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Abstract 

 Power-Hardware-In-the-Loop (PHIL) simulations allow the design and validation 

of power hardware components in virtual power system schemas with near real-time 

operation. This technique is increasingly used in the development cycle of many products 

to reduce design costs and increase design fidelity. The Hardware under Test (HuT) 

interfaces with a simulation of the user’s choosing through a hardware interface (HI). The 

digitally simulated system (DSS) runs on the real-time simulator before sending a 

reference value to the hardware interface to enforce. In this virtual to real interface, 

closed-loop stability and the simulation accuracy are the two paramount criteria in 

regards to the operational safety and experimental reliability. 

 The stability of the PHIL simulation represents the highest challenge in the 

implementation of this digitally simulated power system. The interface between the HuT 

and the DSS ideally adds zero distortion and maintains a unity gain. In practice, PHIL 

methods each have stability and accuracy trade-offs that will be discussed. 

 Any delay present in the simulation may negatively damp the system into unstable 

conditions. Careful consideration and compensation of interface delays can alleviate 

these adverse conditions. By communicating via time-frequency communication and 

partitioning a Point of Common Coupling (PCC) into the Hardware Interface controller, 

complex linear and nonlinear circuits may be simulated in a safe, stable and accurate 

environment. 
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 Analysis and verification of this thesis has been tested using a PHIL testbed at the 

University of South Carolina. The PHIL testbed is composed of a TI TMS320F28335 

digital signal processor, Opal-RT real-time simulator, and Matlab/Simulink.
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Chapter 1 : Introduction 

1.1 Background

Prototyping of complex power electronic systems is costly, time-intensive, and 

sometimes risky. Simulation has been widely used as a prototyping tool across many such 

disciplines. A modern modeling technique known as Hardware-in-the-Loop (HIL) incorporates 

the realistic limitations of hardware with the flexibility of simulation. This technique evolved 

from the use of EMTP solvers as shown in [1]. The hardware of importance, known as hardware-

under-test(HuT), can be validated in-lab before progressing to expensive field tests. A computer 

model running in Real-Time (RT) is connected to the HuT to mimic or replace any surrounding 

hardware that would be present under normal operating conditions. The virtual system and 

hardware are coupled via low power control and feedback signals. The HuT is analyzed in a 

virtual system capable of flexible yet realistic tests in a controlled environment. Using a HIL 

method can reduce the time, money, and hazard associated with testing expensive and dangerous 

equipment. Detecting potentially catastrophic errors caused by uncommon or extreme test 

conditions early in the development phase lends HIL to be a very popular tool to bridge the gap 

between simulation and field tests. Rapid prototyping of digital controls using HIL have both 

boosted the reliability of designs and shortened the control design cycle [2]. 

Some of the first implementations of HIL were military testing of missile guidance, 

aircraft technology, and flight simulation[3]. Continuous improvements in computing, modeling, 

and communication have allowed real-time simulation of mechanical systems such as: braking 

systems, combustion engines, and drivetrains[4]. Historically, testing relays was the primary use 

for Real-Time Simulation in electrical engineering[5]. In contrast, HIL has r4ecently been used to 
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validate large electrical converters, grid-balancing strategies, and control systems [6]. HIL is 

often synonymous with Controller Hardware-in-the-Loop (CHIL) where only the controller of a 

system is connected to a virtual representation of the system. This thesis focuses on the 

simulation technique known as Power Hardware-in-the-Loop (PHIL). PHIL builds on the benefits 

of HIL by exchanging actual power between the HI and HuT. This allows the validation of 

switches, passives, and relays in addition to the control system. A robust variety of tests can be 

accomplished due to the added versatility. 

1.2 PHIL Limitations 

PHIL simulations must interface with the real world as seamlessly as possible. A variety 

of problems involving sampling rate, delay, quantization, and component saturation must be 

considered. Specifically, the stability of the system is highly dependent on the sampling rate and 

delay present in the interface between the real and virtual systems. As PHIL is often used to test 

devices under non-ideal or disturbed conditions, a high bandwidth will be necessary for fast-

acting transient conditions. Due to advances in current technology, the computing delay and 

latency are less of a concern[7]. In this case, the bandwidth of the hardware interface between 

simulation and hardware bottlenecks the bandwidth of the PHIL simulation. 

Commonly, the simulation and hardware interface are directly connected via analog I/O 

to maximize bandwidth and minimize delay. Digital interfaces may also be considered and in 

some cases more desirable than analog coupling, however, communication latency inserts 

additional delay into the interface. With a lesser communication link, the delay and latency of the 

simulation is heavily increased. The challenge of ensuring simulation stability and conservation 

of energy between two subsystems becomes significant when utilizing the Ethernet and local 

networks as a communication link. Overcoming the limitations of this delay has been successfully 

demonstrated by a cross-Atlantic PHIL simulation between South Carolina and Aachen[8]. The 

goal of this research is to create a PHIL simulation method that reduces effects of delayed 
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communication between the simulator and the hardware interface system such that it is feasible 

for a range of PHIL applications. The following techniques are tested to accomplish this goal: 

using a current-based interface algorithm (IIA) other than ITM, implementing a hybrid 

communication consisting of instantaneous and harmonic phasor values, and most importantly, 

partitioning of the simulation within the HI to effectively avoid the delay’s effects. 

1.3 PHIL Interface Algorithms 

 In PHIL simulations, two systems interact by exchanging real power across a 

simulation/hardware interface. This interface enables coupling between the virtual system and the 

power hardware. The main difference between HIL and PHIL can be seen in Fig. 1.1.  

 

Figure 1.1 Comparison of Controller and Power HIL configurations 

The HUT will exchange power with the HI, which will actively mimic the Simulated 

System by amplifying signals from the simulator. A plethora of literature has been published on 

HIL while PHIL has been more recent and many issues have not been investigated as thoroughly. 

The effects and influence of several interface algorithms on a PHIL simulation will be analyzed. 

Most of the comparison will rely on overall system stability margins. Additionally, the majority 
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of interface algorithms are developed for use in conjunction with voltage power amplifiers [7]. 

Only one current-amplifier based Interface Algorithm, Ideal Transformer Method (ITM) is widely 

recognized across PHIL literature. Some scenarios or applications may require or desire a current 

amplifier based Interface Algorithm.  

  An alternative choice for an IIA system is  proposed and investigated in [9]. This will be 

accomplished by implementing this IIA to couple a RT simulation target with a three phase, 

30KW rated, and IGBT-based current amplifier. A variety of IA methods exist that interface with 

the hardware via a voltage amplifier. Common voltage-based IA (VIA) will be briefly mentioned 

but ITM and an IB-DIM (Current based Damping Impedance Method) will be analytically 

compared to show the benefits to stability that IB-DIM can offer.  

1.4 PHIL Partitioning & Communication 

 To counteract the delay, a partitioning of the model is proposed by shifting part of the 

simulated system into the HI as a set of state space equations. This partition would emulate 

common components at a Point of Common Coupling (PCC). These components could represent 

a common LC filter or a specified load designed to test the HuT. The load could be programmed 

to be a time-varying load with non-periodic, harmonic, and/or pulsed components. Any sudden 

shifts would be almost immediately followed according to the state-space estimations and then 

later be reflected within the Simulated System. Just as the human spine responds to immediate 

and important stimuli before the brain can react; the partition would react to disturbances 

immediately until the Simulated System can fully respond to the disturbance. Analysis of the 

stability benefits will be found using simulation and then the Hardware testbed. 

1.5 Significance of Research 

Currently, many universities, laboratories, and companies have been using HIL to 

accomplish tests and validate projects without access to a large systems or expensive products. As 
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mentioned earlier, HIL allows flexibility, safety, and cost-effectiveness. PHIL simulations 

between in-field hardware and in-house simulators are not possible under normal PHIL operating 

conditions. Companies such as NREL and INNL are cooperating to create new and interesting 

testbeds across hundreds of miles[10]. USC Columbia and RWTH Aachen have achieved 

simulator-to-simulator co-simulation across the Atlantic Ocean. On a smaller scale, labs around 

the campus of a University could interface with local utility’s test bed and field equipment for 

hands-on learning and novel experiments. The need for easy-to-use, high-fidelity networked 

PHIL is present and growing. 
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Chapter 2 : PHIL Methods 

2.1 Interface Algorithms 

 The ITM is composed of two ideal sources enforcing the conservation of energy. This is 

the most straightforward and conventional IA available. Depending on the signal being amplified, 

it is categorized as voltage type (Fig. 2.1) or current type (Fig. 2.2). Commonly, the voltage type 

is used for inductive HUTs while the current type is used for capacitive[11].  

 

 

Figure 2.1: Voltage-Type ITM Method 

 

 

Figure 2.2: Current-Type ITM Method 



7 

 The Transmission Line Model (TLM) technique model connects two circuits through a 

reactive component modeled as a transmission-line section. When the Δ𝑉 or Δ𝐼 per time step are 

small relative to the system, the two circuits can be considered decoupled as seen in (Fig 2.2). 

Another IA would be the Taganrog Interface which is named after the Taganrog State University 

of Radio Engineering. As shown below in Figure 2.3, current and voltage must be interchanged 

each time step. The resistors 𝑟1 and 𝑟2 are stabilization resistors meant to ensure a decoupled 

simulation. Unlike the linking resistor in TLM, 𝑟1 and 𝑟2 can be chosen regardless of the system 

parameters[11]. 

 

Figure 2.3: Taganrog Interface Algorithm 

 The Time-Variant First-Order Estimation(TFA) attempts to compensate the delay caused 

by the D/A, A/D, and computation by approximating the HUT with a time-variant first-order 

system. An example of the IA and the equation used to simulate a HUT based on a capacitive 

HUT can be seen below. As seen in the diagram below, 𝑣2 is the voltage across the HUT and 𝑖1 is 

the current supplying HUT. 

 
𝒅𝒗𝟐

𝒅𝒕
= 𝒂 ∗ 𝒊𝟏 + 𝒃 ∗ 𝒗𝟐 (1) 
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Figure 2.4: Time-Variant First-Order System 

 Partial Circuit Duplication (PCD) separates the original circuit into sub-circuits and 

solves them independently to decrease computation time. The name is due to the two partial 

circuits each containing a copy of the coupling resistance found in each other. The larger the 

coupling resistance, the faster the convergences to a solution using the Gauss-Seidel method 

iteratively as seen in [12]. PCD depends on a convergence factor that cannot be assured in one 

time-step and is subject to instability in this case. It is of interest to mention that PCD can be 

implemented as a Current-Type IA.  

 

Figure 2.5: Partial Circuit Duplication 
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Figure 2.6: DIM Voltage-Type Interface 

 Damping Impedance Method (DIM) is a composite of the PCD and ITM method. The 

simplification to each of the two IA from DIM can be realized when 𝑧∗ is equal to infinity and 

zero. At an infinite value, an open circuit is created to act as ITM. Setting 𝑧∗ to zero creates a 

short circuit and the circuit mimics the PCD method. Comparing Figure 2.1, Figure 2.5, and 

Figure 2.6, the above assumptions can be seen. The loop transfer function of DIM is: 

 

𝑮𝑳𝑷 =
𝒛𝒂(𝒛𝒃 − 𝒛∗)

(𝒛𝒃 + 𝒛𝒂𝒃)(𝒛𝒂 + 𝒛𝒂𝒃 + 𝒛∗)
 

 

(2) 

 When 𝑧∗ is equal to 𝑍𝑏, the magnitude of the function is zero. No errors will propagate 

between time-steps and the system is stable. In practice, an exact value for 𝑧𝑏 would not be 

possible. Several techniques have been proposed for online calculation of 𝑧∗ like the one found in 

[13]. 

 There is a novel IA for current-type setups discussed in [9] that formulates a current-type 

DIM interface and discusses it merits and shortcomings. The derived IA can be see below in  
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Figure 2.7: Current-Type Damping Impedance Method 

 Using this IA with 𝑍𝑎𝑏 ~ ∞ and 𝑍∗ = 𝑍𝑏, creates an extremely accurate and stable 

interface that is ideal for sudden load steps and non-idealities. In practice, maintaining the relation 

𝑍∗ = 𝑍𝑏 is impossible and would likely only restrict the difference between the two values to a 

very low magnitude.  

2.2 Stability and Accuracy of PHIL Test 

 Due to the real-time nature of PHIL, the time step of the simulation must be maintained 

at a very small value to ensure fidelity and stability. The calculation and communication time 

needed for any particular setup may limit the bandwidth potential of a PHIL setup. Operating 

outside of these limitations will cause erroneous results or complete instability of the system. 

 Perturbations caused by the PHIL interface setup can be sensor noise, delay of signal, 

necessary stability-enhancing components, or the LPF effect due to the amplifier. Any noise 

perturbation (NP) refers to sensor noises and switching harmonics injected by the interface. The 

transfer function perturbation (TFP) refers to the transfer function of the interface and its non-
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idealities. Any gain other than unity will introduce some simulation error and directly affect the 

response of the system[12]. 

 

Figure 2.8: Schematic of TFP & NP errors 

The ideal PHIL interface has a unity gain, zero time delay, and infinite bandwidth. Any variation 

from this idealized transfer function can be understood as Δ𝐺𝑖𝑛𝑡(𝑠). Based on Figure 2.9, the 

error can be represented by Equation 3 for any given frequency. 

 

Figure 2.9: Close loop system with Transfer Function Perturbation 

 𝑬𝑻𝑭𝑷 =
|𝚫𝒚|

|𝒚|
=  |

𝚫𝑮(𝒋𝒘)

𝑮(𝒋𝒘)
| (3) 

 

𝑬𝑻𝑭𝑷_𝒚𝟏 =  |
𝑮𝑳𝑷𝚫𝑮𝒊𝒏𝒕

𝟏 − 𝑮𝑳𝑷(𝟏 + 𝚫𝑮𝒊𝒏𝒕)
|    𝑬𝑻𝑭𝑷_𝒚𝟐

=  |
𝚫𝑮𝒊𝒏𝒕

𝟏 − 𝑮𝑳𝑷(𝟏 + 𝚫𝑮𝒊𝒏𝒕)
|  

(4) 
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Each of these equations refer to the open loop transfer function (𝐺𝐿𝑃 = 𝐺1𝐺2𝐺3𝐺4) and 

Δ𝐺𝑖𝑛𝑡. The individual gains in the system are not independently correlated to the error function. 

To calculate total TFP error, both terms would have to be considered. 

Time delays, sensor noise, and interface disturbances are classified as noise perturbation 

(NP) and usually consist of frequency components not present in the actual system. As seen in 

Figure 2.8, NP is separate from the TFP and must be normalized to the magnitude of the system 

response. The corresponding equation can be found below where 𝑊𝐼 is the normalizing function. 

 𝑬𝑵𝑷 =  |
𝒆′

𝒆
𝑾𝑰| =  |

𝑾𝑰

𝟏 − 𝑮𝑳𝑷(𝟏 + 𝚫𝑮𝒊𝒏𝒕)
| (5) 

 The author of [12] reduces the upper bound of the simulation error to a fairly simple set 

of equations using the following assumptions: 

 𝟏 + 𝚫𝑮𝒊𝒏𝒕 ≈ 𝟏 (6) 

   

 |𝑮𝑳𝑷(𝟏 + 𝚫𝑮𝒊𝒏𝒕)| ≈ |𝑮𝑳𝑷| < 𝟏 (7) 

   

 𝑬𝑻𝑭𝑷 = 𝐦𝐚𝐱 (𝑬𝑻𝑭𝑷𝒚𝟏, 𝑬𝑻𝑭𝑷𝒚𝟐
) =

𝟏

𝟏 − |𝑮𝑳𝑷| ∗ |𝟏 + 𝚫𝑮𝒊𝒏𝒕|
 (8) 

   

 𝑬𝑵𝑷 = |
𝑾𝑰

𝟏 − 𝑮𝑳𝑷(𝟏 + 𝚫𝑮𝒊𝒏𝒕)
| ≤

𝑾𝑰

𝟏 − |𝑮𝑳𝑷| ∗ |𝟏 + 𝚫𝑮𝒊𝒏𝒕|
 (9) 

 

First, the interface transfer function is assumed to be small to assure simulation accuracy 

and secondly, the magnitude of the loop transfer function must be less than 1 for stable systems 

regardless of the delay. After calculating the error function of the system, interface, and weighing 

coefficient, the simulation can be conservatively ensured to not exceed the error function for any 

given frequency. An example of a comparison is shown below 
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Figure 2.10: TFP error function vs. Frequency 

Some IAs are better suited to delays and step changes than others. For example, the 

Taganrog method suffers heavily during any sudden changes in voltage or current measurement 

while the TFA method performs admirably. The TFA IA seeks to predict or compensate the error 

caused by delays. For well-established models with steady-state testing, TFA has many benefits 

over less complex models such as the ITM. In the case of non-linear HUTs, TFA and PCD are 

unable to create accurate simulation results. There are large tradeoffs between accuracy and 

stability in the choosing of an IA and many variables must be considered before choosing one. IA 

methods will be analyzed according to the scope of this work. 

 

Figure 2.11 Interface Algorithm Table for Stability 
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The above table[12] displays the transfer function of major IAs. From the transfer 

function and component values, the stability of a system can be quickly determined. An important 

point of the ITM would be the differing stability criteria depending on the source orientation. This 

will be discussed and explained in Chapter 3.4. 

2.3 Communication Techniques 

Historically, the simulator and hardware interface are connected via analog interfaces that 

exhibit almost no latency or bandwidth restrictions. PHIL interface communication between two 

sources over Ethernet or other delayed communication networks in the time domain is uncommon 

due to the simulation’s sensitivity to time-shifts and delays. As referenced in[8], the problem of 

power conservation and the fidelity of the real-time simulation is very common yet poses an 

additional challenge when communicating over a lesser medium.  

By compensating time-varying and delayed behavior of internet communication, 

geographically separated system could participate in a real-time simulation without the expected 

latency, stability, and accuracy issues. Reference [5] Proposes an approach based on time-

frequency representation to overcome the communication & stability challenges. Using a discrete 

Fourier transform, the time-domain signal can be decomposed into the fundamental and its low-

level harmonics for communication. This time-varying Fourier communication will be referred to 

as Frequency Domain Communication (FDC). FDC packages are sent, inversely transformed, and 

summated to recreate the original signal. Using this technique, alternate simulation time-steps are 

possible as well. Results from reference [8] show the effects of a delay in the loop. As seen in 

Figure 2.12, the integrated system and the recreated signal overlap completely.  
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Figure 2.12: Comparison of Dynamic Phasor & Instantaneous Values under varying 

delays 

Conversely, instantaneous value communication suffers dramatically from additional 

delays. Using a relative 2-norm error and inducing a voltage sag at 6s in Figure 2.13, it is seen 

that harmonic components aid in a more accurate simulation. 

 

Figure 2.13: Error Reduction due to Harmonic Component Addition 



16 

Reference [8] speaks of adding up to the 11th harmonic component to increase the 

accuracy of the simulation. Ideally all harmonics within the bandwidth of a hardware interface 

would be included. This setup would be ill-suited to non-periodic and inter-harmonic 

disturbances as they would be effectively filtered out.  

Using standard instantaneous value communication, an LPF can be used to suppress high 

frequency simulation artifacts from propagating throughout the loop. The LPF is not necessary 

but increases stability margin in all cases[13]. FDC would intuitively act as a LPF as only the 

chosen frequency components are sent. Filter design could be implemented using LPF by giving a 

weight to each of the harmonic components in a discrete LPF. 

A novel approach to inter-cycle fluctuations is discussed in [14] to synchronize grid-

connected power electronics in systems with high voltage or frequency variability. Most control 

signal references are time-domain-based to avoid the computation cost required for frequency-

based reference signal generation. Overall, a variety of communication techniques exist to 

improve either the stability or accuracy of a PHIL simulation under a range of operating 

conditions. Later, these will be explored in conjunction with the objectives of this Thesis. 

2.4 Partitioning & Co-simulation 

Instead of multiple cores processing separate tasks simultaneously, multiple devices 

would be working together to accomplish tasks in tandem. Part of the simulation will be 

strategically off-loaded to the DSP. Ideally this part would be applicable to any high frequency 

filters present in the system to minimize the magnitude of high frequency communication 

between the Simulated System and the Partition. 



17 

 

Figure 2.14 Breakdown of Simulation system groups 

When breaking a simulation into two components, the point of interconnection must be 

carefully chosen. To maximize the stability margin of the system, the system will be separated at 

several locations to analyze the optimal position. 

Existing ODE solving techniques will be references and used to guess, test, and choose 

the best possible solution. Existing large circuit models may use relaxation-based solvers to 

separate and validate correct simulation of the circuit while restricting the memory and 

computation requirements. Circuit modeling depends on convergence of a solution as quick as 

possible. To increase convergence, the large model must be separated correctly to ensure that 

tightly coupling components remain in the same lumped sub-circuit. If too many components are 

lumped together, the benefits of co-simulation will be lost. The proposed relaxation-strategy 

deployed in [15] discusses the coupling metrics loosely used to choose the test cases found below. 

Because the two simulations are asynchronously connected by FDC, differing simulation 

time steps are possible. This allows independently chosen time-steps for each system. 
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Figure 2.15 Partitioned Functional PHIL setup 

In [13], a low pass filter is tested to increase stability margins. Modeling a first 

order delay using Pade’s approximation, the following bode plots reflect a system with 

and without the low pass filter. The effectiveness of the LPF will be discussed further in 

Chapter 3.4. Below, the LPF stabilizes an otherwise unstable system and creates 

  

Figure 2.16 1ms delayed loop gain with LPF(right) and Loop gain without LPF(left) 

Each of the above techniques can directly improve system stability and accuracy if 

correctly implemented. In Chapter 3, these techniques will be applied and analyzed to determine 

the best method available 
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Chapter 3 : Methodology & Simulation

3.1 Problem Clarification and Strategies 

 A PHIL setup between geographically separated hardware and simulators is currently 

very limited. To overcome this obstacle, several techniques will be tested at The University of 

South Carolina’s Power and Energy Laboratory. The PHIL hardware interface is an American 

Superconductor’s PM-1000 PEBB-based bi-directional VSC module. Using a TMS320F2833 

floating-point digital signal processor (DSP), Opal-RT, and a Matlab/Simulink, the PHIL 

Simulation can be connected to a variety of HUTs for IEEE 1547 or UL 1741 Testing. Testbed 

applications include: power-factor, harmonic, and non-periodic compensation. Other control 

techniques such as voltage ride-through and inertia emulation may be tested as well. The 

communication link between the DSP and Opal-RT is an Ethernet link that limits the accuracy 

and stability of the simulation. Ensuring accuracy and stability during communication delays, 

load steps, and faults are paramount to this work.  

The initial plan was to use FDC to increase the accuracy of the delayed PHIL system. 

Due to its zero steady error in simulation, non-transient conditions could be accurately simulated. 

After reading articles and journal papers aiming to increase the stability and accuracy of PHIL 

simulations, other promising methods were found for mitigating adverse effects of a slow 

communication link. Alternate interface algorithms such as the previously discussed current-

based DIM and the TFA were analyzed. Partitioning of the model yielded positive results when 

applied to models with switching harmonics. These early results were gathered from MATLAB 

Simulink in addition to the FDC strategies.  
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Together the following three techniques were evaluated for their effectiveness at 

completing the objective. The DIM method increased the stability margin in average PHIL setup 

but due to the signal feedback needed, the accuracy suffers from the delay. The impedance of the 

HUT must be monitored to achieve the full potential of the DIM method. The TFA method 

approximates the operation of the system with a first order system and attempts to predict 

response of the system to counteract small delays. Approximating the system creates numerical 

instability when solving the system and requires an additional compensation current component. 

Due to the delay and system approximation, the TFA method’s stability suffers greatly. 

FDC alleviates many problems in simulation but the implementation of the technique 

between the DSP and OPAL proved extremely difficult. Due to the real-time TD systems on both 

ends of communication, ensuring synchronization and simulation accuracy was not feasible in the 

time . Partitioning the model to mitigate error and instabilities yielded positive results and 

increased the simulation’s stability margin. Due to ease of implementation, benefits, and 

versatility, Partitioning was chosen as the main technique to pursue.  

3.2 Interface Algorithms 

Commonly used IAs discussed earlier all have their pros and cons that depend on the 

requirements of the simulation and the HuT characteristics. For the specific objective of 

mitigating the effects of communication delay, the most popular interface algorithms were tested 

and analyzed. Due to the restriction of I-type interface algorithms, ITM and DIM were chosen. 

First, the two were compared using MATLAB scripts to predict stability under predetermined 

conditions. Lastly, Simulink models simulated the physical components with a delayed 

communication structure in between. 
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To explore the stability of PHIL implementation, the two interface algorithms will be 

compared under similar load conditions. The open loop transfer function and block diagram of 

the ITM method can be seen below:  

 𝑻𝑶𝑳 = 𝑻𝑫𝑨𝑪 𝑻𝑨𝑫𝑪𝑻𝑽𝑺𝑪𝑻𝑳𝑷𝑭

𝒁𝑯𝒖𝑻

𝒁𝑽𝒊𝒓𝒕𝒖𝒂𝒍
 (10) 

 

Figure 3.1 ITM Loop Gain Flowchart 

Assuming all errors associated with the interface are negligible except the time delay, the 

time delays can be grouped as a time delay of 𝑡𝑑. The transfer function can be rewritten as  

 𝑇𝑂𝐿 = −
𝑍𝐻𝑢𝑇

𝑍𝑉𝑖𝑟𝑡𝑢𝑎𝑙
𝑒−𝑠𝑡𝑑 (11) 

The open loop result with similar assumptions yields Equation 7 for the I-DIM interface. 

The importance of this equation lies in the numerator. When 𝑍∗  ≈ 𝑍𝐻𝑢𝑇 ,  𝑍∗ damps the responses 

of the system while maintaining a near-unity gain for critical frequencies. 

 𝑇𝑂𝐿 =
𝑍∗ − 𝑍𝐻𝑈𝑇

𝑍𝑉𝑖𝑟𝑡𝑢𝑎𝑙 + 𝑍𝑎𝑏 + 𝑍∗
𝑒−𝑠𝑡𝑑 (12) 

With a 𝑍𝐻𝑢𝑇 of 3 + 0.0005𝑠 and 𝑍𝑣𝑖𝑟𝑡𝑢𝑎𝑙 equal to 7 + 0.0005s, the following Nyquist 

plots were calculated: 



22 

 

Figure 3.2 Nyquist Plot of IA stability when 𝒁𝒗𝒊𝒓𝒕𝒖𝒂𝒍 > 𝒁𝑯𝒖𝑻 

 

Figure 3.3 Nyquist Plot of IA stability when 𝒁𝒗𝒊𝒓𝒕𝒖𝒂𝒍 < 𝒁𝑯𝒖𝑻 

When 𝑍𝐻𝑢𝑇 is greater than 𝑍𝑣𝑖𝑟𝑡𝑢𝑎𝑙, the Nyquist plot of the I-ITM will always encircle (-

1,0). Even with a mismatched impedance between 𝑍∗ and 𝑍𝐻𝑢𝑇, I-DIM still ensures stability 

under a variety of load conditions. Altering the inductance of 𝑍𝐻𝑢𝑇 by increasing it to magnitude 

higher value gravely affects I-ITM while I-DIM is not adversely affected. 
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Figure 3.4 Nyquist Plot with 𝒁𝑯𝒖𝑻 = 5𝑚𝐻 

The DIM greatly increased stability of a system with conditions that would otherwise 

cripple ITM. The accuracy of the method must be ensured as well for a viable PHIL simulation. 

To test this, a Simulink model was created to assist this study. The following figure lists 

component values and placement for the simulation: 

 

Figure 3.5 I-DIM simulation with delay of 1.67ms 
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Figure 3.6 Output Current of Actual(Red) and DIM(Blue) with 500𝝁𝒔 delay 

The TFP error is caused by the delay as well as the non-unity gain of the interface. As 

seen above, the magnitude of the output does not accurately represent the system under normal 

conditions. Implementing DIM instead of ITM increases the accuracy, stability and complexity of 

the simulation. As explained earlier, I-DIM requires depends heavily on matching the impedance 

𝑍∗ to the Hut impedance. When the two are identical, the IA remains stable under all conditions. 

The interface method still works admirably when the two values are kept quite similar. To 

achieve this in real-time, active tracking of the HuT’s impedance must be implemented to account 

for step changes during operation.  

Active tracking of the impedance can be expensive and prone to error. Possible strategies 

and shortcomings to accomplish this are discussed further in [9]. Beyond the active tracking of 

the impedance, Simulink does not have a controlled impedance block to reflect these constant 

changes and an improvised block would have to created and tested for accurate representation. 

Due to these shortcomings, ITM may still be the ideal IA to use for this simulation. This decision 

will be discussed in Chapter 4.  
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3.3 Frequency Domain Communication 

Knowledge of the communication delay can be used to correctly synchronize with the 

local waveform. Any delay or time-shift between voltage and current in two subsystems will 

affect the fidelity of system, even when stable. Previous works have used this method to perform 

long distance simulator- to-simulator simulations from Aachen, Germany to Columbia, SC. As 

mentioned earlier, the technique sends the Laplace transform of the signal and inverts the 

transformation after receiving the data. Once synchronized, the two systems recreate the signal 

according to the local frame of reference. 

To test the abilities of the FD Communication, a Simulink model was created to 

independently test the communication technique used in [8]. A simple 120Hz AC voltage source 

was sampled and input into the FFT block of Simulink, and inversely transformed. The received 

signal is then compared to the input signal as seen below 

 

Figure 3.7 FFT of signal recombined and compared 

With an applied delay of approximately a half cycle at 60Hz, 8.33ms, the signal is then 

compared to the original to show the effect of synchronization and FD communication. The 

received signal remains correctly positioned in relative phase to voltage or current. Only the 

magnitude of the signal is affected by the delay. Sudden steps in magnitude are not recorded until 
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one cycle has passed for calculation. This is due to the FFT’s need of an entire cycle of the 

natural frequency to compute the output. 

 

Figure 3.8: FD Communication delayed by 8.34ms 

This additional delay only exacerbates the largest fault of basic FFT transformation. 

Transient conditions have a high chance of disrupting the conservation of energy across the 

interface. To mitigate this, a Recursive Discrete Fourier Transform (RDFT) found in [14] is 

utilized. Instead of requiring a cycle of sample points to transform and inversely transform, The 

RDFT maintains a moving window of sample points that update the output signal with each 

sample in an efficient manner. The block diagram of the RDFT algorithm is shown in Fig. 3.9. 

 

Figure 3.9 Recursive Discrete Fourier Transform architecture 
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The same input signal is input to the Custom RDFT block in Fig 3.10 and then 

recombined to the following output 

 

Figure 3.10 Simulink Custom RDFT Block Based on 200 Samples per cycle 

 

Figure 3.11 RDFT Output(Green) during from zero-to-full-step(Blue) 

Not only does the RDFT start partially accounting for transient conditions immediately, 

but it does so while using the onboard memory and processing efficiently. The benefits of this 

will be explained in the implementation section below. 

Overall, the FDC method would greatly mitigate steady-state error while minimizing the 

speed at which the packets would be sent. However, transient conditions would threaten this 

method just as much as basic TD communication. FDC may be beneficial but transient conditions 

must still be dealt with. 
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3.4 Model Partitioning & Low Pass Filtering 

Ideally the partitioning of the model would nullify or cancel the adverse effects of the 

delay. As the delay affects the TFP, the partitioning of the model will inversely affect the TFP by 

containing most of the fast dynamics within the PCC. The effectiveness will be studied from a 

transfer function perspective as well as a simulated power system with a delayed ITM coupling.  

Multi-rate Co-simulation has been performed in the past to fulfill particular objectives. 

Often certain sections of a system benefit from or require a small simulation time step. To reduce 

the computational stress or to run a larger system, different time steps are chosen according to the 

dynamics of the system. This allows a more efficient distribution of simulation resources and can 

increase fidelity or lower costs. A variation of the same has been accomplished by allowing the 

partition to operate independently from the rest of the system. By partitioning the PCC on the 

DSP and isolating high frequency components, the communication loop does not need to operate 

as frequently.  

Contrary to popular literature on the subject, this work aims to break the model into 

separate systems to accommodate for the delay in communication. By moving part of the system 

to the other side of the delay, the high frequency dynamics can be managed and handled before 

entering the delayed communication loop. As a majority of high order harmonics in the system 

are heavily damped at a Point of Common Coupling (PCC), this technique uses this inherent 

effect to its advantage. In a more technical sense, the stability equation for ITM has been 

manually altered by increasing the impedance ratio across the delay. 

The effect of partitioning is compared using a basic circuit’s measurements before and 

after being torn and connected via a delayed ITM model. 
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Figure 3.12: (Top) Test Case for Partitioning without delay and (Bottom) with delay 

This setup should operate similarly to the first one except this simulation has active 

sources on both sides of the delay. Current measurements are used to check simulation fidelity 

under a variety of conditions. 

 

Figure 3.13 Output current comparison due to 166.7𝝁s delay 
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Once the delay exceeds 1ms, the circuit with the delay becomes unstable due to the high 

frequencies harmonics in the Opal source. To stabilize the system and ensure high frequency 

noise does not amplify and destabilize the simulation, a LPF is tested with the above test circuit. 

The voltage feedback to Opal is filtered by a first order filter before transfer. This insures the 

loops transfer function remains below unity at high frequencies to protect from high frequency 

amplification in the loop. The effects of the filter can be shown by increasing the delay without 

destabilizing the circuit. The LPF is a simple filter with a cutoff frequency of 2000, which is the 

bandwidth of the current controller. 

 
𝟐𝟎𝟎𝟎

𝒔 + 𝟐𝟎𝟎𝟎
𝒆−𝒔𝒕𝒅  (13) 

 

Figure 3.14 Extreme Delay of 15ms and Attenuation of Received Signal 

Even though the system is stable, the accuracy of the interface and the TFP are greatly 

altered. In this way, the LPF must be used carefully as to not gain stability at the cost of accuracy. 

Partitioning combined with an LPF yields easily obtainable stability margins while allowing a 

high level of accuracy in most conditions.  

Furthermore, manually stabilizing the system by increasing the impedance of the PCC 

alters the loop transfer function to achieve 𝑍𝑃𝐶𝐶 > 𝑍𝐻𝑢𝑇. The PCC circuit can be modified to 

achieve a variety of goals depending on the PHIL simulation’s purpose. Some frequency warping 
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of high-order harmonics may occur closer to the cutoff frequency, but the effect would be 

minimal. Consequentially, this method requires a monotonous setup as the PCC circuit must be 

discretely modeled and computed on the DSP. All of these characteristics will be discussed more 

in Chapter 4. 
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Chapter 4 : Implementation

4.1 Initial System Configuration 

As seen in Ch. 3.4, initial simulation results of the aforementioned methods can create an 

accurate and stable simulation over the network. FDC allows for near zero steady-state error 

while partitioning of the system can stabilize the system and allow near instant responses to the 

transients on the hardware. The low pass filter can be used to alter the stability margin of the 

system at the cost of some high frequency attenuation. Lastly, the I-DIM can ensure stability and 

accuracy but severely increases the complexity and is sensitive to high delay. The feasibility of 

each of the methods will be discussed in detail below.  

4.1.1 Opal Communication Strategy 

Using the TMS320f2833 32 bit floating point DSP allows the user a lot of flexibility at 

the cost of ease of use. Alternatively, the OPAL-RT has a shallower learning curve for entry level 

projects and applications but requires in-depth analysis and reading to repurpose its more 

complicated functions. TCP/IP communication was chosen as the method of communication 

between the two devices to low overhead, message confirmation, and existing experience. For 

TCP/IP communication protocol to and from the OPAL-RT, a given data structure was supplied 

from RT-Lab. Any alteration of this structure for tailored needs caused a critical simulation error. 

Abiding by this structure, communication protocols were designed on the DSP to accommodate. 

Some complication was encountered because the W5300’s communication is 16 bit and little 

Endian while the OPAL payload is organized in 64 bit big Endian. After receiving the packet, the 

16 bit pieces received by the W5300 must be combined into the original number and then parsed 

to 32 bit floating points for all required calculations. Original troubleshooting between the two 
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devices proved to be difficult due to the setup required before each simulation. After an 

established method of basic data communication was established, the communication was 

integrated to the other functions of the DSP by replacing the original ADC input. After all 

necessary calculations, the resulting number is parsed to a 64 bit double and then converted back 

to a 32 bit float. 

 

Figure 4.1: TCP Package Structure within Opal 

4.1.2 Frequency Domain Communication 

To fully implement FDC, three things must be changed from the regular communication 

strategy. The number of signals between Opal and the DSP must be increased according to the 

bandwidth needed for simulation. All critical harmonics, such as the 3rd, 5th,7th, etc., would add 2 

more signals each. If the controller has a bandwidth of 2 kHz for a 60 Hz system, the first 33 

harmonics would be needed for complete periodic accuracy between the two systems. 66 total 

values would be sent every communication loop per measured signal. In a three phase system 

with dq transformation, 132 values would be required.  

Secondly, all of the values would need to be stored in memory on both sides of the loop. 

Memory is not a large concern for Opal but the DSP has a limited amount of accessible onboard 
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memory. Even with the chips 256K by 16 Flash and 34K by 16 SARAM memory, the number of 

harmonics and sample points per cycle would need to limited greatly as calculations will be 

performed with IEEE 754 32 bit floating point notation.  

Lastly, a Fast Fourier Transform must be performed to collect all necessary harmonics 

before sending. Once received, each of these waveforms must be combined into the resultant 

waveform. As the delay would result in a phase shift between the systems, the deterministic delay 

would be used to compensate and recreate the waveform correctly. Using a RDFT instead of a 

classic FFT minimizes the calculation window and number of operations but doubles the memory 

needed for the computation variables. 

4.2 Final Configuration 

4.2.1 Layout 

The FD communication was initially chosen for this project to allow networked PHIL 

simulations due to its zero steady state error and compensation against delay. Although 

simulation results were successful, initial implementation proved unsuccessful as the 

synchronization of the two systems was not ensured as it had been in Simulink. When isolated in 

a controlled environment where synchronization was forced, transient conditions were tested with 

unwanted results. A step change on the HuT side resulted in a perturbation that impacted the 

simulation after a delay which then perturbed HuT after a similar delay. The implementation of 

the FDC lacks flexibility due to its constrained frequency components, computation, and memory 

requirements. A critical task of PHIL simulations is the study of transients and non-ideal 

conditions. Fidelity of the simulation in relation to real-world results would not be guaranteed 

under these conditions. 

Once FDC was exhausted, model partitioning was chosen. The stabilizing effect of the 

non-delayed response from the state space model yields high flexibility with the delay. The 
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interconnect circuit that will interface the two circuits was chosen to be two RL line branches and 

one local RL load that can be used to replicate a local load. In the case of PV inverter test case, 

this state space model could represent local residential loads or a commercial building’s 

consumption in a distribution-level simulation. 

To validate initial findings and hypothesis, a test case was established. The following 

circuit ideally represents many of the components that would be present in a full system 

simulation.  

 

Figure 4.2 Test Circuit for System Validation. 

Opal will be connected to the DSP through TCP/IP over Ethernet. The DSP will run a 

state space model as discussed earlier. The hardware side output of the SS model will feed 

directly to the current controller also running in the DSP. Due to the configuration, the only delay 

between the HuT and the state space model will be the insignificant two-cycle delay in the 

deadbeat controller. Delay length, inductor values, and step-changes will be chosen to analyze the 

robustness of this setup. 

4.2.2 Partitioning 

Creating a stable and accurate interface between the Opal simulation and the HuT with its 

own circuit model would allow a configurable interconnect between the two but would also 

introduce its own artifacts to the transfer function between systems. Further, the implementation 



36 

of the model within the DSP will have its own challenges. The modeled circuit would be created, 

tested in Simulink, then built as a continuous time state space model and discretized to run on the 

DSP. The DSP itself would have to solve for each time step of the model. The model is limited by 

the computational speed of the DSP because high-order matrix multiplication would not be 

completed within the allotted time step. The sampling and state space estimation method would 

use the same CPU-interrupt to ensure simplicity and consistent operation. Due to this, a trade-off 

must be established between the complexity of the partition and the sampling frequency. 

Once the system was fully tested in Simulink and correct values were assigned to each 

component, the system must be discretized to implement on the DSP. A high value resistor was 

added in parallel to the current source to allow convergence of the state space system. The 

following state space equations were solved by hand. 

 
𝒅𝑰𝑳𝟏

𝒅𝒕
=

(𝑰𝒈 − 𝑰𝑳𝟏)𝑹𝑿 − (𝑰𝑳𝟏 − 𝑰𝑳𝟐 − 𝑰𝑳𝟑)𝑹𝟑 − 𝑰𝑳𝟏𝑹𝟏

𝑳𝟏
 (14) 

 

 
𝒅𝑰𝑳𝟐

𝒅𝒕
=

(𝑰𝑳𝟏 − 𝑰𝑳𝟐 − 𝑰𝑳𝟑)𝑹𝟑 − 𝑰𝑳𝟐𝑹𝟐 − 𝑽𝑶

𝑳𝟐
 (15) 

 

 
𝒅𝑰𝑳𝟑

𝒅𝒕
=

(𝑰𝑳𝟏 − 𝑰𝑳𝟐 − 𝑰𝑳𝟑)𝑹𝟑

𝑳𝟑
 (16) 

 

 𝑽𝒎 = (𝑰𝒈 − 𝑰𝟏)𝑹𝒙 & 𝑰𝑶 = 𝑰𝑳𝟐 (17) 

 

Once established, the A, B, C, and D matrices were imported to MATLAB to verify the 

system’s stability. The system was discretized using Backward Euler to ensure stability and 

simplicity. The discretized system can be found below as well. The system was ported into a 
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Simulink S-function and compared to the same circuit represented with Powerlib components. 

Figure 4.3 shows the layout of the entire simulation simplified. 

 

Figure 4.3 Overall Layout with connecting mediums 

The model is discretized at the sample period of the DSP’s control system. Discretizing 

the matrices in MATLAB and testing stability and response; before porting over to Code 

Composer Studio, aids in ensuring any changes to the model do not accidentally destabilize the 

model. Matrix multiplication was programmed into the SS_Calculation method to be completed 

once every sample period. Using the Direct Memory Access, the results will be saved in the 

SARAM for future calculations and communication. The structure of the DSP board allows for 

SS calculation and current control while intercepting data packets as well. The timing of these 

processes is carefully structured using two interrupts.  

4.2.3 Sources of Error and Validation 

To ensure correct operation, subsystems were tested individually before integrating the 

system together. The delay between Opal and the HuT would be inherently unstable due to the 

TFP, A filter model will act as a buffer between the two systems. This buffer will be used as a 

stabilizer to the overall simulation. As the stabilizing filter will consist of coupling inductors 

normally present in a PCC to the grid system, high frequency disturbances will be introduced to 

the grid in a controlled manner. The PCC can be configured to consist of an average model 

distributed load or a local load found in a Micro grid. 
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Validation on the DSP’s ADC and value scaling was accomplished independently. Basic 

TCP/IP communication was tested and recorded in excel.  

 

Figure 4.4 Using the DSP as an Echoserver 

Other sources of error would include the ADC, DAC, variable component values and 

transient changes. Transient conditions suffer from the delay due to the delay of effect from the 

PCC circuit. The system was tested under the same conditions as discussed earlier. 

Full system testing yields the reference signal from a non-partitioned circuit in Simulink 

to compare with the signal received after being transmitted to the DSP and the State Space Model 

before returning. As expected, the received signal is delayed and discrete.  

 

Fig 4.5: Fully Digital Simulation with Accurate recreation 
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As seen above, the voltage error at any given time can vary rapidly but the traditional 

methods are often not stable at all. As seen in Figure 2.12 in Ch.2, the errors caused by instability 

can contain large phase and magnitude errors. Creating an environment in which distance-

inhibited co-simulations are increasingly more viable allows new areas of collaborative research. 

These results pave the way for future implementation of increasingly more complicated and detail 

oriented simulations in the realm of Networked PHIL simulation. 
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Chapter 5 : Conclusions

5.1 Summary 

Throughout this work, the objective has been to create a delay-resistant PHIL interface 

between with the Delfino F28335 DSP and Opal RT simulator. Several techniques were explored 

in detail before partitioning a circuit model within the DSP. This decision was made with 

consideration to the complexity of setup, limitations of criteria, and simulation fidelity. PHIL 

simulations are much more prone to instability to the conservation of energy that must be 

maintained artificially. Due to complexities present in the I-DIM and FDC techniques, they must 

be tested, refined, and validated before being tested on hardware. 

Partitioning in combination with a LPF yielded the best simulation results combined with 

ease of implementation. The use of a local load or filter should be beneficial to almost any PHIL 

simulation setup needed to test the system and the HuT. A stable and mostly accurate simulation 

has been allowed due to partitioning. 

5.2 Recommendations and Future Work 

An exhaustive list of test cases, limitations, and component values may be tested to fully 

validate these techniques. For the sake of this work, the aforementioned tests were used to ensure 

viability of the technique in a real-time real-world PHIL test. The experimental results of these 

tests were performed without the full power hardware equipment within the loop due to the lack 

of specific equipment parts and time. These tests ensure the stability and should be conducted 

using the PEBB amplifier.  
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Further TCP/IP communication structures could be optimized specifically for a PHIL 

loop with only the necessary resolution for each value instead of communicating with the 64 bit 

IEEE notation. Reducing the throughput needed per step, memory & clock cycles needed to fulfill 

the requirements. Using State Space Nodes (SSN) in Opal would allow a larger grid model to run 

efficiently as multiple co-simulated nodes on the RT simulator.  

Developing I-DIM to allow real-time impedance tracking would create a very viable help 

that could supplement other techniques to increase stability and accuracy. To accomplish this, a 

monitoring device would likely be dedicated to the task of calculating the HuT’s impedance at the 

fundamental frequency as well as important harmonics. The online calculation of the value would 

negatively impact the simulation’s accuracy and stability if not properly matched or if not 

properly tuned to respond to large variations of the load’s impedance. 

Future work includes creating a RDFT communication loop with steady-state monitoring 

to detect which communication technique would be best suited to the current sample. If this 

algorithm was able to quickly and accurately utilize the best of both communication modes, 

simulation accuracy under a variation of transient and steady-state conditions would greatly 

increase.  

Partitions should be further quantified and tested for validity under non-ideal 

circumstances. One such circumstance would involve non-periodic load compensation. If a 

nearby Opal node contains disturbances due to an arc furnace or thyristor bridge, an actual 

compensator in the lab could be tested under a slew of operational possibilities. The compensator 

would be connected to the PEBB which is controlled according to the PCC circuit output and 

control loop.  

Implementing multiple techniques and optimizing currently proposed strategies would 

possibly allow the best qualities of each one to be gleaned and tested. Once setup, this PHIL 
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testbed can easily be altered to include other interesting parts and power electronics. The possible 

testing for renewable resources, distributed energy resources, and fault conditions are numerous 

and varied.  

.
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