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Abstract

This thesis focuses on moment and kernel-based methods for applications in Robotics and Natural Language
Processing. Kernel and moment-based learning leverage information about correlated data that allow the
design of compact representations and efficient learning algorithms.

We explore kernel algorithms for planning by leveraging inherently continuous properties of reproducing
kernel Hilbert spaces. We introduce a kernel based robot motion planner based on gradient optimization, in
a space of smooth trajectories, a reproducing kernel Hilbert space. We further study a kernel-based approach
in the context of prediction, for learning a generative model, and in the context of planning for learning to
interact with a controlled process.

Our work on moment-based learning can be decomposed into two main branches: spectral techniques
and anchor-based methods.

Spectral learning describes a more expressive model, which implicitly uses hidden state variables. We use
it as a means to obtain a more expressive predictive model that we can use to learn to control an interactive
agent, in the context of reinforcement learning. We propose a combination of predictive representations with
deep reinforcement learning to produce a recurrent network that is able to learn continuous policies under
partial observability. We introduce an efficient end-to-end learning algorithm that is able to maximize cumu-
lative reward while minimizing prediction error. We apply this approach to several continuous observation
and action environments.

Anchor learning, on the other hand, provides an explicit form of representing state variables, by relating
states to unambiguous observations. We rely on anchor-based techniques to provide a form of explicitly
recovering the model parameters, in particular when states have a discrete representation such as in many
Natural Language Processing tasks. This family of methods provides an easier form of integrating su-
pervised information during the learning process. We apply anchor-based algorithms on word labelling
tasks in Natural Language Processing, namely semi-supervised part-of-speech tagging where annotations
are learned from a large amount of raw text and a small annotated corpus.
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1
Introduction

In this chapter, we discus the core aspects of moment and kernel-based
learning and summarize the main contributions made in this thesis.

Method of Moments

Many problems in machine learning attempt to find a compact model
that is capable of explaining complex behaviours from observable quan-
tities. We focus mostly on sequential observations, where time depen-
dence plays a crucial role in the evolution of these events.

Latent variable learning provides a compact representation for learn-
ing these complex, high dimensional data in a structured form. How-
ever, learning latent variables is often difficult, in part because of the
non-convexity of the likelihood function (Sun, 2014; Terwijn, 2002).
Yet, the main challenge is associated with estimating the latent (un-
observed) states, which need to be estimated indirectly by looking at
correlations among observations (examples in Figure 1.2.

The method of moments (MoM) provides an alternative form for
explaining high dimensional and complex data, based on classical
statistics and probability theory. MoM dates back to Pearson’s solu-
tion for curve fitting problems, i.e., for finding parameters that fit a
mixture of two Gaussian distributions (Pearson, 1894). MoM’s esti-
mation relies on the idea that empirical moments are “natural” esti-
mators of population moments. In essence, learning a model via the
MoM comes down to estimating model parameters that represent dis-
tributions whose moments are in agreement with sample moments
observed in the data. matching moments vs. maximum

likelihoodMoment-based algorithms differ from likelihood-based methods in
that they attempt to recover parameters based on moment matching
instead of maximizing likelihood which leads to intractable optimiza-
tion. MoMs are also faster to compute and usually require more data
to build good empirical estimates. Recent work applied MoM to dif-
ferent latent variable models, and demonstrated better convergence
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properties over the most commonly applied likelihood approach, Ex-
pectation Maximization (EM), both in terms of runtime and consis-
tency (Hsu et al., 2009). MoM also provides asymptotically consistent
estimates, in the sense that the method yields the correct model pa-
rameters as the size of training sequences goes to infinity. In many
applications unlabeled data is readily available, which makes moment-
based algorithms a preferable choice under unsupervised settings, or
even when labeled data is scarce. These methods yield (asymptoti-
cally) statistically optimal solutions, and can be computed efficiently.

MoM’s intuitive construction together with statistical consistency
guarantees makes this class of estimators an increasingly attractive
choice in a wide range of research areas including: System Identifi-
cation (Van Overschee et al., 1996), Video Modeling (Blaschko et al.,
2008), Robotics (Siddiqi et al., 2007), and Natural Language Process-
ing (Cohen et al., 2012; Parikh et al., 2011; Balle et al., 2011). Since Pear-
son’s work, MoM has been studied and adapted for a variety of prob-
lems. “Identifiability” was proven to be theoretically possible for mix-
ture of Gaussian distributions—where two mixture of different Gaus-
sians have two distinct probability distributions (Teicher, 1961). This
property ensures the parameters estimated via MoM will be uniquely
identified (Chang, 1996). Over the last decade, the machine learning
community has contributed with new theoretical advances in MoM es-
timation: starting with Dasgupta et al. (2000) and Arora et al. (2001)
and Vempala et al. (2004) who designed polynomial time algorithms
based on moments estimation. Later Hsu et al. (2009) provided sample
complexity guarantees for different hidden variable models, Anand-
kumar et al. (2012a) provided an algorithm to learn general hidden
variable models and Anandkumar et al. (2012b) and Arora et al. (2013)
contributed with computationally efficient learning methods. Some of
these methods rely in their core on a spectral decomposition of the
observed statistics—moment matrices or tensors—and are thus com-
monly denoted as “spectral methods”. MoM or alternatively spectral spectral methods

learning has been widely used to learn challenging models including
hidden Markov models (Hsu et al., 2009), latent trees (Parikh et al.,
2014), latent junction trees (Parikh et al., 2012a), probabilistic context
free grammars (Cohen et al., 2012; Parikh et al., 2011), mixture mod-
els (Anandkumar et al., 2014), finite state machines (Luque et al., 2012;
Balle et al., 2011) and predictive state representations (Littman et al.,
2002; Rosencrantz et al., 2004a).

A challenge specific to spectral methods involves estimating proba- MoM challenges

bilities from spectral decompositions. MoMs do not restrict, in general,
the parameters to be non-negative, the non-negativity problem, leading
to violation of the probability constraint. For moment-based methods, non-negativity problem

an analogous problem arises, when we extract parameters that match
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empirical moments: one of the main difficulties is related to statistical
noise that and resides in undoing the linear transformation, such that
the recovered parameters are constrained to a feasible set, either their
marginal polytope1 or probability simplex. An alternative interpre- 1 The marginal polytope defines the

set of realizable marginal probabili-
ties (Wainwright03)

tation of this issue lies within the fact that MoMs rely on an infinite
data assumption, i.e., the knowledge of exact moments to correctly re-
trieve the model parameters. On top of that, in practice, even for large
amounts of data, these methods suffer statistical noise in the empirical
estimates of the moments, leading to suboptimal rates of convergence,
the statistical efficiency problem. Another problem with moment-based statistical efficiency problem

methods is that in order to construct a set of moments that makes the
parameter estimation problem well conditioned, we may need to move
to a harder class of computational problems: for example, we may
prefer to observe a large sparse matrix of second moments instead of
a small dense one. In this case the matrix factorization problem be-
comes a matrix completion problem, which is computationally more
difficult (Balle et al., 2012a; Bailly et al., 2013a). The challenges above
stem in part from the fact that it is common for MoM estimators to in-
troduce an extra transformation (often linear) on top of the traditional
parameter representation, and it is difficult to undo this transforma-
tion.

From a practical point of view moment-based algorithms have not
yet succeeded in many domains as a viable and more effective al-
ternative to likelihood-based methods. Prior work has been done in
the direction of finding heuristics to improve results. Cohen et al.
(2013b) and Luque et al. (2012) provided improvements in terms of ac-
curacy and runtime, but these have mostly focused on how to handle
problems inherent to spectral learning such as negative probabilities
(non-negativity problem), and limited data (breaking the infinite data
assumption these methods require). Nevertheless, there is still room
for experimental improvement, specially when compared with local
search methods, such as gradient descent or EM, when the observa-
tions space is large. In this thesis, we focus on the MoM for estimating
parameters of sequential models such as hidden Markov models and predictive
state representations. Next, we provide an overview of how the MoM can be
applied to structured prediction tasks. We further focus on how the MoM and
kernel approaches can be applied in the context of Natural Language Process-
ing and Robotics.

Structured Prediction with Method of Moments

Structured prediction is a general machine learning problem that at-
tempts to uncover a hidden structure of the data. Structural elements
can be found both in Natural Language Processing (NLP) and Robotics
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in different forms, such as parse-trees, input/output sequence models
in NLP or sequential hybrid models in Robotics.

Output prediction can be regarded as a labeling problem for the
sequence of inputs. In Natural Language Processing there are several
tasks that could be framed in this setting, such as part-of-speech tag-
ging, named entity recognition, information extraction, and syntactic
disambiguation (Manning et al., 1999). Conversely, in Robotics there
is also a large number of tasks that could be posed as a input/output
prediction problem, such as mode identification (Lauer et al., 2008;
Paoletti et al., 2007) and grasp classification (Cutkosky et al., 1990).

In this thesis, we deal with two types of structured prediction: se-
quence completion and sequence labeling.

Sequence completion consists of predicting a sequence of events
based on preceding elements. Here, the order of the elements is crucial
to learning a correct model of the internal representation, and different
algorithms exist for different types of problems. In this thesis, we
consider both instances of discrete and continuous sequential data, i.e.,
the domain of the elements of each sequence can be discrete elements
in a finite set or discrete-time observations of a continuous valued
process. In NLP, typically we deal with the former, and in Robotics we
generally address the latter. In both cases, the prediction task can be
cast as a more general learning problem of a high level model that is
able to predict future elements of an output sequence of events, based
on an input sequence, as depicted in Figure 1.2.

z1 z2 . . . znstate

o1 o2 onoutput

i1 i2 ininput

Figure 1.1: Sequence prediction task
with input it/output ot sequences (in
gray). The process is modeled by a
finite state machine with states zt (in
white).

In standard sequence completion problems, the output sequence
corresponds to the consecutive element or elements of the sequence,
such as in most common sequence prediction problems: weather fore-
casting, stock market forecasting, language modeling, robot pose pre-
diction in robotic manipulation. In the more general sequence labeling
tasks, the output has a less restrictive interpretation.

Method of moments for Robotics and Natural Language Process-
ing

The learning of predictive models can be done with existing input/output
sequence pairs, in a supervised setting; relying only on sequences of
input sequences, in an unsupervised setting or using a combination
of input/output pairs with typically less expensive unlabeled input
sequences, also referred to as semi-supervised learning. MoM or spec-
tral learning algorithms are often associated with unsupervised learn-
ing, where no information about the input sequence is available. More
specifically, when we are interested in augmenting the states as refine-
ment layers, or as in latent-variable learning. The sequence in certain
models, hidden Markov models (HMMs) or predictive state represen-
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tations (PSRs), can be considered as a sequence of hidden state vari-
ables that serve as additional information about the input sequence,
increasing the expressiveness of the model.

z1 z2 . . . znstate

o1 o2 onoutput

Figure 1.2: Sequence prediction task
with output ot sequences (in gray). The
process is modeled by a finite state
machine with states zt (in white).

In many applications, it is not necessary to explicitly know this hid-
den space representation and tasks, such as filtering, and prediction
can be done effectively without it. Many Robotics/NLP applications
fall under this category, such as localization and observation predic-
tion in a dynamical system, language modeling and model refinement.
We group this latter form of learning together with spectral learning
techniques. However, in many applications we are interested in an ex-
plicit representation of the hidden states. Whenever we grant hidden
states with meaningful representations, we need to explicitly ascer-
tain about their probability distribution. Many NLP tasks require this
property, such as part-of-speech tagging, named entity recognition,
and all structured prediction tasks where the states represent labels.
We can encode this information by using different approaches, namely
anchor techniques (Arora et al., 2013). interpretable vs. hidden states

In this thesis, we will investigate both directions. In the first di-
rection, we learn model parameters in an interpretable setting, and
explicitly recover the hidden state distribution— anchor learning. In
the second one, we ignore the hidden state interpretation and are only
interested in predicting future observations conditioned on past obser-
vations, by means of a more expressive model— spectral learning.

Kernel-based learning

Kernel methods are a common approach in Machine Learning. They
provide a compact representation of high dimensional, non-linear data
by embedding data from an input set X into a feature space Φ. The
kernel function provides the means to reason about distance between
points in this space, via the use of feature inner-products k(x, y) =

〈φ(x), φ(y)〉. This fact brings forth the advantages of linear models,
such as computationally efficiency without losing the expressivity of
non-linear models (Scholkopf et al., 2001).

Additionally, a Gram matrix formulation of this mapping is often
used to circumvent the need to represent high dimensional feature
mappings. However, in many cases this formulation is computation-
ally prohibitive, since one needs to compute a N × N Gram matrix
of pairwise kernel evaluations for a dataset on N samples. This for-
mulation deprives the applicability of kernel methods to large train-
ing datasets. On the other hand, randomized feature representations
trade off accuracy of the kernel expansion for scalability, by mapping
data into a low-dimensional randomized feature space, greatly reduc-
ing the computation of kernel evaluations and training (Rahimi et al.,



introduction 13

2008; Sinha et al., 2016).
More recently, efficient learning of deep architectures (Orr et al.,

1998; Hinton et al., 2006) gave rise to an efficient and flexible family
of algorithms that have proven to be very successful in many research
communities. Carefully designed forms of regularization techniques
to control the representational power of deep networks allowed the
learning of compact representations (Prechelt, 1997; Srivastava et al.,
2014; Ioffe et al., 2015). However, in contrast to kernel approaches,
these deep learning techniques do not benefit from a well understood
theoretical analysis (Bengio, 2009).

In this thesis, we focus on reproducing kernel Hilbert spaces (RKHSs),
a space of kernels with additional structure of its feature space (Aron-
szajn, 1950; Wahba, 1999). RKHSs provide a good trade off between
expressivity and tractability. They also benefit from an extensive the-
oretical analysis of convergence (Schölkopf et al., 2002). But the main
advantage of RKHSs lies on the ability to evaluate a continuous func-
tion f at a given point x by considering the inner product of f with the
reproducing kernel feature map at that point k(·, x). This is not true,
in general, for any arbitrary Hilbert space (Riesz, 1928; Conway, 1985).
RKHSs may equivalently be defined as a Hilbert space of functions
(space endowed with inner product) whose evaluation of functions is
a continuous and linear operation. The interpretation of function eval-
uation as inner products in the RKHS is the core property that grants
rich enough structure to design compact and efficient algorithms. Op-
timization problems, such as taking the gradient of any function f in
the RKHS with respect to f , may be translated into reproducing ker-
nel variants in terms of the inner product of f in the RKHS 〈 f , k(·, x)〉,
since the gradient assumes the form k(·, x). This will allow to describe
any optimization algorithm of the form: min fθ(x) with respect to θ in
RKHS terms.

RKHSs have been successfully applied in many fields such as Statis-
tics (Parzen, 1962; Parzen et al., 1970) and Machine Learning (Manton
et al., 2015; Scholkopf et al., 2001). In this thesis, we will focus on
prediction techniques for sequential Robotic problems.

Thesis Statement

The core of this thesis consists of improving kernel and moment-based
methods for learning sequence prediction and planning. We validate the pro-
posed methods on a varying range of tasks, such as labeling problems in Nat-
ural Language Processing, and trajectory optimization and policy learning in
Robotics.

We focus on planning algorithms for Robotic applications, with em-
phasis on optimization based planning. We propose a novel plan-
ning algorithm for optimizing robot trajectories in high dimensional
spaces using kernel methods. Furthermore, we investigate planning
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under uncertainty by combining MoM and reinforcement learning al-
gorithms. We study variants of PSRs for continuous observations for
more complex robotics tasks, such as robotic manipulation and plan-
ning in a partial observable setting. Additionally, we propose to study
other moment matching techniques, that provide easier forms of in-
terpreting hidden state variables, as well as subsuming supervised in-
formation, where we intend to design algorithms that are capable of
handling large amounts of data in a weakly supervised setting, are
flexible, and allow the inclusion of model constraints. In this regard
we introduce sequential prediction for discrete representations with
anchoring observations.

1.1 Main contributions

This thesis makes the following contributions:

Contribution 1: Interpretable representation of states

In many applications, it is often beneficial to build up models with
meaningful representations, such as in sequence labeling tasks, where
the hidden variables represent labels in a finite set. Many tasks in
Natural Language Processing and Robotics fall under this category,
in particular those pertaining to sequence labeling tasks, where the
hidden states represent part-of-speech tags, named entities, or parsing
constituents. It is, therefore, important to recover explicitly a map-
ping between hidden states and labels. This remains one of the main
challenges in MoM estimation.Due to the nature of the problem, it is
difficult to find an interpretable representation of the hidden structure.

Usually, spectral methods marginalize over the hidden variables,
not revealing its state representations. There has been prior effort
into finding the explicit model parameters, e.g., via the tensor power
method (Arora et al., 2013) and simultaneous diagonalization (Kuleshov
et al., 2015), both of which address learning a similarity transform
between hidden states and labels. However, these methods are very
sensitive to model mismatch, and to statistical noise. We build upon
an alternative form of learning that relies on anchor observations, i.e.,
unambiguous observations that uniquely map to a state variable. This
work was first derived for finding topic distributions in topic modeling
(Arora et al., 2013).

We introduce an anchor-based algorithm for learning sequence labels using
the MoM. By taking advantage of the anchor idea we introduce a novel algo-
rithm that learns interpretable representations of state in a hidden Markov
model, in Chapter 3.
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Contribution 2: Integrate supervision with moment-based estimation

It is often desirable to restrict models to retain certain labeled infor-
mation, either in the form of prior distributions or constraints over
model parameters. For this purpose we require an explicit mapping
into the hidden state representation. Finding model parameters that
agree with given moment constraints and conform with supervised
information is not a straightforward task, in particular in those meth-
ods that rely on spectral decompositions of observations. The main
problem is that most moment-based methods describe probability of
observations as a series of operator multiplications, without provid-
ing an explicit representation for hidden states, since this is a harder
problem. They simply perform inference by propagating the effect
through the hidden structure implicitly. This renders integration of
prior knowledge hard. For instance, estimated operators, also denoted
as predictive state representations (PSRs) (Littman et al., 2002; Singh
et al., 2004b) or observable operator models (OOMs) (Jaeger, 2000) can
be obtained by first expressing moments in a lower dimensional space
that correlates well with past observations, and secondly by regress-
ing the predicted future estimates from the past. This process does
not explicitly involve the model parameters, being only derived from
observed data.

Another line of moment methods addresses this challenge by mod-
eling sequential tasks as input-output finite state machines, but still
keeping the hidden state space unknown (Balle et al., 2011). Here
inputs relate to observations and outputs to labels. However, this ap-
proach requires the knowledge of the labels during training, which
makes the learning problem not suitable for weak supervision on large
datasets.

We provide a learning algorithm based on moment estimation that is able
to incorporate supervised information in different forms. First, we introduce a
weakly-supervised learning approach that is able to learn from a small labeled
and a large unlabeled dataset. Second, we introduce an additional source of
supervision by means of supervised regularization in Section 3.6.

Contribution 3: Feature based anchor learning

Sequence models with more expressive representations have long been
used in Machine Learning. These allow for more complete represen-
tations, such as low dimensional embeddings or features of observa-
tions. In particular in the Natural Language Processing community is
it common to consider sequential models with log-linear emissions,
or also known as exponential family of distributions. Smith et al.
(2005), Lafferty et al. (2001), and McCallum et al. (2000) considered
such feature-based representations of observations in a discriminative
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setting and Berg-Kirkpatrick et al. (2010) generalized this notion for
generative models.

We introduce a moment-based anchor learning algorithm that is able to
handle continuous representations using HMMs with log-linear emissions.
We apply this method in a Natural Language Processing task, part-of-speech
tagging (§ 3.4).

Contribution 4: Combine kernel approaches for gradient based plan-
ning

Functional gradient algorithms are a popular choice for robot mo-
tion planning in complex high dimensional environments. Optimiza-
tion based planning attempts to directly improve the trajectory of a
robot within a space of continuous trajectories. The objective is to
reach a goal position without colliding into obstacles and by main-
taining geometric properties such as smoothness. In practice, stan-
dard planning implementations such as CHOMP (Zucker et al., 2013)
and TrajOpt (Schulman et al., 2013) typically commit to a fixed, finite
parametrization of trajectories, often as a sequence of waypoints.

We introduce a functional gradient descent trajectory optimization al-
gorithm for robot motion planning in Reproducing Kernel Hilbert Spaces
(RKHSs), in Chapter 4. We represent trajectories as functions in an RKHS
(§ 4.2). Restricting trajectories to a space of reproducing kernels provides
a seemly representation that naturally gives rise to a notion of smoothness
in terms of the norm induced by the reproducing kernel. In consequence,
depending on the selection of kernel, we can directly optimize in spaces of
trajectories/functions that are inherently smooth in velocity, jerk, curvature,
or any meaningful efficiency norm (§ 4.4).

Contribution 5: Design an efficient algorithm including kinematic and
dynamic robot constraints

Common optimization based strategies work (in theory) by directly
optimizing within a space of continuous trajectories to avoid obsta-
cles while maintaining smoothness. However, in practice, standard
planning implementations represent trajectories as a sequence of finely
discretized waypoints. Such a parameterization can lose much of the
benefit of reasoning in a continuous trajectory space: e.g., it can re-
quire taking an inconveniently small step size and large number of
iterations to maintain smoothness.

Trajectory optimization in RKHSs generalizes functional gradient trajec-
tory optimization by representing trajectories as linear combinations of kernel
functions. As a result, we are able to take larger steps and achieve a locally op-
timal trajectory in just a few iterations. The selection of an appropriate kernel
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can reduce the complexity to a low-dimensional, adaptively chosen parame-
terization. We propose an efficient gradient-based algorithm that is able to
handle robot constraints, such as boundary conditions, joint limits and veloc-
ity limits (§ 4.3). Our experiments illustrate the effectiveness of the planner
for different kernels, including Gaussian RBFs with independent and coupled
interactions among robot joints, Laplacian RBFs, and B-splines (§ 4.7).

Contribution 6: Combine modeling and planning

Next we focus on how to integrate predictive models to improve exist-
ing planning algorithms. Once a model of the environment is learned,
how can we act upon it to achieve a desired goal? We refer to planning
as the mechanism to determine a sequence of actions that maximize
a given objective function, typically the sum of expected return pro-
vided by a learning agent in an interactive environment. Little work
has been done in combining predictive representations with planning,
and is mostly restricted to the discrete or blind settings.

We introduce a new class of policies that is able to leverage the benefits of
having a predictive model with a recurrent architecture that maps predictive
states to actions. We introduce a novel architecture that is designed to learn
this mapping in a partially observable environment. We denote it Recurrent
Predictive State Policy (RPSP) network, in Chapter 5. RPSPs consist of a re-
cursive filter, which keeps track of a belief about the state of the environment,
and a reactive policy that directly maps beliefs to actions. The recursive filter
uses predictive state representations (PSRs) (Rosencrantz et al., 2004b; Sun
et al., 2016a) by modeling the state as a predictive state, i.e., a prediction of the
distribution of future observations conditioned on history and future actions.
Therefore, the policy component of the RPSP-network can be purely reactive,
simplifying training while still allowing optimal behaviour. A reactive pol-
icy mapping from predictive states to actions will have rich information for
decision making, as it can reason about the entire history of the controlled
process.

Contribution 7: Filter initialization

Recurrent networks with memory models, such as GRUs and LSTMs,
can leverage information about previous observations and actions to
keep track over a belief of the state of the environment. Although
RNNs may exploit heuristics for an improved initialization, such as
noisy initial values (Zimmermann et al., 2012), however, such a strat-
egy does not guarantee good performance.

We propose an initialization procedure for RPSP recurrent filters that pro-
vides good theoretical guarantees in the limit of infinite data, in Chapter 5.
RPSP filters correspond to PSR models; as a result they can make use of
history like LSTMs/GRUs, and track in the RKHS of distributions of future
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observations based on past histories like PSRs. For this reason, RPSPs have a
statistically driven form of initialization, that can be obtained using moment
matching techniques, with statistically consistent algorithms (Hefny et al.,
2017b; Boots et al., 2013a)

Contribution 8: End-to-end algorithm with prediction as regulariza-
tion

RPSPs define computation graphs, where the parameters are opti-
mized by leveraging the states of the system. Predictive states encode
rich enough information of the partial observable environment, with
the additional benefit of having a clear interpretation as a prediction
of future observations trained based on that interpretation.

We make use of the PSR interpretation to formulate an end-to-end train-
ing algorithm, by incorporating prediction error in the loss function. The
entire network (recursive filter and reactive policy) is differentiable and can
be trained using gradient based methods, in Section 5.6. We optimize RPSPs
using a combination of policy gradient based on rewards (Williams, 1992) and
gradient descent based on prediction error. We show the efficacy of RPSP-
networks on a set of robotic control tasks from OpenAI Gym. We empirically
show that RPSP-networks perform well compared with memory-preserving
networks such as GRUs, as well as finite memory models, being the overall
best performing method (§ 5.8).

1.2 Previous Publications

During the course of this doctoral study, further work was developed
in collaboration with other authors which do not count as first au-
thor contributions and are thus omitted from this thesis. This includes
work in the field of sequence prediction with mode switching, where
we combine Gaussian process regression with particle filters to im-
prove prediction in the vicinity of mode transition (Lee et al., 2017);
and work in the area of predictive planning where we introduce pre-
dictive representations to controlled processes as a filtering mechanism
in partially observable environments (Hefny et al., 2017a).

1.3 Thesis organization

This thesis is organized as follows:

Part II: Background

This part summarizes existing work on the method of moments, pro-
viding the necessary background required to understand the main
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contributions of this thesis. We provide an overview of the method
of moments literature for prediction and planning in four chapters, as
we describe below:

Section 2.1 provides an overview of the notation used throughout
the thesis.

Section 2.3 describes the most common latent variable models used
in moment estimation, in §2.3, and §2.4 describes learning tech-
niques for finding model parameters by explicitly recovering the
model parameters.

Section 2.5 In §2.5 we describe spectral learning models for se-
quence prediction, including HMMs, OOMs, FSTs and PSRs and
their learning algorithms in §2.5.6.

Section 2.6 provides an overview of planning algorithms mostly
applied to Robotics.

Section 2.7 provides an overview of planning under uncertainty/reinforcement
learning algorithms.

Part III: Sequence Labeling with Method of Moments

The second part of this thesis provides contributions made in the field
of sequence labeling using method of moments in Chapter 3. We pro-
vide a description in the following order:

Section 3.3 introduces a novel algorithm for sequence labeling using
anchor-based learning, with an extended notion of anchors.

Section 3.4 introduces a feature-based extension of anchor learning
for hidden Markov models (HMM).

Section 3.6 presents an empirical analysis of anchor-based learning
for HMMs and log linear models.

Part IV: Planning with Kernel Methods

The second part of this thesis provides contributions made in the field
of Robot Motion Planning using kernel approaches in Chapter 4. We
provide a description in the following order:

Section 4.2 introduces an approach for representing trajectories as
functions in a functional reproducing kernel Hilbert space (RKHS).

Section 4.3 introduces a constrained optimization algorithm based
on gradient descent methods in RKHSs.
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Section 4.7 presents an empirical analysis of trajectory optimization
using distinct variants of RKHSs in simulated toy and more complex
robotic environments.

Part V: Planning with Method of Moments

The third part of the thesis describe how we can combine a predic-
tive models with existing planning algorithms based on reinforcement
learning in Chapter 5.

• Section 5.5 proposes a new class of policies combining moment-
based predictive models with reactive policies.

Section 5.6 combines controllable predictive state models with plan-
ning algorithms, in a reinforcement learning approach. This section
presents an end-to-end algorithm for continuous actions based on
predictive representations under partial observability.

• Section 5.8 provides experimental analysis of learning RPSP net-
works through gradient descent in a joint and alternate approach,
using OpenAI Gym simulated environments.

Part VI: Conclusions

This chapter highlight the main conclusions and findings of this thesis
and provides possible directions for future work.
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Background

In this chapter, we introduce related work and background required
for a comprehensive understanding of this thesis. We provide an
overview of sequential models in (§ 2.2), we introduce some latent
variable models in (§ 2.3) and learning algorithms in (§ 2.4). We dis-
cuss sequential models for spectral learning in (§ 2.5). We review some
background on planning in (§ 2.6), and in particular in reinforcement
learning in (§ 2.7).

2.1 Notation

In this thesis, we will define vectors in bold notation as column vectors
v ∈ Rn×1, where [v]i denotes the entry indexed by the i-th component
of the vector v. We write matrices as capital letters M, with Mi,j denot-
ing the i-th row and j-th column of the matrix. We further denote R+

to be the field of real non-negative values and R++ the field of strictly
positive values. We say v belongs to the probability simplex ∆d−1 such
that:

∆d−1 = {v ∈ Rd : vi ∈ [0, 1]∀i ∈ [d],
d

∑
i=1

vi = 1} (2.1)

We refer to real valued functions f : Ξ → R as points in a func-
tion space F by keeping the argument without assignment f (·) ∈ F
represents a function, i.e., an element in the space, while f (0) ∈ R

refers to an evaluation of the function at point 0. We use ⊗ to denote
the outer-product, for vectors x ∈ RX and y ∈ RY is equivalent to
x⊗ y = xy> ∈ RX×Y. × is used to denote the element-wise product
of vectors and matrices of the same dimension. Furthermore, we de-
fine the tensor product of any arbitrary p-order tensor T ∈ Rn1×...×np

as a multilinear mapping, where ×i refers to the multiplication along
mode i. Let the vector vj ∈ Rn

j and the matrices Vj ∈ Rnj×dj , ∀j∈[3].
The projection of the matrices on each mode of the tensor yields

T(V1, . . . , Vp) = T ×1 V1 ×2 V2 . . .×p Vp ∈ Rd1×d2 ...×dp (2.2)
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When the tensor is a second-order tensor, i.e., a matrix, the matrix
and vector multiplication reduces to the usual definition T(V1, V2) =

V>1 TV2 and T(I, v) = Tv.

2.2 Models for sequential systems

In this chapter, we review some existing learning algorithms for se-
quential systems, where a sequence of observable events oi ∈ Σ is
determined by an underlying stochastic process Z, see Figure 2.1. De-
pending on the application observations may correspond to continu-
ous values, such as many Robotics problems, or discrete values, such
as words in a dictionary in Natural Language Processing (NLP).

z1 z2 . . . znZ

o1 o2 onO

Figure 2.1: Observations oi (bottom),
generated from a hidden process zj
(top).

In the following sections we review sequential models for stochastic
processes under different assumptions, described in Figure 2.2, using
method of moments (MoM), see Section 2.4.2. An important charac-
teristic of moment-based learning is that they provide consistent pa-
rameter estimates, under certain assumptions on the singular values of
the model. They provide an alternative to a different class of learning
methods, based on likelihood maximization estimation (MLE), in par-
ticular local methods such as the popular Expectation-Maximization
(EM) algorithm (Dempster et al., 1977). POMDPs

PSRs IO-OOMs

HMMs

HSE-HMMs

HSE-PSRs OOMs

Kernel 
based

Explicit state mapping

Stochastic
Processes

Controllable processes

Figure 2.2: Sequential Models
overview. Models with interpretable
view—latent variable models (gray).
Non-linear sequential models (orange).
Linear sequential models (blue).

MLE provides a statistically efficient estimation paradigm but it is
intractable to solve, due to the non-convexity of the likelihood func-
tion. Local methods, such as EM, turn this problem into a tractable
one, but suffer from local optima and slow convergence (Redner et
al., 1984), see Section 2.4.1. In fact for some models such as hidden
Markov models (HMMs) (Rabiner, 1989), latent trees (Mossel et al.,
2006) and topic models (Arora et al., 2012) MLE is NP-hard. MoM, on
the other hand, does not suffer from local optima, even in situations
where maximum likelihood does. MoM exploits algebraic properties
of the model to build factorization of moments into model param-
eter estimates. Moment-based techniques can be divided into two
groups. The first involves performing some spectral decomposition
and is usually denoted as spectral learning, described in more detail in
Section 2.5.6. The second refers to moment-matching techniques that spectral learning vs. anchor learning

explicitly model the hidden states, these are mostly known as anchor
methods, see Section 2.4.4.

A large group of theoretical computer scientists studied the com-
putational and sample complexity related to estimating certain latent
variable models such as Gaussian mixture models (Dasgupta, 1999;
Arora et al., 2001; Dasgupta et al., 2007; Vempala et al., 2004; Kannan
et al., 2008; Chaudhuri et al., 2008; Brubaker et al., 2008; Belkin et al.,
2010; Moitra et al., 2010) and HMMs (Hsu et al., 2012a; Chang, 1996;
Mossel et al., 2006; Anandkumar et al., 2012a)
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In Section 2.3, we formally describe the models where we describe
data as a stochastic generative process and where we explicitly iden-
tify the hidden state variables. Furthermore, we provide an overview
of learning algorithms based on MoM, in Section 2.4, by estimating
the parameters through an explicit mapping of the hidden state vari-
ables, which we denote by latent variable learning. This explicit learning
variant recovers model parameters— conditionals M and marginals Z,
from moments of observations W. These parameters can be combined
together in the form of some operators, also known as observable op-
erators, that allow us to describe probabilities of sequences of obser-
vations, in Figure 2.3a.

A different line of work based on subspace identification (Van Over-
schee et al., 1996), observable operator models (OOMs) (Jaeger, 2000)
and multiplicity automata (Schützenberger, 1961) have been proposed
to latent variable models. In particular Hsu et al. (2009) and Rodu
et al. (2013) applied spectral learning to HMMs with finite sample
bounds. Further work developed a more general class of models to
capture the evolution of sequential systems without explicitly recov-
ering the hidden variables, such as reduced rank HMMs (Siddiqi et
al., 2010b), kernel HMMs (Song et al., 2010b), predictive state repre-
sentations (PSRs) (Littman et al., 2002; Singh et al., 2003), latent tree
graphical models (Parikh et al., 2012a), weighted automata (Balle et
al., 2012b; Bailly et al., 2013a) and probabilistic context-free grammars
(PCFGs) (Cohen et al., 2013b; Dhillon et al., 2011). These methods rely
on low order moments to estimate an operator that embeds the dis-
tribution of a sufficient statistic of the model. These operators can be
used for density estimation and belief state updates, very commonly
used in robotics and language generation.

In Table 2.1 we summarize the main literature on moment-based ap-
proaches for sequential systems, emphasizing the main characteristics
of each approach.

In Section 2.5, we review learning approaches for sequential models,
where there is no explicit mapping to the hidden state space, which
we denote as spectral learning. In this variant, we are not interested
in recovering the hidden structure, but instead model the generative
process, while being able to perform prediction over sequences of ob-
servations.
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Explicit Kernel Controllable Time
Models state based systems variant Sec. Refs.

Hsu 09; Anandkumar 12; Anandkumar 14

HMMs X - - - 2.3.1 Chaganty 14; Kuleshov 15; Siddiqi 10

anchorHMM X - - - 3 Marinho 16

HSEHMMs X X - - 2.5.5 Song 10; Smola 07

POMDPS X - X - Azizzadenesheli 16

OOMs - - - - Jaeger 99

IO-OOMs - - X - 2.5.3 Jaeger 00; Thon 15

WFA - - - - 2.5.2 Balle 12; Bailly 13

PCFGs - - - - Cohen 13; Dhillon 11

PSRs - - X - 2.5.4 Littman 01; Singh 03; Rosencrantz 04; Boots 11

HSEPSRs - X X - 2.5.6 Boots 13; Hefny 15

PSIMs - X - X Sun 16

Table 2.1: Summary of moment-based
approaches for prediction in sequential
systems.

Moments

Model
Parameters Observable	

operators

W
M

Z

Ao

(a) Latent variable learning, with ex-
plicit state mapping, requires first to
estimate model parameters M, Z, from
moments W.

Observable	
operatorsMoments

W Ao

(b) Spectral learning, where the map-
ping to the state variables remains
unknown, directly finds observable
operators.

Figure 2.3: Moment based learning.

In spectral learning we directly estimate observable operators, from
which we can describe the sequential process, in Figure 2.3b. We pro-
vide a general description of sequential models and bring together
different models proposed for controlled and uncontrolled sequential
systems. In Section 2.5.6, we consider learning of controlled systems
where we need to account for the effect of actions that an agent can
perform, either a robot or a state machine. The added challenge in
learning controlled systems lies in the fact that the actions performed
by the agent change the distribution of future observations.

The first class of methods expresses a simpler model but is able
to extract the hidden state parameters, which can be important de-
pending on the task at hand. Conversely, the second class of methods
characterizes a more expressive model, with the caveat of not being
able to reason about the hidden states explicitly. We present meth-
ods that can cope with dynamical systems with discrete observations
(HMMS (§ 2.3.1), PSRs (§ 2.5.4)) and continuous observations (HSE-
HMMs (§ 2.5.5)), later we describe work on controlled processes (con-
trolled PSRs (§ 2.5.6)).

If we want to do sequence labeling or discover explicit parameters
in the model, such as transitions and emissions in a hidden Markov
model, the former family of estimators is more suitable. However if we
want to predict sequences of observations conditioned on past obser-
vations and/or actions, or even generate observations from the model
(language modeling), the former groups of methods are probably a
better fit. In this thesis, we attend to both types of models.
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2.3 Latent Variable Models

Latent space models define a general tool in machine learning to model
data generated from i.i.d., sequential or more structured samples (Ghahra-
mani et al., 1999; Jordan et al., 1999; Blei et al., 2003; Quattoni et al.,
2005; Haghighi et al., 2006). Learning these models is hard in most
cases, since the hidden/latent states are not directly observed. Instead,
they need to be estimated from correlated observations. We consider
in particular the case of sequential models.

Let G be a graphical model with observed variables o = {o1, . . . , oL}
where oi ∈ Σ is a discrete observation in the set of dimension |Σ| = d;
and let z = {z1, . . . , zM} ∈ [K]M denote its discrete hidden variables
with each zj ∈ [K]∀j∈[M].

For every graphical model, its parameters can be estimated via the
MoMs, where we can exploit the underlying structure of the model.
We decompose the estimation into two parts p(O, Z) = ∏S∈C p(Ov |
ZS)p(ZS), for any set of nodes forming a clique in the graph S. First,
we estimate the leaves of the graph corresponding to observed vari-
ables conditioned on some conditionally independent hidden vari-
ables. We denote them conditional moments or conditionals conditional moments

Mv = p(Ov | ZS) ∈ Rd×K. (2.3)

Second, we estimate the connection among the subset of hidden vari-
ables, we denote them marginals

p(ZS) ∈ RK. (2.4)

Correct estimation of conditional moments usually requires certain marginals

assumptions either in the form of independent views. In particular,
for HMMs three independent views are required to uniquely iden-
tify the model Ov, v = [1, 2, 3] need to exist for each hidden variable,
or full rank for each conditional moment matrix Mv (Kruskal, 1977).
The full-rank assumption of the conditional moments ensures that all
hidden variables are linearly independent, guaranteeing the recovery
of conditional moments. On the other hand, the marginal distribu-
tion of the hidden variables p(ZS) can be recovered for those hidden
variables S ∈ Z using different approaches, which we will present in
Section 2.4.5.

2.3.1 Hidden Markov Models (HMMs)
z1

o1

…

…

zL-2

oL-2

zL-1

oL-1

T
M

π
stop
f *

start

Figure 2.4: Hidden Markov Model,
observations (on) hidden states (zn).

HMMs are one of the most fundamental and widely used statistical
tools for modeling discrete time series (Rabiner, 1989). These models
are characterized by a Markov chain of hidden states z1, z2, . . . , zL ∈ Z
over |Z| = K possible states [K] (components), with initial state dis-
tribution given by π = p(Z1) ∈ ∆K−1. Given the state at time n
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Zn = zj ∈ [K] the observations On = oi ∈ [d] are generated in-
dependently from other states and observations, as shown in Fig-
ure 2.4. We denote the conditional mean distribution of observations
as µj = p(On | Zn = zj) ∈ ∆d−1. We write the transition distribu-
tion between hidden states as T ∈ RK×K, where Tj,m = p(Zn = zj |
Zn−1 = zm). We further define a stopping distribution f∗ ∈ RK and
f ∗j = p(stop | ZL−1 = j), ∀j∈[K], such that 1>k T + f∗ = 1k.

We consider the matrix of all conditional probabilities— also known
as emission or observation matrix M = [µ1 | µ2 | · · · | µK].

HMMs are characterized by two conditional independence assump-
tions. The first one is the Markov assumption , which states that the Markov assumption

current state is independent on all the previous history of events con-
ditioned on just the previous state p(Zn | Zn−1, Zn−1, . . . , Z1) = p(Zn |
Zn−1). The second conditional independence assumption defines the
generative property of the model’s observations On are generated con-
ditionally independently given the current state Zn. Given these as-
sumptions, T, π, f∗ and M fully characterize the HMM. Figure 2.4
shows the corresponding graphical model of an HMM.

2.4 Latent Variable learning

In many classes of models latent states can be estimated from low
order moments, typically second or third order moments. This con-
trasts with previous moment algorithms that relied on the estimation
of high-order moments, which are usually hard to estimate accurately
due to their large variances. These decomposition typically come with
simple and efficient learning algorithms, some of which we discuss in
this section.

2.4.1 Maximum Likelihood

The most common solution to learning latent variable models is based
on the maximum likelihood principle or Bayesian inference, contrary
to moment-based approaches. Here model parameters θ are obtained
by maximizing the likelihood of the observed data o ∈ Σ given the
chosen parameters, also known as maximum likelihood estimation
(MLE) (Fisher, 1912) w.r.t. a probability distribution q(z) over the la-
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tent variables.

L(θ) = log p(o | θ) = log ∑
z

q(z)p(o, z | θ) (2.5)

=
1

log ∑
z

q(z)
p(o | z, θ)p(z | θ)

p(z | o, θ)

= log ∑
z

q(z)
p(o | z, θ)p(z | θ)

q(z)
q(z)

p(z | o, θ)

≥∑
z

q(z) log
p(o | z, θ)p(z | θ)

q(z)
+ ∑

z
log

q(z)
p(z | o, θ)

= F (q, θ) + KL(q(z)||p(z | o, θ))

where z ∈ Z denotes the hidden parameters of the model. F de- 1 From Bayes’ rule p(z|o, θ) =
p(o|z,θ)p(z|θ)

p(o|θ) ⇔ p(o|θ) = p(o|z,θ)p(z|θ)
p(z|o,θ)fines a lower bound on the likelihood function, and is referred as the

free energy, and the second term refers to the Kullback-Leibler diver-
gence between the latent distribution q(z) and the model distribution
p(z | o, θ), which is always non-negative. The inequality follows from
Jensen’s inequality over q(z) (Jensen, 1906).

This ensures that maximizing the lower bound is enough to guar-
antee an increase in the exact log likelihood. This bound can be fur-
ther decomposed into two terms the energy and the entropy H(q) =

−
∫

q(z) log q(z)dz, which is independent of θ:

F (q, θ) = ∑
z

q(z) log p(o, z | θ) +H(q) (2.6)

MLE is statistically consistent but leads to intractable optimization
problems due to the expectation over all possible latent distributions (Red-
ner et al., 1984; Mossel et al., 2006). Local heuristics such as the
expectation-maximization (EM) algorithm (Dempster et al., 1977), have
proven to be very successful in many fields. They have been applied
to a vast range of latent variable models, such as Gaussian mixture
models (GMMs) (Titterington et al., 1985), topic models such as la-
tent Dirichlet allocation (LDA) (Blei et al., 2003), hidden Markov mod-
els (HMMs) (Rabiner, 1989) and probabilistic context free grammars
(PCFGs) (Matsuzaki et al., 2005). The EM algorithm consists of two
alternating maximization steps w.r.t. q and θ — also regarded as coor-
dinate ascent of the free energy:

• E-step: Fix θk and solve for the distribution over latent variables
qk+1 = arg maxq∈P F (q, θk). Since the log-likelihood is independent
of q(z) maximizing the lower bound is equivalent to minimizing the
KL divergence KL(q(z)||p(z | o, θ)), which yields
q(t+1) = p(z | o, θ).

• M-step: Fix qk+1 and solve for the model parameters’
θk+1 = arg maxθ F (qk+1, θ). The second term of Eq. 2.6 is indepen-
dent of θ so it is enough to maximize the energy term.
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Specifically for HMMs (with parameters π = p(z), T = p(zn |
zn−1), M = p(on | zn)), the EM algorithm (Baum et al., 1970; Welch,
2003) estimates state and transition marginals in the E-step, using the
forward-backward algorithm in Eq. 2.7. In the forward-backward algo-
rithm, forward variables are update forward αn+1 = TdiagMon+1 αn us-
ing αi

1 = M>o1
π. Backward variables get updated βn = β>n+1TdiagMon+1 ,

where β` = 1. Consider the parameters of the model θt = (T, M) in
Section 2.3.1, and let o1:` refer to the full sequence of observations of
size `. We define the forward variables to be α

j
n = p(o1:n, zn = zj | θ),

and we refer to the backward variables as β
j
n = p(on+1:` | zn = zj, θ) ∈

R such that βn, αn ∈ RK.

p(Zn = zj | o1:`, θt) =
α

j
nβ

j
n

α>n βn
(2.7)

p(Zn = zj, Zn+1 = zi | o1:`, θt) =
βi

tTi,j Mot+1,iα
j
n

β>n TdiagMon+1 αn
(2.8)

In the M-Step we update the HMM parameters using the marginals

Tt+1
i,j =

∑`−1
n=1 p(Zn = zj, Zn+1 = zi | o1:`, θt)

∑`−1
n=1 p(Zn = zj | o1:`, θt)

(2.9)

Mt+1
m,i =

∑`
n=1 1On=m p(Zn = zj | o1:`, θt)

∑`
n=1 p(Zn = zj | o1:`, θt)

(2.10)

This process is repeated until a local maximum of the free energy is
reached. This is equivalent to maximizing the complete likelihood of
the observations since the entropy does not depend on the parameters
θ. This algorithm presents a tractable solution to maximum likelihood
estimation but provide only local convergence guarantees, being sensi-
tive to initialization. Furthermore, this method is known to suffer from
slow convergence, and typically requires several inference passes over
the data, which can be prohibitively expensive in large-scale datasets.

2.4.2 Moment-based Learning

Moment-based learning offers an alternative approach to learn latent
variable models with better convergence guarantees. These methods
yield (asymptotically) statistically optimal solutions, and can be com-
puted efficiently. Consider the multi view model in Section 2.3, where
we represent observations as vectors in oi ∈ RV for every symbol in
oi ∈ Σ. We assume a generative perspective where observations are
generated from conditionally independent hidden variables Z with
values in [K].2 We define second and third order moments as un- 2 In topic models the observations

are generated from the same hidden
variable Z, however for arbitrary
models we simply require the different
views to be conditionally independent
given the variable Z.

centered covariances W2 ∈ RV×V and W3 ∈ RV×V×V respectively.
When the observation representation is encoded as indicator vectors,
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i.e., oi = ei ∈ RV is zero everywhere except in the i-th coordinate,
the moment matrices and tensors may be interpreted as probabilities,
otherwise they appear as expectations.

W2 = E[o1 ⊗ o2] = E[E[o1 ⊗ o2 | Z]], (2.11)

= E[E[o1 | Z]⊗E[o2 | Z]]

= E[Z⊗ Z](M1, M2) = Z2(M1, M2)

where Mi = E[oi | Z] ∈ RV×K is the conditional moment w.r.t. view
i, and Z2 ∈ RK×K represents the marginals. Additionally we define
third order moments as a 3-mode tensor W3 ∈ RV×V×V , see Figure 2.5

W3 = E[o1 ⊗ o2 ⊗ o3] (2.12)

= E[Z⊗ Z⊗ Z](M1, M2, M3) = Z3(M1, M2, M3)

where Z3 ∈ RK×K×K is the inner tensor representing the marginals.

Z2

M2

M
1

(a) Second order moment factorization
into conditional moments (blue), for
two views M1 ∈ Rd1×K , M2 ∈ Rd2×K ,
and marginals (orange) represented by
K× K matrix Z2.

Z3

M2

M
1

(b) Third order moment factorization
into conditional moments (blue), for
two views Mv ∈ Rdv×K , v = [1, 2, 3],
and marginals (orange) represented by
a K× K× K tensor Z3.

Figure 2.5: Moment decomposition.
Tensor factorization approaches find
a decomposition of moments of third
order, anchor learning deals with
factorization of second order moments.

In this section we describe several approaches to learn conditional
and marginal factors when we know the mapping to the hidden state
variables— in the family of latent variable learning. The first is based
on tensor factorization, and has been used in a wide range of applica-
tions, such as community detections (Anandkumar et al., 2012a), pars-
ing (Cohen et al., 2013a), knowledge base completion (Chang et al.,
2014; Singh et al., 2015), topic modeling (Anandkumar et al., 2015),
mixture models (Anandkumar et al., 2012b), graphical models (Cha-
ganty et al., 2014a). For many types of multi-view models it is suffi-
cient to learn from low order moments typically third-order, hence the
need for general tensor decomposition or factorization algorithms in
Section 2.4.3.

The second approach relies on a non-negative factorization of mo-
ment matrices. This method requires certain separability conditions
on the hidden states, and exploits the inherent structure of the latent
model to obtain the different factors. It aims to find sets of observa-
tions to serve as surrogate representations for hidden variables. These
are known as anchor methods, and have been mostly applied to topic
modeling in Section 2.4.4.

Additionally we revisit different forms of obtaining the marginals
in Eq. 2.11: using a pseudo-inverse and a likelihood based approach
in Section 2.4.5.

2.4.3 Tensor Methods

Tensor factorization algorithms have been proposed as an alternative
way of learning the mapping to the hidden state variables. This class
of methods has the advantage of directly allowing us to estimate the
conditionals from moment statistics. There are several tensor decom-
position methods that attempt to find a low rank decomposition of a
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tensor. Let ⊗ to denote the tensor product, and given a pth-order ten-
sor T⊗p = E[o1⊗ . . .⊗ op] ∈ Rnp

3, we consider its decomposition into 3 also known as p-mode tensor.

rank-one terms— canonical polyadic decomposition (Hitchcock, 1927) :

T =
K

∑
i=1

γiµ
i
1 ⊗ µi

2 ⊗ · · · ⊗ µi
p (2.13)

where K is defined to be the rank of the tensor, and µi
j = E[oj | zi] ∈

Rn ∀j∈[p],i∈[K] its factors. When µi
1 = . . . = µi

p = µi for all i the tensor is
said to be symmetric, and if {µi

j}i∈[K] ∀j∈[p] form an orthogonal set then
we say the factorization is orthogonal. The rank of the tensor is defined
as the smallest non-negative integer K such that Eq. 2.13 applies. The
rank of a 2nd-order tensor reduces to the usual definition of matrix
rank, and its decomposition is equivalent to the SVD. However, the
concept of tensor rank is not as clearly defined as the case of matrix
rank, for instance the rank of a symmetric tensor is not guaranteed
to be finite (Comon et al., 2008). Tensor decomposition aims to find
the conditional moments by decomposing the tensor into its factors in
Eq. 2.13.

In the MoM, we build an empirical tensor in Eq. 2.14 from consec-
utive samples of the three view model in Figure 2.5b— by the tensor
product of observations of the three views of the model {o1, o2, o3},
oi ∈ RV i ∈ [3].4 4 when observation vectors are one-hot

encodings the tensor corresponds to
probabilities in R⊗

3
, but in general for

continuous representations it represents
an expectation.

T̂ =
1
t

D

∑
t=1

ot
1 ⊗ ot

2 ⊗ ot
3 (2.14)

The empirical tensor can be described in terms of additive noise W ∈
RV×V×V

T̂ =
K

∑
i=1

γiµ
i
1 ⊗ µi

2 ⊗ · · · ⊗ µi
p + εW. (2.15)

In the infinite data limit t → ∞ then W → 0 and the tensor factor-
ization approaches the true CPD factorization Eq. 2.13, resulting in a
consistent moment based estimation. The eigenfactors correspond to
columns of the conditional moments µi

j = [Mj]i = E[oj | zi].
In an HMM for example, the three views are equivalent to: past

corresponds to o1, current observations to o2 and future observations
to o3, see Figure 2.4. When the observations in the present are indica-
tor representation this yields the emission probabilities directly, how-
ever possible extensions may be considered for arbitrary features of
observations.The observations matrix corresponds to the conditional
moment w.r.t. the present view O = M2 = p(o2 | z) = µ2.

Work of Anandkumar et al. (2012b) provides a robust algorithm tensor factorizations

based on a tensor power method (TPM) which provides global conver-
gence guarantees for symmetric tensors with orthogonal factorization.
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First, it reduces the symmetric tensor into an orthogonal decomposable
form via a whitening step, and secondly it performs a power method
algorithm to find its eigenvector/value pairs. The framework used in
this approach is very restrictive, requiring further procedures to trans-
form moments into a symmetric form. In most methods, the model is
inherently non-symmetric. HMMs, for instance, are comprised of three
independent views: past (o1), future (o3) and present (o2). Performing
symmetrizations, in these cases, may lead to information losses, specif-
ically, because they are done through pseudo-inverses of moment ma-
trices (Souloumiac, 2009). Another drawback of this approach is that,
if the moments are not retrieved from the true model, the recovery
process is not robust. Additionally, this method suffers from the non-
negativity problem, where parameters need to be converted back into
the probability simplex.
More recent work of Anandkumar et al. (2014) (ALS) describes a non-
orthogonal tensor decomposition relying on an alternating least squares
variant. This is a generalization to non-symmetric tensors. Finding
eigenvectors in this setting is a non-convex problem. This work pro-
vides an alternating power iteration that deflates each mode of the
tensor asymmetrically, and requires an extra clustering method at the
end. Additional work of Shalit et al. (2014) explores an algorithm
based on coordinate descent methods for orthogonal tensor factoriza-
tion, which involves Givens rotations and obtains better empirical re-
sults. Simultaneous diagonalization by Lathauwer (2006) is applicable
to general tensor factorizations, but requires solving O(V4) linear sys-
tem. Kuleshov et al. (2015) provides an additional tensor factorization
approach that works for the non-orthogonal setting with arbitrary in-
coherence, but requires non-singular factors. Alternative tensor fac-
torizations exist, such as Tucker decomposition that attempts to de-
compose a tensor into a set of matrices and a core low dimensional
symmetric tensor (Anandkumar et al., 2015).

2.4.4 Anchor Learning

In this section, we describe an alternative approach for learning hid-
den variable models using moment techniques. The development of
these methods originated in non-negative matrix factorization(NMF) al- non-negative matrix factorization (NMF)

gorithms for probabilistic topic modeling.

Consider a collection of D documents where each document n may
be classified with a single topic Zn = zj among a total of [K] distinct
topics. Let words be discrete observations On = oi, in a vocabulary
of V words, and assume N words are drawn independently for each
topic according to a multinomial distribution. Let [µj]i = p(On = oi |
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Zn = zj) denote the word-topic distribution, and the matrix M = [µ1 |
µ2 | · · · | µK] ∈ Rd×K denote the matrix of conditional probabilities.
Observations in this graphical model are generated as follows:

• a document’s topic is drawn from the multinomial distribution defin-
ing the topic prior distribution wj = p(Zn = zj)∀zj∈[K], where wj is

an element of the probability vector w = (w1, w2, . . . , wK) ∈ ∆K−1;

• given a topic Zn the document’s L words are drawn independently
according to the word-topic distribution µj ∈ ∆d−1. We assume
L ≥ 3 words per document.

oi

zj

w

Multi

Multi

N

Figure 2.6: Single topic model in
plate notation. Topic Zj generates N
observations Oi from with probability
µj.

This graphical model can be represented by the structure depicted
in Figure 2.6. To correctly estimate the conditional distributions we
require that the each topic has non-zero probability wj > 0∀j∈[K], and
O has rank K, which ensures that any topic’s word distribution is lin-
early independent of the other topics’ word distributions. Specifically
each document is assumed to be represented as a convex combination
of the topic vectors µj ∀j ∈ [K] (Papadimitriou et al., 1998; Hofmann,
1999). This combination may arise from different distributions: multi-
nomial for topic models or Dirichlet in models like LDA (Blei et al.,
2003). We consider the moment matrix W ∈ RV×D to represent the
words frequencies of each document Cn = cn ∈ [D], as column vectors
in W—bag of words representation. We represent words as indicator
vectors in the vocabulary oi = ei ∈ RV is zero everywhere except in
the i-th coordinate for word i ∈ [V]. Using this representation for
words and documents the moment matrix encodes conditional proba-
bilities Wi,n = E[oi | cn] = p(O = i | cn). Considering this inherent
structure of the problem we may decompose the moment matrix into
a factorization of two non-negative matrices, its NMF, see Figure 2.7.

Figure 2.7: Non-negative matrix
factorization of document matrix
W ∈ RV×D , into conditional moments
M ∈ RV×K word-topic distribution, and
topic-document distribution S ∈ RK×D .

W = MS, (2.16)

where M = [µ1, . . . , µk] ∈ RV×K corresponds to a matrix of mean
word-per-topic vectors or conditionals in Eq. 2.3, with each column µj =

p[O | Z = zj] ∈ ∆V−1, ∀zj∈[K]. Sj,n = p(Z = zj | cn) is the matrix of

topic-per-document distribution S ∈ RK×D. The latter is specified by
an unknown distribution, for instance a Dirichlet distribution for LDA
models or logistic normal distribution for correlated topic models.

Alternative approaches based on spectral decompositions are com-
monly used to estimate M, such as latent semantic indexing (LSI) (Deer-
wester et al., 1990a), see Section 2.4. This approach attempts to find
a low dimensional projection of maximum variance onto a sub-space
of dimension K, the number of topics. This solution is given in terms
of the singular vector recomposition of ŴK = SVD(W) = ∑K

j=1 µjσjv>j ,
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its best rank-K approximation, from its truncated singular value de-
composition. The vectors µj, ∀j∈[K] form an orthonormal basis, where
each vector corresponds to a single topic. Since this basis is orthogo-
nal we only consider a single topic per document, pure documents (Pa-
padimitriou et al., 1998). These spectral based methods decompose
the matrix into positive and negative values, since it involves factors
µj, vj corresponding to the singular vectors, which could be a disad-
vantage when we require a probabilistic interpretation of the factoriza-
tion. There exists additional work on non-negative matrix factorization
that uses the singular vectors of W to recover span of the column space
of M, and use it only as a means to evaluate document similarity.

More recent work of Arora et al. (2013) attempts to recover the non-
negative factors via a distinct approach, in which they require instead a
separability between topics and always maintain non-negative factors.
This approach allows mixtures of topics per document and learns the
non-negative factors of W in O(log VK6). We describe it in more detail
below.

The objective in topic model learning is to estimate the matrix M in
Eq. 2.16 by looking at co-occurrence of events or moments of second
order: Q̄ = E[WW>] = p(O1, O2) ∈ RV×V which we denote word
co-occurrence matrix, or moment matrix. The true matrix, i.e., the co-
occurrence of infinitely many samples, can be decomposed into two
factors according to its conditional independence structure O1 ⊥ O2 |
Z1: the conditionals M = p(Ov | Zv), v = {1, 2} and the marginals
Z = p(Z1, Z2) ∈ RK×K from S = p(Z | C) ∈ RK×D:

p(O1, O2) = Q̄ = [WW>] = M1E[SS>]M>2 = MZM> (2.17)

=
K

∑
zk=1

p(O1 | Z1 = zk)p(Z1, Z2)p(O2 | Z1 = zk)

See Figure 2.7. In practice, we aim to estimate conditionals and marginals
(M, Z) from empirical counts, i.e., finite samples, which we denote as
Q̄. The most common approach to solve this type of problem resorts to
likelihood estimation, by finding the matrix M that generates W = MS
with highest probability (Blei et al., 2003). MLE for topic modeling is
NP-hard (Vavasis, 2009) and approximate solutions suffer from the
problems discussed in Section 2.4.1. Sanjeev Arora (2012) proposed
an algorithm that learns both M, Z from unsupervised data without
any assumption on the nature of the distribution that generates topics
for each document. This approach considers instead the decomposi-
tion of the conditional moment Qm,n = p(O2 = om | O1 = on) where
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Q ∈ Rd×d is obtained by column normalization of Q:

Q = M Γ =
K

∑
zj=1

p(O2 | Z1 = zj)p(Z1 = zj | O1), (2.18)

s.t. 1>Q = 1

and Γ = p(Z1 | O1) ∈ RK×V is a stochastic matrix of coefficients. In
this work we assume the word-topic matrix M is p-separable (Donoho
et al., 2003). A word-topic matrix is α-separable if for each topic zs,
there exists a word as ∈ Σ such that p(as | zs) ≥ α, and p(as | zj) = 0
for j 6= s, α > 0. Then we say this word in an anchor word for topic zs. anchor word

Anchor words are unambiguous indicators of the existence of the topic
in the document, since there is no other topic that generates this word.
Hence we may use them as surrogate topic representations, for a given
anchor word for state/topic zs as ∈ Σ, we may write p(Z1 = zs | O1 =

as) = 1, such that the conditional moment factorization becomes:

Qm,as =
K

∑
zj=1

p(O2 = m | Z1 = zj)p(Z1 = zj | O1 = as) (2.19)

= p(O2 = m | Z1 = zs)p(Z1 = zs | O1 = as)

= p(O2 = m | Z1 = zs)

The rows of the conditional moment matrix may be regarded as a
convex combinations of the columns corresponding to anchor words:

Qm,n =
K

∑
j=1

p(O2 = m | Z1 = zj)p(Z1 = zj | O1 = n) (2.20)

=
K

∑
j=1

Qm,aj p(Z1 = zj | O1 = n) =
K

∑
j=1

Qm,aj Γj,n

= Rmγn

where Rm = [Qm,a1 , . . . Qm,aK ], R ∈ RV×K corresponds to all the columns
of anchor words for each topic, and γn = p(Z1 | O1 = n) ∈ RK is the
convex coefficient associated with word n and corresponds to each col-
umn in Γ. We may turn Eq. 2.20 into an algorithm by minimizing a loss
between each row Qm and the factorization RmΓ, such that 1>γn = 1.
Algorithm 1 shows the algorithm proposed by Sanjeev Arora (2012) to
recover M, Z, using a KL divergence loss loss(Qm, RmΓ) = KL(Qm‖RmΓ)
or a quadratic loss loss(Qm, RmΓ) = ‖Qm − RmΓ)‖2

2. The conditionals
are estimated using Bayes’ rule, where q = p(O) = ∑n p(O1 = m, O2 =

n):

Mm,j =
p(Z1 = zj | O1 = m)p(O1 = m)

V
∑

n=1
p(Z1 = zj | O1 = n)p(O1 = n)

=
Γ>j,mqm

Γ>j,·q
, (2.21)
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Algorithm 1: NMF: Non-Negative Matrix Factorization: find conditionals M and
marginals Z.
Input: Anchor set A, moment matrix Q

1: Column normalization of Q = Q̄/Q̄1.
2: for each word m = 1, . . . , V do
3: Find the coefficients γ∗m = arg min

γm

loss(Qm, RmΓ),

4: s.t. 1>γm = 1, and Γm,j ≥ 0, ∀j∈[K].

5: Estimate conditionals M = diag(q)Γ and normalize columns to 1.
6: Estimate marginals Z = M†QM†> via §2.4.5.
7: Return: M, Z.

Algorithm 2: Find Anchors
Input: N points in V dimensions D = {d1, . . . , dV}.

1: Project each point di ∈ D onto a 4logV/ε dimensional subspace.
2: Add the furthest point dj ∈ D from the origin A ← {dj}
3: for each vertex j = 1, . . . , K− 1 do
4: Find the furthest point di ∈ D to the span(A),
5: Add the point to the anchor set A ← A∪ {di}.
6: A = {v1, . . . , vK}
7: for j = 1, . . . , K do
8: Find the furthest point di ∈ D to the span(A \ {vj}),
9: Replace the vertex of the anchor set A ← A \ {vj} ∪ {di}.

10: Return: A

while the marginals Z may be recovered from a pseudo-inverse ap-
proach, in Section 2.4.5

We describe an unsupervised algorithm that extract anchor words
from unlabeled samples in Algorithm 3. The core idea of this method
lies on the fact that anchor words are extreme points of the vocabulary—
in a geometrical sense. In the infinite data limit the convex hull of the
columns of Q correspond to the simplex of probabilities, whose ver-
tices are associated with anchor words. In practice, however, we get
empirical estimates of the simplex hence we only observe noisy per-
turbations of these vertices. The p-separability condition ensures a
minimum distance between the vertices. Algorithm 3 provides a de-
scription of the approach, where it first iteratively finds points that
are furthest apart from the subspace spanned by the current set of an-
chors, and it terminates when it finds the K-most-separated words.5 5 The distance refers to the norm of the

projection of each vertex vj onto the
orthogonal complement of the span(A)This approach is robust to noise and behaves better as the distance of

each vertex to the affine hull of the remaining vertices increases. Al-
gorithm 3 provides the algorithm proposed by Sanjeev Arora (2012) to
recover anchor words unsupervisedly in Eq. 2.22.

Finally, after estimating the set of anchor words we can recover the
convex coefficients for each symbol in the alphabet γn = p(Z1 | O1 =

n), ∀n∈Σ, in Eq. 2.20. Then, the conditional moments will be deter-
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mined via Bayes’ rule, in Algorithm 1.

2.4.5 Recovering Marginals

Following the estimation of the conditional moments Mv = E[ov |
Z] ∈ RV×K for each conditionally independent view ∀v∈[1,2], we are
left with estimating the state marginals Z, in Figure 2.3a. The con-
ditionals may be estimated via anchor learning for topic modeling/
mixture models, in Section 2.4.4 or via tensor factorization for general
graphical models, in Section 2.4.3. For most graphical models, and
in specifically for sequential models, is it enough to consider hidden
marginals of second order Z2 = E[Z1 ⊗ Z2] to correctly estimate the
model— transition probabilities for HMMs. Consider the moment de-
composition in Eq. 2.11 of W2 in terms of the hidden marginals Z2

where

W2 = Z2(M1, M2) = M1Z2M>2 ∈ RV×V .

We can solve for Z2 by matrix inversion where M†
v ∈ RK×V denotes

the Moore-Penrose pseudo-inverse ∀v∈[1,2]

Z2 = W2(M†
1 , M†

2) = M†
1W2M†>

2 (2.22)

and the analogous for third order moments

Z3 = W3(M†
1 , M†

2 , M†
3) (2.23)

Eq. 2.22 recovers the hidden marginals of a set of hidden variables
that constitute the joint probability of consecutive state variables in
the latent variable model. In many models further computations will
be required to retrieve the model parameters. In HMMs we recover
the transition matrix by an additional step of normalization [T]k,k′ =

[Z2]k,k′/ ∑j[Z2]k,j ∈ RK×K.
Chaganty et al. (2014a) provides an alternative approach that builds

upon a likelihood based approach (Lindsay, 1988). Making use of the
already estimated conditionals Mv and the observed moments WS they
recover the marginals ZS = p(S) over a set of nodes S = {Z1, . . . Zm}
with certain conditional independent properties. Both pseudo-inverse
approach and the convex composite likelihood retrieve the joint proba-
bility over states or marginals. In some models, such as HMMs we fur-
ther require to transform marginals into model parameters, the condi-
tional transition matrix T = p(Z1, Z2)/ ∑j=1 p(Z1, Z2 = j)— generally
in directed models this step comes down to normalizing the probabil-
ity for each state with the parents states in the set S.
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2.5 Spectral learning of sequential systems

Consider the existence of two sample spaces a state space Z and an ob-
servation space Σ and a many-to-one mapping from Z to Σ. Observed
data o ∈ Σ are realizations from Σ, while z are realizations from Z ,
which are not directly observed. The former space consists of output
observable quantities in a dynamical system, while the latter models
the evolution of the observed process Σ implicitly, via its internal state
representation, as shown in Figure 2.8.

In this section, we focus on a distinct line of work that focuses on
modeling a dynamical system or a stochastic process without recover-
ing the actual parameters of the model, in particular the conditional
and hidden marginals, see Figure 2.3b. These methods provide alter-
native forms for predicting and generating sequences of observations
by means of observable representations alone (Jaeger, 2000; Balle et al.,
2012a; Bailly et al., 2013a). They are however less amenable to com-
bine with likelihood-based approaches. Parikh et al. (2012a) provided
an approach to estimate these observable operator representations for
general graphical models which are bottlenecked using latent junction
tree representations.

In this section, we introduce sequential models under the perspec-
tive of dynamical system learning (Thon et al., 2015). We define a
common representation for sequential models in Section 2.5.1 and
provide a description and connection of closely related algebraic for-
malisms for different communities: observable operator models for
stochastic processes in Section 2.5.3, predictive state representations
for controlled systems in Section 2.5.4, and weighted finite automata
in formal language theory for stochastic languages in Section 2.5.2. we
discuss how these different representations are connected, their differ-
ences and commonalities.

2.5.1 Sequential models

Consider observation in a sequential system can be approximated by
some finite dimensional random vector O = (Oi)i∈[d], where Oi is sta-
tionary with values in a finite alphabet Σ = {o1, . . . , od} of d possible
symbols. Let Σ∗ = {∗} ∪ Σ ∪ Σ2 ∪ . . . be the Kleene closure of Σ, i.e.
the set of all finite sequences with elements in Σ, plus the empty se-
quence ∗. We define a sequence as consecutive realizations of symbols
in the alphabet o1:n = o1o2 . . . on ∈ Σ∗. Consider a more general de-
scription of sequential systems, as defined in Thon et al. (2015).

Characterization Functions
Consider functions f : Σ∗ → RK that map sequences of observations to
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the field of real values RK. These functions can characterize distribu-
tions over sequences in Σ∗, if we consider a mapping to the simplex of
probabilities ∆K−1, used to describe probabilistic languages (Weighted
Automata), or simply probabilities of observations in the context of
stochastic processes, if we consider a mapping over the interval [0, 1]
(which is the case of OOMs and PSRs).

z1

o1

z2

o2

… zn

on…

…Z

O

zn+1

on+1

zn+2

on+2

hn tn

…

Figure 2.8: Observations O (bottom),
generated from a hidden process Z
(upper); histories hi (left) and tests ti
(right).

For any given function we define fh : Σ∗ → R to be a function in
a Banach space of functions F where the sequence h is a sequence of
observations of arbitrary size. We further distinguish between the se-
quences of already observed events at time n, which we call histories

h history
h ≡ hn = {on, on−1, . . . , o1} ∈ Σ∗ and sequences of future observations,
which we call tests t ≡ tn = {on+`, . . . , on+2, on+1} ∈ Σ∗, as depicted t test

in Figure 2.8. The state is considered to be sufficient to model the evo-
lution of the dynamical system and is closely related to the functions
fh ∈ F , which evaluate sequences of observations. Let the concate-
nation of two sequences be defined as ht, evaluating the concatenated
sequence results in fh(t) = f (ht). The functions fh : Σ∗ → R fully
characterize the evolution of the system. Let the functional Banach
space F be defined by the closure of the linear span of future predic-
tion functions F = span{ fh | h ∈ Σ∗}. We assume this space has linear dimension

finite dimension and we say the system dimension is dim(F ) = d ≤ ∞.
If for a given function f : Σ∗ → R the finite set of functions spans F :

F = span{ fhi∀i ∈ N}, (2.24)

then we say these set forms a basis of F . If the number of functions
is N = d = rank(F ), then we say they form a minimal basis. In the
planning literature, dim(F ) is also known as linear dimension of a dy-
namical system (Singh et al., 2004b). The dimension corresponds to
the number of elements in the basis for finite dimensional spaces.

Linear Transition Operators
Next, we define linear operators that transform these characterizing
functions. These observable operators linearly weight the characteriz-
ing functions for each observation, and do not depend on the choice
of basis for F . We define a linear operator Ao : F → F that encodes
information about the evolution of the system due to an incoming ob-
servation o ∈ Σ. We denote this operator an observable operator . Ao observable operator

Ao( fh) = foh ∈ F , and (2.25)

Ah = Aon(Aon−1(. . . A(o1))) = Aon ◦ Aon−1 ◦ . . . ◦ Ao1 (2.26)

where oh ∈ Σ∗ represents the concatenation of the sequence h ∈ Σ∗

with the consecutive observation o ∈ Σ. We can then denote the prob-
ability of a sequence in terms of these operators. Consider now a linear
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functional α∞ : F → R that operates on the characterizing functions:

α∞( fh) = f (h) ∀h ∈ Σ∗, (2.27)

in particular for the empty symbol ∗ and the function generating the
empty symbol f∗ we have α∞( f∗) = f (∗), and Ah( f∗) = fh. We also
define a normalization function fΣ such that:

fΣ(h) = ∑
o∈Σ

f (oh). (2.28)

Sequential Models sequential model

We define a Sequential Model A of dimension K as the tuple 〈RK, α∞,
{Ao}o∈Σ, α0〉, where, α0 ∈ RK denotes the initial state vector, and Ao ∈
RK×K, ∀o∈Σ represents state transition matrices. The state of the process
at time n αn ∈ RK is given by: state of system

αn = Ahα0 = Aon Aon−1 A1α0. (2.29)

Evaluating the state of the process can be done via the evaluation func-
tional α∞ ∈ RK, such that its function fA : Σ∗ → R is given by6: 6 This relation provides the connection

between characterizing functions
and the observable operators. Note
that function evaluation ∈ R, while
observable operators define how the
state changes according to an incoming
observation ∈ RK×K

fA(h) = α>∞ Ahα0 (2.30)

We define the rank of the model to be rank( fA) = rank(A).

rank of the systemMinimal Model
Let an arbitrary function f : Σ∗ → R of rank d = rank( f ) ≤ ∞, then
there exists a d-dimensional model A such that f = fA. This refers to
the existence of a model whose states are coordinate representations
of characterizing functions in some basis of dimension d, such that
f (h) = α>∞ Ahα0. When this basis is minimal then we say the model minimal model

that originated from this basis is also minimal. For this case alone it is
possible to establish an equivalence relation between models. model equivalence

Model Equivalence
Two sequential models A and B are said to be equivalent if they define
the same function f , such that f = fA = fB. Consider two models
A = 〈Rm, α∞, {Ao}, α0〉 and B = 〈Rn, b∞, {Bo}, b0〉 such that they are
related by a bijective linear transformations S ∈ Rn×m, and S′ ∈ Rm×n

such that SAS′ = B = 〈Rn, S′>α∞, {SAoS′}, S′α0〉. If the linear trans-
formation is non-singular then m = n and S′ = S−1 exists, and the two
models are equivalent fA = fB, and

B = SAS−1 (2.31)

is denoted a conjugate equivalent model.7 If the sequential model is 7 In different communities this property
is also known as conjugate invariance,
model equivalence under conjugation,
or simply equivalent models

minimal then the linear transformation S corresponds to a change of
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basis of the space F . Therefore, the conditions in Eq. 2.30 allow us to
model equivalencedefine a valid sequential model, but not uniquely, since we can find

a different but equivalent model that describes the same function via
conjugate equivalence, in Eq. 2.31. This additional degree of freedom,
lets us represent sequential models with increasing representational
power. We can interpret state as an arbitrary sufficient statistic of fu-
ture observations. We will make use of this more general interpreta-
tion below, when we define spectral algorithms in Section 2.5.6. Since
S is a bijective linear map, then S must be full column rank, and the
terms SS−1 cancel out, such that:

b∞ = S−1α∞, b0 = Sα0, Bo = SAoS−1,

f (∗) = b>∞b0 = (S−1α∞)>Sα0 = α>∞α0,

f (h) = b>∞Bhb0

= (S−1α∞)>(SAon S−1) . . . (SAo1 S−1)(SAo1 S−1)Sα0

= α>∞ Ahα0. (2.32)

We can see that sequential models are defined up to a similarity trans-
form S, in the case of finite spaces Rm.

Interpretable Model
Let h1, . . . , hm be realizations of each set Tj ∀j∈[m] ⊂ Σ∗. Consider characteristic events

the operators defined on each subset Tj : ATj = ∑t∈Tj
At, such that

f (hTj) = ∑t∈Tj
fht = α∞(At( f (h))). We say the occurrences of each

subset Ti ∀i∈[m] are considered to be characteristic events, if the linear
transformation S ∈ Rm×m

S = [α>∞ AT1 , . . . , α>∞ ATm ], (2.33)

is non-singular. We consider an interpretable model w.r.t. subsets
T1, . . . , Tm ⊂ Σ∗ if the state of the model αh has an interpretable repre-
sentation, i.e, corresponds to evaluations of the function on the subsets

αh = [ f (hT1), . . . , f (hTm)]
> ∈ Rm. (2.34)

Then for any minimal model such that S is non-singular it is possible interpretable model

to find an equivalent interpretable model such that B = SAS−1 with
states α′ = Sα = [α>∞ AT1 Ahα0, . . . , α>∞ ATd Ahα0]

>.
Interpretability only requires mutually exclusive sets if the evalua-

tion functional α>∞ = [1, 1, . . . , 1] as in older interpretations of sequen-
tial models, then the sets Tj, j ∈ [m] need to partition Σ` for sequences
of length `. Then the characteristic events correspond to a minimum
number of sequences of observations that do not overlap with each
other, but still uniquely describe the system. In this particular setting,
the finite dimensional state vectors bh ∈ RK can be interpreted as dis-
tributions over the simplex of probabilities ∆K−1. Since characteristic
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events are mutually exclusive they form a basis to represent future
predictions:

b∞ = 1K

b0 = p(ti|ε)∀ti∈Tc (2.35)

bh = p(ti|h) ∈ RK, ∀h∈Σ∗ ,ti∈Tc} (2.36)

Bon = p(on|h)p(ti|h)> =
p(o, h)
p(h)

∈ RK×K, ∀o∈Σ,ti∈Tc (2.37)

In this case, the set of future predictions/state estimates are aligned
with the characteristic events and we say the basis is interpretable, but
in general interpretability only requires Eq. 2.34.

Hankel Matrix
Next, we define Hankel matrices (Carlyle et al., 1971; Fliess, 1974) and Hankel matrix duality

their duality to minimal sequential models. The Hankel matrix is de- Hankel matrix

fined as a bi-infinite matrix H ∈ RΣ∗×Σ∗ , whose rows and columns are
indexed by sequences in Σ∗, such that for all sequences t, t′, h, h′ ∈ Σ∗

with ht = h′t′, then H(h, t) = H(h′t′). The Hankel matrix encodes a
characterizing function f : Σ∗ → R. Hankel matrices and characteriz-
ing functions are algebraically related, such that there exists a duality
between them. On the one hand, the Hankel matrix H f encodes f ,
such that its entries are given by H f (h, t) = f (ht). On the other hand,
given a bi-infinite matrix H with the Hankel property, then there exists
a unique function f : Σ∗ → R, such that H f = H (Carlyle et al., 1971).
A function f : Σ∗ → R can be realized by a sequential model if and
only if rank(H f ) is finite, and in that case rank(H f ) = rank( f ) is the
minimal number of states of any model A, also denoted as its linear
dimension (Carlyle et al., 1971; Fliess, 1974). In the dynamical systems
community the Hankel matrix is also known as the system-dynamics
matrix. Later in Section 2.5.6 we will discuss learning algorithms for
sequential models that make use of this duality by performing a spec-
tral decomposition of the Hankel matrix, giving rise to the “spectral
learning” algorithms.

2.5.2 Weighted Automata

Finite automata define a more general class of sequential models. They
fall under the class of finite state machines (FSMs). These have been
mostly developed in the context of formal language theory to model
the generation of strings. Also from the dynamical systems perspec-
tive, FSM have been used to model the behaviour of a system that
takes as input a sequence of observations and produces a sequence of
outputs, by following a set of rules determined by the internal state
of the system. The state admits only one out of a finite set of possible
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states, hence the name finite state machines. Finite-state transducers are Finite-State Machines (FSMs)

the most general sequential model in FSMs where both an input and
output label are associated with each transition. Weighted finite-state
transducers (WFSTs) are finite-state transducers where each transition
carries some weight in addition to the labels (Salomaa et al., 1978; Bers-
tel et al., 1979). Weighted finite automata (WFA) can be regarded as a Weighted finite-state transducers (WFSTs)

special case of weighted finite-state transducers, where the output label is
omitted. WFSTs defined over the reals are closely related to IO-OOMs Weighted Automata (WA)

and PSRs (§ 2.5.4), while WFA are closely related to OOMs (§ 2.5.3). A
lot of the analysis of WFA and WFSTs can be described by sequential
systems characterization (Balle et al., 2011). As specific cases of WFA,
we have the family of probability distributions generated by HMMs
and probabilistic non-deterministic finite automata (PNFA), and other
non-probabilistic distributions. WFA can also be defined more gener-
ally over an arbitrary semi-ring instead of the field of real numbers,
giving rise to the more general case of multiplicity automata (Beimel et
al., 2000). Sequential models can be though of as an instance of finite
automata applied to sequential systems. In particular, the distributions
over Σ∗ realized by WFA, also denoted as rational stochastic languages,
are a type of sequential model where f (o) ≥ 0, ∑o∈Σ∗ f (o) = 1. This
includes probabilistic automata with stopping probabilities (Dupont
et al., 2005), hidden Markov models with absorbing states (Rabiner,
1989) and predictive state representations (Singh et al., 2004b). More
details on spectral learning of WFA and FSMs are presented in Mohri
(2009) and Balle (2013). A unified perspective of multiplicity automata,
observable operator models and predictive state representations is pro-
vided by Thon et al. (2015).

2.5.3 Observable Operator Models (OOMs)

Observable Operator Models (OOMs) were introduced by Jaeger (2000)
as an algebraic tool to model stochastic processes (Heller, 1965; Ito,
1992; Upper, 1997). In these models characterizing functions represent
future prediction functions, meaning they define probabilities over se-
quences of observations ft = p(on+`:n)∀t ∈ Σ∗. Here, fh : Σ∗ → R

defines a future prediction function, that describes the distribution of O τh(t) future prediction function

after a previous realization of a history h.
In order to predict future observations conditioned on past events

p(t|h) = p(on+`, . . . , on+1|on, . . . , o1) we define normalized functions
that correspond to conditional probabilities fh(t)/ f (h) = p(ht)/p(h) =
p(t | h)∀h, t ∈ Σ∗. Joint distributions can be considered as condi-
tional probabilities conditioned on the empty symbol p(h) ≡ p(h|∗).
Therefore we can represent the system in terms of the set of all condi-
tional continuation probabilities of the form p(t|h), ∀t,h∈Σ∗ , see Figure 2.8. p(t|h) conditional continuation

probabilities
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OOMs are typically defined over these conditional continuation proba-
bilities, so for convenience we define OOMs as sequential models with
normalized states. We define Observable Operator Models (OOMs) A of
dimension K as sequential models for stochastic processes. We say fA stochastic process

is a stochastic process if:

fA(∗) = 1, (2.38)

fA(h) = ∑
o∈Σ

f (oh) ∀h ∈ Σ∗, (2.39)

OOMs define a sequential model with normalized states:

αn =
αh

α>∞αh
=

Ahα0

α>∞ Ahα0
. (2.40)

In this sense, OOMs are a subset of sequential models applied to
stochastic systems (Eqs.2.38-2.39), consequently they comply with all
the properties derived for sequential models, in particular, interpretabil-
ity. Interpretable OOMs’ state space dimensions can be interpreted as
probabilities of future predictions. Next, we discuss the connection of
OOMs and HMMs.

Connection to Hidden Markov Models
Any HMM can be described by a tuple 〈T, O, π, f∗〉, in Section 2.3.1, from HMMs to OOMs

where T ∈ RK×K : Tm,j = p(Zn = zm | Zn−1 = zj), ∀zm ,zj∈[K] denotes

its state transition matrix, π ∈ RK : πj = p(Z0 = zj) its initial state
distribution, f ∗ ∈ RK : f ∗j = p(STOP | Z` = zj) its final state distri-

bution, and O ∈ Rd×K : Oi,j = p(On = oi | Zn = zj) its observation
matrix giving the probability of state zj ∈ [K] generating an observa-
tion oi ∈ Σ. We further write Oi = p(On = oi | Zn) ∈ RK as rows of
the full observation matrix.

Figure 2.9: Probability clock of a 3 di-
mensional OOM. Green dots represent
states in each linear operator transforms
one point to the consecutive by some
rotation Ao . HMMs would require an
infinite amount of states to model the
same example exactly.

HMMs can as well be described as a sequential models such that
the state vector describes the belief (probability distribution) of the
underlying hidden process. The sequential model representation of
HMMs is equivalent to a an interpretable OOM such that we have:

HMM ≡ OOM = 〈α∞ = f ∗, {Aoi = Tdiag(Oi)}oi∈Σ, α0 = π〉 (2.41)

One of the main differences between HMMs and OOMs is the state
representation: in the former, the state describes the probability distri-
bution of the process being in a given hidden state, so state dimensions
must be non negative and sum to one together with the stopping sym-
bol, whereas in the latter case, the state is simply a representation of
future predictions in a given basis, where states and observable opera-
tors may be negative, meaning they need only obey to the constraints
in Eqs.(2.38-2.39). This fact makes OOMs a more general class of mod-
els. There exists finite dimensional OOMs that cannot be described
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by any finite dimensional HMM, such as the probability clock exam-
ple (Jaeger, 2000). Figure 2.9 shows how the OOM operators that corre-
spond to rotations in the ABC-plane cannot be modeled by any finite
dimensional HMM. Rotation operators need negative entries, which
contradicts the definition of HMM stochastic matrices. Conversion of
an OOM into the closest HMM is still an open research problem. Nev-
ertheless Hsu et al. (2009) and Anandkumar et al. (2012a) provide alter-
native approaches to recover the parameters of an HMM 〈T, O, π, f ∗〉
from an equivalent OOM. We focus into these problems in detail in
Section 2.5.6 and Section 2.4.3.

2.5.4 Predictive State Representations and Controlled Processes

Several sequential models have been proposed to handle dynamical
systems that can be controlled from external input at each time step,
which we denote action. Jaeger (1999) proposed input-output OOMs
as an generalization of linear operator models, where each transfor-
mation is indexed by a pair of finite observations and actions ao ≡
(a, o), ∀o∈ΣO ,a∈ΣI , such that Σ = ΣI ⊕ ΣO, and sequences now re-
fer to sequences of pairs of observations and executed actions h =

(aon, aon−1, . . . , ao1)∀h∈Σ∗ . Littman et al. (2001), Rosencrantz et al.
(2004a), and Boots et al. (2011a) have also proposed models in a dy-
namical system perspective that model controlled processes. They de-
noted this family of models as predictive state representations (PSRs). Predictive State Representations (PSRs)

We model future prediction functions through a K-dimensional state
vector of an implicit process (Zn).

The tuple 〈RK, T , τ0, τ∞, {Aoa}o∈ΣO ,a∈ΣI 〉 defines a input-output OOM
(PSR) of the process (On). IO-OOMs are sequential models for a
stochastic processes such that for any given function f : Σ∗ → [0, 1]:

f (∗) = 1, (2.42)

f (h) = ∑
o∈ΣO

f (hao), ∀a ∈ ΣA, (2.43)

f (t | h) = f (ht)/ f (h), for f (h) 6= 0 (2.44)

Here, f may describe a joint probability function p(on:1, an:1) or con-
ditional probabilities of observations conditioned on actions p(on:1 |
an:1). PSRs describe the same process an IO-OOM describes, but in
terms of an implicit state representation, which could be more rep-
resentative than probability of tests conditioned on histories. PSRs
can describe expected values of arbitrary statistics of the future. This
representation provides a generalization to partial observable Markov
decision processes, in the same way OOMs provide a generalization to
HMMs. PSRs and POMDPs
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Let T = Σ∗ be the set of all possible sequence of future obser-
vations/actions, and H = Σ∗ the set of all possible past observa-
tions/actions.

We denote the bi-infinite dimensional system-dynamics matrix PT ,H ∈ PT ,H system-dynamics matrix

R|T |×|H|. This matrix contains all possible probabilities of all sequences
in the vocabulary Σ∗, such that [PT ,H]t,h = f (th). If we restrict to a This matrix uniquely characterizes the

stochastic process, since it contains all
possible sequence probabilities. The

rank of system-dynamics matrix
corresponds to the dimension of the

process.

finite representation of tests and histories such that T ,H ⊂ Σ∗, and
rank(PT ,H) = dim(On) = rank(F ), then the set of tests and histories
are called core. In particular when the number of tests and histories

core tests and histories
in the sets |H| = |T | = dim(On), then these sets are minimal core sets.
Given a set of core tests, we may define a finite dimensional sequential
model, also known as PSRs (Singh et al., 2004b; Littman et al., 2001).

PSRs define a sequential model 〈RK, α∞, {Aao}o∈ΣO ,a∈ΣI , α0〉, such
that for any history h ∈ Σ∗:

f (t | h) =
α>∞ At Ahα0

α>∞ Ahα0
= mtαh, (2.45)

mt = α>∞ At (2.46)

αh = Ahα0/α>∞ Ahα0 (2.47)

where mt defines a projection function, and αh defines a predictive state.
Originally, PSRs were first derived in the interpretable setting w.r.t. a
fixed set of core tests {q1, . . . , qK}, qi ∈ Σ∗ (Littman et al., 2001). In this
case, the state of the PSR are predictions of normalized core tests:

f (t | h) = mt(αh), (2.48)

αh = [ f (q1 | h), f (q1 | h), f (q2 | h), . . . , f (qK | h)]> ∀h∈Σ∗ (2.49)

The state αh is the state of the equivalent normalized sequential model
such that it represents state in an interpretable basis w.r.t. core sets.
mt defines projection functions that linearly project any arbitrary test
into a linear combination of the core tests, i.e., they describe projection
functions onto the interpretable basis of core sets, which is equivalent
to setting:

Aao = [m>oq1
, . . . , m>oqK

]> ∀o∈ΣO , (2.50)

α∞ = ∑
o∈ΣO

mao ∀a∈ΣA , (2.51)

mt = α>∞ At (2.52)

Finding sets of minimal core sets is in many cases a difficult task, also
known as the discovery problem. Work of Rosencrantz et al. (2004a) discovery problem

provides an alternative form of obtaining a low dimensional represen-
tation of the predictive state and projection functions. This process
gives rise to the so called transformed PSRs, and it involves comput-
ing a spectral decomposition of moments of a large number of tests



46 kernel and moment based prediction and planning

and histories, such that an equivalent transformation is obtained in
Eq. 2.31. Transformed PSRs

2.5.5 Hilbert Space Predictive State Representations

Additional work on PSRs extended sequential models to kernel do-
mains with continuous observations, using Hilbert space embeddings
to define distributions over observations and latent states (Smola et al.,
2007a). These methods were initially proposed to perform inference in
an HMM by updating points in a Hilbert space, using covariance op-
erators (Fukumizu et al., 2013a) and conditional operators (Song et al.,
2009). Next, we describe the main concepts behind this approach.

We assume that future prediction functions are elements in a Hilbert
space of functions T , endowed with an inner product. We consider H
to be the analogous space of past prediction functions. Now let us
define a feature mappings of past φ : H → RH as a function that
represents histories h as H-dimensional vectors. The same for features
of future or tests t in F dimensions: ψ : T → RF, and features of
skipped-future observations ξ : T → RF, where we skip the current
observation, in Figure 2.10.

…ot ot+1 ot+k-1… ot+Mot-1o1 …

history ht

qt predictive state

at-1a1 … at at+1 at+k-1… … at+M

observations 

actions

tt test

execute

Figure 2.10: Test and histories defin-
ing a PSR.

Feature histories form a basis of an Hilbert space, where we assume
RH = span{φ( fhi )}N

i=1, as in Eq. 2.24. We consider RH to denote
the space of past, RF future and RSF skipped-future functions respec-
tively.

The inner product in this space is given in terms of a kernel of the
form k(x, x′) = 〈φ(x), φ(x′)〉RH . We additionally assume certain conti-
nuity constraints: a point in RH corresponds to a function f , and eval-
uations can be translated into inner products f (x) = 〈 f (·), φ(x)〉RH reproducing property

with the functions φ that span the space.8 This special property makes 8 The functions that generate this space
are also commonly defined as kRH (x, ·).this Hilbert Space into a Reproducing Kernel Hilbert Space (RKHS) (Aron-

szajn, 1950; Shawe-Taylor et al., 2004).. Then RH defines the RKHS Reproducing Kernel Hilbert Spaces

of past, RF the RKHS of future and RSF the RKHS of skipped-future
functions. In this setting, probability distributions of histories p(h)∀h ∈
H can be embedded in this space as points describing expected feature
values, also called mean maps. µH mean maps

µH(x) = 〈p(·), φ(x·)〉RH = Eh∼p[φ(x)] ∈ RH (2.53)

By the reproducing property for any function in RH , we may write
its expectation in terms of an inner-product with the mean map func-
tion.In turn, the inner product of any function with the mean map
yields the expected value of its function evaluation:

Eh∼p[ f (h)] = 〈 f (·), µT (·h)〉RH ∈ RH . (2.54)

The same is true for joint distributions, where the analogous map-
ping is done via covariance operators (Fukumizu et al., 2013b). Let
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RH ⊗ RF
9 denote the RKHS whose feature map is defined through 9 x⊗ y denotes the outer product, for

vectors becomes xy>the tensor product ϕ(t, h) = ψ(t) ⊗ φ(h). This space is an RKHS in
itself, where points in the space embed joint probability distributions
via covariance operators CT ,H : RF ×RH → RF×H . CT ,H covariance operators

CT ,H = 〈pT ,H(·), ϕ〉RF×RH = ET ,H[ψ(T )⊗ φ(H)] (2.55)

In the case of delta kernels under discrete events, also known as the
“tabular setting”, CH,T coincides with the joint probability table p(H, T ).

Conceptually conditional distributions p(T | h) can be embedded
in an RKHS in a similar form, using a mean map function µT |h =

ET |h[ψ(·) | h]. This defines a family of conditional embeddings, con-
sidering all possible values of h ∈ H. In the tabular setting, i.e., for
delta kernels under discrete events, µT |h coincides with the condi-
tional probability table p(T | H = h). Consider now a mapping
between different RKHSs, defined in terms of a conditional operator CT |H conditional operators

CT |H : RF → RH , such that Kernel Bayes’ rule

CT |H = E[ψ(T ) | H = ·] ∈ RH (2.56)

µT |h = CT |Hφ(h) = CT ,HC−1
H,Hφ(h) (2.57)

This establishes the connection between the two RKHSs.10 Intu- 10 This estimator is also commonly used
in the regularized Tikhonov variant:

µT |h = CT ,H
(
C2
H,H + λdI

)−1
CH,Hφ(h)

itively, conditional operators map probability distributions embeddings
into other probability distribution embeddings. Using this notion, we
may establish the relation between mean maps:

µT = CT |HµH and (2.58)

CT ,H = CT |HCH,H (2.59)

In fact, this is what observable operators do in the original spaces
of distributions. Mean maps, on the other hand, are equivalent to
distributions, in particular future prediction functions. Hence we can
define PSRs embedded in RKHSs using solely conditional operators
and mean maps.

Consider a PSR with predictive states in Z . Let RZ be the RKHS of
predictive states with kernel l(z, z′) = 〈ζ(z), ζ(z′)〉RZ∀z∈Z , and µT |h
be the mean map for the probability density of future predictions p(T |
h). The observable operator Ao : RZ ×RF → RZ ×RF transforms
future prediction functions into other prediction functions:11 11 The mean map for future predictions

with RKHS for state space Z is :
µTn |h = ETn |h[ψ(Tn)]
=EZn |h[ETn |Zn [ψ(Tn)]]=EZn |h[CTn |Zn ζ(Zn)]
=CTn |Zn EZn |hn [ζ(Zn)]=CTn |Zn µZn |hn
=CTn |Zn Aon−1 µZn−1 |hn−1

=CTn |Zn Aon−1:1 µH0
=CTn |Zn Ahn µH0

µZn+1|hn+1
=Aon µZn |hn . (2.60)

We define a PSRs in RKHSs following Eqs.(2.45-2.47):

µTn |hn = CTn |Zn µZn |hn = At Ahα0 (2.61)

α0 = CZ0|H0
µH0 with α0 : RZ → RH (2.62)

αn = µZn |hn = AoµZn−1|hn−1
= Ahα0 with αn : RZ → RZ (2.63)

α∞ = 〈 f At, αn〉RZ ∀ f ∈ RF with α∞ : RZ → RF (2.64)
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Evaluations in the RKHS may be done by computing expectations of
future predictions, via mean map inner products in the RKHS. For any mean map embedding

f ∈ RF
12 12 Instead of the standard form of

evaluation of sequential models f (t |
h) = α>∞ At Ahα0.E[ f (tn | hn)] = 〈 f , µTn |hn〉RF = 〈 f At, αn〉RZ ∈ RF (2.65)

2.5.6 Spectral learning of PSRs

Moment-based approaches rely in their core on a spectral decompo-
sition of observed statistics, and are commonly denoted as spectral
learning. Spectral learning has been used to estimate different latent
variable models, such as HMMs, (Hsu et al., 2012a) GMMs, (Anand-
kumar et al., 2012a) PCFGs, (Cohen et al., 2012) additive trees, (Parikh
et al., 2014) and finite state transducers (Bailly et al., 2013a). Singular
Value Decomposition (SVD) or Canonical Correlation Analysis (CCA),
Reduced Rank Regression (RRR) are common spectral decompositions
for matrices. They are used to retrieve a latent state representation
from correlations of past and future observations. Higher order statis-
tics use tensor decomposition techniques to achieve the same purpose
(§ 2.4.3). The first learning method used Predictive State Representa-
tions (PSRs) proposed by Littman et al. (2001). Consider the first order
moment W1 = E[φ(h)] ∈ R|H| of histories ∀h∈H and some feature
mapping for histories φ : H → RH . The second order moment matrix
can be defined for conditional expectation of features of tests ψ : T →
RF conditioned on histories h ∈ H as W2 = E[ψ(t) | φ(h)] ∈ RF×H ,
for a large non minimal number of tests |T | and histories |H|.13 Let 13 This conditional moment refers to a

conditional embedding operator de-
fined by Kernel Bayes Rule, see (Fuku-
mizu et al., 2013c; Song et al., 2009) for
details.

the third order moment of tests, current observation/action pairs and
histories W3 = E[ψ(t)⊗ ϕ(o) | φ(h); ϕ(a)] be written as matrix slices
RF×H for each possible observation/action pairs ∀o∈Σ,a∈A. Let · de-
note the indices of all elements and ∗ refer to the index of the empty
string/history. Hsu et al. (2009) and Boots et al. (2011a) show that
there is a conjugate equivalent PSR whose parameters can be obtained
from these observable quantities using

α0 = U>[W2]·,∗ (2.66)

α>∞ = W>1
(

U>W2

)†
(2.67)

Aa,o = U>[W3]·,ao,·
(

U>W2

)†
(2.68)

where U is the projection matrix defining the learned subspace, typ-
ically obtained from a spectral decomposition of the second moment
matrix W2 = UΣV>.14 Here M† denotes the Moore-Penrose pseudo- 14 For core identification methods U is

the identity matrix and the moments
specify probabilities over core tests
instead.

inverse of M. The solution in Eq. 2.66 can be obtained from solving a
least squares optimization of the form:

arg min
Aa,o

‖U>[W3]·,ao,· −U>W2 Aa,o‖2
F (2.69)
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If the feature mapping corresponds to indicator functions then these
moments correspond to conditional probability tables and the PSR pa-
rameters are defined in the tabular case. However, Eq. 2.66 provides
an extended description that is able to handle continuous observations
and actions as embeddings in an RKHS. Conditional moments in this
continuous setting are referred to as conditional embedding operators
for a detailed description, as shown by Song et al. (2009), Fukumizu
et al. (2013c), and Boots et al. (2013b).

The proposed method is a consistent learning method, in the sense
that the PSR parameters learned from data will recover the process
exactly under an infinite data assumption. This method has been su-
perseded by better methods such as the ones we will describe later.
Work of Singh et al. (2004b) extended the learning process to trans-
formed PSRs. They presented a method to learn lower dimensional transformed PSRs (TPSRs)

PSRs. Whenever the set of core tests is not minimal, the dimension of
the PSR is higher than the linear dimension of the system. This work
allowed dealing with larger core sets of tests and histories, by finding
a transformed PSR of lower dimension, that still generates the process.
Later, Siddiqi et al. (2010b) proposed learning a reduced rank HMMs
(RR-HMMs). Some HMMs require a large number of hidden states Reduced-rank HMMs (RR-HMMs)

to smoothly model the evolution of the process. RR-HMMs provide a
way to model the same process by projecting into a lower dimensional
state space, which makes the learning process easier. For a particu-
lar choice of core test we will have a different, but equivalent PSR.
However, finding sets of core tests can be a difficult task, the so called discovery problem

discovery problem (Singh et al., 2003). Kulesza et al. (2015) provide a
form of selecting these sets, such that the learning algorithm recovers
a better conditioned PSR.

Spectral learning of Hidden Markov Models

The most common algorithms for learning HMMs resort to search
heuristics to maximize the likelihood of the observed data, such as
EM (Baum et al., 1970; Dempster et al., 1977) in Section 2.4.1. These
methods, however, suffer from local optima and require several in-
ference passes over the data, which makes them slower than spectral
methods.
The first work for learning PSRs for Hidden Markov Models (HMMs)
was proposed by Hsu et al. (2009). They derived a learning algorithm
that learns PSRs from a spectral decomposition. They provided PAC-
bound guarantees for learning the observable operators from data. The
idea comes from subspace identification methods in control theory, that subspace identification

use spectral approaches to discover the relationship between hidden
states and the observations (Ljung, 1999; Van Overschee et al., 1996).
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The algorithm involves projecting observations into a lower dimen-
sional space that correlates past and future observations, using a Sin-
gular Value Decomposition (SVD) SVD(PT ,H) = UΛV>, and keeping
the first k left singular values U ≡ Uk ∈ R|T |×k.

b0 = U>PT ,ε ∈ Rk (2.70)

b>∞ = P>H,ε(U
>P†
T ,H) ∈ Rk

Bo = (U>PT ,oH)(U>P†
T ,H) ∈ Rk×k

The matrix U needs only to be in the same range as range(U) =

range(PT ,H) = range(O), such that (U>O) is invertible. All the quan-
tities can be computed from data and they relate to the parameters of
the HMM through a similarity transform S = (U>O) ∈ Rk×k. The
equations above define an equivalent sequential model with observ-
able operators Ao = TdiagOx, where diag(Ox) ∈ Rk×k denotes the
diagonal matrix containing the x-th row of the emission matrix, i.e. all
emission probabilities for observation x. The results in Eq. 2.70 corre-
spond to the solution of an equivalent regression problem (Eq. 2.69),
using a lower projection onto the column space of U:

arg min
Bo

‖U>PT ,oH −U>PT ,HBo‖2
F (2.71)

This method provided PAC-bound guarantees, under certain spectral
separation assumptions of the model. It is also more sample efficient
than previous work (Mossel et al., 2006), since it does not attempt to
explicitly retrieve the emissions and transitions. Regardless, Hsu et
al. (2009) provide a possible way to retrieve the parameters T, O. The
process consists of first estimating the emission matrix, then the transi-
tion making use of pseudo-inverses. This recovery process is, however
unstable in its core, since it makes extensive use of pseudo-inverses
and inverses. This makes the algorithm very sensitive to noise, which,
in the case of insufficient statistics or inexact moments, can be a fa-
tal problem. Other spectral techniques have been employed in order
to find a lower dimensional state space (using U). Canonical Corre-
lation Analysis (CCA) has been used to find directions of maximum
correlation, between two views (past and future) (Cohen et al., 2013b).

Song et al. (2009) presents a kernel version for learning observ-
able operators that do not require the explicit computation of features,
which could have a potentially infinite dimensional basis.15 Instead 15 Such as RBFs or exponential kernels

they consider the dual problem, and derive equations in terms of Gram
matrices. Gram matrix

Spectral learning of HSE-PSRs

Previously we have defined linear operators and learning algorithms
in terms of discrete action/observation pairs. This formulation can be-
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come infeasible for large scale systems where it is difficult to enumer-
ate all possible observations and actions, such as in robotics domains
where observations and actions are continuous. Boots et al. (2013b) ex-
tended spectral learning of embedded distributions in RKHSs to pre-
dictive representations of controlled models, also known as Hilbert
space embedding PSRs (HSE-PSRs). Let T O denote the set of tests
of observations, T A the set of test actions, O the set of observations,
and A the set of actions. We further define feature mappings shown
in Figure 2.11, for immediate, future and extended future actions and
observations:
• φo

t (ot) : O → RO of immediate observations,

• φa
t (at) : A → RA of immediate actions,

• ψo
t (ot:t+k−1) : Ok → RFO

of future observations,

• ψa
t (at:t+k−1) : Ak → RFA

of future actions,

• ξo
t (ot:t+k) ≡ [ψo

t+1 ⊗ φo
t , φo

t ⊗ φo
t ] : Ok+1 → R(FO+O)×2O of ex-

tended observations,

• ξa
t (at:t+k) ≡ ψa

t+1 ⊗φa
t : Ak+1 → RFA×A of extended actions.

ot+kot … ot+k-1

ot+kot … ot+k-1 ot+k+1ot-1,at-1o1,a1 …

history ht

future Ψto

stage-1 a qt predictive state

ot+k+1ot-1,at-1o1,a1 …

history ht

extended future ξto

stage-1 b pt extended state

stage-2 Wext

Prediction

Figure 2.11: Illustration of the PSR
update step.

HSE-PSRs the predictive state qt is updated using covariance operators

Hilbert Space Embeddings PSRs
(HSE-PSRs)

qt+1 = CT O |T Aht ,at ,ot
(2.72)

= CT O ,O|T Aht ,at
⊗O C−1

O,O|ht ,at
φ(ot)

= Wξ
extqt ⊗A φA(at)⊗O

(
Wo

extqt ⊗A φA(at)
)−1

φO(ot)

where Wξ
ext is a linear transformation from futures to skipped futures

and Wexto a linear transformation from futures to the current observa-
tion, in Figure 2.11.

Two-stage Regression

In this section, we revisit a continuous representation for filtering and
prediction equations based on a two-stage regression approach pro-
posed by Hefny et al. (2017b). This method interprets learning of
PSRS as an instrumental variable regression algorithm, and in par-
ticular learning of HSE-PSRs. They assume future expectations p̄t =

E[ξo
t (ot:t+k); ψa

t (at:t+k)] are a linear transformation of extended future
expectations
q̄t = E[ψo

t (ot:t+k−1); ψa
t (at:t+k−1)], in Figure 2.11.

Due to temporal correlation between these two expectations p̄t and
q̄t, we cannot directly learn the mapping Wext over empirical estimates
of p̄t and q̄t, using linear regression, since their noise is also correlated.
Alternatively, they turn to an instrumental variable regression where
history is used as instrument, since it is correlated with the observables
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ψt and ξt, but not with the noise. In this case, we can go from predic-
tive to extended states by first computing a possibly non-linear regres-
sion from histories, to both predictive (Eq. 2.73) and extended statistics
(Eq. 2.74) (stage-1 regression a and b). When we consider features of
a Hilbert space Embedding PSR (HSE-PSR) this non-linear regression
can be computed by Kernel Bayes Rule (KBR) (Fukumizu et al., 2013b),
but could be any arbitrary non-linear transformation (regression trees,
logistic regression,· · · ). Predictive states can be regarded as evalua-
tions of conditional mean maps mT |H where pt = 〈ξt+1, mT |H〉RF in
the RKHS of future sequencesRF, and the analogous for future actions
and extended states.

pt ≡ E
[
ξo

t+1 | h∞
t ; ξa

t+1
]

stage-1a (2.73)

qt ≡ E [ψo
t | h∞

t ; ψa
t ] stage-1b (2.74)

Subsequently, this approach linearly regresses the denoised extended
state pt from the denoised predictive state qt, using a least squares
approach (stage-2 regression), in Eq. 2.75. For ease of explanation,
let us further partition extended states in two parts pt ≡ [pξ

t , po
t ] and

Wext ≡ [Wξ
ext, Wo

ext], derived from the skipped future ψo
t+1 and present

φo
t observations, see Figure 2.11. prediction

pξ
t ≡ E

[
ψo

t+1 ⊗φo
t | h∞

t ; ψa
t+1 ⊗φa

t
]

po
t ≡ E [φo

t ⊗φo
t | h∞

t ; φa
t ]

pt = [pξ
t , po

t ]
> = [Wξ

ext, Wo
ext]
>qt stage-2 (2.75)

For RFFPSRs stage-1 regression can be derived from either a joint re-
gression over action/observation pairs, using KBR or by solving a reg-
ularized least squares problem, for a full derivation refer to Hefny et
al. (2017b).
The second step in Eq. 2.76 is provided by a filtering function ft, that
tracks predictive states over time: filtering

qt+1 = fcond(Wextqt, ot, at) ≡ ft(qt, ot, at) (2.76)

Namely, for HSE-PSRs filtering corresponds to conditioning on the
current observation via KBR, in Eq. 2.77. In contrast with predictive
state inference machines where they learn directly a filtering function
by minimizing prediction loss (Sun et al., 2016b), here we assume a
generative approach and learn the filtering function parameters subject
to the generative HSE-PSR framework.

We consider pξ
t as a 4-mode tensor (ψo

t+1, φo
t , ψa

t+1, φa
t ), where ×φo

defines the multiplication along the φo-mode. predictive filter in HSE-PSRs
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qt+1 = E[ψo
t+1 | h∞

t+1; ψa
t+1] (2.77)

= E[ψo
t+1 | φo

t , h∞
t ; ψa

t+1, φa
t ]

= E[ψo
t+1 ⊗φo

t | h∞
t ; ψa

t+1 ⊗φa
t ]×φo φo

t ×φa φa
t

[
E[φo

t ⊗φo
t |φa

t ; h∞
t ]φa

t
> + λI

]−1

= pξ
t ×φo φo

t ×φa φa
t

[
po

t φa
t
> + λI

]−1

= Wξ
extqt ×φo φo

t ×φa φa
t

[
Wo

extqtφ
a
t
> + λI

]−1

≡ ft(qt, at, ot)

This equation explicitly defines the full predictive state update equa-
tion or filtering in Eq. 2.76, when considering HSE-PSRs as a represen-
tation of pt and qt.
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2.6 Planning approaches

Planning is a general term with different connotations according to
different research communities. Common to all remains the central
idea that planning consists on devising a plan for an agent to execute
in order to complete a certain task. The planning taxonomy can be
described in terms of a plan, the strategy or behaviour that could be
a sequence of actions from a start state the needs to be executed to
achieve a given goal; a state, which describes the current position of
the robot within its environment; time that translates how far we are
in the execution of the plan; and feasibility and optimality of a given
plan. Feasibility pertains to the existence of a solution while optimality
consists on improving the quality of the plan.

In machine learning, planning is most commonly addressed based
on decision theoretic methods to model uncertainties, adversarial sce-
narios and optimization. Once learning is achieved, what decisions
should be made to achieve a desired goal. Most commonly, this ques-
tion is posed in the discrete setting where we assume the agent may
choose from a discrete set of actions and acts upon a discrete state
space. Within Natural Language Processing, we may regard planning
in this setting, where the agent (generally a state machine), may per-
form a given discrete set of decisions or actions defining a plan, i.e., the
sequence of actions that lead to the desired goal. These have been ap-
plied in a vast range of natural language tasks such as parsing (Luque
et al., 2012; Goldberg et al., 2012; Goodman et al., 2016), part-of-
speech-tagging (Chang et al., 2015), handwriting recognition (Ross et
al., 2010), information extraction (Branavan et al., 2011; Narasimhan et
al., 2016), machine translation (Grissom II et al., 2014; He et al., 2016),
summarization (Paulus et al., 2017) and question & answering (Choi
et al., 2017).

Within the field of Robotics planning concerns with finding algo-
rithms that map high-level specifications of tasks from humans into
low-level motion controls/actions of a robot. Two concepts are mostly
connected with robotic planning: motion planning and trajectory op-
timization.

The former describes rotations and translations required to find a
solution for moving a body within a constrained space, usually ignor-
ing body dynamics and other differential constraints. This problem is
also known as the Piano Movers’ Problem, where knowing the map of a
building we are required to place a piano from a start position into a
goal location without hitting any objects within the building.

The second problem, trajectory optimization, usually refers to find-
ing the motion of the robot according to a solution provided by a mo-
tion planner and considering the mechanical limitations of the robot.
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Trajectory optimization is considered complementary to motion plan-
ning in that it usually requires an initial guess, in many cases provided
by a motion planning algorithm. In motion planning, the state space Motion planning

defines the set of possible transformations that could be applied to the
robot, its configuration space (Lozano-Perez, 1981; Lozano-Pérez et al.,
1979; Latombe, 1991). C. We define the work space W the space where configuration space C
the robots and the obstacles live. Motion planning algorithms can be
decomposed into several classes: geometric approaches, combinatorial
methods, sampling-based approaches and optimization methods.

Geometric problems require understanding and manipulating com-
plex geometric representations that transform a single body or chain of
bodies. This requires defining geometric primitives which will enable
the robot to move in space. Most approaches require a description of
configuration space obstacles, which can be prohibitive to create in the
context of high-dimensional planning problems.

Combinatorial methods build paths in continuous configuration space
by building discrete representations without loss of information. These
methods allow complete solutions, meaning that they will find a solu-
tion if it exists (Agarwal et al., 1997; BaezaYates et al., 1993; Arya et al.,
1994).

Sampling-based approaches have been widely used in complex prob-
lems (Aronov et al., 1998; Lavalle et al., 2000; Kavraki et al., 1994; Chi-
ang et al., 2007) and also high dimensional scenarios (Xanthidis et al.,
2016). These consist mostly on search algorithms that sample the con-
figuration space in order to find a feasible solution. Planning is defined
as a continuous problem, which can be applied to problem when the
number of geometric primitives is very large. They usually require a
collision detection module to determine feasibility and generally they
provide weaker notions of completeness.

Optimization-based planning offers an alternative portion of mo-
tion planning algorithms. This family of methods attempts to directly
search over the space of trajectories and combines optimization tech-
niques to improve the quality of the final trajectory. The optimization
occurs in the space of possible trajectories Ξ, where each trajectory
ξ : [0, 1] → C is considered as a function of time t ∈ [0, 1]. In con-
sequence calculus of variations will be a crucial tool to characterize
extrema of the problem. The quality of each trajectory is measured
as a functional cost U : Ξ → R that we wish to minimize. In order
to obtain trajectories that are collision free and smooth the objective
functional needs to account for object proximity in the form of Uobs as
well as dynamical quantities respectively, such as velocities and accel-
erations represented as Usmooth.

U = Uobs + βUsmooth (2.78)
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The boundary conditions, such as initial ξ(0) and final configuration
ξ(1) can be considered as constraints in the optimization problem. Fur-
ther dynamical or mechanical boundaries may be specified as an ad-
ditional set of constraints that must be satisfied during optimization.
This process can be regarded as incrementally searching for trajecto-
ries that minimize the gradient of the cost functional in Eq. 2.78, while
constrained to the tangent space of the constraints. Hence, much of
the problems in motion planning under trajectory optimization may
be cast as an application of Newton’s method or gradient descent.
The differential equations describing the motion of the agent typically
used in dynamic programming or the minimum principle are difficult
to solve analytically (Rimon et al., 1992), therefore, in most cases, nu-
merical techniques are preferred (Quinlan et al., 1993; Brock, 2002).

Gradient methods can provide efficient algorithms since they lever- Gradient-based trajectory optimization

age gradient information while avoiding the explicit computation of
second-order dynamics. In Calculus of Variations, gradients of the
cost functional ∇U correspond to perturbations φ : [0, 1] → C of the
current trajectory ξ that maximize ∇U [ξ + εφ] as φ → 0. Consider
the linear functional to be of the form U [ξ] =

∫
v(ξ(t), ξ̇(t))dt, and

the consecutive configuration ξ̄ = ξ + εφ. The extrema of the cost
functional can be characterized by the Euler-Lagrange equation:

∇U [ξ] = ∂v
∂ξ
− d

dt
∂v
∂ξ̇

= 0. (2.79)

Therefore, we may optimize trajectories by simply taking iterative steps
in the direction of the negative functional gradient defined by

ξt+1 = ξt − λ∇U [ξ]. (2.80)

Next, we briefly describe a computationally efficient algorithm that
performs covariant16 updates of the functional cost, also known as 16 independent of reparametrization.

CHOMP (Covariant-Hamiltonian Optimization for Motion Planning) (Zucker
et al., 2013). CHOMP defines an obstacle cost functional in terms of a
pre-computed distance field to obstacles in the workspace environ-
ment c : W → R, where B defines the set of body points of the
agent/robot and x : C × B → W its forward kinematics function,
mapping a particular point in the robot u ∈ B for a given body config-
uration ξ ∈ C to a workspace location.

Uobs[ξ] =
∫ 1

0

∫

B
c(x(ξ(t), u))

∥∥∥∥
d
dt

x(ξ(t), u)
∥∥∥∥ dudt (2.81)

Usmooth[ξ] =
1
2

∫ 1

0

∥∥∥∥
d
dt

ξ(t)
∥∥∥∥

2
dt (2.82)

This algorithm performs gradient descent in trajectory space with re-
spect to the natural norm of the functional, which is equivalent to the
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inverse of the metric times its Euclidean gradient∇AU [ξ] = A−1∇U [ξ].
This improved update transformation makes the algorithm invariant
to reparametrization, i.e., independent of the metric space A.

2.7 Planning under uncertainty

An alternative variant of planning algorithms branches out to decision
theoretic contexts, where uncertainty plays an important role. This
gives rise to a family of algorithms also known as reinforcement learning
(RL), where good actions provide positive feedback in the form of a
reward. This view describes planning as an optimization approach reinforcement learning

where instead of minimizing a cost functional we maximize a reward
functional, also denoted reward-to-go or cost-to-go.

In reinforcement learning, an agent tries to maximize the accu- RL taxonomy

mulated reward over each trajectory. In an episodic setting, meaning
the task is restarted at the end of each trajectory or episode, the ob-
jective is to maximize the total reward per episode, while if the task
in never ending a discounted factor is introduced to discriminate be-
tween the importance of long vs. short term rewards. In decision
theoretic planning or reinforcement learning the agent or robot inter-
acts with its environment by performing actions a ∈ A in a continuous
or discrete set. This process is characterized by a state s ∈ S which can
also have a continuous or discrete representation. The state contains
all the necessary information to predict future states, for instance the
current position and velocity of a swing up pendulum. Actions are
used to control or change the state of the system, in the same exam-
ple actions correspond to torques applied to the pendulum joints. For
each interaction the agent receives a scalar valued reward r ∈ R and
could be a function of state or state and action, in the swing-up task
it could be defined as the distance to the top position. The objective
of the reinforcement learning agent is thus to find a mapping from
state to actions π : S → A, denoted policy, that maximizes cumulative
expected reward J = Eπ [∑t γt−1rt]. This mapping can either be de-
terministic yielding the exact same action for every realization of the
same state a = π(s), or probabilistic if it defines a distribution over
actions a ∼ π(s, a) = p(a | s)

Classical reinforcement learning approaches are based on discrete
theoretic decision algorithms such as Markov decision processes (MDPs)
defined in terms of a set of rewards R, states S, actions A and state
transition probabilities T : S → S capturing the dynamics of the sys-
tem T(s′, a, s) = p(s′ | a, s). Transition probabilities account for un-
certainty in the system dynamics even if the state is fully observable.
MDPs are further characterized by the Markov property that requires
that the future state and reward depend only on the current state (Sut-
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ton et al., 1998). Meaning that the state of the system is a sufficient
statistic for future state predictions.

The value function is a quantity that the reflects the quality of the Value vs. Policy optimization

policy in a particular state V(s) or state/action pair Q(s, a). This quan-
tity can be used as an objective in the optimization process. However
value function approaches struggle with many Robotics RL challenges,
such as the high dimensionality of the state/action space. Value func-
tion algorithms are also very sensitive to approximation errors, lead-
ing to drastic changes in policy which could result in damage of the
robot. For all of these reasons, value-based RL is often discouraged
in Robotics applications. On the other hand, policy search methods,
directly optimize over policy parameters θ : π(θ) avoiding the need to
specify a value function, which leads to smoother changes of policy
and consequently safer behaviour for robots. This advances RL into
high dimensional continuous domains with stability and robustness
guarantees in some cases (Agarwal et al., 1999) Policy search methods
generally require fewer parameters than valued-based counterparts.
Local search within policy parameter landscape already provides good
results (Kirk, 2012), while addition of constraints can be easily incor-
porated, for instance by regularizing the change in path distribution.
Overall, policy search provide a more scalable and robust variant of
RL algorithms

Local optimization around existing policies π parametrized by a set
of policy parameter θ occurs by incrementally change parameters to
improve the expected return

θt+1 = θt + ∆θ (2.83)

The nature of the parameter update ∆θ brings about a wide range of
methods, ranging from pairwise comparisons (Strens et al., 2001; Ng et
al., 2004), gradient estimation from finite differences (Geng et al., 2006;
Kohl et al., 2004; Mitsunaga et al., 2006; Roberts et al., 2010; Sato et al.,
2002; Tedrake et al., 2005), to stochastic optimization methods (Bagnell
et al., 2001), cross-entropy (Rubinstein et al., 2004), differential dy-
namic programming (Atkeson, 1998), shooting approaches (T. Betts,
2001). These methods can be categorized into three classes: policy gra-
dient (PG) methods, expectation-maximization (EM) or information
theoretic updates (Kappen, 2005).

Another useful distinction classifies RL approaches into model based
vs. model free methods. The former requires learning a model of the
state dynamics and use it to improve the policy, while the latter di-
rectly learns a policy based on sampled trajectories of the environment.
Model free learning explores all three variants of policy parameter up-
dates while model base focuses mainly on policy gradient methods.
Next, we describe policy gradient methods, since they provide some
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of the most widely use approaches in Robotics.

2.7.1 Policy gradient methods

Policy gradient approaches may be described as updates on policy pa-
rameters following the direction of the gradient of the expected return
J(π) = 1

T ∑T E[γt−1rt | πθ ]

θt+1 = θt + α∇θ J(π). (2.84)

where α is a stepsize that dictates how far we improve along each
gradient direction. Different forms of estimating the gradient bring
about different techniques: some are based on likelihood ratio estima-
tion (Sutton et al., 1999), others arise from Expectation-Maximization
approaches (Toussaint et al., 2011; Dayan et al., 1997; Vlassis et al.,
2009; Kober et al., 2010), path integral methods (Kappen, 2005), or
more recently natural gradient approaches (Peters et al., 2008; Wang
et al., 2016; Schulman et al., 2015)

Reinforcement learning within Robotics differs from many other
learning domains since they often require high dimensional contin-
uous state and action spaces. Contrary to standard optimal control
paradigm in Robotics it is generally unrealistic to assume the true state
is completely observable and noise free. Uncertainty plays a crucial
role in modeling under these settings. Uncertainty generally involves
two main independent sources: predictability associated with model
errors, leading to uncertainty in predicting future states, and sensing
in which model noise and uncertainty from initial conditions, sensors
and memory of previously applied actions can make different states
look similar. For this reason models in Robotics need to be robust to
undermodeling and deal with model uncertainty.

Furthermore, real robot experience is costly and difficult to repro-
duce. Usually it cannot be replaced by learning from simulations alone
since even small modeling errors can accumulate to substantially dif-
ferent outcomes, specially in highly dynamic tasks.

Reward shaping poses another challenge in Robotics (Laud, 2004),
in that the design of appropriate reward functions requires some do-
main knowledge.

Over and all, many complex tasks in Robotics leverage the infor-
mation provided by models to counteract these difficulties (Atkeson et
al., 1997; Abbeel et al., 2008; Deisenroth et al., 2011), and typically pol-
icy search approaches are preferred over value-based methods, since
they provide more robust estimates of policies (Gullapalli et al., 1994;
Miyamoto et al., 1996; Bagnell et al., 2001; Kohl et al., 2004; Tedrake
et al., 2005; Peters et al., 2008; Kober et al., 2009).

In this section we have summarized the main literature in sequence
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prediction and planning using moment-based approaches and kernel
algorithms. Next, we will present the work developed under this the-
sis regarding both prediction Chapter 3, planning Chapter 4 and a
combination of both under a reinforcement learning setting Chapter 5

respectively.



3
Sequence Labeling with Method of Moments

In this chapter, we introduce a sequence prediction algorithm based on
moment-matching techniques that can be applied to discrete domains,
such as sequence labeling problems. We assume the existence of cer-
tain observations that correlate with each label exactly. We provide
an efficient algorithm that is able to perform label prediction in large
datasets, using little supervised information. We rely only on moment-
based approaches to recover the state marginals and consecutively the
most probable label for each observation in the sequence. However,
this algorithm is amenable to post-refinement using likelihood-based
approaches or gradient descent, similarly to what is done in the fol-
lowing chapters.

We apply the proposed algorithm to the domain of Natural Lan-
guage Processing in a part-of-speech (POS) tagging problem. We start
by describing two generative sequence models in Section 3.2: hidden
Markov models (HMMs) §3.2.1, and their generalization with emis-
sion features (§3.2.2). Later, we propose a weakly-supervised method
for estimating these models’ parameters (§3.3–§3.4) based only on ob-
served statistics of words and contexts. Section 3.5–3.6 describes some
practical advice and empirical analysis of the moment-based approach
in a POS tagging problem for twitter and for a low resource language.

3.1 Motivation

Statistical learning of NLP models is often limited by the scarcity of an-
notated data. Weakly supervised methods have been proposed as an
alternative to laborious manual annotation, combining large amounts
of unlabeled data with limited resources, such as tag dictionaries or
small annotated datasets (Merialdo, 1994; Smith et al., 2005; Garrette
et al., 2013). Unfortunately, most semi-supervised learning algorithms
for the structured problems found in NLP are computationally expen-
sive, requiring multiple decoding passes through the unlabeled data,
or expensive similarity graphs. More scalable learning algorithms are



62 kernel and moment based prediction and planning

necessary if we wish to take advantage of very large corpora. Cer-
tain semi-supervised learning methods like label propagation do not
require decoding the unlabeled data, but they often require building a
huge, expensive graph.

In this chapter, we propose a moment-matching method for semi-
supervised learning of sequence models, as stated in the background
§2.3.1. Spectral learning and moment-matching approaches have re-
cently proved a viable alternative to expectation-maximization (EM)
for unsupervised learning (Hsu et al., 2012b; Balle et al., 2012c; Bailly
et al., 2013b), supervised learning with latent variables (Cohen et al.,
2014; Quattoni et al., 2014; Stratos et al., 2013) and topic modeling (Arora
et al., 2013; Nguyen et al., 2015). These methods have learnability guar-
antees, do not suffer from local optima, and are computationally less
demanding. Current moment-matching approaches are, however, less
flexible—for example, it is not obvious how to adapt existing methods
to semi-supervised learning, where the latent variables do not repre-
sent arbitrary states, but rather denote labels, observed for some data
points and unobserved for others. One drawback of spectral meth-
ods is that they do not provide an explicit representation for states,
although there has been some work that attempts to recover this trans-
formation (Hsu et al., 2012b), this method does not provide good re-
sults in practice. Observations can be predicted as products of op-
erators, without requiring to explicitly identify the hidden states, by
marginalizing over all possible states. They have been used as forms
of doing prediction over observations without taking into account the
explicit hidden state representation (Boots et al., 2011a). They have
been used also as decorations in a structured problem, enriching la-
bels with more refined information (Stratos et al., 2013; Cohen et al.,
2012). Different approaches based on optimization techniques have
been proposed, where a more generic perspective of the problem is
provided, allowing integration with other parameter constraints (Balle
et al., 2012a; Chaganty et al., 2014a).

Existing spectral learning approaches estimate operators invariant
to similarity transforms, as in §2.5 (Jaeger, 2000). In order for states to
represent well-defined labels, it would be necessary to break this in-
variance, which would spoil the current estimation procedures based
on matrix and tensor decomposition, in §2.4.3. Next, we describe an
alternative method that enables the explicit recovery of model param-
eters. This chapter does not make use of predictive state representa-
tions. Instead, it uncovers the relation between observations and states
by “anchoring" specific observations to hidden states, in §2.4.4. This
approach learns the model parameters directly. Although it does not
have the same expressive power as a PSR, it finds parameters that
match moments of observations while allowing to add labeled infor-
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Figure 3.1: HMM, context (green) con-
ditionally independent of present (red)
x` given state h`.

mation easily. This is mostly relevant if we want to achieve good per-
formance, compared with other semi-supervised methods such as EM.
Unlike spectral methods, ours does not require an orthogonal decom-
position of any matrix or tensor. Instead, it considers a more restricted
form of supervision: words that have unambiguous annotations, so-
called anchor words (Arora et al., 2013). Rather than identifying an-
chor words from unlabeled data (Stratos et al., 2016), we extract them
from a small labeled dataset or from a dictionary. Given the anchor
words, the estimation of the model parameters can be made efficient
by collecting moment statistics from unlabeled data, then solving a
small quadratic program for each word.

Our contributions are as follows:

• We adapt anchor methods to semi-supervised learning of generative
sequence models.

• We show how our method can also handle log-linear feature-based
emissions.

• We apply this model to POS tagging. Our experiments on the Twit-
ter dataset introduced by Gimpel et al. (2011) and on the dataset
introduced by Garrette et al. (2013) for Malagasy, a low-resource lan-
guage, show that our method does particularly well with very little
labeled data, outperforming semi-supervised EM and self-training.

3.2 Sequence Labeling

In this chapter, we address the problem of sequence labeling. Let
x1:L = 〈x1, . . . , xL〉 be a sequence of L input observations (for exam-
ple, words in a sentence). The goal is to predict a sequence of labels
h1:L = 〈h1, . . . , hL〉, where each hi is a label for the observation xi (for
example, the word’s POS tag).

3.2.1 Hidden Markov Models

We define random variables X := 〈X1, . . . , XL〉 and H := 〈H1, . . . , HL〉,
corresponding to observations and labels, respectively. Each Xi is a
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random variable over a set X (the vocabulary), and each Hi ranges
over H (a finite set of “states” or “labels”). We denote the vocabulary
size by V = |X |, and the number of labels by K = |H|. A first-order
HMM has the following generative scheme:

p(X = x1:L, H = h1:L) := (3.1)
L

∏
`=1

p(X`=x` | H`=h`)
L
∏
`=0

p(H`+1=h`+1 | H`=h`),

where we have defined h0 = start and hL+1 = stop. We adopt the
following notation for the parameters of the HMM in Section 2.3.1, the
emission matrix O ∈ RV×K, defined as Ox,h := p(X` = x | H` = h),
∀h ∈ H, x ∈ X , and the transition matrix T ∈ R(K+2)×(K+2), defined as
Th,h′ := p(H`+1 = h | H` = h′), for every h, h′ ∈ H ∪ {start, stop}.1 1 Where TSTART,STOP = 1 and TSTART,h′ =

0 for h′ 6= STOPThis matrix satisfies T>1 = 1.2
2 That is, it satisfies ∑K

h=1 p(H`+1 = h |
H` = h′) + p(H`+1 = STOP | H` =
h′) = 1; and also ∑K

h=1 p(H1 = h | H0 =
START) = 1.

Throughout the rest of this chapter we will adopt X ≡ X` and
H ≡ H` to simplify notation, whenever the index ` is clear from the
context. Under this generative process, predicting the most probable
label sequence h1:L given observations x1:L is accomplished with the
Viterbi algorithm in O(LK2) time.

If labeled data are available, the model parameters O and T can be
estimated with the maximum likelihood principle, which boils down
to a simple counting of events and normalization. If we only have un-
labeled data, the traditional approach is the expectation-maximization
(EM) algorithm in §2.4.1, which alternately decodes the unlabeled ex-
amples and updates the model parameters, requiring multiple passes
over the data. The same algorithm can be used in semi-supervised
learning when labeled and unlabeled data are combined, by initializ-
ing the model parameters with the supervised estimates and interpo-
lating the estimates in the M-step.

3.2.2 Feature-Based Hidden Markov Models

Sequence models with log-linear emissions have been considered by
Smith et al. (2005), in a discriminative setting, and by Berg-Kirkpatrick
et al. (2010), as generative models for POS induction. Feature-based
HMMs (FHMMs) define a feature function for words, φ(X) ∈ RW ,
which can be discrete or continuous. This allows, for example, to indi-
cate whether an observation, corresponding to a word, starts with an
uppercase letter, contains digits or has specific affixes. More generally,
it helps with the treatment of out-of-vocabulary words. The emission
probabilities are modeled as K conditional distributions parametrized
by a log-linear model, where the θh ∈ RW represent feature weights:

p(X = x | H = h) := exp(θ>h φ(x))/Z(θh). (3.2)
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Algorithm 3: Semi-Supervised Learning of HMMs with Moments
Input: Labeled dataset DL, unlabeled dataset DU
Output: Estimates of emissions O and transitions T

1: Estimate context-word moments Q̂ from DU (Eq. 3.5)
2: for each label h ∈ H do
3: Extract set of anchor words A(h) from DL (§3.3.2)

4: Estimate context-label moments R̂ from anchors and DU (Eq. 3.12)
5: for each word w ∈ [V] do
6: Solve the QP in Eq. 3.14 to obtain γw from Q̂, R̂

7: Estimate emissions O from Γ via Eq. 3.15

8: Estimate transitions T (§ 3.3.5)
9: Return: Emission and transition matrices (O, T)

Above, Z(θh) := ∑x′∈X exp(θ>h φ(x′)) is a normalization factor. We
will show in §3.4 how our moment-based semi-supervised method
can also be used to learn the feature weights θh.

3.3 Semi-Supervised Learning via Moments

We now describe our moment-based semi-supervised learning method
for HMMs. Throughout, we assume the availability of a small labeled
dataset DL and a large unlabeled dataset DU .

The full roadmap of our method is shown as Algorithm 3. Key to
our method is the decomposition of a context-word moment matrix
Q ∈ RC×V , which counts co-occurrences of words and contexts, and
will be formally defined in §3.3.1. Such co-occurrence matrices are of-
ten collected in NLP, for various problems, ranging from dimensional-
ity reduction of documents using latent semantic indexing (Deerwester
et al., 1990b; Landauer et al., 1998), distributional semantics (Schütze,
1998; Levy et al., 2015) and word embedding generation (Dhillon et
al., 2015b; Osborne et al., 2016). We can build such a moment matrix
entirely from the unlabeled data DU . The same unlabeled data is used
to build an estimate of a context-label moment matrix R ∈ RC×K, as
explained in §3.3.3. This is done by first identifying words that are un-
ambiguously associated with each label h, called anchor words, with
the aid of a few labeled data; this is outlined in §3.3.2. Finally, given
empirical estimates of Q and R, we estimate the emission matrix O by
solving a small optimization problem independently per word (§3.3.4).
The transition matrix T is obtained directly from the labeled dataset
DL by maximizing the likelihood.

3.3.1 Moments of Contexts and Words

To formalize the notion of “context,” we introduce the shorthand Z` :=
〈X1:(`−1), X(`+1):L〉. Importantly, the HMM in Eq. 3.1 entails the fol-
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lowing conditional independence assumption: X` is conditionally in-
dependent of the surrounding context Z` given the hidden state H`.
This is illustrated in Figure 3.1, using POS tagging as an example task.

We introduce a vector of context features ψ(Z`) ∈ RC, which may
look arbitrarily within the context Z` (left or right), but not at X` itself.
These features could be “one-hot” representations or other reduced-
dimensionality embeddings (as described later in §3.5). Consider the
word w ∈ X an instance of X ≡ X`. A pivotal matrix in our formula-
tion is the matrix Q ∈ RV×C, defined as:

Qw,c := E[ψc(Z) | X = w]. (3.3)

Expectations here are taken with respect to the probabilistic model in
Eq. 3.1 that generates the data. The following marginal probabilities
will also be necessary:

qc := E[ψc(Z)], pw := p(X = w). (3.4)

Since all the variables in Eqs. 3.3–3.4 are observed, we can easily obtain
empirical estimates by taking expectations over the unlabeled data:

Q̂w,c =
∑x,z∈DU

ψc(z)1(x = w)

∑x,z∈DU
1(x = w)

, (3.5)

q̂c = ∑x,z∈DU
ψc(z)

/
|DU |, (3.6)

p̂w = ∑x,z∈DU
1(x = w)

/
|DU |. (3.7)

where we take 1(x = w) to be the indicator for word w. Note that, un-
der our modeling assumptions, Q decomposes in terms of its hidden
states:

E[ψc(Z) | X = w] = (3.8)

∑
h∈H

p(H = h | X = w)E[ψc(Z) | H = h]

The reason why this holds is that, as stated above, Z and X are condi-
tionally independent given H.

3.3.2 Anchor Words

Following Arora et al. (2013) and Cohen et al. (2014), we identify an-
chor words whose hidden state is assumed to be deterministic, regard-
less of context. In this thesis, we generalize this notion to more than
one anchor word per label, for improved context estimates. This al-
lows for more flexible forms of anchors with weak supervision. For
each state h ∈ H, let its set of anchor words be

A(h)= {w ∈ X : p(H = h | X = w) = 1} (3.9)

=
{

w ∈ X : Ow,h>0∧Ow,h′=0, ∀h′ 6=h
}

.
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That is, A(h) is the set of unambiguous words that always take the
label h. This can be estimated from the labeled dataset DL by collecting
the most frequent unambiguous words for each label.

Algorithms for identifying A(h) from unlabeled data alone were
proposed by Arora et al. (2013) and Zhou et al. (2014), with application
to topic models. Our work differs in which we do not aim to discover
anchor words from pure unlabeled data, but rather exploit the fact that
small amounts of labeled data are commonly available in many NLP
tasks—better anchors can be extracted easily from such small labeled
datasets. There is however a trade off between the amount of labeled
information and the quality of the anchors. In the proposed approach,
we assume the anchors are pure unambiguous observations, however
these anchors may be imperfectly identified, for example, if the labeled
dataset is too small. In practice we verified that it is enough to select
frequent but impure anchors for each label. In §3.5 we give a more
detailed description of the selection process.

3.3.3 Moments of Contexts and Labels

We define the matrix R ∈ RK×C as follows:

Rh,c := E[ψc(Z) | H = h]. (3.10)

Since the expectation in Eq. 3.10 is conditioned on the (unobserved)
label h, we cannot directly estimate it using moments of observed vari-
ables, as we do for Q. However, if we have identified sets of anchor
words for each label h ∈ H, we have:

E[ψc(Z) | X ∈ A(h)] =
= ∑

h′
E[ψc(Z) | H = h′] p(H = h′ | X ∈ A(h))︸ ︷︷ ︸

=1(h′=h)

= Rh,c. (3.11)

Therefore, given the set of anchor words A(h), the hth row of R can be
estimated in a single pass over the unlabeled data, as follows:

R̂h,c =
∑x,z∈DU

ψc(z)1(x ∈ A(h))
∑x,z∈DU

1(x ∈ A(h)) (3.12)

3.3.4 Emission Distributions

We can now put all the ingredients above together to estimate the
emission probability matrix O. The procedure we propose here is
computationally very efficient, since only one pass is required over
the unlabeled data, to collect the co-occurrence statistics Q̂ and R̂. The
emissions will be estimated from these moments by solving a small
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problem independently for each word. Unlike EM and self-training,
no decoding is necessary, only counting and normalizing; and unlike
label propagation methods, there is no requirement to build a graph
with the unlabeled data.

Anchor trick

Figure 3.2: Anchor trick to solve QP
from observable moments, replacing
state by anchor surrogates (top light
blue rows in Q) in Eq. 3.11.

The crux of our method is the decomposition in Eq. 3.8, which is
combined with the one-to-one correspondence between labels h and
anchor words A(h) in Figure 3.3.4. We can rewrite Eq. 3.8 as:

Qw,c = ∑
h

p(H = h | X = w)Rh,c. (3.13)

In matrix notation, we have Q = ΓR, where Γ ∈ RV×K is defined as
Γw,h := p(H = h | X = w).

If we had infinite unlabeled data, our moment estimates Q̂ and
R̂ would be perfect and we could solve the system of equations in
Eq. 3.13 to obtain Γ exactly. Since we have finite data, we resort
to a least squares solution. This corresponds to solving a simple
quadratic program (QP) per word, independent from all the other
words, as follows. Denote by qw := E[ψ(Z) | X = w] ∈ RC and
by γw := p(H = · | X = w) ∈ RK the wth rows of Q and Γ, re-
spectively. We estimate the latter distribution following Arora et al.
(2013):

γ̂w = arg min
γw

∥∥∥qw − γ>w R
∥∥∥

2

2

s.t. 1>γw = 1, γw ≥ 0.
(3.14)

Note that this QP is very small—it has only K variables—however the
vocabulary size is typically in the order of 104 ∼ 105 word types, which
we can solve efficiently (1.7 ms on average for each word w, in Gurobi,
with K = 12).

Given the probability tables for p(H = h | X = w), we can estimate
the emission probabilities O by direct application of Bayes’ rule:

Ôw,h =
p(H = h | X = w)× p(X = w)

p(H = h)
(3.15)

=
γ̂w,c ×

Eq. 3.7︷︸︸︷
p̂w

∑w′ γ̂w′ ,c × p̂w′
. (3.16)

These parameters are guaranteed to lie in the probability simplex,
avoiding the need of heuristics for dealing with “negative” and “un-
normalized” probabilities required by prior work in spectral learn-
ing (Cohen et al., 2013c).

3.3.5 Transition Distributions

It remains to estimate the transition matrix T. We propose two meth-
ods for estimating the transition matrix T of the model. The first uses
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relative frequencies directly estimated from annotated data, ignoring
the unannotated data.

For the problems tackled in this chapter, the number of labels K is
small, compared to the vocabulary size V. The transition matrix has
only O(K2) degrees of freedom, and we found it effective to estimate
it using the labeled sequences in DL alone, without any refinement.
This was done by smoothed maximum likelihood estimation on the
labeled data, which boils down to counting occurrences of consecutive
labels, applying add-one smoothing to avoid zero probabilities for un-
observed transitions, and normalizing. Let Mh′ ,h = p(H` = h′, H`−1 =

h), ∀h,h′∈H, so that M ∈ R(K+1)×(K+1), contains an extra row and col-
umn for start/stop probabilities, respectively. The conditional tran-
sition probability matrix T ∈ RK×K can be directly derived from M
through proper normalization (first method):

Th,h′ = p(H` = h|H`−1 = h′) =
Mh,h′

K
∑

h′′=1
Mh′′ ,h′

The start and stop probabilities can also be read off of the appropriate
row and column ( πh = Mh,K+1 and f∗h = MK+1,h).

For problems with numerous labels, a second alternative is the com-
posite likelihood method (Chaganty et al., 2014b).3 Given an emission 3 In the experimental section, the

compositional likelihood method was
not competitive with estimating the
transition matrices directly from the
labeled data, on the datasets described
in Figure 3.3. However, this may be a
viable alternative if there is no labeled
data and the anchors are extracted from
gazetteers or a dictionary.

matrix Ô, the maximization of the composite log-likelihood function
leads to a convex optimization problem that can be efficiently opti-
mized with an EM algorithm. A similar procedure was carried out by
Cohen et al. (2014).

This approach involves a maximization of a pairwise composite
likelihood over pairs of words LCL(X`−1, X`)=p(X`−1, X`) in Eq. 3.17

(Liang et al., 2003; Lindsay, 1988). Composite likelihood, or also known
as pseudo-likelihood (Molenberghs et al., 2006), provide a popular al-
ternative to model the likelihood function, in cases where the full like-
lihood is unavailable or difficult to model. In this model, we look into
pairwise composite likelihoods to account for the transition parame-
ters. Composite likelihoods may be regarded as misspecified likeli-
hoods derived from the model’s independence assumptions.4 Under 4 The misspecification refers to the

conditional independence assumption
that observation are conditionally
independent given the state and each
state only depends on the previous
state, giving rise to a factorization into
pairwise terms.

the model, the pairwise word probability decomposes into p(X`−1=x′,
X`=x) = ∑h,h′ Mh,h′Ox′ ,h′Ox,h.

arg max
M

∑
`

logLCL(X`−1, X`) (3.17)

s. t. 1>M1 = 1, M ≥ 0

Even if the model is misspecified, the maximum composite likelihood
parameter θ = M, O is consistent and asymptotically normal distributed,
with variance equal to the inverse of the Godambe distribution G(θ) =
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Algorithm 4: Get Transitions
Input: O, p̃(X`, X`−1), M0

Run for each iteration:
1: for i, j = 1, . . . , V do

E-Step - Compute state posteriors:
2: p(h, h′, xi, xj) = Mh,h′Oxi ,h′Oxj ,h

3: p(h, h′|xi, xj) =
p(h, h′, xi, xj)

∑
h,h′

p(h, h′, xi, xj)

Update composite likelihood Lcl iteratively for pairs of words

4: Lcl += p̃(xi, xj) log
[
∑h,h′ p(h, h′, xi, xj)

]

M-Step - Update parameters
5: Mh,h′ = p̃(xi, xj)p(h, h′|xi, xj)

6: Normalize to 1T M1 = 1.
7: Get initial π, final f , and transition probabilities T from M.
8: Return: 〈T , π, f ∗〉.

H(θ)J(θ)−1H(θ) (Godambe, 1960), where H(θ) = E[−∇2
θlogLCL] refers

to the sensitivity matrix, and J(θ) = varθ [∇θlog(LCL)] its variability
matrix. When the composite likelihood is the likelihood function, then
H = J and the Godambe information is the same as the Fisher In-
formation matrix I(θ) = varθ(∇θlogp(X)) of the full log-likelihood
function, and the maximum composite likelihood is said to be per-
fectly efficient G = H = I, however this is not true in the most general
case (Varin et al., 2005; Varin et al., 2011). ` ranges over the positions in
the data where a word (or stop symbol ∗) is preceded by another word.
This process can be performed over large amounts of unlabeled data.
The optimization in Eq. 3.17 is convex in M; Algorithm 4 presents an
alternating minimization approach (EM) that finds a global optimum,
in just a few iterations (typically 5-10) (Cohen et al., 2014; Chaganty
et al., 2014b).

3.4 Feature-Based Emissions

Next, we extend our method to estimate the parameters of the FHMM
in §3.2.2. Other than contextual features ψ(Z) ∈ RC, we also assume a
feature encoding function for words, φ(X) ∈ RW . Our framework, il-
lustrated in Algorithm 5, allows for both discrete and continuous word
and context features. Lines 2–4 are the same as in Algorithm 3, replac-
ing word occurrences with expected values of word features (we rede-
fine Q and Γ to cope with features instead of words). The main differ-
ence with respect to Algorithm 3 is that we do not estimate emission
probabilities; rather, we first estimate the mean parameters (feature
expectations E[φ(X) | H = h]), by solving one QP for each emission
feature; and then we solve a convex optimization problem, for each
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Algorithm 5: Semi-Supervised Learning of Feature-Based HMMs with Moments
Input: Labeled dataset DL, unlabeled dataset DU
Output: Emission log-linear parameters Θ and transitions T

1: Estimate context-word moments Q̂ from DU (Eq. 3.21)
2: for each label h ∈ H do
3: Extract set of anchor words A(h) from DL (§3.3.2)

4: Estimate context-label moments R̂ from the anchors and DU (Eq. 3.12)
5: for each word feature j ∈ [W] do
6: Solve the QP in Eq. 3.23 to obtain γj from Q̂, R̂

7: for each label h ∈ H do
8: Estimate the mean parameters µh from Γ (Eq. 3.25)
9: Estimate the canonical parameters θh from µh in Algorithm 6

10: Estimate transitions T from DL
11: Return: Canonical parameters and transition matrix (Θ, T)

label h, to recover the log-linear weights over emission features (called
canonical parameters).

3.4.1 Estimation of Mean Parameters

First of all, we replace word probabilities by expectations over word
features. We redefine the matrix Γ ∈ RW×K as follows:

Γj,h :=
p(H = h)×E[φj(X) | H = h]

E[φj(X)]
. (3.18)

Note that, with one-hot word features, we have E[φw(X) | H = h] =
P(X = w | H = h), E[φw(X)] = p(X = w), and therefore Γw,h =

p(H = h | X = w), so this can be regarded as a generalization of the
framework in §3.3.4. Second, we redefine the context-word moment
matrix Q as the following matrix in RC×W :

Qj,c = E
[
ψc(Z)× φj(X)

]/
E[φj(X)]. (3.19)

Again, note that we recover the previous Q if we use one-hot word
features. We then have the following generalization of Eq. 3.13:

E
[
ψc(Z)× φj(X)

]
/E[φj(X)] = (3.20)

∑h
P(H=h)E[φj(X)|H=h]

E[φj(X)]
E [ψc(Z) | H = h] ,

or, in matrix notation, Q = ΓR.
Again, matrices Q and R can be estimated from data by collecting

empirical feature expectations over unlabeled sequences of observa-
tions. For R use Eq. 3.12 with no change; for Q replace Eq. 3.5 by

Q̂j,c = ∑x,z∈DU
ψc(z)φj(x)

/
∑x∈DU

φj(x). (3.21)
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Let qj ∈ RC and γj ∈ RK be rows of Q̂ and Γ̂, respectively. Note that
we must have

1>γj = ∑
h

P(H=h)E[φj(X)|H=h]
E[φj(X)]

= 1, (3.22)

since E[φj(X)]=∑h P(H = h)E
[
φj(X) | H = h

]
. We rewrite the QP to

minimize the squared difference for each dimension j independently:

γ̂j = arg min
γj

∥∥∥qj − γ>j R
∥∥∥

2

2
s.t. 1>γj = 1. (3.23)

Note that, if φ(x) ≥ 0 for all x ∈ X , then we must have γj ≥ 0, and
therefore we may impose this inequality as an additional constraint.5 5 If we ensure strictly positive con-

straints, then E[φj] will be always
non-zero. However when this constraint
is not specified if qj,i = 0, then the
inequality in Eq. 3.22 may be regarded
as P(H = hi)E

[
φj(X) | H = hi

]
=

E
[
φj(X)

]
, where E

[
φj(X)

]
= 0 and so

E
[
φj(X) | hi

]
= 0.

Let γ̄ ∈ RK be the vector of state probabilities, with entries γ̄h :=
p(H = h) for h ∈ H. This vector can also be recovered from the
unlabeled dataset and the set of anchors, by solving another QP that
aggregates information for all words:

γ̄ = arg min
γ̄

∥∥∥q̄− γ̄>R
∥∥∥

2

2
s.t. 1>γ̄ = 1, γ̄ ≥ 0. (3.24)

where q̄ := Ê[ψ(Z)] ∈ RC is the vector whose entries are defined in
Eq. 3.6.

Let µh := E[φ(X) | H = h] ∈ RW be the mean parameters of
the distribution for each state h. These parameters are computed by
solving W independent QPs (Eq. 3.23), yielding the matrix Γ defined
in Eq. 3.18, and then applying the formula:

µj,h = Γj,h ×E[φj(X)]
/

γ̄h, (3.25)

with γ̄h = p(H = h) estimated as in Eq. 3.24.

3.4.2 Estimation of Canonical Parameters

To compute a mapping from mean parameters µh to canonical param-
eters θh, we use the well-known Fenchel-Legendre duality between
the entropy and the log-partition function (Wainwright et al., 2008).
Namely, we need to solve the following convex optimization problem:

θ̂h = arg max
θh

θ>h µh − log Z(θh) + ε‖θh‖, (3.26)

where ε is a regularization constant.6 In practice, this regularization 6 As shown by Zhu et al. (1999) and
Altun et al. (2006), this regularization
is equivalent, in the dual, to a “soft”
constraint ‖Eθh [φ(X) | H = h]− µh‖2 ≤
ε, as opposed to a strict equality.

is important, since it prevents θh from growing unbounded whenever
µh falls outside the marginal polytope of possible mean parameters.
We solve Eq. 3.26 with the limited-memory BFGS algorithm (Liu et al.,
1989). Algorithm 6 summarizes the procedure.
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Algorithm 6: Get Canonical Parameters
Input: mean paramaters µh

1: Compute sufficient statistics matrix for all words S ∈ RW×V

2: while ‖∇ f (θh)‖2 > tol do
3: Compute the log-partition function

Zh = log ∑
x∈X

exp
(

θ>h φ(x)
)

4: Objective function:
5: f (θh) = θ>h µh − Zh + ε‖θh‖2
6: Compute:

7: pθh (x|h) = exp
(

θ>h φ(x)− Zh

)

8: E∼θh [φ(x)|h] = ∑
x∈X

pθh (x)φ(x)

9: Gradient:
10: ∇ f (θh)← µh −E∼θh [φ(x)|h] + εθh‖θ+ h‖−1

2
11: Update θh using L-BFGS.

12: Return: θ∗h.

3.5 Method Improvements

In this section we detail three improvements to our moment-based
method that had a practical impact.

Supervised Regularization. We add a supervised penalty term to Eq. 3.23

to keep the label posteriors γj close to the label posteriors estimated
in the labeled set, γ′j, for every feature j ∈ [W]. The regularized least-
squares problem becomes:

min
γj

(1− λ)‖qj − γ>j R‖2 + λ‖γj−γ′j‖2

s.t. 1>γj = 1. (3.27)

CCA Projections. A one-hot feature representation of words and con-
texts has the disadvantage that it grows with the vocabulary size, mak-
ing the moment matrix Q too sparse. The number of contextual fea-
tures and words can grow rapidly on large text corpora. Similarly
to Cohen et al. (2014) and Dhillon et al. (2015b), we use canonical
correlation analysis (CCA) to reduce the dimension of these vectors.
We use CCA to form low-dimensional projection matrices for features
of words PW ∈ RW×D and features of contexts PC ∈ RC×D, with
D � min{W, C}. We use these projections on the original feature
vectors and replace the these vectors with their projections.

Selecting Anchors. Algorithms for identifying A(h) from unlabeled
data alone were proposed by Arora et al. (2013) and Zhou et al. (2014).
We propose instead to recover anchors from a small annotated corpus.
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We collect counts of each word-label pair, and select up to 500 anchors
with high conditional probability on the anchoring state p̂(h | w). We
tuned the probability threshold to select the anchors on the validation
set, using steps of 0.1 in the unit interval, and making sure that all tags
have at least one anchor. We also considered a frequency threshold,
constraining anchors to occur more than 500 times in the unlabeled
corpus, and four times in the labeled corpus. Note that past work used
a single anchor word per state (i.e., |A(h)| = 1). The anchor assump-
tion is quite strict, and is usually not satisfied in its most strict sense.
We found that much better results are obtained when |A(h)| � 1, as
choosing more anchors increases the number of samples used to es-
timate the context-label moment matrix R̂, reducing noise. However,
increasing the number of anchors makes it harder to find pure anchors
p(h | A(h)) = 1. In the following experimental sections, we observe
that this trade-off helps empirically.

3.6 Experiments

We evaluated our method on two tasks: POS tagging of Twitter text
(in English), and POS tagging for a low-resource language (Malagasy).
For all the experiments, we used the universal POS tagset (Petrov et
al., 2011), which consists of K = 12 tags. We compared our method
against supervised baselines (HMM and FHMM), which use the la-
beled data only, and two semi-supervised baselines that exploit the
unlabeled data: self-training and EM. For the Twitter experiments,
we also evaluated a stacked architecture in which we derived features
from our model’s predictions to improve a state-of-the-art POS tagger
(MEMM).7 7 http://www.ark.cs.cmu.edu/

TweetNLP/

3.6.1 Twitter POS Tagging

For the Twitter experiment, we used the Oct27 dataset of Gimpel et al.
(2011), with the provided partitions (1,000 tweets for training and 328

for validation), and tested on the Daily547 dataset (547 tweets). Anchor
words were selected from the training partition as described in §3.5.
We used 2.7M unlabeled tweets (O’Connor et al., 2010) to train the
semi-supervised methods, filtering the English tweets as in Lui et al.
(2012), tokenizing them as in Owoputi et al. (2013), and normalizing
at-mentions, URLs, and emoticons.

We used as word features φ(X) the word iself, as well as binary fea-
tures for capitalization, titles, and digits (Berg-Kirkpatrick et al., 2010),
the word shape, and the Unicode class of each character. Similarly to
Owoputi et al. (2013), we also used suffixes and prefixes (up to length
3), and Twitter-specific features: whether the word starts with @, #,

http://www.ark.cs.cmu.edu/TweetNLP/
http://www.ark.cs.cmu.edu/TweetNLP/
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Figure 3.3: POS tagging accuracy in
the Twitter data versus the number of la-
beled training sequences.

or http://. As contextual features ψ(Z), we derive analogous features
for the preceding and following words, before reducing dimensional-
ity with CCA. We collect feature expectations for words and contexts
that occur more than 20 times in the unlabeled corpus. We tuned hy-
perparameters on the development set: the supervised interpolation
coefficient in Eq. 3.27, λ ∈ {0, 0.1, . . . , 1.0}, and, for all systems, the
regularization coefficient ε ∈ {0.0001, 0.001, 0.01, 0.1, 1, 10}. 8 The for- 8 Underlines indicate selected values.

mer controls how much we rely on the supervised vs. unsupervised
estimates. For λ = 1.0 we used supervised estimates only for words
that occur in the labeled corpus; all the remaining words rely solely
on unsupervised estimates.

Varying supervision. Figure 3.3 compares the learning curves of our
anchor-word method for the FHMM with the supervised baselines.
We show the performance of the anchor methods without interpola-
tion (λ = 0), and with supervised interpolation coefficient (λ = 1).
When the amount of supervision is small, our method with and with-
out interpolation outperforms all the supervised baselines. This im-
provement is gradually attenuated when more labeled sequences are
used, with the supervised FHMM catching up when the full labeled
dataset is used. The best model λ = 1.0 relies on supervised estimates
for words that occur in the labeled corpus, and on anchor estimates
for words that occur only in the unlabeled corpus. The unregularized
model λ = 0.0 relies solely on unsupervised estimates given the set of
anchors.

Semi-supervised comparison. Next, we compare our method to two other
semi-supervised baselines, using both HMMs and FHMMs: EM and
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HMM FHMM
Models / #sequences 150 1000 150 1000

Supervised baseline
HMM 71.7 81.1 81.8 89.1
Semi-supervised baselines
EM 77.2 83.1 81.8 89.1
self-training 78.2 86.1 83.4 89.4
Anchor Models
anchors, λ = 0.0 83.0 85.5 84.1 86.7
anchors, λ = 1.0 84.3 88.0 85.3 89.1

Table 3.1: Tagging accuracies on Twit-
ter. Shown are the supervised and semi-
supervised baselines, and our moment-
based method, trained with 150 training
labeled sequences, and the full labeled
corpus (1000 sequences).

self-training. EM requires decoding and counting in multiple passes
over the full unlabeled corpus. We initialized the parameters with the
supervised estimates, and selected the iteration with the best accuracy
on the development set.The FHMM with EM did not perform better
than the supervised baseline, so we consider the initial value as the
best accuracy under this model. The self-training baseline uses the su-
pervised system to tag the unlabeled data, and then retrains on all the
data.

Results are shown in Table 3.1. According to a word-level paired
Kolmogorov-Smirnov test, for the FHMM with 1,000 tweets, the self-
training method outperforms the other methods with statistical signif-
icance at p < 0.01; and for the FHMM with 150 tweets the anchor-
based and self-training methods outperform the other baselines with
the same p-value. Our best HMM outperforms the other baselines at
a significance level of p < 0.01 for 150 and 1000 sequences. We ob-
serve that, for small amounts of labeled data (150 tweets), our method
outperforms all the supervised and semi-supervised baselines, yield-
ing accuracies 6.1 points above the best semi-supervised baseline for
a simple HMM, and 1.9 points above for the FHMM. With more la-
beled data (1,000 instances), our method outperforms all the baselines
for the HMM, but not with the more sophisticated FHMM, in which
our accuracies are 0.3 points below the self-training method.These re-
sults suggest that our method is more effective when the amount of
labeled data is small. We further study the effect of different learning
algorithms for the transition model: estimated from a composite likeli-
hood (CL) and a maximum likelihood (ML) approach in Table 3.2. We
report results on the best emission model (FHMM) with and without
supervised interpolation (λ = 0, λ = 1).

Models / #sequences 150 1000

ML (λ = 1) 85.3 89.1
CL (λ = 1) 79.3 85.5

CL (λ = 0)
9

77.6 84.0

Table 3.2: Anchor learning with tran-
sition model estimated from two meth-
ods ML and CL in (§ 3.3.5) with the best
FHMM anchor emissions.
9 This approach is completely unsu-
pervised assuming we know the set
of anchor words. Anchors can also
be recovered from an unsupervised
approach in (Arora et al., 2013).
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Models / #sequences 150 1000

MEMM (same+clusters) 89.57 93.36
MEMM (same+clusters+posteriors) 91.14 93.18

MEMM (all+clusters) 91.55 94.17
MEMM (all+clusters+posteriors) 92.06 94.11

Table 3.3: Tagging accuracy for the
MEMM POS tagger of Owoputi et al.
(2013) with additional features from our
model’s posteriors.

Stacking features. We also evaluated a stacked architecture in which
we use our model’s predictions as an additional feature to improve the
state-of-the-art Twitter POS tagger of Owoputi et al. (2013). This sys-
tem is based on a semi-supervised discriminative model with Brown
cluster features (Brown et al., 1992). We provide results using their full
set of features (all), and using the same set of features in our anchor
model (same). We compare tagging accuracy on a model with these
features plus Brown clusters (+clusters) against a model that also incor-
porates the posteriors from the anchor method as an additional feature
in the MEMM (+clusters+posteriors). The results in Table 3.3 show that
using our model’s posteriors are beneficial in the small labeled case,
but not if the entire labeled data is used.

Runtime comparison. The training time of anchor FHMM is 3.8h (hours)
and 4h with composite likelihood transitions, for self-training HMM
10.3h, for EM HMM 14.9h and for Twitter MEMM (all+clusters) 42h.
As such, the anchor method is much more efficient than all the base-
lines because it requires a single pass over the corpus to collect the
moment statistics, followed by the QPs, without the need to decode
the unlabeled data. EM and the Brown clustering method (the latter
used to extract features for the Twitter MEMM) require several passes
over the data; and the self-training method involves decoding the full
unlabeled corpus, which is expensive when the corpus is large. Our
analysis adds to previous evidence that spectral methods are more
scalable than learning algorithms that require inference (Parikh et al.,
2012b; Cohen et al., 2013c).

3.6.2 Malagasy POS Tagging

In this section, we provide results using a low resource language,
Malagasy, for which there is a small amount of annotations. For the
Malagasy experiment, we used the small labeled dataset from Garrette
et al. (2013), which consists of 176 sentences and 4,230 tokens. We also
make use of their tag dictionaries with 2,773 types and 23 tags, and
their unlabeled data (43.6K sequences, 777K tokens). We converted all
the original POS tags to universal tags using the mapping proposed in
Garrette et al. (2013).

Table 3.4 compares our method with semi-supervised EM and self-
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Models Accuracies
supervised FHMM 90.5
EM FHMM 90.5
self-training FHMM 88.7
anchors FHMM (token), λ=1.0 89.4
anchors FHMM (type+token), λ=1.0 90.9

Table 3.4: Tagging accuracies for the
Malagasy dataset.

training, for the FHMM. Note that the accuracies are not directly com-
parable to Garrette et al. (2013), who use a different tag set. However,
our supervised baseline trained on those tags is already superior to the
best semi-supervised system in Garrette et al. (2013), as we get 86.9%
against the 81.2% reported in Garrette et al. (2013) using their tagset.
We tested two supervision settings: token only, and type+token anno-
tations, analogous to Garrette et al. (2013). The anchor method out-
performed the baselines when both type and token annotations were
used to build the set of anchor words.In this task our method took
approximately 5 minutes to train.

3.7 Conclusions

In this chapter, we introduced an efficient semi-supervised sequence
labeling method using a generative log-linear model. We use con-
textual information from a set of anchor observations to disambiguate
state, and build a weakly supervised method from this set. The pro-
posed method outperforms other supervised and semi-supervised meth-
ods, with small supervision in POS-tagging for Malagasy, a scarcely
annotated language, and for Twitter. The anchor method is most com-
petitive for learning with large amounts of unlabeled data, under weak
supervision, while training an order of magnitude faster than any of
the baselines.



sequence labeling with method of moments 79

xs



4
Planning with Kernel Methods

In this chapter, we combine optimization based planning with kernel
methods. We introduce a functional gradient descent trajectory opti-
mization algorithm for robot motion planning in Reproducing Kernel
Hilbert Spaces (RKHSs). This work generalizes functional gradient tra-
jectory optimization by formulating it as minimization of a cost func-
tional in an RKHS. This generalization lets us represent trajectories as
linear combinations of kernel functions, without any need for way-
points. As a result, we are able to take larger steps and achieve a
locally optimal trajectory in just a few iterations.

In Section 4.2, we define trajectories in RKHSs, Section 4.3 describes
the optimization algorithm, Section 4.4 demonstrates the benefits of
optimizing under RKHSs norm as an inherently efficient space, Sec-
tion 4.6 describes different forms of representing the obstacle avoid-
ance functional and Section 4.7 provides an empirical analysis of the
effectiveness of the planner for different kernels, including Gaussian
RBFs, Laplacian RBFs, and B-splines, as compared to the standard dis-
cretized waypoint representation.

4.1 Motivation

Motion planning is an important component of robotics: it ensures
that robots are able to safely move from a start to a goal configuration
without colliding with obstacles. Trajectory optimizers for motion plan-
ning focus on finding feasible configuration-space trajectories that are
also efficient—e.g., approximately locally optimal for some cost func-
tion. Many trajectory optimizers have demonstrated great success in a
number of high-dimensional real-world problems (Quinlan et al., 1993;
Schulman et al., 2013; Todorov et al., 2005; Berg et al., 2011). Often,
they work by defining a cost functional over an infinite-dimensional
Hilbert space of trajectories, then taking steps down the functional gra-
dient of cost to search for smooth, collision-free trajectories (Zucker et
al., 2013; Ratliff et al., 2009).
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In this work, we exploit the same functional gradient approach,
but with a novel approach to trajectory representation. While previ-
ous algorithms are derived for trajectories in Hilbert spaces in the-
ory, in practice they commit to a finite parametrization of trajecto-
ries in order to instantiate a gradient update (Zucker et al., 2013;
Park et al., 2012; Kalakrishnan et al., 2011)—typically a large but fi-
nite list of discretized waypoints. The number of waypoints is a pa-
rameter that trades off between computational complexity and trajec-
tory expressiveness. Our work frees the optimizer from a discrete
parametrization, enabling it to perform gradient descent on a much
more general trajectory parametrization: reproducing-kernel Hilbert
spaces (RKHSs) (Scholkopf et al., 2001; Kimeldorf et al., 1971; Aron-
szajn, 1950), of which waypoint parametrizations are merely one in-
stance. RKHSs impose just enough structure on generic Hilbert spaces
to enable a concrete and implementable gradient update rule, while
leaving the choice of parametrization flexible: different kernels lead to
different geometries (§ 4.2).

Our contribution is two-fold. Our theoretical contribution is the for-
mulation of functional gradient descent motion planning in RKHSs,
as the minimization of a cost functional regularized by the RKHS
norm (§ 4.3). Regularizing by the RKHS norm is a common way to
ensure smoothness in function approximation (Hofmann et al., 2008),
and we apply the same idea to trajectory parametrization. By choos-
ing the RKHS appropriately, the trajectory norm can quantify different
forms of smoothness or efficiency, such as preferring small values for
any n-th order derivative (Yuan et al., 2010). So, RKHS norm regu-
larization can be tuned to prefer trajectories that are smooth with, for
example, low velocity, acceleration, or jerk (§ 4.4) (Rawlik et al., 2013).

Our practical contribution is an algorithm for very efficient motion
planning in inherently smooth trajectory space with low-dimensional
parametrizations. Unlike discretized parametrizations, which require
many waypoints to produce smooth trajectories, our algorithm can
represent and search for smooth trajectories with only a few point eval-
uations. The inherent smoothness of our trajectory space also increases
efficiency; our parametrization allows the optimizer to take large steps
at every iteration without violating trajectory smoothness, therefore
converging to a collision-free and high-quality trajectory faster than
competing approaches.

Our experiments demonstrate the effectiveness of planning in RKHSs
using synthetic 2D environment, with a 3-DOF planar arm, and using
more complex scenarios, with a 7-DOF robotic arm. We show how
different choices of kernels yield different preferences over trajecto-
ries. We further introduce reproducing kernels that represent interac-
tions among joints. Sections 4.6 and 4.7 illustrate these advantages of
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RKHSs, and compare different choices of kernels.

4.2 Trajectories in Reproducing Kernel Hilbert Spaces

A trajectory is a function ξ ∈ H such that H ⊆ {ξ : [0, 1]→ C} defines
a space of functions that map time t ∈ [0, 1] to robot configurations
ξ(t) ∈ C ≡ RD. Note that ξ ∈ H is a trajectory, a vector valued func-
tion in the RKHS, while ξ(t) ∈ C is a trajectory evaluation at a single
time point corresponding to a robot configuration. We can treat a set of
trajectories as a Hilbert space by defining vector-space operations such
as addition and scalar multiplication of trajectories (Kreyszig, 1978).

In this work, we restrict to trajectories in Reproducing Kernel Hilbert
Spaces. We can upgrade our Hilbert space to an RKHS H by assum-
ing additional structure: for any y ∈ C and t ∈ [0, 1], the functional
ξ 7→ y>ξ(t) must be continuous (Scholkopf et al., 2001; Wahba, 1999;
Ratliff et al., 2007). Note that, since the configuration space is typically
multidimensional (D > 1), our trajectories form an RKHS of vector-
valued functions (Micchelli et al., 2005), defined by the above property.
Vector-valued RKHSs describe a direct approach to model different
views, or dimensions of the same input data. In contrast, real-valued
RKHS could describe the same input information using different inde-
pendent real-valued functions. However, it is often useful to consider
the interactions of these different views/dimensions when learning
the mapping from input to output data, and one of these cases is the
problem studied in this chapter, of robot pose modeling.

Depending on whether the chosen RKHS describes real or vector-
valued functions, we may select a corresponding vector or matrix val-
ued kernel, depending on whether we are interested in modeling a
single dimension or their dependencies, respectively. For instance, in
a robot setting we are interested in reproducing kernels with contin-
uous properties such as C∞ spaces whose velocities, acceleration and
higher order derivatives are also continuous, such as the Gaussian RBF
kernel.

The reproducing kernel associated with a vector valued RKHS be-
comes a matrix valued kernel K : [0, 1]× [0, 1] → C × C. Eq. 4.1 repre-
sents the kernel matrix for two different time instances:

K(t, t′) =




k1,1(t, t′) k1,2(t, t′) . . . k1,D(t, t′)
k2,1(t, t′) k2,2(t, t′) . . . k2,D(t, t′)

...
. . .

...
kD,1(t, t′) kD,2(t, t′) . . . kD,D(t, t′)




(4.1)

This matrix has a very intuitive physical interpretation. Each element
in Eq. 4.1, kd,d′(t, t′) tells us how joint [ξ(t)]d at time t affects the motion
of joint [ξ(t′)]d′ at t′, i.e. its degree of correlation or similarity between
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the two (joint,time) pairs. In practice, off-diagonal terms of Eq. 4.1 will
not be zero, hence perturbations of a given joint d propagate through
time, as well as through the rest of the joints. The norm and inner
product defined in a vector-valued RKHS can be written in terms of
the kernel matrix, via the reproducing property: trajectory evaluation
can be represented as an inner product of the vector valued functions
in the RKHS, as described in Eq. 4.2 below. For any configuration
y ∈ C, and time t ∈ [0, 1], we get the inner product of y with the
trajectory in the vector-valued RKHS evaluated at time t:

y>ξ(t) = 〈ξ, K(t, ·)y〉H, ∀y ∈ C (4.2)

In our planning algorithm we will represent a trajectory in the
RKHS in terms of some finite support {ti}N

i=1 ∈ T . This set grows
adaptively as we pick more points to represent the final trajectory. At
each step our trajectory will be a linear combination of functions in the
RKHS, each indexed by a time-point in T , see Figure 4.1:

ξ (0)

ξ (1)

t1
t2

t3

t4
t5

Figure 4.1: Trajectory in RKHS as lin-
ear combination of kernel functions. At
each iteration, the optimizer takes the
current trajectory (black) and identifies
the point of maximum obstacle cost
ti (orange points). It then updates the
trajectory by a point evaluation function
centered around ti . Grey regions depict
isocontours of the obstacle cost field
(darker means closest to obstacles,
higher cost). Black arrows show reduce
operation with 5 max-cost points.

y>ξ(t) = ∑
ti∈T

y>K(t, ti)ai (4.3)

for t, ti ∈ [0, 1], and ai ∈ C. If we consider the configuration vector
y ≡ ed to be the indicator of joint d, then we can capture its evolution
over time as: [ξ(t)]d = ∑i e>d K(t, ti)ai, taking into account the effect
of all other joints. The inner product in H of functions y>ξ1(t) =

∑i y>K(t, ti)ai and y>ξ2(t) = ∑j y>K(t, tj)bj, for y, ai, bj ∈ C is de-
fined as:

〈ξ1, ξ2〉H = ∑
i,j

a>i K(ti, tj)bj (4.4)

‖ξ‖2
H = 〈ξ, ξ〉 = ∑

i,j
a>i K(ti, tj)aj (4.5)

For example, in the Gaussian RBF RKHS (with kernel kd,d′(t, t′) =

exp(‖t − t′‖2/2σ2), when d′ = d and 0 otherwise), a trajectory is a
weighted sum of radial basis functions:

ξ(t) =∑
d,i

ai,d exp
(‖t− ti‖2

2σ2

)
ed, ai,d ∈ R (4.6)

The coefficients ai,d assess how important a particular joint d is to the
overall trajectory, at time ti. They can be interpreted as weights of
local perturbations to the motions of different joints centered at differ-
ent times. Interactions among joints, as described in Eq. 4.1, can be
represented for instance using a kernel matrix of the form :

K(t, t′) = exp
(‖t− t′‖2

2σ2

)
J> J ∈ RD×D (4.7)
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where J ∈ R3×D represents the workspace Jacobian matrix at a fixed
configuration. This strategy changes the RKHS metric in configuration
space according to the robot Jacobian in the workspace. This norm
can be interpreted as an approximation of the velocity of the robot
in workspace (Ratliff et al., 2015). The trajectory norm measures the
size of the perturbations, and the correlation among them, quantifying
how complex the trajectory is in the RKHS, see Section 4.4. Different
norms can be considered for representing the RKHS; this can leverage
more problem-specific information, which could reduce the number of
iterations required to find a low cost trajectory.

4.3 Motion Planning in an RKHS

In this section, we describe how trajectory optimization can be achieved
by functional gradient descent in an RKHS of trajectories.

4.3.1 Cost Functional

We introduce a cost functional U : H → R that maps each trajectory
to a scalar cost. This functional quantifies the quality of a given a
trajectory (function in the RKHS). U trades off between a regulariza-
tion term that measures the efficiency of the trajectory, and an obstacle
term that measures its proximity to obstacles:

U [ξ] = Uobs[ξ] +
β

2
‖ξ‖2

H (4.8)
✓1(t)

✓2(t)
✓3(t)

x1

x2

W

⇠(t) =

0
@
✓1(t)
✓2(t)
✓3(t)

1
A 2 C

u 2 B

Figure 4.2: 3-link arm robot in 2D
workspace. Robot configuration in
red C, robot points in orange B. Grey
regions depict the obstacle cost field in
workspaceW (darker means closest to
obstacles, higher cost).

As described in Section 4.4, we choose our RKHS so that the regu-
larization term encodes our desired notion of smoothness or trajectory
efficiency—e.g., minimum length, velocity, acceleration, jerk. The ob-
stacle cost functional is defined on trajectories in configuration space,
but obstacles are defined in the robot’s workspace W ≡ R3. So, we
connect configuration space to workspace via a forward kinematics map
x: if B is the set of body points of the robot, then x : C × B → W tells
us the workspace coordinates of a given body point when the robot
is in a given configuration in Figure 4.2. We can then decompose the
obstacle cost functional as:

Uobs[ξ] ≡ reduce
t,u

c (x(ξ(t), u)) (4.9)

where reduce is an operator that aggregates costs over the entire trajec-
tory and robot body—e.g., a maximum or an integral, see Section 4.6.
We assume that the reduce operator takes (at least approximately) the
form of a sum over some finite set of (time, body point) pairs T (ξ):

Uobs[ξ] ≈ ∑
(t,u)∈T (ξ)

c (x(ξ(t), u)) (4.10)
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For example, the maximum operator takes this form: if (t, u) achieves
the maximum, then T (ξ) is the singleton set {(t, u)}, in Figure 4.1.
Integral operators do not take this form, but they can be well approxi-
mated in this form using quadrature rules, see Section 4.6.2.

4.3.2 Optimization

We can derive the functional gradient update by minimizing a local
linear approximation of U in Eq. 4.8:

ξn+1 =arg min
ξ
〈ξ − ξn,∇U [ξn]〉H +

λ

2
‖ξ − ξn‖2

H (4.11)

The quadratic term is based on the RKHS norm, meaning that we
prefer “smooth” updates, analogous to Zucker et al. (2013).

Figure 4.3: Iterative trajectory update
with gradient descent. Each term is a
sum of kernel functions in the RKHS.

This minimization admits a solution in closed form:

ξn+1(·) =
(

1− β

λ

)
ξn(·)− 1

λ
∇Uobs[ξ

n](·) (4.12)

Since we have assumed that the cost functional Uobs[ξ] depends only
on a finite set of points T (ξ) (Eq. 4.10), it is straightforward to show
that the functional gradient update has a finite representation (so that
the overall trajectory, which is a sum of such updates, also has a finite
representation, in Figure 4.3). In particular, assume the workspace cost
field c and the forward kinematics function x are differentiable; then
we can obtain the cost functional gradient by the chain rule (Ratliff
et al., 2007; Scholkopf et al., 2001):

∇Uobs(·) = ∑
(t,u)∈T

K(·, t) J>(t, u)∇c(x(ξ(t), u)) (4.13)

where J(t, u) = ∂
∂ξ(t) x(ξ(t), u) ∈ R3×D is the workspace Jacobian ma-

trix at time t for body point u, and the kernel function K(·, t) is the
gradient of ξ(t) with respect to ξ. The kernel matrix is defined in
Eq. 4.1.

This solution is a generic form of functional gradient optimization
with a directly instantiable obstacle gradient that does not depend on a
predetermined set of waypoints, offering a more expressive represen-
tation with fewer parameters. We derive a constrained optimization
update rule, by solving the KKT conditions for a vector of Lagrange
multipliers, see Section 4.3.3. The full method is summarized as Algo-
rithm 7.

4.3.3 Constrained optimization

Consider equality constraints (fixed start and goal configurations) and
inequality constraints (joint limits) on the trajectory h(ξ(t)) = 0, g(ξ(t)) ≤
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Algorithm 7: Trajectory optimization in RKHSs
Input:

(
N, c,∇c, ξ(n)(0), ξ(n)(1)

)

1: for all each joint angle d ∈ D do
2: Initialize to a straight line trajectory

ξ0
d(t) = ξd(0) + (ξd(1)− ξd(0))t.

3: while (U [ξn] > ε and n < NMAX) do
4: Compute Uobs[ξ

n] Eq. 4.13.
5: Find the support of time/body points
T (ξ) = {ti, ui}, i = 1, . . . , N Eq. 4.10.

6: for all (ti, ui)
N
i=1 ∈ T (ξ) do

7: Evaluate the cost gradient ∇c(ξ(ti), ui) and Jacobian J(ti, ui)

8: Update trajectory:
ξn+1 = (1− β

λ )ξ
n − 1

λ ∑
(t,u)∈T

K(·, t) J>(t, u)∇c(x(ξ(t), u))

9: If constraints are present, project onto constraint set Eq. 4.16.

10: Return: Final trajectory ξ∗ and costs ‖ξ∗‖2
H,Uobs[ξ

∗].

0, respectively. We write them as inner products with kernel functions
in the RKHS Eq. 4.14. For any configuration y ∈ C, qo, qp ∈ C and
to = {0, 1}, tp = [0, 1]

h(·)>y = 〈ξ, K(to, ·)y〉H − q>o y = 0, (4.14)

g(·)>y = 〈ξ, K(tp, ·)y〉H − q>p y ≤ 0. (4.15)

Let, γo, µp ∈ RD be the concatenation of all equality (γo) and in-
equality (µp) Lagrange multipliers. We rewrite the objective function
in Eq. 4.11 including joint constraints:

ξn+1(·) = arg min
ξ
〈ξ − ξn,∇U [ξn]〉H +

λ

2
‖ξ − ξn‖2

H + γo>h[ξ] + µp>g[ξ]

(4.16)

Solving the KKT system for the stationary point of Eq. 4.16 (ξ, γo, µp)
with µp ≥ 0, we obtain the constrained solution in Eq. 4.17. Let dcj ≡
J>(tj, uj)∇c

(
x(ξn(tj), uj)

)
∈ RD. The full update rule becomes:

ξ∗(·) =
(

1− β

λ

)
ξn(·)− 1

λ

(
∑

tj∈T
K(·, tj)dcj + K(·, to)γo + K(·, tp)µ

p

)
(4.17)

This constrained solution ends up augmenting the finite support set
(T ) with points that violate the constraints, weighted by the respective
Lagrange multipliers. Each of the multipliers can be interpreted as a
quantification of how much the points to or tp affect the overall trajec-
tory over time and joint space.

Efficient Constraint Update

We consider the sets of max points in the support set T , equality con-
straint violation points (endpoints) To and inequality violation points
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(joint limits) Tp. We recover the Lagrange multipliers in Eq. 4.17 by
solving Eq. 4.18.

[
K(To, To) K(To, Tp)

K(To, Tp)> K(Tp, Tp)

] [
γo

µp

]
(4.18)

=

[
(λ− β) ξn(To) + dc>j K(T , To)− qo

(λ− β) ξn(Tp) + dc>j K(T , Tp)− qp

]
≡
[

h(To)

g(Tp)

]

To solve the system efficiently we make use of the reproducing
property K(To, To) = K(To, Tp)K(Tp, Tp)−1K(To, Tp)>, and the fact
that we use use a separable kernel K(ti, tj) = k(ti, tj)⊗ J> J.

K(Tp, Tp)−1 = k(Tp, Tp)−1 ⊗ (J> J)−1

µp = K(Tp, Tp)−1g(Tp) (4.19)

γo = (To, To)−1 (h(To)− K(To, Tp)µp)

4.4 Trajectory Efficiency as Norm Encoding in RKHS

In different applications, it is useful to consider different notions of
trajectory efficiency or smoothness. We can do so by choosing ap-
propriate kernel functions that have the desired property, and conse-
quently desired induced norm/metric. In Figure 4.4 we empirically
show how the kernel choice can impact on the resulting trajectory, we
demonstrate how after just one update different kernels yield differ-
ent trajectories. Later we study this effect on more complex scenarios.
For instance, we can choose a kernel according to the topology of the
obstacle field, or we can learn a kernel from demonstrations or user in-
put, bringing problem specific information into the planning problem.
This can help improve efficiency of the planner. Another possibility
is to tune the resolution of the kernel via its width. We could build a
kernel with adaptive width according to the environment, i.e., higher
sensitivity (lower width) in cluttered scenarios.

Figure 4.4: 2D trajectory with large
steps (1 it. 5 max-cost points in white)
Trajectory profile using different kernels
in order (top-down): Gaussian RBF,
B-splines, Laplacian RBF kernels, and
waypoints.

Additionally, it is often desirable to penalize the velocity, accelera-
tion, jerk, or other derivatives of a trajectory instead of (or in addition
to) its magnitude. To do so, we can take advantage of a derivative re-
producing property: let H1 be one of the coordinate RKHSs from our
trajectory representation, with kernel k. If k has sufficiently many con-
tinuous derivatives, then for each partial derivative operator Dα, there
exist representers (Dαk)t ∈ H1 such that, for all f ∈ H1, (Dα f )(t) =

〈(Dαk)t, f 〉 (Zhou, 2008, Theorem 1). (Here α is a multi-set of indices,
indicating which partial derivative we are referring to.) We can, there-
fore, define a new RKHS with a norm that penalizes the partial deriva-
tive Dα: the kernel is kα(t, t′) = 〈(Dαk)t, (Dαk)t′〉. If we use this RKHS
norm as the smoothness penalty for the corresponding coordinate of
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our trajectories, then our optimizer will automatically seek out trajec-
tories with low velocity, acceleration, or jerk in this coordinate.

For example, consider an RBF kernel with a reproducing first or-
der derivative: D1k(t, ti) = D1kti [t] =

(t−ti)
2σ2 k(t, ti) is the reproducing

kernel for the velocity profile of a trajectory defined in an RBF kernel
space k(t, ti) = 1√

2πσ2 exp(−‖t − ti‖2/2σ2). The velocity profile of a

trajectory ξ(t) = ∑i βik(t, ti) can be written as D1ξ(t) = ∑i βiD1k(t, ti).
The trajectory can be found by integrating D1ξ(t) once and using the
constraint ξ(0) = qi.

ξ(T) =
T∫

0

D1ξ(t)dt = ∑
i

βi

T∫

0

(t− ti)

2σ2 k(t, ti)dt (4.20)

= ∑
i

βi [k(T, ti)− k(0, ti)] + qi

The initial condition is verified automatically. The endpoint condition
can be written as q f = ∑i βi [k(1, ti)− k(0, ti)] + qi; this imposes addi-
tional information over the coefficients βi ∈ C, which we can enforce
during optimization.

Here, we explicitly consider only a space of first derivatives, but
extensions to higher order derivatives can be derived similarly inte-
grating p times to obtain the trajectory profile. Constraints over higher
derivatives (up to order n), can be enforced using any constraint pro-
jection method, inside our gradient descent iteration. The update rule
in this setting can be derived using the natural gradient in the space,
where the new obstacle gradient becomes:

∇Uobs(·) =
n

∑
α

∑
(t,u)∈T

DαK(·, t) J>(t, u)∇c( x(ξ(t), u) ) (4.21)

Although Gaussian RBFs are a default choice of kernel in many kernel
methods, RKHSs can also easily represent other types of kernel func-
tions. For example, B-splines are a popular parametrization of smooth
functions (Zhang et al., 1995; Pan et al., 1995; Blake et al., 1998), that
are able to express smooth trajectories while avoiding obstacles, even
though they are finite-dimensional kernels.

Regularization schemes in different RKHSs may encode different
forms of trajectory efficiency. Here we proposed a different norm using
derivative penalization. The choice of kernel should be application
driven, and any reproducing kernel can easily be considered under
the optimization framework presented here.

Other RKHS norms may be defined as sums, products, tensor prod-
uct of kernels, or any closed kernel operation.
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4.4.1 Finite approximation of Path Integral Cost

Trajectory optimization in RKHSs can be derived for different types of
obstacle cost functionals, provided that trajectories have a finite repre-
sentation.

Previous work defines an obstacle cost in terms of the arc-length in-
tegral of the trajectory (Zucker et al., 2013). We approximate the path
integral cost functional with a finite representation using integral ap-
proximation methods, such as quadrature methods (Press et al., 1992).
Consider a set of finite time points ti ∈ T to be the abscissas of an
integral approximation method. We use a Gauss-Legendre quadrature
method, and represent ti as roots of the Legendre polynomial Pn(t) of
degree n. Let wi be the respective weights on each cost sample:

Uobs[ξ] =

1∫

0

c [ξ(t)]
∥∥∥D1ξ(t)

∥∥∥ dt ≈ ∑
ti∈T

ωi c [ξ(ti)]
∥∥∥D1ξ(ti)

∥∥∥ (4.22)

with coefficients, and the Legendre polynomials obtained recursively
from Rodrigues’ Formula (Press et al., 1992):

Pn = 2n
n

∑
j=0

tj
(

n
j

)( n+j−1
2
n

)

wi =
2(

1− t2
i
)
[D1Pn(ti)]2

We denote D1 ≡ d
dt the first order time derivative. Using this notation,

we are able to work with integral functionals, using still a finite set of
time points to represent the full trajectory.

4.5 Kernel Metric in RKHS

The norm provides a form of quantifying how complex a trajectory is
in the space associated with the RKHS kernel metric K. The kernel
metric is determined by the kernel functions we choose for the RKHS,
as we have seen before (§ 4.4). Likewise, the set of time points T that
support the trajectory contribute to the design of the kernel metric:

‖ξ‖2
H = ∑

d,d′
∑

ti ,tj∈T
ad,ikd,d′(ti, tj)ad′ ,j (4.23)

= ∑
ti ,tj∈T

a>i K(ti, tj)aj′ , ai, aj ∈ RD

= a>K(T , T )a, a ∈ RDN

Here, a is the concatenation of all coefficients ai over T , |T | = N.
K(T , T ) ∈ RDN×DN is the Gram matrix for all time points in the sup-
port of ξ, and all joint angles of the robot. This matrix expresses the
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degree of correlation or similarity among different joints throughout
the time points in T . It can be interpreted, alternatively, as a tensor
metric in a Riemannian manifold (Amari, 1998; Ratliff et al., 2015).
Its inverse is the key element that bridges the gradient of functional
cost ∇U (gradient in the RKHS, Eq.4.13 ), and its conventional gradi-
ent (Euclidean gradient).This makes the process covariant (invariant to
reparametrization).

∇U = K−1(T , T )∇E U (4.24)

The minimizer of the full functional cost U has a closed form solution
in Eq. 4.12, where the gradient∇U is the natural gradient in the RKHS.
This can be seen as a warped version of the obstacle cost gradient
according to the RKHS metric.

4.5.1 Waypoint Parametrization as an Instance of RKHS

Consider a general Hilbert space of trajectories ξ ∈ Ξ, (not necessar-
ily an RKHS) equipped with an inner product 〈ξ1, ξ2〉Ξ = ξT

1 Aξ2. In
the waypoint representation (Zucker et al., 2013), A is typically the
Hessian matrix over points in the trajectory, which makes the norm in
ξ penalize unsmooth and inefficient trajectories, in the sense of high
acceleration trajectories.

The minimization under this norm ‖ξ‖A =
√

ξT Aξ performs a line
search over the negative gradient direction, where A dictates the shape
of the manifold over trajectories.

(a) Trajectory as linear combination of
A−1δ functions.

(b) Trajectory as linear combination of
four Gaussian RBF functions.

Figure 4.5: Trajectory as linear combi-
nation of kernel functions for 1 DoF.

This work generalizes the waypoint parameterization: we can rep-
resent waypoints by representing the trajectory in terms of delta Dirac
basis functions 〈ξ, δ(t, ·)〉 = ξ(t) with an additional smoothness met-
ric A. Without A, each individual point is allowed to change without
affecting points in the vicinity. Previous work overcame this caveat by
introducing a new metric that propagates changes of a single point in
the trajectory to all the other points. Kernel evaluations in this case
become k(ti, ·) = A−1δ(ti, ·), where ξ(t) = ∑i ai A−1δ(ti, ·). The inner
product of two functions is defined as 〈ξ1, ξ2〉A = ∑i,j aibi A−1δ(ti, ti).
Here, δ(ti, ·) represents the finite dimensional delta function which is
one for point ti and zero for all the other points. A trajectory in the
waypoint representation becomes a linear combination of the columns
of A−1. Columns of A−1 dictate how the corresponding point will
affect the full trajectory, in Figure 4.5a. For an arbitrary kernel rep-
resentation the behaviour of these points over the full trajectory are
associated with the kernel functions associated with the space. For
radial basis functions the trajectory is represented as Gaussians cen-
tered at a set of chosen time points (fewer in practice) instead of the
full trajectory waypoints in Figure 4.5b. In this sense, we have a more
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compact trajectory representation using RKHSs.

4.6 Cost Functional Analysis

Next, we analyze how the cost functional (different forms of the reduce
operation in Section 4.3.1) affects obstacle avoidance performance and
the resulting trajectory (§ 4.6).

We adopt a maximum cost version (§ 4.6.1), and an approximate
integral cost version of the obstacle cost functional (§ 4.6.2). Other
variants could be considered, providing the trajectory support remains
finite, but we leave this as future work. Additionally, we compare the
two forms against a more commonly used cost functional, the path
integral cost (Ratliff et al., 2009), and we show our formulations per-
form comparably, while being faster to compute (§ 4.6.3). Based on
these experiments, in the remaining sections we consider only the max-
cost formulation, which we believe represents a good tradeoff between
speed and performance.

4.6.1 Max-Cost Formulation

The maximum obstacle cost penalizes body points that pass too close
to obstacles, i.e. high cost regions in workspace (regions inside/near
obstacles). This maximum cost version of the reduce operation, con-
sidered in Eq. 4.9, can be described as picking time and body points
(sampling) deepest inside or closest to obstacles, see Figure 4.1.

The sampling strategy for picking time points to represent the tra-
jectory cost can be chosen arbitrarily, and further improved for time
efficiency. We consider a simple version, where we sample points
uniformly along sections of the trajectory, and choose N maximum
violating points, one per section. This max-cost strategy allows us
to represent trajectories in terms of a few points, rather then a set of
finely discretized waypoints. This is a simplified version of the obsta-
cle cost functional that yields a more compact representation (Ratliff
et al., 2009; Park et al., 2012; Kalakrishnan et al., 2011).

4.6.2 Integral Cost Formulation

Instead of scoring a trajectory by the maximum of obstacle cost over
time and body points, it is common to integrate cost over the entire
trajectory and body, with the trajectory integral weighted by arc length
to avoid velocity dependence (Zucker et al., 2013). While this path
integral depends on all time and body points, we can approximate
it to high accuracy from a finite number of point evaluations using
numerical quadrature (Press et al., 1992). T (ξ) then becomes the set
of abscissas of the quadrature method, which can be adaptively chosen
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on each time step (e.g., to bracket the top few local optima of obstacle
cost), see Section 4.4.1. In our experiments, we have observed good
results with Gauss-Legendre quadrature.
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(a) Uobs, Integral vs Max-cost.
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(b) Uobs, Approx integral vs Max-cost.

Figure 4.6: a) The integral costs
after 5 large steps comparing using
Gaussian RBG kernels vs. using the
integral formulation (with waypoints).
b) Gaussian RBF kernel integral cost
using our max formulation vs. the
approximate quadrature cost (20 points,
10 iterations).

4.6.3 Integral vs. Max-Cost Formulation

We show that the max-cost does not hinder the optimization— that
it leads to practically equivalent results as an integral over time and
body points (Zucker et al., 2013). To do so, we manipulate the cost
functional formulation, and measure the resulting trajectories’ cost in
terms of the integral formulation. Figure 4.6a shows the comparison:
the integral cost decreased by only 5% when optimizing for the max.

Additionally we tested the max-cost formulation against the ap-
proximate integral cost using a Gauss-Legendre quadrature method.
We performed tests over 100 randomly sampled scenarios and mea-
sured the final obstacle cost after 10 iterations. We used 20 points to
represent the trajectory in both cases. Figure 4.6b shows the approxi-
mate integral cost formulation is only 8% above the max approach.

4.7 Experimental Results

In what follows, we compare the performance of RKHS trajectory
optimization vs. a discretized version (CHOMP) on a set of motion
planning problems in a 2D world for a 3 DOF link planar arm as in
Figure 4.7, and how different kernels with different norms affect the
performance of the algorithm (§ 4.7.1). We then introduce a series of
experiments that illustrate why RKHSs improve optimization (§ 4.7.2).

4.7.1 RKHS with various Kernels vs. Waypoints

For our main experiment, we systematically evaluate different parametriza-
tions across a series of planning problems. We manipulate the parametriza-
tion (waypoints vs different kernels) as well as the number of iterations
(which we use as a covariate in the analysis). Qualitatively, we opti-
mize the stepsize for all methods over 10 iterations. We also select a
stepsize that best performs in 10 iterations and we keep this param-
eter fixed and constant between methods σ = 0.9. To control for the
cost functional as a confound, we use the max formulation for both
parameterizations. We use iterations as our covariate because they
are a natural unit in optimization, and because the amount of time
per iteration is similar: the computational bottleneck in all methods is
computing the maximum penetration points. We measure the obstacle
and smoothness cost of the resulting trajectories. For the smoothness
cost, we use the norm in the waypoint parametrization as opposed to
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Figure 4.7: Robot 3DoF. Start and end
configuration of 3-link arm in red, in-
termediate configurations in grey, end-
effector colored in orange for Gaus-
sian RBF kernel (top-left), in brown for
B-splines kernel (top-right), in green
for Laplacian RBF kernel (bottom-
left), in blue for waypoints (bottom-
right).Trajectory after 10 iterations. Iso-
contours of obstacle cost field shaded in
grey (darker for higher cost).

the norm in the RKHS as the common metric, to avoid favoring our
new methods.

We use 100 different random obstacle placements and keep the start
and goal configurations fixed. We compare the effectiveness of obsta-
cle avoidance over 10 iterations, in 100 trials, of 12 randomly placed
obstacles in a 2D environment, see Figure 4.7.

The trajectory is represented with 4 maximum-violation points over
time and robot body points at each iteration. The RKHS parametriza-
tion results in comparable obstacle cost and lower smoothness cost for
the same number of iterations. We performed a t-test using the last
iteration samples, and showed that the Gaussian RBF RKHS represen-
tation resulted in significantly lower obstacle cost (t(99) = −2.63, p <

.01) and smoothness cost (t(99) = −3.53, p < .001). We expect this to
be true because with the Gaussian RBF parametrization, the algorithm
can take larger steps without breaking smoothness, see Section 4.7.2.

We observe that waypoints and Laplacian RBF kernels (with large
widths) have similar behaviour, while Gaussian RBF and B-spline ker-
nels provide a smooth parametrization that allows the algorithm to
take larger steps at each iteration. These kernels provide the addi-
tional benefit of controlling the motion amplitude, which is an impor-
tant consideration for an adaptive motion planner. We compare the
effectiveness of obstacle avoidance over 10 iterations, in 100 trials, of
12 randomly placed obstacles in a 2D environment, see Figure 4.8.

4.7.2 RKHSs Allow Larger Steps than Waypoints

One practical advantage of using an RKHS instead of the waypoint
parametrization is the ability to take large steps during the optimiza-
tion. Figure 4.9 compares the two approaches, while taking large steps:
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Figure 4.8: (a,b): Cost over iterations
for a 3DoF robot in 2D. Error bars show
the standard error over 100 samples.

Figure 4.9: 1DOF 2D trajectory in a
maze environment (obstacles shaded in
grey). top: Gaussian RBF, large steps (5
it.); middle: waypoints, large steps (5 it.);
bottom: waypoints, small steps (25 it.)

it takes 5 Gaussian RBF iterations to solve the problem, but would take
28 iterations with smaller steps for the waypoint parametrization —
otherwise, large steps cause oscillation and break smoothness. The
resulting obstacle cost is always lower with Gaussian RBFs (t(99) =

5.32, p < .0001). The smoothness cost is lower (t(99) = 8.86, p < .0001),
as we saw in the previous experiment as well. Qualitatively, however,
as seen before in Section 4.4, the Gaussian RBF trajectories appear
smoother: even after just one iteration, as they do not break differ-
ential continuity.

We represented the discretized trajectory with 100 waypoints, but
only used 5 kernel evaluation sets of points for the RKHS. We also
tested the waypoint parametrization with only 5 waypoints, in order
to evaluate an equivalent low dimensional representation, but this re-
sulted in a much poorer trajectory with regard to smoothness.
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4.7.3 Experiments on a 7-DOF Manipulator

This section describes a comparison of the waypoint parametrization
(CHOMP) and the RKHS Gaussian RBF (GRBF) on a 7-DOF simple
manipulation task (Figure 4.10). We qualitatively optimized the obsta-
cle cost weight λ and smoothness weight β for all methods after 25

iterations (including the Waypoint method). The kernel width is kept
constant over all 7-DOF experiments (σ=0.9 same as previous experi-
ments). Figure 4.10a and Figure 4.10b illustrate both methods after 10

and 25 iterations, respectively.
Figure 4.10a shows the end-effector traces after 10 iterations. The

path for CHOMP (blue) is very non-smooth and collides with the cab-
inet, while the Gaussian RBF optimization is able to find a smoother
path (orange) that is not in collision. Note that we only use a single
max-point for the RKHS version, which leads to much less computa-
tion per iteration as compared to CHOMP. Figure 4.10b shows the re-
sults from both methods after 25 iterations of optimization. CHOMP
is now able to find a collision-free path, but the path is still not very
smooth as compared to the RKHS-optimized path. These results echo
our findings from the robot simulation and planar arm experiments.

(a) Gaussian RBF (orange) with 1 max
point (10 it., λ=20,β=0.5) vs. Waypoints
(blue) with (10 it., λ=200).

(b) Gaussian RBF (orange) with 1 max
point (25 it., λ=20,β=0.5) vs. Waypoints
(blue) with (25 it., λ=200).

(c) Coupled vs. Indep. RKHSs, 50 it.
GRBF-JJ with joint interactions (orange),
GRBF-der derivative with joint interac-
tions (yellow) (1 max point,λ=8,β=1.0),
GRBF with independent joints (red), (1
max point, λ=16,β=1.0).

(d) RKHS vs. waypoints, 50 it. GRBF-JJ
with joint interactions (orange), GRBF-
der derivative with joint interactions
(yellow) (1 max point,λ=8,β=1.0),
waypoints in blue, (λ=40).

Figure 4.10: 7-dof experiment, plot-
ting end-effector position from start to
goal.

4.7.4 Optimization under Different RKHS Norms

In this section we experiment with different RKHS norms, where each
one expresses a distinct notion of trajectory efficiency or smoothness.
Here we have optimized obstacle cost weight (λ) after 5 iterations.

Figure 4.10c shows three different Gaussian RBF kernel based tra-
jectories. We show the end-effector traces after 50 iterations for a Gaus-
sian RBF kernel with independent joints Eq. 4.1 (red) , and a Gaussian
RBF derivative with independent joints (yellow). We also consider in-
teractions among joints (orange), with a vector-valued RKHS with a
kernel composed of a 1-dim. time-kernel, combined with a D×D ker-
nel matrix that models interactions across joints. We build this matrix
based on the robot Jacobian at the start configuration (see Eq. 4.7).

The Gaussian derivative kernel takes the form of a sum over a Gaus-
sian RBF kernel and its first order derivative. This kernel can be in-
terpreted as an infinitely differentiable function with increased em-
phasis on its first derivative (penalizes trajectory velocity more). We
can observe that the derivative kernel achieves a smoother path, when
compared with the ordinary Gaussian RBF RKHS. The Gaussian RBF
kernel with joint interactions yields trajectories that are also smoother
than the independent Gaussian RBF path.

Figure 4.10d shows the end-effector traces of the GRBF derivative
and the joint interaction kernel, together with a CHOMP trajectory
with waypoints (blue). This result shows that Gaussian RBF RKHSs
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achieve a smoother, low-cost trajectory faster.
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Figure 4.11: (a) Avg. time per iter. for
50 iter. GRBF RKHS with 1 max point
(λ = 8, β = 1) vs. waypoints (λ = 40).

Figure 4.11 shows a time comparison between the Gaussian RBF
with join interactions and CHOMP (waypoints) method. This shows
that the kernel method is less time consuming than CHOMP (t(49),
p<.001) over 10 iterations.

4.7.5 7-DOF Experiments in a Cluttered Environment

Next, we test our method in more cluttered scenarios. We create
random environments, populated with different shaped objects to in-
crease planning complexity (see Figure 4.12a). We place 8 objects (2
boxes, 3 bottles, 1 kettle, 2 cylinders) in the area above the kitchen ta-
ble randomly in x, y, z positions. We plan with random collision-free
initial and final configurations.

(a) 6 iterations

(b) 20 iterations

Figure 4.12: End-effector from start
to goal in cluttered environment. Way-
points (λ=40) (blue), GRBF (1 max
point,λ=45,β=1.0) (orange), GRBF-der (1
max point,λ=25,β=1.0) (yellow).

The RKHS trajectory with joint interactions (orange) achieves a smoother
trajectory than the waypoint representation (blue). We perform a Wilcoxon
t-test (t(40) = −4.4, p < .001), and obtains comparable obstacle costs.
The method performs updates more conservatively and ensures very
smooth trajectories. The other two RKHS variants consider indepen-
dent joints, GRBF (red) and GRBF derivative (yellow).

Both GRBF and GRBF derivative kernels achieve lower cost tra-
jectories than the waypoint parametrization (t(40) = −3.7, p < .001,
t(40) = −4.04, p < .001), and converge in fewer iterations (approx.
12it.). The smoothness costs are not statistically significantly differ-
ent that the waypoint representation, after 20 iterations. We show
an example scenario with three variants of RKHSs (GRBF-JJ orange
(λ = 75), GRB yellow (λ = 45), Waypoints blue (λ = 100)) after 6

iterations (Figure 4.12a), and after 20 iterations (Figure 4.12b).
Figure 4.13 shows the obstacle and smoothness cost per iteration,

respectively.

Figure 4.13: Obstacle and smooth-
ness costs in cluttered environment for
(GRBF-JJ) GRBF with joint interactions
in orange, (GRBF-der) GRBF deriva-
tive with independent joints in yellow,
(GRBF) GRBF independent joints in red,
waypoints in blue, 20 it.
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We compare all results according to CHOMP cost functions. As
above, smoothness is measured in terms of total velocity (waypoint
metric), and obstacle cost is given by distance to obstacles of the full
trajectory (not only max-points).

The smoothness and obstacle weights are kept fixed in all scenarios
(β=1.0).

4.7.6 7-DOF Experiments in a Constrained Environment

Next, we measured performance in a more constrained task. We placed
the robot closer to the kitchen counter, and planned to a fixed goal
configuration inside the microwave. We ran over 40 different random
initial configurations. Figure 4.14 shows an example of Gaussian RBF
with joint interactions (GRBF-JJ orange), independent joints (GRBF-der
yellow), and waypoints (blue), after 30 iterations.

In Figure 4.14 we observe the end effector traces after 30 iterations.
We optimized the model parameters for this scenario (β = 1.0, GRBF
(λ = 45), GRBF-JJ (λ = 40), GRBF-der (λ = 45), Waypoints (λ =

100)). In Section 4.7.8 we compare against a non-optimized model.

Figure 4.14: 7-DOF robot experiment,
plotting the end-effector position from
start to goal. Waypoints (λ=40) (blue),
Gaussian RBF (1 max point,λ=45,β=1.0)
(orange), Gaussian RBF JJ (1 max
point,λ=45,β=1.0) (yellow) 30 iterations.

We report smoothness and obstacle costs per iteration, see Fig-
ure 4.15. In more constrained scenarios, the RKHS variants achieve
smoother costs than the waypoint representation (p < .0.01, GRBF
t(40) = −3.04, GRBF-JJ t(40) = 3.12, GRBF-der t(40) = −3.8), for ap-
proximately the equivalent obstacle cost after 12 iterations. The joint
interactions are smooth but take longer to converge (12 it.), while the
GRBF kernels with independent joints converged to a collision free
trajectory approximately in the same number of iterations as the way-
points experiments (4 it.).

Figure 4.15: Obstacle and Smoothness
costs in constrained environment after
30 it. in Fig.4.14
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4.7.7 RBF norm vs. Waypoint parametrization

Figure 4.16: 3DoF robot in 2D tra-
jectory profile using different kernels.
Obstacle cost field in gray for the same
environment and same initial and final
configurations (axis fixed). Top: way-
points (blue), middle: Gaussian RBF
with waypoints (red), bottom: Gaussian
RBF (brown).

In this section, we study the effect of using an RKHS norm vs. the
CHOMP norm. We perform an additional experiment, where we com-
pare against an RKHS norm with waypoints. The trajectory becomes
as weighted combinations of kernel functions ξ(t) = ∑i wik(ti, ·)∀ti∈T ,
evaluated at equally spaced time points (waypoints).

We performed qualitative experiments in a 2D setting with a 3-DOF
planar arm. Figure 4.16 shows the end-effector traces (coloured line)
after 10 iterations. We kept the RBF RKHS parameters fixed and op-
timized the obstacle weight, in order to achieve similar convergence
speeds. We compare the waypoint CHOMP (blue) trajectory for the
same number of waypoints (20) and only 4 max-cost time points for
the GRBF RKHS (brown). The GRBF RKHS with equally spaced points
(red) has a smooth behaviour, similar to the GRBF RKHS norm with
max points. This qualitative example suggests that optimizing in the
RKHS norm yields smoother trajectories, independently of using way-
points or max-cost time points.

4.7.8 Parameter selection sensitivity

Here, we show the results for the 7-DOF simulation in constrained en-
vironments, without performing hyper-parameter optimization of the
model (obstacle cost weight), (§ 4.7.6). We use the same model param-
eters as in the high clutter experiments (§ 4.7.5) without optimizing
for this particular task. We measure performance over 40 different
random initial configurations.

Figure 4.17: 7-DOF robot experiment,
plotting the end-effector position from
start to goal. Waypoints (λ=40) (blue),
Gaussian RBF (1 max point,λ=45,β=1.0)
(orange), Gaussian RBF JJ (1 max
point,λ=45,β=1.0) (yellow).

Figure 4.17 shows an example of Gaussian RBF with joint interac-
tions in yellow (GRBF-JJ), independent joints in orange (GRBF), and
waypoints in blue, after 30 iterations.

We show smoothness and obstacle costs per iteration, see Figure 4.18.
Without weight cost tuning the RKHSs perform worse, but still achieve
low cost and smooth solutions. The updates with joint interactions are
smoother but take longer to converge, while the GRBF kernels with
independent joints converged approximately in the same number of
iterations as the waypoints experiments (12it.).

In Figure 4.17, we observe the end effector traces after 30 iterations.
The joint interactions kernel is smoother compared with the waypoint
parametrization, however the full trajectory smoothness is not statisti-
cally different when measured in the waypoint smoothness metric. We
observe that optimizing the model parameters has a significant impact
on the overall method performance, see Section 4.7.6. An interesting
research extension could leverage this variability to produce planners
with multi-resolution capabilities according to the surrounding envi-
ronment (large motion in uncluttered scenes with high obstacle cost
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Figure 4.18: Obstacle and Smooth-
ness cost of random trajectories in con-
strained environment after 30 iterations.

and high kernel widths vs. localized changes lower obstacle cost and
with low kernel widths).

4.8 Conclusions

In this chapter, we presented a kernel approach to robot trajectory op-
timization: we represented smooth trajectories as vector valued func-
tions in an RKHS. Different kernels lead to different notions of smooth-
ness, including commonly-used variants as special cases (velocity, ac-
celeration penalization).

We introduced a novel functional gradient trajectory optimization
method based on RKHS representations, and demonstrated its effi-
ciency compared with another optimization algorithm (CHOMP).

This method benefits from a low-dimensional trajectory parametriza-
tion that is fast to compute.

Furthermore, RKHSs enable us to plan with kernels learned from
user demonstrations, leading to spaces in which more predictable mo-
tions have lower norm, and ultimately fostering better human-robot
interaction (Dragan et al., 2014).

This work is an important step in exploring RKHSs for motion plan-
ning. It describes trajectory optimization under the light of reproduc-
ing kernels, which we hope can leverage the knowledge used in kernel
based machine learning to develop better motion planning methods.



5
Planning with Method of Moments

In this chapter, we combine predictive models together with algo-
rithms for planning under uncertainty. We introduce Recurrent Predic-
tive State Policy (RPSP) networks, a recurrent architecture that brings
insights from predictive state representations to reinforcement learn-
ing in partially observable environments. Predictive state policy net-
works consist of a recursive filter, which keeps track of a belief about
the state of the environment, and a reactive policy that directly maps
beliefs to actions, to maximize the cumulative reward. We discuss pre-
dictive state representations in Section 5.2, the predictive state model
component in Section 5.4 and the proposed policy in Section 5.3. The
control component is presented in Section 5.5 and the learning algo-
rithm is presented in Section 5.6. In Section 5.8, we describe the ex-
perimental setup and results on control tasks: we demonstrate the
performance of reinforcement learning using predictive state policy
networks in multiple partially observable environments with continu-
ous observations and actions.

5.1 Motivation

In this chapter, we put forth predictive state representations for learn-
ing to control dynamical systems in an interactive manner via reinforce-
ment learning (RL). We consider an agent — which could be a robot or reinforcement learning

state machine— that is able to observe and act upon an environment,
while receiving feedback/reward in a discrete time controlled process.
We fully characterize this process via the state q ∈ Q of the environ-
ment. This quantity provides a sufficient statistic for predicting future
observations p(o1, . . . , on | a1, . . . , an) conditioned on executed actions,
hence correct estimation of the state is crucial to model the system.
Given this interaction, the agent aims to learn a function π : Q → A,
which we denote as a policy, that generates actions a ∈ A from the policy π

state of the system q. The optimal policy will be the one that provides
maximum reward rt ∈ R over a sequence of interactions with the en-



planning with method of moments 101

vironment which we call episodes. We assume the agent is interacting
with the environment in episodes, where each episode consists of T
time steps in each of which the agent takes an action at ∈ A, and gets
an observation ot ∈ O and a reward rt ∈ R. The agent chooses actions
based on a stochastic policy πθ parameterized by a parameter vector
θ:

πθ(at|o1:t−1, a1:t−1) ≡ p(at | o1:t−1, a1:t−1, θ). (5.1)

We would like to improve the policy rewards by optimizing θ based
on the agent’s experience in order to maximize the expected long term
reward

J(πθ) =
1
T

T

∑
t=1

E
[
γt−1rt | πθ

]
, (5.2)

where γ ∈ [0, 1] is a discount factor. We can express many Robotics
tasks in the above framework; see Section 2.7. These problems, in
most cases, are high dimensional and continuous. For instance, in
robot motion prediction we need to learn continuous actions, in the
form of twists and torques of the joints of the robot. Observations
are typically continuous and high dimensional, corresponding to the
robot’s joint angles and velocities. On the other hand, in most NLP
tasks it is sufficient to consider a finite set of possible observations
and actions for input/output finite state machines, where the tabular
setting can still be sustained (Luque et al., 2012).

The standard approach to model controlled processes involves es-
timating transition and observation probabilities in a predetermined
state-space. This process is modeled formally via a Markov decision
process (MDP) where the state of the system is fully known (Sutton et
al., 1998; Gordon, 1999). In practice, and specially in Robotics domains,
it is unrealistic to assume the true state is fully observable and noise-
free, see Section 2.6 for a detailed discussion. In fact, observations are
often aliased, noisy and insufficient to estimate the state of the system.
To accommodate this uncertainty, many robotic learning problems are
modeled with partial observability. Formally, MDPs are extended to
partially observable Markov decision processes (POMDPs), where the
state is unknown and instead a belief over states is maintained, i.e.,
a probability distribution over the state space (Kaelbling et al., 1998).
This formalism already accounts for some modeling uncertainty but
still requires prior knowledge about an explicit state representation
and a known transition and reward functions. In many Robotics cases
it would be hard to provide this knowledge a priori. Next, we will
describe two major lines of research that intend to learn a policy by
interacting with the environment. The first consists of a model-based
approach, where, ideally, we would like the agent to learn a model of
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the system dynamics and also learn to optimize a policy. This model
based setting establishes a form of reinforcement learning in which
experience is gathered via the learned model in the form of simulated
episodes— observation, action and reward sequences. Conversely, the
second approach consists of a model free perspective, where experi-
ence is gathered directly by interacting with the environment and the
policy is directly learned from this experience without requiring to
build a transition model first.

Model-based learning may help reduce expert bias, when some of
the model quantities are pre-specified, such as transition dynamics and
reward function. This type of learning attempts to mitigate sample ef-
ficiency problems inherently associated with model-free approaches,
when interaction with the environment is expensive. In Robotics, re-
ducing the learning time with the real environment is highly desirable,
since real experience may damage the robot and is often slower than
learning via simulated episodes. In this sense, model-based methods
have the advantage of requiring fewer samples and efficiently gener-
alize to unseen situations (Atkeson et al., 1997). The learned policy is,
however, strongly dependent on the quality of the model, which could
be a potential bottleneck if the algorithm in not robust to model errors.

Recently, there has been significant progress in model free reinforce-
ment learning combined with deep neural networks to learn a pol-
icy (Bojarski et al., 2016; Schulman et al., 2015). Deep reinforcement
learning combines deep networks as a high level representation of a
policy with reinforcement learning as an optimization method, and
allows for end-to-end training. In this thesis, we attempt to combine
both approaches by taking advantage of learned models to improve
sample efficiency and exploit recent advances in model free methods
using deep neural networks. Traditional applications of deep learn-
ing rely on standard architectures with sigmoid activations or rectified
linear units; there is, however, an emerging trend of using composite
architectures that contain parts inspired by other algorithms such as
Kalman filtering (Haarnoja et al., 2016) and value iteration (Tamar et
al., 2016). This composite structure brings forth benefits from other
modeling tools, enhancing the performance of standard neural net-
works.

In this work, we focus on the more realistic scenario of partially ob-
servable environments, in which the agent is uncertain about the state
of the environment. Instead, the agent has to keep track of a distribu-
tion over states, i.e., a belief state, based on the entire history of obser-
vations and actions already executed. The typical approach in neural
networks community to model partial observations relies recurrent ar-
chitectures such as Long-Short-Term-Memory (LSTM) (Hochreiter et
al., 1997) and Gated Recurrent Units (GRU) (Cho et al., 2014b). How-
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ever, these recurrent models are difficult to train due to non-convexity,
and their hidden states lack a statistical meaning making them hard
to interpret. Predictive states representations (PSRs) (§ 2.5.4) offer an
alternative choice of models, whose predictive state may serve as a
surrogate for belief over state, with the additional advantage of being
interpreted as a sufficient statistics of future observations, conditioned
on history and future actions (Littman et al., 2001; Singh et al., 2004a;
Rosencrantz et al., 2004b; Boots et al., 2013b). Predictive representa-
tions do not require a prior state-space definition, since they emerge
directly from observable quantities. This fact, in combination with ef-
ficient learning algorithms with theoretical guarantees, makes predic-
tive models an ideal candidate for combining learning and planning.

5.2 Predictive State Representations

Predictive State Representations (PSRs) constitute an expressive form
of modeling dynamical systems (Jaeger, 1999; Littman et al., 2001).
It can be applied for both uncontrolled and controlled processes, so it
could be used as a modeling tool in reinforcement learning. PSRs form
a class of sequential models that track the dynamical system state via a
predictive state q ∈ Q. The predictive state can be described directly in
terms of observable quantities, as an expectation over sufficient statis-
tics of future observations. This forms a powerful class of models that
subsume POMDPs (Littman et al., 2002). Instead of keeping a belief
over the state-space, PSRs characterize the stochastic process by keep-
ing an implicit state representation, that is constructed using the least
possible information about the domain (Singh et al., 2004b). The dy-
namic system state can be described in terms of conditional success
probabilities1 of all tests p(tO|h; tA) ∈ Σ∗, where tO = ot:t+k−1 = 1 We say a test is successful if after

executing the sequence of actions the
sequence of observations received by
the agent coincides with those specified
by the test.

[ot, ot2 , . . . , ot+k−1] and tA = at:t+k−1 = [at, at+2, . . . at+k−1], ∀o∈Σ,a∈A

conditioned on all histories h = ot−1:1 = [ot−1, at−1, . . . o1, a1] as seen
in Section 2.5.42

2 for clarity we use “;" to denote that
the agent will execute the following
sequence of actions from the agent’s
policy.

p(tO|h; tA) = p(ot:t+k−1 | h; at:t+k−1). (5.3)

Littman et al. (2002) shows that it suffices to maintain a distribution
of a potentially small set of core tests instead of all possible tests, to
define a basis for representing the predictive state. All other tests can
then be described as linear combinations of core events. The mini-
mal number of core tests defines the complexity of the PSR, closely
related to the rank of the system dynamics matrix, in Section 2.5.4.
There are systems with rank K that may not be modeled by POMDPs
with any finite number of states. However every system with rank K
can be modeled by a PSR with exactly K core tests. Identifying the
set of minimal core tests may prove to be a difficult task—discovery
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problem— however, identifying a subspace that spans the space of all
core tests is an easier and more efficient task—leading to transformed
PSRs (Rosencrantz et al., 2004a). Rosencrantz et al. (2004a), Hsu et al.
(2009), and Boots et al. (2011a) derived consistent learning methods
for subspace identification of transformed PSRs, based on spectral de-
composition of moment statistics. They were able to retrieve model
parameters from observable moments that corresponded to those ob-
tained from the true model. Further work of Boots et al. (2013b), Song
et al. (2009), and Fukumizu et al. (2013b) extended the moment based
approach to kernel embedding of distributions, extending the repre-
sentation of observations and actions to the continuous domain. This
can be useful in many applications where the domain is structured or
high dimensional, potentially continuous, such as many problems in
Robotics.

5.3 Predictive Reinforcement Learning

In this section, we propose a Recurrent Predictive State Policy (RPSP)
network, a recurrent architecture that consists of a predictive state
model acting as a recursive filter and a feed-forward neural network
that directly maps predictive state to actions. The filter component
represents state as the expectation of sufficient statistics of future ob-
servations, conditioned on history and future actions. Moreover, the
successive application of the predictive state update procedure (i.e., fil-
tering equations) results in a recursive computation graph that is fully
differentiable with respect to model parameters amenable to gradient
descent refinement. Therefore, we can treat predictive state models as
recurrent networks and apply backpropagation through time (BPTT)
(Hefny et al., 2017b; Downey et al., 2017) to optimize model parame-
ters.

The proposed configuration results in a recurrent policy, where the
recurrent part is implemented by a PSR instead of an LSTM or a GRU.
As predictive states are a sufficient summary of the history of obser-
vations and actions, the reactive policy will have rich enough infor-
mation to make its decisions, as if it had access to a true belief state.
RPSPs leverage efficient and statistically consistent initialization by us-
ing PSRs as a filtering tool: spectral learning of PSRs provides a the-
oretically grounded initialization of a core component of the policy.
Additionally, they can benefit from interpretable statistical interpreta-
tion of the predictive states, and can be evaluated and optimized based
on that interpretation. The RPSP network can be trained end-to-end,
for example using policy gradients in a reinforcement learning set-
ting (Sutton et al., 2001) or supervised learning in an imitation learning
setting (Ross et al., 2011). In this work, we focus on the former.
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Throughout the rest of the chapter, we will use ⊗ to denote vec-
torized outer product: x⊗ y is xy> reshaped into a vector. There are
two major approaches for policy modeling and optimization. The first
consists of a value function-based approach, where we seek to learn
a function, typically a deep network, to evaluate the value of each ac-
tion at each state (a.k.a. Q-value) under the optimal policy. Given the
Q function the agent can act greedily based on the estimated values.
The second approach is policy optimization, where we learn a func-
tion that directly predicts optimal actions (or optimal action distribu-
tions), without pre-computing its corresponding value. This function
or policy is directly optimized to maximize J(θ) using policy gradient
methods (Schulman et al., 2015; Duan et al., 2016) or derivative-free
methods (Szita et al., 2006). The two approaches are related, since
they are amenable to variance reduction methods, and are compati-
ble with approximation. However, we focus on the second approach
as it is more robust to noisy continuous environments and modeling
uncertainty (Sutton et al., 2001; Wierstra et al., 2010).

Our aim is to provide a new class of policy functions that com-
bines recurrent reinforcement learning with recent advances in mod-
eling partially observable environments using predictive state repre-
sentations (PSRs). There have been previous attempts to combine pre-
dictive state models with policy learning. Boots et al. (2011b) pro-
posed a method for planning in partially observable environments.
The method first learns a PSR from a set of trajectories collected us-
ing an explorative blind policy. The predictive states estimated by the
PSR are then considered as states in a fully observable Markov Deci-
sion Process. A value function is learned on these states using least
squares temporal difference (Boots et al., 2010) or point-based value
iteration (PBVI) (Boots et al., 2011b). The main disadvantage of these
approaches is that it assumes a one-time initialization of the PSR and
does not propose a mechanism to update the model based on subse-
quent experience, as a result, obtaining poor behaviour when the data
is insufficient (the initial PSR is limited). Also, it has been shown that
PSRs can benefit greatly from local optimization after a moment-based
initialization (Downey et al., 2017; Hefny et al., 2017b).

Hamilton et al. (2014) proposed an iterative method to simultane-
ously learn a PSR and use the predictive states to fit a Q-function. Az-
izzadenesheli et al. (2016) proposed a tensor decomposition method to
estimate the parameters of a discrete partially observable Markov de-
cision process (POMDP) and used concentration inequalities to choose
actions that maximize an upper confidence bound of the reward. This
method does not employ a PSR, however it uses a consistent moment-
based method to estimate model parameters. One common limitation
in the aforementioned methods is that they are restricted to discrete
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actions (some even assume discrete observations).
In this section, we introduce RPSP networks, a combination of a pre-

dictive state filter, and a reactive policy. This class of policies admits a
statistically efficient initialization method, in contrast to typical RNNs,
described in Section 2.5.6. However, it also admits an iterative update
using policy gradient methods. We propose a novel combined update
that exploits the interpretation of PSR states and optimizes both accu-
mulated rewards and predictive accuracy of PSRs. We further make
use of RPSPs to learn a policy in partially observable environments
with continuous actions and continuous observations.

5.4 Predictive State Representations of Controlled Models

In this section, we revisit predictive state representations (§ 2.5.4),
which constitute the state tracking (filtering) component of our model,
and we discuss their relationship to recurrent neural networks RNNs.
We follow the predictive state controlled model formulation provided
by Hefny et al. (2017b). However, we could start from alternative pre-
dictive models such as predictive state inference machines (Sun et al.,
2016a).

𝑞/ 	𝑞/&6𝑓

𝑜A/ 	

𝑔

𝑜/ , 𝑎/

𝑜/

𝑞/

𝑎/

𝑓:;<=𝑊-./

𝑝/ 𝑞/&6

𝑜/

𝑞/

𝑎/

𝑊F<

𝑊G 𝑞/&6+ 𝜎

𝑎/

Figure 5.1: a) Computational graph
of RNN and PSR and b) the details of
the state update function f for both a
simple RNN and c) a PSR. Compared
to RNN, the observation function g is
easier to learn in a PSR (see §5.4).

RNNs typically consider a history of sequence pairs of observations
and actions a1, o1, a2, o2, . . . , at−1, ot−1 to compute its hidden state qt
using a recursive update equation qt+1 = f (qt, at, ot). This recursive
update is often non-linear and does not contemplate observation pre-
diction. We could, however, consider a case where we learn to predict
observations through an additional function g(qt, at) ≡ E[ot | qt, at].
Because q is latent, the function g that connects states to the output
is unknown and has to be learned separately. In this case, the output
could be predicted observations when the RNN is used for prediction,
see Figure 5.1 (top).

Predictive state models define a similar recursive state update. How-
ever, the state qt has a specific interpretation: it corresponds to a pre-
dictive state, meaning it encodes a conditional distribution of future
observations ot:t+k−1 conditioned on future actions at:t+k−1 (for exam-
ple, in the discrete case, qt could be a vectorized probability table in
Eq. 5.3).3 3 The length-k depends on the observ-

ability of the system. We say a system is
k-observable if maintaining the predic-
tive state is equivalent to maintaining
the distribution of the latent state of the
system.

The main characteristic of a predictive state is that it is defined en-
tirely in terms of observable quantities. Depending on the choice of
features used to compute the conditional expectation, we obtain dif-
ferent mappings from predictive states qt to the prediction of ot given
at. It is therefore crucial to consider expressive-enough feature map-
pings that will allow for a compact, yet accurate representation of the
predictions. We consider random feature mappings (Rahimi et al.,
2008) with kernel representations to learn this mapping consistently.
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This is in contrast to a general RNN, where this mapping is unknown
and typically requires non-convex optimization to be learned.4 This 4 We do not require prediction error

minimization to take advantage of PSR
initialization. We can still consider
a PSR filter without optimizing for
prediction error, as seen later in the
experimental section.

characteristic allows for efficient and consistent learning of models
with predictive states by reduction to supervised learning (Hefny et
al., 2015b; Sun et al., 2016b).

𝒐𝟏 … 𝒐𝒕%𝟏 𝒐𝒕 𝒐𝒕&𝟏 … 𝒐𝒕&𝒌%𝟏 𝒐𝒕&𝒌
𝐚𝟏 … 𝐚𝐭%𝟏 𝐚𝒕 𝐚𝒕&𝟏 … 𝐚𝒕&𝒌%𝟏 𝒂𝒕&𝒌

history 
𝒉𝒕

future

Extension
𝐖-./

q̃/ ≡ 𝑝(𝐨/:/&5%6 ∣ 𝐚/:/&5%6)

𝒐𝟏 … 𝒐𝒕%𝟏 𝒐𝒕 𝒐𝒕&𝟏 … 𝒐𝒕&𝒌%𝟏 𝒐𝒕&𝒌
𝐚𝟏 … 𝐚𝐭%𝟏 𝐚𝒕 𝐚𝒕&𝟏 … 𝐚𝒕&𝒌%𝟏 𝐚𝒕&𝒌

extended future
p̃/ ≡ 𝑝(𝐨/:/&5 ∣ 𝐚/:/&5)

Conditioning
𝑓:;<=

𝒐𝟏 … 𝒐𝒕%𝟏 𝒐𝒕 𝒐𝒕&𝟏 … 𝒐𝒕&𝒌%𝟏 𝒐𝒕&𝒌
𝐚𝟏 … 𝐚𝐭%𝟏 𝐚𝒕 𝐚𝒕&𝟏 … 𝐚𝒕&𝒌%𝟏 𝐚𝒕&𝒌

shifted future
q̃/&6 ≡ 𝑝(𝐨/:/&5 ∣ 𝐚/:/&5)

Figure 5.2: Illustration of the PSR
extention and conditioning steps.

Similar to an RNN, a PSR employs a recursive state update that
consists of two steps (Section 2.5.6 for more details): a state extension,
and a conditioning step.

The state extension defines an extended state pt = E[ξo(ot:t+k) |
ht; ξa(at:t+k)] that is obtained from a linear transformation Wext of the
predictive state qt = E[φo(ot:t+k−1) | ht; φa(at:t+k−1)]. The extended
state defines a conditional distribution over an extended window of
k + 1 observations and actions, see Figure 5.2, and the linear map Wext

is an additional parameter of the model.

pt = Wextqt in Eq. 2.75

The conditioning step establishes the filter update equation, by taking
into account the current at and ot, and a known conditioning function
fcond to arrive at the consecutive predictive state

qt+1 = fcond(pt, at, ot) in Eq. 2.76.

Figure 5.2 depicts the two steps. The conditioning function fcond

depends on the representation of qt and pt. For example, in a discrete
system, qt and pt could represent conditional probability tables and
fcond amounts to applying Bayes’ rule. In the continuous setting us-
ing Hilbert space embeddings of distributions (Boots et al., 2013b), the
conditioning function fcond is given by the kernel Bayes’ rule (Fuku-
mizu et al., 2013b) (non-linear filter, in Eq. 2.77). In this work, we use
random Fourier features (RFFs) (Rahimi et al., 2008) to represent the
feature mapping of a Hilbert space embedding of a PSR (RFFPSR) as
in Section 2.5.6. Observation and action features are based on RFFs
of the RBF kernel projected into a lower dimensional subspace using
randomized PCA (Halko et al., 2011). We use φ to denote this fea-
ture function. The observation function g in PSRs is a linear function
of state E[ot | qt, at] = Wpred(qt ⊗ φ(at)), see the PSR state update
scheme in Figure 5.3.

5.4.1 Learning predictive states representations

Learning PSRs is carried out in two steps: an initialization procedure
using the method of moments (Hefny et al., 2015b) in Section 2.5.6
and a local optimization procedure using gradient descent (Hefny et
al., 2017b).

Initialization:
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Here we follow the two-stage regression proposed by Hefny et al.
(2015b).5 The initialization procedure exploits the fact that qt and 5 Specifically, we use the joint stage-1

regression variant for initialization.pt are represented in terms of observable quantities: since Wext is
linear and using Eq. 2.75, then E[pt | ht] = WextE[qt | ht]. Here
ht ≡ h(a1:t−1, o1:t−1) denotes a set of features extracted from previous
observations and actions (typically from a fixed length window end-
ing at t− 1). Because qt and pt are not hidden states, estimating these
expectations on both sides can be done by solving a supervised regres-
sion subproblem. Given the predictions from this regression, solving
for Wext then becomes another linear regression problem. Once Wext

is computed, we can perform filtering to obtain the predictive states
qt. We then use the estimated states to learn the mapping to predicted
observations Wpred, which results in another regression subproblem.

In the random Fourier PSR (RFFPSR), we use linear regression for
all subproblems (which is a reasonable choice with kernel-based fea-
tures). This ensures that the two-stage regression procedure is free of
local optima.

Local Optimization:

Although the PSR initialization procedure is consistent, it is based on
method of moments and hence is not necessarily statistically efficient,
since it requires a large amount of data to correctly build the moment
estimates. Therefore estimation of the filter parameters can benefit
from local optimization to help reduce mean square prediction error.
Similarly to RNNs, PSRs also define a recursive computation graph,
whose update is translated into RPSP filter

qt+1 = fcond(Wext(qt), at, ot)) (5.4)

E[ot | qt, at] = Wpred(qt ⊗ φ(at)). (5.5)

With a differentiable fcond, the PSR can be trained using backpropaga-
tion through time (BPTT) (Werbos, 1990) to minimize prediction error.
In this way PSRs consist of a special recurrent structure whose state
representation and update function is implicitly defined by the choice
of kernel, leading to consistent forms of initialization, which can be
made better by consecutive BPTT.

5.5 Recurrent Predictive State Policy (RPSP) Networks

We now introduce Recurrent Predictive State Policies (RPSPs). In this
section, we formally describe their components, followed by a policy
learning algorithm in §5.6.

RPSPs consist of two fundamental components: a state tracking
component, which models the state of the system, and is able to pre-
dict future observations; followed by a reactive policy, which could be
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a possibly non-linear transformation of predictive states to estimate a
distribution over actions, shown in Figure 5.3.

The integrated model seeks to improve a policy πθ(at | ao1 . . . aot−1)

by letting an agent interact with its environment. RPSPs learn the dis-
tribution over actions from a set of trajectories, i.e., sequences of action-
observation-reward triplets. At each time-step t, we get an observation
ot and an immediate reward rt after executing at.

This policy is parametrized by θ = {θPSR, θre} corresponding to the
filter and reactive component respectively. The predictive model pa-
rameters θPSR = {q0, Wext, Wpred} correspond respectively to the ini-
tial predictive state estimate, the linear weights from predictive states
to extended states Wext, and the linear regression matrix that predicts
consecutive observations ôt+1 = Wpred qt.

𝑎/
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Figure 5.3: RPSP network: The pre-
dictive state is updated by a linear
extension Wext followed by non-linear
conditioning fcond. A linear predictor
Wpred is used to predict observations,
which is used to regularize training
loss (see §5.6). A feed-forward reactive
policy maps the predictive states qt to a
distribution over actions.

For the reactive component, we consider a stochastic non-linear pol-
icy πre(at | qt) ≡ p(at | qt; θre) parametrized by θre. Since we are
dealing with continuous actions, we assume a Gaussian distribution
N (µt, Σ) with parameters

µ = ϕ(qt; θµ); σ = exp r2, (5.6)

where ϕ is a function (e.g., a feed-forward network) parametrized by
θµ, and r is a learnable vector. In the following section, we describe
how these parameters can be learned.

5.6 Learning Recurrent Predictive State Policies

RPSPs can make use of a principled initialization of the predictive
layer, using moment-matching techniques (Hefny et al., 2015b) and
update its parameters by refinement via gradient descent. In the ini-
tialization phase, we gather experience from an exploration policy,
typically a blind Gaussian policy, and use it to initialize the PSR, as
described in §5.4.

It is worth noting that this initialization procedure depends solely
on sequences of observations and actions and does not take into ac-
count the reward signal. This can be particularly useful in environ-
ments where informative reward signals are infrequent.

In the second phase, starting from an initialized PSR and an ini-
tial random reactive policy, we iteratively collect trajectories using the
current policy and use them to update the RPSP parameters. We up-
date simultaneously both the reactive policy θre = {θµ, r} and the
predictive model θPSR = {q0, Wext, Wpred} parameters, as detailed in
Algorithm 8.

Let p(τ | θ) be the distribution over trajectories induced by the
policy πθ. The iterative parameter update seeks to locally minimize
the following RPSP loss RPSP loss
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Algorithm 8: Recurrent Predictive State Policy network Optimization (RPSPO)
Input: Learning rate η.

1: Sample initial trajectories: {(oi
t, ai

t)t}M
i=1 from πexp.

2: Initialize PSR:
θ0

PSR = {q0, Wext, Wpred} via 2-stage regression in §5.4.1.
3: Initialize reactive policy θ0

re randomly.
4: for n = 1 . . . Nmax iterations do
5: for i = 1, . . . , M batch of M trajectories from πn−1: do
6: Reset episode: ai

0.
7: for t = 0 . . . T roll-in in each trajectory: do
8: Get observation oi

t and reward ri
t.

9: Filter qi
t+1 = ft(qi

t, ai
t, oi

t) in (Eq. 5.4).
10: Execute ai

t+1 ∼ πn−1
re (qi

t+1).

11: Update θ using D = {{oi
t, ai

t, ri
t, qi

t}T
t=1}M

i=1:
θn ← Update(θn−1,D, η), as in §5.6.

12: Return: θ = (θPSR, θre).

L(θ) = α1`1(θ) + α2`2(θ) (5.7)

= −α1 J(πθ) + α2

T

∑
t=0

Ep(τ|θ)
[
‖Wpred(qt ⊗ at)− ot‖2

]
,

which combines negative expected returns J(πθ), with PSR prediction
error. We minimize 1-step prediction error instead of general k-future
prediction error, as often is used in PSRs (Hefny et al., 2017b; Boots et
al., 2011a). This serves as an attempt to avoid biased estimates induced
by non causal statistical correlations of observations (ot+i) with future
actions (at+i+1:t+k) when performing on-policy updates using a non-
blind policy. Previous work obviates this problem by updating PSR
parameters from a blind policy (Boots et al., 2011a; Hamilton et al.,
2014).

An RPSP is essentially a special type of RNN, therefore any policy
gradient algorithm could be used with an initialized RPSP. However,
optimizing the PSR parameters to maintain low prediction error can be
interpreted as a form of regularizing the network, based on the statisti-
cal interpretation of the recursive filter. In this approach, we optimize
policy parameters θ by minimization of a joint loss function, in Eq. 5.7,
where α1, α2 ∈ R are hyper-parameters that determine the importance
of the expected return and prediction error respectively6; later we de- 6 We only require one parameter for

the optimization but later we rescale
by variance each term and denote this
scaling parameter α

scribe how α1 and α2 can be optimized in §5.6.3: the negative expected
return `1 = −J(π), and prediction cost `2 respectively.

Gradient-based policy search has been a successful approach in
many applications in reinforcement learning (Peters et al., 2008; Deisen-
roth et al., 2013). Policy gradient methods provide a robust and pow-
erful technique to estimate the optimal policy, even when we consider
noisy state information (Baxter et al., 2001). They can account for con-
tinuous actions and are compatible with policies that have internal
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memory (Wierstra et al., 2010). These characteristics make them ideal
candidates to combine with a predictive model. We learn an update of
the policy parameters using batches of trajectories by following a de-
scent direction of the negative expected return θn+t

π = θn
π + α∇θ J(π)

with a specified learning rate α ∈ R, until the process converges.
RPSPs are a special type of a recurrent network policy, hence it

is possible to adapt existing policy gradient methods, such as REIN-
FORCE (Williams, 1992), to the joint loss in (5.7). In the following sub-
sections, we propose different update variants: a joint update in Sec-
tion 5.6.1 and an alternate variant in Section 5.6.2 based on two policy
gradient methods: a REINFORCE style update, and a natural gradient
variant based on Trust Region Policy Optimization (TRPO) (Schulman
et al., 2015).

5.6.1 Joint Variance Reduced Policy Gradient (VRPG)

In this variant, we follow a REINFORCE method (Williams, 1992) to
obtain a stochastic gradient of J(π) (the first term in Eq. 5.7), using
the likelihood ratio trick (Glynn, 1990; Aleksandrov et al., 1968). Let
R(τ) = ∑T

t=1 γt−1rt be the cumulative discounted reward for trajec- cumulative discounted reward R(τ)

tory τ given a discount factor γ ∈ [0, 1], and let J(π) = Ep(τ|θ)[R(τ)]
be the expected cumulative discounted reward. From the likelihood
ratio trick ∇θp(τ|θ) = p(τ|θ)∇θ log p(τ|θ) we can compute the RE-
INFORCE gradient ∇θ J(π) as REINFORCE gradient

∇θ J(π) = Eτ∼p(τ|θ)[R(τ)
T

∑
t=1
∇θ log πθ(at|qt)],

In practice, we use a variance reducing variant of policy gradi-
ent (Greensmith et al., 2001) given by

∇θ J(π) = Eτ∼p(τ|θ)
T

∑
t=0

[∇θ log πθ(at|qt)(Rt(τ)− bt)], (5.8)

where we replace the cumulative trajectory reward R(τ) by a reward-
to-go function Rt(τ) = ∑T

j=t γj−trj computing the accumulated dis-
counted future reward starting from t. We also denote Rt(τi) as the
return at step i. bt represents a variance reducing baseline. To further
reduce variance we use a baseline bt ≡ Eθ[Rt(τ) | a1:t−1, o1:t] which
estimates the expected reward-to-go conditioned on the current policy
and depends only on history and current observation. In the proposed
implementation, we assume bt = w>b qt for a parameter vector wb that
is estimated using linear regression. Given a batch of M trajectories, a
stochastic gradient of J(π) is obtained by replacing the expectation in
(5.8) with the empirical expectation over trajectories in the batch.
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A stochastic gradient of the prediction error (the second term in
Eq. 5.7) can be obtained using backpropagation through time (BPTT) (Wer-
bos, 1990). With an estimate of both gradients, we have an estimate
of the gradient of (5.7) which can be used to update the parameters
through gradient descent, see Algorithm 9.

Algorithm 9: UPDATE (VRPG)
Input: θn−1, trajectories D={τi}M

i=1, and learning rate η.
1: Estimate a linear baseline bt = w>b qt, from the expected reward-to-go

function for the batch D:

wb = arg min
w

∥∥∥∥ 1
TM

M
∑

i=1

Ti

∑
t=1

Rt(τ
i
t )−w>qt

∥∥∥∥
2

.

2: Compute the VRPG loss gradient w.r.t. θ, in Eq. 5.8:

∇θ`1 = 1
M

M
∑

i=1

Ti

∑
t=0
∇θ log πθ(ai

t|qi
t)(Rt(τ

i)− bt).

3: Compute the prediction loss gradient:

∇θ`2 = 1
M

M
∑

i=1

Ti

∑
t=1
∇θ

∥∥∥Wpred(qi
t ⊗ ai

t)− oi
t

∥∥∥
2
.

4: Normalize gradients ∇θ`j = NORMALIZE(θ, `j), in Eq. 5.10.
5: Compute joint loss gradient as in Eq. 5.7:

∇θL = α1∇θ`1 + α2∇θ`2.
6: Update policy parameters: θn = ADAM(θn−1,∇θL, η)

7: Return: θn = (θn
PSR, θn

re, η).

Algorithm 10: UPDATE (Alternating Optimization)
Input: θn−1, trajectories D = {τi}M

i=1.
1: Estimate a linear baseline bt = w>b qt, from the expected reward-to-go

function for the batch D:

wb = arg min
w

∥∥∥∥ 1
TM

M
∑

i=1

Ti

∑
t=1

Rt(τ
i
t )−w>qt

∥∥∥∥
2

.

2: Update θPSR using the joint VRPG loss gradient in Eq. 5.7:
θn

PSR ← UPDATE VRPG(θn−1,D).
3: Compute descent direction for TRPO update of θre:

v = H−1g, where

H = ∇2
θre

M
∑

i=1
DKL

(
πθn−1 (ai

t|qi
t) | πθ(ai

t|qi
t)
)

,

g = ∇θre

1
M

M
∑

i=1

Ti

∑
t=1

πθ(ai
t|qi

t)

πθn−1 (ai
t|qi

t)
(Rt(τ

i)− bt).

4: Determine a step size η through a line search on v to maximize the objec-
tive in (5.9) while maintaining the constraint.

5: θn
PSR ← θn−1

PSR + ηv
6: Return: θn = (θn

PSR, θn
re).

5.6.2 Alternating Optimization

TRPO:
In this section, we describe a method that utilizes a natural gradient-
style update, Trust Regression Policy Optimization (TRPO (Schulman
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et al., 2015)). TRPO offers an alternative to the vanilla natural pol-
icy gradient methods, that has shown superior performance in prac-
tice (Duan et al., 2016). It uses a natural gradient update and enforces
a constraint on the change in the policy at each update step, mea-
sured by KL-divergence between conditional action distributions. This
constraint along with the natural gradient correction ensure smoother
changes of the policy parameters.

Each TRPO update is a solution to the following constrained opti-
mization problem: TRPO gradient

θn+1 = arg min
θ

Eτ∼p(τ|πn)

[
πθ(at | qt)

πn(at | qt)
(Rt(τ)− bt)

]

s. t. Eτ∼p(τ|πn) [DKL (π
n(.|qt) | πθ(.|qt))] ≤ ε, (5.9)

where πn is the policy induced by θn, Rt and bt are the reward-to-go
and baseline functions defined in §5.6.1, and ε is an hyper-parameter
that determines the allowed amount of change. In practice, we op-
timize using conjugate gradient with line search, where we use an
efficient implementation using Fisher information matrix vector prod-
ucts, as proposed in Schulman et al. (2015). For RPSP networks, we
extend TRPO by introducing an additional constraint that minimizes
the Frobenius norm of the prediction matrix ‖Wn

pred −Wθ
pred‖F to ac-

count for updates of the PSR parameters. This constraint also ensures
smooth changes of predictive parameters.

Alternating Optimization:
Next, we investigate a hybrid method: we would like to benefit from
TRPO-type updates, but we observed that TRPO tends to be computa-
tionally intensive with recurrent architectures, mostly due to the need
of performing a line-search and using conjugate gradient. Instead, we
resort to the following alternating optimization: in each iteration, we
use TRPO to update the reactive policy parameters θre, which involve
only a feedforward network. Then, we use a gradient step on (5.7),
as described in §5.6.1, to update the PSR parameters θPSR, see Algo-
rithm 10.

We can summarize the final algorithm as follows (see Algorithm 8

for details): first, we initialize the filtering parameters θPSR using a
moment-based method: we generate initial trajectories {(oi

t, ai
t)

T
t=1}M

i=1
from an exploratory policy πexp (e.g. random Gaussian), and train a
PSR using two-stage regression, described in §5.4.1.

After initialization, we start an iterative learning process: at each
step we update the predictive state using the current action/observation
pair (filtering), in Eq. 5.4. Then we sample an action from the distri-
bution over actions that the network outputs at ∼ πre. At the end of
an episode we update the full set of parameters θ = {θPSR, θπre} using
backpropagation through time (Werbos, 1990).



114 kernel and moment based prediction and planning

Algorithm 8 makes use of a subroutine, Update, that updates pol-
icy parameters in order to minimize the corresponding loss function
Eq. 5.7, either in a joint §5.6.1 or alternating approach §5.6.2. For clar-
ity, we provide the pseudo-code for the joint and alternating update
steps defined in this UPDATE step. We show the joint VRPG update
step in Algorithm 9, and the alternating (Alternating Optimization)
update in Algorithm 10.

5.6.3 Variance Normalization

It is difficult to make sense of the values of α1, α2, especially if the
gradient magnitudes of their respective losses are not comparable.
We have verified empirically that these magnitudes are very unbal-
anced. So, we propose a principled approach for finding these relative
weights.

We use α1 = a1α̃1 and α2 = a2α̃2, where ai is a relative important
factor of li to the combined objective L. α̃1 and α̃2 are dynamically ad-
justed to maintain the property that the gradient of each loss weighted
by α̃ has unit (uncentered) variance, in Eq. 5.10. To do so, we maintain
the variance of the gradient of each loss through exponential averaging
and use it to adjust the weights.

v(n)
i = (1− β)v(n−1)

i + β ∑
θj∈θ

‖∇(n)
θj

`i‖2 (5.10)

α̃
(n)
i =

1√
∑θj∈θ v(n)

i,j

,

where β ∈ R is the exponential averaging constant.

5.7 Connection to RNNs with LSTMs/GRUs

RPSP-networks and RNNs both define recursive models that are able
to retain information about previously observed inputs. BPTT for
learning predictive states in PSRs bears many similarities with BPTT
for training hidden states in LSTMs or GRUs. In both cases the state
is updated via a series of alternate linear and non-linear transforma-
tions. For predictive states the linear transformation pt = Wext qt
represents the system prediction: from expectations over futures qt
to expectations over extended features pt. The non-linear transforma-
tion, in place of the usual activation functions (tanh, ReLU), is replaced
by fcond that conditions on the current action and observation to up-
date the expectation of the future statistics qt+1 in Eq. 2.76. When we
consider linear transformations Wpred and Wext we refer to transfor-
mations between kernel representations, between Hilbert Space Em-
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beddings. It is worth noting that these transformations represent non-
linear state updates, as in RNNs, but where the form of the update is
defined by the choice of representation of the state. For Hilbert Space
embeddings it corresponds to conditioning using Kernel Bayes’ Rule,
in Eq. 2.77. PSRs have the additional benefit of having a clear interpre-
tation as a prediction of future observations and could be trained based
on that interpretation. They can be initialized using moment matching
techniques, with good theoretical guarantees. In contrast RNNs may
exploit heuristics for an improved initialization (Zimmermann et al.,
2012), however, defining the best strategy does not guarantee good
performance. In this work the proposed initialization, provides guar-
antees in the infinite data assumption (Hefny et al., 2017b).

Figure 5.4: OpenAI Gym Mujoco envi-
ronments: Walker2d, Hopper, Swimmer,
Cart-Pole (Inverted-Pendulum) (top-
down).

5.8 Experiments

We evaluate the RPSP-network’s performance on a collection of rein-
forcement learning tasks using OpenAI Gym Mujoco environments.7

7 https://gym.openai.com/envs#
mujoco We ensure all models and
baselines use the same OpenAI Gym
base environment settings.

We learn a policy for Swimmer, Walker2D, Hopper and Cart-Pole envi-
ronments with off-the-shelf environment specifications, see Figure 5.7.
We consider only partially observable environments: only the angles
of the joints of the agent are visible to the network, without velocities.

Proposed Models:
We consider an RPSP with a predictive component based on RFFPSR,
as described in §5.4.1 and §5.5. For the RFFPSR we use 1000 random
Fourier features on observation and action sequences followed by a
PCA dimensionality reduction step to d dimensions. We report the
results for the best choice of d ∈ {10, 20, 30}.

We initialize the RPSP with two stage regression on a batch of Mi

initial trajectories (100 for Hopper, Walker and Cart-Pole, and 50 for
Swimmer, equivalent to 10 extra iterations, or 5 for Swimmer). We
then experiment with both joint VRPG optimization (RPSP-VRPG)
described in §5.6.1 and alternating optimization (RPSP-Alt) in §5.6.2.
For RPSP-VRPG, we use the gradient normalization scheme described
in §5.6.3.

Additionally, we consider an extended variation (denoted by +obs)
that concatenates the predictive state with a window w of previous
observations as an extended form of predictive state q̃t = [qt, ot−w:t].
If PSR learning suceeded perfectly, this additional information would
be redundant; however, we observe in practice that providing observa-
tions helps the model learn faster and more stably.

Competing Models:
We compare our models to a finite memory model (FM) and a recur-

https://gym.openai.com/envs#mujoco
https://gym.openai.com/envs#mujoco
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rent neural network with GRUs (GRU). We have experimented with
both LSTMs and GRUs, but the later provided better results. The fi-
nite memory models are analogous to RPSP, but replace the predic-
tive state with a window of past observations. We tried three vari-
ants, FM1, FM2 and FM5, with window size of 1, 2 and 5 respec-
tively. Note that FM1 effectively assumes a fully observable environ-
ment. We compare to GRUs with 16, 32, 64 and 128-dimensional hid-
den states. We optimize network parameters using the RLLab (https:
//github.com/openai/rllab) implementation of TRPO with two dif-
ferent learning rates (η = 10−2, 10−3). In each model, we use a linear
baseline for variance reduction where the state of the model (i.e., past
observation window for FM, latent state for GRU and predictive state
for RPSP) is used as the predictor variable.

Evaluation Setup:
We run each algorithm for a number of iterations based on the envi-
ronment (see Figure 5.5). After each iteration, we compute the average
return Riter =

1
M ∑M

m=1 ∑Tm
j=1 rj

m on a batch of M trajectories, where Tm

is the length of the mth trajectory. We repeat this process using M=10

different random seeds and report the average and standard deviation
of Riter over the 10 seeds for each iteration.

For each environment, we set the number of samples in the batch
to 10000 and the maximum length of each episode to 200, 500, 1000,
1000 for Cart-Pole, Swimmer, Hopper and Walker respectively. For
RPSP, we found that a step size of 10−2 performs well for both VRPG
and alternating optimization in all environments. The reactive policy
contains one hidden layer of 16 nodes with ReLU activation. For all
models, we report the results for the choice of hyper-parameters that
resulted in the highest mean cumulative reward (area under curve).

5.9 Results

Cross-environment performance:
Figure 5.5 shows the empirical average return vs. the amount of inter-
action with the environment (experience) measured in time steps. For
RPSP networks, the plots are shifted to account for the initial trajecto-
ries used to initialize the RPSP filtering layer. The amount of shifting is
equivalent to 10 trajectories. We report the best variant for each model
(+obs for RPSP-VRPG Hopper,Swimmer and Walker2d, and +obs for
RPSP-Alt Swimmer and Walker, FM5 for Hopper and Walker2d, and
FM2 for CartPole and Swimmer, d=32 for GRU CartPole, d=128 for
Hopper and d=64 for Swimmer and Walker2d).

We report the cumulative reward for all environments in Table ??.
For all environments except CartPole, a variant of RPSP wins over the

https://github.com/openai/rllab
https://github.com/openai/rllab
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(a) (b) (c)

(d)

models Swimmer Hopper Walker2d Cart-Pole
FM 41.6±3.5 242.0±5.1 285.1±25.0 12.7±0.6
GRU 22.0±2.0 235.2±9.8 204.5±16.3 27.95±2.3
RPSP-Alt 34.9±1.1 307.4±5.1 345.8±12.6 22.9±1.0
RPSP-VRPG 44.9±2.8 305.0±10.9 287.8±21.1 23.8±2.3

(e)
Figure 5.5: Empirical average return
over a batch of M = 10 trajectories of
T time steps. (a) Walker T = 1000, (b)
Hopper T = 1000, (c) Cart-Pole T = 200,
(d) Swimmer T = 500 environments. Fi-
nite memory model w = 2 (FM:orange),
RNN with GRUs (GRU:red), RPSP with
joint optimization (RPSP-VRPG: blue),
RPSP with alternate optimization (RPSP-
Alt: green). For RPSP models, the
graphs are shifted to the right to reflect
the use of extra trajectories for initial-
ization. (e) Summary of results: area
under curve for accumulated return ±
standard error over 10 trials.

baselines. For CartPole, however, convergence was slower than the
baselines, probably due to the very small trajectories used to initialize
the PSR (the pole would fall immediately after a few iterations ( 5 it.)
resulting in very poor initialization). For CartPole the top RPSP model
performs better than the FM model (t-test, p < 0.01) and it is not
statistically significantly different than the GRU model. For Swimmer
our best performing model is only statistically better than FM model
(t-test, p < 0.01), while for Hopper our best RPSP model performs
statistically better than FM and GRU models (t-test, p < 0.01) and
for Walker2d RPSP outperforms only GRU baselines (t-test, p < 0.01).
We also note that RPSP-Alt provides similar performance to the joint
optimization (RPSP-VRPG), but converges faster.

These results suggest that RPSP-networks provide an overall high
performing method to learn a continuous stochastic policies, and in
particular that RPSP-networks are more reliably good than competing
methods across environments.

To quantify this trend we evaluate the aggregate performance of
each method in all environments. We report the average area under
the curve AUC = 1

4 ∑env ∑100
n=1 Renv

nsenv / maxi Renv
i , where maxi Renv

i is
the reward at step i in environment env and senv is a step size that
calibrates the number of iterations in each environment (2 Cart-Pole, 3

for Swimmer and 5 for Hopper and Walker).
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Figure 5.6: Empirical average return
over a batch of M = 10 trajectories
of T time steps. (Left to right top
down): Walker T = 1000, Hopper
T = 1000, Cart-Pole T = 200, Swim-
mer T = 500 environments. Compar-
ison of RPSP-nets variants RPSP with
joint optimization (VRPG: purple), RPSP
with joint optimization plus observa-
tions (VRPG+obs: cyan), RPSP with al-
ternate optimization (RPSP-Alt: dark
green), RPSP with alternate optimiza-
tion plus observations (RPSP-Alt: light
green). for initialization.

Minimal Comparisons: Next, we conducted a series of minimal
comparisons where we intended to investigate the benefit of the pro-
posed contributions.

The RPSP model is based on the following components: (1) a state
filter using PSR (2) a consistent initialization using two-stage regres-
sion (3) an end-to-end training of filter and policy (4) using observation
prediction loss to regularize training. We define variants of RPSP that
lack some of these features, in order to evaluate which of these features
contributes to performance.

RPSP variants: augmented PSR filter
Here, we change the state tracking layer and consider an augmented
version that concatenates predictive states with a window of previous
observations.

We provide a complete comparison of RPSP models using aug-
mented states with observations for each environment in Figure 5.6.
We compare with both joint optimization (VRPG+obs) and an alter-
nating approach (Alt+obs). Augmented predictive states with a win-
dow of observations (w = 2) provide better results in particular for
joint optimization. This extension might mitigate prediction errors,
improving information carried over by the filtering states.

Predictive vs. latent states:
In the next experiment, we replace the PSR with a GRU that is ini-
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Figure 5.7: GRU vs. RPSP filter
comparison for other Walker and Cart-
Pole environments. GRU filter with-
out regularization loss (GRU:red), GRU
filter with regularized predictive loss
(reg_GRU: yellow), RPSP (RPSP:blue)

Figure 5.8: Predictive filter regulariza-
tion effect for Walker2d, CartPole and
Swimmer environments. RPSP with
predictive regularization (RPSP:blue),
RPSP with fixed PSR filter parameters
(fix_PSR:red), RPSP without predictive
regularization loss (reactive_PSR: grey).

tialized using backpropagation through time. This is analogous to
the predictive state decoders proposed in (Venkatraman et al., 2017),
where observation prediction loss is included when optimizing a GRU
policy network (reg_GRU).8 Figure 5.7 shows that a GRU model is in- 8 The results we report here are for

the partially observable setting which
is different from the reinforcement
learning experiments in (Venkatraman
et al., 2017).

ferior to a PSR model, where the initialization procedure is consistent
and does not suffer from local optima.
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Figure 5.9: Empirical average return
over 10 trials with a batch of M = 10 tra-
jectories of T = 1000 time steps for Hop-
per. (Left to right) Robustness to obser-
vation Gaussian noise σ = {0.1, 0.2, 0.3},
best RPSP with alternate loss (Alt) and
Finite Memory model (FM2).

Predictive regularization:
One component of RPSP is the inductive bias that predicting future
observations helps find a meaningful state. In this experiment, we aim
to test this assumption. We compare three variants of RPSP: one where
the PSR is randomly initialized (random_PSR), another one where the
PSR is fixed at the initial value (fix_PSR), and a third one where we
train the RPSP network without prediction loss regularization (i.e. we
set α2 in (5.7)) to 0 (reactive_PSR).

Figure 5.8 demonstrates that these variants are inferior to our model,
showing the importance of two-stage initialization, end-to-end train-
ing and observation prediction loss respectively.

Effect of observation noise:
We also investigated the effect of observation noise on the RPSP model
and the competitive FM baseline by applying Gaussian noise of in-
creasing variance to observations. Figure 5.9 shows that while FM was
very competitive with RPSP in the noiseless case, RPSP has a clear ad-
vantage over FM in the case of mild noise. However, the performance
gap vanishes if excessive noise is applied.

Finite Memory models:
Next, we present all finite memory models used as baselines. Fig-
ure 5.11 shows finite memory models with three different window
sizes w = 1, 2, 5 for all environments. We report in the main compar-
ison the best of each environment (FM2 for Walker, Swimmer, Cart-
Pole, and FM1 for Hopper).

GRU baselines:
In this section we report results obtained for RNN with GRUs using
the best learning rate η = 0.01. Figure 5.10 shows the results using
different number of hidden units d = 16, 32, 64, 128 for all the environ-
ments.
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Figure 5.10: Empirical expected return
using RNN with GRUs d = 16 (green),
d = 32 (blue), d = 64 (red) and d =
128 (yellow) hidden units. (top-down
left-right) Swimmer,Walker, Hopper and
Cart-Pole.

Figure 5.11: Empirical expected return
using finite memory models of w = 1
(black), w = 2 (green), w = 5 (red) win-
dow sizes. (top-down left-right) Walker,
Hopper, Cart-Pole, and Swimmer.

5.10 Conclusions

In this chapter, we proposed RPSP-networks, which combine ideas
from predictive state representations with recurrent networks for re-
inforcement learning. This chapter poses an interesting research di-
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rection that combines sample efficient method of moments with deep
learning architectures. We make use of existing PSR learning algo-
rithms to provide a statistically consistent initialization of the state
tracking component, and propose gradient-based learning methods to
minimize both expected return and prediction error over batches of
trajectories. including GRUs, and finite memory models. We empir-
ically show the efficacy of the proposed approach in terms of speed
of convergence and overall expected return for different OpenAI Gym
environments.



6
Conclusions

In this chapter, we review the most important contributions of this
thesis in Section 6.1, and provide some insights on possible future
research directions in Section 6.2.

6.1 Summary of contributions

In this thesis, we explored kernel-based methods and moment match-
ing approaches to sequential prediction and planning problems. Se-
quential models are relevant to many fields in Computer Science; in
particular, we focused on Natural Language Processing (NLP) and
Robotics. We developed related machine learning algorithms for solv-
ing common problems in NLP and Robotics, despite the inherent core
differences the two fields possess. NLP deals with large discrete ob-
servation spaces, while Robotics problems have a continuous nature
typically describing the position or velocity of a robot.

In this thesis, we explore method of moments (MoM) to learn se-
quential models for sequence labeling tasks in NLP (§ 3), and we learn
to predict and plan in continuous sequential systems in Robotics (§ 5).
We further explore kernel approaches to design efficient algorithms
for planning in Robotics, we develop a robot motion planner algo-
rithm for trajectory optimization in reproducing kernel Hilbert spaces
(§ 4), and we make use of kernel based representations to model and
plan a robot’s pose in a partially observable environment (§ 5).

First, we explored sequential models in the latent variable learning
setting, where the latent states are interpretable and can provide ad-
ditional information about the observations, in the form of labels. We
introduced an efficient sequence labeling method for generative mod-
els in Chapter 3. We extended MoM techniques to semi-supervised
learning settings, where we learn a sequence labeling task using con-
textual information from a set of anchor observations to disambiguate
state. We further extended anchor learning to a weakly supervised
setting by designing an algorithm that is able to handle small inputs
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of labeled data and large amounts of unlabeled data. We provided
an extension of the algorithm to log-linear models by considering a
continuous feature observation space. The proposed method outper-
formed other supervised and semi-supervised methods. We reported
results on POS-tagging tasks with small supervision, in a scarcely an-
notated language (Malagasy), and for Twitter (§ 3). This proposed
approach was particularly well suited for learning with large amounts
of unlabeled data, under weak supervision, while training an order of
magnitude faster than any previous work.

In Robotics as well, we make use of sequential models to predict
continuous observations in Chapter 5. We exploit another variant of
MoM approaches, spectral learning, where the latent space is never ex-
plicitly recovered; instead it is used to increase the expressiveness of
the model. We rely on kernel approaches to learn a continuous non-
linear observation mapping and exploit linear sequential predictive
models in kernel spaces using predictive state representations (PSRs).
We combined predictive models with planning problems for Robotics,
in Chapter 5. We make use of models of the system to improve the
performance of planning algorithms. We proposed a novel class of
policies for planning under uncertainty, where the latent space is re-
lated to a belief over the system state. We introduced recurrent predic-
tive state policies (RPSP) networks, by combining PSRs with recurrent
networks. We exploited existing PSR learning algorithms to serve as a
recurrent state filter of the network while leveraging recent advances
in deep reinforcement learning techniques to optimize a policy. This
work provided the means to have a statistically consistent initializa-
tion of the state tracking component using current moment-based ap-
proaches (Hefny et al., 2017b). Lastly, we provided a gradient-based
learning method to minimize both expected return and prediction er-
ror, providing a combined form of updating the predictive model and
the learned policy end-to-end. We empirically analyzed different RPSP
variants against other recurrent and predictive models. We showed the
efficacy of the proposed approach in terms of speed of convergence
and overall expected return for different partially observable environ-
ments using an OpenAI Gym simulator.

Finally, we combined kernel-based approaches with continuous plan-
ning problems in Robotics in Chapter 4. In this chapter, we departed
from sequential systems and MoM learning and focused on kernel
based methods for robot planning problems. We introduced a kernel
approach to to robot motion planning using a gradient based opti-
mization algorithm. We framed trajectory planning as function op-
timization in a reproducing kernel Hilbert space (RKHS), where we
considered trajectories as elements on a vector valued RKHS. We fur-
ther provided an efficient algorithm where the norm induced by the
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kernel defined a good metric to the optimization problem and could be
associated with different notions of smoothness, including commonly-
used variants as special cases (velocity, acceleration penalization). We
demonstrated the efficiency of this functional gradient trajectory opti-
mization in RKHSs, compared with a common optimization algorithm
(CHOMP) (Zucker et al., 2013). We showed that the proposed method
benefited from a low-dimensional trajectory parametrization that was
fast to compute. The inherent smoothness of the RKHS allowed us
to achieve faster convergence, by taking larger steps without breaking
smoothness. We extended planning to vector valued spaces, impor-
tant to model robot joint interactions, and further provided forms of
incorporating kinematic and dynamic constraints along the trajectory.
This work presents an important step in exploring RKHSs for motion
planning. We described trajectory optimization under the light of re-
producing kernels, which we hope can leverage the knowledge used
in kernel based machine learning to develop better motion planning
methods.

6.2 Future directions

In this section, we provide a few possible future research directions
and discuss some open research questions pertaining to this thesis.

6.2.1 Extend anchor learning to continuous observation spaces

In Chapter 3 we propose a moment-based learning method for latent
variable models that relies on anchor observations. These observations
provide an unambiguous map between certain observation types, i.e.,
elements in a finite dictionary to each state variable (or labels in this
case). Although we present algorithms that are able to handle contin-
uous observation representations, we only consider anchor mappings
to certain discrete observation types. A possible more general form
of anchor learning could extend this notion to certain events in time
that are associated with a given hidden state variable. This insight
would allow for continuous representations and consider anchors as
observation “tokens” instead of types. We could think of an extension
of the proposed algorithm to capture information about anchor events
in time and their context. Hidden states would still correspond to a
finite set but the observations may be continuous and the association
is done in time (anchors in time). For each hidden state in Eq. 3.10 we
can model the expectation in time over all contexts of every instance
that is unambiguously associated with that particular state. “Would
correlations of these anchor tokens with their contextual information
be sufficient to learn its latent variables for any particular time?" is
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an open question that naturally arises from this interpretation. The
anchor learning algorithm would be a suitable algorithm for dealing
with anchor tokens, since it provides an efficient form of looking at
these correlations.

6.2.2 The effect of impure anchors

Another possible future direction of research relates to the theoreti-
cal analysis of impure anchors. In Chapter 3, we use anchor words as
placeholder for latent variables. This substitution is exact in the case of
pure anchors, meaning anchor words that only occur with a particular
state. In this case alone, we may exchange state contextual information
with anchor words contextual information. Nevertheless, form a prac-
tical point of view finding such observations be difficult and in some
cases they may only occur very sparsely, leading to poor evaluation of
the contexts. Therefore, it would be useful to consider relaxing this
notion, as we empirically observe, and understand from a theoretical
perspective what are the trade-offs between purity and how well we
may estimate the hidden states or in turn its context. Work on hyper-
spectral unmixing in the remote sensing community provides some
analysis towards this direction (Bioucas-Dias et al., 2012), in particular
when anchors, or end-members as it is denoted in this community, lie
in the facet of the simplex (occur with just a few hidden variables) or
when they occur with a given hidden variable with high probability.
It still remains an open question how well the each of these variants
would perform as substitutes for hidden variables in the context of the
proposed approach in Chapter 3, and also in conjunction with semi-
supervised information.

6.2.3 Combining randomized planners with kernel representations

RKHSs provide an expressive and natural metric for representing and
optimizing trajectories, as proposed in Chapter 4. Another line of
work in robot motion planning finds trajectories based on sampling
approaches. Methods such as rapidly exploring random trees (RRTs)
and probabilistic roadmaps (PRMs) explore the configuration space of
the robot by building a graph from sampled configurations, and then
searching for a viable path within this graph. This family of meth-
ods provide an efficient form of obtaining viable trajectories but lack
the optimality provided by trajectory optimization algorithms, such as
the one proposed in Chapter 4. An interesting possible line of work
could try to bring together these two families of motion planning, by
leveraging expressiveness of RKHSs with efficiency of randomized ap-
proaches. Francis et al. (2017) provides some initial step in this direc-
tion, but this still remains an open research direction.
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6.2.4 Exploring natural gradient approaches for RPSPs

Current natural gradient descent algorithms, such as the one used in
the alternating optimization approach, in Chapter 5, require the com-
putation of the Fisher information matrix as a quadratic approxima-
tion of the KL divergence constraint in Eq. 5.9. Schulman et al. (2015)
provides an efficient form of computing this constraint in terms of an
approximate Hessian-vector product, but this step combined with the
line search, required to compute the conjugate gradient step, is still rel-
atively slower compared with the REINFORCE approach. As a possi-
ble future research direction, it would be of interest to take advantage
of the steady changing monotonically improving policy parameters
with natural gradient methods, while reducing its computation time.

6.2.5 Exploit predictive models for improved real robot experiments

Model-based learning offers a sample efficient way of learning a policy
using simulated experience gathered from the model. The most com-
mon difficulty in model-based approaches lies in the model estimation
itself. Learning an accurate model is sometimes harder than directly
optimizing the policy parameters. PSRs, however, grant a computa-
tionally effective form of estimating a model of the environment solely
based on observations. The proposed work on policy learning with
PSRs (RPSPs), in Chapter 5, learns both simultaneously a policy and a
predictive model from scratch. It would be interesting to extend PSRs
to learn in a real robot experiment, for instance, study how we could
use the learned model to improve real robot sample efficiency, either
as an efficient experience generator for learning a real robot policy,
or as an initial policy. Analogous to the setting of transfer learning,
it would be interesting to learn how we can learn RPSPs using sim-
ulated data such that the model would perform well with just a few
iterations of refinement in the real robot (Finn et al., 2017; Rusu et
al., 2016). Alternatively, we may learn a mixture of experts Shazeer
et al., 2017; Eigen et al., 2013 both in real robot experiments and sim-
ulated environments and optimize their combination. Other forms of
improvement can be achieved by closing the loop between simulations
and real-robot trials (Christiano et al., 2016), by learning a policy of
the residual error between the predictive simulations and real-robot
samples. This policy class could be an RPSP, whose prediction error is
between the predicted simulation and the real robot, or the prediction
of the residual. This however would not improve the sample complex-
ity of the real experience, which may suggest that a combination of the
two approaches, transfer learning with predicting the residuals, could
provide an efficient and robust approach.
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6.2.6 Connections with deep learning

Overall, the method of moments provides a statistically consistent
alternative to learning sequential systems, however when compared
with current state-of-the-art models, in particular using deep-learning
approaches they have not been as successful as desired. Spectral meth-
ods possess some disadvantages when compared with deep neural
networks: they assume a fixed filtering function, which may fail when
modeling more complex, non-stationary systems. Spectral methods
are also very sensitive, meaning performance degrades quickly if we
fall out of the learned region, making them more vulnerable to model
mismatch. It is also worth noting that although both type of methods
are demanding in terms of samples, most spectral learning variants
have been proposed for the unsupervised setting, while deep networks
have been mostly used in a supervised way.

In Robotics, Sun et al. (2016a) provides an approach with promising
results using spectral learning for time-variant systems, however com-
parisons to deep learning approaches have not been done in this case.
In NLP, on the other hand, deep learning methods achieve state of the
art performance in different tasks. Although many of these improve-
ments may come from highly optimized parameter tuning (Dhillon
et al., 2015a; Stratos et al., 2015) compared with spectral learning ap-
proaches, they still provide more flexibility, by allowing modular char-
acteristics such as attention mechanisms over the entire sequence (Bah-
danau et al., 2015), gating mechanisms and memory (Hochreiter et
al., 1995; Cho et al., 2014a), and more flexible filtering functions. Ex-
ploring this additional flexibility in method of moments provides very
promising future research directions. Also in kernel approaches there
has been further work trying to combine kernel methods and deep
architectures, by improving on one side theoretical understanding of
deep methods (Belkin et al., 2018), and on the other side leveraging
the expressive power and scalability of deep architecture into kernel
learning (Zhuang et al., 2011; Cho et al., 2009; Wilson et al., 2016; Song
et al., 2018).
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