
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Figure 15: Relationship between the estimated and observed LAI values at the 1 km spatial 

resolution. 

 

Figure 16 illustrates the LAI estimation maps obtained using MODIS derived spectral variables 

at three spatial resolutions of 250 m, 500 m, and 1 km. It could be clearly seen that in the LAI 

map of 250 m spatial resolution, the high LAI values dominated the study area, implying the 

hardwood forests covered most of the study area. The spatial patterns (Figure 16) were similar to 

those obtained using the TM images at spatial resolutions of 30 m and 90 m (Figures 10 and 

12a). As the spatial resolution became coarser, the spatial patterns of high value clustering 

eventually disappeared. For comparison, the 1 km resolution MODIS LAI product that was 

directly downloaded from the website was also shown in Figure 16. The spatial patterns looked 

slightly different from those obtained using MODIS images at various spatial resolutions in this 

study.  
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Figure 16: LAI estimation maps obtained using MODIS derived spectral variables at three spatial 

resolutions of 250 m, 500 m, and 1 km. 
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The cross validation of MODIS derived models at the spatial resolutions of 250m, 500 m, 

and 1 km were conducted (Tables 12 to 14 and Figures 17-19). The LAI estimates of all 25 

sample plots were validated using the models obtained from five groups each having 20 sample 

plots. The coefficients of determination varied from 0.56 to 0.93, that is, at least 56 percent of 

variation could be explained by the spectral variables. The residual ranged from 0.57 to 1.17. 

Commonly, underestimation occurred and series overestimation and underestimation took place 

for group 5 at the spatial resolution of 250 m and for group 3 at the spatial resolution of 1 km. 

 

Table 12: Regression models for cross-validation using five groups at the spatial resolution of 

250 m. 

MODIS-

250m 

Model Residual R2 

Group 1 LAI=R+(B*R)/NIR+NIR/MIR 0.57 0.56 

Group 2 LAI=B+R+NDVI+EVI+(B*R)/NIR+1/B+1/R+(MIR-

R)/MIR+(NIR/R+NIR/MIR)+ MIR/B 

0.58 0.59 

Group 3 LAI=SR+(B*R)/NIR+1/B+1/R+MIR*NIR+(MIR-

NIR)/MIR+(NIR/R-MIR/R) 

0.58 0.64 

Group 4 LAI=R+(B*R)/NIR+NIR/MIR+MIR/NIR+(MIR-

NIR)/MIR 

0.82 0.86 

Group 5 LAI=NDVI+(MIR-NIR)/MIR+MIR*NIR+(MIR-

NIR)/MIR+(NIR/R+MIR/R) 

0.91 0.64 
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Figure 17: Relationship between observed and estimated LAI values for cross-validation using 

five groups at the spatial resolution of 250 m. 

 

Table 13: Regression models for cross-validation using five groups at the spatial resolution of 

500 m. 

MODIS- 

500m 

Model Residual R2 

Group 1 LAI=SR+1/B+MIR/NIR+(MIR-

NIR/MIR+NIR)+(NIR/R+NIR/MIR+NIR/R+MIR/R 

1.17 0.62 

Group 2 LAI=B+R+NIR+NDVI+EVI+(B*R)/NIR+R/NIR+NIR/MIR+NIR/B 0.71 0.92 

Group 3 LAI=R+SR+ MIR/NIR+(B+R)/NIR+NIR/B+MIR/B 1.09 0.87 

Group 4 LAI=R+NIR+NDVI+EVI+SR+(B*R)/NIR+1/R+NIR/MIR+(B+R)/NIR 0.76 0.60 

Group 5 LAI=SR+MIR*NIR+(MIR-R)/MIR+(B+R)/NIR+(NIR/R+NIR/MIR)+ 

(NIR/R+NIR/MIR)+ (NIR/B+NIR/R+MIR/R)+ MIR/B 

1.0 0.56 
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Figure 18: Relationship between observed and estimated LAI values for cross-validation using 

five groups at the spatial resolution of 500 m. 

 

Table 14: Regression models for cross-validation using five groups at the spatial resolution of 1 

km. 

MODI

S 

1000m 

Model Residua

l 

R2 

Group 

1 

LAI=Red+NDVI+SR+EVI+B*R/NIR+1/R+NIR/MIR+(MIR-

R)/MIR+(B+R+NIR)/MIR+(B+R)/NIR+(NIR/R+NIR/MIR)+NIR/B+

MIR/B 

0.49 0.9

3 

Group 

2 

LAI=B+R+NDVI+EVI+(B*R/NIR)+R/NIR+1/B+1/R+(MIR*NIR) 0.68 0.8

9 

Group 

3 

LAI=MIR+R/NIR+(MIR-

NIR/MIR+NIR)+(B+R+NIR)/MIR+(B+R)/NIR 

 

0.96 0.4

9 

Group 

4 

LAI=NDVI+R/NIR+(B+R)/NIR+NIR/R+NIR/MIR 1.12 0.6

0 
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Group 

5 

LAI=NDVI+1/blue+(B+R)/NIR+(NIR/R+NIR/MIR)+(NIR/R+MIR/R

) 

1.07 0.7

5 

 

 

 

 

 

Figure 19: Relationship between observed and estimated LAI values for cross-validation using 

five groups at the spatial resolution of 1 km. 

 

4.4 COMPARISON OF AERIAL PHOTO, TM AND MODIS DERIVED LAI MAPS  

 

The aerial photo and TM derived LAI products at the spatial resolutions of 1 m and 30 m 

were scaled up to the spatial resolution of 1 km and compared to that from MODIS derived LAI 

map in this study. In addition, the MODIS LAI product that was directly downloaded from 

website was compared in terms of correlation although its values varied from 0 to 255 with high 

values implying the large LAI and low values the smaller LAI. All the aerial photo, TM and 

Estimated LAI 
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MODIS derived LAI mean estimates were similar. However, the standard deviation of the aerial 

photo derived LAI values was much smaller with relatively larger minimum and relatively small 

maximum (Table 15). The minimum, maximum, and standard deviations from the TM and 

MODIS derived LAI values were similar. That is, the aerial photo derived LAI maps had series 

overestimation and underestimation for the smaller LAI values and larger LAI values, 

respectively.  

From the correlation matrix, it was found that there were moderate correlations among 

the aerial photo, TM and MODIS derived LAI products (Table 15). The correlation coefficients 

of the aerial photo derived LAI map with MODIS derive LAI map significantly differed from 

zero based on the significant value 0.381 at a risk level of 5%, its correlation with TM derived 

LAI map was close to the significant value. The MODIS derived LAI map had a significant 

correlation with both the TM derived LAI map and the directly downloaded MODIS LAI image. 

However, both the aerial photo and TM derived LAI products were not significantly correlated 

with the directly downloaded MODIS LAI image (Table 15).  

Based on the relative RMSE, the aerial photo derived LAI map at the 1m spatial 

resolution had the largest error, then TM derived LAI product at both the 30 m and 250 m spatial 

resolutions. When the TM images were scaled up to the spatial resolutions of 500 m and 1 km, 

the relative errors were slightly smaller than those obtained using the MODIS images (Figure 

20). Overall, the relative errors varied from 14% to 40%. The relative error (40%) from the aerial 

photo derived LAI map at local level was relatively large. Both the TM and MODIS derived LAI 

products had acceptable relative error less than 25% and especially less than 18% at the spatial 

resolutions of 500 m and 1 km for regional and global level. 
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Table 15: Descriptive statistic and correlation between the LAI products (estimation maps) 

obtained using aerial photo, Landsat TM and MODIS images. 

STATISTICS OF INDIVIDUAL LAYERS 

Layer Minimum Maximum Mean Std Deviation 

Aerial 1km 4.38 5.45 4.92 0.32 

Landsat 1km 2.50 6.49 4.82 1.04 

MODIS 1km 2.21 6.22 4.80 0.93 

MODIS LAI 

1km 12 45 29.88 10.82 

COVARIANCE MATRIX 

Layer Aerial 1km 

Landsat 

1km 

MODIS 

1km 

MODIS LAI 

1km 

Aerial 1km 0.10 0.13 0.13 0.62 

Landsat 1km 0.13 1.08 0.52 2.37 

MODIS 1km 0.13 0.52 0.86 5.31 

MODIS LAI 

1km 0.62 2.37 5.31 117.11 

 

CORRELATION MATRIX 

Layer Aerial 1km 

Landsat 

1km 

MODIS 

1km 

MODIS LAI 

1km 

Aerial 1km 1 0.38 0.43 0.17 

Landsat 1km 0.38 1 0.54 0.21 

MODIS 1km 0.43 0.54 1 0.52 

MODIS LAI 

1km 0.17 0.21 0.52 1 
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Figure 20: Comparison of Landsat TM and MODIS derived LAI maps based on relative 

RMSE. 
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CHAPTER 5 

DISCUSSION 

          

5.1 SAMPLING DESIGN AND MAP ACCURACY 

The sampling design used in this study was found effective in relation to multiple spatial 

resolutions for the heterogeneous landscape of Southern Illinois. First of all, the sample plots 

were evenly distributed over the study area. This has led to consistent sampling at uniform 

distance which helped to reduce the time to measuring sample plots. Secondly, this sampling 

design resulted in the sampling distances that matched the spatial resolutions of 1 m, 30 m, 90 m, 

250 m, 500 m, and 1 km that are often required to map LAI at local, regional and global scale. 

Therefore, the obtained LAI observations could easily be combined with the remotely sensed 

images at various spatial resolutions. These observations could also be used to assess the 

accuracy of the image derived LAI products; especially the MODIS derived LAI maps. This 

sampling design provided the potential to obtain and assess LAI products at various spatial 

resolutions and overcame the gaps that currently existed in this area.  

 

5.2 CORRELATION OF SPECTRAL VARIABLES WITH LAI 

Overall, the Landsat TM bands had much higher correlations with LAI than the aerial 

photo and MODIS and the correlations decreased as the TM images were scaled up from a finer 

spatial resolution to a coarser one. The similar results were obtained for MODIS images. Band 

combinations including band ratios, additions, subtractions, and multiplications) often led to 

higher correlation with LAI than the original channels for all the aerial photo, TM and MODIS 

images. This was mainly because the band combinations reduced the effects of topographic 

features (slope and aspect) and atmospheric conditions.  
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For the TM images, the blue band 1 and two middle infrared bands 5 and 7 and their 

relevant combinations often led to higher correlation with LAI. On the other hand, the widely 

used vegetation indices that are associated with red and near infrared bands, including SR, 

NDVI, and EVI, showed only moderate correlations with LAI. Thus, they were removed from 

the models by the stepwise regression method. For MODIS images, in terms of correlation with 

LAI, the best band varied from the band ratio – Blue * Red / NIR at the 250 m spatial resolution 

to blue band at both the 500 m and 1 km spatial resolution. But, the widely used vegetation 

indices (SR, NDVI, and EVI) were often involved in the regression models because their 

moderate correlations with LAI were higher than the other band combinations. The results were 

consistent with the findings in other studies (Huete et al. 1997; Spanner et al. 1990).  

 

5.3 LAI MAPPING VS IMAGES AT VARIOUS SPATIAL RESOLUTIONS  

In this study, LAI maps were generated using the images from high spatial resolution 

aerial photo to medium resolution Landsat TM images and coarse resolution MODIS images. All 

the LAI maps perfectly mapped the spatial variability of LAI that matched the land cover types 

including forests, agricultural lands, grasslands, and shrubs. Larger LAI values dominated this 

study area because this study area was mainly covered by the hardwood forests. It was found that 

the forested areas often had LAI values larger than 5, the shrub lands had the values from 4 to 5, 

the agricultural lands had the values from 2 to 4, and the grass lands had the values less than 2.  

Theoretically, high spatial resolution images can be used to accurately produce LAI maps 

for a given local area. High spatial resolution LAI maps can entail the vegetation covers for a 

local area (Peellikka et al. 2000; Wulder et al. 2004). However, in this study, the aerial photo 

derived LAI map that was associated with low correlation between the estimated and observed 



 

63 
 

LAI values and large relative RMSE had great overestimation for the small LAI observations and 

large underestimation for the large LAI observations. The main reasons might be because the 

aerial photo had only three visible bands: blue, green, and red, and thus fewer opportunities to 

use them to calculate image transformations or band combinations. Therefore, less information 

can be extracted from these visible bands. The band combinations from these three bands highly 

duplicated the information. Also, the high spatial resolution aerial photo disintegrates trees 

canopies (Cohen et al., 1990; Turner et al., 1999) and led to the undesirable pixilated LAI map.  

Compared to the high spatial resolution aerial photo, both multi-spectral sensors Landsat 

TM and MODIS provided images that are more promising to map LAI because the spectral 

variables from these sensors are capable enough to extract multi-spectral information that entails 

the vegetation canopies. This finding was consistent with the conclusions of many other studies 

(Chen et al. 2002; Yang et al. 2007). The TM derived LAI products had acceptable relative 

errors for the LAI maps at both medium and coarser spatial resolutions and thus the maps were 

applicable at local and regional scale. The TM derived LAI maps at the spatial resolutions of 30 

m, 90 m, 250 m, 500 m, and 1km showed greater potential due to information from visible as 

well as near and middle infrared bands. Especially, the TM derived LAI map at the 30m spatial 

resolution showed a distinct range of LAI estimates that matched the LAI observations and 

captured the areas with high LAI values. The high LAI values suggested the presence of the 

hardwood forests in this study area. On the other hand, this also implies that the hardwood 

forests probably are still carbon sinks. In addition, similar results were obtained from the 

aggregated TM images. 

Although the MODIS derived LAI maps had smaller relative errors than the TM derived 

LAI products, they were less pronounced and showed less spatial details compared to the TM 
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derived LAI map at the 30 m resolution. That is, the MODIS derived LAI maps are acceptable at 

regional and global scale, but, less potential for their use at local scale. Moreover, the directly 

downloaded MODIS LAI product was significantly correlated with the MODIS derived LSAI 

map at the 1 km resolution, but, not significant with the TM derived LAI map at the same 

resolution. In addition, the spatial distribution of LAI values from the directly downloaded 

MODIS LAI product looked slightly different from both the TM and MODIS derived LAI maps 

in this study. This may imply that one should take caution for using the directly downloaded 

MODIS LAI image. 

 

5.4 ACCURACY ASSESSMENT OF MODELS 

In this study, the sampling design could be used to collect LAI measurements for 

mapping LAI in combination with various spatial resolutions and for conducting accuracy 

assessment of corresponding products. This overcame the gap that currently exists in the multi-

scale image mapping and accuracy assessment. But, in this study, an independent sampling was 

not carried out for quantifying the quality of the LAI products.  

The validation results showed that the aerial photo driven model was not acceptable 

because of its larger RMSE at a local scale. This was mainly caused by the overestimation for the 

smaller LAI observations and the underestimation for the larger LAI values. This implied the 

aerial photo visible bands lacked of the ability to capture the spatial variation of LAI due to 

different vegetation canopy types especially in the study area that was dominated by the 

hardwood forests. 

In comparison with the models that were driven by the aerial photo and MODIS images, 

the models driven by the spectral variables from Landsat TM images had better performance in 
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terms of accuracy of estimates and capturing the spatial variability of LAI although slightly 

underestimation took place.  The TM derived LAI map at the 30 m spatial resolution captured 

more complexity and heterogeneity of vegetation canopy structures over the MODIS derived 

LAI map and this finding supported the conclusion made by Yang et al. (2007). The TM bands 

especially bands 1, 5 and 7 and their combinations provided the greater potential as the predictor 

variables of LAI. The uncertainties of the LAI estimates may be due to modeling error, 

misregistration of pixels, and mixed pixels (Zarate-Valdez et al. 2012). 

Developing LAI products at coarser spatial resolutions has been widely used for regional 

and global mapping by degrading high spatial resolution images (Fernandes et al. 2003; Wulder 

et al. 2004). In this study, the degraded TM LAI products were highly correlated with the LAI 

observations as the MODIS derived LAI products. This implied the medium spatial resolution 

TM images provided the potential to generate LAI maps at regional and global scale by data 

aggregation, as suggested by Kauwe et al. (2011).  

Moreover, the MODIS driven regression models at the spatial resolution of 250 m, 500 

m, and 1 km showed acceptable relative errors. Although the model at the 1 km resolution had a 

lower relative error, it provided the smoothed LAI estimates and their spatial variability got loss. 

This implied the coarse spatial resolution LAI products cannot be used at local scales. 

 

5.5 RESEARCH QUESTIONS AND HYPOTHESES REVISITED 

This study was able to come up with the rational answers to the research questions posed.  

1. What sampling design method is effective to collect measurements of LAI for the 

heterogeneous landscape in southern Illinois so that the obtained LAI observations can be used to 

map LAI and validate the accuracy of the maps at different spatial resolutions?  



 

66 
 

The answer to the first question was associated with the sampling design. The sampling 

was designed in such a way that it fits multiple spatial resolutions by using variable sampling 

distances. The systematic sampling protocol for collection of field observations at equal 

distances in the study area helps to systematically cover the entire study area and further reduce 

the biasness and cost in field data collection. Secondly, the samples were measured inside a 30 m 

sample plot where a transect line was drawn with an equal interval of 6 m to allocate five 

measured locations to collect LAI values. The spatial configuration of the obtained LAI 

observations matched 1 m and 30 m spatial resolutions. Thirdly, the study area was divided into 

1 km blocks that consisted of smaller nested 250 m and 500 m blocks and the 30 m sample plots 

were then allocated along the diagonal of the blocks. The spatial configuration of the 30 m 

sample plots thus matched the pixel sizes of MODIS images at the 250 m, 500 m, and 1 km 

spatial resolutions. The sampling design captured the spatial variability and heterogeneity of 

vegetation canopy and biomass structures at variable spatial resolutions. 

 

2 How does LAI vary over space depending on different vegetation types and canopy 

structures, including forests, shrubs and grass lands? 

The selected study area was located in the Southern Illinois and dominated by the 

hardwood forests. But, the shrubs, agricultural lands and grass lands were also scattered over 

the landscape. In this study, the TM derived LAI maps well reproduced the spatial variation of 

LAI. Both the aerial photo and MODIS driven models performed poorer work in terms of 

capturing the spatial variability of the vegetation canopy structures because of pixilated and 

smoothed results for the aerial photo and MODIS, respectively. 
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3 Does a MODIS derived LAI maps have significantly lower accuracy and less detail than 

the Landsat TM derived LAI map? 

The answer to the question was confirmed. Although at the 30 m spatial resolution, the 

TM derived LAI maps captured more details than the MODIS derived LAI maps, the MODIS 

derived LAI maps were not good as the TM derived LAI maps by aggregating the TM images 

from a finer spatial resolution to coarser ones: 500 m and 1 km. At the spatial resolution of 250 

m, the MODIS derived LAI map had slightly poorer accuracy than the TM derived LAI map. 

But, the MODIS derived LAI maps were found to have smaller ranges of LAI values compared 

to the field observations. That is, the MODIS driven models smoothed the LAI values due to 

coarser spatial resolutions and lacking of the ability to capture the detailed variation of LAI 

(Cohen et.al 2006). 

Moreover, this study proved the hypothesis: statistically, the spectral variables from 

Landsat TM and MODIS images were significantly correlated with LAI. The correlation varied 

depending on different bands and their combinations. The best bands were bands 5, 1, and 7 and 

their relevant combinations for TM images, and red and blue band and their relevant 

combinations for MODIS images. Overall, the band combinations led to better correlations with 

LAI than the original channels. The widely used three vegetation indices had moderate 

correlation with LAI. 

There were several limitations in this study. First of all, a classification of land use and 

land cover types was not conducted. Thus, there was a lack of exploring the spatial variation of 

LAI estimates within each of vegetation canopy types. Had this LAI mapping been conducted in 

terms of species richness and land cover types, there would have been more information 

provided on carbon modeling. Another shortcoming of this study was that the selected study area 
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was too small, which limited the investigation of using MODIS images to map LAI at global 

scale. Thus, one should take caution to use the conclusions made related to the MODIS images, 

when a large study area is taken into account. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

69 
 

CHAPTER 6 

 

CONCLUSIONS & RECOMMENDATIONS 

 

As a key biophysical parameter of process based models that are used to predict carbon 

sequestration of terrestrial ecosystems, LAI plays an important role in the global carbon cycle 

modeling. Mapping LAI is thus very important in the area of carbon science and management. A 

substantial research has been conducted. However, many big challenges still exist. This study 

conducted a pilot study in the complex landscape located in the Southern Illinois to map LAI by 

combining field observations and remotely sensed images. Multi-scale mapping and accuracy 

assessment of LAI using various spatial resolution images including aerial photo, Landsat TM 

and MODIS images were carried out in order to overcome some of the gaps that currently exist 

in this area. The following conclusions can be drawn from this study. 

First of all, a specific sampling design was developed. The results showed that the 

sampling design could be used to collect LAI observations to create LAI products at various 

spatial resolutions. The spatial configuration of the LAI observations could match multiple 

spatial resolutions that varied from 1 m to 30 m, 90 m, 250 m, 500 m, and 1 km. The spatial 

resolutions are consistent with the pixel sizes of aerial photo, Landsat TM and MODIS images. 

Moreover, the sampling design was able to capture the spatial variability and patterns of LAI of a 

heterogeneous landscape. The collected LAI observations could also be used to assess the quality 

of the multiple spatial resolution LAI maps especially those derived using coarser MODIS 

image. Thus, this study overcame some of the significant gaps in this area. 

Secondly, the TM derived LAI maps successfully characterized the heterogeneous 

landscape and captured the spatial variability of LAI in this study. The TM derived maps was 
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better than those from the aerial photo and MODIS in terms of the spatial details and accuracy. 

Thus, the TM images are applicable to map LAI at local, region and global scale.  

Moreover, the aerial photo driven model not only over- and under-estimated the LAI 

values of the sample plots, but also led to a pixilated map of LAI. Thus, it is not applicable even 

at local scale. The MODIS derived LAI maps had slightly lower accuracy compared to the TM 

derived LAI maps. In addition, the MODIS derived LAI maps also smoothed the LAI values and 

lacked of the ability to capture the spatial variability of LAI. The reason might be this study area 

was not large enough to show the capability of MODIS images at coarser spatial resolutions. 

That is, one should take caution for use of MODIS images for small areas. 

Another finding was that the widely used vegetation indices (SR, NDVI and EVI) did not 

always have highest correlation with LAI. In terms of the correlation, the best bands varied 

depending on different sensors. The band combinations often led to higher correlations with LAI 

than the original bands. This study opened door for further vegetation study of Southern Illinois 

using multiple sensors by enlarging study area and design at broader scale.  Future studies could 

be done on specific plant communities of oak-hickory species and agricultural crops to assess 

Leaf Area Index and spatial distribution patterns in Southern Illinois.  

 

6.1 LIMITATIONS OF THIS STUDY 

There were a couple of shortcomings in this research. Firstly, the used Landsat TM 

images were not consistent with the LAI field observations in time. When the LAI field 

measurements were collected in the summer of 2012, there were no Landsat TM images 

available. Secondly, the used aerial photo was dated in 2007. We assumed that in this study area 
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land use and land cover types were relatively stable and no significant changes took place except 

vegetation growing.  
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PlotID x y LAI1 LAI2 LAI3 LAI4 LAI5 COVER TYPES 

LAI 

30m  

LAI 

250m 

LAI 

500m 

LAI 

1km 

1 302562.5 4163843 6.06 6.39 6.62 6.46 6.66 moderate forest 6.44       

2 302750 4164030 6.38 6.19 6.32 6.16 6.11 moderate forest 6.23       

3 302875 4164155 0.05 0.08 1.42 5.95 5.08 bare soil/grass/shrubs 2.52       

4 302937.5 4164218 3.02 1.09 3.21 5.22 4.44 grass/shrubs 3.40 2.38 3.91 4.59 

5 303000 4164280 1.05 1.47 1.35 1.21 1.04 grass 1.22       

6 303125 4164405 5.25 5.69 6 6.52 7.54 moderate forest 6.20       

7 303312.5 4164530 6.69 5.45 6.3 6.6 5.54 moderate forest 6.12       

                          

1 302562.5 4162843 4.03 3.43 3.74 3.88 4.27 

shrubs area/few tree 

stands 3.87       

2 302750 4163030 4.96 5.27 5.37 3.72 5.86 few tree stands 5.04       

3 302875 4163155 5.71 6.35 6.2 6.23 6.16 moderate forest 6.13       

4 302937.5 4163218 6.32 6.34 6.18 6.24 2.49 moderate forest 5.51 5.71 5.65 5.35 

5 303000 4163280 4.76 5.19 5.52 5.8 6.13 sparse forest cover 5.48       

6 303125 4163405 6.03 6.07 6.19 6.11 6.14 moderate forest 6.11       
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7 303312.5 4163530 5.12 4.68 5.61 5.87 5.17 

sparse forest 

cover/swampy area 5.29       

                          

1 303562.5 4163843 4.89 4.6 5.08 4.49 5.13 sparse forest cover 4.84       

2 303750 4164030 5.02 6.05 5.99 6.11 6.13 moderate forest cover 5.86       

3 303875 4164155 3.72 4.18 4.32 5.75 7.35 sparse forest cover 5.06       

4 303937.5 4164218 6.46 6.31 6.02 6.33 5.83 moderate forest cover 6.19 5.85 6.06 5.92 

5 304000 4164280 5.57 6.5 8.4 5.9 5.13 sparse forest cover 6.30       

6 304125 4164405 7.02 6.9 6.87 6.92 6.84 dense forest cover 6.91       

7 304312.5 4164530 6.85 7.5 6.5 5.5 5.1 moderate forest cover 6.29       
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1 302562.5 4161843 0.02 0.04 0.2 0.5 0.3 grass/strawfield 0.21       

2 302750 4162030 2.73 2.62 1.75 1.89 2.16 grass 2.23       

3 302875 4162155 0.29 0.31 0.45 0.42 0.38 grass 0.37       

4 302937.5 4162218 1.07 0.92 0.88 0.81 0.81 grass 0.90 0.61 1.38 1.51 

5 303000 4162280 0.56 0.65 0.54 0.51 0.57 grass 0.57       

6 303125 4162405 3.6 2.97 2.55 2.57 2.47 shrubs 2.83       

7 303312.5 4162530 2.96 4.14 2.87 3.25 4.15 shrubs 3.47       

                          

1 303562.5 4162843 5.21 5.41 5.61 5.6 5.76 few tree stands 5.52       

2 303750 4163030 1.05 1.62 1.55 1.49 1.2 grassland 1.38       

3 303875 4163155 3.6 3.76 3.32 4.8 3.9 marshy area/shrubs 3.88       

4 303937.5 4163218 5.04 4.87 4.89 4.53 4.62 grass/bushes 4.79 4.28 3.90 4.49 

5 304000 4163280 4.47 3.83 4.42 4.09 4.04 swampy area 4.17       

6 304125 4163405 3.96 5.38 5.51 5.85 5.74 swampy area 5.29       

7 304312.5 4163530 6.52 6.6 6.32 6.3 6.27 

moderate forest 

canopy 6.40       
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1 304562.5 4163843 7.49 7.46 6.73 6.71 6.92 high forest canopy  7.06       

2 304750 4164030 0.34 0.81 0.52 0.9 1.2 bare land 0.75       

3 304875 4164155 6.85 7.04 7.09 7.14 6.35 mixed pine forest 6.89       

4 304937.5 4164218 5.08 6.14 5.05 5.25 5.21 mixed pine forest 5.35 5.80 4.70 5.16 

5 305000 4164280 4.09 4.86 5.32 5.58 5.91 mixed pine forest 5.15       

6 305125 4164405 5.64 5.19 5.68 5.08 5.23 mixed pine forest 5.36       

7 305312.5 4164530 4.23 5.31 5.88 6.18 6.28 mixed pine forest 5.58       

                          

1 302562.5 4160843 0.76 2.56 3.14 4.14 5.63 bare land/grass/shrubs 3.25       

2 302750 4161030 4.11 4.79 5.03 5.23 5.46 forest 4.92       

3 302875 4161155 0.31 0.38 0.29 0.62 0.41 grassland  0.40       

4 302937.5 4161218 6.46 6.89 7.01 7.05 7.1 dense forest 6.90 4.03 4.56 4.57 

5 303000 4161280 4.08 4.31 4.76 5.18 5.67 sparse forest canopy 4.80       

6 303125 4161405 5.92 4.7 5.65 6.21 6.27 sparse forest canopy 5.75       

7 303312.5 4161530 4.08 5.64 6.1 6.89 7.21 dense canopy 5.98       

                          

1 303562.5 4161843 6.73 6.56 5.31 7.62 7.39 

moderate forest 

canopy  6.72       



 

84 
 

2 303750 4162030 6.59 7.47 6.81 7.52 6.79 high forest canopy  7.04       

3 303875 4162155 5.96 5.82 6.48 6.68 6.42 moderate forest  6.27       

4 303937.5 4162218 4.61 4.83 4.07 5.71 5.32 sparse forest canopy 4.91 5.83 6.46 6.55 

5 304000 4162280 5.62 6.45 6.08 6.51 6.82 moderate forest  6.30       

6 304125 4162405 7.81 8.03 8.23 7.56 7.32 high forest canopy  7.79       

7 304312.5 4162530 6.21 6.33 6.76 7.23 7.71 high forest canopy  6.85       

                          

1 304562.5 4162843 5.89 6.76 6.57 7.06 7.17 high forest canopy  6.69       

2 304750 4163030 6.73 6.89 7.86 8.35 8.61 high forest canopy  7.69       

3 304875 4163155 7.12 6.35 6.74 6.63 6.59 moderate forest  6.69       

4 304937.5 4163218 6.46 6.72 7.24 7.05 7.18 high forest canopy  6.93 6.78 7.03 6.89 

5 305000 4163280 7.02 6.87 6.45 6.65 6.68 

moderate forest 

canopy 6.73       

6 305125 4163405 7.46 7.34 7.53 6.91 6.29 high forest canopy  7.11       

7 305312.5 4163530 6.56 5.98 6.62 6.58 6.23 

moderate forest 

canopy 6.39       

                          

1 305562.5 4163843 6.71 6.54 6.81 6.63 6.49 
moderate forest 

6.64       
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canopy 

2 305750 4164030 4.99 4.82 4.79 4.53 4.78 tall grasses 4.78       

3 305875 4164155 5.84 5.63 6.1 6.13 5.96 sparse forest canopy 5.93       

4 305937.5 4164218 5.22 5.25 5.22 5.26 5.4 sparse forest canopy 5.27 5.59 5.28 5.59 

5 306000 4164280 5.53 5.32 5.66 5.82 5.56 sparse forest canopy 5.58       

6 306125 4164405 4.63 4.42 4.74 5.11 5.38 sparse forest canopy 4.86       

7 306312.5 4164530 5.16 6.24 6.88 6.51 5.69 

moderate forest 

canopy 6.10       

                          

1 302562.5 4159843 0.23 0.18 0.16 0.21 0.31 empty land 0.22       

2 302750 4160030 4.12 5.86 5.79 6.13 6.5 shrubs/trees 5.68       

3 302875 4160155 3.24 3.61 4.07 4.59 4.47 cornfield  4.00       

4 302937.5 4160218 3.55 2.89 3.01 3.44 3.52 cornfield  3.28 3.12 3.55 3.07 

5 303000 4160280 2.85 1.21 2.04 2.02 2.27 grass 2.08       

6 303125 4160405 1.78 2.71 2.01 3.77 3.32 grass/shrubs 2.72       

7 303312.5 4160593 3.4 4.21 3.33 3.46 3.17 cornfield  3.51       

                          

 1 303562.5 4160843 4.87 4.92 5.18 5.47 5.39 sparse forest canopy 5.17       
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 2 303750 4161030 5.31 5.64 6.03 6.15 6.32 sparse forest canopy 5.89       

 3 303875 4161155 6.17 6.09 5.81 5.94 6.34 sparse forest canopy 6.07       

 4 303937.5 4161218 5.05 4.41 4.72 5.91 6.07 bushes/trees 5.23 5.26 5.59 5.65 

 5 304000 4161280 3.8 4.25 4.63 4.71 5.02 grasses/bushes  4.48       

 6 304125 4161405 5.81 6.05 6.23 6.56 6.72 

moderate forest 

canopy 6.27       

 7 304312.5 4161530 6.02 6.24 6.38 6.62 6.81 

moderate forest 

canopy 6.41       

                          

1 304562.5 4161843 5.07 5.25 6.31 5.82 6.45 

moderate forest 

canopy 5.78       

2 304750 4162030 6.06 6.48 6.79 7.03 6.73 

moderate forest 

canopy 6.62       

3 304875 4162155 1.06 1.18 1.03 1.2 1.46 grassland  1.19       

4 304937.5 4162218 4.55 4.71 5.02 5.31 6.26 tall grass/few trees 5.17 4.33 5.16 5.39 

5 305000 4162280 6.55 6.59 6.71 6.6 6.74 

moderate forest 

canopy 6.64       

6 305125 4162405 6.43 5.81 6.04 5.77 6.92 

moderate forest 

canopy 6.19       

7 305312.5 4162530 5.67 5.93 6.21 6.64 6.42 sparse forest canopy 6.17       
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1 305562.5 4162843 1.25 2.31 1.67 1.34 1.47 grassland  1.61       

2 305750 4163030 5.67 5.94 6.35 6.7 6.56 sparse forest canopy 6.24       

3 305875 4163155 5.39 4.8 5.73 6.46 6.72 sparse forest canopy 5.82       

4 305937.5 4163218 6.74 6.83 7.34 7.58 7.03 high forest canopy 7.10 6.61 6.68 5.89 

5 306000 4163280 7.2 6.81 6.55 6.67 7.31 high forest canopy 6.91       

6 306125 4163405 6.97 7.35 7.08 7.48 7.7 high forest canopy 7.32       

7 306312.5 4163530 6.56 6.47 5.83 6.6 5.59 sparse forest canopy 6.21       

                          

1 306562.5 4163843 5.88 6.16 5.4 5.77 5.8 sparse forest 5.80       

2 306750 4164030 3.51 4.98 3.51 0.61 3.57 sparse forest/open land 3.24       

3 306875 4164155 5.25 5.21 0.3 3.86 3.83 sparse forest/open land 3.69       

4 306937.5 4164218 5.41 4.82 3.72 4.27 4.76 sparse forest 4.60 3.94 3.35 3.65 

5 307000 4164280 3.38 3.06 4.12 3.49 3.67 trees/shrubs 3.54       

6 307125 4164405 1.38 2.13 1.92 1.68 1.35 grass 1.69       

7 307312.5 4164530 1.65 2.34 3.41 3.47 4.05 grass/trees 2.98       
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1 303562.5 4159843 2.51 3.2 2.77 2.89 2.75 cornfield 2.82       

2 303750 4160030 5.21 5.07 5.34 3.12 3.29 cornfield/trees 4.41       

3 303875 4160155 4.12 3.28 4.75 5.08 4.68 sparse trees/shrubs 4.38       

4 303937.5 4160218 5.12 5.06 6.07 5.44 5.23 sparse trees/shrubs 5.38 5.10 5.19 4.98 

5 303000 4160280 4.88 5.36 5.71 6.11 5.61 forest 5.53       

6 304125 4160405 5.84 6.23 5.78 6.56 6.7 forest 6.22       

7 304312.5 4160593 5.77 6.46 5.82 6.21 6.43 forest 6.14       

                          

1 304562.5 4160843 3.51 3.48 3.27 5.5 5.11 tall grass 4.17       

2 304750 4161030 4.42 4.76 5.24 5.55 5.18 tall grass  5.03       

3 304875 4161155 6.03 6.34 6.57 5.84 6.61 

moderate forest 

canopy 6.28       

4 304937.5 4161218 6.33 5.88 5.46 6.19 6.43 

moderate forest 

canopy 6.06 6.06 5.62 4.66 

5 305000 4161280 5.69 6.22 6.12 5.41 5.77 sparse forest canopy 5.84       

6 305125 4161405 5.32 4.6 4.28 5.09 5.21 sparse forest canopy 4.90       

7 305312.5 4161530 0.3 0.37 0.41 0.33 0.41 grass land 0.36       
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 1 305562.5 4161843 4.9 4.33 0 0.02 0.1 bushes/bare soil 1.87       

 2 305750 4162030 1.26 1.12 1.37 1.18 1.27 grass land 1.24       

 3 305875 4162155 5.12 5.53 5.78 6.12 6.38 sparse forest  5.79       

 4 305937.5 4162218 5.4 4.86 4.78 5.58 5.63 sparse forest 5.25 5.44 4.61 3.90 

 5 306000 4162280 4.67 4.92 5.33 5.87 5.61 sparse forest 5.28       

 6 306125 4162405 5.84 5.43 5.66 5.17 5.34 sparse forest 5.49       

 7 306312.5 4162530 3.1 2.2 2.27 2.09 2.31 tall grass 2.39       

                          

1 306562.5 4162843 5.78 5.53 6.21 6.75 6.46 moderate forest 6.15       

2 306750 4163030 6.07 5.48 6.68 6.34 5.7 moderate forest 6.05       

3 306875 4163155 5.48 5.32 5.43 5.12 4.91 mixed pine 5.25       

4 306937.5 4163218 6.4 5.75 5.51 5.8 5.66 mixed pine 5.82 5.44 5.88 5.82 

5 307000 4163280 4.6 5.14 5.24 5.86 5.4 sparse forest 5.25       

6 307125 4163405 7.39 7.12 6.97 6.85 6.79 high forest area 7.02       

7 307312.5 4163530 6.17 5.71 4.79 4.13 5.13 sparse forest 5.19       

                          

1 304562.5 4159843 2.37 2.95 2.96 4.62 4.16 grass 3.41       
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2 304750 4160030 5.12 4.68 5.89 6.24 5.5 sparse forest  5.49       

3 304875 4160155 6.22 5.64 6.31 6.26 5.8 moderate forest  6.05       

4 304937.5 4160218 5.64 6.36 6.59 5.77 6.05 moderate forest  6.08 5.84 5.83 5.50 

5 305000 4160280 5.67 4.89 4.56 5.56 6.21 sparse forest  5.38       

6 305125 4160405 6.43 6.51 6.23 5.63 6.11 moderate forest 6.18       

7 305312.5 4160593 5.86 5.43 6.1 6.45 5.89 sparse forest  5.95       

                          

1 305562.5 4160843 6.3 6.41 6.35 6.59 6.28 forest 6.39       

2 305750 4161030 1.34 1.06 1.44 1.47 1.29 grass 1.32       

3 305875 416115 3.67 4.5 5.44 2.11 4.6 shrubs/grass 4.06       

4 305937.5 4161218 2.55 1.06 0.89 1.11 0.76 grass 1.27 2.13 2.83 3.77 

5 306000 4161280 0.66 1.22 1.25 1.08 1.04 grass 1.05       

6 306125 4161405 6.44 5.86 6.75 6.46 6.6 forest 6.42       

7 306312.5 4161530 5.58 5.77 6.35 5.49 6.07 forest/tall grasses 5.85       

                          

1 306562.5 4161843 6.78 6.92 7.23 7.4 6.8 dense forest canopy 7.03       

2 306750 4162030 6.22 6.38 5.88 6.07 6.31 sparse forest 6.17       
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3 306875 4162155 6.34 5.69 4.33 2.01 2.44 sparse forest/grass 4.16       

4 306937.5 4162218 1.26 1.04 0.61 0.28 0.06 grass 0.65 3.42 4.60 5.17 

5 307000 4162280 5.9 5.44 6.21 4.56 5.2 few trees/shrubs 5.46       

6 307125 4162405 6.71 6.52 6.39 6.8 6.28 few trees/shrubs 6.54       

7 307312.5 4162530 6.37 6.08 6.41 5.67 6.2 

moderate forest 

canopy 6.15       

                          

1 305562.5 4159843 6.94 6.12 6.95 6.84 6.63 sparse canopy 6.70       

2 305750 4160030 7.06 7.13 7.15 7.2 7.03 dense forest cover 7.11       

3 305875 4160155 7.52 7.67 7.68 7.65 8.26 dense forest cover 7.76       

4 305937.5 4160218 4.2 5.25 5.81 6.15 6.33 bushes, dense shrubs 5.55 6.68 6.83 6.65 

5 306000 4160280 6.45 6.62 6.75 6.89 6.98 forest cover 6.74       

6 306125 4160405 7.16 7.02 6.98 6.9 6.82 

gorge, sloppy area 

forest 6.98       

7 306312.5 4160593 6.37 5.7 5.19 5.67 5.84 sloppy area 5.75       

                          

 1 306562.5 4160843 7.88 7.25 7.22 6.59 6.6  high forest canopy 7.11       

 2 306750 4161030 5.41 5.22 4.66 4.7 4.86 tall grass  4.97       
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 3 306875 4161155 6.07 6.01 6.26 6.23 6.28 sparse forest canopy 6.17       

 4 306937.5 4161218 0.05 0.03 0.21 0.31 0.09 bare soil 0.14 2.24 3.70 4.59 

 5 307000 4161280 0.26 0.23 0.36 0.4 0.8 bare soil 0.41       

 6 307125 4161405 7.31 6.71 7.11 6.9 6.04 dense forest canopy 6.81       

 7 307312.5 4161530 6.34 6.86 6.31 6.66 6.39 

moderate forest 

canopy 6.51       

                          

1 306562.5 4159843 0.9 0.53 4.35 5.09 4.23 peach field 3.02       

2 306750 4160030 1.51 1.4 1.33 1.6 1.42 Crop field 1.45       

3 306875 4160155 1.38 1.29 1.63 1.37 1.44 Crop field 1.42       

4 306937.5 4160217 1.12 1.11 1.18 1.11 1.17 Crop field 1.14 1.31 1.42 2.43 

5 307000 4160280 0.06 1.88 1.59 1.72 1.65 strawfield 1.38       

6 307125 4160405 2.12 1.64 1.87 1.43 1.59 Crop field 1.73       

7 307312.5 4160593 7.01 7.46 6.68 6.88 6.36 high forest canopy 6.88       
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