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ABSTRACT 

As the dramatic development of high speed integrated circuits has progressed, the 

60 GHz silicon technology has been introduced to enable much faster computer systems 

and their corresponding applications. However, when signals are propagating at 60 GHz 

or higher frequencies on a PCB (Printed Circuit Board), the crosstalk among signal buses 

and devices, trace losses, and introduced parasitic capacitance and inductance between 

high density traces, become significant and may be severe enough such that the inter-chip 

communications will not be able to meet computer system signal specifications. High 

speed circuit signal integrity researchers in both electronic industries and academia have 

explored various methodologies to resolve these high frequency issues. Moreover, Intel is 

introducing Ultra Path Interconnect (UPI) for multi-core server systems, which demands 

more than 2.44 Tbps data rate between two CPUs, and 1.5 Tbps data rate for PCIe 

channel operation. 

Recently, the concept of the wireless inter/intra-chip interconnection (WIIC) 

technology was introduced [19, 23] for solving high frequency signal integrity issues. 

Here this dissertation mainly focuses on the inter-chip case while still using the WIIC 

designation for generality. Various WIIC technologies have been presented in the 

literature, which have focused on the investigations on Ultra Wide-Band (UWB), 

propagation channels, modulations, antennas, and power controls and interference.  
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However, not much research has focused on a system level design, which includes the 

lowest two layers of the communication protocol in a WIIC system, namely, the physical, 

and data link layers. Also, the previously published literature has rarely reached the data 

rate at 100 Gbps or higher, and none of the prior research has obtained a spectrum 

utilization ratio of 4 bit/Hz or greater. In addition, currently existing research has not 

fully taken advantage of advanced and matured wireless communication technologies 

such as Orthogonal Frequency Division Multiplexing (OFDM), high order modulation, 

and Multiple-Input/Multiple-Output (MIMO) systems for increasing data rates and 

improving reliability, although the use of UWB [29], conventional FDMA or TDMA 

[39], and binary modulations including Binary Phase Shift Keying (BPSK) [22], On-Off 

Keying (OOK) [31], and Amplitude Shift Keying (ASK) [35] have been studied in 

previous research.  

In this dissertation, a complete WIIC system and a representative WIIC channel 

model have been developed by taking full advantages of advanced wireless 

communication techniques. First, this research has analyzed the potential of higher-order 

modulation, error correction, OFDM, and channel coding to the WIIC setting. Although 

MIMO, interleaving and scrambling are also analyzed but not included in the current 

version of the proposed WIIC system, they could be featured in hypothetically ideal 

future research to determine their potential benefits. Second, the performance of a 

proposed WIIC system has been analyzed in order to reach 100 Gbps data rate. Third, a 

60 GHz WIIC channel based on metamaterial Electronic Band Gap (EBG) absorbers has 

been designed and analyzed using the numerical electromagnetics solver HFSS® and this 

EBG is integrated into the representative WIIC channel. Moreover, the impulse response 
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of the WIIC channel is numerically extracted and is used for the system validation and 

testing. Furthermore, the system has been simulated with the WIIC channel and the wired 

PCB channel. It has been found that, the Bit Error Rate (BER) performance of the 

proposed WIIC channel is close to that of an AWGN channel with FEC, and much better 

than the AWGN channel without FEC, which means that the designed WIIC system and 

channel work properly within the frequency band centered at 60 GHz, while the wired 

PCB channel is almost cut off at 15 GHz or higher for the cases investigated. With only 

five or six layers on a PCB board, the WIIC system is able to provide 384 Gbps data rate 

theoretically with 12 GHz bandwidth, while the wired PCB counterpart needs more than 

20 layers in order to avoid severe SI problems and to properly layout the Tbps channels. 

The current version of the WIIC system is able to provide 24 Gbps data rate with the 

bandwidth of 12 GHz using OFDM and QPSK. 
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CHAPTER 1 

INTRODUCTION 

1.1 Wired Interconnect Issues 

As the dramatic evolution of high speed, high density integrated circuits has 

occurred for the rapid development of computer science and microelectronic industries, 

the use of silicon technology at 60 GHz has been explored for much faster, more reliable, 

and more compact computer systems [1-4]. However, when signals are propagating at 60 

GHz or higher frequencies along a traditional integrated printed circuit board (PCB) 

transmission lines, the crosstalk, transmission loss, parasitic capacitance and inductance 

are significant and may be severe enough such that it will be very hard for digital 

communications on PCB boards to meet the designed signal specifications. Also, as a 

result of complex PCB circuits, the design cycle of planar circuits has been greatly 

elongated, and the testing and verification process have become more and more 

complicated. These signal integrity problems have been increasingly prominent, and the 

hardware and overhead costs have been substantially high. Meanwhile, with increasing 

clock frequencies and the number of the signal pins on integrated circuits and chips, the 

challenge of maintaining highly reliable interconnection communications between chips 

has become an issue of great importance. The problems of reflection at the 

interconnection of pins, the parasitic and mutual inductance and capacitance, and other 

signal integrity problems have been restricting the performance, clock frequency, and 

data rate of wired PCBs [5, 6]. 



 

2 

Clearly, the high data rate in today’s computer systems is very demanding. For 

example, in the current Intel multi-core wired PCB systems, Ultra Path Interconnect 

(UPI), which transmits high-speed data among CPUs, operates at more than 2.44 Tbps 

data rate for two CPUs, 68.78 Tbps for 8 CPUs; Peripheral Component Interconnect 

Express (PCIe), which carries signals between CPU and the peripheral components, 

transfers at the data rate about 1.5 Tbps for 2 CPUs, and 42 Tbps for 8 CPUs. Table 1.1 

summarizes details of the data rates for these two high-speed data links. 

Table 1.1 Data rates for UPI and PCIe links in multi-CPU systems 

No. of 

CPUs 
UPI Data Rate PCIe Data Rate 

Total Data Rate for 

UPI and PCIe 

Channels 

2 2.44 Tbps 1.5 Tbps 3.94 Tbps 

4 14.64 Tbps 9 Tbps 23.64 Tbps 

8 68.78 Tbps 42 Tbps 110.78 Tbps 

 

However, in order to support the high speed requirements listed in Table 1.1, the 

high-speed channels operating at 9.6 GHz frequency requires thousands of channels at 

the data rate of 5.12 Gbps for each channel, and thousands of traces in a number of PCB 

boards should be designed meet the SI requirements and specification. The essential 

drawbacks for the wired PCBs are briefly summarized as follows. 

 SI problems for high speed wired channels. At Tbps data rates, SI problems, 

including crosstalk, transmission loss, parasitic capacitance and inductance, signal 

dispersion and distortion have become more and more severe.  

 Extremely high demand of next generation of high-speed channels on PCB 

board. The next generation of the proposed high-speed channels, which operate at 

60 GHz or above, will bring more and more significant SI issues. According to 
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the measurement in this dissertation, one of the most innovative PCBs is not able 

to provide reliable communications at such a speed. As a result, not only SI 

engineers are highly demanded to support the new version of the high-speed 

signaling, but also the material engineers should provide new formulas to improve 

communication environments in PCBs. 

 Increment of PCB cost. In order to support the high speed channels in the wired 

PCB, the numbers of the traces for interconnect channels have been increased 

dramatically. Meanwhile, the layers of the wired PCB have to be augmented, 

which will directly add the cost for the wired PCBs. 

 Elongated design cycle. The design cycle of the wired PCB channels has been 

significantly elongated, as SI engineering takes longer and longer time to perform 

simulations before actual board design. During the design process of a PCB board, 

electric engineers make tremendous efforts to design the wired channels, to 

perform accurate simulations, to correlate the simulations and measurements, and 

to verify the PCB design. 

 Testing and verification issues. The process of testing and verification has 

become more and more complicated, expensive, and time consuming. 

1.2 Wireless Inter-chip Interconnection 

Recently, Wireless Inter-Chip Interconnection (WIIC) technology has been 

introduced into industry and academia for exploring novel solutions to the problems of 

wired inter-chip communication systems. The major concept of the WIIC communication 

is to provide a supplement to the existing high density trace communication by using 

wireless communication technology, as shown in Figure 1.1. 
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(a) 

Chip A Chip B Chip C

EBG Absorber 

Power 

Ground

WIIC Channel

 
 

(b) 

Figure 1.1 The concept of WIIC communication developed in this research. (a) 

Traditional high-density, trace-based interconnect PCB, and (b) the concept of the 

proposed WIIC communication system with an EBG absorber. 

 

At very high frequencies, a WIIC system can present various advantages over the 

traditional trace-based interconnection systems. First, the wireless interconnect channel 

will have more freedom than its correspondingly wired counterparts, in terms of the 

placement of the broadband transceivers printed into communication chips. Second, the 

WIIC system can reduce the cost of PCBs, as the number of PCB layers is reduced from 

more than ten layers to no more than five. Third, when traces are removed from the 

systems, crosstalk, time delay, distortion and dispersion will be greatly reduced or 

completely eliminated with proper wireless configuration and design, although 

interferences from the existing wired transmissions and WIIC channels are unavoidable. 

Fourth, the long cycles in designing PCB trace wiring and routing will be alleviated. 

Furthermore, another advantage brought by wireless is that it can easily and efficiently do 

broadcast (or multicast) transmission. Also, because the proposed PCBs are parallel metal 

layers, electromagnetic waves can be made to propagate broadband signals at a high 

speed with low time latency. Finally, the newly designed WIIC communication system 

can take advantages of the techniques developed for advanced, mature macro wireless 

and mobile communication systems. In addition, it has to be pointed out that 

electromagnetic interference generated by the wireless communication can be greatly 
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reduced by using the parallel ground planes and the metamaterial Electromagnetic Band-

Gap (EBG) absorber layers. 

1.3 Previous WIIC Research 

Both industry and academia have done research on the WIIC to solve the signal 

integrity problems brought by the use of higher frequency and high density PCBs. The 

dominant previous research of the WIIC mainly focused in the following areas: 

 Micro-Antenna Design. Many early works focused on micro-antenna analysis. 

Traditional chip pins were extended and converted to micro-antennas to achieve 

the wireless interconnection between chips for the purpose of solving the 

interconnection and signal integrity issues [7-19]. For instance, in these works, 

on-chip diode [9], Low-Temperature Co-fired Ceramic (LTCC) antennas [10], 

leaky wave antennas [11], nano-antennas and integrated antennas [12, 17], 

directional antennas [13], miniaturized antennas [15], ladder reflector antennas 

[16], and tapered slot antennas [19], were designed and analyzed. Other closely 

related research focused on the packaging wireless transceivers [7], transmission 

gain of an antenna [12], clock delivery in the WIIC communication systems [14], 

and the feasibility of using antennas [18]. These literatures’ analysis, comparison, 

and design for different types of antennas have helped the RF system design used 

in the WIIC system. In the current version of the WIIC system presented in this 

dissertation, the type of the antenna has been chosen as on-chip dipole. In  future 

the directional antennas will be used to provide spatial diversity. 

 Propagation Channel Analysis. It was reported that researchers developed and 

analyzed a number of wireless signal propagation channel models [20-26]. Some 
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of these references focused on the resulting BER induced by the propagation 

channels [22, 24], while the other channel analyses employed the overly 

simplified Friis transmission formula [23], Cagniard-DeHoop model [25], multi-

band network-on-chip [20], and the Finite-difference time-domain (FDTD) 

analysis [25] techniques. Three groups of researchers used a full wave analysis of 

WIIC systems by extracting the scattering parameters for a simplified wireless 

system from the point of view of RF and microwave network analysis [26-28]. 

According to these analyses, the WIIC channels are almost linear and time-

invariant with path loss, distortion and dispersion. 

 UWB Technology and Power Analysis. UWB technology was investigated to 

make the WIIC systems low-power, wide-band, and low BER [22, 29, 30]. Based 

on the UWB technology development, several researchers focused on minimizing 

power consumption of the systems [31-40]. As the UWB is a power efficient 

technology, most of this research improved power efficiencies [105-108]. 

 Interference Mitigation or SINR Improvement. The interference problems 

between WIIC antennas were analyzed recently by a number of researchers [22 

24]. As a result, a number of technologies were put forward attempting to mitigate 

the interference, including using DS-CDMA (Direct Sequence Code Division 

Multiple Access) [41], spatial diversity [43], dynamic power control methods [31], 

and using different MA approaches, namely, TDMA and FDMA. Some 

progresses were made in attempting to solve the interferences and noise problems 

by using some schemes such as interference avoidance and dynamic power 

control [22, 31, 40, 43, 45]. 
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 Clock and Timing Issue Analysis. A few researchers analyzed the clock and 

timing issues that can possibly appear in a WIIC system. One work analyzed the 

clock delivery in a WIIC system [14], and another paper was interested in the 

issues of wireless transmission of a clock signal of the system in a package (SiP) 

[41]. 

 Wireless Optical Communication Applications in the WIIC Systems. 

Researchers have also analyzed the opportunity of implementing the wireless 

optical communication technology in the WIIC systems [73, 86-89], i.e., the 

Optical-Wireless Network-on-Chip (OWN). The optical wireless communication 

systems are usually low-latency and scalable, but they suffer from issues such as 

high component cost and complex device-to-device variations [113]. In addition 

they often have large power consumption requirements, especially for off-chip 

layers. One of the references focused on a high-frequency broadcast “OWN” 

system using the frequency band from 172 THz to 222 THz [88], and analyzed the 

transmission loss of the system, while other papers analyzed MIMO [86], and 

one-hop photonic interconnect with Time Division Multiplexing (TDM) [89] 

applications in OWN communications. 

1.4 Limitation of Previous WIIC Research 

Most of the previous WIIC technologies have encountered a number of 

limitations, most of which fail to provide a system level overview, to greatly show the 

advantages of WIIC systems over the traditional trace based (wired) PCB communication 

channels, and to effectively illustrate its feasibility in practice. The drawbacks and 

limitations for previous research are summarized as follows: 
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 Lack of System Level Analysis and Design of WIIC Technologies. Firstly, a 

system level design in PCB signal transmission is missing in most of the 

published research. In this dissertation, the system level design is defined as the 

design of functional block diagrams for the lowest two layers of the 

communication protocol in a WIIC system, namely, the physical and data-link 

layers. The major effort of system level design will focus on the design for signal 

processing to obtain higher signal processing speed, which certainly indicates 

high power consumption [49]. The system level design also includes the analyses 

of data rate, reliability (BER), latency, estimations for energy and chip area 

consumption, and manufacturability. 

 Interference Issues Resulted from Multiple Access Methods. Secondly, the 

existing research mostly employed the conventional multiple access methods, 

such as Frequency-Division Multiple Access (FDMA), Time-Division Multiple 

Access (TDMA) [39], Code-Division Multiple Access (CDMA) [41, 42] or the 

newly developed multiple access method, namely, inter-router Wireless Scalable 

Express Channel (iWISE) [45], which is a hybrid of TDMA and FDMA as the 

channel access methods in transmitting the wireless signals. Even though there is 

low crosstalk among signals, the interference resulted from the multiple access 

method still remain in these WIIC systems. Usually, the interferences brought by 

the traditional multiple access methods are not BER performance limiting but 

lowering the interference is still high demanding in WIIC systems. Hence, it 

would be preferred to employ Orthogonal Frequency Division Multiple Access 
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(OFDMA) in order to minimize interference and to increase the data rate in 

comparison to the conventional FDMA. 

 Without Taking Great Advantages from Advanced Wireless Communication 

Technologies. Previous research did not take full advantage of advanced and 

matured wireless communication technologies. For example, these researchers 

mainly used Binary Phase-Shift Keying (BPSK) [22, 27], binary Differential 

Phase-Shift Keying (DPSK) [41], On-Off Keying (OOK) [31], or binary 

Amplitude-Shift Keying (ASK) [35] as the modulation methods. Obviously, more 

bandwidth efficient modulation methods, such as Quadrature Phase-Shift Keying 

(QPSK) and Quadrature Amplitude Modulation (QAM), are highly desirable for 

increasing data rate dramatically. This may be due to the fact that these simple 

modulation methods are low-cost, simple to implement, and energy-efficient with 

a low peak-to-average power ratio (PAPR). Meanwhile, widely used in macro 

wireless and mobile communication systems, like the Orthogonal Frequency 

Division Multiplexing (OFDM) are not found to be employed in any of these 

WIIC systems. This may be resulted from that OFDM is not as power efficient as 

those technologies, such as Ultra Wide-Band (UWB) or IR-UWB (Impulse-Radio 

based Ultra Wide-Band) based WIIC systems. As a result, the published research 

paid a lot more attention to the channels and the power control [28, 39, 34-40], 

while not mainly focusing on one of the most important issue in the previous 

WIIC systems, that is, achieving high data rate and improving spectral efficiency 

[24, 37, 38, 43]. However, if the WIIC system cannot reach similar data rate as the 

wired counterpart, the wired communication issue would still significant on the 
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PCBs. Table 1.2 shows a comparison of the bandwidths, data rates, and spectrum 

utilizations of the previous WIIC systems and the wireless technologies that can 

be potentially used in a WIIC system and applied in this dissertation, including 

OFDM, QPSK, and QAM. 

Table 1.2 Spectrum utilization comparisons 

Year and 

System 
Technology Used Bandwidth Data Rate 

Spectrum 

Utilization 

2014 (WIIC) 

[33] 
3-D IC 28.3 GHz 10 Gbps 0.35 bit/Hz 

2012 (WIIC) 

[39] 

IR-UWB 

BPSK 
5 GHz 5 Gbps 1 bit/Hz 

2010 (WIIC) 

[38] 
IR-UWB N/A 200 Mbps N/A 

2006 (WIIC) 

[24] 
UWB 7.5 GHz 200 Mbps 0.027 bit/Hz 

2015 (Optical 

WIIC) [73] 
Optical WIIC 20 GHz 25 Gbps 1.25 bit/Hz 

2009 (LTE) [46] 
OFDM 

QPSK 
20MHz 33.6 Mbps 1.68 bit/Hz 

This Design 

FDMA QPSK 

SISO 
12 GHz 24 Gbps 2 bit/Hz 

OFDM QPSK 

SISO 
12 GHz 24 Gbps 2 bit/Hz 

Theoretically 

Upper Bound of 

the System  

OFDM 256QAM 

4×4 ideal MIMO 

antennas 

12 GHz 384 Gbps 32 bit/Hz 

 

 Rarely Seeing the Application of Metamaterials in the Previous WIIC 

Systems. Finally, in the previous research, it has not been found that metamaterial 

applications were commonly used in the wireless channel construction, including 

the Artificial Impedance Surface (AIS) and Electromagnetic Band Gap (EBG). It 

is found that the metamaterials can be used to build up a high frequency and 

broadband channel for the WIIC systems and are capable to prevent 

electromagnetic wave leakage. 
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1.5 Objectives of the Dissertation 

The project goal is to develop a WIIC system, which includes a transmitter, a 

propagation channel, and a receiver. A channel bounded with metamaterial-based 

absorbing layers to create a novel PCB propagation channel was designed and analyzed. 

The designed WIIC channel will be inserted into the developed WIIC system as a 

functional box for assessment. Precisely, the proposed research concentrates on the 

following objectives:  

 System Level Analysis and Design of the WIIC System. The first objective is to 

develop a system level analysis and design methodology which includes the physical, 

and data-link layers of the WIIC protocol, in order to reach a higher data rate. 

Although the final goal for the proposed WIIC system is 3.94 Tbps, more 

realistically, the starting point in this dissertation is to attempt to reach 100 Gbps. 

Channel coding, estimation and equalization will be implemented in the WIIC 

system after determining the channel characteristics, in order to decrease BER by 

correcting errors caused by the channel. Channel equalization modifies the channel 

impulse response or transfer function to make it closer to a desired form. 

Furthermore, the high order modulation method and OFDM technologies will be 

analyzed for their capability to be integrated into the WIIC system to increase the 

data rate and spectrum utilization. Moreover, a Cyclic Prefix (CP) will be employed 

to deal with signal round trip timing delay between chips and multipath delay spread.  

 Construction and Characteristic Determination of WIIC Propagation Channel 

Models. Second, one of the most important objectives is to develop a practical WIIC 

propagation channel model by using HFSS. An innovative PCB structure with the 
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metamaterial EBG wave absorber layers was designed, and the equivalent circuit of 

the absorber unit was developed. Using the simulated results, various channel models 

will be constructed with consideration of attenuation, dispersion, time delay and 

delay spread. The S-Parameters of the designed WIIC channel are generated in HFSS 

for further analysis including impulse response and transfer function extraction, and 

link budget analysis. 

 Measurement of Wired PCB Channels. Third, a PCB channel with the current 

transmission line technology was analyzed and measured. Time Domain 

Reflectometry (TDR) and Time Domain Transmission (TDT) of the PCB channel 

was measured and simulated, in order to extract the impulse response of the channel. 

 Impulse Response and Transfer Function Extraction. Furthermore, the S-

Parameters of the WIIC, and the simulated wired PCB channel, along with the 

measured TDR/TDT of the wired PCB channel, will be used to extract the impulse 

response by injecting a non-perfect unit impulse into the channel’s input ports. The 

channel transfer functions of the systems will be then extracted by performing a 

Fourier Transform (FT) to the extracted impulse responses. Employing this method 

is to guarantee the consistency of the results extracted from the simulated S-

Parameters and the TDR/TDT measurements. The transfer functions of the 

simulated/measured wired PCB, and simulated WIIC channels are compared 

accordingly. 

 Validation and Virtual Implementation of the WIIC System. Finally, the 

designed WIIC system with all the developed technologies listed above will be 

validated theoretically and implemented in simulation using MATLAB to obtain the 
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BER performance for the cases of the Additive White Gaussian Noise (AWGN), the 

wired PCB and the designed WIIC channels. In the validation, perfect Digital Down 

Convertor (DDC) and Low-Pass Filter (LPF) are assumed in the WIIC systems, and 

the gains for Power Amplifier (PA) and Low-Noise Amplifier (LNA) are counted in 

link budget and are combined with other gains in SNR and BER analysis. For the 

issues of power and chip area consumption, especially for the QAM, FFT, and 

MIMO are analyzed and estimated in the dissertation, but the actual implementation 

issues of these technologies will be handled via future technology advances. 

1.6 Content of the Dissertation 

The second chapter of this dissertation mainly introduces the method of the 

Orthogonal Frequency Division Modulation (OFDM) applied in the WIIC system, from 

the points of views of both concept and implementation perspectives. Chapters 3 and 4 

are, respectively, to present a system level WIIC communication system analysis and 

design, including the detailed transmitter, and receiver. The system will include error 

detecting and correcting, interference control methods, modulation, and multiple access 

method. Chapter 5 discusses the design, measurement, and parameters extraction of 

channel models. Three types of channel models are investigated, including the AWGN, 

wired PCB and WIIC channel models. The WIIC channel model is constructed by 

implementation of two metamaterial EBG absorber layers. The absorber unit design and 

equivalent circuit development are also included in this chapter. Chapter 6 describes the 

virtual WIIC system in MATLAB, and compares the BER performance of the designed 

WIIC channel with AWGN and the wired PCB channels. Chapter 7 is the conclusion of 

the dissertation, and the summary of the future the WIIC research. 
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CHAPTER 2 

ORTHOGONAL FREQUENCY DIVISION MODULATION USED IN WIIC 

TRANSCEIVERS 

This chapter is a brief introduction to the Orthogonal Frequency Division 

Multiplexing (OFDM) technology proposed for future use in the WIIC transceivers. It 

also covers the advantages, disadvantages, types, and block diagrams of the OFDM. 

2.1 The OFDM Concept 

The OFDM is frequently used in wireless communication for splitting a frequency 

band into a number of sub-bands or subcarriers for the purpose of eliminating complex 

equalizers that is required in single carrier systems. OFDM is also able to improve 

reliability by taking advantage of efficient FFT circuitry that allows elimination of 

complex and relatively power-inefficient equalizers required for comparable single-

carrier systems. OFDM divides the time-frequency resource plane into slots as Resource 

Elements (REs), which can be easily allocated to different users. With the OFDM 

employed in a communication system, the multiple access method Orthogonal Frequency 

Division Multiplexing – Frequency Division Multiple Access (OFDM-FDMA), or 

Orthogonal Frequency Division Multiple Access (OFDMA) can be employed. The 

OFDM and OFDMA are widely applied in the fourth generation of mobile 

communication protocols such as Long Term Evolution (LTE), Ultra Mobile Broadband 

(UMB), and Worldwide Interoperability for Microwave Access (WiMAX). However, it  
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has not been reported that they are used in any Wireless Inter- and Intra-chip 

Interconnection systems, which may be due to the fact that they are not as power efficient 

as UWB, although UWB is currently limited in applications mainly for effective designs 

of millimeter wave (MMW) and RF components. 

In a conventional multi-carrier system such as the Frequency Division Multiple 

Access (FDMA), there is often a band gap between two subcarriers to diminish inter-

carrier interference as shown in Figure 2.1. The reason for this is that the imperfect band-

pass filters (BPF) at the receiver cannot separate the signals on different carriers if they 

are too close to each other. Nowadays, the guard band is relatively smaller than it used to 

be, but it is still a significant problem to be improved for spectrum utilization. 

ff2f1
 

Figure 2.1 Subcarriers in conventional multi-carrier systems. 

The OFDM, however, is a technology that divides the whole channel bandwidth 

into a number of subcarriers, where each subcarrier is orthogonal to one other with 

minimal frequency separation. It means that theoretically the amplitudes of a signal’s 

Fourier transform at all the central frequencies of other subcarriers are zero in magnitude. 

The subcarriers in an OFDM communication system are shown in Figure 2.2.  
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Figure 2.2 Subcarriers in an OFDM system. 

In this case, no matter how the channels (or subcarriers) are distributed to the 

chips, in the WIIC systems, channels used by one chip should have little interference to 

one another. Consequently, the main concept of the OFDM is to convert a broadband 

signal into some number of multi-carrier narrow-band signals to deal with the poor 

channel circumstance, namely, allocating sub-carriers to the subscribers with smaller 

attenuation, and minimize the dispersion across any single subcarrier. 

The OFDM technique has been shown to have various unique advantages over the 

conventional multi-carrier FDMA systems. The primary advantage of the OFDM over the 

conventional multi-carrier schemes is its ability to cope with a number of different small 

time-frequency slots other than dealing with wideband signals. Second, using OFDM 

means the requirement for design of band pass filters can be much relaxed. Third, as long 
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as the signal bandwidths are small enough, the channel equalization is much simplified in 

comparison to equivalent-bandwidth single-carrier schemes because OFDM signals can 

be viewed as a set of narrowband, slowly modulated signals rather than wideband, 

rapidly modulated ones. Furthermore, because OFDM can increase the spectral efficiency, 

the data rate is also increased for the same bandwidth. For example, with only 20 MHz 

total bandwidth, with single subcarrier bandwidth to be 15 kHz: 

 In the LTE standard, the OFDM technology can provide over 200 Mbps data rate 

with 64QAM [46]. 

 In the LTE-Advanced standard, the data rate even exceeds 3 Gbps [46]. 

 The conventional FDM can only reach                             with the 

same bandwidth, 64QAM and with perfect band-pass filters (which is not realistic) 

[51].  

Moreover, since the high data rate signals are modulated to the OFDM symbols 

with much lower symbol rates, which make use of a guard interval between symbols 

affordable, this makes it possible to circumvent Inter-Symbol Interference (ISI). Also, 

OFDM can include channel equalization and subcarrier allocation schemes to improve 

the Signal to Noise and Interference Ratio (SINR) by allocating time-frequency slots with 

smaller noise, attenuation and fading to the subscriber [76-79]. Finally, unlike 

conventional frequency division multiplexing (FDM) systems, the OFDM receivers do 

not require high-performance BPFs to obtain all signals on different sub-carriers, which 

will reduce hardware development cost. 
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2.2  OFDM Technologies 

There are a number of types of OFDM such as the conventional OFDM, Digital 

Fourier Transform Spread OFDM (DFT-Spread-OFDM, or DFT-S-OFDM), Generalized 

OFDM (G-OFDM), Filtered-OFDM (F-OFDM), OFDM/O-QAM (OFDM/offset QAM), 

etc. The conventional OFDM is often associated with its multiple access method 

OFDMA, and the DFT-S-OFDM is usually implemented in conjunction with the multiple 

access technology named Single Carrier-Frequency Division Multiple Access (SC-

FDMA). Both the conventional OFDM and the DFT-S-OFDM will be discussed in the 

following sections. 

2.2.1  The Conventional OFDM 

A typical block diagram of an OFDM transmitter can be described as shown in 

Figure 2.3. 
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Figure 2.3 Block diagram of an OFDM transmitter. 

Herein the modulation scheme can be chosen from a variety of methods and the serial-to-

parallel operation converts a high bit rate stream to low symbol rate OFDM symbols. The 

serial-to-parallel block is used to collect a series of symbols that will be mapped onto a 

set of subscribers during the same time slot. The resource mapping block allocates the 
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symbols in one time slot to their frequency positions, i.e., the subcarriers in the frequency 

domain, before the processing of IFFT. The IFFT block performs a function to convert a 

signal from the frequency domain to the time domain. The block of Parallel to Serial and 

Insert CP provides an output time domain signal and enable handling of the timing and 

ISI issues in the channel.  

The time domain expression of an OFDM signal is given as follows [46]: 

                                   
                                         

    (2.1) 

where time duration t satisfies                   ,      is the (k, l)th OFDM 

symbol,           .,                                   , N is the total 

number of subcarriers, and    is the bandwidth of one subcarrier. The OFDM symbols in 

a time slot shall be transmitted in an increasing order of l, which is the time domain 

OFDM symbol index number, starting from 0 and ending at                
   
     

within a time slot when          .The OFDM symbols will be modulated in the 

frequency domain and indexed by subcarrier number k. In the equation above,      and 

      are the total number of points, respectively, for Inverse Fast Fourier Transform, and 

the Cyclic Prefix (CP). Also,      and      are the frequency domain subcarrier numbers 

and defined as: 

              (2.2) 

                (2.3) 

The 16-QAM modulated constellation, which is the input signal of an OFDM 

functional block, and the OFDM processed signal are shown in Figure 2.4 for NFFT=1024. 
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(a) 

 
(b) 

Figure 2.4 Input and output of the OFDM functional block. (a) The input 16QAM 

constellation to the OFDM functional block, and (b) the average output of the OFDM 

baseband processing of 500 realizations. 
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2.2.2 The DFT-S-OFDM 

The conventional OFDM has an issue of high Peak to Average Power Ratio 

(PAPR), which can potentially lead to power consuming problems. In contrast, in the 

DFT-S-OFDM processing, the Serial to Parallel (S/P) block in the conventional OFDM is 

replaced by a Digital Fourier Transform (DFT) block in the DFT-S-OFDM to convert a 

multi-carrier signal into a single carrier signal, in order to reduce PAPR. Other parts of 

the DFT-S-OFDM are the same as those in the conventional OFDM. The multiple access 

method of DFT-S-OFDM is called Single Carrier Frequency Division Multiple Access 

(SC-FDMA). The DFT-S-OFDM can be mathematically represented as [46]: 

                
    

                                  
   

   
                 (2.4) 

where      is the length of the transmitted signal, factor  is the power control ratio, and 

  is an offset variable for determining the frequency domain location of the subcarrier 

used in the DFT-S-OFDM within the Physical Resource Blocks (PRBs). The channel 

resources in OFDM systems are partitioned in the time-frequency plane, i.e., groups of 

subcarriers for a specific time duration. Such time-frequency blocks are known as 

Resource Blocks (RBs). RBs usually include Physical Resource Block (PRB) and Virtual 

Resource Block (VRB). The PRBs can be allocated to the sub-channels. For example, a 

PRB in LTE communication systems typically includes seven contiguous OFDM 

symbols in the time domain, and twelve contiguous subcarriers in the frequency domain. 

The factor          describes the difference in subcarrier spacing between the DFT-

S-OFDM and conventional OFDM, where    is the subcarrier bandwidth of the 

conventional OFDM, which is the same in Equation (2.4).     is the subcarrier 

bandwidth of the DFT-S-OFDM, The symbol    is given as follows:  
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     (2.5) 

where     
      

 is the first Physical Resource Block (PRB) number occupied by the signal, 

   
   accounts for the number of subcarriers of one single PRB, and    

   represents the 

number of RBs of a channel of a DFT-S-OFDM system. 

The DFT-S-OFDM procedures can be described in the block diagram as shown in 

Figure 2.5. 
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Figure 2.5 Block diagram of a DFT-S-OFDM transmitter. 

The differences between the conventional OFDM (OFDMA system) and the 

DFT-S-OFDM (SC-FDMA system) can be graphically described in Figure 2.6 [47].  

 

Figure 2.6 Graphical representation of differences between the OFDMA and SC-FDMA 

[110].  
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In the example above, a series of eight modulated QPSK symbols is mapped by 

both the procedures of the conventional OFDM and the DFT-S-OFDM to the time and 

frequency resources. For conventional OFDM, assuming that the subcarrier bandwidth is 

15 kHz and there are four subcarriers per time slot, the total bandwidth of the 

conventional OFDM signal is 60 kHz. In contrast, for the DFT-S-OFDM, the same 

bandwidth of 60 kHz is used, which is also the total bandwidth for the subcarrier of DFT-

S-OFDM. As a result, the conventional OFDM system consumes two time slots to 

transmit a total of eight QPSK symbols, while the DFT-S-OFDM employs eight time 

slots to transmit all the symbols. In other words, the spectrum utilization of the DFT-S-

OFDM system is not as high as the conventional OFDM. However, single carrier 

transmission from DFT-S-OFDM will provide lower PAPR, flexible transmission 

bandwidth, but the scheduling in the frequency domain is channel dependent. 

There are two different ways to distribute the total bandwidth of DFT-S-OFDM, 

namely, the localized FDMA and distributed FDMA (also called Interleaved FDMA, 

IFDMA). Their differences are shown in Figure 2.7. 

For the Localized FDMA, each transmitter uses localized spectrum in the 

frequency domain, i.e., consecutive blocks spectrum within the whole frequency band. In 

contrast, the distributed FDMA distributes signals from all users equally in the frequency 

domain. Distributed FDMA provides frequency diversity and flexibility of sub-carriers 

allocations. 
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Figure 2.7 Localized FDMA vs. distributed FDMA. 

2.3  OFDM Implementation and Multiple Access Method in the WIIC System 

2.3.1  OFDM Implementation in the WIIC System 

Unlike the DFT-S-OFDM, in most of the cases, signal transmission will be in a 

form of chip to chip, rather than the scenario of multiple chips transmitting signals to one 

“central” chip. Therefore, in the proposed WIIC system, the conventional OFDM is 

employed. In practical analysis, if a system has high PAPR, the WIIC system will switch 

to the SC-FDMA mode. In this mode, the Localized FDMA will be employed to reduce 

complexity of the system since it uses the consecutive spectrum for each sub-channel, 

and the IFFT size will be set to be smaller than that used in the Distributed FDMA. 

2.3.2  Multiple Access Method Used in the WIIC System 

In the dissertation, single carrier FDMA is first chosen as the multiple access 

method, and Time Division Duplex (TDD) is used to distinguish between transmitting 

and receiving for link budget and data rate calculations. Afterwards, OFDMA will be 
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applied as the primary multiple access method since it can provide better reliability and 

higher data rate for the same channel condition and frequency band without design of 

complicated equalizers. In order to minimize the PAPR problem brought by OFDM, the 

QPSK has been chosen as the modulation method in the dissertation, to attain a 

reasonable data rate and with a nearly-constant envelope. 
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CHAPTER 3 

WIIC SYSTEM TRANSMITTER DESIGN 

This chapter will primarily focus on the system level design and development of 

the WIIC transmitter. In the WIIC system, when a transmitter initiates a signal, all other 

existing chips including the receiver will receive it simultaneously. A process for a 

prescribed WIIC receiver to receive this signal only and for the other receivers to reject 

the signal will be described. 

In practice, there are two ways to construct the wireless inter-connect transceiver 

system. One is just adding a modulation block to modulate the traditional baseband signal 

used on wired links to the required carrier frequency, and then transmit it with an antenna 

at the modulated frequencies, which is commonly used in the previous WIIC system and 

channel research. The other way is to employ higher order modulation and multiple 

carriers, as per the focus on the design of functional block diagrams of the system. The 

design also includes the analyses of data rate, reliability (BER), latency, estimations for 

energy and chip area consumption, and manufacturability. In this research, the latter 

approach is going to be used by applying the advanced wireless communication 

technologies such as OFDM, Forward Error Correction (FEC), interference control 

schemes, high order modulation, Cyclic Redundancy Check (CRC), and Cyclic Prefix 

(CP) for building up a virtual WIIC system. 
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3.1 Transmitter System Block Diagram 

By using OFDM, adopting from an LTE system, a system block diagram for the 

WIIC transmitter is developed as shown in Figure 3.1: 
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Figure 3.1 Block diagram of the WIIC transmitter with four diversity antennas. 

The transmitter of the WIIC system includes error control schemes including FEC, 

and Cyclic Redundancy Check (CRC) [46]. In the modulation block, QPSK or QAM will 

be used to modulate bit streams to low symbol rate complex symbols [46]. The OFDM 

includes OFDM resource mapping and IFFT to allocate the QPSK or QAM symbols to 

PRBs. Besides, MIMO blocks consisting of layer mapping and precoding are also 

limitedly included, and these could be analyzed in future work if it can be demonstrated 

that these techniques can provide additional gains for a final version of the proposed 

WIIC system. 

The remaining sections of this chapter will briefly summarize the design and 

analysis of each functional block listed in the WIIC transmitter, in total seven parts, i.e., 

Forward Error Control (FEC) schemes, interference control, modulation, reference signal 

generation, Cyclic Prefix, and the OFDM-UWB implementation. These parts mainly 

concentrate on the principles, procedures, and outputs for the subsystems. In each part, 
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there will be a decision to determine whether the block should be kept, replaced, or 

removed, and at the end of this chapter, a revised block diagram will be presented. 

3.2  Error Control Schemes [46] 

Cyclic Redundancy Checking (CRC), automatic repeat request (ARQ) and 

channel coding are normally employed for error checking and correction in wireless 

communication systems. Channel coding can correct errors due to a channel’s 

unfavorable conditions in the process of decoding in the receiver side, while CRC is used 

for error checking after the channel decoding scheme, and the ARQ scheme is to send a 

request to the transmitter for requesting it to re-transmit the errored bits. In this proposed 

WIIC system, CRC and convolutional channel coding are included. 

3.2.1 CRC [46] 

An 8-bit CRC error checking technique is applied in the current implemented 

transmitter system, which can detect with high probability whether the decoded bits 

contain errors or not.  

CRC error checking schemes can detect whether the decoded bit sequence 

contains errors or not, but it is not able to correct the errors. The CRC error checking 

result can be employed to calculate BLock Error Rate (BLER). The CRC error checking 

result can also be used to estimate the BER by dividing BLER by the number of bits in a 

transmission block. 

3.2.2 Channel Coding [46] 

The basic concept of channel coding is that, in a digital communication system, 

the transmitter employs a scheme that encodes an n-bit sequence into an m-bit signal, 
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where m>n. Therefore, the receiver can attempt to discover the transmission errors and 

try to correct some of them by decoding the received signal. 

Many OFDM systems and other communication systems often employ 

convolutional coding as the encoding procedure. The convolutional coding can enhance 

the system performance when it uses a maximum likelihood decoding algorithm, which 

can correct some random bit errors from the channel. The system block diagram of a 1/3 

Code Rate Tail-Biting Convolutional Encoder (1/3 TBCC) is shown in Figure 3.2. 

 

Figure 3.2 Block diagram of the 1/3 Tail-Biting convolutional encoder. 

The 1/3 TBCC includes a 6-bit coding register, with the initial value to be the last 

six digits of the input signal. As a result of the processing, the end value of the register 

will be exactly the same as the initial value, which explains why this is called Tail-Biting 

Convolutional Coding. Because normal convolutional coding employs a method to make 

the end value of the registers to be the same as the initial values, another advantage of the 

1/3 TBCC is that there will not be any extra redundant bits after the coding compared to 

the conventional convolutional coding algorithm. Since the data block size is equal to 

1024 or 2048 bits in the WIIC system, these redundant bits are negligible here. The 

procedure to make the end values of the registers equal the initial values will generate 

redundant bits with the same length as the number of coding registers multiplied by the 

number of the output bit streams. Because of the uniqueness of this encoding algorithm, 
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the receiver can estimate the most likely transmitted sequence by computing the 

correlation metric between the received data and the possible codeword. The receiver 

typically employs a decoding method based on the Viterbi algorithm, which can correct 

errors. 

In the initial implementation, channel coding, sounding, estimation and 

equalization are not included for a preliminary validation of the WIIC system. These 

features as well as the designed WIIC channels are subsequently added into the full 

system analysis for the validation and BER performance simulation. 

3.3  Interference Control Methods [46, 76-80] 

3.3.1 Scrambling [46] 

The basic concept of scrambling is that, each chip uses a distinct scrambling mask 

to that is Exclusive OR-ed (XOR) with the signals. Adopting from the LTE system, the 

technique of scrambling in the proposed WIIC system is shown as follows: 

     
                                                                     
                                      

  (3.1) 

where    represents the scrambled sequence with receiver scrambling mask,    represent 

the bits before scrambling, and                 is the receiver scrambling mask used 

in the procedure for the receiver chip, which is designed to be the binary antenna number 

in the proposed WIIC system. Although CRC is mainly applied for error checking, each 

receiver will be able to determine whether the received signal is sent to itself or other 

chips using CRC checking and descrambling. When channel coding and channel 

equalization correctly decode all the OFDM symbols, the procedure of receiver 

identification is processed as follows. If the CRC checking result is correct, the decoding 

chip will recognize itself as the correct receiver of the decoded bit stream; otherwise the 
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bit stream will be discarded by the receiving chip since it is transmitted to another chip 

with a different scrambling mask. However, this requires the channel decoding to correct 

all the errors caused by the WIIC channels, which may not always occur. 

Thus, a packet header is much simpler, and will be used to perform the same 

technique described above. As a result, in the final version of the proposed WIIC system 

in the dissertation, scrambling has been removed from the transmitter block diagram 

while the packet header is included. Packet header will be discussed in Section 3.8. 

3.3.2 Interleaving [46] 

In the proposed WIIC system, as there will be more than two transceivers, the 

same bandwidth will be allocated to different sub-channels between chips, for spectrum 

reuse purposes. For example, as shown in Figure 3.3, in a four-chip WIIC system, the 

same frequency band (f1) will be allocated to both Channels 12 and 34, which indicate the 

communications between Chips 1 and 2, and the transmissions from Chips 3 and 4, and 

so on. This approach will increase the spectrum utilization, and it will cause interference 

as well. 

Interleaving technology is usually employed to deal with the burst interference 

from the channels. Interleaving can improve the performance of FEC by providing 

frequency diversity, in other words, interleaving the same data across separated 

subcarriers in OFDM, to mitigate frequency-selective fading or narrowband interference. 

Interleaving is the procedure to scatter the positions of data and redundant bits so that the 

burst errors from the channels will be less possible to influence an entire group of data 

bits and redundant bits.  
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The interleaving procedure is described as follows. For a block interleaver, the 

coded data bits are written by rows into a matrix with a fixed number of columns, 

optionally exchanging some columns with others, and read out by columns. If the last 

row of the interleaving matrix cannot be filled out with the coded data bits, the remaining 

positions will be filled by zeros. 
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Figure 3.3 Four-chip WIIC system example. 

The formats of interleavers include rectangular interleavers, convolutional 

interleavers, random interleavers, pseudo-random interleavers, and contention-free 

quadratic permutation polynomial (QPP) interleavers. 

The QPP is frequently used in mobile communications. For the systems using 

convolutional coding, the output coded data is usually in several bit streams. With 1/3 

TBCC, the input of the QPP is given by three serial bit streams, and the block diagram of 

QPP is shown in Figure 3.4. 
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Figure 3.4 Block diagram of QPP interleaving. 

In Figure 3.4,   
   

           is the kth output bit from the ith channel coding 

output bit stream. Each bit stream, called a sub coded block, will be interleaved 

separately, and the interleaved bits will be collected together. The blocks of bit collecting 

and selecting are collectively termed rate matching. These procedures can add zero bits 

so as to match the desired FFT/IFFT points. 

In the proposed WIIC system, the interference channels are transmitting high 

speed signals, which are almost continuous. However, as interleaving primarily deals 

with burst interference, in other words discontinuous interference, it cannot highly 

eliminate continuous interference. Since interleaving cannot contribute much 

performance improvement for the system, interleaving has been removed in the process. 

3.4 Modulation [22, 46] 

Modulation of a communication system can increase the data rate in a given 

bandwidth when using high order modulation methods such as the Quadrature Phase-

Shift Keying (QPSK), 8 Phase-Shift Keying (8PSK), and Quadrature Amplitude 

Modulation (QAM). QPSK and QAM are widely used in modern wireless and mobile 

communication systems. Although OFDM itself is a modulation method, BPSK, QPSK, 
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QAM and other modulation methods can still be implemented in the system modulation 

block for each subcarrier. In severe channel conditions, the OFDM modulation type is 

often BPSK as this modulation method achieves better Bit Error Rate (BER) performance 

than higher order techniques for a given SNR, otherwise, OFDM tends to employ higher 

order modulation methods to enable higher data rate and better spectrum utilization. 

3.4.1 BPSK [22, 46] 

The BPSK signal is represented by: 

       
   

  
                                               (3.2) 

where       is the kth bit of the BPSK signal,    is the energy of one bit where one 

BPSK symbol represents one bit,    is the time duration of a BPSK symbol,    represents 

the carrier frequency, and n is the data bit from the output of the functional blocks 

scrambling and interleaving. When the communication connections between the receiver 

and transmitter have not been set up, BPSK is usually a good choice as a default 

modulation method for broadcasting and random access. 

3.4.2 QPSK [46] 

The general form of QPSK signal is given as follows 

       
   

  
                         

 

 
                          (3.3) 

where    is the energy of one QPSK symbol where one QPSK symbol contains two data 

bits,    is the time duration of one QPSK symbol, which equals twice the bit duration,    

represents the carrier frequency, and n represents one of four symbols, each of which is 

composed of two consequent bits that are the output of the scrambling and interleaving 
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functional block. These symbols are represented by decimal numbers- 0 for 00, 1 for 01, 

2 for 10, and 3 for 11. The block diagram of QPSK modulation is shown in Figures 3.5. 
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Figure 3.5 Block diagram of QPSK modulation [117]. 

3.4.3 QAM [46] 

The QAM signal is represented, respectively, in the time domain and frequency 

domain as follows: 

                                                          
    

                                                                                      
 (3.4) 

      
 

 
                    

 

 
                    (3.5) 

where       and       are real and imaginary parts of a complex number that represent 

consecutive    input bits in XQAM. Take 16QAM as an example, ‘0000’, ‘0001’, 

‘0010’, ‘0011’, and ‘0100’ will be modulated to              as      ,     , 

     ,     , and      , respectively, where      .       is the impulse 

response of the modulation filter,      and      are the time domain signals of the real 

and imaginary parts passed through the modulation filter, and     ,      , and       

are the Fourier Transforms of     ,     ,      respectively.  

The modulation block diagram of QAM is shown in Figure 3.6. 
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Figure 3.6 Block diagram of QAM modulation [117]. 

In order to minimize the bit error rate, on the constellation of 16QAM modulation, 

each constellation point will be only one-bit different to other constellation points next to 

it, i.e., the Gray Code is used. As a result, the error will be limited to one bit if the 

received QAM symbol at the receiver is estimated as another constellation point next to 

the constellation point on the transmitter. 

In the WIIC research in this dissertation, the modulation method is initially 

chosen to be QPSK to validate the designed system and channels, and in the full system 

and channel investigation, both QPSK and 16QAM are available in MATLAB 

implementation. 

3.5  Reference Signal Generation [76-80] 

Channel sounding with reference signal (RS), channel estimation and channel 

equalization can improve the performance of the system greatly. RSs are sent from the 

transmitter and the receiver can employ channel estimation to extract an approximation of 

the frequency response by comparing the received RS and local generated RS. Channel 

equalization can compensate for errors caused by the channels by using the channel 

estimation results. 

A receiver compares the received RS and those RS generated locally to obtain the 

Channel State Information (CSI) and Channel Quality Indicator (CQI), which can be 
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further used for channel equalization to improve the performance of the system. In 

wireless communications, the CSI refers to the properties of a communication channel, 

typically the channel gain. The CQI is a relative indicator, which carries information on 

how good the communication channel quality is. The CQI and CSI information describes 

in a gross manner the combined effect of, for example, scattering, fading, and power 

decay with distance. 

In the WIIC system, Zadoff-Chu (ZC) sequences [56-58] are employed as the 

base sequence of RS. ZC sequences are constant amplitude zero autocorrelation (CAZAC) 

sequences. 

 ZC Sequences. The waveforms for ZC sequences are as given as follows: 

        
  

           

    (3.6) 

where        ,        ,             ,    , and     is the length of the 

ZC sequence. ZC sequences are characterized with the following properties: 

(A) ZC sequences are periodic, with the period to be    , when     is an odd number. 

                  (3.7) 

(B) If     is a prime number, the Discrete Fourier Transform (DFT)       of one ZC 

sequence is another ZC sequence represented by [76-80]: 

         
           (3.8) 

where   
       

  
           

   . 

(C) The autocorrelation of a ZC sequence with a cyclically shifted version of itself is 

an impulse of weight     at the instant which corresponds with the cyclic shift. 

               
        

                 
            

    
    (3.9) 
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where   
             , and       is the autocorrelation function of      .  

(D) The cross-correlation between two ZC sequences with the same prime length    , 

i.e., with different    and   , is a constant     , which is relatively prime to 

     . 

            
      

           
   
              (3.10) 

where    
     

  
            

   , and    
     

  
            

    are two ZC sequences 

with the same length,        is the cross-relation function of    
    and    

   . 

As a comparison, other base sequence candidates for RS include the conventional 

Pseudo-Noise (PN) sequence, conventional CAZAC sequence, and M-sequence.  

 PN sequences. One common PN sequence is defined as follows: 

        
 

 
    

 (3.11) 

where the sequence       is a complex random sequence defined as: 

                   (3.12) 

where       and       are the normally distributed pseudorandom numbers and 

                  . In practice,       and       will be carefully quantized, the 

configuration of which will affect performance. In the comparison of Figures 3.9 and 

3.10, the PN sequence is demonstrated in MATLAB with random sequences to see the 

correlation performance of a normal PN sequence. 

 Conventional CAZAC sequences. The conventional CAZAC sequence is given by: 

       
            

  (3.13) 

where k is an integer that is prime to the length of CAZAC sequence N. 
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 M-Sequences. A maximal length sequence (MLS) or M-Sequence is a type of 

pseudorandom binary sequence. An M-Sequence is generated by using a maximal-

length linear feedback shift register. It is so called because the M-sequence is 

periodic has the longest period possible for a given shift register length. Practical 

applications for M-Sequence include channel estimation and generation of pseudo-

random sequences, instead of purely random ones, in digital communication systems. 

M-Sequences are widely used in communication systems that employ direct-

sequence spread spectrum and frequency-hopping spread spectrum transmission 

systems. In the efficient design of some Functional Magnetic Resonance Imaging 

(FMRI) experiments, M-Sequences have also been employed for better performance 

[115]. The block diagram for M-Sequence generation for a length-15 sequence is 

shown in Figure 3.7, where the adder in the figure represents a modulo-2 addition. 

The registers can be initialized to any states with the exception of the all-zero vector. 

a3 a2 a1 a0

+

s(n)
 

Figure 3.7 Block diagram for M-Sequence generation. 

The comparison of the autocorrelation functions of 97 bits of PN, conventional 

CAZAC and ZC sequences is illustrated in Figure 3.8. 
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Figure 3.8 Auto-correlation functions of RS base-sequence candidates. 

The pseudorandom numbers of PN sequence are generated by MATLAB. The 

comparison of the cross-correlation functions of PN, conventional CAZAC and ZC 

sequences is demonstrated in Figure 3.9. To have a better comparison to the auto-

correlation function, the cross-correlation function has been defined with the same length 

as the autocorrelation function [85]: 

      
 

 
             (3.14) 
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Figure 3.9 Cross-correlation functions of RS base-sequence candidates. 

The correlation function simulation results for these sequences show that the ZC 

sequence has the best performance for both auto and cross-correlation properties among 

the RS base-sequence candidates. M-sequences and conventional CAZAC sequences 

have good autocorrelations, but cross-correlation is not as good as the ZC sequence. 

Therefore, in the proposed WIIC system, a 17-bit ZC sequence is employed as the RS 

base. 

In order to simplify the receiving procedure of the proposed WIIC system, as the 

WIIC channel can be considered to be time-invariant (TI), the RS will be transmitted 

when the system powers on, and the channel estimation will be performed when the RS 

signal is received. The same channel estimation result will be used in the channel 

equalization process. 
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3.6  Multiple Input Multiple Output [46] 

A system that employs MIMO technology can upgrade the reliability, which 

means that a lower BER can be obtained for the system under the same SNR. MIMO is 

able to increase the data rate by splitting one data stream into a number of layers and 

using precoding to separate the data stream layers to different antennas [59]. Also, 

MIMO systems separate interferers in space, and achieve a better Signal to Interference 

and Noise Ratio (SINR) by increasing the receiving power using beamforming. Except 

for beamforming, all MIMO techniques require inter-antenna-pair channels to be 

uncorrelated. In conventional macro-scale links, this is typically attained in non-line-of-

sight (NLOS) channels via rich scattering over both the temporal and spatial angular 

domains. In LOS channels, MIMO gains can also be attained via careful design of the 

arrays as a function of link distance, array element separation, and spatial orientation 

[114]. 

MIMO works before the OFDM baseband signal processing schemes and splits 

data streams on to each layer and antenna. The block diagram of MIMO is shown in 

Figure 3.10. This is also adopted from the LTE communication system. 
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Figure 3.10 Block diagram of MIMO systems. 
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3.6.1  Layer Mapping [46, 66] 

Layer Mapping basically splits one OFDM symbol stream into several OFDM 

symbol streams. Each split data stream is called a layer. The number of layers should be 

no greater than the number of antennas. For real-time processing, layer mapping can be 

expressed as: 

                   (3.15) 

where      is the OFDM baseband signal processing output,       is the signal on ith 

layer, n is the index of the OFDM symbol in the time domain,      , and M is the 

total number of bits on one layer. 

3.6.2  Precoding [46, 81] 

Precoding distributes the MIMO symbols by mapping them on all layers onto 

each antenna. All multi-antenna systems need precoding so as to support multi-layer 

transmission via a multi-antenna wireless system. The most significant advantage of 

precoding is that the receiver will be able to maximize the throughput with multiple 

receiving antennas for multi-layer signals. Precoding converts M layers of OFDM symbol 

streams to N streams, where N is equal to the number of antennas. 

If a Digital Signal Processer (DSP) is included in a WIIC system, the main 

procedure of precoding is to multiply the M layer stream with the designed complex 

precoding matrix. The precoding matrices should be orthogonal matrices so that it would 

be simple enough to find their inverse matrices for the receiver to retrieve information 

from each receiving antenna. 
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3.6.3  Potential MIMO Applications in the Proposed WIIC System 

MIMO can bring data rate increase and/or diversity for WIIC systems. However, 

in this dissertation, the simulation of the channel uses only one monopole antenna per 

transmitter. Therefore, in the channel analysis in this dissertation, SISO, rather than 

MIMO is selected. Only MIMO’s spatial multiplexing is used for the calculation of the 

theoretical upper bound of the data rate used in the proposed future WIIC system, where 

the channels are simplified to be ideal, statistically identical, and uncorrelated. In the 

future work for WIIC, realistic MIMO model may be employed if it can bring spatial 

multiplexing gain or beamforming, without adding unacceptable burden on power, 

antenna array, PCB area, and other costs. 

3.7  Cyclic Prefix [46] 

Cyclic Prefix (CP) is often used in OFDM systems to deal with channel 

dispersion. Considering wireless signals may be reflected, diffracted and scattered in the 

PCB area, the timing issues would include the one-way time delay (One-Way TD) as a 

result of the distance between chips, delay spread (DS) due to multi-path effect, and the 

clock timing problems. How CP in OFDM systems solve the former two issues are 

shown in Figure 3.11. 
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Figure 3.11 Cyclic Prefix and timing issues in the WIIC system [116]. 

In the designed WIIC system, the one way time delay is approximately 102.67 ps, 

while the symbol duration is about 34.14 μs, which are further analyzed in detail in 

Section 5.7.1 B) and D). As the time delay between chips is relatively small compared to 

the transmission block duration, in the WIIC situation, the CP implementation includes a 

small length of CP block (20 CP points vs. 1024 OFDM blocks) to minimize the added 

processing delay brought by CP insertion. 

3.8 Packet Header Insertion 

For the purpose of chip identification, a packet header has been included in the 

system. As a server system usually has no more than 10 CPUs, seven bits of packet 

header for both transmitter and receiver identifications have been reserved for future use. 

Packet header is inserted as the first seven bits in the front of the input data, and the data 
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stream with the packet header will be processed with CRC, channel coding, symbol 

mapping, OFDM, and CP insertion signaling. 

3.9  Modified Block Diagram for the Transmitter 

With consideration of implementation cost and complexity of design, the WIIC 

transmitter block diagram has been modified as displayed in Figure 3.12.  
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Figure 3.12 Revised block diagram for the transmitter. 

In the revised block diagram of the proposed WIIC transmitter, the following 

changes have been made in comparison to the one shown in Figure 3.1: 

 The block of interleaving has been removed as it is not necessary for the 

WIIC channels. 

 Scrambling has been also removed and will be replaced by an optional packet 

header before CRC redundant bits generation. The transmitter and receiver 

chip ID (or IDs for multi-cast/broadcast) are included in the packet header if 

there are more than two CPUs in the WIIC system. 

 MIMO blocks, including layer mapping and precoding, have been removed 

due to their high power consumption, and the lack of substantial benefit in the 

WIIC channels. In future work, a careful multi-antenna array design could 

show worthwhile MIMO benefits. 

 RS generation, channel sounding, and channel estimation will be performed 

at the moment when the system is powered on. 



 

47 

 

CHAPTER 4 

WIIC SYSTEM RECEIVER DESIGN 

The receiver of the WIIC system consists of the functional blocks of CP removal, 

OFDM symbol demapping, channel estimation & equalization, demodulation, channel 

decoding, and CRC checking. This chapter is primarily going to focus on design of the 

WIIC system receiver. 

4.1 Receiver System Block Diagram [66] 

The receiver block diagram is shown in Figure 4.1. The features of all the 

functional blocks are analyzed and designed in this chapter. The preliminary 

implementation of the WIIC system in an AWGN channel does not include the blocks of 

channel decoding, estimation and equalization. Afterwards, these three blocks are then 

added and integrated into a full WIIC system and channel analysis with all three different 

channels, including AWGN, the wired PCB, and the designed WIIC channels. After CRC 

checking, the bit error rate (BER) versus signal-noise ratio (SNR) is obtained by 

comparing the decoded bits with the delayed original data. 

When the system is first initialized, a RS sent by the WIIC transmitter will be 

compared to the local RS signal to estimate the channel transfer function. The extracted 

WIIC channel transfer function will be used to equalize the received signals. 
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Figure 4.1 Block diagram of the WIIC receiver. 

4.2 OFDM Baseband Signal Processing [22, 29, 46, 66] 

In reality, received OFDM signals will first go through an antenna, a Low-Noise 

Amplifier (LNA), a down converter and a Low-Pass Filter (LPF) to become baseband 

signals. The antenna model is integrated in the channel model. Besides, a perfect LPF and 

a mathematical Digital Down Converter (DDC) at the transmitter are used in the system 

validation; the gains of LNA at the receiver and Power Amplifier (PA) at the transmitter 

are counted in the link budget and are combined with other gains in SNR and BER 

analysis. 

The OFDM baseband signal processing procedure includes OFDM signal 

demodulation, CP removal, FFT, and OFDM symbol demapping. After the baseband 

signal processing, the receiver of the WIIC system will recover the original OFDM 

symbols in sequence. 

4.3  Channel Estimation and Channel Equalization [46, 76-80] 

Various communication systems always make efforts to sound and estimate the 

transmission channels using different channel estimation methods. With the channel 

estimation results a receiver system is able to equalize the channel response, and via the 

MA scheme it could utilize channels by avoiding portions of the frequency band with 

higher loss or fading [62]. Channel estimation could also include SNR estimation, and it 
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can enable selection of proper modulation method to balance data rate and BER 

performance. In this dissertation, the channel equalization is used to compensate each 

OFDM subcarrier by a single complex multiplication of the reciprocal estimated channel 

transfer function. 

4.3.1  Channel Estimation [46, 76-80] 

Channel estimation methods usually include Linear Interpolation (LI) Estimation, 

IFFT Estimation, Least Square (LS) Estimation, Minimum Mean Squared Error (MMSE) 

Estimation, etc. An analysis of these techniques is to use the Truncated Normalized Mean 

Square Error (TNMSE) to evaluate these Channel Estimation methods [50]. TNMSE is 

defined as follows: 

         
        

          
  

 (4.1) 

where  

 Normalized Mean Square Error (NMSE) is the normalized average of the square of 

the error of each channel estimation method compared to the actual value of channel 

state, i.e., the impact of the mistake of one channel estimation method compared to 

the whole Channel Transfer Function (CTF); 

        is the truncated trace operation, where the truncation is such that only the used 

subcarriers are included [50]; 

     is the error covariance matrix for the estimated CTF,        ; 

    is the error of the estimation related to the real transfer function; 

    is the matrix obtained by taking the DFT of the true CTF      ; 

   is the impulse response of the channel;  
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           is the channel covariance matrix, and      is the Hermitian operation; 

and finally 

      is the mathematical expectation operator.  

Thus,       
  is the covariance matrix of the true CTF. The better the channel estimation, 

the smaller TNMSE will be. 

In order to analyze the performance for the estimation methods, these channel 

estimation approaches are assessed for the transfer function of the designed WIIC 

channel with the absorber layers, which is further discussed in Chapter 5. The 

corresponding TNMSE result for the comparison is displayed in Figure 4.2.  

 

Figure 4.2 Comparison of channel estimation methods in the designed WIIC channel. 

The simulation result shows that MMSE is the best channel estimation scheme 

among the four approaches for the designed WIIC channel. As channel estimation will 
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only be performed once in the proposed WIIC system when the system powers up, 

MMSE is chosen to be the channel estimation method as it should have the best 

performance. 

4.3.2  Channel Equalization [76-80] 

Channel equalization is a procedure in the receiver of a communication system. In 

the OFDM systems used to un-do the distorting effects of the channel. In OFDM systems, 

it employs the estimated channel transfer function obtained from the channel estimation. 

It equalizes every subcarrier by multiplying the signals obtained from the output of the 

OFDM symbol demapping block with the reciprocal of the estimated complex transfer 

function. This is known as zero-forcing equalization. The OFDM symbol demapping is 

abbreviated as deOFDM block in the rest of the dissertation. 

4.4  OFDM Symbol Decoding [46, 76-80] 

Demodulation produces estimated transmitted symbols from the input RF 

waveform, and channel decoding can correct some errors in the received signals.  

4.4.1  Demodulation and Constellation [46, 76-80] 

At the transmitter, the constellation for modulated signals is perfectly shaped to 

the designed constellation points of BPSK, QPSK, Offset Quadrature Phase-Shift Keying 

(OQPSK), and QAM, and so forth. However, at the receiver, affected by the channel, 

noise, and possibly interference the constellation becomes irregular. The channel 

behavior can be qualitatively judged by observing the constellation at the receiver. 

4.4.2 Decoding [46, 62, 82] 

As the encoding method employs convolutional coding, accordingly, Viterbi 

decoding technique is a usual choice for the decoder. For the 1/3 code rate TBCC, 

although the receiver does not have the preset values of the encoding registers, the 
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convolutional decoder can use tail-biting property to determine starting/ending stages. As 

a result, the Wrap-Around Viterbi Algorithm (WAVA) is suitable for the WIIC receiver 

system. The Flow Chart of WAVA is shown in Figure 4.3. 

 

 

Figure 4.3 Flow chart of WAVA decoding, where the metric indicates the likelihood 

metric for a decoding route. 
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In the flow chart, the “metric” is defined as the likelihood metric for a decoding 

route, which is commonly used in Viterbi algorithms. When the maximum number of 

iterations (I) increases, the performance of WAVA improves, at the expense of a larger 

decoding delay and energy consumption. A comparison of the BER performance as a 

function of the maximum number of iterations for the AWGN channel with QPSK 

modulation is given in Figure 4.4 [62]. 

 

Figure 4.4 Comparison of different maximum iterations in WAVA decoding. 

As seen in Figure 4.4, when SNR or maximum iteration increases, better BER 

performance is achieved, but the complexity, decoding delay and energy consumption 

also increase accordingly. The simulation result for WAVA decoding only analyzes the 

iterations with acceptable decoding delay. In the proposed WIIC system design, in order 
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to balance the performance and the decoding delay, the maximum number of iterations is 

chosen as    . 
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CHAPTER 5 

WIIC SYSTEM CHANNEL MODELING AND DESIGN 

There are a variety of channel models to be chosen for validation of the proposed 

WIIC system. The Additive White Gaussian Noise (AWGN) channel is a simple 

idealized channel model without attenuation and fading, and it includes only additive 

noise in the channel. To further consider multipath effect in a WIIC system, a more 

realistic and hence complicated channel model needs to be analyzed and simulated. 

5.1  WIIC Channel Models [52, 63-65] 

In the research, the AWGN channel is first built in to an initially developed WIIC 

simulation to establish proper operation of all the functional blocks of the WIIC 

transceivers, by obtaining Bit Error Ratio (BER) versus Signal to Noise Ratio (SNR) 

results that can be compared with known theoretical results. The noise in the AWGN 

channel satisfies a normal (or Gaussian) distribution, which is independent of the signal, 

with expected value 0 and variance   . The double sided power spectral density (PSD) of 

the AWGN channel is equal to     . The noise power equals        , where B is 

the RX bandwidth in Hz. The noise power spectral density    is usually normalized to 1. 

The transmitted bit energy is given as             ,where    is the linear form of 

the bit energy to noise density ratio. 
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Second, a WIIC channel with two monopoles and a parallel metal plate 

waveguide is designed, which not only serves as the ground planes but also reduces 

millimeter wave leakage to other wireless (or wired) channels outside the WIIC system.  

Furthermore, a metamaterial EBG absorber unit operating in 60 GHz band is 

designed to absorb electromagnetic waves for minimizing the multipath effect and further 

reducing signal leakage. The WIIC transceivers are placed on the top layer of the WIIC 

PCB, and the antennas are constructed as vias through the ground plane, with the EBG 

absorbing walls on the borders on the top and bottom layers of the channel. The S-

Parameters, impulse response and transfer function of the WIIC system for these physical 

models are then extracted. 

Other than using the existing theoretical channel models in the simulation, a 

physical WIIC channel is established and simulated in HFSS and MATLAB to access the 

system performance. Herein the WIIC channel of 20 GHz bandwidth centered at 60 GHz 

is designed and analyzed. 

A simplified WIIC channel model is first designed with two parallel plates as the 

ground planes in High Frequency Structural Simulator ® (HFSS). After that, a 

metamaterial based Electromagnetic Band Gap (EBG) absorber unit is designed and 

added to the WIIC channel to build up the top and bottom layers of the PCB board. The 

diagram of the WIIC channel structure is shown in Figure 5.1. 
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Figure 5.1 WIIC channel concept with EBG absorbers. 

 

With this physical structure, the impulse responses and transfer functions for the 

WIIC channel, as well as those for the simulated and measured wired PCB channels are 

extracted from the corresponding S-Parameters. 

In order to compare the WIIC system to conventional approaches, a wired PCB 

channel consisting of microstrip and strip lines, vias, through hole pins, and connectors, 

is analyzed, and the Time Domain Reflectometry (TDR) and Time Domain Transmission 

(TDT) of the wired PCB channel are measured. Also, the microstrips, strip lines, and the 

via and the through hole pins are simulated in HFSS to extract S-Parameters. Those 

components with the connector’s S-Parameters provided by its vendor, are connected in 

series in Advanced Design System® (ADS) and then used to obtain the total channel S-

Parameters, and TDR/TDT signals of the wired PCB channel. The measured TDT and 

TDR responses are also converted to S-Parameters in order to perform a comparison to 

the designed WIIC channel.  

5.2 WIIC Channel Model Design with a Parallel Plate Waveguide 

A very first version of the WIIC channel model with a parallel plate waveguide is 

designed in HFSS. Then, an improved version with two monopole micro-antennas and a 

propagation channel bounded by a pair of the metamaterial absorber layers has been 
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developed and studied in HFSS [52]. The parallel plate waveguide model is filled with 

the dielectric substrate of FR4, which is imbedded between the parallel metal plates. The 

metal plates form the ground planes and microwave shields. Two micro-antennas 

represent the antennas for the transceiver chips of the proposed WIIC system. The 

dimension of the WIIC channel is 80×60×3.072 mm, and the dielectric substrate material 

is FR4 with the dielectric constant of         and loss tangent of          ,. The 

thickness of the parallel copper plate is 0.018 mm, and the thickness of the dielectric 

substrate is 3.036 mm. The distance between two chip pin antennas is 35.8 mm. The pin 

antennas are embedded in the dielectric, which are directly connected to the chip pins and 

pass through the ground plane of top PCB layer as seen from Figure 5.1. In the HFSS 

simulation, a coper pin prober protruding through the top layer is set to be the coaxial 

cables served as the wave port of the design. The designed WIIC channel is shown in 

Figure 5.2. 

35.8 mm

3.072 mm

80 mm
 

(a) 

60 mm

 

(b) 

Figure 5.2 Monopole antennas and propagation channel model bounded by a pair of 

parallel plates. (a) Side view and (b) the geometry of the WIIC channel. 

 

The derived S-Parameters between a pair of chip ports are displayed in Figure 5.3.  
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Figure 5.3 Extracted S-Parameters for the parallel plate WIIC channel model. 

In this initial WIIC channel design, the return loss (S11) significantly drops at the 

frequency of 62.8 GHz, and the insertion loss (S21) essentially exhibits a null at the 

neighborhood around 66 GHz, which is a clear limitation of the channel. The 10-dB 

bandwidth of S11 for the channel is 56.7-67.4 GHz. This channel is not preferable because 

of the electromagnetic wave resonance in the vertical direction due to the hard truncation 

of the metal walls. A potential problem is that the signal resonances can directly lead to 

heat generation, which is certainly an unwanted consequence. As a result, a much better 

idea is to design a pair of EBG absorber layers to replace the ground planes to absorb 

electromagnetic energy and to eliminate the potential heating problem. Another 

disadvantage is that within the bandwidth, S21 varies significantly from approximately -60 

to -30 dB. Even though the effective bandwidth is limited to 57-65 GHz, to avoid the null 

of S21 at about 66 GHz, the insertion loss for the designed channel ranges from 29 dB to -
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40 dB, which is a great amplitude variation. Therefore, equalization should be 

mandatorily applied in the corresponding WIIC system to reach proper BER performance. 

5.3 Metamaterial Based Absorber Design and Equivalent Circuit Extraction [63-65] 

5.3.1 Metamaterial Based Absorber Design 

In order to prevent EM wave leakage, a metamaterial-based EBG absorber unit 

that operates at the center frequency of 60 GHz is designed and then applied on the top 

and bottom layers of the WIIC channels. The absorber will be shown to be one of the 

most essential components of the designed WIIC channel model [63-65]. The absorber 

will invariably deform the antenna patterns, when the absorber is embedded into the 

channel environment. The simulated S-Parameters model will automatically account for 

the impact from the absorber, propagation channel, and the original antenna radiation 

patterns. 

In order to describe the performance of the proposed microwave absorber, the 

concept of absorbtance is introduced [63]. Absorbtance is a measurement of the 

effectiveness of the electromagnetic wave absorbing ability, and is defined as: 

             
       

   (5.1) 

, where S11 and S21 are the return and insertion losses of the S-Parameters for the absorber, 

which are extracted from a normal electromagnetic wave incidence onto the absorber unit. 

The bandwidth of the absorbers is calculated as the frequency band with the 

absorbtance being greater than 90%. In order to make the frequency band centered at 60 

GHz, the absorber unit cell has been tuned, and the designed absorber unit is shown in 

Figure 5.4. 
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(a) 

4.2 mm

4.2 mm 4.2 mm

1 mm
 

 (b) (c) 

Figure 5.4 Absorber unit cell. (a) Overview, (b) top view, and (c) side view. 

The proposed WIIC channel is built within a PCB board with the dielectric 

substrate made by Foam. The substrate is characterized by the dielectric constant of 

      . The dimensions of the designed absorber unit are 4.2×4.2×1 mm. The absorber 

unit consists of three decagon resistive loops, substrate, and a reference plane so as to 

achieve a broadband frequency responses centered at 60 GHz. As the absorbtance is 

determined by the dimensions, and the dimensions has been tuned to a boarder frequency 

band centered at 60 GHz as follows. The thickness of the metal is 0.02 mm, the width of 
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the loop traces is 0.08 mm, the edge-to-edge spacing among loops is 0.08 mm, and the 

side lengths of three loops are 0.3245, 0.2503, and 0.2256 mm.  

The absorbtance of the designed three-layer decagon absorber unit is displayed in 

Figure 5.5. Table 5.1 summarizes a comparison between the proposed EBG absorber unit 

and prior designs of electromagnetic absorbers from the literature.  

 

Figure 5.5 Absorbtance of the designed metamaterial absorber vs. frequency. 

As demonstrated in Figure 5.5 and Table 5.1, in this design, both the central 

frequency (60 GHz) and the absolute bandwidth (50.02~70.22 GHz) are the highest 

among all the recent EM wave absorbers. The EBG metamaterial absorber is mainly 

designed to absorb the normal components of electromagnetic waves. 
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Table 5.1 Parameters of EBG absorber designs 

Central 

Frequency 

(GHz) 

Bandwidth 

(GHz) 

No. of 

Dielectric 

Layers 

Dielectric 

Unit 

Dimension 

(mm) 

Paper 

4.91 4.79-5.04 7 FR-4 10.2×10.2×0.9 [67] 

14.68 8.37-21 8 
Teflon, 

RogersTMM4 
6.4×6.4×3.65 [68] 

17.33 12.38-22.28 3 FR-4 29.6×29.6×1.6 [70] 

22 4-40 4 
CIFs, epoxy 

resin 
20×20×3.7 [71] 

10.87 6.79-14.96 5 FR-4, air 11.1×10×0.4 [72] 

60.52 50.02-70.82 3 Foam 4.2×4.2×1 
This 

Design 

 

5.3.2 Equivalent Circuits of the Absorber Unit 

To better understand the absorption mechanism for the EBG absorber and to 

obtain a fast simulation model of the absorber, its equivalent circuit has been developed 

in this section, by using the transmission line models [5, 6] as given in Figure 5.6. 

Although the EBG absorber has been designed and simulated in the full-wave Maxwell 

solver HFSS, the equivalent circuit has been developed in ADS for better understanding 

of the concept of the absorber and fast evaluation and design of the physical structure for 

different absorber applications. 
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Figure 5.6 Equivalent circuit of the metamaterial absorber [5, 6]. 

Herein,             ,             , and              are the self-inductance, 

self-capacitance, and resistance for the three decagon loops. Also, inductors, capacitors, 

and resistors    ,    , and                     are the mutual inductance, mutual 

capacitance, and resistance resulting from the crosstalk between pairs of the three loops, 

which derived from the crosstalk model of transmission lines.  

The initial self-capacitances, self-inductances and resistances of the three loops 

are extracted from the microstrip line model as follows: 

    
         

 
            (5.2) 

                   
     

   
      

           

    
            (5.3) 

     

 

   
    

    

 
 

      

 
    

             (5.4) 

where   is the width of each loop,      is the perimeter of the ith loop,   h is the height of 

the substrate,    is the permittivity of free space, and    is the relative permittivity of the 

substrate;   and   are the conductivity and thickness of the loops, respectively,           
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are the permeability of the free space, and the relative permeability of the substrate, 

respectively. The variable δ is the skin depth on the loops, and is used to quantify the skin 

effect, which is defined as the penetration depth at a given frequency where the amplitude 

is attenuated to 63% (   ) of the initial value at the surface of the conductor. Skin depth is 

given as: 

    
 

   
  

 

      
  (5.5) 

where   is the resistivity of the conductor. As the skin depth   of the loops within the 

operation band of the absorber is larger than the conductor thickness  , the resistance will 

be evaluated with the first equation. 

   is the ground resistance is defined as the resistance between the traces and the 

ground plane, which is mainly contributed from the substrate. It can be derived from the 

same resistance equation as    where      and   values need to be changed to the length 

and width of the ground plane shown in Figure 5.4.  

The mutual inductances and mutual capacitances are evaluated from the crosstalk 

theory as follows. 

    
         

            
                  (5.6) 

    
         

      
                  (5.7) 

where   is the gap between the loops. 

For the resistance between Loop 1 and Loop 2, and that between Loop 2 and Loop 

3, these resistance values can be approximately equal to the characteristic impedance of 

free space: 

         
 

   
  (5.8) 
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where c is the speed of light. And because Loop 1 and Loop 3 are separated by Loop 2, 

    is relatively small compared to     and    . So that     is set to zero in this case: 

       (5.9) 

Variables    and    are the real and imaginary parts of the characteristic 

impedance for the dielectric substrate   , which is defined as: 

    
    

 
 

 

              
         

  

          (5.10) 

where      
     

  is the complex permittivity,    is the permeability,   is the 

propagation constant, and       
     

    

     
  is the loss tangent of the dielectric substrate. 

The calculated values of the components in the equivalent circuit are used in ADS 

and tuned in order to have the absorbtance agree to that of the designed absorber unit. 

The values of the components after tuning are illustrated in Table 5.2. A comparison of 

the absorbtance values derived from the designed decagon absorber unit simulated in 

HFSS and from the equivalent circuit evaluated in ADS are displayed in Figure 5.7. 

Table 5.2 Equivalent circuit values for the EBG absorber unit 

R1 (Ω) C1 (pF) L1 (nH) R2 (Ω) C2 (pF) L2 (nH) 

55.97 0.0046 0.36 1183.45 0.081 0.061 

R3 (Ω) C3 (pF) L3 (nH) R12 (Ω) C12 (pF) L12 (nH) 

997.31 0.67 0.04 278.80 0.040  

R23 (Ω) C23 (pF) L23 (nH) R13 (Ω) C13 (pF) L13 (nH) 

0 0.14 0.65 278.80 0.081 0.20 

Rd (Ω) Ld (nH) Rg (Ω)    

0.0045 0.32 0.72    
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Figure 5.7 Absorbtance for the equivalent circuit and the designed absorber. 

As can be seen in Figure 5.7, the absorbtance bandwidths for both cases are 

approximately 20 GHz, which are fairly consistent although they have shifted at the front 

at the back edges of the band by a few GHz. If the desired frequency band changes, it 

would be very convenient to set up a design in the ADS circuit model by modifying the 

dimensions and the air gap of the three loops, because the circuit simulation runs much 

faster than that of the full wave field modeling in HFSS. The developed circuit model 

will be very helpful for accurately and quickly establishing the physical absorber model. 

5. 4 WIIC Channel Model Design with Absorber Layers 

Based on the design of the metamaterial absorber, an entire WIIC channel is 

modeled, as shown in Figure 5.8. 
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In the channel design, two layers of the metamaterial EBG absorber units are 

placed at the top and bottom layers of the PCB board. Also, in order to analyze the S-

Parameters of the system, three antennas are placed on the top layer to perform as the 

transceivers of the chips in the WIIC system. The transceivers are used to transmit and 

receive signals operating at 60 GHz frequency band. 

Port1

Port2

Port3

x

Metamaterial 

Absorber Layers

Dielectric Layer
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Ground 

Planes
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(b) 

Figure 5.8 WIIC channel built with the metamaterial EGB absorber layers. (a) The 

geometry of the WIIC channel, and (b) its side view.  

 

The WIIC channel is designed with the dimensions of 60×80×5 mm, and 

equipped with 249 and 252 (14×18) absorber units on top and bottom layer, respectively. 

The substrate dielectric material is Foam in the designed WIIC channel. Three micro-
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antennas are placed on the top layer, which are fed with the coaxial lines. The micro-

antennas are about 30 mm apart from each other.  

The HFSS-simulated S-Parameters result for representative WIIC channels with 

ground planes and absorbers is given in Figure 5.9.  

 

Figure 5.9 Comparison of S-Parameters for the designed WIIC channels with the 

metamaterial EBG absorber layers and ground plates. 

 

The 10 dB bandwidth with acceptable insertion loss approximately ranges from 

50 to 70 GHz. As seen from the figure, the insertion loss between the transceivers ranges 

approximately from 22 to 35 dB, in the frequency band from 50 to 70 GHz. Thus, an 

equalizer at the receiver is also required. The return loss is about -13 dB at the central 

frequency, with a minimum of -32.06 dB at 49.62 GHz. The simulated S-Parameters of 

the designed WIIC channel with absorber layers will be utilized for impulse response and 
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transfer function extraction, which are further used in channel analysis and system. In this 

design the radiation from the pin monopole antennas will impinge upon the absorber 

layers over a range of incident angles. The majority of the normal electromagnetic waves 

will be significantly absorbed, and the tangential components parallel to the planes will 

remain in the system. It would be very nice to add absorber walls on all the sides of the 

WIIC channel. However, it would significantly add to simulation complexity, running 

time, and computer memory consumption. This will be studied in future research. 

5.5 Wired PCB Channel Measurement and S-Parameter Generation 

In order to compare the WIIC channel analysis to existing wired approaches, a 

wired PCB channel with a number of vias, striplines, microstrip lines, through hole pins, 

and connectors, has been analyzed and measured. The motherboard, which includes a 

CPU on the top layer, is shown in Figure 5.10 (a). The dimensions of the motherboard are 

508×218×2.54 mm. In practice, there will be a backplane, which is even slightly larger 

than the motherboard. Sometimes there will be another board equipped for Field-

Programmable Gate Arrays (FPGAs) and Basic Input/Output System (BIOS). There are 

usually a total of twenty-two layers on these PCB boards, including eight stripline layers, 

two microstrip line layers, ten ground planes, and two power planes. The size of the 

boards is much larger than the simulated WIIC PCB, because the wired PCB channels 

consist of hundreds of traces at different layers in order to reduce the crosstalk among 

these traces. Usually, PCB designers would have each motherboard with only one or two 

CPUs, such that they can focus on the design of the backplanes when the number of 

CPUs varies for different customers. 
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The analysis of the wired channel is to provide a reference structure by using the 

current technology implemented in PCBs, to validate the methodology developed for the 

wireless channel analysis in the frequency band of 60 GHz, and to find and understand 

the characteristics and limitation of the wired channel. 

 
(a) 

 
(b) 

Figure 5.10 Wired PCB channel for TDR and TDT measurement. (a) The PCB board and 

(b) the designed wired PCB channel demo. 

 

The channel consists of a 300-mil microstrip, two vias, a 5.3-inch stripline, a 

through hole pin, and a connector. The wired PCB channel is measured using both TDR 

and TDT signals. The S11 and S12 can be approximately generated from TDR and TDT, 

respectively. The reason for why not directly measuring the S-Parameters form a Vector 
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Network Analyzer (VNA) to extract the S-Parameters is primarily due to that the cost of 

the VNA capable for the desired high frequency band of 50-70 GHz is too expensive. It 

was unavailable when doing the measurement for the wired PCB channel. The TDT 

signals will be used for extraction of the impulse response and transfer function of the 

channel. The wired PCB channel is displayed in Figure 5.10, and represented in ADS in 

Figure 5.11. The S-Parameter models of via, through hole pin, microstrip and stripline 

simulated in HFSS, and the connector S-Parameters model provided by the vendor are 

cascaded in ADS to generate the combined S-Parameters and to obtain the simulated 

TDT/TDR for the wired PCB channel. 

 

Figure 5.11 Schematic for wired PCB channel TDR and TDT simulation in ADS. 

The measured and simulated TDR and TDT signals are represented in Figures 

5.12 and 5.13, respectively. 
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Figure 5.12 Measured and simulated TDR for the wired PCB channel. 

 
Figure 5.13 Measured and simulated TDT for the wired PCB channel. 
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TDR measures the impedance of each segment in a transmission line system, 

while TDT shows the transmission delay and the termination of the system. Details for 

TDT and TDR are specifically described in Appendix A. 

As seen in Figure 5.12, the measured and simulated TDR signals are quite similar, 

except a peak at 0.8 ns in measured result, which indicates a high impedance resulting 

from the imperfect contact between the probe and the via pad on the bottom layer of the 

PCB board. 

The measured and simulated TDT results are also very close with a little 

difference on their amplitudes. The simulated TDT final value is slightly higher than that 

derived from the measurement. This may be a result of the circuit mismatch or 

fabrication or measurement errors. 

With the measured and simulated TDR and TDT signals, the S-Parameters of the 

PCB channel can be extracted in the frequency domain [74, 75]. The S-Parameters can be 

extracted in the following manner: 
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 (5.12) 

The extracted S-Parameters are shown in Figure 5.14.  
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(a) 

 
(b) 

Figure 5.14 Extracted and simulated S-Parameters for the wired PCB channel. (a) 0-70 

GHz frequency band, and (b) 0-10 GHz frequency band. 
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The measured and simulated S-Parameters extracted from the wired PCB channel 

agree fairly well at low frequencies. At the frequency of 60 GHz, the insertion losses are 

approximately -160 dB and -200 dB for the simulation and measurement of the wired 

PCB channel, while the return losses at the same frequency band are about 0 dB.  

The results show that it is almost impossible for signals to propagate at the 

frequency band centered at 60 GHz, but this is not the most relevant observation. The 

most important observation regarding the wired PCB channel is its available bandwidth. 

The 10-dB bandwidth for the wired PCB channel is approximately 0-7 GHz. Within the 

bandwidth, the insertion loss varies from approximately 0-18 dB. 

5.6 Generation of Impulse Response and System Transfer Function 

5.6.1 Impulse Response Generation 

To better describe the channel and to enable channel performance analysis, with 

the obtained S-Parameters of the wired PCB and the WIIC channels, the impulse 

responses are extracted. Although a proper IFFT of the insertion loss (S21) can directly 

generate the impulse response, the IFFT of the TDT is not the exact impulse response by 

its definition. As seen from Figure 5.14, the converted S-Parameters from the TDR/TDT 

results via MATLAB and from the circuit simulation via ADS of the wired channel are 

not very consistent. To have a fair comparison among those channels and to avoid 

additional simulation errors introduced by conversions of signals in the frequency and 

time domains, the impulse responses are all generated via ADS with the same unit 

impulse input. The schematic for impulse response extraction is shown in Figure 5.15. 

The block in the middle represents either the S-Parameters of the WIIC or the wired PCB 

channel. 
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Figure 5.15 Schematic for impulse response extraction. 

In ADS, a numeric, non-perfect unit impulse is injected into the channels. The 

generated unit impulse is determined to satisfy the following equation: 

         
 

  
 

 

 
                    (5.13) 

where    is the magnitude of the impulse,     and      are the impulse widths at its 

bottom and top positions. 

The injected impulse is chosen with           in magnitude, 3 ps width, 1 ps 

rising and falling edges, in order to satisfy the definition of impulse response as given in 

Equation (5.13) and is shown in Figures 5.16. 

The extracted impulse responses of the designed WIIC channel and the wired 

PCB channels are displayed in Figure 5.17. The WIIC channel are the designs that 

equipped with a pair of parallel plates, and two layers of metamaterial EBG absorbing 

units, while the impulse responses for wired PCB channel are extracted from both the 

measured and simulated results. 
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Figure 5.16 The injected unit impulse in the time domain. 

 

Figure 5.17 Impulse responses for the designed WIIC and PCB channels. 
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As can been seen from the figure, the simulated and measured impulse responses 

for the wired PCB channel are similar, with a little time delay difference. The time delay 

may be resulted from by parasitic mutual capacitance and inductance of the PCB circuit 

components, or from the imperfect contact between the probe and the via pad on the 

bottom layer during the measurement. It is noticed that, the time domain amplitude of the 

impulse response for the wireless WIIC channel’s is about three times of that of the wired 

PCB channel. In other words, with a same input to the channels, the response magnitudes 

of the WIIC channels will be much larger than that of the wired PCB channel, which can 

also be deduced from the insertion loss as seen in Figures 5.9 and 5.14. 

5.6.2 System Transfer Functions Generating 

The frequency response of a system can be easily generated in MATLAB (Matrix 

Laboratory) by performing an FFT of its corresponding impulse response. The relation 

between the discrete frequencies of the FFT signal and the sampled time domain points 

have to satisfy the following relations [74]: 

    
 

   
 (5.14) 

where Δf is the frequency interval of frequency response, the Δt is the sampling time 

interval of the impulse response, and N is the total samples of the impulse response in the 

time domain.  

With the above equation, the FFT transformed versions of the impulse responses 

are simply as the frequency transfer functions of the measured and simulated wired PCB, 

and designed WIIC channels. The extracted system normalized transfer functions, 

        for the WIIC system equipped with two layers of metamaterial EBG absorber 
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units,          for the WIIC system with two parallel plates,         for the measured 

PCB channel and         for the simulated PCB channel are shown in Figure 5.18. 

 
(a) 

 
Figure 5.18 Normalized transfer functions for the designed WIIC and wired PCB 

channels. (a) Linear scale, and (b) dB scale. 
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It is clearly seen that the normalized transfer functions of the simulated and 

measured PCB channels are very consistent, and they are almost cutoff from 15 GHz. 

However, the proposed WIIC channel performs very well for the desired frequency band 

around the neighborhood of 60 GHz. In other words, with an identical input to the 

channels, the bandwidth of the WIIC channels will be larger than that of the wired PCB 

channel. The transfer function for the WIIC channel with absorbers is flat within 3 dB of 

variation in the frequency range of 45-65 GHz. It is noticed that this bandwidth is not 

completely consistent with that of the Insertion Loss simulation resulted from HFSS. The 

reasons can be summarized as follows: 

 The definitions between Insertion Loss and Transfer Function are slightly 

different. The Insertion Loss is derived from the division of the scattering coefficient, 

which is defined as the ratio of the square root of the transmitted and injected powers. 

When measuring the insertion loss, all ports must be matched. On the contrary, the 

transfer function is defined as the Fourier Transform of the impulse response of a 

system, while the impulse response is derived by the division of the input and output 

signals, which can be voltage-voltage, current-current or voltage-current, etc. The 

impulse response is measured when any of the ports to be open, matched or 

mismatched. In this dissertation, as can be seen in Figure 5.15, the unit impulse is 

injected into the S-Parameters circuit block, with both the source and load 

impedances to be 50 Ohms, which cannot guarantee a matched port in this situation.  

 The approximation of the impulse response and Transfer Function. In this 

dissertation, the injected impulse is quasi-unitary. Thus, the generated impulse 
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response is an approximation of the actual impulse response. Consequently, the 

transfer functions are also an approximation to the actual transfer function.  

5.7  Characteristics for the WIIC Channels 

In order to better characterize the designed WIIC channels, the extracted S-

Parameters and impulse response are used for the calculation of the link budget, round 

trip delay and delay spread analysis. In the link budget analysis, conventional FDM 

QPSK modulation and SISO are employed. 

5.7.1 Characterized Parameters for the WIIC Channel 

A) Path Loss 

If all I/O ports are well matched, the attenuation (path loss) and the insertion loss 

      in dB are given as follows [5-6]: 
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 (5.16) 

where    is the path loss,    and    are the transmitted and received power. 

Therefore, if all I/O ports are well matched, the path loss will be approximately 

equal to the insertion loss [109], while the simulation in HFSS included an inherent 

antenna gains or possibly losses. As seen in Figure 5.8 where all I/O ports are well 

matched in HFSS simulation, the path loss of the designed WIIC channel at 60 GHz is 

approximately 22 dB and varies from 22 to 35 dB within the total bandwidth of the 

channel of 50-70 GHz. 
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B) One-way Time Delay 

The one-way time delay in the WIIC channel is evaluated as 

    
 

  
           (5.17) 

where    is the one-way time delay that is the time of a signal to transmit from the 

transmitter to the receiver, d is the distance between the transceivers, and    is the speed 

of light in the dielectric substrate. 

C) Root-Mean-Square Delay Spread 

The root-mean-square (RMS) delay spread is given as the second central moment 

of the power delay profile [51]: 

     
          

 
  

        
 
  

   
  (5.18) 

where    is the RMS delay spread and    is the mean delay, which is defined as the first-

order moment of the power delay profile [51]: 

    
         

 
  

        
 
  

 (5.19) 

where       is the power delay profile (PDP) as a function of delay  , which is the 

measured power of the impulse response of the designed WIIC channel, defined as 

follows:  

               (5.20) 

where      is the complex baseband impulse response. The PDPs of the WIIC channel 

with absorber, WIIC channel with parallel ground plane, and the wired PCB channel are 

displayed in Figure 5.19.  



 

84 

 

Figure 5.19 Power delay profiles for WIIC and wired PCB channels. 

The RMS delay spreads are calculated in MATLAB® to be: 

     

                                    
                                           

                           

  (5.21) 

The coherence bandwidths, which are the approximate bandwidths over which the 

channel yields little distortion, are 

    
 

   
  

                                    
                                           

                            

  (5.22) 

As a result, the approximately zero distortion bandwidth is about 8.29 GHz for the 

WIIC channel with the absorbers. With the OFDM employed in the system, a wideband 

signal is separated to several narrow band signals, each of which can be equalized via the 

zero forcing complex multiplication. 
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D) Estimated Data Rate for QPSK Modulation 

The corresponding achieved peak data rates for the following cases: (i) QPSK, 

single carrier and SISO; (ii) QPSK, SISO and conventional FDM; (iii) QPSK, OFDM 

and SISO; (iv) 256 QAM, OFDM and with identical and ideal 4×4 MIMO (theoretically 

upper bound) are given as follows: 

Table 5.3 Achievable peak data rate 

Parameters Peak Data Rate 

QPSK, conventional FDMA 

and SISO 

                    
  

    
         (with Ideally 

perfect BPFs and no bandgap between symbols) 

                (To allow for filter guard bands) 

QPSK, OFDM and SISO 
                                     

                      

Theoretically upper bound - 

256 QAM, OFDM and with 

identical and ideal 4×4 

MIMO antenna arrays 

                             
       

 
  

            

 

In the dissertation, as MIMO and QAM are not included in the final version of the 

proposed WIIC system, the last row of Table 5.3 only gives the theoretical upper bound 

of the peak data rate for the WIIC system with 256 QAM, OFDM, identical and ideal 4×4 

MIMO antenna arrays. The feasibilities of MIMO and QAM in the WIIC system are not 

analyzed in the dissertation, and the design and analysis of MIMO and QAM are 

suggested as future research in Chapter 7. 

E) Estimated Required SNR for QPSK Modulation 

As the target BER is set to be 10
-12

, for QPSK modulation, the theoretical BER-

SNR relationship is: 

                   (5.25) 

where    is the SNR in linear units: 
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 (5.26) 

The Q-function is the tail probability of the standard normal distribution. In other words, 

     is the probability that a normal (Gaussian) random variable will obtain a value 

larger than x, i.e.: 
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 (5.28) 

Using the embedded inverse complementary error function           function in 

MATLAB®, the required SNR for the target BER is calculated to be: 

                          (5.29) 

5.7.2 Link Budget 

A link budget is required to compute the required TX power. It tabulates all 

parameters that connect the TX power to the received SNR. As most factors influencing 

the SNR enter in a multiplicative way, it is convenient to write all the equations in a 

logarithmic form – specifically, in dB. The link budget for two transceivers in the WIIC 

channel is provided in Table 5.4. 

The minimum required RX power     , required Transmission power (   ), 

minimum TX power     and required energy    per bit are derived as follows: 

                           (5.30) 

                                 (5.31) 

                                (5.32) 

           (5.33) 

Table 5.4 Link budget of the WIIC channel 
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Item Symbol Value 

Noise   

Noise Figure NF 10 dB 

Bandwidth B 20 GHz 

Power Noise at Rx    -60.81 dBm 

RX side:   

Target BER  10
-12

 

Required SNR     13.93 dB 

RX Antenna Gain     1.5 dB 

Minimum RX Power    -46.89 dBm 

Path Loss    -25 dB 

TX side:   

TX Antenna Gain     1.5 dB 

Required Transmitter Power    -28.17 dBm 

Minimum bit energy    1.22 pJ/bit 

 

5.8  Proposed Layout Plan and Silicon Area Estimation 

5.8.1  Comparison of DSP and ASIC Solutions of the Proposed WIIC System 

Independent from CPUs, an integrated WIIC DSP system will be included to 

perform the process of CRC, packet header insertion, channel coding/decoding, 

modulation and OFDM.  

DSP technology rather than ASIC for the WIIC system is preferable in the 

dissertation based on the following consideration: 

 ASIC technology [93-104] is also capable for signal processing with better 

performance in terms of board area and power consumption, while it usually needs a 

longer cycle for complex circuit design. Also, ASIC circuits are especially 

complicated for OFDM, FFT/IFFT, higher order modulation, and potentially MIMO 

for WIIC systems. In this dissertation, the estimation for board area consumption will 
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be based on the implementation of low-power consuming DSPs. The analysis of 

WIIC ASICs will be the one of the primary future research topics. 

 It is known that the low power consuming DSP chip (such as ARM) requires much 

less power than that of an Intel conventional CPU [91] [92]. Also, the area of this 

DSP has been estimated to be much smaller in comparison to the Intel conventional 

CPU. This low power-consuming DSP technology will be potentially used in the 

WIIC system. The power consumption, processing speed, board area consumption 

and maximum FFT points for current CPUs, DSPs and ASICs are shown in Table 5.5, 

which indicates that the DSPs are power efficient, require a smaller board area, and 

are with acceptable clock rate and FFT points. 

Table 5.5 Comparison of conventional Intel CPU, DSP and FFT ASIC 

 
Intel ® Skylake 

® CPUs [90] 

NXP® DSPs 

[91] 

FFT ASICs 

[100] 

Thermal Design 

Power (TDP) 
15-91 W 0.15 mW/MHz 2.9 mW 

Clock rate 4.2 GHz 
1.2 GHz (8 

Cores) 
Up to 2 GHz 

Board area 

consumption 
37.5 × 37.5 mm 3.5 × 3.5 mm 81.6 mm

2
 

Maximum FFT 

Points 

Not specially 

designed for 

FFT, but up to 

768K 

Typical 2048 

(up to 8192) 
Up to 1024 

High order 

modulation 
Yes Included Need extra design 

Channel 

Coding/Decoding 
Yes Included Need extra design 
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 Furthermore, the cost of the DSPs is expected to be much less expensive than the 

cost of the conventional CPU, and the design of the connection from the antenna 

array to the DSP pins is simple and compact. 

5.8.2  Proposed Layout Plan 

The initial proposed WIIC system operations will be processed in a DSP, 

including the high-speed process of higher order modulation, convolutional coding, 

Viterbi decoding and FFT/IFFT. For power efficient purpose, the ARM ® DSPs will be 

preferred, while the Intel WiMAX DSPs are also options that they may be more 

compactable with Intel’s CPUs. The proposed layout plan is shown in Figure 5.20. The 

discussion with the industry comes to a suggestion of the antennas to be layout as vias. 

The DSP pins, CPU socket pins and antennas can be connected by through hole vias and 

microstrips.  

The area of an Intel CPU is about 37.5 mm × 37.5 mm, while the DSP is 

approximately 6.4 mm × 9.7 mm. There will be some microstrip lines from the input DSP 

pins to the through hole vias, as the DSP pins are not always aligned with the CPU pins. 

Also, microstrip lines exist between DSP output pins and the antenna vias, in order to 

perform phase matching. For instance, as shown in Figure 5.20 (b), in the 4-Socket multi-

CPU system, there are three antennas for each CPU to transmit WIIC signals to others. 

Therefore, the total Silicon Area of the WIIC system should not exceed the Silicon Area 

of the CPU, 37.5 mm × 37.5 mm. In other words, the Silicon Area for the proposed WIIC 

system is much less than the wired counterpart, which takes at least four layers of three 

boards of 40 cm × 70 cm. 
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Figure 5.20 Proposed layout view of the WIIC system. (a) Side view, and (b) Top view. 
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CHAPTER 6 

SIMULATION OF THE WIIC SYSTEM 

The proposed WIIC system developed in the previous chapters has been 

simulated in MATLAB. The preliminary WIIC system includes the functional blocks of 

Cyclic Redundancy Check, QPSK modulation, SISO, the OFDM and CP insertion. In this 

chapter, a preliminary WIIC system is first validated by using an AWGN channel in 

MATLAB. Then, OFDM, RS channel sounding, channel coding, channel estimation and 

channel equalization are further investigated in the full-system BER analysis with all four 

channels including AWGN, wired PCB and the WIIC channels. In the preliminary system 

validation, a series of 480,000,000 bits are randomly input into the designed WIIC system 

for obtaining the bit error rate (BER) for each signal to noise ratio (SNR). In addition, the 

total number of random input bits at one single SNR point in the full system and channel 

analysis is 441,600,000. 

6.1 Preliminary System Implementation with an AWGN Channel 

In this section, the designed WIIC system described in Chapters 3 and 4 are 

simulated in an AWGN channel, with the analysis including OFDM signal generation, 

constellation collection at the receiver, and BER vs. SNR. 

6.1.1 OFDM Signal Generation 

When the random binary symbols are input to the transmitter of the OFDM 

system, the baseband signals are processed by the proposed transmitter signal processing  

 



 

92 

system. When the SNR at the receiver are of 10dB, 20dB and 30dB SNR, the processed 

signal at the transmitter are shown in Figures 6.1, 6.2, and 6.3 respectively.  

 
Figure 6.1 Normalized Power Spectral Density of the transmitted signals for an average 

for 10000 realizations. 

 

6.1.2  Constellations Generated at the Receiver 

After the transmitted signals pass the AWGN channel model, the receiver collects 

the signals and noise from its antennas, correctly removes the Cyclic Prefix, obtains the 

data samples, and processes these samples in the OFDM demapping subsystem, which is 

abbreviated as deOFDM in Figure 6.2, and Figures 6.4-6.9. After completing all these 

procedures, the receiver gets a series of QPSK complex symbols. When plotting all these 

symbols in a Cartesian coordinate system, a constellation diagram of the received signals 

45 50 55 60 65 70 75
-25

-20

-15

-10

-5

0

f (GHz)

N
o
rm

a
liz

e
d
 P

S
D

 (
d
B

)



 

93 

is obtained. The constellation of the received signals before QPSK demodulation at 20 dB 

SNR is shown in Figures 6.2. 

 

Figure 6.2 Constellation of the received signals at 20dB SNR for the AWGN channel. 

6.1.2  BER Analysis 

An initial simulation result for the AWGN channel is shown in Figure 6.3. In 

these results, the system does not include channel coding/decoding, RS signals, and 

channel equalization. As predicted in the previous analysis, the BER is less than 10
-5

 at 

6.5 dB SNR, and BER at 5 dB SNR is about 9.4×10
-5

. Furthermore, in the case 

investigated, no error bits occur out of ~400 million bits sent, if SNR is greater than 9 dB, 

which is an acceptable SNR level in the proposed channel model. 
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Figure 6.3 BER vs. SNR without channel coding and equalization. 

Herein, BERs are extracted by directly comparing the input and output, so that the 

results are more reliable than obtaining the BER result by calculating using CRC 

checking results. 

6.2 Full System Analysis for AWGN, WIIC and PCB Channels 

In this section, the functional blocks of RS channel sounding, channel coding, 

channel estimation and channel equalization schemes are added to the simulation of the 

WIIC system. The simulation employs all three channels including AWGN with FEC, the 

designed WIIC, and the wired PCB channels. In this section, the constellation plots for 

the three channels are firstly represented, and then the BER vs. SNR results are displayed.  
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The wired PCB channel analyzed in the dissertation was designed and fabricated 

for digital communications at about 10 GHz between CPUs used in Oracle X5-4 servers. 

The channel was selected for measurement and simulation due to that it is the highest 

frequency band in comparison to other available wired channels.  

Rather than a comparison between the wired and wireless communication systems 

in the 60GHz frequency band, the wired channel mainly serves as a reference structure to 

provide a validation for the methodology developed for measurement and simulation. The 

validation between the measurement and simulation includes HFSS simulation, 

TDR/TDT measurement and simulation, S-parameter calculation, impulse response and 

transfer function extraction, and WIIC system simulation. 

6.2.1 Constellations Generated at Receiver 

Constellation graphics are capable to illustrate the characteristics of the channels. 

The constellations for the equalized AWGN, and WIIC with absorbers and wired PCB 

channels, are shown in Figures 6.4 through 6.9. Each channel yields constellations for the 

cases of 3, 5, and 10 dB SNR. 
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Figure 6.4 Constellation of the received signals for AWGN Channel at 3 dB SNR. 

 

Figure 6.5 Constellation of the received signals for AWGN Channel at 5 dB SNR. 
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Figure 6.6 Constellation of the received signals for AWGN Channel at 10 dB SNR. 

 

Figure 6.7 Constellation of the received signals for WIIC Channel at 3 dB SNR. 
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Figure 6.8 Constellation of the received signals for WIIC Channel at 5 dB SNR. 

 

Figure 6.9 Constellation of the received signals for WIIC Channel at 10 dB SNR. 
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Figure 6.10 Constellation of the received signals for the wired PCB Channel at 3 dB SNR. 

 

Figure 6.11 Constellation of the received signals for the wired PCB Channel at 5 dB SNR. 
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Figure 6.12 Constellation of the received signals for the wired PCB Channel at 10 dB 

SNR. 

6.2.2 BER Simulation 

With the full modules of the designed WIIC system, a BER simulation has been 

performed. The simulated BER vs. SNR for the AWGN with FEC, WIIC and the PCB 

channels are shown in Figure 6.13.  

The AWGN channel with FEC refers the WIIC system with FEC included in an 

AWGN channel, and the WIIC Channel-Absorber is the WIIC system with equalization 

simulated with the WIIC channel bounded by the absorber layers. In the simulation, 

equalized AWGN channels provide the best case for wireless channels, which can not 

only validate the designed system, but also can be compared to the WIIC channel and 

wired PCB channels. 
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Figure 6.13 BER vs. SNR when using channel coding, estimation and equalization. 

As seen from figure 6.13, the BER reaches a value less than 10
-5

 at SNR of 3.4 dB 

for both AWGN with FEC and WIIC channels, respectively. In contrast, it is not 

surprising that the BER for the wired PCB channel is much higher than the other 

channels due to its cutoff characteristics in the frequency band of interest. 

By a comparison to Figures 6.3 and 6.13, it is obvious that the designed system 

with FEC, RS channel sounding, channel estimation and channel equalization can obtain 

much lower BER than the preliminary system without these features.  

In the proposed WIIC system, it is possible to achieve a much higher SNR at 20 

or 30 dB with higher-gain LNAs. In this case, higher-order modulation methods, 
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including 64QAM, 128 QAM or even higher could be employed in the proposed WIIC 

system, without increasing the BER, at the expense of larger power dissipation.  

It is observed that the current wired PCB channel is not suitable for the 

transmission of digital signals at the frequency of 15 GHz or higher due to signal 

integrity issues, such as crosstalk, parasitic inductance and capacitance, power loss, and 

distortion. It is expected that the SI issues will become much severe in the 60 GHz band. 

It is found that the designed wireless channel could be potentially a solution to such SI 

problems. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

7.1 Summary of the Research 

A complete WIIC system and channel have been simulated in MATLAB in 

conjunction with ADS and HFSS. The proposed WIIC system includes FEC, 

QPSK/QAM modulation, packet header, RS channel sounding, channel estimation, 

channel equalization, and OFDM with CP. The WIIC channel contains two layers of the 

designed EBG absorbing units operating at the frequency band centered at 60 GHz. In 

particular, the research of this dissertation is summarized by the following points: 

 Comparison of the WIIC Technologies. First, currently wired PCB systems, 

previous WIIC systems, and wireless optical communication on-chip were 

discussed for comparison to the proposed WIIC communication system. 

Obviously, the current wired PCB systems are not able to transmit signals 

operating at the center frequency of 60 GHz for the case investigated. 

 WIIC System Analysis and Design. Second, the WIIC system has been shown 

by simulations to enable wireless communication at the center frequency of 60 

GHz. In order to enhance the reliability and the BER performance for the 

proposed WIIC system, CRC checking, channel coding, channel estimation, and 

channel equalization are included in the system. In the simulation results, it was 

shown that RS channel sounding, channel coding, channel estimation and channel 
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equalization can significantly improve performance as measured by BER. So as to 

increase the data rate and spectrum utilization for the proposed WIIC system, the 

QPSK modulation method, and OFDM technologies are employed in the 

proposed system. In comparison to the previous WIIC systems, the proposed 

WIIC channel in this dissertation is able to provide much higher spectrum 

utilization. 

 Design of WIIC Propagation Channel Models. Third, a practical WIIC channel 

has been designed and a model for the channel developed by using HFSS. One 

WIIC channel is simply designed by using a parallel metal plate waveguide which 

performs as both the ground planes and the microwave leakage preventer. Another 

innovative WIIC channel structure is designed with two metamaterial EBG 

microwave absorber layers implemented at the top and bottom positions of the 

PCB board. The simulated results show that, the WIIC channel with the absorbing 

layers can provide less than 10 dB return loss and relatively flat insertion loss 

within the designed frequency band in the range of 50 through 70 GHz. 

 Measurement of a Wired Channel on PCB Boards. Furthermore, the TDR and 

TDT signals of a representative wired PCB channel have been measured. S-

Parameters were derived from the TDR/TDT results using the FFT. With the 

structure of the wired PCB channel, the vias and through hole pins were designed 

and simulated in HFSS with the obtained S-Parameters. The microstrip lines and 

striplines were designed in ADS. Along with the simulated S-Parameter models as 

sub-circuits as well as the S-Parameters of the connectors provided by the 

connector vendor, the system TDT, TDR, and S-Parameters were simulated in 



 

105 

ADS. The measured and simulated results of TDR, TDT and S-Parameters were 

shown to be consistent. As seen from the S-Parameters of the wired PCB channel, 

it was concluded that the current transmission-line technology on PCB boards for 

the case investigated herein is not able to transmit high frequency signals at 60 

GHz. 

 Simulation of the WIIC System. Finally, the designed WIIC communication 

system with all the processing listed above was simulated in MATLAB. The BER 

performance in different channel models was obtained. The AWGN channel 

provided validation for the system design. It was shown that the WIIC channel 

system is able to properly decode the received bit stream, with a BER less than 

10
-5

 at 3.4 dB SNR, in the frequency band centered at 60 GHz. The BER result is 

similar to the AWGN channel with FEC, which means the designed system 

achieved almost perfect equalization in the WIIC channel. 

The BER analysis shows that the performance of the designed WIIC channel with 

the EBG absorbing layers is close to that of the AWGN channel with FEC, when channel 

coding, channel estimation and equalization are employed.  

7.2 Future outlook of the Research 

It is likely that the WIIC systems will have a very promising future within the 

next decade. In principle, it should be straightforward to place the WIIC DSPs on PCB 

boards. The WIIC DSPs require a smaller amount of power and board area consumption, 

and have a lot design freedom in comparison to the conventional Intel CPUs. The 

systems and channels are able to provide high-speed and high data rate transmission at 

high frequency bands.  



 

106 

In the foreseen future, it is believed that the WIIC systems will be gradually 

taking the place of some parts of the wired PCB boards because of its great features in 

terms of reliability, simplicity in design and implementation, higher data rate, and better 

spectrum utilization. 

7.3 Future work of the Research 

The potential future research is considered to be extended to the following five 

areas: 

 Antenna Array and Further WIIC Channel Design with Metamaterial 

Absorbers. First of all, the proposed WIIC channel integrated with antenna array 

system will be optimized in order to achieve an optimum antenna array 

configuration for obtaining a higher array gain, enabling spatial interference 

suppression. In the process of design, the analysis of RF system should account 

for mutual coupling between the antenna elements in the array, and RF 

characteristics of all coupled wired or wireless WIIC sub-channels. Another new 

design for the WIIC channel is to add the absorber layers to the entire four side 

walls if the cost is allowable, while keeping the absorbing ground planes at the top 

and bottom layers. 

 ASIC Design and Analysis for OFDM and High Order Modulation. Second, 

design of ASICs will be further studied for the applications of OFDM, high order 

modulation, channel sounding, estimation and equalization. The power 

consumption, the required SNR, the link budget, and the complexity of the system 

brought by QAM and OFDM would need to be analyzed. The transmitter power 

amplifier must be carefully designed, and the advantages of QAM and OFDM, 
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including the data rate and performance increment, will be balanced by the power 

and chip area consumption. If the cost is acceptable, the ASIC circuits for WIIC 

system could be designed and improved so as to outperform the DSPs in terms of 

BER performance, total power as well as board area consumption. 

 Fabrication and Measurement of the Designed WIIC Channel with 

Metamaterial EBG Absorber Layers. Third, the proposed WIIC channel with 

the metamaterial EBG absorber layers should be fabricated and measured, with all 

the parameters and the dimensions of the absorber units, the dielectric substrate, 

and the micro-antennas with LNAs optimized. The fabricated channel should also 

be measured to obtain its S-Parameters. The impulse response and transfer 

function can be extracted, which will be compared with the simulation results 

from this dissertation.  

 Implementation of the Designed WIIC System with all Functional Blocks. 

Fourth, the designed WIIC system could be implemented on the same PCB board 

of the manufactured WIIC channel. The system would be manufactured with 

either DSPs or the designed ASIC circuits, whichever is found to be better in 

performance, power and board area consumption. 

 System Validation and Functional Test and Optimization. Furthermore, the 

manufactured WIIC system on the PCB board should then be tested. If warranted, 

the automatic repeat request (ARQ) technique could also be employed to improve 

BER performance after the physical layer performance is characterized. 

 Industrial Standard of the WIIC Channel and System. Finally, when the 

proposed WIIC system and channel with metamaterial EBG absorber layers are 
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fabricated, measured and ready to be applied to the PCB boards, the simulation 

and measurement results could be provided to relevant industries and 

communities for standard or specification development. 
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APPENDIX A – TIME DOMAIN REFLECTOMETRY AND TIME DOMAIN 

TRANSMISSION 

Time domain Reflectometry (TDR) and time domain transmission (TDT) can be 

measured by injecting a step signal into port 1 for a device under test (DUT), and the 

transmitted signal at port 2 is defined as TDT, whereas the measured signal at port 1, 

which is the total wave including the reflected and incident waves, is called TDR. The 

principle of TDR and TDT measurements and the time domain reflectometer are 

demonstrated in Figures A.1 and A.2, respectively.  

 

Figure A.1 The principle of TDR and TDT measurement. 
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Figure A.2 Time domain reflectometer. 

In TDR/TDT measurement, port 2 can be terminated, grounded or left open, 

which will influence the final values of the TDR/TDT results. The terminated cases 

include matched termination, and mismatched termination. The different TDR results 

among these four terminations are shown in Figure A.3. 
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Figure A.3 Different TDT results for different terminations. 
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TDR is usually used for examining the characteristic impedance of the DUT, 

which is calculated from the measurement for the sum of the injected and reflected 

signals, and TDT is actually the step response that can express the characteristics of the 

channel. They are given as follows:  

           (A.1) 

        (A.2) 

where Vi, Vr, and Vt are the incident, the reflected, and the transmitted signals. 

If the characteristic impedance of a transmission line is unknown, it can be 

measured by connecting it to another transmission line with the given characteristic 

impedance     . Because the reflection co-efficient between two mismatched 

transmission lines is defined as [6]: 

   
  

  
 

      

      
 (A.3) 

where Z is the characteristic impedance of the unknown transmission line, and Zref is the 

characteristic impedance of a transmission line. As a result, the measured characteristic 

impedance can be derived as: 

       
   

   
 (A.4) 
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Figure A.4 TDR measurement example. 

In Figure A.4, the characteristic impedance of    is known, and the characteristic 

impedances of    and    remain unknown. The relationship between the measured TDR 

signals and the characteristic impedances of the five segments of transmission lines is 

displayed in Figure A.5. From Figure A.5, the characteristic impedances of    and    can 

be calculated and displayed. 
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Figure A.5 Relationship between TDR measurement result and calculated characteristic 

impedance. 

 

Besides the examination of the variation of characteristic impedance along the 

transmission line, TDR is also able to determine that the round-trip delay of each segment. 

The delay on the TDR measurement is the round-trip delay of each partial transmission 

line. With the unit delay of each portion of the trace, it is simple enough to find the length 

of the corresponding segment. For instance, when a fixed telephone line is down, the 

telecommunication operators will use TDR to compute the distance between the broken 

point and the TDR device, and then the potentially broken places of the long-term 
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transmission line will be determined, which can save the engineers weeks before they 

finally find out the actual places of the broken down electronic equipment or transmission 

line. 
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