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Large configuration spaces present difficulties for developers validating large soft-

ware systems and for users selecting the proper configuration to achieve the desired

runtime behavior. Robot systems face the same challenges as they may have hundreds

of configurable parameters. Our work focuses on co-robotic systems, those in which

robots and humans work closely together to augment each other’s capabilities. We aim to

leverage the user’s knowledge about a system to help determine configuration errors. To

accomplish this, users mark runtime failures while observing the system in operation. A

marked error indicates the robot “did something when it should not have” or was “not

doing something when it should have.” In this thesis we have developed an approach

that identifies predicates involving configuration parameters that may be relevant to each

error type and can suggest adjustments based on the outcome of those predicates. In this

work we present the following 1) A method to statically analyze Python and C++ code to

identify threshold predicate comparisons (predicates with values initialized by configura-

tion parameters that have an effect on specific execution patterns). 2) A characterization

of the configuration space of popular robot systems. 3) A recommendation approach

for configuration adjustment that combines user input with program analysis. 4) Three

case studies assessing the approach and characterizing threshold predicate comparisons

present in a running system.
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Chapter 1

Introduction

The software engineering community has recognized the difficulties for developers

validating large configuration spaces and for users selecting the proper configurations for

their systems to operate as expected. Configurations options have been identified to be

one of the main causes of errors in both commercial and open source systems [1], and a

number of approaches have been developed to solve the issues they cause as evidenced

in a recent survey [2].

Popular robotic systems are not exempt from these configuration challenges. Their

configuration spaces can be large and complex, in part, to enable users to tweak the

systems to fit many potential usage scenarios. For example, the Arducopter Drone

has 622 configuration parameters each containing multiple valid selections or a large

range of selectable values [3]. A popular humanoid robot, Baxter, created by Rethink

Robotics [4], [5] aims for workers and robots to collaborate to automate tasks in the

workplace. In the available source code for Baxter [6], 236 locations are easily identified

to read configuration parameters into the system. The large configuration spaces are also

present in frameworks used by robot systems. The Robot Operating System (ROS) [7]

is a widely used robotic “operating system” containing many frameworks that enable
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robotic functionality. For example the navigation framework [8] includes over 220 listed

parameters that can be used to configure the framework to work on a specific robot. These

three examples show the widespread use of large configuration spaces in robotic systems.

For some of these systems, the solution space seems similar to that already explored by

the software engineering community.

Our work, however, focuses on a particular type of robotic system called co-robots,

which closely cooperate with people to augment the robot’s capabilities. We see them

assisting patients to regain mobility, doctors to perform medical procedures, drivers to

safely operate their vehicles, service personal to clean surfaces, scientists to collect data,

and farmers to treat their crops. These kinds of robots are said to have the greatest

potential to impact society [9], integrating the operator’s sensing, actuation, and domain

expertise with the robot’s own.

As a concrete example, consider the aerial water sampler developed by the NIMBUS

Lab [10]. The sampler aims to allow water scientists to quickly collect samples from a

body of water without the need to deploy a boat or a larger, slower robotic system. This

ability will increase the ease with which scientists collect routine data in disconnected

bodies of water and increase their ability to collect samples quickly after events that

may bring about changes in the environment. However, such a system still contains a

large configuration space that must be set up correctly to run properly. For example, the

system has a parameter that determines the allowable error when flying to a point to

begin sampling. If the allowable error is too small and there is an external event, such as

the wind, the UAV will not reach the desired location. If the value is too large the UAV

may prematurely consider that it has reached the target location. In addition to basic

navigation configuration, the system has a number of safety configuration parameters.

One safety parameter is the height at which the UAV can fly before aborting the mission.

If the value is too high the UAV may abort sampling even when it could continue to safely



3

operate. If the value is too low the UAV may crash into the water when it should abort the

mission. Other configuration parameters set up the proper communication channels and

may not directly affect the runtime performance. The source code controlling the robot

system contains 353 locations that read configuration parameters. These 353 locations

in the source code read values from 286 uniquely named parameters to initialize values.

This large configuration space can be daunting to a user especially one which does not

have experience configuring a robot system.

In this work we explore how this symbiosis of human and robot can be leveraged

to detect when configurations are set improperly, and to collaborate to fix them and

optimize them. More specifically, we enable users to mark system errors on the fly as

either type I) the system did not do what it supposed to do, or as type II) the system did

something unexpected. In the context of the water sampler, a type I error would be the

system flying to a point to collect a sample, but not continuing to sample and instead

hovering trying to reach a sample location. An example type II error would be the system

aborting a sampling mission when operating normally because it was deemed too close

to the water.

With these pieces of error information, we have developed an approach that identifies

predicates involving configuration parameters that may be relevant to each error type, and

that can suggest adjustments based on the outcome of those predicates. More precisely,

the approach can determine how to adjust configuration parameters based on whether a

predicate relying on a configuration parameter has been flipped or not, leading to the

invocation or the lack of an invocation to a system action corresponding to type II and

type I error respectively.

Returning to our aerial water sampler, let’s suppose our approach would indicate

a type II error where the drone did not go on to collect the sample when it should.

Let’s assume that this was caused because the allowable delta to reach a waypoint was
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configured to be too small (the vehicle was close to the target waypoint, but not within

the bounds so it keeps hovering around it trying to reach it). Underlying this scenario,

there is a predicate in the code that evaluates whether the currentloc = targetloc ± delta.

The predicate never evaluated as true, the UAV did not reach the target location. Given

the type of error and the fact that the predicate evaluation did not change, our approach

would suggest for delta to be increased in order for the predicate to evaluate to true and

the system behavior to change.

Our work offers the following contributions:

• A recommendation approach for threshold adjustment that combines user input

with static and dynamic analysis.

• A characterization of the configuration space of popular robotic systems.

• Three case studies assessing the approach and characterizing the characteristics of

threshold predicate comparisons on a running system.

This work builds on much of the work in software engineering that has attempted to

help users and programmers identify configuration errors in extremely large configuration

spaces and extends this work to robot systems. We believe it is one of the first works to

examine these large configuration spaces in robot systems. In robotics we have contributed

a method that allows users of co-robotic systems to diagnose and solve configuration

problems. This work aims to give the users of the many co-robotic systems that have

appeared and are appearing another tool in diagnosing problems with the robot system.

We found that threshold predicate comparisons are a common occurrence across

a number of open source systems. They appeared in 25 out of 52 of the systems we

examined. When present each system had a mean of 21 threshold predicate comparisons

that loaded values from 11 unique configuration options. In the runtime experiments
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we found that threshold predicate comparisons appear very frequently during execution.

However, we found that many of the threshold predicate comparisons identified during

static analysis do not appear during runtime. We also found that flops are a rare

occurrence. In the studies users had no problem identifying and marking runtime errors,

but struggled to mark the correct error type. When users did mark the correct errors our

system did a reasonable job identifying the problematic configuration parameter.

There are many avenues of future research that this work can be expanded into. First,

more can be done to help users correctly identify the correct type of error. This can

include methods to help make transition of the robots state more obvious to the users. In

addition work can be done to make the system less dependent on the user identifying the

error type. This may be possible by examining the characteristics of systems when the

errors are occurring or developing a scoring system that produces comparable results

between the two types of errors. We also want to retool how the score is calculated and

examine the different methods of determining ranking of the problematic thresholds.

We also want to incorporate other source of setup parameters beside values loaded

from the ROS parameter server. These other sources can include integer constants and

header constants within the source code. The work can also be expanded from the

individual unit of computation to the full robot system. Finally, more can be done to

characterize how a threshold behaves in the system and if we can track different groupings

of threshold predicate comparisons during execution to determine how the system is

performing.

The rest of this thesis will summarize the static analysis used to identify threshold

predicate comparisons and go in depth into the runtime approach of identifying the

problematic threshold when a user identifies the error. We also will describe the validation

we performed on the approach. After describing the approach we will focus on examining

how common configurations are across a number of open source robot systems written
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in ROS. Finally, we examine the approach and how it performs on three different robot

systems. In these examinations we determine how threshold predicate comparisons play

a factor in the execution of the system, how users mark errors in the system, and how

well the approach can identify problematic thresholds in the three systems.
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Chapter 2

Related Work

The software engineering discipline has recognized the challenges associated with the

configuration of software systems, especially highly configurable systems. As early as

1985 operator actions, configuration, and maintenance were seen as the main sources of

errors in fault tolerance systems and the need for tools to help users configure systems

was identified [11]. The problems are also prevalent in all aspects of internet systems from

the routers for internet traffic [12], to the setup and configuration of websites providing

services [13], [14], and even on the databases serving the persistent data for the sites [15].

Configuration errors have been shown to cause over one third of the errors and repair

time for Hadoop clusters [16] and were found to be the cause of 14% of the bugs in cloud

computing systems [17]. Further adding to the problems encountered with configurations

is the fact many different methods are used to modify configuration parameters and often

the state of configuration is not readily available to the user or the developer [18].

Configuration problems extend beyond runtime options and also involve the selection

of features included in product lines. Work has been done to identify the problems

and offer solutions for configuring such systems [19]. These systems have a problem of

configuration space explosion and recent work has examined how to reduce the size of
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the space that must be dealt with for testing [20].

More recently, studies have aimed to determine and characterize misconfigurations

on commercial and open source software systems [1]. In this work, Yin et al. found that

70-85% of the problems are caused from setting incorrect parameters including illegal

values, inconsistent values, and external changes invalidating configuration options. Yin

et al. identified that misconfigurations lead to system unavailability or performance

degradation 16.1% to 47.3% of the time. They also found that only 7.2% to 15.5% of the

problems provide messages to pinpoint the error. A study by Xu et al. found that a

vast number of the choices (83% -94%) are never set by users [21] and when they are set

only a small portion of possible values are used [21]. Xu et al. were able to successfully

remove around half of the configuration space of a system [21]. Behrang et al. found that

there are many inconsistencies between the different methods to change configuration

options within a system and that the methods at some level may not have an effect on the

actual execution of the system [22]. They studied 10 years of Mozilla Core and Firefox

and found 40 configuration options that no longer had an effect on the system execution

as the software line evolved out of the 2,000 provided.

A large body of work has identified the many problems that configuration of systems

causes for users, but what approaches has the community taken to solve the issues?

A recent survey by Xu and Zhou examines the enormous effort to address and fix

the problems caused by the configuration options in software systems [2]. Kephart

and Chess identify the many challenges faced in the configuration and maintenance of

extremely large and complex systems [23]. They identified the need to have systems

automatically configure themselves. The rest of this chapter will highlight individual

work on configuration problems and also examine co-robotic systems.
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2.1 Testing Systems with Large Configuration Spaces

One line of research in testing is examining how to exercise a space of configurations for

more faults to be discovered. The idea of combinatorially selecting test inputs to find

faults has been around for quite some time [24]. The authors present a way to generate

tests that cover n-way combinations of test input parameters. This work focuses on all test

inputs instead of just the configuration spaces. Richard Kuhn shows that often all faults in

a system can be triggered by a combination of n or fewer parameters [25]. Srikanth et al.

examine a similar approach, they considered the setup cost of tests while choosing which

configurations to use in a test plan [26]. Yoon et al. examined how the numerous different

components that must be configured in present systems can be tested and shown to be

compatible [27]. One of the biggest threads of work in this area is the use of covering

arrays [28]. Using these methods the authors showed that they did not have to test 50-99%

of the configurations in the systems they tested. Further work in this line examined how

to handle constraints on the configuration space [29] and [30] and what kind of errors are

masked when certain selected configurations fail [31]. Once the configurations have been

selected for testing, the work of Qu et al. examines which test cases should be used to

exercise the selected configurations [32]. Another interesting approach to the problem

is to only test configuration options that have been selected by a user in the wild [33].

One final combinatorial testing work examines how configuration values behave in the

presence of a regression test [34].

Other testing work includes Reisner et al., which used symbolic evaluation to deter-

mine how the grouping of different configuration options affect line, basic block, edge

and conditional coverage in different tests suites [35]. The work of Nanda et al. map

configuration files to test cases, and when a configuration option is changed the test cases

that are affected by the configuration option are highlighted to be reexamined [36]. An-
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other approach to testing is determining how well a system can handle misconfigurations.

Conferr is a tool to benchmark systems on the handling of configurations errors. The

authors created a model of configuration errors, used the model to inject errors into real

system’s configuration files, and reported how well the systems handled configuration

problems [37].

Our work does not focus on testing. The work on testing highlights how errors

may arise only when certain configuration options are chosen. In robot systems the

configuration options, environmental conditions, hardware, and source code all have an

effect on the execution. The use of static analysis techniques is also prevalent in the testing

work. It is used to determine what parts of code depend on configuration parameters, a

key part of our method along with dynamic analysis.

2.2 Compile and Build Time Configuration

Work on the configuration problems also extends to compile time configuration options.

Two studies by Nadi et al., [38] and [39], used static analysis of preprocessor directives to

extract preprocessor constrains and produce a single propositional formula representing

all enforced constraints in highly configurable programs. Nadi et al. studied what effects

they had on the system. They found that the dependencies enforce correct builds, enforce

the correct features, and their tool can improve the use of configuration options. The

tools did a good job at extracting models, 93% of the models ensured a build without

errors. However, when their system missed dependencies within the configuration, expert

knowledge was required. TypeChef [40] is a tool created to perform the checking of

#typedef constraints in C code. Rachet [27] was created to model the configuration space

of a system and create test procedures to prevent build errors on all directly dependent

configuration options.
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Some software systems offer specific languages that define configuration constrains

and offer tools to use these languages. When a constraint is violated Range Fixes,

[41] and [42], provide a tool that shows which options and values will resolve a configura-

tion constraint violation. The tool uses SMT solvers to solve constraints that have already

been identified specifically for larger software systems such as the Linux kernel.

While our work does not directly focus on compile time configuration options. How-

ever, much like these works we aim to improve the user experience in interacting with

configuration options. Many of these approaches also use a form of static analysis to

extract configuration parameters from the system in question, but do not use any form of

dynamic analysis as our system does.

2.3 Helping Find, Diagnose, and Fix Configuration Errors

The work in this section aims to assist users, system administrators, or developers in

dealing with the many issues that arise from large configuration spaces in systems.

The work is divided into two sections, those that work to only find the problematic

configuration option after the error has occurred and those that aim to try to fix the

problem or prevent it from happening. Our approach falls into the identification and

fixing the problem categories; we aim to find the problematic parameter only after the

user has identified the problem and offer simple suggestions on how to improve the

system performance after it has been identified.

2.3.1 Finding The Problem

Using Chronus, the user creates a probe to test the system [43]. This probe answers if

the system is operating correctly. The system searches throughout the saved state in

the system to find the exact configuration change that caused the error to appear [43].
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Whitaker et al. accomplish this by implementing system that stores the history of the

system’s disk writes. The system can then restore itself to different time periods and use

the probe to find the exact time the system stopped functioning. Once the transition is

found, the states can be compared to find the change that caused the error. AutoBash, [44],

takes it one step farther, it provides a set of tools that allows speculative execution and

the tracking of cause and effect throughout the computer system.

The approaches of Zhang and Ernst [45], Attariyan and Flinn [46], and Attariyan et

al. [47] instrument a system and use a variety of methods to monitor the execution system

in an attempt to link the problem back to the configuration option that is the cause of

the error. To help solve configuration problems as the system is upgraded Zhang and

Ernst instrument the code and examine data in a similar manner to our approach [48].

Their approach instruments the program’s statements and predicates. The user provides

an example test case that demonstrates the problem after the upgrade. Their approach

examines the differences in the traces to determine which configuration options affect

the areas where execution traces do not match. The approaches of Rabkin and Katz and

Lillack et al. both aim to create a mapping from source code locations to preference

values using static analysis [49] and [50].

PrefFinder aims to allow users to use plain text queries to discover which configuration

option they should change [51]. A user provides a plain text query and the tool tries

to find the preference that will cause the desired change in behavior to occur. The

tool extracts preferences from the system using manuals, documentation, or a query

against the API of the preference system. Once extracted, the tool splits preferences into

meaningful words and parses them for code related words. The system also substitutes

for more common words and ensures that only the bases of the words are used. The

words in the query are matched with extracted words from the system’s preferences and

ranked to try and provide the best match. This approach could work very well on robot
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systems, as the hope is that all of the parameters are aptly named for their functionality,

however more research is needed to determine if that is the case.

Other “text” based approaches have also been explored. Xia et al. try to prevent

developers from confusing configuration bug reports with normal bug reports [52]. They

use the history of previous reports and language processing to make the determination

if an incoming bug report is a configuration related bug. Processing the classified old

bug data and performing text mining on the classified and new bug report accomplish

the designation. Zhang and Ernst aim to inform developers when their system has error

messages that do not expose the root cause of a problem, the configuration error [53]. They

first mutate the configuration space by replacing each value in the configuration space.

Next, the approach executes the system’s tests and collects any failure information. Finally,

the approach examines the diagnostic message and uses natural language processing

to determine if it adequately matches the description of the parameter that caused the

failure in the user manual

The lines of work in this subsection are the closest to our research. Much of the work

attempts to find the configuration setting(s) that caused the discovered issue. In addition

some of the approaches use static analysis to trace where configuration options affect

source code. However, our approach is unique as it focuses on co-robotic systems that

have additional sources of error and have a user directly monitoring the system.

2.3.2 Fixing or Preventing the Problem

One line of work examines how to prevent an error introduced in configuration from

affecting the system before the configuration option has been verified. Oliveira et al.

provide a prototype that first tests configuration changes before deploying them sys-

temwide [15]. With Barricade [54] the system itself monitors changes that a user is making
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to the configuration options. Barricade can prevent mistakes from propagating through

the system. They tested such Barricade on a webservice with promising results. Another

system that observes the system, monitors changes, and prevents and works around

issues is REACT [55]. This tool creates guards against known configuration problems

and dynamically attempts to solve problems within the system through reconfiguration.

Our work does not try to prevent errors; instead we want a user to identify the error

immediately after it occurs. After identification we will provide suggestions.

A common theme to prevent errors is using the information from known good

configurations. Confseer [56] takes a snapshot of the system and checks that against a

repository of known solutions for configuration problems built from information provided

by software vendors. The works of Ramachandran et al. [57] and Zheng et al. [58] examine

which parts of the systems depend on one another. The work of Zheng et al. provides

templates and other methods to ensure that components within the system are still

communicating as expected [58]. The same idea is also present in EnCore [59], which

examines how configuration settings interact with the environment and how different

components in a system interact. Kiciman and Wang created a tool that mines the

windows registry to find constraints from known good system states [60].

PeerPressure [61] uses samples from other machines to diagnose problems on a machine

that is not performing as it should be. It works on the idea that “the golden state is

in the mass” [61]. This means that in a large group of machines one will have the

correct configuration and it can be found by mining all of the machines for configuration

values. The Grid Monitoring System [62] collects log files about system service locally on a

networked grid of computers. Then, when requested, an outlier detection algorithm works

to find any machines that are possibly misconfigured. Our approach does not leverage

knowledge from other systems; however, using the knowledge about configuration

parameters in known good systems may be an avenue worth exploring. Parameters that
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differ from “normal” distributions may offer another clue that a given parameter is the

cause of the issue.

The automatic tuning of parameters is a common theme among work in large configu-

ration spaces. VCONFG [63] is a project that aims to use reinforcement learning to tune

virtual machines. The work of Cooray et al. aims to proactively keep system reliability

high using a learning approach [64]. It aims to reconfigure and tune the system before the

reliability suffers. Bu et al. aim to configure web systems using reinforcment learning [65].

Their work presents a tool that is able to change both workload and virtual machine

configurations. One type of system that has received a large amount of effort to enable

auto tuning is databases. Many methods have been developed and tested to tune the

configuration parameters of databases [66], [67], [68], and [69]. Our approach differs from

these approaches, as it is not an attempt to automatically tune configuration parameters;

it is trying to identify the problematic thresholds and offer suggestions for fixing them.

2.4 Co-robotics

Co-robotics [9] is the ability of robotic systems to be able to safely co-exist and work with

humans on mundane, dangerous, precise or expensive tasks and it has been identified

as an important research topic [70]. Robots in a co-robotic system will need to work

closely with their human counterparts using each other’s strengths in the planning and

completion of a task [9]. To accomplish this the humans may integrate their sensing,

actuation, and domain expertise with that of the robot. For a co-robotic system to

gain widespread adoption the system must be inexpensive, easy to use, and widely

available [9]. In addition to technical issues there will be ethical, economical, and societal

issues [9]. Co-robotic systems will be able to accomplish many tasks including water

sampling [10], crop measurements [71], service robots [72], weed control robots [73],
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and many other usages. However, many challenges still need to be examined. Hayes

and Scassellati [74] examine the challenges that need to be addressed during interaction

between humans and robots. This includes how humans and robots can recognize their

intents, how to assume roles, how to swap tasks, and how the robot can evaluate itself.

In addition to the challenge of cooperative actions between robots and humans, the

underlying problems facing roboticists are still present. Included in these challenges is

the configuration of the highly customizable robotic systems. This work aims to begin

to address this problem by leveraging the knowledge of the human operator present in

the operation of co-robotic systems to understand when an error is occurring and help

determine the likely cause of a configuration problem in the robot system.

One approach to the identified problems is to carefully control parts of the design or

implementation to use specific processes. For example Woodman et al. developed an

end-to-end design process to create systems that safely examine robot systems [75]. The

key portion of their approach is the safety policies. These policies are created throughout

the design process and are enforced by the system at runtime. Another approach by

Sattar and Dudek worked on the user communication and command portion of these

systems [76] They developed methods for the robot system to reason about the uncertainty

of the task as well as the cost of performing the task. Using this the robot would make

a determination on whether or not to perform a task or ask for clarification on the task

from the user. There has been much work in monitoring execution in robot systems to

identify faults [77]. The survey by Pettersson broke methods of runtime execution down

into one of three categories: analytical, data-driven, and knowledge-based. Currently, our

approach is data driven. We do not have a model of the underlying system except for the

assumption that flops in our data are a significant event. The communications between

units of execution is highlighted as an important feature of robot systems in a paper by

Zaman et al. [78]. In this paper they extended the normal ROS diagnostics tools to create



17

a model based diagnostic approach. The work of Mendoza et al. worked to build a model

based technique that can determine when motion is being impeded without any special

sensors [79]. Golombek et al. also examined how a model of the robot system’s data can

be used to determine when the system is in an error state [80].
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Chapter 3

Approach

This chapter details the approach we developed to identify and suggest solutions to

problematic thresholds in robot systems. The section provides an overview of the

approach as a whole and details the static analysis and runtime portions of the approach.

The first section defines the terms used throughout this work. The second section

highlights the assumptions of our approach. The third section provides a high level

overview of the approach. The fourth section provides an overview of the method

to determine the predicates that should be instrumented in the code and provides

examples. The final section describes the runtime portion of the approach. The runtime

implementation includes methods to mark problems, identifying the threshold that

caused the problem, and reporting results to the user of the system.

3.1 Definitions

This section contains definitions for the terms used in this chapter and the rest of the

thesis. It is split into terms specific to the approach, terms used in the context of ROS,

and LLVM terms used in the C++ description of the approach.
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3.1.1 Approach Terms

• Control Dependence : “A statement s is control dependent on the branch condition

c of a conditional branch statement if the control structure of the program indicates

that c potentially decides, via the branches it controls whether s is executed or

not.” [81].

• Data Dependence : “A statement s is data flow dependent on statement s′ if data

potentially propagates from s′ to s via a sequence of variable assignments.” [81].

• Program Dependency : A Control Dependence or a data Dependence.

• Reaching Definition : A definition d of some variable v reaches operation i if and

only if i reads the value of v and there exists a path from d to i that does not define

v [82].

• Branching Statement : Statement in which an expression is evaluated to determine

the control flow of a program.

• Predicate : The statement that is evaluated in a branching statement to determine

control flow of a program.

• Configuration Variable : Variable identified to have its value loaded from a source

of system configuration.

• Exposing Statement: A function call that causes or may cause a change in behavior

of the robot system outside of the scope of the current program.

• Program Slice : “Parts of a program that (potentially) affect the values computed at

some point of interest” [83].

• Slicing Criterion : Point of interest used to compute a program slice. Defined in [83]
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• Threshold : A configuration variable or value used in a predicate.

• Threshold Predicate Comparison : A predicate containing a threshold in part of the

expression.

• Flop : Any instance where the value of a predicate changes from the previously

held value.

• Type I Error : An error caused by a predicate flopping too early. The robot will

change state before it should.

• Type II Error : An error caused by a predicate not flopping. The robot should be

changing state, but it is not.

• UUID : Universally Unique Identifier. A unique identifier defined as defined in [84]

3.1.2 Robot Operating System

• ROS Robot Operating System. An “operating system” widely used in robotics.

Offers communication protocols, frameworks, and other tools for robotic system

development [7].

• Node : A process in ROS. Independent computational unit that handles a particular

task or subset of tasks in the robot system as a whole. Communicates over known

channels to other nodes to accomplish desired behavior.

• Parameter Server : The main method of passing configuration values to nodes in

ROS.

• Topic : A named communication channel in ROS. Has a unique name and a defined

message type. Can send and receive messages from many locations including

multiple nodes. Provide a method of asynchronous communication.
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• Publish : The act of sending a message over a topic.

• Service : Similar to a Topic, but a message is sent and the execution waits until a

response is received. Provides a method to guarantee that a message is received

and handled. A synchronous form of communication.

• Service Call : A statement which executes a call to a ROS Service.

• Message : Defined data objects that are sent over Topics and Services.

• Package : A collection of nodes and messages in ROS.

• Catkin : The Build system used to compile ROS packages.

3.1.3 LLVM Terms

• LLVM : Low Level Virtual Machine (LLVM) - framework to allow lifelong program

analysis and transformation [85].

• Intermediate Representation (IR) : Representation of program during compilation.

Mostly independent of machine and programming language.

• Clang : C and C++ frontend for LLVM.

• Module : Top level container for an LLVM IR. Contains functions, global variables,

symbol tables, and any other needed information for the module.

• Basic Block : A single entry single exit portion of code in LLVM’s IR . Contain a list

of instructions.

• Instruction : The smallest unit in the LLVM IR. Performs actions such as reading

from memory, terminating a block, or performing mathematic operation.

• Pass : In LLVM passes perform the transformation and analysis of the IR.
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3.2 Assumptions

Our approach makes a few key assumptions about robot systems, threshold predicate

comparisons, the runtime characteristics of them, and the ability of users to mark errors

timely and correctly. These assumptions are addressed throughout the remainder of the

thesis as data becomes available to addresses their validity.

Our first assumption is that the software systems controlling these robots have large

and complex configuration spaces. As with other software systems the multitude of

configuration options leads to configuration errors as users set incorrect values. We

assume that these configuration errors manifest themselves as Type I and Type II errors.

We also assume that the configuration parameters are each only used in a small number

of predicates. This allows the tracing of problematic predicates to the configuration value.

It also allows the changing of the configuration value without a large impact on the

system.

We also assume that threshold predicate comparisons are very common during the

execution of the system. Without many threshold predicate comparisons occurring,

we could not try to determine the problematic configuration parameter. However, we

assume that a threshold predicate comparison flopping is a rare and significant event.

If flops occurred very frequently the ability to find the threshold predicate comparison

that is most likely to flop or most recently flopped would not be helpful in identifying

configuration errors.

Finally, we assume that the system has a state machine that is controlled by the

threshold predicate comparisons. We also assume that the logic controlled by threshold

predicate comparisons is contained within a computational unit and our approach can

examine the computational units on an individual basis. We also assume that when the

state machine changes an observable change will occur in the system and that the user
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will be able to easily identify the change in the system’s behavior. This allows the user to

identify errors that are caused by the threshold predicate comparisons within the state

machine. We also assume that the users will be able to mark the errors quickly and

accurately when they occur to allow our system to help them determine the configuration

option that caused the error. We also assume that since the users will be very familiar

with the system, they will be able to easily identify the systems incorrect behavior.

3.3 Overall Approach

Figure 3.1 provides a high level overview of the approach. The approach contains two

distinct parts: a static analysis and instrumentation component and a runtime component.

The static analysis and instrumentation portion is responsible for identifying threshold

predicate comparisons within the source code of a robot system. After identification, the

approach instruments the predicates to expose the values in the comparisons during the

execution of the system. The runtime portion of the approach uses the values from the

instrumented portion of the code. During runtime, a user watches the system during

normal operation and marks any abnormalities in the execution of the system. The

runtime analysis calculates a score for each of the instrumented threshold predicate

comparisons and provides a suggestion to the user on which configuration parameter

could be the source of the problem.

Consider as an example a robot that delivers items between rooms in an office building.

As part of the system there is a safety node that prevents the robot from traveling too

quickly in the x direction due to instability. If the robot does change positions too quickly

it will immediately stop until reset. The safety node has a configurable parameter that

allows the users of the system to set the safety speed threshold.

The source code for the safety node is shown in Listing 3.1. The node contains three
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methods, all of which serve a specific purpose in relation to how ROS programs are

built. The init method sets up the class and creates the data structures necessary

for the system to communicate with other nodes. The calls to the rospy.Subscriber and

rospy.Publisher set up the communication channels. The rospy.get param reads in the

configuration parameter used to help control execution within the node and stores the

value in the self.threshold class variable. The t1callback method receives messages for the

node and makes comparisons to the configuration parameter’s value. The safety thread

method is the main method of the node. It checks to see if the threshold has been

exceeded, if so it publishes the value 1 to the publisher setup when the node was created.

Figure 3.1: Overview of the whole analysis

Now consider the

user notices that the

robot stops too fre-

quently, and they

are not sure of the

cause of the error.

It may be because

the robot is getting

too close to peo-

ple, the navigation

system is misconfig-

ured, a battery is

too low, or any er-

ror within the sys-

tem. Using our approach, the user would be able to run the robot system with all

of the threshold predicate comparisons in the source code instrumented. The process

of instrumenting and running the robot is fully integrated with the normal build and
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launching procedures of the robot system. The threshold predicate comparison on line 22

is found and instrumented during this process along with many others in the system’s

source code.

The user observes the robot in operation and marks errors using the runtime tools

we have created. The analysis then computes scores for all identified threshold predicate

comparisons in the system. The threshold predicate comparison on line 22 in Listing 3.1

will be identified as the likely cause of the problem because it flopped recently. This

error is a type I error, the configuration parameter was too low, causing the value of

the predicate to change and the robot to stop. With this information the user can take

corrective action for the problem. This is just a quick example of how the approach we

developed can be used to identify and fix configuration errors that cause the robot to

misbehave.

3.4 Static Analysis and Instrumentation

The first portion of our analysis involves the identification and instrumentation of thresh-

old predicate comparisons within the source code of a robot system. This enables the

runtime portion of our work to monitor the system and suggest solutions when the user

indicates a runtime problem. This section will outline what is required for the analysis

and instrumentation and provide an overview of the process.

The analysis identifies two sets of features in the source code and finds predicates that

contain both of the features. The first set of features is configuration variables. These can

include many different type of variables, but in our initial work configuration variables

are all variables that have values assigned to them by the configuration options in the ROS

system. Configuration variables are found using a syntactic search through the source

code. The second set of features is predicate statements that cause data or control flow
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decisions for exposing statements. These are found performing a programming slicing

routine from exposing statements in source code. After these operations are performed,

locations that contain both of the features are found and instrumented. The code is then

transformed into the executable version.

ROS systems are broken into logical units or ”nodes.” These nodes control individual

tasks within the system and communicate using topics and services. We assume that

these individual nodes contain state machines that control the communication over these

topics and manifest themselves as outward visible behavior. Because of this our approach

only examines individual nodes and does not make any assumptions or perform analysis

on the whole system.

3.4.1 Overview

As an example throughout this section consider the code from Listing 3.1. On line 22

the system contains a threshold predicate comparison. The program initializes the class

variable self.thresh using ROSs API to read values from configuration files on line 8. On

line 22 self.thresh is used in an if statement that directly determines whether or not the

class variable self.thresh met is set to True. In turn this self.thresh met variable is used on

line 15 to determine if a message is published to a ROS topic to change the behavior of

the system. This short example will be used throughout the rest of the overview to show

the methods used to find relationships and dependencies like this in general and then

specifically in Python and C++ implementations of ROS nodes.
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Listing 3.1: Sample Python node containing one threshold predicate comparison

1 import rospy

2 from std msgs . msg import I n t 3 2

3 c l a s s ExampleNode :

4

5 def i n i t ( s e l f ) :

6 s e l f . old msg = None

7 # Load ing o f c o n f i g u r a t i o n v a r i a b l e

8 s e l f . thresh= rospy . get param ( ’ theshold ’ , 2 )

9 rospy . Subscr iber ( ’ p os e t op i c ’ , Int32 , s e l f . t 1 c a l l b a c k )

10 s e l f . stop pub = rospy . Publ i sher ( ’ emergency stop ’ , I n t 3 2 )

11 s e l f . thresh met = Fa l se

12

13 def s a f e t y t h r e a d ( s e l f ) :

14 while not rospy . is shutdown ( ) :

15 i f s e l f . thresh met : # D e c i s i o n r e l i e s on v a l u e s e t on l i n e 23

16 s e l f . stop pub . publish ( 1 ) # Expos ing s t a t e m e n t

17 s e l f . thresh met = Fa l se

18

19 def t 1 c a l l b a c k ( s e l f , msg ) :

20 d i f f = msg . x − s e l f . old msg . x

21 s e l f . old msg = msg

22 i f d i f f < s e l f . thresh : # t h r e s h o l d p r e d i c a t e c o m p a r i s i o n

23 s e l f . thresh met = True # Dependent on compar i s on

24

25 i f name == ’ main ’ :

26 ExampleNode ( ) . s a f e t y t h r e a d ( )
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The analysis and instrumentation consists of 5 steps as shown in Figure 3.2.

1. Identify “configuration variables” within the source code. These are variables that

have been read from configuration sources. These can include variables that have

constant values or are read from a specific configuration source. In our experiments

we focus on configuration parameters read using the specific API methods ROS

provides.

2. Identify “exposing statements.” These are statements that communicate between

individual computational units. In our experiments these are statements that publish

messages or call a service in the ROS system. However, this could be expanded to

include any function call that is well defined.

3. Identify predicates on which the exposing statements have a chain of data depen-

dencies and control flow dependencies leading from the exposing statement to the

predicate.

4. Identify the “threshold predicate comparisons.” These are predicates identified

in step 3 which contain a “configuration variable” that was found in step 1. Any

predicate found to contain a threshold predicate comparison is marked for instru-

mentation.

5. Instrument identified threshold predicate comparisons to report runtime values

to the dynamic portion of the analysis. Additionally, output statistics about the

identified threshold predicate comparisons, and the source of the thresholds, the

number of “steps” from the comparison to the exposing statement, the line number,

and the file name.

3.4.2 Configuration Variables
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Figure 3.2: Overview of the analysis and
instrumentation process

The first step in our analysis deter-

mines the configuration variables. There

are many possible configuration variable

sources. However, in this work we limit

the sources to expressions that read values

from the ROS parameter server. Identified

configuration variables can be global, class,

or local variables. Algorithm 1 displays the

algorithm for finding the set of candidate

variables in the source code used in our

experiments. This step is a syntactic anal-

ysis that examines every statement in the

source code. If the statement is an assign-

ment statement, the expression on the right

hand side of the statement is examined. If

the expression contains a function call the function name is examined. If it matches the

name of the methods that ROS provides the variable is saved as a configuration variable

for later portions of the analysis. The rest of this section describes the possible sources of

configuration variables.

Algorithm 1 Algorithm for identifying configuration variables.

1: procedure Configuration Identify(Program P)
2: for Each statement in P do
3: if statement is assignment then
4: Examine right hand expression
5: if Right hand contains ROS parameter reads then
6: Store variable as “configuration variable”

The most important set of configuration variables are those that are assigned values
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from expressions which use functions to read values from the ROS parameter server. Any

user of the robot system can changes these values. The values in these variables may

not always maintain a constant value through execution, because of the possibility of

dynamic reconfiguration, but they are among the most common way to configure robot

systems. In addition to being important, these variables are also easy to find since ROS

has specific calls to fetch variable values from the parameter server. In Listing 3.1 one

variable will be identified as a configuration variable, on line 8, self.threshold is assigned a

value from an expression identified as a configuration source.

Even though we only use configuration variables that obtained values from the

parameter server in the later experiments, there are other types of expressions and

variables that can be considered configuration variables. Some of these variables are

from expressions that appear directly in source code and can only be modified through

direct modification of the source code of a system. In addition to being important to

system configuration, identification of variables of this type may help a developer identify

variables that should be configurable through other means if they are important to the

system running properly.

The of set configuration variables in source code include literals that appear within a

predicate. The set of source code variables will also include variables that are guaranteed

to maintain a constant value during execution. These include variables that only have one

assignment statement and those that are assigned constants in a header file. These two

groups of variables will have the same value throughout the code and are good candidates

for threshold predicate comparisons because they represent are constant values used to

make branching decisions within the code. They also are not too difficult to find as we

can perform simple constant analysis to identify them.

Finally, some sources of configuration variables that may warrant exploration in the

future are configuration variables that arise from special features of ROS systems. For
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example, messages that are published with a constant value and will therefore always

provide a constant value to any location receiving these values, or ROS message files with

fields with defined constant values. These can be referenced from within nodes and can

be added to the candidate pool of configuration variables. If either of these values appear

in predicates they could easily be considered thresholds, but they are not included in our

current work.

3.4.3 Exposing Statements

The next step in our analysis is the identification of “Exposing Statements.” An Exposing

Statement is a statement that communicates external data from a node to other nodes

on the robot system. This statement may change the behavior of the robot system by the

shared data changing the computation on other nodes. Most often this is achieved by

communicating with a different process performing a different computational task for the

robot. In our work we defined exposing statements as statements that cause a message to

be published to ROS topic or call a ROS service. However, this analysis is designed to

allow other types of statements to be considered an “exposing statement” for purposes of

the analysis.

Algorithm 2 displays the method to find exposing statements in a given program. To

find exposing statements in our analysis every statement in the source code is examined.

The determination is made if the statement is one of the specified “exposing statement.”

If it is an “exposing statement” it is saved for later use in our analysis. In Listing 3.1

only one “exposing statement” is present. The analysis method knows that on line 16 the

call publish(1) on the variable self.stop pub is an exposing statement. This location is then

stored for later usage. More details on how each method determines exposing statements

can be found in the Python and C++ sections.
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Algorithm 2 Algorithm for identifying exposing statements

1: procedure Configuration Identify(Program P)
2: for Each statement in P do
3: if statement is function call then
4: Examine function call
5: if If name matches function and is the correct type then
6: Store statement as “exposing statement”

3.4.4 Finding Dependent Predicates

This portion of the approach works to identify all predicates on which exposing statements

have a chain of control and data dependencies from the exposing statement to the

predicate. We determine these predicates by computing a static slice using the exposing

statement as the criterion for the slice. During the computation of the slice we keep

track of the “distance” from the exposing statement to the predicate containing the

configuration variable. The distance is the minimum number of intermediate control

flow and data flow dependencies visited along a path during slice creation between

the predicate and the exposing statement. During the slicing operation any predicate

encountered is saved for later user in the analysis as a control and data dependent

predicate.

The slices are computed for the whole compilation unit. They cross data and control

flow out of the local function scope in three cases. The first case is class variables,

which are a common way to share information throughout the execution of robotic code.

Wherever the value of a class variable appears in an expression, all assignment statements

that store values in the class variable are considered data dependencies. The other

non-local propagation methods involve the propagation of control flow and data flow

across functions calls. When the slice computation reaches a point in the function where

there are no more local control flow dependencies, it allows propagation of control flow

dependencies to the sites where the function is called. For example consider Listing 3.2; if
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the slice computation is examining line 8, the statement is not inside any other control flow

constructs. At this point, the computation will add line 3 as a control flow dependency.

Finally, when a function is called within a predicate, the return statements are marked for

examination to determine if any predicates affect the value returned to that predicate. For

example consider Listing 3.3; if the slice computation is examining line eight, the return

statement at line 5 will be added to the round of statements to examine. The three cases

were chosen due to their common usage within robotic control code. These three types of

data and control flow often have a direct impact on which values are sent to exposing

statements and at what point in execution they occur.

Listing 3.2: An example demonstrating control flow across functions

1 def foo ( a , b ) :

2 i f a < 4 2 :

3 bar ( b )

4 e lse :

5 # do work

6

7 def bar ( value ) :

8 x = value * 2

9 publish ( x )
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Listing 3.3: An example demonstrating control flow across functions

1 def foo ( a , b ) :

2 val = Fa l se

3 i f a < 4 2 :

4 val = True

5 return val

6

7 def bar ( value ) :

8 i f foo ( a , b ) :

9 publish ( )

Algorithm 3 displays the procedure to compute the slice from an exposing statement

and find the predicates that affect the behavior as per the exposing statement. At a high

level the procedure iterates backwards through the control and data flow dependencies

of the exposing statement until there are no more dependencies to visit or the maximum

distance from the exposing statement has been exceeded. The visited statements constitute

the slice and any predicate visited during the slice computation is saved as a control and

data dependence to the exposing statement. The main work is done iterating through

statements at the current distance and adding the control and data flow to the set of

statements to be visited at the next distance unless the statement has already been visited.

Once all statements at the current distance have been visited, the distance is incremented,

the next statements are set to the current iteration, and the process continues until the

maximum distance or the set of statements is empty.

Lines 2 through 6 set up the data structures for the procedure. The predicates variable

is a set of all predicates visited during the execution of the procedure and the distance

value at discovery. The distance is a count of the number of statements visited through

control and data dependencies from the exposing statements. The current variable is the
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Algorithm 3 Algorithm to produce slice for exposing statement and determine predicates
with data and control dependence on an exposing statement

1: procedure Predicate Identify(Program P, Exposing Statement E, maximum distance
maxD)

2: predicates← ∅
3: distance← 0
4: current← {E}
5: next← ∅
6: visited← ∅
7: while current 6= ∅ and distance < maxD do
8: for each statement s ∈ current do
9: visited.add(s)

10: if checkPredicate(s) then
11: predicates.add((s, distance))
12: dependencies← ∅
13: dependencies.add(getControlDependencies(s))
14: dependencies.add(getDataDependencies(s))
15: for each dependency d ∈ dependencies do
16: if d /∈ current and d /∈ visited then
17: next.add(d)
18: current← next
19: next← ∅
20: distance← distance + 1

return predicates

set of statements that are to be visited at the current distance. The next variable is the

set of statements discovered at the current distance that need to be examined at the next

distance. The visited variable keeps track of all the statements that have been visited by

the procedure and on completion contains the slice with the criterion of the exposing

statement.

After setup, the remainder of the procedure handles the iteration through control

and data dependencies. Line 7 determines if the procedure should terminate after each

iteration at the current distance. The procedure terminates if no more data or control

dependencies were discovered or if the maximum distance has been exceeded. If neither

of these cases arise, the procedure iterates through the set of statements found at the
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previous distance and adds their control and data flow statements to the set of statements

to be visited at the next distance. This continues until there is no more statements to visit

or the maximum distance is exceeded.

During the iterative process, for each statement encountered, the procedure inserts the

statement into the visited queue at line 9. If the statement is a predicate, the instruction

and distance are saved for use in the later stages of the analysis. This is handled on lines

10 and 11 of the procedure. The next steps in the procedure (lines 12-14) determine the

data and control flow dependencies for current statement. Each of the dependencies are

added to the set of statements to examine at the next distance if the statement has not

been visited or they are not in line to be visited in at the current distance. This logic is

handled on lines 15-17. Finally, once all statements at the current distance have been

visited, the procedure increments the distance, and sets the next round of statements to

be the set to visit at the current distance and clears the next set of statements.

The method to determine which control flow dependencies to add for the current

statement is straightforward. Algorithm 4 displays the method to determine which

control flow dependencies to visit in the next iteration. First, the procedure determines

which if statement and which loop statement contain the current statement. The call

to getif() determines the innermost if that the statement is contained in. If more than

one if statement contains the call will return the if statement dominated by all other if

statements. If it is in both types of statements, the inner branching statement, the one

dominated by the other statement is chosen. If the current statement is only in one type

of branch, that branch is chosen. Finally, if it is not inside of any branching statements, all

statements within the compilation unit that call the function are returned as candidates

for the next iteration.

The next step in the procedure is determining all of the data dependencies for the

current statement. Algorithm 5 displays the method of determining these dependencies.
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Algorithm 4 Method to determine control flow dependencies to add for a statement

1: procedure getFlowDependencies(Program P, Statement S)
2: ifPred = getIf(S)
3: loop = getLoop(S)
4: if ifPred 6= null and loop 6= null then
5: if dominates(i f Pred, loop) then return {loop}
6: elsereturn {i f Pred}
7: if i f Pred 6= null then return {i f Pred}
8: if loop 6= null then return {loop}
9: toReturn = {}

10: for each calling location, L of function containing S do
11: toReturn.add(L)

return toReturn

As a first step the procedure needs access to the reaching definitions for the current

function. The first set of data dependencies added are all of the reaching definitions for

each variable in the statement being examined. Each statement that assigns to a variable

uses within the current statement that is not changed before reaching is added. The

second set of data dependencies that are identified involve class variables. If a variable

used in the statement is a class variable, this procedure will add each location in the

source code which writes to the class variable as a data dependency to be returned.

Algorithm 5 Method to determine data flow dependencies to add for a statement

1: procedure getDataDependencies(Program P, Statement S)
2: toReturn = {}
3: for each variable, v ∈ S do
4: for each function scoped reaching defintion, r of v do
5: toReturn.add(r)
6: if v is class or global variable then
7: for each statement w, which writes to v do
8: toReturn.add(w)

return toReturn

On lines 15 through 17 Algorithm 3 examines all of the control and data flow depen-

dencies. If the statement has not been visited and is not in the set of statements to visit
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at the current distance the statement is added to the set of statements to visit during

the next distance iteration. If it has previously been visited or is queued to be visited

at the current distance the statement is discarded. Finally, lines 18, 19, and 20 set up

the procedure for the next distance’s iteration before returning to line 7 to continue the

procedure.

The procedure will terminate because it can only visit each instruction in the compila-

tion unit once. It keeps track of visited instructions and will not attempt to revisit any

instruction after it has been examined. This ensures that the backwards analysis will stop

computation after visiting every statement in the compilation unit in the worst case.

3.4.4.1 Impact of Assumptions

We assume that all functions can be executed in any order due to the multi-threaded

nature and callbacks of robot system design. This allows us to mark any location a

class variable is written to as a data dependency of that class variable. We assume that

functions may be called from outside of the compilation unit and we cannot determine if

the source of the data in a function call is a configuration parameter, as they may be from

an external source. This means that some threshold predicate comparisons may not be

identified, as they are dependent on control and data flow between different compilation

units. However, we can still consider any function call sites as control flow dependencies.

We can also consider functions called directly in predicates as dependencies, because we

know that the return value may have a direct effect on the result of the comparison.

3.4.4.2 Correctness

The procedure will correctly mark all predicates that are control and data dependencies

from a given exposing statement that are less than the maximum distance. It iteratively

visits statements in the reverse control and data flow dependency chains until it has
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visited all identifiable dependencies in the compilation unit. As long as the creation

of the control and data flow dependencies is correct the procedure will correctly visit

them all. This includes the marking of locations within data where class variables are

set. It will not correctly handle any modifications to the variables that come from outside

of the compilation unit. This implies that if any part of the source code changes data

from outside of the compilation unit (e.g. another part of the code has a reference to

and changes variables of the analyzed node) it will not be analyzed and any potential

threshold predicate comparisons will not be captured in the analysis.

3.4.4.3 Efficiency

The procedure has a runtime of O(I) where I is the number of instructions in the

compilation unit. Using E as the number of exposing statements in the source code, the

runtime to find all of the slices from exposing statements is O(EI). The runtime does not

include the cost of computing the control and data dependencies as well as dominance

values as these can be computed once and saved during other stages of compilation. The

algorithm will only visit each instruction within the compilation unit at most once. There

may be some inefficiency in the creation and querying of the required data flow and

control flow structures, but as the size of the compilation unit grows the amount work to

be down by the backward analysis should also grow at the same rate.

3.4.4.4 Example

This subsection examines how the procedure works in the example shown in Listing 3.1.

The control and data flow dependencies for the example code are shown in Figure 3.3. In

the graph the data dependencies are shown with dashed lines and control dependencies

are shown with solid lines. Class variables and their relations are included in the graph

(e.g. the value of self.thresh met on line 15 depends on line 23). Also included are the
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control flow dependencies on function calls (e.g. line 6-11 depend on the call to init

on line 26). In the figure red nodes indicate an exposing statement and a green node

indicates a threshold predicate comparison.

Figure 3.3: Control and Data dependencies in Listing 3.1

Table 3.1 displays the val-

ues present in the data struc-

tures in Algorithm 3 after

each distance’s iteration. For

initialization line 16 is placed

in the current iteration set,

next is set to an empty set,

and visited is set to an empty

set. During the first iteration

only line 15 is added as a con-

trol flow dependency because

the exposing statement is con-

tained in the if statement’s

body. Line 10 is also added

as a data dependency as the publisher is created on this line. During the next iteration

many interesting things happen. First, the predicate on line 15 is added to the set of

predicates with a distance of 1. The statements on lines 11, 17, and 23 are all added as

data dependencies because of the class variable used in the predicate on line 15. The

while statement on line 14 is added as a control dependencies. During the next iteration

the while statement’s predicate (line 14) is added to the list of predicates with a distance

of 2. The if statement on line 22 is added to the next iteration due to the statement on

line 23 being inside of the statement. During the iteration at distance 3 the predicate on

22 is added to the list of predicates. All of the reaching definitions for diff are next to be
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added. In this case only line 20 is added to the next iteration. In line 21 self.thresh is a

class variable, because of this the statement on line 8 is added to the list to be examined

during the next iteration. The final statement added at this distance is the control flow

dependency of line 26, the if statement on line 25. At distance 4 the if statement on line 25

is added to the list of predicates at a distance of 4. Two data dependencies are added at

this distance from the statement on line 20. They are both from the class variable old msg,

the variable is written to on line 6 and line 21. Finally, no dependencies are added for

line 8 because the control flow dependencies have already been examined. On the next

iteration (distance 5) no new control or data dependencies are discovered. At this point

the iteration will stop and the procedure will exit.

The slice for the exposing statement in this example contains nearly the entire example

program. This is because most of the functionality deals with the publish call and is to be

expected. The predicates on line 15, 14, and 25 all provide a control or data dependency

for line 16 and are identified by the procedure. This example gives an idea of how

the method works during iteration backwards through all of the control and data flow

dependencies.

3.4.5 Threshold Predicate Comparisons

Now that we have the predicates from program slices on the exposing statements and

the configuration variables, we can identify the threshold predicate comparisons in the

source code. This step identifies every location that should be instrumented to report

values during the runtime analysis of configuration problems. To find threshold predicate

comparisons, we examine every predicate identified in the program slices with respect to

the exposing statements. We examine the values used in the expression of the predicate.

If a value used in the predicate is a variable identified as a configuration variable or has
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Table 3.1: Values present in Algorithm 3 after each distance on example shown in listing
3.1

Distance current next visited data
dependen-
cies

control
dependen-
cies

predicates
and dis-
tance

Start {16} {} {} {} {}
0 {16} {15, 10} {16} {10} {15} {}
1 {15, 10} {11, 17, 23,

14, 26}
{16, 10,
15}

{11, 17,
23}

{14, 26} {(15, 1)}

2 {11, 17,
23, 14}

{22} {16, 10, 15,
11, 17, 23,
14, 26}

{} {22} {(15, 1),
(14, 2)}

3 {26, 22} {20,8, 25} {16, 10, 15,
11, 17, 23,
14, 26, 22}

{20} {25, } {(15, 1),
(14, 2), (22,
3)}

4 {20, 8,
25}

{21, 6} {16, 10, 15,
11, 17, 23,
14, 26, 22,
20, 8, 25}

{21, 6, } {} {(15, 1),
(14, 2), (22,
3), (25, 4)}

5 {21, 6} {} {16, 10, 15,
11, 17, 23,
14, 26, 22,
20, 8, 25,
21, 6}

{} {} {(15, 1),
(14, 2), (22,
3), (25, 4)}

Done {} {} {16, 10, 15,
11, 17, 23,
14, 26, 22,
20, 8, 25,
21, 6}

{} {} {(15, 1),
(14, 2), (22,
3), (25, 4)}

a direct data dependency to one of the values without expressions that will modify the

value a threshold predicate comparison has been found. For example any threshold that

is modified by a different variable in a statement before appearing in the predicate it

will not be used. We chose to exclude these types of configuration options because the

error may be caused by the variable or expression that modifies the input parameter. For

example the self.thresh will not be included in Listing 3.4 because the value of threshold is

modified in an expression on line 6 before reaching the predicate. Support can be added
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for constant valued arithmetic to be allowed on configuration variables, but currently

these operations are not allowed. Our final step in the approach instruments the identified

threshold predicate comparisons.

Listing 3.4: A configuration parameter that will not be included in threshold predicate

comparisons

1 def i n i t ( s e l f ) :

2 s e l f . pub = rospy . publ i sher ( ’ t o p i c ’ , I n t 3 2 )

3 s e l f . thresh = rospy . get param ( ’ threshold1 ’ )

4

5 def bar ( value , c o e f f ) :

6 comparator = c o e f f * s e l f . thresh

7 i f comparator < value :

8 s e l f . pub . publ ish ( 4 2 )

3.4.6 Instrumentation of Predicates on Thresholds

In the instrumentation step we achieve two tasks. The first task is creating an executable

that reports a number of values from each predicate threshold comparison identified

in the previous step. These values include the value of the threshold, the value of the

comparator, the execution time, the result of the predicate, and the value of the overall

boolean statement. The second task is creating basic information about all of the predicate

threshold comparisons encountered. This information does not change during execution

and is saved once at analysis time.

The static information contains the distance computed during backward analysis, file

name, line number, and source of threshold in the threshold predicate comparison. In our

implementation the source is the parameter name that was read to instantiate the value
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of the threshold in the comparison. This may also include the numerical literal, header

file, or assignment statement in some of the other uses. Information on the number of

parameters read into the file and the number of exposing statements within the file is also

included. A unique key in the static information identifies each threshold. This allows

the static information to be paired with dynamic information produced during runtime.

For example in Listing 3.1 the static information discovered by the approach would be

similar to that found in Listing 3.5.

Listing 3.5: Static information for threshold predicate comparison in Listing 3.1

1 {

2 ”/home/ a t a y l o r /example node/example node . py : 2 2 : 0 ” : {

3 ” publ ishes ” : 1 ,

4 ” d i s t a n c e ” : 3 ,

5 ” f i l e ” : ”/home/ a t a y l o r /example node/example node . py ” ,

6 ” param reads ” : 1 ,

7 ” source ” : ” threshold ” ,

8 ” l ineno ” : 22 ,

9 ”key ” : ”/home/ a t a y l o r /example node/example node . py : 2 2 : 0 ” ,

10 ” type ” : ” parameter ”

11 }

12 }

Dynamic information published by our process include the unique key that matches

with the key provided in the static information, current time, the predicate result, the

threshold value, and comparison value for the identified threshold predicate comparisons.

Having these values allow us to track the number of times the threshold changed values

and trends in the values used in the predicate. The instrumented code creates a message

each time it is executed. The message is created by either replacing expression in the
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branching statement with a function call or inserting code to publish the value just before

the branch is taken. More details about the methods to publish these values can be found

in the respective implementation section. These values can either be saved to disk or

processed by the runtime analysis portion in real time.

3.4.7 Requirements

The C++ analysis and instrumentation requires a version of LLVM and clang that have

been customized to include the compiler passes that perform the analysis. The custom

versions of LLVM and clang are available online [86]. Additionally, since nodes are often

implemented across multiple files, the analysis must run after all files are present to

access information that may be present in multiple files. This requires a linker that can

support link time optimizations. This is accomplished by using the gold linker [87]. Also

to make the build process integrate fully with ROS and allow link time optimizations to

be run without any issue an installation of ROS is required. More details about the C++

implementation can be found in Appendix A.

To perform the Python identification, a valid Python 2.7 installation is required along

with the source code of the robot system. The analysis works primarily on the Python

standard library abstract syntax tree. It works primarily on classes contained in each

individual Python file. In a few instances the analysis examines outside the scope of the

class to perform analysis on common cases in which is it warranted. These exceptions

and other details will be described in Appendix B.

3.5 Runtime Analysis

This section overviews the portion of our approach to identify problematic robotic

thresholds while the robot system is operating. This portion of the approach has four
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main requirements.

1. Collect and organize all threshold predicate comparison information from instru-

mented nodes running on the ROS system.

2. Allow the user to mark type I and type II errors and record these errors for analysis.

type I errors indicate which threshold “flopped” when it should not have and type

II errors indicate that a threshold is close to “flopping”, but cannot quite reach the

value needed.

3. Calculate scores for all instrumented threshold predicate comparisons at the time of

a marked error. These scores represent estimates on which threshold is the cause of

the type I or type II error.

4. Present the results to the user to enable the user to make informed decisions about

which configuration parameters need to be adjusted.

3.5.1 Overview

Figure 3.4 displays the high level design of our runtime tools. The system containing

instrumented threshold predicate comparisons will report the values and results each

time any predicate is executed. This information flows to the data compilation and

storage portion of our approach. The compilation and storage portion is responsible

for translating data from the instrumented thresholds into a format that can be used

by the rest of the approach. It also must store the data in a format that can be easily

queried to get all of the recent values for each of the individual threshold predicate

comparison locations. This portion of the system is composed of two ROS nodes to

handle the translation and compilation. The data compilation and storage portion of the

system also keeps track of the marks of type I and type II errors the user makes during
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observation and operation of the system. This allows other portions of the approach to

query as needed for the information required to compute scores and display information

for the user. The GUI tool is responsible for displaying information about the current

threshold values in the system and scores, suggestions and graphs for any marked type I

and type II errors in the system. It reads information from the compilation and storage

portion of the system and also makes requests to the computation tools to get scores for

marks to display the results. The computation tools are responsible for computing scores

for type I and type II error marks for all of the threshold predicate comparisons in the

system and offering suggestions to raise and lower the thresholds. The runtime tools are

designed to be used as the robot system is operating or on a recorded system execution

trace. The remainder of this subsection will highlight the features of each of the parts of

the approach.

Figure 3.4: Components of the runtime approach

The distributed nature

of ROS means that dif-

ferent nodes will be pro-

ducing data from instru-

mented predicates simul-

taneously. This data must

be compiled and orga-

nized to enable usage

by the computational and

GUI portions of the ap-

proach. The Python and

C++ instrumented code

are in different formats.

This is because the Python code publishes to a specified topic while the C++ code
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outputs all information to the ROS system log. This part of the approach transforms the

different data formats of and extracts and prepares it for use in the other portions of

the approach. The two different sources of data are parsed and time indexed. The data

must be stored in a format that can be easily queried and grouped by threshold predicate

comparison location.

The data compilation and storage portion of the approach was designed to allow

users to be able to mark errors in a variety of ways such as using a GUI, a keyboard, or

a controller. The data compilation and storage portion of our approach listens for user

marks, and the marks can be sent using any tool as long as the compilation receives the

mark in the correct format.

The score and suggestions computational tools are responsible for computing and

returning scores and suggestions for each predicate threshold location. These calculations

require the data for each of the instrumented locations stored by the approach as well as

the type and time of the error marking. This section also requires the static information

for each threshold location provided by the static analysis portion of the approach. From

this information it produces scores and suggestions for each instrumented location in the

source code. The scores indicate which threshold predicate comparison location was the

most likely source of the type I or type II error. The tools will provide a suggestion to

either “raise” or “lower” the potential problematic parameter to alleviate the problem. The

functions that produce the scores for each type of error provide customizable parameters.

More details on the parameters and the calculations of the scores and suggestions can be

found in Subsection 3.5.5.

Finally, the GUI tool of the approach allows the user of the robotic system to view

information about the parameters currently loaded into the system and view the scores

and suggestions provided by the rest of the approach. The tool allows the user of the

system to view the marks, scores, and suggestions in real time while operating the system



49

or on recorded data. This tool provides two views. The first view contains information

on all of the thresholds currently in the system and what their last known values are.

The second view contains information about the threshold predicate comparisons at the

specific points that were marked by the user. In this view the user can see the ranking

scores for the error as well as graphs of the values used in the comparison through time.

The objective is that these graphs will give the user a better idea of what was going on in

the time period before the error in the threshold predicate comparisons that the system

suggested for them to change.

3.5.2 Implementation Details

All of the runtime tools are written in Python and contain approximately 1500 lines of

code. In order to run the tools wxPython version 3.0.2.0 [88], the pandas Python data

framework version 0.15.2+ [89], and matplotlib version 1.4.3 [90] are required.

Figure 3.5: Rosgraph of the system during threshold
monitoring

The tools are spread

out across two ROS nodes,

the GUI code, and a

Python file containing the

utilities to calculate the

scores and suggestions. A

graph of the ROS system

is contained in Figure 3.5

Two nodes handle the translation and aggregation of the data produced by the instru-

mented threshold predicate comparison locations. In the figure the threshold monitor node

(2) handles the aggregation and the Conversion node (4) handles the translation of C++

data. The aggregation node is setup to allow the user to use the recorded system traces
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for analysis after the system has ran. This is possible because ROS provides tools to

easily store, retrieve, and playback runtime data. The GUI (1) holds references to the

aggregation node and the computational tools. The users provide marks using the gui tool

node (3), which provides the ability to mark using the mouse.

3.5.3 Data Compilation and Storage

The data from instrumented threshold comparisons is coming from many different loca-

tions in two different formats on two separate ROS topics. The data must be standardized

and indexed for usage by the GUI and the computation tools. Two ROS nodes are in

charge of this task in the runtime portion of our approach. The first node filters the

data produced by C++ nodes from the ROS logging stream and transforms it into the

format expected by the system. This is known as the cpp conversion node. The second node

performs the parsing, compilation and storing of the data. This is the threshold analysis

node.

The C++ implementation of instrumentation sends the data from threshold predicate

comparisons to the ROS console logging stream. The data must be extracted from the

logging stream before it can be processed and compiled along with the data from the

instrumented Python code. The cpp conversion node subscribes to the logging stream and

transforms the data into the same format as the Python messages. The data is published

on the same topic as the Python data to allow the processing occur in one location within

the threshold analysis node. The messages in the logging stream from instrumented C++

locations contain the prefix “threshold information.” This allows the quick identification

of the messages from other normal logging messages. Once identified, the message’s

prefix is removed and the time the message was created is prepended to the front of the

string along with a comma. This brings the message in to conform to the expected format
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of the threshold analysis node. The modified message is republished onto the correct topic

to be processed and stored.

Figure 3.6: An annotated message from an
instrumented threshold predicate comparison

The threshold analysis node

is responsible for collecting all

of the data from instrumented

threshold predicate comparisons.

It subscribes to the “thresh-

old information” topic and listens

for string messages on the topic.

Upon message arrival the node parses and stores the message data. The node expects

messages in the form of a comma separated string. An example message with annotations

can be found in Figure 3.6. The first entry in the message is the creation time stamp.

This time stamp is converted into a Python datetime object so pandas can easily index

the data in the message. The next entry in the message is the unique key that identifies

which instrumented threshold predicate comparison created the message. This unique

identifier matches one in the static yaml files created during the instrumentation portion

of the approach. The next entry contains the overall result of the predicate calculation as

a boolean. The remainder of the entries are key value pairs separated by a colon. Each

of these key value pairs are parsed and stored. These key value pairs include the value

of the threshold, the value of the changing variable in the comparison, and the value

of the result of the single predicate in the source code. At the time of message receipt

the node calculates if the predicate and full boolean statement “flopped.” The predicate

flopped if the value has changed since the last received comparison. The floppiness of the

comparison as well as the time to the last time it flopped is stored along with the other

values from the message.

The parsed data is stored as a dictionary of lists until requested by the computational
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tools or the GUI for use. Each field in the message from a predicate is stored in its own

list. This allows for the cheap addition of data. Once the data is requested by another

portion of the approach a pandas Dataframe object is created. The Dataframe object is a

2D tabular data structure that is indexed by time. Each of the fields in the message is a

column in the Dataframe. The object also allows quick and easy grouping of the data by

the unique ID of the threshold predicate comparison that is the source of the data row.

Once the request is processed the node caches the Dataframe and the dictionary is cleared

of all of the data in the dataframe. Upon the next request the new data is appended to

the cached data frame, the frame is returned to the requesting source, and the full frame

is cached.

3.5.4 Recording Marks of Type I and Type II Errors

Figure 3.7: GUI tool to mark type I and type
II errors during runtime

The system listens for user indications of

type I and type I errors on two ROS topics.

There is one topic for each error type. Each

of the topics expects a message that con-

tains the ROS system timestamp of when

the user indicated an error. This allows

any node in the system to signal to the ap-

proach that an error has occurred. For our

experiments we implemented a node that allows marking errors using the keyboard. We

also implemented a GUI tool that allows the marking of errors. This GUI tool is shown in

Figure 3.7. In addition, creating a node that listens to controller inputs or any form of

user feedback is as simple as writing a small node that publishes to the correct topics.

The threshold analysis node consumes any marks on the topic and they are stored until the
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GUI tool or the computational tools request them.

3.5.5 Score Calculation

The GUI or any other tool can request the calculation of scores for type I errors and type

II errors and request threshold suggestions at any point in time. All of these utilities

will return a score value for each predicate on threshold that has been reported to and

stored by the threshold analysis node. To compute the scores, the functions need the time

of the error mark, the dataframe from the threshold analysis node, the static information

produced during instrumentation, and values for parameters used in the calculation of

the scores. While computing scores, the threshold data is grouped by unique predicate

ID and a score is calculated for each group. For both type I and type II errors, a lower

score produced indicates that that threshold predicate comparison was the likely cause of

the type I or type II error. A dictionary containing each ID and the score associated with

the ID is returned by the functions. The suggestion function requires the dataframe, the

time of marked error, and the type of the error to return a “raise” or “lower” suggestion

for the threshold value. It again computes one for each threshold predicate comparison

in the data and returns them as a dictionary.

Type I errors are caused by the predicate changing from one boolean value to the

other at the incorrect time (flopping). Therefore, to find the most likely cause of the type I

errors we favor predicates that flopped most recently before the marking. To Equation 3.1

displays the calculation of Type I scores in full detail. accommodate thresholds that flop

often from overwhelming the scores, we enable an adjustable term that includes the

number of previous flops. We also enable the distance to the exposing statement to be

included in the score calculation since we may want to provide more weight to flops that

occur much closer to the exposing statement compared to those at a larger distance. α,
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β, and γ are all configurable parameters that allow tuning of the scoring. t is the time

since the last flop of the threshold predicate comparison, n is the total number of flops of

that comparison, and d is the distance to the exposing statement. The values are raised

to scaling factors and multiplied together to allow tweaking of the values. If we do not

want to include part of the equation we can raise the value to 0.0 to set that part of the

equation to 1.0 and it will have no effect on the score value. In the experiments we used

values of α = 1.0, β = 1.0, and γ = 0.0 for these parameters. These values were chosen

through trial and error, and produced good results on the experimental data. In this

setup the time since the last flop and the number of previous flops both carry weight

in the calculations of the type I scores. We chose to exclude the distance because the

distances between C++ and Python implementations would lead to the analysis being

heavier in favor of the Python analysis. Values of 1.0 for the other two allowed them to

have a balanced effect on the produced score.

score = tα ∗ nβ ∗ dγ (3.1)

Type II errors are caused when a threshold is preventing the robot system from

progressing in its operation. For scoring, we favor the predicates that are the closest to

flopping. These are the ones with the smallest normalized distance to flop, since the

values closest to the threshold are the ones most likely to flop. First, the computation

selects all the data from instrumented threshold predicate comparisons within the past

x number of seconds. In our experiments we used 12 seconds, after experimentation

on how long users waited to mark errors and trial and error on which values produced

the best results. The full equation for calculating the type II scores is shown in 3.4. The

computation scales all data in that time range to be between 0 and 1 using equation 3.2

where max is the maximum value during all the execution for the threshold and value
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in the comparator, min is the minimum value during all execution for threshold and

comparator, and v is the value of the value in the predicate. The distance from flopping

is calculated using Equation 3.3. t and c are the scaled values from Equation 3.2 of the

threshold and value being compared to the threshold respectively. We need to use the

absolute value to ensure that positive and negative results from the difference to not

cancel each other out. The mean is needed to standardize a different number of messages

in the time period between threshold predicate comparisons. As with the type I errors,

we also take into account the previous number of flops (n) in the time period and the

distance (d) to the exposing statement from the static analysis approach. The full equation

is shown in equation 3.4. Again α, β, and γ are configurable parameters. In Equation 3.4

distance is the value computed in equation 3.3. For our experiments we used values of

α = 1.0, β = 1.0, and γ = 0.0 respectively. Again, the values are raised to scaling factors

and multiplied together to allow tweaking of the values. If we do not want to include

part of the equation we can raise the value to 0.0 to set that part of the equation to 1.0 and

it will have no effect on the score value. Again, these values were determined using trial

and error on the experimental data. These values again take into account how close the

predicate is to flopping and the number of previous flops. We chose a value for previous

flops to punish nodes that have recently flopped. If the node has already flopped there

is a good chance that it is not the cause of the problem. We would expect the system’s

behavior to change if the threshold that flopped resolved the issue. We did not include

the distance because the difference between the distance values of the Python and C++

implementations. The C++ analysis works at a lower level and therefore has on average

higher distance values.

value =
(v−min)
max−min

(3.2)



56

distance = mean(abs(t− c)) (3.3)

score = distanceα ∗ nβ ∗ dγ (3.4)

As an example, consider a parameter with a value of 0.5. In the time range the

parameter was compared against values of 1.0, 0.7, 0.6, and 0.55. The maximum value

during all of the system’s runtime is 4.0 and the minimum value is 0.0. After scaling, the

parameter has a value of 0.125 and the comparison values are 0.25, 0.175, 0.15, and 0.1375.

These scaled values are ready to be used in Equation 3.3. After subtraction the values

are 0.125, 0.05, 0.025, and 0.0125. The final result from Equation 3.3 is 0.069 by taking the

square of the mean of the subtraction squared. Finally, the distance value is ready for

Equation 3.4 to get the final score for the type II error.

The algorithms for calculating the suggestions are shown in Algorithms 6 and 7. If

the error was identified as a type I error, we determine the time of the last flop and look

at the values in the predicate before the flop. If the values of the comparator are greater

than the threshold the threshold should be “lowered” because the values are higher than

the threshold and should have remained higher to prevent the flop. If the values were

less than threshold we return that the threshold should be “raised”, because the values

should have remained below the threshold. Type II errors are similar, except we examine

values from the current time. If the value of the comparator is greater than the threshold

the threshold should be “raised.” The threshold should be raised because the values

above the threshold need to be met by the threshold to cause the flop. If the value is

less than the comparator, we state that the threshold should be “lowered.” This logic is

implemented in the get suggestion function.



57

Algorithm 6 Algorithm to calculate suggestions for type I errors

1: procedure Type I Suggestion

2: Find the last “flop”
3: Subtract the last n comparisons before the flop and sum them to find the result r.
4: if r > 0 then
5: The parameter should be “lowered.”
6: else
7: The parameter should be “raised.”

Algorithm 7 Algorithm to calculate suggestions for type II errors

1: procedure Type II Suggestion

2: Subtract the last n comparisons before the mark and sum them to find the result r.
3: if r > 0 then
4: The parameter should be “raised.”
5: else
6: The parameter should be “lowered.”

3.5.6 GUI Tool

To tie all of the components together and provide the user with a tool to view and

analyze thresholds, we implemented a GUI that allows the viewing of marks, threshold

information, and suggestions on what to change in the configuration. The tool is created

to support a user of the system that may not know the full implementation details of the

system. It is designed to help the user identify and correct configuration errors dealing

with parameters in the system. Experts trying to use the system or tune its parameters

can also use it

The tool can be seen in Figure 3.8. On startup the tool ingests the static files created

during instrumentation. It also starts the threshold analysis node to gather data from

instrumented threshold predicate comparisons or load a saved system trace. The node

also listens for user marks of type I and type II errors on the correct topics. The GUI

tool requests and receives any new marks on an adjustable timer with a default value

of 1 second. Upon receiving a mark, the scores for that type of error are calculated for
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every threshold predicate comparison that has data the threshold analysis node’s store.

These results are presented for the user to make determinations on which configuration

parameters need to be changed.

Figure 3.8: The GUI for runtime analysis.

The tool contains two main

views: the overview and the

graph view. On startup the tool

displays the overview. In this

mode every user mark is dis-

played on the left side of the

screen as they happen. On the

right of the window is a table con-

taining all seen threshold predi-

cate comparisons. It contains in-

formation on the source code lo-

cation, the parameter used to pop-

ulate the threshold, and the most recent value of the threshold. When a user mark is

selected on the left the GUI grabs data from the threshold analysis and calculates the

score values for each threshold predicate comparison. The comparisons that return the

best scores are highlighted in the right. An example of this view with a selected mark

and highlighted results is shown in Figure 3.9. This view is useful for gaining an overall

view of all of the parameters and their values loaded into the system. It also provides a

quick way to view the threshold predicate comparisons the approach has marked as the

possible problem for a given user mark.

The graph view displays information about individual comparisons once the user has

selected a type I or type II error mark. This view is shown in Figure 3.10. Once the user has

selected a mark the tool calculates scores for all threshold predicate comparisons collected
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by the threshold analysis node. The results of the score calculations are displayed on the

lower half of the right side of the tool. They are sorted with the lowest scores at the top

to show which locations are the most likely to have caused the error. Also displayed on

the bottom are the source code location, the score, the source of the threshold, and the

suggestion. The graph contains the threshold, the value being compared to the threshold,

and the user mark. The threshold appears as a solid green line. The comparison value

appears as the varying blue line. The time of the user mark appears as the dashed red

line. The configuration parameter that loaded the value appears as the title of the graph.

Figure 3.9: The GUI with a selected user error mark
and highlighted threshold predicate comparisons

Selecting an entry from the

bottom will cause the top view

to display a graph of the predi-

cates values through time. In the

graph the threshold will appear

as a solid horizontal line, the com-

parison values as a time varying

line, and the user mark will show

as a vertical line. Also displayed

on the graph is the suggestion on

whether to raise or lower the con-

figuration value.
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Figure 3.10: The view containing the graph and predicate threshold
scores
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Chapter 4

Validation

In this chapter we perform two studies to validate that the approach behaves as expected

and can correctly identify threshold predicate comparisons. We perform the analysis on

35 nodes that we designed as unit tests to confirm that the approach correctly identifies

threshold predicate comparisons. These nodes are written in both Python and C++. The

second validation study examines more in depth on how the analysis performs on 20

nodes. We determine if each predicate in the source code was correctly identified by

the analysis. Ten of the nodes chosen were written in Python and the other ten nodes

were written in C++. These nodes were selected from the open source code repositories

examined in Chapter 5. The approach passed both the test nodes and the manual analysis.

4.1 Test Nodes

To validate that the static analysis can correctly identify threshold predicate comparisons

we created 25 test nodes that contain threshold predicate comparisons. These nodes

vary in the type of dependencies, type of exposing statements, and distance between the

threshold and the exposing statement. In addition there are some nodes in which the



62

exposing statement is separated from threshold by a number of functional calls. We also

created 10 additional test nodes that do not contain threshold predicate comparisons, but

have features that may be perceived as threshold predicate comparisons. We implemented

each of the test nodes in both C++ and Python and tested them in both languages.

More information and the results of the test cases can be found in Table 4.1. X’s

indicate that the feature is present for testing. In the table a data dependency means that

the threshold predicate comparison affects the data in the exposing statement. A control

dependency means that the execution of the exposing statement’s execution depends

on the threshold predicate comparison. Function call means that there is one or more

function call between the threshold predicate comparison and the exposing statement.

Class variables indicates that a dependency flows through a class variable. LOC indicates

the lines of code in the C++ implementation of the node. Finally, distance is the number of

steps in the dependencies between the threshold predicate comparison and the exposing

statement. Expected Threshold Predicate Comparisons shows the number of threshold

predicate comparisons that we expect the approach to find in the source code. Each of

the tests produced the expected results.

4.2 Hand Inspection of Selected Nodes

In this section we perform a manual analysis of 20 ROS nodes to determine if the approach

correctly identifies threshold predicate comparisons within the source code. We selected

10 Python and 10 C++ nodes to perform this analysis on from the source code repositories

examined in Chapter 5.

To perform the analysis we manually:

1. Located all predicates in a node’s source code.
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Table 4.1: Information on test cases

Test Data
Depen-
dency

Control
Depen-
dency

Function
Call

Class
Variables

LOC Distance Expected
Threshold
Predicate
Compar-
isons

C++ Python

P1 x 41 0 1 1 1

P2 x 45 1 2 2 2

P3 x 48 1 1 1 1

P4 x 45 1 1 1 1

P5 x 49 1 1 1 1

P6 x 43 1 1 1 1

P7 x x 45 2 1 1 1

P8 x x 46 2 1 1 1

P9 x x 61 1 1 1 1

P10 x x 63 1 1 1 1

P11 x x x x 70 2 2 2 2

P12 x x x 73 2 1 1 1

P13 x x 50 2 2 2 2

P14 x x 53 3 1 1 1

P15 x x 51 3 1 1 1

P16 x x x 50 3 1 1 1

P17 x x 53 3 1 1 1

P18 x 56 4 1 1 1

P19 x x x x 72 4 2 2 2

P20 x x x x 66 4 2 2 2

P21 x x 61 4 1 1 1

P22 x x x x 65 5 2 2 2

P23 x x 48 3 1 1 1

P24 x x x 69 3 1 1 1

P25 x x x 66 4 1 1 1

N1 x 44 0 0 0 0

N2 x 48 0 0 0 0

N3 x x x 55 0 0 0 0

N4 47 0 0 0 0

N5 x 50 0 0 0 0

N6 46 0 0 0 0

N7 x 54 0 0 0 0

N8 x x 49 0 0 0 0

N9 x 54 0 0 0 0

N10 x x x 59 0 0 0 0

2. Determined if there is an exposing statement with a data and control dependence

on the predicate.

3. Ran the analysis and determined if every predicate is correctly marked.
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4. Recorded any discrepancies between the manual and the automated analysis.

4.2.1 Results

Table 4.2 shows the results from the manual analysis of the selected nodes. The analysis

performed very well at identifying threshold predicate comparisons. There was one

case for the analysis of a Python node that we considered a true negative (we missed its

detection). Listing 4.1 displays the missed threshold predicate comparison. On line 6

the self.RANGE MINIMUM is used in one of the statement’s comparisons to determine

if the distance is within a minimum value. The boolean value is used on line 11 in the

predicate to help determine if a message should be published. Currently, the Python

implementation does not support comparisons outside of the branching statement. The

C++ implementation will find threshold predicate comparisons that follow this pattern.

We could add support for this type of analysis if it appears to be widespread in Python

source code. All of the other Python nodes did not have any errors in the identification of

threshold predicate comparisons. There were no errors in the identification of threshold

predicate comparisons in the C++ nodes examined.
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Listing 4.1: The threshold predicate comparison missed during the hand analysis

1 for l a s e r d i s t a n c e in s e l f . scan . ranges :

2 ( base dis tance , base angle ) = s e l f . l a s e r t o b a s e ( l a s e r d i s t a n c e ,

3 l a s e r a n g l e )

4 a n g l e d i f f = abs ( base angle − t a r g e t a n g l e )

5 w i l l g e t c l o s e r = a n g l e d i f f < ( np . pi / 2 . 0 )

6 i s t o o c l o s e = ( b a s e d i s t a n c e < s e l f .RANGE MINIMUM) and ( l a s e r d i s t a n c e

7 > s e l f . scan . range min )

8 i f w i l l g e t c l o s e r :

9 s e l f . s p e e d m u l t i p l i e r = min ( s e l f . speed mul t ip l ie r ,

10 ( b a s e d i s t a n c e − s e l f .RANGE MINIMUM) / s e l f .SLOWDOWNRANGE)

11 i f i s t o o c l o s e and w i l l g e t c l o s e r :

12 blocked = True

13 block reason = ( base dis tance , base angle , a n g l e d i f f )

14 break

In the manual analysis a number of numerical constants appeared in the predicates.

These offer opportunities to highlight values that could possibly be parameterized to

make the system more configurable to the end user. Additionally, there were values in

source code can be shown to be constant that were present in predicate comparisons. This

shows that identifying constant valued variables within the source code that are used in

predicates can highlight values that are candidates for being parameterized.

Finally, the C++ analysis encountered a larger number of predicates compared to the

Python analysis. The first number in the predicate column is the number of predicates

including outside files linked into the node. This highlights the low level nature of the

C++ analysis. It works on LLVM bitcode and therefore there are more predicates involved.

The second number is the number of predicates only in the source files directly involved

in the nodes source code.
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Table 4.2: Results of the manual analysis of 20 ROS nodes

Node Name Type Predicates Hand TPC Analysis TPC False
Positives

True Neg-
atives

safey node.py Python 30 4 4 0 0

move trans.py Python 13 11 11 0 0

jsk teleopjoy.py Python 31 4 4 0 0

basic commands.py Python 16 0 0 0 0

pr2 move base.py Python 18 0 0 0 0

calibrate.py Python 28 2 2 0 0

joint trajectroy file playback.py Python 25 0 0 0 0

base controller.py Python 7 3 3 0 0

sr friction compensation.py Python 19 9 9 0 0

move base straight.py Python 18 6 5 0 1
virtual cage C++ 280/26 7 7 0 0

move base C++ 3390/578 11 11 0 0

cob teleop v2 C++ 2383/380 13 13 0 0

sac inc ground removal node C++ 1726/128 3 3 0 0

gripper controller C++ 1524/130 6 6 0 0

kalman filter C++ 397/37 0 0 0 0

hector mapping C++ 2868/257 12 12 0 0

smile detector C++ 446/192 10 10 0 0

crop surveying C++ 331/13 1 1 0 0

nao path finder C++ 2445/263 17 17 0 0

4.3 Conclusions

In this chapter we performed two studies to validate that our approach behaves as

expected. First, we analyzed 35 Python and 35 C++ nodes specifically created to confirm

that the approach can identify a number of threshold predicate comparison patterns.

Twenty-five of the nodes of each type contain threshold predicate comparisons that

have varying control and data flow dependencies. An additional 20 nodes, 10 C++ and

10 Python, contain no threshold predicate comparisons, but have a structure that is

somewhat similar. The analysis correctly identified all of the nodes without issue.

After verifying the approach using test nodes, we turned our attention to nodes

found in real world robotic systems. We examined 10 C++ and 10 Python nodes from

a variety of robot systems and determined if the approach correctly classified each

predicate within the code. We found one instance in which the Python approach did not
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identify a threshold predicate comparison. This was caused by the predicate containing

the comparisons appearing outside the branching statement. This deficiency could

be addressed easily. We found no errors in the C++ identification. However, in both

approaches there were a number of constant value variables and literals that could provide

further sources of configuration options in future work.
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Chapter 5

Study of Thresholds in ROS Systems

This chapter examines occurrence threshold predicate comparisons across a multitude of

different open source robot system code repositories. We want to answer how common

threshold predicate comparisons are in a wide variety of systems. We also want to

characterize how many files in a system contain threshold predicate comparisons and

how many unique parameters are used to give the thresholds values. We want to know

how common they are to show that our analysis can be used on many robot systems. We

also want to show that parameters are unique enough that problematic threshold predicate

comparison can be traced back to an input parameter than can be easily changed.

The source code was examined at two different levels of granularity The first, the

“metapackage” level, contains many related ROS packages that perform some common

functionality for a robot system or perform a common robot task. The second grouping

aggregates related meapackages packages used to control a full robot system. Information

about the statistics gathered for each meta package or group can be found in Table C.1.
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5.1 Metapackages

The first three repositories we examined are from the NIMBUS lab. These include the

metapackage created to control our Ascending Technology UAVs [91], our water sampling

robot [10], and our crop surveying robot [71]. The other source of repositories for analysis

s ROS metapackages listed on the main ROS wiki at http://www.ros.org/browse/list.php.

We did not analyze all of the repositories on the list; we filtered them using two passes to

get to the final list of repositories we analyzed. To get through the first round of selection

the metapackage needed to be: 1) a core functionality to a robot system as judged by us,

such as navigation, or be a metapackage directly involved in the operation of a robot,

2) contain source code and not just configuration files and 3) be compatible with ROS

Indigo.

The second filtering pass constrained the time allowed for the analysis of each meta-

package. Each metapackage was required to compile in 10 minutes and 25 minutes using

our modified compiler analysis. Additionally, if there were configuration errors when

trying to compile the metapackage we allowed 15 minutes to resolve any issues or the

metapackage was discarded.

After filtering, 101 ROS metapackages were used in our final analysis. A complete list

of the surveyed metapackages and information about their size and makeup is shown

in Table C.2. There is a total of 769,264 lines of code in the repositories analyzed with

an average of 7616 lines of code per metapackage. The median lines of code for all

repositories is 2637. One project contained 224,018 lines of code and one metapacakge

contained only 28 lines of code. On average each metapackage contained 44 files. The

median file count is 19. The range of files is from of 1 to 606 files in one metapackage.

This selection of repositories gives us a large variety of code sizes and also a large variety

of robot systems including ground robots, aerial vehicles, and functionality such as
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navigation and control. After combining metpackages there are a total of 52 systems to

examine. The mean number of lines of code is 14768.8 per system. The mean number

of files per system is 85 the median is 42.5 and the minimum and maximum remain the

same.

5.2 Results

Statistics from the analysis can be found in Table 5.1. In total 538 threshold predicate

comparisons were found in all of the examined repositories. Of the threshold predicate

comparisons found, 437 were found in C++ and header files and 83 were found in Python

files. On average each package contained 5.3 threshold predicate comparisons. Of the 101

repositories examined 36 of the 101 (35.6%) contained threshold predicate comparisons.

In the 36 repositories the average occurrence of threshold predicate comparisons rose to

14.9 per metapackage. This provides evidence that thresholds are used in robot systems,

and that if they are present there are on average more than 14 locations in code in which

a threshold controls the data or occurrence of communication between ROS nodes. This

works out to around 0.69 threshold predicate comparisons per 1000 lines of code when

all of the examined code is included. When including only metapackages that contain

threshold predicate comparisons this value is 2.85 threshold predicate comparisons per

1000 lines of code.

On average 0.9 files per package contained threshold predicate comparisons. Examin-

ing only the 36 repositories with threshold predicate comparisons present they appeared

in an average of 2.4 files. In repositories with thresholds there were an average of 42.9

files. When examining each of the 36 systems the average percentage of files in the

metapackage that contained threshold predicate comparisons was 9.3%. This shows that

thresholds are usually confined to a few files in the metapackage and these are usually in
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the higher-level decision making files. In the repositories with predicates on thresholds,

7.7 out of the 14.9 threshold predicate comparisons had a unique source of threshold

setup. This means that each threshold only is used on average in 2 locations. Also, if a

threshold predicate comparison is highlighted as a possible error source it will only be

used in one other location on average. This shows that being able to identify the threshold

predicate comparison that caused the problem has a very high chance of exposing the

setup parameter that caused the problem.

Information on the analysis at the system level can be found in Table 5.2. We found

the same number of predicates on thresholds and the average number per system rose

to 10.3. Out of the 51 systems we analyzed 25 (48.0%) have threshold comparisons

present in the source code. These system all contain robot systems which have a tasteful

higher level functionality. All of the systems that do not contain any thresholds are from

single metapackage sources. All of the systems that were spread across more than one

metapackage contain thresholds. However, single metapackage systems make up 80% of

the systems examined.

When only considering systems with threshold predicate comparisons, the mean

number of threshold predicate comparisons per system is 21.5. The thresholds in the

predicates come from an average of 11.1 unique sources. These counts do not include

threshold predicate comparisons that are present in the base ROS functionality that many

of these systems use to accomplish tasks. As an example, the controls and navigation

stack can add up to 31 unique thresholds to any robot using those two ROS provided

tools. So these statistics may under approximate the true number of threshold predicate

comparisons that will be present in the source code of an operating robot system.

In the systems with threshold predicate comparisons, an average of 3.48 files contained

thresholds, but there were an average of 95.24 files per system. On a system-by-system

basis the average percentage of files in a system with predicates on thresholds is only
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6.5%. This again shows the concentration of threshold predicate comparisons in a few

files on a robot system.

On average the repositories took 39.24 seconds to compile without running the link

time analysis. When running our analysis the average compile time rose to 111.57 seconds.

This resulted in a time factor of 2.6 across all of the repositories. The minimum time factor

was 1.8 and the maximum was 19.8. This means that the analysis will take on average

over twice as long to compile with a few repositories taking much longer to compile. Part

of the slowdown may result from other link time optimizations being run at the same

time as the analysis as part of llvm. Further work can be done to completely isolate the

analysis and speed up the runtime.

5.3 Discussion

Predicates on thresholds are present across a number of ROS code repositories and in

almost half of the systems we examined. When they are present in a system there are

often many threshold predicate comparisons present in the source code. This shows that

thresholds setup by parameters are often used to determine if an exposing statement

executes and what data is present in the statement at execution. In addition often systems

use some of the provided ROS base functionality while using their robot. This base

ROS functionality also adds additional threshold predicate comparisons as evidenced

by the control and navigation libraries that could possibly add 55 threshold predicate

comparisons to any system using them.

The small percentage of files with thresholds shows that they are often concentrated

in a few nodes in a package. Also the low ratio of threshold predicate comparisons to

unique threshold sources shows that often a parameter is used to set a value that is only

used in one or two locations to determine the behavior of a node across a system. This
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uniqueness provides an opportunity to highlight which source of threshold should be

changed to fix an identified predicate on threshold without the need to worry about

affecting a whole range of other locations or decision points.

The analysis does add to the time required to compile the nodes to run any robot

system. However, the average compile time only increased by a factor of 2 to 3. In

some rare cases the compile time increased by 19 times. However some of the additional

compile time may be a result of the other link time optimizations being run by llvm. It

may be possible to remove these optimizations and only incur the cost of the analysis

and instrumentation alone.
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Table 5.1: Results of the analysis on repositories.

Name Time Time Fac-

tor

Threshold

Predicate

Compar-

isons

C++ Python Unique Files

airbotix ros pack-

age

18.5 2.0 2.0 0.0 2.0 2.0 2.0

app manager 8.2 2.0 0.0 0.0 0.0 0.0 0.0

apriltags tracking 35.6 2.1 0.0 0.0 0.0 0.0 0.0

ar tracking 79.8 2.3 0.0 0.0 0.0 0.0 0.0

arm nav 16.0 2.0 0.0 0.0 0.0 0.0 0.0

asctec base 129.5 2.3 49.0 35.0 14.0 38.0 10.0

asctec mav pacakge 61.8 5.9 0.0 0.0 0.0 0.0 0.0

baxter robot 29.5 2.0 0.0 0.0 0.0 0.0 0.0

bwi from texas 241.5 1.9 0.0 0.0 0.0 0.0 0.0

calibration 61.9 2.6 0.0 0.0 0.0 0.0 0.0

calvin ros stack 35.1 2.2 0.0 0.0 0.0 0.0 0.0

careobot contro 71.3 2.6 17.0 17.0 0.0 9.0 4.0

careobot evniron-

ment perception

0.7 2.0 0.0 0.0 0.0 0.0 0.0

careobot manipula-

tion

55.3 3.5 0.0 0.0 0.0 0.0 0.0

careobot naviga-

tion perception

24.2 3.3 11.0 11.0 0.0 8.0 1.0

careobot percep-

tion

50.2 2.2 0.0 0.0 0.0 0.0 0.0

cob command tools 35.2 3.0 142.0 142.0 0.0 28.0 2.0

cob common 27.2 2.0 0.0 0.0 0.0 0.0 0.0

cob driver 221.0 2.6 9.0 9.0 0.0 7.0 4.0

Continued on next page
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Table 5.1 – continued from previous page

Name Time Time Fac-

tor

Threshold

Predicate

Compar-

isons

C++ Python Unique Files

cob external 21.9 2.0 0.0 0.0 0.0 0.0 0.0

cob robots 15.3 2.0 0.0 0.0 0.0 0.0 0.0

control toolbox 8.1 2.5 0.0 0.0 0.0 0.0 0.0

crazyflie ros stack 17.4 2.0 1.0 0.0 1.0 1.0 1.0

crop surveying 132.5 2.3 3.0 3.0 0.0 3.0 3.0

func maninulators 44.8 2.1 0.0 0.0 0.0 0.0 0.0

graft 22.9 2.6 0.0 0.0 0.0 0.0 0.0

grizzly robot 26.0 2.0 0.0 0.0 0.0 0.0 0.0

hector arm 19.8 2.2 0.0 0.0 0.0 0.0 0.0

hector diagnostics 60.2 2.3 15.0 15.0 0.0 13.0 2.0

hector navigation 58.3 2.3 15.0 15.0 0.0 13.0 2.0

hector slam 49.7 2.6 12.0 12.0 0.0 11.0 2.0

hector turtlebot 17.5 2.1 0.0 0.0 0.0 0.0 0.0

icart mini 34.1 2.5 0.0 0.0 0.0 0.0 0.0

jaco robot arm 38.3 4.4 10.0 10.0 0.0 3.0 2.0

jsk control 61.1 2.0 4.0 0.0 4.0 1.0 1.0

jsk smart apps 13.9 2.0 0.0 0.0 0.0 0.0 0.0

jsk travis 2.3 2.0 0.0 0.0 0.0 0.0 0.0

kobuki 52.5 2.3 0.0 0.0 0.0 0.0 0.0

kobuki soft 22.9 2.1 1.0 1.0 0.0 1.0 1.0

mav ros 102.9 5.8 7.0 7.0 0.0 4.0 4.0

maxwell 14.9 2.0 0.0 0.0 0.0 0.0 0.0

motoman 53.7 2.5 0.0 0.0 0.0 0.0 0.0

nao camera 3.4 2.0 0.0 0.0 0.0 0.0 0.0

nao extras 24.2 3.7 26.0 26.0 0.0 17.0 2.0

Continued on next page
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Table 5.1 – continued from previous page

Name Time Time Fac-

tor

Threshold

Predicate

Compar-

isons

C++ Python Unique Files

nao interaction 18.8 2.0 0.0 0.0 0.0 0.0 0.0

nao robot repo 42.3 2.0 0.0 0.0 0.0 0.0 0.0

nao ros 20.6 2.2 0.0 0.0 0.0 0.0 0.0

nao sensors 6.9 2.0 0.0 0.0 0.0 0.0 0.0

nao virtual 14.3 2.0 0.0 0.0 0.0 0.0 0.0

nao viz 14.6 2.0 0.0 0.0 0.0 0.0 0.0

naopi bridge 42.5 2.0 0.0 0.0 0.0 0.0 0.0

nav2 platform 19.5 2.1 0.0 0.0 0.0 0.0 0.0

navigation stack 172.6 2.8 45.0 45.0 0.0 25.0 8.0

neo robot 39.1 2.4 3.0 3.0 0.0 3.0 3.0

next stage 16.6 2.0 0.0 0.0 0.0 0.0 0.0

novatel spann 17.8 2.0 2.0 0.0 2.0 2.0 1.0

ocs library 68.3 2.7 3.0 3.0 0.0 3.0 2.0

p2 os robot 31.7 3.1 18.0 0.0 0.0 14.0 2.0

people tracking ros 65.3 3.0 24.0 24.0 0.0 8.0 3.0

pepper robot for

stuff

14.9 2.0 0.0 0.0 0.0 0.0 0.0

pr futre 0.7 2.0 0.0 0.0 0.0 0.0 0.0

pr2 common 20.9 2.0 0.0 0.0 0.0 0.0 0.0

pr2 colibraiton 33.5 2.4 0.0 0.0 0.0 0.0 0.0

pr2 common ac-

tions

33.3 2.7 0.0 0.0 0.0 0.0 0.0

pr2 delivery 3.6 2.0 0.0 0.0 0.0 0.0 0.0

pr2 doors 14.1 2.0 0.0 0.0 0.0 0.0 0.0

pr2 kinematics 49.4 1.9 0.0 0.0 0.0 0.0 0.0

Continued on next page
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Table 5.1 – continued from previous page

Name Time Time Fac-

tor

Threshold

Predicate

Compar-

isons

C++ Python Unique Files

pr2 navigation 69.5 2.2 7.0 7.0 0.0 4.0 3.0

pr2 pbd 0.6 2.0 0.0 0.0 0.0 0.0 0.0

pr2 precise trajec-

tory

13.9 2.0 3.0 0.0 3.0 2.0 1.0

pr2 self test 38.7 2.3 1.0 1.0 0.0 1.0 1.0

pr2 surrogate 11.6 2.7 3.0 3.0 0.0 2.0 2.0

pr2 apps 33.2 19.8 27.0 27.0 0.0 13.0 2.0

rail ceiling 11.8 2.5 1.0 1.0 0.0 1.0 1.0

rail pick and place

library

110.4 7.8 0.0 0.0 0.0 0.0 0.0

rail segmentation 18.9 2.6 0.0 0.0 0.0 0.0 0.0

realtime tools 5.2 2.1 0.0 0.0 0.0 0.0 0.0

robitician ric 28.6 2.1 0.0 0.0 0.0 0.0 0.0

robot rescue 32.5 2.7 0.0 0.0 0.0 0.0 0.0

ros concert 109.6 2.1 0.0 0.0 0.0 0.0 0.0

ros control 42.4 2.2 0.0 0.0 0.0 0.0 0.0

ros controllers 47.2 2.7 10.0 10.0 0.0 6.0 3.0

ros create driver 19.1 2.0 15.0 0.0 15.0 6.0 1.0

ros darwin 15.3 2.0 0.0 0.0 0.0 0.0 0.0

ros descartes 55.7 2.2 0.0 0.0 0.0 0.0 0.0

ros filter library 9.0 2.5 0.0 0.0 0.0 0.0 0.0

ros universial robot 27.1 2.1 0.0 0.0 0.0 0.0 0.0

rqt pr2 dashboard 2.4 2.0 0.0 0.0 0.0 0.0 0.0

segbot 28.1 2.1 0.0 0.0 0.0 0.0 0.0

segbot apps 30.5 3.2 0.0 0.0 0.0 0.0 0.0

Continued on next page
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Table 5.1 – continued from previous page

Name Time Time Fac-

tor

Threshold

Predicate

Compar-

isons

C++ Python Unique Files

shcunk modular 68.5 2.9 9.0 9.0 0.0 3.0 1.0

sr demo 0.6 2.0 9.0 0.0 9.0 3.0 1.0

sr manipulation 0.7 2.0 0.0 0.0 0.0 0.0 0.0

sr utils 17.4 2.0 0.0 0.0 0.0 0.0 0.0

turtlebot 18.2 2.1 0.0 0.0 0.0 0.0 0.0

turtlebot apps 73.8 2.3 5.0 1.0 4.0 4.0 3.0

turtlebot arm 48.5 4.1 0.0 0.0 0.0 0.0 0.0

turtlebot create 19.0 2.0 15.0 0.0 15.0 6.0 1.0

turtlebot interac-

tions

18.7 2.0 0.0 0.0 0.0 0.0 0.0

uos tools 27.4 2.2 5.0 0.0 5.0 4.0 1.0

water sampler 26.4 2.1 9.0 0.0 9.0 9.0 4.0

mean 39.2 2.6 5.3 4.3 0.8 2.8 0.9

median 27.2 2.1 0.0 0.0 0.0 0.0 0.0

std 41.0 1.9 16.2 15.8 2.9 6.2 1.6

min 0.6 1.9 0.0 0.0 0.0 0.0 0.0

max 241.5 19.8 142.0 142.0 15.0 38.0 10.0

sum 3963.2 263.8 538.0 437.0 83.0 278.0 87.0

only threshold

mean

53.4 3.1 14.9 12.1 2.3 7.7 2.4

only threshold me-

dian

38.5 2.4 9.0 3.0 0.0 4.0 2.0

only threshold std 47.3 3.0 24.5 24.8 4.4 8.3 1.9

only threshold

min

0.6 2.0 1.0 0.0 0.0 1.0 1.0

Continued on next page
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Table 5.1 – continued from previous page

Name Time Time Fac-

tor

Threshold

Predicate

Compar-

isons

C++ Python Unique Files

only threshold

max

221.0 19.8 142.0 142.0 15.0 38.0 10.0

only threshold

sum

1922.9 111.1 538.0 437.0 83.0 278.0 87.0

Table 5.2: Results of analysis when repositories grouped as robot systems.

Name Time Time Fac-

tor

Threshold

Predicate

Compar-

isons

C++ Python Unique Files

airbotix ros pack-

age

18.5 2.0 2.0 0.0 2.0 2.0 2.0

app manager 8.2 2.0 0.0 0.0 0.0 0.0 0.0

apriltags tracking 35.6 2.1 0.0 0.0 0.0 0.0 0.0

ar tracking 79.8 2.3 0.0 0.0 0.0 0.0 0.0

arm nav 16.0 2.0 0.0 0.0 0.0 0.0 0.0

asctec base 129.5 2.3 49.0 35.0 14.0 38.0 10.0

asctec mav pacakge 61.8 5.9 0.0 0.0 0.0 0.0 0.0

baxter robot 29.5 2.0 0.0 0.0 0.0 0.0 0.0

bwi from texas 241.5 1.9 0.0 0.0 0.0 0.0 0.0

calibration 61.9 2.6 0.0 0.0 0.0 0.0 0.0

calvin ros stack 35.1 2.2 0.0 0.0 0.0 0.0 0.0

care o bot 590.8 2.7 188.0 188.0 0.0 55.0 12.0

controls 102.9 2.5 10.0 10.0 0.0 6.0 3.0

Continued on next page
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Table 5.2 – continued from previous page

Name Time Time Fac-

tor

Threshold

Predicate

Compar-

isons

C++ Python Unique Files

crazyflie ros stack 17.4 2.0 1.0 0.0 1.0 1.0 1.0

crop surveying 132.5 2.3 3.0 3.0 0.0 3.0 3.0

func maninulators 44.8 2.1 0.0 0.0 0.0 0.0 0.0

graft 22.9 2.6 0.0 0.0 0.0 0.0 0.0

grizzly robot 26.0 2.0 0.0 0.0 0.0 0.0 0.0

hector 205.6 2.4 42.0 42.0 0.0 37.0 6.0

icart mini 34.1 2.5 0.0 0.0 0.0 0.0 0.0

jaco robot arm 38.3 4.4 10.0 10.0 0.0 3.0 2.0

jsk applications 77.3 2.0 4.0 0.0 4.0 1.0 1.0

kobuki 52.5 2.3 0.0 0.0 0.0 0.0 0.0

kobuki soft 22.9 2.1 1.0 1.0 0.0 1.0 1.0

mav ros 102.9 5.8 7.0 7.0 0.0 4.0 4.0

maxwell 14.9 2.0 0.0 0.0 0.0 0.0 0.0

motoman 53.7 2.5 0.0 0.0 0.0 0.0 0.0

nao 187.6 2.3 26.0 26.0 0.0 17.0 2.0

nav2 platform 19.5 2.1 0.0 0.0 0.0 0.0 0.0

navigation stack 172.6 2.8 45.0 45.0 0.0 25.0 8.0

neo robot 39.1 2.4 3.0 3.0 0.0 3.0 3.0

next stage 0.0 0.0 0.0 0.0 0.0 0.0

novatel spann 17.8 2.0 2.0 0.0 2.0 2.0 1.0

ocs library 68.3 2.7 3.0 3.0 0.0 3.0 2.0

p2 os robot 31.7 3.1 18.0 0.0 0.0 14.0 2.0

people tracking ros 65.3 3.0 24.0 24.0 0.0 8.0 3.0

pepper robot for

stuff

14.9 2.0 0.0 0.0 0.0 0.0 0.0

Continued on next page
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Table 5.2 – continued from previous page

Name Time Time Fac-

tor

Threshold

Predicate

Compar-

isons

C++ Python Unique Files

pr2 325.5 4.0 41.0 38.0 3.0 22.0 9.0

rail robots 141.1 6.6 1.0 1.0 0.0 1.0 1.0

robitician ric 28.6 2.1 0.0 0.0 0.0 0.0 0.0

robot rescue 32.5 2.7 0.0 0.0 0.0 0.0 0.0

ros concert 109.6 2.1 0.0 0.0 0.0 0.0 0.0

ros create driver 19.1 2.0 15.0 0.0 15.0 6.0 1.0

ros darwin 15.3 2.0 0.0 0.0 0.0 0.0 0.0

ros descartes 55.7 2.2 0.0 0.0 0.0 0.0 0.0

ros filter library 9.0 2.5 0.0 0.0 0.0 0.0 0.0

ros universial robot 27.1 2.1 0.0 0.0 0.0 0.0 0.0

segbot 58.6 2.7 0.0 0.0 0.0 0.0 0.0

sr robots 18.7 2.0 9.0 0.0 9.0 3.0 1.0

turtlebot 178.2 2.7 20.0 1.0 19.0 10.0 4.0

uos tools 27.4 2.2 5.0 0.0 5.0 4.0 1.0

water sampler 26.4 2.1 9.0 0.0 9.0 9.0 4.0

mean 75.9 2.6 10.3 8.4 1.6 5.3 1.7

median 37.0 2.3 0.0 0.0 0.0 0.0 0.0

std 99.1 1.0 28.1 27.9 4.1 11.2 2.8

min 0.0 1.9 0.0 0.0 0.0 0.0 0.0

max 590.8 6.6 188.0 188.0 19.0 55.0 12.0

sum 3946.5 131.9 538.0 437.0 83.0 278.0 87.0

only threshold

mean

110.3 2.8 21.5 17.5 3.3 11.1 3.5

only threshold me-

dian

68.3 2.4 9.0 3.0 0.0 4.0 2.0

Continued on next page
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Table 5.2 – continued from previous page

Name Time Time Fac-

tor

Threshold

Predicate

Compar-

isons

C++ Python Unique Files

only threshold std 127.1 1.2 37.8 38.6 5.5 14.1 3.1

only threshold

min

17.4 2.0 1.0 0.0 0.0 1.0 1.0

only threshold

max

590.8 6.6 188.0 188.0 19.0 55.0 12.0

only threshold

sum

2757.3 70.3 538.0 437.0 83.0 278.0 87.0
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Chapter 6

Applying the Proposed Approach

As a final study of our approach we performed several experiments to help us determine

the characteristics of predicate threshold comparisons on running systems, the ability

of users to identify robotic problems, and the ability of our approach to identify which

configuration parameters are the source of type I and type II errors. In this chapter we

discuss the results from experiments performed on three separate robot systems that were

analyzed and instrumented with the approach presented in this work. The three systems

examined include an Unmanned Areal water sampler, a ground robot performing a

navigation task, and an Unmanned Areal Vehicle locating and capturing an image of a

person.

6.1 Research Questions

For each of the experiments in this chapter we aim to answer the following research

questions (RQ).

RQ1: What are the runtime characteristics of the instrumented predicate threshold com-

parisons?
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To answer RQ1 we examine numerous statistics about the runtime characteristics

of the instrumented predicate threshold comparisons. We want to examine the

frequency that threshold predicate comparisons occur during execution. If they are

not frequent enough then the instrumentation and analysis of their execution would

not be useful in diagnosing and offering solutions to runtime problems. We also

want to determine if threshold predicate comparisons appear equally throughout

the mission or if some portions of the missions have a greater frequency of predicate

threshold comparisons. For our approach to be useful it is important that at any

time an error is marked there are a number of threshold predicate comparisons

to examine to determine if they are responsible for the errors. We also want to

determine if individual predicates appear throughout all of the execution or only

in small portions of the systems operation. If predicates only appear in small

portions, it is an indication that they are more important than thresholds that appear

throughout the execution at that point in time. We also want to measure the ratio of

predicate threshold comparisons in the runtime execution trace to those identified

during the static analysis. If the many parameters that are read are not used during

runtime this immediately works to reduce the size of the space the user must search

through to fix the configuration error.

RQ2: How common are flops?

RQ2 examines one of the fundamental assumptions of our process. We assume that

threshold predicate comparisons rarely “flop” and they maintain the same truth

value for large periods of time during execution. When they do change values it

signals a change in the robot system. If predicates flop often throughout execution

and the robots behavior does not change often then the two are not as connected as

we assume. Additionally, if a flop is a common occurrence, the ability to find the
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last predicate to flop or the predicate that is about to flop is not as useful to help

diagnose problems in the robots configuration space.

RQ3: What errors do users highlight and when do they highlight those errors in a robot

system?

RQ3 examines how users identify the errors we introduce as part of our studies to

the robot system. This includes how long it takes them to mark error, which errors

they mark, and at what frequency they are marked. For our approach to correctly

rank the thresholds, we need the user to be able to mark the errors soon after they

become noticeable and mark the correct type of error. If too much time passes, the

state of the instrumented thresholds may change by a significant amount from when

the error occurred. If they do not mark the correct type of error, the system will

rank the instrumented predicates using the incorrect routine that may lead to very

different results.

RQ4: How well does our analysis highlight errors that arise from misconfigured parame-

ters?

RQ4 examines how well the approach we developed can identify the modified

parameters. To determine how well the approach works we define the rank score,

rs, as seen is Equation 6.1, where rank is the numerical position of the threshold

in the suggested thresholds sorted in ascending order and total thresholds is the

total number of threshold predicate comparisons present in the execution trace. We

calculate this score for every threshold predicate comparison present in the system

execution trace. A score where the analysis correctly identifies the problematic

threshold as the most likely to cause the problem is 1.0 and a score of 0.0 indicates

the analysis performed very poorly or the threshold was not present up to that

point during execution.
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rs = 1− rank− 1
total thresholds

(6.1)

As an example, consider that at some time t the approach has identified four

threshold predicate comparisons. The user has marked a type II error and the

approach has given them scores of c0 = .4, c1 = 1.6, c2 = .01, and c3 = .2. In

sorted order, the threshold predicate comparisons are c2, c3, c0, and c1. This would

correspond to a rank score of c0 = .5, c1 = .25, c2 = 1.0, and c3 = .75.

In our experiments, we will examine how well the analysis identifies the modified

threshold using the rank score when the user marks a location. However, because

the user will not always correctly identify problems, we will also examine the

rank scores produced by the analysis throughout the whole system execution time.

Finally, this question will also examine the output of the analysis will produce when

an error is introduced that is not from a threshold.

6.2 Setup

This next section will describe the setup of the experiments. This includes the systems

used, the participants in the experiments, the instructions given to the participants,

the design of the mission, the changes made to the system, and what information was

recorded.

6.2.1 Systems

We used three separate robot systems for the studies. The systems used include an

Unmanned Aerial water sampler, a ground robot performing a navigation task, and an

Unmanned Aerial Vehicle capturing an image of a person. Each of the systems highlights
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the different capabilities of robot systems and aims to show the wide applicability of our

approach.

The first system we performed experiments on is the water sampler developed by

the NIMBUS lab [10]. This system has been developed to autonomously fly to a selected

location, descend to insert the sampling tube into the water, collect water samples, and

return the samples back to the launch location. The system contains around 11,000 lines

of code. 290 variables are populated with values from configuration parameters in the

source code. Our analysis identified 58 threshold predicate comparisons in the system.

The second system is an iRobot Create [92] navigating a course using the ROS

navigation implementation [8]. The Create can successfully navigate a course containing

obstacles and stop in a predefined 1.0 m x 1.0 m square. The system contains around

25,000 lines of code, reads configuration parameters into 201 variables, and contains 50

threshold predicate comparisons.

The final system is a UAV that contains a camera and can location and capture the

image of a person after performing a simple search for them. The robot will take off and

find the person using facial smile recognition. The system contains around 27,000 lines of

code, 252 variables are populated with configuration parameters and the static analysis

found 88 threshold predicate comparisons in all of the analyzed source code.

6.2.2 Participants

The participants for the experiment have a familiarity with the robotic systems, but were

not familiar with the details or implementation of the systems. Each of the participants

has worked on robotic systems, but had not worked on the specific systems used in the

experiments. All of the participants are graduate and undergraduate students in the

NIMBUS lab.
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6.2.3 Process

Before each trial we provided the users with a number of instructions. First, we informed

them about the trial and what tasks they needed to perform. Next, we gave them a high

level description of the system and planned mission. To give them an impression of what

the mission and system are supposed to look like, we demonstrated the mission three

times. During the missions we instructed the participants to pay special attention to the

sequence and timing of events in the mission.

The users had the ability to mark the two separate types of errors during the missions.

We provided instructions on what constituted type I and type II errors. We demonstrated

how to mark the two types of errors by selecting a specific key on the keyboard. They

were given the chance to test out marking the tools during training.

6.2.4 Treatments

We aimed to create four system treatments for each robot system. Two of the treatments

would be performed on configuration parameters that can produce type I and type II

errors. The other two treatments introduced an error with a fault in the source code and

offered a control treatment with no errors. The control treatment examines how the user

marked errors during the course of normal operation. The final treatment lets us explore

the type of predicates that are highlighted when the error is not a result of configuration,

but is instead a result of a fault in the source code.

To select the configuration parameters to mutate, we examined the identified threshold

predicate comparisons and selected ones that would 1) produce the desired type of error

and 2) produce an error that would manifest in the system in a way that a user would

recognize with minimal training as an error condition. After identification, we tested

each of the treatments to ensure that they fit the criteria, and the treatment did not cause
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the robot to behave in an unsafe manner. The treatment to source code was also chosen

in a similar manner. We examined the source code system and identified locations where

we could modify statements to produce a visible but safe change the robots behavior.

The users examined the robot running each treatment where each treatment consisted

of a system with one treatment. The treatments were provided in random order and the

user did not know which one was being administered. During each mission we recorded

the following:

1. System execution trace: the time and values of all ROS messages published by the

system.

2. Instrumented threshold predicate comparison data: the values, results, and identifier

of all threshold predicate comparisons that are executed during operation in the

robot system when executed.

3. User marks: the time and type of error marked by the user.

4. Time synchronized video: video of the robot system in operation synchronized with

the other three data sources.

Table 6.1 shows the systems and treatment combination we used, the number of user

trials for each, and the number of unique users per treatment. There were 12 different

configuration configurations and a total of 94 user trials. Only two user trials were run for

the water sampler and navigation code because we only needed to confirm the marking

characteristics for clean trials and did not need to examine how the suggestions for the

tool perform.

6.3 Water Sampler Experiment
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Table 6.1: Experimental Setup

System Treatment 1

Type I Error
Treatment 2

Type II Er-
ror

Treatment 3

Source Code
Fault

Treatment 4

Clean
User
Trials

Unique
Users

Water Sampler x 9 5

Water Sampler x 9 5

Water Sampler x 10 5

Water Sampler x 2 1

Create Navigation x 10 5

Create Navigation x 10 5

Create Navigation x 10 5

Create Navigation x 2 1

Image Capture x 8 4

Image Capture x 8 4

Image Capture x 8 4

Image Capture x 8 4

Figure 6.1: The water sampler used during
the tests in this section

The first system we examined was an au-

tonomous water sampling UAV developed

by the Nimbus Lab [10]. This system com-

bines the mit asctec and water sampling

systems analyzed in Chapter 5. The sys-

tem contains around 11,000 lines of code in

total. The full system source code contains

a total of 58 threshold predicate compar-

isons with 47 unique configuration param-

eter sources used in the predicates. The

threshold predicate comparisons are spread across 15 different files. While in operation,

the system communicates over 37 separate ROS topics and uses 18 ROS services. The

execution is spread across 31 ROS nodes. These include nodes that control the position of

the UAV, track the UAV, run the water sampling sub components, manage the mission,

and ensure safety.
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A successful trial, treatment 4, executes as follows. The UAV begins on the ground

with motors off and stationary. The motors turn on and the UAV begins flight, ascending

to 2 m. Next, the UAV flies over a fish tank at a height of 2.0 m. Once over the fish tank

the UAV decreases altitude to a height of 1.2 m to insert the water sampling mechanism

into the water. The system turns on the pump and fills a vial full of water. Once the

vial is full the UAV returns to 2.0 m and returns to the takeoff location, lands, and shuts

down the motors. Figure 6.1 displays the UAV during operation over the fish tank while

sampling.

For the three treatments that cause an error we will be making the following changes:

1. Type I Error: configuration parameter altitude abort level. This parameter controls

how low the UAV must be before the mission is aborted by the system. This

parameter is configured in the main system launch file. When the UAV aborts

it stops the current operation and returns to a specified height and hovers until

receiving further commands. We will raise the height of the abort level so the UAV

will be deemed “too low” during normal operation and abort the sampling.

2. Type II Error: configuration parameter error xy. This parameter is used to determine

if the UAV has reached a target location with an error margin of error xy. This

parameter is configured in the system’s main launch file. We will lower the value of

the threshold so that the UAV will not continue on to the sampling portion of the

mission, generating a type II error because the target location may not be reached.

3. Source Code Error: FlyToObject.py Line 56. we will change the calculation of the x

error to be abs(xuavytarget) instead of abs(xuavxtarget). This will result in an incorrect

error term being calculated for the distance of the UAV to the fishtank. The error

produced here will cause a behavior similar to changing the error xy parameter.
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6.3.1 Threshold Statistics RQ1

To determine the runtime characteristics of threshold predicate comparisons we gathered

data on their execution during all of the trials. The data was then grouped by the

parameter that loaded the threshold value into the system. The compiled statistics

are found in Table 6.2. The Parameter column is the name of the ROS parameter that

populates the values for the threshold predicate comparisons. The Locations column

identifies how many individual threshold predicate comparisons use the value read in

by the parameter. The Comparisons column contains the total number of times a record

from the threshold predicate comparisons appears in the execution traces. The frequency

count is the number of comparisons divided by the total number of seconds in the trial.

Runtime percentage is the number of seconds the threshold appears in the execution

trace divided by the total number of seconds in the execution. It is computed by breaking

the trace into second long segments and then determining if a parameter had a threshold

predicate comparison present in that time range. Flops in the number of times that a

threshold predicate comparison changed values from true to false or vice versa. True

% and False % are the percentages that the threshold predicate comparisons had the

respected values.

These comparisons took place in 24 (41.4%) out of the 58 predicate locations identified

during the static analysis portion of the code. The used predicates represented 17 (41.5%)

unique parameters out of the possible 41 found used to populate the thresholds used in

predicates. Each of the parameters was used in only one or two predicate locations in the

source code.

All of the observed trials had a runtime of around 1250 seconds. In total the instru-

mented code logged 531,793 executions of the predicates instrumented during the static

analysis of the water samplers code. This amounts to around 425 threshold comparisons
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Table 6.2: Runtime parameter statistics

Locations Comparisons Frequency Runtime % Flops True % False %
altitude abort level 4 10432 8.35 75 32 8.75 91.25

check dist z separately 2 22884 18.31 11 0 0 100

collapse deadband 2 37121 29.70 69 0 100 0

enable baro ctrl mode 4 74193 59.36 69 0 100 0

enable derv fir filter 2 36131 28.91 69 0 100 0

enable pitch ctrl 3 37125 29.70 69 0 0 100

enable roll ctrl 4 37130 29.71 70 0 0 100

enable thrust ctrl 2 37124 29.70 69 0 0 100

enable thrust iir filter 2 37117 29.70 69 0 100 0

enable yaw ctrl 4 37130 29.71 70 0 0 100

gps enable mode 2 37122 29.70 69 0 0 100

indoor 4 10458 8.37 75 0 0 100

max pkt size 2 86243 69.01 86 8 100 0

pose error 2 22893 18.32 11 28 75.46 24.54

pose error z 2 5613 4.49 4 34 99.48 0.52

waypose idle timeout 2 1201 0.96 86 110 84.93 15.07

xy error allowed 4 1876 1.50 38 4 0.21 99.79

mean 2.76 31281.94 25.03 59.35 12.71 45.23 54.77

median 2 37117 29.70 69 0 8.75 91.25

std 0.97 23133.08 18.51 26.20 27.84 48.80 48.80

minimum 2 1201 0.96 4 0 0 0

maximum 4 86243 69.01 86 110 100 100

sum 47 531793 425.50 1009 216 768.83 931.17

per second. The number of comparisons per second for the parameters ranges from less

than 1 per second to 69.01 per second for the most frequent.

A graph of the runtime % for each parameter is shown in Figure 6.2. The runtime

% of each parameter is defined as the percentage of seconds a comparison using that

parameter occurs in the trace compared to the total runtime of the whole trial. Three

parameters appear in less than 20% of the total system runtime. One appears in just over

40% of the trial execution. The remaining parameters are compared in over 65% of the

seconds that the robot system is running. Two of the parameters are checked over 85% of

the time during all of the trials.

The runtime portion of this tool is able to pinpoint which parameters are actually

being used during any task the robot system is performing. It can immediately reduce

the problem search space from the possible 41 parameters to the 17 that were used during
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the operation of the system during the task. This reduces the problem search space by

over half before performing any intelligent operations on the data returned from the

instrumented predicates. The results also show that that even when a small number of

parameters are used, a large number of predicates using the parameters are executed

every second.

Figure 6.2: Percentage of total seconds in which a parameter is
used in a predicate

The bursty nature of

thresholds is also appar-

ent from the results of

the runtime analysis of

the water sampler. Some

parameters are only used

in small portions of the

robot’s mission. If an

infrequent threshold is

present and the user

marks an issue, this may

be a hint that the infre-

quent threshold is the

one causing the problem

and is something that warrants further investigation in future iterations of the runtime

analysis.

The final portion of the runtime characteristic section examined the overhead of the

instrumentation. During the trials we observed no signs that the system struggled to

handle the additional overhead of monitoring the predicates and publishing the messages.

The method uses the existing logging stream and one additional topic to reported the

values of the predicates. To get an idea of how much additional data the instrumented
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code provides and the overhead of the analysis we examined the percentage of overall

messages that were produced by the instrumentation. In total 13.1% of the messages in

all of the trials were from instrumented threshold predicate comparisons. While this is a

large percentage, it is not an unreasonable amount of excess data.

This subsection has shown that threshold predicate comparisons are very common

throughout system execution. They appear throughout many parts of the code in the water

sampler. It also shows that some thresholds appear throughout the trial execution and

others only appear during small sections of the trial. The overhead of the instrumentation

is not unreasonable. Finally, it also demonstrates that not all identified thresholds will

appear while the robot is in operation.

6.3.2 Flops RQ2

A flop is defined as a predicate in which the result is different from the previous predicate

comparison. In the observed trials there are 216 flops. This is only 0.041% of all of the

executions of the instrumented predicate threshold comparisons. This provides evidence

that the occurrence of a predicate changing values is a somewhat rare occurrence in the

water sampler. Only 6 (35.3 %) of the 17 parameters are used in predicates that have

both true and false results. This shows that only a few predicates change values so any

predicate that does so contains information. If the value of the predicate does change,

one result is produced at a much higher rate. The rarity of flops and the high proportion

of true or false values compared to the opposite value should enable us to trace type I

errors to the problematic parameter easily. If multiple flops were to be present when the

error occurs then we can use the frequency of flops to determine which parameter does

not change as often and highlight that parameter as the likely source of the problem in

future iterations.
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Table 6.3: User Marks in all trials

User 1 User 2 User 3 User 4 Total
Type I Type II Type I Type II Type I Type II Type I Type II Type I Type II

Treatment 1 Trial 1 1 0 1 2 0 0 1 0 3 2

Treatment 1 Trial 2 0 0 1 1 1 1 1 0 3 2

Treatment 1 Trial 3 2 3 2 3

Treatment 1 Trial 4 1 9 1 9

Treatment 2 Trial 1 0 2 0 4 0 1 0 3 0 10

Treatment 2 Trial 2 0 0 0 3 0 2 0 1 0 6

Treatment 2 Trial 3 0 6 0 6

Treatment 2 Trial 4 0 5 0 5

Treatment 3 Trial 1 0 0 0 4 0 1 0 3 0 8

Treatment 3 Trial 2 1 2 0 4 0 1 0 3 1 10

Treatment 3 Trial 3 0 5 0 5

Treatment 3 Trial 4 1 6 1 6

Treatment 4 Trial 1 3 0 3 0

Treatment 4 Trial 2 1 1 1 1

mean 0.71 2.79 0.14 1.29 0.07 0.43 0.14 0.71 1.07 5.21

median 0.50 2 0 0 0 0 0 0 1 5.50

std 0.91 2.94 0.36 1.73 0.27 0.65 0.36 1.27 1.21 3.29

minimum 0 0 0 0 0 0 0 0 0 0

maximum 3 9 1 4 1 2 1 3 3 10

sum 10 39 2 18 1 6 2 10 15 73

6.3.3 User Marks RQ3

Table 6.3 displays the number of type I and type II errors marked by the users during

each trial. The users marked a total of 85 errors, or an average of 6.5 errors per trial. The

maximum number of errors marked in one trial was 11 and the minimum was 2.

Type II errors were marked at a higher frequency than type I errors. Users marked 58

more type II errors than type I errors. The users also marked type II errors in every trial

except one, while type I errors only appeared in eight of the trials. This may be because

type II errors are “long” errors; the system takes a long time to resolve the error, if it does

at all. Once the robot reaches the error state it is stuck in the state for a longer period of

time than the type I error which manifests instantaneously. Another factor leading to the

larger proportion of type II errors identified is the fact that treatment 3 mimicked a type

II error, so a larger portion was expected.
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During trials for treatment 1, the users marked type II errors as well as type I errors.

This was done by two of the users. This is likely because of confusion of what the type I

error caused. The error causes the UAV to ascend almost immediately after beginning the

sampling and returned to a hover. When the robot aborted the mission it did not make

progress toward the water sampling. This is similar to the description of a type II error

that states that a type II error: “occurs when the robot should be doing something, but

does not.” The complete definitions and descriptions of the types of errors in the future

could be further clarified to assist the user. There is also reason to believe that as users

use the system more often or are more familiar with the robot system that they could

better distinguish between the two types of errors during runtime.

Table 6.4 displays the confusion matrix for treatments containing the introduced type

I and type I parameter errors. In the table it is apparent that users are not perfect at

marking error types. They mark almost twice as many type II errors during type I

treatments. This shows that they may struggle to mark the correct error type consistently.

One promising result is that users did not mark any type I errors during the trials with

the type II error introduced.

Table 6.4: Confusion Matrix for Type I and Type I Errors and Treatments

Type I Marks Type II Marks
Treatment Type I 9 16

Treatment Type II 0 27

Users did mark errors during the third treatment during an error that was not related

to configuration errors but instead a code fault. The error manifested itself exactly as

a type II error would, which provides evidence that users will mark non-configuration

problems as errors in the system as well. Finally, users did mark errors during the clean

treatments; however, the number of error marked during the clean treatments was small

and provides evidence that users will not mark normally operating systems that are not
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operating as they should.

Table 6.5 displays the average delay in marking an error after the changed threshold

has flopped or should have flopped. For type I errors this value is the number of seconds

to the first user mark after the modified threshold predicate comparison flopped. For

type II errors this is the number of seconds to the users first mark after the threshold

exceeded the original parameter value in the functional system. On average it took the

user less time to mark the Type I errors (1.5 to 20.8 seconds) than the Type II errors (8.7

to 20.4 seconds). The mean time for type I errors had an outlier of 38 seconds. All of the

other values were less than 14 seconds. The delay for type II errors did not contain any

outliers. However, it still took a noticeable amount of time to identify and mark the errors

for many of the users. The delay for Type II errors should not be an issue. Since the error

depends on a threshold not flopping, the threshold should still be close to flopping in the

produced scores even after some period of time. If the threshold has flopped, then the

error will no longer be present and the user hopefully would not mark the error. The

delay may cause an issue in Type I errors. If the system begins to do another activity

because of the flop, more threshold predicate comparisons may flop. This may lead to

more flops that will be falsely identified as the problematic threshold once the user finally

marks the error.

Table 6.5: Delays from error to the first mark by the users.

User 1 User 2 User 3 User 4 Mean
Treatment 1 Trial 1 38.06 12.40 12.10 20.86

Treatment 1 Trial 2 6.90 14.30 10.96 10.72

Treatment 1 Trial 3 2.30 2.30

Treatment 1 Trial 4 1.55 1.55

Treatment 2 Trial 1 20.70 20.86 20.46 19.62 20.41

Treatment 2 Trial 2 19.48 17.34 27.06 21.29

Treatment 2 Trial 3 11.59 11.59

Treatment 2 Trial 4 8.70 8.70

The results of the users marking errors during runtime of the water sampler trials
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demonstrates that users can identify problems in the robot system. It also shows that

there is evidence of some confusion between the two types of errors. However, with

further usage of the system and better definitions and examples of the error, they may be

able to overcome this confusion.

6.3.4 Runtime Analysis Results RQ4

Table 6.6: Average score produced on marked errors and average

Type I Rank Type I Score Type II Rank Type II Score
Treatment 1 Trial 1 1.00 38.30 0.95 0.38

Treatment 1 Trial 2 1.00 34.24 0.90 0.52

Treatment 1 Trial 3 0.47 5002.48 0.95 0.36

Treatment 1 Trial 4 1.00 3.45 0.63 3333.55

Treatment 2 Trial 1 0.00 9999.00 0.91 0.08

Treatment 2 Trial 2 0.00 9999.00 0.95 0.06

Treatment 2 Trial 3 0.00 9999.00 0.95 0.08

Treatment 2 Trial 4 0.00 9999.00 0.96 0.08

Table 6.6 displays the raw scores and the ranking of the trials for the treatments with

the modified parameters. These scores are the average of the results produced by the

system for each user mark during the trials. For each type I or type II mark we computed

the corresponding score and rank. The table contains the mean of all values during the

trials. For ranking score a value of 1.0 demonstrates that the modified threshold predicate

parameter was ranked as the top cause of the error by the analysis. A score of 0.0 is the

lowest possible score. The score is the raw score produced by the runtime analysis. A

value closer to 0.0 indicates that the threshold predicate comparison is more likely to be

the cause of the error. The raw analysis scores have no maximum value.

The system did a very good job in identifying the problematic threshold in both the

first and second treatments to the system. In treatment 1 the system had the modified

parameters threshold predicate comparison as the top suggestion except for trial three.

During this trial two of the marks came well before the threshold had flopped. In



100

treatment 2 the modified parameters threshold predicate comparison appears in the top

three rank threshold predicate comparisons. In treatment 2 the threshold never “flopped.”

This means that the score is always the maximum value of 9999 and the rank of 0. This

shows the importance of identifying the correct type of error in offering good suggestions.

The dependence of the correct results on the user marking the correct error type means

that if the user does not mark the correct error, the results the system currently produces

will not help them accurately identify the problematic threshold.

6.3.5 Deeper Analysis

More details on individual trials will be presented in the following subsections to help

further clarify the research questions. In the following subsections we present graphics

for each trial. The graphs on the left of the figures display the UAV’s position and location

during the trial (The fishtank is at approximately -2.1 m on the x axis during these trials.)

The graph on the right of the figure displays the rank scores of the type I and type

II errors for all of the threshold predicate comparisons in the trail. In these graphics

the red line represents the modified threshold in the trial. The modified threshold also

contains red x marks to indicate that it is the modified threshold. All of the other lines

are color-coded and each represent a different threshold predicate comparison within

the code. If the threshold had a score of 99999 it was given a rank score of 0. More

thresholds were present at points in time than appeared within the graphs due to this

zeroing of scores. This demonstrates further the ability of the system to limit the number

of parameters to examine to determine the root cause of the problem. User marks are

indicated in both sides of the figure using vertical lines with x marks on them. In the

figures, blue marks represent type I errors and green marks represent type II errors.

For example, if the modified threshold ranks second at the current time during system
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execution and there are 10 other thresholds present, there will be 11 different colored

lines in the graph. A red line indicating the modified parameter will be second from the

top. All of the other threshold predicate comparisons will be color coded and remain the

same color throughout even as their ranks change. If the user marks a type I error, there

will be a green vertical line at the moment in time the user marked the error.

6.3.5.1 Treatment 1 - Type I Error

Figure 6.3 displays the trials that were examined with treatment 1. In these trials the

water sampler began sampling, but aborted and hovered over the fish tank after the abort

level was exceeded. In the first two trials there where two user marks that the UAV

encountered a type I error. These occurred between 10 and 20 seconds after the UAV

aborted and ascended. However, in both cases the predicate that contained the modified

threshold value was still at the top of the ranking graph. In the first trial the type II error

marks occurred even later than the type I errors. In trial 2 one user marked a type II error

after the UAV had already landed. This may be an indication that the mark is not valid.

However the other type II error mark came within 5-10 seconds of the UAV changing

its behavior. In the other two trials the user marked errors before the error accrued. The

marks are understandable in the 4th trial as the UAV spent around 10 seconds at 1.0 m

before ascending and continuing on the trial. The cause of this loitering is unknown, but

the user was quick to mark it as an error.

An interesting observation in the graphics is that a large number of threshold predicate

comparisons appear in the type I ranking graph just before the UAV descends from 2 m

to the sampling height. This indicates that there are many “flops” in the system as the

UAV changes the current activity from being on the ground, to flight, to then sampling

and aborting. Many type II ranks appear at this time indicating that the many parts of

the sub control system are beginning to “get close” to flopping to allow changes in the
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control system of the robot. Many of these thresholds drop from the rank graph after the

UAV has leveled off after aborting the trial. This offers evidence that during more active

parts of the trail there will be more threshold predicate comparisons active than during

relatively stable and non-eventful portions of the trial.

6.3.5.2 Treatment 2 - Type II Error

Figure 6.4 displays the trials that were examined with treatment 2. In all of these trials

the UAV never began the decent to collect the water sample. The users all marked type II

errors during the missions. All of the users waited on the order of 10 to 20 seconds to

begin marking errors after the UAV had reached the area of the fishtank. This provides

evidence that users are slower to mark type II errors. The modified threshold was in

the second or third positions in the rank graph during the time when the users began

marking. Another interesting feature of the rank graphs is that immediately after the

UAV got to the target location the modified parameter was near the top in both of the

type II error graphs.

6.3.5.3 Treatment 3 - Source Code Error

Figure 6.5 shows the trials examined with treatment 3. Similar to treatment 2, the users

again waited some time before marking any sort of error and only marked type II errors

during this trial. Similar to the other treatments, there are many thresholds that flop

and are about to flop when the UAV takes off and flies to the target location. Once the

UAV is at the target locations however the number of thresholds that are about to “flop”

drops off as not as many are involved. All of the ones that have flopped to reach the next

portion of the trial have except for the few that are preventing it from continuing. This

trial provides evidence that faults in the robot source code may also appear to be type

II errors. Users marked type II errors many times during execution. These trials also
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(a) (b)

Figure 6.3: The height and X position of the water sampling UAV throughout time and
the threshold ranking of the modified parameter throughout time in treatment 1 (Type I

Error) trials
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(a) (b)

Figure 6.4: The height and X position of the water sampling UAV throughout time and
the threshold ranking of the modified parameter throughout time in treatment 2 (Type II

Error) trials
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showed that users were likely to wait a period of time before marking any type II errors.

This trial also provides evidence that during times of transition within the system there

are more thresholds than periods when the system is in a constant state.

6.3.5.4 Treatment 4 - Clean

Figure 6.6 displays the position of the UAV and the ranking scores for the threshold

predicate comparisons. As shown in the graphs the UAV successfully completed the

trials in both cases. Also, the user marked only a few errors in both of the trials. This

demonstrates that users are able to determine when the robot is behaving correctly and

will not mark errors as often as cases where there is an error.

6.3.6 Summary

The trials on the water sampler provided many answers to our research questions. First,

we found that a number of identified threshold predicate comparisons are identified

statically, but do not appear in the execution traces. This allows the filtering of con-

figuration options immediately when searching for an error. In the case of the water

sampler the filtering could eliminate 58.5% of the parameters used to configure the

system. The trials also provided evidence that threshold predicate comparisons are very

common during the execution of the system as on average there were 22.5 threshold

predicate comparisons occurring per second in the system. The trials also demonstrate

that some thresholds appear in nearly every portion of the execution but other appear

only in specific portions of the trial. This allows the possible use of better decisions in

determining which threshold is causing the issue. If a problem is marked and a threshold

that appears infrequently has occurred recently that threshold may be the source of the

problem.
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(a) (b)

Figure 6.5: The height and X position of the water sampling UAV throughout time and
the threshold ranking of predicates throughout time in treatment 4 (No Error) trials
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(a) (b)

Figure 6.6: The height and X position of the water sampling UAV throughout time and
the threshold ranking of predicates throughout time in treatment 4 trials

The trials also provide evidence that “flops” are not common during system execution.

Only 0.058% of the results from instrumented threshold predicate comparisons result

in a “flop.” This offers evidence for our assumption that “flops” are important events

that signal a change in the behavior of the robot system. It also signals that being able

to identify which predicate flopped or is about to flop may be of use to a user trying to

discover configuration errors in the robot system.

Experiments with the water sampler also show that the users are not as accurate in

identifying the types of errors that occur during system operation as we would hope.

There seemed to be some confusion between type I and type II errors and users marked

type II errors more frequently than type I errors in the system. However, as users become

more familiar with the system that they are running, we assume that they would become
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more familiar with the types of errors present in the system. Additionally, we may need

to rethink the types of errors.

Finally, in the trials the runtime analysis did a reasonable job in identifying which

threshold was the cause of the issue compared to the other thresholds present in the

system. In treatment 1 the changed threshold was the top identified problem threshold

for type I errors. In treatment 2 the threshold was in the top three positions during the

time when the UAV should have moved on to the next point.

6.4 Navigation Experiment

Figure 6.7: The iRobot Create and the course
for navigation experiments

The second system we used for runtime

experiments consisted of an iRobot Cre-

ate, which is the modified version of the

iRobot Roomba for use in research [92] un-

der control of a customized ROS driver

navigating in an environment using the

ROS navigation packages [8]. In total the

system consists of around 25,000 lines of

code including the code to operate the mo-

bile robot and the full code of the ROS

navigation repository. The full system con-

tains 56 threshold predicate comparisons as found during static analysis. The code

running the system is spread across 12 ROS nodes and two different computers. One

computer controls the iRobot Create and the laser scanner. The other computer is respon-

sible for the processing of all of the odometry and laser scanner data to localize and plan

the path for the robot. After the robot is localized using the odometery and laser scanning
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data the navigation stack is responsible for planning and overseeing the robot while

it traverses the planed path. During traversal, the robot’s location is recomputed and

changes are made to the planned path. Commands are sent from the navigation computer

back to the robot controlling the iRobot Create in the form of velocity commands with a

forward velocity and a rotational velocity. These are translated into commands for the

left and right wheel of the robot.

Figure 6.7 shows the iRobot Create in the environment. The target location is the

marked box on the floor in the upper right of the image. A trial begins with the robot

in the location in Figure 6.7. Next, the navigation stack is given a target pose inside of

the marked box. The robot makes its way to the box on the planned path while avoiding

obstacles. To successfully complete the trial the iRobot Create must be fully inside the

box and stationary. This occurs once the localization methods have determined the robot

is inside the box and the path planning algorithms recognize that the robot has reached

the location.

For the three treatments we will be making the following changes to the system

configuration and source code:

1. Type I error: configuration parameter brake limit. This parameter controls the speed

that a command to one of the iRobot Create’s wheels exceed for the iRobot Create

to actually move. This limit is defined in the launch file that launches the iRobot

Create for operation. If the speed is less than the value the robot will not move the

wheel. This threshold prevents damage to the motor from trying to move the wheel

when friction cannot be overcome. If this threshold is raised to a value that is too

high, the robot will stop moving early or will not move at all. Raising this value

results in a type I error.

2. Type II error: configuration parameter xy goal tolerance. The navigation stack uses
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this parameter to determine when the robot has reached the desired location. It is

initialized in the launch file that brings up the navigation nodes for the robot. The

proper value for this threshold depends on the ability of the robot to localize in the

environment and the level of accuracy the user desires in the finalized position. If

the value is set to too small the robot will not be able to achieve the goal position

will continue to make movements about the final location. If the value is too low

the robot will stop in an undesired location. In the treatment set the value too to

cause a type II error.

3. Source Code Error: Trajectory Planner.cpp. When the call is made to plan the robots

trajectory the start and end locations are swapped. This will cause the robot to

believe that it is already at the end location on the next localization update. It will

move briefly, but stop immediately after an update in the localization. This emulates

a type I error.

6.4.1 Threshold Statistics RQ1

Runtime characteristics for the threshold predicate comparisons grouped by loading

parameter are shown in Table 6.7. The columns in this table have the same definitions as

described in section 6.3.1. The traces of the trials contain 25 (44.6.0%) of the 56 threshold

predicate comparisons discovered in the static analysis of the source code. This is a slight

increase in percentage of present comparisons in comparison to the water sampler. An

interesting characteristic of this system is that parameters are used in multiple locations

more often than the water sampler. Of the 25 threshold predicate comparisons only 13

parameters supply values for all of the locations. The parameters are used in between 1

and 4 different locations in code and on average are used in 1.9 locations. This shows

that not all systems only use parameters in a single threshold predicate comparison.
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However, it still provides evidence that a parameter is still only used in a small number

of predicates.

The trials had a total runtime of 1132.6 seconds. During this time the system trace

contains 134034 values from instrumented threshold predicate comparisons. This corre-

sponds to around 126.3 threshold predicate comparisons per second. The frequency of

individual parameters ranged from less than .01 per second up to 23.1 comparisons per

second. This is less than the amount of threshold predicate comparisons present during

the water sampler. This provides evidence that systems have differing frequency of

threshold predicate comparisons. One possible reason is that the water sampler contains

more high level functionality and has a multiple stage mission while the navigation

experiment only has one high level activity. Difference in coding styles and design

patterns may also play a role in how often threshold predicate comparisons appear. A

big contributing factor here is the use of nodelets to share data instead of publishing

across computational nodes. However, even with the decrease in the number of threshold

predicate comparisons there are a relatively high number of comparisons per second.

The runtime percentage distribution is shown in Figure 6.8. The definition and

computation of runtime percentage is described in subsection 6.3.1. The distribution

shows a similar pattern to that of the water sampler. Five sources of thresholds appear

less than 10% of the time. Five appear in about 60% of the trial time and 4 parameters

have threshold predicate comparisons that appear in over 90% of the trials. This provides

evidence that there are three levels of how often thresholds appear within the runtime of

a robot. This may lead to the possibility of grouping thresholds more intelligently when

determining which ones cause problems. The appearance of rare occurrence group and

common group suggest that those two groups are common across many robotic systems.

The final portion of the runtime characteristic section examined the overhead of the

instrumentation. 21.1% of the messages on the system were from instrumented threshold
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Table 6.7: Runtime parameter statistics for the navigation trials

Locations Comparisons Frequency Runtime % Flops True % False %
latch xy goal tolerance 1 757 0.71 5 0 100 0

oscillation distance 2 12460 11.74 61 125 99.45 0.55

prune plan 1 11855 11.17 58 0 0 100

recovery behavior enabled 1 10 0.01 0 0 0 100

shutdown costmaps 4 19 0.02 1 0 100 0

tf broadcast 2 10530 9.92 95 0 0 100

update min d 2 20914 19.71 95 493 98.82 1.18

visualize potential 1 79 0.07 5 0 100 0

xy goal tolerance 1 11855 11.17 58 27 93.61 6.39

yaw goal tolerance 1 757 0.71 5 4 98.94 1.06

brake limit 2 10553 9.94 95 94 49.44 50.56

cmd vel timeout 1 5279 4.97 95 42 35.20 64.80

max forward speed 4 24484 23.07 60 0 0 100

min forward speed 4 24482 23.07 60 0 0 100

mean 1.93 9573.86 9.02 49.50 56.07 55.39 44.61

median 1.50 10541.50 9.93 59 0 71.52 28.48

std 1.21 8946.89 8.43 38.75 131.85 47.18 47.18

minimum 1 10 0.01 0 0 0 0

maximum 4 24484 23.07 95 493 100 100

sum 27 134034 126.30 693 785 775.45 624.55

predicate comparisons. This does consume a fair amount of resources, however it did not

produce prevent the system from operating normally. We did not observe any slowdown

or system problems due to the instrumentation.

This subsection has shown that many of the findings that appear in the water sampling

trials also appear in the navigation trials. Threshold predicate comparisons are very

common throughout the execution of a mission by the robot system. However, different

sources of the thresholds within the comparisons have different rates of occurrence

throughout the systems execution. Three different groups of runtime percentage appear

with almost no range of thresholds appearing in between. Similar to the water sampling

trials, less than half of the threshold predicate comparisons appear in the static analysis

do not appear in the system trace. This shows that not all of the code involved in a system

is used and also shows that the approach can be used to reduce the problem search space

without the requirement to perform other types of analysis on the system or runtime
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data.

Figure 6.8: Percentage of total seconds in which a parameter is
used in a predicate

A few things in the

navigation trials did dif-

fer from the water sam-

pling trials. First, the

overall number and fre-

quency of total thresh-

old predicate compar-

isons was lower. A vari-

ety of factors contribute

to this including the de-

sign of the system, cod-

ing styles, and the num-

ber of high level tasks

each mission was per-

forming. The other difference is the number of locations that the parameters where

used in threshold predicate comparisons. In these trials the average ROS parameter was

used in 2 threshold predicate comparisons. This may be attributed to the design of the

system. At any rate the mapping of parameters to locations is still relatively small and

still allows the pinpointing of a problematic parameter by finding the predicate threshold

comparison in which it was used.

While the navigation stack contains more lines of code then the water sampling trials,

it is spread across fewer nodes. A number of the navigation stack nodes contain nodelets

to share information within the process instead of sending it between nodes. This is

one reason why there is not an increase in threshold predicate comparisons even though

there was an increase in the size of the source code. Additionally, there is only one high
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level functionality in this code compared with the multiple sub tasks that are done in the

water sampler. This is another possible reason for the non-increase in threshold predicate

comparison count. The examination of how to instrument nodelets and the information

shared between them is something that needs to be examined in future work.

6.4.2 Flops RQ2

In the six missions there are a total of 815 flops. This is corresponds to 0.57% of

the threshold predicate comparisons executed during the trails. This is a very small

percentage and provides further evidence that flops are a rare occurrence. This value

is 10 times that of the flop percentage of the water sampler. However, around 75% of

the flops are caused by one parameter in the system. Factoring this parameter out of the

calculation the rest of the system’s predicate threshold comparisons flop at a range of

about 0.1% This provides evidence that flops do happen more often for some parameters,

but when they are more frequent they may be easier to filter out of the results than other

threshold predicate comparisons as the flopping may not be as important in their case.

Similar to the water sampling trials, 8 (58%) of the parameters are used in predicates that

never flop. The results from the navigation trials offer more evidence to that a flop is an

important event during the execution of a robot system.

6.4.3 User Marks RQ3

Table 6.8 displays information about user marks for the navigation trials. Users marked a

total of 42 type I errors and 58 type II errors. This is nearly double the amount of marks

that occurred in the water sampling trials. The mean number of marks per trial is 12.5.

The maximum number of marks in one trial is 38 and the minimum number of marks is

9. Every user marked at least one error in every trial.
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Table 6.8: User Marks in all trials

User 1 User 2 User 3 User 4 Total
Type I Type II Type I Type II Type I Type II Type I Type II Type I Type II

Treatment 1 Trial 1 0 2 0 2 1 1 0 3 1 8

Treatment 1 Trial 2 0 1 0 5 2 1 0 9 2 16

Treatment 1 Trial 3 1 7 1 7

Treatment 1 Trial 4 0 7 0 7

Treatment 2 Trial 1 1 0 3 2 1 1 3 0 8 3

Treatment 2 Trial 2 3 0 16 6 0 1 11 1 30 8

Treatment 2 Trial 3 2 7 2 7

Treatment 2 Trial 4 1 13 1 13

Treatment 3 Trial 1 0 1 0 6 0 1 0 4 0 12

Treatment 3 Trial 2 0 2 0 4 0 1 1 4 1 11

Treatment 3 Trial 3 0 14 0 14

Treatment 3 Trial 4 0 5 0 5

Treatment 4 Trial 1 0 1 0 1

Treatment 4 Trial 2 0 3 0 3

mean 0.57 4.50 1.36 1.79 0.29 0.43 1.07 1.50 3.29 8.21

median 0 2.50 0 0 0 0 0 0 1 7.50

std 0.94 4.59 4.29 2.42 0.61 0.51 2.97 2.65 7.97 4.48

minimum 0 0 0 0 0 0 0 0 0 1

maximum 3 14 16 6 2 1 11 9 30 16

sum 8 63 19 25 4 6 15 21 46 115

Almost half of the marks occurred in treatment 2. This is expected as the type II

error in treatment 2 causes the robot to spend an extended period of time moving about

the final target location. The much larger number of marks shows that users will mark

different errors at different rates across different systems. If the robot system continues to

struggle to complete the task the users will continue to mark errors. This may also help

to identify the true difference between type I and type II errors. The larger amount of

marks during a type II error show that the robot is stalled. This may help disambiguate

which type of error the user is truly marking if the confusion continues to be a problem.

In the trials users marked less type I errors (42) than type II errors (58). All but

one trial had both type I and type II error marks. This is slightly misleading; nearly

all of the marked type I errors occurred in the treatment 2 trials. This may be due to

confusion on what constitutes each type of error. The definition of the two types of errors

is somewhat ambiguous. The users all mentioned that the robot could be considered to
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be both ”should be doing something” (stopping at the location) and ”doing something

that it shouldn’t” (moving after it has reached the location) at the same time in the trials.

Table 6.9 displays the confusion matrix for treatments 1 and 2. From this matrix,

it is very easy to see the confusion between type I and type II errors by the users in

these experiments. The users marked nearly 10 times the incorrect type II errors during

treatment 1 which introduced a type I error. During treatment 2 the users marked more

errors incorrectly, but the disparity was not as large. Overall in the two treatments users

marked incorrectly 79 times and correctly only 35 times.

These trials provide evidence that the user may not be able to successfully determine

which type of error is occurring during operation, but they can determine that an error

is occurring. However, the large number of markings for the trials may help to provide

evidence when the system is encountering a type II error. Further work needs to be done

to help users tell the difference between these two types of errors.

Table 6.9: Confusion Matrix for Type I and Type I Errors and Treatments

Type I Marks Type II Marks
Treatment Type I 4 38

Treatment Type II 41 31

As with the water sampler trials, users marked errors during the third treatment. This

shows that users will mark errors from code faults as well as configuration errors. While

this may not be an issue it may lead to some confusion when changing parameters does

not cause a change in the behavior of the robot.

Similar to the water experiment, user marked far fewer errors in the clean trials. The

user participating in the clean trials only marked 4 errors, while during the trials with

the other treatments, the user marked almost 50 errors. This provides evidence that the

users are much less likely to mark errors during normal operation.

Table 6.10 displays the average delay in marking an error after the changed threshold
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has flopped or should have flopped. The marking of the type II errors took nearly twice

as long as the marking of the type I errors. The delay for the type I errors was still

between .76 and 10.4 seconds. Type II errors took between 2.5 and 20.8 seconds. This

provides evidence that the users will not always immediately mark an error and it may

take some time for them to mark a type II error.

Table 6.10: Delays from error to the first mark by the users.

User 1 User 2 User 3 User 4 Mean
Treatment 1 Trial 1 8.12 8.62 10.40 8.32 8.86

Treatment 1 Trial 2 10.16 3.82 5.46 4.66 6.02

Treatment 1 Trial 3 0.76 0.76

Treatment 1 Trial 4 1.93 1.93

Treatment 2 Trial 1 11.62 18.94 15.96 17.92 16.11

Treatment 2 Trial 2 10.72 12.14 12.92 20.82 14.15

Treatment 2 Trial 3 2.50 2.50

Treatment 2 Trial 4 10.11 10.11

The results of the users marking errors during runtime of the navigation trials demon-

strate that users can identify problems in the robot system. It also provides further

evidence that there is confusion between the two types of errors. Some errors will mani-

fest themselves in ways that will be very tough to disambiguate without knowledge of

the system’s source code. Some of the confusion should disappear with more familiarity

with the system, but more needs to be done to help the users correctly identify the type

of error occurring in the system. If that is not possible the system needs to be able to

determine which analysis to run and provide the best results for a marked error. Further

details about the time to mark errors will be examined in the individual trials and finish

answering RQ3.

6.4.4 Runtime Results

Table 6.11 displays the average scores given to the marked errors by the system in the

two treatments with modified parameters. In the first trial the lone mark of a type I error
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occurred when the changed parameter ranked as the top scoring threshold predicate

comparison. All of the type II marks by the user occurred when the threshold was in the

second position on the type II error ranks. In the second trial the threshold was not as

high in the type II errors at that point in time. However, it was still within the top 3 of the

rankings. The threshold also ranked in the third position on average in the type II errors.

This provides evidence that incorrectly marking a type I error as a type II error does

not ruin the results in all cases. There is still a likelihood that the problematic threshold

will appear in the top of the ranks. This may not be true if the error drastically changes

the behavior of the system. The second treatment shows the importance of correctly

marking type II errors. The modified threshold is ranked very poorly when type I errors

are marked because it has not “flopped” yet. It does score very will in the type II error

ranks for those trials.

Table 6.11: Average score produced on marked errors and average ranking

Type I Rank Type I Score Type II Rank Type II Score
Treatment 1 Trial 1 1.00 30.34 0.95 0.11

Treatment 1 Trial 2 0.95 34.75 0.91 0.25

Treatment 1 Trial 3 1.00 2.07 0.70 0.84

Treatment 1 Trial 4 0.00 9999.00 0.87 0.38

Treatment 2 Trial 1 0.57 3759.59 0.94 0.06

Treatment 2 Trial 2 0.32 6673.81 1.00 0.03

Treatment 2 Trial 3 0.00 9999.90 0.33 4286.24

Treatment 2 Trial 4 0.00 9999.90 0.93 0.07

6.4.5 Deeper Analysis

More details on the individual trials will be presented in the following subsections

grouped by treatment. The results will help to further clarify the research questions. In

the following subsections we present graphics for each individual trial. The first graphics

contain the X and Y position of the robot as calculated by the navigation stack and the

left and right commands to the wheels of the robots. We included the wheel commands
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because sometimes location data does not update at a high frequency. These four data

points should give a very good picture of what the robot is doing (the target location is at

approximately -1.7 m 1.4 m). In treatment 1 and 3 when the robot stops giving commands

to the wheels outside of the target location, the type I error occurred. In treatment 2 when

the robot continues to give commands at the target location the type II error is occurring.

The other figure displayed for the missions are the rank scores through time. They

show the rank scores of the type I and type II errors for all of the threshold predicate

comparisons in the mission. In these graphics the red line represents the modified

threshold in the treatment. All of the other lines are color coded and each represent a

different threshold predicate comparison within the code. User marks are indicated in

both sides of the figure using vertical lines with x marks on them. In the figures the blue

marks represent type I errors and green marks represent type II errors as marked by the

users.

6.4.5.1 Treatment 1 - Type I Error

Figure 6.9 displays the location, wheel commands, and the threshold information for the

trials with treatment 1. In these missions the robot began to travel towards the target,

but the speed commands to the wheels soon did not meet the threshold value and the

robot stopped in place. The forward movement in both missions lasted between 5 and

10 seconds. Once the robot stopped moving the users began marking both type I and

type II errors. However, the users marked many more type II errors than type I errors

during these missions. In both trials the first marks on errors came within 5-10 seconds

of the robot movement stopping. The robot then stayed stationary for a period of time

and the users continued to mark type II errors. This is because the robot was supposed

to be moving towards the target location and the lack of movement can be seen as a no

action type II error. This provides evidence for the ambiguity between the two types of
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errors and the importance of helping the user understanding which error leads to which

type of problem. The users marked twice as many errors in the second trial then the first.

This is interesting as similar missions resulted in a different number of markings.

The figure also displays the rank score for the mutated threshold throughout the mis-

sion’s execution. The mutated threshold is at the top of the type I rankings immediately

after the robot stops because of the misconfigured threshold. In the first grouping of user

marks in each trial the threshold was near the top of type I errors. However, not all of the

users marked type I errors. Even if the users marked the incorrect error they still would

see the threshold predicate comparison in the top of the type II error suggestions. This is

expected as the threshold should be very close to flopping again as commands are being

sent with values just below the threshold to make the robot drive again.

There are many threshold being compared once the robot begins moving, but perhaps

more interesting is the increase in thresholds that are active after the robot stops moving.

These may be part of the recovery process in the navigation stack that begins to try and

find new paths once the one fails. They also could be related to some other periodic

code that is running on the robot system. Once the robot begins moving the number

of thresholds remains constant except the additional ones that appear and drop out of

the trace. This pattern provides evidence that thresholds are likely to be grouped with

specific behaviors in the robot. Some work may be done to group thresholds that occur

together in specific robot behaviors with more in depth user feedback on the actions that

the robot is performing. For example the user could highlight which parts of the mission

are when the robot is traveling, which parts are when it is performing another task such

as grasping to get a group of thresholds that appear during specific tasks and which ones

“flop” when the task is complete.
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(a) (b)

Figure 6.9: The position of the robot, wheel commands, and the ranking score of the
modified threshold predicate comparison during treatment 1 (Type I Error)
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6.4.5.2 Treatment 2 - Type II Error

Figure 6.10 displays information on the location, commands, and threshold predicate

comparison score ranks for the missions involving treatment 2. In these trials the robot

reaches the target location around 10-15 seconds after beginning to move. Once it reaches

the location the robot moves about the target for a period of 20 to 60 seconds before

finally coming to rest within the targets bounds.

Soon after the robot gets to the location and continues to move the users begin to

mark errors. The users continue to mark errors until the robot finally stops moving and

comes to rest at the target location. It is understandable that they mark many more errors

during this mission. The robot spent upwards of a minute making small movements

inside of the marked location trying to bring the error within the allowable value set

by the parameter. However, as with the other treatment, a large number of the errors

were marked as the wrong type. This is problematic because the modified parameter’s

threshold predicate comparison does not flop until the robot has come to rest. This means

that all of the type I error markings will not have the predicate present since it is yet to

flop. This highlights the importance disambiguating the types of errors for the user or

developing a smarter way to determine which scores to report to the user once they have

marked a location.

The ranking graphs for the treatment look exactly as expected. The threshold does

not appear in type I errors until it flops after the robot has stopped. In each of type II

rank graphs the modified parameter’s predicate threshold comparison shows up at the

bottom of the rank score at the start of the mission. Through time as the robot gets closer

and closer to the goal, the score climbs up the rank graph. Finally, once the user begins

to mark issues the mutated parameter is at the top of the score graph.
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(a) (b)

Figure 6.10: The position of the robot, wheel commands, and the ranking score of the
modified threshold predicate comparison during treatment 2 (Type II Error)



124

6.4.5.3 Treatment 3 - Source Code Error

The information about trials for treatment 3 is shown in Figure 6.11. As shown the robot

did not move far due to the error introduced in the code. Users again waited a period of

time before beginning to mark the errors.

Examining the rank graphs shows that 4 predicates flopped over once the robot started

moving and that many more starting to be compared during the initial movement. It also

shows that there appear to be two separate groups of thresholds that appear at different

times in the trace.

6.4.5.4 Treatment 4 - Clean

Figure 6.12 shows the wheel commands and ranking scores of the robot during the two

trials with no change to the system. There was an issue with the amcl data so no position

estimates are provided. However, the movement of the robot can be seen through the

wheel commands. The robot moves from the starting location to the correct location and

stops once it reaches the target. The user marked very few errors during the execution,

and this provides evidence that users will not mark errors for the robot system as often

when under normal operation. In the ranking graphs you can see the number of flopping

thresholds increase as the robot continues on its mission.

6.4.6 Summary

The navigation trials provided further evidence to support the answers to research

questions found in the water sampling trials and helped to further clarify other questions.

The trials found that a number of threshold predicate comparisons are found during the

static analysis of the system that do not appear in the execution traces of the system. In

these trials over half of the locations which contained threshold predicate comparisons in
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(a) (b)

Figure 6.11: The position of the robot, wheel commands, and the ranking score of the
modified threshold predicate comparison during treatment 3 (Source Code Error)
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(a) (b)

Figure 6.12: The position of the robot, wheel commands, and the ranking score of the
modified threshold predicate comparison during the treatment 4 (No Error)

the static analysis did not appear in the execution trace. This is similar to the number

that where not executed in the water sampling trials. This demonstrates the ability of the

approach to eliminate a large number of possible problem parameters before any other

analysis is needed.

The trials provided more evidence that the comparisons are common throughout the

operation of a robot system. On average there were 126.9 threshold predicate comparisons

occurring per second during the trials. This is about half that of the water sampler, but

still a large number of threshold predicate comparisons per second. The trials also further

supported that different threshold predicate comparisons appear in different portions

of the mission. Some appear in every second of the mission while a few only appear in

less than 10% of the mission. The bursty nature of some thresholds is seen in the type II



127

error ranking graphs of the runtime trials. A group of thresholds appear at specific points

in the graph, but then drop off quickly after appearing. The different times at which

different thresholds appear may provide a way to group thresholds with high-level robot

activity. If the user can watch the system during normal operation and group the behavior

current it may be possible to match threshold predicate comparisons characteristics with

runtime actions.

The trials with the navigation system further support our assumption that “flops” are

not common during system execution. Only 0.4% of the threshold predicate comparisons

resulted in flops. Additionally 75% of the flops were caused by one parameter. The low

number of flops occurring compared to all comparisons still further backs our evidence

that a flop is an important occurrence in the execution of a robot system. This backs

our approach in determining when a flop occurs or when one is about to occur is very

important for diagnosing configuration errors that manifest themselves during runtime.

The navigation treatments and trials offered more insight into how users marked

runtime errors in the system. Users did not have any problem marking errors once they

occurred. The number of errors marked was double the amount marked in the water

sampling trials. This can be attributed to one trial staying in the error state of moving

around the target location for over 60 seconds. The users marked 38 errors on this trial

alone. Users did however show the same time gap between when the error occurred and

when they marked the error. There is a delay of between 5 and 10 seconds in all of the

trials. While the delay does not have large impact on type II error calculation, the delay

may cause issues with computing results for type I errors.

Similar to the water sampling trials, the users had issues identifying the type of an

error that was occurring during execution. The ambiguity between the two error types

is clear in these trials. The users provided evidence that the robot stopping early could

be interpreted as both a type I error (the robot stopped when it shouldn’t) and a type II



128

error (the robot is not moving when it should be). They also mentioned confusion when

the robot was moving about the final location. This provides evidence that selecting the

correct error can be hard to choose. The problem may be further compounded when

trying to mark the error quickly as the robot is executing.

For the approach to work the user must identify the correct error type so that the

correct calculation and results are presented. A number of things can be done to help

alleviate the issues. First, we can redefine the description of the error types to help the

user better understand how to mark them in the system. This may help a little, but there

will still be issues as the errors can be very ambiguous as shown in the navigation trials.

Logically it seems that type II errors may be reported multiple times by the user. This

means that we may be able to ask the user if the error is related to the previous error, and

they say it is there may be a higher likelihood of the error arising from a type II error.

Another important ability is the ability of the approach to capture all information and

revisit errors at a later point in time. If they do not find the issue they can replay the

mission and mark the other type of error to get a different set of suggestions. Finally, it

may be best to simply allow the user to mark an error and report both sets of results to

the user and allow the to make the decision based on all of the information provided to

them. Work could also be done to provide a combined score that represents the most

likely problem threshold.

The runtime analysis also did a reasonable job identifying the problematic threshold.

In the trials in treatment 1 the modified parameter appeared in the top two or three

positions of the rank graph. The system performed outstanding identifying the problem

with treatment 2. When the comparisons began the threshold was at the bottom of

the rank graphs. As the robot approached the goal, the modified threshold predicate

comparison quickly approached the top of the rank graph. The threshold predicate

comparison was in the top two suggested threshold predicate comparisons once the users
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began to mark the errors. This provides evidence that the system can determine which

threshold predicate comparisons are “close” to “flopping” and can also identify the most

recently flopped thresholds.

6.5 Image Capture Experiment

6.5.1 Overview

The final system we examined was a UAV equipped with a camera that would search for a

smiling person and capture their photo. The system contains around 25,800 lines of code

in total. The static analysis identified 61 threshold predicate comparisons. 32 parameters

are read and used to populate the thresholds in the predicates. The predicate comparisons

are spread across 12 different files. The execution is spread across multiple ROS nodes.

These nodes deal with camera image processing, UAV control, and communication.

Figure 6.13 contains an image of the UAV and camera used for the trials in this section.

Figure 6.13: The UAV and camera used
during the Image Capture experiments

A trial begins with the UAV on the

ground and off. The motors start and the

UAV takes off and flies to a predetermined

point and orientation. The UAV rotates

and place and performs image processing

on the image stream from the camera lo-

cated on the UAV. Once the UAV identifies

a face it remains at the same orientation

attempts to center the face in the image

frame. Once the UAV has the person cen-

tered in the image it snaps a photo and
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lands at a predetermined location. If at any point in time it looses track of the person, the

UAV returns to circling in place.

We made the following three treatments to the system:

1. Type I Error: configuration parameter face detection limit. This parameter controls

how many times the face must be seen in the images before the drone captures an

image. This parameter is setup in the main launch file. With too low of a value,

a face found in the noise of the image could trigger the image capture stop the

mission before the person is found and captured. We will lower this threshold to

cause a type I error.

2. Type II Error: configuration parameter min coverage limit. This parameter deter-

mines how much of the image the identified face must cover before the image is

saved. If the limit is not exceeded the UAV will remain in the same position without

taking the picture for a long period of time. We will raise the threshold to create a

type II error.

3. Source Code Error: smile detector node members.cpp Line 114. We will modify the

range comparisons this line to result in the system only continuing to take a photo

when the image is over the max coverage limit. The error produced here emulates

a type II error.

6.5.2 Threshold Statistics RQ1

Information on the runtime characteristics of threshold predicate comparisons grouped

by the parameter that loaded the value into the system can be found in Table 6.12. The

columns are defined in Subsection 6.3.1. The runtime analysis observed 36 (59.0%) out of

the 61 predicate locations identified in the static analysis. The used predicates represented
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32 (59.3%) unique parameters out of the possible 41 found used to populate the thresholds

used in the instrumented predicates. Each of the parameters was used in between one or

three threshold predicate locations in the source code. A higher proportion of threshold

predicate comparisons appear in the static analysis and in the system trace compared two

the other systems. However, still over 40% of the threshold predicate comparisons found

in the static analysis are not found in the system execution trace. This shows that not all

of the code involved in a system is used and also shows that the approach can be used

to reduce the problem search space without the requirement to perform other types of

analysis on the system or runtime data.

Table 6.12: Runtime parameter statistics

Locations Comparisons Frequency Runtime % Flops True % False %
collapse deadband 1 17833 28.37 95 0 100 0

enable baro ctrl mode 2 35633 56.69 95 0 100 0

enable derv fir filter 1 17439 27.74 95 0 100 0

enable pitch ctrl 1 17831 28.37 95 0 0 100

enable roll ctrl 2 17835 28.37 96 0 0 100

enable thrust ctrl 1 17833 28.37 95 0 0 100

enable thrust iir filter 1 17833 28.37 95 0 100 0

enable yaw ctrl 2 17836 28.38 96 0 0 100

face detection threshold 2 6700 10.66 59 23 58.55 41.45

gps enable mode 1 17833 28.37 95 0 0 100

max coverage limit 8 7188 11.44 29 0 66.44 33.56

max pkt size 1 64884 103.22 99 12 99.99 0.01

max selfie count 4 16554 26.34 72 673 81.71 18.29

min coverage limit 4 4707 7.49 29 57 47.27 52.73

min displacement 1 6183 9.84 99 81 63.72 36.28

min land height 1 132 0.21 2 5 96.21 3.79

min z displacement 1 2243 3.57 41 8 7.09 92.91

selfie control rate 1 5 0.01 0 0 100 0

waypose idle timeout 1 617 0.98 98 18 90.28 9.72

mean 1.89 15111.53 24.04 72.89 46.16 58.49 41.51

median 1 17439 27.74 95 0 66.44 33.56

std 1.76 15106.26 24.03 34.87 153.36 43 43

minimum 1 5 0.01 0 0 0 0

maximum 8 64884 103.22 99 673 100 100

sum 36 287119 456.78 1385 877 1111.27 788.73

The combined six observed missions had a runtime of around 628 seconds. In total

the instrumented code logged 287119 executions of the predicates instrumented during



132

the static analysis of the system’s source code. This amounts to around 456 threshold

comparisons per second. The number of comparisons per second for the parameters

ranges from less than 0.01 per second to over 103 per second for the most frequent.

The runtime percentage distribution is shown in Figure 6.14. The definition and

computation of runtime percentage is described in subsection 6.3.1. The runtime charac-

teristics of this system are slightly different than those of the other two. There are not

three very distinct groups as in the other two systems. Two groups are very well defined,

the very frequent and the very rare. 12 parameters appear in over 90 % of the runtime.

This is a higher proportion of parameters occurring very often compared to the other

two systems. The other five parameters appear in between 30 and 80% of the runtime

percentage, but do not have as strong of a grouping as the middle frequency parameters

of the other two systems. There is still a strong grouping of parameters that occur very

often and those that appear very infrequently.

We did not observe any evidence of the system experiencing problems handling the

increased overhead of the threshold predicate comparison monitoring. To determine how

many additional resources the messages from the threshold predicate comparisons we

examined the percentage of messages that came from the instrumentation. In total 16.1%

of the messages were from instrumented threshold predicate comparisons. The overhead

is not completely unreasonable, but the approach does consume some resources.

This subsection has shown that many of the findings that appear in the two other

systems also appear in the image capture trials. Threshold predicate comparisons are

very common throughout the execution of a mission by the robot system. However,

different sources of the thresholds within the comparisons have different rates of occur-

rence throughout the systems execution. In this trial the very common and very rare

comparisons frequency are again obvious. However there is not a defined grouping in

the middle frequencies. Again many of the threshold predicate comparisons that are
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identified in the static analysis do not appear in the system execution trace.

Figure 6.14: Percentage of total seconds in which a parameter
is used in a predicate

The trials for this sys-

tem differed from the

other two systems in a

few ways. First, the trials

had the highest amount

of threshold predicate

comparisons in the exe-

cution trace and the high-

est frequency of thresh-

old predicate compar-

isons. There are around

100 more per second in

these trials than the wa-

ter sampler and over 3.6

times the amount of comparisons compared to the navigation trials. These trials are

also similar to the navigation trials, in the number of locations a parameter is used in a

threshold predicate comparison. In these trials they were commonly used in 2 or even

3 different locations. However, the mapping of parameters to locations is still relatively

small, and still allows the pinpointing of a problematic parameter by finding the threshold

predicate comparison in which it was used.

6.5.3 Flops RQ2

In the 8 trials there are a total of 877 flops. This corresponds to 0.31% of the threshold

predicate comparisons in the execution trace. This is a very small percentage and shows
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further evidence that flops are a rare occurrence. This value is similar to that of the flop

percentage of the navigation system trials. One parameter is responsible for 76.7% of the

flops in the system execution trace. This again provides evidence that some parameters

do flop more often than other parameters. Similar to the other systems 11 (57%) of the

parameters are used in predicates that never change values. The results from the image

capture trials offer more evidence to that a flop is an important event during the execution

of a robot system.

6.5.4 User Marks RQ3

Table 6.15 displays information about user marks for the image capture trials. Users

marked a total of 39 type I errors and 78 type II errors. This is similar to the amount

marked in the navigation system. The mean number of marks per trial across all users

is 14.6. The maximum number of marks in one trial is 29 and the minimum number of

marks in one trial is 0. One user only marked 2 errors in one trial and did not mark any

other errors. All of the other users marked upwards of 20 errors.

As with the other systems type II or type II like errors caused many more marks than

the trials involving type I errors. The marks in these trials continue to show that different

users will mark different errors at different rates across different systems. If the robot

system continues to struggle to complete the task the users will mark many errors. This

may also help to identify the true difference between type I and type II errors. The larger

number of marks around a type II error show that the robot is stalled if the user marks

many times in a row. This may help disambiguate which type of error the user is truly

marking.

In the trials users marked fewer type I errors (39) than type II errors (78). These trials

provide evidence that the user may not be able to successfully determine which type of
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error is occurring during operation, but they can determine that an error is occurring.

However, the large number of markings for the trials may help to provide evidence when

the system is encountering a type II error. Further work needs to be done to help users

tell the difference between these two types of errors.

Table 6.13 displays the confusion matrix for treatments 1 and 2. From this matrix, it

is very easy to see the confusion between type I and type II errors by the users in the

trials. Again the users marked far more type II errors during the treatment with type I

errors. However, in this case it may be because the type II error was not as obvious as

other systems. There was a near equal marking of type I and type II errors in the second

treatment. These results again show that users struggle to correctly identify type I and

type II errors and that something must be done to allow the system to better handle

misidentified errors or to allow users to better mark the error types.

Table 6.13: Confusion Matrix for Type I and Type I Errors and Treatments

Type I Marks Type II Marks
Treatment Type I 2 15

Treatment Type II 26 25

As with the other two sets of trials users marked errors in the code treatment. This

shows that users will mark errors that occur due to code faults as well as configuration

errors. While this may not be an issue it may lead to some confusion when changing

parameters does not cause a change in the error behavior of the robot.

Finally, the users marked 0 errors in one of the clean trials and only 7 errors in the

other clean trial. These are the two smallest mark totals for any trial. This provides

evidence that marks are not as common during clean trials as other trials.

Table 6.14 displays the average delay in marking an error after the changed threshold

has flopped or should have flopped. In this system there is a delay between 1.7 and 25

seconds before marking the error. Different from the other systems there is not the clear
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difference between marking times in the two experiments. There is still a large mean time

from the start of the error to marking the issue in the systems. As stated previously, the

delay is not an issue during type II errors, but may cause problems after a Type I error

has occurred.

Table 6.14: Delays from error to the first mark by the users.

User 1 User 2 User 3 User 4 Mean
Treatment 1 Trial 1 11.69 25.07 11.45 21.63 17.46

Treatment 1 Trial 2 3.12 3.78 0.96 2.62

Treatment 2 Trial 1 6.99 12.37 12.07 10.47

Treatment 2 Trial 2 1.71 9.97 9.91 7.19

The results of the users marking errors during the image capture trials demonstrate

that users can identify problems in the robot system. It also provides further evidence

that there is confusion between the two types of errors. However, there continues to

be evidence that type II errors will be marked much more frequently in the system in

comparison to type I errors even if they are incorrectly marked by the user.

Table 6.15: User marks during the image capture trials

User 1 User 2 User 3 User 4 Total
Type I Type II Type I Type II Type I Type II Type I Type II Type I Type II

Treatment 1 Trial 1 0 3 0 1 0 2 0 2 0 8

Treatment 1 Trial 2 0 3 0 2 0 0 2 2 2 7

Treatment 2 Trial 1 6 1 3 1 0 0 10 1 19 3

Treatment 2 Trial 2 2 7 3 3 0 0 2 12 7 22

Treatment 3 Trial 1 3 5 1 3 0 0 2 11 6 19

Treatment 3 Trial 2 0 6 0 2 0 0 0 9 0 17

Treatment 4 Trial 1 0 0 0 0 0 0 0 0 0 0

Treatment 4 Trial 2 2 1 1 1 0 0 2 0 5 2

mean 1.62 3.25 1 1.62 0 0.25 2.25 4.62 4.88 9.75

median 1 3 0.50 1.50 0 0 2 2 3.50 7.50

std 2.13 2.55 1.31 1.06 0 0.71 3.28 5.13 6.38 8.45

minimum 0 0 0 0 0 0 0 0 0 0

maximum 6 7 3 3 0 2 10 12 19 22

sum 13 26 8 13 0 2 18 37 39 78
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6.5.5 Runtime Analysis Results RQ4

Table 6.16 displays the average scores given to the marked errors by the analysis in the

two treatments with modified parameters. No type I error marks occurred in the first

trial because the error situation did not arise during the execution of the system. The

threshold appeared in the upper part of the ranks in the Type II error reports. In the

second trial again the type I marks are occur in parts of the system where the threshold

has flopped, but other parts of the system prevented the system from continuing on and

displaying the error. These two missions did not perform as well as expected, but the

previous trial sets show that the system is able to identify the most recently flopped

predicates and can assist users in determining when an error arose.

The second treatment again shows how the approach is able to identify threshold

predicate comparisons that are about to “flop”. In the first trial the marks occur when

the UAV modified parameter is in the top four threshold predicate comparisons. It has a

high-ranking score on the error marks. In the second mission the predicate is in the top

of the rankings until it drops from comparisons and the mission is aborted after the robot

fails to capture the image. Many of the marks came after comparisons to the modified

parameter end so the score for these missions is lower than that of the others.

Table 6.16: Average score produced on marked errors and average ranking

Type I Rank Type I Score Type II Rank Type II Score
Treatment 1 Trial 1 0.00 9999.00 0.80 0.74

Treatment 1 Trial 2 0.98 36.68 0.88 0.50

Treatment 2 Trial 1 0.20 7895.84 0.96 0.52

Treatment 2 Trial 2 0.00 9999.90 0.15 8181.87

6.5.6 Trial Summaries

More details on the individual trials will be presented in the following subsections

grouped by trial. The results will help to further clarify the research questions. In the
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following subsections we present graphics for each individual trial. The first graphics

contain the X, Y, Z, and yaw position of the UAV. The UAV should identify the person

and capture the image when the yaw is at a value of around 2.2. After capturing the

image one can see the UAV landing by the decrease in height.

The other figure displayed for the missions are the rank scores through time. They

show the rank scores of the type I and type II errors for all of the threshold predicate

comparisons in the mission. In these graphics the red line represents the modified

threshold in the trial if there is a modification. All of the other lines are color-coded

and each represent a different threshold predicate comparison within the code. If the

threshold predicate comparison had a score of 99999 it was given a rank score of 0. More

thresholds were present at points in time than appeared within the graphs due to this

zeroing of scores.

User marks are indicated in both sides of the figure using vertical lines with x marks

on them. In the figures the blue marks represent a user marked a type I error and green

marks represent type II errors as marked by the users.

6.5.6.1 Treatment 1 - Type I Error

Figure 6.15 displays location and threshold values for the two trials with the first treatment.

In both trials the UAV took off and circled and found the target. The flopping of the

threshold did not cause an immediate error and the UAV did not change behavior as it

did in previous runs with the modified thresholds. However, the users did mark errors

after the UAV obtained a yaw pointing at the person and maintained that position. This

is obvious in the graphs of the yaw position. The lack of concrete type I errors is not

an issue as the previous trial sets have shown that the approach can identify recently

flopped thresholds. The results from the first treatment also show that the user will mark

errors that are perceived after a short wait of the robot maintaining the same position.
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They mark many type II errors after the UAV attains the yaw pointing to the position of

the person.

As in previous trial sets both of the trials show a large increase in the number of

threshold predicate comparisons present in the graph during what appear to be key

portions of the mission. The large increase in the type II graphs appear to correspond

to the moment in which person first comes into view of the UAV’s camera. This shows

that there is a lot of activity in the code while it tries to lock in on the person’s location.

There is also a second increase in present threshold predicate comparisons when the

UAV is landing. There are also more threshold predicate comparisons in the type I

graph showing that more have flopped when the mission is completed. These graphics

bolster the argument that there are more active threshold predicate comparisons during

transitional or active parts of the mission.

6.5.6.2 Treatment 2 - Type II Error

Figure 6.16 displays location and threshold values for the two trials with the second

treatment. In the first mission the UAV identified the person and tried to meet the

modified minimum coverage threshold and failed. It then rotated twice before it identified

the person again and finally captured the image. Users began marking errors immediately

after the UAV paused when it identified the person and did not take a picture and land.

There is another grouping of markings when the UAV was directly pointed at the person

on the second rotation and a final group of markings when the UAV landed. This

provides evidence that the users were able to identify that errors were occurring when

the UAV should have been capturing the image. However, nearly all of the markings are

of type I errors, which provides further evidence that users struggle to correctly identify

the underlying type of error that is occurring in the system. The marking of errors while

the UAV is landing is also an interesting feature. It’s almost as if the users were used to
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Figure 6.15: The position of the UAV and the ranking score of the modified threshold
predicate comparison during treatment 1 (Type I Error)

the UAV circling at that point and did not expect the mission to complete at that point in

time.

In the second trial for this treatment the UAV took off and began searching. Once it

identified the user, the UAV tried to meet the minimum threshold by changing X and Y

location of the UAV. However, unlike the first trial, the UAV became stuck in the state after

it did not meet the threshold after some time. After 2 minutes of flight the mission was

aborted. What is most interesting about this mission is that the code stopped executing

many of the threshold predicate comparisons after failing to compete the image capture

the first time. This may indicate that the robot system entered an error state or that

there is an error in the logic of the mission. However, while it was comparing values

the modified threshold predicate comparison was in the top 4 of the values in the rank
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Figure 6.16: The position of the UAV and the ranking score of the modified threshold
predicate comparison during treatment 2 (Type II Error)

graphs. As with previous trials most of the marks came after the robot was “stuck” for 10

or more seconds. The users continued to mark errors until the mission was aborted. Also

interesting is the fact that the users marked the opposite error type in this mission. They

marked 3 times as many type II errors. This may be because the UAV was stationary

while trying to meet the threshold and in the stuck state. This provides evidence that the

type of error marked has a lot to do with the motion that the robot system is performing

and not the underlying error type.

6.5.6.3 Treatment 3 - Source Code Error

Figure 6.17 displays location and threshold values for the two trials with the source code

error treatment. In both cases the UAV began the search, identified the person, and then
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Figure 6.17: The position of the UAV and the ranking score of the threshold predicate
comparisons during treatment 3 (Source Code Error)

become stuck in a state that did not continue on the mission. Eventually the mission was

aborted after around 100 seconds. The characteristics of user markings during these two

missions are very similar to other missions where the robot becomes stuck. After a delay

of around, 10 seconds the user begin marking many errors and continue to do so until the

mission is aborted. The rank graphs again show something very similar to all of the other

trials. The thresholds are active while the UAV is actively trying to search for the person.

As with one of the trials in treatment 2 the drone enters a state where it stops comparing

values to thresholds after it fails to meet the threshold and capture the image. The results

of these trials again show that users will mark errors in the source code as type I and

type II errors and that there are active portions of threshold when the system is running.
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(a) (b)

Figure 6.18: The position of the UAV and the ranking score of the threshold predicate
comparisons during treatment 4 (No Error)

6.5.6.4 Treatment 4 - Clean

Figure 6.18 displays location and threshold values for the two trials without any modifica-

tion. In both trials the UAV took off, found the person, and captured the image within 30

seconds. In the first trial no marks were recorded. Interestingly in the second trial, marks

did get recorded. This is one of the few times that marks appeared before 10 seconds

passed after the UAV reached the target location. The exact reasoning of these marks is

not known for certain. However, there were the fewest marks of any trial for the image

capture trial. This provides evidence that users do not mark correctly operating systems

as often as they would work errors in a system with configuration errors, if they mark

them at all.
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6.5.7 Summary

The image capture trials provided further evidence to support the answers to research

questions for the water sampling and navigation trials and helped to further clarify other

questions. A consistent finding between all of the trials is that a number of threshold

predicate comparisons found in the source code do not appear in the system execution

trace. The number of threshold predicate comparisons that did not appear in the execution

trace is slightly lower in this instance, but it was still over 40%. This demonstrates the

ability of the approach to eliminate a large number of possible problem parameters,

before the need of any type of additional analysis.

The image capture trials provide more evidence to show that threshold predicate

comparisons are frequent during operation. This experiment had the highest number of

predicate comparisons per second at 456. The trials also further supported that different

threshold predicate comparisons appear at different times and different rates in different

portions of the mission. A large portion of them appear over 90% of the time in image

capture experiment and two of them appear less than 10% of the time. The bursty nature

of predicate appearing during important parts of the mission can be seen in the type II

ranking graphs for all of the trials.

Flops were extremely rare throughout all of the systems execution in the image capture

trials. Only 0.31% of the threshold predicate comparisons resulted in flops. This provides

further evidence to show that a flop is an important occurrence that can help users

identify why the robot system changed behavior or did not change behavior.

As with previous trial sets users did not have problems marking errors when they

occurred, but they did have problems marking the correct type of error. Users marked

both types of errors in all trials. Hopefully, more familiarity with a system will help the

users identify the types of errors more accurately. Otherwise, steps must be taken to help
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users identify the correct type of error or allow the system to determine which error type

to use for the ranking score calculation. For the two trials on the clean treatment, users

marked 0 errors and the fewest number of errors respectively.

The runtime analysis also did a reasonable job identifying the problematic threshold

when it was the cause of the error and the correct type of error was marked. The system

correctly identifies the most recently flopped threshold. When the threshold has not

been met you can see the modified threshold rise towards the top as it gets past the

point where it should have flopped. This provides evidence that the system can help

to determine which threshold predicate comparisons are close to flopping and can also

identify the most recently flopped thresholds.

6.6 Summary

We performed experiments with three robot systems to answer a number of research

questions on the runtime characteristics of threshold predicate comparisons, the user iden-

tification of runtime errors, and the success of the system on identifying the problematic

threshold predicate comparisons.

We found that threshold predicate comparisons occur very frequently during the

execution of a robot system. The number of threshold predicate comparisons per second

present in the systems ranged between 126 and 456. We found that between 40 and 60

percent of the threshold predicate comparisons identified in the static analysis did not

appear in the execution trace. This allows for a simple filtering of possible problematic

thresholds. We also found evidence that some parameters are used throughout the whole

execution of the system and others only appear in small portions of the execution. This

may allow for a more fine-grained approach to determining problematic thresholds in

the future.
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We also found evidence that “flops” are rare during system execution. Flops were

found to happen in between 0.03-0.4% of the time on threshold predicate comparisons

in the systems. This provides evidence that our assumption that “flops” are important

events that signal a change in the behavior of the robot system is correct. It also provides

evidence that being able to identify flops or near flops is of use to a user trying to discover

configuration errors in the robot system.

Users did not have a problem identifying when an error occurs and they mark them

many times during the course of execution. They also do not mark error free trials as

often as other trials as evidenced in the clean trials. The three systems’ trials provide

evidence that the users are not as accurate in identifying the types of errors that occur

during system operation, as we would hope. There is major confusion between type I

and type II errors. They often marked the incorrect type during the trials for the opposite

type. As users become more familiar with the system that they are running we assume

that they would become more familiar with the types of errors present. If they do not

improve at marking the correct error type something must be done to allow the system to

accommodate incorrect error markings or help the user correctly identify errors.

There is evidence that there is a delay between when the error occurs in the running

system and the user first marks an error. Type II errors took around twice as long to

mark as Type I errors as well. Type II calculations should not be affected by this delay.

The threshold will still be close to flopping and appear in the top of the rankings. Type I

errors may be affected if the system continues on with another task and other threshold

predicate comparisons flop.

Finally, in the approach did a reasonable job of identifying which thresholds were the

causes of marked errors. The system can reasonably identify the most recently “flopped”

threshold predicate comparison on type I errors. It also did a reasonable job identifying

which thresholds are about to flop when the robot should be continuing on with the
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mission. When the users correctly marked the error type the threshold was in the top

portion of the rankings.
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Chapter 7

Conclusions

The validation and selection of proper configuration on large systems has been recognized

as a difficult task in our community. Robotic systems face many of the same issues. The

systems we examined in this work showed the many possible configuration options are

available across the spectrum of robotic systems. Poorly set configuration options often

cause the robot system to behave in a manner that does not complete the desired mission.

Co-robot systems offer the ability for the user of the system to integrate their capabilities

and with the robots ability. This work aims to use that ability to identify errors and

leverage a static analysis and instrumentation technique to determine which configuration

parameter may be causing troublesome in the system. We have developed an approach

the user to identify problems and offer suggestions on which parameters to change. Our

work expands prevous software engineering work on large configuration spaces into

co-robotic systems. It appears to be one of the first works examining and instrumenting

configuration options within robot systems and aims to help users diagnose and solve

configuration problems.

In this thesis, we developed two static analysis tools for Python and C++ ROS nodes.

The static analysis tools are able to identify threshold predicate comparisons within
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the nodes. A threshold predicate comparison is defined as a predicate in a branching

statement on which an exposing statement has a control and or data dependency. This

means that the branching statement determines the execution or data present in a call

that exposes the execution of part of the robot system to the rest of the system. We

also developed methods to take the data produced by instrumented threshold predicate

comparisons and offer recommendations on which configuration parameters to change

when a user marks and error. We validated the static analysis by manually examining the

performance of the analysis on 20 nodes and with suite of 70 test nodes.

After the development and validation of the approach we examined threshold predi-

cate comparisons on over 100 open source robot systems. We found that one third of the

packages contained threshold predicate comparisons and on average each of the packages

contained 5 threshold predicate comparisons. The comparisons are often present in only

a small number of files in each repository.

Finally, we used our analysis on three different robotic systems to determine the

runtime characteristics of threshold predicate comparisons, how often the values in a

particular predicate comparisons flopped, how users marked errors in a running system,

and how well the approach could suggest the correct fix for a threshold comparison. We

found that threshold predicate comparisons occur very frequently while the system is in

operation, but many of the values do not occur in the system trace. We also found that

flops are relatively rare while the system is in operation that indicates that a flop is an

important event. Users are able to mark and identify errors, but are not able to easily

determine the type of error. This may cause problems for the suggestion and determining

of the predicate that is error. There was also a delay between when the error occured in

running system code and the users marking their first error. Finally, when the correct

error was chosen the system did a reasonable job in highlighting which parameter was

the cause of the error.
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There are a few key limitations to our work. First, it relies on the system setting up

configuration options through the standard interface. If values are defined or read into

the system in a different way, they will not be captured by our analysis. Our approach

also relies on the system containing a state machine containing the threshold predicate

comparisons that has a behavior that is recognizable to a system observer. The system

must also be comprised of different nodes communicating to one another, will be no

threshold predicate comparisons to identify. If they are not present the user will not be

able to mark errors. Finally, the largest limitation of our system is that it depends on the

user marking the correct type of error to produce good score estimates.

In the future work can be done to help the user correctly identify the type of error that

is occurring or allow the system to work on only the marking of an error and not require

the correct error type. We also want to incorporate other source of setup parameters

beside values loaded from the ROS parameter server. These other sources can include

integer constants and header constants within the source code. Finally, more can be

done to characterize how a threshold behaves in the system and if we can track different

groupings of threshold predicate comparisons during execution to determine how the

system is performing.
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Appendix A

C++ Considerations

The C++ version of the analysis and instrumentation requires a custom built version of

LLVM [85] version 3.7.0 and clang [93] version 3.7.0. More specifically it uses commit

52386ce of LLVM and commit ff7b692 of the tools github mirror of the tools. It also

requires a version of the gold linker that supports link time plugins to be executed [87].

Each portion of the static analysis and instrumentation is broken into a series of LLVM

Module level passes. Each pass works to identify LLVM instructions that carry out specific

operations and connect the instructions through analysis of the program dependencies.

The separation of the processing allows the slicing algorithm to be expanded easily to

account for different sources of configuration variables, different exposing statements,

and different instrumentation methods. Any of the main features can be changed by

simply adding, removing or extending the passes to incorporate the new desired features.

The C++ implementation of the analysis consists of 5850 lines of C++ code and 1300

lines of header files. Around 4000 lines of the C++ code and 900 lines of the header code

comes from an open source library [94] used to add JSON functionality to report the

static information.
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A.1 LLVM and Clang

LLVM [85] and clang [93] offer a very nice set of tools to create analysis and modifications

tools for programs written in C++. LLVM implements a SSA intermediate language that

allows easy implementation of optimizations and analysis on program dependencies.

Clang offers a drop in replacement for the gcc compiler and it serves as a front end for

the LLVM system.

A.2 Link Time Analysis

The implementation of a ROS node in C++ is often spread across multiple files and our

analysis must examine variables that may be shared across these files. For this reason the

analysis and instrumentation must be run after the files have been linked and just before

the executable is created. LLVM allows link time optimizations using the gold linker from

GNU Binutils [87]. The passes for the analysis are added to the Link Time Optimizations

that LLVM performs. After building LLVM link time optimizations can than be enabled

by passing the -flto flag to both the compiler and linker when building the ROS nodes.

A.3 Integration with the ROS Catkin Build System

ROS uses the catkin [95] build system to build and install ROS nodes and packages. It

makes building, linking and using any ROS system straightforward, but complicates

matters when trying to pass special flags or change the compiler. To change the compiler

we can pass the “-DCMAKE CXX COMPILER=” flag on the command line with the path

to the customized clang++ compiler. In addition to changing the compiler we must also

enable the link time optimizations of our custom compiler. To do this for each executable

in the CMakeLists.txt file we add or create properties using the set target properties
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command. We add to the “COMPILE FLAGS” the “-g -flto” to enable debugging symbols

and link time optimizations. To the “LINK FLAGS” we add “-flto” to ensure that ld-

gold is used and link time optimizations are performed and our custom passes are

ran during compilation. This modification of build files can be automated using the

modify cmakelists.py script created for this work. The script automatically reads and

modifies build files for the ROS package to be built using the llvm and clang compilers

with the passes created for our approach.

A.4 Passes

The analysis and instrumentation of C++ ROS nodes is split into nine separate LLVM

Module passes. Each of these passes performs a different part of the analysis and is able

to share data with other passes in the analysis. A quick overview of each pass can be

found in Table A.1. Additionally, the analysis makes use of two LLVM analysis passes.

The LoopInfoWrapperPass allows the analysis to easily find out if an instruction or basic

block is inside of one or more loop constructs. The DominatorTreeWrapperPass allows the

analysis to determine information on which BasicBlocks in the program being analyzed

dominate other basic blocks. Information about each of the passes implemented can be

found in the following sections.

A.5 SimpleCallGraph Pass

This pass creates a mapping from every function defined in the module to all instructions

in the module where it is called or invoked. This creates a needed portion of data for

the program slice and predicate identification. The pass performs two steps to compute

the list of calling locations. The pass creates a list of all functions in the module and
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Table A.1: Brief Description of each pass implemented in the analysis.

Name Description Lines of Code
SimpleCallGraph Pass Creates a call graph for usage in

slice creation and predicate iden-
tification.

57

ClassObjectAccess Pass Finds all element pointers that
are used in the module and de-
termines where they are accessed.
Finds class variable access for
data flow in slice creation and
configuration variable analysis.

104

IfStatements Pass Finds which if statements contain
each basic block in the module.

156

ExternCallFinder Pass Finds all exposing statement in
the module.

60

ParamCallFinder Pass Finds all configuration variables
in the module.

75

BackwardPropagate Pass Implements the procedure to find
slices based on the criterion of
exposing statements and deter-
mine which predicates the expos-
ing statement has a data and con-
trol dependency on.

347

ParamUsageFinder Pass Find the intersection of configu-
ration variables found in Param-
CallFinder Pass and predicates
identified in the BackwardsProp-
agate Pass.

198

GatherResults Pass Gather results to determine
which predicates are to be instru-
mented.

64

InstrumentBranches Pass Instrument marked predicates to
report values at runtime.

398

gives them an empty list of calling locations. Next, the pass examines all instructions

and if the instruction is a function call to a method within the module, the instruction

is added to the list of calling locations. The determination of what function is called is

done by creating a CallSite object which provides the getCalledFunction() method. This
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method returns a pointer to the function being called. This is allows the easy lookup of

the function in the map created in the first step. The information in this pass is used in

the slice and predicate identification procedure.

A.6 ClassObjectAccess Pass

This class helps to determine the location of where class variables are read from and stored

to. LLVM implements classes by creating structures in the Intermediate Representation.

The class variables within the structures are accessed using the GetElementPointerInstruc-

tion. This pass iterates through the Module and when it encounters a GetElementPoint-

erInstruction it determines which element the instruction points to. The instruction is

then saved for later usage. The variable the access is using is determined matching both

the structure and the indices used in the GetElementPointer operation.

A.7 IfStatement Pass

From our understanding, there is no method similar to LLVM’s LoopInfo.getLoopFor, which

provides the loop which contains the passed BasicBlock, for if statements. This pass

compiles this information about if statements for use in the slice creation procedure. It

builds a map for each of basic block the immediate conditional predicate that the block

is contained within. For every function in the module the pass identifies all conditional

predicates in the function. Next, for each predicate, the pass iterates through the control

flow graph and marks of the number of times each basic block is visited. It also keeps

track of the number of branch statements encountered during iteration. After iteration,

all basic blocks that are visited less than the number of branch statements are contained

within the branch statement being examined. Each instruction within the branch is then



169

marked as a child of the branch.

A.8 ExternCallFinder Pass

This pass determines the exposing statements in the compilation unit being analyzed.

This pass is a pure syntactic search through the intermediate representation. The pass

examines every statement in the module and if it is a function determines if the mangled

names match that of the specific ROS calls to publish a message or call a service. Publish

calls names begin with “ ZNK3ros9Publisher7publishIN” and services calls begin with

“ ZN3ros13ServiceClient4callIN.” Any matching function calls or invoke instructions are

saved for use for slice criterion.

A.9 ParamCallFinder Pass

This pass determines the parameter variables for use in the identification of the threshold

predicate comparison portion of the analysis. It will identify which variables have values

loaded from the standard C++ ROS API. Any call to the function “ ZNK3ros10NodeHandle5param”

is the reading of a configuration variable from the ROS parameter server. The variable

that is used to store the value from this call is stored by this pass for use in the later

portion of the analysis.

A.10 BackwardPropagate Pass

The BackwardPropagate Pass is responsible for computing the program slices and pred-

icates that an exposing statement have a data and control dependence on. The pass

implements the procedure to compute the slice and find predicates as described in
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Algorithm 3. The makes use of the SSA of LLVM to determine data dependencies at

the function level. Function level control flow dependencies are determined using data

from the IfStatementPass and LLVM’s LoopInfoWrapperPass. The pass uses the data

structures found in previous structures to determine the program dependencies needed

at each statement to run the algorithm. The program dependencies that cross functions

are determined from the data in the previously run passes.

A.11 ParamUsageFinder Pass

This pass determines which predicates use configuration variables. The pass loops

through all functions in the module and determines which GetElementPointerInstructions

used to load values match parameter storage calls found by the ParamCallFinder Pass.

Upon a match, the pass traces the data flow from the load to the branch statements.

If it reaches the predicate marked during the BackwardsAnalysis Pass without being

modified by an operation than we have a location to instrument. The branch is marked

for instrumentation and information about the predicate is saved.

A.12 GatherResults Pass

This pass simply gathers results from the passes that mark branch statements for in-

strumentation. This allows for the expansion of methods to mark branch statements

for instrumentation without the need to refactor other parts of the analysis. The pass

implements three methods that provide necessary information to the instrumentation

portion of the analysis. The get results() function provides a list of all predicate statements

in the module that are threshold predicate comparisons. get setup(Instruction*) returns

information about the setup of the configuration variable. The get distance(Instruction*) re-
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turns the distance from the branch to the identified exposing statements as determined in

Algorithm 3. The get type(Instruction*) gets the type of the configuration parameter that is

being instrumented (e.g. parameter, source constant, etc.). In the current implementation

all of the configuration variables are parameters.

A.13 InstrumentBranches Pass

The InstrumentBranches pass handles the instrumentation and output of static informa-

tion for each threshold predicate comparison. The instrumentation requires one additional

source file that contains the function shown in Listing A.1. This function provides the key,

time, comparison results, and values involved in a predicate on threshold. The ROS INFO

call will send the string with data to the ROS system with the current time and this

information can be accessed by the runtime analysis.

For each marked threshold the pass determines which part of the comparison is the

configuration variable. After determining the proper values to report, the pass inserts the

function call with runtime values. The threshold and the comparator are converted to

doubles. The results of the predicate are transformed into 1 byte integers. In addition, if

the information on the comparisons flows across BasicBlocks a PhiStatement is required to

to ensure that the instrumented code conforms to LLVM. The pass also creates a unique

UUID so the information reported at runtime can be matched with static information.

After setting up all data values the correct call is made to report the values to the outside

world and inserted directly before the branch statement

The static information is stored and exported to the file system using the JsonCpp

library [94]. This open source library easily allows the pass to save information for later

use by the runtime analysis.
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Listing A.1: Instrumetaton source file with function to publish data.

# include ” ros/ros . h”

void log one ( char * key , bool res , double c1 , double t1 , bool r1 ){

std : : s t r ings t ream ss ;

ss << key << ” , ” << re s << ” ,cmp : ” << c1 << ” , thresh : ” << t1 << ” , r es : ” << r1 ;

ROS INFO ( ” thresho ld in format ion :%s ” , ss . s t r ( ) . c s t r ( ) ) ;

}
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Appendix B

Python Considerations

The Python implementation only requires the source code of the robotic control code

to run. It uses the standard Python library Abstract Syntax Tree module [96] to parse,

examine, and manipulate the abstract syntax tree of a Python file. In total there are

around 3000 lines of Python code in the implementation of the Python tool to find and

instrument threshold predicate comparisons. The Python portion of the analysis requires

Python 2.7 to run correctly.

The analysis requires the control flow graph and reaching definitions for all of the

methods within a Python source file. These two analyses are determined using the

algorithm found in [82]. The control flow graph and reaching definitions are only needed

at the function scope, because the three exceptions for control flow outside of the function

level can be handled during the creation of the program slices.

B.1 Exposing Statements

The Python method to determine exposing statements cannot use a simple syntactic

search for the names of methods because the python ast does not covert the common
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calls to the underlying function which is used by the publish calls like the C++ version

of the approach uses. It requires identifying which variables are created using functions

which create ROS publishers and service objects using the calls “rospy.publisher” or

“rospy.ServiceProxy” constructors. Once these variables are identified, any location where

a function call to the “publish()” or “call()” methods are identified as exposing statements.

The algorithm also creates one additional source of exposing statements. When an object

is created in source code, its methods are searched to determine if any of the methods

contain an exposing statement. If they do contain an exposing statement then any call to

the method’s method is marked as an exposing statement. This was added because many

Python objects are used to encapsulate the functionality of ROS in the code we examined.

B.2 Configuration Variables

To identify configuration variables in the Python implementation the analysis finds all

locations where a call of “rospy.get param()” assign a value to a variable. All class, local,

and global variables that are set up in this way are saved as configuration variables. The

Python analysis is able to mark class, local, and global variables that contain constant

values constants, but those methods are not used in our later experiments.

B.3 Slicing and Predicate Identification

The computation of the slices and identifying predicates follows the procedure identified

in Algorithm 3. The procedure makes use of the variable information, control flow graph,

and reaching definitions computed for our analysis.
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B.4 Threshold Predicate Comparison Identification

The Python implementation follows the methods described in Subsection 3.4.5. The

analysis examines every predicate and determines if any of the variables are identified

as configuration variables or can be traced back to a configuration variable without a

statement to modify the values from the configuration variable. If the predicate meets

the criteria, it is marked for instrumentation and information about the source of the

threshold, the distance to the exposing statement, and other data output for use during

the runtime portion of the analysis.

B.5 Instrumentation

The Python implementation replaces each marked predicate with a function call that

will return the value of the original predicate. The function call reports the threshold’s

identifying key, the result, the comparison, and threshold value out to the rest of the

ROS system. This function takes as arguments a lambda function that computes the

result of the predicate, a dictionary containing the arguments for that function, keys and

values to be reported, and other necessary pieces of data to that need to be processed.

Lambda functions are used to prevent the calling of functions that may have side effects

more than once. The predicate is replaced with a call to the function and the predicate is

substituted in the ast to be that of the lambda function. Upon being called the reporting

function evaluates any necessary sub expressions, evaluates the lambda function to get the

result of the predicate, and than reports the key, result, time, threshold, and comparisons

in the predicate out to the rest of ROS. The reporting is done by using a publisher

singleton that publishes comma separated string out to the rest of the ROS system on the

“threshold information” topic which accepts string variables. More information about the
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format of runtime messages can be found in section 3.5.3
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Appendix C

Ros System Information

Table C.2: Information on the repositories analyzed.

Name C++

Files

C++

Lines of

Code

Header

Files

Header

Lines of

Code

Python

Files

Python

Lines of

Code

Source

Files

Total

Lines of

Code

airbotix ros

package

0 0 3 132 20 1747 23 1879

app man-

ager

0 0 16 2977 28 6153 44 9130

apriltags

tracking

18 1436 25 733 0 0 43 2169

ar tracking 83 13869 63 3408 0 0 146 17277

arm nav 0 0 3 308 1 25 4 333

asctec base 84 7989 25 2131 14 1018 123 11138

asctec mav

pacakge

12 1923 53 2729 0 0 65 4652

baxter robot 0 0 0 0 65 5546 65 5546

Continued on next page
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Table C.2 – continued from previous page

Name C++

Files

C++

Lines of

Code

Header

Files

Header

Lines of

Code

Python

Files

Python

Lines of

Code

Source

Files

Total

Lines of

Code

bwi from

texas

91 13232 99 4493 30 2600 220 20325

calibration 32 2567 13 477 39 4326 84 7370

calvin ros

stack

4 495 1 26 1 28 6 549

careobot con-

tro

29 5492 21 1255 3 305 53 7052

careobot

evnironment

perception

30 6080 33 2420 14 1004 77 9504

careobot ma-

nipulation

10 29853 3 342 24 1277 37 31472

careobot nav-

igation per-

ception

3 622 1 48 0 0 4 670

careobot per-

ception

9 2014 8 520 1 103 18 2637

cob com-

mand tools

8 1618 5 477 30 4813 43 6908

cob common 0 0 0 0 1 25 1 25

cob driver 62 18019 61 3543 16 853 139 22415

cob external 5 868 125 14681 0 0 130 15549

cob robots 0 0 0 0 3 101 3 101

control tool-

box

8 704 8 238 1 20 17 962

Continued on next page
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Table C.2 – continued from previous page

Name C++

Files

C++

Lines of

Code

Header

Files

Header

Lines of

Code

Python

Files

Python

Lines of

Code

Source

Files

Total

Lines of

Code

crazyflie ros

stack

0 0 0 0 10 613 10 613

NIMBUS

crop survey-

ing

58 4462 33 1665 0 0 91 6127

func maninu-

lators

24 42056 2 221 0 0 26 42277

graft 10 1787 7 270 0 0 17 2057

grizzly robot 9 721 6 279 0 0 15 1000

hector arm 3 156 1 39 1 48 5 243

hector diag-

nostics

14 2783 7 370 0 0 21 3153

hector navi-

gation

14 2783 7 370 0 0 21 3153

hector slam 14 1676 32 2291 0 0 46 3967

hector turtle-

bot

2 63 0 0 0 0 2 63

icart mini 7 678 2 54 1 36 10 768

jaco robot

arm

8 2379 9 1083 0 0 17 3462

jsk control 9 1209 4 676 54 3802 67 5687

jsk smart

apps

3 167 17 223277 9 574 29 224018

jsk travis 0 0 0 0 1 231 1 231

kobuki 15 1719 9 1053 37 2268 61 5040

kobuki soft 4 213 2 84 0 0 6 297

Continued on next page
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Table C.2 – continued from previous page

Name C++

Files

C++

Lines of

Code

Header

Files

Header

Lines of

Code

Python

Files

Python

Lines of

Code

Source

Files

Total

Lines of

Code

mav ros 40 6953 15 853 9 503 64 8309

maxwell 0 0 0 0 1 55 1 55

motoman 22 3532 25 1704 1 84 48 5320

nao camera 4 437 2 79 3 241 9 757

nao extras 4 854 1 77 0 0 5 931

nao interac-

tion

0 0 0 0 2 407 2 407

nao robot

repo

3 614 1 41 24 2163 28 2818

nao ros 2 87 0 0 21 1999 23 2086

nao sensors 5 465 2 79 7 468 14 1012

nao virtual 0 0 0 0 1 21 1 21

nao viz 0 0 0 0 7 253 7 253

naopi bridge 8 978 3 122 33 10387 44 11487

nav2 plat-

form

3 364 1 34 0 0 4 398

navigation

stack

96 16289 89 4090 11 295 196 20674

neo robot 14 2493 12 805 0 0 26 3298

next stage 0 0 0 0 19 1284 19 1284

novatel

spann

0 0 0 0 11 674 11 674

ocs library 30 3329 21 1299 18 936 69 5564

people track-

ing ros

20 3284 19 1707 3 148 42 5139

Continued on next page
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Table C.2 – continued from previous page

Name C++

Files

C++

Lines of

Code

Header

Files

Header

Lines of

Code

Python

Files

Python

Lines of

Code

Source

Files

Total

Lines of

Code

pepper robot

for stuff

0 0 0 0 4 300 4 300

pr2 os robot 11 7462 6 591 0 0 17 8053

pr2 common 1 84 0 0 1 47 2 131

pr2 futre 1 178 1 42 54 4429 56 4649

pr2 coli-

braiton

18 1469 6 163 18 1958 42 3590

pr2 common

actions

11 1042 2 54 8 250 21 1346

pr2 delivery 0 0 0 0 6 309 6 309

pr2 doors 0 0 0 0 3 91 3 91

pr2 kinemat-

ics

8 1788 6 330 0 0 14 2118

pr2 naviga-

tion

14 1711 11 1399 1 156 26 3266

pr2 pbd 0 0 0 0 17 5856 17 5856

pr2 precise

trajectory

0 0 0 0 12 558 12 558

pr2 self test 9 1756 8 320 10 1230 27 3306

pr2 surro-

gate

7 145 3 58 0 0 10 203

pr2 apps 7 2992 1 157 7 186 15 3335

rail ceiling 4 731 3 121 0 0 7 852

rail pick and

place library

30 3265 23 884 0 0 53 4149

Continued on next page
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Table C.2 – continued from previous page

Name C++

Files

C++

Lines of

Code

Header

Files

Header

Lines of

Code

Python

Files

Python

Lines of

Code

Source

Files

Total

Lines of

Code

rail segmen-

tation

4 791 2 132 0 0 6 923

realtime

tools

2 72 5 350 1 21 8 443

robitician ric 18 5137 580 49202 8 700 606 55039

robot rescue 12 654 0 0 0 0 12 654

ros concert 16 1444 7 258 431 33911 454 35613

ros control 40 5361 50 2698 13 831 103 8890

ros con-

trollers

33 4176 32 2762 5 370 70 7308

ros create

driver

0 0 0 0 15 1151 15 1151

ros darwin 0 0 0 0 4 364 4 364

ros descartes 24 3293 18 1254 0 0 42 4547

ros filter li-

brary

12 680 8 1263 0 0 20 1943

ros univer-

sial robot

4 1058 3 354 10 1719 17 3131

rqt pr2 dash-

board

0 0 0 0 6 303 6 303

segbot 17 3953 18 1351 7 258 42 5562

segbot apps 4 806 1 90 2 104 7 1000

shcunk mod-

ular

27 17089 60 5380 3 363 90 22832

sr demo 10 1210 11 571 11 1555 32 3336

Continued on next page
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Table C.2 – continued from previous page

Name C++

Files

C++

Lines of

Code

Header

Files

Header

Lines of

Code

Python

Files

Python

Lines of

Code

Source

Files

Total

Lines of

Code

sr manipula-

tion

0 0 0 0 28 2896 28 2896

sr utils 2 212 2 77 0 0 4 289

turtlebot 3 142 0 0 2 17 5 159

turtlebot

apps

47 6248 25 1890 16 898 88 9036

turtlebot

arm

11 6624 2 246 1 219 14 7089

turtlebot cre-

ate

0 0 0 0 15 1151 15 1151

turtlebot in-

teractions

2 79 0 0 0 0 2 79

uos tools 8 525 3 139 7 465 18 1129

water sam-

pler

4 762 0 0 20 1217 24 1979

mean 13 2894 18 3522 13 1201 44 7616

median 7 791 3 221 3 241 19 2637

std 20 6031 60 22672 44 3675 81 23524

min 0 0 0 0 0 0 1 21

max 96 42056 580 223277 431 33911 606 224018

sum 1354 292251 1792 355696 1321 121317 4467 769264
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Table C.1: The statistics gathered during static analysis of ROS packages.

Data Description Table Key
Name Name of the metapackage Name
Compilation time Time the metapackage takes to

compile with clang++.
Time

Time Factor Total compilation time with anal-
ysis in reference to original com-
pilation. In other words Compi-
lation Time x Time Factor is total
time to compile with analysis

Time Factor

Threshold Predicate Compar-
isons

A count of the number of predi-
cates in the metapackage which
both use a parameter threshold
in the predicate and have an “ex-
posing statement” which has a
data flow or control flow depen-
dency on the predicate.

Threshold Predi-
cate Comparisons

C++ Threshold Predicate Com-
parisons

Number of Predicates on Thresh-
olds appearing in C++ code.

C++

Python Threshold Predicate
Comparisons

Number Predicates on thresh-
olds appearing in Python code.

Python

Unique Threshold Sources Number of thresholds loaded
from uniquely named parame-
ters.

Unique

Files Containing Threshold Pred-
icate Comparisons

Number of files in the metapack-
age containing Threshold Predi-
cate Comparisons

Files

C++ Files Number of C++ files in the meta-
package.

-

C++ Lines of Code Lines of C++ code in the meta-
package.

-

Headers .h header files in the metapack-
age.

-

Headers Lines of Code Lines of .h code in the metapack-
age.

-

Python Files Python files in the metapackage. -
Python Lines of Code Lines of Python code in the meta-

package.
-

Total Files Total Python, C++, and header
files in the metapackage.

-

Total Lines of Code Total Lines of code in the meta-
package.

-
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Appendix D

User Instructions

This appendex contains the instructions each user was given during the trials for each of

the three systems.

D.1 Water Sampler

Monitor my Robot
Name:

Date:

Goal

I am developing tools to enhance the dependability of robots that interact with people. In

particular, I am studying how we can help users collaborate with robots to improve their

configuration. A part of that work includes employing user input to determine what may



be wrong with a robot’s configuration. And that is where you come in.

Robot and Mission

You will be observing a water sampling UAV that is able to autonomously collect water

samples and return them to land. When the mission starts the UAV will be on the ground

with motors off in the cage. It will then takeoff, fly to altitude, and approach the fish tank.

Once over the fish tank it will lower the sampler into the water and pump one vial full of

water. After filling the vial the UAV will return to the target altitude, fly to the takeoff

location, land, and shutdown.

Tasks

We will first show you the Robot performing the mission correctly three times. This

should give you a better idea of what is expected from the Robot. We will also show you

the basic equipment you will be using during the mission.

We will then perform three other trials where the Robot may be changed in a way that

impacts the mission. During these trials your job is to detect two types of error:

• Type I Error. Robot performs an action when it should not have.

• Type II Error. Robot should perform an action but it does not.

When you detect Type I errors mark them by pressing the key on the keyboard,

and when you detect Type II errors make them by pressing the key on the keyboard.

If you have any additional comments or concerns during or after the study please write

them at the bottom of this sheet.

This activity should take 20 minutes. Thank you for your time and assistance.



D.2 Navigation

Monitor my Robot
Name:

Date:

Goal

I am developing tools to enhance the dependability of robots that interact with people. In

particular, I am studying how we can help users collaborate with robots to improve their

configuration. A part of that work includes employing user input to determine what may

be wrong with a robot’s configuration. And that is where you come in.

Robot and Mission

You will be observing a ground robot that is able to autonomously navigate in the

environment. When the mission starts it will be at one location in the small sample area.

The robot will than navigate to the finish location. Th finish location is marked on the

ground. To successfully complete the mission the robot must be completely inside the

marked area and stationary.

Tasks

We will first show you the Robot performing the mission correctly three times. This

should give you a better idea of what is expected from the Robot. We will also show you

the basic equipment you will be using during the mission.



We will then perform three other trials where the Robot may be changed in a way that

impacts the mission. During these trials your job is to detect two types of error:

• Type I Error. Robot performs an action when it should not have.

• Type II Error. Robot should perform an action but it does not.

When you detect Type I errors mark them by pressing the key on the keyboard,

and when you detect Type II errors make them by pressing the key on the keyboard.

If you have any additional comments or concerns during or after the study please write

them at the bottom of this sheet.

This activity should take 20 minutes. Thank you for your time and assistance.

D.3 Image Capture

Monitor my Robot
Name:

Date:

Goal

I am developing tools to enhance the dependability of robots that interact with people. In

particular, I am studying how we can help users collaborate with robots to improve their

configuration. A part of that work includes employing user input to determine what may

be wrong with a robot’s configuration. And that is where you come in.
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Robot and Mission

You will be observing a UAV that is able to autonomously find a person, take their

photograph, and return to land. When the mission starts the UAV will be on the ground

with motors off. The motors start and the UAV takes off and flies to a predetermined

point and orientation. The UAV rotates and place and performs image processing on

the image stream from the camera located on the UAV. Once the UAV identifies a face it

remains at the same orientation attempts to center the face in the image frame. Once the

UAV has the person centered in the image it snaps a photo and lands at a predetermined

location. If at any point in time it looses track of the person, the UAV returns to circling

in place.

Tasks

We will first show you the Robot performing the mission correctly three times. This

should give you a better idea of what is expected from the Robot. We will also show you

the basic equipment you will be using during the mission.

We will then perform three other trials where the Robot may be changed in a way that

impacts the mission. During these trials your job is to detect two types of error:

• Type I Error. Robot performs an action when it should not have.

• Type II Error. Robot should perform an action but it does not.

When you detect Type I errors mark them by pressing the key on the keyboard,

and when you detect Type II errors make them by pressing the key on the keyboard.

If you have any additional comments or concerns during or after the study please write

them at the bottom of this sheet.
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This activity should take 20 minutes. Thank you for your time and assistance.
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