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Research of river bed erosion is an important part of designing bridges and 

transportation networks since the stability and hydrodynamic response of bridges 

critically depends on river bed scour. The engineering designers traditionally focus on 

the local scour around hydraulic structures, such as piers and abutments, in open 

channel flow. The pressurized scour under a submerged bridge deck is seldom 

researched. 

In this study, the commercial CFD codes, FLOW3D and STARCCM+, are adopted to 

simulate pressure scour under a bridge deck with six girders. Several limitations for 

FLOW3D are found during its application of sediment transport model: a) the scour 

model is sensitive to the vertical cell size on the sediment interface, the scour holes 

impossibly form for the large cell size; b) large sediment diameters fail the drifting 

model comprised of the scour model; c) the bed load model cannot be available to 



simulate the saltation load; d) large computational times are required to obtain the 

scour results. In STARCCM+, the morphing vertices model on the wall boundary can 

effectively mock the deformation of river bed dependent on the entrainment rate for 

sediment transport model that we adopt.  Guo‘s empirical formulas for pressurized 

scour profile and time dependent scour depth are incorporated into STARCCM+ as 

the model of morphing mesh. The recession rate is obtained as the function of the 

maximum bed shear stress by fitting the numerical results. 

A theoretical model for analyzing the sediment bed load with arbitrary bed slopes is 

developed to calculate the erosion profile on the sediment bed in flow condition. It 

found that the entrainment rate of sediment particles is also dependent on the 

changing rate of bed load layer thickness and mixture density from the continuity 

equation compared to Exner equation. Further, the two dimensional solution shows 

that the additional shear stress due to the longitudinal slope has an important influence 

on the bed shear. The modified pressure drop formula based on Ergun equation is 

developed to compute the gradient of pressure drop for a fluidized bed as well. 

The results of this research provide an effective approach to analyze the scour profile 

with the combination of theoretical and numerical computation.  
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Chapter 1 Introduction 

1.0 Overview 

The research for river bed erosion is an important part of designing bridges and 

transportation networks. The stability and hydrodynamic response of bridges critically 

depends on river bed scour. Engineering designers traditionally focus on local scour 

around hydraulic structures, such as piers and abutments. However, the hydraulic 

condition becomes quite different and complicated, once a bridge deck is totally 

submerged, this called pressure flow. Unlike open channel flows, such pressurized 

flow conditions create an aggravated scour situation in which the bridge foundation 

becomes unstable, and even fail. Figure 1.1 shows a partially inundated bridge deck at 

Salt Creek, NE, which may have developed into the completely submerged flow 

forming pressure flow underneath the bridge deck. 

 

Figure 1.1 Partially inundated bridge deck at Salt Creek, NE. 

The dimensional constriction of the flow domain leads to the occurrence of 

contraction scour. The alternation of flow domain results from the interference of the 
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bridge abutments and piers as well as the vertical contraction in the pressure flow 

condition. The decrease of the flow cross-sectional area makes the corresponding 

magnitude of velocity increase along the opening region.  This increase causes 

additional shear stress on the bed surface, so the corresponding bed scour develop 

dramatically. The transport of sediment out of the local region induces the increment 

of the cross section area, the velocity decreasing until the equilibrium status occurs.   

The scour occurs in the pressure flow condition when the surface level of water 

reaches the bridge deck, the continuous increase of water level deepen the degree of 

scour on the bed and the pressure flow under the bridge deck increases as the ratio of 

submergence increases. When the approach flow spills over the bridge deck, the flow 

pattern is altered from exclusively inundated pressure flow to a combination of the 

crested weir and localized pressure flow. The contraction caused by the bridge deck 

forces the approach flow downward, which increases the bed scour under the bridge 

deck. The other part of the approach flow is separated by the bridge deck into the top 

region. The impact of the approach velocity on the bed scour is uniquely from the 

water body with the highly downward velocity. Piers and abutments can cause the 

more complex flow fields, such as the additional turbulence and vortices, thus, for the 

consideration of simplicity piers and abutments were not included in geometrical 

structures of the present study, only the bridge deck with six girders was modeled in 

the pressure condition. 

The bridge superstructures are subjected to the catastrophic risks during a flood event. 

The failure of the bridge may come from the drag, lift and moment acting on the 

structures, many researchers systematically analyzed hydrodynamic loading, Denson 

(1982) used dimensionless analysis to find the functional relationship among 
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hydraulic parameters by a series of physical experiments; the research team led by 

Kerenyi et al. (2009) employed CFD methods to obtain force coefficients that 

compared to physical experiments very well. However, most of the bridge failure 

events are due to the lost stability of the bridge foundation induced by the local scour 

except for the defects of bridge structures. Few researchers examine the pressure flow 

scour underneath a bridge deck instead of conducting the scour prediction in the free-

surface flow conditions. The first study of pressure flow was conducted 

experimentally at Colorado State University by Abed (1991) in which both piers and 

bridge decks were studied. However, she failed to isolate the pressure flow effect on 

scour. Richardson et al. (1998) provided their investigation on the pressure flow scour 

beneath a bridge deck without the localized effects of piers, developing a conceptual 

relationship between pressure flow scour and flow conditions. 

Umbrell et al (1998) did a series of flume experiments in the FHWA Hydraulics Lab 

and developed a formula to estimate the scour depth based on mass conservation. 

However, their formula is still empirical. Guo J. (2009) developed a theoretically 

analyzed solution for the scour depth of three different flow classifications, which 

perfectly fits the experimental results from the Federal Highway Administration 

(FHWA) ---Turner-Fairbank Highway Research Center (TFHRC).  

Successful prediction to localized pressure scour required not only traditional 

laboratory experiments but also the supercomputing technology performing the 

numerical simulations beyond the reach of the physical modeling. Numerical models 

in contrast to physical models are very flexible and avoid the limitations of physical 

scale. One successful numerical model can provide economic benefits and be applied 
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to the physical cases with environmental conditions that cannot be carried out in the 

laboratory conditions. 

The CFD codes become an important tool to analyze and calculate the parameters for 

the fluid in given fields by solving the Navier-Stokes Equations numerically via the 

capacity of workstations or computers. Due to the powerful capacity dealing with the 

floating point numbers for the updated computers, CFD software has been 

commercialized as different versions, such as FLOW3D, FLUENT and STARCCM+.  

CFD techniques, as the interdisciplinary research topics, have been comprehensively 

reported to successfully apply the fields of engineering. 

The commercial CFD code provides an economic way to predict potential results. 

However, most programs cannot handle scour models in hydraulics because of the 

complex pattern of the scour procedure under pressure flow conditions. FLOW3D, 

developed by Flow Science Inc., has a powerful capacity to deal with the scour issues. 

However, its sediment transport model is based on an empirical formula and this 

model increases the cost of computational time, thus, the simulation for some cases 

cannot be finished within a reasonable time.  

STARCD/STARCCM+ is an advanced commercial code of CFD. Currently, it 

doesn‘t include any model of sediment transport. However, there are potential 

features of application to develop the pressurized scour model in 

STARCD/STARCCM+, such as the moving mesh, porous medium material and user-

defined subroutines. This research will focus on the development of a theoretical 

model and investigate the results by incorporating the sediment transport model into 

numerical scour model into STARCD/STARCCM+ under a pressure flow condition.  
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The validity of the numerical model will be verified by experimental data from 

FHWA.   

1.1 Research Background 

1.1.1 Sediment Transport in a River Channel 

The transport of sediment particles by moving water has two forms: bed load and 

suspended load. The suspended load may include wash load entrained by the 

upstream sediment load without the composition and properties of the bed material.  

In the natural conditions there are three modes of particle motion: (a) rolling and 

sliding; (b) saltation; (c) suspended motion.  The sediment particles will begin rolling 

and sliding or both along the bed when the bed shear stress just exceeds the critical 

value for the incipient motion of particles.  With increasing bed shear stress or shear 

velocity, the particles acted on turbulent flow will regularly jump or saltate. 

Furthermore, when the bed shear velocity exceeds the fall velocity of the particles the 

sediment particles can be lifted by upward turbulent forces or Reynolds stresses which 

are of higher magnitude than the submerged weight of the particles. 

Bagnold (1973) defines the bed load transport as that in which successive contacts of 

particles with the bed are strictly limited by the effect of gravity, while the suspended 

load transport is defined as that in which the excess weight of particles is supported 

wholly by a random succession of upward impulses imparted by turbulent eddies (Leo 

1985), wherein the motion of rolling, sliding and saltation for particles occurs in the 

bed load transport.  Einstein (1950) defines a sub-layer thickness of two particle 

diameters as the motion region of sliding, rolling in which the sediment particles 

sometimes may jump only to a longitudinal length of several particle diameters.  The 
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bed load layer adjacent to the bed is so thin that the turbulent stress cannot influence 

the sediment particles, and thus the suspension of particles is impossible in this sub-

layer.  In addition, Einstein assumes that the average jumping length of saltating 

particles is a constant of 100 particle diameters, and therefore, the saltation of 

particles is in the suspension mode of transport.  In the present study, Bagnold‘s 

approach is followed by many researchers because of its relative simplicity. 

Van Rijn (1985) employ the approach of Bagnold in their research on the sediment 

transport, which means the rolling, sliding and saltation are included in the bed load 

layer in which the turbulence is of minor importance. 

The wavy flow condition in some marine environment results in the evolution of the 

river bed features, such as erosion, ripples, dunes, sorting and grading. The 

geographic features in nearly all cases result from interaction of a turbulent flow with 

the sediment particles on the erodible bed. However, when it comes to the turbulent 

flow structure, the process of scour becomes coupled with small scale eddies 

approaching the bed wall. In this case, the accurate physical model becomes 

impossible to explain all phenomena of erosion.  Therefore, the lack of accurate 

physical models of a number of sedimentary structures produced by bed load transport 

can be explained by the fact that the motion of mixed grain-size sediment, by rolling 

and saltation along the bed of a turbulent flow, is an inherently complex problem 

(Schmeeckle 2003). One of the most famous physical models of bed load transport 

was produced by Bagnold (1956) who proposes that the sediment particles which 

obtain sufficient momentum from fluid in the bed load layer remain at the critical 

threshold motion.  Ashida and Michiue (1972) applied this boundary condition to 
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develop a semi-theoretical model of bed load sediment flux in which the dynamic 

friction coefficient and the critical shear stress are empirically required. 

Sediment transport models have been developed by many scholars in the past six 

decades. Depending on their experimental data, the researchers derived a sequence of 

empirical or semi-empirical bed load models of which the most famous are the 

models proposed by Einstein (1942), Meyer-Peter and Muller (1948), Bagnold (1966), 

Fernandez Luque and van Beek (1976), and Yalin (1963).  

Einstein (1942) introduced the idea that the sediment particles move in steps or 

saltating proportional to their size and defined the bed load layer thickness as twice 

the particle‘s diameter.  Also, he used the approach of probability analysis to 

formulate a relationship for sediment discharge on the bed surface as follows, 

  

         
 

                                                                   

and 

  

         
 

     
                                                          

where    is the gravel bed load.   is the specific weight of sediment.   is the 

gravitational acceleration.    is the sediment diameter on the bed surface.    is the 

dimensionless boundary shear stress or Shields parameter on the river bed, defined as 

               , in which    is the bed shear stress. 

Bagnold (1966) developed his expression of a suspended load and bed load based on 

the energy conservation law. They can be written as, 
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and  

      
  

    
                                                                                   

where    is the suspension efficiency.    is the bed load transport efficiency.    is the 

mean transport velocity of suspended grains.   is the fall velocity of suspended 

grains.   is the total flow power per unit boundary area.   is the dynamic friction 

angle. Bagnold assigned all of the unknown parameters by experiments. Since the 

energy loss due to bed load transport has been counted twice, Yang (1986) corrected 

his suspended load formula as,  

      
    

 
                                                                          

 For more accurate application, Bagnold‘s equation is expressed as,   

            
  

    
                                                       

and  

                       
  

    
 

    

 
                                         

Most researchers agree with    depends on the excess shear stress,     , but the 

exact form of this relationship is not clear. Therefore, Bagnold‘s expression for the 

bed load transport rate is the function of excess shear stress that is similar to other 

models.  
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Meyer-Peter and Muller (1948) developed a complex bed load formula for the 

representative gravel diameter with the median sediment on the bed surface in the 

following form, 

  

          
 

                                                        

where     is the median sediment diameter on the bed surface. 

Fernandez Luque and van Beek (1976) performed a series of experiments for different 

grain materials to measure the rate of bed load transport    
 , the average particle 

velocity    , the rate of deposition determined by the entrainment rate   , and the 

average length     of individual steps of saltating bed load particles as a function of 

the time-mean bed stress   . Note that   
  ,    ,  ,    , and    are dimensionless 

parameters. Different downward bed slopes up to 22 degree were configured to 

observe the alteration of parameters. They found that the rate of particle deposition is 

proportional to the rate of bed load transport, and the average length of individual 

particle steps is a constant being independent of the solid density and of the mean 

bed-shear stress. Fernandez Luque and van Beek ‗s (1976) sediment transport model 

can be expressed as, 
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Yalin (1963) derived a significant sediment transport model for the rate of bed load 

and used Einstein‘s (1950) data for 0.8 mm and 28.6 mm bed materials to calibrate 

two constants, 0.635 and 2.45 in his formula as follows, 

  
            

      
        

  
                                           

where  

                  
      

      

   
                                          

where    is the hydraulic radius.     is evaluated from the Shields curve. Similarly, 

Yalin‘s equation above is also a function of the excess of bed shear stress. 

From the bed load models above, they have a similar form as the function of the 

deficit between the bed shear stress and the critical bed shear stress. None of these 

formulas has the capability to accurately describe all of the erosion either in the 

natural condition or in the laboratory environment although fitting their own 

experimental data very well.  For example, Meyer-Peter and Muller found that the 

relatively simple relationship for the bed load model,   
                , fit 

Meyer-Per‘s (1934) data with                         and Gilbert‘s (1914) 

data with                                  . Fernandez Luque and van 

Beek (1976) used a similar equation,   
             

   , to fit their data for low 

transport rates. Aside from the lower value of the coefficient, Fernandez Luque and 

van Beek‘s equation differs from that of Meyer-Peter and Muller in that the 

dimensionless critical shear stress is explicitly included, namely, the constant 0.047 in 

the latter equation is essentially an average value for the dimensionless critical shear 
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stress over the range of sizes employed in the experiments.  Yalin also developed his 

bed load equation by setting the transport rate equal to the product of the 

concentration of material moving over a unit area of the bed surface and the 

downstream velocity of the material. The sediment concentration was considered to 

be proportional to the excess shear stress,         , and the velocity was confirmed 

from the equation of motion for a saltating particle. Yalin‘s equation was calibrated 

by Einstein‘s data set. Furthermore, Wilson (1966) fitted a Meyer-Peter and Muller 

type equation and obtained a larger coefficient,   
            

    . The variation 

of the constant for these expressions suggests that the coefficient that related    
  to 

        
    is a function that increases with shear stress, and hence, a modified 

version can be   
           

   ,   is a function of          with a rough arrange 

between 5 and 15. 

The Meyer-Peter and Muller (1948), Einstein (1950) and Yalin (1963) bed load 

equations all used some subset of the Gilbert‘s data (1914) and Meyer Peter‘s (1934) 

data to determine the coefficients in their equation. 

The other feature is that the range of research on the bed load models is very local, 

which means that the parameters in models are the average value in space and time 

and therefore, to some extent, limits the accurate application.  

1.1.2 Pressure Flow Scour under a Bridge Deck 

Bridges that become inundated during floods are subject to pressurized flow 

conditions, which can create an aggravated scour situation (Edward 1998).The first 

study of pressure flow was conducted experimentally at Colorado State University by 

Abed (1991) in which both piers and bridge decks are configured. She experimentally 
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found that the pressurized flow pier scour can reach 2.3 – 10.0 times greater than free-

surface pier scour, which shows us that a submerged bridge deck can be subjected to 

foundation failures due to the pressurized flow conditions. However, she could not 

separate the pressure flow effect on scour from the total erosion. Edward (1998) 

provided their investigation on the pressure flow scour beneath a bridge deck without 

the localized effects of piers, developing a conceptual relationship between 

pressurized flow scour and the flow conditions. However, the predicted scour depth 

did not fit the measured value very well due to the limits of Edward‘s theoretical 

approach. 

 Guo (2009) theoretically analyzed the specific cases of bridge scour in pressurized 

flow conditions by dividing them into three cases, i.e. downstream unsubmerged, 

partially submerged, and totally submerged flow. Based on his analysis, the 

expression of the equilibrium maximum scour depth was proposed, which has been 

confirmed by physical experiments with two different decks and two sediment sizes. 

Most research on the sediment transport traditionally focuses on the average scour in 

spatial and temporal scale in open channel flow, and thus, the application for this kind 

of sediment transport models is very limited. For example, they fail to describe the 

erosion around some bridge structures in the flow field, such as piers and abutments, 

because the bridge structures have a significant influence on the flow condition. Also, 

when the bridge deck is submerged, the traditional models are not effective because 

the pressurized flow condition for a submerged deck is different from an open channel 

flow. Therefore, it is necessary to develop different sediment transport models for 

different cases. 
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 Although some numerical methods are adopted to solve the process of erosion in 

different flow conditions, such as CH3D-SED (Spasojevic and Holly 1994), FAST3D 

(Landsberg et al. 1998), and DELFT3D (Delft Hydraulics1999), they cannot 

accurately describe all cases of sediment transport. In this study, FLOW3D and 

STARCCM+, as the representatives of the successful commercial CFD codes, are 

employed to simulate the Guo‘s (2009) physical experiments in the pressurized flow 

conditions. 

1.2 Objectives of Research 

In this dissertation, the objective of research is to develop mathematical equations, 

namely, continuity and momentum equations, to describe the process of scour 

development. Based on the current model of the sediment transport and assumptions, 

the parameters relevant to the sediment transport are determined to numerically solve 

the governing equations.  In addition, the commercial CFD codes, FLOW3D and 

STARCCM+, are employed to simulate the erosion under a bridge deck in the 

pressurized flow condition to exam their effectiveness for modeling the sediment 

transport. The specific objectives from three aspects are as follows. 

(a) Examination of the commercial CFD codes, FLOW3D and STARCCM+ 

When it comes to the simulation for physical phenomena with spatial and temporal 

scale in hydraulics, we tend to depend on the CFD codes to numerically solve the 

governing equations.  Understanding the applicable limitations of CFD codes will 

have a positive influence on the development of new models. In this dissertation, 

FLOW3D and STARCCM+ were used to simulate the pressurized scour to compare 

the physical experiments.  
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(b) Pressure drop in porous media 

The pressure drop or pressure gradient is an important factor effecting the transport of 

sediment. In this dissertation, we look the packed bed as a porous media while the bed 

load layer as the fluidized bed. Therefore, the Ergun equation can be applied to the 

packed sediment layer as a porous media while it is not correct to use for fluidized 

bed in the bed load layer. Based on the Ergun equation, the modified Ergun equation 

will be developed and applied to compute the pressure drop in the momentum 

equation in the bed load layer.   

(c) The thickness of a sediment bed load layer 

The determination of the thickness of a sediment bed load layer depends on 

Fernandez‘s (1976) model sediment transport, and a standard parabolic path-line of 

particle at a saltating step. Although the path-line of particles in the bed load layer is a 

complex spline due to a resultant action of drag, lift, immersed weight, and 

momentum exchange among particles, the assumption of a standard parabolic 

trajectory for particles based on the current model of sediment transport simplifies the 

computation of the thickness of a bed load layer at a saltating step.   

(d) A two-layer sediment bed load model 

Traditionally, the model of sediment transport for describing a bed load of particles is 

usually confined in the bed load layer with a thickness of several average-diameter of 

particle in which the exchange of momentum between fluid and sediment particles 

occurs. However, the influence on the motion of sediment particles from the packed 

bed layer under the bed load layer is neglected. Therefore, a two-layer bed load model 

is proposed to derive the continuity and momentum equation. The two-layer model 



15 

means the derivation of equations is within the bed load layer and packed sediment 

layer to predict the erosion process. The coupled continuity and momentum equation 

represent the influence from porous media or packed bed layer on the motion of 

sediment particles in the bed load layer. 

1.3 Scope of Study 

The scholars have developed a series of sediment transport equations based on the 

understanding for the bed load layer where the motion of particles mainly consists of 

rolling, sliding, and saltation. The pressurized scour under a submerged bridge deck is 

seldom researched because this condition is seldom satisfied in a flood event. 

This study mainly focuses on the development of a theoretical model to describe the 

process of sedimentary erosion, and the CFD simulation of sediment scour in pressure 

flow condition using FLOW3D and STARCCM+. During the derivation for the 

theoretical model with the two-layer sediment bed load model, the parameters in the 

continuity and momentum equation, such as the pressure gradient, the thickness of the 

bed load layer, and the areal concentration of particles, are verified by the modified 

Ergun equation, and Fernandez‘s model.  The physical experiments for pressurized 

flow scour under a bridge deck are compared by the numerical results to confirm the 

effectiveness of the theoretical model.  

1.4 Dissertation Outline 

The research background for sediment transport is introduced in the Chapter 1 in 

which the significant achievements from scholars in the bed load and pressure flow 

scour model are concisely described.  Chapter 2 includes literature review in 
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developing physical model and computational models in erosion and sedimentation, 

pressurized flow scour. Chapter 3 demonstrates the limitation of FLOW3D 

application to the pressurized scour by simulating the case with a six girder deck. 

Furthermore, the application of STARCCM+‘s morphing feature in the deformation 

of scour shows the reasonable identification with experimental data. In Chapter 4, the 

sediment mass conservation and momentum equations are employed to develop a 

two-layer bed load model.  The developed two-layer model is iteratively solved and 

compared with experimental data in Chapter 5. Chapter 6 summarizes the conclusion 

of this dissertation and describes the future work to improve the two layer model and 

apply it into STARCCM+.  
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Chapter 2 Literature Review 

2.0 Overview 

Erosion and sedimentation is the natural process of the motion of solid particles 

throughout geological time. They form the present landscape and morphology but can 

cause severe engineering and environmental problems. For example, erosion may 

cause on-site damage to agricultural land reduce the productivity of fertile soils, and 

cause local scour problems along with serious sedimentation downstream. Bridges 

spanning rivers and streams can be expected to experience scour problems at bridge 

piers and abutments. The most common causes of bridge failure during floods are 

attributed to erosion under bridges or around structures.  

The mechanism of sediment motion and sedimentary transport has been developed for 

decades. It involves three fundamental elements of research, experimental 

observations, physical patterns (chemistry), and mathematical models (numerical 

computation).  The representative models of sediment transport to describe the 

threshold condition and the load capacity of sediment particles tend to be empirically 

developed by experimental observations with time-averaged parameters. The 

numerical computation can deal with the transient parameters to describe the whole 

process of erosion. A universal formula to describe the mechanism of particle motion 

is impossible because of local climate, soil, and terrain. Therefore, it is necessary to 

develop multiple formula based on local data.  

Some fundamental concepts and assumptions have to be clarified when conducting a 

series of physical experiments and computations, such as bed material load, wash 
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load, and suspended load, otherwise, the experimental results will be very different 

due to different definitions and assumptions. For example, Yanlin‘s (1977) empirical 

formula for the entrainment rate of sediment or pick-up rate is about 10 times that of 

Einstein‘s (1950) results because they use a different definition for pick-up concept. 

In addition, Einstein‘s definition about bed material load is different from Bagnold‘s, 

which leads to different results. Their definition and assumption are stated in the 

following several sections. 

A combination of physical and computational models can be used to obtain a better 

understanding of the processes under investigation (de Vries 1973).  In some specific 

problems, several considerations between physical and computational models should 

be made, namely, the nature of the problems, the available resources and costs. The 

computational sediment transport models involve the numerical solution of a series of 

governing differential equations, continuity, momentum and energy coupled by the 

interaction of sediment particles and fluid in the computational domain. With the 

rapid development of high performance computers and computational fluid dynamics, 

the computational model of sediment transport has become an attractive tool for study 

of erosion in different environments such as rivers, lakes and coastal areas.  An 

advantage of computational models is that they can be adopted by different physical 

domains more easily than physical models, which are typically constructed to 

represent site-specific conditions (Papanicolaou 2008). 

2.1 Incipient of Sediment Transport 

The fundamental assumption in modeling sediment transport is involved in the 

mechanism of incipient motion of sediment transport on the bed surface. On the one 
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hand, the stability of granular material in the river bed depends on the angle of repose 

at which the motion of particles occurs. The angle of repose equals the sweeping 

angle of the connected line between a particle center of mass and the contact point 

around which the particle rotates on the bed surface when the particle center of mass 

is vertically above the contact point, and thus, the angle of repose depends on the 

shape of the particle, the size of the particle, and the particle orientation on the bed 

surface. On the other hand, the flowing fluid exerts forces, initiating the motion of 

particles, on the particles. The threshold conditions are satisfied when the 

hydrodynamic moments of forces acting on the single particle balance the resisting 

moments of force. The hydrodynamic forces consist of the weight of the particle, 

buoyancy force, lift force, drag force, and resisting force. When the ratio of the active 

horizontal force to the vertically submerged force, called the Shields parameter, 

exceeds the critical value corresponding to the initial motion of the particle the 

particle will be in the submerged incipient motion. 

Shields (1936) determined the threshold condition by measuring the Shields 

parameter at least twice as large as the critical value and then plotted Shields curve 

marking the permanent trend between Shields parameter and the grain Reynolds 

number for applying other cases. The critical value was determined as 0.047 that has 

been widely used for a single size particle at high grain Reynolds number.  

Actually, the particle size distribution for bed material can vary with time depending 

on the local bed shear stress in terms of the mixing sediment particles.  It is observed 

that this process can be divided into three stages: (1) the bed material keeps its 

original distribution of grain size without any motion of the fines at the low bed shear 

stress; (2) when the bed shear stress increases, the finer particles are entrained with 



20 

water flow, the bed surface becomes coarse to form an armor layer; (3) finally, all 

fractions of sediment particles are moved by the sufficiently large shear stress to 

break the armor layer. It means that an armor layer can only form in well-sorted bed 

surface on which the finer fractions will be present in the mixture as long as they are 

shielded by the stable coarser sediment particles as the armor layer. However, all 

particles will be in the status of motion as long as the bed shear stress exceeds the 

incipient condition for the coarser sediment particles. Usually, we neglect the 

influence of the armor layer on the erosion for the uniform size of particles. In this 

dissertation, only the assumption of uniformity is applied.  

The mechanics of bed forms have an important influence on the incipient motion of 

sediment particles. When sediment particles enter motion, the random patterns of 

erosion and sedimentation bring very small perturbations of the bed surface elevation. 

These small perturbations develop with time into the various surface of bed called bed 

forms. Bed form depends on the main flow characteristics as well as the near-bed 

flow condition, and thus, it increases the complexity of the threshold condition of 

particles. The bed forms generally can be classified into eight types identified by 

Simons and Richardson (1963): a) horizontal bed with clear water flow; b) typical 

ripple pattern varying from nearly triangular to almost sinusoidal; c) dune pattern 

much larger than ripple; d) washed-out dunes; e) horizontal bed with wash load of 

sediment particles; f) Anti-dunes, breaking waves; g) chutes and pools. Types a-d are 

in the subcritical condition and the sediment transport is relatively low because the 

particles on the bed move primarily in contact with bed surface. In contrast to the 

types a-d, types e-h are in the supercritical condition and the bed material transport is 

high because the contacting particle discharge is continuous, and the suspended 
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sediment concentration is large. Therefore, the total resistance is separated into the 

grain resistance acting on the individual particle and the form resistance due to bed 

form configuration. 

When it comes to the incipient condition of sediment, it is necessary to provide a 

mechanistic description of bed load transport. For the uniform equilibrium condition, 

this mechanism has invariably fallen into two groups. One is the specification of an 

entrainment rate of particles into bed load transport (pick-up function) as a function of 

boundary shear stress and other parameters proposed by Einstein. The other one is 

based on the Bagnold‘s assumption that a relation for the areal concentration of bed 

load particles as a function of boundary shear stress derives automatically from the 

imposition of a dynamic condition at the bed, according to which the fluid shear stress 

drops to the critical value for the onset of sediment motion. Bagnold‘s condition of 

constraint, however, suffers from several limitations as described by Parker (2002): a) 

the mixing sediment particles on the bed surface have the less mobile than the finer 

particles which means that the individual size classes have different critical shear 

stress, therefore, Bagnold‘s constraint fails to apply in such cases; b) Bagnold‘s 

constraint cannot cover the non-equilibrium conditions pertaining to relaxation effects 

because the bed load transport does not respond immediately to a change in imposed 

shear stress, but instead has a characteristic time of relaxation. 

Seminara (2002) proposed that the straightforward extension of the Bagnold 

hypothesis to the case of arbitrarily sloping bed is impossible.  Preserving the 

structure of Bagnold‘s assumption, the equilibrium condition is replaced with that 

when the entrainment rate of bed particles into the bed load layer equals the 

deposition rate of bed load particles onto the bed, not when the fluid shear stress at the 
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bed reaches the threshold value. Therefore, the entrainment hypothesis described 

above, similar to Einstein‘s structure, is actually a dynamic equilibrium condition, 

namely, the entrainment equals deposition, rather than a static equilibrium at which no 

bed particles can be entrained at all (Parker 2002). The entrainment hypothesis avoids 

two limitations of Bagnold‘s constraint condition. For example, the differential 

transport of different sizes in a mixture of sediment can be presented by introducing 

an implicit function into the entrainment function. The non-equilibrium condition is 

satisfied when the entrainment rate is not equal to the deposition rate. 

The incipient condition of particles and sediment bed load depend significantly on the 

bed slope. The representative experiment was performed by Fernandez and van beek 

(1976). Experiments using uniform sediment were conducted with two sand sizes (0.9 

mm and 1.8 mm) and one gravel size (3.3 mm). The walnut shell grains (1.5 mm) and 

magnetite grains (1.8 mm) were also tested during experiments.  Tests for all five 

materials were conducted on stream wise slope with    ,    ,    , and     in the 

absence of a transverse slope at low transport rate. Fernandez and van‘s main 

empirical results can be expressed in Eq.5.23 – Eq.5.25 in which     is estimated by 

the following formula, 

               
    

  
                                                              

in which      denotes the critical Shields stress on a horizontal slope,   is the bed 

slope angle, and    is a static coefficient of friction between particles and bed surface. 

Seminara, Solari and Parker (2002) developed a general expression for the critical 

Shields stress and particle velocity with an arbitrarily sloping bed. If neglecting the 
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effect of lift, the critical Shields stress on a transverse slope bed can be expressed as 

follows, 

               
       

    
  

   

                                                   

in which   is the transverse slope angle. The expression formula for the particle 

velocity is a very complex vector equation which is not conveniently applicable, and 

hence, Francalanci and Solari (2008) numerically employed a power function of the 

Shields stress ratio between the real bed Shields stress with the bed slope and the 

critical Shields stress with the horizontal bed to fit Seminara, Solar and Parker‘s 

complex vector expression. It is confirmed that the power function is accurate and 

convenient enough to approximate the vector expression. 

How to reasonably express the hydrodynamic equations for describing the process of 

erosion with time is an important topic in hydraulics.  Generally, two categories of 

sediment transport model equations are used to simulate the motion of sediment in 

natural river bed. The first one separates sediment into bed load and suspended load 

according to empirical methods. For instance, the Exner equation is adopted to predict 

the motion of bed load particles by ignoring the time rate of change of the sediment 

concentration. An advection-dispersion equation is used to describe the motion of 

suspended load usually by assuming that the sediment particles transport at the same 

velocity as the flowing fluid, as the dynamic equations developed by Spasojevic and 

Holly (1990). 
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The other category simulates the motion of bed load and suspended load by coupling 

them into a single equation, as the modeling equation proposed by Wu (2004) and 

Armanini and Di Silvio (1998).   

2.2 Sediment Transport Models and Pressure Flow Scour Model 

2.2.1 Sediment Transport Equation 

A number of computational sediment transport models have been developed. 

Generally speaking, these models can be classified in terms of the applicable range 

(e.g., suspended load and bed load); and the expression in the spatial and temporal 

continua (e.g., one dimensional models, two dimensional models and three 

dimensional models).  The choice of a certain model tends to depend on the nature of 

specific problems, the model capabilities, and data availability for calibration. Several 

important sediment transport models are briefly described as follows. 

Kalinske (1947) expressed the rate of bed load transport as a product of the number of 

particles of motion, the average velocity of the bed load particles, and the particle 

volume. He assumed that the areal bed load concentration, defined as the total 

projected area of particles in motion, is a constant value of 0.35. Fernandez (1974) 

found experimentally, however, that the areal bed load concentration increases 

linearly with the difference between the average bed shear stress and the critical bed 

shear stress at the threshold of particles. 

Einstein (1950) was the first to use the approach of probability in developing a bed 

load function for non-uniform sediment. Einstein (1950) proposed the rate of bed load 

transport as a function of the number of eroded particles per unit area and time, the 

particle volume and the average distance covered by the bed load particles from the 
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moment at which they are eroded until deposited on the bed.  Einstein developed the 

relation between this distance and the probability of a saltating particle being 

deposited.  He made an assumption that the addition of this probability for a saltating 

particle being deposited and the probability of a particle eroded on the bed surface at 

any time is equal to one, and concluded that the total average distance for a saltating 

particle must increase with increasing bed shear stress. However, Fernandez (1974) 

found that this total average distance is independent of the time-average bed shear 

stress based on his experimental analysis, which means that these two probabilities for 

a particle eroded and deposited are not relevant. Einstein (1950) ‗s approach for 

applying the theory of probability is still regarded as one of the most thorough in its 

mathematical treatment and consideration of associated factors (Sun 2000) although 

its application can be imprecise. 

Bagnold (1956) derived a bed load transport model based on the work done by the 

fluid to entrain the sediment.  He assumed that the turbulent bed shear stress equals 

the critical bed shear stress at the threshold of sediment motion for low bed load 

concentrations while the turbulent bed shear stress may be neglected for high bed load 

concentration. However, Fernandez (1974) found that at low bed load concentrations 

the turbulent bed shear stress equals to the total bed shear stress, not the critical bed 

shear stress, and at high bed load concentrations, the turbulent bed shear stress must 

be equal to the critical bed shear stress at the initiation of continuous scour without a 

bed load. Bagnold (1966) developed a sediment transport equation according to the 

principle of energy conservation, namely, rate of work done by the flowing fluid on 

the sediment equals to the product of available power and efficiency.  However, as 

Yang (1986) pointed out in the Bagnold‘s suspended load and the total load transport 
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equations, the energy loss due to bed load transport has been counted twice, and thus 

Yang (1986) gave the correct expression of these equations in his paper.   

Yalin (1963) gave a model of the rate of bed load transport based on dimensional 

analysis and the dynamics of the particles‘ saltation. He assumes that the particle 

reaches its maximum height of saltation owing to its initial velocity but the 

continuous driving force from fluid. However, Fernandez (1974) found that the 

particles were transported nearly in suspension over most of their trajectory, which 

means that Yalin‘s assumption is not reasonable. In addition, Fernandez 

experimentally found that both the vertical and horizontal accelerations of the 

particles were very low compared with the acceleration due to a drag force equal to 

their immersed weight, which implies that the saltating grains experience a lift force 

from the shear flow over most of their trajectory. 

A different sediment transport model tends to naturally depend on some different 

assumptions and classifications for the sediment load. For example, Einstein defines 

the saltation of particles belongs to the suspended load. However, Balgnold includes it 

into the sediment bed load.  Gao (2008) studied the transition between two bed load 

transport regimes by assuming the bed load layer includes the saltation and sheet 

flow. The saltation regime is characterized as low bed shear stress where sediment 

grains rolling, sliding, and saltation on the bed surface.  The sheet flow regime occurs 

at high shear stress where the bed particles are entrained by a combined formation of 

saltation and sheet flow. This sheet flow regime was also verified by Leeder (1979), 

Hanes and Bowen (1985), Asano (1992), and Bakhtiary (1997). It is a granular fluid 

flow in which the sediment particles collide with other ones and the bed is completely 

mobile. If the sheet-flow bed load occurs in the bed load layer, it will have a 
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significant influence on the accuracy of a sediment transport model that does not take 

it into consideration 

2.2.2 Pressure Flow Scour Model 

Pressure flow generally exists in a closed system and the driving force for flowing 

mainly comes from the pressure difference between upstream and downstream like 

pipe flow. In open channel flow, the region underneath a submerged bridge deck can 

be considered to be closed, so we call this condition pressure flow.The process of 

sediment transport is difficult to be successfully described by some analyzed 

solutions. The scour mechanism tends to be researched in combination with empirical 

formula. According to the characteristics of flow field, bridge scour can be classified 

into local and pressure-flow or vertical-contraction scour. Local scour is defined as 

the dynamic process of erosion to the bed material around piers, spur dikes, abutments 

and other structures on the river bed. Vertical-contraction scour may occur when the 

water surface elevation upstream of a bridge rises above the bridge low chord, and the 

flow experiences a vertical contraction that increases the cross-sectional velocity and 

possibly sediment transport capacity (Lyn 2008). 

The research for pressure scour is still primitive, thus, very little literature was 

referenced. Arneson and Abt (1998), Umbrell et al (1998), Lyn (2008) reported their 

achievements. Guo (2009) contributed his significant accomplish for the pressure 

flow from the original views based on the study of Umbrell et al. To better understand 

the pressure flow scour, the following section compares their scour models under the 

pressure flow condition. 
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Although the pressure flow condition may not frequently occur because of design 

practice for 100 years or more, this issue has been proposed to predict scour in 

extreme flood events. Arneson and Abt (1998) published their experimental results, 

and analysis for pressure flow scour is expressed as 

  

  
       

  

  
     

  

  
 

  

    
  

   
                                             

where     = equilibrium depth of scour;    = upstream depth;    = bridge opening 

between the bridge low chord and the bed prior to scour; and    = flow mean velocity 

through the bridge opening. Arneson determined the constants from laboratory data, 

        ;        ;        ;        . The critical velocity of incipient 

sediment,    , can be estimated by Neill(1973) equation, 

                
  

   
 

 
 
                                                           

where   = gravitational acceleration.   = specific gravity of sediment.     = median 

diameter of sediment particles.  

Eq.2.3 has a spurious correlation, as Lyn (2008) stated, it exhibit unsatisfactory 

behavior due to an ill-chosen original model equation. Lyn presented a power-law 

relationship with an asymptotic constant value, as an alternative model, in clear-water 

conditions. Lyn‘s model is expressed as 
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Umbrell et al. (1998) studied the scour caused by pressure flow underneath a bridge 

deck without piers and abutments. A conceptual relationship based on continuity 

equation was developed as follows, 

     

  
 

  

   
   

 

  
                                                                            

where    = water depth before scour.    = maximum scour depth.   = bridge opening 

prior to scour    = approaching velocity upstream.   = overtopping depth of bridge 

deck and partially inundated flow condition occurs when    .     = critical 

threshold velocity of sediment, estimated by Eq.2.4. 

Umbrell et al modified Eq.2.6 using their experimental data as 

     

  
       

  

   
   

 

  
  

     

                                                               

The factor in Eq.2.4 is changed from 1.52 to 1.82 for calculating the critical 

velocity,    , in Eq.2.7. As Guo (2009) stated, this model raises two questions, a) the 

critical velocity under the bridge deck is not necessarily equal to the one upstream; b) 

The equilibrium time of scour, 3.5 hrs, were employed from their experimental 

results, however, Lianjun‘s experimental results from FHWA showed that the 

equilibrium of scour occurs when it reaches 36 – 48 hrs.  

Guo (2009) contributed his research on the pressure flow scour under a bridge deck. 

He classified this phenomena into three cases based on the flow condition upstream, 

1) the bridge deck is slightly submerged upstream or the flow is supercritical 

downstream; 2) the low chord of deck downstream is partially inundated, which is 

rapidly varied pressure flow as outlet control orifice; 3) the deck is fully submerged, 
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and divides the flow field into two parts, one can be called weir flow, the other one 

called orifice flow controls the scour depth.  

Based on the experimental data, Guo empirically derived the pressure-flow scour 

profiles under the six-girder deck as follows, 
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The comparison of similar Eq.2.8, Eq.2.9 to experimental results in Fig.2.1 indicates 

very good agreement for    , but an overestimation of most scour profiles for 

   . 

The horizontal location with maximum scour depth,   ,  is  defined as the separation 

point between the region upstream and downstream.    is resolved by the following 

general solution for case 2 and 3, 

          
  

 
  

  
  
  

                                                                  

where  , m,   are constants which can be determined by experimental data.  

                                                                                

  
   

         
                                                                    



31 

        
    

  
 

    

                                                            

Guo (2009) derived the analyzed solution for case 1. As he stated, case 1 is only a 

short transition to case 2 because of the deposition downstream making the 

downstream deck submerged shortly. Fig.2.1 and Fig.2.2 shows the comparison 

between experimental data and theoretical analysis by the non-dimensional method.  

 

Figure 2.1 Experimental pressure scour data for different girders from Guo (2009). 

 

Figure 2.2 Comparison between experiment results and theoretical analysis. 
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We often demand inspecting the process of erosion with time and space by coupling 

the sediment transport model into Navier-Stokes equations. Nevertheless, it is often 

impossible to obtain the analytical solution for this difficult set of equations, and 

hence, we use numerical methods to compute these coupled equations. 

One dimensional models have been successfully adopted in the theoretical research 

and engineering practice.  The representative models of sediment transport are 

formulated by the conservation equations of mass and momentum of flow along with 

sediment mass continuity equation as the Exner equation, MOBED by Krishnappan 

(1981), IALLUVIAL by Karim and Kennedy (1982), DEDICOUP by Holly and 

Rahuel (1990), 3ST1D by Papanicolaou (2004), and HEC-6 by Thomas and Prashum 

(1977). Although most of the one dimensional models have capabilities to predict the 

bulk velocity, water surface stage, bed elevation and sediment transport load in a 

particular channel,  the limitation of capabilities is obvious, for example, 3ST1D 

cannot separate the total sediment load into bed load and suspended load, HEC-6 are 

not applicable to unsteady flow conditions.  The one dimensional models remain 

effective tools in rivers and stream applications because of their low requirements for 

the sources or cost.  

The two dimensional models (2D models) have been applied to the hydraulic 

engineering as guided user interface (GUI) to allow the configuration of pre- and 

post-process. Most 2D models numerically solve the depth-averaged continuity and 

Navier-Stokes equations coupled with the continuity equation of sediment mass. For 

instance, SURENCH-2D developed by van Rijn and Tan (1985) for simulating 

sediment transport with bed level change by solving Navier-Stokes equations with the 

general advection-diffusion equations and the settling of sediments. The model has 
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capabilities to deal with the flow conditions of combined quasi-steady currents and 

wind-induced waves over a sediment bed. MOBED2 developed by Spasojevic and 

Holly (1990) can simulate water flow, sediment transport, and bed evolution in 

natural waterways.  FAST2D (Minh Duc et al. 1998) is a finite volume hydrodynamic 

and sediment model to simulate sediment transport and scour problems in alluvial 

channels. FLUVIAL 12 by Chang (1998) and DELFT-2D (Walstra et al. 1998) is a 

mobile-bed model and simulates bed load and suspended load transport. CCHE2D 

developed by Jia and Wang (1999) can simulate the suspended sediment by solving 

the advection-diffusion equation and the bed load transport by empirical functions 

(e.g., Yalin 1972; van Rijn 1993).  

The three dimensional models (3D models) can be applied to the many problems in 

which 2D models are not suitable. For example, 2D models do not adequately 

represent the physical features in the vicinity of piers and near hydraulic structures. 

The 3D sediment transport models solve the continuity and the Navier-Stokes 

equations coupled with the equations of sediment mass by the numerical methods of 

finite difference, finite element, or finite volume.  CH3D-SED (Spasojevic and Holly 

1994), FAST3D (Landsberg et al. 1998), DELFT3D (Delft Hydraulics 1999) as the 

3D models allowed to simulate bed load rate, suspended load rate for steady or 

unsteady flow conditions by solving a series of differentiate equations with the 

physical models of sediment transport.  With the rapid improvement of computing 

capacity, more features and models will be incorporated into 3D sediment transport 

models to attain the accurate simulation of erosion, especially for the scour process in 

the complex flow condition.  
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In many applications, however, the essential model limitations reduce  accurate 

simulation. For example, the eddy viscosity models are frequently used to solve the 

governing equations of turbulent flow including some empirical formulations 

compounded for empirical sediment transport models. As a consequence, this 

combination of empirical formulas, at the present stage, cannot accurately and reliably 

describe the two-phase phenomenon of sediment and flow. In addition, the 

computational sediment models typically encounter a series of problems affecting the 

accuracy of simulation as the determination of reference concentration of sediment 

near the bed, the sediment diffusion term because of turbulent flow and the source 

term of the advection-diffusion equation. 

2.3 Numerical Methods  

The rapid development of computational capacity provides a powerful research tool to 

solve interesting engineering issues. It is cost efficient. Numerical laboratory extends 

the application of engineering to new level from traditionally physical one. In this 

research, the major objective is to find an effective and efficient method to predict the 

process of pressure flow scour, therefore, computational fluid dynamics (CFD) will be 

as the medium to apply scour issues. 

Traditionally, program codes have been written based on the serial computation 

running on a single computer having a single central process. A problem is broken 

into a separate series of instructions executed one after another and only one 

instruction one time. However, the serial computation cannot satisfy the demand to 

process a huge amount of data, therefore, parallel computing is proposed and applied 

to the computational field. It is the simultaneous use of multiple compute tasks to 
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solve a practical problem running multiple processors or CPUs.  The sub-parts of a 

problem are solved concurrently and a series of instructions can be applied to each 

part executed simultaneously on different CPUs. Currently, many commercial CFD 

programs have this parallel feature to save computational time, such as FlOW3D and 

STARCCM+, therefore, FLOW3D and STARCCM+ sufficiently take advantage of 

multi-cores techniques at TRACC to achieve the computational tasks more efficiently. 

2.3.1 Model Choice 

When it comes to the computational simulation for sediment transport, incorporating a 

certain degree of simplification into sediment transport models can be acceptable 

because increasing the model complexity may complicate the problem formulation 

and require more input parameters, calibration, and computational costs. The trade-off 

between the model complexity and costs has been illustrated by Overton and 

Meadows (1976) and Simons (1996).  

In general, the rule of choosing a dimension of model (1D versus 2D or 3D) should be 

in the way that the model components in the chosen dimension retain all relevant 

terms in a specific problem. Church (2006) provided a guideline for the simulation 

dependent on the different spatial and temporal scales, as shown in Fig.2.2, a 1D or 

2D model may be reasonable to simulate the morphologic scale changes at the basin 

scale typically occurring over a 1-year period. For the simulation of channel reach and 

sediment transport with smaller length scales, however, Fig.2.3 indicates that a 

reference time scale for these problems ranges from seconds to an hour and the 

function of turbulent flow cannot be neglected. Therefore, 3D models should be 

adopted to solve the problems related to turbulent microstructure with smaller scales.  
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Figure 2.3 Simulation illustration in spatial and temporal Scales (Church 2006). 

 

2.3.2 Model Calibration 

Field data as model input and calibration frequently arises some questions: are these 

data acceptable or collected correctly?  For example, the sediment transport as one of 

the most challenging topics encountered by the hydraulic engineer requires the 

measurements of bed bathymetry, stages, grain size distributions.  The traditional 

point or cross-sectional measurements in a river channel environment with mobile 

bed, taken by acoustic Doppler velocimeter (ADV) or acoustic Doppler current 

profiler (ADCP), are not adequate for capturing the flow distribution at a certain cross 

section because of bed form propagation, which means that the traditional approaches 

are adaptable to static conditions. With the development of electronic sensor 

technology, however, the techniques of sediment measurements may alleviate the 

limitations of sampling data to calibrate and verify the models. 
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The other issue mentions the grid refinement and grid sensitivity of computational 

domain. For example, are grid-independent tests necessary and practical? Can a 

coarse grid lead to misleading results? What is the optimum grid size for capturing 

turbulence-resolving scales (Athanasios 2008)? Fortunately, improved computing 

facilities allow better grid refinement and 3D simulation. 

2.3.3 Model Limitations 

A mismatch frequently exists in the theoretically computational results and sediment 

transport models, which is attributed to the fact that turbulent modeling appropriately 

cannot represent the flow features in the hydrodynamic equations.  For example, all 

turbulent fluctuations in turbulent models (e.g., RANS) are locally averaged in 

temporal and spacious scales, which lead to the loss of important information. The 

other two turbulent models, DNS and LES, are better applicable for simulating 

complex turbulent flows.  DNS requires enormous computing costs and is limited to 

low Reynolds numbers as a valuable research resource for studying the transition 

from laminar to turbulent flow. LES can be used at low and high Reynolds numbers 

by capturing the larger scale turbulent structures by solving 3D unsteady Navier-

Stokes equations.  The smaller scale turbulent structures are modeled by special near-

wall treatment. Despite the limitations that LES may have especially for high 

Reynolds numbers, LES is the most advanced modeling tool currently available for 

modeling 3D complex flows (Mahesh et al. 2004). Actually, both DNS and LES allow 

the realistic prediction of complex eddies around structures, such as piers, fish ladders 

and dams. 

The simulation of the sediment transport processes is controlled by not only 

randomness in flow but also by irregularities in land form and bed surface geometry. 
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Therefore, the sediment transport models developed so far are not universal. 

Currently, the models of sediment transport are based on some assumption of 

limitations. One of them is that sediment incipient is not dominated by the turbulent 

flow near the bed but by the excess shear stress term,        in which the shear 

stress   is determined by assuming uniform flow conditions. However, recent findings 

have shown that turbulent sweeps, outward interactions, and ejections are the primary 

triggering mechanisms of sediment entrainment (Papanicolaou et al. 2001).  The 

excess shear stress models and settling velocity models as the representative 

traditional approach in developing sediment transport model have been to apply to the 

transport rate. These approaches use the median size of sediment as the characteristic 

parameter, and thus under-predict or over-predict the transport rate of individual 

fractions. Furthermore, some models adopt uncoupled or semi-coupled approach to 

separate flow and sediment so that bed form and material have an approximate 

influence on the flow field.  The spatially averaged inner and outer variables for the 

traditional treatment of the dispersion and diffusion coefficients, such as the shear 

velocity, depth-averaged velocity, channel width and mean flow depth, may not be 

good approximations in channel contraction or expansion and external flow condition 

(e.g., flow around hydraulic structures). Most of sediment transport models do not 

account for the source term caused by the bed slopes. Minimizing error in the 

prediction of sediment transport model requires the connection of the bed slopes with 

in-stream hydrodynamics by the new technologies, such as GPS, biogeochemical 

tracers, and remote sensing. 

Another important limitation of model for sediment-flow (two-phase flow) interaction 

processes is that certain terms in the governing equations that are typically neglected 
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in other fields may require a different treatment. For example, the stress between fluid 

and sediment particles is usually neglected when it is much smaller than the turbulent 

stress between fluid particles. Similarly, the stress between sediment particles is 

neglected when sediment particles do not touch one another. The two neglects above 

are doubtable in the case of high sediment concentration (Papanicolaou et al. 2001). 

In addition, the two-phase flow governing equations requires the additional modeling 

based on knowledge of turbulence and experimental data to achieve system closure.    
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Chapter 3 Analysis for Limitation of FLOW3D and 

STARCCM+ in Application of Sediment Transport 

3.0 Overview 

The commercial CFD code, FLOW3D was employed to simulate the procedure of 

scour beneath the bridge deck. FLOW3D has a powerful capacity to investigate the 

behavior of liquids and gases specializing in the solution of transient, free-surface 

problems and sediment transport. It uses a non-hydrostatic finite difference model to 

solve the 3D Navier-Stokes equations. 

In this dissertation, the capacity of FLOW3D to simulate the bed scour was examined 

to determine the affectivity and efficiency of the model.  The two dimensional model 

was created so as to reduce the computational cost of time instead of three 

dimensions. FLOW3D software was installed and remotely accessible on the ANL-

TRACC clusters which makes the parallel tasks of computation possible. All the 

configurations of numerical model were based on the data and conditions of the 

physical experiments. Cell sensitivity analysis was performed to obtain reasonable 

velocity gradient associated with the distribution of the bed shear stress.    

Although there is no sediment transport model in STARCCM+, the moving mesh 

theme as the potential approach is capable of achieving the simulation of ‗river bed‘ 

erosion or distortion by applying the user-defined field function. The field function as 

a user-define parameter is computed by a sediment transport model developed by 

user. Furthermore, the time step size related to the entrainment rate is variable with 

the computation to satisfy the convergence of solution. Therefore, STARCCM+ 
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potentially can be employed to visualize the erosion profile and analyze the 

effectiveness of a pick-up function.  

3.1 Sediment Transport Model in FLOW3D 

The sediment scour model in FLOW3D can predict the movement of the packed and 

suspended sediment, which applies to the erosion around bridge piers and other 

interested structures. The model has two important modules, drifting and lifting, as 

described by Brethour J.(2003). Drifting models produces the driving force on the 

sediment particle to be suspended in the flow, which is called the drift-flux model. 

Lifting model functions as the lift force produced by the local bed shear stress to 

separate the particle from the sediment bed. The sediment behavior is controlled by 

the drag model. When the sediment concentration exceeds a cohesive solid fraction 

defined by users, it behaves as the solid and the drag model is activated.  

In FLOW3D, the distribution of sediment in flow field consists of the suspended and 

packed sediment.  Suspended sediment particles are advectional and drifting; packed 

sediment particles without the advection can move only if they become suspended 

when lifting and drag models initialed particles. The fluid viscosity increases as the 

concentration of the suspended sediment increases. When the solid or sediment 

concentration reaches or exceeds the cohesive solid fraction, it will not have any 

influence on the alteration of the fluid viscosity. At that point, the solid-like behavior 

of sediment occurs, which is reflected by the interaction among particles. An 

additional linear drag term to the momentum equation,     , predicts the solid-like 

behavior as follows (Flow3D User Manual) , 
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where the average density    on the packed sediment bed is calculated from, 

                                                                                          

In which    and    is the local density of liquid and sediment particles, respectively.   

is the shear stress due to the fluid viscosity.   is the drag coefficient among particles, 

which can be calculated by the following formula based on the assumptions of the 

solid-like behavior, 

  

 
 
 

 
                                                                           

 
           

        
  

           

        
                                     

                                                                      

                  

In which    is the solid fraction of the sediment.       is the cohesive solid fraction 

over which the interaction among particles occurs and fluid viscosity does not 

increase with the sediment concentration.       is the critical solid fraction over which 

the fluid flow ceases and behaves as the solid mass. 

The local velocity vectors of particles have two components,         and       , 

modeled by the following equations (Flow3D User Manual), 
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where    is the mean sediment diameter,    is the liquid viscosity ( increased by the 

turbulent viscosity in the turbulent model), which can be obtained from, 

       
              

     
 

     

                                              

   is the molecular viscosity of the liquid. The formula above illustrates that the 

average viscosity of fluid will increase as the solid fraction or sediment concentration 

increases until the solid fraction is equal to the cohesive solid fraction where the solid-

like model activate and the fluid viscosity cannot increase; when the solid fraction is 

equal to the critical solid fraction, the fluid viscosity become infinite meaning that the 

complete status of solid forms, which is identical to the model of the drag coefficient. 

    is the liquid fraction,        become zero in the regions of     .           is 

a factor of probability of a particle‘s lifting from the packed sediment surface.    is 

the normal vector to the bed surface.       is the critical shear stress required to 

friction the particle away from the packed sediment interface, which is modeled by 

the critical Shields number, 

      
     

         
                                                            

The drifting model as the suspended bed model assumes that the suspension and 

advection dominate the transport of most sediment particles away from the packed 

bed interface. The scour depends on the shear stress of fluid, the critical shear stress 

starting the erosion and the difference of density between the fluid and solid particles. 

In FLOW3D, the sediment concentration closed to the sediment interface is a function 

of          
   . The lifting model simulates the bed-load movement and predicts the 
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local flux of sediment eroded on the packed bed interface. Generally speaking, the 

sediment flux occurs when the normalized bed shear stress is higher than the critical 

value. 

An important parameter is called the angle of repose producing the influence of the 

bed slope on the threshold movement of the packed sediment particles in a static flow 

region. A low angle of repose provides the easier condition to slide along slopes while 

a high angle of repose has the particles more difficultly start. In the sediment erosion 

model of FLOW3D, the angle of repose as a constant can be defined by user. The 

critical shear stress in the slope interface of sediment is dependent on the ratio of the 

actual slope to the angle of repose as follows, 

   

           
    

     

     
                                                                              

where       is the critical shear stress on the packed sediment bed with a slope,      
  is 

the critical shear stress with a horizontal bed.   is the actual angle between the normal 

vector of the bed interface and the gravity vector.   is the angle of repose. When 

   , the locally critical shear stress,       , is equal to zero, which means that any 

disturbance from the flow region can drive the sediment particles to slide along the 

slope; when     , the locally critical shear stress is restored to the critical value 

with the horizontal slope. 

In FLOW3D, the advection-diffusion equation is employed to model the motion of 

the suspended sediment in the flow domain as follows, 



45 

 
   

  
 

 
                                                                            

in which   is the local velocity of advection.    is the local concentration of the 

suspended sediment.   is the diffusion coefficient. In the advection-diffusion 

equation, two additional items originate from the influence of the drifting and lifting 

of the sediment.       is zero in the region where the local shear stress cannot exceed 

the critical value,      , so there is no influence of lifting on the motion of the 

suspended sediment in the  most flow domain except in the vicinity of the packed 

sediment interfaces. 

There are several limitations in the sediment scour model in FLOW3D although it can 

be adopted to simulate the phenomena of scour. (a) Too large sediment diameter fails 

the drifting model, successful prediction become impossible (b) No bed load model 

available to simulate the saltation load. (c) Non-uniform sediment particles are not 

included in the range of the simulation. 

3.1.1 Case Analysis and Limitation  

FLOW3D mesh generator uses the FAVOR
TM

 method to handle the complicated 

geometries in an orthogonal mesh defined in Cartesian or cylindrical coordinates. 

Only the orthogonal mesh is allowed to simplify the process of meshing domain in 

FLOW3D. The obstacles and baffles are embedded in the orthogonal mesh, which 

allows separate definition of the mesh and geometry, so the modification of geometry 

has not any influence on the mesh.  

The bridge deck with the six girders, as shown in Fig.3.1, is simulated. The center of 

the bridge deck is located at         in the flow domain. In Fig.3.2 the red region 
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reflects the packed sediment bed with the thickness of 20 cm and the blue region is 

clear water with the depth of 25 cm.  The mean approach velocity is 42 cm/s, the 

pressure flow scour will occur beneath the submerged bridge deck. The deck opening, 

the distance from the bed to the girders, is 13 cm. The grid interval of mesh in the 

flow field is 0.4 cm except in the packed sediment interface refined to the cell size of 

0.1 cm because the interaction among particles reflecting the process of scour is 

strongly dependant on the cell size, the analysis of cell sensitivity is illustrated for this 

dependence in the following section. The cell distribution in the vicinity of the bridge 

deck and the interface of sediment bed is shown in Fig. 3.3  

 

Figure 3.1 The bridge deck geometry. 

 

 

Figure 3.2 2-D numerical model configuration (unit: centimeter). 
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Figure 3.3 The cell distribution. 

The procedure of the simulation includes two sub-simulations. The first sub-

simulation was utilized as the initial condition of the second sub-simulation by the 

‗restart‘ techniques in FLOW3D. In the first sub-simulation, the erosion of the 

sediment bed is prevented by configuring the large Shields Number of 100 such that 

the local velocity in the vicinity of the bed interface becomes the log-law distribution 

in some time; otherwise, the non-fully developed flow in the interface of bed will 

destroy the threshold process of scour because of high velocity gradient. The first sub-

simulation ended up in 60 sec and the flow domain reached the steady status.  

Fig.3.4 (a) and (b) shows the distribution of velocity vector in the initial and stable 

status, respectively.  The velocity distribution closed to the interface of sediment in 

Figure 3.4 (b) is acceptable as the fully-developed flow condition, thus, this steady 

status will be used as the initial condition in the ‗restart‘ simulation.  Table 3.1 shows 

the configuration of parameters. 
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                                  (a)                                                                  (b) 

Figure 3.4 (a) The initial status for sub.(1)   (b) The steady status for sub.(1). 

 

Table 3.1 The configuration of parameters for sub-simulation (1) and (2). 

 Parameters Sub-Simulation (1) Sub-Simulation (2) or Restart 

Sediment Diameter 2 mm 2 mm 

Sediment Density 2650 kg/m
3
 2650 kg/m

3
 

Shields Number 100 0.048 

Coehesive Solid Fraction 0.3 0.3 

Critical Solid Fraction 0.65 0.65 

Scour Adjustment Factor 1 1 

 

During scour simulations, the packed bed erodes through mesh cells and the bed 

interface will in general be in the interior of a cell. Tests were run to check the effect 

of having the bed interface run through the interior of cells with ¼, ½, and ¾ of the 

cells filled with the stationary bed under flat bed conditions. These cases were run in a 

simulated flume 0.25 m deep with the entry velocity of 0.41 m/s and no obstructions 

in the flow. The velocity profiles halfway across the sand bed are compared in Fig 

3.5. The location of the bed is at ZCOR = 0. The slope of the velocity profile at the 

bed (the velocity gradient) clearly varies as a consequence of where the bed is located 
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with respect to cell boundaries. The effects of this variation extend well up into the 

main flow away from the bed. This variation may be a consequence of the coarseness 

of the mesh in the vicinity of the bed. These results indicate that a grid sensitivity 

study needs to be done to determine if mesh refinement can yield grid independent 

results when a scouring bed profile is moving through cells in the mesh. 

 

Figure 3.5 The velocity comparison with different filled value. 

 

The FLOW3D scour model  has a sediment transport scalar equation without 

momentum equations for sediment movement. The difference between local bed shear 

stress and critical bed shear stress in an empirical formula is used to determine erosion 

rate. In this formulation, the fluid-fixed bed interface is in the interior of the 

computational domain. There is not any form of wall function used to compute shear 

stress at the bed interface. The shear stress may be highly sensitive to the resolution of 

the grid in the vicinity of the interface. This same sensitivity would occur in any high 

gradient zone in the interior of a domain, and would require a highly refined mesh in 
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that zone if the gradients there could impact either the flow or the results of interest. 

Therefore, a primary activity in evaluating FLOW3D for scour computations is 

carrying out grid sensitivity studies.  

FLOW3D uses the finite difference to solve partial differential equations, so the 

selection of the vertical cell size closed to the sediment surface affects the distribution 

of velocity gradient related to the shear stress, thus to some extent impacting the scour 

profile. In the tests of sensitivity, Shields number for scour bed was set up to 100 as 

the approximate solid boundary to compare with the wall boundary of smooth wall 

boundary. Fig.3.6 shows the computational domain for the scour bed case. There is a 

corresponding block in back and front of the scour bed. Fig.3.7 indicates that the 

scour bed is replaced by the block with the smooth surface to compare the velocity 

gradient closed to the surface. 

 

Figure 3.6 Scour bed case 

 

 

Figure 3.7 Smooth wall block instead of scour bed. 
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Figure 3.8 Velocity gradient distributions with different cell sizes. 

 

 

Figure 3.9 The region closed to sediment bed zooming in. 
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Fig.3.8 shows that the difference of velocity gradient with different cell grids closed 

to sediment surface occurs at the region adjacent to bed, which is zoomed in as shown 

in Fig.3.9. The thickness of influence from velocity gradient is about 1mm. Therefore, 

the incipient motion of sediment locates at the level of 1mm below the sediment 

surface, not really on it, or the scour may occur layer by layer at initial time step 

because of this penetration. On the other hand, the maximum gradient of velocity for 

the cell size of 0.04 cm is larger than the responding values of other sizes, which may 

lead to the discrepancy of scour rate with cell sizes. However, for this range of cell 

size from 0.04 cm to 0.14 cm, the difference of scour equilibrium profile and scour 

rate may be limited within the thickness of 1mm. Generally speaking, there exists 

little influence of cell size on scour results.  

 

Figure 3.10 Velocity gradient comparisons between smooth and scour wall condition. 
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Fig.3.10 illustrates that there are good comparisons of velocity gradient between 

smooth and scour wall except for the cell size of 0.04 cm. That means that sediment 

bed can be as solid surface for certain cell element, namely smooth wall, when no 

scour occurs because they have very closed velocity gradient. 

Based on the above analysis, we may select the cell size of 0.1 cm closed to sediment 

bed as far as the accuracy and efficiency are concerned in FLOW3D.  The scour 

behavior could be layer by layer or block by block with the maximum thickness of 0.1 

cm as far as the incipient of sediment is concerned.  

Actually, the shear stress on the sediment surface can be estimated by the product of 

dynamic viscosity and velocity gradient in the elements including or adjacent to the 

sediment surface. Due to the disappearing of turbulence flow closed to the sediment 

bed dynamic viscosity approximately equals molecular viscosity. Therefore, the shear 

stress has the same error as velocity gradient to theoretical values. However, this 

influence of cell size on the procedure of scour is insignificant as far as the velocity 

distribution, which is described in the following section mentioning the practical case. 

The first step of simulation is to use Shields Number of 100 instead of a real value of 

0.048 so that the bed may be viewed as wall boundary at which the log-law velocity 

distribution is developed; the second step is to use the ‗restart‘ configuration of 

Shields Number of 0.048 based on the ultimate data of the first step. The velocity 

distribution is adjusted to the more reasonable status of log-law after the computation 

of 4 seconds in the second sub-simulation, namely, the velocity magnitude is closed to 

zero on the sand surface, the flow can‘t penetrate sand layer; it means that the 

influence of the cell of 1 mm to initial scour or the penetration of flow into the sand 
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layer is only lasting 4 seconds from the initial status of ‗restart‘ simulation. Fig.3.11 

(a) and (b) show the contour of velocity distribution between the initial and 4 seconds 

afterward status. 

 

     (a)                                                             (b) 

Figure 3.11 (a) The initial status of ‗restart‘ simulation,  (b) 4 s afterward status. 

 

The sediment scour is generally dependent on the initial scour profile to some degree. 

Fig.3.11 (a) and (b) indicate that the transition from the status (a) to (b) has little 

influence on the initial scour profile based on the assumption of initial condition 

replaced by the stable status with Shields Number of 100, this influence on the 

thickness of scour is limited to be less than 1 mm as analyzed before. If the vertical 

cell size on the interface of sediment is too large, the velocity gradient closed to the 

sand bed will not be reasonable and results in the incorrect shear stress distribution. 

Also, the flow body can penetrate the several cells in the vicinity of sediment 

interface and induce the dramatically impractical scour at the beginning stage. 

Fig.3.12 and Fig. 13 shows the comparison for the vertical cell size of 2 mm and 3 

mm, respectively. Fig.3.12 (b) and Fig.3.13 (b) obviously have more scouring than 

Fig.3.11 (b) beneath the bridge deck and this difference will further increase with 

computational time as shown in Fig.3.14. From Fig. 14 (c) we can see there is no 
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scour hole forming for the 3 mm cell case underneath the bridge deck, therefore, the 

scour profile is very dependable on the vertical cell size. 

 

(a)                                                              (b) 

Figure 3.12 (a) The initial status for 2 mm cell, (b) 4 s afterward status for 2 mm cell. 

 

 

(a)                                                               (b) 

Figure 3.13 (a) The initial status for 3 mm cell, (b) 4 s afterward status for 3 mm cell. 

 

 

(a) 
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(b) 

 

(c) 

Figure 3.14 (a) Scour profile with 1 mm cell at time = 120 s (b) Scour profile with 2 

mm cell at time = 120 s (c) Scour profile with 3 mm cell at time = 120 s. 

 

The scour profile on the interface of sediment was simulated in the pressure flow 

condition. The vertical cell size of 1 mm in the vicinity of sediment interface was 

used. The qualitative analysis to this simulation is necessary to compare the physical 

experiments.  The vortex distribution, velocity distribution, and turbulent energy were 

analyzed qualitatively. The distribution of vortices were mainly located in the space 

among girders and the region of wake, not in the scour hole under the bridge deck. 

The maximum of turbulent energy occurs in the scour hole. The incipient movement 
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of the sediment particles was centralized on the sediment surface underneath the 

middle of the bridge deck because of the pressure flow condition. 

In the natural erosion of sediment, a number of vortices around the structures are the 

main factor leading to the local transport of sediment. However, that is not the case 

for the pressure flow scour. Fig.3.15 is a contour of velocity with vortex feature. From 

Fig.3.15 we can see that the vortices do not exist in the scour hole. They come up in 

the interval among girders, the top of deck and the wake region. Thus, the vortex flow 

is not the reason resulting in the further development of the scour hole because no 

rotating flow is formed there as shown in Fig.3.15. 

 

 

Figure 3.15 Vortices in a velocity contour. 

 

Fig.3.16 shows the distribution of turbulent energy in the pressure flow condition. The 

high energy of turbulence is located at the region of sediment interface under the 

bridge deck, which illustrates that the intensified turbulent energy underneath the deck 

results from the pressure flow. Also, the maximum turbulent energy at different times 

is distributed in the mid region beneath the deck, therefore, the measure of protection 
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should be taken in the mid region of sediment interface under the deck to avoiding the 

damage to other structures, such as piers. 

 

(a) time = 1 min                                            (b) time = 5 min 

 

(c) time = 8 min                                             (d) time = 12 min 

Figure 3.16 Turbulent energy contour at different stages. 

 

Fig.3.17 displays the x velocity distribution along the interface of sediment. 

Obviously, the velocity gradient under the bridge deck is larger than in the region 

upstream and downstream. Therefore, the scour begins under the bridge deck.   
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Figure 3.17 Packed solid fraction with x-velocity distribution. 

Fig.3.18 shows the contour related to the scour process with time. The initial scour 

from 1 min to 5 min has more erosion rate of sediment than the stage from 5 min to 

12 min as shown in Fig.3.18, which is reasonable qualitatively because the degree of 

vertical area contraction becomes weak with the development of time. However, the 

deposition of sediment downstream does not obviously form the sand dune we 

expected because of the limitation of the scour model in FLOW3D.  

 

 (a) time = 1 min                                                            (b) time = 3 min 
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(c) time = 5 min                                   (b) time = 7 min 

 

(e) time = 9 min                                 (f) time = 12 min 

Figure 3.18 The scour profiles with time. 

 

In this analysis, the cell sensitivity within the range less than 1.4 cm was analyzed and 

the cases for the cell size of 1 mm, 2 mm and 3 mm were simulated respectively.  All 

this analysis is based on the same configuration of parameters for 2 mm sediment 

diameter.  Three conclusions can be summarized as follows, 

(a) In FLOW3D, the effective scour model is sensitive to the vertical cell size on 

the sediment interface. The vertical cell size should not exceed the dimension 

of sediment diameter of 2 mm in our case. Within the vertical cell size of 1.4 

mm the sediment scour is not obviously dependent on the cell size. The 
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alteration of cell size within that range only affects the thickness of the 

sediment layer of 1 mm below the interface of sediment as shown in Fig.3.9. 

(b) The sediment interface with Shields Number of 100 in the sub-simulation (1) 

can be approximated as the solid boundary. The steady flow field in the sub-

simulation (1) can be effective as the initial status of sediment transport in the 

‗restart‘ or sub-simulation (2) with the normal Shields Number of 0.048. 

(c) When the vertical cell size on the sediment interface is too large, for example, 

if it is 3 mm, the sediment transport underneath the bridge deck will not reflect 

the influence of pressure flow condition and no scour hole forms there.  

(d) The qualitative analysis to the vortex distribution, x velocity profile,  the 

contour of scour profile, and the scour model of sediment is reasonable; 

however, the results of 12 min simulation takes the computational time of 40 

days, which results in that we cannot get the equilibrium status to compare 

with physical experiments within reasonable schedule because the equilibrium 

status physically requires more than 40 hours. 

3.2 Morphing Mesh in STARCCM+  

The moving mesh feature activated in STARCCM+ functions by altering vertex 

coordinates as a function of time. In the most general case, the grid meshed can be 

characteristic of transformation, rotation and distortion in any prescribed way when 

specifying time-dependence function for some interested cell vertices. Actually, the 

requirements for accuracy and stability limit the degree of distortion that can be 

tolerated, which makes the mesh arbitrary motion impossible.  STARCCM+  will 

solve an additional equation, relating the alteration in cell volume to the cell-face 
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velocity, called ‗space conservation law‘ to adapt the situation of moving mesh or 

distorted domain. 

In STARCCM+/STARCD, three factors control the mesh distortion; they are aspect 

ratio, internal angle and warp angle, as sketched in Fig.3.19. 

 

Figure 3.19 Classification of mesh distortion in STARCCM+. 

 

The values of the aspect ratio can be allowed to be over unity but unity is preferable, 

it isn‘t suggested to exceed 10; the internal angle should be kept a minimum when 

departing from 90 degree intersections between cell faces and 45 degree is the upper 

limitation of departure; and the optimum of the warp angle is zero for co-planar cell 

vertices; it isn‘t good consideration to exceed 45 degree. If the combined effect from 

these three factors is simultaneously present in a single cell, the suggested limits 

might not be enough. STARCCM+ automatically employs the internal morphing 

interpolation function to solve the position of mesh vertices, and thus avoid the 

incorrect configuration.  
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The morphing motion redistributes grid vertices with the slave correlation to the 

movement of control points. Control points and their constrained conditions are used 

by the relative morphing algorism to generate an interpolation field throughout the 

domain. This interpolated field is used to displace the old vertices of the mesh. The 

constrain conditions for a series of control points can be a displacement or grid 

velocity. The displacement constraint will be independent on the time step whatever 

the time step is; however, the grid velocity constrain is proportional to the time step. 

Usually, the control points are configured by the mesh vertices on a boundary. 

The process of morphing can be summarized as, a) the morpher collects control points 

and their known displacements or velocity on the boundary regions; b) the 

interpolation field is generated by those control points and displacements; c) the 

interpolation field function is employed to all mesh vertices in the computational 

domain; d) some adjustments for the updated vertices are performed on boundaries. 

The morphing accuracy is controlled by the parameter, Morpher Tolerance, which is 

non-dimensional parameter used to specify acceptable accuracy when morphing. The 

minimum value of allowable morphing is the product of Morpher Tolerance and the 

longest edge length of the bounding box enclosing the morphing region. 

For the 2D case of scour issue under the pressure flow condition, only considering the 

vertical distortion of cell is a reasonable assumption to simulate the bed distortion 

acted by bed shear stress. For the convenient application, STARCCM+ uses a 

damping factor to control the computation of morphing transitioned from the zero 

morphing region to the morphing on the boundaries. Accurately applying this 

morphing to the case of pressurized scour requires the calibration of parameters 
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related to the shear stress in STARCCM+. This calibration is described in the 

following section 3.2.1 

The morphing vertices on the wall boundary will mock the deformation of river bed. 

The morphing velocity or the recession rate is dependent on the entrainment rate for 

the sediment transport model we adopt. The deformation of bed inversely affects the 

shear stress on the wall boundary, and then the recession rate based on the 

computation of the sediment transport model. The periodic process above ultimately 

stops at the equilibrium state according to the pickup function.   

3.2.1 Case Configuration 

The purpose of this case is to calibrate the entrainment rate with Lianjun‘s 

experimental data. Lianjun‘s experiment for measuring the entrainment rate under the 

critical condition is based on the open channel flow with the horizontal bed but 

without any bridge in the flume. We assume that the entrainment rate is not obviously 

dependent on the bed slope when the bed slope is approximated to be horizontal. 

Usually, the bed slope under a bridge or block in the pressure scour is just several 

degrees. Therefore, the entrainment rate for horizontal bed can be employed to 

calibrate the cases with a several degree slope. 

The numerical experiment has the same geometries and boundary condition as 

physical experiments except for that the free surface of water is not included in the 

numerical configuration. The sketch is displayed in Fig.3.20. The length of domain is 

6.5m, the water depth is 0.25 m; the distance from the front of the rectangular block to 

the inlet of flow is also a constant as the value of 4.0 m. The block size is 0.26 m by 

0.058 m.  
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Figure 3.20 The sketch for computational domain in STARCCM+. 

 

The mean upstream velocity           , which is the critically threshold velocity 

of sediment. The entrance on the left side is configured as Velocity Inlet boundary, 

the exit as Pressure Outlet boundary, the top as Symmetry boundary, and the bottom 

and surface of the block as Wall boundary. The wall surface on the bottom is 

morphing by a constraint from grid velocity.   

The following parameters are calculated as, 

The hydraulic diameter,           , the effective roughness            for 2 

mm sediment diameter. The Reynolds number            , the relative effective 

roughness                .  

From the parameters, we can obtain the friction factor to calculate the critical bed 

shear stress based on the Colebrook-White equation or Moody diagram, namely 

         and          .  

The morphing velocity on each vertice attached to the bottom boundary is a function 

of the bed shear stress or the sediment transport model, thus, an appropriate field 

function used to compute the recession rate need to be defined to keep a reasonable 

grid velocity of morphing. Furthermore, the convergence of solution requires that the 
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time step size must be within certain range, here, the constant time step of 0.02s is 

used. 

The roughness function parameters in STARCCM+ are as follows, 

                   
             

     

Note that the roughness function in STARCCM+ is employed to modify the log-law 

coefficient, which is a segmented-function of the dimensionless parameters   . 

       
  and       

  in which    is defined as        where   is an effective 

roughness number and    is a local reference velocity. When           
 , the wall 

boundary is considered to be smooth; when           
 , the wall boundary is fully 

rough. 

We employ Guo‘s two empirical formulas which are based on scouring experiments 

as field function to morph bed and compute the recession rate. One of them is the 

scour profile formula consists of two parts as follows, 

 

  
        

 

 
 
   

                                                   

and 

 

  
            

 

 
 
 

 
 
   

                                                

where    is depth at different location on the bed for the equilibrium status.    is 

maximum depth of scour.   is bridge width (reference Fig.2.1). 

The other formula is a time-dependent relationship for maximum scour depth on the 

bed as follows, 
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 where    is dimensionless time-dependent scour depth, defined as defined as      in 

which   is the maximum depth of scour at certain time.   is dimensionless time, 

defined as        in which    is upstream velocity and    is bridge opening.    is 

characteristic dimensionless time, and            .  

We assume that Eq.3.10 can be applied to the different locations on the bed profile at 

certain time, not only limited to the max. scour depth, namely, it can be as the scale 

factor for the whole scour profile so that it scales the bed profile with different scour 

times. Fig.3.21- Fig.3.26 show the comparison between experimental and scaled scour 

profiles.  

 

(a) 
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(b) 

 

(c) 

Figure 3.21 Scaled scour profile verse experimental results           (a) 42 h and 

1 h (b) 42 h and 8 h (c) 42 h and 24 h. Note that the case for 42 h is the equilibrium 

status based on experimental analysis. 
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(a) 

 

(b) 
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(c) 

Figure 3.22 Scaled scour profile verse experimental results            (a) 42 h 

and 1 h (b) 42 h and 8 h (c) 42 h and 24 h. Note that the case for 42 h is the 

equilibrium status based on experimental analysis. 

 

From Fig.3.21 and Fig.3.22, we found that Guo‘s formula is not capable of explaining 

the deposition of particles downstream underneath a bridge deck based on the 

comparison of morphing bed to the experimental data, therefore, the scour profile 

downstream cannot fit experimental data very well but it is closed to the experimental 

data upstream. On the other hand, the scaled profiles, such as 1 h, 8 h and 24 h, are 

accurate enough to match experimental data upstream, which means that Eq.3.10 may 

be as scale function to deform the bed.  

The mesh of grid around the bridge deck for equilibrium status is shown in Fig.3.23 – 

Fig.3.25.  Fig.3.23 is the original mesh before morphing. We can see that the mesh in 
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domain is self-adjusted and blended to better fit the morphing bottom as the bottom is 

morphing as shown in Fig.3.24 and Fig.3.25. 

The shear stress distribution for different scaled scour profiles is plotted in Fig.3.26 

and Fig.3.27. Through the numerical results of shear stress distribution can we 

develop a functional relationship between the entrainment rate calculated by Eq.3.10 

and the maximum bed shear stress as the field function so that the boundary of 

domain is morphed as the law of this function although the results of the shear stress 

distributions are not accurate because of the difference between the morphing bed and 

experimental data downstream. The computational shear stress distribution on the bed 

in STARCCM+ overestimates critical shear stress for the equilibrium status, which is 

limited by: a) the wall function adopted by STARCCM+, and b) the approximately 

empirical scour profile. 

 

(a) 
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(b) 

Figure 3.23 Original domain mesh with 42 h for (a)             (b)          . 

 

(a) 
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(b) 

Figure 3.24 Domain mesh with 42 h for           . Note: (b) is zoom-in of (a) . 

 

(a) 
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(b) 

Figure 3.25 Domain mesh with 42 h for          . Note: (b) is zoom-in of (a). 

 

 The functional relationship between the recession rate and the maximum bed shear 

stress for            and           is fitted by Matlab as shown in Fig.3.28 

and Fig.3.29 with the fitting formula as follows, 

                                                                              

in which   denotes the maximum bed shear stress.     denotes the recession rate. 

            ,        ,            ,          for           , and 

            ,    ,            ,          for          . 

The Eq.3.11 as the similar formula of expression illustrates that the recession rate for 

the cases with different    is a linear combination of two expontential forms with 

individual constant coefficients. 
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Based on Guo‘s formula, the location of maximum scouring depth is where the 

distance is 0.04 m away from the rear edge of bridge deck, namely,          in the 

coordinate system of simulation. The Fig.3.30 plots the maximum bed shear stress for 

different time and the corresponding values at         . The Fig.3.30 illustrate that 

the maximum bed shear stress is closed to one at          with the process of 

scour except for the initial stage of scour with           , and the good identity 

for           except that the maximum values of bed shear stress are a little higher 

than ones at         . Table 3.2 and Table 3.3 list the horizontal location for the 

maximum of the bed shear stress with different time along the bottom. Table 3.2 

shows that this location for            is gradually moved to the rear edge of 

bridge deck with time. In Table 3.3, the location for           is approximately at 

         .  

The velocity contours are plotted in Fig.3.31 and Fig.3.32 in which the velocity 

magnitude under the bridge deck become larger than the one upstream. The flow with 

larger velocity closed to bottom initializes the motion of particles. In the early stages 

of scour, there is a different location of maximum of bed shear stress for each opening 

space because of different condition of continuity. This location is gradually moved to 

downstream with process of scour and around the maximum of scour depth in 

equilibrium status. From Table 3.2 and Table 3.3, the location, when scour initializes, 

is at                away from the centroid of the bridge deck according to 

different   . 

The scaled morphing bed with process of scour is shown in Fig.3.33 and Fig.3.34. 

The disadvantage for this assumption about scale factor is that the maximum of scour 
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depth is always located at         , independent on time, which is not reasonable 

in experimental observation. This location should be up to upstream in early stages. 

 

Figure 3.26 Bed shear stress distributions along the bed for different scaled scour 

profiles with           . 

 

Figure 3.27 Bed shear stress distributions along the bed for different scaled scour 

profiles with          . 
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Figure 3.28 Recession rate verse maximum bed shear with           . 

 

Figure 3.29 Recession rate verse maximum bed shear with          . 
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(a)            

 

(b)           

Figure 3.30 The bed shear stress compared to the maximum bed shear stress. 
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Table 3.2 horizontal location for maximum bed shear for           . 

Time (hour) 
Max. Bed Shear  

           

X Location for Max.  

Bed Shear (m) 

0.5 2.814453 0.0165 

1 2.703914 0.0345 

2 2.54911 0.0345 

8 2.23672 0.0525 

12 2.158636 0.0615 

16 2.110519 0.0615 

20 2.075319 0.0615 

24 2.058272 0.0705 

42 2.021364 0.0705 

 
 

Table 3.3 the horizontal location for maximum bed shear for          . 

Time (hours) 
Max. Bed Shear  

          

X Location for Max.  

Bed Shear (m) 

0.5 3.077727 0.0525 

1 2.95946 0.0525 

2 2.796992 0.0525 

8 2.709234 0.0435 

12 2.656686 0.0435 

16 2.575644 0.0525 

20 2.557513 0.0435 

24 2.540434 0.0525 

42 2.54119 0.0435 
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Figure 3.31 Velocity contour for           . 

 

 

Figure 3.32 Velocity contour for          . 
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Figure 3.33 Scaled morphing bed for           . 

 

 

Figure 3.34 Scaled morphing bed for          . 
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Chapter 4 Theoretical Approaches and Analysis for 

Sediment Bed Load 

4.0 Overview 

The analysis of sediment mass conservation and momentum equations is fundamental 

to solve a series of erosion problems in sedimentation and hydraulics. Exner (1925) 

developed his equation for sediment mass balance as part of a pair of remarkably 

sophisticated studies of river morphology through a number of simplifying 

assumptions. Despite the relative simplicity of this model, the modeling results are in 

good agreement with what is observed. The original Exner equation can be written as, 

  

  
   

  

  
                                                                           

where   is bed elevation relative to a given datum,   is evolving time,   is a 

coefficient,   is average flow velocity, and   is downward distance along the 

sedimentary bed. From this equation, we can see that Exner intended the flow velocity 

of   as medium for the sediment flux. Based on the Exner equation, a variety of 

forms have mostly been done for adapting it to a particular problem. For example, 

Parker (2005) summarized some forms appropriate for channelized systems and 

sediment mixtures descended from Exner equation. According to the specific 

problems, these forms of mass balance equations include some terms and leaves out 

others. Paola and Voller (2005) developed a generalized Exner equation for sediment 

mass balance which is useful for geologic problems for which processes such as 

tectonic uplift and subsidence, soil formation and creep, and dissolution and 

precipitation become important.  
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Developing governing equations of sediment transport tends to depend on the 

assumption of the ensemble average that is an average over a number of realizations 

of a flow to filter other minor fluctuations of variables especially in advection-

diffusion equation. The ensemble average may be time-average, volume-average, 

concentration-average, or other average depending on the understanding for problems. 

In addition, time-averaging is equivalent to the situation in which the flow is 

statistically stationary while volume averaging is equivalent to the spatially uniform 

flow condition. Therefore, different assumptions for averaging variables need to be 

made in developing mass balance and momentum equations for given problems. In 

this dissertation, some variables, such as the components of velocity in the bed and 

packed sub-layer, are based on the local volume averaging to neglect the influence of 

fluctuations of variables. 

The determination of pressure drop in a porous media or packed bed is important in 

the field of chemical processes.  Ergun (1952) conducted a series of experiments to 

verify the gradient of pressure drop for fluid flow through a column of packed 

particles. The pressure gradient is a complex function as fluid superficial velocity, 

fluid viscosity, porosity of packed bed, and the particles‘ property at low Reynolds 

number which is not enough to lift the stationary particles. For the case of high 

Reynolds number, the particles on the bed are unsteady and fluidized, Ergun equation 

cannot represent the correct pressure drop, and thus it is necessary to modify it to 

satisfy the fluidized status. The theoretical approach for studying pressure drop 

through packed beds is also successfully applied to the field of hydraulics. We will 

analyze the Ergun equation on detail and modify it in the fluidized bed load layer. 
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4.1 Model Statement and Assumption 

Sediment transport on the river bed is a complicated research topic in hydraulics. 

Depending on the size of sediment particles and flow characteristics, the status of 

their motion is in the bed load and suspended load.  The particles‘ motions are 

classified as three different processes verified by the bed shear velocity. The sediment 

particles roll and slide when the bed shear velocity just exceeds the incipient velocity 

of particles. With the increase in the bed shear velocity, a successful jump of the 

particles is coming along the bed, which is called saltation. When the bed shear 

velocity exceeds the fall velocity of particles, the particles will be lifted in the status 

of suspension and move in the streamwise direction.  We define the maximum 

saltation height, computed by the equations of motion, for a specific flow condition as 

the thickness of bed load layer. We can neglect the suspended load in a clear water 

condition in which the rolling, sliding and saltation of particles are predominant in the 

bed load layer. In this dissertation, the two-layer model means the derivation of 

equations is within the bed load layer and packed sediment layer to predict the erosion 

process wherein we need to derive continuous and momentum equations coupled 

from the two layers. Fig.4.1 provide a general information that is necessary to solve 

the two surface equation           and            to obtain the scour profile. 
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Figure 4.1 Two layer model sketch 

          and           in Fig.4.1 represent the surface function for the top surface 

and the bottom interface of bed load layer, respectfully, as the scour profile functions 

required to be solved. We can name the model shown in Fig.4.1 two-layer sediment 

transport model.  The transport of sediment particles is limited within the bed load 

layer with the maximum height of saltation. When the sediment particles are in 

motion, the bed load layer will be characterized, presumly, as the fluidized bed. The 

packed sediment layer is assumed to be a porous medium with a certain void porosity. 

The bed load layer is comprised of the fluidized sediment particles and fluid. One of 

the important parameter in a fluidized bed is the pressure drop or pressure gradient 

between the cross sections within the fluidized bed. The pressure drop in the transport 

equations of sediment consists of a part of source term to influence the motion of 

particles. This parameter demands being modeled. We employ the modified Ergun 

equation, developed in the section 4.3, to calculate the pressure drop flowing through 

the fluidized bed in the momentum equation. The extending height for the fluidized 

bed on the bed surface is assumed to be equal to the thickness of the bed load layer in 
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our case. On the other hand, the pressure drop in the packed sediment layer can be 

approximated by the Ergun equation due to the characteristics of porous media. 

The model statement for the Ergun equation and modified Ergun equation is 

interpreted in the section 4.3.  The derivation for the continuity equation, momentum 

equation based on the Fig.4.1 is specifically described in the section 4.5. 

4.2 Parameters Definition and Conception Description 

The dimensionless characteristic parameters are widely used to develop a variety of 

functional relationship in the sedimentation. These parameters for the most frequent 

usage are particle diameter, particle mobility parameter, excess bed shear stress, 

suspension parameter, and transport rate, which can be defined as follows, 

(1) Particle parameter,     

This parameter represents the combined influence of immersed gravity of particle, 

density of particle, and fluid viscosity, written as, 

    
      

  
 

   

                                                                 

in which     is the median particle diameter of the bed material,   is specific 

gravity,   is kinematic viscosity coefficient,   is acceleration of gravity. 

(2) Particle mobility parameter 

This parameter for a plane bed reflects the ratio of the hydrodynamic force 

proportional to     
   

  and the submerged particle weight proportional to    

      
  . It yields a ratio as, 
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in which    is an overall time-averaged bed shear stress,    is an overall bed shear 

velocity equal to      . 

If the effect of bed form exists in the flow condition, the effective bed shear stress 

instead of the overall bed shear stress should be adopted to calculate the parameter    

because the form drag is not effective to entrain the sediment particles from the bed 

material into the fluid field. 

(3) Excess bed shear stress parameter    

The excess bed shear stress parameter is experimentally verified to be a main factor to 

affect the sediment bed load, defined as, 

   
        

     
                                                                      

in which       is critical time averaged bed shear stress. This parameter controls the 

process of sediment transport in many hydraulic models, such as pickup function, 

velocity of particle saltation, deposition rate, etc. 

(4) Suspension parameter,    

The parameter    reflects the ratio of the downward submerged gravity and the 

upward dynamic forces acting on a suspended particle of sediment as follows, 
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in which    is particle fall velocity in clear water,    is ratio of sediment and fluid 

mixing coefficient,   is Von Karman constant. 

(5) Sediment transport rate,    

The dimensionless formation of sediment transport can be represented as, 

   
  

          
 

                                                             

where     is volumetric total sediment transport rate. If considering the transport rate 

of bed load,    is replaced with the volumetric sediment transport rate in the bed load 

layer   . 

An important concept is how to define the pick-up rate of bed material particles. 

Researchers have studied the pick-up of the bed material particles. Einstein (1950) 

proposed that a particle can be picked up only after a period of rest, which means that 

the total travel distance between two successive periods of rest may cover several 

saltations. Yalin (1977) assumes that a particle can be in the pick-up status whenever 

it leaves the bed surface due to saltation, which means that each jump of particle 

begins with a pick-up and ends in deposition. The pick-up rate of Yalin‘s definition 

may be about 10 times as large as the corresponding rate defined by Einstein. Yalin‘s 

definition for the pick-up rate is used by many researchers. The original definition of 

the pick-up rate of bed material particles can be described in terms of the number of 

particles picked up from the bed material per unit area and time written as, 
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in which   is fraction of susceptible particles to move exposed to flow per unit area, 

   is number of particles at rest on the bed surface per unit area, equals       
  ,   

is particle diameter,    is shape constant of particles (     for a sphere particle),    is 

number of pick-ups for each particle per unit time. 

Based on the statistical analysis, Einstein derived the pick-up rate of sediment as, 

                 
                                                         

where    is pick-up rate of particles in mass per unit area and time,    is probability of 

the lift force acting on the particle with exceeding the immersed weight of particle,    

is a coefficient verified by experiments. 

Fernandez (1974) proposed his pick-up function based on experiment data based on 

Einstein‘s definition about pick-up of particle as follows, 

                 
             

   
                                        

where     is a coefficient as 0.0199,    is particle mobility parameter or Shields 

number,       is critical value of particle mobility parameter or Shields parameter.  

Yalin‘s pick-up function can be written as, 

                                                                                      

in which    is a coefficient,    is pick-up probability based on Yalin‘s definition 

about pick-up. 

In this dissertation, the bed load transport is defined as the mode of rolling and 

saltating along the bed surface. The transport rate of the bed load is defined as the 



90 

product of the particle velocity, the saltation height and the volume concentration of 

bed load. The bed load‘s meaning is still very confusing as a basic concept in 

sediment transport. The concept of ‗bed load‘ used in sediment transport equations 

does not necessarily have the same meaning as the one used in bed form migration, 

and thus, it is necessary to verify the identical definition before comparing the 

calculated bed load and measured bed load from bed form migration data. 

The first definition (type A) of ‗bed load‘ in terms of bed form migration is the 

sediment passing the crest of a migrating bed form which is trapped in the lee side. 

For this definition generally used in marine environments, bed form migration data 

are only an indirect measurement of the sediment transport but the direct observation 

of the process of sediment transport. The second definition (type B) of ‗bed load‘ in 

terms of the mode of grain motion, or the mechanism of momentum transfer from the 

theoretical viewpoint is a dynamic one, as described in the beginning of this section, 

that includes rolling, sliding, and saltating. These grains transfer momentum to the 

stationary bed surface by solid/solid contacts (collisions) (Bagnold 1966). The solid-

to-solid contacts produce the momentum exchange balancing the immersed weight of 

the bed load particles. The flow turbulence, however, leads to the momentum of fluid 

to solid suspended as suspended load.  Since the most field of measurements of bed 

load transport used the first definition, whereas the calculated transport rate of bed 

load is based on the bed load transport equation adopting the second definition, they 

are obviously different when compared. The table 4.1 gives the comparison of bed 

load definitions (Yang 1986). 
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Table 4.1 Comparison of bed load definitions (Yang 1986). 

Bed form 

migration 

measurements 

Sand grain 

size 

distribution 

Mode of 

grain 

movement 

Mechanism of 

momentum 

transfer 

Sediment transport 

function 

Bed load 

definition A 

bed material 

discharge 

Traction 

population 

Sliding 

Bed load with 

definition B 

Momentum 

transfer by 

solid/solid 

contacts 

(collisions) 

Bed load 

transport 

function 
Total 

sediment 

transport 

function 

Rolling 

Intermittent 

suspension 

population 

Saltation 

Intermittent 

suspension 

Suspended 

load 

momentum 

transfer by 

fluid 

turbulence 

Suspended 

load 

transport 

function 

Suspension 

population 

Suspension 

(wash load) 

Wash load transport 

does not depend on 

local flow 

hydrodynamics 

 

The pick-up function of sediment, defined as the pick-up rate in mass per unit area 

and time, is equal to the product of the bed load transport and the saltation length of 

particle. Usually, the pick-up function or called entrainment rate is empirically 

determined by measuring the deposition rate of particle. 
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4.3 Pressure Drop through Porous Media 

When fluid flow through the packed particles the pressure drop will occur between 

inlet and outlet.  The pressure gradient is dependent on the superficial velocity of 

fluid, fluid viscosity, porosity of packed particle and particles‘ diameter. The Ergun 

equation described the correlation of pressure gradient to those factors as follows, 

 
  

 
                                                                            

The first term on the left side is the influence of an inertial resistance, the second one 

results from the viscous resistance.     are the variable coefficients related to the 

physical parameters in a porous media, confirmed as, 

  
          

   
   

          

    
                                         

where   is the fluid density,   is the porosity,    is the mean diameter of particles,   

is the coefficient of dynamic viscosity.  

Therefore, for our case, the pressure gradient is obtained as, 

 
  

  
                                                                       

However, the Ergun equation is only appropriate for the non-fluidized bed, namely, in 

our packed layer. For the fluidized bed load layer, we require to modify it for 

satisfying its feature. 

In our two-layer mathematical model described before, the packed bed layer can be 

analogous to porous media. For flow through porous media, it is desirable to predict 

the pressure drop as an important term in the momentum equation. The most famous 
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equation modeling porous media is the Ergun equation (1952). Therefore, Ergun 

equation can be employed to model the pressure drop in the packed bed layer.  

However, it cannot describe the pressure drop in the bed load layer because the bed 

load layer consists of a fluidized bed distinguished from the static porous media, 

which requires a modified Ergun equation to model the situation in the bed load layer. 

A fluidized bed plotted in Fig.4.2 is defined as a packed bed through which fluid 

flows at such a high velocity of fluid through the gas distributor plate that the bed 

material is loosened and the particle-fluid mixture behavior as fluid. In the fluidized 

status is the particle force balanced by drag and gravity. Both gas and liquid flows can 

be adopted to fluidize the bed particles. In the chemical fields, the most common 

reason for fluidizing a bed is to obtain vigorous agitation of the solid particles in 

contact with the fluid, which results in the uniform temperature in the process of 

chemical reaction.  The analysis for fluidized bed is usually applied in catalyst 

regeneration, solid-gas reactors, coal combustion, roasting of ores, drying, and gas 

adsorption operations.  
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Figure 4.2 Fluidized bed (http://en.wikipedia.org/wiki/File:FluidisedBed.svg). 

The sketch is drawn in Fig.4.3 for illustrating the course of bed fluidized, where    is 

the superficial velocity from fluid flow.    is the bed height  

 

Figure 4.3 Fluidization of packed bed 
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Corresponding to the process of fluidization in Fig.4.3, the typically functional curves 

for pressure drop verse vertically superficial velocity and bed height verse vertically 

superficial velocity are qualitatively shown in Fig.4.4. 

As shown Fig.4.4, the pressure drop, at first, is zero because of zero upward flow 

velocity, and the bed height has an original packed thickness.  The pressure drop 

gradually increases with the increment of vertically superficial velocity along the path 

o-a, while the bed height remains the original value because the upward superficial 

velocity is not enough to lift sediment particles.  The curve path o-a can be 

approximately modeled by Ergun equation for a packed bed layer. As the superficial 

velocity further increases, the sediment particles on the bed are lifted up to balance 

their submerged weight at the critical point b with the minimum fluidization velocity 

while the bed height will increase after that point.  The path of curve a-b is the 

transition region from the static bed to the fully fluidized bed. The pressure drop 

along the path b-c increases no longer as the superficial velocity increases because all 

particles are fluidized over the minimum fluidization velocity, in the meanwhile, the 

bed height continues to increase with the increment of the superficial velocity along 

the path of curve b-c. 
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Figure 4.4 Flow through a porous media  (a) Superficial velocity verse pressure drop 

(b) Superficial velocity verse bed height. 

 

If we keep track of the reverse path, we find that the pressure drop stays constant until 

reaching the point b as the upward velocity decreases. In the meanwhile, the bed 

height descends until the superficial velocity becomes critical.  For the reverse path c-

o, the transition path goes along b-d from the fully fluidized status to the fully 

settling-down. The bed height keeps the fixed value in spite of the decrease of the 

superficial velocity from the point d. The reason why the fixed bed height on the 

reverse path is larger than the bed height in the initial path is that the bed height after 
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fluidization is more loosen or porous than the original height, which also results in 

that the pressure drop on the reverse path b-o is smaller than the original path.   

Although we can approximate the pressure drop for the path of o-a by using the Ergun 

equation, we cannot calculate the pressure drop along the path of a-b as the transition 

curve. The following will introduce how to derive the transition stage. 

At first, we need to derive the formula for the ultimate situation with the path of b-c. 

For this case, we employ the approach of control volume for the energy equation to 

derive the formula of pressure drop. According to the first law of thermodynamics for 

a system, the time rate of increase of the total stored energy of the system equals the 

addition of the net time rate of energy by heat transfer into the system and the net time 

rate of energy by work transfer into the system, which can be expressed as, 

 

  
          

   

      
      

  
   

                                     

where    is the total stored energy per unit mass fluid, which is related to the internal 

energy per unit mass,    , the kinetic energy per unit mass,     , and the potential 

energy per unit mass,    by the following equation, 

                                                                         

For the control volume, the right side of Eq.4.14 is coincident at an instant of time.  

Furthermore, the time rate of increase of the total stored energy of the system equals 

the addition of the time rate of increase of the total stored energy of the contents of 

the control volume and the net rate of flow of the total stored energy out of the control 

volume through the control volume, and hence, Eq.4.14 is also expressed as, 
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Reference the graph in Fig.4.2 for the situation with the approximately constant 

pressure drop, we consider the flow status to be steady, and thus, the time rate of 

increase of the total stored energy in the control volume equals zero. Also, the 

adiabatic process is assumed during the fluidizing course of bed. The equation above 

is simplified as, 

               
  

  
                                                      

For convenient writing, we use     
  instead of      

  
  

. The average density of the 

mixture of particles and fluid, assuming a constant, can be written as, 

                                                                          

The work power from the pressure flow     
  is the product of the distributed pressure 

force on the control surface and the fluid velocity by the equation, 

    
                                                                 

The negative sign means that the pressure force always normally directs the control 

surface. Substituting Eq.4.15 and Eq.4.19 into Eq.4.16, we have the following 

formation of expression, 

    
 

  
                                                           

Then, we have, 
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Based on the continuity equation,                    . Neglecting the change of 

internal energy between the inlet and outlet section in Fig.4.3, we manipulate the 

equation above into the following formation, 

        

  
 

    
     

 

 
                                                  

or 

  

  
   

    
     

 

   
                                                        

where            . From the formula above, we find that when the height of 

fluidized bed is large enough or the velocity difference between the inlet and outlet is 

small enough to neglect the first term on the right side of Eq.4.23, the pressure 

gradient is approximated as a constant, namely, 

 
  

  
 

  

  
                                                                     

Since we don‘t include the static pressure in the formula above, the expression is 

represented by, 

 
  

  
                                                                       

However, it is incorrect to apply Eq.4.25 to the transition stage of fluidized bed prior 

to complete fluidization because of the approximate from Eq.4.23 to Eq.4.24,and 
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hence, we need to find a way to approximate the first term on the right side of Eq.4.23 

so that it can be applied to the transition stage as well. 

Guo (2002) developed a very effective matching approach, the logarithmic matching, 

to approximate a complicated nonlinear problem. The basic statement is that for a 

nonlinear engineering problem, if two extreme cases as two asymptotic situations can 

be accurately expressed, then the logarithmic matching can combine the two cases 

into a single solution. Assuming the two asymptotes can be expressed as, 

                                                                          

 and 

                                                                          

He proposed two logarithmic model s (select one of them to match two asymptotes) as 

the approximated solution for a nonlinear problem as follows, 

        
     

  
      

 

  
 

  

                                            

and  

        
     

  
           

 

  
 

  

                                       

in which    are determined with   ,   ,    and   , namely, 

                       .     or   , depending the selection of models, as a 

transitional shape parameter is verified by the collocation method, such as the 

observed value at   , or the least squares method. 
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Now we employ Guo (2002)‘s approach to merge two asymptotes, the Ergun equation 

and the constant pressure drop gradient equation. We define        , so the 

Ergun equation is written as, 

           
  

  
 

          

   
   

          

    
                                 

Since we consider the extreme case for small Reynolds number, the Ergun equation 

above can be further simplified as the Kozeny-Carman equation by, 

   
          

    
                                                                  

The constant gradient of pressure drop equation is written as, 

    
  

  
                                                                 

in which                         ,                ,     ,      

Further, we adopt model 1 as the logarithmic match by the following expression, 

      
 

  
      

 

  
 

  

     
          

    
                                  

Therefore, we obtain the single equation including the two asymptotes and the 

transition curve as follows, 

  
 
          

      

    
 
  

 
  

 

 
  

                                                         

where  
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and        , in which     is the minimum fluidization porosity. 

We can use the collocation method to determine the value of   . When the superficial 

velocity of flow is closed to the minimum fluidization velocity, the packed bed will be 

fluidized and the gradient of pressure drop can be approximately independent on the 

superficial velocity. The minimum fluidization velocity, determined by Wen and Yu 

(1966)‘s formula, can be adapted to calculate the parameter    that we need. Here, we 

assume the particle diameter is larger than 0.1 mm within the range of particle‘s 

diameter for Wen and Yu‘s expression as follows, 

     
     

 
                                                            

where 

   
          

  
                                                          

Based on the equations above, we can conclude that the parameter    is a function of 

the minimum fluidization velocity, and    dependent on the minimum fluidization 

porosity. 

To take a case with the air flow through the packed sediment bed with a particle‘s 

diameter of 0.287 mm for example, the parameter          , and thus, we can 

obtain the minimum fluidization velocity,              . According to the 
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experimental data in Table 4.2, the minimum fluidization porosity is determined as 

         by using Ergun equation, so       . We can obtain the parameters, 

                 

Table 4.2 Experiment data for air flow through a packed sediment bed (Citation from 

http://www.scribd.com/doc/36549923/Lab-1-Fluidized-Bed). 

Superficial Velocity  

(cm/s) 

Pressure Drop 

(mm) 

Bed Height 

(mm) 

0 0 150 

1.20286 106 150 

1.80429 152 150 

2.40572 173 154 

3.00716 184 155 

3.60859 187 160 

 

Fig.4.6 shows the comparison among experimental data from Table 4.2, Ergun 

equation and modified Ergun equation. The modified Ergun equation fits the 

experimental data very well while the Ergun equation gradually fails to match the 

experimental points when the bed begins to fluidize. The modified Ergun equation 

may overestimate the pressure drop when the superficial velocity is very high. The 

reason of this overestimate is that the modified Ergun equation doesn‘t consider the 

influence of turbulent flow on the potential energy of the system, however, as a fact, 

the effect from the turbulent flow become more and more obvious to the system‘s 

potential energy with the superficial velocity‘s increase.   
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Figure 4.5 Comparison of dimensionless parameters among experimental data from 

Table 4.2, Ergun and modified Ergun equation. 

 

To compare Gupte (1970), Kyan et al. (1976) and Dudgeon (1970)‘s experimental 

data, we require to use the dimensionless formation for Eq.4.34 as follows, 

   
   

    
  

   
 

  

 

 
  

  

                                                          

where 
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Gupte (1970) conducted a series of experiment with the comprehensive data. Eight 

different porosities of bed with the same diameter of particle were tested. The results 

for different tests with the range of 0.365-0.64 bed porosity produced the different 

constant factors with the mean value of 133 and 1.29 compared to 150 and 1.75 in the 

Ergun equation. Fig.4.7 provides the comparison and shows that both of the Ergun 

equation and modified Ergun equation fit the experimental data very well for low 

particle Reynolds number. Gupte‘s experiment doesn‘t make the bed fluidized, and 

hence, both the Ergun equation and Gupte‘s data are not able to follow the modified 

Ergun equation at high particle Reynolds number. 

 

Figure 4.6 Comparison among Gupte‘s data, Ergun and modified Ergun equation. 

 

Kyan (1976)‘s data on high porosity fibrous beds is limited in the flow condition in 

which the viscous resistance predominates. The seven different tests based on three 

materials are examined, and different constant factors with the mean value of 194 and 
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8.22 are also obtained in contrast on 150 and 1.75 in the Ergun equation. The 

corresponding comparison is shown in Fig.4.8 which explains the agreement at low 

particle Reynolds number among them but deviation at high value because of the non-

fluidization condition used by Kyan.   

 

Figure 4.7 Comparison among Kyan‘s data, Ergun and modified Ergun equation. 

 

Dudgeon(1970)‘s data include three groups, (a) smooth, spherical marbles, (b) 

moderately rough gravel particles, (c) quite rough blue metal particles. We select five 

data sets in the group (a) and (b) to compare with the modified Ergun equation and the 

Ergun equation as plotted in Fig.4.9. Dudgeon determined the different constant 

factors with the mean value of 321 and 1.3 in the non-fluidized condition. 
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Figure 4.8 Comparison among Dudgeon‘s data, Ergun and modified Ergun equation. 

 

Table 4.3 tabulates the parameters in the modified Ergun equation which illustrates 

that both     and    are not constant but variables dependent on the experimental 

condition. 

Table 4.3      and    

Data Name         

Gupte 14.49825 9.2612 

Kyan 42.4112 10.0022 

Dudgeon 10.5527 1.971 

 

For the case of sediment transport, we cannot directly employ the modified Ergun 

equation to calculate the pressure drop gradient for the bed load layer by experiments 

because it is difficult to determine the parameters      and   . The other reason is that 
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the flow condition is steady and the fluidized particle velocity is assumed to be zero 

for the modified Ergun equation while the sediment particles in the bed load layer 

have vertical velocity in the unsteady flow. When the sediment particles in the bed 

load layer are fluidized by the pressure drop and the local bed shear stress, the 

pressure drop will include two components, one is from the calculation of Ergun 

equation when the bed surface just fluidizes, and the other is from the dynamic 

pressure drop that balances the net weight of particles after fluidization. Therefore, we 

consider that the particles can saltate with the minimum upward fluidization velocity 

as the initially trajectory velocity along the vertical direction.  From Fig.4.4, the 

potential energy of all particles comes from the alternation of the superficial velocity 

transitioned from the status a to the status c as well as the potential energy of the 

fluidized particles is balanced by the dynamic pressure energy produced by the 

upward superficial velocity.  Therefore, the total pressure drop in the bed load layer 

equals the addition of the pressure drop in the status a and the additional pressure 

drop balancing the potential height of the particles. Hence, the pressure drop equation 

for a fluidized bed neglecting the turbulent influence in the bed load layer can be 

approximately represented by, 

     
          

   
   

          

    
                                         

Where    is the pressure drop between the top and the bottom of the bed.   is the 

fluid density,   is a packed bed porosity,    is a mean diameter of particles,   is the 

coefficient of dynamic viscosity.   is the minimum fluidized velocity.   is the original 

thickness of bed.    is the expanding thickness on the basis of   . 
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We can assume      when it comes to the bed load layer because the bed load layer 

is just several times of sediment particle diameter. Therefore,  

The expression above can be written as, 

 
  

 
 

          

   
   

          

    
                                     

4.4 Bed Load Thickness of Layer 

We use Bagnold‘s definition for the bed load transport layer. The theoretical 

maximum saltation height in a give flow condition can be determined from the 

equations of motion for the individual bed load particle without the influence of 

turbulence flow.  When the sediment particles with a jump height larger than the 

maximum saltation height these particles are classified as suspended load, otherwise, 

the particles are transported as a part of bed load. The particles in the bed load layer 

extract their momentum directly from the flow pressure and viscous stress. The 

trajectory consists of two stages, upward and downward. Both the normal component 

of drag and the gravitational force are pointed to downward on the rising stage; when 

the particles fall along their trajectories, the gravitational force opposes the normal 

component of drag. The lift acted on the particles, caused by the velocity gradient of 

flow and the spinning motion of the particle, is upward as long as their velocity is 

smaller than the flow velocity. Further, the impact of a particle on the bed surface 

may either be trapped into the packed surface or rebound off it and most of its 

momentum is dissipated by the other particles on the bed surface, which may initiate 

the rolling of particle.  
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The equation of motion of particle controlled by the complex force system, drag, lift 

and gravitational force, is semi-empirically and numerically solved by van Rijn 

dependent on the known parameters of drag, lift and initial velocity of particle 

determined by physical experiments. The average value of saltating length from van 

Rijin‘s numerical solution is about 16 times of particle diameter which is the same as 

the empirical result of Fernandez Luque and van Beek (1976).   

However, in this study, several assumptions are used to attain the trajectory of particle 

instead of numerically solving derivative equation: (1) The trajectory of particle is 

approximately parabolic based on the solution of Leo and van; (2) the intercept of 

parabola or jumping length of saltation along the downstream direction equals the 

average value of Leo and van‘s solution; (3) for the case with bed slope, the jumping 

length of saltation along the horizontal direction is still closed to 16 times of particle 

diameter. This simplification avoids solving complex derivative equations by 

approximating the final track of particle controlled by drag, lift and gravity force to 

parabola. 

The sediment concentration near the bed actually has influence on the bed load 

transport and bed shear stress. From view of momentum, when a particle leaves the 

bed, it extracts momentum from the fluid, locally reducing the shear stress of the fluid 

on the bed. At some position near the bed, the sediment obtains sufficient momentum 

from the adjacent fluid and thus reduces the bed shear stress from the flow up to the 

critical value at which the net erosion will not occur. Contrarily, the saltating particles 

can deposit in the bed surface where the volume concentration of grains decreases to 

allow the bed shear stress to recover above the critical value, some grains will be of 

incipient motion. Owen (1964) adopted this self-equilibrium condition to partition the 
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total stress in the bed load layer into the stress the local fluid exerts on the adjacent 

other fluid elements and the stress the local fluid exerts on the sediment. Thus, the 

concentration of saltating grains and the amount of momentum transferred from the 

fluid to sediment, primarily achieved by the horizontal component of the drag force, 

determine the stress applied to sediment.  Based on the self-equilibrium condition the 

sediment concentration near the bed has the following functional form, 

                                                                                 

where   is the volume concentration of sediment particle.    is the dimensionless bed 

shear stress and      is the critically dimensionless bed shear stress. The specific form 

used in this dissertation will be written in the section later. 

4.5 Derivation of Governing Equation 

4.5.1 Continuity Equation 

The sediment transport mostly occurs in the bed load layer which just has the 

thickness of several averaged sediment diameters. The exchange of material between 

the bed load layer and packed sediment layer causes the formation of scour profile on 

the river bed.  Consider a bed load layer with the volume concentration,  , and a 

packed sediment layer with porosity,   below the bed load layer, thus, the average 

density on these two layers are                and              . We 

select the control volume crossing the bed load and packed bed layer at the interface 

of them to derive the mass conservation equation, as shown in Fig.4.10. The top-

surface of bed load layer and the interface between these two layers are defined by the 

following equations, 
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Figure 4.9 Definition sketch for two-layer model. 

The unit normal for these two layers above can be calculated as, 

   
            

    
     

   
                                                 

where 

    
   

  
     

   

  
 

 The mass conservation equation in the bed load layer can be written as, 
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where    is the outward unit normal of perimeter surface in the horizontal x-y plane 

in Fig.4.10. 

Consider the total derivative of time for Eq.4.42, we have the following equations, 

   

  
 

   

  

  

  
 

   

  

  

  
 

  

  
                                           

   

  
 

   

  

  

  
 

   

  

  

  
 

  

  
                                            

The local velocity of moving top surface and interface can be represented by 

     
  

  
  

  

  
  

  

  
                                         

     
  

  
  

  

  
  

  

  
                                         

Also, the local velocity of flow in the control volume is written as, 

                                                                                         

Thus, plugging the Eq.4.46 into Eq.4.45 can be manipulated as, 

                            
   

  
                           

                            
   

  
                           

Combine the Eq.4.48 with Eq.4.43, we have the following equation, 
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Thus, the transport parts in the mass conservation results in the following formula, 

                                            

  
               

   

  
 

    
     

   
   

  
               

   

  
 

    
     

   
    

     
       

                 
   

  
    

                                                                                                         

where     the projected area to x-y plane,                
   

  
, which can 

be called the function of transport. 

The first term on the left side of the equation of mass conservation can be written as 

(Leibniz rule), 

 

  
      

 

  
      

  

  

   

    
   

  
  

  

  

      

   

  
      

   

  
                                

Here, we assume the uniform distribution of density on the bed load layer and packed 

layer, respectively, which means       
      

   . 

The last term for the continuity equation is manipulated as follows, 
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In which,    denotes the arch length along the projected area to x-y plane,    

 
 

  
 

 

  
    ,            

  

  
. In fact,   denotes the addition of the mean mass bed 

load of sediment and water flow per unit width.  

Based on the deduction above, the mass balance equation in the bed load layer is as 

follows, 

   
   

  
  

  

  

      

   

  
      

   

  
             

   

         
                                                              

Thereafter, the differential form of mass balance is obtained as, 

 
   

  
  

  

  

      

   

  
      

   

  
        

        
                    

 We can also obtain the mass conservation equation in the packed sediment layer by 

the similar way, 

 
   

  
  

  

  

      

   

  
      

   

  
        

        
                     

where    is the function of the bottom surface in the packed layer,    is the function 

of transport on the bottom surface,    is the transport load in the packed layer 

corresponding to the bed load layer. The continuity on the interface between these two 

layer must be satisfied, which results in        
        

. The assumption of 

uniformity makes      
      

   . 
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We need to consider some assumptions for simplifying Eq.4.55.  (a) the mean density 

in the packed layer,   , is independent on the time,  
   

  
  

  

  
  , namely it is a 

time-averaged value; (b) the bottom surface on the sand bed is not changed with 

time,      

   

  
  ; (c) the transport load on the bottom surface of packed layer is 

ignored,        Therefore, we write Eq.4.55 as, 

  

   

  
        

                                                         

We can obtain the total mass balance equation by adding Eq.4.56 and Eq.4.54, 

 
   

  
  

  

  

   

   

  
        

   

  
                                 

If we consider no suspended sediment transport and flow penetration to the upward 

water region, namely,       , the equation above is written as, 

 
   

  
  

  

  

   

   

  
        

   

  
                            

Therefore, we have two equations represented by, 

 
 
 

 
         

      
      

   

  
                                                                        

 
   

  
  

  

  

   

   

  
        

   

  
                                              

          

Usually, the practical thickness of bed load layer is just several diameters of sediment 

particle, thus, we may have a reasonable assumption that the surface functions,    and 

  , has the following relationship, 
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where        is the thickness of bed load layer as a function of diameter of sediment 

particle and time. In addition, the equilibrium status of sediment erosion is a dynamic 

process in which the entrainment rate of sediment equals to the deposition rate 

ultimately.  

Plugging Eq.59a and Eq.59c into Eq.59b, the following relationship is obtained, 

 
   

  
  

  

  

   

   

  
        

  

  
                                

If the scour equilibrium condition occurs during this course, Eq.4.60 is reduced as, 

                                                             

We define the transport load in the bed load layer as following formation, 

                                                                     

and  

                                                                      

where    is the mass bed load of sediment per unit width,    is the mass transport rate 

of flow per unit width, the subscript of    denotes the corresponding parameters in the 

packed sediment layer where the mass of sediment transport through the perimeter 

area rate can be ignored because most of sediment particles are static in this layer, 

namely,      . The dimensionless bed load     is as follows, 

   
 

         
                                                               

which is employed in the next sections to simplify the equations. 
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4.5.2 Momentum Equation 

Based on the Fig.4.10, the momentum conservation equation with integral formation 

can be written as, 

 

  
                                                           

                              
                                        

where   is the body force per unit mass,   
      is the surface force acted on the boundary 

of control volume. 

The first term of Eq.4.62 on the left side in the bed load layer can be manipulated as 

follows,  

 

  
          

 

  
          

  

  

   

    
         

  
  

  

  

          

   

  
          

   

  
                

The transport parts of momentum in the momentum conservation results in the 

following formula similar to Eq.4.50, 
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The last term is manipulated as follows, 

                                                                                        

                                           
  

  

              

The addition of Eq.4.63, Eq.4.64 and Eq.4.65 results in the following form as the left 

side of Eq.4.62, 

   
         

  
  

  

  

          

   

  
          

   

  
                 

                                 
  

  

    

     
         

  
                   

  

  

          

   

  
          

   

  
         

                                                                                                                                    

Here, we can extend the part in the first pair of brackets in Eq.4.66 above, 

         

  
                

     
   

  
   

     

  
                                  

        
             

Thus, the left side for Eq.4.66 has the following form, 
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The left side of Eq.4.62 in the packed sediment layer has the following form, 

 

  
                                                                         

                                                                                                

where the subscript   denotes the corresponding physical parameter in the packed 

sediment layer,    ,   ,     and     represent the unit normal of the bottom surface, 

surface area, the laterally outward unit normal and surface area.  

Based on the assumption we discussed before, we have one term equal zero in the 

packed sediment layer on the left side of Eq.4.69, namely, 

                             

Therefore, the left side of Eq.4.69 for the packed layer is simplified as, 
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Similarly, adding Eq.4.70 into Eq.4.68 results in the total expression of left side for 

momentum conservation equation written as, 
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where            according to the assumption without suspended sediment 

transported,    is the average velocity over the bed load layer, which means        
 

       
   .  

The right side for momentum equation 4.62 consists of the resultant forces acted on 

the control volume including body force and distributed surface force. 

For the body force acted on the control volume, 
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where   is the thickness of the bed load, and define          . The mean 

acceleration terms in these two layers,               and      

          , respectively. 

The surface force can be represented by, 

        
                                                                

 

Figure 4.10 Force distribution sketch on a micro-element body. 
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Based on the analysis of force distributed on an element body at the interface between 

the bed load layer and packed layer in Fig.4.12 without the consideration of transverse 

slope, the x component for the surface force is deduced as, 
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Note since the internal force in the bed and packed layer cancel each other, 

                         . The formula above is rewritten as, 

      
    

  
  

 
     

    

  
  

 

         

        
    

  
    

 

       
    

  

  

 
  

 
          

    
    

  
  

 
     

    

  
  

 

         
    

  
    

 

       
    

  

  

 
  

 
                                                                      

We can define 

           
    

  

  

 
  

 
       

    

  

  

 
  

 
                                           

in which, in fact,         is an additionally normal stress downstream caused by the 

alternative streamwise slope.  

We separate the pressure from the normal stress and    is expressed by the integral 

form as, 
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Here, we define, 

          
  

  
 

    

  
 

    

  
 

    

  
  

 

  
  

  

                                   

          
  

  
 

    

  
 

    

  
 

    

  
  

 

  
  

  

                                 

In the bed load and packed sediment layer, respectively, we simplify the formula 

above as, 
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Therefore,  

              
  

  
 

    

  
 

    

  
  

 

  
  

  

     
  

  
 

    

  
 

    

  
  

 

  
  

  

         
        

              

 Assume the surface forces except for pressure can be ignored in the packed sediment 

layer because of its static feature without the shear deformation, we obtain the 

following form, 

         
  

  
 

    

  
 

    

  
  

 

  
  

  

     
  

  
  

 
  

  

  

        
     

                                                                                                                    

Similarly, we have the other two components of force along y and z axis as follows, 
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Here, we drop the items,     and    , closed to the infinitesimal amounts of the 

second order wherein the change of horizontal slope have little effect on the normal 

stress along y and z axis.   

Also, we assume there is no additional normal stress from the deformation in the bed 

load layer, namely,               resulting in, 

         
  

  
 

    

  
  

 

  
  

  

     
  

  
  

 
  

  

  

        
     

                                                                                                                             

         
  

  
 

    

  
  

 

  
  

  

     
  

  
  

 

  
  

  

      
  

                      

         
  

  
 

    

  
 

    

  
  

 

  
  

  

     
  

  
  

 
  

  

  

    

                                                                        

The right side of momentum equation totally yields, 

                    
  

  

                   
  

  

                     

where    is the stress tensor, the first term of integral above is the result force in the 

bed load layer, the other in the packed sediment layer. Here,      ,    
 

  
 

 

  
 

 

  
  

and           since no elastic deformation occurs in the packed sediment layer, 

and only through the interaction between the flow and sediment surface does the 

erosion occur. 
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 The complete integral formation for the momentum equation 4.62 is expressed as, 

      

     

  
                                  

        
   

  

  

                    

              
        

 
   

  

     

      

  
                                      

        
   

  

  

     

                     
  

  

                   
  

  

                  

Since the projected area is arbitrary the momentum equation is rewritten as, 

    

     

  
                                  

        
   

  

  

               

            
        

 
   

  

     

      

  
                                      

        
   

  

  

 

                   
  

  

                   
  

  

                                

We can presume the incompressibility of flow field in both of two layers, namely, 

                               , and                                    .  Define 

       .The component equations of the momentum conservation result in, 
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If we only consider the case with 2D sediment transport, they are reduced to, 
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CHAPTER 5 Numerical Solution of Governing Equation 

 

5.0 Discretization of Governing Equation 

At first, we require to transfer the conservation equations into the dimensionless 

formation represented as follows. 

Define the characterized dimensionless parameters, 

   
 

 
    

 

  
   

  
  

 
 

   
 

 
    

 

       
    

 

 
 

   
  

   

        
    

 

         
 

where    is the equilibrium time of scour. The other dimensionless parameters are the 

same as the definitions employed in the next section 5.2. 

The continuity equation: 

 
 

   
                 

                

 
              

              
       

   
            

 
   

 

   
    

   
 

   
                                                                

The momentum equation for X component: 
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The momentum equation for Z component: 

              
    

   
      

                
     

   
 

  
    

           
    

 

   

   
 

   
     

    

           

   
 

   
 

         
         

  

  
   

 

  
  

                                                                 

where  

   
 

        
 
 

   
         

  
    

  
         

  

 

    

    
  

       
    

We employ the first-order forward difference method to discretize conservation 

equations as follows, 
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Continuity Equation: 

  
 
         

        
         

   
      

 
               

  
   

    
       

          
          

   
   
        

  

          

 
    

     
    

   
    

 
   

    
     

        
        

   
 
      

  

        

 
    

   
    

 
       

 
       

      
  

     
   

    
 
                                                                               

   
   

       
   

  
   

    
      

     
     

     
   

   
   

 
      

           

Momentum Equation for X component: 
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Momentum Equation for Z component: 

We can obtain the approximate relationship according to the continuity in the packed 

layer, 

     
   

   
                                                                                         

Accordingly, the Z component of momentum equation is discretized as, 
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5.1 Two Dimensional Solution  

Now we simplify the mass balance and momentum equation for calculating the 

maximum scour depth. When the scour process approaches the equilibrium status the 

variables in the flow field will be independent on the change of time, therefore, the 

mass conservation equation can be rewritten as, 

   

 
        

             
      
                                           

  

or 

 
          

                              
                                         

In which    is the volume sediment transport rate unit width in the bed load layer, and  

      ,    the horizontally averaged velocity and cross section, respectively, over the 

packed layer. Also,    and    are respectively the local averaged x- and z-components 

over the packed layer.  

For momentum equations, all the time change rate of variables equals to zero, and 

since            ,  
    

  
  . If we define the bottom of control volume as 

       , the parameter of     limited to zero at the location of maximum scour 

depth with the coming of equilibrium status. Hence, the momentum equations can be 

simplified as, 
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The x component of acceleration in the steady flow field equals to zero, which means  

    
  

  
  

  

  

      

   

  
  

  

  

                                 

Since 

    
  

  
 

  

  
                                                           

and assume it is a single valued function of x variable. Also, as we know,         

which results in the following deduction on a bed with slope. 

   
    

  
  

 
  

  

  

    
    

  
  

 

  

  
  

  

  

         
        

                            

                                   

                                                                                                         

    
  

  
  

 
  

  

  

     
  

  
  

 

  

  
  

  

  

                                                                              

    
  

  
  

 
  

  

  

                                                                                       

We also can attain the horizontal shear stress on the surface of bed load layer, 
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where H is the averaged water depth. 

If we assume the additional shear stress which has the following form, 

                  
                                                        

Here,     are different constant, respectively. 

We obtain the following form of simplification for momentum equations. 

 
 
 

 
 

                                                  

                           
      

                                                  

                                        

                

Define 

                    

                  

Combining the two equations in Eq.5.19 results in, 

                                     

                             

or 

   
      

                
                   

  

       
    

                          

which has the dimensionless formation as follows, 
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Define the coefficients for simplifying the formula above, 

   
     

              
 

   
  

   
 

   
          

  
   

Thus, we obtain the scour profile model in the steady state represented by, 
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where  

   
 

 
 

   
 

       
 

   
 

 
 

   
  

   

        
 

Estimate of Parameter M 

To confirm the value of M must depend on the calculation of the mean upward 

velocity of flow,   ,in the bed load layer. We assume that the trajectory of particles 

has a similarly parabolic track. In this analysis, the transport rate of sediment    is 

defined as the product of the particle‘s velocity    , the thickness of bed load layer   

or saltation height and the volume concentration of particles  , namely,        . 

Referring to the experiments‘ results of Fernandez Luque and van Beek (FLvB), 

Parker (2002) manipulated the expression for the sediment particle‘s velocity for 

convenience, and hence, the dimensionless mean streamwise velocity of particles     , 

sediment bed load   
  and saltation length     are expressed as, respectively, 

  
             

                                                         

                 
                                                  

    
   

 
                                                                    



141 

where     is the Shields number at no bed load layer.    is the critical Shields number 

for an arbitrary streamwise slope. The dimensionless mean saltation length     equals 

16 determined by FLvB‘s experiments. The dimensionless parameters,   
 ,    ,    and 

     are defined as follows, 

  
  

  

         
 

    
  

        
 

   
 

        
 

    
  

        
 

and the critical Shields number can be calculated by the following formula, 

               
    

  
                                           

where      denotes the critical Shields number in the horizontal bed,    the static 

coefficient of friction. Also, Fernandez and van developed formula for calculating 

   ,     with a arbitrary slope, however, which is inconvenient to apply specific case 

because of complexity. Hence, Simona and Luca fitted these bed load transport 

equations developed by Fernandez and van beek to apply them conveniently, which 

are expressed as, 
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Table 5.1 Coefficients         of   ,   ,   ,    
,    

 and    
. 

ap bp cp dp ep fp gp 

8677.849 -2521.125 -6.420916 

-

289785.4 228.1153 

-

79.52039 9543.719 

hp ip jp kp lp mp np 

1068.214 7.940476 -21673.80 827.6981 21.32117 3.180555 8.884528 

avp bvp cvp dvp evp fvp gvp 

-46136.64 4.736102 -5.314831 856798.2 

-

53.598537 60.04791 187614.77 

hvp ivp jvp 

    44260.106 27469.067 721.99853 

    For our case without the transverse slope, these coefficents are rewritten as, 
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Simona and Luca‘s fitting curves for   
  and     without the traverse slope are shown 

in Fig.5.1 and Fig.5.2 where the bed load of sediment and velocity of particle increase 

with the increment of bed shear stress and slope, respectively. The identical 

comparison of Simona and Luca‘s fitting curves with FLvB‘s empirical formula, as 

shows in Fig.5.3 and Fig.5.4, denotes that we can use this fitting expression for our 

convenient computation.  

 

Figure 5.1 Simona and Luca‘s fitting formula for   
  without the traverse slope. 
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Figure 5.2 Simona and Luca‘s fitting formula for     without the traverse slope. 

 

 

Figure 5.3 Simona‘s fitting curve verse FLvB‘s empirical formula for horizontal bed. 
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Figure 5.4 Simona‘s fitting curves verse FLvB‘s empirical formula for horizontal bed. 

 

The forces acting on a saltating particle, including its submerged weight, lift force and 

drag force, control the motion of particle and verify the equation of motion. 

Fernandez Luque performed a series of experiments with four different bed materials: 

sand, gravel, magnetite and walnut grains to measure the particles‘ trajectories. The 

average dimensionless distance of saltation along a horizontal bed is measured as 

      . In this dissertation, we assume that the particle along the bed has a 

parabolic trajectory along which the average saltation distance in the horizontal 

direction equals to the value measured by Fernandez Luque. 

We assume the particle has its trajectory traces, as shown in Fig.5.5 ,  on an angular 

bed with the expression as, 
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Figure 5.5 Trajectory traces of particle within the bed load layer. 

 

The derivative expression is written as, 

  

  
  

   

  
   

 

 
                                        

where         refers to the particle‘s coordinate in the global system. The coordinate 

        of the tangent point can be calculated   

   
  

 

   
     

  

 
                                                          

    
  

 

    
                                                          

Based on the geometrical relationship as shown in Fig.5.5, we obtain the expression 

of    
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Since the accuracy of computation reduces with the increase of bed slope, we limit the 

range of slope with the same as Simona and Luca‘s. Thus, the thickness of bed load is 

represented by 

 
 

            
  

 

    
        

  

 
                        

             
  

 

    
        

  

 
                               

         

which has a dimensionless formation written as, 
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Note the situation for             cannot be included due to the limitation of 

Simona and Luca‘s formula. 

We limit the possible range of   to obtain a reasonable accuracy based on the 

deduction of   . Actually, it is seldom for river erosion to form the scour profile 

larger than     in the normal scouring from shear stress. 

The upward mean velocity and the displacement at the top-most position can be 

respectively denoted by, 
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The graphic Fig.5.6 shows the dependent correlation of thickness of bed load layer 

with the slope and the dimensionless ratio 
  

    
 for a small slope. It illustrates that 

when     
  

    
    , the dimensionless thickness of bed load layer    decreases as 

the slope of bed increase for a given 
  

    
, however, when 

  

    
    , it decreases with 

the slope‘s increase. For a given slope,    decrease as the dimensionless ratio of shear 

stress 
  

    
 increases. In addition, there is a little alteration of bed load thickness for a 

 

Figure 5.6 Thickness of bed load layer verse the bed slope. 
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given dimensionless ratio of shear stress with the range    
  

    
  . Including the 

low and high slope of bed, the 3D graphic is shown in Fig.5.7. Fig.5.7 provides a 

specific correlation map among bed load thickness, shear stress ratio and bed slope; 

given two of them can verify the third variable. It shows that the bed load thickness 

increases as the bed slope‘s increment for a given ratio of shear stress. We can explain 

this trend in this way that the larger slope causes particles less stable and more 

vertically trajectory displacement if the bed shear stress keeps consistent. Likewise, 

given a bed slope, the bed load thickness decreases as the shear stress increases 

because more bed shear stress cause the increment of particles‘ velocity resulting in 

the deduction of the vertically trajectory displacement or bed load thickness. 

 

Figure 5.7 Thickness of bed load layer verse the bed slope and shear stress ratio. 
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Furthermore, we represent the parameter of M as, 

                    

                                              

Substituting the coefficients a and b into the formula above, its dimensionless 

formation can be expressed as, 

    
 

       
 

 
        

   
  

  
           

    

 

            
   

    

 
        

   
  

  
         

   

 

   
  

    

  
        

   
 

         

   

 

   
   

    

     
                                                                                                                                 

where  

    
    

 
                                    

   
        

   
 

         

   

 

   
 

    is numerically solved  and plotted in Fig.5.8. It demonstrates that the vertically 

dimensionless pressure gradient reduces as the bed slope‘s increment for a given low 

ratio of shear stress since the larger slope causes the increase of particles‘ mean 
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velocity     that reduces the vertically trajectory distance    and the vertical velocity 

component of particle    . If given a bed slope, it decreases as the shear stress 

increases because the more bed shear stress cause the increment of particles‘ velocity 

resulting in the deduction of   . 

 

Figure 5.8 Vertically dimensionless pressure gradient in the bed load layer. 

 

Estimate of the addition shear stress     

The conservation equation results in the acquisition of mean streamwise flow velocity 

in the packed layer, 
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where m is determined by the inlet boundary condition on which we neglect any 

loading in the bed load and packed layer, in our case, namely, 

                                                        

In which     is the sediment bed load and      the mean streamwise velocity in the bed 

load layer at the flow boundary, confirmed by the logarithmic law of wall, 

   

  
 

 

 
    

 

  
                                                          

where     is the locally mean velocity at the location of   ,the normal distance from 

bed surface in the bed load layer;      , is von karman constant; when the particle 

Reynolds number     
    

 
     for a rough turbulent wall flow,     ;    the 

shear velocity,        ; and    the bed roughness,     . We choose        

as the position of average velocity over the bed load layer. 

Therefore,  

                  
  

                    
                             

    
 

 

                           

The dimensionless form above is denoted by, 
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We define the coefficients depending on      as, 

                                 
 

     
              

   
                  

  
 

           

  

 

     
              

Thus, the normal stress is expressed as, 

   
         

       
     

  

  
 

 
       

  
 

     
   

 

             

The additional stress or pressure due to the longitudinal slope is expressed as, 

        
                                                                

which is plotted in Fig.5.9 as follows, 
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Figure 5.9 Additional stress verse shear stress ratio and bed slope. 

The negative value for      demonstrate that the longitudinal slope causes an 

additional pressure pointed to upstream which results in a back flow obviously 

coming up with a large slope, a small ratio of normal stress reduces the degree of a 

back flow  in the meanwhile. 

We have to depend on the numerical method to acquire the solution of Eq.5.22 

because of the complex couple between   
  and    . Eq.5.22 can be iteratively solved 

if only   ,   ,   ,   ,    ,    
   and   are specified. 

The constant coefficients   ,    are relatively easy to be calculate because we know 

the specific ratio of water and sediment        , for our case, the porosity of packed 

bed layer,       .  
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The factor    is calculated by, 

   
          

  
                                            

The mean volume concentration of bed load layer   can be obtained as follows, 

  
  

 

     
                                                                                  

The experiment‘s results of Luque and Beek also show the average dimensionless 

saltation length     equals 16.  

                  
 

   
                                                          

Combining Eq.5.49, Eq.5.67 and Eq.5.68 obtains the value of   .  Since    
  is a 

function of scour depth   
 , it must be solved iteratively. 

The situation for an arbitrary slope described in Eq.5.22 is shown in Fig.5.10, which 

illustrates the scour depth decreases as the bed shear stress become high for a large 

bed slope and increases with the bed slope‘s increment. 
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Figure 5.10 Bed load surface profile 
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CHAPTER 6 Conclusions and Future Work 

6.0 Summary of Findings 

The research topics on sediment transport have been developed in the last decades. 

The accurate models, however, no matter what they were conducted by Eistein, 

Balgnold, Yalin, etc, are not found yet due to the complex flow condition and 

sediment properties with different parameters. The other path followed by researchers 

is to use numerical approaches to model the process of erosion, however, it is 

impossible to apply the same numerical model to all cases we are interested in. 

Successful prediction to the localized pressure scour requires not only the traditionally 

laboratory experiments but also the supercomputing technology performing the 

numerical simulations beyond the reach of the physical modeling. Numerical models 

in contrast with physical models have more flexibility and avoid the limitation from 

physical scale. One successful numerical model can provide economic benefits and be 

applied to the physical cases with the environmental conditions that cannot be carried 

out in the laboratory conditions. 

In this dissertation, two aspects are discussed and developed from numerical 

simulation and theoretical derivation. The four conclusions are summarized as 

follows, 

First of all, in the numerical simulation, we found that the sediment transport model in 

FLOW3D is sensitive to the vertical cell size on the sediment interface. The cell size 

should is larger than the sediment diameter, 2 mm, in numerical calculation, however, 

the situation based on our analysis is that the vertical cell size should not exceed the 

dimension of sediment diameter of 2 mm in our case. Within the vertical cell size of 
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1.4 mm the sediment scour is not obviously dependent on the cell size. When the 

vertical cell size on the sediment interface is too large, for example, if it is 3 mm, the 

sediment transport underneath the bridge deck will not reflect the influence of 

pressure flow condition and no scour hole forms there. The qualitative analysis to the 

vortex distribution, x-velocity profile and the contour of scour profile the scour model 

of sediment is reasonable. The important limitation of FLOW3D is time-cost in 

simulation. The results of 12 min simulation cost the computational time of 40 days, 

which results in that we cannot get the equilibrium status to compare with physical 

experiments within reasonable periods. 

Secondly, the morphing approach in STARCCM+ is successfully and indirectly 

applied to the scouring profile. This approach is a kind of indirect application because 

no any sediment transport model is employed in STARCCM+ to compute the 

governing equation. The morphing principal is based on two empirical formulas 

developed by Guo using experimental data from TFHWA.  Through the numerical 

simulation is the relationship between the recession rate of bed and maximum bed 

shear stress developed as the morphing function or pick-up function. The approach is 

limited by two factors although numerically relates the sediment load rate to the 

maximum bed shear stress. One of them comes from the empirical formulas that are 

not capable of reflecting the deposition of sediment which results in the inaccurate 

bed shear stress distribution. The other one is produced by the roughness function in 

STARCCM+ which overestimates the magnitude of bed shear stress. The function of 

recession rate can be improved in future work by reducing the negative influence 

from these two factors. 
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Thirdly, the pressure drop when fluid flows over the bed load layer consists of an 

important component of force to drive sediment particles. The modified pressure drop 

equation is derived by adopting the energy equation to apply for fluidized bed surface. 

It compares well with several groups of experimental data from Gupte, Kyan and 

Dudgeon. Furthermore, a standard parabolic form is assumed as the quadratic 

trajectory of particle to calculate the thickness of the bed load layer. This assumption 

avoids solving complicated equations of motion for particles but it is an effective 

approximation for the track of particles. 

Finally, the derivation of equations for two-layer model is developed by coupling the 

bed load layer and packed sediment layer to predict the erosion process. We found 

that the entrainment rate of sediment particles is also dependent on the changing rate 

of bed load layer thickness and mixture density from the continuity equation 

compared to Exner equation. Also, from the two dimensional computation, the 

dimensionless thickness of bed load layer    decreases as the slope of bed increase for 

a given small 
  

    
, and the trend is reverse for a given large one. For a given slope,    

decrease as the dimensionless ratio of shear stress 
  

    
 increases. The additional stress 

or pressure due to the longitudinal slope is contributed to the momentum equation and 

it is a negative value for a large slope. This influence for a small slope, however, is 

not significant.   

6.1 Future Work 

In General, several different causes may result in the discrepancies between sediment 

transport model predictions and physical measurements, such as the 

oversimplification of the problem (1D versus 2D or 2D versus 3D), the incorrect input 
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data, lack of appropriate data for calibration, the limitations of the sediment transport 

equations, and computational errors from the numerical schemes. For example, the 

recession rate of sediment transport is difficult to accurately be measured in the 

process of scour because the recession rate is the division of sediment mass flowing 

out of bed by scour time in our measurement and the collection for sediment mass 

cannot be accurately measured. Further, in our experiments, the recession rate can 

only be measured on the flat bed due to the limitation of flume, which results in some 

error when applying it to the bed with slope. Therefore, the sufficiently accurate data 

will be required to improve in future work so that they are effectively adopted in the 

calibration of numerical model. 

On the other hand, morphing approach in STARCCM+ is based on Guo‘s empirical 

formula of scour profile without the consideration of deposition of particles. 

Therefore, the downstream profile under a bridge cannot explain the deposition or 

pile-up of sediment particles compared to experiments measurements. The 

corresponding morphing bed downstream under a bridge deck in the simulation in 

STARCCM+ is not able to fit the experimental data very well, which may results in 

the inaccurate distribution of bed shear stress. 

Hence, the future work to improve the numerical simulation for scouring will focus on 

the following aspects, 

a) Experimental measurement for the shear stress distribution on the bed in the 

process of scour 

The shear stress distribution on the bed in different stages of scour is significant to 

research on the bed morphing. However, the current facilities of experimentation 
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limits the measurements for the bed shear stress, and hence, we cannot compare the 

numerical results without them. The measurement for the shear stress distribution on 

the entire bed is a challenging topic in hydraulics.  

b) Deposition of sediment particles on the upfront under a bridge deck 

The scour profile on the river bed has a significant influence on the distribution of 

shear stress. If the deposition of sediment particles are not considered when 

developing a function of scour profile, the distribution of shear stress may not satisfy 

the equilibrium condition of scour. The derivation of scour profile based on the 

recession rate is necessary to be improved. 

c) Entrainment rate of sediment particles transport and pick-up function 

The entrainment rate for a flat sediment bed without any hydraulic structure can be 

approximated to be a constant in a given flow condition. Most of experiments for 

measuring the entrainment rate of particles are for the flat bed in open channel flow, 

and the rate is a time-averaged value.  However, the entrainment rate of particles in a 

pressure flow is a time-dependent variable because the recession rate of bed becomes 

lower with a coming equilibrium status. Unfortunately,  the time-dependent 

entrainment rate for a pressure flow condition is not measured by precious researchers. 

What we adopt in our research is based on an average value of entrainment rate. 

Similarly, the traditional pick-up functions of sediment particles in hydraulics are 

time-averaged values which are functions of difference between a local bed shear 

stress and a critical shear stress. Thus, it is not accurate to apply them to every status 

of scour. The time-dependent entrainment rate and pick-up function in a pressure flow 

condition may be experimentally researched in the future work. 
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d) Application of the two layer theoretical model to the scouring process 

In this dissertation, the two layer model in the bed load and packed layer consists of 

continuity equation and momentum equation. The continuity equation can be 

manipulated and incorporated into STARCCM+ to improve the simulation in the 

future research. 

To sum up, future research should focus on the cross-cutting issues resulting from the 

limitations of sediment transport models. The models should be capable of handling 

the simulation for different spatial and temporal scales, bed evolution and sediment 

exchange between the bed and fluid by developing an effective approach of 

reconciliation. The morphing mesh approach can be improved by incorporating 

updated model of sediment transport to obtain better shear stress distribution, and the 

two layer model needs to be further developed and improved. 
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LIST OF SYMBOLS 

    =  the gravel bed load 

    =   the specific weight of sediment 

    =   the gravitational acceleration 

    =   the sediment diameter on the bed surface 

     =   the dimensionless wall shear stress or Shields parameter 

     =   the suspension efficiency 

    =   the bed load transport efficiency 

    =   the mean transport velocity of suspended grains 

   =   the fall velocity of suspended grains 

    =   the total flow power per unit boundary area 

    =   the dynamic friction angle 

    =   variable depending on the excess shear stress 

     =    the median sediment diameter on the bed surface. 

  
   =   the rate of bed load transport 

     =   the average particle velocity 

     =   the entrainment rate  
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     =  the average length of individual steps of saltating bed load particles 

    =  the hydraulic radius 

     =  the critical Shields number. 

     =  the critical Shields stress on a horizontal slope 

    =  the bed slope angle 

    =  a static coefficient of friction between particles and bed surface. 

    =  the transverse slope angle 

     =  the equilibrium depth of scour 

    =  the upstream water depth 

    =  the bridge opening between the bridge low chord and the bed prior to scour 

    =  the flow mean velocity through the bridge opening.  

     =  the critical velocity of incipient sediment 

    =  the specific gravity of sediment 

    =  the water depth before scour 

     =  the maximum scour depth 

    =  the bridge opening prior to scour 

     =  the approaching velocity upstream 

    =   overtopping depth of bridge deck  
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     =  the average density on the packed sediment bed  

     =  the local density of liquid 

    =  the sediment particles 

    =  the shear stress due to the fluid viscosity 

    =  the drag coefficient among particles 

     =  the  solid fraction of the sediment 

      =  the cohesive solid fraction over which the interaction among particles occurs  

      =  the critical solid fraction over which the fluid flow ceases  

       = the drifting velocity of particles 

      =  the lifting velocity of particles 

    =  the mean sediment diameter 

     =  the liquid viscosity 

     =  the molecular viscosity of the liquid 

     =  the liquid fraction 

   =  a factor of probability of a particle‘s lifting from the packed sediment 

surface 

    =  the normal vector to the bed surface 

      =  the critical shear stress  



166 

      =  the critical Shields Number 

      =  the critical shear stress on the packed sediment bed with a slope 

     
  =  the critical shear stress with a horizontal bed 

    =  the actual angle between the normal vector of the bed interface and the 

gravity vector 

    =  the angle of repose 

    =  the local velocity of advection 

    =  the local concentration of the suspended sediment 

    =  the diffusion coefficient 

    =  the hydraulic diameter 

    =  the effective roughness for 2 mm sediment diameter  

    =  the Reynolds number 

      = the relative effective roughness  

     =  the friction factor  

    =  the bed elevation relative to a given datum 

    =  the evolving time 

    =  a constant coefficient 

    =  the average flow velocity 
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    =  the downward distance along the sedimentary bed 

           = the surface function for the top surface of bed load layer 

           = the surface function for the bottom interface of bed load layer 

    =  the particle parameter related to diameter 

     =  the median particle diameter of the bed material 

    =  the specific gravity 

    =  the kinematic viscosity coefficient 

    =  the particle mobility parameter 

    =  the overall time-averaged bed shear stress 

    =  the overall bed shear velocity equal to      . 

    =  the excess bed shear stress parameter  

      =  the critical time averaged bed shear stress 

     =  the suspension parameter,  

    =  the particle fall velocity in clear water 

    =  the ratio of sediment and fluid mixing coefficient 

    =  von Karman constant. 

    =  the sediment transport rate  

    =  the volumetric total sediment transport rate  



168 

    =  the volumetric sediment transport rate in the bed load layer 

    =  the fraction of susceptible particles to move exposed to flow per unit area 

    =  the number of particles at rest on the bed surface per unit area 

    =  the shape constant of particles  

     =  the number of pick-ups for each particle per unit time. 

    =  the pick-up rate of particles in mass per unit area and time 

     =  the probability of the lift force acting on the particle with exceeding the 

immersed weight of particle 

    =  a coefficient verified by experiments 

    =  a coefficient determined as 0.0199 

    =  the particle mobility parameter or Shields number 

      =  the critical value of particle mobility parameter or Shields parameter.  

    =  a constant coefficient 

    =  the pick-up probability 

    =  the fluid density 

    =  the porosity  

    =  the superficial velocity from fluid flow 

    =  the bed height altering with flow velocity 
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    =  the total stored energy per unit mass fluid 

     =  the internal energy per unit mass 

    
  =  the addition of the net time rate of energy by heat transfer into system  

    
  =  the net time rate of energy by work transfer into the system 

  ,   ,    and    = the constants in the logrithmic formulas 

    =  the minimum fluidization velocity,  

    =  the minimum fluidization porosity 

    =  the pressure drop between the top and the bottom of the bed 

    =  the fluid density 

    =  a packed bed porosity 

    =  a mean diameter of particles 

    =  the coefficient of dynamic viscosity 

    =  the minimum fluidized velocity 

    =  the original thickness of bed 

     =  the expanding thickness on the basis of   

              = the dimensionless parameters in Eq.4.38 

    = the average density in the bed load layer 

   = the average density in the packed layer 
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   = the outward unit normal of perimeter surface 

   = the projected area to x-y plane 

                      = the function of transport. 

                = the surface equation on the top surface of bed load layer 

                = the surface equation on the bottom of bed load layer 

            = the unit normal on the surface of                           

                = the partial derivative of    along x and y 

                = the partial derivative of    along x and y 

                      = the local velocity of moving top surface and interface, respectively 

                      = the local velocity of flow in the control volume 

               = the components of the local velocity of flow in the bed load and 

packed layer 

               = the components of the local velocity of flow in the bed load and 

packed layer 

                   = the arch length along the projected area to x-y plane 

   =  the total mean mass load  

   =  the function of the bottom surface in the packed layer 

     =  the function of transport on the bottom surface 
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    =  the transport load in the packed layer corresponding to the bed load layer 

    =  the mass bed load of sediment per unit width 

    =  the mass transport rate of flow per unit width 

   =  the body force per unit mass 

  
       =  the surface force acted on the boundary of control volume 

    =  the unit normal of the bottom surface 

    =  the projected area of control volume on x-y plane in the bed load layer 

     =  the laterally outward unit normal 

    =  the surface area for the control volume in the bed load layer  

    =  the thickness of the bed load 

  ,    = the mean gravitational acceleration in the bed load layer and packed layer 

        = the additionally normal stress downstream caused by the alternative 

streamwise slope 

        
                

     = the dimensionless parameter for those responding 

physical value 

    =  the equilibrium time of scour 

    =  the stress tensor 

   =    
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    =    
 

  
 

 

  
  

        =  the horizontally averaged velocity over the packed layer 

   =  the cross section over the packed layer 

    =  the local averaged x component over the packed layer 

     =  the local averaged z components over the packed layer 

    =  the particle‘s velocity  

    =  the thickness of bed load layer or saltation height  

    =  the volume concentration of particles 

     =  the dimensionless mean streamwise velocity of particles  

  
   =  the dimensionless sediment bed load  

     =  the dimensionless saltation length   

     =  the critical Shields number in the horizontal bed 

    =  the static coefficient of friction 

     =  the locally mean velocity at certain location away from bed 

    =  the particle Reynolds number for a rough turbulent wall flow 

    =  the shear velocity,         

    =  the bed roughness,      
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     =  the additional stress or pressure due to the longitudinal slope  

  
 ,   ,   ,   ,   ,    ,    

 ,     =  the dimensionless parameters corresponding to the 

ones without star signs 
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APPENDIX A 

% Comparison of dimensionless parameters among experimental data from table 4.2, 

% Ergun and modified Ergun equation 

% Constant Parameters Definiation 

Phi_mf = 0.32; Rou_p = 2600; Rou_f = 1.2; s = Rou_p./Rou_f; 

D = 0.000287; g = 9.81; Phi = 0.303; x0 = 0.03; mu = 1.82e-5; 

 data_import = importdata('pE.txt'); % pE.txt is the data file 

% Extract Data 

x_or = data_import(:,1); y_or = data_import(:,2); 

x1 = x_or(1:6,1);y1 = y_or(1:6); 

 A = 150.*mu.*(1 - Phi).^2./Phi.^3./D.^2; 

B = 1.75.*Rou_f.*(1-Phi)./Phi.^3./D; 

x = linspace(0,0.05,20); 

B1 = 2; % B1 is    

y_star = A.*x./(1 + (x./x0).^B1).^(1./B1); 

Ergun = B.*x.^2 + A.*x; 

  

yy = - y_star.*D.*Phi.^3./(Rou_f.^3.*(1-Phi)); xx = Rou_f.*D.*x./mu./(1-Phi); 
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yy1 = - y1.*D.*Phi.^3./(Rou_f.^3.*(1-Phi)); xx1 = Rou_f.*D.*x1./mu./(1-Phi); 

Ergun1 = - Ergun.*D.*Phi.^3./(Rou_f.^3.*(1-Phi)); 

loglog(xx,yy);grid on; 

xlabel('\it$$Re_{p} /(1-\phi)$$','interpreter','latex','FontName','cambria math') 

ylabel('\it$$-grad(p)d\phi^{3}/[\rhoV^{2}(1-

\phi)]$$','interpreter','latex','FontName','cambria math') 

hold on; loglog(xx1,yy1,'ok'); 

hold on; loglog(xx,Ergun1,'-.r'); 

legend('Motified Ergun Equation','Experimental Data','Ergun Equation'); 

% Comparison among Dudgeon‘s data, Ergun and modified Ergun equation 

% Constant Parameters Definiation 

Phi_mf = 0.5;Rou_p = 2600; Rou_f = 1.2;s = Rou_p./Rou_f; 

D = 0.53e-3; g = 9.81;Phi = 0.38; mu = 1.82e-5; y_observed = 10; 

data_import = importdata('dudgeon.txt'); % dudgeon.txt is the data file 

% Extract Data 

x_or = data_import(:,1);y_or = data_import(:,2); 

x1 = x_or(1:16,1);x2 = x_or(17:35,1);x3 = x_or(36:48,1);x4 = x_or(49:60,1); 

x5 = x_or(61:68,1); 
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y1 = y_or(1:16);y2 = y_or(17:35);y3 = y_or(36:48);y4 = y_or(49:60); 

y5 = y_or(61:68); 

 A = (1 - Phi_mf).*(s - 1).*Phi.^3.*Rou_f.^2.*D.^3.*g./(1 - Phi).^3./mu.^2; 

x0 = (1 - Phi_mf).*(s - 1).*Phi.^3.*Rou_f.^2.*D.^3.*g./(1 - Phi).^3./mu.^2./150; 

x = logspace(-6,3); B1 = log(2)./log(150./x0./y_observed); 

y_star = 150./(x.*(1 + (x./x0).^B1).^(1./B1)); 

Ergun = 150./x + 1.75; 

loglog(x,y_star); grid on; grid minor; 

xlabel('\it$$Re_{p} /(1-\phi)$$','interpreter','latex','FontName','cambria math') 

ylabel('\it$$-grad(p)d\phi^{3}/[\rhoV^{2}(1-

\phi)]$$','interpreter','latex','FontName','cambria math') 

hold on; 

loglog(x1,y1,'ok',x2,y2,'+k',x3,y3,'dk',x4,y4,'*k',x5,y5,'^k'); 

hold on; loglog(x,Ergun,'-.r'); 

legend('Motified Ergun Equation','Marble 2','Sand 4',... 

'Sand 6','Sand 12','Sand 13','Ergun Equation'); 

  

% Comparison among Gupte‘s data, Ergun and modified Ergun equation  
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% Constant Parameters Definiation 

Phi_mf = 0.55;Rou_p = 2300; Rou_f = 1.2;s = Rou_p./Rou_f; 

D = 0.77e-3; g = 9.81;Phi = 0.336; mu = 1.82e-5;y_observed = 9.6; 

data_import = importdata('data.dat'); % data.dat is the data file 

% Extract Data 

x_or = data_import(:,1);y_or = data_import(:,2); 

x1 = x_or(1:13,1);x2 = x_or(14:27,1);x3 = x_or(28:41,1);x4 = x_or(42:55,1); 

x5 = x_or(56:70,1);x6 = x_or(71:84,1);x7 = x_or(85:103,1);x8 = x_or(104:122,1); 

y1 = y_or(1:13);y2 = y_or(14:27);y3 = y_or(28:41);y4 = y_or(42:55); 

y5 = y_or(56:70);y6 = y_or(71:84);y7 = y_or(85:103);y8 = y_or(104:122); 

 A = (1 - Phi_mf).*(s - 1).*Phi.^3.*Rou_f.^2.*D.^3.*g./(1 - Phi).^3./mu.^2; 

x0 = (1 - Phi_mf).*(s - 1).*Phi.^3.*Rou_f.^2.*D.^3.*g./(1 - Phi).^3./mu.^2./150; 

x = logspace(-3,3); 

B1 = log(2)./log(150./x0./y_observed); 

y_star = 150./(x.*(1 + (x./x0).^B1).^(1./B1)); 

Ergun = 150./x + 1.75; loglog(x,y_star); 

grid on; grid minor; 

xlabel('\it$$Re_{p} /(1-\phi)$$','interpreter','latex','FontName','cambria math') 



190 

ylabel('\it$$-grad(p)d\phi^{3}/[\rhoV^{2}(1-

\phi)]$$','interpreter','latex','FontName','cambria math') 

hold on; 

loglog(x1,y1,'ok',x2,y2,'+k',x3,y3,'^k',x4,y4,'*k',x5,y5,'Xk',x6,y6,'sk',x7,y7,'dk',x8,y8,'

pk'); 

hold on; loglog(x,Ergun,'-.r'); 

legend('Matified Ergun Equation','Material 8','Material 7','Material 6',... 

'Material 5','Material 4','Material 3','Material 2','Material 1','Ergun Equation'); 

% Comparison among Kyan‘s data, Ergun and modified Ergun equation 

% Constant Parameters Definiation 

Phi_mf = 0.9;Rou_p = 2300; Rou_f = 1.2;s = Rou_p./Rou_f; 

D = 0.23e-3; g = 9.81;Phi = 0.8; mu = 1.82e-5; y_observed = 3.3; 

data_import = importdata('kayan.txt'); % kayan.txt is the data file 

% Extract Data 

x_or = data_import(:,1);y_or = data_import(:,2); 

x1 = x_or(1:5,1);x2 = x_or(6:10,1);x3 = x_or(11:18,1);x4 = x_or(19:26,1); 

x5 = x_or(27:36,1);x6 = x_or(37:46,1);x7 = x_or(47:51,1); 

y1 = y_or(1:5);y2 = y_or(6:10);y3 = y_or(11:18);y4 = y_or(19:26); 

y5 = y_or(27:36);y6 = y_or(37:46);y7 = y_or(47:51); 
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 A = (1 - Phi_mf).*(s - 1).*Phi.^3.*Rou_f.^2.*D.^3.*g./(1 - Phi).^3./mu.^2; 

x0 = (1 - Phi_mf).*(s - 1).*Phi.^3.*Rou_f.^2.*D.^3.*g./(1 - Phi).^3./mu.^2./150; 

x = logspace(-3,3); B1 = log(2)./log(150./x0./y_observed); 

y_star = 150./(x.*(1 + (x./x0).^B1).^(1./B1)); 

Ergun = 150./x + 1.75; 

loglog(x,y_star); hold on; 

grid on; grid minor; 

xlabel('\it$$Re_{p} /(1-\phi)$$','interpreter','latex','FontName','cambria math') 

ylabel('\it$$-grad(p)d\phi^{3}/[\rhoV^{2}(1-

\phi)]$$','interpreter','latex','FontName','cambria math') 

hold on; 

loglog(x1,y1,'ok',x2,y2,'+k',x3,y3,'^k',x4,y4,'*k',x5,y5,'Xk',x6,y6,'sk',x7,y7,'dk'); 

hold on; loglog(x,Ergun,'-.r'); 

legend('Matified Ergun Equation','5 Nylon','4 Nylon','11 Dacron',... 

'3 Dacron','1 Glass','2 Glass','10 Glass','Ergun Equation'); 
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APPENDIX B 

% Arbitrary Angle's Slope for process of Scouring 

  %{ 

  Variables Description: 

  L, the domain length; h is the height at the right edge of block; 

  Delta_star, the mean dimensionless thickness of bed load layer; 

  Ls_star, the saltation length every step; 

  Alfa, the mean volume concentration of bed load layer; 

  Beta, the procity of packed layer; 

  qs_star, the dimensionless bed load; 

  Vp_star, the mean streamwise velocity of sediment on the bed; 

     %} 

 

% Configure the initial domain and boundary value 

h = 0.2; L = 6; D = 0.001; H = 0.25; g=9.81; Rou = 998.1; Mu =1.005e-3; 

s=2.65; Beta = 0.33; Repose_angle = 35.*pi./180; 

x0_star = 0; z0_star = h/D; Kapa=0.4; e=1; l=1; 

iteration = 100; 
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Tau_star = 2:0.5:6; R=30; Tau_star_co = 0.034; 

u_tau = sqrt(Tau_star.*Tau_star_co./Rou); 

 Gamma_degree = [0.001 0.1:0.5:20]; 

Gamma = Gamma_degree.*pi./180; 

[s_x,s_y] = size(Tau_star); 

[ss_x,ss_y] = size(Gamma); 

Phi_star = cell(1,size(Gamma,2)); 

 H_star = H./D; 

Ls_star = 16; 

 % Constants related to qs_star and vp_star 

    a_q=8677.849e-6;b_q=-2521.125e-6;d_q=-289785.4e-6;g_q=9543.719e-6; 

    h_q=1068.214e-6;j_q=21673.804e-6;k_q=827.69811e-6; 

    l_q=21.321179e-6;a_vp=-46136.64e-6;d_vp=856798.23e-6;g_vp=187614.77e-6; 

    h_vp=44260.106e-6; 

% Initialize storage space 

Storage_l = ones(ss_y,s_y); Storage_h = ones(ss_y,s_y);  

Storage_delta = ones(ss_y,s_y); Storage_qs_star = ones(ss_y,s_y);  

Storage_vp_star = ones(ss_y,s_y); Storage_Tau_ax_star = ones(ss_y,s_y); 
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 % Define cell storage space 

St_cell_l = cell(1,iteration+1); St_cell_h = cell(1,iteration+1); 

St_cell_m=cell(1,iteration+1);  

Delta_star = cell(1,ss_y); 

  for j = 1:ss_y 

  x_l = 1.*ones(ss_y,s_y); x_h = 700.*ones(ss_y,s_y); 

  St_cell_l(1,1) = {x_l(j,:)}; 

  St_cell_h(1,1) = {x_h(j,:)}; 

 qs_star = ((a_q + b_q.*log(Gamma_degree(j))) / (1 +    

d_q.*log(Gamma_degree(j)))).*(Tau_star).^2 ...      + (g_q +  

h_q.*Gamma_degree(j)).*(Tau_star) + j_q + k_q.*Gamma_degree(j) +  

l_q.*Gamma_degree(j).^2; 

Storage_qs_star(j,:) = qs_star;    

vp_star = a_vp.*(Tau_star).^2 + d_vp.*(Tau_star) + g_vp + h_vp.*Gamma_degree(j); 

Storage_vp_star(j,:) = vp_star; 

x = Ls_star.^2./8./s./(vp_star.^2) % x is delta prime 

Delta_star{1,j} = x + Ls_star.^2.*tan(Gamma(j)).^2./(16.*x) + 

Ls_star.*tan(Gamma(j))./2; 
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u_bar_a = u_tau.*log(R.*0.4.*(x + Ls_star.^2.*tan(Gamma(j)).^2./(16.*x) + 

Ls_star.*tan(Gamma(j))./2))./Kapa;  

u_star_a = u_bar_a./sqrt((s-1).*g.*D); 

e_star = e.*(1 + (s - 1).*qs_star./vp_star./(x + Ls_star.^2.*tan(Gamma(j)).^2./(16.*x) 

+  

Ls_star.*tan(Gamma(j))./2))./(1 + tan(Gamma(j)).^2); 

l_star = l.*(Beta + (1 - Beta).*s)./(1 + tan(Gamma(j)).^2)./(Beta.^2); 

Tau_ax_star = @(y) - e_star.*u_star_a.^2 + l_star.*(-s.*qs_star./(y -... 

     (x + Ls_star.^2.*tan(Gamma(j)).^2./(16.*x) + Ls_star.*tan(Gamma(j))./2)) + ... 

     (x + Ls_star.^2.*tan(Gamma(j)).^2./(16.*x) + Ls_star.*tan(Gamma(j))./2).*... 

     (1 - qs_star./vp_star./(x + Ls_star.^2.*tan(Gamma(j)).^2./(16.*x) + ... 

 Ls_star.*tan(Gamma(j))./2)).*(- u_bar_a)./(y - (x + 

Ls_star.^2.*tan(Gamma(j)).^2./(16.*x) +  

Ls_star.*tan(Gamma(j))./2))).^2; 

 a_star = a_star_f(s,Beta); b_star = a_star/(s-1); 

 a_add = a_star.*(tan(Gamma(j)).^2./(1 + tan(Gamma(j)).^2)); 

f_Phi = @(y)y - (- a_add.*3.5.*(1 - Beta).*(Ls_star.^2.*tan(Gamma(j)).^2./16 +  

Ls_star.*tan(Gamma(j)).*x./2 + x.^2)./(Beta.^3.*s) -...  (1./b_star - 1).*(x +  
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Ls_star.^2.*tan(Gamma(j)).^2./(16.*x) + Ls_star.*tan(Gamma(j))./2) + ...  (- a_add - 

(s –  

2)./b_star).*qs_star./vp_star + (... - a_add.*300.*(1 –  

Beta).^2.*(Ls_star.^2.*tan(Gamma(j)).^2./(16.*sqrt(x)) + ...            

 Ls_star.*tan(Gamma(j)).*sqrt(x)./2 + x.^1.5).*Mu./(Beta.^3.*s.*Rou.*D.*sqrt(2.*(1 - 

1....         

 /s).*g))) + (b_star.*H_star./(1 + tan(Gamma(j)).^2) + a_star.*Tau_ax_star(y)));    

for i=1:iteration 

     

   St_cell_m{1,i} = (St_cell_l{1,i} + St_cell_h{1,i})./2; 

   f_temp_l = f_Phi(St_cell_m{1,i}); 

   Storage_l(j,:) = f_temp_l; 

   f_temp_h = f_Phi(St_cell_h{1,i}); 

   Storage_h(j,:) = f_temp_h; 

   [row_l col_l] = find(Storage_l(j,:).*Storage_h(j,:) < 0); 

   [row_h col_h] = find(Storage_l(j,:).*Storage_h(j,:) >= 0); 

      if isempty(row_l) 

       s_row_col_h = size(row_h,2); 

       for k = 1:s_row_col_h 
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       x_h(j,col_h(k)) = St_cell_m{1,i}(1,col_h(k)); 

       end 

   elseif isempty(row_h) 

        s_row_col_l = size(row_l,2); 

       for k = 1:s_row_col_l 

       x_l(j,col_l(k)) = St_cell_m{1,i}(1,col_l(k)); 

       end 

        

   else 

        s_row_col_h = size(row_h,2); 

       for k = 1:s_row_col_h 

       x_h(j,col_h(k)) = St_cell_m{1,i}(1,col_h(k)); 

       end 

        s_row_col_l = size(row_l,2); 

       for k = 1:s_row_col_l 

       x_l(j,col_l(k)) = St_cell_m{1,i}(1,col_l(k)); 

       end 

     end         

   St_cell_l(1,i + 1) = {x_l(j,:)}; 
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   St_cell_h(1,i + 1) = {x_h(j,:)}; 

   [row col] = find((abs((St_cell_l{1,i + 1}-St_cell_h{1,i + 1})./(St_cell_l{1,1} - 

St_cell_h{1,1}))  

- 0.00001) > 0); 

    if isempty(row) 

  count = i;     

x_m_real = (Ls_star.^2.*tan(Gamma(j)).^2./(16.*St_cell_m{1,i}) + 

Ls_star.*tan(Gamma(j)) +     

St_cell_m{1,i}); 

  x_h_real = (Ls_star.^2.*tan(Gamma(j)).^2./(16.*x_h(j,:)) + Ls_star.*tan(Gamma(j)) 

+ x_h(j,:)); 

 Storage_delta(j,:) = (x_m_real+x_h_real)./2;% storage_delta store the matrix of Phi 

 Storage_Tau_ax_star(j,:) = Tau_ax_star(Storage_delta(j,:)).*tan(Gamma(j)); 

          break; 

   elseif i>=iteration 

       count=I; 

       sprintf('solution is not convergence') 

  end 

   end 
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end 

[X_Tau_star,Y_Gamma] = meshgrid(Tau_star,Gamma_degree); 

 Delta_test8 = test8(); 

figure(20); 

Phi_2 = Storage_delta - Delta_test8; 

surf(X_Tau_star,Y_Gamma,Phi_2); 

title('Scour Profile Dependent on $$\tau_{*}/\tau_{*co}$$ and 

$$\gamma$$','interpreter','latex'); grid on; 

xlabel('\it$$\tau_{*} /\tau_{*co}$$','interpreter','latex'); 

ylabel('\it$$\gamma$$','interpreter','latex'); 

zlabel('\it$$\varphi_{2}^{*}$$','interpreter','latex') 

figure(19); 

surf(X_Tau_star,Y_Gamma,Storage_delta);hold on; 

view(50,36); 

title('Bedload Surface Alternation Dependent on $$\tau_{*}/\tau_{*co}$$ and 

$$\gamma$$','interpreter','latex'); grid on; 

xlabel('\it$$\tau_{*} /\tau_{*co}$$','interpreter','latex'); 

ylabel('\it$$\gamma$$','interpreter','latex'); 

zlabel('\it$$\varphi_{1}^{*}$$','interpreter','latex') 
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figure(4); 

surf(X_Tau_star,Y_Gamma,Storage_qs_star); 

xlabel('\it$$\tau_{*} /\tau_{*co}$$','interpreter','latex'); 

ylabel('\it$$\gamma$$','interpreter','latex'); 

zlabel('\it$$q_{s}^{*}$$','interpreter','latex') 

figure(7) 

plot(Tau_star,Storage_qs_star(1,:),':k');grid on;hold on; 

ezplot(@(x)5.7.*(0.035).^1.5.*(x-1).^1.5,Tau_star); 

title('Dimensionless Bed load for Horizontal Bed');legend('Simona and Luca''s 

Formula','FLvB''s Experiments'); 

xlabel('\it$$\tau_{*} /\tau_{*co}$$','interpreter','latex'); 

ylabel('\it$$q_{s}^{*}$$','interpreter','latex') 

 figure(5); 

surf(X_Tau_star,Y_Gamma,Storage_vp_star); 

xlabel('\it$$\tau_{*} /\tau_{*co}$$','interpreter','latex'); 

ylabel('\it$$\gamma$$','interpreter','latex');zlabel('\it$$v_{*p}$$','interpreter','latex') 

figure(8) 

plot(Tau_star,Storage_vp_star(1,:),':k');grid on;hold on; 

ezplot(@(x)8.625.*(0.035).^0.5.*(x-1).^0.5,Tau_star); 
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title('Dimensionless Particle Velocity for Horizontal Bed');legend('Simona and Luca''s 

Formula','FLvB''s Experiments'); 

xlabel('\it$$\tau_{*} /\tau_{*co}$$','interpreter','latex'); 

ylabel('\it$$v_{*p}$$','interpreter','latex') 

 figure(6); 

surf(X_Tau_star,Y_Gamma,Storage_Tau_ax_star); 

xlabel('\it$$\tau_{*} /\tau_{*co}$$','interpreter','latex'); 

ylabel('\it$$\gamma$$','interpreter','latex'); 

zlabel('\it$$\tau_{add}$$','interpreter','latex') 

% Computing delta_star based on the Fernandez and Van's expression  

function Storage = test8() 

 format long 

h=0.2; D=0.001; 

Repose_angle = 35.*pi./180; 

 Tau_star = 2:0.5:6; 

Gamma_degree = [0.001 0.1:0.5:20]; 

Gamma = Gamma_degree.*pi./180; 

 [s_x,s_y] = size(Tau_star); 

[ss_x,ss_y] = size(Gamma); 
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s = 2.65; Beta = 0.33; g = 9.81; 

Rou = 998.1;Mu = 1.005e-3;L_s = 16; 

 a_q = 8677.849e-6; b_q = -2521.125e-6; d_q = -289785.4e-6; g_q = 9543.719e-6;  

h_q = 1068.214e-6; j_q = 21673.804e-6; k_q = 827.69811e-6; l_q = 21.321179e-6; 

a_vp = -46136.64e-6; d_vp = 856798.23e-6; g_vp = 187614.77e-6; 

h_vp=44260.106e-6; 

Storage = ones(ss_y,s_y); Diff = ones(ss_y,s_y); Storage_m_star = ones(ss_y,s_y); 

 for j = 1:ss_y 

 Tau_star_o = Tau_star./(cos(Gamma(j)).*(1-tan(Gamma(j))./tan(Repose_angle))); 

 Tau_star_ratio = meshgrid(Tau_star,1:ss_y); 

 qs_star = ((a_q + b_q.*log(Gamma_degree(j)))/(1 + 

d_q.*log(Gamma_degree(j)))).*(Tau_star_ratio).^2 ... 

+ (g_q + h_q.*Gamma_degree(j)).*(Tau_star_ratio) + j_q + 

k_q.*Gamma_degree(j)+l_q.*Gamma_degree(j).^2; 

vp_star = a_vp.*(Tau_star_ratio).^2 + d_vp.*(Tau_star_ratio) + g_vp + 

h_vp.*Gamma_degree(j); 

 Delta_star = L_s.^2./(8.*s.*vp_star.^2); 

Delta_star_real = L_s.^2.*tan(Gamma(j)).^2./(16.*Delta_star) + 

L_s.*tan(Gamma(j))./2 + Delta_star; 
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Delta_star_real(j,:); 

 w_bar = sqrt(2.*(1-1./s).*g.*Delta_star); 

RE_w = Rou.*D.*w_bar./Mu; 

c_star = 3.5.*(1 - Beta)./(Beta.^3.*s) + 300.*(1 - Beta).^2./(Beta.^3.*s.*RE_w); 

M_star = c_star.*Delta_star + qs_star./vp_star./Delta_star_real; 

 Storage_m_star(j,:) = M_star(j,:);Delta_star(j,:); 

Storage(j,:) = Delta_star_real(j,:); 

 Diff(j,:) = abs((Storage(j,:) - Storage(1,:))./Storage(1,:)); 

 end 

 figure(1); hold on; grid on; 

title('Dependent Correlation for Thickness of Bedload Layer','FontName','times new 

roman'); 

xlabel('\it$$\tau_{*}/\tau_{*co}$$','interpreter','latex'); 

ylabel('\it$$\delta_{*}$$','interpreter','latex'); 

plot(Tau_star,Storage(1,:),'-k'); hold on; 

plot(Tau_star,Storage(2,:),'--k'); hold on; 

plot(Tau_star,Storage(3,:),'-.k'); hold on; 

plot(Tau_star,Storage(4,:),':k'); hold on; 
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plot(Tau_star,Storage(5,:),'-k.'); 

legend('Slope = 0.001^{o}','Slope = 1^o','Slope = 2^o','Slope = 3^o','Slope = 

4^o','FontName','times new roman') 

text(2.3,3.5,'$$\leftarrow \tau_{*} /\tau_{*co} = 2.3$$','interpreter','latex'); hold off; 

 figure(3) 

[X,Y] = meshgrid(Tau_star,Gamma_degree); 

surf(X,Y,Storage); 

title('Dependent Correlation for Thickness of Bedload Layer','FontName','times new 

roman'); 

xlabel('\it$$\tau_{*}/\tau_{*co}$$','interpreter','latex'); 

ylabel('\it$$\gamma$$','interpreter','latex'); 

zlabel('\it$$\delta_{*}$$','interpreter','latex'); 

 figure(4) 

surf(X,Y,Storage_m_star); 

title('Vertically Dimensionless Pressure Gradient on the Bed Surface') 

xlabel('\it$$\tau_{*}/\tau_{*co}$$','interpreter','latex'); 

ylabel('\it$$\gamma$$','interpreter','latex'); 

zlabel('\it$$M_{*}$$','interpreter','latex'); 
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