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Abstract

To integrate large volumes of renewables and use electricity more efficiently, many industrial

trials are on-going around the world that aim to realize decentralized or hierarchical control

of renewable and distributed energy resources, flexible loads and monitoring devices. As the

cost and complexity involved in the centralized communications and control infrastructure

may be prohibitive in controlling millions of these distributed energy resources and devices,

distributed optimization methods are expected to become much more prevalent in the oper-

ation of future electric power systems, as they have the potential to address this challenge

and can be applied to various applications such as optimal power flow, state estimation,

voltage control, and many others.

While many distributed optimization algorithms are developed mathematically, little ef-

fort has been reported so far on how these methods should actually be implemented in

real-world large-scale systems. The challenges associated with this include identifying how

to decompose the overall optimization problem, what communication infrastructures can

support the information exchange among subproblems, and whether to coordinate the up-

dates of the subproblems in a synchronous or asynchronous manner.

This research is dedicated to developing mathematical tools to address these issues,

particularly for solving the non-convex optimal power flow problem. As the first part of

this thesis, we develop a partitioning method that defines the boundaries of regions when

applying distributed algorithms to a power system. This partitioning method quantifies the

computational couplings among the buses and groups the buses with large couplings into one

region. Through numerical experiments, we show that the developed spectral partitioning

approach is the key to achieving fast convergence of distributed optimization algorithms on

large-scale systems.

After the partitioning of the system is defined, one needs to determine whether the com-

munications among neighboring regions are supported. Therefore, as the second part of this

thesis, we propose models for centralized and distributed communications infrastructures

and study the impact of communication delays on the efficiency of distributed optimization

algorithms through network simulations. Our findings suggest that the centralized com-

munications infrastructure can be prohibitive for distributed optimization and cost-effective
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migration paths to a more distributed communications infrastructure are necessary.

As the sizes and complexities of subproblems and communication delays are generally

heterogeneous, synchronous distributed algorithms can be inefficient as they require waiting

for the slowest region in the system. Hence, as the third part of this thesis, we develop an

asynchronous distributed optimization method and show its convergence for the considered

optimal power flow problem. We further study the impact of parameter tuning, system

partitioning and communication delays on the proposed asynchronous method and compare

its practical performance with its synchronous counterpart. Simulation results indicate that

the asynchronous approach can be more efficient with proper partitioning and parameter

settings on large-scale systems.

The outcome of this research provides important insights into how existing hardware

and software solutions for Energy Management Systems in the power grid can be used or

need to be extended for deploying distributed optimization methods, which establishes the

interconnection between theoretical studies of distributed algorithms and their practical im-

plementation. As the evolution towards a more distributed control architecture is already

taking place in many utility networks, the approaches proposed in this thesis provide im-

portant tools and a methodology for adopting distributed optimization in power systems.
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Chapter 1

Introduction

1.1 Background and Motivation

Electric power systems are large-scale systems spanning countries and sometimes entire

continents. Optimizing the operation of the grid is a challenging task due to the large number

of variables and constraints and their inherently non-linear physical characteristics. Further

challenges arise with the transition of the current grid to a smarter grid that integrates a

large number of renewable energy resources, flexible loads, and storage devices, which entails

an even larger increase in the size and complexity of the associated problems.

Traditionally, the optimal management of the grid in a large area has been and is still

mostly solved as a single optimization problem at a Central Control Center (CCC). This

limits the size of the problem that can be solved in a given amount of time. Moreover, as all

the measurements need to be sent to one CCC, the communications load of the backbone

network is high which may result in large communication delays or even failures of data de-

livery. To address these issues, there has been a growing interest in distributed optimization

over the past two decades, where a large system is decomposed into smaller control areas,

each having an Area Control Center (ACC) that makes local control decisions [1]. The ACC

has similar functionalities as a Remote Terminal Unit (RTU) placed at the substation that

can monitor the local system states, store measurement data, and communicate with other

ACCs.

This paradigm shift from centralized to distributed control architecture is illustrated

1



CHAPTER 1. INTRODUCTION 2

	

Power	system	

Communication	networks	

(a) Centralized

	

Power	system	

Communication	networks	

(b) Distributed

Figure 1.1: Conceptual illustration of centralized and distributed control architectures of
power systems.

conceptually in Fig. 1.1. The blue dotted lines denote the communication links between a

control center and the buses, while the blue double arrowed solid lines denote the commu-

nication links between pairs of neighboring control centers. The distributed optimization

scheme studied in this thesis is based on geographical partition of the power system, where

each ACC solves a subproblem locally. As the ACCs formulate their subproblems only

with local information assuming some boundary conditions as fixed, they need to acquire

information from neighbors to update these conditions periodically such that the overall

optimality of the system can be achieved. However, the communications is only needed

between directly connected neighboring areas while no centralized or master node is needed

for the coordination of the ACCs. Also, the information to be exchanged are intermediate

results of the subproblems, which usually include the variables at the boundary buses but

not all local buses. Most studies on distributed algorithms assume that these algorithms

are performed in an iterative and synchronized fashion; i.e., the communications start after

all ACCs have solved their subproblems and the computation starts after all ACCs have

finished the information exchange. The iterations proceed until some stopping criteria are

fulfilled.

Figure 1.2 illustrates where distributed optimization takes place in power system oper-

ations. Given the current system state, distributed algorithms are run at ACCs. After the

algorithm converges to a control solution, this solution is applied to change the control set-

tings. Then the new system state is estimated, which enables the next round of distributed
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Figure 1.2: A sequence of power system operations.

optimization. The distributed optimization scheme could potentially alleviate the central-

ized computational and communications burdens, enhance the robustness and scalability

of optimization in large-scale systems, as well as preserve the data privacy of the users in

different parts of the grid.

One key application considered for distributed optimization is the Optimal Power Flow

(OPF) problem, which is at the heart of power systems operations and planning. The most

common objective of OPF is to schedule the generation units optimally subject to the power

flow balances and operational constraints such as transmission line capacities. OPF problems

have been studied for over half a century, which is required to be solved by system operators

every five minutes in less than one minute [2]. However, due to the non-convexity introduced

by the AC power flow equations, OPF is known to be a difficult problem to solve even in

a centralized manner for large systems [3]. Currently, most system operators only solve

linear approximations of this problem to which the solution is only reasonably acceptable

but not optimal, which may result in unnecessary cost of tens of billions of dollars in the

US annually. Distributed optimization is considered as one promising approach to solve

the OPF problem for large-scale systems more efficiently. However, difficulties arise in the

search for a distributed solution since optimality or even convergence cannot be guaranteed

for most distributed methods on non-convex problems [4][5].

Distributed methods based on various decomposition techniques have been proposed

to solve the OPF problem, including Lagrangian Relaxation [6], Augmented Lagrangian

Relaxation [7, 8, 9] or more specifically Alternating Direction Method of Multipliers [5, 10],

Optimality Condition Decomposition [11, 12, 13], and Benders Decomposition [14]. An

overview of these techniques can be found in [4, 15]. However, the focus of these studies
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is purely on the development of a decomposition method to ensure the convergence to the

overall optimally of the system. The experiments in most of these studies are conducted

on IEEE standard test systems whose size and complexity are not comparable with those

of real power systems. While the IEEE standard test systems serve as good platforms to

showcase the functionality of new algorithms, researchers still face a practical yet challenging

question: can one successfully apply distributed algorithms to real-world large-scale power

systems problems, in particular to non-convex OPF problems? Ultimately, the value of

distributed optimization can only be understood and its full potential can only be realized

if it can be applied to large-scale real power systems.

The challenges associated with answering this question are tightly related to the three

practical issues that one needs to consider for implementation of any distributed optimization

and control methods, namely, system partitioning, communications, and synchronization [1].

Specifically, one needs to identify how to decompose the overall optimization problem, what

communications infrastructures can support the information exchange among subproblems,

and whether to solve the subproblems in a synchronous or an asynchronous manner. The

motivation for investigation into these three issues are further elaborated as follows:

• System Partitioning. While there are many studies on the development of distributed

optimization methods, the test system used in most studies are either partitioned in an

arbitrary way or configured by connecting several IEEE standard test systems using

a few tie lines where the system naturally partitions into subsystems. Consequently,

the results either do not reflect the realistic performance for a truly connected sys-

tem and/or the best performance achievable by the presented distributed method.

Moreover, for large-scale real-world networks whose topologies are hard to visualize,

it is even challenging to search for an arbitrary partition of the system. Therefore,

a systematic tool for system partitioning is needed for the application of distributed

optimization methods.

• Communications. The convergence of the distributed solution to an overall optimal

point of the entire system is dependent on the periodic information exchange among the

subproblems. Hence, compared with the centralized optimization approach, communi-

cation plays a much more important role as it determines whether timely decisions can
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be made to ensure an optimal and efficient operation of the entire grid. Nevertheless,

communications is often assumed to have zero delays and errors, and thus neglected

in most studies on distributed algorithms. While the assumption of perfect commu-

nications simplifies the theoretical analysis of distributed algorithms, it barely holds

in practice. Hence, it is necessary to evaluate the impact of the conceivable commu-

nication infrastructures and technologies on the performance of distributed methods

before any of these methods can actually be implemented.

Particularly, the following two critical questions need to be answered. First, in terms

of implementation, what communication infrastructures and technologies should be

adopted to support the information exchange involved in the distributed optimization

process? Second, how much will the performances of distributed algorithms degrade

with communication delays or failures in terms of convergence speed, solution quality,

robustness, and so on, compared with the theoretical results where communications are

assumed to be perfect? To answer these questions, an evaluation of the capability of

the existing communications infrastructure of the grid is needed and the performance

of distributed algorithms needs to be investigated with the communications overhead

taken into account.

• Synchronization. The majority of distributed algorithms are developed based on the

premise that the workers that solve subproblems are synchronized. However, syn-

chronization may not be easily obtained in a distributed system without centralized

coordination, which to a certain degree defeats the purpose of the distributed algo-

rithm. Moreover, the sizes and complexities of subproblems are usually dependent on

the system’s physical configuration, and therefore are heterogeneous and require differ-

ent amounts of computation time. Therefore, even if synchronization is achievable, it

may not be the most efficient way to implement distributed algorithms. Furthermore,

the communication delays among workers are also heterogeneous which are deter-

mined by the communication infrastructures and technologies used. In a synchronous

setting, all workers need to wait for the slowest worker to finish its computation or

communications. This may lead to the under-utilization of both the computation and

communication resources as some workers remain idle for most of the time. Therefore,
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asynchronous distributed optimization schemes need to be developed to address the

limitation of synchronous schemes.

This thesis is dedicated to developing mathematical tools to address the above prac-

tical issues and provide insights into an efficient implementation of distributed optimiza-

tion methods for large-scale OPF problems. As the first part of this thesis, we investigate

how partitioning affects the speed of the distributed optimization methods and develop

a partitioning method based on spectral clustering that improves the performance of two

distributed algorithms. As the second part, we evaluate centralized and distributed commu-

nications infrastructures for their capabilities to support distributed methods. Specifically,

we demonstrate how the network topologies can be constructed in different communica-

tions infrastructures to enable the required information exchange and evaluate the impact

of communications delays on the efficiency of the distributed methods. As the sizes of the

subproblems and the locations of the control entities are dependent on the system partition-

ing and the communication infrastructures, it is highly likely that the computation time and

communication delays for solving different subproblems are heterogeneous, consequently,

synchronous updates of the subproblems might not be efficient. Hence, as the third part

of this thesis, we develop an asynchronous distributed optimization method, compare its

performance with synchronous methods in terms of efficiency and solution quality, and show

how the performance of this asynchronous approach can be affected by parameter tuning,

system partitioning, and communication delays.

1.2 Literature Review

1.2.1 Distributed Large-Scale OPF

While various distributed optimization techniques have been proposed and applied to the

OPF problem [6, 7, 8, 9, 5, 10, 11, 12, 13], only few studies demonstrate the scalability of

the proposed distributed methods. In [16], two decomposition algorithms for solving the

Security-Constrained OPF problem are investigated and applied to the Polish 3012-bus sys-

tem. However, the OPF problem is decomposed according to contingency scenarios and

not geographical regions, which is much harder. In [17], a method based on ADMM and
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proximal message passing is proposed for solving a dynamic OPF problem, and is tested on

networks with thousands of nodes. However, both the nodes and the branches are generated

randomly, which could result in a network that is very different from real-world systems.

Different from the aforementioned studies, this thesis contributes to the geographical de-

composition of large-scale real transmission networks for implementing distributed methods.

To overcome some of the difficulties in solving non-convex OPF in a distributed man-

ner, one approach proposes convexifying the OPF problem before applying a distributed

algorithm [3, 18, 19, 20]. A common approach for convexification is based on semidefinite

relaxation [21, 22]. However, due to lack of adherence to the original non-convex problem,

the optimality achieved by this approach can only be ensured for some simple networks such

as the IEEE benchmark systems and acyclic radial networks [21, 22]. Moreover, semidefinite

programming solvers generally result in large computational efforts, hence, they do not scale

well to problems in large transmission networks, which typically have thousands of buses

and meshed topologies [23]. As an alternative to semidefinite programming with lower com-

plexity, LinDistFlow [24] provides a convex approximation of power flow equations, which,

however, is only shown to work for distribution networks. For optimizing distribution net-

works, the authors in [25] propose using second-order cone relaxation for convexifying the

OPF problem before applying a distributed algorithm, and test this approach on a real-world

2065-bus distribution system. As transmission networks are meshed networks, it is not clear

whether the results obtained in [25] still hold for these networks.

1.2.2 System Partitioning

Power system partitioning for purposes and applications other than distributed optimiza-

tion are extensively studied. One group of studies aims to divide the overall problem into

equally sized subproblems to enable the utilization of parallel processors using conventional

optimization methods such as dynamic programming [26], contour tableau [27], simulated

annealing [28], genetic algorithm [29], and Tabu search [30] to partition the problem. Power

system partitioning with the objective to minimize the coupling between regions are studied

in [31, 32, 33]. In [31], harmony search is proposed for network partitioning which aims to

minimize the number of tie lines between clusters. In [32], a slow coherency based networking
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partitioning method is proposed for network reduction by grouping elements into areas ac-

cording to the strength of their coupling resulting in multiple areas which are weakly coupled

among each other. In [33], an electrical distance based method combined with evolutionary

algorithm is introduced to evaluate partitioning solutions using multi-metrics. Graph par-

titioning theory has also been applied to power system clustering which aims to minimize

the power imbalance between generation and loads within islands to avoid cascading events

[34, 35]. However, the main focus of these studies is on network reduction or islanding, which

is very different from distributed optimization.

Other related work includes [36, 37], which focus on clustering for efficient computations.

In [36], for instance, an approach to balance the size of subproblems and the coordination

effort of these subproblems is proposed. In [37], a similar objective of computational load

balancing as in [36] is imposed on the application of contingency screening to solve the DC

OPF problem. However, no specific distributed optimization method is used in these studies

and there is no quantification of the improvement in computational efficiency when using

the optimal partition in terms of the number of iterations and convergence time. In this

thesis, we propose a system partitioning approach that integrates the computational coupling

between buses which has a strong impact on the performance of distributed optimization

methods and quantify the efficiency gain of distributed algorithms when using the proposed

partitioning approach.

1.2.3 Communications

While communications infrastructures in smart grids have been extensively investigated in

recent years, most of the existing work focuses on applications in distribution networks. In

[38], an overview over the communications challenges involved in energy management at the

demand side using smart meters is presented. In [39][40], radial, meshed and hierarchical

communications infrastructures are studied where their capability to deliver sensing and con-

trol data for autonomous networks management is evaluated. For Wide Area Measurement

System (WAMS) applications, optimal designs of the communications infrastructures are

proposed in [41, 42, 43], and their performances are evaluated using the OPNET modeler

in [44, 45, 46, 47]. To explore the impact of communications networks on power system
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operations, some co-simulation platforms have been developed to integrate the communica-

tions network simulation with the physical control of power system components and their

dynamics [48, 49, 50]. Main applications of those co-simulation platforms include testing

protection schemes and investigating cyber-security issues. However, the applications con-

sidered in all of the above studies are different from distributed optimization which has

different communications requirements. The communications plane considered in this thesis

is the Wide-Area-Network (WAN) that connects multiple control centers, whereas the afore-

mentioned studies focus on the communications in power systems networks that connect

control centers with end devices.

Compared with the above applications, the research on communications required by

distributed algorithms is rather limited where most studies consider consensus-based algo-

rithms. For example, in [51], the impact of different communications network topologies on

the convergence rate of the Incremental Cost Consensus algorithm applied to the economic

dispatch problem is investigated. In [52, 53, 54, 55], various communication delay models

are proposed and integrated into the linear update equations of the nodes, and the effect

of delays or uncertainty on the convergence of consensus algorithms is evaluated. However,

for non-convex optimization problems, it is difficult to model the communications involved

mathematically due to the fact that closed-form solutions do not exist in such situations.

Therefore, this thesis presents a simulation-based approach that models the communica-

tions plane for distributed optimization and evaluates the impact of communication delays

on distributed methods.

1.2.4 Synchronization

The synchronization issue has been systematically studied in the research fields of distributed

computing with seminal works [56, 57]. While the concept of asynchronous computing is

not new, it remains an open question whether those methods can be applied to solving

non-convex problems. Most of the asynchronous computing methods proposed can only be

applied to convex optimization problems [56, 58]. These methods therefore can only solve

convex approximations of the non-convex problems which may not be exact for all types of

systems [59, 60, 61, 62].
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Recently, there are a few asynchronous algorithms proposed that tackle problems with

some level of non-convexity. Among these algorithms, the Alternating Direction Method of

Multipliers (ADMM) has been found to work particularly well on non-convex problems when

extended into an asynchronous setting. The studies of distributed ADMM method can be

categorized according to whether they tackle convex or non-convex problems and whether the

implementation is synchronous or asynchronous. For convex optimization and synchronous

implementation, the linear convergence rate of distributed ADMM has been established

under different settings [63, 64, 65, 66]. It has also been shown in [67] that ADMM could

converge faster under additional regularity assumptions on the objective function such as

strong convexity and smoothness. Researchers have also discovered that the convergence rate

of ADMM strongly depends on the choice of the algorithm parameter and optimal parameter

selection methods have been proposed in [68, 64, 66]. Beyond choice of algorithm parameter

and properties of objective function, the convergence rate of ADMM on consensus problems

is also influenced by the network topology [64]. For asynchronous ADMM applied to solve

convex problems, its convergence rate has been quantified for specific problem structures.

Linear convergence rate of asynchronous ADMM has been established in [69, 70] when

applied to an unconstrained convex consensus problem and shown to be related with the

number of workers, the amount of information collected by each worker and the delay of the

worker. It is also shown in [71] that asynchronous ADMM can achieve linear convergence

when a set of constraints and variables are randomly activated at each ADMM iteration.

For non-convex optimization with synchronous implementation, recent works have shown

that under certain assumptions such as the regularity of objective functions and constraints,

boundedness of variables, identifiable local minimum of subproblems or sufficiently large

penalty parameter, synchronous ADMM is guaranteed to converge to a limit point that

satisfies the KKT conditions of the problem with non-convex objectives [72] or non-convex

constraints [72, 73, 74, 10]. However, regarding applying asynchronous ADMM to non-

convex optimization, the studies on its convergence behavior is rather limited. Asynchronous

ADMM is shown to converge for non-convex problems with the additional assumption of

bounded delay of all workers in the consensus problem [75, 76]. In [77], an asynchronous

incremental ADMM method is shown to converge with sublinear rate on a problem with
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non-convex objectives under certain bounds imposed on the level of asynchrony.

Apart from ADMM, there are other asynchronous methods proposed to tackle non-convex

problems. For example, [78] proposes an asynchronous probabilistic approach for non-convex

distributed optimization and establishes an upper bound on the number of iterations required

to achieve a certain level of feasibility. However, as the authors stated in [78], their proposed

bound is mainly of theoretical interest as the choice of parameters used for their analysis is

not likely to be set in the same way in practice, which shows the importance of empirical

studies conducted for specific applications.

The focuses of the aforementioned studies are different from the problem considered

in this thesis in the following aspects. First, the problem formulations studied are different

from the OPF problem which has non-convex constraints that include variables from multiple

regions. Second, the underlying communication graph is different. The problem studied in

most research is the consensus problem where the workers are homogeneous and they aim

to find a common system parameter. The underlying network topology is either a full mesh

network where any pair of nodes can communicate [57] or a star topology with a centralized

coordinator [69, 75]. Different from the consensus problem, this thesis considers partition-

based optimization where the workers represent regions or subnetworks with different sizes.

Furthermore, each worker only communicates with its physically connected neighbors and

the information to be exchanged only contains the boundary conditions but not all local

information. Thereby, the workers are heterogeneous and the communication topology is a

partial mesh network with no centralized/master node needed.

Moreover, for partition-based distributed optimization problem with non-convex con-

straints, there lack both empirical and theoretical results on how fast asynchronous method

converges and what factors affect its convergence rate, which are generally application de-

pendent. Therefore, we conduct empirical studies in this thesis which could provide insights

on how to better utilize distributed asynchronous ADMM for the application to the OPF

problem.
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1.3 Contributions

The main contributions of this thesis are outlined as follows:

• System Partitioning:

– A system partitioning technique based on spectral clustering is proposed using

an affinity metric based on the Hessian matrix of the considered optimization

problem which measures the computational coupling among the buses while de-

ploying distributed optimization algorithms. The proposed spectral partitioning

technique is shown to improve the convergence performance of two distributed op-

timization algorithms, namely, Optimality Condition Decomposition (OCD) and

Alternating Direction Method of Multipliers (ADMM), which provides a tool to

determine how the problem should be optimally decomposed to obtain the largest

benefit from distributed optimization.

– With the proposed spectral partitioning technique, ADMM is shown to converge

for large-scale AC OPF problems on realistic transmission networks. This result

is a milestone as it shows for the first time that distributed optimization is a

practically viable approach to key optimization problems in large-scale real power

systems with no pre-defined partitions.

– The proposed spectral partitioning technique is also applied to a multi-step OPF

problem based on Model Predictive Control (MPC), and is shown to significantly

improve the efficiency of distributed MPC. This finding shows that the same

partition can be used for multiple time steps and that the proposed partitioning

method is indeed practical as the partitions found do not need to be changed

frequently.

• Communications:

– A modeling and simulation method is proposed using the OPNET network mod-

eler to model the communications plane and emulate the communications required

in distributed optimization.
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– The impact of communication delays on the efficiency distributed algorithms is

evaluated using the proposed models in the context of possible communications

infrastructures and technologies.

– It is shown that the centralized communications infrastructure can be prohibitive

for distributed optimization in large-scale systems and that the performance of

distributed algorithms can be significantly improved by using a more distributed

communications infrastructure; suggesting cost-effective migration paths to a

more distributed communications infrastructure.

– The strong relationship between distributed optimization and power system com-

munications is investigated, therefore bridging the gap that exists between the

communications research community and the distributed optimization research

community in how these two research communities see the problem of deploying

distributed methods in power systems.

• Synchronization:

– A distributed asynchronous optimization method is proposed based on ADMM

and its convergence for non-convex optimization problems is established under the

assumption of bounded communications delay and some other mild conditions on

the objective function and constraints. To the best of our knowledge, this is

the first time that ADMM is shown to be convergent under an asynchronous

setting for a partition-based distributed optimization problem with non-convex

constraints that contain variables from different subproblems.

– Empirical studies are carried out on multiple large-scale systems to better char-

acterize the practical performance of asynchronous ADMM in terms of parameter

tuning, system partitioning and communications delays, which show that asyn-

chronous ADMM can be more efficient than its synchronous counterpart with

proper settings on large-scale systems.

With the contributions outlined above, the ultimate goal of this thesis is to develop tools

and a methodology that enable the actual implementation of distributed optimization al-

gorithms and to provide empirical evidence which suggests that distributed optimization
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can be a viable approach to tackle large-scale optimization problems in power systems if

implemented with proper system partitioning, parameter tuning and communications tech-

nologies. The outcome of this thesis establishes the interconnection between theoretical

studies of distributed algorithms and their practical implementation in power systems, and

provides important insights into how existing solutions in power system operations can be

used or need to be extended for deploying distributed optimization methods.

1.4 Thesis Outline

The chapters of this thesis are outlined as follows:

• Chapter 2: Problem Statement and Methods formulates the AC Optimal Power

Flow (OPF) problem and gives an overview of the Interior Point Method and two dis-

tributed optimization methods utilized and built upon in this thesis, namely, Optimal-

ity Condition Decomposition (OCD) and Alternating Direction Method of Multipliers

(ADMM).

• Chapter 3: Spectral Partitioning proposes a power system partitioning approach

based on spectral clustering that speeds up the convergence of the OCD method.

This partitioning approach defines an affinity metric that measures the computational

coupling between pairs of buses and groups the more coupled buses into one region.

Simulation results on IEEE test systems demonstrate the effectiveness of the proposed

partitioning approach.

• Chapter 4: Applications of Spectral Partitioning applies the proposed spectral

partitioning approach in conjunction with the ADMM method and to a multi-step OPF

problem. Simulation results on several large-scale real-world transmission networks

show that ADMM with spectral partitioning is a viable approach to tackle non-convex

OPF problems in large systems. Experiments on the multi-step OPF problem with

wind and storage integration show that the partitions found by spectral partitioning

at one operating point is applicable to a wide range of operating points.
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• Chapter 5: Role of Communications Plane proposes a modeling and simulation

approach using the OPNET modeler to emulate the communications process required

by distributed optimization algorithms. Communications technologies and schemes

that support distributed optimization are first reviewed, and two communications in-

frastructures, namely, the distributed and centralized infrastructures are then evalu-

ated. The efficiencies of the distributed optimization methods, OCD and ADMM, are

compared with communication delays taken into account and the impact of delays on

distributed optimization is discussed.

• Chapter 6: Asynchronous Distributed ADMM proposes an asynchronous dis-

tributed algorithm based on ADMM. The proposed method allows local updates with

partial information from neighbors. Sufficient assumptions are made and the conver-

gence of asynchronous ADMM is established. Then empirical studies are carried out

that evaluate the impact of parameter tuning, system partitioning and communication

delays on the proposed asynchronous ADMM method.

• Chapter 7: Closure concludes the thesis and discusses potential directions for future

research in this area.



Chapter 2

Problem Statement and Methods

We deploy two distributed optimization algorithms in this research, namely, Optimality Con-

dition Decomposition (OCD) [11] and Alternating Direction Method of Multipliers (ADMM)

[10], which have been applied in multiple studies to solve the OPF problem in a distributed

manner. In this chapter, we outline the distributed AC OPF formulations and the mecha-

nisms of these two methods. We also review the Interior Point approach which is used to

solve the OPF problem in a centralized manner in this thesis.

2.1 AC Optimal Power Flow Problem

Throughout this thesis, we consider the non-convex AC OPF problem, which is at the

heart of power systems operations and planning. The most common objective of OPF is to

schedule the generation units optimally subject to the power flow balances and operational

constraints such as transmission line capacities. While there are multiple formulations for the

OPF problem, we consider one standard formulation which is also used in the MATPOWER

optimal power flow solver [79] as follows:

minimize
V,P,Q

f(P ) =

nb∑
i=1

(
aiP

2
i + biPi + ci

)
(2.1a)

subject to Pi + jQi − P d
i − jQd

i = Vi
∑
j∈Ωi

Y ∗ijV
∗
j (2.1b)

Pmin
i ≤ Pi ≤ Pmax

i (2.1c)

Qmin
i ≤ Qi ≤ Qmax

i (2.1d)

16
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θmin
i ≤ θi ≤ θmax

i (2.1e)

V min
i ≤ |Vi| ≤ V max

i (2.1f)

(|Vi||Vj||Yij| cos(θi − θj − δij))2 + (|Vi||Vj||Yij| sin(θi − θj − δij))2 ≤ (Smax
ij )2, (2.1g)

for i = 1, . . . , nb with nb denoting the total number of buses in the system. The variables

to be optimized in problem (2.1) are (Vi, Pi, Qi), which stand for the complex voltage, the

active power output and the reactive power output of generator at bus i, respectively. A

quadratic cost model for each generator is used and (ai, bi, ci) are the cost parameters of

generator at bus i. These parameters are set to zero if the bus is not connected with any

generator. (P d
i , Q

d
i ) are the active and reactive load at bus i, Yij is the ij-th entry of the line

admittance matrix, and Ωi is the set of buses connected to bus i. (|Vi|, θi) and (|Yij|, δij) are

the magnitudes and angles of Vi and Yij, respectively, and Smax
ij is the maximum transmission

capacity of line ij. Constraints (2.1b) denote the power flow balances at each bus, (2.1c) to

(2.1f) denote the bounds on the variables, and (2.1g) denote the thermal line constraints.

Setting the reference angle of the slack bus to zero is taken care of in (2.1e). For other nodes,

θmin
i and θmax

i are set to −π and π, respectively. Problem (2.1) is non-convex due to the

non-convexity of the AC power flow equations (2.1b) and line limit constraints (2.1g).

To implement distributed optimization methods, the centralized OPF problem (2.1)

needs to be decomposed into subproblems. Geographical decomposition of the system is

considered where the transmission network is partitioned into a number of subnetworks each

assigned to an ACC for solving a local subproblem; i.e., ACC k only optimizes the variables

associated with the buses within region k. The connectivity of the areas is based on the

network topology; i.e., we say two regions are neighbors if their associated subnetworks are

physically connected and some variables of their variable sets appear in the same constraints.

We use K to denote the total number of regions and Rk, k = 1, ..., K, to denote the set of

buses assigned to region k with Rk ∩ Rl = ∅,∀l 6= k. The transmission lines that connect

the buses in two neighboring regions are referred to as tie lines in the rest of this thesis.

We introduce xk = {(Vi, Pi, Qi) | i ∈ Rk} and fk(xk) to denote the variables and the local

objective function in region k, respectively. Then problem (2.1) can be formulated in terms
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of sets of variables, i.e.,

minimize
x

K∑
k=1

fk(xk) (2.2a)

subject to c(x1, . . . , xk, . . . , xK) ≤ 0 (2.2b)

sk(xk) ≤ 0; k = 1, . . . , K, (2.2c)

Due to the fact that the objective function (2.1a) is separable in terms of generators, it can

be easily transformed into the form of sum of local objective functions (2.2a). Constraints

(2.2b) are defined as coupling constraints as they contain variables from multiple regions,

and thus couple the updates of variables in these regions. Note that we include the variable

sets of all regions in the expression of constraints (2.2b) just for the simplicity of notation,

where each coupling constraint actually includes the variable sets of neighboring regions but

not all sets of variables. The coupling constraints include the power flow balance (2.1b) at

the buses connected to the tie lines, i.e., buses at the boundaries between regions, and the

thermal line limits (2.1g) of tie lines. Constraints (2.2c) are defined as the non-coupling

constraints as they only contain variables from one region. Note that (2.2b) and (2.2c)

include both equality and inequality constraints, where the inequality constraints can be

handled with an Interior Point approach.

2.2 Interior Point Method

Various methods can be used to handle the inequality constraints in an optimization problem,

where this thesis uses an Interior Point approach. Consider a general optimization problem

minimize
x

f(x) (2.3a)

subject to g(x) = 0 (2.3b)

h(x) ≤ 0. (2.3c)

The Interior Point method transforms all inequality constraints into equality constraints by

adding non-negative slack variables z to the left-hand-side of (2.3b). A barrier function is

also added to the objective function that enforces z to be greater than zero; i.e., problem
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(2.3a) is transformed into the following form:

minimize
x

f(x)− ζ
p∑
i=1

ln(zi) (2.4a)

subject to g(x) = 0 (2.4b)

h(x) + z = 0 (2.4c)

z > 0, (2.4d)

where p denotes the number of inequality constraints and ζ > 0 is the barrier parameter

which has to become (almost) zero in the optimum. The Lagrangian function of problem

(2.4) is given by:

L = f(x)− ζ
p∑
i=1

ln(zi) + λTg(x) + µT (h(x) + z). (2.5)

The first-order necessary conditions, i.e., the Karush-Kuhn-Tucker (KKT) conditions for an

optimal solution of problem (2.4) are formulated as

∂L

∂x
=
∂f(x)

∂x
+

(
∂g(x)

∂x

)T
· λ+

(
∂h(x)

∂x

)T
· µ = 0 (2.6a)

∂L

∂λ
= g(x) = 0 (2.6b)

∂L

∂µ
= h(x) + z = 0 (2.6c)

∂L

∂z
= µ− ζ · diag

(
1

z

)
= 0 (2.6d)

µ ≥ 0 (2.6e)

z > 0. (2.6f)

To solve problem (2.3), one can search for the solution to the KKT conditions (2.6) by

using the Newton-Raphson approach to iteratively update the variables. Specifically, at

each iteratoion, the changes in the variables can be calculated by:

∆x

∆λ

∆µ

∆z


= −H−1 ·



∂L
∂x

∂L
∂λ

∂L
∂µ

∂L
∂z


= −



∇L ∇gT ∇hT 0

∇g 0 0 0

∇h 0 0 diag(1)

0 0 diag(z) diag(µ)



−1

·



∇L

g

h+ z

µz − diag(ζ)


,

(2.7)
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where H is the Jacobian of the KKT conditions which is also the Hessian of the Lagrangian

function (2.5). Note that in (2.6d), we multiply both sides of the equation by z. The update

of variables in the Interior Point approach at the ν-th iteration are given as follows:

xν+1 = xν + αz∆x
ν (2.8a)

λν+1 = λν + αµ∆λν (2.8b)

µν+1 = µν + αµ∆µν (2.8c)

zν+1 = zν + αz∆z
ν , (2.8d)

with

αµ = min{1, 0.9995α′µ}, α′µ = min
∆µνi<0

{−µ
ν
i

∆µνi
} (2.9a)

αz = min{1, 0.9995α′z}, α′z = min
∆zνi <0

{−z
ν
i

∆zνi
}. (2.9b)

Updating the variables this way guarantees that µν+1 ≥ 0 and zν+1 ≥ 0. Then ζ is also

updated by

ζν+1 = β
µν+1T · zν+1

p
, (2.10)

where β is set between 0.1 to 0.5 depending on the problem.

2.3 Optimality Condition Decomposition

2.3.1 Basic Algorithm

OCD is an extension to the Lagrangian Relaxation method which has shown improved

convergence properties over Lagrangian and Augmented Lagrangian methods [12]. For the

implementation of OCD, each coupling constraint (2.2b) in problem (2.2) is assigned to one

subproblem, which results in the following formulation of the subproblem associated with

any region k:

minimize
xk

f(xk) +
K∑

l=1,l 6=k

λ
T

l cl(x1, ..., xk, ..., xK) (2.11a)

subject to ck(x1, ..., xk, ..., xK) ≤ 0 (2.11b)

sk(xk) ≤ 0 (2.11c)
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where λl, l 6= k denote the Lagrange multipliers of the coupling constraints cl(·) assigned

to regions other than k but included in the objective function of region k. The variables

with a bar indicate that their values are fixed using the last updated values acquired from

other regions. Each of these subproblems (2.11a)-(2.11c) is solved by deriving the first order

optimality conditions and then applying Newton-Raphson to compute search directions ∆xk

and ∆λk. After each area carries out one iteration of the Newton-Raphson approach, it

updates its variables xν+1
k ← xνk+∆xk and multipliers λν+1

k ← λνk+∆λk. Here, we also use ν

to denote the iteration counter. Then the updated values of variables are exchanged among

areas to facilitate the next iteration. Such process continues until the overall optimality of

the system is reached.

The above described procedure of OCD is indeed equivalent to decomposing the Hessian

matrix used in the centralized optimization approach. To solve problem (2.2) in a centralized

manner, one can solve for its KKT conditions using the Interior Point approach. After

assigning the coupling constraints (2.2b) to different regions, the Lagrangian function of

problem (2.2) can be written as:

L =
K∑
k=1

f(xk) + λTk ck(x1, ..., xK) + γTk sk(xk) (2.12)

where λk and γk are Lagrange multipliers for the coupling and non-coupling constraints,

respectively. Note that the inequality constraints in ck(x1, ..., xK) and sk(xk) in (2.12) are

transformed into equality constraints by adding slack variables, and the objective function∑K
k=1 f(xk) includes the barrier term associated with the Interior Point method. Denoting

all the variables that need to be determined including the Lagrange multipliers by y, the

above procedure is equivalent to solving the following system of linear equations to get the

update of variables ∆y:

Hsys∆y = −r; Hsys = ∇2
yL, r = ∇yL (2.13)

Here, r denotes the KKT conditions and they all have to be zero at optimality for the

algorithm to stop. Hsys denotes the Jacobian of the KKT conditions, which is also the

Hessian of the Lagrangian function (2.12). By rearranging the variables in Hsys according
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to the areas they are assigned to, (2.13) is transformed to:

H


∆y1

...

∆yK

 = −


r1

...

rK

 (2.14)

where

rk = ∇ykL; k = 1, ..., K (2.15)

H =


H11 . . . H1K

...
. . .

...

HK1 . . . HKK

 (2.16)

Hkl = ∇2Lyk,yl ; k, l = 1, ..., K (2.17)

The off-diagonal blocks Hkl where k 6= l contain non-zero entries that couple the updates

of the variables in the subproblems, which does not allow independent solutions of the

subproblems. The approach in OCD is to decouple the subproblems by setting the off-

diagonal block elements, i.e., the elements in Hkl, k 6= l, to zero. Hence, in (2.14) H is

replaced by H which has the form:

H =


H11 . . . 0

...
. . .

...

0 . . . HKK

 (2.18)

Consequently, the subproblems become decoupled and each area can carry out the following

Newton-Raphson step

∆yk = −H−1
kk · rk (2.19)

and update its variables yk ← yk + ∆yk. After this update, the updated values of variables

associated with buses at the boundaries are exchanged among subproblems to enable the

calculation of Hkk and rk as some of the entries in Hkk and rk contain variables from other

subproblems.
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The sufficient condition for the convergence of OCD to a KKT point of problem (2.2) is

given in [12] as

c = ρ(I −H∗−1
H∗) < 1, (2.20)

where I is the identity matrix and ρ(M) denotes the spectral radius of matrix M . H∗ and

H
∗

are defined in (2.16) and (2.18) and the superscript ∗ indicates that these matrices are

evaluated at the KKT optimal point. Note that local convergence properties of the Newton-

Raphson method can be preserved if H∗ is sufficiently close to H
∗
, i.e., the off-diagonal

blocks in H∗ are relatively sparse [11]. Moreover, OCD converges to the centralized solution

if (2.20) is fulfilled.

2.3.2 Additional Correction Term

In the OCD method, the update of the variables in each area is calculated while neglecting the

inter-area couplings at each iteration, which leads to an increase in the number of iterations

until convergence. To reduce the number of iterations of OCD, we add a correction term to

the update in (2.19) according to

∆yk = H−1
kk · (−rk + r̂k), (2.21)

where the idea is to choose r̂k so as to compensate part of the error made by setting the

off diagonal elements in the Hessian matrix equal to zero. We give the derivation of the

correction term for the following simple case where the overall problem is divided into two

subproblems resulting in solving H11 H12

H21 H22

 ·
 ∆y1

∆y2

 = −

 r1

r2

 , (2.22)

where one can get

∆y1 = (H11 −H12H
−1
22 H21)−1 · (−r1 +H12H

−1
22 · r2)

≈ H−1
11 · (−r1 +H12H

−1
22 · r2) (2.23)

∆y2 = (H22 −H21H
−1
11 H12)−1 · (−r2 +H21H

−1
11 · r1)

≈ H−1
22 · (−r2 +H21H

−1
11 · r1). (2.24)
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The approximations in (2.23) and (2.24) are reasonable becauseH12H
−1
22 H21 andH21H

−1
11 H12

are sparse and only have limited impact. Hence, generalizing the above derivation to K sub-

problems, the correction term is approximated by

r̂k =
K∑

l=1,l 6=k

HklH
−1
ll · rl. (2.25)

The correction term is calculated in each area for its neighboring areas by utilizing the area

coupling information contained in Hkl; i.e., in (2.25), HklH
−1
ll · rl is calculated by area l and

communicated to area k. Due to the sparsity of Hkl and rl, the resulting term HklH
−1
ll · rl is

also sparse and only the non-zero elements need to be exchanged with the neighbors resulting

in only a few additional values to be communicated instead of the entire vector. Intuitively,

the required number of iterations until convergence can be reduced because the distributed

update is closer to the centralized update. We name the proposed OCD with the additional

correction term OCD-C. The convergence proof for OCD-C is derived in the Appendix A.

2.4 Alternating Direction Method of Multipliers

2.4.1 Problem Decomposition for ADMM

ADMM is a state-of-the-art distributed method that has often been shown to exhibit good

performance for non-convex optimization. In [10], ADMM is applied to solve the OPF

problem in a distributed manner. Similar to OCD, the power system is first partitioned into

smaller regions, and a subproblem is formulated for each region. However, different from the

way OCD handles the coupling constraints, ADMM decouples the regions by duplicating

variables. Specifically, the power system is decoupled by duplicating the voltages at the

boundary buses of each region. Constraints are then added to enforce the duplicated voltages

to be equal to one another. Figure 2.1 illustrates this decoupling of the system where bus

i and bus j are the buses that are connected by tie line ij. The voltages at bus i and

bus j are duplicated, and the copies assigned to Region A are denoted by Vi,A and Vj,A.

Similarly, Region B is assigned the copies Vi,B and Vj,B. To ensure equivalence with the

original problem, the constraints Vi,A = Vi,B and Vj,A = Vj,B are added to the problem.

These operations remove the tie line and separate the two regions. As discussed in [10], the
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Region A 

Region B 

Bus i 

Bus j 

Region A 

Region B 

Bus i,A 

Bus j,B 

Bus j,A 

Bus i,B 

Vi,A=Vi,B 

Vj,A=Vj,B 

Figure 2.1: Duplicating voltages at boundaries of regions.

added constraints are equivalent to

Vi,A − Vj,A = Vi,B − Vj,B

Vi,A + Vj,A = Vi,B + Vj,B.
(2.26)

The set Vk is introduced to denote the joint set of buses including the buses in Rk and the

buses in neighboring regions that are directly connected to buses in Rk. For each tie line ij

with i ∈ RA, j ∈ VA \RA we further introduce two auxiliary variables z+
i,j and z−i,j to Region

A, and two auxiliary constraints

z−i,j = β−(Vi,A − Vj,A), z+
i,j = β+(Vi,A + Vj,A), (2.27)

where β− and β+ are scaling factors. Constant β− is set to be larger than β+ to give more

weight to Vi,A − Vj,A, which is strongly related to the line flow through tie line ij [10].

Similarly, two auxiliary variables z−j,i and z+
j,i are introduced to Region B. Hence, the feasible

region of all the z’s associated with tie lines is defined as

Z = {(z−, z+) | z−i,j = −z−j,i, z+
i,j = z+

j,i,∀(i, j) ∈ T }, (2.28)

where T is the set of inter-region tie lines. Set (2.28) is derived from expressing the con-

straints in (2.26) using the definitions given in (2.27). Let xk = {(Vi, Pi, Qi) | i ∈ Vk} and

zk = {(z−i,j, z+
i,j) | i ∈ Rk, j ∈ Vk \ Rk} denote all the primal variables and auxiliary variables

associated with the buses in region k, respectively. Furthermore, z = {zk|∀k}. The OPF

problem (2.1) can then be expressed in terms of variables assigned to different regions as
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follows:

minimize
x,z

∑
k

fk(xk) (2.29a)

subject to Akxk = zk, ∀k (2.29b)

xk ∈ Xk, ∀k (2.29c)

z ∈ Z, (2.29d)

where fk(xk) is the generation cost in region k and constraint (2.29b) is obtained by ex-

pressing (2.27) using xk and zk. Constraint (2.29c) enforces the local feasibility constraints,

namely, constraints (2.1b)-(2.1d) for ∀i ∈ Rk, constraint (2.1f)-(2.1e) for ∀i ∈ Vk, and con-

straints (2.1g) for transmission lines in region k. Note that by choosing Ak as the identity

matrix, problem (2.29) reduces to the standard consensus problem where all workers should

find a common variable z. Here we allow Ak to not have full column rank; i.e., the neighbor-

ing workers only need to find common values for the boundary variables but do not need to

share information on all local variables, which greatly reduces the amount of information to

be exchanged among regions. An important property of problem (2.29) is that if z is fixed,

then problem (2.29) can be decomposed into subproblems where each subproblem only con-

tains the local variables xk. This property enables distributing the computations of ADMM

to solve problem (2.29), as described next.

2.4.2 Distributed ADMM Algorithm

The ADMM algorithm minimizes the Augmented Lagrangian function of (2.29), which is

given as follows [10]:

L(x, z, λ) =
∑
k

{
fk(xk) + λ>k (Akxk − zk) +

1

2
‖Akxk − zk‖2

ρk

}
, (2.30)

where ‖x‖2
ρ = x>diag(ρ)x is the square of a weighted norm of x. The vector ρ is a vector

of penalty parameters whose entries are increased during the iterative process to ensure

convergence of ADMM [10] on large systems. With (2.30) formulated, the ν + 1-th iteration

of ADMM consists of the following steps:

xν+1 = argminx∈X L(x, zν , λν) (2.31a)
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zν+1 = argminz∈Z L(xν+1, z, λν) (2.31b)

λν+1 = λν + diag(ρν)(Axν+1 − zν+1). (2.31c)

The x and λ updates can be solved locally as they only contain local variables. The z update

involves information exchanges among regions, and can also be computed locally once the

updated information from neighboring regions is acquired. Hence, the ADMM iterations can

be carried out in a completely distributed fashion with only local information exchanges but

no centralized coordination. Updating x requires solving non-convex subproblems, but with

much smaller scale compared with the original centralized problem, which can be handled

by many existing optimization solvers. Updating z solves a quadratic programming problem

and updating λ is trivial.

To enhance the performance of ADMM on non-convex problems, the penalty parameter

ρ is usually updated to make the Augmented Lagrangian function convex near the solution.

Specifically, each region uses an individual penalty parameter ρk which is updated as follows

[10]:

ρ̃ν+1
k =


ρνkk if Γνk+1

k ≤ ξΓνkk

τρνkk otherwise

(2.32a)

ρνk+1
k = max{ρ̃νk+1

l ,∀l ∈ {k} ∪ Nk}, (2.32b)

with constants 0 < ξ < 1 and τ > 1, and with Nk denoting the set of neighbors that

connect to region k. Γν+1
k = ‖Akxν+1

k − zν+1
k ‖∞ is defined as the local primal residue [5],

which measures the error in the coupling constraints and can be regarded as a measure for

the feasibility of the solution. The update of penalty involves two steps. First, after local

x and λ updates, the local penalty ρk should be increased if the local primal residue does

not decrease sufficiently in the most recent local computation, as shown in (2.32a). Then,

after receiving the penalty parameters from neighbors, the maximum penalty used by the

neighbors and the region itself will be chosen to be used in the next local iteration to mimic

the penalty increasing method used in centralized optimization [10], as shown in (2.32b).

A detailed procedure of the distributed ADMM algorithm is illustrated in Algorithm 1,

where ν denotes the iteration counter. Notice that (2.32a) requires the exchange of ρ̃k and ρ̃l



CHAPTER 2. PROBLEM STATEMENT AND METHODS 28

Algorithm 1 Distributed OPF in Region k with ADMM

1: Initialize x0
k, z

0
k = 0, λ0

k = 0, ρ0
k = ρ0, ν = 0

2: while Not converged do

3: ν ← ν + 1

4: Update xk by solving the local OPF

xνk = argmin
xk∈Xk

fk(xk) + λν−1>
k (Akxk − zν−1

k ) +
1

2
‖Akxk − zν−1

k ‖2
ρν−1
k

5: Prepare messages mν
k = Akx

ν
k

6: Send mν
k to regions l ∈ Nk and receive mν

l from regions l ∈ Nk
7: Update zk with respect to any tie line ij, i ∈ Rk, j ∈ Vk \ Rk using

z−νi,j =
1

2
(m−νk,i,j −m

−ν
l,j,i)

z+ν
i,j =

1

2
(m+ν

k,i,j +m+ν
l,j,i)

8: Update λk using

λνk = λν−1
k + diag(ρν−1

k )(Akx
ν
k − zνk)

9: Calculate the primal residue Γνk for each region k

10: Check convergence

11: Compute ρ̃νk according to (2.32a)

12: Broadcast ρ̃νk to regions l ∈ Nk and receive ρ̃νl from regions l ∈ Nk
13: Update ρk using (2.32b)

14: end while

between each pair of neighboring regions k and l. To reduce the communications cost, this

exchange can be implemented during the information exchange before the z-update. This

may lead to a slightly degraded performance of ADMM since the penalty parameters are

not updated immediately, which, on the other hand, only requires one round of information

exchange for each ADMM iteration.

A general way to check the convergence of (2.31) is to check whether the primal residue

(Γk,∀k) is smaller than some ε [5]. However, in the AC OPF problem, power balance

feasibility must also be ensured. This feasibility is checked after averaging the duplicate
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voltages in each iteration. Convergence is declared when both the primal residue and the

maximum bus power mismatch after voltage averaging fall below ε. The convergence of

Algorithm 1 to a KKT stationary point {x?, z?, λ?} is proved in [10] with the assumption

that both x, λ and ρ are bounded and that a local minimum can be identified when solving

the local subproblems. When ρ is unbounded, Algorithm 1 can only converge to a feasible

point that is close to the local minimum for non-convex problems.

Some guidelines regarding the choice of parameters β+, β−, γ, τ , and the initial value of

ρ are provided in [10], which are summarized as follows:

• β+ and β− should be chosen in a way that β− > β+ > 0 to emphasize more on the

power flow on the tie lines.

• For the update of penalty parameters ρ, ξ is usually set to a value slightly lower

than 1, and τ is set to a value slightly larger than 1 to avoid rapid increase of the

penalty parameter. The larger τ is, the faster ρ increases and consequently the faster

ADMM converges, which, however, generally leads to solutions with worse quality

since the algorithm proceeds more aggressively. Hence, there is a trade-off between the

convergence speed of ADMM and the solution quality it achieves.

• For the initial value of ρ0, it can be set to a value of the same or slightly larger

magnitude as the initial objective function value if a good starting point is used;

otherwise, it should be set to a much smaller value compared with the initial objective

function to ensure convergence.

We should mention that the exact parameters used in ADMM are usually tuned through

empirical studies. [80][64] provide some techniques on tuning ADMM parameters for convex

optimization problems, while we will also provide guidelines on parameter tuning when we

present numerical results of applying ADMM to various power systems.



Chapter 3

Power System Partitioning

This chapter first studies the impact of system partitioning on the convergence performance

of distributed algorithms, and then proposes a partitioning technique based on spectral

clustering. An affinity metric based on the Hessian matrix of the optimization problem

is derived that measures the computational couplings among buses and therefore serves as

the basis for partitioning. As a start, we develop this spectral partitioning technique based

on the OCD method and show that using the proposed spectral partitioning method, both

OCD and OCD-C can converge in significantly fewer iterations to a local optimum of the

original problem. The applicability of spectral partitioning to ADMM will then be presented

in Chapter 4.1.

The performance metrics used to measure the efficiency of OCD and OCD-C in this

thesis include the number of iterations ν and the convergence time t. Note that t is an

approximation of the convergence time assuming that the subproblems would be solved in

parallel with no communications delays, as opposed to our actual implementation where

we solve the problems in series. Specifically, if we use tν1, tν2, ..., tνK to denote the time

spent on local computation of iteration ν in each area, then t =
∑

ν max{tν1, tν2, ..., tνK}. The

communication delay is omitted in the experiments in this chapter, and will be added and

discussed in Chapter 5. The configurations of the test systems used in this thesis are all

taken from MATPOWER [79].

30
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(b) Partition b
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(e) Partition e
	  

(f) Partition f

Figure 3.1: Six partitions of the IEEE 30-bus system.

3.1 Impact of System Partitioning

To motivate the proposal of a system partitioning technique, we first investigate whether

system partitioning has a significant impact on the performance of distributed optimization

algorithms. To study this issue, we conduct an experiment on the IEEE 30-bus test system

to show how different partitions of the system affect the convergence rate of OCD. The

simulation is carried out in Matlab on an iMac with 8GB memory and 3.2 GHz Intel Core

i5. Fig. 3.1 shows six different partitions of the IEEE 30-bus system into 2 to 4 regions and

OCD is applied to each partition. Note that all buses are clustered by the dashed lines except

for buses 25 and 26 which are in the same area in all partitions given the specific topology

of the system. The same initial point and stopping criterion are used for all partitions as

well as the centralized optimization. Initially, we set the voltage magnitudes to 1 p.u., the

voltage angles to zero, and generations to the median of their upper and lower limits. This

initialization will be referred to as a flat start in the following analysis. The stopping criterion

is that the L2 norm of all constraints mismatch is smaller than 10−4. It is guaranteed that

OCD converges to the same result as the centralized optimization if it converges.



CHAPTER 3. POWER SYSTEM PARTITIONING 32

To characterize different partitions, we consider number of regions, number of tie lines,

and number of coupling constraints to be possible metrics that represent the coupling among

regions associated with a specific partition. Furthermore, recall that the convergence crite-

rion for OCD is given by

c = ρ(I −H∗−1
H∗) < 1, (3.1)

we also consider the spectral radius c as a potential metric for inter-region coupling as it is

strongly related to the convergence of OCD.

Table 3.1 shows the convergence performance of OCD using the six partitions and the

characteristics of these partitions. As a comparison, the centralized optimization using the

Newton-Raphson approach is also carried out, which is equivalent to applying OCD but with

only one region. From Table 3.1, the following key observations can be made:

1. For a fixed number of subproblems, different ways of partitioning the system signif-

icantly affect the convergence speed of OCD. For example, the number of iterations

and convergence time approximately increases by 70% if using Partition b instead of

Partition a, both of which partition the system into two areas.

2. The number of subproblems greatly impacts the computation efficiency of OCD. In

general, as the number of subproblems increases, the number of iterations will increase

while the time spent on each iteration will decrease due to the reduced subproblem

size. Note that the time spent on each iteration depends on the size of the largest sub-

Table 3.1: Convergence of OCD using different partitions of the IEEE 30-bus system.

Partition Regions Tie
lines

Coupling
constraints

Spectral
radius c

Iterations Convergence
time t(s)

None 1 0 0 N/A 30 0.09

a 2 4 14 0.6117 93 0.09

b 2 4 14 0.7647 158 0.15

c 3 7 24 0.8386 210 0.14

d 3 7 18 0.8550 251 0.25

e 4 9 24 0.8465 242 0.17

f 4 8 26 0.8893 321 0.21
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problem. Hence, it is worth studying how to balance the coordination needed among

subproblems associated with number of iterations and the size of each subproblem.

3. In general, the number of iterations and convergence time increase with the number

of tie lines, the number of coupling constraints and the spectral radius c. However,

in this example, the number of iterations only strictly increases with the increase in

the spectral radius but not the other two metrics. Hence, we can conclude that c can

be regarded as the most appropriate metric for measuring the computational coupling

between partitioned areas. Bus i and j are strongly computationally coupled if they

have influence on each other in many constraints or the objective function. The smaller

c is, the less coupling exists between areas and generally the faster the convergence. If

all areas are fully decoupled, i.e., no connections exist between any two areas, then c

reduces to 0.

4. It is worth noticing that only by using Partition (a) can OCD show comparable compu-

tation efficiency compared with the centralized optimization, which shows that study-

ing the partitioning problem can help evaluate whether a system can gain time benefit

from performing distributed optimization.

To sum up, how a system is partitioned significantly affects the time efficiency of OCD. More

importantly, only by using a good partition can OCD converge faster than or as fast as the

centralized optimization. Even by using a toy example like the IEEE 30-bus system, one can

see the significance of system partitioning, which will be further magnified in large systems.

Besides OCD, we also apply the OCD-C method with these six partitions and show

that the partitioning of the system also impacts the convergence performance of OCD-C

as well. The results are presented in Table 3.2 and Fig. 3.2. Another purpose of showing

these results is to demonstrate that adding the correction term in OCD-C can effectively

speed-up OCD. The same test cases shown in Fig. 3.1 are used. The same initial point

and stopping criterion is used for both OCD and OCD-C in all partitioning cases. Table

3.2 shows the comparison of convergence speed between OCD-C and OCD, where ν and t

are the number of iterations and convergence time respectively. Note that for OCD-C, t is

the sum of the computation time of the basic Newton-Raphson step in OCD (tOCD) and
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Table 3.2: Speed-up of OCD-C compared with OCD.

Partition
OCD OCD-C Speed-up

ν t(s) ν tOCD(s) tC(s) t(s) Iterations Time

a 93 0.09 53 0.07 0.01 0.08 43% 11%

b 158 0.15 90 0.10 0.02 0.12 43% 20%

c 210 0.14 125 0.10 0.03 0.13 40% 7%

d 251 0.25 131 0.15 0.04 0.19 48% 24%

e 242 0.17 125 0.11 0.04 0.15 42% 12%

f 321 0.21 175 0.13 0.04 0.17 45% 19%

the time calculating the correction terms (tC). The last two columns show the speed-up of

OCD-C compared with OCD in terms of both number of iterations and convergence time.

As shown in Table 3.2, OCD-C reduces the number of iterations by around 45% in all

test cases, which is significant. The speed-up in convergence time is less significant due to

the additional time spent on calculating the correction terms. However, the speed-up in time

is expected to be improved if the time spent on communications is considered because the

reduced iterations lead to reduced time on information exchange which happens after each

iteration.

Fig. 3.2 also confirms the effectiveness of OCD-C. The constraints mismatch in Fig. 3.2b

denotes the 2-norm of mismatch in all constraints associated with the optimization problem.

To show a clearer convergence trend, only the first 160 iterations are included in Fig. 3.2a. It

is worth noticing that by using OCD-C, the oscillation of the value of the objective function

is dampened around the optimal value, which shows the fact that each region can better

revise its search direction for the overall optimality with more information acquired from

neighboring areas. From Fig. 3.2, it is further validated that different system partitions can

lead to very different performances of both OCD and OCD-C. Hence, a good partition of the

system needs to be determined by a systematic approach before any distributed optimization

process.



CHAPTER 3. POWER SYSTEM PARTITIONING 35

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

2.5

3

3.5

x 10
4

Number of Iterations

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e
 (

$
/h

r)

 

 

a OCD
a OCD−C
b OCD
b OCD−C
c OCD
c OCD−C
d OCD
d OCD−C
e OCD
e OCD−C
f OCD
f OCD−C

(a) Convergence of objective function

0 50 100 150 200 250 300 350
10

−4

10
0

10
5

Number of Iterations

C
o

n
s
tr

a
in

ts
 M

is
m

a
tc

h

 

 

a OCD

a OCD−C

b OCD

b OCD−C

c OCD

c OCD−C

d OCD

d OCD−C

e OCD

e OCD−C

f OCD

f OCD−C

(b) Constraints mismatch over iterations

Figure 3.2: Convergence property of OCD and OCD-C.

3.2 The Coupling Parameter

Chapter 3.1 shows that the spectral radius c is an effective metric to measure the coupling

among areas. A smaller c indicates less coupling between subproblems and therefore gener-

ally results in fewer iterations until convergence is reached. In the following analysis, we will

refer to c as the coupling parameter. By choosing c as the coupling parameter, the definition

of coupling refers to a computational coupling between the areas as opposed to a purely

physical coupling. Hence, to reduce convergence time of OCD and OCD-C, one reasonable

approach is to minimize this coupling parameter by intelligently choosing the partitions.
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Figure 3.3: Contour of Hessian matrices of two-region partitions of the IEEE 14-bus system.

Several methods have been proposed for minimizing the spectral radius of a matrix

[81][82]. However, these methods are not suitable for the considered distributed optimization

problem because the targeted matrix defined in those methods is the affine matrix of a vector

in which the elements can be changed to achieve the minimal spectral radius. In other words,

it is required that the structure of the matrix is explicitly given beforehand, whereas in our

problem the structure of the matrix depends on the chosen partition and therefore should be

the result of the minimization process and not an input to it. Therefore, we need to define

the relation between the coupling parameter and the structure of H∗ and then construct H∗

in such a way that the corresponding c is minimized. To that end, we consider the structures

of H∗ and H
∗

and the value of the corresponding coupling parameter. As an example, Fig.

3.3 shows the contour of H
∗

(first row) and H∗ (second row) of three different two-region

partitions of the IEEE 14-bus system where a contour plot displays the isolines of a matrix.

The value of the coupling parameter associated with the partition is given below the contour

plot of matrix H∗. As seen from Fig. 3.3, if the contour of H∗ contains less off-diagonal
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‘noise’ compared with H
∗
, the coupling parameter is smaller. Hence, the off-diagonal blocks

in H
∗

should contain as many zeros or entries with small absolute values as possible. This

assumption can be proven using the following simple case:

Suppose a system is partitioned into two subproblems and has the following H∗ and H
∗

matrices:

H∗ =

 H11 H12

H21 H22

 , H
∗

=

 H11 0

0 H22

 , (3.2)

with H12 = HT
21. Let M = I −H∗−1

H∗, then

M = I −

 H−1
11 0

0 H−1
22


 H11 H12

H21 H22



=

 0 −H−1
11 H12

−H−1
22 H21 0

 . (3.3)

Here, we introduce the theorem on bounds of eigenvalues from [83]:

Theorem 1 (Eigenvalues bound) Let M be an n × n matrix, and let Ci, i = 1, 2, ..., n be

the discs with centers aii and radii Ri =
∑n

k=1,k 6=i |aik|. Let D denote the union of the discs

Ci. Then all the eigenvalues of M lie within D.

The eigenvalue bound is the same as the spectral radius bound, since the spectral radius

is the largest absolute value of all eigenvalues. From Theorem 1, the Ri of M depends on the

absolute value of entries in H−1
11 H12 and H−1

22 H21 and therefore significantly on the values of

the entries in H12 and H21, i.e., on the computational coupling between region 1 and region

2. Obviously, if H12 has a higher degree of sparsity or more entries with small absolute

values, then Ri tend to be smaller, generally resulting in a lower spectral radius of M .

Hence, to minimize the coupling parameter, one can reorder the rows and columns in

H∗sys evaluated at the optimal point where each row/column is associated with a bus so

that the resulting H∗ is as close to block diagonal as possible. Such matrix manipulation is

equivalent to clustering the buses with large coupling to the same area. Hence, a method

which achieves such clustering, provides a means to determine the partition which ensures

superior computational performance of the OCD/OCD-C approach.
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3.3 Spectral Partitioning

Based on the analysis above, we propose an intelligent partitioning method for providing a

good partition of the system with the objective to optimize the convergence performance

of the distributed optimization method. To fully determine the partition of the system,

one needs to determine the number of subsystems and which bus should belong to which

subsystem. In the proposed method, we fix the number of subsystems but find the optimal

way to partition the system into this number of fixed areas.

3.3.1 Affinity Metric

The basic idea of the proposed partitioning method is to group the buses which are compu-

tationally strongly coupled into one area whereas weakly coupled buses should be assigned

to different areas. This is based on the premise that the greater coupling among areas is,

the greater is the mutual impact which eventually results in a longer convergence time of

the distributed optimization. Based on the discussion in Chapter 3.2, we group the buses in

a way that the associated H is as close to being block-diagonal as possible and the coupling

parameter is minimized.

To achieve this goal, we use the spectral clustering method [84]. Spectral clustering [84] is

a graph partitioning method which takes into account the affinity between any two elements

in the target data set, which in our considered problem corresponds to the computational

coupling between any two buses. Compared with conventional graph partitioning methods,

spectral clustering is simpler to implement and forms tighter clusters before clustering so

that the inaccuracy in clustering non-convex regions can be avoided [84]. However, as spec-

tral clustering deploys the K-means clustering algorithm as the last step, it might provide

more than one solution if one runs the K-means algorithm in multiple trials with differ-

ent initializations. In our case, this means multiple “good” partitions are obtained for the

given test system and number of areas. Consequently, the optimal partition is then chosen

out of this set of “good” partitions by selecting the partition with the minimum coupling

parameter.

Since the clustering is performed on the so-called affinity matrix, the key to devising a
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good partitioning method is to define an affinity matrix which quantifies the computational

coupling between the buses as accurately as possible. The choice of the definition of the

affinity matrix is crucial as different affinity matrices lead to different measures to quantify

such coupling and will therefore also result in different optimal partitions. Here, we define

the affinity matrix based on the Hessian matrix H∗sys associated with the considered AC

OPF problem. We take advantage of the fact that if the entry Hi,j in H∗sys which denotes

the second derivative of the Lagrange function with respect to the two variables with indices

i and j is non-zero, then these two variables are coupled and the larger the absolute value

of Hi,j is, generally the stronger is the coupling.

Note that H∗sys needs to be calculated for a particular operating point, which requires

that the AC OPF problem needs to be solved first. However, if the optimal partition of the

system once found does not depend much on the operating point, then the solving of the AC

OPF problem is only a one-time effort. The entries in H∗sys are functions mainly of the line

admittance, the voltage magnitude at each bus, the sin and cos of the differences between

two bus angles and the Lagrange multipliers for active and reactive power balances. Since

the voltage magnitudes are all around 1 p.u. and the terms including bus angles are either

around 0 or 1, what changes most with the operating point are the entries which are functions

of the Lagrange multipliers, especially the multipliers for reactive power balances. Hence,

it is expected that the entries in H∗sys do not depend that significantly on the operating

point. In Chapter 3.4.2, we will further discuss this problem related to the operating point

and confirm through simulations that the optimal partition of the system once found is not

sensitive to the operating point of the system.

Hence, to account for the computational coupling denoted by the entries in H∗sys and

capture the electrical characteristics of the system, the pairwise affinity metric Si,j is calcu-

lated by first summing up all the entries in H∗sys associated with bus i and j then adding

the admittance matrix with a certain weight. Particularly, if we use Ψi and Ψj to denote

the sets of the indices of the variables associated with buses i and j, respectively, which in-

clude the voltage magnitudes, voltage angles, generations connected to the buses, Lagrange

multipliers of the power balances at the buses and slack variables introduced to deal with



CHAPTER 3. POWER SYSTEM PARTITIONING 40

the inequality constraints, the Si,j is then calculated by

Si,j = (1− w) ·
∑
m∈Ψi

∑
n∈Ψj

|H∗sys m,n|+ w · Yi,j, (3.4)

where Yi,j is the element in the admittance matrix of the system and 0 < w < 1 is the weight

used to weigh it in the affinity matrix. This parameter w is set to 0.5 in the simulations.

Note that while the definition of the affinity matrix proposed here works well empirically, it

is not the only way to define the affinity matrix. In fact, for the considered OPF problem,

constructing the affinity matrix by using only the admittance matrix Y can also yield good

partitions due to the fact that the entries in Y are close to many entries in H∗sys. How to

construct the optimal affinity matrix is an open question in spectral clustering. However, we

recommend using H∗sys or some estimates of H∗sys for distributed optimization which captures

the computational coupling between the variables.

3.3.2 Spectral Clustering

After the affinity matrix is derived, spectral clustering is applied. Spectral clustering first

represents the original data points using eigenvectors of the Laplacian associated with the

affinity matrix and then sorts the data points into different clusters employing the K-means

algorithm, which is a popular clustering technique. The reasons that spectral clustering is

used here but not K-means are as follows: 1) spectral clustering can be applied as long as an

affinity matrix is derived while K-means requires explicit representation of each data point

(such as its coordinates), which is not available in our considered application; 2) spectral

clustering is more capable of identifying non-convex clusters. A detailed procedure of spectral

clustering is described in [84] and can be applied to cluster a given set of nb buses into K

regions according to the following procedure:

1. Derive the elements in the affinity matrix according to (3.4) if i 6= j, and set the entries

on the diagonal Si,i = 0.

2. Define diagonal matrix D where Di,i =
∑nb

n=1 Si,n and construct the matrix P =

D−1/2AD−1/2.
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3. Find the K largest eigenvectors of P and form the matrix V by stacking the eigenvec-

tors in column. Then renormalize each row of the generated matrix V .

4. Treat each row in V as a data point and cluster these data points into K clusters using

the K-means algorithm.

5. Assign bus i to cluster k if and only if row i of V was assigned to cluster k.

3.3.3 Implementation

The implementation of the proposed spectral partitioning method to decompose the AC

OPF problem includes four steps:

Step 1: Initialization. The objective of this step is to compute H∗sys and define the number

of regions K. H∗sys is computed by first obtaining the optimal solution for a particular

operating point by solving the AC OPF problem and then taking the second derivatives of

the Lagrangian function (2.12).

Step 2: Define the affinity matrix S. S is calculated according to (3.4). S is a nb × nb
matrix where the indices of the entries corresponds to the indices of the buses in the system.

Step 3: Clustering. Cluster the buses into K areas using spectral clustering based on the

affinity matrix S in N trials. The centroids of the K-means method which are the initial

center of the clusters are randomly chosen for each trial. Due to the random centroids, more

than one possible clustering solution can be found which compose a reduced search space

for the optimal solution.

Step 4: Selection. Compute the coupling parameter of the clustering solutions found in

Step 3. The solution corresponding to the minimum coupling parameter is selected to be

the optimal partitioning of the system.

These implementation steps are summarized in Algorithm 2. Finally, we would like

to discuss three issues regarding the implementation of the proposed spectral partitioning

approach. First, the partition of the system only affects the assignment of variables into

subproblems in the computation, but does not affect the physical structure of the power sys-

tem. Second, it is possible that the buses in the same partition obtained by the partitioning

method are not physically in one connected graph. However, only a very small percentage
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Algorithm 2 Spectral Partitioning

1: Input system configuration and number of regions K

2: Derive the Hessian matrix H∗sys based on empirical information of the entire system

3: Derive the affinity matrix S according to (3.4)

4: for n=1 to N do

5: Perform spectral clustering based on the affinity matrix S to cluster the buses into

K regions with the K-means method as the last step of spectral clustering

6: end for

7: Compute the coupling parameter c of all solutions

8: Output the partitioning solution with the minimum c which represents the assignment

of each bus to the K regions

(around 2 %) of the total number of regions are disconnected. Moreover, the subproblem is

still well-defined even if the region is not fully connected. Hence, the convergence of ADMM

is not affected with those partitions including disconnected regions. Third, the choice of

number of trials N in the K-means step should be chosen large enough such that it is highly

unlikely to find new partitions by doing more trials than N . N generally should increase

with the number of regions K or the system size. However, for large-scale complex systems

with thousands of buses, one can limit N to several hundreds because it will be hard to enu-

merate all possible partitions using spectral partitioning and a set of hundreds of partitions

make a large candidate set for choosing a good partition. Note that as spectral clustering

is a heuristic method, it does not guarantee the solution found is the optimal partition of

the system. However, the actual partitioning of a power system will also be restrained by

other factors in practice, and therefore, the proposed heuristic approach is helpful as it can

provide a set of good partitions that one can choose from, as we will show in the numerical

results.

3.4 Simulations and Discussion

We now present simulation results to provide a proof of concept of the proposed spectral

partitioning method. The proposed partitioning method is tested on the IEEE test systems
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with 14, 30, 57 and 118 and 300 buses and a 1416-bus system consisting of 12 IEEE 118-

bus systems to evaluate its effectiveness. The simulations are run in Matlab on an iMac.

The same flat start and stopping criterion are used for the distributed optimization for the

different partitions and the centralized optimization. The system configurations are acquired

from MATPOWER [79]. For the number of areas, we choose 2 for the IEEE-14 and IEEE-

30 bus test systems, 2 and 3 for the IEEE-57 bus system and 2 to 5 for the IEEE-118 bus

test system. For all test cases, we apply the spectral partitioning method to obtain the

best partition. For comparison purposes, arbitrary partitions are chosen by either simply

searching for a natural geographical partition of the system or using the predefined partition

of the system (e.g., IEEE 300-bus system). Both OCD and OCD-C as well as the centralized

optimization approach with Newton-Raphson iterations are applied to the all partitions of

the systems and computation times until convergence are compared. Each experiment is run

five times and the average convergence time is recorded as the result for this experiment.

The convergence criterion is chosen the same for all cases and is defined as the L2 norm of

all constraints mismatch being smaller than 10−4. For Step 3 in Chapter 3.3.3, the number

of trials in the clustering method N is set to 100. Moreover, we have confirmed that all

test cases for a particular test system converge to the same solution; i.e., distributed and

centralized solutions are equal. The line limit constraint (2.1g) is first omitted, then added

in Chapter 3.4.2 where scenarios with line congestion are particularly discussed.

The performance of the partitioning method is reflected by the convergence speed of the

applied decomposition methods. The convergence speed of OCD and OCD-C is measured

by the number of iterations ν and the convergence time t which is an approximation of the

time spent on solving the subproblems in parallel. The smaller ν and t are, the better the

partitioning.

3.4.1 Effectiveness of Spectral Partitioning

The performance of OCD and OCD-C with spectral partitioning and arbitrary partitioning

are shown in Table 3.3. The first column denotes the test system and number of regions

that the system is partitioned into; e.g., ‘14-2’ denotes that the IEEE 14-bus test system is

partitioned into 2 regionss. The speed-up of OCD and OCD-C is the speed-up in convergence
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Figure 3.4: Spectral partitioning and arbitrary partitioning of the IEEE-118 system.

time compared with the centralized optimization. The partitions of the IEEE-118 system

are presented in the form of diagrams in Fig. 3.4, while part of other partitions are given in

dense form in Table 3.4. In the figures and tables presented, we use ‘SP’ and ‘AP’ to denote

spectral partitioning and arbitrary partitioning, respectively. For the IEEE 57-bus and 118-

bus system, we also experimented with more than one arbitrary partitions and present the

best arbitrary partition in the tables for comparison with the spectral partitioning technique.

For the 1416-bus system, a 12-region optimal partition is found which is identical to the

original 12 118-bus systems. This is due to the fact that this large system is configured in

a way that each pair of neighboring 118-bus systems are only connected by two tie lines,

which naturally leads to little computational couplings between neighboring systems. In

other words, the proposed partitioning method can successfully identify those weak inter-

area couplings and partition the system accordingly.

As shown in Table 3.3, by using the proposed spectral partitioning approach, both OCD

and OCD-C converge faster in all test cases compared with using arbitrary partitions. In-

terestingly, in Case 14-2 and 30-2, only by using spectral partitioning and OCD-C can

distributed optimization converge faster than the centralized approach, which not only con-

firms the effectiveness but also shows the necessity of the partitioning method. However, in

Case 57-2 and Case 57-3, we see that even by using spectral partitioning one can gain no
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Table 3.3: Comparison of the convergence speed of OCD and OCD-C using spectral parti-
tioning and arbitrary partitioning.

Case Partition
Coupling Centralized OCD OCD-C

Parameter ν t(s) ν t(s) Speed-up ν t(s) Speed-up

14-2 SP 0.6255 29 0.028 82 0.036 -29% 43 0.026 7%

14-2 AP1 0.7857 29 0.028 222 0.067 -139% 126 0.058 -107%

14-2 AP2 0.7522 29 0.028 173 0.082 -193% 100 0.066 -136%

30-2 SP 0.6117 30 0.09 93 0.09 0% 53 0.08 11%

30-2 AP1 0.7632 30 0.09 158 0.15 -67% 90 0.12 -33%

30-2 AP2 0.8566 30 0.09 282 0.38 -322% 174 0.31 -244%

57-2 SP 0.6850 30 0.3 93 0.85 -183% 58 0.58 -93%

57-2 AP 0.8970 30 0.3 307 1.35 -350% 204 1.08 -260%

57-3 SP 0.8334 30 0.3 214 0.70 -133% 126 0.62 -107%

57-3 AP 0.8903 30 0.3 315 0.88 -193% 213 0.80 -167%

118-2 SP 0.5124 33 3.8 105 3.4 11% 71 2.7 29%

118-2 AP 0.7261 33 3.8 197 8.9 -134% 116 5.9 -55%

118-3 SP 0.7948 33 3.8 225 2.3 39% 137 1.5 61%

118-3 AP 0.9107 33 3.8 454 4.3 -13% 270 3.5 8%

118-4 SP 0.8044 33 3.8 246 1.4 63% 128 1.2 68%

118-4 AP 0.8935 33 3.8 378 3.0 21% 231 2.8 26%

118-5 SP 0.8217 33 3.8 250 1.3 66% 132 1.2 68%

118-5 AP 0.8745 33 3.8 330 2.1 45% 195 1.9 50%

300-3 SP 0.9068 40 13.6 341 11.6 15% 186 6.8 50%

300-3 AP 0.9645 40 13.6 806 68.1 -401% 535 35.7 -163%

1416-12 SP 0.9442 37 625 608 30.4 95% 284 17.8 97%

efficiency benefit from the distributed approaches which is a valuable result that shows that

the IEEE-57 bus test system is not suitable to be partitioned into subsystems for deploying

OCD or OCD-C given its specific system topology. Hence, the proposed partitioning method

can help to evaluate whether a system is suitable for distributed optimization.

As for larger systems, the distributed optimization methods show improved efficiency

compared with smaller test systems which is generally the case with all distributed ap-
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Table 3.4: Spectral partitioning and arbitrary partitioning of IEEE 14-bus, 30-bus and 57-
bus systems.

Case Partition Regions (shorthanded by ‘R’)

14-2 SP R1:1-5; R2:6-14

14-2 AP1 R1:1,5,6,10-14; R2:2-4,7-9

14-2 AP2 R1:1,5,6,12,13; R2:2-4,7-11,14

30-2 SP R1:1-8,28; R2:9-27,29,30

30-2 AP1 R1:1-9,11,28; R2:10,12-27,29,30

30-2 AP2 R1:1,3,4,12-15,18,23; R2:2,5-11,16,17,19-22,24-30

57-2 SP R1: 1-24,26-29,34-57; R2: 25,30-33

57-2 AP R1: 1-20,27-29,41,43-55; R2: 21-26,30-40,42,56,57

57-3 SP R1: 1-20,26-29,41,43,52-55; R2: 21-26,34-40,42,44-51,56,57; R3: 25,30-33

57-3 AP R1: 1-20,27,29,43,52-55; R2: 21-26,28,34-42,44-51,56,57; R3: 25,30-33

proaches. Again, the speed-up can be significantly improved by using spectral partitioning.

For example, in cases 118-4 and 118-5, both OCD and OCD-C can improve the centralized

convergence time by over 60% if spectral partitioning is used whereas the speed-up can be

insignificant if one uses random partitioning. For the IEEE-300 system, its predefined parti-

tion documented in MATPOWER is not suitable for implementing the distributed methods

while our partitioning method finds a partition for which distributed optimization yields an

improved performance over the centralized case. For the 1416-bus system as well, the speed-

up of our spectral partitioning method is 95% for OCD and 97% for OCD-C which is quite

impressive. The centralized method is extremely time-consuming for this large system due

to the inversion of a matrix of the size of tens of thousands of elements. OCD and OCD-C

can significantly alleviate such computation burden. Furthermore, OCD-C is superior to

the original OCD approach in terms of both number of iterations and actual convergence

time, especially when OCD takes many iterations to converge. Note that OCD and OCD-C

would always take more iterations than the centralized method due to the fact that only

partial information of the system is available at each subproblem and frequent information

exchange needs to be made to achieve the overall optimality.

In addition, even with similar partitions such as the spectral and arbitrary partitions
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in cases 57-3, 118-2 and 118-3, the resulting convergence speeds of distributed approaches

vary substantially, which shows that mere geographical partitioning may lead to suboptimal

solutions and a rigorous method as the proposed partitioning method is needed to determine

a more suitable partition for implementation of distributed algorithms.

3.4.2 Operating Points

As introduced in previous chapters, the first step of the spectral partitioning is to establish

an operating point of the system and solve the associated AC OPF problem. However, as the

operating point corresponds to a specific load level, the entries in the affinity matrix change

as the load level changes. Two questions that one can ask are the following: 1) Can one find

the best partition at any operating point? 2) Does the best partition need to be changed

when the load level changes? The latter is particularly important for the case including line

constraints as increasing load levels may result in congestions in the system.

To answer the above questions, we incorporate the line constraints into the derivation

of the affinity matrix and then apply the proposed partitioning method to find the best

partition for different operating points with such constraints in place. In this discussion,

the IEEE 118-bus test system is used. Specifically, at each operating point, the AC OPF

problem with line constraints is solved first and the Hessian matrix associated with that

operating point is calculated. Then the proposed partitioning method is applied to find the

best 2-region partitions of the system for each operating point. The load level ranges from

0.5 to 1.7 of the base load level given by the original system specifications. For example, load

level 0.5 denotes that all the loads are reduced to 0.5 of their base values. The line limits are

chosen such that different lines may become congested at the optimal solution at different

operating points. The congested lines are shown in Table 3.5 where a line is denoted by the

two buses it connects.

Table 3.6 shows the best partitions found by the proposed partitioning method (denoted

by SP) for each operating point. It can been seen that different partitions might be found de-

pending on the operating point. This is partially due to the fact that lines become congested,

especially when the tie lines associated with the original partition, i.e., the best partition

without congestions, become congested. This is because when a line becomes congested,
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Table 3.5: Congested lines at different operating points.

Load
Level

Congested Lines Load
Level

Congested Lines

0.5 None 1.2 4-5

0.6 None 1.3 88-89

0.7 42-49 1.4 88-89,68-116

0.8 42-49, 38-65 1.5 15-33,43-44,88-89,89-92,68-116

0.9 38-65, 100-103 1.6 5-8,15-33,43-44,88-89,89-92

1.0 38-65 1.7 5-8,15-33,43-44,64-65,88-89,89-92

1.1 None

Table 3.6: Best partitions for different operating points using spectral partitioning.

Partition Load Levels Regions

SP1 0.5,0.6,0.9-1.7 R1: 1-43,72,113-115,117; R2: 44-71,73-112,116,118

SP2 0.7 R1: 1-41,43,72,113-115,117; R2: 42,44-71,73-112,116,118

SP3 0.8 R1: 1-68,72,113-117; R2: 69-71,73-112,118

the Lagrange multiplier associated with the limit on that line will become non-zero which

leads to changes in the entries of Hsys and the affinity matrix. Such changes might lead to

a different partitioning solution because the partitioning is performed based on the affinity

matrix.

To evaluate the performance of the optimal partitions listed in Table 3.6, the coupling

parameters associated with the best partitions and three other arbitrarily chosen partitions

(AP) are plotted in Fig. 3.5. The smaller the coupling parameter is, the better the partition

is. It can be seen that the partition found by our method at each load level performs better

than arbitrary partitions, which demonstrates the effectiveness of the partitioning method

with line constraints considered.

Furthermore, as shown in Table 3.6, SP1 serves as the optimal partition for a fairly

large range of load levels even when different lines become congested. Note that SP1 is

also the best partition determined at the base level without line constraints considered. To

further evaluate how SP1 performs at load levels 0.7 and 0.8 where the partitioning method
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Figure 3.5: Performance of spectral and arbitrary partitioning of the IEEE 118-bus system
with line congestion.
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Figure 3.6: Performance of spectral and arbitrary partitioning of the IEEE 118-bus system
without line congestion.

finds a different partition other than SP1, the coupling parameters of SP1, SP2 and SP3

are compared in Table 3.7. The coupling parameter of SP1 is very close to the coupling

parameters of SP2 and SP3, which indicates that SP1 is also a good partition at such load

levels.

For comparison, we also apply the proposed partitioning method to different operating
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Table 3.7: Coupling parameters of best partitions at different load levels.

Load Level: 0.7 SP2: c=0.5177 SP1: c=0.5478

Load Level: 0.8 SP3: c=0.5327 SP1: c=0.5505

points with the line limits set to infinity where there is no congestion occurring in the system.

For all load levels from 0.5 to 1.7, the same optimal partition SP1 is found. Figure 3.6 shows

the coupling parameters associated with SP1 and the same three arbitrary partitions used

in Fig. 3.5. It is clear that the coupling parameter of SP1 remains stable for all operating

points, which shows that SP1 is the best partition for all operating points.

In summary, the proposed partitioning method can effectively determine the best parti-

tion for different operating points with or without line congestions considered. In addition,

the best partition determined without line constraints is either the best partition or very

close to the best partition for a large range of load levels, even when lines within the areas

become congested. Hence, it is fair to say that the partition does not need to be changed

unless the power flows suffer from drastic changes caused by congested tie lines. In such

cases, one can apply the partitioning method to find good partitioning solutions for each line

congestion scenario. Then a look-up table similar to Table 3.6 can be generated to provide

guidelines on which partition to use when different line congestions occur.



Chapter 4

Applications of Spectral Partitioning

In Chapter 3, we proposed a partitioning method which defines an affinity metric that

captures the coupling among the regions and maps the power system partitioning problem

to a graph partitioning problem. The partitioning method was derived from OCD and

tested for this decomposition method on the traditional IEEE benchmark systems. Yet, it

remains to be seen whether this partitioning technique can devise good partitions of real-

world large-scale systems for an efficient implementation of other distributed methods beyond

OCD/OCD-C. Moreover, the best partition of the system was computed and evaluated for

a single time step, and it is not clear whether the same partition can be used for solving

an optimization problem spanning multiple time steps. Therefore, to address these two

concerns, in this chapter, we first apply this partitioning technique in conjunction with the

ADMM for large-scale OPF problems and then solve a multi-step OPF problem with wind

and storage. The intention is to demonstrate the general applicability and scalability of the

proposed partitioning approach.

4.1 Large-Scale Optimal Power Flow

4.1.1 Applicability of Spectral Partitioning to ADMM

From our preliminary studies, we have found our that OCD or OCD-C generally has difficulty

to converge while applied to large-scale transmission networks such as the Polish network

due to the large coupling among regions that results in the violation of its convergence

51
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criterion even with a good partitioning of the system. Therefore, for large-scale networks,

we choose to use ADMM as it has been shown in literature that ADMM can deal with

large-scale optimization problems in many fields, such as machine learning, networking, and

power systems. It is presented in Chapter 2.4.2 how to solve the OPF problem (2.1) using

ADMM in a distributed manner.

To apply the proposed spectral partitioning technique with ADMM, we follow the same

procedure as Algorithm 2. A difference here from applying the partitioning technique with

OCD lies in how to choose the best partition out of a set of good partitions. For ADMM, the

most balanced partition, i.e., the one with the smallest largest region is chosen to be the best

partition of the system. The reason for this choice is that the subproblems need to be solved

in parallel before each information exchange occurs, thus a balanced partition is preferable

for reducing the maximum subproblem solution time in each ADMM iteration. This criterion

for choosing the best partition is different from the spectral radius criterion used with OCD.

While the convergence of OCD is directly dependent on the spectral radius, the convergence

of ADMM is more affected by how long the slowest region solves its subproblem especially

in large-scale systems, which will be demonstrated in the following experiments.

The affinity matrix used is calculated using (3.4), same as that used for OCD. Here, we

will show that this choice of affinity matrix based on the Hessian matrix is highly related to

the evaluation of the first-order optimality conditions using the distributed ADMM approach,

and therefore works well with ADMM. The OPF problem (2.1) considered in this paper can

be written in the following general form:

minimize
x∈Rp

f(x) (4.1a)

subject to g(x) = 0 (4.1b)

h(x) ≤ 0, (4.1c)

where g : Rp → Rq1 and h : Rp → Rq2 are continuously differentiable functions. We say that

x∗ ∈ Rp, µ∗ ∈ Rq1 , and η∗ ∈ Rq2 satisfy the first-order optimality conditions of problem (4.1)

if the following hold:

1. Lagrangian vanishes:

∇f(x∗) + µ∗>∇g(x∗) + η∗>∇h(x∗) = 0.
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2. Primal feasibility: g(x∗) = 0 and h(x∗) ≤ 0.

3. Dual feasibility: η∗ ≥ 0.

4. Complementary slackness: η∗i hi(x
∗) = 0, i = 1, ..., q2.

If problem (4.1) contains no inequality constraints, then the optimality conditions can

be written in the compact form of F (φc) = 0 where φc = (x∗, µ∗) ∈ Rp+q1 denotes the

centralized solution to problem (4.1). Let H denote the Jacobian of F (φ), which is also

the Hessian matrix of the Lagrangian function evaluated at the optimal solution φc with

respect to both the primal and the dual variables. Note that H here is the same as H∗sys

used in Chapter 3.3.1. If problem (4.1) contains inequality constraints, a slack variable s is

introduced to transform the inequalities into h(x∗) + s = 0, s ≥ 0. We then consider the

optimality conditions of the vanishing Lagrangian, g(x∗) = 0, and h(x∗) + s = 0 and rewrite

them in the compact form of F (φc) = 0 where φc = (x∗, µ∗, η∗) ∈ Rp+q1+q2 , and H is again

defined as the Jacobian of F (φ) evaluated at φc. The reason for this choice of F (φc) = 0 is

that the Jacobian of F (φc) in terms of φc will be the same as the Hessian of the Lagrangian

function of problem (4.1), as the readers may easily check. For the simplicity of presentation,

we consider problem (4.1) with only equality constraints in the following analysis.

Now we introduce φd to denote the counterparts to the centralized solution φc obtained

by solving the local OPF problems in ADMM. Note that φd does not include any auxiliary

variable z and to make φd the same dimension as φc, the average of the two copies of a

duplicated variable is taken to be the resulting solution of that variable. As φd is generally

different from φc, we would like to evaluate how well the distributed solution φd satisfies

the centralized optimality conditions. An important observation here is that the optimality

conditions associated with the non-boundary buses derived for the local OPF problems are

identical to those associated with the non-boundary buses derived for the centralized OPF

problem, which is shown explicitly in Appendix B. Therefore, these optimality conditions

can be satisfied under the assumption that a local minimum can be found for the local OPF

problems. Furthermore, it can be easily checked that the primal feasibilities (2.1c)-(2.1f) at

all buses are satisfied by solving local OPF problems. Hence, it only remains to be evaluated

how optimality conditions apart from (2.1c)-(2.1f) associated with the boundary buses are
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satisfied by φd. Denoting this part of optimality conditions by F b(φd) = 0 and assuming

that ν is large enough such that φd is in the vicinity of φc, then F b(φd) can be approximated

by F b(φd) ≈ Hb(φd − φc). Here, Hb is constructed by taking all the rows in H that contain

any non-zero entry Hm,n where its associated two variables φm and φn belong to different

subproblems. It is expected that if the entries in Hb are generally small in terms of their

absolute values, then φd can better satisfy the centralized optimality conditions, which, on

the other hand, shows that ADMM can converge easier to an optimal point with possibly

fewer iterations.

Hence, we aim to find a partition such that Hb contains mostly small values. Since

minimizing the entries in Hb exactly is generally hard, a heuristic way is to consider |Hm,n|

as an affinity measure between variables φm and φn in spectral partitioning. If |Hm,n| is

large, φm and φn are more likely to be grouped into one subproblem, hence Hm,n is less

likely to appear in Hb based on the construction of Hb. Therefore, the derivation presented

in (3.4) is also a viable way for constructing the affinity matrix for ADMM.

As most distributed methods solve for the optimality conditions in either a direct (such

as OCD) or indirect (such as ADMM) way, one can follow similar analysis on the optimality

conditions to define an affinity metric that works effectively with a specific distributed algo-

rithm. In fact, we have used the same affinity matrix for OCD and ADMM. The derivation

above provides a more general justification for the usefulness of this affinity matrix also for

other distributed approaches which is important for the generalization of the partitioning

technique.

4.1.2 Simulation Results and Discussion

To demonstrate that the proposed spectral partitioning technique is essential for applying

ADMM to large-scale OPF problems, three sets of simulation results are presented. First, the

partitions computed by the spectral partitioning method are compared with other partitions

used in the literature in terms of the resulting performance of ADMM. Then, the impact

of the number of regions on ADMM is presented. Finally, the performance of ADMM is

evaluated after line flow limits are added to the OPF problem.

The test case used is the Polish 2383-bus system during the winter period, which contains
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327 generators and 2896 transmission lines, and its configuration is taken from MATPOWER

[85]. The SNOPT package in TOMLAB [86], which finds local optimums for large-scale non-

convex optimization problems, is used for solving the local OPF subproblems at each ADMM

iteration. For comparison, the centralized AC OPF problem is also solved using the SNOPT

solver. The simulations are run on a MacBook Air in Matlab.

The algorithm is started from two different initial conditions, and we refer to these cases

as the warm start case and the flat start case. In the warm start case, the starting point

is a feasible power flow solution provided by MATPOWER. The warm start is a common

choice in practice to solve large-scale OPF problems. In the flat start case, the voltages

at all buses are initially set to 1 p.u., from which convergence is typically hard to achieve.

For both cases, the initial Lagrange multiplier estimates are set to zero. The initial penalty

parameter ρ0 and its incremental step size τ are set to 107 and 1.1, respectively, in the warm

start case to achieve fast convergence, while in the flat start case, they are set to lower

values. Parameters γ, β+, and β− are set to 0.9, 0.5, and 2, respectively. Convergence is

declared when the largest primal residue ‖Akxk − zk‖∞ falls below 10−4 and the largest bus

power mismatch falls below 10−4 p.u.

Evaluation of Partitions

In this section, the impact of different partitions on the performance of ADMM is evaluated.

Line limits are not included in the simulations in this section, but will be added later on. The

partition obtained using spectral partitioning is compared with the partition used in [10],

which is based on the electrical distance between buses. Specifically, in [10], the partition

is chosen in a way such that each load bus is assigned to the same region as its closest

generator bus in terms of line impedance. If a total of K regions is desired, K generator

buses are selected uniformly as the centers of each region. The distance between any two

buses is then defined as the length of the shortest path in terms of line impedances. This

partition considers the topology and electrical properties of the system, and hence it is a

good benchmark for evaluating the performance of the spectral partitioning technique. This

partitioning method based on electrical distance is denoted as EP in the following analysis,

while the spectral partitioning method is denoted as SP.
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Figure 4.1: Convergence of ADMM with different partitions.

The Warm Start Case

Figure 4.1 shows the performance of ADMM with the partitions obtained by SP and EP,

respectively, using a warm starting point. The ‘Iterations’ on the x-axis denotes the ADMM

iteration as defined by (2.31). The Polish system is divided into 40 and 90 regions using

both methods. In Fig. 4.1a and 4.1b, the blue curves show the progress of ADMM with

the partitions obtained by SP, while the red curves show the progress of ADMM using EP

partitions. The solid curve shows the largest bus power mismatch which is the maximum

power flow balance violation, and the dotted curve shows the largest primal residue. With

both 40-region and 90-region partitions, the blue curves are generally lower than the red

curves, which shows that ADMM with SP approaches feasibility faster than with EP.

It is worth noticing in Fig. 4.1a and Fig. 4.1b that the primal residue reaches 10−4 first
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compared with the power flow mismatch. This is due to the fact that in ADMM, the primal

residue represents the difference between the copies of the voltages at the same bus. Since

voltage errors propagate to line flow errors through multiplication by line admittances, it is

necessary to add power flow feasibility checks in the termination condition of ADMM.

Figures 4.1c and 4.1d show the relative error (in %) of the objective value achieved by

ADMM with respect to the one obtained by a centralized method, which is denoted as

the gap in the objective value. As ADMM with increasing penalty generally provides no

guarantee to converge to a local minimum for non-convex problems, a gap is always observed

at the solution obtained by ADMM. Note that by increasing the number of iterations, the

gap can only be reduced very slowly but not completely eliminated. As shown in Fig. 4.1c

and 4.1d, ADMM with SP converges faster than with EP and achieves a smaller gap.

Table 4.1 further compares the effects of partitions on the number of iterations, the esti-

mated computation time, and achieved objective value of ADMM. Again, the computation

time is estimated by assuming that all subproblems are solved in parallel. Hence, it assumes

that the time it takes to solve all subproblems at each ADMM iteration equals the maximum

time needed to solve a single one. The time spent on information exchange is not accounted

for in this chapter. The number of iterations and computation time measure the efficiency

of the distributed method, while the gap measures the quality of the solution achieved by

the distributed method. As shown in Table 4.1, the computation time of ADMM using SP

is significantly smaller than when using EP. The reason is that the regions defined by EP

can be highly imbalanced, having several large regions that contain generators electrically

close to many loads. As a consequence, solving the subproblems associated with those large

regions can be time-consuming. In contrast, spectral partitioning aims to find balanced

partitions [84], hence it usually generates more balanced regions. Furthermore, the solution

quality achieved by ADMM is satisfactory as the gap stays below 1% if SP is used.

Here, we would like to provide further information regarding the convergence character-

istics of Lagrange multipliers associated with power flow constraints (2.1b), which could be

of particular interest in practice. It has been proven in [87] that for non-convex problems,

a sufficient condition for these Lagrange multipliers to converge is that the multiplier λ of

the constraint (2.29b) converges to a finite value, which is generally the case with a fixed
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Table 4.1: Comparison of different partitions with ADMM.

Partition SP, 40 regions EP, 40 regions SP, 90 regions EP, 90 regions

Iterations 97 119 110 128

Time (s) 218 2442 133 1039

Gap 0.43% 1.10% 0.65% 0.78%

Table 4.2: Convergence of Lagrange multipliers with different upper bounds on the penalty
parameter.

Maximum penalty Iterations Gap
Difference of marginal costs

Mean Median Max

107 >500 0.01% 0.5% 0.3% 2.0%

109 332 0.22% 6.1% 5.2% 22.4%

1011 120 0.43% 35.1% 22.8% 121.7%

penalty parameter ρ. However, to speed up ADMM, the penalty parameter ρ is usually

increased over iterations, which, on the other hand, does not guarantee the convergence of

the Lagrange multipliers. To enforce the convergence of the multipliers, an upper bound of

the penalty parameter is imposed and its impact on the performance of ADMM as well as

the convergence of the Lagrange multipliers is shown in Table 4.2. Specifically, we study the

convergence of marginal costs, i.e., the multipliers associated with the nodal active power

flow equations. The difference between the centralized and distributed marginal cost at one

bus is calculated by marginal cost solved by centralized solver - marginal cost solved by distributed approach
marginal cost solved by centralized solver

·100%

and some statistics over the marginal costs at all buses are reported in Table 4.2.

As shown in Table 4.2, the larger the upper limit of the penalty parameter, the faster

ADMM converges to a feasible solution, but the larger the gap and the difference between

the marginal costs solved by the centralized and distributed approaches. The reason for

this is that a large penalty parameter enforces the subproblems to reach an agreement more

quickly, which, however, leads to a large deviation of the optimality conditions solved by

subproblems from the centralized optimality conditions. Hence, there is a tradeoff between

fast convergence and small gap with ADMM using an increasing penalty parameter.
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Figure 4.2: Mismatch in the power flow constraint with different partitions.

The Flat Start Case

We now evaluate the performance of ADMM with different partitions in the flat start

case and with different penalty parameters. We expect that with a good partition, ADMM

should also converge from a remote starting point and not be affected much by the choice

of parameters.

In the flat start case, the initial penalty parameter ρ0 and the incremental rate τ need

to be set to lower values than those used in the warm start case. For the experiments,

we use ρ0 = 104, 105 and τ = 1.05, 1.1, respectively. A smaller value of ρ0 may enable

ADMM to converge if the algorithm runs long enough but will lead to significantly larger

computation time which is impractical. The system is partitioned into 40 regions using the

SP and EP methods. With the partition found by EP, ADMM fails to converge with all

combinations of parameters stated above, while with the partition found by SP, ADMM

only fails when ρ0 = 105 and τ = 1.1. Figure 4.2a shows the best performance of ADMM

out of the four settings of parameters using the two 40-region partitions computed by SP

and EP, respectively, with a flat start. With SP, ADMM still converges to a feasible point,

while with EP, ADMM fails to converge. For the solved case, ADMM takes 276 iterations,

which results in 674 seconds, and the gap is 2.92 %. Although the speed and accuracy of

ADMM degrade in the flat start case compared with the warm start case, ADMM with the

SP partition still converges to a feasible point. The feasible solution obtained by ADMM

with the SP partition can be used to initialize another run of the distributed solver, which
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will further reduce the gap.

Figure 4.2b shows the performance of ADMM using different 90-region partitions with a

different initial penalty ρ0 = 106 in the warm start case. Again, ADMM only converges with

the SP partition, while it fails to converge with the EP partition, which shows that ADMM

is more robust with respect to the parameter settings using SP.

Impact of the Number of Regions

In this section, we evaluate how the performance of ADMM changes as the number of regions

changes. In the following experiment, the SP method is used to find partitions of the Polish

system with 10 to 140 regions with an increment of 10 regions between any two partitions.

These partitions cover both a mild partitioning of the system where there are hundreds of

buses in a region and a severe partitioning of the system where there are only tens of buses

in a region. The performance of ADMM with different number of regions is illustrated in

Fig. 4.3 for the warm start case.

Figure 4.3a shows the decrease of the maximum bus power mismatch, where each curve

corresponds to a partition with a different number of regions. Impressively, with all the

partitions, a feasible point can be found within 150 iterations regardless of the level of

partitioning of the system. Figure 4.3b shows that the number of iterations does not increase

significantly as the number of regions increases. Figure 4.3c shows the computation time

with different number of regions, where the grey horizontal line denotes the time spent

on solving the AC OPF problem in a centralized manner using the SNOPT solver. The

blue curve shows the convergence time of ADMM and the red curve shows the speed-up

of ADMM with respect to the centralized approach calculated by “centralized computation

time/convergence time of ADMM”. As expected, the computation time of ADMM tends

to decrease as the system is partitioned into more regions, since the time spent on solving

subproblems can be greatly reduced if the scale of the subproblems is small. However, as

shown in Fig. 4.3d, the gap increases with the increase of the number of regions.

Notably, in Fig. 4.3c, there is a cross-over point (around 40 regions) of the blue and grey

curves beyond which the computation time of the distributed approach is smaller than the

centralized approach. This shows that in terms of the estimated computation time, there
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Figure 4.3: Performance of ADMM with different number of regions.

is a critical number of regions in implementing the distributed method to outperform the

centralized approach. However, this does not necessarily imply that one should partition the

system into as many regions as possible because more regions imply more communications,

which is an important concern in distributed optimization that will be investigated in the

next chapter. While the time needed for information exchange is not accounted for in

this chapter, it is clear that partitioning the system into more regions would require more

communications among the regions, which may lead to large delays. In addition, a partition

with more regions would require more regional computational entities. Hence, the number

of regions is a design parameter that should satisfy specific requirements of the utilities in
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terms of both the performance of the distributed method and the available computational

and communication resources.

Adding Line Limits

We now evaluate the performance of ADMM with thermal line limits (2.1g) included. We

consider the following two scenarios. In the first scenario, the line limits of all the transmis-

sion lines are added to the constraint set while in the second scenario only the line limits of

several lines prone to congestion are added. With the partitions devised in previous sections,

there are tie lines congested in each of the partitions. To investigate whether the congestion

of tie lines has significant impact on the performance of ADMM, another partition is devised

by manually increasing the affinity between the buses that the congested lines connect to in

the SP method. As a consequence, the obtained partition does not include any congested

tie lines as each congested line is included in a single region.

Table 4.3 shows the performance of ADMM with all line limits added. In this setting,

the centralized approach takes 355 seconds to convergence, which is longer than the case

without line limits. As shown in Table 4.3, with line limits ADMM requires more iterations

Table 4.3: Performance of ADMM with different partitions when all line limits are included.

Partition 40 regions, no tie line
congested

40 regions, tie line
congested

80 regions, tie line
congested

Iterations 161 124 147

Time (s) 679 511 237

Gap 1.92% 1.56% 2.25%

Table 4.4: Performance of ADMM with different partitions when few line limits are included.

Partition 40 regions, no tie line
congested

40 regions, tie line
congested

80 regions, tie line
congested

Iterations 129 125 127

Time (s) 304 346 122

Gap 1.05% 0.96% 1.25%
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and time to terminate and the optimality gap is also larger. This is due to the fact that

solving the subproblems takes longer and an agreement on the voltages at the boundaries

is harder to achieve with the additional line constraints. However, comparing the two 40-

region partitions given in Table 4.3, we notice that the performances of ADMM are similar

whether the congestion occurs on tie lines or non-tie lines. With the partition with tie lines

congested, ADMM even performs better than with the partition where the congested lines

are forced to be included in a single region. This observation suggests that the partition

obtained by SP does not need to be changed even if congestion occurs on tie lines.

Better performance of ADMM can be achieved when only a few line limits are incor-

porated, as shown in Table 4.4. The included line limits are the ones associated with the

congested lines when all the line constraints are considered. With all the three partitions,

a gap of around 1% can be achieved. Hence, with only certain line constraints considered,

ADMM can still reach a high quality solution efficiently.

4.1.3 More Test Cases

Our results provide initial evidence that the recently developed partitioning technique [88] in

conjunction with the ADMM method can be used for distributed optimization in real-world

large-scale power systems most of which are non-convex. However, it remains to be seen

whether this approach can apply to other transmission networks of similar scales as well. This

is a legitimate concern that requires further research. As a first step, we have also tested the

developed distributed optimization approach on two other large-scale transmission networks,

namely, the Great Britain 2224-bus system and the Polish 3012-bus system during the winter

period, whose configurations are also taken from MATPOWER. These new simulations are

conducted using Matlab v8.5 on an iMac. As shown in Table 4.5, the proposed partitioning

method can again find good partitions for these two test systems with which ADMM can

converge to a solution close to the local optimum very efficiently compared with the time

required by the centralized solution. It is worth mentioning that, in contrast, for all the

additional test cases, with the partitions found by the electrical distance-based partitioning

(EP) method, ADMM fails to converge to a feasible point within 200 iterations which also

takes more than 500 seconds. These results provide additional evidence on the validity of
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Table 4.5: Convergence of ADMM on real-world systems.

Test system GB 2224-bus Polish 3012-bus

Centralized time (s) 485 208

Number of Regions 53 70 50 86

Iterations 165 144 132 159

ADMM Convergence Time (s) 342 187 214 197

Gap 0.51% 0.52% 0.22% 0.52%

the proposed approach.

While the evidence shown in this chapter is not sufficient to guarantee that this approach

would work effectively for all non-convex problems and for other decomposition techniques,

it is a promising step in this direction. As demonstrated in Section 4.1.2, the efficiency and

robustness of a distributed method is highly dependent on the system partitioning method

used. Fortunately, the spectral partitioning technique is indeed very effective in improving

the efficiency and robustness of distributed methods.

While the results of this chapter look very promising, one limitation of the presented

approach is that it can only find solutions close to local optima of non-convex problems,

which, however, is also a general limitation of most distributed optimization approaches

applied to non-convex problems. Another issue regarding ADMM is that there is usually a

trade-off between faster convergence and higher solution quality. This is due to the fact that

the Lagrange multipliers associated with the constraints are not guaranteed to converge with

the penalty parameter increasing to infinity in the non-convex case [87]. As presented in the

results, the larger the penalty parameter, the faster ADMM converges but the larger the gap

and the difference between the Lagrange multipliers solved by the centralized approach and

ADMM. One way to enhance the convergence of multipliers is to impose an upper bound

on the penalty parameter, which, on the other hand, might lead to an increased number of

iterations.
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4.2 Multi-Step Optimal Power Flow

4.2.1 Introduction

With an increasing number of intermittent energy resources and storages integrated into

the power system, the question that arises is how to optimally coordinate these resources to

overcome the uncertainty introduced by the intermittent resources and the inter-temporal

coupling of storages. Multi-step optimization approaches based on Model Predictive Control

(MPC) have been proposed to address this challenge by determining the optimal states of

the controllable devices with a look-ahead scheme that accounts for the temporal charac-

teristics of both intermittent resources and storages [89, 90]. Such MPC-based approaches

can effectively coordinate the intermittent resources and storages, hence reduce the total

generation cost over a certain period of time.

However, the MPC approach is computationally expensive since the problem size grows

drastically as the optimization horizon increases. Such computation complexity restricts

the practical use of MPC because no control actions can be taken if an MPC problem is

not solved within the required amount of time due to the lack of computation capability or

storage capacity at the central computation entity. To address this issue, distributed MPC

has been studied and applied to various applications [91, 92, 93, 94], where one common

approach is to use decomposition techniques to decompose the optimization problem into

subproblems that can be solved in parallel [95, 96] with only a small amount of data shared

among neighboring regions to achieve the overall optimality of the entire system.

While distributed approaches can alleviate the centralized computational burden, most

distributed optimization methods are iterative and generally take many iterations to converge

for the MPC problem. To improve the efficiency of the MPC approach, we apply the proposed

spectral partitioning method in conjunction with OCD-C to solve a multi-step AC OPF

problem. Specifically, we optimize the usage of the wind generation and minimize the total

generation cost over a 24-hour time period by optimally setting the charging/discharging

status of the storages. This section contributes to existing work in the following two aspects.

First, we show that the efficiency of the distributed MPC can be significantly improved by

using a good partition of the system. Such efficiency gain can be very beneficial for the
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integration of renewable resources in practice. For example, if an MPC problem can be solved

in shorter time, the calculation can start closer to the dispatch time (e.g., an hour or two

ahead of time) when the wind forecasts are more accurate compared to day-ahead forecasts.

Moreover, a faster distributed method provides more capability to handle MPC problems

with longer time horizons or higher time resolutions. Second, different from Chapter 3.4

where the best partition of the system is computed and evaluated for a single time step,

we demonstrate in this paper that the same partition can be used for solving the MPC

problem for multiple time steps, which eases the practical use of distributed MPC as the

partition of the system does not need to be changed frequently. Apart from AC OPF, the

proposed approach can also be applied to solve similar multi-step optimization problems in

a distributed fashion as well.

4.2.2 Problem Formulation

Figure 4.4 shows an example of the wind and load data for a 24-hour period obtained from

the Bonneville Power Administration at a 10-minute increments. As seen from Fig. 4.4,

the wind generation at different times of the day is usually random and it is possible that

the wind generation is high while the demand of the system is low. Hence, to reduce the

generation cost at the peak demand, the procedure is to store the excessive energy generated

by the cheap generators during the time when the wind generation can serve most of the

system load and use the stored energy when the demand is high. With this purpose in mind,

we formulate a multi-step AC OPF problem where the objective is to minimize the total

generation cost of non-renewable generations over a finite time horizon. It is assumed that

the wind generation must be consumed when available, hence it can be treated as negative

load at the bus where the wind generation is placed. The overall multi-step AC OPF problem

at time step T is formulated as follows:

minimize f(P ) =
T+N−1∑
t=T

(
nb∑
i=1

(
aiP

2
i (t) + biPi(t) + ci

))
(4.2a)

subject to
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Figure 4.4: 24-hour load and wind data with 10-minute intervals.

Pi(t) + PW
i (t)− P In

i (t) + POut
i (t)− P d

i (t) = |Vi(t)|
∑
j∈Ωi

|Vj(t)|(Gij cos θij(t) +Bij sin θij(t))

(4.2b)

Qi(t)−Qd
i (t) = |Vi(t)|

∑
j∈Ωi

|Vj(t)|(Gij sin θij(t)−Bij cos θij(t)) (4.2c)

Ei(t+ 1) = Ei(t) + ηcP
In
i (t)− 1

ηd
POut
i (t)− εsbl (4.2d)

V min
i ≤ Vi(t) ≤ V max

i (4.2e)

θmin
i ≤ θi(t) ≤ θmax

i (4.2f)

Pmin
i ≤ Pi(t) ≤ Pmax

i (4.2g)

0 ≤ P In
i (t) ≤ P In,max

i (4.2h)

0 ≤ POut
i (t) ≤ POut,max

i (4.2i)

Emin ≤ Ei(t+ 1) ≤ Emax (4.2j)

(|Vi(t)||Vj(t)||Yij| cos(θij(t)− δij))2 + (|Vi(t)||Vj(t)||Yij| sin(θij(t)− δij))2 ≤ (Smax
ij )2

(4.2k)

for t = {T, . . . , T+N−1} and i = {1, . . . , nb}. Most notations used in the above formulation

are the same as those used in the standard OPF formulation (2.1) except that they are

dependent on time step t. N and T denote the length of optimization horizon and the

initial time step, respectively. P In
i , POut

i and Ei denote the power injected into/drawn from

storage and the energy level in the storage at bus i, respectively. θij is the difference of

voltage angles between bus i and bus j. Gij and Bij are the real part and imaginary part of
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the admittance matrix element yij, respectively. εsbl, ηc and ηd are the standby loss, charging

and discharging efficiency of the storage.

Equations (4.2b) and (4.2c) are the active and reactive power flow balances at each bus.

Equation (4.2d) corresponds to the inter-temporal constraints on storages. As a standard

procedure in MPC, the solution found for the first time step is applied once the overall

problem is solved. Then the optimization time horizon is shifted by one time step and the

optimization problem is formulated and solved for the next time step.

In the following, we use the spectral partitioning with OCD-C to solve problem (4.2).

For the MPC problem, the operating point changes with the time step as the load and wind

generation vary during a day. We calculate the best partition at the operating point of the

base load level with N = 1. This partition is applied to solving the MPC problem at all

time steps, which, as will be shown later, is also good for solving the MPC problem with

an increased time horizon. In Chapter 4.2.3, it will be further discussed how to choose the

operating point for applying the partitioning method and handle the scenarios when different

lines become congested.

4.2.3 Case Study

The distributed MPC approach is tested on the IEEE-14 bus and 118-bus test systems. For

the 14-bus system, a wind generator is located at Bus 5 and a storage device is located at Bus

14. While for the 118-bus system, a wind generator is placed at Bus 19 and a storage device

at Bus 70. In this section, we will present two sets of simulation results. First, the results

using different time horizons are compared, which show the benefit of the MPC approach

in terms of reducing the generation cost and the ramping of the generators. Next, the

convergence speeds of OCD-C for different partitions are compared, which demonstrates the

importance of system partitioning and the fact that the previously developed partitioning

method can be effectively applied to the MPC problem to enable an efficient implementation

of the distributed approach.

The simulations are run in Matlab on an iMac. The storage device has a roundtrip

efficiency of ηc · ηd = 0.95%, standby loss of 0.005 p.u.·10-minute and maximum capacity

of 1.0 p.u.· 10-minute. The wind and load data in Fig. 4.4 is used which is normalized
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according to the loads of both systems. The simulations are run for a 24-hour period using

the time horizons of N = 1, 3, 6 and 9 with the time interval of 10 minutes, which correspond

to no horizon, 30-minute, 60-minute, and 90-minute horizon, respectively. As the longest

time horizon is 90 minutes and there are in total 144 time intervals over the 24-hour period,

a total of 135 time steps are simulated using the available data. A multi-step AC OPF

problem is solved at each time step. For comparison, the centralized optimization which uses

Interior Point in combination with Newton-Raphson to update variables is also simulated.

Convergence is declared if the L2 norm of all the mismatch between the constraints is lower

than 10−3. The same starting point and convergence criterion are used for the OCD-C

method with different partitions and the centralized approach. Again, note that the OCD-

C always converges to the same solution as the centralized approach regardless of what

partition is used.

Impact of the Optimization Horizon

In this section, we evaluate the impact of the length of the optimization horizon. Figure

4.5 shows the optimal storage energy level with different time horizons denoted by N . It is

clear that the utilization of the storage increases as the time horizon increases for both test

systems. The benefit of optimizing the usage of the storage is demonstrated in Table 4.6

which shows the total generation cost and the total generator ramping over a 24-hour period

with different horizons. Again, as the time horizon increases, both the generator ramping
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Figure 4.5: Optimal storage level of the storage device.
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Table 4.6: Total generator ramping and total generation cost.

System Time horizon N 1 3 6 9

14-bus
Generator ramping (p.u.) 4.1604 3.9598 3.7841 3.7708

Generation cost ($) 679,145 679,144 678,985 678,874

118-bus
Generator ramping (p.u.) 54.70 54.53 54.27 53.93

Generation cost ($) 12,067,322 12,067,313 12,067,198 12,066,768

and the generation cost decrease. Even though the generator ramping is not included as a

hard constraint in the optimization problem, it has been reduced as the utilization of the

storages smoothes out the fluctuations in the load. These results indicate that the MPC

approach can effectively integrate the wind generation and storages especially with a longer

time horizon. However, this does not indicate that one should extend the time horizon as

long as possible, due to the fact that the problem size increases with the length of the time

horizon. Hence, it takes more time and computation resources to solve the MPC problem

with a longer time horizon. Besides, the forecasted wind and load data might not be available

for a long time horizon at the required resolution. Overall, the choice of the length of the

time horizon depends on specific applications and the computation capability and is beyond

the scope of this thesis.

Impact of Partitioning

In this section, we focus on the efficiency of the distributed MPC approach and show that

a good partition of the system is the key to efficiently implementing distributed optimiza-

tion methods. For both the 14-bus and 118-bus systems, two partitions are used for the

decomposition of the problem as shown in Fig. 4.6. “SP Partition” denotes the best parti-

tion determined by the spectral partitioning technique, while “Arbitrary Partition” denotes

a geographical partition of the system which is likely to be chosen if one determines the

partition only by observing the diagram of the system. Note that here we only partition the

systems into two areas for comparison, but as shown in Chapter 3, the spectral partitioning

method can be applied to find a partition of the system with more than two areas.

Of all the 135 time steps, the average, median and maximum number of iterations until
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Figure 4.6: Partitions of the IEEE test systems with wind generation and storages.

convergence of OCD-C using the two different partitions of both test systems are shown in

Table 4.7 and Table 4.8, respectively, and they are compared with the centralized approach.

As shown in both tables, using spectral partitioning will lead to significantly reduced iter-

ations compared to the arbitrary partition. Another observation is that with an increasing

length of the optimization horizon N , the number of iterations does not necessarily increase

substantially, especially while using the spectral partitioning approach. This is due to the

fact that spectral partitioning identifies partitions with little coupling and such coupling

does not increase with the optimization horizon.

In terms of the actual computation time, the average convergence time is shown in Table

4.9 and Table 4.10, respectively. It can be seen from Table 4.9 using spectral partitioning,

the convergence time of OCD-C is only slightly higher compared to the centralized approach,

while the convergence using the arbitrary partition is much slower. Note that the sparsity of
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Table 4.7: Number of iterations to convergence for MPC with the IEEE 14-bus system.

Iterations N Centralized SP Partition Arbitrary Partition

Average 1 34 65 124

Median 1 34 73 135

Maximum 1 37 74 139

Average 3 46 76 148

Median 3 46 83 156

Maximum 3 66 108 210

Average 6 46 78 158

Median 6 46 84 159

Maximum 6 69 131 216

Average 9 47 80 166

Median 9 46 85 166

Maximum 9 91 132 235

the matrices is exploited in the simulation to speed up the calculation, which works more to

the advantage of the centralized approach where the matrices involved in calculations are rel-

atively sparser. Hence, on this toy example, it is fairly impressive that the distributed MPC

approach achieves a comparable time efficiency as the centralized approach with spectral

partitioning.

Even though for the IEEE-14 bus system, the centralized approach converges the fastest

on average, the time efficiency of OCD-C will be superior than that of the centralized ap-

proach while deployed on the larger 118-bus systems, as shown in Table 4.10. This result

shows an increased benefit of implementing distributed approaches on larger systems and

that one can expect an efficiency gain of distributed approaches deployed on large-scale

systems if the partition is chosen properly.

Now, to evaluate the robustness of the partition with respect to multiple time steps,

the convergence time with the time horizon N=9 over all time steps are shown in Fig. 4.7.

In the 14-bus case, there is no line congestion observed over all time steps. As shown in

Fig. 4.7a, SP Partition, which is the best partition found by the partitioning method at

base load level for N=1, always leads to a reduced convergence time compared to Arbitrary
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Table 4.8: Number of iterations to convergence for MPC with the IEEE 118-bus system.

Iterations N Centralized SP Partition Arbitrary Partition

Average 1 43 61 102

Median 1 44 61 103

Maximum 1 57 64 127

Average 3 54 72 128

Median 3 52 70 127

Maximum 3 83 97 176

Average 6 54 76 145

Median 6 53 75 145

Maximum 6 84 106 225

Average 9 56 80 157

Median 9 54 77 154

Maximum 9 81 112 264

Table 4.9: Average convergence time (in seconds) for MPC with the IEEE 14-bus system.

N Centralized SP Partition Arbitrary Partition

1 0.015 0.027 0.040

3 0.072 0.093 0.164

6 0.211 0.223 0.380

9 0.348 0.408 0.695

Partition for all time steps. Hence, the best partition is fairly robust and there is no need

to change the partition for different time steps in this case. For the 118-bus system, a tie

line associated with the best partition becomes congested during time step 1 to 13, which,

however, does not affect the convergence time of the OCD-C method much. In other words,

the best partition is robust for all time steps even when line congestion occurs. However,

there could be cases where the convergence performance of the distributed method degrades

once the tie line constraints become binding due to the increased computational coupling

between the areas that the tie line connects.

Finally, we would like to provide insights into how one can determine the partition of
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Table 4.10: Average convergence time (in seconds) for MPC with the IEEE 118-bus system.

N Centralized SP Partition Arbitrary Partition

1 0.287 0.256 0.528

3 2.210 1.766 3.861

6 7.689 7.112 16.297

9 17.247 16.173 38.254

a system for different time steps when the load levels vary heavily over the considered

simulation time frame. Since the best partition performs well for a fairly large range of

load levels, one can find the best partition at the load level that occurs during most of the

day. When the tie lines associated with the best partition are not severely congested as

in the considered case, the best partition can be applied to all time steps. When the tie

lines become severely congested, the partitioning method can be applied for that particular

operating point to find a new partition. Overall, due to the robustness of the best partition,

it can be expected that the computation effort spent on determining the partition of the

system is quite low because the partition only needs to be computed for a few operating

points with different line congestion scenarios.
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Figure 4.7: Convergence time of OCD-C with N=9.



Chapter 5

Role of Communications Plane

As shown in the previous chapters, the implementation of distributed methods depends

on the information exchange among multiple control entities. Therefore, compared to the

centralized approach, communications will have greater impact on distributed methods.

However, it is not clear what communications infrastructures and technologies should be

adopted for distributed methods in practice. To investigate this issue and bridge the gap

between the power system communications research community and the distributed opti-

mization research community, this chapter models the communications infrastructures and

schemes required by distributed methods using the OPNET modeler. The capabilities and

limitations of centralized and distributed communications infrastructures are investigated in

terms of communications delays incurred and their impact on the convergence of OCD and

ADMM.

5.1 Communications Technologies for Distributed

Optimization

5.1.1 Communications Infrastructures

The smart grid is typically treated as a two-layered system: the power system overlaid with

a communications plane that comprises a communications network, as shown in Fig. 5.1,

where the dotted blue lines denote the communication links between devices and control

76
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Figure 5.1: Representations of the communications plane and the underlying communica-
tions infrastructures for distributed optimization.

centers, and the solid double-arrowed lines denote two-way communication links among the

control centers. This integrated two-layered system entails a decentralized architecture,

where a control center serves as a coordinator or an aggregation node for a geographical

region. This paper only focuses on the upper-layer communications network and treats the

control centers as end nodes. Thereby, the two communications infrastructures studied are

defined as the centralized infrastructure and the distributed infrastructure, as illustrated in

Fig. 5.1.

Even though no centralized coordinator is needed in distributed algorithms, the central-

ized communications infrastructure is still considered in this paper due to the fact that it

resembles the SCADA system currently used in most utility networks, where the substa-

tions (or RTUs) can exchange data with SCADA, but not directly with other substations.

As this centralized infrastructure is likely to be in use for the next ten to twenty years in

many places, a better understanding of its capabilities for supporting distributed methods is

needed. As shown in Fig. 5.1a, in the centralized infrastructure, a CCC connects to all the

ACCs in a star topology. To deploy a distributed algorithm, the computation is still carried

out at individual ACCs, while the CCC only controls the communications. Specifically, at

each iteration, after all ACCs have solved their subproblems, the CCC collects from all ACCs

the data that needs to be shared and redistributes that data to the designated ACCs.

In the distributed infrastructure, the communications topology is partially a meshed net-
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work as shown in Fig. 5.1b. The major difference between the two infrastructures is that

in the distributed infrastructure, ACCs can directly communicate with neighbors locally by-

passing the CCC. However, note that a CCC might still exist in the system but only perform

reduced functionalities such as determining the partition of the system or coordinating the

ACCs under abnormal conditions.

The distributed infrastructure potentially has the following advantages: 1) if commu-

nication fails at one ACC, other parts of the grid might resume proper operations quickly

whereas the failure at the CCC might harm the entire network in the centralized infrastruc-

ture; 2) the data generated by the intermediate steps of the optimization process does not

need to be sent to one single hub such as the CCC, thus reducing the probability of traffic

jamming at a certain node; 3) generally, the communication delay is shorter if a shorter

direct path is available; 4) it is more scalable to large systems and an increased number

of ACCs. However, additional communication links might need to be built among ACCs

which may incur additional cost depending on the communications technologies adopted.

Nevertheless, many actions are being taken to enhance direct and fast data communications

among substations and the grid is evolving towards a more distributed architecture. There-

fore, it is worth studying whether distributed methods yield better results when one uses a

distributed communications infrastructure.

In the following sections, we introduce the communications protocols and schemes suit-

able for these two infrastructures, provide their models in OPNET, measure the communica-

tion delays, and evaluate under which circumstances they can support distributed methods.

Although the choices of the communications schemes and technologies may vary with appli-

cations, similar analysis can be performed for other communications infrastructures following

the proposed approach.

5.1.2 Communications Technologies

The choice of communications technologies in a smart grid depends on many factors such as

the requirements of specific applications, the geographical characteristics of the network, the

existing communications infrastructure, and so on, and there is no single solution as to which

is the optimal technology to use. For distributed optimization, technologies that support
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long distance communications are preferable as control centers are generally geographically

far apart. Potential choices include wired communications technologies such as optical fiber

and power line communication, as well as some wireless communications technologies such as

cellular networks and WiMAX. However, deploying wireless technologies in the considered

application is still at a very early stage where extensive studies are needed for demonstrating

its feasibility and potential advantages.

This paper assumes optical fiber communication, which is adopted as the main technol-

ogy for the power system backbone network to support fast and reliable data transmission

[45, 97]. The topology of the communications network can be built either dependently or

independently of the power grid. Same as the approach pursued in [41, 42], we choose to

build the topology dependently of the grid in the simulations. More specifically, there are

dependent media such as Optical Power Ground Wire (OPGW) and All-Dielectric Self Sup-

porting (ADSS) cables that support optical fiber communication in power systems which are

installed along existing overhead transmission lines [41]. Such dependent media is usually

owned by utilities, hence can be used to build utility-proprietary networks over which the

utilities have complete control.

5.1.3 Communications Protocols and Schemes

The Inter-Control Center Communications Protocol (ICCP or IEC 60780-6/TASE.2), which

is the current protocol used in industry for communications between control centers, is a

natural choice for distributed optimization [98]. The ICCP is based on the client/server

principle, where the data exchange process is always initiated by a request from a client (one

control center) to the server (another control center). In the considered infrastructures, the

CCC and ACCs can act as both clients and servers. The ICCP is built over TCP/IP, with

lower layer protocols Ethernet and SONET for the communications within a substation and

among the control centers, respectively.

Based on the client/server principle of ICCP, we propose to study different communica-

tions schemes for the centralized and the distributed communications infrastructures. In the

centralized infrastructure, the CCC requests from all the ACCs the information that each

ACC needs to share with others in a polling fashion. The polling scheme is currently used for
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the communications between the control center and substations [99]. After the collection of

information from all ACCs, the CCC replies to each ACC with the information it requests.

In contrast, in the distributed infrastructure, each ACC directly requests information from

its neighboring ACCs in a polling fashion.

5.2 Communications Modeling in OPNET

The OPNET modeler is an event-based network simulator that enables the simulation of var-

ious communications networks with different applications. It adopts a hierarchical structure

where the user can model the network topologies in the network domain, set up the nodes’

properties in the node domain, and define specific states of the protocols in the process

domain. In this section, we describe in detail how we use OPNET to model and simulate

the communication process involved in distributed optimization.

5.2.1 Network Topology

Note that the communication infrastructures discussed in Section 5.1.1 denote the logical

infrastructure that defines which pair of control centers (CCs) can request and receive mes-

sages from each other.The first step of modeling communications in OPNET is to construct

the network topology. The design of the actual physical network topology to connect the

CCs is then dependent on the placement of routers, the choice of dependent/independent

media and many other factors. In this study, we assume that a router is placed at each

bus to connect the bus to the backbone network [45, 41] and dependent communications

media is used; i.e., the communication link between any two buses only exists if there is

a transmission line connecting them, and the length of the communication line is identical

to the transmission line. The transmission line length between any two nodes is estimated

using the line impedance from the system data.

The IEEE 118-bus test system is used as an example. Figure 5.2 shows the partition

of the 118-bus system into six areas where the boundaries are marked by red dotted lines.

The logical centralized and distributed network topologies associated with this particular

partition is shown in Fig. 5.3, which demonstrates which pair of control centers need to
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Figure 5.2: Centralized and distributed network topologies associated with a 6-region parti-
tion of the IEEE 118-bus system.
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Figure 5.3: Logical communications topologies with centralized and distributed infrastruc-
tures.

communicate according to their geographical connectivities as well as the chosen commu-

nications infrastructure and scheme. In Fig. 5.3, the black square and the white square

denote ACC and CCC, respectively. Red lines denote communication links between CCC

and ACC, and blue lines denote direct communication links between ACCs.

Next, the locations of the control centers need to be determined. Since an ACC needs

to communicate with all the buses in its area, we consider locating it as close to most buses

as possible to reduce the propagation delay. In the distributed infrastructure, the ACC is

thus placed at the bus that has the shortest paths to all other buses within the same area

on average. Then a shortest communication path between any pairs of neighboring ACCs

is built using the Dijkstra algorithm [100], which is illustrated in Fig. 5.2b with the blue

solid lines. In the centralized infrastructure, the ACCs are first located in the same way as
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in the distributed infrastructure. Then, slightly different from Fig. 5.1a where an additional

control center is built to act as the CCC, the ACC (ACC6 in this case) that has on average

the shortest paths to all other ACCs is chosen to be the CCC. The network topology is

then built by constructing a shortest path between the CCC and each ACC, as shown in

Fig. 5.2a. The number of routers to be placed equals the number of buses traversed by

the shortest path between any two control centers. The reason for using the shortest path

algorithm here is that our goal is to reduce the communication delays involved in running

distributed algorithms, and as it will be shown later, propagation delay is dominant in the

end-to-end delay of any communication path for the considered application. The network

topology can be built differently if other goals need to be met; e.g., using minimum spanning

trees if the total length of the communication links needs to be minimized.

Figure 5.4 shows the network modeling in OPNET employing the described procedures.

The red icons in the form of an octagon denote the control center subnets and the grey

round icons denote the routers. The communication links between any two routers are

modeled as SDH STM-1 links that support data transmission rates up to 155.52 Mbps (also

known as OC-3), which is sufficient for distributed optimization. Comparing Figs. 5.4a and

5.4b, one can see that more communication paths might need to be constructed using the

distributed infrastructure to reduce the communication delays, such as the communication

path between ACC1 and ACC3 in the upper part of Fig. 5.4b. Moreover, as shown in Fig.

5.4a, the shortest path from the CCC to ACC5 passes through ACC4. Hence, it would be

very inefficient if ACC5 still communicates with the CCC as it only needs information from

ACC4. This observation indeed shows that the distributed communications infrastructure is

closer to the architecture of distributed optimization schemes, hence is a more natural choice

for the deployment of distributed methods.

The control center is modeled as the subnet shown in Fig. 5.5 that consists of a work-

station, an Ethernet switch and a router connecting the control center to the backbone

communications network. The subnet configuration can be extended to simulate other ap-

plications, but the simple topology shown in Fig. 5.5 is sufficient for the purpose of this

thesis. As with the specifications used in [45], the communications links in the control center

subnet are modeled as 100Base-T links with the data transmission rate of 100 Mbps.
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Figure 5.4: Centralized and distributed network topologies with 6-area partitions in OPNET.
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Figure 5.5: A simple topology of the control center subnet.

5.2.2 Application Definition

In OPNET, the communications schemes to be simulated can be defined as applications

and then assigned to the nodes for execution. Different from the approach in [45] that

approximately models the communication traffic using predefined applications in OPNET,

we explicitly define a new application to implement the communications schemes presented
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in Chapter 5.1.3. This is done by defining each request and response process as a task

and executing them in a consecutive manner to emulate the communication phase where a

control center requests information from others using a polling scheme.

In the centralized infrastructure, the defined communications scheme is deployed at the

CCC periodically to simulate the communications throughout the iterative distributed op-

timization process whereas in the distributed infrastructure, the defined scheme is deployed

at all ACCs periodically to simulate the procedure where ACCs directly communicate with

their neighbors.

The polling periods are set to the computation time per iteration, and are therefore

different for different number of regions and methods. The data to be exchanged is limited

to the variables associated with the boundary buses and for the considered ADMM and OCD

method, 8 and 6 variables need to be exchanged for each tie line [10, 11]. As the neighboring

areas are generally connected by few tie lines, a total of tens of variables are expected to be

exchanged. Hence, the message size is set to 1 kB in our simulation, which is large enough

to contain these variables assuming single precision is used.

5.2.3 Performance Metrics

To compare the centralized and distributed communications infrastructures, we consider

three performance metrics, namely, number of routers (NoR), length of media (LoM) [41]

and communication delay. NoR is defined as the number of nodes on the path connecting two

control centers including the end nodes and LoM is defined as the length of a communication

path between any two control centers. Thereby, NoR and LoM can be obtained directly after

a communication path is built among any two control centers.

Since there is a desired time limit for solving an optimization problem in the power grid

to ensure that the determined settings can be applied in time, time efficiency is of great

concern when evaluating distributed optimization methods. Therefore, we particularly esti-

mate the communication delay and evaluate its impact on the execution time of distributed

optimization methods. The communication delay per iteration is defined by the Application

Response Time (ART) in OPNET, which is an estimated time of finishing the entire com-

munication phase as defined in Chapter 5.1.3. Figure 5.6 shows the protocol stacks a packet
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Figure 5.6: A simple network showing the protocol layers used to connect two control centers.

traverses when sent from one control center to the other, where SDH and ETH denote the

protocols running over the fiber optics network and the Ethernet, respectively. Specifically,

the communication delay for transmitting one packet is the time that the packet travels from

the application layer of the sending entity (Control Center A in Fig. 5.6 ) until it reaches

the application layer of the receiving entity (Control Center B in Fig. 5.6). Compared with

the end-to-end delay at the IP layer, the ART is expected to be a more realistic estimation

of the communication delay as it also includes the time of processing the packets at the TCP

and application layers.

In the centralized infrastructure, the communication delay is the ART of the defined

application at the CCC, which is expected to increase with the number of areas due to the

considered polling scheme. Let K − 1 denote the total number of ACCs, then the ART per

iteration can be approximately expressed as

tdelay
centralized ' 2

K−1∑
i=1

(tCCC,ACCi
ete + tCCC,ACCi

app ), (5.1)

where tCCC,ACCi
ete denotes the IP-layer end-to-end delay for any source-destination pair (CCC,ACCi)

and tCCC,ACCi
app denotes the delay occurring at the TCP and application layers. The factor 2

accounts for the round-trip-time for polling one ACC.

Similarly, the delay for the distributed infrastructure is estimated by the maximum ART

of the applications deployed at all ACCs, i.e.,

tdelay
distributed ' max

k=1,...,K
{2
∑
i∈Nk

(tACCi,ACCk
ete + tACCi,ACCk

app )}, (5.2)
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where Nk denotes the set of neighbors of region k. It can be seen from (5.2) that the

delay in the distributed infrastructure is generally dependent on the ACC that has the most

neighbors.

The end-to-end delay can be further estimated by the following formula [41]:

tete = ttrans + tprop + trouter + tqueue. (5.3)

Here, ttrans, tprop, trouter and tqueue denote the transmission delay, the propagation delay,

the routing delay and the queueing delay, respectively. ttrans and tprop can be calculated as

follows:

ttrans =
Ps
Rl

, (5.4)

tprop =
LoM

v
, (5.5)

where Ps is the packet size and Rl is the link data rate. v denotes the propagation speed of

light in fiber, which is taken to be 2
3
c with c denoting the speed of light in free space.

The routing delay trouter is equal to the sum of all the routing delays at the routers on

the considered communication path. It is assumed that the routing delay is the same for all

routers and is equal to the transmission delay at the router, then the routing delay experi-

enced by a packet from source to destination (excluding the end nodes) can be represented

as

trouter = (NoR− 2)× ttrans. (5.6)

Then, (5.3) can be expressed as follows:

tete = (NoR− 1)× Ps
Rl

+
LoM

v
+ tqueue. (5.7)

Therefore, a smaller value of NoR or LoM indicates smaller end-to-end delay of a communi-

cation path. Furthermore, in terms of reliability, it is assumed that all routers have the same

reliability values and the reliability of a link will reduce if its length increases [41]. Hence,

a smaller value of NoR or LoM also indicates higher reliability of a communication path.

Note that we omit the between packet delay in (5.3) as it is assumed that each message only

contains one packet.
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Table 5.1: Computation time (milliseconds) per iteration and number of iterations of the
distributed methods.

Method
K=3 K=6 K=9

Time Iterations Time Iterations Time Iterations

OCD 16 124 7 215 4 324

ADMM 310 62 260 67 160 78

5.3 Simulation Results

Same as previous chapters, we consider the application of distributed optimization methods

OCD and ADMM to solve the AC OPF problem, but with the communications plane taken

into account. The experiments are implemented in Matlab with the Tomlab SNOPT solver

[86] on an iMac. The test system used are the IEEE 118-bus test system and the large-

scale Polish power system. The partition of the system is obtained by using the spectral

partitioning method proposed in Chapter 3.

5.3.1 Convergence Performance Without Delays

We first compare the convergence performance of these two distributed algorithms with-

out considering communication delay, as done in previous chapters and in most studies on

distributed optimization. Figure 5.7 illustrates the decrease of the maximum constraint mis-

match and the convergence of the objective function to the centralized solution with OCD

and ADMM. Particularly, we plot the convergence versus number of iterations and compu-

tation time, respectively. We define the stopping criterion for both methods to be that the

maximum constraint mismatch should be smaller than 10−4 p.u. The average computation

time per iteration and the number of iterations at convergence are shown in Table 5.1, where

K denotes the number of areas. Note that at convergence, OCD achieves the same solution

as the centralized optimization approach, while ADMM finds a feasible solution within 1%

of the centralized solution which is generally acceptable for non-convex problems.

As illustrated by Fig. 5.7 and Table 5.1, the performances of these two methods are

quite different. At each iteration, OCD spends very little time on computation as it only

carries out one Newton-Raphson step but does not solve the subproblems to optimality
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Figure 5.7: Convergence performance of OCD and ADMM.

[11]. However, the number of iterations increases significantly as the number of areas grows.

In contrast, ADMM spends more time solving the subproblems because an optimal point

needs to be found, but the iterations do not increase as much with an increasing number

of areas [10]. Note that the exact value of the computation time might differ if one uses

a different solver or machine. However, what is important here is the fact that for some

distributed methods, the local computation can be finished very fast (in milliseconds) but

more iterations are needed while for other methods, the subproblem may take seconds to be
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solved but require fewer iterations. It is then expected that the impact of communication

delays will be very different on these two distributed algorithms.

5.3.2 Comparison of Infrastructures

For each number of areas of the IEEE 118-bus system, both centralized and distributed

communications networks are modeled following the approach presented in Chapter 5.2. The

centralized and the distributed infrastructures for the 118-bus test system are compared in

terms of NoR and LoM in Table 5.2. The LoM is normalized with respect to the longest

transmission line length. The mean and variance are calculated over the communication

paths between all pairs of nodes that need to communicate; i.e., the paths between the CCC

and ACCs and the paths between neighboring ACCs for the centralized and distributed

infrastructures, respectively. Note that for K = 3, the best partition obtained contains

three areas that are connected in a row, where the areas at the two ends only need to

communicate with the area in the middle. In this case, the centralized and distributed

infrastructures are the same, and therefore have the same measures of NoR, LoM, and delay.

For 6 or 9 areas, the average NoR and LoM in the distributed infrastructure are both

smaller than those in the centralized infrastructure, which indicates that the communication

path between any pair of nodes in the distributed infrastructure is in general faster and more

reliable. In addition, the variance of NoR is larger in the centralized case, which shows that

the number of hops an ACC is away from the CCC can be very heterogeneous and it is

inefficient for the ACC far away to communicate with the CCC. A special case here is that

for K = 6, the variance of LoM is larger in the distributed infrastructure due to the existence

of two long paths among the other short paths. However, this is a matter of design. There

is a tradeoff between how close an ACC is to its internal nodes and to other ACCs, and the

network topology can be designed differently if one wants to eliminate long communication

links between the ACCs.

Table 5.3 shows the total LoM of different infrastructures. The distributed infrastructure

has a larger LoM due to the additional links built to enable direct and faster communications

between ACCs. However, most of the communication links in the distributed infrastructure

might already exist in the centralized case. Hence, such increase in the LoM can be incre-
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Table 5.2: Mean Value and Variance of NoR and LoM.

Metric Infrastructure
K=3 K=6 K=9

Mean Variance Mean Variance Mean Variance

NoR
Centralized 7 2 7.20 13.70 7.00 6.29

Distributed 7 2 5.17 8.57 5.33 2.97

LoM
Centralized 1.027 0.087 0.862 0.186 0.938 0.166

Distributed 1.027 0.087 0.651 0.244 0.694 0.088

Table 5.3: Total LoM of the communications network.

Infrastructure K=3 K=6 K=9

Centralized 2.053 2.725 4.151

Distributed 2.053 3.908 4.740

Table 5.4: Network utilization with dedicated links in percentage (%).

Infrastructure
K=3 K=6 K=9

Mean Max Mean Max Mean Max

Centralized 0.41 0.43 0.30 0.37 0.22 0.74

Distributed 0.41 0.43 0.45 0.87 1.20 2.64

mental which may not incur significant cost.

Figure 5.8 demonstrates the pair-wise end-to-end delay with 6 and 9 regions partitions.

The source-destination pairs are sorted according to their end-to-end delay for better pre-

sentation. The grey bar shows the delay calculated by (5.3) assuming tqueue to be zero. This

could provide a good estimate for the end-to-end delay if dedicated links are used; i.e., with

no background traffic as illustrated by the dark blue bars. As shown in Table 5.4, the uti-

lization rate of all links are very low if one uses dedicated links, and therefore the queueing

delay is insignificant compared to other terms in (5.3). We also obtain the end-to-end delay

with 50% and 90% background traffic on all links, where increased queueing delay occurs.

Comparing Fig. 5.8a and Fig. 5.8b (or Fig. 5.8c and Fig. 5.8d), it is clear that the end-to-

end delay in the distributed infrastructure is generally smaller than that in the centralized

infrastructure, which also follows the trend observed for NoR and LoM.
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Figure 5.8: End-to-end delay in seconds with different background traffic.

Finally, the communication delays per iteration defined in (5.1) and (5.2) are shown in

Table 5.5. As the delay at the TCP and application layers is usually dependent on the

software and hardware used and therefore hard to estimate, it is only obtained via simula-

tions. For 6 and 9 areas, the communication delay is always smaller using the distributed

infrastructure than that using the centralized infrastructure. Moreover, the delay tends to

increase more with the centralized infrastructure if the links become heavily loaded.
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Table 5.5: Communication delay (milliseconds) per iteration.

Infrastructure Background traffic K=3 K=6 K=9

Centralized (ms)

0 % 19.9 66.8 113.8

50 % 20.5 71.5 119.4

90 % 27.0 97.2 159.2

Distributed (ms)

0 % 19.9 29.5 37.1

50 % 20.5 30.5 38.6

90 % 27.0 38.7 51.7

5.3.3 Impact of Communication Delays

Now we evaluate the impact of communication delays on different distributed optimization

methods. Let tcomp, tdelay, ν denote the computation time per iteration, the communication

delay per iteration and the number of iterations, respectively, then the total execution time is

estimated by (tcomp + tdelay)×ν. The computation time at each iteration is approximated by

the maximum time spent on solving any of the subproblems assuming that the subproblems

are solved in parallel. Trade-offs between the communication delay and computation time,

as well as the execution time per iteration and the number of iterations have to be considered

when targeting to fulfill the time requirement, which is harder to achieve in the centralized

infrastructure. In (5.1), the most prohibitive factor is the number of areas K. If K is

large, the method to be deployed should have either small tcomp or ν, or both, which is thus

limiting the choice of distributed methods. However, as the number of neighbors of one

ACC is usually bounded, the total solution time increases less for the distributed case as

K increases. Therefore, the distributed infrastructure is more scalable and better supports

methods with more iterations.

As shown in Fig. 5.7b, OCD outperforms ADMM in terms of the total computation

time regardless of the number of areas. However, performances of these two techniques

change significantly when communication delays are taken into account. Figure 5.9 shows

the execution time OCD and ADMM take to converge with communication delay (assuming

dedicated links) added to each iteration. For OCD, the execution time increases with the

number of regions because more iterations need to be carried out which incur large com-
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Figure 5.9: Convergence speed of OCD and ADMM with different communications infras-
tructures.

munication delays. When deployed in the centralized infrastructure with many regions, as

shown in Fig. 5.9a, OCD becomes very slow, which makes it incompetent and not suitable

for large-scale systems. On the contrary, for ADMM, the execution time depends more on

how fast the subproblems can be solved than on the communication delay. Therefore, its

convergence speed does not change as drastically as OCD. Hence, using a distributed in-

frastructure, ADMM achieves the fastest convergence with the partition of 9 areas due to

the significantly reduced computation time on solving smaller subproblems. Comparing the

two methods, OCD is more efficient with mild partitions of the systems while ADMM is

more scalable if the system is partitioned into more areas. By comparing Fig. 5.9 with Fig.

5.7b, one can observe that the difference in the infrastructure has a more significant impact

on the efficiency of OCD than of ADMM as communications dominates the execution time

of OCD. Hence, it is important to incorporate the impact of communications to better de-

termine which distributed method should be implemented subject to the communications

capability of the system.
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5.3.4 Application to a Large-Scale Network

To further evaluate the impact of communications infrastructure on distributed algorithms

applied to real-world large-scale systems, we also conducted simulations on the Polish 2383-

bus power system. The system is partitioned into 40 regions. Our previous studies show that

ADMM is more suitable for solving large-scale problems on real power systems, therefore,

we only consider using ADMM in this case. We say that ADMM has converged if all

the constraint mismatches have fallen below 10−3 per unit. To solve the AC OPF problem,

ADMM converges in 99 iterations with the total computation time of 149.5 seconds using the

Tomlab SNOPT solver [86]. On average, each iteration of computation takes 1.51 seconds.

Table 5.6 shows the communication delay per iteration and the total execution time of

ADMM with 0%, 50% and 90% background traffic. Again, the communication delay using

the distributed infrastructure is nearly one minute smaller than that using the centralized

infrastructure under all traffic scenarios. Note that the computation time here is measured

by running ADMM on a personal computer, which could be reduced further in practice if

more powerful machines are used. As AC OPF is required to be solved by system operators

every five minutes in less than one minute [2], the communications delay incurred by the

centralized infrastructure makes it prohibitive for the deployment of distributed algorithms

to solve the OPF problem.

Due to the significantly larger communication delay involved, the total execution time

of ADMM using the centralized infrastructure is almost 1 minute longer than using the

distributed infrastructure. Such 1-minute difference could result in the failure of reaching a

dispatch solution if the AC OPF were to be run every 5 minutes by the system operators.

Table 5.6: Execution time of ADMM on Polish network with various background traffic.

Infrastructure
Communication delay(s) Total execution time(s)

0% 50% 90% 0% 50% 90%

Centralized 0.741 0.765 0.903 222.8 225.2 238.9

Distributed 0.199 0.202 0.233 169.2 169.5 172.6
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5.4 Discussion

The presented analysis shows that the centralized communications infrastructure imposes

many restrictions on what distributed optimization method one can deploy and how many

regions the system can have. For example, with many regions to be coordinated in a medium

sized system, the centralized infrastructure could not support methods like OCD which re-

quires lots of communications. And for large-scale systems with thousands of buses, the

centralized infrastructure cannot support ADMM-type distributed optimization algorithms

even though they require less information exchange. The reason for this is that the trade-offs

between communications and computation is harder to handle in the centralized infrastruc-

ture, which makes it prohibitive for deploying distributed methods if the number of control

regions is large or the information exchange is very frequent.

Our results clearly indicate that the distributed communications infrastructure is a more

suitable and scalable infrastructure for distributed optimization applications, especially for

large-scale power grids. However, the transition to a fully distributed infrastructure might

not be straightforward as investments and a paradigm change in operational practices are

necessary. The utility networks are likely to go through a transitional phase with the cen-

tralized SCADA system mostly in control while adding direct communication links among

the substations, as illustrated by Fig. 5.10. Black squares denote ACCs that communicate

with CCC, shaded squares denote ACCs that do not communicate with CCC, and the white

square denotes the CCC. Red lines denote the communication links between CCC and ACC

and blue lines denote direct communication links between ACCs. Note that the control and

network management of hybrid networks is a complex topic and is beyond the scope of this

thesis. However, the simulation method proposed in this chapter would be helpful for the

evaluation of the benefits of distributed optimization during the transition phase.

One of the key objectives of this chapter is to provide a generic method that evaluates

the communications network topology and scheme that should be used for distributed algo-

rithms. In this chapter, we consider synchronous distributed algorithms where the commu-

nication and computation processes take turns. Therefore, a polling scheme can be deployed

in the communications process. However, the proposed network models can be modified and

extended to different distributed optimization schemes, network conditions, and the fields
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Figure 5.10: Transition from centralized to distributed infrastructure.

where distributed methods are intended to be deployed. For example, if asynchronous dis-

tributed algorithms are studied, then random access schemes need to be applied instead of

polling. In distribution network management, the distributed algorithms can be deployed

on devices located in a small geographical area. In this case, wireless communications is

usually preferred, and the variance and distribution of the involved communication delays

then become important metrics.

Furthermore, due to the use of optical fiber communication which is very reliable, the

reliability of communication links is not a major concern in this study, which, however,

could be an important factor to consider when one uses other communications technologies.

Most distributed optimization algorithms including the two studied in this paper will fail to

converge to a feasible solution if the information from one region is not accessible due to a

broken communication path. Therefore, under the condition of unreliable communications,

a fault-tolerant or fail-safe design of the network topology is required. On the other hand,

more robust distributed optimization methods are preferable for such cases that are resilient

to large communication delays or even failures of data delivery.



Chapter 6

Asynchronous Distributed ADMM

In this chapter, we propose a distributed asynchronous optimization approach which is based

on the ADMM method. We extend the synchronous ADMM method used in previous

chapters to fit into an asynchronous framework where a message-passing model is used and

each worker is allowed to perform local updates with partial but not all updated information

received from its neighbors. We will show that the proposed asynchronous ADMM algorithm

asymptotically satisfies the first-order optimality conditions of problem (2.2), under the

assumption of bounded delay of the worker and some other mild conditions on the objective

function and constraints.

Then, we provide insights into the practical performance of the proposed distributed

asynchronous ADMM method. Specifically, we identify three factors, namely, penalty pa-

rameter, system partitioning, and communication delay, that have significant impact on

the convergence rate and solution quality of the proposed asynchronous ADMM method.

Through extensive numerical simulations on the IEEE 118-bus test system, the Polish power

system and the Great Britain power system, we provide quantitative analyses on how the

performance of asynchronous ADMM is affected by these three factors.

6.1 Asynchronous ADMM

In Chapter 2.4.1, we have presented the reformulation of the AC OPF problem into the

form of (2.29) such that one can apply the synchronous ADMM algorithm. To simplify the

97
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analysis in this chapter, we slightly change the formulation (2.29) into the following form:

minimize
x,z

∑
k

Fk(xk) (6.1a)

subject to Akxk = zk, ∀k (6.1b)

zk,l = zl,k, ∀(k, l) ∈ T , (6.1c)

where Fk(xk) = fk(xk)+ηXk(xk) denotes the local objective function and ηX (·) is the indicator

function of set X , with ηX (x) = 0 if x ∈ X and +∞ if x /∈ X . T is the set of inter-region

tie lines, zk,l = {(z−i,j, z+
i,j) | i ∈ Rk, j ∈ Rl} denote the boundary conditions that neighboring

regions k and l should agree on, and zk = {zk,l|∀l ∈ Nk} for each region k. Formulation (6.1)

is equivalent to (2.29). We will also use ‘worker’ to denote the control entity that solves the

local subproblem of each region. We only consider fixed penalty in the development and

convergence analysis of asynchronous ADMM, but show how one can apply an increasing

penalty approach later on. The Augmented Lagrangian function associated with (6.1) with

fixed penalty is then given by

L(x, z, λ) =
∑
k

{
Fk(xk) + λ>k (Akxk − zk) +

ρ

2
‖Akxk − zk‖2

}
+ ηZ(z). (6.2)

Now, we extend the synchronous ADMM into an asynchronous setting where each worker

determines when to perform local updates based on the messages it receives from neighbors.

We say that a neighbor l has ‘arrived’ at worker k if the updated information of l is received

by k. We assume partial asynchrony [56] where the delayed number of iterations of each

worker is bounded by a finite number. We introduce a parameter p with 0 < p ≤ 1 to

control the level of asynchrony. Worker k will update its local variables after it receives new

information from at least dp|Nk|e neighbors with |Nk| denoting the number of neighbors

of worker k. In the worst case, any worker should wait for at least one neighbor because

otherwise its local update will make no progress as it has no new information.

Figure 6.1 illustrates the proposed asynchronous scheme by assuming three workers,

each connecting to the other two workers. The blue bar denotes the local computation and

the grey line denotes the information passing among workers. The red dotted line marks

the count of iterations, which will be explained in Chapter 6.2. As shown in Fig. 6.1a,

synchronous ADMM can be implemented by setting p = 1, where each worker does not
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Worker 1 … 

… 

… 

Worker 2 

Worker 3 

ν = 0 1 2 

(a) synchronous, p = 1

Worker 1 

Worker 2 

Worker 3 

… 

… 

… 

ν = 0 1 2 3 4 5 

(b) asynchronous, p = 0.1

Figure 6.1: Illustration of synchronous and asynchronous distributed ADMM.

perform local computation until all neighbors arrive. Figure 6.1b shows an asynchronous

case where each worker can perform its local update with only one neighbor arrived, which

could reduce the waiting time for fast workers. In the rest of this chapter, we do not specify

the setting of p but only consider it to be a very small value such that each worker can

perform its local update as long as it received information from at least one neighbor, which

indeed represents the highest level of asynchrony.

Algorithm 3 presents the asynchronous ADMM approach from each region’s perspective

with νk denoting the local iteration counter. The x-update and λ-update are similar to

those in synchronous ADMM presented in Algorithm 3. However, for the z-update, each

worker k does not need to wait for updated information from all neighbors, which is the

major difference between the synchronous and asynchronous schemes. Also different from

synchronous ADMM, for the z-update, we add a proximal term α
2
‖zk − zνkk ‖2 with α ≥ 0

which is a sufficient condition for proving the convergence of ADMM under asynchrony. The

intuition of adding this proximal term is to reduce the stepsize of updating variables to offset

the error brought by asynchrony. Also, in the z-update, only the entries corresponding to

arrived neighbors in zk are updated.
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Algorithm 3 Asynchronous ADMM in region k
1: Initialization

Given x0
k, set λ0

k = 0, ρ = ρ0, νk = 0, z0
k ∈ Z

2: Repeat

3: Update x by

xνk+1
k = argmin

xk

L(xk, z
νk
k , λ

νk
k ) (6.3)

4: Update λ using

λνk+1
k = λνkk + ρ(Akx

νk+1
k − zνkk ) (6.4)

5: Send {Ak,lxνk+1
k , λνk+1

k,l } to region l, ∀l ∈ Nk
6: Repeat

7: Wait until at least dp|Nk|e neighbors arrive

8: Update zk associated with arrived neighbors

zνk+1
k = argmin

zk

L(xνkk , zk, λ
νk
k ) +

α

2
‖zk − zνkk ‖

2 (6.5)

9: Set νk ← νk + 1

10: Until a predefined stopping criterion is satisfied

6.2 Convergence Analysis

6.2.1 Main Theorem

For analyzing the convergence property of Algorithm 3, we introduce a global iteration

counter ν and present Algorithm 3 from a global point of view in Algorithm 4 as if there is

a master node monitoring all the local updates. Note that such master node is not needed

for the implementation of Algorithm 3 and the global counter only serves the purpose of

slicing the execution time of Algorithm 3 for analyzing the changes in variables during each

time slot. We use the following rules to set the counter ν: 1) ν can be increased by 1 at

time tν+1 when some worker is ready to start its local x-update; 2) the time period (tν , tν+1]

should be as long as possible; 3) there is no worker that finishes x-update more than once

in (tν , tν+1]; 4) ν should be increased by 1 before any worker receives new information after

it has started its x-update. The third rule ensures that each x-update is captured in one

individual iteration and the fourth rule ensures that the z used for any x-update during



CHAPTER 6. ASYNCHRONOUS DISTRIBUTED ADMM 101

Algorithm 4 Asynchronous ADMM from a global view
1: Initialization

Given x0, ρ, set λ0 = 0, ν = 0, z0 ∈ Z

2: Repeat

3: Update

xν+1
k =


argmin Fk(xk) + λν>k Akxk

+
ρ

2
‖Akxk − zν̄k+1

k ‖2 if k ∈ Aν

xνk otherwise

(6.6)

λν+1
k =


λνk + ρ(Akx

ν+1
k − zν̄k+1

k ) if k ∈ Aν

λνk otherwise
(6.7)

For ∀k ∈ Aν , l ∈ Nk and ∀(l, k) ∈ T(tν−1,tν ]:

zν+1
k,l =

(
λν+1
k,l + λν+1

l,k + ρAk,lx
ν+1
k + ρAl,kx

ν+1
l + αzνk,l

)
/(2ρ+ α) (6.8)

4: Set ν ← ν + 1

5: Until a predefined stopping criterion is satisfied

(tν , tν+1] is equal to the z measured at tν+1. This global iteration counter is represented by

red dotted lines in Fig. 6.1.

We define Aν as the index subset of workers who finishes x-updates during the time

(tν , tν+1] with 0 ≤ |Aν | ≤ K. Note that with |Aν | = K, Algorithm 4 is equivalent to

synchronous ADMM. We use U(tν−1,tν ] to denote the set of workers that exchange information

at iteration ν; i.e., (k, l) ∈ U(tν−1,tν ] denotes that the updated information from worker k

arrives at l during the time (tν−1, tν ].

Now, we formally introduce the assumption of partial asynchrony (bounded delay).

Assumption 1 Let ω > 0 be a maximum number of global iterations between the two

consecutive x-updates for any worker k; i.e., for all k and global iteration ν > 0, it must

hold that k ∈ Aν ∪ Aν−1 · · · ∪ Amax{ν−ω+1,0}

Define ν̄k as the iteration number at the start of the x-update that finishes at iteration

ν. Then, under Assumption 1 and due to the fact that any worker can only start a new
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x-update after it has finished its last x-update, it must hold that

max{ν − ω, 0} ≤ ν̄k < ν, ∀ν > 0. (6.9)

The z-update (6.8) is derived from the optimality condition of (6.30). As an example, we

show how to update variable zk,l (same for zl,k) for one pair of neighboring workers k and l.

To fulfill zk,l = zl,k, we substitute zl,k with zk,l and then remove the part ηZ(z) from (6.2).

The remaining part that contains zk,l in (6.2) can be written as:

L′(xν+1
k , zk,l, λ

ν+1
k )

= −(λν+1
k,l + λν+1

l,k )zk,l +
ρ

2
‖Ak,lxν+1

k − zk,l‖2

+
ρ

2
‖Al,kxν+1

l − zk,l‖2 +
α

2
‖zk,l − zνk,l‖2

(6.10)

The optimality condition of (6.30) then yields

λν+1
k,l + λν+1

l,k + ρ(Ak,lx
ν+1
k − zν+1

k,l ) + ρ(Al,kx
ν+1
l − zν+1

k,l )− α(zν+1
k,l − z

ν
k,l) = 0, (6.11)

which results in (6.8). Thereby, worker k will update zk locally once 1) it receives λl, ρl and

Al,kxl from ∀l ∈ Nk or 2) it finishes local x and λ updates.

Before we state our main results of convergence analysis, we need to introduce the fol-

lowing definitions and make the following assumptions with respect to problem (6.1).

Definition 1 (Restricted prox-regularity) [73] Let D ∈ R+, f : RN → R ∪ {∞}, and

define the exclusion set

SD := {x ∈ dom(f) : ‖d‖ > D for all d ∈ ∂f(x)}. (6.12)

f is called restricted prox-regular if, for any D > 0 and bounded set T ⊆ dom(f), there

exists γ > 0 such that

f(y) +
γ

2
‖x− y‖2 ≥ f(x) + 〈d, y − x〉,

∀x ∈ T \ SD, y ∈ T, d ∈ ∂f(x), ‖d‖ ≤ D.

(6.13)

Definition 2 (Strongly convex functions) A convex function f is called strongly convex with

modulus σ if either of the following holds:
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1. there exists a constant σ > 0 such that the function f(x)− σ
2
‖x‖2 is convex;

2. there exists a constant σ > 0 such that for any x, y ∈ RN we have:

f(y) ≥ f(x) + 〈f ′(x), y − x〉+
σ

2
‖y − x‖2. (6.14)

The following assumptions state the desired characteristics of the objective functions and

constraints.

Assumption 2 X is a compact smooth manifold and there exists constant M2 > 1 such

that, ∀ν1, ν2

1

M2

‖Akxν1k − Akx
ν2
k ‖ ≤ ‖x

ν1
k − x

ν2
k ‖ ≤M2‖Akxν1k − Akx

ν2
k ‖.

Assumption 2 allows Ak to not have full column rank, which is more realistic for region-

based optimization applications. Since X is compact and ‖Ak‖ < ∞, Assumption 2 is

satisfied.

Assumption 3 Each function Fk is restricted prox-regular (Definition 1) and its subgradient

∂Fk is Lipschitz continuous with a Lipschitz constant M1 > 0.

The objective function Fk in problem (6.1) includes indicator functions whose boundary

is defined by X . Recall that we assume X is compact and smooth and as stated in [73],

indicator functions of compact smooth manifolds are restricted prox-regular functions.

Assumption 4 The subproblem (6.3) is feasible and a local minimum xk ∈ Xk is found at

each x-update.

Assumption 4 can be satisfied if the subproblem is not ill-conditioned and the solver used

to solve the subproblem is sufficiently robust to identify a local optimum, which is generally

the case observed from our empirical studies.

Assumption 5 AkA
>
k is invertible for all k, and define Bk = (AkA

>
k )−1Ak. Also, let

σmax(·) denote the operator of taking the largest eigenvalue of a symmetric matrix and define

C = max{σmax(B>k Bk),∀k}.
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Assumption 6 λ is bounded, and

−∞ < L(xν , zν , λν) <∞, if x ∈ X

λ can be bounded by the projection onto a compact box, i.e., λν ← max(λmin,min(λν , λmax)).

Then Assumption 6 holds as all the terms in L(xν , zν , λν) are bounded with x in the compact

feasible region.

The main convergence result of asynchronous ADMM is stated below.

Theorem 2 Suppose that Assumptions 1 to 6 hold. Moreover, choose

ρ > (γ + CM2
1 )M2

2 +
√

(γ + CM2
1 )2M4

2 + 4CM2
1M

2
2 ,

α >
(2ρM4

2 + 1)(ω − 1)2

2
− ρ.

(6.15)

Then, ({xνk}Kk=1, {zνk}Kk=1, {λνk}Kk=1) generated by (6.3) to (6.5) (or equivalently (6.6) to (6.8))

are bounded and have limit points that satisfy the KKT conditions of problem (6.1) for local

optimality.

6.2.2 Proof of Theorem 2

The essence of proving Theorem 2 is to show the sufficient descent of the Augmented La-

grangian function (6.2) at each iteration and that the difference of (6.2) between two con-

secutive iterations is summable. The proof of Theorem 2 uses the following lemmas, which

are proved in the Appendix C and D, respectively.

Lemma 1 Suppose that Assumption 2 to 5 hold. Then it holds that

L(xν+1, zν+1, λν+1)− L(xν , zν , λν)

≤ (
γ + CM2

1

2
− ρ

4M2
2

+
CM2

1

ρ
)
∑
k∈Aν

‖xν+1
k − xνk‖2

− (ρ+ α)‖zν+1 − zν‖2 +
2ρM4

2 + 1

2

∑
k∈Aν

‖zν̄k+1
k − zνk‖2.

(6.16)

Due to the term ‖zν̄k+1
k − zνk‖2 which is caused by the asynchrony of the updates among

workers, (1) is not necessarily decreasing. We bound this term by Lemma 2.
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Lemma 2 Suppose that Assumption 1 holds. Then it holds that

ν∑
φ=1

∑
k∈Aφ

‖zφ̄k+1
k − zφk‖

2 ≤ 2(ω − 1)2

ν∑
φ=1

‖zφ+1 − zφ‖2. (6.17)

Using Lemma 1 and Lemma 2, we now prove Theorem 2.

Proof of Theorem 2. Any KKT point ({x?k}Kk=1, z
?, {λ?k}Kk=1) of problem (6.1) should satisfy

the following conditions

∂Fk(x
?
k) + A>k λ

?
k = 0, ∀k (6.18a)

λ?k,l + λ?l,k = 0, ∀(k, l) ∈ T (6.18b)

Akx
?
k − z?k = 0, ∀k (6.18c)

By taking the telescoping sum of (6.16), we obtain

( ρ

4M2
2

− γ + CM2
1

2
− CM2

1

ρ

) ν∑
φ=1

∑
k∈Aφ

‖xφ+1
k − xφk‖

2

+ (ρ+ α)
ν∑

φ=1

‖zφ+1 − zφ‖2 − 2ρM4
2 + 1

2

ν∑
φ=1

∑
k∈Aφ

‖zφ̄k+1
k − zφk‖

2

≤ L(x1, z1, λ1)− L(xν+1, zν+1, λν+1) <∞,

(6.19)

where the last inequality holds under Assumption 6.

By substituting (6.17) in Lemma (2) into (6.19), we have(
ρ

4M2
2

− γ + CM2
1

2
− CM2

1

ρ

) ν∑
φ=1

∑
k∈Aφ

‖xφ+1
k − xφk‖

2

+

(
ρ+ α− (2ρM4

2 + 1)(ω − 1)2

2

) ν∑
φ=1

‖zφ+1 − zφ‖2 <∞,
(6.20)

Then by choosing ρ and α as in (6.15), the left-hand-side (LHS) of (6.20) is positive and

increasing with ν. Since the right-hand-side (RHS) of (6.20) is finite, we must have as

ν →∞,

xν+1
k − xνk → 0, zν+1

k − zνk → 0, ∀k. (6.21)

Given (6.21) and (C.12), we also have

λν+1
k − λνk → 0, ∀k (6.22)
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Since X and Z are both compact and x ∈ X and z ∈ Z, and λ is bounded by projection,

({x?k}Kk=1, {z?k}Kk=1, {λ?k}Kk=1) is bounded and has a limit point. Finally, we show that every

limit point of the above sequence is a KKT point of problem (6.1); i.e., it satisfies (6.18).

For k ∈ Aν , by applying (6.22) to (6.7) and by (6.21), we obtain

Akx
ν+1
k − zν+1

k → 0, k ∈ Aν . (6.23)

For k /∈ Aν , let ν̄k denote the iteration number of region k’s last update, then k ∈ Aν̄k .

Then at iteration ν̄k, we have

λν̄k+1
k = λν̄kk + ρ(Akx

ν̄k+1
k − z(ν̄k)k

k ), (6.24)

where (ν̄k)k denotes the iteration of k’s update before ν̄k. And since xν+1
k = xνk = · · · =

xν̄k+2
k = xν̄k+1

k , and by (6.21) and (6.22), we have

‖Akxν+1
k − zν+1

k ‖

= ‖Akxν̄k+1
k − zν+1

k ‖

= ‖Akxν̄k+1
k − z(ν̄k)k+1

k + z
(ν̄k)k+1
k − zν+1

k ‖

≤ 1

ρ
‖λν̄k+1

k − λν̄kk ‖+ ‖z(ν̄k)k+1
k − zν+1

k ‖ → 0.

(6.25)

Therefore, we can conclude

Akx
ν+1
k − zν+1

k → 0,∀k; (6.26)

i.e., the KKT condition (6.18c) can be satisfied asymptotically.

For any zν+1
[ij] , where i ∈ Rk, j ∈ Rl, (i, j) ∈ T , and k ∈ Aν , the optimality condition

of (6.8) yields (6.11). Since the last three terms on the LHS of (6.11) will asymptotically

converge to 0 due to (6.26) and (6.21), the KKT condition (6.18b) can be satisfied asymp-

totically. At last, by applying (6.21) and (6.22) to (C.10), we obtain KKT condition (6.18a).

Therefore, we can conclude that ({xνk}Kk=1, {zνk}Kk=1, {λνk}Kk=1) are bounded and converge to

the set of KKT points of problem (6.1).

6.2.3 Simulation and Discussion

The simulations are conducted using two IEEE standard test systems and two large-scale

transmission networks. The system configuration and the parameter settings are given in
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Table 6.1: Test system configuration and parameter setting for asynchronous ADMM.

System IEEE-30 IEEE-118 Polish Great Britain (GB)

buses 30 118 2383 2224

regions 4 8 40 70

initialization flat flat warm warm

ρ 5× 104 5× 105 108 109

Table 6.1. The partitions of the systems are derived using the proposed spectral partitioning

approach that reduces the coupling among regions. A “flat” start initializes x to be at the

median of its upper and lower bounds, while a “warm” start is a feasible solution to the

power flow equations (2.1b).

Algorithm 3 is conducted in Matlab with p set to 0.1 which simulates the worst case

where each worker is allowed to perform a local update with one arrived neighbor. The

stopping criterion is that the maximum residue (max{Γk},∀k) and constraint mismatch are

both smaller than 10−3 p.u. We use number of average local iterations and the execution

time to measure the performance of Algorithm 3. The execution time records the total

time Algorithm 3 takes until convergence including the computation time (measured by

CPU time) and the waiting time for neighbors. Here, the waiting time also includes the

communication delay, which is estimated by assuming that fiber optical communications

is used and exploiting the distributed communications infrastructure with dedicated links

proposed in Chapter 5. Therefore, passing message from one worker to the other usually

takes a couple of milliseconds, which is very small compared to local computation time.

Figure 6.2 shows the convergence of the maximum residue of the proposed asynchronous

ADMM, i.e., Algorithm 3, and its synchronous counterpart with p set to 1, when solving

the OPF problem for the considered four test systems. We set α to zero for this experiment

and will show later that using a large α is not necessary for the convergence of asynchronous

ADMM. As expected, synchronous ADMM takes fewer iterations to converge, especially

on large-scale systems, while asynchronous ADMM requires more iterations as each worker

keeps performing local computation as long as it receives any new information from neigh-

bors. This result also indicates that asynchronous ADMM injects more communications

traffic into the wide area network that connects area control centers as messages are ex-
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Figure 6.2: Convergence of residue of synchronous and asynchronous ADMM.
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Figure 6.3: Computation/waiting time for synchronous ADMM and asynchronous ADMM
on different test systems.

changed every local iteration. Later on, we will show that the number of iterations can be

reduced substantially by using an increasing penalty parameter, therefore the increased com-

munications of asynchronous ADMM could be supported if fast fibre optic communications

links are used and many direct communications links between ACCs are built. In terms of

the execution time of both schemes, synchronous ADMM can be slower than asynchronous

ADMM on large-scale networks due to the waiting time for the slowest worker at each it-

eration. Figure 6.3 illustrates the percentage of the average computation and waiting time

experienced by all workers. It is clearly shown that a lot of time is wasted on waiting for all

neighbors using a synchronous scheme.

To measure the optimality of the solution found by asynchronous ADMM, we also calcu-

late the gap in the objective value achieved by synchronous and asynchronous ADMM with

respect to the objective value obtained by a centralized method when the maximum residue

Γk of all workers reaches 10−3. This gap is shown in Table 6.2 which is fairly small for all the

considered systems with both schemes. A solution can be considered of good quality if this

gap is smaller than 1%. Surprisingly, asynchronous ADMM achieves a slightly smaller gap

compared with synchronous ADMM. This is due to the fact that in asynchronous ADMM a

worker uses the most updated information of its neighbors in a more timely manner than in

the synchronous case and updates its local variables more frequently, which, as a trade-off,

results in more local iterations especially on large systems. Note that for both schemes, this



CHAPTER 6. ASYNCHRONOUS DISTRIBUTED ADMM 110

Table 6.2: Gap of objective function achieved by synchronous and asynchronous ADMM.

Scheme IEEE-30 IEEE-118 Polish Great Britain (GB)

synchronous 0.025% 0.122% 0.060% 0.575%

asynchronous 0.005% 0.098% 0.031% 0.416%
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Figure 6.4: Impact of parameters on the convergence of asynchronous ADMM.

gap should asymptotically approach zero. However, for many engineering applications, only

a mild level of accuracy is needed. Therefore ADMM is usually terminated when it reaches

the required accuracy with a suboptimal solution. These results indeed validate that asyn-

chronous ADMM could find a good solution faster than its synchronous counterpart and is

more fault-tolerable for delayed or missing information. But we should mention the large

number of iterations taken by asynchronous ADMM incurs more communications load be-

cause updated information is sent at each iteration. And this might raise more requirements

on the communications system used for deploying distributed algorithms.

Now, we evaluate the impact of parameter values on the performance of asynchronous

ADMM using the IEEE 30-bus system. Interestingly, as shown in Fig. 6.4a, even though

a large α is a sufficient condition for asynchronous ADMM to converge, it is not necessary

in practice. This observation is consistent with the observation made in [75] as the proof

there and our proof are both derived for the worst case. In fact, the purpose of using α is to

make sure that the Augmented Lagrangian (6.2) decreases at each iteration which may not
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be the case due to the existence of the term ρ
∑

k∈Aν (z
ν̄k+1
k − zνk)>(Akx

ν+1
k −Akxνk) in (C.9).

However, as zk is generally a value between Akxk and Alxl,∀l ∈ Nk that worker k and l try

to approach, (zν̄k+1
k − zνk)>(Akx

ν+1
k − Akxνk) is likely to be a negative value, which makes α

unnecessary. In fact, as shown in Fig. 6.4a, a large α will slow down the convergence as

the proximal term in (6.5) forces local updates to take very small steps. Finally, Fig. 6.4b

shows that a large ρ is indeed necessary for the convergence of asynchronous ADMM. With

a larger ρ, asynchronous ADMM tends to stabilize around the final solution more quickly,

which, however, may lead to a slightly less optimal solution.
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6.3 Parameter Tuning

In Chapter 6.1, we have proposed an asynchronous ADMM approach and established its con-

vergence for the partition-based distributed optimization problem in Chapter 6.2. However,

we have not investigated what factors affect the convergence rate of asynchronous ADMM.

In fact, the performance of distributed methods is strongly dependent on the problem of in-

terest, which calls for empirical work to characterize their practical performance for various

power system optimization problems [15].

Therefore, in this section and the two subsequent sections, we aim to provide practi-

cal guidance on how to better implement the ADMM algorithm in large-scale transmission

networks in a distributed and asynchronous manner. By studying the impact of algorithm

parameter, we make suggestions on how to tune the penalty parameter based on the feasibil-

ity and optimality requirements especially for large-scale networks. By studying the impact

of communication delays, we help the utilities identify whether their existing communica-

tions infrastructure could support asynchronous distributed optimization algorithms. And

by studying the impact of system partitioning, we further validate the importance of par-

titioning as a good partition generally leads to higher optimality of the solution and faster

convergence.

6.3.1 Asynchronous ADMM with Increasing Penalty

While fixed penalty guarantees the convergence of asynchronous ADMM to a local optimum

of problem (6.1), it can be very slow when applied to large-scale power systems. For example,

as shown in Fig. 6.3, Algorithm 3 takes thousands of iterations and hundreds of seconds to

converge. Therefore, to speed up the convergence of Algorithm 3, we consider the penalty

update schemes used in the synchronous ADMM method, i.e., Algorithm 1, and integrate

them into the asynchronous Algorithm 3. This improved asynchronous ADMM algorithm is

presented in Algorithm 5 with νk denoting the local iteration counter. Note that in Algorithm

5, we replace the fixed penalty ρ in the Lagrangian function (6.2) with local penalty ρk which

can vary across regions. Again, Γνk+1
k = ‖Akxνk+1

k − zνk+1
k ‖∞ is defined as the local primal

residue which can be treated as a measure for feasibility [5]. The update of penalty involves
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Algorithm 5 Asynchronous ADMM in region k with increasing penalty

1: Initialization

Given x0
k, set λ0

k = 0, ρk = ρ0, νk = 0, z0
k ∈ Z

2: Repeat

3: Update xk by

xνk+1
k = argmin

xk

Lρk(xk, z
νk
k , λ

νk
k ) (6.27)

4: Update λk by

λνk+1
k = λνkk + ρνkk (Akx

νk+1
k − zνkk ) (6.28)

5: Update ρk by

ρνk+1
k =


ρνkk if Γνk+1

k ≤ ξΓνkk

τρνkk otherwise

(6.29)

with constants 0 < ξ < 1 and τ ≥ 1.

6: Send {Ak,lxνk+1
k , λνk+1

k,l , ρνk+1
k } to region l, ∀l ∈ Nk

7: Repeat

8: Wait until receiving message from at least 1 neighbor

9: Update zk associated with arrived neighbors

zνk+1
k = argmin

zk

Lρk(x
νk
k , zk, λ

νk
k ) +

α

2
‖zk − zνkk ‖

2 (6.30)

10: Choose ρk to deploy in next iteration of x-update

ρνk+1
k = max{ρνk+1

l ,∀l ∈ {k} ∪ Nk} (6.31)

11: Set νk ← νk + 1

12: Until a predefined stopping criterion is satisfied

two steps. First, after local x and λ updates, the local penalty ρk should be increased if the

local primal residue does not decrease sufficiently in the most recent local computation, as

shown in (6.29). Then, after receiving the penalty parameters from neighbors, the maximum

penalty used by the neighbors and the region itself will be chosen to be used in the next local

iteration to mimic the penalty increasing method used in centralized optimization [10], as
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shown in (6.31). For a variable belonging to neighboring regions such as ρ̃l, its subscription

νk + 1 denotes its most recent value received by region k at or before iteration νk + 1. Note

that in Algorithm 5 we consider the worst case where each worker only waits for at least one

neighbor before each local update. The rest of Algorithm 5 is similar to Algorithm 3.

6.3.2 Convergence Analysis

The asynchronous ADMM method with fixed penalty parameter is shown to converge under

the assumptions of bounded delay, bounded primal and dual variables, smoothness of the

feasible region, regularity of the objective function and the existence of a local minimum at

local x-updates. With an increasing penalty parameter, an additional assumption for the

convergence of Algorithm 5 is that all ρk’s should be upper-bounded. As the convergence of

Algorithm 5 can be proved following the same procedure as discussed in details in Chapter

6.2, we refer to the assumptions made in Chapter 6.2 and only state the main convergence

result of Algorithm 5 below:

Theorem 3 Suppose that Assumptions 1 to 6 in Chapter 6.2 hold. Additionally, the penalty

parameter ρ is updated by (6.29) and (6.31) with ρ0 ≤ ρνkk ≤ ρmax,∀k, νk. Moreover, assume

ρ0 > (γ + CM2
1 )M2

2 +
√

(γ + CM2
1 )M2

2 + 2CM2
1M

2
2 (τω−1 + 1),

α >

(
(2M4

2 + τω−1 − 1)ρmax + 1
)
(ω − 1)2

2
− ρ0.

(6.32)

Then, ({xνkk }Kk=1, {z
νk
k }Kk=1, {λ

νk
k }Kk=1) generated by Algorithm 5 are bounded and have limit

points that satisfy the KKT conditions of problem (6.1).

The notations in Theorem 3 can be found in the assumptions stated in Chapter 6.2.

Theorem 3 states that the penalty parameter ρ and the weight for the proximal term α

should be set to be sufficiently large. However, through numerical simulations, we observed

that the proximal term is not necessary for convergence of Theorem 3, which we drop in the

subsequent numerical experiments. Here, we would like to elaborate more on the role that

the penalty parameter ρ plays in the convergence of Algorithm 5. According to the update

rule (6.29), an increasing penalty enforces sufficient decrease of the primal residue. In other

words, by increasing the penalty, Algorithm 5 would satisfy the KKT condition (6.18c) first
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which demonstrates that a feasible solution is found if satisfied. Now we take a closer look

at how the other KKT conditions are affected by the penalty parameter. The optimality

condition of (6.27) yields

∂Fk(x
νk+1
k ) + A>k λ

νk
k + ρνkk A

>
k (Akx

νk+1
k − zνkk ) = 0, (6.33)

and the optimality condition of (6.30) with respect to any zk,l yields

λνk+1
k,l + λνk+1

l,k + ρk
νk+1(Ak,lx

νk+1
k − zνk+1

k,l ) + ρl
νk+1(Al,kx

νk+1
l − zνk+1

k,l )− α(zνk+1
k,l − z

νk
k,l) = 0.

(6.34)

We observe that if the primal residue reaches a certain level of feasibility tolerance ε, the

third term on the left-hand-side (LHS) of (6.33) and the third and fourth terms on the LHS

of (6.34) will be larger with a larger penalty parameter ρ. In other words, while measured

at the same level of feasibility, it is harder to fulfill KKT conditions (6.18a) and (6.18b),

which makes the solution less optimal. Furthermore, if ρ increases to infinity, (6.18a) and

(6.18b) can not be fulfilled and Algorithm 5 can only converge to a feasible but suboptimal

solution. Therefore, the choice of penalty parameter involves the tradeoff between feasibility

and optimality, and using a large penalty parameter or increasing the penalty aggressively

results in finding a feasible solution faster which however can be less optimal. The increasing

penalty method is usually adopted for large-scale systems because finding a feasible solution

in a limited amount of time is more important in practice, and a solution can be regarded

as a good solution as long as the achieved final objective value is within 1% of the true local

minimum.

6.3.3 Impact of Penalty Parameter

In this section, we conduct numerical experiments to better understand the impact of the

penalty parameter on the convergence performance of Algorithm 5. The test systems used are

the IEEE 118-bus system, the Polish 2383-bus system and the Great Britain (GB) 2224-bus

system. A flat start is used for the 118-bus system, while a warm start is used for the other

two large systems. The feasibility of the solution is measured by maximum infeasibility which

includes the maximum primal residue of all regions and the maximum constraint violation

of constraints (2.1b) to (2.1f). Line limits are not included. The optimality of the solution is
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Figure 6.5: Convergence of asynchronous ADMM with different fixed ρ on the IEEE 118-bus
system.

measured by the relative absolute difference between the objective function value achieved by

Algorithm 5 and the optimal objective function value using the centralized Optimal Power

Flow solver provided by MATPOWER [79], which will be denoted as “gap in objective” in

the following analysis. We evaluate the convergence of Algorithm 5 to a feasible or optimal

point in terms of both average number of local ADMM iterations and total execution time.

The solver used to solve the local subproblems is the Tomlab SNOPT solver [86] implemented

in Matlab. The total execution time includes the local computation time measured by CPU

time and the communications delay of passing messages among regions. While studying

the impact of penalty parameter and system partitioning, the communications delays are

estimated using the same approach as in Chapter 6.2.3. The partitions of the systems are

derived using the proposed spectral partitioning approach. Specifically, the 118-bus system,

the Polish system and the GB system are divided into 8, 40 and 70 regions, respectively.

Before we use the increasing penalty method, we first investigate the impact of using a

fixed penalty parameter on Algorithm 5; i.e., τ = 1 in (6.29) on the IEEE 118-bus system.

Figure 6.5 shows the convergence of Algorithm 5 on this system with ρ0 varying from 2×105

to 1.2 × 106. With a larger penalty parameter, Algorithm 5 approaches feasibility faster

especially during the first tens of iterations but approaches optimality slower. This indeed

illustrates the tradeoff between feasibility and optimality related to the penalty parameter
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Figure 6.6: Convergence of asynchronous ADMM with different increasing rate τ of ρ on the
IEEE 118-bus system.

where a larger penalty biases towards finding a feasible but less optimal solution in fewer

iterations.

In Fig. 6.6, we demonstrate the convergence of Algorithm 5 using the increasing penalty

method but with various increasing rate τ from 1.02 to 1.10. ρ0 is set to 8000, and ρmax is

set to 106 and +∞, respectively to evaluate the impact of an unbounded penalty parameter.

To compare the increasing penalty with the fixed penalty approach, we also replot the

convergence curves of using fixed penalties 2 × 105 and 106 in grey and black dotted lines

as references. As shown in Fig. 6.6a and Fig. 6.6b, using increasing penalty enables finding

a solution with both high feasibility and optimality in relatively few iterations. Recall that

with fixed penalty parameter, Algorithm 5 can only approach either feasibility or optimality
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faster at the sacrifice of the other. However, with increasing penalty, Algorithm 5 approaches

feasibility fast as if a large fixed penalty is used and the solution found is equally good as

that found by using a small fixed penalty. Furthermore, with a larger increasing rate τ ,

Algorithm 5 tends to approach feasibility faster but the acceleration is rather limited as τ

reaches 1.06. This shows that increasing the penalty parameter using a large stepsize is not

necessary as it does not bring significant speed-up.

Figure 6.6c and Fig. 6.6d are presented to validate the fact that the penalty should be

upper-bounded for the convergence of Algorithm 5 to an optimal point. As shown in Fig.

6.6c, infeasibility can decrease very fast with ρ increasing to infinity, but the gap in objective

will stop to decrease as shown in Fig. 6.6d, which shows that Algorithm 5 at best reaches a

suboptimal solution. Note that Algorithm 5 is terminated if the maximum infeasibility falls

below 10−6, which explains why in Fig. 6.6d some curves end before 300 local iterations.

For large-scale systems with thousands of buses, finding a feasible solution of the OPF

problem quickly is always desired. Therefore, for the Polish and GB systems, we only con-

sider using increasing penalty because using a fixed penalty parameter results in thousands

of local iterations to converge which is too slow in practice. The impact of increasing rate τ

on these two systems are illustrated in Fig. 6.7. ρ0 is set to 107 and ρmax is set to +∞ for

both systems. We first look at the Polish system (Fig. 6.7a and 6.7b) as an example, and

we expect that the larger the increasing rate of penalty, the faster Algorithm 5 approaches

feasibility. While this is the case when τ increases from 1.002 to 1.014, the convergence to

feasibility slows down while keeping increasing τ beyond 1.014, as shown in Fig. 6.7a. A

similar trend is also observed for the GB system as shown in Fig. 6.7c where the convergence

of Algorithm 5 becomes slower as τ becomes larger than 1.010. This shows that for large

and complex networks, increasing the penalty too fast harms convergence. The reason for

this is that enforcing agreement of neighboring regions at the beginning of iterations while

lacking complete information from all neighbors could lead the updates of variables into a

wrong direction, which causes difficulty in finding local optima during local updates in later

iterations. Interestingly, this observation is in line with some of the discussions made in [76]

and [64] regarding parameter tuning of synchronous and asynchronous ADMM for solving

the consensus problem, respectively, which show that the penalty parameter should be cho-
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Figure 6.7: Convergence of asynchronous ADMM with different increasing rate τ of ρ on the
Polish power system and the Great Britain power system.

sen neither too small nor too large. As shown in Fig. 6.7b and Fig. 6.7d, increasing the

penalty faster leads to a less optimal solution. Therefore, for large-scale systems, one should

increase the penalty parameter of Algorithm 5 at a slow pace. The best parameter to use for

a specific system can be chosen via parameter sweeping, as the experiments conducted here.

How to derive the best parameter settings from analytical studies could be an interesting

topic for future research.
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6.4 Impact of Partitioning

We have demonstrated in Chapter 3 and Chapter 4.1 that system partitioning can affect the

convergence of the OCD and ADMM algorithms, respectively, which are both deployed in a

synchronous manner. Therefore, it remains to be studied how system partitioning affects the

proposed asynchronous ADMM scheme and whether using the proposed spectral partitioning

technique is critical in an asynchronous setting as well.

In this section, we conduct experiments to show the importance of good system parti-

tioning and that the spectral partitioning approach can also improve the performance of

asynchronous ADMM. We first decompose the IEEE-118 bus system into 8, 12, 20 and 40

regions with the spectral partitioning approach and arbitrary partitioning, respectively. As

previously discussed, the spectral partitioning method could generate more than one parti-

tioning solution because the last step in spectral clustering is to use the Kmeans method to

cluster the buses which can generate different results due to different initialization of cen-

troids. While the approach in Chapter 3 and Chapter 4.1 is to choose one best partition out

of the set of solutions, we keep all the partitioning solutions here and study their statistics.

The motivation is to investigate if one chooses a partition out of the set of solutions spectral

partitioning finds, whether this partition can perform better compared with an arbitrarily

chosen partition. The arbitrary partition is generated by deploying the spectral clustering

approach [84] using the connectivity matrix of buses as the affinity matrix; i.e., two buses

will have affinity of 1 if they are directly connected by a transmission line, otherwise 0. The

affinity matrix derived in this way contains no information regarding the different levels of

coupling among different pairs of buses, which in other words, does not show any clusters of

buses. Due to the fact that spectral clustering performs very bad when there are no iden-

tifiable clusters, we can regard the results generated by this method as arbitrary partitions

of the system. For each number of regions, we compute 80 partitions each with the spectral

partitioning approach proposed in [88] and the arbitrary partitioning approach described

above, respectively. Then for each partition, we run Algorithm 5 three times and record the

average of number of local iterations, execution time, and gap in the objective function at

convergence. We say Algorithm 5 has converged when the maximum infeasibility falls below

10−3. The increasing penalty method is deployed, and ρ0 = 8000 and τ = 1.1 are used in
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Table 6.3: Convergence of asynchronous ADMM with increasing penalty ρ on the IEEE
118-bus system using spectral partitioning and arbitrary partitioning.

Regions Partition
Iterations Time (s) Gap in Objective (%)

Mean Median Min Max Mean Median Min Max Mean Median Min Max

8
Spectral 88 88 67 116 7.1 6.9 4.9 10.4 0.62 0.52 0.28 1.50

Arbitrary 106 106 77 134 9.3 9.2 4.6 13.1 0.63 0.51 0.23 3.76

12
Spectral 90 88 75 117 5.0 4.9 4.1 7.2 0.93 0.91 0.56 1.55

Arbitrary 120 119 95 218 5.8 5.7 4.6 10.1 1.48 1.11 0.43 7.45

20
Spectral 101 101 84 128 3.5 3.6 2.8 4.5 1.52 1.49 1.01 2.16

Arbitrary 109 103 83 300 3.5 3.4 2.6 10.1 2.62 2.34 1.22 7.96

40
Spectral 126 125 110 146 2.6 2.5 2.2 3.0 2.58 2.63 1.56 3.42

Arbitrary 706 728 123 1250 12.8 14.0 2.3 24.5 6.16 6.35 2.65 9.97

the simulations.

Table 6.3 summarizes the results from these experiments. Each row presents the statis-

tics of the three performance metrics for all 80 partitions. The first observation here is that

with an increasing number of regions, the number of iterations and the gap in objective

increase but the execution time decreases with both partitioning methods. This shows that

the asynchronous ADMM approach is scalable in terms of a large number of regions but

the solution is less optimal. One way to reduce the gap is to reduce the penalty increasing

rate, which on the other hand, will result in more iterations. The second observation is that

Algorithm 5 generally has a better performance with spectral partitioning than that with

arbitrary partitioning. Particularly, the maximum value of iterations, time and gap of using

an arbitrary partition can be much larger than that using a partition from the set of solu-

tions spectral partitioning finds. Furthermore, with severe partitioning of the system into 40

regions, Algorithm 5 fails to converge with 54 out of the 80 arbitrary partitions within the

maximum local iteration number which is set to 1250. But with spectral clustering, Algo-

rithm 5 successfully converged with all 80 partitions within 150 local iterations. Therefore,

it is fair to say that using the spectral partitioning technique, there is a better chance of

identifying a partition that boosts the performance of the asynchronous ADMM approach.

While using spectral partitioning may not seem very beneficial on the IEEE 118-bus
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Figure 6.8: Convergence of asynchronous ADMM with spectral partitioning and electrical
partitioning.

system, it is much more critical when employing Algorithm 5 on large-scale transmission

networks. For the Polish and GB systems, we compare the most balanced partition computed

by spectral partitioning with the partition generated by an electrical partitioning approach

used in [10]. The electrical partitioning method assigns a bus to the same region as its

closest generator bus in terms of electrical distance represented by admittance. Again, the

increasing penalty method is used with ρ0 = 107 used for both systems. τ is set to 1.012 and

1.006 respectively for the Polish and GB systems based on the results in Fig. 6.7. Figure

6.8 shows the convergence of Algorithm 5 with these two partitioning method, and it is

clearly shown that using spectral partitioning, Algorithm 5 converges to a feasible solution

significantly faster than using electrical partitioning. We should mention that the gaps in

the objective function of the solutions found using the spectral partitioning of these two
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systems are both below 1%. These findings demonstrate that if a partition is not chosen

intelligently, Algorithm 5 is likely to fail to find a feasible solution in time if the AC OPF

is expected to be solved every five minutes, which shows the importance of good system

partitioning for distributed optimization on large-scale systems.

6.5 Impact of Communication Delays

At last, we investigate the impact of communication delays using the considered three power

systems. Here the delay denotes the time from sending out a message from the source region

until it is received by the destination region. The communication delays affect the actual

number of arrived neighbors before each local iteration. The larger the delay, the fewer

neighbors a region could possibly receive a message from before it starts a new iteration

during the first couple of iterations of Algorithm 5. Consequently, the region will update

fewer z variables, namely, the ones that are associated with arrived neighbors. Therefore, the

local update makes less progress in a single iteration, which then could lead to an increased

number of iterations.

We first conduct a study on the 118-bus system and then consider the Polish and the

GB systems. For the 118-bus system, the number of neighbors each region has and the

average computation time of solving the local OPF problem at one iteration are shown in

Table 6.4. Five ranges of delays are considered varying from milliseconds if fiber optical

communications are used with direct dedicated links among regions to 1 or 2 seconds if no

direct link exists such that the message has to be routed via multiple hops or the traffic load

of the network is high. For each pair of neighboring regions, its associated communication

delay is randomly generated within the range listed in the second row of Table 6.5. The rest

of Table 6.5 shows the average number of arrived neighbors of region k (denoted by nak)

Table 6.4: Number of neighbors and local computation time of the 118-bus system.

Region 1 2 3 4 5 6 7 8

|Nk| 3 2 3 1 4 3 3 1

Computation time (s) 0.31 0.13 0.09 0.12 0.15 0.14 0.13 0.11
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Table 6.5: Communication delays and number of arrived neighbors on the 118-bus system.

Case I II III IV V

Delay (s) 0.003-0.005 0.03-0.05 0.3-0.5 0.6-1.0 1.2-2.0

na1 3.0 3.0 2.6 2.4 1.8

na2 1.6 1.5 1.3 1.2 1.0

na3 1.5 1.4 1.4 1.2 1.0

na4 1.0 1.0 1.0 1.0 1.0

na5 3.3 3.2 2.9 2.0 1.1

na6 2.7 2.6 1.7 1.5 1.2

na7 2.8 2.7 2.4 1.8 1.1

na8 1.0 1.0 1.0 1.0 1.0

before its each local update. We calculate this statistic using the first 20 local iterations for

each region because the first few iterations are critical in ADMM that determines the final

point it converges to. It is shown in Table 6.5 that with increasing communication delays,

the number of arrived neighbor decreases as expected. With small delays such as in Case I

and II, all regions can receive the updated information from the majority of their neighbors,

while with large delays such as in Case V, most regions have to wait until one neighbor

arrives. This indicates that larger communication delays lead to more severe asynchronism.

The severity of asynchronism has a strong impact on the value for the penalty parameter

that achieves a solution of good quality. Figure 6.9 shows the gap of the objective function

between Algorithm 5 and the centralized solution with respect to the increasing rate τ of the

penalty ρ. For comparison, we also simulated the synchronous counterpart of Algorithm 5,

i.e., Algorithm 1 where each region has to wait for all neighbors before it carries out its local

update. In the synchronous case, the faster the penalty increases, the larger is the gap. But

as all regions need to wait for all neighbors regardless of the communication delay, similar

trends can be observed for all cases with various communication delays. In contrast, in the

asynchronous case, the sensitivity of Algorithm 5 to the increasing rate of penalty highly

depends on the communication delays. For example, with large communication delays such

as in Case V, one needs to increase the penalty at a very slow pace to reach a solution with

a gap smaller than 1%.
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Figure 6.9: Solution quality and the penalty increasing rate.
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Figure 6.10: Convergence of asynchronous ADMM with various communications delays.

Now we evaluate the impact of the level of asynchrony on the convergence rate of Al-

gorithm 5 using all three test systems. ρ0 is set to 8000, 107 and 107, and τ is set to 1.1,

1.012 and 1.006, respectively for the 118-bus, Polish and GB systems. Fig. 6.10 shows that

Algorithm 5 also needs more iterations to converge as the communications delay increases.

However, for the Polish system, the increase of delay seems to only affect the convergence of

Algorithm 5 slightly, as illustrated in Fig. 6.12b. The reason for this is that as discussed in

Chapter 6.3.2, the communication delay will only have an impact if the number of received

messages decreases significantly due to an increase in the delay, which is not the case for the

Polish system, as discussed next.

To visualize the level of asynchrony on large-scale systems, we also plot the average
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number of arrived neighbors at each region during the first 20 local ADMM iterations in

Fig. 6.11. The x-axis of Fig. 6.11 is the index of regions. The grey bar denotes the total

number of neighbors one regions has, which corresponds to the number of arrived neighbors

if synchronous ADMM is used. From Fig. 6.11, one can observe that even though Algorithm

5 allows a region to perform local updates after receiving message from one neighbor, the

actual number of arrived neighbors during the time when this region is doing computation is

usually more than one. This shows that the asynchronism among the regions are dependent

on the system topology and may not be as severe as one might have conjectured. As shown

in Fig. 6.11a, the number of arrived neighbors doe not necessarily decrease significantly with

increasing delays for the Polish system, which explains why the iterations of Algorithm 5 are

not affected much by varying delays for this specific system. Therefore, even though larger

delays generally lead to more iterations of Algorithm 5, how significant that increase could

be is system dependent and should be analyzed case by case.

Finally, we would like to conduct a comparison of the asynchronous ADMM method

with increasing penalty, i.e., Algorithm 5 with its synchronous counterpart, i.e., Algorithm

1, under various communication delays. Table 6.6 demonstrates the performance of these

two algorithms on the 118-bus system with ν̄k denoting the average local iterations among

all regions. The following observations can be made: 1) With the same penalty increasing

rate, asynchronous ADMM on average takes more iterations than synchronous ADMM but

with less time spent on each iteration. Therefore, asynchronous ADMM generally takes less

time to converge but the solution quality is worse. 2) To achieve a similar level of solution

quality, asynchronous ADMM needs to adopt a smaller penalty increasing rate that leads to

more iterations and possibly longer execution time. 3) With the increase of communication

delays, the number of iterations of asynchronous ADMM increases even with a fixed penalty

increasing rate due to the more severe asynchronism among regions. 4) On this test system,

asynchronous ADMM achieves comparable performance of its synchronous counterpart for

Cases I to IV where the delay is small or comparable with the computation time, but slows

down substantially if the delay is dominant such as in Case V. Note that with the synchronous

ADMM algorithm using the same penalty increasing rate, the number of iterations could

be different under different delays. This is due to the implementation of the synchronous
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Table 6.6: Performances of synchronous and asynchronous ADMM with increasing penalty
under various communication delays on the 118-bus system.

Delay (s) Method τ ν̄k Gap(%) Time(s)

0.003-0.005

sync 1.18 35 0.40 9.7

async 1.18 56 0.60 7.8

async 1.10 91 0.40 11.5

0.03-0.05

sync 1.20 31 0.38 12.3

async 1.20 61 0.70 10.6

async 1.10 96 0.40 16.0

0.3-0.5

sync 1.20 48 0.39 28.8

async 1.20 89 1.02 14.0

async 1.06 233 0.40 33.6

0.6-1.0

sync 1.20 48 0.39 52.1

async 1.20 126 1.39 20.9

async 1.04 377 0.40 57.1

1.2-2.0

sync 1.16 57 0.32 118.0

async 1.16 238 1.52 40.0

async 1.02 1119 0.35 169.4

Table 6.7: Local computation time using asynchronous ADMM and communication delays
with different 40-region partitions of the Polish system.

Partition
Computation (s) Small delays (s) Medium delays (s) Large delays (s)

Min Max Mean Min Max Mean Min Max Mean Min Max Mean

P1 0.05 1.95 0.43 0.0025 0.0088 0.0041 0.25 0.88 0.41 1.25 4.42 2.03

P2 0.04 2.47 0.48 0.0025 0.0072 0.0040 0.25 0.72 0.40 1.25 3.58 2.00

P3 0.05 2.69 0.45 0.0029 0.0092 0.0041 0.29 0.92 0.41 1.46 4.58 2.06

P4 0.06 3.78 0.46 0.0026 0.0058 0.0039 0.26 0.58 0.39 1.28 2.91 1.97

algorithm here which lets a region start its local update after receiving information from

all neighbors without any global synchronization. Such implementation is slightly different

from a strictly synchronous implementation coordinated by a master node and could lead

to difference in the sequence of regional updates under different delays.
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Table 6.8: Parameter setting and solution quality of asynchronous ADMM on the Polish
system under different delays.

Scheme

Small delays (s) Medium delays (s) Large delays (s)

τ Gap (%) τ Gap (%) τ Gap (%)

All P1 P2 P3 P4 All P1 P2 P3 P4 All P1 P2 P3 P4

Sync 1.060 0.41 0.42 0.49 0.42 1.060 0.38 0.41 0.40 0.36 1.100 0.56 0.54 0.57 0.50

Async 1.012 0.39 0.34 0.33 0.34 1.012 0.41 0.37 0.51 0.39 1.006 0.53 0.40 0.50 0.35

While for the 118-bus system, Algorithm 5 seems to converge slightly slower than its

synchronous counterpart, it converges faster when applied to large-scale systems such as

the Polish system. For the Polish system, we also consider four 40-region partitions which

are all found by the spectral partitioning approach but are different in terms of sizes of

regions and their associated local computation time spent on solving the subproblems at

one iteration. For each partition, we carry out both synchronous and asynchronous ADMM

under three levels of delays. In the small delay scenario, the delays of passing messages

among pairs of neighboring areas are calculated using (5.7) based on the assumptions and

schemes proposed in Chapter 5. While for the scenarios of medium and large delays, we

multiply the delays calculated in the small delay scenario by 100 and 500, respectively. The

minimum, maximum, and average value of these pair-wise delays are presented in Table

6.7. Note that the local computation time is only dependent on the solver used but not on

the delays, and the average values of the minimum, maximum and mean local computation

time of all regions over all experiments associated with a particular partition are shown

in Table 6.7. Here, P1 is the most balanced partition found by the spectral partitioning

method in terms of the difference in the numbers of buses the largest and smallest regions

have. In fact, it can be difficult to search for a very balanced partition in a large-scale

system and more importantly, even if a more balanced partition exists, it may not be a

partition that has weaker couplings among the regions and could result in lower efficiency

while deploying distributed optimization. Comparing the local computation time and the

delays, we consider the delay to be small if the average delay is more than one magnitude

smaller than the average computation time, medium if the average delay is around the same

magnitude as the average computation time, and large if the average delay is more than five
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Figure 6.12: Convergence of synchronous/asynchronous ADMM on the Polish system with
various communication delays and partitions.

times the average computation time.

For all the experiments, the initial penalty parameter is set to 107. However, the increas-

ing rates of the penalty parameter are chosen differently under different levels of delays and

algorithms. The settings of the penalty increasing rate τ are given in Table 6.8, which are

chosen in a way that the synchronous and asynchronous ADMM can achieve similar accuracy

measured by gap in the objective function at convergence. Specifically, the gap is measured

when the maximum infeasibility falls below 10−3. Similar to the findings presented in Table

6.6, to achieve comparable accuracy, one can increase the penalty faster for synchronous

ADMM compared with asynchronous ADMM.

Figure 6.12 shows the convergence of synchronous and asynchronous ADMM with the

chosen four partitions under various delays. As shown, regardless of how large the com-

munication delays are, asynchronous ADMM always converges faster than its synchronous

counterpart. While synchronous ADMM tends to converge slower with partitions that are

more unbalanced such as P4, asynchronous ADMM is not affected as much by the hetero-

geneity of the subproblems, which indeed validates that asynchronous schemes are more

suitable for solving subproblems with different sizes. Compared with the performance of

asynchronous ADMM on the 118-bus system presented in Table 6.6, the asynchronous ap-

proach is more beneficial for the Polish system because the control regions here are more

unbalanced and the synchronous scheme wastes a lot of time waiting for slow regions, which
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is generally the case in large-scale systems. Therefore, the proposed asynchronous ADMM

can be an efficient alternative to synchronous ADMM when the partition is unbalanced, at

the tradeoff of increasing communications traffic. Hopefully, such communications require-

ment will be supported by the communications network of the smart grid that is currently

incorporating more direct data communications links among the substations and control

centers.

A final remark here is that even though asynchronous ADMM converges fast on the Pol-

ish system under small or medium delays, it might not converge under large delays if the

AC OPF problem need to be solved every five minutes. In fact, large delays suggest that the

communications infrastructure of the system is not suitable for deploying distributed opti-

mization algorithms because the delays will be dominant and slow down these algorithms

drastically. This observation also suggests that out of the candidate partitions found by the

spectral partitioning approach, one should consider the conceivable communications infras-

tructures associated with these partitions and estimate communication delays. If different

partitions incur delays that vary across several magnitudes, then one should narrow down

the choice of partitions to the candidates with delays in the smallest range. Then out of

the partitions with relatively small delays, one can choose the partition according to other

operational or legacy constraints.



Chapter 7

Closure

7.1 Conclusion

This thesis has presented methods that enable the implementation of distributed optimiza-

tion methods in large-scale power systems to solve non-convex optimal power flow problems.

Particularly, we have investigated three issues, namely, system partitioning, communications,

and synchronization, that should be carefully considered when applying any distributed al-

gorithm to a real-world system.

First, we proposed a spectral partitioning method which determines how a power system

should be partitioned to achieve the fastest convergence when applying the OCD method.

The proposed partitioning method determines the best partition by grouping the computa-

tionally strongly coupled buses into one area and assigning weakly coupled buses to different

areas using the spectral clustering technique. Simulation results on multiple IEEE test

systems have shown that by using the proposed partitioning approach, OCD converges sig-

nificantly faster than using other partitions of the system and the convergence time could

be shorter than the convergence time of the centralized approach.

We then applied the partitioning approach in conjunction with the distributed ADMM

method. By using the partitions computed by the partitioning method, ADMM can find

a solution very close to the local optimum very efficiently, which demonstrates the appli-

cability of distributed optimization in large-scale real power systems. Additionally, it was

checked and verified that the partitions found are robust with respect to the starting point,

132
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the parameters used in ADMM, and the inclusion of thermal line constraints. We also ap-

plied the partitioning approach with OCD to solve a multi-step OPF problem and showed

that the best partition of the system is applicable to a wide range of time steps. These re-

sults show that the spectral partitioning method can be generalized to different distributed

methods, e.g., ADMM, and problems that span multiple time steps, which provides a struc-

tured approach to decompose a large-scale system such that an efficient implementation of

distributed optimization methods is possible.

Next, we have presented a generic approach that models the communications network

architectures and simulates the communications process for distributed optimization using

the OPNET modeler. In particular, we have considered the centralized and the distributed

communications infrastructures and compared the convergence performance of OCD and

ADMM with communications delay taken into account. Our results suggest that the cen-

tralized infrastructure might be prohibitive for deploying methods with frequent information

exchange or a large number of control areas, and a distributed communications plane and

infrastructure is more suitable for reaping the full benefits of distributed optimization, es-

pecially in large-scale power systems. The findings reported in this part, particularly the

impact of the communications plane on distributed optimization, bridges the gap that exists

between the communications research community and the distributed optimization research

community in how these two research communities see the problem of deploying distributed

methods in power systems.

Finally, we proposed an asynchronous distributed ADMM approach to solve the non-

convex OPF problem. The proposed method does not require any centralized coordination

and allows any worker to perform local updates with information received from a subset of

its physically connected neighbors. We provided the sufficient conditions under which asyn-

chronous ADMM asymptotically satisfies the first-order optimality conditions. Through

numerical studies on three large-scale systems, we have investigated the impact of param-

eter tuning, system partitioning, and communications delay on the proposed asynchronous

ADMM method. Specifically, we have shown that the penalty parameter used in ADMM is

highly related to the tradeoff of the feasibility and optimality of the solution, which needs to

be increased slowly for large-scale networks such as the Polish and Great Britain systems.
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We have also demonstrated the importance of partitioning and that the spectral partitioning

method works well with the asynchronous ADMM approach. In terms of communications

delay, we have shown that asynchronous ADMM needs more iterations to converge if the

severity of asynchrony among the regions increases due to large delays. These findings have

shown that asynchronous ADMM could be more efficient than its synchronous counterpart

if it is implemented with proper system partitioning, parameter tuning and communications

technologies.

In conclusion, the findings presented in this thesis suggest that the developed approaches

in the aspects of system partitioning, communications, and synchronization could provide a

roadmap for making distributed optimization practical and viable in large-scale power sys-

tems. Figure 7.1 provides a flowchart outlining the steps one could follow if one is considering

to deploy distributed optimization for a specific system. The first step is to determine possi-

ble ways to decompose the system. To apply the proposed spectral partitioning method, the

assumption made in this thesis is that a specific application should be considered. However,

to apply the distributed optimization approach for multiple applications, one can apply the

partitioning method to all considered problems and choose a partition that works for many

applications or the most important applications. We also assume that the number of re-

gions is predetermined because it is dependent on the computational capabilities available

and other legacy constraints. Then, one should choose a partition whose communications

infrastructures support message passing among neighboring regions and the associated com-

munication delays are relatively small among all the partition candidates. Next, according

to the actual level of delays associated with the chosen partition and the heterogeneity of

regions, one can choose a proper distributed optimization algorithm and tune the parameters

if necessary. This flowchart is built upon the findings presented throughout this thesis and

can be used as a guidance for the implementation of distributed optimization on large-scale

systems.
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Figure 7.1: Steps of implementation of distributed optimization on a large-scale system.

7.2 Future Directions

There are three directions in which the work presented in this thesis could be extended.

First, while this thesis has shown preliminary results that asynchronous ADMM could be a

viable approach to tackle non-convex OPF problems in large-scale systems, its convergence

behavior needs to be further investigated. This can be done by either theoretical analysis

that aims to derive the best algorithm parameter or more comprehensive empirical studies

that applies the proposed asynchronous approach to a large number of real-world systems.

The second direction lies in the application field. While this thesis studies the OPF

problem for the transmission network, the methods developed could also be useful for dis-
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tribution network management. As many renewable and distributed energy resources are

integrated and managed at the distribution level, distributed optimization will play a key

role in the coordination of these resources. It is worth studying how the partitioning ap-

proach and the modeling of the communications plane should be modified to better adapt

to the characteristics of distribution networks. Furthermore, it will also be interesting to

study how to solve the optimization problems of transmission and distribution networks in

a collaborative and interactive manner by treating them as one integrated system instead of

two decoupled systems.

The third direction is more oriented towards implementation. While this thesis studies

distributed optimization algorithms, the experiments are conducted on a single machine in

a sequential manner which simulates the process of distributed algorithms to show proofs

of concepts. When the algorithms are ready to be applied in practice, it will be necessary

to build a distributed computation environment that utilizes a cluster of computers to run

these algorithms in a truly distributed manner. In fact, we have made some efforts towards

this direction by implementing the proposed asynchronous ADMM in Python using Python’s

built-in parallel computing module. The source code using IEEE test systems can be found

at https://github.com/guojunyao419/OPF-ADMM. This parallel implementation can serve

as a starting point, and collaborative efforts from computer and network engineers and

researchers are needed to build a distributed computing platform which will be beneficial

for both academic research and industrial applications.

Overall, it is our hope that the methods and findings presented in this thesis could es-

tablish the much needed interconnection between the research communities of optimization,

power systems and communications and spur up more interdisciplinary research in this area.

As the power systems today are evolving towards a more distributed architecture, we be-

lieve that distributed optimization approaches will provide important tools to tackle the

upcoming challenges in the transition to a smarter grid.



Appendix A

Convergence Criterion for OCD-C

In OCD-C, the update of variables associated with area k is calculated by

∆yk = H−1
kk · (−rk + r̂k), (A.1)

where

r̂k =
K∑

l=1,l 6=k

HklH
−1
ll · rl. (A.2)

Now, consider the simple case given in Chapter 2.3.2 where the overall problem is divided

into two subproblems resulting in solving H11 H12

H21 H22

 ·
 ∆y1

∆y2

 = −

 r1

r2

 (A.3)

If we use gν to denote the value of the right-hand-side vector of (A.3) which are the KKT

conditions evaluated at iteration ν, then

gν = g(yν) =

 rν1 − r̂ν1

rν2 − r̂ν2

 (A.4)

∆yν = −

 Hν
11 0

0 Hν
22


−1

· gν = −Hν−1 · gν . (A.5)

If we use y∗ to denote the optimal solution, then the Taylor series expansion of gν yields:

gν = g(y∗) +∇g(y∗)(yν − y∗) + o(||yν − y∗||)
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= ∇

 r∗1 −H∗12H
∗
22
−1 · r∗2

r∗2 −H∗21H
∗
11
−1 · r1

 (yν − y∗) + o(||yν − y∗||)

=

 H∗11 −H∗12H
∗
22
−1H∗21 0

0 H∗22 −H∗21H
∗
11
−1H∗12

 · (yν − y∗) + o(||yν) − y∗||)

= H̃∗(yν − y∗) + o(||yν − y∗||). (A.6)

Then, for the next iteration

yν+1 − y∗ = yν + ∆yν − y∗ (A.7)

= (I −Hν−1
H̃∗)(yν − y∗) + o(||yν − y∗||).

Using the triangular inequality, one can get

||yν+1 − y∗|| ≤ ||I −Hν−1
H̃∗|| ||yν − y∗||+ o(||yν − y∗||). (A.8)

Dividing both side of (A.8) by ||yν − y∗|| and taking limits of ν, one can see that in order

for OCD-C to converge, the following has to hold:

limν→∞||I −H
∗−1

H̃∗||ν = 0. (A.9)

Based on the theorem on spectral radius which states that ρ(A) < 1 if and only if limν→∞A
ν = 0,

OCD-C will converge if ρ(I −H∗−1
H̃∗) < 1.



Appendix B

Optimality Conditions of ADMM

Subproblems

For the x-update in ADMM at the ν-th iteration, the k-th region solves the following sub-

problem

minimize
xk

fk(xk) + λν−1>
k (Akxk − zν−1

k ) +
1

2
‖Akxk − zν−1

k ‖2
ρν−1
k

(B.1a)

subject to g(xk) = 0. (B.1b)

For the simplicity of presentation, only equality constraints are considered in the following

analysis which can be readily extended to include inequality constraints. The optimality

conditions of subproblem (B.1) are

∇fk(xk) + µ>k∇g(xk) + A>k λ
ν−1
k + A>k diag(ρν−1

k )(Akxk − zν−1
k ) = 0 (B.2a)

g(xk) = 0, (B.2b)

where µk are the Lagrange multipliers of (B.1b). In (B.2a), the terms A>k λ
ν−1
k ,

A>k diag(ρν−1
k )Akxk and A>k diag(ρν−1

k )zν−1
k only contain non-zero entries in the rows that

correspond to the variables (xk, µk) associated with the boundary buses. Hence, for the non-

boundary buses, (B.2a) reduces to ∇fk(xk) + µk∇g(xk) = 0, which combined with (B.2b)

are the centralized optimality conditions to be fulfilled at those non-boundary buses.
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Proof of Lemma 1

Proof of Lemma 1.

L(xν+1, zν+1, λν+1)− L(xν , zν , λν)

= L(xν+1, zν , λν)− L(xν , zν , λν)

+ L(xν+1, zν , λν+1)− L(xν+1, zν , λν)

+ L(xν+1, zν+1, λν+1)− L(xν+1, zν , λν+1).

(C.1)

We bound the three pairs of differences on the right-hand-side (RHS) of (C.1) as follows.

First, due to the optimality of xν+1
k in (6.6), we introduce the general subgradient dν+1

k :

dν+1
k := −

(
A>k λ

ν
k + ρA>k (Akx

ν+1
k − zν̄k+1

k )
)
∈ ∂Fk(xν+1

k ). (C.2)
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Then, since only xk for k ∈ Aν is updated, we have

L(xν , zν , λν)− L(xν+1, zν , λν)

=
∑
k∈Aν

(
Fk(x

ν
k)− Fk(xν+1

k ) + λν>k Ak(x
ν
k − xν+1

k ) +
ρ

2
‖Akxνk − zνk‖2 − ρ

2
‖Akxν+1

k − zνk‖2
)

=
∑
k∈Aν

(
Fk(x

ν
k)− Fk(xν+1

k ) + λν>k Ak(x
ν
k − xν+1

k ) +
ρ

2
‖Akxνk − Akxν+1

k ‖
2

+ ρ〈Akxν+1
k − zν̄k+1

k + zν̄k+1
k − zνk , Akxνk − Akxν+1

k 〉
)

=
∑
k∈Aν

(
Fk(x

ν
k)− Fk(xν+1

k ) +
ρ

2
‖Akxνk − Akxν+1

k ‖
2 + 〈A>k λνk + ρA>k (Akx

ν+1
k − zν̄k+1

k ), xνk − xν+1
k 〉

+ ρ(zν̄k+1
k − zνk)>(Akx

ν
k − Akxν+1

k )
)

=
∑
k∈Aν

(
Fk(x

ν
k)− Fk(xν+1

k )− 〈dν+1
k , xνk − xν+1

k 〉+ ρ(zν̄k+1
k − zνk)>(Akx

ν
k − Akxν+1

k )
)

+
ρ

2
‖Akxνk − Akxν+1

k ‖
2

≥ −γ
2

∑
k∈Aν

‖xν+1
k − xνk‖2 +

ρ

2

∑
k∈Aν

‖Akxνk − Akxν+1
k ‖

2 + ρ
∑
k∈Aν

(zν̄k+1
k − zνk)>(Akx

ν
k − Akxν+1

k ),

(C.3)

where the second equality follows from the cosine rule:

‖b+ c‖2 − ‖a+ c‖2 = ‖b− a‖2 + 2〈a+ c, b− a〉with a = Akx
ν+1
k , b = Akx

ν
k, and c = −zνk , and

the fourth equality is due to the definition of dν+1
k in (C.2). The last inequality is derived

from Definition 1 under Assumption 4. Then, by Assumption 2, we have

L(xν+1, zν , λν)− L(xν , zν , λν)

≤ γ

2

∑
k∈Aν

‖xν+1
k − xνk‖2 − ρ

2

∑
k∈Aν

‖Akxνk − Akxν+1
k ‖

2 − ρ
∑
k∈Aν

(zν̄k+1
k − zνk)>(Akx

ν
k − Akxν+1

k )

≤ γM2
2 − ρ

2M2
2

∑
k∈Aν

‖xν+1
k − xνk‖2 + ρ

∑
k∈Aν

(zν̄k+1
k − zνk)>(Akx

ν+1
k − Akxνk).

(C.4)
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Secondly, for the λ-update, we have

L(xν+1, zν , λν+1)− L(xν+1, zν , λν)

=
∑
k∈Aν

(λν+1
k − λνk)>(Akx

ν+1
k − zνk)

=
∑
k∈Aν

(λν+1
k − λνk)>(Akx

ν+1
k − zν̄k+1

k ) +
∑
k∈Aν

(λν+1
k − λνk)>(zν̄k+1

k − zνk)

=
1

ρ

∑
k∈Aν

‖λν+1
k − λνk‖2 +

∑
k∈Aν

(λν+1
k − λνk)>(zν̄k+1

k − zνk).

(C.5)

The first equality is due to the fact that λν+1
k = λνk,∀k /∈ Aν , and the last equality is obtained

by applying (6.7) for k ∈ Aν .

Thirdly, for the z-update, we first look at the difference caused by updating zk,l (or zl,k

for one pair of neighboring workers k and l. By Definition 2.1, (6.10) is strongly convex with

respect to (w.r.t.) zk,l with modulus 2ρ+ α. Then by Definition 2.2, we have

L′(xν+1, zνk,l, λ
ν+1)− L′(xν+1, zν+1

k,l , λ
ν+1)

=

(
− (λν+1

k,l + λν+1
l,k )zνk,l +

ρ

2
‖Ak,lxν+1

k − zνk,l‖2 +
ρ

2
‖Al,kxν+1

l − zνk,l‖2 +
α

2
‖zνk,l − zνk,l‖2

)
−
(
− (λν+1

k,l + λν+1
l,k )zν+1

k,l +
ρ

2
‖Ak,lxν+1

k − zν+1
k,l ‖

2 +
ρ

2
‖Al,kxν+1

l − zν+1
k,l ‖

2 +
α

2
‖zν+1

k,l − z
ν
k,l‖2

)
≥
(
∂L′(xν+1, zν+1

k,l , λ
ν+1)

∂zν+1
k,l

(zνk,l − zν+1
k,l ) + (ρ+

α

2
)‖zνk,l − zν+1

k,l ‖
2

)
= (ρ+

α

2
)‖zνk,l − zν+1

k,l ‖
2.

(C.6)

The last equality in (C.6) holds because ∂L′(zν+1
k,l ) = 0 due to the optimality condition of

(6.8). For any zk,l ∈ z, we have

L(xν+1, zν+1
k,l , λ

ν+1)− L(xν+1, zνk,l, λ
ν+1) ≤ −(ρ+ α)‖zν+1

k,l − z
ν
k,l‖2. (C.7)

Summing up the LHS of (C.7), we have

L(xν+1, zν+1, λν+1)− L(xν+1, zν , λν+1) ≤ −(ρ+ α)‖zν+1 − zν‖2. (C.8)
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By substituting (C.4), (C.5) and (C.8) into (C.1), we obtain

L(xν+1, zν+1, λν+1)− L(xν , zν , λν)

≤ γM2
2 − ρ

2M2
2

∑
k∈Aν

‖xν+1
k − xνk‖2 − (ρ+ α)‖zν+1 − zν‖2

+
1

ρ

∑
k∈Aν

‖λν+1
k − λνk‖2 +

∑
k∈Aν

(λν+1
k − λνk)>(zν̄k+1

k − zνk)

+ ρ
∑
k∈Aν

(zν̄k+1
k − zνk)>(Akx

ν+1
k − Akxνk)

≤ γM2
2 − ρ

2M2
2

∑
k∈Aν

‖xν+1
k − xνk‖2 − (ρ+ α)‖zν+1 − zν‖2

+ (
1

ρ
+

1

2
)
∑
k∈Aν

‖λν+1
k − λνk‖2 +

1

2

∑
k∈Aν

‖zν̄k+1
k − zνk‖2

+ ρM4
2

∑
k∈Aν

‖zν̄k+1
k − zνk‖2 +

ρ

4M4
2

∑
k∈Aν

‖Akxν+1
k − Akxνk‖2

≤ (
γ

2
− ρ

4M2
2

)
∑
k∈Aν

‖xν+1
k − xνk‖2 − (ρ+ α)‖zν+1 − zν‖2

+ (
1

ρ
+

1

2
)
∑
k∈Aν

‖λν+1
k − λνk‖2 +

2ρM4
2 + 1

2

∑
k∈Aν

‖zν̄k+1
k − zνk‖2.

(C.9)

The second inequality is obtained by applying Young’s inequality; i.e., ab ≤ a2

2ε + εb2

2 , with

ε = 1 and ε = 1
2M4

2
, to term (λν+1

k − λνk)>(zν̄k+1
k − zνk)and ρ(zν̄k+1

k − zνk)>(Akx
ν+1
k − Akx

ν
k),

respectively. The last inequality holds under Assumption 2.

We further bound ‖λν+1
k − λνk‖2as follows. From the optimality condition of (6.6) and

(6.7), for k ∈ Aν , we have

0 = ∂Fk(x
ν+1
k ) + A>k

(
λνk + ρk(Akx

ν+1
k − zν̄k+1

k )

)
= ∂Fk(x

ν+1
k ) + A>k λ

ν+1
k .

(C.10)

For ∀k /∈ Aν , let ν̄k < ν denote the last iteration number for which region k updated.

Then, ∂Fk(x
ν̄k
k ) +A>k λ

ν̄k+1
k = 0. Since xν̄k+1

k = · · · = xνk = xν+1
k and λν̄k+1

k = · · · = λνk = λν+1
k , we

can conclude that

∂Fk(x
ν+1
k ) + A>k λ

ν+1
k = 0, ∀k and ∀ν. (C.11)
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By Assumption 3, Assumption 5 and (C.11), we can bound

‖λν+1
k − λνk‖2 = ‖(AkA>k )−1Ak(A

>
k λ

ν+1
k − A>k λνk)‖2

= ‖(AkA>k )−1Ak
(
∂Fk(x

ν+1
k )− ∂Fk(xνk)

)
‖2

= ‖Bk

(
∂Fk(x

ν+1
k )− ∂Fk(xνk)

)
‖2

≤ σmax(B>k Bk)‖∂Fk(xν+1
k )− ∂Fk(xνk)‖2

≤ CM2
1‖xν+1

k − xνk‖2.

(C.12)

Substituting (C.12) into (C.9), we obtain Lemma 1.
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Proof of Lemma 2

Proof of Lemma 2.

ν∑
φ=1

∑
k∈Aν

‖zφk − z
φ̄k+1
k ‖2 =

ν∑
φ=1

∑
k∈Aν

∥∥∥∥ φ−1∑
ι=φ̄k+1

(zι+1
k − zιk)

∥∥∥∥2

≤
ν∑

φ=1

∑
k∈Aν

(φ− φ̄k − 1)

φ−1∑
ι=φ̄k+1

‖zι+1
k − zιk‖2

≤
ν∑

φ=1

∑
k∈Aν

(ω − 1)

φ−1∑
ι=φ−ω+1

‖zι+1
k − zιk‖2

≤ (ω − 1)2

ν∑
φ=1

K∑
k=1

‖zφ+1
k − zφk‖

2

≤ (ω − 1)2

ν∑
φ=1

‖zφ+1 − zφ‖2,

(D.1)

where for the second inequality, we apply (6.9); i.e., φ − ω ≤ φ̄k < φ. The third inequality

holds due to the observation that in the summation
∑ν

φ=1

∑φ−1
ι=φ−ω+1 ‖z

ι+1
k −zιk‖2, each ‖zι+1

k −

zιk‖ with ι = 1, 2, ..., ν appears no more than ω − 1 times.
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