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ABSTRACT 
 

The Modular Multilevel Converter (MMC) is an emerging power converter 

technology that has caught widespread attention mainly because of several technical and 

economic benefits such as modular realization, easy scalability, low total harmonic 

distortion, fail-safe operations etc. The MMC is comprised of a series connection of sub-

modules (SM). A sub-module is made by either a half-bridge or a full-bridge IGBT 

device and a capacitor as a source of energy connected across the bridge. This modular 

structure allows for the possibility to design high-voltage converters handling hundreds 

of kilo-volts without direct series connection of the power semiconductor devices. 

Due to its modular and safe-fail structure, ability to work at low switching 

frequency (few hundreds of Hz) and reduced filtering requirements the MMCs are 

suitable for utility applications. One of the main challenges of a utility MMC is operation 

under non-ideal grid supply conditions. This includes phase to phase faults, phase to 

ground faults, non-sinusoidal grid supply etc.  

This dissertation presents a novel control strategy for MMC based on frequency 

domain decomposition of the converter currents. The converter supply voltage is also 

decomposed into symmetrical components. By using the positive sequence grid voltage 

component as a reference voltage the control system can produce symmetric sinusoidal 

phase currents under any type of grid unbalance condition. A novel circulating current 
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controller based on frequency domain decomposition of arm currents is also presented 

which minimizes DC bus current ripples during unbalance grid supply  

A novel and simple method for estimating operating region of certain MMC 

parameters as a function of input variables (grid voltages and power references) is 

developed. The function of the operating region with respect to key system parameters 

ensures that the operating region can be maximized  

Finally, a new simplified loss modeling technique and a power reference 

computation algorithm is developed in order to extend its operating limit under certain 

unbalance conditions. The presented control architecture with a simplified real-time loss 

modeling method assures the best possible performance of a MMC during non-ideal 

supply conditions. 
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CHAPTER 1  

INTRODUCTION 

 

The Modular Multilevel Converter (MMC) concept was introduced over a decade ago by 

Lesnicar and Marquardt[1]. It is a promising technology that has caught the attention of 

many research groups in industry and academia, because of several technical and 

economic benefits such as modularity, scalability, low voltage distortion, failsafe 

operations etc.  

Modular Multilevel Converters consist of series connections of sub-modules (also 

called static cells). This modular structure permits design of high-voltage converters 

handling hundreds of kilovolts without direct series connection of the power 

semiconductor devices as in two or three level converters. Additionally, the large number 

of voltage levels reduces the filtering requirement on both DC and AC side of a converter 

even at very low switching frequency.  

Figure 1.1 shows the classification of three-phase MMCs based on sub-module (SM) 

structure (half bridge or full bridge) [2]. In general MMCs can be classified into: 

1) Star configured MMC 

2) Delta configured MMC 

3) Double star-configuration MMC 
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a) Half-bridge MMC 

b) Full-bridge MMC 

4) The dual MMC 
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(c) Double-star configured MMC  

Figure 1.1 Circuit configurations of MMC (a) Star configured MMC (b) Delta configured 

MMC(c) Double star Configured MMC (d) The Dual MMC 

Figure 1.1 (a) & (b) shows the star/delta-configured MMC topology. These 

configurations do not have common dc-link terminals and therefore these star-delta 

configurations mostly find applications in STATCOMs and energy storage systems [3]. 

Figure 1.1 (c) shows the double-star-configured MMC topology which possesses a 

common dc-link. Due to its structure this configuration can be used for interfacing AC 
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and DC system for achieving bidirectional power transfer between those systems. 

Therefore the double-star topology is highly suitable for utility related converter 

applications. Another MMC topology is shown in Figure 1.1 (d) which is called Dual 

MMC. In this case, each dc side of positive and negative chopper-cells possesses a 

common dc capacitor, whereas its ac side is connected in parallel via buffer inductors. It 

is mainly used for low-voltage large-power conversion applications [3].  

The double-star MMC configuration, which is the most suitable for utility 

applications, needs to handle various grid supply related issues such as phase-to-ground 

faults, phase-to-phase faults, non-sinusoidal supply caused by harmonic generating loads, 

etc. A control strategy must be provided that protects MMC systems and delivers the best 

possible performance during such non-ideal AC grid conditions. In order to achieve that, 

a novel method for control of double-star topology MMCs under non-ideal AC side 

conditions is presented in this dissertation. The dissertation outlines a traditional control 

method in chapter 2 and elucidates the limits of such control systems under non-ideal 

supply conditions in chapter 3.  A new control strategy is presented in chapter 4 that 

achieves the desired performance criteria during unbalance supply conditions and then 

chapter 5 develops a novel method for estimating and extending the operating region of a 

MMC during asymmetrical supply conditions. The traditional control method described 

in chapter 2 serves as the baseline of comparison for validating the performance of the 

proposed control method. 
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CHAPTER 2  

MODELING AND TRADITIONAL CONTROL OF MODULAR 

MULTILEVEL CONVERTERS 

 

This chapter describes dynamic modeling of the double star MMC configuration 

and selection of its passive elements. It also provides a background literature survey on 

MMC control methods and then develops a commonly used control approach along with 

simulation results. 

 

2.1 OVERVIEW OF DOUBLE-STAR CONFIGURATION MMC  

Figure 2.1 shows a three-phase MMC double-star structure using half-bridge 

IGBT sub-modules. A six-level half-bridge MMC will be investigated in this dissertation 

for achieving various performance objectives. Although more many more levels are 

typically used, six levels are sufficient for investigations without loss of generality and 

match a hardware laboratory prototype that is available for future validation of this work. 

The following section focuses on developing a mathematical model of a double-star 

MMC and design of the commonly used closed loop control system for MMCs used in 

utility applications.  
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Figure 2.1 Half-bridge three-phase Modular Multilevel Converter 

 

2.2 MMC MODELING 

Various modeling methods have been explored in the literature for targeted 

applications of the MMC. For modeling purpose many authors assume that voltage across 

each sub-module capacitor remains ideal. This assumption helps to derive simple 

dynamic equations of the MMC. Without this assumption modeling would be much more 

complicated because of the different voltages across each sub-module caused by 

bidirectional current flowing through them.  
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Reference [4] derives a continuous domain model of a MMC by representing the 

system with ordinary differential equations which are then solved by numerical 

integration methods. The continuous model accurately describes lower order harmonics. 

Frequency domain approaches have been attempted by [5] & [6]. Reference [5] 

decouples the MMC circuit into separate AC and DC parts using linear transformation 

and then the sub-module variables are computed using iterated convolution. The method 

is used with an optimization algorithm to extend the operating region of MMC for given 

grid and converter parameters. The analysis and prediction of harmonic content in arm 

currents and sub-module capacitors was investigated in the frequency domain by the 

application of Fourier series in [6].  

Other modeling approaches have been proposed in references [7], [8], [9], [10], 

[11], [12]. In general, there are three main parameters to be considered for MMC 

modeling: arm currents, output currents and sub-module capacitor voltages. Reference 

[11] has proposed a modeling method based on energy stored in the upper and lower 

arms of each phase. The mathematical equations for total energy in an arm and difference 

between upper and lower arm energy are derived and used for control purpose. Whereas, 

a switching function based modeling technique is implemented by [12]. 

In this dissertation the MMC dynamics are derived based on [10] & [11] since it 

covers various aspects of MMC design and simulation. The model mainly focuses on arm 

current, sub-module capacitor voltage and circulating current dynamics. These dynamics 

are formulated by using first order differential equations of arm currents and inner 

difference voltages of each phase. In order to develop the model consider Figure 2.2 

which shows the detailed circuit of the three-phase MMC where Lo  and Ro  are the arm 
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inductance and equivalent resistance respectively. Vdc and Idc  are total DC side voltage 

and current respectively. The MMC output voltage is denoted by vjU  and phase currents 

are denoted by vji  where cbaj ,, . The arm voltage generated by cascade connection of 

Sub-modules is expressed by pjU and njU where the sub-script np &  refers to the upper 

and lower arm respectively.  

+
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+

-

+

-

+

-

Lo

Ro

Lo

Ro

Lo

Ro

Lo

Ro

Lo

Ro

Lo

Ro

 

Figure 2.2 MMC with equivalent circuit of sub-modules 

From Figure 2.2 the upper and lower arm currents &pj nji i can be expressed as  

 

(2.1) 

 

 

(2.2) 
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Where 
diffj

i represents the difference current or circulating current of phase j which flows 

through both upper and lower arms and it is expressed as average of both upper and lower 

arm currents, 

 

(2.3) 

 

According to [10] & [11] the MMC can be characterized by equations (2.4)-(2.9). 

Output voltage is given by,  

 

(2.4) 

 

DC loop equation of each MMC arm is given by, 

 

(2.5) 

 

Inner emf generated in phase ‘j’ is given by, 

 

(2.6) 

 

According to equation (2.4) the output phase current vji  can be directly controlled by 

regulating control variable je . This allows to use a current vector control scheme based 

on d q  coordinates which ideally guarantees zero steady-state error.  

Inner difference voltage of phase j is given by, 

 

 

(2.7) 
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Equation (2.7) shows that the difference current 
diffj

i  can be controlled by regulating 

difference (unbalance) voltage 
diffj

u .Therefore from equations (2.6) and (2.7) the 

reference voltages for upper and lower arms are derived as give below:  

 

(2.8) 

 

 

(2.9) 

 

The circulating current is generated by the voltage imbalances among each phase leg and 

it is mainly composed of negative sequence 2
nd

 harmonic component [10]. In equations 

(2.8) and (2.9) it the same difference voltage (which is mainly responsible for circulating 

current) is subtracted from both the upper and lower arm voltage references. Thus the 

resulting je  will not change and the AC side dynamics are unaffected by the circulating 

current. However, the circulating current increases the RMS value of arm currents and 

therefore causes higher converter losses (through arm inductors, capacitors and 

semiconductors).  

Ideally, in steady state, the circulating current should be zero, but because of leg 

voltage imbalances the circulating current would have a 2
nd

 order harmonic current 

superimposed on the existing arm current. In the time domain, the circulating currents of 

three phases could be expressed as combination of DC and AC parts as given below, 

 

(2.10) 
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(2.11) 

 

 

(2.12) 

 

Where, Idc is total DC current as shown in Figure 2.2. 2 fI is the peak value of 2
nd

 

harmonic circulating current, 0w  is the fundamental frequency and 0   is the initial phase 

angle. 

According to [13] and [14] three-phase currents can be transformed into two dc 

components by applying the Park transformation to the three phase current equations. 

This transformation is also known as a-b-c to d-q transformation. The transformation is 

done on fundamental line frequency rotational reference frame for phase currents 

whereas on double line frequency negative sequence rotational reference frame for 

circulating currents. The Park transformation matrix is given by,  

 

(2.13) 

 

and corresponding inverse Park transformation is given by,  

 

(2.14) 

 

Equation (2.7) can be written in vector form as, 
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(2.15) 

 

Substituting (2.10), (2.11) and (2.12) in (2.15) and applying the park transformation 

matrix of (2.13),  

 

(2.16) 

 

Here, diffdu and diffqu  are d q  components of difference voltage and 2 fdi  and 2 fqi  are 

d q components of circulating current. The 0 02w L and - 0 02w L terms show the cross-

coupling between d and q axis components. By using (2.16) the transfer function block 

diagram of circulating current [10] can be represented as shown in Figure 2.3. 

 

Figure 2.3 Circulating Current Transfer Function 

 

2.3 SELECTION OF ARM INDUCTACE AND SUBMODULE CAPACITANCE  

 

Two main aspects of MMC design are dimensioning of sub-module capacitors 

and arm inductors. In  [15] a design principle is described for design of arm inductor 
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based on two distinctive functions: suppressing circulating current and limiting fault 

current rise rate. Reference [16] discusses dimensioning of SM capacitor for MMC by 

considering voltage limits of SM with voltage. Using [15] and [16] the selection of arm 

inductor and sub-module capacitor is done as shown below. 

The formula for selection of sub-module capacitor is given by equation (2.17). 

 

(2.17) 

 

The formula for selection of arm inductance is given by equation (2.18). 

 

(2.18) 

 

Given parameters are, 

60 3VA;   6;   2*pi*60 ; 133.33V;   800 ;  o C

rad
P e N w V Vdc V

s
      

 2 15A;   0.3;cos 1; 10% fI k e      

For the above given parameters the sub-module capacitance is found to be 16.4mF. A 

choice was made to use 15mF based on market available capacitors size, cost, ESR and 

availability. Using 15mF as a sub-module capacitor now the arm inductance can be 

designed based on equation (2.18). The resulting value found for arm inductor is 

0.938mH. A choice was made to use 1mH based on cost, size, weight and availability.  
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2.4 MMC CONTROL STRUCTURE 

Figure 2-4 shows the block diagram of a typical control structure of a MMC. The 

control structure consists of three main components: multilevel modulation, voltage 

balancing algorithm and closed loop controllers for achieving desired power conversion 

objectives. The closed loop controller has three types of controllers namely, inner phase 

current controller, outer power controller and circulating current controller. 

This section focuses on MMC modulation schemes, voltage balancing techniques 

and closed loop control approaches that have been implemented so far in the known 

literature. Based on the background research and literature survey a commonly used 

modulation, voltage balancing and controller design approach is selected to design a 

simulation model to understand the basics of MMC and issues related to control 

technique.  

 

Figure 2.4 Complete control structure of a MMC 

 

2.4.1 MULTI-LEVEL MODULATION TECHNIQUES 

Various modulation techniques have been investigated over the last decade. 

Considering the MMC structure, the switching loss is directly proportional to number of 
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MMC levels; therefore switching frequency reduction technique has been the core of 

many modulation methods. Authors of [17], [18], [19] have implemented Sub-module 

Unified Pulse Width Modulation (SUPWM). Reference [17] implements SUPWM by 

using 180 deg. phase shifted carrier signal for upper and lower arms. This method 

achieves sub-module voltage balancing for single phase MMC without using a closed 

loop control for capacitor voltage balancing. However, the performance of this technique 

remains unknown for its extension to three-phase MMCs.  

Another modulation scheme known as Carrier Shifted Pulse Width Modulation 

(CS-PWM) is implemented by references [20], [21], [22], [23], [24], [25]. The carrier 

shifted method is divided in two parts: Phase shifted and Level Shifted. In Carrier Phase 

Shifted PWM (CPSPWM) method ‘N’ carrier signals are used to create N+1 level inner 

emf. The phase shift between two consecutive carrier signals is equal to 360/N. Whereas 

in Level Shifted PWM (LSPWM) each carrier (out of N) has particular DC offset and 

addition of all carrier offsets is equal to peak amplitude of modulating signal. These two 

methods could also be combined to implement different variations of carrier shifted 

PWM such as Phase Disposition(PD), Phase Opposition Disposition(POD), Alternative 

phase opposition disposition (APOD), Saw-tooth etc. These methods use Sub-module 

capacitor voltages for close loop control of voltage balancing. Reference [23] implements 

another variation of carrier shifted PWM in which the modulating waveform is shifted 

and scaled to bring inside one carrier signal. With this technique the harmonics in the 

phase voltage are shifted to twice the switching frequency. Reference [1] has 

implemented a traditional space vector PWM (SVPWM) modulation technique. The 
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SVPWM method finds limited practical applications because the complexity of algorithm 

is proportional to the number of levels in MMC.  

Apart from conventional modulation techniques some other ideas like 

fundamental switching frequency with predefined pulse pattern generation [26], 

stochastic optimal fundamental switching frequency [27] were also proposed. 

This dissertation uses Phase Shifted Carrier PWM method for modulation 

purposes. A typical block diagram of PSC-PWM modulation scheme is shown in Figure 

2.5. 

 

Figure 2.5 PSC-PWM modulation scheme block diagram 

The structure is similar to a traditional sine-triangle modulation where a low frequency 

modulating signal (usually sinusoidal) is continuously compared with a high frequency 

triangular shaped signal (also called as a carrier signal). Due to nature of multiple levels 

in the converter more sine-triangle comparison blocks are required. The total number of 

compare blocks is equal to the number of sub-module in an arm of MMC. The 
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modulating signal is connected to all compare blocks as it is but the carrier signals are 

connected using different phase-shifts. For ‘N’ level MMC the phase shift between any 

two carriers is given by ‘360/N’. The result of the compare block is either 1 or 0. All the 

results are added together to produce a signal called as “NON” which means ‘Number of 

sub-modules to be turned ON in that particular arm. Figure 2.6 shows an example of a 

six-level PSC-PWM with modulating signal and the resultant ‘NON’ signal. 

6 carrier signals Modulating signal

 

Figure 2.6 Six-level PSC-PWM with modulating signal 

 

2.4.2 SUB-MODULE VOLTAGE BALANCING  

Modular Multilevel Converter voltage imbalance between sub-module capacitors 

is a significant concern with MMCs. Based on the direction of arm currents the sub-

module capacitors would charge or discharge causing the voltage across them to fluctuate 

about their nominal value. These fluctuations or ripples are proportional to the magnitude 
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of arm currents. The ripples are also affected by the modulation scheme, semiconductor 

switching frequency and system sampling frequency used. Many research papers have 

addressed voltage balancing issues in MMCs [28], [29], [30], [31], [32], [33] and [34]. 

There are in general two types of sub-module voltage balancing approaches in the 

literature: open loop and closed loop. In the open loop approach some voltage balancing 

compensation is added to the modulation scheme. This method does not use any feedback 

from sub-module capacitors. Whereas in the closed loop approach the sub-module 

capacitor voltages are measured and used as a feedback to make necessary adjustments in 

switching of sub-module semiconductors.  

A new voltage balancing algorithm called as Reduced Switching Frequency 

(RSF) Voltage balancing was proposed by [10] for a 20-level MMC. In this technique the 

output of PSC-PWM modulation blocks (also known as NON, where NON means Number 

of Sub-modules to be turned on) is passed to the RSF-VB algorithm. The input 

parameters for RSF voltage balancing algorithm are upper and lower arm SM capacitor 

voltages, upper arm current, lower arm currents, upper arm ‘NON’ and lower arm ‘NON’. 

Based on the direction of individual arm current the measured sub-module voltages are 

sorted in ascending or descending order. Then depending on the previous and current 

value of their ‘NON’ a decision is made whether to keep a sub-module as it is or to turn it 

ON or to turn it OFF. This technique allows reduction of the average switching frequency 

of a sub-module below the carrier frequency while keeping the sub-module capacitor 

voltages well balanced. But this type of reduced switching balancing is only effective if 

the MMC has a large number of sub-modules. For lower number of sub-modules, 
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reducing switching frequency further causes degradation of the performance of the 

voltage balancing algorithm.  

In this dissertation a six-level MMC is investigated, therefore, to obtain good 

voltage balancing the conventional voltage balancing algorithm is used. The block 

diagram of modulation and voltage balancing scheme is shown in Figure 2.7 and the flow 

chart for the conventional voltage balancing algorithm is shown in Figure 2.8. 

 

Figure 2.7 Block diagram of Modulation and Voltage balancing scheme 

 
Figure 2.8 Conventional Voltage Balancing Algorithm 
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2.4.3 CLOSED LOOP CONTROLLERS DESIGN 

Various MMC control methods have been investigated by references [35], [36], 

[37], [38], [39], [40], [41], [42], [43], [44], [45]. Most authors assume balanced grid 

conditions when designing a control system for a MMC. In general there are three ways 

to approach the MMC control system design. The first approach is based on traditional 

inner current control and outer power/voltage control loop [36]-[41]. The second 

approach is based on total energy stored in SM capacitors of a phase leg and difference 

between energies in upper and lower arms [42]-[45] The third approach is based on open 

loop control strategy as discussed in [35], [42] and [45]. 

In the first approach various types of control schemes are investigated. References 

[36] proposes new averaging and balancing control that controls arm currents as well as 

reduces circulating currents. Traditional Proportional Integral and Proportional Resonant 

controllers are presented in [38], [39]. References [40] & [41] provide a deadbeat control 

approach for faster dynamic response of MMC.  

The second approach of energy based control has been investigated for both open 

loop and closed loop conditions. The open-loop approach [45] is based on estimation of 

stored energy in the arms by combining the converter voltage references, measured 

output current and the know DC voltage. In the closed loop approach [43] a decoupled 

double synchronous frame current control strategy is used to control total leg energy and 

arm difference energy. The paper uses two rotating frames (for fundamental and 2
nd

 

harmonic current) in dq0 co-ordinates to control the total energy oscillations and energy 

differences.  
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In order to understand the basic MMC operation a simulation model is developed 

using a commonly applied control approach. Therefore this section focuses on developing 

traditional closed loop control system that has been used widely among the literature.  

The control system is composed of three control loops. On the top level there is 

outer power control loop which has two controllers, an active power controller and a 

reactive power controller. The references for power controllers are defined by the target 

application. The 2
nd

 level of control loop is the inner phase current control loop. The 

phase current controller is responsible for producing phase currents of desired amplitude 

(usually symmetric and sinusoidal). The current controllers are operated in synchronous 

frame or dq frame domain where three-phase sinusoidal variables are transformed into 

two-phase DC components using Park transformation. One advantage of this technique is 

that when these dc components are controlled by proportional-integral controllers, it 

assures zero steady-state error.  

The references for phase current controller are derived from outer power 

controllers. The output of active power controller is treated as d-axis current controller 

reference while output of reactive power controller is treated as q-axis current controller 

reference. Along with the phase current controller another current controller is required, 

which is the circulating current controller. The circulating current controller is used for 

minimizing the 2
nd

 harmonic circulating current flowing through phase legs. Outputs of 

phase current controller and circulating current controller are added together to form 

complete modulating signal.  

The current controller output is called inner emf ( _j refe ). Using equations (2.8) 

and (2.9) the upper and lower arm reference voltages are calculated, where diffju is the 
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control voltage generated by circulating current controller. The upper and lower arm 

reference voltages ( _pj refu and _nj refu ) are biased by Vdc/2, then normalized by dividing 

with Vdc and then passed to the modulation block. The construction and design of all 

three controllers is discussed in the following section.  

 

PHASE CURRENT CONTROLLER DESIGN: 

The goal of phase current controller is to generate modulating signals that 

produces desired phase currents. The block diagram of a current controller to be designed 

is shown in Figure 2.9, where ,Kp Ki are controller gains, Ts is sampling time, Vdc is DC 

bus voltage, 0 0&R L  are resistance and inductance of arm inductor, pkC  is carrier 

frequency peak ( pkC Vdc ), FSR  is full scale range for ADC, TIG  is current transducer 

gain. For simplicity of computation FSR  and TIG  can be approximated to 1. This makes 

feedback path gain =1, i.e. unity feedback. 

+
-

A

B

*

 
Figure 2.9 Block diagram of phase current control loop 
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Using block diagram of Figure 2.9 controller gains based on desired gain and 

phase margins at desired crossover frequency can be calculated. The procedure for 

calculation of controller gains and bode plots is explained in Appendix A.1. 

The closed loop transfer function of complete phase current control loop is given 

by equation (2.19). 

 

(2.19) 

 

The control structure of phase current controllers to be implemented is shown in Figure 

2.10. The cross-coupling between d-q axis due to inductance ‘Lo’ is compensated using 

feed-forward signals. Decoupling of d-q axis makes the performance of current controller 

independent of synchronous frame frequency.  

+ +

+ -

-
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+
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-

+

_ref

_ref

_ref

 

Figure 2.10 Control structure of phase current controllers 

 

ACTIVE AND REACTIVE POWER CONTROLLER DESIGN: 

Figure 2.11 and Figure 2.12 shows the block diagram of active and reactive power 

controllers. Where Vph  is peak phase voltage and equation (2.19) represents equivalent 

transfer function of current control loop. By using block diagram of Figure 2.11 and 

Figure 2.12 controller gains based on desired gain and phase margins at desired crossover 
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frequency can be calculated. The procedure for calculation of controller gains and 

corresponding bode plots is explained in Appendix A.2. 

+
-

A

B

* *

 

Figure 2.11 Block diagram of Active Power control loop 

+
-

A

B

* *

 

Figure 2.12 Block diagram of Reactive power control loop 

The closed loop transfer function of complete power control loop is given by equation 

(2.20). The control structure of power controllers to be implemented is shown in Figure 

2.13.  

 
(2.20) 

 

+ -

+ -

 

Figure 2.13 Control structure of power controllers 
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CIRCULATING CURRENT CONTROLLER DESIGN: 

 

+
-

A

B

*

 

Figure 2.14 Block diagram of circulating current control loop 

Figure 2.14 shows block diagram of circulating current control loop. Circulating 

current controller works in parallel with phase current controller. The goal of circulating 

current controller is to minimize the 2
nd

 harmonic circulating current within the three 

phase legs of MMC as requested by its reference input. The reference is usually kept to 

zero in order to reduce the peak arm currents and losses caused by the circulating current. 

By using block diagram of Figure 2.14 controller gains based on desired gain and 

phase margins at desired crossover frequency can be calculated. The procedure for 

calculation of controller gains and corresponding bode plots is explained in Appendix 

A.3. The closed loop transfer function of complete power control loop is given by 

equation (2.21). 

 

(2.21) 

 

Figure 2.15 shows the control structure of the circulating current suppressing 

controller [10]. The circulating current of each phase is calculated by adding respective 
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upper and lower arm currents and then dividing by 2 according to equation (2.3). This 

three-phase current is then transformed into the double line frequency negative sequence 

rotational frame ( 2 2&fd fqi i ). The references for d and q axis controllers are zero since 

circulating current should not have any AC components. The controller outputs are then 

transformed back to three-phases using inverse park transformation /dq acbT .  

 

Figure 2.15 Control structure for circulating current controller 

 

2.5 SIMULATION VERIFICATION OF MMC SYSTEM WITH DESIGNED 

CONTROLLERS  

In order to verify the operation of PSC-PWM modulation method, conventional 

voltage balancing algorithm and all the controllers a simulation model was developed.  

Figure 2.16 shows the system connections used for MMC simulation where the MMC 

from Figure 2.1 is implemented. The simulation is carried out for a six-level MMC that is 

connected between AC grid and a DC bus. The simulation was performed in Simulink.  
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Table 2.1 lists circuit parameters and operating conditions used for the test MMC. 

The MMC is designed for full load rated power of 60kVA. 

 

3-phase MMC
us

Rs        Ls

P, Q

Rdc

Vdc

V

iv

-               +

AC system
DC system

Idc

 

Figure 2.16 Simulation system connections between AC and DC bus 

 

Table 2.1 Main Circuit Parameters and Operating Conditions of Simulated System 

Parameters 
Designation Values 

Active power P 60kW 

Reactive power Q 20kVar 

Ph-Ph RMS AC voltage Vg 208V 

AC system inductance Ls 0.1nH 

AC system Resistance Rs 0.1Ohm 

DC bus voltage Vdc 800V 

DC resistance Rdc 0.01Ohm 

Number of SM per arm N 6 

SM capacitance Co 15000uF 

Arm Inductance Lo 1mH 

Arm equivalent resistance Ro 0.1Ohm 

SM capacitor voltage Vc 133.33V 

Carrier frequency Fc 500Hz 

Sampling frequency Fs 3000Hz 
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Some of the important results of simulation are shown in Figure 2.17. The 

simulation begins with P=30kW and Q=0Var as shown Figure 2.17 (a). The step change 

in active and reactive power occurs at 0.2sec with P=60kW and Q=20kVar. Both the 

active and reactive power reach to steady state within 0.1sec. Phase currents are 

sinusoidal and symmetric (Figure 2.17 (c)). Circulating currents are minimized to a small 

value after CCSC is enabled at 0.15sec (Figure 2.17 (e)). This validates the performance 

of all the controllers.  

The performance of circulating current suppressing controller (CCSC) is also 

shown in Figure 2.18.  Prior to enabling this controller the circulating current is about 

12A peak to peak and after enabling the controller it minimized to about 3A peak to peak. 

Also it can be observed from Figure 2.17 that the circulating current controller doesn’t 

affect the operation of other controllers and other system parameters. The performance of 

the conventional voltage balancing algorithm is shown in Figure 2.19. All the six 

capacitor voltages in one arm have very similar voltage waveform. This indicates 

excellence voltage balancing among all the capacitors in one arm. 
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Circulating current 
control enabled

Step change 
in P and Q

Time (Sec)

(a)

(b)

(c)

(d)

(d)

(e)

 
Figure 2.17 Simulation results (a) Active and Reactive powers (b) Grid voltages (c) Grid 

currents (d) DC current (e) Circulating current (f) Upper arm three-phase capacitor 

voltages 
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Time (Sec)  
Figure 2.18 Performance of circulating current controller (enabled at 0.15sec) 

Time (Sec)  
Figure 2.19 Performance of conventional voltage balancing method 

This chapter discussed some fundamentals of modular multilevel converter and 

control design. Time-domain modeling of MMC, multilevel modulation schemes and 

conventional voltage balancing algorithm was briefly presented. Also, active/reactive 

power, phase current and circulating current control methods for MMC were developed 

using PI controllers and theoretical design was confirmed using bode plots and Nyquist 

criteria. The complete three-phase MMC system was tested in simulation and results 

were obtained that show the MMC performs acceptably under balance grid voltage 

conditions. 
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CHAPTER 3  

MODULAR MULTILEVEL CONVERTER WITH NON-IDEAL AC 

SUPPLY 

 

This chapter discusses the performance of the traditional control system for MMC 

under non-ideal AC supply condition. A set of fault test cases is created to observe the 

controller performance and its effect on various system parameters. 

3.1 MMC PERFORMANCE UNDER NON-IDEAL GRID CONDITIONS 

Various types of modulation schemes, voltage balancing algorithms, circulating 

current reduction techniques and harmonic minimization schemes that control the MMC 

under normal operating conditions have been proposed.. But the operation of a MMC 

under asymmetric or non-ideal grid supply voltage conditions is still under developed and 

needs more investigation in order to obtain the best possible performance under those 

conditions. 

Using the MMC model described in Chapter 2, a system simulation was carried 

out to study the MMC’s performance under asymmetric grid supply voltage conditions. 

In this simulation test case, grid phase-A voltage is reduced from 1.0 pu to 0.01 pu during 

normal steady-state operation of the converter to represent a single phase to ground fault 
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as shown in Figure 3.1 where term VU on the top is abbreviation for “Voltage 

Unbalance”  

 
Figure 3.1 Grid voltage unbalance test-case for simulation 

Using Fortescue transformation (explained in Appendix A) the symmetric component 

decomposition of corresponding three-phase voltages is shown in Table 3.1. 

Table 3.1 Symmetric component decomposition of unbalanced grid voltages test case  

Parameter Voltages: mag(pu)(deg) 

Grid unbalance test case 

VA = 0.01 0deg 

VB =1-120deg  

VC = 1 120deg 

Positive sequence component V
+ 

= 0.67 0deg 

Negative sequence component V
-
 = 0.33 180deg 

Zero sequence component V
0
 = 0.33 180deg 

Voltage Unbalance (VU) 

100*(Negative seq. Volt / Positive seq. Volt) 
49.25% 

 

The simulation results are shown in Figure 3.2, Figure 3.3 and Figure 3.4. Figure 3.2 

shows the effect of unbalance supply voltage on the corresponding d-q axis voltage and 
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current controller reference components. Due to unbalance voltages a 2
nd

 harmonic 

sinusoidal component appears in both d and q axis grid voltage components. This affects 

operation of active and reactive power controllers. The power controllers then produce d-

q axis current references which are also affected by the 2
nd

 harmonic ripples. The 

references produced by phase current controller and circulating current controllers are 

shown in Figure 3.3. 

(a)

(b)

(c)

(d)

Fault event Time (Sec)

VU=0% VU=49.25%

 

Figure 3.2 Various d-q axis components (a) d-axis grid voltage (b) q-axis grid voltage (c) 

d-axis phase current controller reference generated by active power controller (d) q-axis 

phase current controller reference generated by reactive power controller 
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(a)

(b)

(c)

(d)

Time (Sec)Fault event

VU=0% VU=49.25%

 
Figure 3.3 Various reference signals (a) Converter voltage modulating signal generated 

by phase current controllers (b) Circulating current modulating signal generated by 

circulating current controllers (c) Upper arm complete normalized modulating signal (d) 

Lower arm complete normalized modulating signal 

From Figure 3.2 and Figure 3.3 it is clear that the modulating signals are non-sinusoidal 

which will result in non-sinusoidal phase currents. This also affects other system 

parameters such as capacitor voltages, circulating currents and dc bus current. Figure 3.4 

illustrates the effect of unbalance voltages on these quantities.  

 



 

34 

Phase A fault event

(a)

(b)

(c)

(d)

(d)

(e)

Time (Sec)

VU=0% VU=49.25%

 

Figure 3.4 Performance of traditional MMC control scheme under unbalance supply 

voltage (a) Grid voltages (b) Grid currents (C) Active and Reactive powers (d) DC 

current (e) Circulating current (f) Upper arm three-phase capacitor voltages 
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As expected from the modulating signals the phase currents are non-sinusoidal 

also their peak magnitude is approximately twice higher as compared to the symmetrical 

supply condition. A converter designed for rated power during balance supply condition 

may not be able to withstand such a high peak currents. Using FFT analysis the frequency 

components in the phase currents are obtained as shown in Figure 3.5. It can be seen that 

3
rd

, 5
th

 and 7
th

 harmonics are dominant in converter supply currents. 

100%

34.5%

15.5%
7.06%

 

Figure 3.5 Frequency spectrum of phase currents during unbalance condition 

Due to the non-sinusoidal nature of phase currents the sub-module capacitors also 

have non-sinusoidal voltage ripple. These non-sinusoidal voltage ripples then cause non-

sinusoidal circulating currents which make it impossible to minimize them using the 

controller shown in Figure 2.15 since the circulating current controller operates in 2
nd

 

harmonic synchronous frame. A frequency spectrum of circulating current during 

unbalance is shown in Figure 3.6.  

100%
115% 107%

88.4%

39.7%

 

Figure 3.6 Circulating current frequency spectrum during unbalance 
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From Figure 3.6 it is noted that due to the nature of capacitor voltage unbalance 

only even harmonic components are present in the circulating currents. 

Active and reactive powers (Figure 3.4 (c)) have large ripples during fault. Due to 

the ripples in active power and harmonics in circulating currents the dc bus current also 

has ripples as shown in Figure 3.4 (d). This causes significant ripples in the dc power as 

well.  

From the results discussed above it is clear that the traditional control approach 

fails to maintain acceptable performance of a MMC under unbalance conditions. It is 

therefore necessary to investigate the recent development in this area and understand 

what new strategies have been proposed and validated to improve MMC performance 

during asymmetrical supply conditions.  

 

3.2 PREVIOUSLY SUGGESTED METHODS FOR MMC PERFORMANCE 

IMPROVEMENT UNDER SUPPLY ASYMMETRY 

There has been some initiative taken by various researcher [46], [47], [48], [49], 

[50], [51], [52], [53] and [54] to address performance improvement under asymmetrical 

supply conditions. Reference [48], [50], [52], [53] & [54] proposes control reference 

calculation methods based on decomposition of symmetric components into positive, 

negative and zero sequence components in d-q frame of reference. All of these methods 

still suffer from various issues such as large fault transient in phase currents, higher 

steady state peak value of phase current, ripples in active and reactive powers, higher 

voltage ripple on sub-module capacitors etc.  
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Reference [49] attempts to remove dc bus voltage ripple by injecting zero 

sequence control reference into the modulating signal based on six arm inserted voltages 

but it to has ripples in active and reactive powers and higher magnitude of phase currents 

during fault. Reference [38] proposes stationary frame based proportional-resonant 

controller but has similar issues as mentioned above. Therefore, the need for further 

improvement in performance of MMCs under non-ideal grid supply conditions resulted 

in the method described in Chapter 4 which addresses the shortcomings outlined above.  
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CHAPTER 4  

ADVANCED CONTROL STRATEGY FOR MODULAR MULTILEVEL 

CONVERTERS UNDER NON-IDEAL SUPPLY CONDITIONS 

 

In order to properly control a MMC under the more general conditions of 

asymmetrical supply voltage an appropriate framework is needed. To manage the 

unbalanced currents in the converter under such conditions an orthogonal decomposition 

of the current that separates the unbalanced portion and balanced portions can be used. 

The following sections describe development of a new MMC control structure based on 

an appropriate current decomposition.  

 

4.1 CURRENT’S PHYSICAL COMPONENT (CPC) POWER THEORY 

The CPC theory was developed in the frequency domain by Czarnecki [46] is 

based on orthogonal decomposition of the current. This theory provides a physical 

interpretation of power phenomena in three-phase systems under unbalanced and non-

sinusoidal conditions.  

The theory decomposes the current into active, reactive, unbalanced and harmonic 

components. 
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(4.1) 

 

where, i  is defined as a vector of three phase currents  
T

A B Ci i i and , , , ,a r u hi i i i are 

defined as active, reactive, unbalanced and harmonic components of that current vector 

respectively. In a power converter system fed with sinusoidal supply voltages, only the 

active power, reactive power and unbalanced power of the fundamental are concerned, 

and it is not necessary to decompose all the harmonics. Then, a subset of the theory, 

namely, the fundamental current component is expressed as follows: 

 
(4.2) 

 

Consider Figure 4.1 (a) which shows a linear, time-invariant load supplied with a 

sinusoidal symmetrical voltage of positive sequence and consumes only active power. 

For any such system there exists an equivalent resistive and balanced load, shown in 

Figure 4.1 (b), which has same voltage and the same active power P as the original load. 

Similarly, there can be representation of a three phase system that only provides reactive 

power as shown in Figure 4.2 (a). The equivalent representation of such system would be 

an inductive and balanced load as shown in Figure 4.2 (b).  

Electrical Load

Active Power ‘P’

(a) (b)

3-phase
supply

(conductance)

Active Power ‘P’

 

Figure 4.1 Three phase system with active power 
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Reactive Power ‘Q’

(reactance)

(b)

Electrical Load

Reactive Power ‘Q’

(a)

3-phase
supply

 

Figure 4.2 Three-Phase system with reactive power 

The case where the three-phase system has to supply both active and reactive powers can 

be represented by equivalent admittance load as shown in Figure 4.3. 

3-phase
supply

Active + Reactive Power

(admittances)
 

Figure 4.3 Three-Phase system equivalent circuit with both active and reactive powers 

Under balanced supply and balanced load conditions the system of Figure 4.3 

only consists of active and reactive powers. But if either of the supply or load is 

unbalanced then along with active and reactive powers there will exist a third component 

called unbalanced power. These powers are directly related to active, reactive and 

unbalanced currents.  These currents are orthogonal. For converter control purposes these 

current components need to be decomposed so that they can be controlled individually. In 

order to perform this decomposition the load is expressed in terms of two admittances the 
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equivalent admittance and the unbalanced admittance. The equivalent admittance is 

expressed as 

 
(4.3) 

 

Where, &e eG B  are the equivalent conductance and equivalent susceptance respectively. 

The unbalanced admittance is  

 
(4.4) 

 

where, 
oje 120α and 

oje 120* α . 

During symmetrical supply conditions there is only a positive sequence voltage 

component present in the system. But during asymmetrical supply conditions, the supply 

consists of positive, negative as well as zero sequence voltage components. In this 

situation a decision must be made regarding what sort of power should be consumed. 

Consuming power with respect to the negative sequence voltage component means 

injecting negative sequence current in to the grid. This is generally not feasible since 

many circuit breakers are designed to detect negative sequence current components and 

trip the breaker. Consuming power from zero sequence voltage components means 

injecting zero sequence current into the grid. Zero sequence power never exists with only 

dc value or only ripple, rather it has both dc and ripple components. Therefore the power 

ripple is unavoidable if zero sequence power is consumed. In addition, the zero sequence 

current also causes many other issues such as high neutral current, high neutral to ground 

voltage, low power factor, high system losses etc. Therefore the only way a good quality 

of power that can be consumed during unbalanced voltage is by using positive sequence 

voltage component.  
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Using the positive sequence voltage component it is possible to inject amplitude 

and phase symmetric positive sequence currents into the grid producing power 

components that are ripple free. If the phase currents are balanced then the circulating 

currents can also be controlled. This also would result in ripple free power on the dc side 

as well.  Due to these reasons for the developed MMC control method presented later the 

decomposition of phase currents into active, reactive and unbalance components is done 

with respect to positive sequence supply voltage.  

Having the admittances from equation (4.3) and (4.4) the three-phase active 

current vector can now be written as a function of positive sequence supply voltage as 

given by, 

 

(4.5) 

 

The voltages &A B CU , U U  are symmetrical since they are positive sequence 

components, then above equation becomes, 

 

(4.6) 

 

Then 

 

(4.7) 

 

Similarly, 

 
(4.8) 
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(4.9) 

 

And 

 

(4.10) 

 

 

(4.11) 

 

By extracting frequency domain components of grid voltages and phase currents 

(as explained in next section) active, reactive and unbalance current components present 

in the phase currents can be found. Then by using the above mentioned relationship 

between grid voltages, currents and system admittances the desired phase current 

references can be generated. These references can then be used to control the phase 

currents using proportional–resonant controllers operating in the ABC frame in order to 

control them individually.  

 

4.1.1 RDFT BASED HARMONIC COMPONENT EXTRACTION 

During unbalance supply conditions in order to extract desired frequency and 

symmetric components of supply voltage some methodology is required. Traditional 

techniques use digital filters in order to extract the desired components of voltage or 

current. Unfortunately, even for low-order filters, these methods may require longer times 

than two cycles of the fundamental in order to reach steady state after the occurrence of a 
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transient. In order to improve the performance of the reference current generation while 

preserving the computational efficiency, a reference generation technique for active 

compensators based on the use of a computationally efficient Recursive Discrete Fourier 

transform (RDFT) was presented in [55]. The proposed strategy utilizes the RDFT 

instead of the filters typically used to extract the desired components of the voltage or 

current. Using this technique it is possible to extract the fundamental component of grid 

voltages and also decompose the symmetric components of fundamental voltages as will 

be shown later in this chapter (section 4.3). The derivation of RDFT method is explained 

below.  

Assuming that at sample k a time window comprises the N values (or samples) 

 

The complex RMS (CRMS) value of the fundamental harmonic is given by the DFT as 
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Where, g1 is a fixed fundamental frequency of the grid voltage that defines the sampling 

period and sampling numbers N in one power period. Further, the real and imaginary 

terms of the signal can be separated as shown in equation (4.13)  
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(4.13) 

 

This method can be seen as a normal DFT in a sliding window but with the reduced 

calculations. This technique is used here in order to extract desired frequency 
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components of voltages and also for decomposing fundamental signal into positive, 

negative and zero sequence symmetric components. The design of MMC control system 

based on CPC power theory and using RDFT algorithm is discussed in the following 

section.  

 

4.2 CPC BASED CONTROL STRUCTURE DESIGN 

A control system for MMC based on CPC theory is similar to the traditional 

control system designed in chapter 2 that is, active & reactive power controllers, phase 

current controllers and circulating current controller. It is important to note that the DC 

bus voltage controller is not needed for MMC since the modulation technique inherently 

keeps the DC bus voltage constant by maintaining fixed number of sub-module 

capacitors across the phase legs. Therefore the only variable on the dc side is the DC 

current, which is indirectly controlled by the active power controller and circulating 

current controller. During balance supply only active power controller indirectly controls 

the dc bus current but during unbalance supply the performance of circulating current 

controller also decides the magnitude of ripples in the dc bus current.  

The key differences between control system designed in chapter 2 and CPC based 

control system is that the CPC based control system uses only positive sequence 

component of grid supply voltage to produce desired active and reactive powers and also 

the CPC based phase current controllers and circulating current controllers work in ABC 

frame to have individual control of each phase current. 

Figure 4.4 shows the simplified block diagram of CPC based complete control 

structure for MMC system. The entire control system has three different types of 
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controllers, active/reactive power controllers, phase current controllers and circulating 

current controllers. 

Active & Reactive 
Power Controllers

Phase current 
controllers

 CCSCCirculating current 
computation

CPC based 
current 

reference 
generation

+

+

*

Q *

RDFT based 
positive sequence 

voltage component 
extraction

PSC-PWM
And

Voltage 
Balancing 
alogrithm

MMC 
Hardware

DC bias +

 modulating 
signals

A =0

 
Figure 4.4 Complete CPC based control structure for MMC 

The power controller generates active and reactive power current references. 

These references are divided by magnitude of positive sequence voltage component 

which yields equivalent conductance and reactance references. The positive sequence 

voltage components are obtained by using RDFT based algorithm. Then using equivalent 

admittance, reactance, phase currents and positive sequence voltages phase current 

references are computed using CPC based calculations. The phase current controllers 

generate part of the modulating signal based on current references. The other part of the 

modulating signal is generated by circulating current controllers. 

The circulating current references are fixed to zero and instantaneous circulating 

currents are computed by using the arm current measurements (equation (2.3)). The 

sinusoidal component of circulating current is minimized by injecting the opposite phase 

harmonic in the arm currents. Important thing to note here is that the control input from 

phase current controllers is ‘added’ in upper arm modulation and ‘subtracted’ from lower 

arm modulation block. This is required to create 180 deg phase shift (ideally) between 

upper arm and lower arm currents. This phase shift is needed to create sinusoidal shaped 
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AC staircase voltage at the virtual midpoint of MMC phase legs. But on the other hand 

since the circulating current only flows in the phase legs the only way to minimize it is to 

“add” control input to both upper and lower arm modulations. This would create a 

component of 2
nd

 harmonic and opposite phase (180deg shifted) into phase legs which 

would cancel the effect the original circulating current component and hence minimize it. 

The detail design procedure for CPC based control system and validation of all 

control subsystems will be discussed in subsequent sections. 

 

4.2.1 PHASE CURRENT CONTROLLER DESIGN 

The goal of the phase current controller is to be able generate sinusoidal currents 

with peak magnitude as defined by its reference (coming from active/reactive power 

controllers). As explained in chapter 2, traditionally the phase current controller is 

designed either in    domain using Clark transformation or in d q  domain using 

Park transformation to assure zero steady state error by using PI controllers. This method 

gives good performance during balance supply condition. But during unbalance supply 

the existence of negative sequence, zero sequence and possibly harmonics in the supply 

voltage affects the operation of these controllers and they fail to produce desired results 

such as symmetric sinusoidal currents and ripple free active and reactive and DC powers. 

Therefore a Proportional –Resonant (PR) controller is designed in ABC frame which also 

assures zero steady state error and the references for these PR controllers are directly 

available from CPC based current reference generation algorithm as shown in Figure 4.4 

A current control loop block diagram with Proportional-Resonant controller is 

shown in Figure 4.5. The block diagram is very similar to Figure 2.4 except that it has 
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proportional resonant controller and the inputs are individual phase currents so there will 

be three proportional-resonant current controllers for the three phase system.  

+
-

A

B

*

 
Figure 4.5 CPC based current control loop block diagram 

The proportional resonant controller is tuned to fundamental frequency of the 

phase current to be controlled. In this case it is same as grid supply voltage frequency. 

The design of proportional-resonant controller is not as simple as PI controller as it was 

done in chapter 2 due to existence of 2
nd

 order polynomial terms in controller transfer 

function. Therefore a different approach is taken to compute the controller gains. This 

method is called as Naslin polynomial matching technique [54]. Naslin polynomial 

matching technique can be used to find proportional and resonant gains by matching 

system’s closed loop characteristic polynomial with Naslin polynomial and then solving 

for relevant coefficients. The derivation of controller gains using Naslin polynomial 

technique is explained in Appendix B.1.  

From Appendix B.1 the closed transfer function is obtained as, 

 

(4.14) 

 

 

 



 

49 

Where,  

 

Figure 4.6 shows the implementation block diagram for phase current controllers.  
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Figure 4.6 CPC based phase current control block diagram 

 

4.2.2 CIRCULATING CURRENT CONTROLLER DESIGN 

The design of a circulating current controller using proportional resonant 

controller in the ABC frame is similar to phase current controller design with the slight 

differences in transfer function and resonant controller tuned frequency. Figure 4.7 shows 

the block diagram of circulating current control loop using PR controller. The resonant 

controller in this case is tuned to circulating current frequency which is 2
nd

 harmonic of 

fundamental i.e. 120Hz 
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+
-

A

B

*

 

Figure 4.7 Circulating Current control loop block diagram 

 The design of controller gains is done by Naslin polynomial technique and the 

procedure is similar to phase current controller design and explained in Appendix B.2. 

From Appendix B.2 the closed transfer function of circulating current controller is 

obtained as, 

 

(4.15) 

 

Where, 

 

Figure 4.8 shows the implementation block diagram of circulating current controllers.  
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Figure 4.8 PR circulating current controller block diagram 

 

4.2.3 ACTIVE AND REACTIVE POWER CONTROLLER DESIGN 

Active and reactive power controller design is similar as discussed in chapter 2 

except that instead of computing instantaneous power using instantaneous grid voltage 

and phase currents the positive sequence voltage component of grid voltage and 

instantaneous phase currents are used to compute the instantaneous active and reactive 

powers. The formulae for computing active and reactive powers at the fundamental 

frequency with respect to positive sequence grid voltage components are given by 

equations (4.16) and (4.17).  

 
(4.16) 

 

 
(4.17) 

 

Equations (4.16) and (4.17) consist of time domain positive sequence component 

of grid voltages. These components are not directly available. The information available 
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using RDFT based symmetric component decomposition is the positive sequence voltage 

magnitude and angles of each positive sequence phase voltage. Using this information 

instantaneous three-phase positive sequence voltage component present in the grid supply 

can be derived. Once the time-domain positive sequence voltage waveform is available 

then by using equations (4.16) and (4.17) active and reactive powers with respect to 

positive sequence voltage components can be found. Figure 4.9 shows the block diagram 

of this process.  

 

RDFT based 
Positive 

Sequence 
Voltage 

Component 
Extraction
(Eq 4.13)

Cartesian 
to Polar 

conversion

Eq(4.16)

Eq(4.17)

 

Figure 4.9 Block diagram of Instantaneous power computations 

Figure 4.10 shows the interface between the power controllers and the phase 

current controllers. From Figure 4.9, once the active and reactive powers are available 

then they can be compared with the desired active and reactive power references. The 

active and reactive power controllers then produce required active and reactive current 

references respectively. The ratio of these required current references and magnitude of 

positive sequence voltage component gives the equivalent conductance and equivalent 

reactance references of the three phase system. The reference for unbalance admittance 

“A_ref” is set to zero to minimize any unbalance power that could result due to 

asymmetrical supply and/or unbalance load.  
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Figure 4.10 Block diagram of Power controllers interface with phase current controllers 

Using equivalent conductance, reactance and unbalance admittance reference, 

instantaneous positive sequence grid voltage component and instantaneous phase currents 

the desired active, reactive and unbalance current component of each phase can be 

computed using equations (4.7) to (4.11). These desired reference currents are then 

available to phase current controller for further action. 

 

4.3 SIMULATION RESULTS 

This section discusses simulation results using CPC based control structure of 

Figure 4.4. Some new methods are also presented to improve the performance of MMC 

under balance as well as unbalance grid supply conditions. 

4.3.1 CONTROLLER PERFORMANCE UNDER BALANCE CONDITIONS 

Figure 4.11 shows the performance of CPC based control under balance supply 

conditions for Pac = 60KW & Qac = 0. Figure 4.11 (b) shows that the CPC controller 

produces sinusoidal phase currents during balance grid supply condition. Figure 4.11 (e) 
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shows active power and dc side power before and after circulating current controller is 

activated.  

Time (Sec)

(a)

(b)

(c)

(d)

(e)

CCSC enabled

 longer settling time
about 3 fundamental cycles

Increased DC level 

 

Figure 4.11 CPC based control performance under Balance supply condition 

Figure 4.11 (d) shows that once the circulating current controller is activated it 

immediately minimizes the 2
nd

 harmonic from the phase legs and -the only components 

left are dc current bias and switching harmonics.  The dc current biases of each phase leg 
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add up to produce the dc bus current. The switching harmonics in three phase leg’s 

current is not a symmetric three phase component and therefore they also add up and the 

addition is injected in dc bus current. It can be clearly observed from Figure 4.11 (e) that 

before CCSC is enabled the dc bus power or current (dc voltage is always constant due to 

an ideal DC source in the simulated system) has no switching harmonics but after CCSC 

is enabled it has switching harmonics. It is also observed that the CCSC has a settling 

time of about 0.1sec.  

This large settling time could affect the performance of the CCSC during 

transients. Another important observation from Figure 4.11 (c) is that the DC level of 

sub-module capacitors changes after the CCSC is enabled. The reason behind the 

increase in DC level of capacitor voltages is certainly an undesired behavior and can 

severely affect the performance of MMC by limiting the available operating region 

during balance as well as unbalance supply conditions. Therefore, the effect of circulating 

current suppressing controller on capacitor voltages needs to be investigated and a 

solution to maintain the capacitor dc level needs to be found. 

 

4.3.2 EFFECT OF CIRCULATING CURRENT CONTROL ON CAPACITOR VOLTAGES 

The circulating current controller has two components i.e. DC bias and 2
nd

 

harmonic negative sequence component. The DC bias contributes to the DC bus current 

but the 2
nd

 harmonic only circulates between three phase legs as long as it is a three-phase 

symmetric component. Any asymmetry in this three-phase 2
nd

 harmonic component 

would result in ripples in DC bus current. In order to remove the 2
nd

 harmonic from phase 

leg currents the CCSC controller injects dc bias and 2
nd

 harmonic in the modulating 
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signal. The injected 2
nd

 harmonic minimizes the circulating current. But the added dc bias 

in the modulating signal causes it to drift away from the 0.5 axis of symmetry. The 

modulating signal swings between 0 and 1. When the modulating signal of upper arm 

goes above 0.5 at the same time the modulating signal of lower arm goes below 0.5. This 

causes to create 180deg phase shifted voltages on upper and lower arm. The 0.5 axis of 

symmetry is important to keep the correct DC voltage level on all sub-module capacitors. 

When upper arm and lower arm modulating signals are symmetric about 0.5, it 

guarantees that at any given instant of time the total number of capacitors connected 

across the DC bus = N, where, ‘N’ is number of sub-modules in each arm. 

 It is desired that each capacitor must maintain their DC level all the time and the 

DC level across each capacitor is equal to (Vdc/N). This allows creation of a symmetric 

staircase waveform at the converter outputs (i.e. phase leg midpoints). However, if more 

than N numbers of capacitors are connected across DC bus then in steady state the 

voltage across each capacitor would be less than (Vdc/N) and if a lower number of 

capacitors are connected then in steady state the capacitor voltage would be more than 

(Vdc/N). Figure 4.12 illustrates the above explained phenomenon.  

During balanced supply condition, before CCSC is enabled, the modulating 

signals (Figure 4.12 (a) and (b)) are symmetric about 0.5 which produces certain NON 

waveform. Addition of upper arm and lower arm NON is equal to 6 as shown in Figure 

4.12 (e). This constant 6 number of capacitors across DC bus keeps all upper arm as well 

as lower arm capacitor dc level to a constant as given by, 
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When the CCSC is activated at 0.2 second the modulating signal goes away from 

the 0.5 axis of symmetry. This means total number of capacitors connected across DC 

bus in each phase leg is not equal to N (or 6 in this case). In fact the total number of 

capacitors across DC bus lies somewhere between 6 and 4 and this causes to increase the 

steady state dc level across each capacitor. Figure 4.12 (f) shows that the capacitor 

voltage dc level is approximately 150Volts in steady state after the CCSC is enabled.  

This behavior of the circulating current controller causes to put a limit on the 

amount of reduction that can be achieved in the circulating current 2
nd

 harmonic without 

exceeding capacitor voltage ripple constraints. A trade-off between reduction in 2
nd

 

harmonic and capacitor voltage ripple would then be required to achieve the best possible 

result during balance and unbalance supply conditions. 
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Figure 4.12 Effect of circulating control on modulating signals, NON and capacitor 

voltages 
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4.3.3 MODIFIED CIRCULATING CURRENT CONTROLLER  

In order to overcome the limitation of traditional circulating current controller 

performance a technique is proposed that maintains the average value of the voltages 

across all sub-module capacitors during unbalanced current conditions. The block 

diagram of this modified CCSC technique is shown in Figure 4.13. In traditional 

circulating controller only upper and lower arm currents are added to compute circulating 

current. But this current also has dc component which affects the performance of 

circulating current controller by changing capacitor dc level. Therefore, a more accurate 

technique proposed in Figure 4.13. In this technique instead of subtracting one third of dc 

bus current from phase leg current the dc component of phase leg current can be 

extracted using RDFT algorithm and then subtract it from circulating current equation. 

This leaves behind only 2
nd

 harmonic component of circulating current. Due to this 

technique the circulating current controller only sees 2
nd

 harmonic components and only 

produces the control signal for minimizing it. The results are shown in Figure 4.14.  
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Current
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Current

Phase ‘x’ Upper (or 
Lower) arm Current

RDFT for DC component

+
+

 -

Sinusoidal component of 
phase ‘x’ circulating current
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To CCSC

 

Figure 4.13 Block diagram of circulating current’s 2nd harmonic extraction 
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Figure 4.14 Modified Circulating current controller maintains capacitor’s DC level 

As shown in Figure 4.14 (a) and (b) during balance supply conditions before and 

after CCSC is enabled the modulating signal for upper arm as well as lower arm does not 

change its DC bias and it is fixed to 0.5; corresponding NON and their addition is shown 

in Figure 4.14 (b), (d) and (e). Figure 4.14 (e) shows that a 2
nd

 harmonic control signal is 

added across phase leg total NON. It is clearly seen that 2
nd

 harmonic is added on top of dc 

value of 6. That means in steady-state average value of capacitors across dc bus is 

maintained to 6 and the 2
nd

 harmonic component is inserted to minimize the circulating 

current. Figure 4.14 (g) shows the circulating current minimizes to vary small value very 
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quickly and there is no transient either. Figure 4.14 (f) shows the capacitor voltages of 3 

phase legs and it is pretty evident that their dc level is not at all affected by enabling of 

CCSC. These results show great promise to maintain the operating region of MMC with 

CCSC and improve it during unbalance supply compared to traditional control 

approaches. 

 

4.3.4 CONTROLLER PERFORMANCE UNDER VARIOUS FAULT CONDITIONS 

This section discusses performance of CPC based controller and modified CCSC 

for MMC during single-phase as well as two-phase grid fault conditions.  

In order to study performance of CPC controller during unbalance situation it is 

required to define the technical meaning of voltage unbalance. According to [47] a 

definition of the percentage voltage unbalance can be given by using the ratio of negative 

sequence voltage component to the positive sequence voltage component. From [47] the 

percentage ‘Voltage Unbalance’ factor (% VU), or the true definition, is given by, 

 

(4.18) 

 

The positive and negative sequence voltage components are obtained by resolving 

three-phase unbalanced line-to-ground voltages , &V V Va cb
 into two symmetrical 

components &V Vp n . The two balanced components are given by, 

 

(4.19) 
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(4.20) 

 

Where, 1 120o    and 2 1 240o   . 

Once the percentage voltage unbalance is known then the performance of 

proposed control system can be measured with respect to percentage unbalance.  

By using RDFT modules the grid voltage can be decomposed into fundamental positive 

and negative sequence components. The percentage unbalance can be then found using 

equation (4.18).  

Figure 4.15 shows performance of the proposed controller under moderate and 

severe unbalance conditions in the MMC system. The term VU at the top of figure is 

used as an abbreviation for ‘Voltage Unbalance’. As shown in Figure 4.15 (a) initially a 

single phase to ground fault occurs at 0.2 sec which give approximately 50% unbalance 

and two-phase to ground fault occurs at 0.4 sec creating almost 100% unbalance. Figure 

4.15 (b) shows the resulting phase currents whereas Figure 4.15 (e) shows active power 

and dc side power. As can be seen from the active power waveform, the CPC controller 

maintains the active power reference command during balance as well as severe 

unbalance conditions. After the fault transient, the active power returns to the desired 

reference value. Also, no current and power oscillations are observed in these waveforms. 

The phase currents during unbalance are also sinusoidal and symmetric (magnitude as 

well as phase).  
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Figure 4.15 CPC based control performance under 1-phase to GND fault 

The penalty for keeping the active power constant during unbalance conditions is 

that the peak value of phase currents is increased in order to compensate for the reduction 

in RMS value of three-phase voltage. During two-phase to ground fault only one phase 

has source of energy and therefore large currents needs to be drawn from that phase and 
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distribute energy to the other two phases to maintain desired active power level, 

symmetric currents and also to keep the sub-module capacitors (especially the phases 

under fault) charged to desired level all the time.  

Due to the increased RMS value of phase currents the I
2
R losses in the arm 

inductors and semiconductor devices also increases which causes to decrease the DC 

power level. Note that AC power is same as before the fault but the converter internal 

losses increases, therefore, less power is transferred to the DC side during unbalance 

conditions. From Figure 4.15 (d) shows the circulating currents which are also stable but 

changes as unbalance occurs. Figure 4.15 (c) shows the upper arm sub-module capacitor 

voltages of three-phase legs (one capacitor from each) and it is clearly seen that as RMS 

value of phase current increases the fundamental ripple of capacitor voltage also 

increases which could go well beyond (+/-) 10% of nominal value.  

In Figure 4.15 (e) it can be seen that although the active power is maintained 

during unbalance the dc side power is significantly lower. One possible strategy to 

maintain dc side power constant during unbalance is discussed in following section. 

 

4.3.4.1 MAINTAINING DC POWER CONSTANT DURING UNBALANCE CONDITIONS 

In order to keep dc side power constant a simple method is proposed. The 

instantaneous dc side power is compared with desired dc power and the remainder is 

added to the active power reference. This method can be accomplished by making some 

simple modifications in the existing control structure. The equation used for this method 

is as shown below. 
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(4.21) 

 

 

The implementation block diagram for this equation is shown in Figure 4.16.  
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Figure 4.16 Method for keeping DC side power constant 

Figure 4.17 shows the result of proposed strategy during unbalance condition. 

From Figure 4.17 (e) it is evident that during single phase fault the active power is 

increased in order to compensate for the losses caused by converter ckt and hence the dc 

power is closer to the desired reference value compare to Figure 4.17 (e).  

As the voltage unbalance is further increases during two-phase to ground fault the 

active power reference is increased to much higher value but in this time the I
2
R losses 

are so high that only negligible power is sent to dc side. Therefore, this method fails to 

achieve desired goal during severe unbalance conditions. 

From Figure 4.17 a conclusion can be made that although this CPC based control 

structure maintains desired active power reference, sinusoidal & symmetric currents 

during unbalance it is not suitable in practical systems due to the large value of phase 

currents, capacitor voltage ripples and power losses during unbalance conditions. 
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Therefore, in order to ensure that the control maintains within a feasible operating region 

some modifications are needed as discussed in the following section.  

 

Time (Sec)

2-phase to GND fault
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Figure 4.17 Keeping DC power constant irrespective of fault 
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4.3.4.2 LIMITING PEAK PHASE CURRENTS UNDER GIVEN CONSTRAINT 

As explained in the previous section the requirement for keeping active power 

constant during unbalance is that the phase current peak value must be increased. In 

practical applications the increase in peak values of currents could easily exceed the 

maximum tolerable current limits of semiconductor as well as passive devices. Therefore, 

to avoid exceeding the device current constraints some technique must be implemented to 

avoid device overcurrent during fault conditions. This section proposes a simple method 

to achieve this goal.  

In this method the active and reactive power references are defined as a function 

of instantaneous normalized three-phase RMS value of positive sequence fundamental 

voltage component. During balance supply this coefficient is equal to 1 and the active 

and reactive power references are unchanged. But during unbalance this coefficient 

would decrease (min possible value is 0) and hence the active and reactive power 

references would also reduce proportionally. Since power references are reduced in 

proportion to the reduction in three-phase RMS value of grid voltages the phase current 

magnitude should remain constant. 

An equation that defines the relationship between modified AC power reference 

and grid voltages is as shown below,  

 
(4.22) 

 

Where, 

 

(4.23) 
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During balanced supply conditions k=1, but during fault conditions k would 

decrease depending on the magnitude of fault. Figure 4.18 shows the block diagram of 

this method. The symbol ‘x’ represents multiplication. 
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Figure 4.18 Method to maintain phase current within constraints 

 

Figure 4.19 shows the effectiveness of the proposed method to keep phase 

currents constant during unbalance conditions. The superiority of this method along with 

CPC control over traditional methods is highly evident looking at Figure 4.19 (b) and (e) 

i.e. phase currents and active/dc powers. Although the fault event is step change the 

power references changes ever so smoothly that the phase currents do not at all show any 

transient behavior during or after severe fault events.   
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Figure 4.19 Keeping phase currents constant irrespective of fault 
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4.3.4.3 PERFORMANCE EVALUATION UNDER PHASE TO PHASE FAULT 

The performance is next evaluated for phase-phase faults. The phase-phase fault 

is generated by injecting unbalance impedance between grid supply and the MMC 

system. The unbalance impedance causes to change voltage magnitudes as well as their 

phase relationship. The block diagram for creating phase-phase faults is shown in Figure 

4.20. 

MMC 
3-phase grid 

supply

3-phase Series 
impedance

unbalanced 
Parallel impedance

s/w

 
Figure 4.20 Phase to phase fault creation method 

 

By using the circuit shown in Figure 4.20, a phase-to-phase fault that generates 

approximately 50% unbalance was simulated and the resulting waveforms are shown in 

Figure 4.21. From the results it can be seen that the phase currents are symmetric all the 

time (even during transients). Capacitor voltages return to steady-state after about 3 

fundamental cycles. Circulating currents and their dependent dc current have slight 

transients but they also reach steady state within 0.2 sec. It is important to note that any 

transient on dc side would take slightly longer to reach steady state than ac side because 

the large value of sub-module capacitances introduces longer time constants for energy 

routing through the system.  
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(a)
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Phase-to-Phase fault Reactive Power
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Figure 4.21 Performance under phase-to-phase fault 
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4.3.4.4 PERFORMANCE EVALUATION UNDER NON-SINUSOIDAL SUPPLY VOLTAGES  

Previous sections discussed different fault conditions but the supply only had 

fundamental voltage component. This is not always the case in practical systems. Due to 

various types of non-linear loads distributed in power systems the supply voltage at the 

point of connection to a MMC may have some level of distortion. 

Here the control will be further extended in order to prevent performance 

degradation due to supply voltage distortion The modification is done by adding RDFT 

module to extract the fundamental component from grid supply voltages. The RDFT 

module is computationally efficient and can be used for extracting the desired frequency 

components as explained earlier in this chapter. Although individual RDFT block only 

extracts one frequency component, by using combination of RDFT modules can allow to 

extract positive, negative and zero sequence components of that desired frequency 

component. This further increases the efficiency of RDFT modules when implemented on 

DSP processor. Figure 4.22 shows the method to real-time extraction of fundamental 

frequency component as well as positive and negative sequence components present in 

the grid supply. 

The simulation model is modified to incorporate the method described in Figure 

4.22. The CPC controller now acts only on positive sequence voltage component to 

produce sinusoidal phase currents and desired power output. This new control structure is 

also validated for non-sinusoidal supply conditions and the results are shown in Figure 

4.23.  
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Figure 4.22 RDFT based fundamental frequency and symmetric component extraction 

As shown in Figure 4.23 several different harmonics are injected in grid voltages 

at 0.2 sec. The injected harmonics are 2nd, 3rd, 4th, 5th, 6th, and 7th with 10Vrms each 

and selected random phase angles. This produces grid voltage THD of about 25% as 

shown in Figure 4.23 (C).  

The resulting phase current THD is approximately 2.5%. The active and dc 

powers have negligible effect of harmonics injected in grid voltage. As shown in Figure 

4.23 (b) & (d) the phase current’s symmetry and sinusoidal shape are barely affected by 

non-sinusoidal grid voltages with high THD of about 25%. DC side power is also only 

slightly affected.  
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Figure 4.23 Performance under non-sinusoidal supply conditions 

 

This chapter discussed some novel methods (CPC based control for MMC, 

modified CCSC, modified power reference generation etc.) to improve the performance 

of modular multilevel converter during unbalance supply conditions that includes phase 
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to ground faults, phase to phase faults and non-sinusoidal supply voltages. The CPC 

based control assures that only positive sequence symmetric currents are always injected 

in to the grid. One of the main concerns in MMC during unbalance supply conditions is 

to keep the capacitor voltages balanced at their nominal DC voltage value. The modified 

CCSC method accomplishes this goal. Together these methods produce ripple free power 

on both ac and dc sides of a MMC. The modified power reference generation method 

assures that the current limits of semiconductor devices do not exceed their maximum 

limit by adjusting power reference as a function of three-phase RMS voltage value.  
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CHAPTER 5  

ESTIMATION AND EXTENSION OF MODULAR MULTILEVEL 

CONVERTER OPERATING REGION UNDER UNBALANCE SUPPLY 

 

Modular Multilevel Converters are highly dynamic, nonlinear and time varying 

systems. CPC based control system that was developed in chapter 4 assures good 

performance of a MMC under balance as well as any type of unbalanced supply voltages. 

It is important to know the operating region of the MMC as a function of all expected 

supply conditions in order to optimize parameters of the MMC system during the design 

process. The function of the operating region with respect to key system parameters also 

ensures that the operating region can be maximized. 

This dissertation proposes a novel approach for determining the operating region 

of a MMC under various input conditions using a simple average model that allows quick 

calculation of many system parameters by solving a few equations as will be explained in 

the following section. 

The goal of this method is to derive a set of equations that solve for submodule 

capacitor voltages (fundamental and 2
nd

 harmonic) and circulating current amplitude for 

given grid voltages and power references. Since the average model equations can be 

solved very quickly results can be obtained for many input conditions within a reasonable 

time by computer. Results presented here were obtained using Matlab.  
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5.1 DEVELOPING AVERAGE MODEL FOR ESTIMATION OF VARIOUS MMC 

PARAMETERS 

Consider a simplified one phase leg of MMC system as shown in Figure 5.1.  

AC

Vdc/2

Vdc/2
Vg

Ro

Lo

Ro

Lo

Ig

_arm UPC

_arm LOWC

_arm lowi

_arm upi

 

Figure 5.1 MMC phase leg with average model of arm capacitance 

In this the arm sub-modules are represented as equivalent single linearly variable 

capacitor whose capacitance is inversely proportional to arm reference signal and its 

voltage is directly proportional to arm reference signal. The assumption of single linearly 

variable capacitor is done by neglecting switching harmonics present on the capacitor 

voltages and assuming that all the capacitors in an arm has exactly same voltage 

waveform. This assumption loses the information about capacitor voltage unbalance and 

effect of switching frequency but it does preserve the information about average value of 

capacitor voltage, fundamental voltage ripple magnitude on capacitors. 

Using CPC theory fundamentals to the three-phase average model MMC system 

the following equations can be written, 
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(5.1) 

 

where, P is Active power, Q is reactive power, Vg is grid voltage, Ge and Be are 

equivalent conductance and reactance seen from grid side, respectively.  

The CPC control method that is proposed in chapter 4 considers fundamental 

positive sequence grid voltage component as a reference voltage component. Therefore, 

the equation for active and reactive grid current components can be written as, 

 

 

 

(5.2) 

 

Total grid phase current then becomes, 

 
(5.3) 

 

Using KVL the phase current can be written as, 

 

(5.4) 

 

where, convV  is the virtual converter voltage created by combination of upper and lower 

arm inserted voltages. The equation for convV  is given by, 

 

(5.5) 

 

The converter voltage  convV  is direct function of upper arm and lower arm inserted 

voltages whereas the upper and lower arm voltages are direct function of their respective 

modulating (also called Vref) signals. Therefore, convV  is also direct function of Vref.  
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From the control structure of MMC the Vref can be solved as a function of convV . 

 

(5.6) 

 

Above formulae allows to directly calculate control Vrefs by simply using active/reactive 

power reference and instantaneous grid voltages. By knowing the Vrefs the sub-module 

capacitor voltage ripple and circulating current magnitudes can be computed. 

The factors that decide the voltage waveform of capacitor are Vref, arm current, 

number of sub-modules in the arm and the voltage balancing algorithm. As explained in 

chapter 2, the sub-module capacitors are inserted and removed to/from the arm as defined 

by Vref (sinusoidal wave shape). Due to this fact the total capacitance inserted across the 

arm is also function of Vref The capacitance inserted across the arm, also called armC , 

must be known in order to find out voltage ripple shape of sub-module capacitor. The 

arm current of MMC flows through this armC which induces voltage ripple across all the 

sub-modules in the arm. This ripple actually consists of many harmonics (which will be 

shown later in this section), but the fundamental and 2
nd

 harmonics are most important 

and dominant ones. The fundamental frequency ripple is direct function of active and 

reactive power, whereas, the 2
nd

 harmonic voltage (and other negligible higher order even 

harmonics) is the result of varying capacitance across the arm and causes circulating 

current to flow within the phase legs. The arm capacitance is series connection of sub-

module capacitors. The arm capacitance can be given by the equation, 

ON

arm
Co

C
N

   (5.7) 
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where, ONN  is number of sub-modules to be connected in the arm and Co is sub-module 

capacitance.  

In practice, & ONarmC N are discrete staircase waveforms which are functions of 

Vref, but for average model those quantities can be assumed to be a linear function of 

Vref. This greatly simplifies relationship between Vrefs, arm capacitance and arm 

inserted voltages. 

A linear version of ONN can be written as, 

 
(5.8) 

 

where, ‘N’ is total number of sub-modules in an arm. 

The armC then becomes, 

 

(5.9) 

 

The arm current is given by,  

 

(5.10) 

 

Note that both upper and lower arm currents have same magnitude but they are180 deg. 

phase shifted.  

By knowing armC and armI  the total voltage change across the arm capacitor over 

one fundamental period can be found. Note that, armI is sinusoidal, but armC is inversely 

proportional to sinusoidal term Vref. The solution for current flowing through arm 

capacitor is given by following equation, 
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(5.11) 

 

Solving for armVc , 

 

(5.12) 

 

Solution of above equation gives total voltage ripple across the arm capacitor over 

one grid fundamental cycle. This total voltage ripple is distributed equally across each 

sub-module capacitor of that arm due to the use of voltage balancing algorithm. This 

algorithm sorts and selects capacitors to be inserted whenever there is change in ONN . 

Due to this action, any voltage ripple that appears across the arm is equally distributed 

across all the sub-module capacitors in that arm. 

Therefore, the voltage ripple across each sub-module can be given by, 

 

(5.13) 

 

where, ‘N’ is total number of sub-modules in an arm, and ‘x’ is sub-module number from 

1 to N 

Once the voltage ripple waveform over one fundamental cycle is known then the 

harmonic contents in that ripple can be computed. Chapter 4 discussed that RDFT 

provides a very simple and fast computing solution for extracting frequency components 

in time-domain. This RDFT technique can be used to extract 1
st
 and 2

nd
 harmonic 

components in this capacitor voltage ripple (only need to solve over one fundamental 

cycle). Note that the 2
nd

 harmonic of capacitor voltage ripple has same magnitude and 
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phase for both upper and lower arms. That means they both add up in the phase leg. This 

phenomenon can be represented by an equivalent circuit of Figure 5.2. 
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Figure 5.2 Equivalent circuit of circulating current model 

From Figure 5.2 it is shown that the equivalent 2
nd

 order harmonic voltage source in 

series with phase leg inductors will result in a 2
nd

 order harmonic current that flows 

within the three phase legs of MMC. The magnitude of this current can be obtained by 

using following equation, 

 

(5.14) 

 

Using equations (5.1) to (5.14) the capacitor voltage ripple and circulating current 

magnitudes can be easily found as a function of grid voltage and active/reactive power 

references. Equations (5.9), (5.12) and (5.13) are needed to be solved in time domain 

over one fundamental cycle while all other equations can be solved in frequency domain. 

It is necessary to do the time domain calculations since those equations have division by 

sinusoidal and integration terms. Solving above equations in Matlab results were obtained 

for various grid voltage and power reference combinations. The results are compared 
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with simulation model results in order to validate the accuracy of proposed method. The 

results are shown in Figure 5.3 to Figure 5.5.  

 

 
Figure 5.3 Simulation and Average model comparison for Vcw1_pk vs Active power 

 

 

 
Figure 5.4 Simulation and Average model comparison for Vcw2_pk vs Active power 
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Figure 5.5 Simulation and Average model comparison for Icir_pk vs Active power 

 

Figure 5.3 to Figure 5.5 gives a good estimate of desired MMC parameters as a 

function of active power but one drawback is that as active power increases the difference 

between estimated value and simulated value also increases. This is due to the fact that 

the estimation is based on average value model of MMC where the arm capacitance, 

upper arm and lower arm inserted voltages are linear function of time. Whereas, in 

simulation these parameters are affected by simulation time step, switching frequency, 

controller performance and also are discrete function of time.  

Due to these reasons there is a fundamental difference between theoretically 

estimated value and simulated value. This difference can be defined as a percentage error 

and the percent error should be constant over the entire range of operation. If this 

percentage error can be corrected in the average model then the values estimated by 

average model should closely match with the values obtained by simulation. As an 

example, the percent error is found by comparing the values for 10kW. At 10kW 

Vc_sim=1.32V and Vc_estimate=1.6V. Since the error if found with respect to simulated 

results the equation for finding error is given by, 
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( )
% *100sim estimate

sim

Vc Vc
Error

Vc

 
  
 

 

This equation gives error of 23%. This error gives correcting factor of Kerr = (1-0.23) = 

0.77. This factor is then included in the average model and then new results are computed 

for the similar input conditions as before and the comparison results are shown in Figure 

5.6 to Figure 5.8. 

 

Figure 5.6 Simulation and Average model comparison for Capacitor voltage 

peak fundamental ripple vs Active power (with error compensation) 

 

 

Figure 5.7 Simulation and Average model comparison for Capacitor voltage 

peak 2
nd

 harmonic ripple vs Active power (with error compensation) 
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Figure 5.8 Simulation and Average model comparison for circulating current 

peak vs Active power (with error compensation) 

Figure 5.6, Figure 5.7 and Figure 5.8 show that after adjusting for the error factor a very 

close match between simulated values and estimated values was obtained using average 

model of MMC. Upon validating the estimation method the operating region of some 

system parameters can be easily obtained as a function of various combinations of supply 

voltages and power references. A big advantage of this method is that it takes very short 

time to obtain the results as compared to simulation method.  

Using the above method the variation of sub-module capacitor peak voltage as a 

function of active and reactive powers is computed under balance supply and results are 

shown in Figure 5.9. Similarly, the variation of peak circulating current as a function of 

active and reactive powers is also computed under balance supply and the results are 

shown in Figure 5.10.  
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Figure 5.9 Capacitor peak voltage as a function of Active and Reactive Power 

 

 

Figure 5.10 Circulating current peak value as a function of Active and Reactive 

Power 

The results from Figure 5.9 and 5.10 give good estimation of how capacitor 

voltage and circulating current peak changes as a function of active/reactive powers. 

Knowing the operating region of these key system parameters can allow optimization of 

MMC system design process.  
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5.2 EXTENSION OF MMC OPERATING REGION DURING NON-IDEAL SUPPLY 

CONDITIONS 

As discussed in the previous chapter, during unbalance supply conditions the 

active and reactive powers can be maintained constant using CPC control structure but 

the DC side power is reduced due to the increase in converter losses (only inductor 

copper loss was considered in simulation). The converter loss percentage is higher during 

unbalance condition compared to balance condition. This is due to the fact that during 

unbalance condition the faulted phase(s) contributes lower amount in total dc current but 

it still needs to provide significant amount of supply phase current in order to maintain 

three-phase current symmetry on ac side. Therefore the copper losses, conduction losses 

and switching losses are unavoidable for the phase legs under fault. To understand the 

effect of losses on converter performance during balance and unbalance supply 

conditions it is necessary to investigate into converter loss modeling. This dissertation 

proposes a simple method for estimating converter losses. This method can also be 

implemented during runtime to estimate instantaneous losses and can help to extend 

operating limits of MMC during unbalance supply condition. This method and its 

applications are discussed in following sections. 

 

5.2.1 SIMPLIFIED LOSS MODEL DEVELOPMENT 

A loss model of MMC can be built using power loss equations and some 

datasheet parameters of the semiconductor devices used in MMC system. A half-bridge 

MMC has 2 IGBTs and 2 diodes in every sub-module. Therefore it is necessary to find 
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switching and conduction losses associated with both transistors and diodes. The basic 

equations of switching and conduction loss are shown below. 

IGBT Turn-on loss: 

 
(5.15) 

 

IGBT Turn-off loss: 

 
(5.16) 

 

Diode Reverse-Recovery loss: 

 
(5.17) 

 

IGBT Conduction loss: 

 
(5.18) 

 

Diode Conduction loss: 

 
(5.19) 

 

Arm copper loss: 

 
(5.20) 

 

Where, 

_ _&avg T avg DI I are Average currents through IGBT and Diode respectively 

_ _&rms T rms DI I are RMS currents through IGBT and diode respectively 

onK  is slope of IGBT turn-on energy loss calculated from datasheet 

off
K is slope of IGBT turn-off energy loss calculated from datasheet 
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rrK is slope of Diode reverse-recovery energy loss calculated from datasheet 

0CE
V is IGBT collector to emitter voltage drop at zero current 

0D
V is Diode forward voltage drop at zero current 

CE
R is IGBT collector to emitter resistance during on state 

DR is Diode forward resistance during on state 

Computation of 0 0
, , , , , &on rr DCE D CEoff

K K K V V R R is done using datasheet parameters 

and the procedure used is explained in Appendix C. 

Using these equations a good estimate on switching and conduction losses for 

both IGBTs and Diodes in a sub-module can be made. But, in order to achieve that it is 

necessary to compute Average and RMS currents flowing through each of these 

semiconductors. One way to calculate this loss is to use the arm current and instantaneous 

gate pulses of submodules. By knowing the instantaneous gate pulse logical value (0 or 

1) and instantaneous arm current it is possible to determine which of the four 

semiconductor devices is conducting. Note that only one semiconductor device in a sub-

module conducts at a time. This allows to find instantaneous currents through all the four 

semiconductors. Once the instantaneous current is known then average and RMS values 

of the currents flowing through that device can be found.  

Figure 5.11 and Table 5.1 show which device conducts for a given combination of 

arm current direction and gate pulses. 
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Figure 5.11 Various paths Arm current can take through a sub-module 

Table 5.1 Separating sub-module current into individual semiconductor currents 

 

 

 

 

Figure 5-12 shows the block diagram for computing Average and RMS currents. 

 
Figure 5.12 RMS and average current computation block diagram 

Arm current direction Gate pulse ON semiconductor 

+ve 0 IGBT2 

+ve 1 Diode1 

-ve 0 Diode2 

-ve 1 IGBT1 
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Using above method, individual semiconductor currents are calculated and an 

example of such is given in Figure 5.13.The computed Average and RMS currents are 

then used to estimate both switching and conduction losses for each semiconductor 

device. Not that the Average and RMS currents are updated once every fundamental 

cycle of arm current.  

Switching losses are computed every time the gate pulse toggles between 0 and 1. 

The possible switching transitions are shown in Table 5.2.  

Table 5.2 Semiconductor switching transitions 

Arm current direction Gate pulse transition Switching Transition 

+ve 0 to 1 IGBT2 turns OFF 

+ve 1 to 0 
IGBT2 turn ON 

Diode1 turns OFF 

-ve 0 to 1 
IGBT1 turn ON 

Diode2 turns OFF 

-ve 1 to 0 IGBT1 turns OFF 
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(a)

(b)

(c)

(d)

(e)

(f)

Time (sec)
 

Figure 5.13 Extraction of individual semiconductor currents using arm current and 

sub-module gate pulse. (a) Arm current (b) sub-module gate pulse (c) IGBT1 current 

(d) Diode1 current (e) IGBT2 current (f) Diode2 current 

Instantaneous switching loss is computed by using the instantaneous arm current 

and using the slopes , &ffoon rrK K K  which are found from datasheet. Once the energy 
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loss is known then the power loss can be easily computed. The conduction losses on the 

other hand are updated every time the average and RMS currents are updated, which is 

once per fundamental cycle of arm current.  

Once the RMS and average currents are found as shown in Figure 5.13, then the 

power losses can be computed for the sub-modules in each arm. Figure 5.14 shows the 

power losses (switching +conduction) for six sub-modules in upper arm of phase leg A. 

Since all the sub-modules in an arm share the same arm current and the voltage across 

each sub-module (capacitor voltage) is also the same due to the voltage balancing 

algorithm (Figure 2.19) they all exhibit similar power loss in steady state. Due to this 

reason calculation of power loss for one sub-module in an arm is enough in order to 

minimize computational effort while still providing reasonable accuracy.  

 

Figure 5.14 Power loss comparison of all sub-modules in an Arm 

Using above results the switching loss, conduction loss are calculated for one sub-

module in each arm and then multiplied by total number of sub-modules in one arm 

(which is six in this case). Then all the six arm’s switching, conduction and copper losses 

are added together to get the total power loss in the system. This total power loss is then 
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subtracted from the active power in order to get better estimation of dc power. The results 

of above mentioned power loss calculation method are shown in Figure 5.15.  
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Figure 5.15 Powers under balance conditions (a) Active power, DC power and power loss 

(b) Total switching, conduction and copper losses 

The run-time loss modelling discussed above is very useful in order to extend the 

operating limit of the MMC during unbalance supply conditions as explained in the 

following section.  

  

5.2.2 DC POWER TRANSFER LIMIT UNDER UNBALANCE SUPPLY 

As discussed in chapter 4 (Figure 4.15), keeping power reference constant during 

unbalance supply conditions is not feasible. This is due to the fact that, for faults the 

positive sequence voltage component magnitude is much smaller than the nominal value. 

If the power reference is kept constant during such conditions then the supply phase 

currents will increase in order to keep the active power constant. Increase in supply phase 
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currents above their maximum allowed limit will damage the active and passive elements 

in the system.  

A simple solution for this problem was proposed in chapter 4 (Figure 4.19). In 

this method the power references (both active and reactive power) are made function of 

three-phase positive sequence voltage RMS value. This ensures that phase currents are 

kept under the limit for various unbalanced situations as shown in Figure 4.19, Figure 

4.21 and Figure 4.23. These results are the best possible to achieve when the converter is 

operating at its maximum rated power. But when the converter is operating below its 

rated power then this method seems to limit the performance of system. This limitation is 

demonstrated in Figure 5.16 and Figure 5.17.  

For desired Pac_ref=30kW
 we get Pdc=16.6kW

 

Figure 5.16 Power transfer using reference reduction method (from chapter 4). 

In this case, for a particular unbalance supply (that gives three-phase RMS 

voltage of 0.66p.u.) the power conversion performance is plotted for different active 

power values. As seen from Figure 5.24, due to the unbalance condition the resulting dc 

side power is well below the desired power references. This is due to the reason that the 

desired ac power reference is reduced as a function of positive sequence voltage 

magnitude and therefore the dc power also reduces.  
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Consider a test case of Figure 5.17 where the converter is operating at half of its 

rated power (30kW). Then, during unbalance conditions this power will be further 

reduced to 20kW (proportional to positive sequence Vrms) and so will be the DC power. 

But doing this keeps the phase currents unchanged to maintain P=V*I relation. As seen 

from Figure 5.17 (b) during fault the phase currents are still below the maximum current 

limits of converter. The maximum possible supply phase current is what the converter 

needs to handle at rated power of 60kVA which is 235A peak. This means there is a 

possibility to increase the dc power to the desired value (or as much close as possible to 

the desired value) by letting the phase currents increased within their defined limits.  

Time (sec)

(a)

(b)

(c)

Phase A fault event

Converter operating 
below rated power 

It may be possible to keep DC 
power constant during fault

 

Figure 5.17 Converter operating below rated power during fault 
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It will not be possible to keep dc power constant all the time (depends on power 

reference, fault severity and other system limits) but by effectively using a system’s 

maximum power dissipation capacity, the system’s ability to work at the best possible 

operating point under any unbalance supply conditions can be certainly increased. A 

novel method to achieve this goal is presented in the following section. 

 

5.2.3 EXTENDING THE DC POWER TRANSFER LIMIT 

Extension of dc power transfer limit during unbalance supply conditions can be 

accomplished by increasing active power reference until desired dc power is achieved or 

until system reaches to its maximum possible power dissipation capacity, the latter being 

most important one. A converter system is designed to dissipate certain amount of loss at 

rated power using heat-sink, liquid or air cooling mechanism etc. Under no condition this 

power dissipation limit should be exceeded. Although the active devices has maximum 

current limit, excessive power loss due to switching and conduction losses can cause 

degrading or destruction of the device. This can occur even if the device current is below 

its maximum current limit. For presented MMC design the maximum power loss could be 

10kW at full rated power of 60kW based on Figure 5.15 (a). The power loss modeling as 

discussed earlier in this chapter can now be used to extend the operating limits of MMC. 

There are two ways to modify the active power reference which are discussed in 

following section. 
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5.2.3.1 USING MEASURED DC POWER AS FEEDBACK 

The dc power is obtained by multiplying instantaneous dc bus voltage and dc bus 

current. Although the dc bus voltage is fairly constant (mainly due to phase leg 

capacitors) the dc bus current on the other hand is not as smooth. Due to the switching 

harmonics and low frequency non-periodic harmonics introduced by circulating current 

controller into the dc bus current, it cannot be directly used to compute dc power. Note 

that, the attempt is to modify active power reference value which should be as constant as 

possible in steady-state. The active power controller is designed for very low crossover 

frequency (3 Hz) in order to avoid interference with current control loop. Therefore, the 

dc power with switching and low frequency harmonics cannot be directly interfaced with 

the active power reference modification method. One solution is to compute RMS value 

of dc current and then compute the DC power. The block diagram to modify active power 

reference using dc current is shown in Figure 5.18.  

This algorithm updates active power reference value once per switching event. 

This is the fastest the modulating signal can be updated in the hardware system. The flow 

chart in Figure 5.18 explains how the active power reference is increased or decreased 

based on resultant dc power and/or instantaneous system losses. The result of 

implementing this algorithm is shown in Figure 5.19. 
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Figure 5.18 Power reference modification algorithm (using DC current RMS value) 
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Figure 5.19 Performance of power reference modification algorithm (using DC current) 
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In Figure 5.19, the converter is operated at half the rated power prior to fault 

event (at t=0.2sec). After the fault event the active power reference is reduced (same 

method as in Figure 4.19 (e) and converter has new steady state with reduced active and 

dc powers. At 0.5sec the algorithm from Figure 5.18 is enabled to modify the active 

power reference in order to increase the dc power to its desired value. The active and dc 

powers do increase but they have low frequency oscillations in steady-state. This is due 

to the fact that even the RMS value of dc current is not stable enough to produce a stable 

feedback. Any oscillations in RMS dc current will cause further oscillations in active 

power reference which will cause oscillations in dc current and the process will repeat. 

This oscillatory feedback can also cause instability in system during transients. Therefore 

this method cannot be used to modify the active power reference value. 

 

5.2.3.2 USING COMPUTED POWER LOSS AS FEEDBACK 

The block diagram for this method is shown in Figure 5.20. From Figure 5.15 it is 

observed that the computed losses are not affected by switching and low frequency 

harmonics and therefore has very low ripple as compared to instantaneous or RMS dc 

power. Therefore, the simplified loss model can be used in the power modifying 

algorithm.  

Figure 5.20 is logically similar to Figure 5.18 except that the dc current feedback 

is replaced with power loss as a feedback and then the dc power is computed by 

subtracting power loss from active power. The results for this method are shown in 

Figure 5.21.  
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Figure 5.20 Power reference modification algorithm (using simplified Loss model) 
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Figure 5.21 Performance of power reference modification algorithm (using Loss model) 
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Fault event and algorithm (from Figure 5.20) enabling events are similar to Figure 

5.19. From Figure 5.21 (a) it can be seen that the algorithm successfully modifies active 

power reference such that the dc power meets desired power ref and while doing that the 

power loss does not exceed 10kW limit, which is rated power loss dissipation capacity 

for designed MMC. The active and dc powers have negligible ripple in steady state. This 

method is further validated under phase-to-phase faults and two-phase to ground fault. 

The desired dc power in this test is 30kW. The results of this test are shown in Figure 

5.22. 

Figure 5.22 shows that during phase-phase fault the algorithm is able to raise the 

dc power to the desired value of 30kW while during two-phases to ground fault the 

positive sequence voltage RMS value decreases significantly which causes to increase 

losses rapidly even for low power transfer to dc side and therefore when dc power 

reaches 18kW the power losses hit 10kW limit and the algorithm successfully stops 

further increase in active power reference and steady-state is reached.  

A comparison of resultant dc power using reference reduction method from 

chapter 4 and reference modification using power loss method is shown in Figure 5.23.  

Using first method (from chapter 4) the power reference is reduced as a function 

of positive sequence voltage component of grid voltage. This method cannot be used to 

achieve desired power reference during unbalance condition. Whereas, using second 

method the best possible operating point for power reference is generated by algorithm of 

Figure 5.20 which allows to achieve desired power references under many unbalance 

supply conditions. 
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Figure 5.22 Performance of proposed method to extend the dc power transfer limit during 

unbalance supply 
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Figure 5.23 Comparison of two power reference modification methods during unbalance 
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Based on this loss calculation method power losses for various types of unbalance 

supply conditions can be obtained. Figure 5.24 shows comparison between two methods 

of active power reference modification under various asymmetric supply conditions. In 

method 1 the power reference is function of three-phase positive sequence voltage RMS 

value whereas in method 2 active power reference is function of three-phase positive 

sequence voltage RMS value, run-time loss and DC side power.  

Figure 5.24 (a) shows that in method 1 the resultant dc power is linear function of 

supply asymmetry whereas (b) shows that under all unbalance test conditions the 

resultant dc power is linear function of asymmetry in some region and then saturated as 

the power reference is further increased. In Figure 5.24 (b) and (d) the saturation that 

happens in each test case indicates that the power loss maximum limit has reached and 

further increase in desired power reference will not increase dc power but will keep it 

constant to that level.  

Figure 5.24 (c) shows that since the power reference is always proportional to the 

supply asymmetry the power loss for all unbalance test cases should be same.  

As voltage asymmetry increases the phase leg(s) under fault needs more and more 

energy from other phases to keep their capacitors charged to the nominal value and also 

generate sinusoidal phase currents. Therefore as voltage asymmetry becomes severe the 

system suffers higher power losses even for lower amount of power transfer. Figure 5.24 

(e) shows the system’s efficiency as a function of unbalance test cases.  
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Figure 5.24 Comparison of performance of two active power reference modification 

methods for various unbalance test cases 
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The results obtained so far are for two reference modification methods. Similar 

results are obtained for the case where the power reference is always fixed regardless of 

the unbalance supply condition. All these results are then plotted in more intuitive way 

(surface plots) in order to obtain better understanding of how operating region of MMC is 

affected by different reference calculation methods. The results are shown in Figure 5.25 

and Figure 5.26.  

Figure 5.25 shows the DC power transfer capability of three different reference 

calculation methods. In Plot (a) the reference is fixed therefore it supplies maximum 

possible power to the dc side. Plot (b) shows that the power reference is modified as a 

function of three-phase positive sequence RMS voltage (Vrms) therefore the DC power 

also decreases as a linear function of Vrms. Plot (c) on the other hand has properties of 

both plot (a) and (b). Corresponding power loss vs desired power reference and Vrms is 

shown in Figure 5.26.  

Figure 5.26 (a) has unfeasible power losses if the active power reference is kept 

fixed during the unbalance conditions. Figure 5.26 (b) shows that for a given desired 

power reference the losses are constant during various unbalance conditions which means 

the DC power has to decrease accordingly (as seen from Figure 5.25 (b). Whereas, plot 

(c) shows that this method utilizes system’s power dissipation capacity to its maximum 

potential. From Figure 5.25 (c) and Figure 5.26 (c), it can be observed that under all the 

tested unbalance conditions some of the operating region of MMC achieves the desired 

power on dc side while remaining region operates at maximum power loss dissipation.  
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(a)

(b)
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Figure 5.25 DC Power vs Desired Power Ref vs supply unbalance for three Ref 

calculation methods 
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(a)

(b)

(c)

 

Figure 5.26 Power Loss vs Desired Power Ref vs supply unbalance for three Ref 

calculation methods 
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Based on the above results for different unbalance supply test cases it can be 

concluded that the operating limits of a MMC during non-ideal supply conditions can be 

successfully extended using proposed reference modification method without exceeding 

systems thresholds such as device voltage ratings, current ratings and thermal dissipation 

limits. 
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CHAPTER 6  

CONCLUSION AND FUTURE WORK 

 

This dissertation presents a new control method for double star type Modular 

Multilevel Converters, used in utility applications, that enables correct operation under 

non-ideal conditions on the AC side of the converter.  

A detailed mathematical model of a MMC was developed that provides insight 

into the relations between supply currents, circulating currents and converter voltages. 

Based on a literature study a commonly used MMC control system, that implements 

conventional voltage balancing algorithm, phase-shifted carrier modulation, outer power 

controllers, and synchronous frame PI controllers based inner phase current and 

circulating current controllers was developed as a baseline system. The performance of 

the baseline MMC control system was studied under both balanced and unbalanced AC 

supply conditions. It was observed that during unbalance AC supply the conventional 

control system is not capable of maintaining the desired performance of the MMC.  

A new control method based on a frequency domain approach with an appropriate 

orthogonal current decomposition was developed. In this method, by extracting 

fundamental frequency component and performing symmetric component decomposition 

of grid voltages it is possible to generate symmetric sinusoidal supply currents under 

phase-to-phase faults, single phase-to-ground fault, two phases-to-ground fault and non-

sinusoidal supply conditions. The proposed controller ensures that only positive sequence 
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currents are injected into the grid. A simple method for modifying active power reference 

as a function of three-phase voltage RMS value during asymmetric condition was 

suggested. This method ensures that the supply currents and sub-module capacitor 

voltages do not exceed their constraints during asymmetric supply condition. A new 

circulating current controller based on frequency domain decomposition of arm currents 

was also presented which minimizes circulating currents, maintains average voltage 

across each sub-module capacitor at its nominal value and also reduces dc bus current 

ripples during asymmetric supply conditions. The proposed control structure assures that 

ripple free powers are generated on both ac and dc sides during supply asymmetry.  

Typical MMC average models either assume submodule capacitors as ideal 

voltage sources (this gives an ideal modulated staircase waveform across each arm) or 

assume an entire arm as a controlled voltage. In both cases it is not possible to predict 

either the capacitor voltage ripples or the circulating current magnitudes. Therefore a new 

average model of a MMC based on linearly varying arm capacitance and its voltage, both 

as a function of modulating signal, was presented. This average model preserves the 

dynamics of arm inserted capacitance while the effect of switching frequency and voltage 

unbalance is neglected. Therefore, it allows quick calculation of submodule capacitor 

voltage and circulating current magnitudes as a function of desired input voltage and 

power references. By knowing the estimated operating region using the proposed average 

model and constraints on the system parameters, the operating region of MMC can be 

extended under certain power references and asymmetric supply conditions. 

In order to extend the maximum possible power transfer capability of a MMC 

under non-ideal AC supply condition a simplified run-time loss modeling method and a 
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power reference computation algorithm was presented. The loss model provides a run-

time total loss feedback to the power reference computation algorithm. The algorithm 

then computes the maximum possible power that can be exchanged between AC and DC 

systems without exceeding systems thresholds (such as semiconductor current limits, 

system’s power dissipation capability etc.). The proposed loss model based power 

reference modification scheme was shown to extend the operating region of MMC as 

compared to the initial control structure presented in Chapter 4.  

The presented operating region analysis of MMC assumes an average model and 

estimates parameter behavior as a function of system inputs only (grid voltages and 

power references). The scope of operating region analysis can be increased by 

incorporating the effects of submodule capacitance, arm inductance, device switching 

frequency and number of submodules in an arm (i.e. MMC level).  Such an operating 

region analysis method will provide more valuable information to the MMC system 

design process. The operating region extension method presented in this dissertation is 

based on the comparison of certain system parameters and then modifying the power 

references. This method takes about ten fundamental cycles to reach steady-state and also 

cannot achieve zero steady-state error. Therefore there is a scope to improve the 

performance of this method in future work by using either a proportional integral 

controller which operates above power control loop or the power controller itself can be 

modified to include the reference modification algorithm. 
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APPENDIX A  

DESIGN OF TRADITIONAL CONTROLLERS 

 

A.1 PHASE CURRENT CONTROLLER DESIGN 

 

By using the block diagram of Figure 2.9 the equation for open loop transfer function of 

the current control loop is given by,  

 

(A.1) 

The values of controller gains 𝐾𝑝 & 𝐾𝑖 can be found by solving equation (A.1) at desired 

gain crossover frequency (𝑤𝑐) to achieve desired phase margin At gain crossover 

frequency the gain of open loop transfer function is equal to 0dB i.e. the magnitude of 

equation (A.1) is equal to one. Using this criterion the equations for determining 

controller gains are given in equation (A.2) and (A.3). 

 

 
(A.2) 
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(A.3) 

where, 𝑤𝑐 is gain crossover frequency of open loop transfer function and 𝑃𝑀 is phase 

margin at 𝑤𝑐. 

Using these equations the controller gains can be determined for desired system 

parameters. The desired system parameters are given below: 

Sub-module switching frequency = 500Hz. This gives total switching frequency across 

one arm as, 500*Total number of sub-modules in an arm = 500*6 = 3000Hz. 

Therefore, for single update Digital PWM  𝐹𝑠𝑤= 3000Hz and  𝐹𝑠𝑎𝑚𝑝 =  𝐹𝑠𝑤 

 𝑇𝑠𝑎𝑚𝑝 = 𝑇𝑠 =
1

 𝐹𝑠𝑤
  

Selecting open loop gain crossover frequency one order below switching frequency, 

 𝑤𝑐 =300Hz = 1884.5rad/s 

Phase margin is selected to be PM=60deg in order to provide optimum trade-off between 

output oscillations and settling time.  

Ro = 0.1 Ohm, Lo = 1mH and Vdc = 800V. 

For above parameters the values of controller gains are found to be, 

𝐾𝑝 = 0.91 and 𝐾𝑖 = 465. 

Open loop transfer function: (measured between point A and B in Figure 2.9) 

 
(A.4) 

 

Bode plot for this open loop transfer function with PI controller is shown in Figure A.1. 
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Figure A.1 Bode plot of traditional phase current controller open loop TF 

 

Close loop transfer function: 

 (A.5) 

Neglecting some very small coefficient terms from equation (A.5), 

 
(A.6) 

The locations of poles and zeros of closed loop current controller (equation (A.6)) are 

given as below, 
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All the zeros and poles of current control closed loop are negative meaning they lie in left 

half plane of s-plane. Using Nyquist criteria this indicates that the closed loop system is 

stable.  

 

A.2 POWER CONTROLLER DESIGN 

 

By using the block diagram of Figure 2.11 & 2.12 equation for open loop transfer 

function of the power control loop between points A and B can be written as,  

 
(A.7) 

The values of controller gains 𝐾𝑝 & 𝐾𝑖 can be found by solving equation (A.7) at desired 

gain crossover frequency (𝑤𝑐) to achieve desired phase margin At gain crossover 

frequency the gain of open loop transfer function is equal to 0dB i.e. the magnitude of 

equation (A.7) is equal to one. Using this criterion the equations for determining 

controller gains are given in equation (A.8) and (A.9).  

 
(A.8) 

 

(A.9) 

where, 𝑧1, 𝑧2, 𝑝1, 𝑝2 & 𝑝3 are zeroes and poles of close loop transfer function of current 

controller. 

The desired system parameters for power control loop are given below: 
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𝑉𝑝ℎ = 120 ∗ √2 = 170𝑉 

Selecting open loop gain crossover frequency about two order below grid fundamental 

frequency, 

 𝑤𝑐 =3Hz = 18.845rad/s 

𝑃𝑀 =100deg = 628.3rad/s. 

Open loop transfer function:  

 
(A.10) 

Bode plot for this open loop transfer function with PI controller is shown in Figure A.2. 

 

Figure A.2 Bode plot of power controller open loop TF 

 

Close loop transfer function: 

 (A.11) 

 

The locations of poles and zeros of closed loop power controller are given as below, 
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All the zeros and poles of current control closed loop are negative meaning they 

lie in left half plane of s-plane. Using Nyquist criteria this indicates that the closed loop 

system is stable.  

 

A.3 CIRCULATING CURRENT CONTROLLER DESIGN 

 

By using the block diagram of Figure 2-13 the equation for open loop transfer 

function of the current control loop between points A and B can be written as,  

 

(A.12) 

The values of controller gains 𝐾𝑝 & 𝐾𝑖 can be found by solving equation (A.12) at 

desired gain crossover frequency (𝑤𝑐) to achieve desired phase margin At gain crossover 

frequency the gain of open loop transfer function is equal to 0dB i.e. the magnitude of 
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equation (A.12) is equal to one. Using this criterion the equations for determining 

controller gains are given in equation (A.13) and (A.14).  

 
(A.13) 

 

(A.14) 

Using these equations the controller gains can be determined for desired system 

parameters. 

The desired system parameters are given below: 

 𝐹𝑠𝑤= 3000Hz and  𝐹𝑠𝑎𝑚𝑝 =  𝐹𝑠𝑤 

 𝑇𝑠𝑎𝑚𝑝 = 𝑇𝑠 =
1

 𝐹𝑠𝑤
  

Selecting open loop gain crossover frequency same as phase current controller, 

 𝑤𝑐 =300Hz = 1884.5rad/s 

Phase margin is selected to be PM=60deg in order to provide optimum trade-off between 

output oscillations and settling time.  

Ro = 0.1 Ohm, Lo = 1mH and Vdc = 800V. 

For above parameters the values of controller gains are found to be, 

𝐾𝑝 = 1.82 and 𝐾𝑖 = 931.85. 

Open loop transfer function: 

 
(A.15) 

Bode plot for this open loop transfer function with PI controller is shown in Figure A.3. 
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Figure A.3 Bode plot of traditional circulating current controller open loop TF 

 

Close loop transfer function: 

 (A.16) 

Neglecting some very small coefficient terms from equation (A.16), 

 
(A.17) 

The locations of poles and zeros of closed loop current controller are given as below, 

 

All the zeros and poles of current control closed loop are negative meaning they lie in left 

half plane of s-plane. Using Nyquist criteria this indicates that the closed loop system is 

stable.  
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APPENDIX B  

DESIGN OF CPC BASED MMC CONTROLLERS 

 

B.1 PHASE CURRENT CONTROLLER DESIGN 

A first order system in Laplace domain can be represented as  

 

(B.1) 

 

And a proportional-resonant controller transfer function for such system can be defined 

as, 

 

(B.2) 

 

A closed loop transfer function of this system is given by, 

 

(B.3) 

 

By solving equation (B.3), 

 

(B.4) 

 

For this closed loop transfer function a 3
rd

 order Naslin equivalent polynomial is given 

by,
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(B.5) 

 

By matching the coefficients of equation (B.4) denominator (characteristic polynomial) 

and equation (B.5) the solution for system time constant and controller gains is found and 

it is given by equation (B.6). 

; ; 
 

(B.6) 

 

 

Where, 𝜏 is system time constant, 𝑤0 is resonant frequency. 

𝛼 = 4 ∗ 𝜉2 ; 𝜉  is damping factor and 𝛼 is characteristic ratio.  

Using this method the PR controller can be designed for phase current controllers. 

The open loop transfer function of MMC is given by, 

(s)
 

(B.7) 

 

 

(B.8) 

 

For this system the proportional resonant controller transfer function remains the same as 

in equation (B.2). The closed loop transfer function with PR controller and MMC can 

then be written as, 

 
(B.9) 
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(B.10) 

 

where,  

 

(B.11) 

 

The characteristic polynomial of equation (B.10) is given by,  

 

(B.12) 

 

 

Representing equation (B.12) in the same form as equation (B.5) i.e. Naslin Polynomial, 

 

(B.13) 

 

Comparing coefficients of equation (B5.) and equation (B.13) the system time constant 

and controller gains is found as given by equations (B.14) - (B.16) 

 

(B.14) 

 

 

(B.15) 

 

 

(B.16) 

 

Selecting 𝜉  = 0.8 gives 𝛼 = 2.56 & 𝜏 = 0.0042𝑠𝑒𝑐; 𝑤0 = 2 ∗ 𝑝𝑖 ∗ 60 and using given 

system parameters similar to control design in chapter 2 the controller gains are found to 

be, 𝐾𝑝 =  0.7221 & 𝐾𝑟 =  394.64.  
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Putting the values of gains in the Proportional-resonant controller transfer function it 

becomes, 

 

(B.17) 

 

Using equation (B.8), (B.17) and given system parameters the open loop transfer function 

of CPC phase current control loop with controller is obtained as,  

 

(B.18) 

 

 

Bode plot for this open loop transfer function with PR controller is shown in Figure B.1. 

 

Figure B.1 Bode plot of CPC phase current control loop 

 

 

The closed transfer function then obtained as, 

 

(B.19

) 

 

The poles and zeros of closed loop transfer function (B.19) are found to be, 
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From above, P1 & Z2, P6 & Z3, P7 & Z4, P8 & Z7 cancel out each other. Zero 

Z1 is on the right half of plane. There is a pair of complex poles (P5, P6) on the 

imaginary axis which makes system marginally stable. But no poles are in the right half 

plane of the s-plane. Therefore, using the bode plot of Figure B-1 it is found that both 

gain margin and phase margin are positive and acceptable and knowing that there are no 

poles in right half plane of s-plane therefore the closed loop system is stable. 

Using Laplace to z-transformation, equation (B.17) can be converted into discrete 

domain for digital implementation. The discrete transfer function of controller is given by 

equation (B.20) and (B.21). 

 

(B.20) 

 

 

(B.21) 
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B.2 CIRCULATING CURRENT CONTROL DESIGN 

 

 

(B.22) 

 

 

This is same as equation (B.10) except that the value of G is different. For circulating 

current control loop G is given by,  

 

(B.23) 

 

Since closed loop transfer function format is same as phase current control loop 

the characteristic polynomials can be derived from equations (B.11) & (B.12). The 

system time constant and controller gains are then found using equation (B.14), (B.15) & 

(B.16).  

Selecting 𝜉  = 0.65 gives 𝛼 = 1.69 & 𝜏 = 0.0017𝑠𝑒𝑐; 𝑤0 = 2 ∗ 𝑝𝑖 ∗ 120 and using 

given system parameters similar to control design in chapter 2 the controller gains are 

found to be, 

𝐾𝑝 =  1.5565 & 𝐾𝑟 =  1.0552𝑒3.  

Putting the values of gains in the Proportional-resonant controller transfer function it 

becomes, 

 

(B.24) 

 

Using equation (B.8), (B.22) and given system parameters same as in chapter 2 control 

design the closed loop transfer function of CPC phase current control loop is obtained as,  
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(B.25) 

 

 

Bode plot for this open loop transfer function with PR controller is shown in Figure B.2. 

 

Figure B.2 Bode plot of PR circulating current controller loop 

The closed transfer function then obtained as, 

 
(B.26) 

 

The poles and zeros of closed loop transfer function (B.24) are found to be, 
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From above, P1 & Z2, P6 & Z3, P7 & Z4, P8 & Z7 cancel out each other. Zero 

Z1 is on the right half of plane. There is a pair of complex poles (P5, P6) on the 

imaginary axis which makes system marginally stable. But no poles are in the right half 

plane of the s-plane. Therefore, using the bode plot of Figure B-2 it is found that both the 

gain margin and phase margin are positive and acceptable and knowing that there are no 

poles in right half plane of s-plane therefore the closed loop system is stable. 

Using Laplace to z-transformation, controller transfer function can be converted into 

discrete domain for digital implementation. Using similar formula as in equation (B.20) 

the discrete transfer function of controller is given by, 

 

(B.27) 
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APPENDIX C  

ESTIMATION OF IGBT AND DIODE PARAMETERS 

 

This section explains computation of various IGBT and Diode parameters using 

datasheet. Semikron SEMiX252GB126HDs IGBT is selected. This IGBT can handle 

1.2kV forward voltage and 170A collector current at 80deg C. 

 

Figure C.1 IGBT Forward Characteristics 

IGBT ON resistance: 

 

IGBT Collector-Emitter voltage for zero Collector current:  
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Figure C.2 Turn ON/OFF Energy Loss 

Estimated IGBT Turn-on Energy loss slope: 

 

Estimated IGBT Turn-off Energy loss slope 

 

Estimated Diode reverse recovery Energy loss slope 
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Figure C.3 Diode Forward Characteristics 

Diode forward resistance: 

 

Diode forward voltage for zero Collector current: 
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