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Intersection crashes average approximately 8,500 fatal and 900,000 injury accidents a 

year (1).  At the onset of yellow at a high speed signalized intersection, a driver may 

encounter a region of the intersection approach, where they can neither stop safely nor be 

able to clear the intersection before the red indication.    A wrong decision to stop when it 

would have been safer to proceed can lead to a severe rear-end collision.  Conversely, a 

wrong decision to proceed through the intersection could lead to the driver running the 

red light and possibly causing a right angle collision.  The traditional surrogate measure 

of safety, dilemma zone, denotes the region of risk but does not quantify the level of risk.   

Driver’s data was collected at five high speed intersections.  A probit modeling technique 

was used to establish dilemma zone boundaries.  Results revealed the effects of providing 

or lack of providing information.  Specifically, the results indicate the effects AWFs have 

on the probability of stopping and perceived conflict curves.  Sites providing information 

through PTSWF had earlier probability of stopping curves in particular Site 2 and Site 5’s 

probability of stopping curves were drastically different than the other studied sites.  The 

risk associated with being downstream of the severe deceleration distance and upstream 

of the maximum passing distance was calculated for a variety of speeds at each 

intersection.  An overall weighted average was then computed and compared to the 



 

observed conflicts.  An association could be seen in the comparison between the observed 

conflicts and the computed risks, as sites with larger severe deceleration risk had a larger 

proportion requiring severe deceleration and vice versa.  Thus, caution should be used by 

engineers before providing drivers with information at a high speed intersection. 
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CHAPTER 1. INTRODUCTION 

1.1. Motivation 

According to the National Highway Traffic Safety Administration, the total cost of motor 

vehicle collisions in the United States was estimated at $230.6 billion in 2009 (1).  The 

total cost of motor vehicle collisions in the State of Nebraska was projected at $2.2 

billion in 2009 (2).  Intersection and intersection-related crashes accounted for nearly 

40.1 percent of all reported crashes in 2006 in the U.S (1).  Intersection crashes average 

approximately 8,500 fatal and 900,000 injury accidents a year.  Multi-vehicle accidents at 

intersections in Nebraska comprised of 46 percent of the total reported crashes in 2009 

(2).  With the exception of 2001, the percentage of multi-vehicle collisions at 

intersections has stayed relatively constant in Nebraska, as shown in Figure 1.1 

(2,3,4,5,6,7,8,9,10,11,12).   
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Figure 1.1: Percentage of total crashes multi-vehicle collisions consist of in Nebraska  
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Every day a typical intersection has approximately 700-800 occurrences of main-street 

phase terminations transpire where high-speed drivers approaching an intersection have 

to make a decision on whether to proceed or stop at the onset of yellow (13).  While 

approaching the intersection, a driver may encounter being in the decision dilemma zone 

at the onset of yellow.  The dilemma zone has traditionally been defined as the area 

where a driver can neither stop comfortably nor clear the intersection safely at the onset 

of yellow.  However, the decision dilemma zone has been defined by previous literature 

as the approach area where the probability of stopping at the onset of yellow is within the 

range of 10 to 90 percent (14,15,16,17).   An incorrect decision to stop when it would 

have been safer to proceed can lead to a severe rear-end collision.  Conversely, an 

incorrect decision to proceed through the intersection could lead to the driver running the 

red light and possibly causing a right angle collision. 

As shown below in Table 1.1, the most frequently occurring collisions at intersections in 

Nebraska are angle and rear-end collisions, which represent approximately eighty percent 

of intersection crashes since 1998 (2,3,4,5,6,7,8,9,10,11,12).   

Table 1.1: Proportion of crashes by collision type at Nebraska intersections 

Crash Type
Percent of 

Intersection Crashes

Angle 48.63

Rear-end 32.31

Left Turn Leaving 9.74

Sideswipe 6.38

Backing 2.52

Head-on 0.37

Unknown 0.06  
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Traditional surrogate measures of safety (like number of vehicles in dilemma zone) fail to 

quantify the risk of crash for a driver approaching an intersection, as a result of not 

quantifying the positions of vehicles in the dilemma zone.  Over the past four decades, 

the Traffic Conflict Technique (TCT) has evolved and demonstrated its usefulness in 

indirectly evaluating the safety of intersections. TCT allows traffic engineers the 

opportunity to provide proactive safety improvements at an intersection instead of 

waiting for the crash history to evolve. Cooper and Ferguson (18) calculated the ratio of 

the rate of serious conflicts to the rate of crashes to be approximately 2000:1.  Therefore, 

two or three years of reported crash records at an intersection could be observed with 10 

hours of conflicts.  A recent study by FHWA (19) found the ratio of traffic conflicts to 

actual crashes to be approximately 20,000:1.   In addition to quicker data collection, the 

second advantage of the conflict technique is in identifying safety deficiencies at 

intersections.   

Engineers have been studying the factors associated with rear-end and angle collisions at 

signalized intersections for decades in an effort to provide maximum safety to drivers 

approaching intersections.  Numerous solutions have been proposed and implemented, 

specifically at high-speed intersections including: green extension, Self Optimising 

Signal Control, D-CS, and Advance Warning Flashers (AWFs).  Placed upstream of high 

speed signalized intersections, AWFs provide drivers with information regarding whether 

they should prepare to stop at the upcoming traffic signal or proceed through the 

intersection.  Specifically, AWFs are designed to minimize the number of vehicles 

trapped in their respective dilemma zones at the onset of yellow (20).  Past research 
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(20,21,22) has revealed significant reductions in RLRs at intersections with AWFs; 

however, rear-end crash potential has increased as a result (23,24,25,26,27).  

1.2. Problem Statement 

This thesis will review and examine the effects of one such system, Prepare to Stop 

While Flashing (PTSWF), on driver behavior, as a result of increased rear-end crash 

potential.  Specifically, this thesis seeks to examine the risk associated with having a 

conflict while approaching a high-speed signalized intersection.  The proposed approach 

uses current radar-based technology and video to track vehicles approaching an 

intersection.  The traditional surrogate measure of safety, number of vehicles in the 

dilemma zone, denotes the region of risk but does not quantify the level of risk.  The 

proposed approach applies the dilemma hazard function, an improved surrogate measure 

of safety, which classifies and quantifies the level of risk. 

1.3. Research Objectives 

The objective of this thesis is to examine the effects of AWFs on driver’s risk at the onset 

of yellow by comparing six high-speed intersections.  The risk will be compared using 

quantitative analysis.  The following characteristics need to be calculated to quantify the 

level of risk at a high-speed intersection: 

1. Probability of stopping curves: Probability of stopping as a function of 

distance to the stop bar will be graphed.  Developing the probability of 

stopping curves will allow for the calculation of site specific dilemma zone 

boundaries. 
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2. Critical acceleration and deceleration thresholds: Thresholds were calculated 

for distance from the stop bar at which drivers would be required to: 

 Decelerate severely or 

 Heavily accelerate or run the red light 

3. Averaged risks: Based on vehicle counts of different speeds, estimated 

average risk of a person at a specific velocity at a specific intersection having 

severe deceleration or running the red light was calculated. 

1.4. Thesis Outline 

The remaining part of this thesis is as follows.  Chapter 2 contains a literature review on 

past research pertaining to the development and advancement of dilemma zone 

definitions and methods of mitigation.  Past and current methods for modeling driver 

behavior at high-speed intersections at the onset of yellow are presented, as well as 

current practices of assessing the safety of vehicles approaching an intersection.  The 

limitations of these practices are explained, thus resulting in the following chapters 

describing the improve method used. 

Chapter 3 describes the six data collection sites used: five with AWFs and one without 

AWFs.  The different data collection setups are explained, along with validation of each 

setup.  A combination of radar based detectors and video was used to continuously track 

vehicles approaching high-speed signalized intersections.  In addition, this chapter 

discusses the steps used in processing the video collected. 

Chapter 4 describes the underlying theory of driver behavior as they approach a 

signalized intersection.  The decision process of drivers at the onset of yellow was 

modeled using the probit modeling technique.  Traditional surrogates of safety measure, 
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i.e. dilemma zone, etc., denote the region of risk but does not quantify the level and 

region of risk.  Therefore, along with developing dilemma hazard function, severe traffic 

conflict thresholds were applied to evaluate the rear-end and RLR risk.  Finally, the 

results of the analysis are presented in this chapter. 

Chapter 5 summarizes the research findings and proposes future research steps.  The 

effects of providing information to driver’s as they approach a high-speed intersection 

result in a decision for the traffic engineer on mitigating right-angle and rear-end crash 

risk. 
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CHAPTER 2. LITERATURE REVIEW 

2.1. Introduction 

The following chapter contains a literature review on past research pertaining to the 

development and advancement of dilemma zone definitions and methods of mitigation.  

Past and current methods for modeling driver behavior at high-speed intersections at the 

onset of yellow are presented, as well as current practices of assessing the safety of 

vehicles approaching an intersection. 

2.2. Dilemma Zone Definitions 

There are two distinctive types of dilemma zone, Type I and Type II.  Type I dilemma 

zones are caused by improper signal timing of the clearance intervals.  Type II dilemma 

zones, referred to as option or indecision zones, occurs due to variance in driver behavior.  

The following section will describe the difference in definitions of the two commonly 

known types of dilemma zone. 

2.2.1. Type I Dilemma Zone 

Gazis, Herman and Maradudin (GHM) observed problems associated with drivers facing 

the yellow change interval.  In their paper, GHM defined the “Amber Light Dilemma” as 

a situation in which a driver may neither be able to stop safely after the onset of yellow 

indication nor be able to clear an intersection before the signal turns red (28).  Figure 2.1 

illustrates the concept of the Type I dilemma zone. 
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Figure 2.1: Illustration of Type I Dilemma Zone 

The two critical distances shown in Figure 2.1 are the maximum yellow passing distance, 

XP, and the minimum safe stopping distance, XS.  A vehicle downstream of XS will not 

be able to safely stop before the stop bar.  Conversely, a vehicle upstream of XP cannot 

safely travel and clear the intersection during the yellow phase.  As shown above in 

Figure 2.1, when XS > XP, a vehicle located within the region between XS and XP can 

neither safely stop nor safely cross the intersection during the yellow phase creating a 

“dilemma.”  Thus, the dilemma zone is the physical region between XS and XP when XS 

> XP.  Equations 1 and 2 represent XS and XP according to the GHM model. 

     Equation 1 

   Equation 2 

Where, 

XS = Minimum safe stopping distance (ft) 

XP = Maximum yellow passing distance (ft) 

V0 = vehicle’s approach speed (ft/s) 

Dilemma 
Zone 

XP = Maximum Yellow 
Passing Distance 

Direction of travel 

Vehicles Cannot Pass 

Vehicles Cannot Stop XS = Minimum (Safe) Stopping Distance 
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δ2 = driver’s stopping perception-reaction time (s) 

a2 = driver’s maximum comfortable deceleration rate (ft/s
2
) 

δ1 = driver’s crossing the intersection perception-reaction time (s) 

a1 = driver’s maximum comfortable acceleration rate (ft/s
2
) 

τ = duration of yellow interval (s) 

W = sum of intersection width and vehicle length (ft) 

Equation 2 does not take into account an all-red clearance interval, which will be 

discussed later. Assuming drivers drive legally and under good weather conditions, the 

yellow interval or a change in driver behavior, Type I dilemma zone can be eliminated 

through proper design.  In certain instances, drivers may eliminate the dilemma zone by 

accelerating to or above the speed limit.  However as Liu et al. cautioned, advising 

drivers to use the onset of yellow as an instruction to acceleration would be dangerous 

(29).  Thus, assuming a crossing vehicle does not accelerate, Type I dilemma zone may 

be eliminated by adjusting the yellow interval to set XS – XP to zero.   

      Equation 3 

The yellow duration, τ, defined in the GHM model has been divided into two intervals: 

yellow permissive interval, y  , and the all-red clearance interval,  .  

Studies (14,28,30,31,32,33,34,35,36) have shown a wide variability in driver behavior.  

In an effort to avoid the dilemma zone, May found that some drivers accelerate or 

decelerate heavily (14). Figure 2.2 and Table 2.1 illustrate the variability in perception 
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reaction times and deceleration rates at the onset of yellow.  It is the variability in driver 

behavior that is the main limitation of the GHM model. 
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Figure 2.2: Previously reported perception reaction times 

Table 2.1: Variability in previously reported deceleration rates 

 

2.2.2. Type II Dilemma Zone (Indecision Zone or Option Zone) 

To take into account the variability in driver behavior, researchers defined a second type 

of dilemma zone.  Also referred to as indecision or option zone, Type II dilemma zone is 

Speeds studied/calculated Mean deceleration rate (ft/s 
2 ) 

Gazis et al. (28) 45 mph 16 

Williams (35) 10-25 mph 9.7 

Parsonson and Santiago (36) - 10 

Wortman and Matthias (32) 30-50 mph 11.5 

Chang et al. (33) >20 mph 9.2 
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based on a probabilistic approach of drivers’ decision to the onset of yellow.  In this zone, 

drivers can both stop comfortably or clear the intersection before the end of yellow, thus 

resulting in the dilemma of whether to stop or proceed through the intersection.  Type II 

dilemma zones were first documented in a technical report by the Southern Section of 

ITE (15).  A driver on a high speed roadway encounters a dilemma on whether to stop or 

proceed through the intersection at the onset of yellow.  As a result of the variability 

previously described, Type II dilemma zone exists at the onset of every yellow 

indication.  A wrong decision to stop when it would have been safer to proceed can lead 

to a severe rear-end collision.  Conversely, a wrong decision to proceed through the 

intersection could lead to the driver running the red light and possibly causing a right 

angle collision.  Figure 2.3 illustrates the Type II dilemma zone. 

 

 

 

 

 

Figure 2.3: Illustration of Type II Dilemma Zone 

Zeeger (16) defined the zone as “the road segment where more than 10 percent and less 

than 90 percent of the drivers would choose to stop.”  Researchers have attempted several 

approaches for characterizing the indecision zone boundaries.  Zeeger (16) used a 

frequency-based approach of drivers stopping decisions at specified distances and speeds 

Indecision 
Zone 

XP = Maximum Yellow Passing Distance 

Direction of travel 

Prob. Stop > 0.9 

Prob. Stop < 0.1 
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to develop a cumulative distribution function.  The dilemma zone boundaries have been 

quantified as the distance and speed or time to the intersection. 

At the onset of yellow, a driver can choose from two mutually exclusive courses of 

action: stop or go.  The decision process thus can be modeled by binary discrete choice 

models.  Sheffi and Mahmassani (38) modeled the driver decision process with a probit 

model to significantly reduce the sample size required for estimating dilemma zone 

boundaries.  A driver’s perceived time to reach the stop bar, T, randomly chosen from a 

population was modeled as a random variable, 

     Equation 4 

where t is the measured time to the stop bar at a constant speed.  The error term, 𝜉, 

designating the differences in driver’s perception, is a random variable assumed to be 

normally distributed.  Sheffi and Mahmassani hypothesized that a driver would choose to 

proceed through the intersection if T was less than a critical value, Tcr.  The critical time, 

Tcr, was also modeled as a normally distributed random variable accounting for a driver’s 

experience, perception of acceleration rates, and aggressiveness. 

     Equation 5 

where tcr, is the mean critical time.  The error term, , is also normally distrusted across 

the driver population.  The probability of a random driver choosing to stop, PSTOP (T), is 

given by the probit equation: 
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  Equation 6 

where σ = . 

In comparison to the required amount of 2000 observations necessary to stabilize 

dilemma zone curves graphically (39), the previously described model was shown to 

stabilize at approximately 150 observations.  Similar results in stability of the probit 

model were demonstrated by Sharma et al. (40). 

Advantages of the model described above include: 

 Dilemma zone curves directly calculated from the model 

 Only a small sample size, 150 observations, required to model dilemma zone 

curves 

In addition to the probit model, dilemma zone boundaries have been estimated with other 

models primarily the logit model.  Similar to the probit model, the logit model is a binary 

discrete choice model.  Recent studies using logit to develop probability of stopping 

curves include: Bonneson and Son (40), Gates et al. (42), Papaioannou (43), and Kim et 

al (44).  Rakha et al. (45) used an empirical model to develop drivers’ probability of 

stopping.   

Elmitiny et al. (46) used tree-based classification to model the driver’s stop/go decision.  

As a method of splitting the data, classification trees are effective in segmenting the data 

into smaller and more homogeneous groups.  Elmitiny et al. split the data based on 

distance to intersection and speed at the onset of yellow, position of vehicle (leading or 
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following), and vehicle type.  Thus, statistical comparisons can be made based directly on 

the various nodes defined by the researcher.  For example, the study revealed that drivers 

in the following position are more likely to make go decisions and run the red light than 

those in the leading position exposing them to the potential of increasing their rear-end 

crash risk. 

Due to the dynamic nature of the decision dilemma zone, studies have examined 

variables contributing to a driver’s decision to stop or proceed through the intersection.  

Gates et al. (42) observed that heavy vehicles have a higher probability to proceed 

through the intersection than cars, with similar results observed by Wei et al (47).  

Sharma et al. (40) proposed probability of stopping to be a function of the required 

acceleration to cross the stop bar, while Kim et al. (44) proposed yellow-onset speed and 

distance from the stop line, Time to stop bar (TTS), and location of signal head 

significantly affect a driver’s stopping decision.  Figure 2.4 shows the variation in 

dilemma zone boundaries based on previous findings for vehicles approaching an 

intersection at 50 mph. 
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Figure 2.4: Dilemma zone boundaries (50 mph) 

The statistical methods of calculating the traditional surrogate safety measure of the 

number of vehicles in the dilemma zone are sound; however, as is shown in Figure 2.4, 

the variations that occur in the defined boundaries are a result of the differences in 

dilemma zone definitions, type of drivers, and environmental and geometric layout of the 

investigated sites.  This method of safety does not quantify the level or risk at different 

locations in the dilemma zone, as drivers are either at risk (in the dilemma zone) or free 

from risk (out of the dilemma zone).   
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2.3. Effects of Yellow Length on Driver Behavior 

Studies have also examined the impact on driving behavior as a function of yellow 

interval length.  In his comparison study of intersections equipped with and without 

flashing green, Knoflacher (23) concluded the decrease in right-angle crashes 

corresponded to increases in the duration of yellow.  The effects of yellow interval 

duration on stopping have also been studied.  Lengthy yellow intervals were found by 

Van der Horst and Wilmink to cause bad driver behavior for last-to-stop drivers at 

intersections (48).  Instead of being presented with a red indication as they approached 

the stop line, the drivers were stopping while the light was still yellow, thus persuading 

the driver to proceed through the intersection the next time they approached the 

intersection.  Van der Horst and Wilmink found drivers adjusting their stopping behavior 

as a function of longer change intervals.  The probability of stopping for drivers 4 

seconds from the intersection decreased from 0.5 for a yellow length of 3 seconds to 0.34 

for a yellow length of 5 seconds long.  In a study of multiple intersections in Texas, 

Bonnenson et al. (49) noted that drivers do adapt to an increase in yellow duration.  

Reductions in red light running (RLR) were found to decrease up to 50 percent for 

increases in yellow ranging from 0.5 to 1.5 s, as long as the yellow duration did not 

exceed 5.5 seconds.  Koll et al. (27) concluded that early stops should reduce the 

probability of right-angle collisions. 

Contrary to the previous results, Olson and Rothery (30) concluded that driver behavior 

does not change as a function of different yellow phase durations.  Studies have also 

shown that an overly long amber could lead to greater variability in driver’s decision 

making and potentially increase rear-end conflicts (14,30,50).  Mahalel and Prashker (50) 
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noted a potential increase in the indecision zone for a lengthy “end-of-phase” warning 

interval.  They observed an increase in the indecision zone from the normal zone of (2 to 

5 seconds) without a flashing green interval to an indecision zone of 2 to 8 seconds for a 

3-s yellow that was preceded by a 3-s flashing green.  Mahalel and Prashker presented 

evidence of increases in the frequency of rear-end crashes due to the increase in the 

indecision zone.  

2.4. Mitigation of Dilemma Zones 

2.4.1. Green Extension 

Advanced detection systems place several loop detectors upstream of the intersection to 

detect approaching vehicles and extend the green.  These detectors communicate with a 

computer, which searches the signal controller to determine if an extension is required 

based on the vehicles’ measured speed.  Ideally, the green phase of the high speed 

approach is extended until there is no vehicle in the dilemma zone; however, a maximum 

green time, is provided for this operation to avoid excessive delays to the cross street 

traffic. As long as they are discharging at saturation flow rate, all the phases are allotted 

green, thus reducing delay.  This approach is an all-or-nothing approach.   Dilemma zone 

protection is provided to the high speed vehicles prior to the maximum green time being 

completely reached, at which time the protection is removed.  Developed to reduce the 

number of trucks being stopped at high speed rural intersections, the Texas 

Transportation Institute’s (TTI) Truck Priority System is an example of a green extension 

system (51).  However, the system does not specifically provide dilemma zone 
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protection.  The system extends the phase by as much as 15 seconds past maximum green 

before reaching max-out, at which time dilemma zone protection is removed.  A further 

description of the limitations in gap out logic is provided by Sharma et al. (52).  Another 

example of a green extension system is Sweden’s LHORVA system (53). 

2.4.2. Green Termination 

Green termination algorithms, on the other hand, are relatively new and the systems 

implementing it exist only at a few intersections.  These systems attempt to identify an 

appropriate time to end the green phase by predicting the value of a performance function 

for the near future. The objective is to minimize the performance function, which is based 

on the number of vehicles present in the dilemma zone and the length of the opposing 

queue. The wide application of these systems has been limited and little quantitative data 

exists on the trade-off between efficiency, cost, and detector requirements. 

2.4.2.1. SOS – Self Optimising Signal Control 

Sweden’s SOS system is another green termination algorithm designed for isolated 

intersections.  Similar to D-CS, the system utilizes detectors in each lane to project the 

vehicles as they approach the intersection.  The Miller algorithm calculates the cost of 

ending the green now or in t seconds (54).  Calculations are performed for different 

lengths of t, for example 0.5 s up to 20 s.  The algorithm evaluates three factors: 

reduction in delay and stops for vehicles using the green extension, the increase in delay 

and stops for opposing traffic, and the increase in delay and stops for vehicles that cannot 

use the green extension and have to wait for the next green period.  The percentage of 
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vehicles in the option zone was reduced by 38 percent.  Additionally, the number of 

vehicles exposed to the risk of rear-end collision decreased by 58 percent.  

2.4.2.2. D-CS 

Texas Transportation Institute’s Detection-Control System, or D-CS, is a current state of 

the art system in the United States that has been implemented at eight intersections in 

Texas and three in Ontario, Canada (55). D-CS uses a green termination algorithm. The 

D-CS algorithm has two components: vehicle status and phase status. 

A speed trap sufficiently far from the intersection (~ 800-1000ft) is used to detect the 

speed and vehicle length of each vehicle. The projected arrival and departure time of each 

vehicle in their respective dilemma zone (based on speed and vehicle length) is used to 

maintain the “dilemma-zone matrix.”  This matrix is updated every 0.05 seconds.  The 

phase status component uses dilemma-zone matrix, maximum green time, and number of 

calls registered on opposing phases to control the end time for the main street green 

phase. The phase status is updated after every 0.5 seconds. 

Bonneson et al. (56) observed reductions in the frequency of red-light violations at almost 

every approach.  Overall the violations were reduced by 58 percent, with a reduction of 

about 80 percent for heavy vehicles.  D-CS reduced violations 53 percent and 90 percent 

when replacing systems using multiple advance loop detection and systems with no 

advance detection, respectively. On the approaches controlled by D-CS, severe crashes 

were reduced by 39 percent.  In addition to severe crashes, crashes influenced by D-CS 

(i.e. rear-end, left-turn opposed, and sideswipe) appear to provide a 50 percent reduction 

in severe “influenced” crashes. Intersection operation improved at almost every approach 
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of the five intersections studied.  Reductions in control delay and stop frequency were 14 

percent and 9 percent, respectively.  Most likely the reductions are due to D-CS’s more 

efficient operation than the prior detection and control strategy used. 

2.4.2.3. Wavetronix SmartSensor Advance 

By using digital wave radar, the Wavetronix SmartSensor Advance with SafeArrival 

technology is one of the newest vehicle detection based systems designed to improve 

dilemma zone protection (57).  The system continuously tracks vehicles’ speed and range 

to estimate the time of arrival at the stop bar.  SmartSensor Advance formulates the 

position and size of gaps in flowing traffic to adjust the physical location of the gaps to 

extend the green time to allow for safe passage if necessary.  In a comparison study of 

dilemma zone protection systems, the Wavetronix system provided a greater reduction in 

the number of vehicles in the Type II dilemma zone than inductive loops (58).  In 

addition, the SmartSensor Advance decreased red light running incidents by more than 3 

times the rate of the inductive loop system. 

2.5. Traffic Conflicts 

As previously mentioned, traditional surrogate measures of safety (such as the number of 

vehicles in the dilemma zone) fail to quantify the risk of crash. Meanwhile, traffic 

conflicts have demonstrated the ability to indirectly evaluate the safety of an intersection.  

Proposed by Sharma et al. (40), Figures 2.5a to 2.5c contrast the present surrogate 

measures of safety with the dilemma hazard measure of safety. Widely used green 

extension systems are all-or-nothing approaches. All the vehicles on the high-speed 
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approaches are cleared until the maximum green time is reached. At the end of the 

maximum green time, none of the vehicles on the high-speed approach are provided 

protection. As shown in Figure 2.5a, these systems do not have any metric to measure the 

cost of risk of crash. The green termination systems use the number of vehicles in the 

dilemma zone as a surrogate measure for quantifying the cost of risk. The number of 

vehicles is a rank-ordered metric, shown in Figure 2.5b, where the cost of one vehicle in 

the dilemma zone is less than the cost of two vehicles in the dilemma zone; but the cost is 

independent of the positions of vehicles in the dilemma zone.  In addition, there has been 

a lack of research to associate a monetary cost of safety for a dilemma zone incursion. 

Sharma et al. (59) modeled the dilemma zone hazard using the observed probability of 

stop and go at the onset of yellow light.  The probability of making an erroneous decision 

is used as the probability of traffic conflict. The severity of conflict is determined using 

the observed acceleration and deceleration ranges used by drivers at the intersection. 

Dilemma hazard function obtained for vehicles traveling at 45 mph as estimated for the 

study site at Noblesville, Indiana are shown in Figure 2.5c. The probability of conflict 

curves developed by Sharma was for single vehicle cars only.  This thesis will also 

examine the effect of information provided to drivers on probability of traffic conflicts 

for single vehicles situations.  
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a) Safety cost evaluation in current green extension systems 

 

 

 

 

 

   

b) Safety cost evaluation in advanced green termination systems 
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c) Proposed evaluation of safety cost (40) 

Figure 2.5: Comparison of traditional and recent surrogate measures of safety 

2.5.1. Traffic Conflict Technique 

Over the past four decades, the Traffic Conflict Technique (TCT) has evolved and 

demonstrated its usefulness in indirectly evaluating the safety of intersections.  The 

technique originates from research performed at the General Motors laboratory in Detroit, 

MI for identifying safety problems related to vehicle construction (60).  Perkins and 

Harris defined a conflict as “The occurrence of evasive actions, such as braking or 

weaving, which are forced on the driver by an impending crash situation or a traffic 

violation.”  They categorized the conflicts into left-turn conflicts, cross-traffic conflicts, 

weave conflicts, and rear-end conflicts.   

The technique gained popularity as research efforts attempted to establish a direct 

relationship between conflicts and crashes (61,62,63,64).  The rationale beyond the gain 

in popularity of the technique was twofold.  First, studies have shown the increased 

frequency in observing traffic conflicts at an intersection as opposed to waiting for a 
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crash history to develop.  This allows for information regarding the safety of an 

intersection to be collected rather quickly.  Cooper and Ferguson (65) calculated the ratio 

of the rate of serious conflicts to the rate of crashes to be approximately 2000:1.  

Therefore, two or three years of reported crash records at an intersection could be 

observed with 10 hours of conflicts.  A recent study by FHWA (66) found the ratio of 

traffic conflicts to actual crashes to be approximately 20,000:1 though the relationship 

varied by conflict type.   The FHWA study used 83 signalized intersections for their 

validation study and establishing the following relationship between conflicts and 

crashes.  

   Equation 7 

In addition to quicker data collection, the second advantage of the conflict technique is in 

identifying safety deficiencies at intersections.  TCT allows traffic engineers the 

opportunity to provide proactive safety improvements at an intersection instead of 

waiting for the crash history to evolve.   

Concerns regarding TCT have been raised by several researchers.  Glennon et al. (67) 

expressed concerns on the use of the TCT technique, stating, “The reliability of TCT for 

estimating accident potential is questionable.”  They found for every study in favor of 

TCT, there is a study that opposes it.  Glennon argued the ability to predict the number of 

accidents at an intersection will be extremely improbable, since both conflicts and 

accidents are random events.  In addition, Hauer and Garder (68) criticized the heavily 

subjective manner of TCT on judging speed and distance of vehicles. 
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Although concerns have been raised regarding the use of TCT, recent studies have 

continued to advocate its use as a surrogate measure of safety.  Glauz et al. (69) 

investigated two types of expected accident prediction rates, one based on conflict ratios 

and the other based on accident histories.  The study determined the difference to be 

statistically insignificant, thus an estimate of the expected accident rates using traffic 

conflicts can be as accurate and precise as predicted by the accident history.  Hyden (70) 

concluded that conflicts and accidents did in fact share the same severity distribution 

based on time-to-accident (TA) and speed values.  The use of traffic conflict as a 

surrogate measure for traffic safety in micro-simulation has been advocated by Fazio et 

al. (71), as well as by Gettman and Head (66,72) who performed a detailed use-case 

analysis. 

2.5.2. Traffic conflicts at the Onset of Yellow 

Zeeger (16) identified six conflicts that can occur at the onset of yellow.  The following 

definitions of the six conflicts were used during conflict analysis performed as part of this 

thesis: 

 Red light runner (RLR): A red light violation was defined as occurring 

when the front of the vehicle was behind the stop line at the onset of red. 

 Abrupt stop: An abrupt stop occurs when a vehicle would be able to 

successfully clear the intersection, yet decides to stop. Abrupt stop 

conflicts can be viewed both visually and calculated mathematically based 

on the onset of yellow distance and speed. 
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 Swerve-to-avoid collision: Classified as an erratic maneuver of a driver to 

swerve out of their lane to avoid hitting the preceding vehicle that had 

stopped for the light in front of them. 

 Vehicle skidded: This is a more severe case of abrupt stop, with the 

vehicle’s wheels “locking-up” in order to stop. It can be heard audibly. 

 Acceleration through yellow:  Acceleration through yellow was identified 

as either being heard audibly or identified through numerical calculation. 

Each vehicle’s distance was projected at the onset of red based on their 

onset of yellow distance and speed, assuming constant speed. An 

acceleration through yellow conflict was assigned if the vehicle 

successfully crossed the stop bar but would not have if based on the 

constant speed projection. 

 Brakes applied before passing through: This conflict can be viewed 

visually when at the onset of yellow the driver applied the brakes before 

passing through the intersection.  It indicates the indecisiveness of drivers 

when approaching the intersection.    

2.5.3. Time-to-Collision 

Two distinct safety issues at intersections are frequency and severity.  Although TCT 

indicates the frequency at which conflicts occur between road-users, it does not quantify 

the severity of the conflicts. Time-to-Collision (TTC) is one of the most commonly used 

measures of effectiveness for rating the severity of traffic conflicts.  Hayward (73) 

defined TTC as: “The time required for two vehicles to collide if they continue at their 

present speed and on the same path.”  TTC has proven to distinguish between normal 

behavior and serious conflicts (74).  In addition, the main advantage of TTC is the 

considerably less subjective and more objective measures of speed and distance it uses.  
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Values of TTC are infinite when vehicles are not on a collision course; however, if 

vehicles are on a collision course, the value of TTC is finite and decreases with time.  As 

the vehicles continue on the collision course, conflict severity is estimated using the 

minimum TTC value.  Moreover, a critical TTC value has been proposed through 

previous studies to assess the severity of conflicts.  Results of the TTC from Hayward 

found a mean TTC for vehicles on collision paths was 1.5 seconds.  However, Hayward 

proposed a critical TTC value of 1.0 second.  Recent studies (70,75,76,77,78) have 

suggested the use of a critical TTC value of 1.5 seconds. 

The main drawback of TTC is that it just uses the minimal time to conflict for a vehicle 

and does not take into account the duration the vehicle was subjected for this conflict. For 

the case of a following faster vehicle approaching a slower leading vehicle, consider two 

separate events each having a TTC value of 1.0 second with following vehicle speeds of 

55 mph and 35 mph, respectively.  Tables 2.2 and 2.3 present a demonstration of the two 

events. 

 

(a) 55 mph      (b) 35 mph 

Figure 2.6: Time to collision profiles 
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Table 2.2: Event with following vehicle traveling at 55 mph 

Time (s) Velocity (mph) Distance to Stop Bar (ft.) Velocity (mph) Distance to Stop Bar (ft.) TTC (s)

0.0 45 300 55 360 5.4

0.5 45 267 55 332.5 5.8

1.0 45 234 55 305 6.2

1.5 45 201 55 277.5 6.6

2.0 41.2 168 55 250 5.0

2.5 37.4 137 55 222.5 4.1

3.0 33.6 110 55 195 3.3

3.5 29.8 85 55 167.5 2.8

4.0 26.0 63 55 140 2.3

4.5 22.1 44 55.0 113 1.8

5.0 18.3 28 55.0 85 1.4

5.5 14.5 15 51.2 59 1.2

6.0 10.7 4 47.4 36 1.0

6.5 43.6 14 1.5

7.0 39.8 -6 1.7

Following VehicleLead Vehicle

 

Table 2.3: Event with following vehicle traveling at 35 mph 

Time (s) Velocity (mph) Distance to Stop Bar (ft.) Velocity (mph) Distance to Stop Bar (ft.) TTC (s)

0.0 28 150 35 175 4.4

0.5 27 129 35 157.5 4.1

1.0 26 110 35 140 3.8

1.5 25 90 35 122.5 3.5

2.0 25.0 72 35 105 3.6

2.5 22.5 54 35 87.5 2.9

3.0 18.7 37 35.0 70 2.2

3.5 14.9 23 35.0 52.5 1.7

4.0 11.1 13 35.0 35 1.2

4.5 7.3 4 31.2 19 1.0

5.0 27.4 6 1.6

5.5 23.6 -6 2.0

Lead Vehicle Following Vehicle

 

The definition of TTC quantifies these two events as having the same severity level given 

that both events have the same minimum TTC.  However, it is reasonable to assume the 

vehicle traveling at 55 mph has a higher severity potential than the vehicle traveling at 35 

mph.  The following vehicle traveling at 35 mph will be able to decelerate and avoid the 

collision easier than the following vehicle traveling at 55 mph, as seen by the amount of 

time the vehicles fall below the TTC threshold value.  Therefore, although lower TTC 

values indicate a higher probability of collision, the values cannot be directly linked to 

the severity of the collision.   
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As a result of TTC not implicitly considering speed, Minderhood and Bovy (79) proposed 

two new severity conflict indicators based on traditional TTC measures.  Time Exposed 

Time-to-Collision (TET) calculates the overall length of time all vehicles involved in the 

conflict are under a predetermined TTC minimum threshold.  The second indicator 

proposed was Time Integrated Time-to-Collision (TIT).  TIT integrates the amount of the 

time the TTC falls below the designated minimum threshold.   

Figure 2.6 shows two distinct time-to-collision profiles. As mentioned above, TET only 

calculates the overall length of time the TTC curve falls below the TTC threshold value.  

The two events represented below have the same exposed time-to-collision.  However, it 

can be seen that the vehicles in Figure 2.6a are exposed to a more severe threat for the 

same amount of time than the vehicles in Figure 2.6b resulting in a higher severity of 

collision. 

Previous studies have indicated the usefulness of real-time data using video analysis; 

however, processing this information has shown to be time consuming (74).  Calculating 

the minimum TTC requires a detailed (time-step or frame) analysis of speed and distance 

between the two road-users in relation to a common point, which requires significant 

calculations.  Consequently, TTC values have typically been calculated using simulation 

models.  Simulation models automate the speed and distance calculations between 

vehicles.  
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2.5.4. Dilemma Zone Hazard Models 

Recently, studies have quantified the level of risk associated with being in the dilemma 

zone by developing dilemma hazard models.  The dilemma hazard recently developed is 

a new traffic conflict potential measure.  Li (80) validated and calibrated the dilemma 

hazard model based on an approach developed by the American Society of Civil 

Engineers.  In order to calculate the dilemma hazard, the dilemma hazard model 

compares driver decisions and their actual driving capability as a function of its Time-to-

Intersection (TTI) at the onset of yellow.  The approach used driver’s decisions at the 

onset of yellow; their actual capabilities based on vehicle kinematics, and previously 

reported acceleration and deceleration rates.  Data collected was simulated using Monte 

Carlo simulation to establish dilemma hazard values within the dilemma zone boundaries 

of two to five seconds.  Models were created for single vehicle and multiple (two) vehicle 

scenarios.  Results of the simulation, shown in Figure 2.7, illustrate the effect signal 

timings have on the dilemma hazard. 

 

Figure 2.7: Dilemma hazard curves for various yellow and all-red clearance intervals (80) 
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Sharma et al. (40) provided a theoretical justification for using probability of stopping to 

estimate probability of conflict for single vehicles at high-speed intersections.  

Probability of stopping curves were developed based on the acceleration required by the 

vehicle to cross the stop bar prior to the onset of red.  Sharma theorized vehicles would 

have a stop conflict if the critical deceleration threshold was greater than the required 

deceleration; furthermore, vehicles would have a go conflict if the required acceleration 

was greater than the critical acceleration threshold.  Conflicts were classified into minor 

and severe conflicts based on the magnitude of acceleration or deceleration required to 

perform the chosen decision.  Figure 2.8 illustrates the developed probability of traffic 

conflict curve. 
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Figure 2.8: Calculated dilemma zone hazard function (40) 

2.6. Advance Warning 

Placed upstream of high speed signalized intersections, AWFs provide drivers with 

information regarding whether they should prepare to stop at the upcoming traffic signal 
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or proceed through the intersection.  Specifically, AWFs are designed to minimize the 

number of vehicles trapped in their respective dilemma zones at the onset of yellow (20).  

AWFs have been found to improve dilemma zone protection in the state of Nebraska.  

McCoy and Pesti (81) used advanced detection along with AWFs to develop an enhanced 

dilemma zone protection system.  The system was found to reduce the number of max-

outs, which would result in a loss of dilemma zone protection.  Gibby et al. (82) 

concluded from an analysis of high-speed signalized intersections in California that 

advance warning flashers significantly reduce accident rates.  The approaches with AWFs 

had lower total, left-turn, right-angle, and rear-end accident rates.  Sayed et al. (83) 

calculated the reduction in total and severe accidents at intersections with AWFs to be 10 

and 12 percent, respectively. 

2.6.1.1. Advanced Warning’s Effects on RLR’s 

Farraher et al. (21) observed red light running and vehicles speeds in Bloomington, 

Minnesota.  Installation of advanced warning flashers resulted in reductions of 29 percent 

in red light running, 63 percent reduction in truck red light running, and an 18.2 percent 

reduction in the speed of the red light running trucks.  In addition, the Texas 

Transportation Institute (TTI) developed an Advanced Warning for End-of-Green System 

(AWEGS) that utilized a sign (text or symbolic), two amber flashers, and a pair of 

advanced inductive loops (20).  The system capable of identifying different 

classifications of vehicles (car, truck) has shown to decrease delay due to stoppages at 

traffic signals, as well as providing extra dilemma zone protection to high-speed vehicles 
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and trucks.  Results of the study have shown a reduction in Red Light Running (RLR) by 

38 to 42 percent in the first 5 seconds of red.   

Although the consensus of AWFs is that the systems provide safety benefits to the users, 

several concerns have been raised.  In their study, Farraher et al. (21) detected car drivers 

running the red light entered speeds above the speed light increasing the risk of crash for 

opposing traffic.  Pant and Huang (84) evaluated several high-speed intersections with 

AWFs and detected increases in speed as the traffic signal approached the red phase.  

Thus, the authors discouraged the use of Prepare to Stop When Flashing (PTSWF) and 

Flashing Symbolic Signal Ahead (FSSA) signs along tangent intersection approaches.  

Further testing performed by Pant and Xie (85) at two intersections verified the previous 

findings of increased speeds along roadways with a PTSWF or FSSA sign.  In a driving 

simulator study performed by Newton et al. (22) on Traffic Light Change Anticipation 

Systems (TLCAS), RLRs were statistically fewer at intersections with TLCAS. 

2.6.1.2. Advanced Warning’s Effects on Rear-end 

Similar to AWF systems, flashing green systems, have been implemented and tested 

thoroughly in Europe and Israel.  Knoflacher (23) studied the decelerations and accidents 

at intersections equipped with and without flashing green systems.  In his study of 

intersections, Knoflacher found intersections implemented with flashing green systems 

had larger deceleration rates and increases in the amount of rear-end collisions.  Studies 

(24,25,26) of the flashing green system in Israel consistently observed increases in rear-

end collisions with negligible changes in right-angle accidents at intersections 

implemented with the flashing green interval.  In a simulated study comparing driver’s 
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response at intersections using flashing green, Mahalel et al. (86) noted a significant 

increase in erroneous decisions at the onset of yellow.  In particular, the increase in 

inappropriate stop decisions at intersections with flashing green doubled to 77 percent 

compared to 38 percent of intersections without the flashing green interval.  This increase 

in inappropriate stops caused a considerable shift in probability of stopping curves.  Koll 

et al. (27) compared the effects of flashing green on 10 approaches in Austria, 

Switzerland, and Germany.  Safety impacts considered included the amount of yellow 

and red stop line crossings observed.  A substantial increase in the number of early stops 

was found in Austria.  A larger option zone, area where drivers can both proceed and stop 

safely, increased as a result.  

2.7. Summary 

The development and knowledge regarding dilemma zones and traffic conflicts has 

continuously progressed.  The traditional surrogate measure of safety, the dilemma zone, 

denotes the region of risk but does not quantify the level of risk.  Traffic conflicts 

indirectly evaluate the safety of an intersection, yet have been controversial in their 

subjective nature, resulting in the development of TTC, TET, and TIT.  Although TTC 

and TET have shown the ability to quantify the risk of conflict, TTC and TET do not 

implicitly consider speed, since it is reasonable to assume that vehicles traveling with 

higher speeds will have a larger level of risk when approaching an intersection.  While 

TIT integrates both the overall length in time and magnitude below the critical threshold, 

the ability to perform this detailed time step analysis with real-time data has shown to be 

time consuming.  Recently, dilemma hazard model and dilemma hazard function have 
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attempted to quantify the level of risk associated with being in the dilemma zone at the 

onset of yellow.   

While the development of dilemma zone and traffic conflicts has continuously 

progressed, the effect of information on driver behavior at the onset of yellow still 

remains rather uncertain.  Specifically, uncertainly remains on the potential tradeoff in 

providing safety for either right-angle or rear-end accidents, as past research (20,21,22) 

has revealed significant reductions in RLRs at intersections providing information 

through AWFs.  However, rear-end crash potential has increased as a result 

(23,24,25,26,27).  This thesis will investigate the effect of information on driver behavior 

at the onset of yellow using the traffic conflict technique and recently formulated 

dilemma hazard function (40). 
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CHAPTER 3. DATA COLLECTION 

3.1. Introduction 

To achieve as thorough analysis as possible, five locations were selected for data 

collection, with an additional site evaluated for comparison purposes. A combination of 

radar based detectors and video was used to continuously track vehicles approaching 

high-speed signalized intersections.  This chapter describes the data collection locations, 

equipment setup and calibration, and video processing tasks. 

3.2. Data Collection Sites 

This section describes the six intersections studied.  Five of the locations were collected 

as part of this thesis, while the remaining site was collected previously by Sharma et al. 

(40) and is used for evaluation purposes.  Four of the five sites were operated by the 

Nebraska Department of Roads (NDOR).  The placement of the AWFs was based upon 

MUTCD guidelines, as well as feedback from drivers.  In order to calculated the length 

of flashing time before yellow, the distance at which the AWFs were placed was divided 

by the posted speed limit. 

3.2.1. Highway 2 and 84
th

 Street 

The high-speed signalized intersection of Highway 2 and 84
th

 St. in Lincoln, Nebraska 

was selected as the initial data collection site.  Highway 2 is a major thoroughfare in 

Lincoln, particularly for heavy vehicles.  The percentage of heavy vehicles at the studied 

intersection is ten percent.  The eastbound approach of Highway 2 has two through lanes, 
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two left turn lanes, and a right turn lane.  Two PTSWF signs along with flashers are 

positioned on both sides of Highway 2 563 ft. from the stop bar. Figure 3.1 illustrates 

what a driver approaching the intersection sees.  

 

Figure 3.1: View of advance warning flashers prior to intersection 

3.2.2. US 77 and Saltillo Road 

The second intersection studied was the northbound approach of US77 and Saltillo Rd.  

Located east of Lincoln, Nebraska, US Highway 77 runs north and south.  The 

intersection has two through lanes and both a left and right turn lane.  Two PTSWF 

flashers are positioned on both sides of US77 650 ft. from the stop bar.  The speed limit is 

65 mph until approximately 1150 ft. before the intersection, when the speed limit changes 

to 55 mph.  
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3.2.3. US 77 and Pioneers 

US77 and Pioneers Blvd., located 5 miles north of US 77 and Saltillo, was the third 

intersection studied.  The southbound approach of US77 and Pioneers has two through 

lanes and one left turn lane.  Two PTSWF flashers are positioned on both sides of US77 

650 ft. from the stop bar.  The speed limit is 55 mph along this stretch of US 77. 

3.2.4. Highway 34 and N79 

The last intersection studied in Lincoln was the westbound approach of Highway 34 and 

N79.  This intersection is northwest of Lincoln, with a speed limit of 60 mph.  With no 

left turn lane and a turnoff for vehicles desiring to travel north prior to the intersection, 

the westbound approach has only two through lanes.  In addition, the intersection is 

equipped with two PTSWF flashers 650 ft. from the stop bar. 

3.2.5. Highway 75 and Platteview Road 

Shown in Figure 3.6, US75 and Platteview Road, is located south of Bellevue, Nebraska.  

The southbound approach of US75 and Platteview has two through lanes and both a right 

and left turn lane.  Two PTWSF flashers are positioned on both sides of US75 438 ft. 

from the stop bar.  Approximately 1550 ft. upstream of the intersection the speed limit 

changes from 60 mph to 55 mph. 

3.2.6. SR32 and SR 37 

The last site used for data analysis was the signalized intersection of SR37 and SR32 at 

Noblesville, Indiana.  The southbound approach of SR37 has two through lanes and both 
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a right and left turn lane.  The speed limit of SR37 is 55 mph.  Unlike the other five sites, 

this intersection does not have advance warning flashers.  In addition, the WAD and 

camera were mounted on the mast arm contrasting the previous locations where both 

were located on the side of the road. 

3.2.7. Summary 

This section has described the six data sites to be used for the analysis.  Shown below in 

Table 3.1 is a summary of site characteristics with aerial photographs of each site 

presented in Figure 3.2.  In addition, Table 3.1 displays the code to be used for the 

remainder of the thesis for each site.   

Table 3.1: Summary of site characteristics 

Saltillo Highway 2 Pioneers US 34 US 75 SR 37

Site Code Site 1 Site 2 Site 3 Site 4 Site 5 Site 6

Yellow phase 4.4 s 5.6 s 4.9 s 4.4 s 4.5 s 5.0 s

Mean speed (mph) 54.1 48.5 52.8 56.6 51.4 46.6

Posted speed limit (mph) 55 55 55 60 55 55

85th Percentile speed (mph) 64 55 58.3 63 61 55

Use of AWF Yes Yes Yes Yes Yes No

AWF Distance 650 ft. 563 ft. 650 ft. 650 ft. 470 ft. -

AWF Time before yellow 7.0 s 8.0 s 8.0 s 7.0 s 6.0 s -

Through Lanes 2 2 2 2 2 2

Right or Left turn lane Both Neither Both Both Both Both  
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Site 3 – US 77 & Pioneers Blvd. 

Lincoln, NE (SB Approach) 

Site 2 – Highway 2 & 84
th

 St. 

Lincoln, NE (SEB Approach) 

Site 1 – US 77 & Saltillo Rd. 

Lincoln, NE (NB Approach) 

Site 4 – US34 & N79 

Lincoln, NE (WB Approach) 

Site 5 – US 75 & Platteview Rd. 

Bellevue, NE (SB Approach) 

Site 6 – SR 37 & SR 32 

Noblesville, IN (SB Approach) 

 
Figure 3.2: Data collection sites 

3.3. Data Collection 

In order to keep consistency during the collection period, data was only collected during 

good weather days.  Good weather days were defined as days with no precipitation and 

constant wind speeds less than 10 mph.  In addition, a variety of traffic conditions were 

examined by collecting data during both peak and off-peak hours.  A summary of the 

days and times data was collected at each sites is shown in Tables 3.2 and 3.3.  Data was 

collected at five intersections using two different setups.  This section will discuss the 

three different equipment setups and the calibration of each setup.  
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Table 3.2: Summary of Data Collected at AWF Locations 

Site Location Day Collected Hours Collected

September-29-2010 8:00 AM - 4:00 PM

September-30-2010 10:45 AM - 6:00 PM

July-07-2010 10:30 AM - 12:30 PM; 1:00 PM - 3:00 PM

July-09-2010 10:30 AM - 12:30 PM; 1:00 PM - 3:00 PM

July-15-2010 10:30 AM - 12:0 PM; 1:00 PM - 3:00 PM

July-16-2010 10:30 AM - 12:30 PM

July-19-2010 1:00 PM - 3:00 PM

July-20-2010 1:00 PM - 1:45 PM; 2:45 PM - 3:00 PM

November-08-2010 10:45 AM - 5:00 PM

November-15-2010 3:30 PM - 4:45 PM

November-16-2010 1:30 PM - 3:00 PM

November-17-2010 2:30 PM - 4:00 PM

November-22-2010 1:45 PM - 4:00 PM

November-23-2010 1:45 PM - 4:00 PM

October-13-2010 8:00 AM - 4:00 PM

October-14-2010 8:00 AM - 4:00 PM

October-20-2010 8:00 AM - 4:00 PM

October-21-2010 8:00 AM - 4:00 PM

November-23-2010 11:00 AM - 4:15 PM

November-18-2010 8:00 AM - 3:00 PM

November-19-2010 9:00 AM - 4:00 PM

Site 1 - US-77 & Saltillo Rd., 

Lincoln (Northbound)

Site 3 - US-77 & Pioneers 

Blvd., Lincoln (Southbound)

Site 4 -US-34 & N-79, Lincoln 

(Westbound)

Site 2 - Highway 2 and 84th 

St., Lincoln (Eastbound)

Site 5 -US-75 & Platteview 

Rd., Bellevue (Southbound)  
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Table 3.3 Summary of data collection at Noblesville 

Site Location Day Collected Hours Collected

September-12-2007 6:00 AM - 9:00 AM

September-20-2007 6:00 AM - 7:00 AM

September-28-2007 6:00 AM - 12:30 PM & 6:00 PM - 8:00 PM

October-02-2007 6:00 AM - 10:00 AM

October-03-2007 1:00 PM - 4:00 PM & 6:00 PM - 8:00 PM

October-05-2007 9:00 AM - 11:00 AM & 7:00 PM - 8:00 PM

October-09-2007 3:00 PM - 4:00 PM & 6:00 PM - 8:00 PM

October-12-2007 3:00 PM - 8:00 PM

October-29-2007 6:00 PM - 8:00 PM

October-30-2007 6:00 AM - 10:00 AM & 7:00 PM - 8:00 PM

November-01-2007 6:00 AM - 12:00 PM & 6:00 PM - 8:00 PM

November-02-2007 6:00 AM - 11:00 AM &3:00 PM - 5:00 PM

November-09-2007 8:00 AM - 11:00 AM

November-27-2007 7:00 PM - 8:00 PM

February-28-2008 6:00 AM - 6:00 PM

March-11-2008 9:00 AM - 2:00 PM

March-12-2008 12:00 PM - 7:00 PM

March-23-2008 10:00 AM - 8:00 PM

March-24-2008 8:00 AM - 12:00 PM

April-02-2008 6:00 AM - 8:00 AM

April-05-2008 6:00 AM - 9:00 AM

April-06-2008 6:00 AM - 7:00 PM

April-07-2008 6:00 AM - 8:00 AM

April-14-2008 6:00 AM - 3:00 PM & 5:00 PM - 8:00 PM

April-15-2008 6:00 AM - 2:00 PM

April-21-2008 7:00 PM - 8:00 PM

April-22-2008 6:00 AM - 6:00 PM

April-28-2008 10:00 AM - 1:00 PM

April-29-2008 6:00 AM - 8:00 PM

April-30-2008 6:00 AM - 8:00 PM

Site 6 - SR37 and SR32, 

Noblesville (Southbound) 

collected by Sharma et al. 

(40 )
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3.3.1. Site One - Highway 2 and 84
th

 St. 

3.3.1.1. Data Collection Setup 

Highway 2 and 84
th

 St. is instrumented with three wide area detectors (WAD) which can 

record individual vehicle information.  Two SmartSensor Advance WADs, utilizing 

digital wave radar technology, installed on the research pole, shown in Figure 3.3, track 

the vehicles upstream and downstream of the pole and record their distance, speed, lane, 

and vehicle length up to a distance of 500 ft.  A SmartSensor HD acts as the midstream 

sensor and records the vehicles information equidistant with the research pole.  In 

addition to recording speed, the SmartSensor HD identifies the lane a vehicle travels in 

and records the vehicle length.  The overall data collection schematic is shown below in 

Figure 3.3.  Location A, shown in Figure 3.3, represents the fixed research pole placed 

473 ft. from the stop bar.  This location will be referred to as the research pole throughout 

the remainder of this section.  
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A.   Sensor Site

A1. Radar Sensors

A2. Video Camera

A3.  Pole-Cabinet

B.    Detection Zone

E.    Signal cabinet

B

A

A1

A2

A3

C

    DATE             TIME         ID   RANGE  VEL    LANE  VEH

2009/04/06  13:02:17.998 1000   300        48       NB     Truck

 

Figure 3.3: Schematic of data collection at Highway 2 and 84th St. 

Figure 3.4 and Figure 3.5 display images of the SmartSensor Advance and SmartSensor 

HD, respectively.  Two Click! 500 programmable controllers were used in the field. 

Signal status was collected by a Click! 500 installed at the traffic cabinet and sent 

through fiber to a second Click! 500 installed in a cabinet at the research pole.  In 

addition, the Click! 500 located in the cabinet of the research pole extracts the data from 

three Click! 200’s, one for each WAD, and brings together the information. 

 

473 ft. 

1000 ft. 
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Figure 3.4: Wavetronix SmartSensor Advance 

 

 

Figure 3.5: Wavetronix SmartSensor HD 

 

Time synchronization is maintained with reference to the Click! 500 real time clock 

installed in the cabinet on the research pole.  The phase-reading Click! 500 located in the 

traffic cabinet gets updates from the research pole’s Click! 500 through fiber. The time 

stamping for all three WADs is performed by the research pole’s Click! 500.  The 

upstream and downstream latency is 21 milliseconds, while the midstream sensor latency 

is 6 milliseconds, thus the system is highly accurate.   
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In addition to the three WADs installed at the data collection site, three cameras were 

placed to record vehicle movement through the site.  Two Axis 232D+ dome cameras, 

shown in Figure 3.6, were mounted on the research pole approximately 25 feet above the 

ground.  These cameras recorded vehicular movement upstream and downstream of the 

research pole, while the third Axis camera was mounted on the mast arm.  Figure 3.7 

illustrates the three vehicular movement views recorded.  The top two view on Figure 3.7 

represent the upstream and downstream views from the research pole, while the view on 

the bottom displays the camera mounted on the mast arm.  This camera was only used for 

recording the decision of the driver at the onset of yellow: stop/go. 

 

Figure 3.6: Visualization of Axis 232D+ dome camera 
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Figure 3.7: Display of recorded vehicular movement through data collection site 

Data from the WADs was collected through placing a serial cable connecting the RS-232 

on the Click! 500 to a CPU in the research pole.  Matlab was used to open the serial 

connection and save the data.  The three cameras were displayed on the computer screen 

using Active Webcam, which captures images up to 30 fps.  Finally, Hypercam 2 was 

used to record the screen captures from Active Webcam as shown in Figure 3.7.  Only 

instances were a single vehicle was presented were recorded. 

3.3.1.2. Validation 

The WADs were validated against the Xsens MTi-G, an integrated GPS and Inertial 

Measurement Unit (IMU).  In addition to capturing a vehicle’s position from the GPS 

unit, the MTi-G provides measurement of the vehicle’s acceleration in the X, Y, and Z 

direction at a rate of 100 data points a second.  Setup of the MTi-G is shown below in 

Figure 3.8. 
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Figure 3.8: MTi-G Setup (87) 

Validation runs were made using a Honda Civic.  Five runs were made using different 

speeds and lanes to ensure proper performance of the WAD.  The times were manually 

synced between computers using a handheld GPS device.   With the GPS as the reference 

time, both computer times were changed to the time given by the GPS.  An example of 

the tracking performance of the MTi-G and WAD is shown in Figure 3.9.  The root mean 

square error (RMSE) in distance was reported as 9.6 ft.   
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Figure 3.9: Example comparison between WAD and Xsens 

3.3.2. Mobile Trailer 

3.3.2.1. Data Collection Setup 

The remaining sites located were collected using a portable trailer, as shown below in 

Figure 3.10.  The portable trailer could only be used on good weather conditions, as 

strong continuous or gusting wind would cause the trailer’s mast arm to sway and would 

result in bad data.  Based on field experience it was found that average wind speeds of 

larger than 10 mph caused the mast arm to sway.  Therefore, data was collected on days 

with no precipitation and when the average wind speeds were below 10 mph.   
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Figure 3.10: Mobile data collection trailer 

Similar to the setup in the previous section, the data collection trailer was equipped with 

three WADs.  Two SmartSensor Advance WADs installed on the pole track the vehicles 

upstream and downstream of the pole, with the SmartSensor HD acting as the midstream 

sensor.  Two Click! 500 programmable controllers were also used.  Signal status was 

Wavetronix SmartSensor Advance 
Wavetronix SmartSensor HD 
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received from the Click! 500 installed at the traffic cabinet, through the portable signal 

phase reader, shown below in Figure 3.11. 

 

Figure 3.11: Safe Track Portable Signal Phase Reader 

The signal phase reader communicates the signal phase status by wireless to the portable 

sensor pole cabinet.  This cabinet features three Click! 200’s that collect the data from 
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each detector and then send it to the Click! 500; thus, the Click! 500 in the pole cabinet 

receives the data from the signal and all three detectors.  Figure 3.12 displays the portable 

sensor pole cabinet. 

 

Figure 3.12: Portable sensor pole cabinet 

Time synchronization of  the portable system is maintained with reference to the trailer’s 

Click! 500 real time clock.  The phase-reading Click! 500 syncs from the trailer’s Click! 

500 through wireless updates. Time stamping for all three WADs is performed by the 

trailer’s Click! 500.  The upstream and downstream latency is 21 milliseconds, while the 

midstream sensor’s latency is 6 milliseconds.  The calculated drift in synchronization for 

the entire system is 97 milliseconds by adding the following component drifts:  

 70 ms for the phase information 

 21 ms for the upstream and downstream sensor 

 6 ms for the midstream sensor 
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Therefore, the entire system has a time resolution accuracy of at least a 10
th

 of a second.  

The data is pushed or sent from the Click! 500 using the device’s serial port and a Serial 

to USB converter that connects to a laptop.  Matlab opens the serial port and saves the 

data in both .DAT and .txt files.  The data was manually truthed through the use of a 

Mobotix Q24M camera, Figure 3.13.  This fisheye camera can record high-resolution 

views, with a frame rate of up to 30 fps.  As shown in Figure 3.14, the camera was setup 

to view upstream, midstream, and downstream of the trailer. 

 

Figure 3.13: Mobotix Q24M camera 

 

Figure 3.14: Mobile trailer data collection environment 
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3.3.2.2. Validation 

The portable trailer WADs was validated against the MTi-G unit one-time; however, An 

example of the tracking performance of the MTi-G and WAD is shown in Figure 3.15.  

The root mean square error (RMSE) in distance was reported as 12.4 ft. 
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Figure 3.15: Example comparison between WAD, GPS, & Xsens 

3.3.3. Noblesville Site 

The following section presents the data collected setup performed by Sharma et al. (40).  

A detailed analysis of the performance of the WAD can be found elsewhere (88). 

3.4. Data Reduction 

As a result of the video and WAD data being recorded by Hypercam 2, data reduction 

was straightforward at most of the sites.  The videos were viewed and if any vehicles 

were present at the onset of yellow their downstream id, range, speed, decision to stop/go, 
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and type of vehicle were recorded.  As previously mentioned only single or lead vehicles 

of a platoon were used for analysis.  In addition, if the driver ran the red light it was also 

noted under the conflict column.  Red light runners were defined using the terminology 

from Section 2.5.2.  A sample data reduction form is shown below in Figure 3.16.  The 

date, end of green time, Downstream ID, Range, Speed, decision of driver, and Type of 

vehicle were noted. 

Wave

Downstream IDRange Speed Stop/Go Conflict Type

11/17/2010 49:29.9 546 Stop Car S

11/17/2010 51:05.2 557 13 56 Go Car S

11/17/2010 56:05.1 24 81 44 Go Suv S

11/17/2010 57:45.1 199 195 54 Go Suv S

Data Fusion

Vehicle present control region

Lane SA

Date Green end

 

Figure 3.16: Sample data reduction form 

Other than the Noblesville site each vehicle has three distinctive vehicle ids (Upstream, 

Midstream, and Downstream) assigned to them, as a result of using three WADs to track 

the vehicle.  The downstream  id was primarily the only id recorded; however, there were 

drops in the WAD coverage area between the upstream and midstream and midstream 

and downstream detector or approximately 50 and 100 ft., respectively.  At these 

locations, a vehicle’s distance and speed were not picked up by the WADs.  If at the 

onset of yellow a vehicle was present in between the midstream and downstream 

detectors, the data for all detectors was fit using either a linear or two-degree polynomial, 

as shown in Figure 3.17 and Figure 3.18  using the information from all three detectors.  

The best R
2
 value was used for determination of using a linear or two-degree polynomial 

to fit the vehicles trajectory.  Table 3.4 reveals the number of vehicles requiring data 

fusion. 
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Table 3.4: Amount of vehicles requiring data fusion 

Saltillo Highway 2 Pioneers US 34 US 75

Vehicles requiring data fusion 45 59 33 27 78

Total Vehicles 160 437 166 144 247

Linear 9 8 7 16 13

2-degree polynomial 36 51 26 11 65  

y = -89.617x + 970.64
R² = 0.9997
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Figure 3.17: Example of linear fit to vehicle 

y = 2.1805x2 - 97.647x + 1001.3
R² = 0.9978
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Figure 3.18: Example of two-degree polynomial fit to vehicle 
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3.5. Summary 

In this chapter the data collection and evaluation sites were described, along with the 

dates and time of collection.  The equipment, software and setup used in the field to 

collect the data was explained.  In addition, figures presented the calibration of the three 

systems with GPS units.  Finally, the method of data processing was described.  
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CHAPTER 4. METHODOLOGY & RESULTS 

4.1. Introduction 

This chapter develops the dilemma zone hazard function for obtaining probability 

estimates of a perceived traffic conflict occurring.  Data reduced as mentioned in the 

previous chapter was used for the analysis.  The probit model, a binary choice model, was 

used to model the underlying criteria for a driver’s decision at the onset of yellow.  Two 

critical thresholds were calculated for a driver approaching the intersection at the onset of 

yellow: distance requiring severe deceleration by the driver and the distance at which a 

driver would be required to heavily accelerate or run the red-light.  Any erroneous 

decision by driver in these zones would result in a severe conflict.  Finally, the results of 

the analysis are presented in this chapter. 

4.2. Methodology 

4.2.1. Underlying Theory on Driver’s Decision - Single Site Example 

At the onset of yellow a driver can choose from two mutually exclusive courses of action: 

stop or go; therefore, driver behavior can be modeled as a binary choice process.  

Recalling the approach developed by Sheffi and Mahmassani (39), let Tp be a driver’s 

perceived time to reach the stop bar randomly chosen from a population.  As a result of 

the variance in driver behavior based on several independent factors such as, perception 

of the yellow interval based on past experience, perception of the distance from the stop 

bar, perception reaction time, comfortable deceleration rate, etc., Tp can be modeled as a 

normally distributed random variable, as shown below in Equation 8. 
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 reqp TT      Equation 8 

where: 

Treq:  is the required yellow time to safely enter the intersection based on the 

vehicle’s distance and speed at the onset of yellow  

:   is a random variable is assumed to be normally distributed 

Figure 4.1 illustrates the resulting probability density function (PDF).  If the perceived 

time, Tp, is greater than the critical time threshold to pass through the intersection, a 

driver will decide to stop, otherwise they decide to go.   
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Treq: Required time to stop bar                                             
Tt: Critical time threshold

PDF of perceived time to 
stop bar (Tp)

Probability of stopping
Pr (Tp > Tt)

Treq Tt

 

Figure 4.1: Probability density function for perceived time to stop bar 

Therefore, the probability of stopping can then be calculated as:  

    Equation 9 

    Equation 10 
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    Equation 11 

   Equation 12 

   Equation 13 

In addition, the estimates of a and b represent 

    Equation 14 

Where, Φ(●) represents the standard normal cumulative function and Equation 13 is a 

probit construct.   Estimates a and b from Equation 13 are imperative to the formation of 

the probability of stopping curve, as they represent the slope and midpoint.  These two 

estimates, found from a modeling software, allow the standard deviation of the perception 

error ( ) and time threshold (Tt) to be calculated.  An example of the relationship 

between the time threshold, required time to stop bar, and the probability of stopping is 

shown below in Figure 4.2.  The drivers approaching the stop bar redefine the TTS, thus 

capturing different areas, as shown in Figure 4.2a.  The shifts in the required TTS values 

result in varying probability of stopping areas.  As would be expected, the probability of 

stopping increases as the required time to stop bar increases, shown in Figure 4.2b.  

Additionally, Figure 4.2c illustrates that when the time threshold is equal to the time 

required to stop bar, the probability of stopping is 0.5.   
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b) Required time to stop bar 
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c) Probability of stopping curve 

Figure 4.2: Relationship between time threshold, required time to stop bar, and probability of stopping 

Treq < Tt Treq = Tt Treq > Tt 
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4.2.1.1. Critical Acceleration and Deceleration Thresholds 

Two critical thresholds can be calculated for a driver approaching the intersection at the 

onset of yellow: distance requiring severe deceleration by the driver and the distance at 

which a driver would accelerate heavily or run the red light.  The following calculations 

were performed as examples of the acceleration and deceleration threshold based off of 

85
th

 percentile acceleration and deceleration values from Sharma (13).  The distance for 

which a vehicle cannot proceed through the intersection without heavily accelerating or 

RLR is calculated as shown below: 

   Equation 15 

 where: 

 s: speed of the vehicle at the onset of yellow (ft/s) 

 y: is the length of yellow (s) 

 a: is the 85
th

 percentile acceleration, 3.19 ft/s
2
 (13) 

 p: perception reaction time of 1 s 

For a speed of 80.67 ft/s (55 mph) and a yellow length of 4.90s, the critical acceleration 

distance equals 420 ft. This distance will be referred to as the maximum passing distance 

throughout the remainder of this thesis and represent the critical acceleration threshold.  

A vehicle at the onset of yellow upstream of this fixed distance choosing to proceed 

through the intersection will require heavy acceleration or will run the red light.  

Similarly, a fixed distance can be calculated where a vehicle will be require to decelerate 

heavily, as shown in Equation 16.     

   Equation 16 
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 where: 

 d: is the 85
th

 percentile deceleration, 14.41 ft/s
2
 (13) 

 Assumptions on formulas: 

 Driver behavior can be modeled normally 

 Distance calculated using wet coefficients even though data was only on good 

weather days 

 Acceleration and deceleration thresholds used are from Noblesville, IN 

Again using 80.67 ft/s (55 mph) and a 4.90s yellow interval, the severe deceleration 

distance is computed to be 306 ft.  A similar recommended severe deceleration rate of 

14.76 ft/s
2
 can be found in Malkhamah et al. (89).  A vehicle downstream of this distance 

choosing to stop will be required to decelerate heavily to stop prior to the stop bar.  The 

two critical threshold distances previously calculated are shown in Figure 4.3. 
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Figure 4.3: Critical distances along probability of stopping curve 
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Drivers choosing to stop downstream of the severe deceleration distance and choosing to 

proceed upstream of the maximum passing distance have made an erroneous decision.  

The consequences of a driver making an erroneous decision at the onset of yellow can 

lead to a conflict and in the previously mentioned cases a severe conflict.  The probability 

of perceived conflict can be calculated using the critical thresholds and stopping 

probabilities as shown below in Equation 17 (40).  










treqSTOPGo

treqSTOP

CONFLICT DDPP

DDP
P

1
  Equation 17       

where:  

Dreq:  Required distance to perform chosen decision 

Dt: critical distance threshold depended on yellow time 

Perceived conflicts can be classified into minor and severe based on the magnitude of the 

acceleration or deceleration required to perform the chosen decision and the typical 

ranges of acceleration or deceleration used by drivers.  The required acceleration or 

deceleration to complete the chosen action therefore can be used to determine the severity 

of the evasive action needed. If the required acceleration or deceleration is within the 

typical operating ranges, a minor traffic conflict would occur; but if the required 

acceleration or deceleration is greater than the thresholds of the typical ranges, a severe 

traffic conflict would transpire. Drivers in the zone of a minor conflict are likely to have 

minor traffic conflicts such as an abrupt stop, applying the brakes before proceeding, or 

acceleration through yellow.  However, the drivers in the zone of severe conflict will 

have severe traffic conflicts such as running a red light, swerving to avoid  a collision, or 

vehicle skidding.  Figure 4.4 displays the severe probability of conflict curves.  
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Figure 4.4: Probability of severe conflict 

4.2.1.2. Risk Associated By Making an Erroneous Decision 

The risk associated with drivers making an erroneous decision can be quantified.  

Multiple probability of stopping curves must be developed, as a result of the critical 

acceleration and deceleration thresholds being dependent on time and the speed 

variability of drivers approaching an intersection.  The estimated parameters, a and b, 

acquired from the modeling software are plugged into Equation 13 to develop probability 

of stopping curves for speeds of 35, 40, 45, 50, 55 and 60 mph.  Figure 4.5 presents the 

resulting probability of stopping curves for multiple speed ranges.  The first step to 

quantifying the risk is to integrate the area under both severe conflict thresholds.  An 

average of the integration is computed.  Lastly, the proportion of vehicles within each 
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speed category is multiplied by the averaged integration resulting in a weighted average 

of risk for a driver approaching an intersection.   
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Figure 4.5: Example of varies probability of stopping curves 

4.2.1.3. Effect of Information 

Providing drivers with information through AWFs has shown to alter the probability of 

stopping curves (27).  Consider, the potential effect of information at an intersection on 

the standard error (indecision at the onset of yellow), as shown in Figure 4.6a.  It can be 

seen that by providing information the probability of stopping curves becomes steeper 

due to a reduction in variability.  Ideally, the slope of the probability of stopping curve 

would be infinity meaning every driver is making the correct decision at the onset of 

yellow.  However, if information shifts the midpoint, the calculated time threshold from 

Equation 14, the entire probability of stopping curve is shift, as shown in Figure 4.6b.  
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The probability of stopping curve could be shifted closer or further away from the 

intersection.  Recalling that probability of conflict is dependent upon probability of 

stopping and the two critical thresholds are fixed results in a shift in the probability of 

conflict curve.  If the probability of stopping curve were shift closer to the intersection 

the probability of severe deceleration would increase.  Conversely, a shift in the 

probability of stopping curve further away from the intersection would result in an 

increase in RLRs.  This thesis will examine the effects of information on the potential 

shift in the midpoint as well as on the change in slope on the probability stopping curves. 
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a) Effect on probability of stopping 
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b) Effect on probability of stopping 

Figure 4.6: Effect of information provided to drivers 

4.3. Methodology in Comparing Multiple Sites 

Researchers (90,91) have found the need to develop site specific dilemma zone 

boundaries, as a result of both variance in driver behavior and site characteristics.  Shown 

previously in Figure 4.2, variance in driver behavior alters the time threshold values 

under the PDF potentially shifting or changing the slope and midpoint of the probability 

of stopping curves.  Results similar to the conceptual example of Figure 4.6 are likely in 

the event of comparing sites providing and not providing information to drivers.  

Therefore, it is desired to be able to find the statistical significance of the slope and 

midpoint between sites.  The following methodology will be used to determine this 

statistical significance between multiple sites. 
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4.3.1. Utilization of Econometric Modeling 

The statistical significance is calculated using econometric modeling to find model 

estimates.  By setting up dummy variables dependent on site location and in this analysis 

a vehicle’s time to stop bar, the statistical significance can be tested.  Past research 

(39,42,44,47) has advocated the use of time to stop bar as the primary independent 

variable for modeling driver’s decision at the onset of yellow.  Dummy variables were 

setup to test for statistical significance of the variables.  This site represents the overall 

model estimates.  The following example will demonstrate this procedure.  Two sites are 

tested to compute the effect of information provided to drivers.  One of the sites provides 

information to drivers through the use of AWFs, while the other does not.  Therefore, the 

site not providing information is selected as the variable to be all zeros.  A probit model 

estimates the following parameters, where: 

 Constant = a constant 

 Timestop = the instantaneous time to stop bar at the onset of yellow based on the 

vehicles distance and speed 

 Site2 = 1 if the location is Site 1, otherwise if it is Site 2 it equals 0 

 Site2_Time = Timestop multiplied by Site1 

Results of the analysis are shown in Table 4.1.  Model estimates, a and b, are used to 

calculate the standard deviation of the perception error ( ) and time threshold (Tt) from 

Equation 13, as shown in Table 4.2.  The values in the standard deviation column of 

Table 4.2 represent the variance in driver’s decision at the onset of yellow, while the time 

threshold values represent when Tt = Treq.  As mentioned previously, this time threshold 

represents 0.5 on the probability of stopping curve, which is also the midpoint. 
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Table 4.1: Model results 

Variable Name Value Standard Error

Constant b s 1

Timestop a s 2

Site2 b 1 s 3

Site2_Time a 1 s 4  

Table 4.2: Standard deviation and time threshold values 

Site Standard deviation Time threshold

Site 1 - Overall 1/a -b*a

Site 2 1/(a+a 1 ) -(b+b1)*(a+a1)  

The effects on parameters a1 and b1 are shown below in Table 4.3, assuming a positive b 

value and negative a value.  If a1 was a negative value, the slope of the probability 

stopping curve would become steeper, while if a1 was positive the slope would become 

gentler.  The remainder of this chapter presents the results of the analyses described in the 

previous sections. 

Table 4.3: Effects on model estimates on probability of stopping  

a b

a 1 (+) probability stopping slope becomes gentler midpoint further from intersection b 1 (+)

a 1 (-) probability stopping slope becomes steeper midpoint closer to intersection b 1 (-)  

4.4. Econometric Modeling for Insight into Effect of Information on Driver Decision 

4.4.1. Overall Analysis of Sites 

Based on the approach followed by Sharma et al. (40), a probit model was used to 

investigate the influential independent variables on a driver’s decision at the onset of 

yellow.  Initially, the data was combined into an overall model for testing the statistical 

difference between intersections using the dummy variable approach described earlier.  
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Overall model results are shown below in Table 4.4.  Variable descriptions are shown in 

Table A.1, while the site number references are locate in Table 3.1.  As an example, Site1 

indicated whether or not a vehicle was present at Site1 and likewise for Site2, Site3, etc.  

The variable Site1_Time represents the time to stop bar if the vehicle is present at Site1 

and so forth for the remaining sites.  As expected, time to stop bar was found to be highly 

significant.  In addition, the following variables were found to be statistically significant 

at the 90 percentile in the model:  

 Constant 

 Site 1 

 Site 2 

 Site 5 

 Site1_Time 

Table 4.4: Results of overall model 

Variable Name Value Standard Error T-stats P-value

Constant -4.459 0.187 -23.891 0.000

Timestop 0.926 0.041 -22.836 0.000

Site1 2.186 0.342 6.384 0.463

Site2 1.205 0.337 3.573 0.000

Site3 -0.415 0.920 -0.451 0.652

Site4 -0.429 0.917 -0.468 0.640

Site5 0.957 0.495 1.935 0.053

Site1_Time -0.422 0.081 -5.224 0.000

Site2_Time 0.071 0.092 0.774 0.439

Site3_Time 0.178 0.193 0.922 0.357

Site4_Time 0.104 0.207 0.501 0.617

Site5_Time 0.121 0.136 0.887 0.375  

Therefore, Site 1, Site 2 and Site 5 are statistically different from the remaining three 

sites.  The results of the analysis closely adhere to the individual site characteristics 

shown in Table 3.1.  As expected, most of the Nebraska Department of Roads sites (Site 

3, Site 4, Site 5) are clustered together.  A change in speed limit prior to the intersection 

could be a possible explanation for Site 1 showing up significant.  As mentioned 
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previously, approximately 1150 ft. prior to the intersection at Site 1 the speed limit drops 

from 65mph to 55mph.  In terms of sites providing driver’s with information, Site 2 and 

site 5 provided the longest and shortest combined flasher and yellow time, 13.6s and 

10.5s, respectively.  In addition, these two sites’ AWF distance varies considerably from 

the other three sites, i.e. 87 ft. and 180 ft.  It is also important to note that even though 

Site 6 data was evaluated from another state, it did not shown up to be statistically 

significant.  Therefore, the results indicated models from Site 3, Site 4, and Site 6 could 

be used interchangeably.   

Table 4.5 presents the overall estimated parameters, as well as the calculated site specific 

values.  The overall model estimates come directly from Table 4.4; however, the site 

specific values were calculated as previously described.   

Table 4.5: Calculated parameter values 

a b

Overall - Site 6 0.926 -4.459

Site 1 0.504 -2.273

Site 2 0.997 -3.254

Site 3 1.104 -4.874

Site 4 1.030 -4.888

Site 5 1.047 -3.502  

Table 4.5 displays the values for the standard deviation of the perception error ( ), time 

thresholds, and lengths of yellow for each intersection.  These values were calculated 

using Equation 13 and the parameter values in Table 4.5.  In terms of making decisions at 

the onset of yellow, the standard deviation represents the variance in the driver’s 

decision.  As previously discussed, an increase in the variance results in an increase in an 

increase in erroneous decisions made at the onset of yellow.  With nearly double the 
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standard error of the remaining sites, Site 1 had the largest standard error.  The change in 

speed limit prior to the intersection could be an explanation for this.  Site 3 was shown to 

have the smallest variance.  Table 4.6 allows for a comparison between the time threshold 

and length of yellow at each intersection.  Site 1 has the strongest correlation between 

time threshold and the actual length of yellow, while at Site 2 the time threshold is nearly 

half of the actual length of yellow.  The correlation at Site 6 is very close as well between 

time threshold and yellow time.  Four of the intersections’ time thresholds varying within 

0.5 seconds of the actual yellow length, while the other two intersections differ by more 

than 1 second.  In the case of Site 2, the time threshold fluctuates by 2.3 seconds.  The 

variance in standard deviation and time thresholds is also shown in Figure 4.7 and Figure 

4.8. 

Table 4.6: Standard error and time threshold values 

Site Standard Error Time threshold Yellow times

Overall 1.080 4.8 5

Site 1 1.984 4.5 4.4

Site 2 1.003 3.3 5.6

Site 3 0.906 4.4 4.9

Site 4 0.971 4.7 4.4

Site 5 0.955 3.3 4.5  
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Figure 4.7 Calculated standard deviation 
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Figure 4.8 Calculated time thresholds 

In comparison with previous literature (27,46,47,92), the calculated time threshold was 

plotted against actual length of yellow, as shown in Figure 4.9.  Four intersections were 
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graphed from Hurwitz (92); however, the time threshold and actual yellow lengths for all 

four intersections were four seconds.  Intersections with AWFs, or, in the case of Koll et 

al. (27) flashing green, were plotted separately from intersections not providing drivers’ 

information.  Based on this sample of intersections, drivers approaching intersections 

without being provided information correctly perceived the time threshold, while drivers 

inaccurately predicted the time threshold at intersections providing them information.  

The largest outliers from Figure 4.8 are points A, B, and C, which represent Site 2, Site 5, 

and Koll’s (27) studied sites in Austria.  In addition, Figure 4.9 displays what type of risk 

is associated with being above or below the line.  The three previously mentioned sites 

have the potential for increases rear-end risk, as these intersections all fall below the line.  

Conversely, any intersection above the line would have the potential for increased RLR 

risk. 
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Figure 4.9 Comparison between yellow length and time threshold 
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Having identified two significantly different groups of intersections, an extensive 

analysis was performed to understand the underlying criteria between both groups. The 

first group consisted of Site 2 and Site 5.  The remaining sites are classified into group 

two.  This terminology will be used when comparing the two different groups.  In 

addition to time to stop bar, many other variables were tested.  A comprehensive list is 

found in Table A.1.  Maximum likelihood estimation technique was used to obtain 

estimates of the parameters using NLOGIT (93).  Models were compared using Akaike’s 

Information Criterion (AIC) (94).  AIC takes into account both the statistical goodness of 

fit and the number of parameters required to obtain that goodness of fit.  As the number 

of model parameters increase, a penalty is imposed on the model.  The best or preferred 

model is the model that has the lowest AIC value.  Results of the analysis are shown 

below in Table 4.7 and Table 4.8.   

Table 4.7: Model results for group 1 

Number of observations: 844

AIC Value: .555

Variable Name Value Standard Error T-stats P-value

Constant -2.967 0.212 -14.004 0.000

Timestop 0.895 0.054 16.628 0.000

Peak -0.284 0.134 -2.115 0.034

HV -0.381 0.218 -1.749 0.080

Unrestricted log likelihood value: -230.5618

 

 

Table 4.8: Model results for group 2 

Number of observations: 3057

AIC Value: .298

Variable Name Value Standard Error T-stats P-value

Constant -4.482 0.179 -25.009 0.000

Timestop 0.951 0.039 24.443 0.000

Morning -0.231 0.114 -2.026 0.043

Unrestricted log likelihood value: -452.1201
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The estimated parameters were used to develop probability of stopping curves for a speed 

of 55 mph, as shown in Figure 4.10.  The probability of stopping curves reveals the effect 

of information provided to the drivers from AWFs.  Information provided to drivers at 

the group 1 sites causes a drastic shift in the probability of stopping.  The shift in 

dilemma zone boundaries is shown in Table 4.9.  The start and end of the boundaries is 

shifted closer to the intersection by 1.3 seconds and 1. 5 seconds, respectively for group 

1.  Results of the models demonstrate the significant shift from information provided to 

drivers at the onset of yellow from the commonly accepted dilemma zone values of 2.5-

5.5 seconds from the stop bar.  Figure 4.10 illustrates several critical lines and points 

represented in Table 4.9. 

 Points A and E represent the start and end of the dilemma zone for Group 1 

 Points C and F represent the start and end of the dilemma zone for Group 2 

 Lines B and D represent the commonly accept dilemma zone boundaries from 

Bonneson et al. (95)  
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Figure 4.10: Probability of stopping curves for 55 mph 

Table 4.9: Dilemma Zone Boundaries 

P = 0.9 (DLZ Start) P = 0.1 (DLZ End)

Group 1 4.8 s 1.9 s

Group 2 6.1 s 3.4 s

Bonneson et al. (95) 5.5 s 2.5 s  

4.5. Risk Analysis 

The final estimated parameters from Table 4.10 were used to develop probability of 

stopping curves for speeds of 35, 40, 45, 50, 55 and 60 mph at each site shown in Figure 

4.11.  The weighted average risk was found for both critical thresholds.  Results of the 

risk analysis are shown in Table 4.11.  The effect of information is seen in that the sites 

seem to mitigate the probability of conflict for one of the two thresholds.  As expected, 

Site 2 and Site 5 have the largest rear-end risk, while Site 4’s RLR risk is 4 times higher 

than any other site. 
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Table 4.10: Risk for severe conflict 

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6

Rear-end risk 5.55E-05 4.74E-04 1.55E-05 6.86E-06 4.99E-04 1.08E-05

RLR risk 3.27E-05 5.36E-09 2.66E-05 2.04E-04 1.84E-06 4.93E-05  

The rear-end and RLR risk were ordered and compared to the actual proportion of 

vehicles that were required to decelerate heavily.  In addition, the RLR risk was ordered 

and compared with the proportion of RLR’s at each site. Results of the comparison are 

shown in Table 4.12 and Figures 4.14 and 4.15.  For the most part, sites with the highest 

rear-end risk had the highest rear-end average crash history.  These results are similar to 

the previous.  Sites 2, 3, and 5 were almost in complete agreement between the calculated 

risks and observed conflicts.  It can also be seen from Figures 4.11 and 4.12 the 

proportions between the two risks is an inverse relationship.  Other than for Site 1 the 

proportions between calculated risk and observed conflict were in agreement with one 

another.  While some of the sites show a good correlation there appears to be factors not 

captured by the rear-end risk increasing accidents at Site 1.   

Table 4.11: Comparison between risk of conflicts and crash histories 

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6

Rear-end risk 3 2 4 5 1 6

RLR risk 3 6 4 1 5 2

% Severe Deceleration 6 2 4 3 1 5

% RLR 1 6 3 2 4 5  

It is evident that providing drivers with information in advance of the intersection using 

AWFs can potentially cause increased risk in both RLRs and stopping as opposed to 

decreasing the risk of drivers approaching the intersection.  The results are in agreement 

with previous findings that have revealed significant reductions in RLRs at intersections 

with AWFs (20,21,22); however, rear-end crash potential has increased as a result 
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(23,24,25,26,27).  Thus, caution should be used by engineers before providing drivers 

with information at a high speed intersection. 
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Figure 4.11: Calculated weighted risks 
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Figure 4.12 Proportion of vehicles performing severe deceleration or RLR 



 

 

81 

4.6. Further Case Study on Effect of Information 

Site 5 revealed specific insights into the effect of information presented to drivers as they 

approach a high-speed intersection.  As a result of the AWFs being located downstream 

of the mobile trailer, it was possible to view if a vehicle was upstream or downstream of 

the flashers at their onset.  This enabled a probit model to be developed knowing a 

vehicle’s time to the stop bar at both the onset of yellow, as well as the onset of the 

AWFs.   

Using the values from Table 4.15 resulted in a statistical difference in both the slope and 

midpoint by providing drivers with information through the use of AWFs.  This can be 

seen below in Figure 4.16.  The probability of stopping at both the onset of yellow and 

onset of AWFs is shown.  Additionally, the yellow onset stopping curve was shifted by 

the amount of the time the flashers come on before yellow, i.e. six seconds.   By 

examining and comparing the AWF onset and shift yellow onset curves in Figure 4.17, it 

can be seen that there is a significant shift in both the slope and midpoint.  Remembering 

the underlying theory in section 4.2, as the slope of the probability of stopping curve 

increases the indecision at the onset of yellow decreases.  Thus, it can be inferred that 

more erroneous decisions are being made at Site 5, as the AWF curves’ slope is less steep 

than the yellow onset slope. 
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Figure 4.13: AWF Effect at US-75 

Specifically, it is desired to decrease the risk of rear-end or RLR to drivers approaching a 

high-speed intersection.  Figure 4.18 shows the resulting probability of severe conflict 

curves at both the onset of AWFs and yellow.  The effect of information on the 

probability of severe conflict is noteworthy.  As a result of have smaller probability of 

stopping values at both critical thresholds, providing information to drivers has decreased 

both the rear-end and RLR risk.  However, there is still a large potential for rear-end 

accidents at Site 5 even by providing drivers with information. 
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Figure 4.14: Effect of information on critical distances 
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Figure 4.15: Effect of information on probability of conflict 

4.7. Summary 

This chapter presented probit model estimates for understanding the effect of information 

on drivers.  In addition, an updated methodology of dilemma zone hazard function to 
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assess the risk associated with a driver approaching a high-speed intersection at the onset 

of yellow was presented.  Results of these analyses found providing information to 

drivers not only has the potential to affect the risk at an intersection but to potentially 

cause a significant increase in the risk  
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CHAPTER 5. CONCLUSIONS 

5.1. Summary 

In this thesis the effect of information on driver’s approaching high-speed intersections 

was analyzed.  Data was collected at five intersections providing drivers’ information 

through the use of PTSWF signs, with an additional site used for evaluation.  The probit 

model was used to model a driver’s decision at the onset of yellow.  Results revealed the 

effects of providing or lack of providing information.  Specifically, the results indicate 

the effects AWFs have on the probability of stopping and perceived conflict curves.  Sites 

providing information through PTSWF had earlier probability of stopping curves; in 

particular, Site 2 and Site 5 probability of stopping curves were drastically different than 

the other studied sites.  The shift at Site 5 resulted in virtually all the drivers approaching 

the intersection having the potential for minor or severe conflict.  The risk associated 

with being downstream of the severe deceleration distance and upstream of the maximum 

passing distance was calculated for a variety of speeds at each intersection.  An overall 

weighted average was then computed and compared to the crash histories.  An 

association could be seen in the comparison between the crash histories and the computed 

risks, as sites with larger severe deceleration risk had higher rear-end crash averages and 

vice versa.  Therefore, it is evident that providing drivers with information in advance of 

the intersection using AWFs can potentially cause increased risk in both rear-end 

accidents and RLRs as opposed to decreasing the risk of drivers approaching the 
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intersection.  Thus, caution should be used by engineers before providing drivers with 

information at a high speed intersection. 

5.2. Conclusion 

The main contributions of this thesis are: 

1. The effect of information was shown on both probability of stopping curves and 

the resulting probability of perceived conflicts.  Results from Sites 2 and 5 found 

a shift in the probability of stopping closer to the intersection resulting in an 

increase in rear-end risk.  In particular, the case study of Site 5 offered specific 

insights into the effect of information provided to drivers.  Results of the case 

study revealed not only a shift in the probability of stopping curves, but a change 

in the slope of the stopping curve.  These results contributed to decreases in both 

rear-end and RLR risk by providing information to drivers. 

2. The effect of information on rear-end and RLR risk was shown to have an inverse 

relationship.  As the rear-end risk increased, the RLR risk decreased as vice versa. 

3. A reasonable correlation was found between the rear-end and RLR risk and the 

observed conflicts at each site similar to previous findings on the correlation 

between conflicts and crashes. 

5.3. Future Research 

Development and design of a flasher system to mitigate the risk of severe conflict is 

recommended for future research. Therefore, to increase the understanding of the effect 

of information on driver behavior, additional analysis should be performed at sites with 

and without AWFs.  The costs associated with a trade-off between rear-end and right-

angle crashes should be determined in the design as well. 
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APPENDIX A 

Table A.1: Comprehensive List of Variables Investigated 

Variable Name Description Coding 

Range 
Distance to stop bar at onset of 

yellow 
Integer 

Speed 
Speed of vehicle at the onset of 

yellow 
Integer 

TimeStop 
Time to stop bar at the onset of 

yellow 
Integer 

Accel 
Required acceleration to cross the 

stop bar prior to onset of red 
Integer 

Decel 
Required deceleration to stop prior 

to the onset of red 
Integer 

Stop_Go 
Decision by driver to stop or 

proceed through intersection 
Go = 1, Stop = 0 

MorningP 
If observation was during the 

morning peak 
Yes = 1, No = 0 

Midday 
If observation was during midday 

peak hours 
Yes = 1, No = 0 

Afternoon 
If observation was during 

afternoon peak hours 
Yes = 1, No = 0 

Peak 
If observation was during peak 

hours 
Yes = 1, No = 0 

Car If vehicle was a car Yes = 1, No = 0 

HV If vehicle was a HV Yes = 1, No = 0 

Site1 If vehicle was located at Site 1 Yes = 1, No = 0 

Site2 If vehicle was located at Site 2 Yes = 1, No = 0 



 

 

Site3 If vehicle was located at Site 3 Yes = 1, No = 0 

Site4 If vehicle was located at Site 4 Yes = 1, No = 0 

Site5 If vehicle was located at Site 5 Yes = 1, No = 0 

Site1_Time Time to the stop bar if at Site 1 Yes = 1, No = 0 

Site2_Time Time to the stop bar if at Site 2 Yes = 1, No = 0 

Site3_Time Time to the stop bar if at Site 3 Yes = 1, No = 0 

Site4_Time Time to the stop bar if at Site 4 Yes = 1, No = 0 

Site5_Time Time to the stop bar if at Site 5 Yes = 1, No = 0 

Site1_HV 
If vehicle was a heavy vehicle at 

Site 1 
Yes = 1, No = 0 

Site2_HV 
If vehicle was a heavy vehicle at 

Site 2 
Yes = 1, No = 0 

Site3_HV 
If vehicle was a heavy vehicle at 

Site 3 
Yes = 1, No = 0 

Site4_HV 
If vehicle was a heavy vehicle at 

Site 4 
Yes = 1, No = 0 

Site5_HV 
If vehicle was a heavy vehicle at 

Site 5 
Yes = 1, No = 0 
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