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Abstract

Falls in the senior population represent an immediate threat to both current and

future generations’ quality of life. The results of falls can be disastrous, create a

long road to recovery, and in many cases result in death. Hypertension represents

a difficult-to-quantify condition which is known to contribute to gait and balance

dysfunction. Accurate assessment of conditions such as these represents an area of

primary investigative need.

In order to meet this need, a new experimental setup is developed which combines

time-frequency analysis with surface electromyography (sEMG) signals obtained dur-

ing ambulation. 3-bit pressure data is acquired using a pressure-sensitive mat, which

records time-aligned gait information alongside 8 dipole sEMG sensors attached to

tibialis anterior, gastrocnemius, biceps femoris and vastus lateralis. These muscles

serve as representative muscles for the ankle flexor, calf (knee flexor), hamstring and

quadriceps groups. In all muscles save the biceps femoris, these represent largest mus-

cle in each respective group, providing a comprehensive picture of muscular activation

during gait.

The sEMG signals are recorded simultaneously with those of a pressure-sensitive

mat, the data from which is used to identify the sinusoidal center of mass for gait

separation. The two signals are time-aligned using a recording trigger sent from a

standalone digital output device. Signals are imported into MATLAB and rejected

according to Grubb’s test using β = 90% on each of three signal attributes: signal

energy, signal dc level, signal and peak-to-peak voltage. Signals are decomposed using

a Hann window reduced interference distribution, with an Nt = 53-point Hann time
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window and Nω = 96-point Blackmann frequency window.

Six metrics based on the physiology and spectral analysis of sEMG signals are

used to evaluate and compare several population groups. These metrics are: In-

stantaneous time duration(TD%), local frequency bandwidth (FB), local frequency

maximum (Fmax), energy ratio conditional (Eωb), conditional energy from 40-100 Hz

(E%40−100Hz), and energy spectral density from 40-100 Hz (ESD40−100Hz). These

metrics rely on both Fourier transform spectrum distributions and accurate time-

frequency localized distributions.

Using a large subject database, 10 male and 20 female controls are compared

to 7 male and 17 female hypertensive subjects across the six metrics. Subjects are

separated into control and experimental groups using medical history and self-report

data; age was not a factor. Each of the six metrics are then evaluated in the four

muscle groups for differentiability between control and experimental groups. These

metrics are then evaluated in male and female subgroups.

In the male subgroup, when using the tibialis anterior muscle, TD%, FB, and

Eωb=120Hz showed a maximal accuracy of 75.00%, 76.92% and 76.92% respectively. In

the gastrocnemius, both FB and Eωb=120Hz showed 76.92% accuracy. In the vastus lat-

eralis, Fmax), and Eωb=120Hz showed 76.92% accuracy, while Eωb=40Hz showed 75.00%

accuracy. The biceps femoris showed low levels of accuracy (maximum 62.50%).

In the female subgroup, the overall level of accuracy is lower, due to physiological

factors of subcutaneous tissue, muscle distribution, and gait differences. In the tibialis

anterior, Eωb=40Hz showed the highest accuracy at 68.42%, with TD% at 66.67%. In

the gastrocnemius, TD% showed highest accuracy. In the vastus lateralis, Eωb=120Hz

showed the highest accuracy, and in the biceps femoris, Eωb=40Hz showed the highest

level of accuracy.

Using an aggregate of these key metrics, an accuracy of 94.12% for male subsets

and 78.38% for female subsets is established for testing control groups vs hypertensive
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experimental groups. This research represents a hypertension diagnostic tool, and

thus a quantitative indicator of fall risk.
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Chapter 1

Introduction

1.1 Signal Processing

Signal processing is a robust field which allows both the creation and investi-

gation of a variety of signals. For example, while humans have been singing since

before recorded history, signal processing allows for the perfection and manipulation

of pitch, tone, and tempo. In space, radio waves carry information about dying stars

and black holes, allowing glimpses into the beginnings of the universe. Satellites

transmit information across the Earth at rates which surpass the understanding of

every generation before. Even the human central nervous system serves as a beacon

for the brain, transmitting information on muscle action by way of electrical im-

pulses. Signal analysis therefore provides a tool with which to examine a wide array

of information.

In order to translate the information a signal carries into comprehensible terms,

they must often be transformed into domains which are already understood. One

of the earliest mathematical tools for signal transformation was developed by Joseph

Fourier [1], from his work on heat transfer. His major contribution is a transformation

which takes a function of time and translates it into a function of frequency through

the use of a sine-wave summation. This transform then allowed for new analysis of

known functions, and the relationship between time and frequency. Thus, a signal

that might have little meaning in the time domain might be better understood as a

function of frequency.
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While signals which repeat perfectly at some fundamental frequency are easy to

transform into frequency representations, many signals acquired directly from real-

world proceses do not exhibit this property. For example, signals such as speech,

music, television, and others are non-stationary, and change in frequency content

from moment to moment. Thus, while Fourier’s transform is useful in many cases, it

was inadequate to analyze the time-varying frequency content of the signals.

Consequently, there was a clear need for a methodology which could describe

energy as a function of both frequency and time. The first such transform was

proposed by Ville [2], and later improved by Wigner. This process allowed direct

calculation of energy from joint time and frequency moments. And so, time-frequency

analysis provides a way to interpret a transient phenomenon which contain time- and

frequency- information in a joint manner.

However, this so-called Wigner distribution was sensitive to cross-term distor-

tion from the inherent mathematical expression. Hence, other time-frequency dis-

tributions, with alternative desirable qualities, were conceptualized and investigated.

These kernels were designed with reduced interference in mind [3], after being sum-

marized for a general case [4]. Hence, time-frequency analysis has become a tool for

describing a myriad of signals, whose information had been masked by their tran-

sience. These concepts are extended mathematically in chapter 2. In this work, these

signal processing tools are used to decompose and analyze signals acquired through

electromyography.

1.2 Electromyography

Electromyography (EMG), or the study electrical signals generated by muscles

during contraction, has enjoyed a long and beautiful history of discovery. The

electricity-muscle relationship was first hypothesized and investigated by Francesco
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Redi, during his work on the electric eel. This was expanded later by Walsh [5], who

recognized that contraction could create electricity, and vice-versa by Galvani [6], [7],

when he used elecctricity to depolarize frog legs. Galvani’s findings were investigated

by Volta [8], who identified several inconsistencies which were later replaced by more

accurate theories. These advances culminated in the work of Emil du Bois-Reymond

[9], who is recognized as the father of neurology.

The investigation and ideas that du Bois-Reymond put forward were filled in

over time, as the mechanisms behind the muscles were discovered through chem-

istry, biology, and engineering. The major contribution of du Bois-Reymond was

the clear generation of electrical signals by the muscles, as well as the discovery of

surface impedance of the skin, using a bullfrog connected to electrodes to stimulate

a galvanometer. A diagram of this setup is shown in Figure 1.1. His experiment

culminated in inducing blisters to reduce resistance [10], but through his dedication,

the field was born.

Figure 1.1: Diagram of frog muscle contraction measurement experiment of Emil du
Bois-Reymond
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Through the next century, the knowledge of the human central nervous system

and its electrical implications continued to expand. The introduction of the amplifier

using vacuum tubes, combined with the invention of the surface electrode allowed

for much stronger stimulation of measurement devices during muscle contraction.

Gasser and Erlanger [11] earned a Nobel Prize in 1944 by removing the inertia-based

measurement systems and using tube-based amplification to drive an oscillograph,

finally allowing an accurate representation of the low-voltage signals which drove

muscular activation. They, like du Bois-Reymond, sampled from a frog’s muscles,

though because of the lack of inertia of a galvanometer, the recorded waveforms gave

much better insight to the inner workings of muscular activation, especially how the

signals varied over time.

After the invention of the silver/silver chloride surface electrode, the clinical and

practical aspects of electromyography started to become apparent. One of the earliest

exciting advances came when Russian scientists built a functioning prosthetic arm

[12], which used surface electrodes connected to an amputee stump to actuate a

claw. Since then, surface electromyography (sEMG) has progressed to new levels of

integration in the clinical and outpatient worlds.

Many advances in sEMG technology have focused heavily on the relationship

between muscle force and sEMG amplitude and frequency. In one case, fuzzy theory

[13], was used to evaluate sEMG signals taken during weightlifting. Upon comparison

to the actual amount of weight lifted, a highly accurate assessment of force was made

using the Fourier-transformed raw sEMG signals. Staudenmann et al. [14], [15]

developed a unique protocol for assessment of entire motor units using a high-density

grid of electrodes. By using this grid, they could evaluate various configurations of

electrodes, and achieved optimal results for evaluation of the force level using principal

component analysis. Thus, sEMG represents a dependable tool for assessment of

muscular force.
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Additionally, sEMG signals can be used to directly assess complex presentations

of muscular malfunction, where it may be difficult to tease out specific diagnoses

simply from the symptoms. Muscular degeneration has a variety of causes, such as

carpal tunnel [16] or thyroid dysfunction [17], but sEMG may be used to adequately

asses these causes. This ability allows sEMG signal analysis a privileged position,

with its ability to tease out underlying information.

Because of this fact, one area sEMG is uniquely suited for is that of human gait

analysis. EMG signals during ambulation give indications of gait abnormalities, and

can help in the assessment of underlying causes. Additionally, the ability of sEMG

to assess group motor function has been exploited to determine gait cycle during

ambulation under changing conditions [18], which can be used by extension to assess

gait patterns. However, gait represents a complex, time-dependent signal for which

additional tools are necessary. To meet the need for assessing the time-dependent

instantaneous frequency over each gait cycle, time-frequency analysis is used.

Time-frequency analysis has long shown itself an effective tool non-stationary

signal analysis, especially within the medical field. Through applying time-frequency

analysis, conditions such as muscle fatigue [19] or Parkinson’s [20] may be quantified.

Electroencephalogram signals, based on the same underlying principles as sEMG

signals, have been used to successfully decompose and identify seizures in newborns

[21], [22]. Because the key wavelengths in EEG signals vary by frequency, time-

frequency analysis can serve as a useful indicator for the detection and elimination

of artifacts from the signals [23]–[25].

Thus, sEMG signals, evaluated using time-frequency analysis, become useful tools

for assessment of time-dependent signals, such as during ambulation. These tools may

be applied to areas in need of investigation, such as that of fall risk assessment in

this dissertation.
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1.3 Motivations

As modern medicine has advanced, the average age of passing has steadily in-

creased, leading to new needs within the medical community. One of the primary

risks to the quality of life in senior populations is the risk of falling. Falls are also

associated with a much higher risk of mortality in seniors [27], besides the clear psy-

chological effects of loss-of-independence associated with falls. Falling is a problem

for not just the senior community, as an estimated $19.5 billion dollars of health care

costs in the United States in 2000 [28] were attributed, directly and indirectly, to falls.

Meanwhile, for seniors, the risk and cost of hospitialization rises with age. The CDC

reports [26] from 2005 on the cost of falls to seniors are shown in Figure 1.2. Figure

1.2(a) shows the cost in millions of dollars for those seniors who are released, while

Figure 1.2(b) shows the cost of those who are hospitalized. As seniors age, the cost

of fall-related injury increases, and as the senior population increases, the number

of fall-related injuries and deaths are also likely to increase. Thus, conditions which

affect fall risk are of prime investigative need, especially if they can be identified early

on, to minimize the economic impact of falls.

Falls and fall risk, like ambulation, are complex and multivariable manifestations

of complex underlying factors. However, some of the primary factors for fall risk are

well-understood. The condition of the musculature, such as muscular mass, strength,

and power, have been shown to significantly affect fall risk [29]. Additionally, leg

power [30] has been shown to correlate with fall risk. Thus, sEMG’s usefulness in

this area is already well-established. Additionally, several comorbidities have been as-

sociated with increased fall risk. Hypertension [31] has been shown as a link between

increased risk of falling, though the quantification of this relationship is difficult.

Thus, sEMG can serve an important role in quantifying key factors in fall risk assess-

ment.
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(a) Treated and released

(b) Treated and hospitalized

Figure 1.2: Total medical costs of unintentional fall-related injuries in United States
senior populations by sex and age in 2005 [26]
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Hypertension presents a uniquely difficult-to-quantify condition, due to masking

direct evaluation of its effects when a patient is undergoing treatment. However, the

effects of hypertension on gait exist as a symptom even in patients being treated for

hypertension [31]. Thus, the effects of hypertension may be quantified using sEMG

signals during gait.

In this initial research, a non-longitudinal observational study was performed in

order to evaluate the efficacy of detecting the presence of hypertension using sEMG

signals. Hypertension was chosen as a control variable due to its difficult-to-quantify

nature, and common presence among seniors. This research may be expanded in the

future to a full longitudinal study in order to evaluate the link between hypertension

and fall risk directly from the gait sEMG data.

In this dissertation, the first two chapters serve to inform the background knowl-

edge which is requisite for understanding both the experimental design and results.

Ch. 2 develops the mathematical concepts behind time-frequency analysis, from the

Fourier transform on to Cohen’s class of time-frequency transforms. Ch. 3 explains

the underpinnings of sEMG in the context of gait, as well as the effects of physiology

on the signals observed at the point of contact. Ch. 4 explains the experimental

setup used, as well as the design of metrics to evaluate changes in gait sEMG sig-

nals. Finally, these metrics are categorized using statistical methodologies to evaluate

differences between populations in Ch. 5.
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Chapter 2

Time-Frequency Analysis

In order to properly contextualize the use of signal processing in this dissertation,

the tools used must be fully understood. In this Chapter, the mathematical back-

ground which underpins time-frequency analysis are investigated. The mathematical

tools that time-frequency analysis provides is used to distill the large amount of in-

formation acquired through the experiment, and to evaluate by comparison between

groups. The concepts of time-frequency analysis will be explained by progressing

through classical methods of signal analysis, such as the Fourier transform, and con-

tinuing on to time-frequency analysis through the use of a non-stationary musical

arrangement.

First, the Fourier transform is explained, as well as its usefulness in evaluating

frequency information in section 2.1. From here, several simplistic methods of signal

analysis are explained in section 2.2, including bandwidth and time moments, which

can be obtained directly from the time-domain signal or Fourier transform of the

signal. These core concepts are extended to time-localized cases using the short-time

Fourier transform (STFT) in section 2.3. Finally, this culminates in the definition of

Cohen’s class of time-frequency transforms, as defined by their various kernels and

properties in section 2.4

Non-Stationary Signal Example: Musical Arrangement

As an example of a non-stationary signal, a small portion of a musical recording

is used. This represents an extremely complex signal, as each instrument involved
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creates various spectral content over a range of frequencies, including the fundamental

and harmonics of all instruments involved. Furthermore, the instrument tone and

fundamental pitch change over time. For this reason, a clip from Miles Davis’ Blue

in Green [32] is used, from time t = 18s to t = 26s, which has only three instruments

and minimal changes in fundamental frequencies. These 8.57 seconds represent eight

beats in the music, which contain multiple frequency elements over a wide bandwidth.

When the original signal is downsampled to fs = 4.41kHz, the resulting time domain

waveform, shown in Figure 2.1, shows several distinct amplitude changes over the

window, which correspond to the sound produced by the piano and trumpet. This

example will be used to illustrate the concepts of the following sections.

1 2 3 4 5 6 7 8

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

time [s]

A
m

pl
itu

de

Figure 2.1: Time-domain waveform of musical arrangement example

2.1 Fourier Transform

One of the most powerful methods of interpreting signals recorded in the time

domain is through the use of the Fourier transform. As explained in 1.1, Fourier’s

ideas came from his work on heat transfer, but the concepts can be extended to all

periodic.

10

https://www.youtube.com/watch?v=PoPL7BExSQU#t=0m18s
https://www.youtube.com/watch?v=PoPL7BExSQU#t=0m18s


Translation of signals into the frequency domain results in new ways to interpret

existing information. In the frequency domain, it is easier to evaluate a signal’s cause,

as well as the medium in which it operates, as these factors have clear influences on

a signal’s spectrum. This translation also simplifies our interpretation of multicom-

ponent signals, such as instruments or voices, which may appear confusing in the

time domain, but are simply combinations of weighted harmonics in the frequency

domain. Additionally, the Fourier transform may provide the means for mathematical

quantification of otherwise uninterpretable signals.

There are two incarnations of this transformation; one for continuous, infinite

signals, and another for finite signals. For a signal, s(t), the continuous Fourier

transform takes the form

S(ω) = 1√
2π

∫
s(t)e−jωtdt (2.1)

Thus, the spectrum S(t) is represented by the summation of sinusoidal waveforms

ejωt. To reconstruct the signal, these sinusoids are weighted by the spetrum point

appropriate to their frequency:

s(t) = 1√
2π

∫
S(ω)ejωtdω (2.2)

A signal can then be interchanged in the time or frequency domains. This principle

of energy conservation between the signals is known as Parsival’s theorem:

E =
∫
|s(t)|2dt =

∫
|S(ω)|2dω (2.3)

where E is the total signal energy, and |S(ω)|2 is the energy density spectrum. The

tools afforded by the Fourier transform may be used to describe key attributes of

signals without significant computational burden.

Using the discrete Fourier transform, it is straightforward to determine the power

spectrum representation of the example signal as the square of the transform. In
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Figure 2.2: Single-sided power spectrum of musical segment example from 1Hz to
10kHz

order to focus on the fundamental components, the spectrum is scaled from 1Hz to

10kHz, and is shown in Figure 2.3.

In this representation, it is clear that a majority of the energy is concentrated

below 1kHz, in which the fundamental frequency components lie. However, the

energy in the harmonics, at 2kHz and 3.3kHz contribute significantly to the overall

energy. By decimating by a factor of ten, the fundamental components may be

examined, as the relative sampling rate become fs = 44.1kHz
10 = 4.41kHz, resulting in

a Nyquist rate of fNy = 2.21kHz. This decimated spectrum from 1Hz to 1kHz is

shown in Figure 2.3

Upon investigation of the decimated-signal spectrum, there seem to be three areas

with high distributions of energy in the frequency domain. First, in the area of

60 − 108Hz, a large concentration of energy can be seen. Next, in the area around

530Hz, and finally, at 660Hz. These points are identified using markers in Figure 2.3.

However, it is not clear where these frequencies occur, as the signal itself is 8 seconds

long. There are, however, other tools which may be helpful for the description of the

signal.
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Figure 2.3: Single-sided power spectrum of 10-point decimated musical segment
example from 1Hz to 1kHz with key frequency points marked

2.2 Description of Signals

The concept of moments in statistics is extremely useful, as it provides a straight-

forward interpretation of key descriptive variables for a function. In the case of signal

processing, the time and frequency moments can be used to describe the mean and

variance of a signal in either domains. For the nth moment of a signal s(t) in the time

domain , the equation is given as:

〈tn〉 = 1
E

∫
tn|s(t)|2dt (2.4)

Thus, the first and second moments may be calculated by the use of (2.4) with n

set at 1 and 2, respectively:

〈t〉 = 1
E

∫
t|s(t)|2dt (2.5)

〈t2〉 = 4π
E

∫
t2|s(t)|2dt (2.6)

These equations, (2.5) and (2.6), can then be used to calculate the variance, which

gives an indication of the signal’s breadth in time or frequency:

T 2 = σ2
t = 4π

E

∫
(t− 〈t〉)2|s(t)|2dt (2.7)
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Additionally, the moments of the spectrum S(ω) can be used to evaluate the mean

and variance of the frequency. These are given as:

〈ω〉 = 1
E

∫
ω|S(ω)|2dω (2.8)

〈ω2〉 = 4π
E

∫
ω2|S(ω)|2dω (2.9)

These equations, (2.8) and (2.9), are used in the calculation of the bandwidth,

which is well-understood concept for describing the frequency content of the signal.

The bandwidth corresponds to the standard deviation in the frequency domain, and

is given by (2.10):

B2 = σ2
ω = 4π

E

∫
(ω − 〈ω〉)2|S(ω)|2dω (2.10)

Using these sets of equations, it is straightforward to describe the decimated

example signal in terms of its time and spectrum information. Using (2.5) , the time

center for the musical signal is 〈t〉 = 4.05s . Substituting into (2.7), a time spread of

T = 8.5s.

From visual inspection of Figure 2.1, these values can be properly interpreted. The

energy from t = 3 to t = 5 is extremely high, resulting in the first time-moment’s

skewness towards the beginning of the signal.

Extending to the frequency domain and using the spectrum as the probability

distribution function results in 〈f〉 = 2.057kHz and a bandwidth of B = 8.89kHz.

If using the 10-point decimated signal, the results are descriptive of the fundamental

frequencies, rather than their harmonics. After evaluating the spectrum by the deci-

mated signal (fdeci), the frequency center shifts to 〈fdeci〉 = 273.78Hz. These values

result in a bandwidth of Bdeci = 1.05kHz.

These values are informative, but because of the long time duration of the signal, it

is difficult to glean useful information about time-specific frequency changes. A fairly

straightforward way to do this is through the STFT, which evaluates the frequency
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spectrum of a small period of time, rather than an entire interval. This process,

however, readily identifies the shortcomings of this method.

2.3 Short-Time Fourier Tranform

Several concepts are necessary to evaluate a non-stationary signal. First, the

process of use of the analytic signal is explained, followed by the concept of windowing.

These concepts will then allow for an explanation of the short-time Fourier transform

and time-frequency kernels.

Analytic Signal

The first step in obtaining the time-aligned frequency content of a signal is to

obtain the analytic version of that signal. Real-valued signals contain both positive

and negative frequency elements at any given point, but by adding a known imagi-

nary element, a mathematically complex signal can preserve phase information in a

signal while eliminating the negative frequency elements, making numerous compu-

tations much more straightforward. Because of the Hermitian symmetry of a signal’s

spectrum, this results in no loss of information. This signal is known as the analytic

signal, and it is obtained through the use of the Hilbert transform.

For a signal s(t), the analytic signal z(t) is obtained using the Hilbert transform,

H[s(t)]. It takes the form [33]

H[s(t)] = ŝ(t) = 1
π

∫ s(t′)
t− t′

dt′ (2.11)

Then the resulting analytic signal z(t) may be expressed as a summation of the

signal and the complex-shifted Hilbert-transformed signal ŝ(t) as

z(t) = s(t) + jŝ(t) (2.12)
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There are several reasons to use the analytic signal when producing time-frequency

distributions. First, due to the symmetry of a non-analytic signal’s spectrum around

the origin, the average frequency would always be zero. This also results in difficulty

calculating frequency spreading. Additionally, frequency and phase can be obtained

from the analytic signal directly, since the first derivative of the signal ŝ(t) represents

the change in phase, or the frequency. Thus, the analytic signal represents a useful

step towards a time-frequency distribution.

Windowing

A simple way to evaluate the frequency content of a time-localized portion of the

signal is through the process of windowing. A windowed signal ν(τ), centered at time

τ takes the form

ν(τ) = s(τ)h(τ − t)√∫
|s(τ)h(τ − t)|2dτ

(2.13)

The normalization ensures the energy in the windowed signal,
∫
|ν(τ)|2dτ = 1, re-

gardless of window size. This keeps the evaluation of the frequency content, regardless

of window size or characteristic.

However, when the windowed signal is evaluated by the Fourier transform, the

characteristics of the window h(τ) are imposed by the multiplication. Additionally,

the window dimensions are constrained by the uncertainty principle, such that a small

time window results in poor frequency localization, and a large time window gives

a wider frequency bandwidth, to the detriment of the time-localization [34]. Thus,

window selection and window length are of primary importance in effective evaluation

of the time-dependent spectral content of a signal.

Window Selection

The first point for consideration is that of the window itself. Several windows exist

which provide unique trade-offs between their own frequency- and time-localization
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properties. The simplest window is that of the rectangular window, which does not

alter the amplitude of the signal outside of the window bounds.

This is problematic for frequency evaluation, as the multiplication of a rectangular

window with any original signal results in a much lower frequency resolution over the

breadth of the discrete Fourier transform (DFT). This transformation results from

low sideband reduction, and can be alleviated in a variety of ways. To illustrate

this concept, consider Figure 2.4, which shows the time domain representation and

respective spectrum representation for a 71ms portion of the musical example, taken

at t = 6.92s. Notice the large number of side lobes present in the spectrum of Figure

2.4(b).

In order to overcome this problem, it is necessary to use a window which, when

transformed to the frequency domain, does not produce so wide of a sinc function.

One window which achieves this is the Gaussian window. The key property of the

Gaussian function is that its Fourier transform is selfsame to its time-domain val-

uation, save for scaling. Thus, a window function based on the Gaussian function

provides an equal trade-off between time and frequency domains, and minimizes the

side-lobe aliasing.

A closely related set of windows rely on a raised cosine, known as the Hamming

set of windows, which offer slightly better frequency evaluation, at the expense of

time resolution [35]. This set is known as the Hamming class of windows, and take

the form

h[n] = α− βcos
( 2πn
N − 1

)
(2.14)

One effective valuation of the coefficients is that which reduces the magnitude of

the first sideband. This incarnation is named after Hamming, and has coefficients

of α = .54, β = 1 − α = .46. This elimination results in much better frequency

resolution with respect to a small loss in time resolution. In order to see the effect

that the Hamming window has on the same segment of the musical selection, consider
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Figure 2.4: Rectangular windowed clip of 71 ms from musical time-series example

Figure 2.5. The reduction in sideband aliasing causes the discrete Fourier transform

to be much smoother, as is visible in Figure 2.5(b).

A final set of window families build on the Hamming window, but also include
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Figure 2.5: Hamming windowed clip of 71 ms from musical example

higher-order harmonics of the cosine, and take the form

h[n] =
K∑
k=0

akcos

(
2πkn
N

)
(2.15)

where

a0 = 1− α
2 ; a1 = 1

2; a2 = α

2
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Using α = .16, K = 3 results in the Blackman window, which reduces the first 3

sidelobes, at the expense of time resolution. However, this narrow passband makes

this window ideal for convolution in the frequency domain, in which cross-frequency

rejection is paramount. This phenomenon is further discussed in 2.4.

Discrete Window Width

The second consideration of windowing is the length of the window, as this deter-

mines the breadth of periodicities that are present in the windowed signal. As a rule

of thumb, according to the Nyquist rate, the window width should be a minimum of

1.44 [36] times the maximal separation between sinusoids. This ensures the energy

reduction of a window’s first sideband will not be less than an equal-energy sinusoid.

Thus, the window size N takes the form

N ≥ 1.44 fs
∆f (2.16)

where fs is sampling rate, and ∆f is the minimum frequency distance. For any

given case, ∆f should be evaluated based on intuition and knowledge of a signal’s

properties. In the case of the musical example, it is fair to assume that the piano

will have the largest risk of overlapping signals in the right-hand piano region, where

the minimum frequency distances are well over ∆f ≥ 20Hz. Thus, in the case of the

10-point decimated musical recording example, fs = 4410Hz, so for a ∆f = 20Hz,

N = 316 would allow for clear distinction between pitches in the DFT-transformed

windowed signal. The shortcoming with large window sizes comes in computational

time, as each N − point window is convoluted with a portion of the signal.

However, it is unnecessary to evaluate every set of points, as a majority of the time-

localized information is contained within a few standard deviations of each window.

Therefore, a signal may be spaced by a window’s standard deviation, rather than by
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individual time-instant progression. This overcomes the computational burden, and

simultaneously preserves a majority of the time-localization information.

Using these concepts, an ideal window can be designed which preserves key fre-

quency information of its pre-windowed signal. This background is necessary to

understand the STFT.

Definition

The STFT, or spectrogram, is defined as a joint time- and frequency-distribution,

by performing a continuous translating convolution of a window along a signal, and

taking the Fourier transform of each slice. Thus, each time-referenced window slice

contains relevant frequency information. For a window h(τ), the distribution is de-

fined thusly [4], [33]:

Φsp(ω, t) = 1√
2π

∫
s(τ)h(τ − t)e−jωτdτ (2.17)

Performing this operation on the downsampled musical example results in clear

localization of frequency elements, in the same way that a piece of music might be

written, with time shown on the x-axis, and frequency on the y-axis. The result of

the STFT with a 331-point Hamming window, spaced at 104 samples/transform, is

shown in Figure 2.6(a).

In this text, a red-blue heat index is used to indicate the normalized linear mag-

nitude of a time-frequency distribution. It is read in a method similar to music, in

which time lies on the x-axis and frequency lies on the y-axis. Thus, by using a

rough time-alignment in Figure 2.6, the trumpet part from 500Hz to 700Hz should

be immediately apparent.

While the STFT can effectively localize frequency elements, it is a one-directional

distribution, in that the time and frequency energies are not preserved. These sum-

mations of energy in each domain are known as the time and frequency marginals,
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Figure 2.6: Time-aligned (a) time-frequency distribution and (b) musical notation
of musical example

and the STFT does not preserve these after the transformation. For this, distribu-

tions must operate on both domains simultaneously, rather than as a lossy procedure.

Thus, we turn to a different class of transforms.

2.4 Cohen’s Class of Time-Frequency Kernels

Wigner-Ville Distribution

The straightforward solution to the problem of the marginals is to use a sig-

nal’s energy directly, such that Paseval’s theorem can be exploited and retain energy

equality between domains. The simplest way to do this was proposed by Ville [2],

and improved upon by Wigner, in which a signal is “folded” about a time center t
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and integrated along a Fourier transform. The Wigner-Ville distribution’s definition

is thus

ΦWV (t, ω) = 1
2π

∫
s∗
(
t− τ

2

)
s
(
t+ τ

2

)
e−jτωdτ

= 1
2π

∫
S∗
(
ω − θ

2

)
S

(
ω + θ

2

)
e−jtθdθ

(2.18)

This procedure offers extreme localization to monocomponet signals. However,

because this process removes the windowing convolutions, interactions between dis-

parate frequencies create cross-term interference. In some cases, knowledge of these

cross terms is useful, but for multicomponent signals, they can be detrimental to

proper evaluation of spectral content. As an example, Figure 2.7 shows the Wigner-

Ville distribution for the musical signal. As should be clear from visual inspection of

the distribution, while the marginals are satisfied, there is extremely poor resolution

within the frequency domain compared to the spectrogram. Thus, a process that uses

windowing as well as preserves the information in a signal is desirable.

Generalized Definition

The solution to this problem comes in the form of windowing, but doing so in both

the time and frequency domains. This can be mathematically expressed through the

use of a kernel, which has the properties of a window in both domains. Thus the

generalized expression for any time-frequency distribution is [4], [33]:

ΦC(t, ω) = 1
4π2

∫∫∫
s∗
(
u− τ

2

)
s
(
u+ τ

2

)
φ(θ, τ)e−jθt−jτω−jθudu dτ dθ (2.19)

where the kernel, φ(θ, τ) serves to reduce interference between cross terms. For

example, setting φ(θ, τ) = 1 results in the Wigner-Ville distribution, which offers no

cross-term protection. Several key time-frequency distributions use intuitive substi-

tutes for the kernel to reduce the cross-term interference. The Choi-Williams dis-

tribution, for example, uses a Gaussian kernel of φ(θ, τ) = e−θ
2τ2/σ, where σ may
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Figure 2.7: Wigner-Ville distribution with spectrum and time domain signal
displayed alongside time- and frequency-aligned axes for musical example

be tuned as per the needs of the distribution. This results in a satisfaction of the

marginal energy conservation, while reducing cross-term interference.

A closely related distribution, the reduced interference kernel, uses the qualities

of the Hann window to smooth the interference. It is known as the Hann window

reduced interference distribution (RID), and its equation is given by

ΦRID(t, ω) =
∫ +∞

−∞
h(τ)Rx(t, τ) e−j2πντ dτ, (2.20)

with

Rx(t, τ) =
∫ + |τ |2

− |τ |2

g(v)
|τ |

(
1 + cos(2πv

τ
)
)
x(t+ v + τ

2) x∗(t+ v − τ

2) dv

The Hann Kernel can be clearly seen, in the integration of the autocorrelation

function, and the overall function can be considered a smoothed Wigner-Ville distri-

bution. Thus, the distribution is adept at reducing interference between cross terms.

Figure 2.8 shows the distribution of the musical example, with extremely clear lo-

calization of each note and noticibly less interference when compared to the WV
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distribution of Figure 2.7. Using this kernel, a distribution which both satisfies the

marginals and accurately time-localizes may be obtained. By satisfying the marginal

properties, the time-frequency transform may be integrated along specific times and

frequencies and reliably represent the content along that range. Thus, even in the case

of a complex multicomponent signal, the RIDH kernel effectively separates and eval-

uates the time-localized spectral content. For these reasons, this kernel will be used

when analyzing the multicomponent signals generated by surface electromyography.

2.5 Summary

This section examined several key concepts necessary to evaluate non-stationary

signals. It was first shown that the Fourier transform, when coupled with statistical

analysis techniques, could provide useful high-level insight into signals. However,

when dealing with non-stationary signals, several additional considerations had to be
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made.

The use of windowing helped fix problems caused by using a rectangular cutoff,

while the use of the analytic signal circumvented problems of the Fourier transform’s

symmetric nature. This discussion gave way to an explanation of cross-term distor-

tion, and finalized the usefulness of the Hann-windowed reduced interference kernel,

which represents a straightforward tool for analyzing the changing frequency content

of non-stationary signals. Section 4.5 will pick up this discussion in the context of

sEMG signals, after a discussion in Chapter 3 of the qualities of sEMG signals and

their interpretation in the context of gait.
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Chapter 3

Physiology

In Chapter 2, the critical need for signal knowledge was made apparent. The

selection of the window, window size, and kernel type are tied to the accuracy of

the time-frequency analysis. In this chapter, the physiology of both gait and surface

electromyography (sEMG) signals will be examined in detail, in order to properly

constrain the signal analysis.

First, a general discussion of human neuromuscular activation will be discussed in

section 3.1, which will be extended to sEMG signals. This will be further developed

with a discussion of the interpretation of sEMG signals 3.3 in the context of time-

frequency analysis. Next, a background discussion of human physiology changes

during gait will be discussed, as well as relevant literature dealing with the changes

observed in gait patterns under certain neuromuscular conditions in section 3.4. This

is extended to discuss the gait-sine algorithm in the next chapter, section 4.2, which

was developed to extract gait information using a pressure-sensitive mat of chapter

4.

3.1 Muscular Model

The human body’s methodology for signaling muscular contraction allows for

evaluation of the electrical impact of the neuromuscular systems. When the brain

deems contraction necessary, a small electrical signal is sent along the nervous system

to the relevant area of the body. These nerve axons attach to groups of individual
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Figure 3.1: Diagram of muscle signaling from (a) spinal cord, (b) neuron cell body
(c) spinal nerve, (d) nerve fiber, and (e) termination at muscle fiber [10]

muscle fibers known asmotor units. As the nervous system fires its electrical impulses,

individual fibers contract at a rate proportional to the rate of firing. This arrangement

of signaling, from the spinal cord neuron to the muscle fibers themselves is shown in

Figure 3.1, adapted from the Basmajian text [10].

Thus, a motor unit can be considered as groups of impulse trains corresponding

to individual muscle fibers, and with a frequency which varies with contraction speed.

The number of muscle fibers activated within each unit varies widely, but corresponds

to the specificity of moment required. Thus, precision units such as the eye have much

fewer fibers per neuron, while limbs and flexors coarsely control larger fiber sets.

The composite nature of muscle fibers within multiple motor units result in var-
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Figure 3.2: Diagram for sEMG signal acquisition, with (a) expanded system-level
interpretation of muscle firing summation with (b) individual motor unit firings, (c)
varied subcutaneous filters, and (d) summation at skin surface; Acquisition by (e)
sEMG sensors with (f) electrical distant ground feeding (g) differential amplifier, (h)
filtered using band-pass rejection results in (i) final sEMG signal

ied firings under the skin surface. These varied locations emanate electrical signals

through the skin, which operates as a generally low-pass filter, are then shaped by

varying degrees over the length of the subcutaneous layers of muscle, fatty tissue, and

skin. The result at the surface is then a composite of distinct and overlapping motor

unit firings. This summation is known as a motor unit action potential (MUAP), and

is the primary focus of sEMG.

3.2 Surface EMG Measurement

In order to understand the translation from motoneuron activation to final sEMG

signal, Figure 3.2 shows an expanded diagram of each stage of the signal from start to

finish. As previously discussed, a set of motor units (a) is the result of the summation

of multiple impulse trains (b) propagated through varied filters (c) corresponding to

varied distances from the skin surface (d) and layers of subcutaneous tissue.

At the skin surface, a dipole electrode (e) is tied to a differential amplifier (g) with

an electrically distant ground (f) for acquisition. Differential amplification is used to
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reject common-mode signals, such as 60-cycle hum or other interference, while the

skin serves as a voltage reference to reject electrical currents traveling within it.

Finally, as a majority of neuromuscular activity is in the 20-450 Hz bands, the signal

is band-pass filtered (h), resulting in the final signal (i).

The resulting signal is thus the composite, filtered summation of the motor units

nearby. Muscle fiber firings lose electrical strength at a rapid pace, so the location

of the sensor is of primary importance [10]. The exact specifications of the sEMG

sensors used is described in section 4.1. Thus, there are many factors at play when

interpreting sEMG signals.

3.3 Surface EMG Signal Interpretation

When considering precisely how to interpret the final sEMG signal, several con-

siderations should be taken into account. From section 3.1, it should be clear that a

sEMG signal is not representative of a single muscle fiber, but is the result of the sum-

mation of disparate firing fibers contained within a single muscle. Thus, considering

a signal, the final result should be thought of as a composite of varying amplitudes

and frequencies. Based on this model [10], several assumptions can thus be made

• Signal amplitude is proportional to the number of simultaneous firings occurring

in a motor unit group

• Signal amplitude is dependent on the radius of the muscle fiber

• Individual firings reaching the skin surface at disparate times will increase the

perceived frequency

• Individual pulsations will affect the spectrum shape around

• High-frequency filtering occurs due to subcutaneous tissue and distance
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These findings are combined into a model of the power spectrum, which can be

used to evaluate isometric contractions.

Spectral Analysis

There are several considerations when evaluating the spectrum of a continuous iso-

metric contraction. However, the use of time-frequency analysis bypasses these prob-

lematic effects. Thus, time-frequency analysis can be used to evaluate time-dependent

fiber activations rather than examining the composite power density spectrum.

However, past investigations of the power density spectrum during contractions

gives additional insight into the interpretation of the time-localized signals. A sum-

mary of the relationship between signal amplitude and frequency as a function of force

(F) and time (t) is shown in Figure 3.3. This figure is adapted from the composite of

several authors’ findings [10], [37]. The function follows a modified Bessel function of

the second kind, and is dependent on time, force, and frequency. Its shape is due to

the effect of the subcutaneous tissue and distance on the sEMG sensor, which affect

the spectrum in a predictable manner.

Considering the graph, there are several key elements that should be considered

when evaluating any spectrum generate by a sEMG signal. First, the largest concen-

tration of energy lies between 60 and 120 Hz, and shifts in magnitude with force. It

also shifts lower in frequency as time progresses during a sustained contraction. Thus,

initial motor unit recruitment will produce energy in the 80 Hz range, and over time

shift towards 40 Hz. Additionally, a spike is clear between 10-40 Hz. This is inter-

preted as low-frequency motor unit firing. As force (and motor unit recruitment by

extension) increase, these low-frequency firings are subsumed by the main lobe at 80

Hz. A second notch occurs at 160 Hz, though this notch can range from 100-200 Hz,

and is reflective of the conduction velocity of the nerve fibers. In the initial stage of a

contraction, the lower number of recruited motor units reflect much higher perceived
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Figure 3.3: Graph of relevant force and temporal effects on power density spectrum

velocities, and thus higher frequency. As the contraction sustains, the conduction

becomes indistinguishable, and is again subsumed towards 80-100 Hz. Thus, energy

can be measured, especially using time-frequency analysis, by investigating these key

frequency elements.

Age and Gender

In addition to the overarching implications of the frequency content of sEMG

signals, some consideration should be given to relevant differences in age and gender.

The phenomenon of sarcopenia, which begins around the fifth decade, refers to the

loss of muscle fiber, and therefore contraction force. This results in a slightly larger

number of recruitment to achieve the same level of force [38], [39]. Thus, older

individuals may have slightly varied neuromuscular compositions when compared to

young.
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However, at higher levels of force, the differences in the sEMG signal become less

prevalent, especially at the point at which the low- and high- frequency analomolies

shown in Figure 3.3 are subsumed by the medium frequency [37], [40]. Thus, in

the case of analysis of muscles associated with ambulation, it is safe to assume that

the normalized energy from 40-120 Hz will be comparable between young and old

populations. Chapter 4 will discuss the use of metrics to exploit this fact.

Additionally, several relevant gender factors should be considered when examin-

ing the spectral distribution of sEMG signals. First, it is well known [41] that the

subcutaneous fat and concentration thereof is higher in females compared to males.

Additionally, the metabolization rate of fat is loweer compared to males [42]. As ex-

plained previously, subcutaneous tissue acts as a low-pass filter, resulting in a lower

concentration of mean frequency during contraction. Therefore, when evaluating any

frequency-based analysis between male and female subgroups, it should be expected

that a male group will give slightly better resolution than a female group.

This fact is augmented by the overall higher amount of lean muscle in males than

that of females [43]. However, these differences surprisingly do not result in highly

disparate motor unit recruitment or firing patterns [44]. These factors combine to

manifest in differences at the point of contact for sEMG measurement between males

and females. Due to the experimental design, which favors minimal intrusion, needle-

point EMG was not used, and therefore these key physiological differences manifest

as quantifiable differences between the genders.

Finally, females show higher levels of activation in the tibialis anterior muscle

[45], most probably due to cultural impositions on footwear norms in males and fe-

males. Additionally, anatomical variations translate to gender-dependent ambulation

patterns [46], which creates additional disparity between gendered sets. Thus, when

evaluating discrepancies in sEMG signals on specific muscles, there may be some

variability in accuracy between muscles when comparing the genders as well. These
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gender differences are made apparent in the context of the research in sections 5.2

and 5.3, with additional discussion in section 5.4.

3.4 Gait

Human locomotion is not a simple thing. There are multiple variables at play

when any fully-developed adult walks, including spatial awareness, muscular contrac-

tion, and evaluation of forces necessary for locomotion [47]. Thus, because of its

complexity, gait abnormalities can manifest from a myriad of causes, including neu-

rological, muscular, or confounding comorbidities that may increase the difficulty of

specific diagnoses [48]. However, after identification of the cause of gait abnormality,

a subject can be adequately treated.

As discussed in chapter 1, falls are the primary cause of death in senior adults,

and therefore falls and fall risk factors serve as an area of prime investigative need.

One key condition that is highly common in seniors is that of hypertension. It has

also been shown [31] that hypertension can affect gait, though this relationship is

difficult to quantify, especially compared to other common gait dysfunctions which

may be much more obvious [48], such as Parkinson’s or other primarily neurological

conditions. Hypertension, however, is a vascular condition, which may underscore its

effects on gait degradation [49].

Thus, an investigation into the correlation between hypertension and gait repre-

sents a notable area for evaluation. For this to occur, a key first step must be made

in evaluating the gait cycle to deliver consistent quantitative results. For the analysis

of gait, there exist several methodologies that have been around for some time to

separate portions of the gait cycle from one another. Through the use of time-based

visual inspection [50], accelerometers, pressure devices [51], or kinematics [52], gait

cycles have been assessed with a measure of quantifiable reliability.

34



However, kinematics-based methods require additional equipment for measure-

ment of gait information when compared to inspection-based methods, especially

wearable sensors or light-reflection points for measurement. Pressure-based systems

provide equal performance to classical visual inspection methods [51], with much-

reduced interference to the normal walking pattern. There is little work done in

comparison of the observer effect these sensors have on subjects under study, but it

stands to reason that minimizing the impact of sensors should always be considered.

As this experimental setup seeks to examine muscular response using sEMG sensors,

as described in chapter 4, kinematics could prove difficult. Thus, a pressure-sensor

approach is used, which can then exploit the natural gait cycle for isolation of relevant

portions. This will be further explained in the context of the experimental setup in

the next chapter.

3.5 Muscle Selection

Through the course of a single gait cycle, there exist several key sections during

which a variety of muscle groups activate. In order to evaluate the state of each

muscle during gait, some considerations for muscular activation should be made in

the context of the gait cycle. First, those muscles which offer a low skin-impedance

level should be considered. Next, practicality for the experiment presents a key con-

sideration. Finally, representation of the entire gait cycle [47] should be considered.

For reference, Figure 3.4 shows the location of each of the four primary muscles

used in the experimental setup. Figure 3.5 shows these same muscles’ normalized

sEMG signal for an averaged selection of gait. In both figures, the muscles are ordered

as (a) vastus lateralis, (b) tibialis anterior(c) biceps femoris, (d) gastrocnemius. These

muscles will each be briefly discussed in the following sections.
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(a)

(b)

(d)

(c)

Figure 3.4: Leg muscle diagram indicating location of (a) vastus lateralis, (b)
tibialis anterior, (c) gastrocnemius, and (d) biceps femoris muscles

Candidate Muscles for Measurement

Vastus Lateralis

In the quadriceps group, the vastus lateralis represents both the largest and

strongest muscle of the four. It is used primarily during the loading phase, as it

is necessary to maintain the leg rigidity through the swing, as can be seen in Figure

3.5 (a). Because of its size, the vastus lateralis has a much lower skin impedance,

thus increasing the signal availability using sEMG sensors.

The vastus lateralis is located on the front outside of the leg, as shown in Fig-

ure 3.4 (a), making it easily accessible for sEMG measurement. In addition to low

impedance, because it is the largest muscle in the quadriceps group, it provides a

much larger number of muscle fibers activating at a given point. Thus, because of its

singular activation and accessibility, the vastus lateralis represents a good candidate
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Figure 3.5: Gait cycle aligned with normalized EMG voltages of (a) vastus lateralis,
(b) tibialis anterior, (c) gastrocnemius, and (d) biceps femoris muscles

for analysis of sEMG signal during the gait cycle.

Tibialis Anterior

The tibialis anterior lies on the outside of the shin, as seen in Figure 3.4 (b), and

is responsible for dorsiflexion and plantar flexion of the foot. This translates to usage

during loading and push off phases, in which dorsiflection is necessary to receive

the surface, and plantar flexion executes the extension of the energy through the
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foot to the surface. Thus, there are two periods of innervation that often seamlessly

transition through the stance phase of the gait cycle. This seamlessness can be seen

from Figure 3.5 (b), with some indication of two key points at time t = .4s and

t = .7s.

Additionally, the tibialis is a fairly large and low-fat muscle, making it easy to

access and minimizing the chance for interference from other muscle groups. Due

to this key period of time lengthening, the tibialis is a good candidate for sEMG

analysis.

Gastrocnemius

The gastrocnemius muscle is the chief calf muscle, shown in 3.4 (c). It is connected

to the ankle, and is thus used in opposition to the tibialis anterior during the swing

phase and during loading. Due to these two separate activations, it was necessary

to isolate one using the gait-sine algorithm, which is explained in section 4.2. In

addition, this double-activation can be seen in Figure 3.5 (c).

The simplicity and the use of the gastrocnemius were exploited in the initial inves-

tigation of the gait cycle [53], as the heel strike impact point to toe-off could be used

as a rough estimate of the gait-window for activation of this muscle. These findings

were definitive and were expanded in the current work, and was straightforward to

calculate.

In addition to its accessibility and comparative size, the gastrocnemius represents

a key area of the gait cycle in which few other muscles are operating. Because it is

the largest muscle in the calf group, it makes a prime candidate for examination.

Biceps Femoris

The final muscle group is that of the biceps femoris. This muscle belongs to the

hamstring group, and sits on the outside of the group and is responsible for knee
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flexion, as shown in Figure 3.4 (d). This muscle is slightly less accessible than other

muscle groups, but represents a second muscle group which indicates knee flexion, as

with the vastus lateralis.

As can be seen in Figure 3.5 (d), the normalized activation is similar to that of

the vastus lateralis; during the swing phase, it is necessary for both muscle groups to

activate in order to keep the shin in alignment. However, the vastus lateralis is used

again later during loading, while the biceps femoris are not.

Of the muscles selected, the biceps femoris represented a much smaller number

of muscle fibers in the motor unit. These factors, combined with occasional diffi-

culty with adhesives, translated to lowered usefulness in detecting discrepancy in the

experimental stages. This fact becomes apparent in sections 5.2 and 5.3.

Non-Candidate Muscles

Due to the limitations of the sEMG acquisition apparatus, only four muscles

could be individually measured. It is for this reason that the above four muscles were

selected. The selected muscles represent the key areas of the gait cycle, and in many

cases were also the largest muscles in their respective groups. However, there are two

muscle groups which were not represented, yet are pivotal for gait. These are given

consideration below.

Pelvic muscles

The muscles surrounding the pelvis, comprised of the gluteus maximus, minimus,

and medius, represent another key muscle group for locomotion. These activate dur-

ing the swing phase to propel the leg backwards, and thus the body forwards. Though

gluteus maximus is the largest muscle in this group, its size causes significant diffi-

culty for obtaining consistent sEMG signals, as it stretches around the pelvis, making

consistent location difficult. Additionally, sEMG sensor placement requires access to
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this culturally taboo location, further exacerbating the problem. Additionally, the

portion of the gait cycle in which this muscle activates is paralleled by the activation

of the biceps femoris, thus rendering its coverage unnecessary.

Abductor Group

In addition to the gluteus muscle group, the abductor hallucis and abductor digiti

minimi represent muscles responsible for plantar flexion of the toes. Although the use

of the toes is extremely important for balance (and therefore gait), they are highly

inaccessible for sEMG analysis during gait.

3.6 Summary

This chapter examined several key physiological factors for consideration when

evaluating surface EMG signals. First, the basic neuromuscular system of human

muscle was explained, specifically in the context of the complexities of muscle inner-

vation. The corresponding sEMG interpretation of these signals was discussed next,

the key takeaway of which should be the force-frequency relationship centering on

the 40-120 Hz band. As motor unit recruitment increases, the sEMG amplitude at

this frequency also increases, while low-activation signaling at both lower and higher

frequencies will be subsumed by this band.

Following the discussion of sEMG signals was a brief discussion on human gait,

specifically the trade offs of various methods for gait cycle acquisition and analysis.

This discussion will be continued in section 4.2, which discusses selection of sEMG

signal slices in the context of the gait cycle. Finally, consideration was given to

the methodology behind muscle selection, resulting in the finalization of four key

muscles from various muscle groups responsible for gait. The background information

from the previous two chapters will be combined in hapter 4, which will discuss the
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experimental setup and application of time-frequency analysis to the relevant sEMG

signals.

41



Chapter 4

Experimental

Having discussed the relevant background for the evaluation of hypertension using

sEMG and gait information, it is necessary to develop an experimental setup that can

acquire and interpret this information. This chapter will begin with an explanation

of the experimental setup used in section 4.1, including a detailed explanation of the

apparatus used to acquire the information, as well as relevant medical information

gathered. Next, section 4.2 discusses the use of the gait-sine algorithm, which is

designed to take advantage of the sinusoidal properties of gait for signal separation.

Section 4.3 discusses the state of the subject database in the context of the subjects

with varying conditions, as well as the justification for mixing subsets for analysis.

Section 4.4 will discuss the pre-treatment of the subject database sEMG signals,

especially the procedure for subject exclusion based on data acquisition. Finally,

sections 4.5 and 4.6 will discuss the application of time-frequency analysis to the

gait-separated signals and the use of metrics based on section 3.3’s discussion of

sEMG interpretation.

4.1 Data Acquisition and Setup

To compare a large number of subjects, and to ensure statistical robustness, an

experimental setup which simultaneously records gait and sEMG information is nec-

essary. As previously discussed in section 3.4, kinematic-based gait assessment adds

bulk to the subject, and when used in conjunction with sEMG sensors, the clutter
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Figure 4.1: Diagram for experimental setup with (a) belt-worn sEMG transmitter
unit, (b) sEMG sensors connected to muscles, (c) wi-fi receiver with example sEMG
signal, (d) data recording computer, (e) walkway data converter, (f)
pressure-sensitive walkway with example footfall pressure signal

would render the experiment impractical. Thus, a pressure-sensitive mat is used.

Additionally, as sEMG sensors must record during ambulation over a long distance, a

wireless sensor apparatus is used. These two devices are tied together using a trigger

mechanism designed as a latch, such that at the start of acquisition from the sEMG

device, a pulse is sent to the mat.

In order to visualize this setup, Figure 4.1 shows the apparatus, complete with

the diagram of a test subject under the full experimental setup. The wireless sEMG

system (b) used was a Delsys Myomonitor 8-channel dipole-electrode system. The

signals are transmitted using Wi-fi (a) to a host computer (c) receiver (d). The pack

(a) has a 1kHz sampling rate, as well as a bandpass filter between 20 − 450Hz for

noise and dc-level rejection. These frequencies contain the majority of sEMG signal

information, and are beneficial in rejecting both ambient and high-frequency noise

[54].
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The sEMG sensors use a dipole-electrode configuration, as described in section 3.2.

The sEMG acquisition system uses two 1cm long silver-plated contacts spaced 1cm

apart attached using an adhesive. These are sized to reject cross-talk interference from

the muscle measurements [55]. These elctrodes are tied to a differential amplifier, as

in Figure 3.2. The amplifiers and reference voltage used achieve a CMRR of −92dB

with an ambient noise RMS level of 1.2µV [56]. Thus, several steps are taken to

obtain the sEMG signal alone.

Meanwhile, gait information is obtained using the pressure-sensitve GaitRITE

mat (f), which is a 1m × 6m long runway with 48×384 3-bit pressure sensors. The

GaitRITE was used due to its fidelity towards extant gait measurement methods [51],

as well as its built-in trigger synchronization and direct data export features. The

mat is connected to a separate recording unit (e) that polls with a 60-Hz sampling

rate, sending data to the host computer (d), concurrent with sEMG acquisition. This

sampling records footfall pressure changes in time over the length of the mat. The

trigger (not shown) is a NI digital IO board that releases a 1µs pulse upon sEMG

recording. This pulse feeds to a 1ms Schmidt trigger, whose output is tied to the

mat recording unit (e), which registers the 1ms pulse as a non-pressure event. The

Schmidt trigger is necessary to ensure that a “high” value during one 60-Hz sampling

cycle, and thus is recorded as a non-pressure event in the raw data export from the

mat recording.

All data is exported to .CSV format, where it is imported into MATLAB for

analysis. Data from the mat is upsampled at a ratio of 1000/60 = 16.67 with data

interpolation performed by an averaging filter and time aligned to the sEMG data

using the trigger-point generated by the sEMG acquisition software. Data before and

after the first footfall pressure point is truncated, and the remaining data is evaluated

according to the processes described by sections 4.2, 4.4, and 4.5.

In order to make adequate assessments of differences between populations, sub-
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ject selection was not limited by age, gender, ethnicity, or disease. Subjects include

ambulatory individuals who can walk with or without assistive devices. Subjects’

mental status was evaluated using the Folstein Mini-Mental Exam [57] (MMSE), and

participants who scored below 25 were not included in results examination. Subjects

answered a self-report survey on medical history, which were corroborated by sub-

jects’ medical history for those over age 65. Subjects were asked to complete these

steps prior to undertaking the experiment, and were subject to informed consent prior

to the experiment.

Prior to participation, subjects were provided with optional gym shorts to facili-

tate ease of sEMG sensor application. After this, dipole sEMGs along the direction

of muscular activation in the muscle groups described previously in section 3.5: the

tibialis anterior, the gastrocnemius, the vastus lateralis, and biceps femoris. Subjects

performed two pairs of walks for recording at self-selected speeds. The first pair was

self-selected as “Normal pace,” while the second pair was “fast-paced,” using verbal

cues to describe these two speeds. Acceleration and deceleration lines were prepared

at 2m before and after the pressure-sensitive mat in order to minimize variability

during the walk recordings.

4.2 Footfall Separation by Gait-Sine Algorithm

The gait pattern involves a gradual, slow, sinusoidal shift of the center of mass

during ambulation [47]. This is visualized in Figure 4.2 by considering the leminscate

(c) shown. As the lateral (a) center of mass corresponds with the center of pressure

seen by the mat, a sine wave can be interpolated using the pressure recorded on

the mat in varying levels. The pressure concentration at a given point gives a good

estimate for the center of mass, and using the this information from the mat, an

estimate of the center of mass is straightforward. The sine wave can then be used to
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Figure 4.2: 3-dimensional graph of center of mass during gait, with (a) lateral and
(b) vertical directions with (c) lemniscate pattern shown; image adapted from [47]

isolate and estimate gait.

In order to go from the mat information to a sine wave, an intuitive algorithm is

used. First, the algorithm uses the mean pressure point for the walk as a division

for left and right footfalls. Then, each first time moment is calculated using pressure

information for each footfall, either left or right. These pressure time-moments serve

to give an estimate of the pressure center at a given time. Finally, these moments
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Figure 4.3: Walk recording of subject 015 with pressure summation and
superimposed best fit sinusoid shown

are used to generate a pressure map, which is then fit to a sine wave using a least-

squares routine. The result of this maps a sine wave to each footfall. Figure 4.3

shows this process, with the top portion showing pressure recording, and the bottom

portion showing the pressure-moment calculations. The least-squares sine wave is

superimposed on both figures, and clearly corresponds to the gait cycle in the top

portion of the figure.

The peak periods of muscular activation during ambulation have been known for

some time [58], which consequently exhibit measurable activity in the neuromuscular

systems controlling the gait. Thus, they are prime candidates for sEMG recording.

The benefit of using the gait-sine algorithm lies in its consistency from subject to

subject, as all ambulatory individuals will follow a sinusoidal center of mass over the

course of their gait cycle. A visual example of this is shown by Figure 4.4, which

includes typical normalized energy for normal gait. This figure is he same as Figure

3.5 of the previous chapter, and is repeated for clarity. Table 4.1 contextualizes this
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knowledge by the gait-sine algorithm, with the gait cycle portions mapped to the

center of mass sine wave phases, as well as the verbal descriptors of these gait cycle

portions. Thus, sEMG signals are selected over the principal period of activation

according to the relevant portion of the gait cycle.

Figure 4.4: (Repetition of Figure 3.5) Gait cycle aligned with normalized EMG
voltages of (a) vastus lateralis, (b) tibialis anterior, (c) gastrocnemius, and (d)
biceps femoris muscles

Figure 4.5 shows a composite recording of the left and right tibialis anterior mus-

cles, with time-aligned footfall pressure information. This figure is representative of
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Table 4.1: Gait cycle activation by muscle with appropriate gait-sine parallel

Muscle Name Cycle (%) Phase Range Gait Portion

Tibialis Anterior 25%− 62.5% π/2− 5π/4 Midstance to toe
off

Gastrocnemius 0%− 66.7% 0− 4π/3 Heel strike to
toe off

Vastus Lateralis 32.5%− 62.5% π/3− 5π/4 Midstance to
heel off

Biceps Femoris 32.5%− 62.5% π/3− 5π/4 Midstance to
heel off

a single walk of the four-walk set, with two of the eight recorded sEMG signals. In

addition, the gait-sine pressure fit is superimposed on the figure, with the estimated

sEMG signal divisions shown based on the algorithm. Also clear in the figure, bars

at π/2− 5π/4 correspond to the optimal activation of the tibialis anterior, whose left

and right sEMG signals for that subject are shown, which are those points indicated

by Table 4.1 as the periods of peak activation. Thus, using the gait-sine algorithm,

a consistent window for sEMG activation intervals can be extracted. Furthermore,

when comparing person-to-person muscular activation, this gait-cycle selection serves

to compare the same portion of the gait cycle, regardless of walking speed or other

conflating factors. This allows for comparison between disparate subject groups and

eliminates conflating factors.

4.3 Database Subsets

For accurate diagnosis of the presence of hypertension, data must be divided into

relevant subsets, in order to tease out conflating factors that may be present. Thus,

the subjects are subdivided over a wide set of criteria. First, it is assumed that the

lack of significant changes in motor unit action potential due to aging [37] allows for

the inclusion of both senior subjects and young subjects in the control set. This is

offset by the decline in the number of motor units overall after age 60 [59], as was
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Figure 4.5: Subject 091, left and right tibialis anterior EMG with Gait-Sine
estimate, muscle activation bounded by box

discussed in section 3.3. For this reason, a majority of metrics are designed based on

changes in frequency, which should not change significantly with aging. Thus, it is

reasonable to mix seniors and young in the control set.

Subjects under age 65 are subdivided into male (N = 7, age = 25.29, σ = ±3.82)

and female (N = 13, age = 26.77, σ = ±7.27) sets, which represent the foundation

of the control group. Additional control subjects are included by selecting those

over age 65 with no reported history of hypertension, seizure, osteoporosis, diabetes,

hypothyroidism, or neuropathy. Thus, the male (N = 3, age = 84.00, σ = ±6.24) and

female (N = 7, age = 89.71σ = ±10.45) senior controls are established. Finally, the

hypertensive set is subdivided by male (N = 7, age = 79.86, σ = ±8.05) and female

(N = 17, age = 82.24, σ = ±6.84). Chapter 5 details the quantification of these

groups, as well as the application of metrics and interpretation of the differences
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between sets. To provide a visualization of these datasets, Figure 4.6 shows a Venn

diagram for the male (left) and female (right) control (P0, blue) and hypertensive

(P1, grey) sets.
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Figure 4.6: Diagram of population demographics for controls (P0), shown as green,
and hypertensives (P1), shown as red, subdivided by age with number of subjects
(N), mean age (age) and variance (σ) shown

4.4 Data Pre-Treatment

Several steps are necessary before evaluating sEMG packets for comparison. First,

distorted or poorly-recorded sEMG data must be rejected, which is done using sev-
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eral standard criteria. Next, as discussed in section 4.2, sEMG signals are sorted and

separated acording to the footfall pressure information and knowledge of muscular

activation. These signal portions are then decomposed using time-frequency analysis,

as described in section 4.5. After converting the sEMG signals to time-frequency dis-

tributions, key time-frequency characteristics are used to produce metrics, the math-

ematics and physiological foundation of which are described by section 3.3 Finally,

these metrics are quantified using broad statistical interpretations. The procedure of

statistical processing and the results are summarized in Chapter 5.

Data Rejection Procedure

As with any data acquisition undertaking, there are inevitably some errors in

recording and equipment. Due to the arrangement of the experimental acquisition,

recordings were not necessarily checked directly after recording. In light of this,

software, hardware, and human error may contribute to unusable recordings; this is

useful in that predictions can be made about how these data are corrupted. In order

to rectify this problem, several steps are taken to reject data from final calculations

before they are evaluated with time-frequency analysis.

Therefore, a procedure which rejects these data outright is desirable. The iterative

Grubbs’ test [60] follows a process to reject outlying data, and when coupled with

relevant measures which are sensitive to badly recorded data, this test can quickly

exclude bad data. The procedure is described by the inequality,

Ypeak − Y
s

>
N − 1
N

√√√√ t2α/2N,N−2

N − 2 + t2α/2N,N−2
(4.1)

Where Ypeak represents an outlying data point, Y is the mean, s is the standard

deviation, and t2α/2N,N−2 is the critical value of the T-distribution at N-2 degrees of

freedom. By use of this equation, values of Ypeak which exceed the critical value are
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Figure 4.7: DC levels for male hypertensive-control subgroup walks with rejected
sEMG data marked by x

rejected on their assumption as non-representative points. The process is iterative,

so only those values selected by the critical value are included.

The criterion for rejection come from simple measures based the time-domain

voltage recordings: signal energy, signal dc level, signal and peak-to-peak voltage.

These measures are chosen with software, hardware, or user error in mind, as each of

these represents commonly observed manifestations of these errors.

Additionally, the values for these measures should be consistent in typical sEMG

signals within the population, assuming they are correctly recorded. As an example

of this process, the male hypertensive-control subgroup walk DC levels are shown in

Figure 4.7, along with several rejected points, which have extremely high dc levels

compared to typical performance. These indicate bad connections to ground, and

therefore unreliable recordings.

A low confidence interval of β = 90% is used, which takes a light-handed approach
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to false negative rejection, yet excludes high outliers. After this rejection procedure,

the remaining data is assumed to represent the populations in question, both control

and hypertensive sets.

4.5 Application of Time-Frequency Analysis

As discussed in Chapter 2, time-frequency analysis represents a broad set of tech-

niques, the results of which must be tailored and evaluated with the signals them-

selves in mind. Recall the sEMG signals represent the composite of independent

muscle units producing impulse trains at varied frequencies and with varied wavelets

due to tissue composition and distance. These impulse signal signatures differ due to

the tissue channel between the muscle and the skin surface, which is akin to a type of

filter. Thus, the signals recorded represent a heterogeneous composite of frequency,

time, and amplitude components.

For this reason, time-frequency analysis provides a localization advantage that

has not been present in the bulk of sEMG research. Key physiological information,

such as muscle activation time, peak energy, peak frequency, or muscle firing density,

can be quantitatively assessed directly from the time-frequency distributions. This

allows for unique metric design that assess information pertaining to key physiological

manifestations.

As with the musical example of Chapter 2, special consideration must be given to

the selection of kernel, window size, and window type. As explained previously, the

Hann-windowed reduced interference distribution (ΦRIDH(t, ω)) performs extremely

well with multicomponent signals at varying frequencies. As per the discussion in

Chapter 3, sEMG signals are the definition of multicomponent, as the number of

component signals is proportional to the number of recruited muscle fibers. However,

window selections must still be made.
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The RIDH uses a two-dimensional kernel, and therefore a two-dimensional win-

dow. As frequency localization is a slightly higher priority than time-localization (as

this is done somewhat by the signal selection process), a Blackman time-domain win-

dow is used, while a Hamming window is used as the frequency-domain argument.

This results in a slightly higher frequency resolution than time-resolution, but still

eliminates a majority of cross-term artifacts.

Under normal gait times in both men and women see an upper maximal frequency

of around 2.61 steps/s [61], it is reasonable to want several time sections of this. Using

this figure results in an average step time for each foot of tstep =2 /2.61 = 761ms. Using

10 time divisions in conjunction with (2.16)

Nt = 761ms/step
1ms /(10× 1.44) ≈ 53 (4.2)

This result gives high resolution for each stride and simultaneously allows for a

wide band of frequency calculation. For the frequency window, using the knowledge

from section 3.3, each key area of the spectrum has a bandwidth of around 15Hz.

Recalling (2.16), a bandwidth of 1.44 ∗ 15Hz should be sufficient to ascertain these

key spectrum elements. Using these assumptions results in a frequency window size

of

Nω = 1.441000Hz
15 ≈ 96 (4.3)

Thus, a high resolution is achieved with ample frequency width for analysis, which

simultaneously isolates the key frequency areas of the expected sEMG spectrum.

These parameters are used to create each time-frequency distribution of the relevant

muscular activation windowed signals. After this process, there are several metrics

which are used to distill the information of these distributions.
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Table 4.2: Metrics summary

Metric Name
(units) Equation Description

Instantaneous Time
Duration (%)

TD% = T
tg

(4.4) Ratio of muscle activation time to local-
ized gait window time

Local Frequency
Bandwidth
(radians)

FB = B =√
4π
E

∫
(ω − 〈ω〉)2|S(ω)|2dω (4.5) Frequency spreading across localized gait

window

Local Frequency
Maximum (radians) Fmax = argω max{|Φ(t, ω)|} (4.6) Peak frequency within localized gait win-

dow
Energy Ratio

Conditional (%)
Eωb = 1

E

∫∞
−∞

∫∞
ωb

Φ(t, ω)dωdt (4.7) Ratio of energy ratio above specific band
to localized gait window energy

Conditional Energy
from 40-100 Hz (%)

E%40−100Hz =
1
E

∫∞
−∞

∫ 2π×100
2π×40 Φ(t, ω)dω (4.8)

Ratio of energy within contraction force
[10] frequency bands to localized gait
window energy

Energy Spectral
Density (V 2)

ESD40−100Hz =∫ ∫ 2π×100
2π×40 Φ(t, ω)dωdt (4.9) Energy spectra density within contrac-

tion force [10] frequency bands

4.6 Metric Design

The metrics by which to measure the possibility of relevant differens are based

on the force-frequency relationships established previously. As per the discussion in

section 3.3, one such area is the center sEMG muscular activation lobe between 40Hz

and 100Hz [10]. The application of muscular force results in an increase in energy

concentration within this band.

Time-frequency analysis of this changing frequency data has been applied to an-

alyze lifting patterns [62] and gait [63] for analysis of changing muscle recruitment

patterns. Thus, the metrics should reflect both this force-signal relationship, as well

as information relevant to muscular activation during gait.

To help contextualize this section, four time-frequency plots footfalls from various

subjects are shown in Figure 4.8 which represent the typical performance of the control

and hypertensive subjects. Figures 4.8(a) and 4.8(b) show the vastus lateralis for

control and hypertensive subjects, while Figures 4.8(c) and 4.8(d) show gastrocnemius

footfalls. Finally, the mathematical representations and context of these metrics are

summarized in Table 4.2 on page 56.
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Figure 4.8: Time-frequency distribution including energy spectral density and
time-domain waveforms

• Instantaneous Time Duration

The instantaneous time duration metric corresponds to the time duration of mus-

cular activation, based on the second moment of the time-domain signal, and evalu-

ated in relation to the gait cycle portion. Recalling equation (2.7), for a signal s(t),

the metric is given by equation (4.4):

TD% = T

tg
= 1
tg

√
4π
E

∫
t2|s(t)|2dt (4.4)

where tg is the length of the windowed signal according to the gait cycle selection.

Because the second time moment is divided by gait time, the metric represents a
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percentage of gait cycle, rather than an exact time. This is done to correct for

differing gait speeds, and thus represents the portion of the gait cycle over which the

muscle operates.

In the context of the Figure 4.8, the control case of Figure 4.8(a) has a shorter

signal time duration than the hypertensive case of Figure 4.8(b), corresponding to

longer muscle activation and more energy use. In the gastrocnemius control and

hypertensive cases shown in Figure 4.8(c) and Figure 4.8(d), the hypertensive case

exhibits longer muscle contraction than the control case, as well as longer duration.

Thus, time duration reflects extraneous muscle usage.

• Local Frequency Bandwidth

This metric uses the second frequency moment to determine the bandwidth of the

signal, and is evaluated using the ratio to the Nyquist frequency. Thus, the metric

reflects the frequency spreading caused by motor unit activation. Recalling (2.10)

The metric is given by equation (4.5):

FB = B =
√

4π
E

∫
(ω − 〈ω〉)2|S(ω)|2dω (4.5)

where S(f) is the Fourier transform of s(t). Therefore, local frequency bandwidth is

given in radians, and indicates the frequency spreading of muscular activation during

walking.

Between Figure 4.8(a) and 4.8(b), the hypertensive case shows wider bandwidth

in the vastus lateralis, while in the gastrocnemius muscle, there is wider spreading in

the control case, Figure 4.8(c), than in the hypertensive case, Figure 4.8(d). Increased

frequency spread reflects higher motor unit recruitment as explained in Chapter 3,

and also corresponds to an increase in force [10]. This quantification serves as an

indicator of leg muscle (and thereby gait) control, and serves as a highly sensitive

metric for hypertension assessment.
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• Local Frequency Maximum

Frequency maximum evaluates the frequency at which the peak energy occurs

during activation. In comparison to the energy spectrum, this measures a signal’s

transient peak, rather than the marginal peak obtained through the summation of all

frequency elements over the duration of the signal. This is given by equation (4.6):

Fmax = argω max {|Φ(t, ω)|} (4.6)

where Φ(t, ω) is the instantaneous time-frequency distribution. As this is a frequency,

its units are radians.

The hypertensive case for the vastus lateralis pictured in Figure 4.8(b) exhibits

a higher frequency maximum than the control case of Figure 4.8(a), indicating an

over-activation of motor units, rather than efficient use. For the gastrocnemius hy-

pertensive case shown in Figure 4.8(d), the frequency maximum occurs lower, due to

the extraneous muscle usage, while the control case, Figure 4.8(c) does not exhibit

this characteristic. Thus, the metric is indicative of the sum effect of the muscle

motor units’ firing frequency, and where that energy is concentrated.

• Energy Ratio Conditional

This metric takes full advantage of time-frequency transformations of sEMG sig-

nals by comparing energy contained above a specific frequency and the total energy

in each signal. This metric is similar to the frequency maximum metric; however,

by comparing the total energy across the signal, it is less susceptible to anomalies

in muscular activation. It is highly indicative of a statistically-relevant distinction

between the control and experimental sets across several of the major muscle groups,

and it is given by equation (4.7):

Eωb = 1
E

∫ ∞
−∞

∫ ∞
ωb

Φ(t, ω)dωdt (4.7)
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where

E =
∫ ∞
−∞
|s(t)|2dt =

∫ ∞
−∞
|S(f)|2df

is the total energy in the signal, and ωb is the band of interest. For each set of data,

frequency content is compared to the overall energy in the signal above the 20 Hz,

40 Hz, 60 Hz, 80 Hz, 100 Hz, and 120 Hz bands. By dividing the bounded energy by

total energy, this metric represents a percentage.

When considering the two cases presented, it should be clear that the bands in

which the energy is concentrated in shows a strong discrepancy between the control

and hypertensive cases. In the hypertensive case, Figure 4.8(b), the vastus laturalis

exhibits high energy concentration in higher frequency bands, whereas the control

case, Figure 4.8(a) shows less energy at comparable frequencies. For the gastrocne-

mius pair, the unnecessary activations in the hypertensive case, Figure 4.8(d), mean

a much lower frequency concentration of the energy as compared to the control case,

4.8(c).

• Conditional Energy from 40-100 Hz

Motor unit recruitment is concentrated within certain bands, from the 10-40 Hz

range and around the 80 Hz range [10]. Thus, the energy contained in is energy band

serves as another basis for comparison. To do this, energy across this bandwidth is

normalized and compare to overall energy, as with the previous metric. The metric

is given by equation (4.8) in terms of a ratio:

E%40−100Hz = 1
E

∫ ∞
−∞

∫ 2π×100

2π×40
Φ(t, ω)dωdt (4.8)

Much like the instantaneous frequency bandwidth metric, for the vastus lateralis

control case in Figure 4.8(a), there is little spreading, but for the hypertensive case

shown in 4.8(b), there is more energy spread across this band in relation to the overall

energy. Likewise, for the gastrocnemius control case in Figure 4.8(c), energy is highly

60



concentrated from 40-100 Hz, but is concentrated at much lower frequencies in the

hypertensive case, shown in Figure 4.8(d).

• Energy Spectral Density

The final metric uses the energy spectral density of the 40-100 Hz band to assess

signal energy. Thus, it is unique, as it is not a ratio to overall energy in the windowed

signal. Therefore, this metric is thus susceptible to subject physiology, which may

reduce the energy present in the sEMG signal, but is useful as a measure between

subjects with similar physiology. The metric is given by equation (4.9) in terms of

energy (V 2):

ESD40−100Hz =
∫ 2π×100

2π×40
Φ(ω)dω (4.9)

where Φ(ω) is the ESD of the windowed signal:

Φ(ω) =
∣∣∣∣∣ 1√

2π

∫ ∞
−∞

s(t)e−iωtdt
∣∣∣∣∣
2

= S(ω)S∗(ω)
2π

For the cases pictured above, in both control cases of Figs. 4.8(a) and 4.8(c), the

energy spectral density, shown on the left, is on a smaller order of magnitude than

that of the hypertensive cases in Figs. 4.8(b) and 4.8(d). As energy in this band

roughly corresponds to force, a larger amount of energy in this band corresponds to

increased force of muscular activation.

4.7 Summary

In this chapter, the key aspects of the experimental setup and procedure were

discussed. The fundamental concept is the use of the sEMG sensors in conjunction

with the pressure sensitive mat, and the extension of the gait-sine algorithm for

footfall separation. This process allows for the use of metrics which operate on

the gait-aligned signals for various groups. Thus, a direct comparison of metric
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information can be compared across populations and groups. In the next chapter,

the results of these metrics will be discussed from the perspective of two key sub-

populations: hypertensive and non-hypertensive subjects.
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Chapter 5

Results

This chapter lays out the results of comparison between two focus populations in

the experiment: hypertensive and non-hypertensive. In order to make this compari-

son, a small background in the statistical methods used is necessary. These methods

will be discussed in section 5.1.

5.1 Statisitcal Evaluation

In order to properly differentiate between hypertensive and nonhypertensive groups,

a binary hypothesis test is used for differentiation. There are four distinct subsets;

two for male and female, as well as non-hypertensive (P0) subjects and hypertensive

(P1) subjects. Each subject in these subsets are used to create values representative

of the subject using the aforementioned metrics, for each of the four muscle groups.

Each metric’s value is notated as x〈m〉, and belongs to either P0 or P1. Then, for the

set of metric values x〈m〉, a normal distribution may be calculated:

f(x〈m〉, µ〈m〉, σ2
〈m〉) = 1√

2πσ2
〈m〉

e

−(x〈m〉−µ〈m〉)2

σ2
〈m〉 (5.1)

where µ〈m〉 is the mean of x〈m〉 and σ2
〈m〉 is the variance.

These normal distributions are treated as having varying average values, and thus

a threshold α may be used as a binary test value. Choosing a threshold α that exists

at the weighted mean of the two values is analogous to the minimal probability of
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error, which minimizes false positives and false negatives. The value of α is thus

α =
µ〈m〉,C × σ−2

〈m〉,C + µ〈m〉,E × σ−2
〈m〉,E

σ−2
〈m〉,C + σ−2

〈m〉,E
(5.2)

where C and E refer to the control and experimental means (µ) and standard devi-

ations σ2 for each metric 〈m〉. Meanwhile, the probability of error, Pe in the general

case is given by:

Pe = P (H1|H0)P (H0) + P (H0|H1)P (H1) (5.3)

Thus, using the weighted means from p(H0) and p(H1) to determine (α) results in

the minimum number of false calls. The detector decides a positive case for a random

variable x using

p(x|H1) > p(x|H0) (5.4)

Therefore, the detector employed is a maximum likelihood detector, which max-

imizes p(x|Hn) and minimizes Pe. Thus, this threshold also the point at which the

probability of type I and type II errors are both minimized. Once these threshold

values are calculated for each metric, they may be used to assess per-subject metric

values. Next, for each subject sn, metric scores xsn,〈m〉[n] are calculated for each

footfall [n].

In order to make meaningful sense of the relationships between these populations,

the per-footfall probabilities are aggregated, representing in a per-subject total metric

score, Tsn,〈m〉, given by equation (5.5):

Tsn,〈m〉 =
∑Nfootfall
N=1 xsn,〈m〉[n]

Nfootfall

(5.5)

where Nfootfall is the number of footfalls for the subject, xsn,〈m〉[n] is the metric value

for each footfall [n].

For a subject sn in P0, a false positive (FP) or type I error occurs when Tsn,〈m〉 >

α〈m〉, or a true negative (TN) when Tsn,〈m〉 < α〈m〉, . These values are based on a
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higher experimental group mean, H1 : µ〈m〉 > H0 : µ〈m〉, where µ〈m〉 is the mean of

the normal distributions for P0 and P1 , for the specific metric 〈m〉. Likewise, for a

subject sn in P1, a true positive (TP) occurs when Tsn,〈m〉 > α〈m〉, and a false negative

(FN), or type II error, assuming a higher experimental mean Tsn,〈m〉 < α〈m〉. Thus,

probability of each footfall is assessed in the context of a subject.

The relationship between the mean values comes into play in sections 5.2 and

5.3, as some metric/muscle groups may have higher or lower means between subsets.

These are indicated either by + or − in Tables 5.1(b) and 5.2(b).

The efficacy of each metric at distinguishing between populations follows a straight-

forward method of calculation. At each metric threshold α〈m〉, FP, FN, TP, and TN

are calculated. From here, the accuracy (ACC), true positive rate (TPR) and true

negative rate (TNR) may be calculated by their definitions.

ACC(α〈m〉) = TP (α〈m〉) + TN(α〈m〉)
P +N

(5.6)

TPR(α〈m〉) = TP (α〈m〉)
TP (α〈m〉) + FN(α〈m〉)

(5.7)

TNR(α〈m〉) = TN(α〈m〉)
TN(α〈m〉) + FP (α〈m〉)

(5.8)

As an example for one metric, A visualization of the procedure is shown by Figure

5.1, beginning with obtaining the optimal threshold α, assessment of population

footfalls, and the aggregation of the results across metrics and muscle groups. This

process therefore involves several parallel steps which result in a final measure of

sensitivity and specificity for a population.

Finally, Bayesian risk is used to assess overall subject score. This is achieved by

extending (5.5) to all metrics which have an accuracy of 60% or higher. Thus, metrics

which show reduced ability to differentiate between populations are discarded. Using

equation 5.9, a cost risk of 1 is assigned in the case of accuracy above 60% and 0

when accuracy is below 60%:
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Figure 5.1: Flowchart for assessment of metric sensitivity between populations

Score = R =
M−1∑
i=0

M−1∑
j=0

CijP (Hi|Hj)P (Hj) (5.9)

Where Cij is the cost matrix. Thus, based on the metric distributions of each

population, subjects are evaluated by the relationship to these probabilities.

5.2 Male Control vs Male Hypertensive

The first subset to examine is that of the males, who have a smaller and more

straightforward evaluation than the females. The male control set consists of young

males and control senior subjects (N = 10, age = 42.9, σ = ±28.68). The experimen-

tal set consists of the hypertensive subjects described in section 4.3 (N = 7, age =

79.86, σ = ±8.05). Table 5.1(a) gives the metric accuracy scores for muscle group,

though including only Eωb=40 and Eωb=120, while Table 5.1(b) shows the respective

values for interpretation. In the case of Table 5.1(b), the + and - refer to the com-

parison of metric values in the control group to those of the experimental group.

For example, the male tibialis anterior TD% metric has a value of 7.078%. The +

indicates that the control group’s metric scores are lower than this value, while the

experimental group are above.

By the use of equation (5.5), the metrics with optimal accuracy are TD%, FB, Fmax,

Eωb=120Hz, and ESD40−100Hz, for gastrocnemius, vastus lateralis, and tibialis anterior,

66



Table 5.1: Metric and muscle values for male subsets

(a) Accuracy levels
Muscle TD% FB Fmax Eωb=40Hz Eωb=120Hz E%40−100Hz ESD40−100Hz

Tibialis Anterior 75.00 76.92 62.50 62.50 76.92 62.50 53.85
Gastrocneumius 62.50 76.92 62.50 62.50 76.92 62.50 75.00
Vastus Lateralis 69.23 69.23 76.92 75.00 76.92 53.85 69.23
Biceps Femoris 62.50 62.50 53.85 62.50 62.50 53.85 53.85
Aggregates Acc: 94.12%, TPR: 100.00%, TNR: 85.71%

*Measures with accuracy above 60% highlighted
(b) Metric crossover values

Muscle TD%
(%)

FB
(Hz)

Fmax
(Hz)

Eωb=40Hz
(%)

Eωb=120Hz
(%)

E%40−100Hz
(%)

ESD40−100Hz
(mV 2)

Tibialis Anterior 7.078+ 31.93- 74.45- 88.15+ 39.62- 41.11+ 329.04-
Gastrocneumius 13.13+ 17.56- 57.97- 75.78- 20.26- 40.42- 317.00-
Vastus Lateralis 10.19+ 23.20- 47.02- 67.95- 18.52- 49.67- 358.37-
Biceps Femoris 19.58+ 13.33+ 23.12- 52.31- 16.35- 37.70- 307.56-

*+/- indicates experimental group metric values lie above or below control group

all of which show high (> 75%) levels of accuracy. From inspection of Table 5.1(a),

one key point is that the tibialis anterior exhibits several measures which are sensitive

to hypertension, with a majority of metrics showing high accuracy, except in the case

of ESD40−100Hz. It should also be noted that the energy ratio conditional (Eωb=120)

shows high accuracy levels. Finally, the biceps femoris exhibit much lower levels of

accuracy to the presence of hypertension (< 63%), to the point that it barely rejects

the null hypothesis in some cases.

In the case of the TD% and FB metrics, it is clear from Table 5.1(b) that the control

group exhibits a longer time duration and a lower frequency bandwidth. Considering

the discussions of sections 3.3 and 3.5, these characteristics can be explained in terms

of a shorter but more rapid firing, with energy becoming concentrated in a narrower

bandwidth. Thus, these metric values are indicative of muscular recruitment.

Additionally, the Eωb=120Hz metric values, and the ESD40−100Hz metric values

all show higher valuation in the control groups when compared to the experimental

groups. This can be interpreted as a higher frequency center, such that energy in the

main band is slightly higher in frequency. This notion is backed up when examining

the values for maximum frequency (Fmax), which all show higher values in the control

group compared to the experimental. Especially in the tibialis, where the crossover
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point is at 74.45 Hz, these high frequency maximums represent large numbers of

motor unit recruitment.

After evaluating the aggregate score by the Bayes risk, it is straightforward to

determine the confusion matrix based on the relationship between scores. These

values are used to create Figure 5.2(a), which displays a histogram of the scores. True

and false negatives lie to the left of .5, while true and false positives are to the right.

By evaluating these values, giving accuracy as 94.12% , true positive rate as 100%,

and true negative rate as 85.71%. Additionally, Figure 5.3(a) shows these valuations,

which expands the results across the subjects themselves. The x-axis of these figures

reference young controls ‘y’, senior controls ‘s’, and experimental subjects ‘e’.

In Figure 5.2(a), there is one false negative, subject 51. However, this subject’s

aggregate metric score is extremely close to the midpoint threshold for declaring

positive or negative, as is clear in Figure 5.3(a). Additionally, there is no indication

from his medical history that should explain this issue. It is, however, an outlier

from the main group of hypertensive subjects, whose score is generally much higher.

Additionally, using the standard deviation as a reference, the score for this subject

shows a wide spread across the metrics used to analyze. Thus, it is fair to assume

that this case would merit further investigation in a clinical setting.
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Figure 5.2: Histogram of aggregated metric scores for female control vs
hypertensive, by confusion matrix score
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Figure 5.3: Aggregated metric scores by subject number, controls represented by
green, hypertensives represented by blue, with error bars corresponding to ±σ

2 for
aggregate score, x axis ‘y’ refers to young control, ‘s’ refers to senior control, ‘e’
refers to experimental

5.3 Female Control vs Female Hypertensive

Next, the female set is examined. The control group P0 consists of the young and

old females (N = 20, age = 48.80, σ = ±31.89), which contain several senior controls

as described by section 4.3. Meanwhile the hypertensive group P1 has a slightly higher

average age when compared to the males (N = 17, age = 82.24, σ = ±6.84).

Table 5.2(a) shows the accuracy levels for the different metric/muscle groups,

again including only Eωb=40 and Eωb=120 from the energy bandwidth conditional met-

ric. It is immediately apparent that the overall level of accuracy between females is

lower compared to the male subgroup accuracy levels of Table 5.1(a). However, some
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Table 5.2: Metric and muscle values for female subsets

(a) Accuracy levels for metric and muscle female subsets
Muscle TD% FB Fmax Eωb=40Hz Eωb=120Hz E%40−100Hz ESD40−100Hz

Tibialis Anterior 66.67 58.33 63.16 68.42 63.16 54.17 63.16
Gastrocneumius 63.16 54.17 58.33 54.17 54.17 58.33 58.33
Vastus Lateralis 54.17 52.63 54.17 54.17 63.16 58.33 47.37
Biceps Femoris 58.33 58.33 52.63 63.16 54.17 54.17 54.17
Aggregates Acc: 78.38%, TPR: 80.00%, TNR: 76.47%

*Measures with accuracy above 60% highlighted
(b) Metric crossover values

Muscle TD%
(%)

FB
(Hz)

Fmax
(Hz)

Eωb=40Hz
(%)

Eωb=120Hz
(%)

E%40−100Hz
(%)

ESD40−100Hz
(mV 2)

Tibialis Anterior 14.14+ 20.11- 42.83- 72.79- 26.90- 53.12- 367.90-
Gastrocneumius 21.41+ 12.75- 21.24- 49.91- 18.28- 41.71- 253.74-
Vastus Lateralis 23.09- 12.75- 20.75- 38.40+ 12.73- 29.21+ 235.66-
Biceps Femoris 22.96- 13.73+ 21.70+ 42.00+ 14.14+ 34.25+ 251.33+

*+/- indicates experimental group metric values lie above or below control group

measures still show high levels of distinction between control and experimental sets.

For the females, the tibialis anterior muscle shows consistently high accuracy when

distinguishing the presence of hypertension, especially in the TD%, Fmax, Eωb=40Hz, ESD40−100Hz

metrics. The Eωb=40Hz metric also shows relatively high accuracy in the biceps

femoris, while Eωb=120Hz shows similar accuracy in the vastus lateralis. It should

also be noted that the energy ratio conditional shows the highest discrepancy at 40

Hz in the tibialis anterior and biceps femoris muscle, compared to the males which

show higher discrepancies at 120 Hz. Explanation of these male-female discrepancies

are discussed in section 5.4.

When comparing the values of Table 5.2(b) to those of the male values of Table

5.1(b), the reason for the distinction should be clear. In the tibialis anterior and

gastrocnemius, the TD% metric, while having the same relationship between exper-

imental and controls, is much higher (14.14% for females vs. 7.08% for the males

in the case of the tibialis). Likewise, the bandwidth is smaller for the females than

in the males. This results in similar metrics performing well, but an overall loss in

fidelity, due to a smaller margin of discrepancy between control and experimental

metric group values.

Additionally, it is interesting that Eωb=40Hz in the tibialis gives superior perfor-
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mance. This suggests a lower overall frequency, making a comparison at the low-

energy levels more useful in determining differences than a higher frequency. This

notion is borne out when comparing the levels of Fmax, in which the frequencies in

the females are lower on the whole. Finally, in the ESD40−100Hz metric, the overall

energy levels are lower in females. The reasons for these difference lie in key physio-

logical discrepancies between males and females, discussed in section 3.3, and will be

explored in the context of the research in section 5.4.

Figure 5.2(b) shows a histogram arrangement of the confusion matrix, which cor-

responds to an accuracy of 78.38%, a true positive rate of 80.00%, and a true negative

rate of 76.47%. When comparing these to Figure 5.3(b), these values make sense. On

close inspection of those false positives and negatives, they are similar to the false

negative of the male case. A majority of these cases lie near the center point of

the crossover, and the standard deviation of the metric spreading implies that these

subjects may not be reliably placed in either category. Thus, further investigation

is necessary to determine confounding factors which may affect the accuracy of the

test. Also similar to the male subgroup, several hypertensive cases (N = 9) lie above

.7, and likewise several true negatives (N = 13) lie below .4. Thus, it may be inferred

that the test is highly accurate in a majority of the hypertensive cases.

5.4 Discussion

From the evaluation of the male and female subsets, several clear trends exist,

which are made apparent by close investigation of Tables 5.1(a) and5.2(a). As stated

previously, in the male subset, while gastrocnemius and vastus lateralis muscles show

high accuracy levels across several metrics, the female gastrocnemius and vastus lat-

eralis show much lower (< 60%) sensitivity to the presence of hypertension when

compared to male subjects. Conversely, the tibialis anterior muscles shows much
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higher relative accuracy levels in the female subset than in the male subset.

Another key difference is clear in the energy ratio metric (Eωb), discussed in sec-

tion 4.6. This metric evaluates the ratio of energy contained above a specific band

(high frequency) compared to overall energy, and is shown in the tables at Eωb=40

and Eωb=120. In the male subset, the use of 120 Hz for the low-band cutoff resulted in

the highest accuracy for detection of hypertension in the tibialis anterior, gastrocne-

mius, and vastus lateralis. Conversely for the females, in the tibialis anterior, biceps

femoris, the 40 Hz cutoff showed the highest levels of accuracy. These differences are

attributed to fundamental physiological differences between male and female groups:

subcutaneous tissue distribution and musculature differences.

The underpinnings of these male and female physiological differences were dis-

cussed in section 3.3. As discussed there, males tend to have a wider sEMG band-

width due to lower subcutaneous tissue levels and higher muscle mass. This results

in a greater clarity and lower mean frequency of activation, in comparison to females.

Additionally, as discussed, key differences in walking patterns in females cause the

use of certain muscles to differ. This may serve to explain the discrepancies between

measurement abilities between the male and female muscle groups, and especially in

the tibialis anterior muscle [45]. Thus, it stands to reason that the tibialis anterior

would give more precise results in the female sets, as is the case.

As noted previously, those metrics which show high accuracy in distinguishing

between male and female subgroups are highly correlated to the frequency content

of the signal, especially bandwidth (FB) or energy ratio conditional (Eωb). This is

especially telling when noting that in the female subset, the band comparison at

ωb = 40Hz is more indicative, while in males ωb = 120Hz shows more discrepancy,

save for the vastus lateralis muscle. In conclusion, although there are differences in

accuracy levels between male and female groups due to a variety of factors, from phys-

iological gender differences to muscle usage, there are still clear distinctions between
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the hypertensive and non-hypertensive groups which are measurable and quantifiable

directly from the gait sEMG signals.
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Chapter 6

Conclusion

In this work, I have endeavored to give an account of the background, as well as

the application, of several major topics, for the purpose of a noninvasive evaluation

of gait. This work is made necessary by the risk of our senior population to falling,

and seeks to provide one more tool in a growing array of diagnostic tools which can

alter the course of seniors’ lives for the better. Additionally, it serves as an area for

intersection of the fields of biomedicine with electrical engineering, using old tools to

solve new tasks, each of which have a rich history.

Chapter 2 took an in-depth look into the concepts of signal analysis in the fre-

quency domain revealed key shortcomings in old methods. The Fourier transform,

while useful when evaluation stationary signals, is not extremely useful for transient

signals, such as sEMG signals during gait. And while there is extensive work on

sEMG spectrum analysis, there is comparatively less work when evaluating these

transient signals.

The investigation into sEMG signals necessitated a wider background on human

physiology. In Chapter 3, the background for the sEMG signal was established,

which took a deep look into the effects that physiology, age, and gender might have

on the signals themselves. These were interpreted in the context of their frequency

spectrum, which included the state of the art of sEMG analysis. Finally, these signals

were discussed in the context of typical human gait.

The concepts of chapters 2 and 3 were extended to the experimental setup in

Chapter 4. This chapter developed a wide array of concepts, applying spectral anal-
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ysis to the time-varying gait signals. Of primary importance here was the use of

the gait-sine algorithm, which exploits the natural sinusoidal sway of the center of

mass to extrapolate the gait cycle from footfall pressure data. These gait points were

used to slice sEMG signals for analysis via metrics based on the classical spectral

measurement techniques.

Finally, these metrics were applied to identify discrepancies between hypertensive

and control sets. These results were based on a large database which recruits from

a variety of subjects. Many investigations of sEMG signals rely a small number of

candidates, but by use of the gait-sine algorithm, muscle activation can be compared

directly, contextualized by gait cycle. Thus, statistical analysis was straightforward,

and does not rely on a small sample set for control and test case comparison.

The overall goal of this research was to provide a quantitative tool for medical

practitioners, including doctors, therapists, and clinicians, to evaluate comorbidities

with additional quantitative insight. This work is part of the continuing effort to

provide an additional tool to assess geriatric patients, their health levels, and thus,

their risk for falling. By taking these findings as a basis for future work, this clinical

assessment of hypertension can be made by comparing the aggregated database results

to a clinical patient to screen for hypertension. With extremely high accuracy, and

high true positive rates, the use of this method to corroborate clinician findings should

be readily apparent.

The future of this research will focus on additional methods to aggregate data in

a meaningful way, both by examining outliers and using comparisons of a subjects’

footfalls to one another to create a more accurate snapshot for overall comparison.

Additionally, other conditions which predict fall risk will be examined in the future,

but as hypertension is common among US seniors, it serves well as an initial point

of investigation. Finally, while gait has been researched for many years, there have

been very few studies with an experimental setup that effectively corroborates gait
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and EMG signals for analysis. While this apparatus has been focused as a diagnostic

tool for seniors, it has potential in the fields of sports medicine and physical therapy

as a diagnostic tool for gait activation points, muscle distributions, and identification

of other neuropathies. Thus, this research holds promise, both for the state of clinical

medicine as well as for furthering knowledge of non-stationary signals during gait.

Thank you.
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