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Abstract

Mixed-integer programming (MIP) is often a practitioner’s primary approach when tackling hard
discrete optimization problems. This important role was enabled by decades of theory and practical
experience poured into modern MIP solvers. However, many problems are still challenging for MIP
solvers, which motivates the need for novel perspectives to enhance MIP technology.

In this dissertation, we explore the use of relaxed decision diagrams to improve MIP solvers.
Relaxed decision diagrams are graph structures that encode relaxations of discrete optimization
problems. One of their many uses in optimization is to generate bounds on the optimal value, which
are strong in practice in the presence of certain types of structure.

However, exporting decision diagram techniques to integer programming can be challenging due
to the lack of clear structure to exploit. A first step is to develop methods to construct good relaxed
decision diagrams from integer programming models. We propose a framework that focuses on a
substructure of the problem and incorporates remaining constraints via Lagrangian relaxation and
constraint propagation. In particular, we explore the use of a prevalent substructure in MIP solvers
known as the conflict graph. Computational experiments indicate that they yield strong bounds
under this framework.

Once we understand how to build good relaxed decision diagrams, the next question is how to
apply them in the context of a MIP solver. A MIP solver has several components, which include
presolve, cutting planes, primal heuristics, and branch-and-bound. We show how relaxed decision
diagrams can aid each of these components throughout the subsequent chapters.

In particular, we view decision diagrams from a polyhedral perspective in order to generate
cutting planes. Through a connection between decision diagrams and polarity, we develop an
algorithm that generates cuts that are facet-defining for the convex hull of a decision diagram
relaxation. We provide computational evidence that this algorithm generates strong cuts for
structured problems.

Finally, we investigate a broader integration of decision diagrams into MIP solvers. First, we
show how relaxed decision diagrams can be used for bound and coefficient strengthening in the
presolve step of a MIP solver. Second, we investigate the effect of applying cuts from decision
diagrams throughout a branch-and-bound tree. Third, we generate both primal and dual bounds
from decision diagrams to improve pruning within a branch-and-bound tree, which can result in
significant improvements in solving time.
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Chapter 1

Introduction

In the past decades, the challenge of solving several of the discrete optimization problems encountered
in practice has shifted from an algorithmic task to a modeling one. Modern mixed-integer linear
programming (MIP) solvers have become remarkably powerful: hard problems that once required
specialized algorithm development can now be tackled in practice with the simpler task of modeling
them as integer programs and providing them to a solver. This current landscape has been shaped
by several forces, including advances in computing power and parallelism. A great part of the reason
is the development and implementation of effective generic algorithms within MIP solvers. From
cutting planes to primal heuristics to branching rules, modern solvers aggregate several fine-tuned
components that, when properly assembled together, form an efficient machine to solve discrete
optimization problems.

Nevertheless, just as optimization technology progresses, so does the world. As MIP solvers put
old problems behind, a surge of new, complex problems brings challenges to the table. Whether they
come from the sharp increase in the scale of data sets we now need to handle, or from challenging
requirements such as stochasticity or nonlinearity in which MIP solvers often play a key role, these
problems need to be solved within reasonable time frames. Mixed-integer programming solvers must
keep up with this new generation of optimization problems with the continued development and
implementation of better algorithms. Incremental improvements, while important, may not suffice;
we must seek fundamentally new ways to enhance integer programming solvers. This dissertation
explores one of these new paths: the use of decision diagram relaxations within integer programming.

Decision diagrams (DDs) are data structures that can be used to represent discrete sets of points.
In a nutshell, they are layered directed acyclic graphs in which arcs are associated to variable
assignments and paths from a root node to a terminal node correspond one-to-one to the points of
the represented set. In the context of optimization, these paths may encode the feasible solutions of
a discrete linear optimization problem. Once such a decision diagram is built, we can efficiently find
an optimal solution to the problem since it is equivalent to finding a maximum weighted path in a
directed acyclic graph, which can be done efficiently. Thus, if we can encode a discrete optimization
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1. Introduction

problem with a small decision diagram, we can efficiently solve it. On the other hand, this means
that in general we cannot expect to construct small decision diagrams for hard problems. In order to
address this issue, decision diagrams can be used as approximations. In particular, we can construct
tractable-sized decision diagrams that serve as relaxations for the problem: they include all feasible
solutions and potentially some infeasible solutions. These are called relaxed decision diagrams.

This dissertation centers around the question of how to use relaxed decision diagrams to improve
the performance of a MIP solver in practice. This can be naturally split into two research questions:

1. How to construct good relaxed decision diagrams for integer programming formulations?

2. Given good relaxed decision diagrams, how to use them to improve a MIP solver?

Good relaxed decision diagrams are those that have tractable size and approximate the problem
well in some sense. How well the approximation is depends on how they are used: for instance, if
they are used to generate objective bounds, we want the bounds to be close to the optimal value.

In this introduction, we set up the stage to answer these questions. We start with an overview
of two perspectives we take in this dissertation. We next define basic concepts and discuss related
work. Finally, we provide a description of each chapter in this dissertation.

1.1 Perspectives

Relaxed decision diagrams have shown to perform very well for specific types of problem classes,
as we describe in the related work section later in this introduction. An underlying motivation
in this dissertation is to enable DD-based techniques to be used effectively in wider contexts and
applications than those currently in the literature. Examining decision diagrams under the lens of
integer programming brings us closer to this goal.

We discuss two perspectives we take in this dissertation in order to answer the two research
questions above. A first perspective relates to this goal of generality.

The main challenge that we have encountered in this research is that decision diagrams often
rely on specific structure in order to stay tractable while providing good approximations. Due to
this reason, it is difficult to make decision diagrams work well in practice for generic IP models. In
fact, this was shown to be the case in much of our computational experience throughout the work
leading to this dissertation. Later in this dissertation (Chapter 3) we illustrate this by comparing a
generic approach with one that relies on structure.

Our solution to this challenge is not to make decision diagrams themselves more generic, but to
embrace its reliance on structure within a generic setting. We do not seek to solve an arbitrary IP
model; instead, we take the opportunistic approach to improve the solution process of instances that
do have structure. This shift in perspective allows us to play to the strength of decision diagrams
and avoid difficulties in generality when applied to inequality-based models. Our goal now becomes

12



1.1. Perspectives

to identify and leverage structure using relaxed decision diagrams within the generic setting of a
MIP solver. In this dissertation, we show that this is indeed achievable through our computational
experiments in Chapters 3 and 5.

A second perspective in this dissertation, tied more closely to the second question, is of
representation and communication. The question of applying relaxed decision diagrams to integer
programming can be fundamentally rephrased as follows: how to communicate information from one
representation of the problem – a relaxed decision diagram – to another representation – an integer
programming formulation? In other words, what inferences can we make from one representation to
the other?

This parallels the concepts of V-polyhedra and H-polyhedra: vertex descriptions and hyperplane
descriptions of polyhedra respectively. In essence, relaxed decision diagrams can be viewed as a
particular encoding of a set of vertices of a polyhedron P that represents a relaxation of the problem,
whereas the linear programming (LP) relaxation of the problem is given in terms of inequalities.
Since P is fundamentally different than the LP relaxation of the problem, if we can infer inequalities
that are valid for P , then we can potentially generate cutting planes and add them to the LP
relaxation, which is essentially what we do in Chapter 4. In a way, we are bypassing the LP
relaxation by building an alternative representation of the problem and communicating information
back to the LP relaxation.

This of course relies on this alternative relaxation P being strong relative to the LP relaxation
in some sense. We observe in our computational experiments that this can happen in the presence
of structure, and thus strong cuts can be generated. The limitations of P are different from those
of the LP relaxation – for instance, P can have exponentially many facets even if the underlying
decision diagram is small. A simple example is the parity polytope, given by the convex hull of
all binary solutions whose components sum up to an odd number. The number of facets of the
parity polytope is exponentially large [41]. However, we can construct a decision diagram of width
two because, as we build its decision diagram, there are only two states at each layer: either the
components corresponding to assigned variables so far sum up to an even number or an odd number.

The converse direction is also important in this dissertation: how to infer information from
linear constraints that are useful to decision diagrams. The compilation and refinement techniques
described in Chapter 2 can be viewed as answers to this question. In addition, in Chapter 3, we
propagate information from the linear constraints to the states embedded in the decision diagrams.

Finally, we do not necessarily need to alter either of the two representations in order to aid the
MIP solver. We can aggregate information from relaxed decision diagrams and linear constraints
using Lagrangian relaxation, allowing us to infer bounds on the optimal value. This is examined in
Chapter 3.

13



1. Introduction

1.2 Preliminaries

1.2.1 Integer programming

Integer programming is an area of optimization that encompasses a broad range of applications; see
e.g. [33] for an in-depth treatment on the topic. We are generally interested in solving the following
pure bounded integer linear programming problem:

max c>x

Ax ≤ b (P)

l ≤ x ≤ u

x ∈ Zn

Above, c ∈ Rn is a vector of objective coefficients, l ∈ Rn and u ∈ Rn are lower and upper
bounds for x respectively, and A ∈ Rn×m and b ∈ Rm are the constraint coefficient matrix and
right-hand sides respectively.

A feasible solution of (P) is one that satisfies the constraints of (P), or in other words belongs to
the feasible set, {x ∈ Zn : Ax ≤ b, l ≤ x ≤ u}. The linear programming (LP) relaxation of (P) is
given by dropping the integrality constraints: max{c>x : Ax ≤ b, l ≤ x ≤ u}. The integer hull of
(P) is the convex hull of the feasible set.

Given a variable xj , we denote by D(xj) := {xj ∈ Z : lj ≤ xj ≤ uj} the domain of xj , which
corresponds to the set of values xj can take if we ignore the constraints Ax ≤ b. More generally,
we let D := {x ∈ Zn : l ≤ x ≤ u} be the domains of the variables x, and thus (P) can be more
succinctly expressed as max{c>x : Ax ≤ b, x ∈ D}. Although D has this particular form in the
context of an integer program, in fact throughout this dissertation we do not make any assumptions
on D other than being discrete and finite.

We refer to any implementation that encompasses traditional techniques (described below) to
solve a mixed-integer program as a MIP solver. Modern MIP solvers carry an extensive range of
techniques; see [3] for an in-depth description of the open-source solver SCIP. We briefly outline its
main mechanisms that are most relevant to this dissertation.

Before entering the bulk of the solving process, a MIP solver performs a presolve step, which
includes a variety of techniques that make the problem easier to solve in the subsequent steps [4].
In the main process, a branch-and-bound tree is constructed as follows. At the root node of the
tree, we solve the LP relaxation and obtain an optimal solution x̄. We then select a variable xj and
branch to two children nodes, representing the subproblems with the bound constraints xj ≤ bx̄jc
and xj ≥ dx̄je. We select a node according to some criteria and repeat this process, expanding the
search tree. Whenever one of the subproblems yields an integer feasible solution, we keep it if it is
better than the one currently stored, called an incumbent solution. Subproblems with infeasible LPs
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1.2. Preliminaries

can be discarded. After exploring the entire tree, we have an optimal solution to the problem.
This process is enhanced with bounds, primal heuristics, and cutting planes. The objective value

of the incumbent solution is a primal bound, which is a lower bound if we are maximizing or an
upper bound if we are minimizing. The LP relaxation at a node yields a dual bound, that is, an
upper bound if we are maximizing or a lower bound if we are minimizing. If the primal bound is at
least as good than the dual bound, then we know that there are no better feasible solutions at that
node and we can prune (remove) it.

Primal heuristics are fast heuristics that search for good feasible solutions and are executed
throughout the branch-and-bound tree. They not only provide primal bounds for the pruning
process, but also allow for better feasible solutions as output if the process is terminated before
reaching optimality.

The LP relaxations are strengthened with cutting planes, especially at the root node. A cutting
plane is an inequality added to the formulation that cuts off a part of the LP relaxation without
affecting the feasible set. This makes the LP closer to the integer hull.

We emphasize that throughout this dissertation we always make the assumption that the problem
is pure integer and bounded (despite using the more general term “MIP solver”).

1.2.2 Decision diagrams

A decision diagram (DD) can be viewed as a graph representation of a discrete set of points. An
example is shown in Figure 1.1. In this definition, suppose that we are representing the feasible set
S of a discrete optimization problem with variables x1, . . . , xn.

A decision diagram is a directed acyclic multigraph that has the following layered structure.
The nodes of a decision diagram are partitioned into n+ 1 layers, where the first n layers correspond
to the n variables in some fixed order, say x1, . . . , xn, and the last layer is reserved for a single
terminal node t. The first layer contains a single root node s. Arcs are similarly assigned to layers:
the layer of an arc corresponds to the layer of its tail. Each arc at a layer k is associated with an
assignment of some v ∈ D(xk) to the variable xk. We call such an arc a v-arc and we say that v is
its label. Parallel arcs are allowed; that is, there may be more than one arc between two nodes. We
assume that every node except s and t has at least one incoming arc and at least one outgoing arc.

This structure represents S through the following property: there is a one-to-one correspondence
between each point x ∈ S and each directed path from s to t in the decision diagram. Given a
directed path p from s to t, the corresponding x is such that xk = vk where vk is the label of the
layer-k arc of p.

Note that a decision diagram is not unique for S. However, given a fixed variable ordering, a
unique smallest decision diagram for S exists, called a reduced decision diagram [45].

In the case where the domains are binary, the decision diagram is a binary decision diagram
(BDD); otherwise it is a multivalued decision diagram (MDD). Throughout this dissertation, we do
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1. Introduction

Figure 1.1: The decision diagram on the right, which has width 2, represents the set of four points
on the left. A dashed line indicates a 0-arc and a full line indicates a 1-arc. Arcs are oriented from
top to bottom. Note that each of the four paths from s to t in the decision diagram corresponds to
a point in the set. For instance, following the rightmost arcs gives us the point (1, 0, 0).

not impose particular domains except when specified.
A decision diagram may be enhanced with long arcs in order to reduce the number of nodes. In

the definition of decision diagrams above, arcs go from a layer to the next. A long arc is an arc that
skips layers; that is, it may go from a layer to any higher layer. Long arcs in general may represent
any set of assignments to the variables between the two layers, indicated by their labels. A common
use of long arcs is to replace nodes that have a single outgoing 0-arc. In this form, a long v-arc from
layer k to k + r represents the assignments xk = v, xk+1 = 0, . . . , xk+r = 0. Such decision diagrams
are called zero-suppressed decision diagrams (ZDDs) [49].

The traditional application of decision diagrams in the context of Boolean functions uses two
terminal nodes, representing the “true” and “false” evaluation of the function, respectively. In our
context it suffices to use only the “true” terminal node to represent all points in S.

In the context of optimization, a very useful property of decision diagrams is that, once built,
they can be used to optimize any additively separable objective function – such as linear functions –
over the set of points they represent. This can be done as follows: suppose that we want to maximize∑n
i=1 fi(xi). If we assign weights fi(v) to every v-arc of layer i, then each maximum weighted

path of the decision diagram represents an optimal solution, due to the one-to-one correspondence
between paths and feasible solutions. Given that a decision diagram is a directed acyclic graph,
finding an optimal path can be done in time linear in the number of arcs of the decision diagram.

However, it is typically not efficient to have a decision diagram represent its feasible set exactly,
since it may have exponentially many nodes with respect to the size of the problem. As an
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approximation, we consider tractable decision diagrams that are only required to contain the feasible
set and not represent it exactly. These decision diagrams are called relaxed decision diagrams [17, 20]
and are usually of size polynomial or linear in the size of the problem. Formally, given a set of points
S ⊆ D, a relaxed decision diagram with respect to S is a decision diagram that represents a set S′

that contains S. To differentiate relaxed decision diagrams from decision diagrams representing
exactly the set of feasible points, we call the latter exact decision diagrams.

The general idea of constructing a relaxed decision diagram is to restrict the number of nodes
of its largest layer, called width, during its construction in such a way that no feasible points are
removed in the process. We discuss this construction further in the next chapter.

One of the ways that a relaxed decision diagram can be useful is that if we optimize the objective
function over it, we obtain a dual bound for the problem. In particular, if the width of this decision
diagram is constant, then the bound is obtained in constant time.

The following additional concepts are useful for the compilation and manipulation of decision
diagrams. Given a node u of a decision diagram, a partial solution of u is a path from the root s
to u, and a completion of u is a path from u to the terminal t. For convenience, we use the same
notation to denote the corresponding points: for some k, a partial solution is a point in the space of
the first k variables, and a completion is a point in the space of the last k variables. We define the
partial solution set S↑(u) and the completion set S↓(u) of a node u as the set of all partial solutions
of u and completions of u respectively.

Throughout this dissertation, we make some simplifications in notation for convenience. We
denote an s-t path in a decision diagram by simply a path, unless the context identifies its start and
end nodes. Moreover, due to the one-to-one correspondence, we often treat a path as a solution and
vice versa. In particular, we call a path feasible or infeasible if the solution it represents is feasible
or infeasible respectively with respect to the problem or constraint being considered.

1.2.3 Related work

Decision diagrams are very flexible structures due to their simplicity, and thus appear in several
contexts. They were originally proposed in the context of circuit design and formal verification [5,
26, 47].

In optimization, they have been used for constraint programming [6, 39, 37, 15], bound gen-
eration [17, 20, 22], multiobjective optimization [14, 21], postoptimality analysis [54], nonlinear
optimization [13, 34], and other applications. Decision diagrams have also been used in the context
of integer programming, which includes cut generation with exact decision diagrams [11] (a different
method than proposed in this dissertation, as we discuss in Chapter 4) and a branching-based
approach [46].

Decision diagrams are also effective in a number of practical applications, such as sequencing
problems (which include scheduling and routing problems) [32, 44], portfolio optimization [13], and
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graph problems such as maximum independent set [22].
Many of these applications and techniques are summarized in [19].

1.3 Overview of Dissertation

The contents of this dissertation are summarized next.

Chapter 2: Decision Diagram Compilation and Refinement

Chapter 2 is devoted to laying out the tools for constructing and refining decision diagrams. We
contrast two compilation approaches, top-down and depth-first, and describe compilation for linear
constraints. On refinement, we discuss arc filtering and an extension based on bounds we call arc
pruning. We summarize complexity results related to compilation and refinement. Most of the
algorithms and results in this chapter come from prior work.

Chapter 3: Decision Diagram Relaxations for Integer Programming Models

In Chapter 3, we address the question of how to construct an effective relaxed decision diagram from
an integer programming model. We propose a framework that builds a decision diagram based on a
substructure of the problem and incorporates the remaining constraints via Lagrangian relaxation
and constraint propagation. We show how to efficiently construct a reduced decision diagram for
the conflict graph, a structure present in modern MIP solvers. Bounds from this framework are
compared with LP bounds and bounds from direct compilation from linear constraints on instances
that combine set packing and knapsack constraints.

Chapter 4: Cutting Planes from Relaxed Decision Diagrams

Chapter 4 takes a polyhedral view of decision diagrams. We develop an algorithm to generate strong
cutting planes from decision diagrams called target cuts. They are facet-defining with respect to the
convex hull of the relaxed decision diagram being considered. In addition, we show how to certify
a lower bound on their dimension with respect to the integer hull of the problem. These cuts are
tested on the maximum independent set problem and the minimum set covering problem.

Chapter 5: Integrating Decision Diagrams into MIP Solving

In Chapter 5, we investigate further approaches to integrate decision diagrams into MIP solvers. We
discuss bound and coefficient strengthening from presolve from the perspective of decision diagrams.
Next, we computationally experiment with the embedding of cutting planes, primal bounds, and
dual bounds from decision diagrams throughout the branch-and-bound tree.

All contribution in this dissertation is joint work with Willem-Jan van Hoeve.
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Chapter 2

Decision Diagram Compilation and
Refinement

2.1 Introduction

In this chapter, we describe various tools to construct and manipulate decision diagrams for purposes
of optimization. The aim of these tools is to construct a decision diagram that approximates well
the feasible set of a problem – in some cases taking into account the objective function as well.
Knowing these methods is crucial to understanding the effectiveness and limitations of decision
diagram-based approaches in optimization.

We focus exclusively on decision diagrams aimed at representing the feasible set of a discrete
optimization problem, exactly or approximately. It is also possible to use decision diagrams to
represent objective functions instead [13], but this application is not within our scope.

These tools can be organized into two types: compilation and refinement.

• Compilation techniques construct a decision diagram from scratch, typically using a dynamic
programming formulation. We compare two common compilation approaches: top-down and
depth-first.

• Refinement techniques are used to improve upon an existing decision diagram in order to make
it a better approximation of the desired feasible set or reduce its size. This typically consists
of removing infeasible solutions, but may also include removing feasible suboptimal solutions
or adding solutions that result in merging nodes. These techniques include arc filtering, node
splitting, and constraint separation. In addition, we present arc pruning, a version of arc
filtering that is performed at construction time.

Given that we use decision diagrams in the context of integer linear programming, we illustrate
the application of these techniques for linear inequalities in this chapter. A different approach
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that relies on problem substructure within an integer programming model is discussed in the next
chapter.

2.2 Dynamic Programming Formulations

Decision diagrams are often compiled from dynamic programming (DP) formulations. Dynamic
programming is a well-known recursive approach to solve optimization problems.

In DP, a problem is defined in terms of states, a transition function, and a transition cost
function. Each state represents a subproblem to be solved and the transition function corresponds
to a decision that reduces a subproblem to another one while paying a cost given by the cost
function. A state typically has multiple transitions associated to different values assigned to a
decision variable. The solution process starts at the root state, which represents the original problem,
and performs transitions until a terminal state is reached. In a traditional version of DP, this is
performed exhaustively for all possible transitions. The optimal solution corresponds to the set of
transitions with minimum cost (assuming minimization).

A common way to visualize a DP is in terms of its state transition graph, in which nodes are
states and labeled arcs correspond to transitions. In fact, a decision diagram can be interpreted as
a state transition graph, as seen in Figure 2.1.

The following definition of a DP formulation is slightly tailored to our purposes. In particular, we
represent implicitly in the DP model an ordered set of variables x1, . . . , xn with domains D1, . . . ,Dn
respectively. Transitions correspond to assignments of variables. The state space is divided into
stages. A state in a stage j is associated to a subproblem in which the variables x1, . . . , xj−1 have
been assigned and xj , . . . , xn are yet to be assigned. While we fix the variable ordering, we require
that the DP formulation is defined for every possible ordering of variables.

We define a DP formulation for a problem P with n variables as follows:

States For each j = 1, . . . , n+ 1, a state space Sj of stage j consists of states s, which can take
any form. States in different stages are never considered equivalent, even if they would be
otherwise.

Special states are the root state r̂, which represents P in its entirety, a feasible terminal state 1̂,
and an infeasible terminal state 0̂. We have S1 = {r̂} and Sn+1 = {0̂, 1̂}. The infeasible
terminal state 0̂ is replicated in all stages; that is, 0̂ ∈ Sj for all j = 1, . . . , n+ 1.

The state space S of the DP formulation is the union of all state spaces of each stage Sj .

Transition function For each j = 1, . . . , n, the transition function tj : Sj ×Dj → Sj+1 provides
the state s′ representing the result of the assignment of an input value vj ∈ Dj to the variable
xj at an input state s.
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Conventional definitions of a DP formulation may include a transition cost function and additional
terminal states. The reason we omit the transition cost function from our DP models is because we
are mainly concerned with modeling only the feasible set of constraints.

Knapsack constraint: 2x1 + 5x2 + 3x3 + 2x4 ≤ 5, x ∈ {0, 1}4
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Figure 2.1: On the left, the state transition graph for a binary knapsack constraint. A typical DP
formulation of a knapsack constraint has as states (i,W ), where i corresponds to having assigned
variables x1, . . . , xi and W is the accumulated value from these assignments in the left-hand side
expression. The transition function updates W according to the assignment, ensuring it does not
exceed the right-hand side. On the right, a reduced decision diagram of the same constraint. In
both of them, dashed and solid arcs correspond to assigning zero and one respectively.

2.3 Decision Diagram Compilation

In essence, constructing a decision diagram from a DP formulation consists of exploring its state
space. Starting at the root state, we iteratively take an unvisited state and generate the states
it transitions to until all states have been visited. We build the decision diagram along with this
process, establishing states as nodes and transitions as arcs. The transitions follow a given variable
ordering. If an existing state is reached through a different set of transitions from the root, the same
node must be used. In fact, these shared states are fundamental for the compactness of a decision
diagram; without them, the decision diagram would become a branching tree. If the infeasible state
0̂ is reached, we discard the associated node. Algorithm 2.1 details this procedure. Nodes that
are yet to be branched on are called open, and those which have been are denoted by explored (or
visited).
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2. Decision Diagram Compilation and Refinement

Algorithm 2.1 Framework for decision diagram compilation
Input: Dynamic programming formulation with state set S, root state r̂, and transition functions
tj for variable xj , j = 1, . . . , n, variable ordering σ where σ(j) is the layer of variable xj

Output: Decision diagram D corresponding to the feasible set of the formulation

DD-Compilation(S, r̂, tj)

Initialize decision diagram D
r ← root node in D with state r̂
O ← {r} . Set of open nodes
Initialize hash maps Pj for all j = 1, . . . , n . State pool for each layer j
P1[r̂]← r

while O 6= ∅ do
u ← SelectNode(O)
s ← state attached to u
j ← index of variable corresponding to u
for all v in domain Ds(xj) do

snew ← tj(s, v)
if snew is feasible then

if snew ∈ Pσ(j) then
unew ← Pσ(j)[snew]

else
unew ← new node in D with state snew
O ← O ∪ {unew} if unew is not terminal

Add arc (u, unew) to D with value v
return D
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2.4. Equivalence Tests

The order in which we explore nodes, given by SelectNode in Algorithm 2.1, can make a
significant difference. We highlight two main approaches: a top-down construction and a depth-first
construction. Differences between these two approaches are detailed in Section 2.6.

In a top-down construction, SelectNode chooses a node in the smallest layer first. It may
sometimes be called a breadth-first construction, but if there are long arcs it may not follow the
typical breadth-first search. It has the property that, at any point, any explored node has its partial
solution set completely explored. This is a consequence of the fact that, if we have explored a node,
then we must have explored all nodes in previous layers.

In a depth-first construction, SelectNode chooses a node of largest depth. That is, we explore
all descendants of a node before moving to a sibling. Typically, the set of open nodes is implemented
as a stack: the last node added to it is the next node to be evaluated. We call a node fully explored
if all of its descendants are explored, or equivalently if its completion set is fully constructed. It has
the property that, whenever we visit an open node, all nodes of the same layer or higher are either
fully explored or open.

The node selection function does not need to be restricted to these two approaches. It can be
useful to let SelectNode be driven by a heuristic, based on some measure of how promising a node
is. This search strategy has been applied for instance in bin packing problems [42]. Furthermore,
node selection strategies from other contexts such as MIP solving may be applied here, although
goals of the procedure and available information may differ.

Long arcs can be implemented by delaying the consolidation of an open node. For instance,
consider the case of long arcs of the form (∗, 0, . . . , 0) for a binary problem, where ∗ can take 0 or 1.
At the beginning of the evaluation of an open node, we check if the only feasible assignment is of
value zero. If so, we prepare it to be evaluated in the next layer, updating it with a new state if
necessary, and keep it in the list of open nodes.

2.4 Equivalence Tests

Although Algorithm 2.1 correctly produces a decision diagram representing the given DP formulation,
it may not be the most compact one. While certain DP formulations inherently yield reduced
decision diagrams, it is often the case that the resulting decision diagram is not reduced. In order
to have reduced decision diagrams, any two nodes that have the same completion set – which we
call equivalent – must be merged into one.

During construction however, the completion sets of both nodes are typically not available.
Instead, we have states. Concepts of completion sets and equivalence for nodes are analogously
defined for states as follows. The completion set of a state is the set of completions associated with
the sets of transitions from the state to the feasible terminal state. Likewise, equivalent states are
those with the same completion set.

Within the compilation of a decision diagram, an equivalence test decides whether to merge
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two nodes or not. In order for the decision diagram to correctly represent the DP formulation,
the equivalence test must be correct (or sound), which means that it does not merge nodes with
non-equivalent states. Assuming the equivalence test is correct, the merged node can take either
state. The equivalence test is complete if it always merges nodes whenever their states are equivalent.
If we can efficiently perform complete equivalence, then we can efficiently construct a reduced
decision diagram without exploring more nodes than those in the output.

We denote by the complete equivalence problem the problem of deciding if two states are
equivalent. We make a distinction between the complete equivalence problem in a top-down
compilation and in a depth-first one. In a top-down compilation, the input is the pair of states. In
a depth-first compilation, we attempt to merge an open node with a fully explored node. Thus, in
addition to the states, the input includes the completion set of the fully explored node in the form
of a decision diagram. Due to this extra input, complete equivalence in depth-first is no harder than
in top-down.

Nevertheless, complete equivalence tests help us avoid revisiting occurrences of equivalent nodes,
and thus it is useful to delineate when they can be done efficiently. As mentioned in [37] and
established below, deciding complete equivalence is as hard as deciding feasibility.

Proposition 2.1. Let P be a problem or constraint set with discrete domains. Suppose an infeasible
instance for P exists and is given. If it is NP-complete to decide feasibility for P, then it is NP-
complete to decide complete equivalence for P, whether in a top-down or a depth-first compilation.

Proof. Let s1 and s2 be the root states of an arbitrary instance I for P and an infeasible one
respectively. In the depth-first case, we let s1 be the fully explored node, which is equivalent to
only providing the states as input. Deciding complete equivalence between s1 and s2 is equivalent
to the problem of deciding feasibility of I. Therefore, if feasibility is NP-complete, then complete
equivalence is also NP-complete.

The converse is not true, as illustrated by the alldifferent constraint, which ensures that all
variables take different values from their domains. It is easy to determine feasibility for the alldifferent
constraint, but deciding complete equivalence for it either in a top-down or depth-first compilation
is NP-complete (see Section 2.9).

Proposition 2.1 indicates that complete equivalence is NP-complete for several common con-
straints, such as 3-SAT and (single) linear equalities. However, in practice, efficiently deciding
complete equivalence may not always be necessary to construct compact decision diagrams. In some
cases, it may be enough in practice to find a sufficient condition for equivalence that is frequently
satisfied.

Moreover, we can always reduce a decision diagram after construction with a bottom-up pass [26].
In short, the reduction process works by traversing each layer from the bottom to the top and
merging every set of nodes with exactly the same children. Performing reduction (and other
operations on decision diagrams) can be parallelized [50].
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2.5 Relaxed Decision Diagram Compilation

The framework described in the previous section applies to exact decision diagrams. Often, exact
decision diagrams can be exponentially large with respect to the size of the problem or constraint.
This includes the case of a single linear inequality over binary domains [40]. In fact, since optimizing
over a decision diagram can be done in time linear to its size, any optimization problem that admits
a decision diagram that can be constructed in polynomial time must be polynomially solvable. As
we are interested in solving NP-hard problems, constructing exact decision diagrams for a problem
in its entirety does not scale well for our purposes.

In order to make a decision diagram tractable, we can represent an approximation of the decision
diagram instead. The compactness of a decision diagram comes from merging equivalent nodes. We
can make decision diagrams smaller by merging non-equivalent nodes, which if done carefully, allows
us to construct a restriction or a relaxation of the problem. Given that in this dissertation we focus
on relaxations, we describe how to construct a relaxed decision diagram in this section. We assume
a top-down compilation.

To obtain a relaxation, merging non-equivalent nodes must not remove feasible solutions from the
decision diagram. It requires a problem-specific merging operator that takes two states and returns
a state representing a relaxation of both. More precisely, a merging operator ⊕ : Sj ×Sj → Sj takes
two states s1 and s2 in the same stage j and returns a state s such that S↓(s) ⊇ S↓(s1) ∪ S↓(s2).
This guarantees that no feasible solution is lost in the process.

In terms of the construction algorithm, the only difference between compiling an exact decision
diagram and a relaxed one is that at certain points of the procedure we merge non-equivalent
nodes using a given merging operator. In the traditional approach for constructing relaxed decision
diagrams [6], this merging process is performed in a systematic way. We provide to the algorithm a
width parameter W , which defines the maximum allowed width of the decision diagram. At the end
of every layer, if its width exceeds W , then we merge enough nodes in order to make it at most W .
This guarantees that a resulting decision diagram with n layers has size limited by O(nW ). There
are several different heuristics to merge nodes, which may be problem-specific or generic.

2.6 Comparison between Top-Down and Depth-First Compilations

The order in which we explore nodes may affect the size of the final decision diagram and our
ability to construct relaxations. The choice of approach depends on the purpose of the decision
diagram. In subsequent chapters of this dissertation, we focus on the top-down construction, for
which relaxations are more suitable.
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2.6.1 Node equivalence

In a top-down construction, node equivalence is always checked between open nodes. While we
know their states, we do not have information about the completion set of either node at this step.
In a depth-first construction however, whenever we reach a new node and seek an equivalent node
to merge with, all candidates have their completion sets fully constructed in the form of decision
diagrams.

For certain problems such as the maximum independent set problem, this distinction is not
important: complete equivalence can be efficiently performed in a top-down construction [22]. In
other words, state information is sufficient for complete equivalence.

In the case of a single linear inequality however, complete equivalence is NP-complete in a
top-down construction, but can be done in polynomial time in a depth-first construction. The
completion set of a node allows us to compute its equivalence class, defined as the set of states that
lead to the same completion set. We discuss this procedure in Section 2.7.1; see also [1, 12].

There are also cases such as multiple linear constraints in which complete equivalence is NP-
complete in both top-down and depth-first compilations, as we discuss in Section 2.7.2.

2.6.2 Merge-based relaxations

Top-down constructions are considerably more suitable for the merge-based relaxation described in
Section 2.5. Whenever we visit a node, all other nodes in the same layer are still open, allowing
us to merge nodes by simply updating states. On the other hand, if we want to merge nodes in a
depth-first compilation, we may need to update the descendants of one of the nodes in order to
avoid losing feasible solutions, which may be expensive.

Furthermore, having complete layers before merging allows us to make more informed choices
in merging. Not only we have all merging candidates available if we perform the merging step at
the end of each layer, but also we have the full partial solution set of each candidate, which can
guide the choice of nodes to merge. For instance, if our goal with the relaxation is to produce
strong dual bounds, an effective heuristic is to merge nodes associated to partial solutions with
small objective values (assuming maximization), since we want any added infeasible solutions to
have small objective value in order to keep the bound tight [22].

2.6.3 Memory usage

In certain applications, states can occupy a substantial amount of memory and it is desirable to
free that memory if the state is not used anymore. For instance, in the case of multiple linear
constraints, the state has size O(m), where m is the number of linear constraints. In the maximum
independent set problem, the state has size O(n), where n is the number of variables. By the end of
the construction of a decision diagram, if we do not free any state from memory, the contribution
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of the states to the space consumption is O(NS), where N is the number of nodes of the decision
diagram and S is the state size.

Assume that we free a state from memory when its corresponding node is no longer a candidate
for equivalence – that is, the node is explored and there are no open nodes in earlier layers. In a
top-down compilation, it is possible to free the states of layers that have been already processed.
This reduces the space complexity of states to O(WS), whereW is the width of the decision diagram.
However, in a depth-first compilation, we may need to keep many more states in memory. For
instance, suppose we have completely explored one of the root’s two children. In general, we need
to keep all states except the root in memory since the second children and its descendants may be
equivalent to the existing nodes. This is true even if we end up immediately merging the second
children, which terminates the process with almost all states in memory.

2.6.4 Variable ordering

Variable ordering can have a substantial effect on the size of the decision diagram [26]. A depth-first
compilation forces us to define the variable ordering essentially a priori. In a top-down compilation
however, we can choose the variable ordering dynamically. Information from a complete layer can be
helpful to decide the next variable to branch on. For instance, the variable ordering heuristic we use
in Section 3.3.2 selects the variable that results in the smallest number of arcs in the following layer.

2.7 Decision Diagram Compilation for Linear Inequalities

The methods in this dissertation focus on leveraging specific structures within an integer program.
Information about structure allows us to construct better decision diagrams. Nevertheless, it is also
possible and in some cases practical to construct decision diagrams directly from linear inequalities.
Even in cases where this is not practical, understanding where the roadblocks are in this natural
approach can guide us in identifying a better one.

In this section, our domain D is given by {x ∈ Zn : l ≤ x ≤ u}, where l and u are the lower and
upper bound vectors of the variables. We first consider the case where we want to represent a single
linear inequality before moving on to the case of multiple linear inequalities. We consider mainly
the exact construction in the following subsections. After the exact case, we define the merging
operator for the relaxed case.

2.7.1 Single linear inequality

Dynamic Programming Formulation

A single linear inequality can be modeled with a DP that essentially keeps track of the resulting
inequality after assigning values to variables. For instance, if we assign x1 = 1 to the constraint
2x1 + 3x2 − 3x3 ≤ 3, the constraint becomes 3x2 − 3x3 ≤ 1, assuming we move the new constant
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term of 2 to the right-hand side. However, we do not need to store the entire constraint: within
the same layer, these constraints have the same left-hand side because the set of assigned variables
is the same. Therefore, all we need to store as a state is the right-hand side of the subproblem
inequality (or alternatively, the value accumulated by the variable assignments). In the above
example, the initial constraint corresponds to a state of 3, which turns into 1 after the assignment.
At the last layer, we check the feasibility of the final constraint. In essence, this is the same DP as
the well-known DP formulation for the knapsack problem (see e.g. [43]).

More precisely, a DP formulation for a single linear inequality a>x ≤ b can be defined as follows:

State space. For each stage j, the state space Sj contains values R ∈ R representing the right-hand
side of an inequality. The root state r̂ is b.

Transition function. For j = 1, . . . , n,

tj(R, vj) = R− ajvj

If j = n, as an additional step the output R′ of the above function must be converted into
either a feasible or infeasible state. If R′ ≥ 0, then it becomes the feasible state 1̂. Otherwise,
it is converted into the infeasible state 0̂.

This DP formulation correctly models the feasible set of the linear constraint because each state
exactly represents the linear constraint after assignments are made. However, this formulation may
not lead to complete equivalence. In other words, there are nodes with the same completion set
that are not merged together. A question is when complete equivalence can be efficiently performed,
which depends on whether we are doing a top-down compilation or a depth-first one.

Top-down compilation

Deciding complete equivalence for a linear inequality when we only have state information, such as
in a top-down compilation, is NP-complete.

Proposition 2.2. Given the above DP formulation for a single linear inequality, it is NP-complete
to perform a complete equivalence test in the context of a top-down compilation, even when domains
are binary.

Proof. Consider two states with right-hand sides R1 and R2 and assume R1 ≤ R2 without loss
of generality. Assume that the domains are binary. These states have the same completion set
if and only if the set {x ∈ {0, 1}n : R1 < a>x ≤ R2} is empty. Deciding whether this set is
empty is a generalization of the subset sum problem, which can be viewed as determining whether
{x ∈ {0, 1}n : −ε < a>x ≤ 0} is empty for a sufficiently small ε. Since the subset sum problem is
NP-complete, determining complete equivalence is also NP-complete.
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Despite this negative result, there are two cases in which complete equivalence test can be
efficiently performed given only states as input: when the state corresponds to the infeasible state
and when it corresponds to the state containing all feasible solutions in D [37]. In particular, the
constraint is violated by all x ∈ D if and only if minx∈D{a>x} > b. Moreover, the constraint is
satisfied by all x ∈ D if and only if maxx∈D{a>x} ≤ b.

In order to cover these two cases, we can extend the DP formulation as follows. For each layer l,
precompute Ll := minx↓∈D↓{a↓>x↓} and Ul := maxx↓∈D↓{a↓>x↓}, where a↓ and D↓ correspond to
a and D projected onto the completion variables at layer l. Every time we find a state R such that
Ll > R, we let the transition function convert it to the infeasible state 0̂ and the associated node is
removed from the decision diagram. When Ul ≤ R, the transition function converts it to a (possibly
new) layer-l state that can only reach the feasible terminal state 1̂.

A common case is when all coefficients and variables are nonnegative and variable domains
include zero. In this case, Ll is always zero and it suffices to check if a state is negative in order to
determine it is infeasible.

Depth-first compilation

If we use depth-first compilation instead, complete equivalence for a single linear inequality can be
performed in polynomial time. A reduced decision diagram can be constructed in O(N logW ) time
using depth-first construction, where N is the number of nodes of the decision diagram and W is its
width, assuming that domains have constant size [12, 1].

In this setting, all candidates for merging have their completion set fully constructed. From this
structure, we can compute equivalence classes at each node, which consist of sets of all right-hand
sides that lead to the same completion set. In the case of a single linear inequality, equivalence
classes are intervals [L,U) for some L,U ∈ R. The problem of merging equivalent nodes is then
reduced to finding the equivalence class associated to the current state.

We recast the depth-first compilation algorithm from [12, 1] into a more general framework. We
consider the construction of the feasible set of {x ∈ D : f(x) ≤ b} for general functions f . When f
is linear, we have the single linear inequality case.

The basis of the algorithm can be summarized in the following simple lemma. It states that a
set of points is exactly the feasible set of a constraint if and only if its right-hand side lies within a
certain interval. The lemma by itself is unrelated to decision diagrams, but it hints at using these
intervals to determine equivalence within a decision diagram. In the lemma, we make the usual
assumption that maximizing or minimizing over an empty set results in −∞ or +∞ respectively.

Lemma 2.3. Let f : D → R be a function and S ⊆ D be a set of points. Then

S = {x ∈ D : f(x) ≤ b} ⇐⇒ max{f(x) : x ∈ S} ≤ b < min{f(x) : x ∈ D r S}.
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Proof. The following equivalences hold:

S ⊆ {x ∈ D : f(x) ≤ b} ⇐⇒ ∀x ∈ S, f(x) ≤ b ⇐⇒ max{f(x) : x ∈ S} ≤ b,

S ⊇ {x ∈ D : f(x) ≤ b} ⇐⇒ D r S ⊆ {x ∈ D : f(x) > b}

⇐⇒ ∀x ∈ D r S, f(x) > b

⇐⇒ min{f(x) : x ∈ D r S} > b.

We emphasize that the Lemma 2.3 holds for any real-valued function f as long as it is defined
in the domain D. In fact, the conditions are indifferent to any value f(x) outside x ∈ D.

In the context of decision diagrams, Lemma 2.3 can be used to determine equivalence between a
node that has just been created, with a state representing {x ∈ D : f(x) ≤ b}, and a node with a
constructed completion set S.

Consider the case where the function is linear: f(x) = a>x. Since we maintain the constant
term in the right-hand side, the left-hand side is always the same across all nodes in a given layer.
Suppose that we have stored in every fully explored node with a completion set S↓ over domains D↓

the interval [LS↓ , US↓), where LS↓ := max{a↓>x↓ : x↓ ∈ S↓}, US↓ := min{a↓>x↓ : x↓ ∈ D↓ r S↓},
and a↓ is a projected onto the space of the completion variables of the node. By Lemma 2.3, a state
with value R is equivalent to the node carrying the equivalence class [LS↓ , US↓) that contains R. By
keeping these intervals in increasing order, finding such a node can be done via binary search on all
nodes of the layer in time O(logW ).

It is left to detail how LS↓ and US↓ are computed. Since f is linear, these values for a node u
can be computed with a bottom-up pass from the terminal to u. We do not require a full pass for
every node: as soon as we identify that node u is fully explored, we know that its children are also
fully explored and thus we can use their intervals to compute the interval of node u. The interval
of the feasible terminal node is [0,+∞), as the left-hand side becomes zero after all variables are
assigned.

Moreover, arcs that were removed due to infeasibility must be taken into account. For purposes
of computing intervals, we add back these arcs, pointing to artificial nodes with infeasible equivalence
classes in the following layer. In top-down compilation, we have seen that the infeasible equivalence
class at layer l is given by (−∞, Ul), where Ul := min{a↓>x↓ : x↓ ∈ D↓}. At the last layer, this
interval is (−∞, 0). In terms of implementation, adding infeasible arcs does not need to be done
explicitly and can be treated as a special case when computing intervals.

This exact same algorithm works if the function is additively separable: f(x) =
∑n
i=1 g(xi) for

some function g : D → R.
When f(x) is not additively separable, nodes in the same layer may have different left-hand
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sides. For instance, if we have a term x1x2 in f(x), setting x1 to 0 eliminates the term, while setting
x1 to 1 keeps a term of x2 in the left-hand side. Nevertheless, Lemma 2.3 still induces an algorithm
for complete equivalence. In particular, suppose that we can maximize and minimize any g(x) in
polynomial time over a decision diagram, where g(x) is f(x) with a subset of variables assigned.
Assume also that we store left-hand side information in the states. Then given two states s1 and
s2 and a completion set S↓ of s1, we can compute an interval for s1 by optimizing with respect to
the left-hand side of s2 over S↓, and thus by Lemma 2.3 decide complete equivalence in polynomial
time.

Conversely, if optimizing over a decision diagram is NP-hard, then constructing an interval is
NP-hard, since the lower bound of the interval is an optimization problem. This also applies if
optimizing over D is NP-hard since a reduced decision diagram representing D has width one. This
is the case, for example, with binary quadratic functions.

We remark that this depth-first compilation with equivalence classes is only useful in practice
when there are several different possible states that would fall into the same equivalence class. For
instance, this can happen when the coefficients and right-hand side are very different from each
other. When the coefficients and right-hand side are similar to each other and small, this is less
likely to happen and therefore computing equivalence classes is less beneficial.

2.7.2 Multiple linear inequalities

In the context of integer programming, we are typically interested in constructing decision diagrams
for several linear inequalities. The DP formulation for a single linear inequality can be naturally
extended to multiple linear inequalities. Instead of a single right-hand side, we store the right-hand
sides of all inequalities in each state.

A DP formulation for a system of m linear inequalities Ax ≤ b with n variables is defined as
follows:

State space. For each stage j, the state space Sj contains vectors r = (R1, . . . , Rm) ∈ Rm

representing the right-hand sides of the m inequalities. The root state is the vector b.

Transition function. For j = 1, . . . , n,

tj(r, vj) = r − ajvj

where aj corresponds to the column j of A.

If j = n, as an additional step the output r′ of the above function must be converted into
either a feasible or infeasible state. If r′i ≥ 0 for all i = 1, . . . ,m, then it becomes the feasible
state 1̂. Otherwise, it is converted into the infeasible state 0̂.

However, in this case, complete equivalence becomes difficult, whether in a top-down or a
depth-first compilation.
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Corollary 2.4. Deciding complete equivalence for two or more linear constraints in NP-complete,
whether in a top-down or a depth-first compilation, even when variables are binary.

Proof. Proposition 2.1 states that if feasibility is hard, then complete equivalence is hard. Since
deciding 0-1 feasibility for two or more linear constraints is NP-complete, deciding complete
equivalence is NP-complete as well.

Nevertheless, we can still use the above DP formulation to construct a decision diagram in a
top-down fashion as usual. It may not result a reduced decision diagram, but it correctly constructs
a decision diagram representing the feasible set of the system of linear inequalities.

In this case, we can still check if each constraint is infeasible with respect to D or always satisfied
by all solutions in D, in the same manner as described in 2.7.1. If the former happens, the entire
state is infeasible. If the latter happens, then within the state we replace the right-hand side of the
associated constraint by a unique symbol such as +∞, because any right-hand side corresponding
to all feasible solutions in D can be treated as equivalent.

Another approach to construct a decision diagram for multiple linear inequalities is to construct
one individually for each inequality and intersect them all. Intersecting decision diagrams is a
well-known operation, described for instance in [12] in the context of linear inequalities and [58]
in general. In a nutshell, its idea is to construct a new decision diagram with the following DP
formulation. Let D1 and D2 be the two decision diagrams we are intersecting. Assume no long arcs
for simplicity. Each state is associated to a pair of nodes (u1, u2) of the same layer, where u1 is in
D1 and u2 is in D2. Given a value v and a state (u1, u2), the transition function returns the pair
consisting of the endpoints of the v-arcs of u1 and u2 respectively if both are feasible. If at least one
of them is infeasible – that is, it does not exist in the decision diagram – then the transition function
returns the infeasible state 0̂. This operation can be performed for more than two decision diagrams
simultaneously, in which case we replace the pairs by tuples of nodes in each decision diagram.

2.8 Decision Diagram Refinement

In order to construct good relaxed decision diagrams, we need them to have as few infeasible
solutions as possible while keeping their sizes tractable. Decision diagram refinement techniques
focus on improving a relaxed decision diagram in some way, typically removing infeasible solutions to
make it a better approximation. It must also avoid substantially increasing the size of the diagram.

Refinement techniques include the following:

• Arc filtering consists of deleting arcs that only correspond to infeasible solutions. Its main
advantage is that the relaxation is strengthened and at the same time the number of arcs of
the decision diagram is reduced [6].
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• Node splitting creates a copy of a chosen node, where outgoing arcs are duplicated and incoming
arcs are partitioned between the two nodes. When the node and partition are properly chosen,
node splitting enables further arc filtering – and thus elimination of infeasible solutions – at
the cost of extra nodes [6, 37].

• Constraint separation eliminates all solutions that are infeasible with respect to a DP for-
mulation. This is similar to constructing a decision diagram for the DP formulation and
intersecting it with the original one, but this is done directly on the original structure [19].

From the techniques discussed above, we only further discuss arc filtering in this section – see
the above references for more details on other techniques. Additionally, we introduce a natural way
to adapt arc filtering to the compilation stage, which we call arc pruning, in Section 2.8.2. It uses
bounds to remove infeasible arcs before exploring their endpoints.

2.8.1 Arc filtering

Arc filtering consists of identifying and removing arcs e such that all paths through e are infeasible
with respect to a given constraint. In this section, we present filtering for the case of linear
constraints, first discussed in [6].

Proposition 2.5. Consider a decision diagram D with ordered variables x1, . . . , xn, an arc (u1, u2)
of D assigning v to xk, and a linear constraint

∑n
i=1 aixi ≤ b. Then no solution x corresponding to

paths in D containing (u1, u2) satisfies the linear constraint if and only if

min
(x1,...,xk−1)∈S↑(u1)

{
k−1∑
i=1

aixi

}
+ v + min

(xk+1,...,xn)∈S↓(u2)


n∑

i=k+1
aixi

 > b

Proof. We can rewrite this condition as minx∈S(u1,u2){
∑n
i=1 aixi} > b, where S(u1,u2) is the set of

solutions corresponding to paths containing (u1, u2). This is equivalent to stating that all x ∈ S(u1,u2)

violate the constraint.

We call the two minimization values above the partial solution value of u1 and the completion
value of u2 respectively. We can compute the partial solution values of all nodes with a single
top-down pass, and similarly all completion values with one bottom-up pass. Therefore, arc filtering
can be efficiently performed for all arcs at the cost of two passes through the decision diagram.

This approach can be naturally extended to constraints of the form g(x) ≤ b for any additively
separable function g(x), since the partial solution and completion values above can be efficiently
computed as well.
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2.8.2 Arc pruning

The arc filtering method described in the previous section is a post-processing approach. It may be
useful however to perform arc filtering during compilation, even if approximately, in order to avoid
unnecessarily visiting infeasible nodes. Arc pruning checks if a newly created arc is infeasible by
following the same rules as arc filtering, except that it relies on bounds instead.

While arc pruning can be applied with respect to constraints not captured by the DP formulation,
it can also be used with respect to a primal or a dual bound. In other words, given a primal bound
P or a dual bound D and an objective c we are maximizing for example, we may prune arcs with
respect to c>x ≥ P and c>x ≤ D. We call these approaches primal pruning and dual pruning
respectively.

We discuss the case of a linear constraint a>x ≤ b and assume it is not already implied by the
DP formulation used to construct the decision diagram.

Top-down compilation

In a top-down compilation, the partial solution set of every node we explore is fully constructed.
This allows us to compute the partial solution value in arc filtering in an exact manner. However,
we replace the completion value by a lower bound (assuming a less-or-equal constraint), which we
call completion bound. The following proposition is a straightforward extension of Proposition 2.5
which replaces an exact completion value by a completion bound.

Proposition 2.6. Consider a decision diagram D ordered x1, . . . , xn, an arc (u1, u2) of D assigning
v to xk, and a linear constraint

∑n
i=1 aixi ≤ b. Let B be a completion bound for u2. That is,

B ≤ min(xk+1,...,xn)∈S↓(u2)
{∑n

i=k+1 aixi
}
. If min(x1,...,xk−1)∈S↑(u1)

{∑k−1
i=1 aixi

}
+ v+B > b, then no

solution x corresponding to paths in D containing (u1, u2) satisfies the linear constraint.

Proof. This condition implies the condition in Proposition 2.5.

In other words, given a completion bound B for a newly created arc (u1, u2), we can check the
above condition to decide whether we can remove the arc or not. The partial value of each node
can be recursively computed along with construction.

A question is how to compute the completion bound B for u2. At this point, the only information
we have at hand about the completion set of u2 is its state. Thus, we compute B based on its state,
which may be problem-specific.

Typically, a state contains information about a relaxation of the completion set. For instance,
in cases like the maximum independent set problem, the state consists of domains of the completion
variables. In this case, we can minimize

∑n
i=k+1 aixi over the domain given by the state. In other

words, if Ds(xi) corresponds to the domain of xi for the state s, we let B =
∑
i:ai≥0 min(Ds(xi)) +∑

i:ai<0 max(Ds(xi)).
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For the case of multiple linear inequalities described in Section 2.7.2, a state represents linear
inequalities for the completion set. Thus, we can compute B by minimizing

∑n
i=k+1 aixi over these

linear inequalities. This is similar to the pruning mechanism in branch-and-bound trees in MIP
solvers. However, this procedure may be expensive.

Note that arc filtering dominates arc pruning in terms of strengthening the relaxation, as we are
performing the same operation as arc filtering except that we use a weaker bound. More precisely,
the decision diagram obtained from arc filtering is a subgraph of the one from arc pruning, assuming
a standard exact construction (e.g. no merge-based relaxations).

Depth-first compilation

Arc pruning can also be done within a depth-first construction, but it can be more expensive in
terms of time. The main difference between the top-down and the depth-first cases is that the
partial solution set S↑(u) of a node u is not fully constructed in depth-first. Therefore, we may only
have an upper bound B′ for min(x1,...,xk−1)∈S↑(u1)

{∑k−1
i=1 aixi

}
. If we compute the pruning condition

using B′ in place of the exact partial solution value, we may prune an arc that in fact should not be
pruned because S↑(u) is incomplete.

Nevertheless, we can postpone the exploration of the arc to whenever it stops satisfying the
pruning condition (if ever), as follows. We keep the bound B′ at each node corresponding to the
partial solutions explored so far. Whenever the pruning condition is satisfied, we do not explore the
new node, but also do not delete it. Throughout compilation, every time we merge equivalent nodes,
we update its bound B′ according to the new arc and propagate this update to its descendants, in
the same top-down fashion used to compute partial solution values. During this update, we also
allow previously “pruned” nodes to be updated. If the pruning condition no longer holds with the
new bound, then we move it back to the list of open nodes, allowing it to be explored in a future
iteration.

While this procedure may be relatively costly due to the constant partial solution value updating,
it may help avoid unnecessarily visiting nodes.

Although the depth-first compilation limits the availability of the partial solution set, it provides
us with full completion sets of some of the nodes. A natural question is whether we can leverage
the completion sets in order to improve the completion bound or even avoid computing it from the
state.

This can be done for the case of a single linear inequality, which has the special property that
equivalence classes are ordered by inclusion of the completion set. Recall from Section 2.7.1 that
the equivalence classes for a linear inequality are intervals [Li, Ui), which are nonoverlapping and
ordered within a layer.

Suppose that we are deciding whether to prune an arc (u1, u2). For the sake of simplicity, assume
we have the exact partial solution value of u1, since the previously discussed updating procedure
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eventually finds it. Moreover, assume that all nodes with fully constructed completion sets store
their completion values. Let b be the state of u2.

If u2 is equivalent to any of the fully explored nodes, then we can use the equivalent node’s
completion value to prune the arc. Since we are using exact values, this has the same effect as
filtering the arc as discussed in the previous section.

If u2 is not equivalent to any of the nodes, then find the smallest Li greater than b. Let u∗ be
the node corresponding to [Li, Ui). The fact that b < Li means that the inequality corresponding
to b is tighter than any inequality associated to the interval (assuming less-or-equal inequalities).
Thus, S↓(u2) ⊆ S↓(u∗). Therefore, the completion value B of u∗ must be an upper bound for the
completion value of u2. Using B, check if the pruning condition is satisfied; if so, we can prune the
arc (u1, u2).

2.8.3 Complexity of arc filtering

In Section 2.8.1, we have discussed how to identify whether all paths through a given arc are
infeasible with respect to a constraint a>x ≤ b. However, filtering arcs may be more difficult if
we consider a different constraint. For instance, it may be the case that all paths through a given
arc are infeasible with respect to the conjunction of linear constraints Ax ≤ b, and yet not all of
them are infeasible with respect to a single constraint in this set. We show in this section that it is
NP-hard to identify such arcs.

Arc filtering is often discussed in the context of consistency. Establishing DD consistency consists
of filtering every possible arc with respect to a given constraint, ensuring that every arc belongs to a
feasible path. Arc filtering and DD consistency are polynomially equivalent in terms of complexity.
Nevertheless, the proofs in this section are written in terms of arc filtering.

The complexity of arc filtering is closely connected to the complexity of deciding feasibility.
Recall that D corresponds to the discrete domains of the n variables of the problem.

Proposition 2.7. If deciding feasibility within D for a given constraint is NP-complete, then
establishing DD consistency for this constraint is NP-hard.

Proof. Consider the reduced decision diagram representing the set {0} × D, which has width 1 and
n+ 2 nodes. Let x0 be the additional variable corresponding to the domain {0}. The problem of
filtering the arc x0 = 0 with respect to a given constraint is equivalent to deciding feasibility within
D of that constraint.

The converse is not true: for instance, feasibility for the alldifferent constraint can be decided in
polynomial time, but DD consistency for it is NP-hard [6].

In fact, DD consistency is more closely connected to a different feasibility problem. Define the
DD feasibility problem for a problem or class of constraints as follows: given a decision diagram D
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and an instance I of the problem or class of constraints, decide whether there exists any solution in
D that is feasible with respect to I. A similar result to the proposition below is given in [39].

Proposition 2.8. Deciding DD feasibility for a given constraint is NP-complete if and only if
establishing DD consistency for this constraint is NP-hard.

Proof. Given a constraint, filtering an arc is equivalent to deciding DD feasibility for the decision
diagram consisting of the paths containing the arc. Therefore, if we can decide DD feasibility in
polynomial time, we can filter arcs in polynomial time.

Conversely, suppose we can perform arc filtering in any decision diagram in polynomial time
with respect to a constraint. Fix a decision diagram D. Similarly to the proof of Proposition 2.7,
extend D by adding a new variable x0 with domain {0}, not present in the constraint. If we can
filter the new arc corresponding to x0 = 0 in polynomial time, then we can decide DD feasibility
with respect to D in polynomial time.

We emphasize that DD feasibility takes a decision diagram as input. On the other hand, if the
decision diagram is fixed a priori, then it is no longer true that feasibility is as hard as consistency.
In particular, consider the case where the decision diagram is fixed to D. There exist problems in
which domain feasibility is easy but establishing domain consistency is NP-hard; see e.g. [53].

Moreover, establishing DD consistency is at least as hard as determining complete equivalence.

Proposition 2.9. Let P be a problem or constraint set with discrete domains. Suppose an infeasible
instance for P exists and is given. If it is NP-hard to establish DD consistency for P, then it is
NP-complete to decide complete equivalence for P, whether in a top-down or a depth-first compilation.

Proof. Suppose that we have a polynomial-time algorithm for determining complete equivalence
with respect to P. Then we can filter an arc by checking if its tail is equivalent to an infeasible
state. In the depth-first case, we assume the infeasible state is the one with the completion set
constructed.

This also serves as an alternative proof for Proposition 2.1. By Proposition 2.7, hardness of
feasibility implies hardness of arc filtering, which implies hardness of complete equivalence by
Proposition 2.9.

A direct consequence of Proposition 2.7 is that establishing DD consistency with respect to two
or more linear inequalities is NP-hard.

Corollary 2.10. It is NP-hard to establish DD consistency with respect to a conjunction of two or
more linear inequalities simultaneously in a decision diagram, even if it is binary.

Proof. Deciding feasibility of a 0-1 knapsack problem with two or more linear inequalities is
NP-complete. By Proposition 2.7, DD consistency is NP-hard.
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A slightly different question is whether we can find in polynomial time an inequality that is
valid with respect to a polyhedron P in order to filter an arc. The answer to this question is
positive. Nevertheless, the purpose of this result is mainly theoretical as the algorithm we provide
as presented is impractical for establishing DD consistency, given that it entails solving a linear
program for every arc of the decision diagram.

This can be viewed as the following problem: given the set of points Se corresponding to arc e
in a decision diagram, find a hyperplane that separates P from Se or decide none exists.

Proposition 2.11. Consider a decision diagram with an arc e and let P = {x ∈ Rn : Ax ≤ b}.
There exists a polynomial-time algorithm to identify a valid inequality for P such that arc filtering
can be applied with respect to e, or decide that no such inequality exists.

Proof. Suppose that we want to filter arc e and let Se be the set of solutions that use arc e. It
suffices to show that we can find an inequality that separates P from conv(Se) in polynomial time.

A valid inequality with respect to P has the form λ>Ax ≤ λ>b for some λ ≥ 0. Therefore,
we can express the question as finding a λ ≥ 0 such that this inequality is violated by all x ∈
conv(Se). In other words, λ>(b − Ax) < 0 for all x ∈ conv(Se). We can find λ by solving
minλ≥0 maxx∈conv(Se) λ

>(b−Ax). If the result is less than zero, then we have found an inequality
that separates conv(Se) from P , or otherwise none exists. We show that this problem can be
reformulated as a linear program.

In Chapter 4, we show that we can formulate the convex hull of Se as a linear program.
Theorem 4.1 states that conv(Se) = projx(Pflow(De)), whereDe is the decision diagram corresponding
to Se and Pflow(De) is as defined in the theorem. Therefore, this problem can be reformulated as
minλ≥0 max(x,f){λ>b− λ>Ax : (x, f) ∈ Pflow}.

Since conv(Se) is nonempty, we can use strong duality in the inner problem. We obtain
minλ≥0,u,v{λ>b+vs : (λ, u, v) ∈ P̂ (De)}, where P̂ (De) = {(λ, u, v) : vj ≤ vi−`ijuk ∀ layer-k arc (i, j)
in De, vt = 0, u+ λ>A = 0} and `ij corresponds to the label of arc (i, j).

This linear program can be solved in polynomial time and thus arc filtering can be done in
polynomial time.

2.9 Summary of Complexity of Equivalence and Consistency

Table 2.1 summarizes the complexity of complete equivalence and DD consistency for several
problems and constraints. We describe each constraint class and provide references for the results
below.

From the discussions in Sections 2.4 and 2.8.3, polynomial-time top-down complete equivalence
implies polynomial-time depth-first complete equivalence, which in turn implies polynomial-time
DD consistency. Equivalently, hardness results are implied from right to left in Table 2.1. In the
descriptions below, we omit the complexity results that are consequences of these implications.
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Complete equivalence
Top-down Depth-first DD consistency

Set packing P P P
Set covering P P P
Set partitioning NP-complete NP-complete NP-hard

Single linear inequality NP-complete P P
Single additively separable inequality NP-complete P P
Single linear equality NP-complete NP-complete NP-hard
Multiple (2+) linear constraints NP-complete NP-complete NP-hard

2-SAT P P P
3-SAT NP-complete NP-complete NP-hard

Alldifferent NP-complete NP-complete NP-hard
Among P P P
Element P P P
Sequence NP-complete NP-complete NP-hard

Table 2.1: Complexity results of node equivalence and DD consistency for classes of constraints.
Domains are binary for set packing, set covering, set partitioning, conflict constraints, 2-SAT, and
3-SAT. We assume the remaining classes are under arbitrary bounded integer domains.
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In addition, we use the following simple proposition to show polynomial-time complete equivalence
for some of the constraints.

Proposition 2.12. Let P be a problem or constraint set. If a decision diagram for P can be
constructed in polynomial time and space, then complete equivalence for P can be performed in
polynomial time and space, whether in a top-down or a depth-first compilation.

Proof. Consider the following polynomial-time algorithm to perform an equivalence test given states
s1 and s2. By the assumption, we can construct in polynomial time and space a decision diagram
D for P and reduce it afterwards. Take any two partial solutions p1 and p2 leading to s1 and s2

respectively. Since D is reduced, the states are equivalent if and only if these partial solutions lead
to the same node in D.

Details of the complexity results are summarized below.

Set packing. Set packing constraints are constraints of the form Ax ≤ 1, where A is a binary
matrix and x is a binary vector of variables. A DP formulation that uses states as domains
naturally defines complete equivalence [22].

Set covering. Set covering constraints are constraints of the form Ax ≥ 1, where A is a binary
matrix and x is a binary vector of variables. A DP formulation for set covering can be obtained
by keeping track of whether a set covering constraint has been satisfied or not. Complete
equivalence can be achieved if we always remove all redundant constraints from the state [17].

Set partitioning. Set partitioning constraints are constraints of the form Ax = 1, where A is
a binary matrix and x is a binary vector of variables. In general, deciding feasibility of
set partitioning constraints is NP-complete, and thus by Proposition 2.7, performing DD
consistency is NP-hard.

Above, we assume multiple set partitioning constraints. If we consider a single set partitioning
constraint (or more generally, a single cardinality constraint

∑n
i=1 xi = b) equivalence and

consistency are in P . Since the cardinality constraint has at most n+ 1 states per layer, one
for each possible value of left-hand side, a decision diagram can be constructed in polynomial
time, and thus by Proposition 2.12, top-down complete equivalence is in P.

Single linear (or additively separable) inequality. By Proposition 2.2, top-down complete
equivalence is NP-complete. Moreover, depth-first complete equivalence is in P as discussed in
Section 2.7.1.

Single linear equality. Deciding integer feasibility of a single linear equality is NP-complete
(even for binary domains), and thus DD consistency is NP-hard by Proposition 2.7. A
pseudopolynomial time approach for DD consistency is described in Chapter 9.4 of [19], which
consists of keeping track of all possible left-hand side values.
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Multiple (2+) linear constraints. DD consistency is NP-hard as shown in Proposition 2.10.

2-SAT. 2-SAT is given by the conjunction of clauses, each of which is a disjunction of two literals,
which may be variables or negated variables. 2-SAT constraints can be rewritten as implication
constraints and we show in Section 3.3 that top-down complete equivalence for these constraints
is in P.

3-SAT. 3-SAT is similar to 2-SAT, except that each clause is a disjunction of three literals. Deciding
feasibility of 3-SAT is NP-complete, and thus DD consistency is NP-hard by Proposition 2.7.

Alldifferent. The alldifferent constraint requires that values taken by a set of variables are all
distinct from each other. DD consistency is NP-hard for alldifferent; see Chapter 9.4.4 of [19],
or [6].

Among. The among constraint requires that the number of variables taking values from a given
set are between given lower and upper bounds. DD consistency is in P for among; see Chapter
9.4.5 of [19], or [39]. In addition, similarly to the cardinality constraint, the among constraint
requires at most n + 1 states per layer and thus top-down complete equivalence is in P by
Proposition 2.12.

A system of two or more among constraints generalizes set partitioning constraints, and thus
DD consistency is NP-hard in this case.

Element. The element constraint is a binary constraint on variables x and y that enforces y = cx

given c1, . . . , cm, where D(x) = {1, . . . ,m} and D(y) = {c1, . . . , cm}. DD consistency is in P
for element; see Chapter 9.4.6 of [19], or [39]. In addition, since the constraint is binary, we
can construct its decision diagram efficiently and thus top-down complete equivalence is in P
by Proposition 2.12.

Sequence. Given variables x1, . . . , xn, the sequence constraint is a conjunction of an among
constraint (with the same bounds and set of values) applied to all subsequences xi, . . . , xi+q−1

of size q within the n variables. DD consistency is NP-hard for sequence; see Chapter 10
of [19], or [15].
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Chapter 3

Decision Diagram Relaxations for
Integer Programming Models

3.1 Introduction

A strength of decision diagrams lies in representing recursive structure embedded in certain discrete
optimization problems. Typically, this structure needs to be explicitly modeled by a user through a
dynamic programming formulation, which is often not readily available when facing a new problem.
Instead, it is common for discrete optimization problems to be modeled via integer programming
formulations, due to the effectiveness of mixed-integer programming solvers.

Providing both a DP and an IP formulation can improve the solving process of a MIP solver,
as we will see for instance in Chapter 4. However, the user takes the burden of finding good
formulations. Moreover, decision diagrams in their current form provide benefits only when this
recursive structure provides substantial information beyond the IP model itself. Identifying such
problems is challenging.

In this chapter, we discuss the following question: given an integer programming model,
how to efficiently construct a decision diagram relaxation that approximates it well in practice?
Approximation may have several different meanings and depends on the application. Here we focus
on generating decision diagrams that yield strong dual bounds for the problem.

Dual bounds have several uses. In MIP solving, they typically come from LP relaxations and
are employed to prune nodes in the branch-and-bound tree. They are also useful to guide the MIP
search, such as deciding which variables to branch on with the strong branching technique, and to
bound how far a primal feasible solution is from an optimal solution. In Chapter 5, we use them to
improve pruning in the branch-and-bound tree of a MIP solver.

In the context of decision diagrams, good dual bounds can be obtained in practice for particular
problems with specific DP formulations [22]. This work discusses how to generate dual bounds for
more general problems modeled with integer programming.
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This is a question that must be carefully approached. A first attempt to answer this question
is to simply construct decision diagrams using the top-down compilation method discussed in
Section 2.7.2. However, as we discuss in the computational section, this approach may lack the
ability to take advantage of structure.

It is important to recognize that decision diagrams are tightly connected to the structure provided
by DP formulations. Many real-world problems however are complex and do not adhere to an
amenable structure. We cannot expect decision diagrams to aid an arbitrary integer programming
model if we are unable to identify some structure within it. Nevertheless, they are often present
as substructures. For instance, several problems contain set packing constraints – constraints of
the form Ax ≤ 1, where A is a binary matrix and x is a binary vector of variables – which, when
isolated, tend to be receptive to decision diagram-based approaches [22].

Motivated by the diversity of real-world problems, we investigate how to generate dual bounds
when a structure exploitable by decision diagrams is only partially present. We propose a framework
that builds decision diagrams for classes of constraints present in the problem – which can be
viewed as relaxations – and incorporates the remaining constraints via two approaches, Lagrangian
relaxation and constraint propagation.

While this framework permits any choice of substructure, in this chapter we investigate the use
of the conflict graph for binary problems. The conflict graph is a common component in modern
MIP solvers and represents the pairs of binary variables that cannot both take a certain pair of
values. It can be viewed as a relaxation of the problem and thus it fits our framework. Moreover, as
we discuss in this chapter, the feasible set of a conflict graph admits a good DP formulation.

Although focusing on a particular substructure limits the range of applications, we do not aim
to design a method to improve an arbitrary IP model. Instead, our approach is opportunistic: we
only attempt to improve the solution process for a model when there are reasons to believe that
decision diagrams can help – in this case, when conflict graphs are present and capture most of the
problem. Future research may incorporate further classes of constraints and extend the reach of
this framework. Furthermore, we emphasize that the approach does not require any input other
than the IP model.

We begin by defining the framework in Section 3.2. Sections 3.3 and 3.4 detail two important
aspects of the framework: constructing a reduced decision diagram for a conflict graph and handling
constraints that are not considered in the decision diagram. Section 3.5 presents computational
results.

3.2 Framework

A central challenge in designing approaches based on relaxed decision diagrams is to keep them small
while still obtaining a good approximation of the problem. In a dual bound generation approach,
this involves two main factors: the ability to identify equivalent nodes and the form of relaxation.
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The power of decision diagrams comes from merging equivalent nodes. While in practice it is not
vital that we merge every pair of equivalent nodes possible, merging as many as possible allows us to
focus on other important factors that affect the size of decision diagrams. In other words, we want
equivalence to be as close to complete as possible. Unfortunately, deciding complete equivalence for
linear constraints is NP-complete (see Section 2.7), which motivates us to consider alternatives in
this work. Moreover, even if we can attain complete equivalence, a decision diagram can still grow
exponentially large. In order to manage its size, we must approximate the problem with a tractable
relaxation.

In this framework, we consider two forms of relaxation: one at the level of decision diagram
construction and another at the level of problem constraints.

At the decision diagram level, we construct relaxed decision diagrams using a top-down con-
struction. We merge nodes in a way that heuristically avoids adding infeasible solutions of high
objective value (when maximizing).

At the constraint level, the framework considers a substructure of the problem, such as a subset
of constraints of specific type or, in the case of this work, conflict graphs. Not only substructures
can be smaller, but more importantly information about problem structure can significantly benefit
the construction of decision diagrams. However, this relaxation can be very weak if it ignores several
constraints. This is compensated through the use of Lagrangian relaxation, which can be used
with decision diagrams [16]. Moreover, we can partially incorporate them into the decision diagram
through the use of constraint propagation.

Given that we use a substructure as the base for our decision diagram, we must to choose a
structure with good qualities. We balance the following criteria in the choice of structure:

• Identifiability: We should be able to efficiently identify and extract the substructure from
the problem. While this is trivial if we choose an explicit subset of constraints, we may also
work with relaxations that are not explicitly given in the problem.

• Generality: The structure should be as generic as possible in order to capture structure
within as many applications as possible. In particular, this structure must play a fundamental
role in defining the problems we aim to improve upon, as otherwise the bounds generated
would be weak.

• Compactness: In order to keep the size of the decision diagram compact, the formulation
must ideally support efficient equivalence tests that are complete or close to being complete.
Moreover, structures with good variable ordering and merging (relaxation) heuristics are
desirable. It is well known that variable ordering can have a considerable effect on the size
of the decision diagram [26] and likewise the quality of the bound from relaxed decision
diagrams [23].
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Conflict graphs satisfy these three criteria well. First, the task of identifying the conflict graph
structure (when present) is already performed by modern MIP solvers, and thus we do not need to be
concerned with extracting them. Second, the conflict graph encompasses common constraints such
as set packing constraints and simple implications of the form xi = vi =⇒ xj = vj . In particular,
it is equivalent to 2-SAT constraints (see e.g. [9] and note that conflict graphs are equivalent to
implication graphs defined in the next section), and if we were to push it further to 3-SAT, complete
equivalence becomes NP-hard as discussed in Section 2.9. Third, there exists a DP formulation for
the conflict graph that has an efficient complete equivalence test in top-down construction, provided
in Section 3.3. In addition, we generalize a variable ordering heuristic for the independent set
problem, previously shown to perform well in practice [22].

We remark that the framework itself supports any type of structure, as long as we can efficiently
build good decision diagrams from them. In this context, structure means any class of constraints
that form a relaxation of the problem. For example, another choice is to focus on problems in which
set covering constraints are present and construct decision diagrams from those constraints. In
particular, combining multiple classes of constraints is a possibility that may enrich the generality
of the method. However, we limit the scope of this work to the use of conflict graphs and leave
other choices open as further research directions.

A summary of the framework is as follows.

1. We select a substructure of the problem from which to construct a relaxed decision diagram –
in this case, we use a conflict graph. Constraints that are not implied by the substructure are
called generic.

2. We construct a decision diagram, possibly relaxed, using a DP formulation specific to the
substructure (Section 3.3). During construction, we may propagate information from generic
constraints into the decision diagram (Section 3.4.2).

3. Once the decision diagram is constructed, we apply Lagrangian relaxation in order to further
incorporate generic constraints into the bound (Section 3.4.1).

3.3 Decision Diagrams for Conflict Graphs

The conflict graph captures constraints that forbid certain pairs of binary variables from taking
specific values. More formally, a conflict graph G = (V,E) is a graph with two vertices per binary
variable of the problem. Each vertex corresponds to an assignment of 0 or 1 to the corresponding
variable. Denote by xvj the node of the conflict graph corresponding to the assignment of v to the
variable xj . Following this notation, we use x1−v

j to denote the node corresponding to the negation
of xvj . An edge exists between xui and xvj if the assignments xi = u and xj = v cannot simultaneously
occur in a feasible solution of the problem. Figure 3.1 illustrates an example of a conflict graph.
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x1

x̄1

x2

x̄2

x3

x̄3

x1 + x2 + x3 ≤ 1

x2 + (1− x3) ≤ 1

(1− x1) + (1− x2) ≤ 1

x1, x2, x3 ∈ {0, 1}

Figure 3.1: Example of a conflict graph for three binary variables, where xi and x̄i indicate setting
xi to 1 and 0 respectively. On the right, a linear representation of the constraints from the conflict
graph.

Conflict constraints can be inferred in MIP solvers when applying, for instance, bound strength-
ening or probing during a presolve step. A common use of a conflict graph is to generate cuts [10,
2].

Note that each conflict constraint on xui and xvj is equivalent to the constraint xi = u =⇒ xj =
1 − v, which is itself equivalent to xj = v =⇒ xi = 1 − u. Therefore, we can express conflict
constraints as implications by replacing each edge {xui , xvj} with a pair of directed arcs (xui , x1−v

j )
and (xvj , x1−u

i ). The resulting graph is called an implication graph. Since this conversion can occur
in both directions, conflict graphs are equivalent to implication graphs.

Throughout this section, it is more convenient to describe a formulation for the implication
graph instead of the conflict graph. Concepts from this formulation can be directly translated to
the context of the conflict graph through the above equivalence.

We remark that modern MIP solvers may construct implication graphs for general integer
variables instead of binary [2]. However, in this work, we focus on the binary setting.

3.3.1 Dynamic programming formulation

We provide a dynamic programming formulation for the feasible set of the implication graph – that
is, the set of all solutions that satisfy the implication constraints encoded in the graph.

For notational convenience, we assume that variables are ordered as x1, . . . , xn. The layer j
(or stage j in DP terms) contains the states in which we have defined assignments for variables
x1, . . . , xj−1 and seek to assign values to xj , . . . , xn. These values are restricted to the variable’s
domain, denoted by D(xj) for each variable xj , which in this chapter we assume to be {0, 1}. We
denote the infeasible state by 0̂.

Each state at layer j is represented by domains of the variables xj , . . . , xn. When we transition
by setting the variable xj to vj , we remove from the domains all assignments xk = vk such that
x1−vk
k is reachable from x

vj

j . Here, we say that u is reachable from v if there exists a directed path
in the implication graph from u to v. In other words, we take the implied assignments and remove
their complements from the domains.
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x1

x̄1

x2

x̄2

x3

x̄3

x1

x2

x3

∗∗∗

∗∗ ∗1

1

x1

x2

x3

∗∗∗

∗1

1

Figure 3.2: On the left, a conflict graph, where xi and x̄i indicate setting xi to 1 and 0 respectively.
Next, the decision diagram that would be obtained by using the DP formulation (IG) as is. The
states are depicted as a sequence of symbols representing the domain of each completion variable in
order: ∗ if the domain is {0, 1}, 1 if it is {1}, and 0 if it is {0}. On the right, the decision diagram
obtained if we establish domain consistency at the root state, which is always reduced as proved in
Theorem 3.3.

More precisely, the DP formulation (IG) is defined as follows:

State space. For each stage j, each state s ∈ Sj is a list (D(xj),D(xj+1), . . . ,D(xn)) such that
each D(xj) represents the domain of the variable xj , and thus may take the values ∅, {0},
{1}, or {0, 1} in this binary setting.

Transition function. Let Ds be the domain associated to state s. Given an assignment vj to a
variable xj , denote by D′s(xk) = Ds(xk) r R̄k,j,vj

, where R̄k,j,vj
is the set of values vk such

that the node x1−vk
k is reachable from x

vj

j in the implication graph G. The transition function
tj at layer j is defined as:

tj(s, vj) =


(D′s(xj+1),D′s(xj+2), . . . ,D′s(xn)) if vj ∈ Ds(xj) and D′s(xk) 6= ∅

for all k = j + 1, . . . , n,

0̂ otherwise.

This DP formulation can be used to construct a decision diagram as described in Chapter 2
using its natural equivalence test: two nodes are equivalent if the states are the same. Figure 3.2
illustrates a decision diagram constructed from this DP formulation.

Optionally, the depth of the search tree from x
vj

j used to find reachable nodes may be limited
for purposes of efficiency. This may affect the completeness of equivalence, but its correctness only
requires us to update the domains of the neighbors of xvj

j .
We next show that this formulation is correct and provide a sufficient condition for complete

equivalence that can be efficiently guaranteed.
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Correctness

The proposition below shows that (IG) models the implication graph.

Proposition 3.1. The DP formulation (IG) is correctly models the feasible set of the given impli-
cation graph G.

Proof. Let D be the decision diagram generated by (IG), Sol(D) be the set of solutions represented
by s-t paths in D, and Sol(G) be the feasible set of the implication graph G. We want to show that
Sol(D) = Sol(G).

The implication constraints of G enforce that if xj is set to vj , then xk must be set to vk
for all nodes x1−vk

k that are reachable from x
vj

j . Since the transition function only enforces these
constraints, it cannot eliminate feasible solutions. This implies that all feasible solutions must be
represented as s-t paths in D. Therefore, Sol(G) ⊆ Sol(D).

To show that Sol(D) ⊆ Sol(G), let x̂ be a solution represented by an s-t path in D. We want to
show that x̂ is feasible with respect to G. Suppose for contradiction that x̂ is infeasible. Then x̂
must violate the constraint of some arc (xvj

j , x
vk
k ) in G. That is, x̂j = vj and x̂k = 1− vk. Assume

without loss of generality that xj comes before xk in the ordering, which can be done because each
arc (xvj

j , x
vk
k ) in G has a counterpart (x1−vk

k , x
1−vj

j ). Then this assignment cannot occur because
tj(sj , vj) enforces the domain of xk to become {vk} in all subsequent states, which is a contradiction.
Therefore, x̂ is feasible, and thus Sol(D) = Sol(G).

In fact, formulation (IG) is correct even in a depth-d variant for any d ≥ 1, in which we redefine
R̄k,j,vj

in the transition function to only consider nodes within a distance of d from x
vj

j . Note that
the exact same proof above holds in this case.

Completeness

Now that the correctness of (IG) is established, we turn to the question of when this formulation
yields a reduced decision diagram.

The example in Figure 3.2 shows that (IG) as currently formulated does not always generate a
reduced decision diagram. In the first decision diagram depicted on Figure 3.2, the two second-layer
nodes have the same completion set but are not merged together. The state s of the node on the left
unnecessarily has 0 in Ds(x3), which if removed, would enable merging. This observation suggests
the lemma below, which provides a sufficient condition for completeness.

We call a state s domain consistent if for every variable xi and value vi ∈ Ds(xi), there exists a
feasible completion from state s that assigns vi to xi.

Lemma 3.2. If every state in (IG) is domain consistent, then the natural equivalence from formu-
lation (IG) is complete.
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Proof. Domain consistency ensures that if two domains are different, then they must have different
completion sets. More formally, consider states s1 and s2 with different domains. Suppose without
loss of generality that there exists vi ∈ Ds1(xi) such that vi /∈ Ds2(xi). Then the above property
implies there exists a completion from s1 which assigns vi to xi that does not exist from s2.

As a side note, observe that Lemma 3.2 holds not only for the formulation (IG), but also for any
formulation in which the state space consists of domains, respected by their completions.

The next step is to provide a means to obtain domain consistency at every state, since this would
yield completeness. In fact, it turns out that the transition function tj(sj , vj) in (IG) preserves
domain consistency as long as the original state sj is also domain consistent, as we establish in
Theorem 3.3. This implies that it is sufficient to make the root state domain consistent.

For instance, in Figure 3.2 it would suffice to make the initial state domain consistent in order
to construct a reduced decision diagram.

Theorem 3.3. If s is a domain consistent state, then tj(s, vj) is a domain consistent state if
feasible.

In order to prove Theorem 3.3, we first derive two intermediate lemmas. We use the following
theorem from Aspvall et al. [9], which characterizes feasibility of an implication graph.

Theorem 3.4 (Aspvall et al. [9]). An implication graph G is feasible if and only if there is no xj
such that x0

j and x1
j are in the same strongly connected component.

The two intermediate lemmas are the following.

Lemma 3.5. Given an implication graph G, there exists a feasible solution with xj set to vj if and
only if there exists a feasible solution for the implication graph Ĝ := G ∪ {(x1−vj

j , x
vj

j )}.

Proof. The constraint from the additional arc (x1−vj

j , x
vj

j ) is violated exclusively by all solutions
with xj set to 1− vj , leaving exactly the feasible solutions of G with xj set to vj .

Lemma 3.6. Given a feasible implication graph G, there exists a feasible solution with xj set to vj
if and only if there is no path from x

vj

j to x1−vj

j in G.

Proof. By Lemma 3.5, there is a feasible solution with xj set to vj if and only if Ĝ := G∪{(x1−vj

j , x
vj

j )}
is feasible. In view of Theorem 3.4 and the feasibility of G, Ĝ is feasible if and only if adding
(x1−vj

j , x
vj

j ) to G keeps x1−vj

j and xvj

j in different strongly connected components.1 This happens if
and only if there is no path from x

vj

j to x1−vj

j in G.

1As a technicality, this requires that Theorem 3.4 holds when there are arcs between two nodes of the same variable.
Despite assuming a standard implication graph, the proof from Aspvall et al. [9] is also valid with same-variable arcs.
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Lemma 3.6 tells us how to achieve domain consistency for the implication graph. For every
variable xj , we check if x0

j is reachable from x1
j and vice versa. If x1−vj

j is reachable from x
vj

j , we
remove vj from Ds(xj).

In addition, this can be done in linear time as follows. Tarjan’s strongly connected components
algorithm [55] provides the strongly connected components in reverse topological order. By treating
each component as a node, we can scan the graph in topological order in a single pass to find these
paths. Throughout this pass, we store at each component the variable-value assignments of its
ancestors in order to pass it forward. Whenever we find the complement of one of these assignments,
we can remove the assignment from the domain.

We now prove Theorem 3.3, which implies that it suffices to ensure domain consistency at the
root state in order to guarantee completeness.

Proof of Theorem 3.3. Consider the states s and s′ := tj(s, vj). In order to show that s′ is domain
consistent, we need to show that for any vk ∈ Ds′(xk), there exists a completion from s′ that assigns
vk to xk.

Define Ĝs to be the implication graph G with the additional arcs (xvj

j , x
1−vj

j ) for all vj ∈
{0, 1} r Ds(xj). Note that the feasible set of Ĝs corresponds to the completion set of s by
Lemma 3.5. Moreover, the feasible set of G′ := Ĝs ∪ {(x

1−vj

j , x
vj

j )} corresponds to the completion
set of s′. Following Lemma 3.6, it suffices to show that G′ does not contain a path from xvk

k to
x1−vk
k .
Given that Ds is consistent, there must exist a completion x from s such that xk = vk.

Equivalently, Ĝs must not contain a path from xvk
k to x1−vk

k according to Lemma 3.6. Therefore,
any path in G′ from xvk

k to x1−vk
k must go through the only new arc (x1−vj

j , x
vj

j ). However, x1−vk
k is

not reachable from x
vj

j , as otherwise vk would be removed from Ds′(xk) as a result of the transition
function. Hence, there cannot be a path in G′ from xvk

k to x1−vk
k .

The above theorem directly implies the following result.

Corollary 3.7. The natural equivalence from the DP formulation (IG) is complete when the initial
state is domain consistent.

Therefore, once we establish domain consistency in the root state, we can use the DP formulation
in a top-down fashion to construct a reduced decision diagram.

We remark that this serves as an alternative proof for complete equivalence for the independent
set problem in [22]. If we view the independent set problem in terms of an implication graph, we
obtain a graph where all arcs point from a nonnegated node to a negated node. This means that
every path in the implication graph has length at most one, and thus it suffices for the transition
function to consider only the neighbors of each vertex, as done in the formulation. Moreover, the
initial domain of all possibilities is always consistent since every individual vertex of the original
graph is a feasible independent set.
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3.3.2 Variable ordering

Variable ordering for decision diagrams are often based on heuristics. Using a fast heuristic is
particularly helpful in our case, as we may be generating several decision diagrams during the
solution process of a single problem.

Based on its close connection to the independent set problem, we use a generalization of a
variable ordering heuristic for independent set that has shown to work well in practice, namely the
minimum number of states ordering [23, 22]. In the context of independent set, at each layer, the
ordering selects the vertex v that appears in the fewest number of states in the state pool. Every
node with a state in which v appears will branch to both zero and one, whereas if v does not appear,
the corresponding node only branches to zero. Therefore, this minimizes the number of arcs in the
following layer.

A natural generalization is as follows: at each layer, we select the variable with the smallest sum
of domain sizes throughout the state pool. This minimizes the number of arcs in the next layer
since each assignment corresponds to an arc, given that the domains are consistent.

3.4 Generic Constraints

Focusing on substructures is typically only practical if the generic constraints are still taken into
account in some form. We generally assume that the substructure consists of a significant part
of the problem and these generic constraints are not worth completely including into the relaxed
decision diagram.

In the context of conflict graphs, we mark a constraint as generic in our implementation if it
does not have a particular form implied by conflict constraints:

∑
i∈P xi +

∑
i∈N (1 − xi) ≤ 1 for

some disjoint set of variable indices P and N . Although this can be checked quickly, it is possible
that we label as generic more constraints than necessary.

For an arbitrary substructure, identifying generic constraints can be done by checking if every
solution represented in the decision diagram is satisfied by the constraint. In other words, a
constraint a>x ≤ b can be marked as generic if maxx∈S{a>x} ≤ b where S is the set of points
represented by the decision diagram, which can be efficiently checked by finding a maximum weight
path in the decision diagram.

We handle generic constraints into two ways: Lagrangian relaxation and constraint propagation.

3.4.1 Lagrangian relaxation

Lagrangian relaxation consists of moving a set of constraints to the objective function by penalizing
its violation. More precisely, in our context we solve the following problem:

min
λ≥0

max
x
{c>x+ λ>(b−Ax) : x ∈ conv(S)}
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where S is the set of points represented by a relaxed decision diagram, Ax ≤ b are the generic
constraints not incorporated into S, and c is the objective function of the problem. The variables λ
are called Lagrange multipliers, which represent penalties for the violation of the constraints Ax ≤ b.

This problem can be solved with subgradient methods that require optimizing a linear function
over conv(S) as a subproblem. In our context, this subproblem entails finding an optimal path in
the decision diagram representing S, which can be efficiently done.

Lagrangian relaxation theory establishes that the solution of the above problem is equivalent to
the solution of the following one:

max
x
{c>x : Ax ≤ b, x ∈ conv(S)}. (3.1)

This provides a clean interpretation of the bound we obtain from Lagrangian relaxation. Es-
sentially, we are optimizing over the convex hull of the set of points represented by the decision
diagram intersected with the generic constraints in their original linear form. In other words, we are
convexifying the constraints involved in the construction of the decision diagram, taking integrality
into account.

A limitation of Lagrangian relaxation is that it is only equivalent to adding the constraints back
in its original linear form. In some cases, we may need to tighten these generic constraints in order
to obtain improvements. For instance, if the decision diagram is constructed from a set of linear
constraints whose polyhedron has only integer vertices, then this approach cannot yield a better
bound than the LP bound.

3.4.2 Constraint propagation

Even if a generic linear constraint results in a large decision diagram by itself, it can be partially
incorporated into the decision diagram of other constraints without significantly increasing its size.
This is particularly true if we use domain states: we use constraint propagation to filter out infeasible
values from the domain states [6, 39]. This results in the elimination of infeasible points from the
decision diagram, which may improve the bounds generated. Moreover, it may reduce the time it
takes to construct the decision diagram, as we are potentially exploring fewer nodes.

Consider a constraint a>x ≤ b and a node u with domain state s. Given a variable xj and a
value vj in the domain Ds(xj), our goal is to determine before branching on u if no completion
assigning vj to xj satisfies the constraint. If so, we can remove vj from the domain Ds(xj).

Suppose for now that we want to tackle this problem on a fully constructed decision diagram.
This is equivalent to determining if the constraint is violated by all possible solutions with xj = vj

corresponding to paths that pass through the node u. To solve this, we can find the smallest
right-hand side a>x within this solution set and check if it exceeds the right-hand side b. This can
be expressed in terms of the partial solution set and the completion set of the node u as follows.
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Recall that S↑(u) and S↓(u) denote the partial solution set and the completion set of node u
respectively.

Proposition 3.8. Consider a decision diagram D ordered x1, . . . , xn, a node u of D at layer k,
and a linear constraint

∑n
i=1 aixi ≤ b. Let j ≥ k. Then no solution x with xj = vj corresponding to

paths in D containing u satisfies the linear constraint if and only if

min
(x1,...,xk−1)∈S↑(u)

{
k−1∑
i=1

aixi

}
+ min

(xk,...,xn)∈S↓(u)
xj=vj

{
n∑
i=k

aixi

}
> b

Proof. The set of solutions x corresponding to paths containing u is S(u) := {x : (x1, . . . , xk−1) ∈
S↑(u), (xk, . . . , xn) ∈ S↓(u)}. Let S′(u) := S(u)∩{x : xj = vj}, which is the set of solutions for which
we want to check violation. This set violates the constraint if and only if minx∈S′(u)

∑n
i=1 aixi > b,

which is equivalent to the above condition.

Denote the two terms in the condition above by pa(u) := min(x1,...,xk−1)∈S↑(u){
∑k−1
i=1 aixi} and

ca(u, xj , vj) := min(xk,...,xn)∈S↓(u),xj=vj
{
∑n
i=k aixi} respectively.

We return to the context of filtering the domain of a node u at the construction stage. We
can efficiently compute pa(u), since it consists of optimizing a linear function over the decision
diagram of the partial solution set of u, which is fully available at the time of branching for a
top-down construction. It is not necessary to recompute pa(u) at every node, as we can maintain
them throughout the construction. At every new node u′ coming from a node u and arc xj = vj ,
we let pa(u′) := pa(u) + ajvj . In addition, whenever two nodes u and u′ are merged into u′′, we let
pa(u′′) = min{pa(u), pa(u′)}.

On the other hand, computing ca(u, xj , vj) during construction is difficult because we do not
have the completion set of the node. Instead, we compute a lower bound B for ca(u, xj , vj). If
we satisfy the condition pa(u) + B > b, then by Proposition 3.8 we can still safely remove vj
from Ds(xj). In our case where domains are states, we calculate B by minimizing

∑n
i=k aixi over

the possible values of the domains, after restricting xj to be vj . More precisely, we let B be∑
i:ai≥0,i 6=j min(Ds(xi)) +

∑
i:ai<0,i 6=j max(Ds(xi)) + ajvj .

This completes the description of the constraint propagation method. We remark that while this
approach can only improve the bound since it removes infeasible solutions, it can potentially increase
the size of the decision diagram. A simple example where this happens is given in Figure 3.3.

Alternatively, if we want to ensure that the size of the decision diagram does not increase,
we may apply propagation only with respect to the variable we are currently assigning. This is
equivalent to arc pruning as described in Section 2.8.2.
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Figure 3.3: An example in which propagation increases the size of the decision diagram in the
context of conflict graphs.

3.5 Computational Experiments

We computationally evaluate the dual bounds obtained from an implementation of the framework
using conflict graphs. We limit these experiments to generating bounds at the root; in Chapter 5,
we investigate the integration of these bounds into the branch-and-bound search process.

Along with the framework, we evaluate bounds obtained from a standard top-down construction
based on linear constraints. We evaluate two versions: one in which the states are right-hand sides
of constraints (as defined in Section 2.7.2) and one in which we augment these states with domains,
which are used to restrict the possible transitions. In both cases, we check if each constraint is
infeasible or will be always feasible with respect to the domain, as described in Section 2.7.2.

In the latter version, the domains are filtered via bounds propagation with respect to each
constraint. After every transition, we remove from the domains any variable-value assignment such
that every completion in the domain with this assignment violates a particular constraint. More
precisely, at a state s with domains Ds, for every constraint a>x ≤ b, we remove from Ds every
assignment xj = vj for vj ∈ Ds(xj) such that minx∈Ds,xj=vj{a>x} > b. Note that this construction
yields a reduced decision diagram for set packing constraints, since it emulates the transition function
for the independent set problem [22].

3.5.1 Experimental setup

As previously discussed, this approach is opportunistic in the sense that it only takes advantage
of instances that contain conflict graphs that capture many of the constraints of the problem.
Therefore, it makes sense to run experiments on instances with this substructure.

We randomly generate instances that are a combination of independent set (set packing)
constraints – which provide the conflict graph structure – and knapsack constraints. The integer
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programming model is the following:

max c>x∑
j∈C

xj ≤ 1 for all C ∈ C (set packing)

n∑
j=1

aijxj ≤ bi for all i = 1, . . . ,mknap (knapsack)

x ∈ {0, 1}n

The set C is a set of cliques that cover an input graph G – therefore, the above constraints
effectively model independent set constraints for G. These cliques are derived in a greedy fashion:
for each clique, we add vertices in nonincreasing order of degree (adjacent to all vertices in the
current set) and remove them from the graph before the next clique is generated. The graph from
which the independent set constraints are derived is a random graph following the Watts-Strogatz
model [57], which has small-world properties and tend to work well with decision diagrams. It is
generated as follows: given the desired number of vertices n, the desired mean degree k (assumed
even), and a probability p, construct a preliminary graph with n vertices arranged in a cycle and
two vertices are adjacent if and only if they are within distance k/2 in the cycle. Then for each
vertex i and outgoing edge (i, j), reassign j with probability p to another vertex (besides i or a
neighbor of i) uniformly chosen at random.

The mknap knapsack constraints have coefficients aij chosen uniformly at random from 1 to 100
with a support of constant size 100. That is, we select 100 variables uniformly at random and let
the coefficients of the remaining variables be zero. We maximize an objective with coefficients cj
also randomly chosen from 1 to 100. In some of the experiments, we vary the number of knapsack
constraints mknap and the right-hand sides bi. In those that we do not, they are fixed to 0.1n and
150 respectively.

We consider instances of sizes n = 200 and n = 1000, each of which 10 are generated. We use
SCIP 5.0.1 as the MIP solver along with CPLEX 12.6 as the LP solver. In all runs, presolve is on,
except for variable aggregation and restarts, which complicate the use of decision diagrams. Cutting
planes are at their default settings. The experiments were performed on a 2.33Ghz Linux machine
with 32GB of RAM.

The variable ordering we use for the linear constraint-based decision diagrams is the ordering
given by the Cuthill-McKee heuristic, which attempts to minimize the bandwidth of a matrix –
in this case, the matrix of coefficients. For the conflict graph, we use the ordering described in
Section 3.3.2. We fix the relaxed decision diagram width to be 1000.

We evaluate a dual bound D in terms of gap with respect to a primal bound P , computed as
(D − P )/P . The primal bound is the best bound after 10 minutes of solving with SCIP. It is exact
for instances of size n = 200, but may not be for the other instances.
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As a baseline, we include in the plots the initial LP bound and the LP bound at the end of the
root node. This latter bound is stronger than the initial LP bound mainly due to cutting planes,
but may also include the influence of heuristics and a first round of strong branching at the root.

In order to make the plots clearer, we plot bounds from linear constraints and from the conflict
graph separately, since their scales may be widely different. The LP bounds, present in both sets of
plots, can be used as a baseline to compare the approaches.

We vary three parameters of the instance class: number of variables n, number of knapsack
constraints mknap, and right-hand side bi. The first allows us to see how the bound scales and the
other two enables us to view the effect of the generic constraints on the bound.

Varying number of variables n. Figure 3.4 shows the bounds as we scale up the number of
variables. A first observation is that the linear constraint-based decision diagrams scale poorly.
If we take advantage of the conflict graph, the bounds scale significantly better. Nevertheless,
in both cases, the bounds are stronger for small instances.

This behavior suggests that relaxed decision diagrams may be appropriate for decomposition-
type approaches. In fact, in Chapter 5, we apply the bounds on small nodes in a branch-and-
bound tree.

Lagrangian relaxation and constraint propagation can be helpful especially for smaller instances.
Their effect is more evident in the next set of plots.

Varying number of knapsack constraints mknap. Figures 3.5 and 3.6 illustrate the change in
the number of knapsack constraints for the cases of n = 200 and n = 1000 respectively. We can
see that for small instances, the bounds are fairly strong even for several knapsack constraints.
For the large instances, as expected more knapsack constraints make it harder to exploit the
conflict graph. In particular, Lagrangian relaxation and constraint propagation are more
helpful when more knapsack constraints are present.

On the other hand, bounds coming directly from linear constraints do not become worse as
we add knapsack constraints – interestingly, they become better. This may indicate they are
more suited for more general constraints.

Varying right-hand side bi. In Figures 3.7 and 3.8, we vary the right-hand side in the knapsack
constraint for the cases of n = 200 and n = 1000 respectively. The right-hand side serves as a
lever to control the importance of the conflict graph. If the right-hand side is small, then the
knapsack constraints dominate the problem. If the right-hand side is large, then the knapsack
constraints become more redundant.

We observe especially in the plot for n = 1000 that the looser the right-hand side, the better
are the bounds from the conflict graph. This is not evident from the linear constraint-based

57



3. Decision Diagram Relaxations for Integer Programming Models

construction. This supports the natural intuition that relaxed decision diagrams from a
substructure perform better if that substructure plays a large role in defining the problem.

Note also that the Lagrangian relaxation ensures that the bound is worse than the LP bound
when the right-hand side is small – though it may not do so in general given that we solve the
Lagrangian relaxation approximately.
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Figure 3.4: Dual bounds from relaxed decision diagrams for independent set + knapsack constraints,
varying the number of variables.
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Figure 3.5: Dual bounds from relaxed decision diagrams for independent set + knapsack constraints
with 200 variables, varying the number of knapsack constraints.
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Figure 3.6: Dual bounds from relaxed decision diagrams for independent set + knapsack constraints
with 1000 variables, varying the number of knapsack constraints.
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Figure 3.7: Dual bounds from relaxed decision diagrams for independent set + knapsack constraints
with 200 variables, varying the right-hand side of the knapsack constraints.
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Figure 3.8: Dual bounds from relaxed decision diagrams for independent set + knapsack constraints
with 1000 variables, varying the right-hand side of the knapsack constraints.
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3.6 Conclusion

The main question of this chapter is how to effectively construct a relaxed decision diagram from an
integer programming model. Based on our computational experience with decision diagrams, we
believe that it is important for decision diagrams to leverage some structure in order to be effective,
rather than approach a problem in a completely generic fashion.

We propose a framework to take advantage of a substructure of the problem, which consists of
constructing a relaxed decision diagram for the substructure and applying Lagrangian relaxation
and constraint propagation to take into account the other constraints. As one of the substructures,
we propose the use of the conflict graph, which supports an efficient construction of a reduced
decision diagram. The computational results support the notion that taking advantage of structure
is important.

One observation that stands out is how the bounds scale, at least for the particular set of
instances tested. It suggests that decision diagrams may work better if we are able to subdivide
a problem into smaller subproblems and use them for the subproblems. In fact, a subdivision is
natural in MIP solvers, which is the branch-and-bound tree. In Chapter 5, we explore this direction
further by applying bounds at small nodes in a branch-and-bound tree.
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Chapter 4

Cutting Planes from Relaxed Decision
Diagrams

4.1 Introduction

Most general-purpose cutting planes in integer programming are based on a linear programming
(LP) relaxation. However, there may be useful cuts that are difficult to reach from this relaxation.
In this chapter, we explore an alternative framework to generate cuts. We generate cutting planes
that define facets of the convex hull of a discrete relaxation. More precisely, we use relaxed decision
diagrams to compactly represent a set of integer points that contains all feasible solutions and
potentially some infeasible solutions. Then, we find cutting planes that are facet-defining for the
convex hull of these points.

Relaxed decision diagrams are appealing for this purpose as they may contain information about
the discrete structure of the problem that is not captured by an LP relaxation. For example, relaxed
decision diagrams can produce stronger bounds than LP relaxations for problems such as maximum
independent set, maximum cut, and maximum 2-satisfiability [22, 20]. They also have the advantage
that the strength of the relaxation is adjustable, which enables us to control the trade-off between
the strength of the cuts and the time it takes to generate a cut. Lastly, these cuts are independent
from the continuous relaxation that produces the fractional point to separate, and only require a
(relaxed) decision diagram for the problem at hand.

In principle, the set of feasible solutions for every bounded pure integer program can be
represented by decision diagrams (see Section 2.7.2). That said, constructing small, yet strong,
relaxed decision diagrams may be challenging, depending on the application. The approach of
Bergman et al. [22, 20] utilizes a dynamic programming formulation of the problem for this purpose.
Therefore, if strong problem-specific construction methods exist, we can take advantage of them
in our generic method. For example, in our computational experiments we will use a construction
method for the independent set problem that is known to produce relatively strong relaxations.
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Decision diagrams have been previously applied to cut generation for integer programs by Becker
et al. [11]; see also [12]. In these works, the authors represent a subset of active constraints exactly
with a decision diagram. Valid cuts are then generated via a Lagrangian relaxation, using the
decision diagram as an optimization oracle. Our method has some similarities to these previous
works, but it differs from them in several ways. From a formal standpoint, we investigate the
correspondence between decision diagrams and polar sets, which enables us to prove that the
generated cuts from exact decision diagrams are facet-defining. In practice, we use relaxed decision
diagrams rather than exact decision diagrams for a subset of constraints. The strength of relaxed
decision diagrams can be controlled by a maximum width parameter.

These cuts, directly generated from a polar set, are called target cuts, a term coined by Buchheim
et al. [27]. The main difference between their approach and ours is that they use projection to make
the separation problem tractable, while we use relaxed decision diagrams.

The embedding of decision diagram-based target cuts in integer programming solvers can be
realized in different ways. The most natural integration is to build a (relaxed) decision diagram
for the entire problem at hand. For several combinatorial optimization problems, such decision
diagrams have already been developed and can be readily used [20]. In principle, it is possible to
automatically build decision diagrams for arbitrary integer programming models [12], although the
associated relaxed decision diagrams may not be sufficiently strong. Alternatively, it is possible
to automatically generate a decision diagram for specific substructures of problem at hand, such
as clique constraints, covering constraints, or partitioning constraints. The associated target cuts
would then be facet-defining for those substructures, but also valid for the overall problem.

The remainder of the chapter is structured as follows. In Section 1.2.2, we introduce the general
concepts and notation regarding decision diagrams. We then review target cuts in Section 4.2.
Section 4.3 provides the relationship between decision diagrams and polyhedra for binary integer
programs. We introduce the target cut generation method in Section 4.4. Section 4.5 describes how
to construct certificates of the dimension of faces defined by cuts. In Section 4.6, we generalize
the results from binary integer programs to any bounded integer program. Section 4.7 contains
extensive computational results on the independent set problem to assess the potential strength of
the target cuts. Section 4.8 concludes this chapter.

In this chapter, for simplicity we will focus first on binary decision diagrams (BDDs) before
discussing multivalued decision diagrams (MDDs).

4.2 Target Cuts

Before defining target cuts, we first recall a concept from convex analysis useful in cutting plane
theory. The polar set of an n-dimensional set S is defined as

S◦ = {u ∈ Rn : u>x ≤ 1 ∀x ∈ S}.
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x1

x2

ω

x-

x1 +  x 2 ≤ 1

Figure 4.1: Geometrical interpretation of a target cut. A target cut defines a facet that intersects
the segment between the point x̄ to separate and an interior point ω of the polyhedron.

That is, the polar set can be viewed as the set of (coefficients of) all inequalities of the form u>x ≤ 1
that are valid for S. If the origin happens to be in the interior of the convex hull of S, denoted by
conv(S), then the polar set corresponds to all inequalities valid for S. This is because any inequality
strictly satisfied by the origin has a positive right-hand side and vice versa, and such inequality may
be normalized to a right-hand side of 1.

An important property of polar sets is that each vertex of the polar set of S corresponds
one-to-one to a facet of the convex hull of S, under the assumptions that conv(S) is full-dimensional
and the origin is in the interior of conv(S). In other words, it allows us to relate the vertices of
a polyhedron to its facets, and thus it is a natural channel through which we can generate valid
inequalities from a discrete relaxation. For further details on polar sets, see e.g. [52].

Target cuts can be defined geometrically or algebraically [27]. Their name comes from the
geometric view illustrated in Figure 4.1 and they are defined as follows. The problem we consider is
to separate some set S from a point x̄ /∈ conv(S). Let ω be an interior point of conv(S) and assume
conv(S) is a polyhedron. If we shoot a ray from the interior point ω to the point x̄ – that is, we
view x̄ as a “target to shoot at” – then a target cut is an inequality defined by a facet of conv(S)
intersected by the ray. Observe that the ray may intersect more than one facet by hitting a lower
dimensional face, and thus more than one target cut may exist for given x̄ and ω.

From an algebraic perspective, a target cut is a valid and facet-defining cut for conv(S) and
has maximum violation (for a normalized right-hand side of 1) with respect to x̄ in the translated
space where ω is the origin. Such an inequality is tightly connected to polar sets: its coefficients are
given by an extreme point of (S − ω)◦ with maximum violation. Therefore, we may formally define
a target cut as an inequality u∗>(x− ω) ≤ 1 where u∗ is an optimal extreme point solution for the
problem max{u>(x̄− ω) : u ∈ (S − ω)◦}. This inequality is valid and facet-defining for S since it
is given by an extreme point of the polar set and it cuts off x̄ since we maximize violation. The
equivalence between the geometrical and algebraic definitions is given by Buchheim et al. [27].

The choice of S is crucial: ideally we would like S to be the (integer) feasible set itself, but
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optimizing over its polar set is generally impractical as it has as many constraints as (integer)
feasible solutions of the problem. Therefore, we let S be some tractable projection or relaxation of
the feasible set of the problem, which still yields a cut valid for the feasible set. Note that since we
want to cut off x̄, this relaxation cannot be the one that yielded x̄ or any strictly weaker relaxation.

Buchheim et al. [27] make the separation problem for target cuts tractable by considering a
sufficiently small projection of the polytope. Target cuts in this form have been computationally
investigated for a number of applications: certain constrained quadratic 0-1 problems [28], the
maximum cut problem [24], the equicut problem [8], and robust network design [29]. Our method
differs from their approach in that we turn the cut generation tractable by using relaxed decision
diagrams instead of projection.

In other previous work, Boyd [25] relates these cuts, under the name 1-polar cuts, to Fenchel
cuts from a theoretical perspective. This method among others was also discussed by Cadoux
et al. [30], under the assumption that an oracle for optimizing over the polar set is available. In
addition, target cuts are closely related to local cuts [31], which support face certificates such as
those described in Section 4.5.

4.3 Decision Diagrams and Polyhedra

The correspondence between paths and points in decision diagrams allows us to relate them to
certain useful polyhedra. In this section, we first review a result from Behle [12] connecting decision
diagrams to the convex hull of the set of points they represent. Then, we show that polar sets can
be obtained from decision diagrams in a similar fashion.

4.3.1 Convex hull

Let S be a set of binary points of dimension n, for example the feasible set of a binary IP. Denote
by projx(P ) the projection of P onto x. That is, projx(P ) := {x : ∃y s.t. (x, y) ∈ P}. Let us first
write down the definition of convex hull:

conv(S) =

x ∈ Rn : ∃α s.t.
∑
x̂∈S

αx̂x̂ = x,
∑
x̂∈S

αx̂ = 1, α ≥ 0

 .
Here, α takes the role of the coefficients through which x can be expressed as a convex combination

of the points of S. In the context of BDDs, the role of α can be taken by flow variables as in the
theorem below. Denote by δ+(i) and δ−(i) respectively the set of outgoing arcs from i and incoming
arcs to i.

Theorem 4.1 (Behle [12]). Consider a BDD B with vertices V and arcs A representing the set of
points S, with root s and terminal t. Assume B has no long arcs. Let Sk be the set of 1-arcs at
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layer k. Define

Pflow(B) = {(f, x) ∈ R|A| × Rn :
∑

j∈δ−(i)
fji −

∑
j∈δ+(i)

fij = 0 ∀i ∈ V r{s, t},

∑
j∈δ+(s)

fsj = 1,

∑
(i,j)∈Sk

fij = xk ∀ layer k,

fij ≥ 0 ∀(i, j) ∈ A}.

Then

projx(Pflow(B)) = conv(S).

Compare the above formulation with the original convex hull formulation. The first two classes
of constraints in Pflow(B) indicate that f is a feasible flow of value one on the BDD B, which take
the role of ensuring that the coefficients α of the convex combination sum up to one. The third
constraint ensures that the total flow through the 1-arcs of each layer k is equal to xk, which mirrors
expressing x in terms of the coefficients α.

More precisely, a feasible flow of value 1 can be viewed as an edge weight vector representing
the weights of a convex combination of paths from s to t. Since each path from s to t in the BDD
corresponds to a point of S and vice versa, the flow can be translated to the coefficients of a convex
combination of the points of S that yields x.

Note that the above theorem not only gives us a way to check if a point x is in conv(S) or not,
but it also allows us to explicitly express x as a convex combination of the points of S. This can be
done by decomposing the flow into weighted paths.

If the BDD has long arcs, the theorem can be adapted by generalizing Sk. Let Sk instead be the
set of arcs that have xk = 1 as part of their labels. The rest of the theorem remains the same.

More generally, a similar characterization can also be obtained for dynamic programming
formulations [48].

4.3.2 Polar set

We now relate a BDD representing a binary set of points S to the polar set of S, defined by
S◦ = {u ∈ Rn : u>x ≤ 1 ∀x ∈ S}. As previously discussed, polar sets are essential to the generation
of target cuts.

Consider again a BDD B with vertices V , arcs A, root s, and terminal t representing S. Assume
B has no long arcs for now. We define a polyhedron P ∗(B) and show that it formulates S◦ in a
higher dimension.
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Our model is constructed with the following intuition. First, view the constraints of the polar
set as 1−

∑n
k=1 ukxk ≥ 0 for each x ∈ S. That is, if we start with a budget of 1 and pay a cost of

uk whenever xk = 1, we must end up with a nonnegative value.
We translate this intuition into the context of decision diagrams. Define variables vi for each

node i and uk for each layer k. Start at s with a budget of vs = 1 and traverse the BDD towards t.
For each layer-k 1-arc traversed, we pay a cost of at least uk. The value vi at each node i must be
consistent with every path leading to i. Finally, when we reach t, we must have at least vt = 0
remaining for every path up to t. Note that u and v may be negative.

This intuition leads to the following formulation.

P ∗(B) = {(u, v) ∈ Rn × R|V | : vj ≤ vi − uk ∀ 1-arc (i, j) of layer k,

vj ≤ vi ∀ 0-arc (i, j),

vs = 1,

vt = 0}

In other words, for each path corresponding to x we pay a total of
∑n
k=1 ukxk from a budget of

1 to traverse from s to t, so we ensure that u>x ≤ 1 for all x ∈ S. We formalize this interpretation
below.

Theorem 4.2. proju(P ∗(B)) = S◦.

Proof. (⊆) Let u ∈ proju(P ∗(B)). We want to show that u>x ≤ 1 for all x ∈ S. Let x ∈ S. Then x
corresponds to a path p from s to t in the BDD. For each layer-k arc (i, j) in p, we have vj ≤ vi if
xk = 0 or vj ≤ vi − uk if xk = 1. By summing up all these constraints, they imply vt ≤ vs − u>x.
Since vs = 1 and vt = 0, u>x ≤ 1. Hence u ∈ S◦.

(⊇) Let u ∈ S◦, that is, u>x ≤ 1 for all x ∈ S. We want to show that there exists v such that
the constraints of P ∗(B) are satisfied. Define

vs = 1, vt = 0

vj = min
{

min
1-arc (i, j) of layer k

{vi − uk}, min
0-arc (i, j)

{vi}
}
∀j ∈ V r{s, t}.

By construction of v, all constraints are satisfied except possibly the constraints for layer-n arcs
(i, t). To show they are also satisfied, define v̂t := min

{
min1-arc (i, t){vi − un},min0-arc (i, t){vi}

}
,

which is the definition of vj above applied to j = t. It suffices to show that vt ≤ v̂t since this
encapsulates all arc constraints for layer n.

The definitions of v and v̂t imply that there is a path p from s to t such that v̂t = vs−
∑
k∈Sp

uk,
where Sp is the set of layers in which p has a 1-arc. In other words, there exists an x ∈ S such that
v̂t = 1− u>x. Since u ∈ S◦, we have 1− u>x ≥ 0, and hence v̂t ≥ 0 = vt.
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x1

x2

x3

Figure 4.2: Process described in the alternative proof of Theorem 4.2: projecting out of the node
variables iteratively until we reach an explicit description of the represented set. Dashed and full
parts of long arcs indicate the labels of 0 and 1 respectively for the corresponding layer.

Therefore, all constraints of P ∗(B) are satisfied for (u, v) and thus u ∈ proju(P ∗(B)).

Theorem 4.2 assumes that B has no long arcs, but it can be adapted to consider them in their
general form. To do so, it suffices to generalize the arc constraints in P ∗(B). Suppose that we have
a long arc (i, j) from layer k to k + r labeled with the partial solution xk = `k, . . . , xk+r = `k+r.
Then we write its corresponding constraint in P ∗(B) as vj ≤ vi −

∑k+r
p=k `pup. The first part of the

above proof still holds for this variant: by summing up the arc constraints in a path representing x
including the long arcs, we still obtain u>x ≤ 1. The second part also holds if we generalize vj to
minarc (i, j) of label `{vi −

∑k+r
p=k `pup}.

In light of the idea of long arcs, we present an alternative proof for Theorem 4.2 that provides
additional insight.

Alternative proof for Theorem 4.2. We consider what occurs when we apply one step of Fourier-
Motzkin elimination in order to project out a variable v. Here we assume long arcs may exist.

In our context, applying Fourier-Motzkin elimination to v is reduced to summing up the
constraints of each pair of incoming and outgoing arcs of v. More specifically, for each pair of
incoming arc (i, v) labeled `in and outgoing arc (v, j) labeled `out, we replace their corresponding
constraints by the constraint vj ≤ vi −

∑
p∈R `pup, where ` is the label `in concatenated with `out

and R is the range between the layers of i and j. We may view this as replacing these arcs by a
long arc with label `.

Therefore, if we apply Fourier-Motzkin elimination to all nodes of the BDD except s and t, the
result is a graph with one long arc for each original path with the label of the corresponding point x,
as illustrated in Figure 4.2. This implies proju(P ∗(B)) = {u ∈ Rn : 0 ≤ 1− u>x ∀x ∈ S} = S◦.

This proof shows us that we can replace nodes of the BDD by long arcs until we reach an explicit
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description of all points through long arcs, and in practice any intermediate BDD B constructed
in this process can be used to formulate P ∗(B). For each node v we project out, we replace
in(v) + out(v) arcs by in(v) · out(v) arcs, where in(v) and out(v) is the number of incoming and
outgoing arcs of v respectively. In particular, we can remove any node with a single incoming arc or
a single outgoing arc and reduce the number of arcs by one. We can also remove any node with two
incoming arcs and two outgoing arcs without increasing the number of arcs. This process allows us
to construct a more compact version of P ∗(B).

As previously discussed, generating target cuts requires us to work with the polar of a translated
set S. We adapt Theorem 4.2 to characterize (S − ω)◦ with BDDs for any point ω. Doing so only
requires a modification of the vs = 1 constraint in P ∗(B). Define

P ∗ω(B) = {(u, v) ∈ Rn × R|V | : vj ≤ vi − uk ∀ 1-arc (i, j) of layer k,

vj ≤ vi ∀ 0-arc (i, j),

vs = 1 + u>ω,

vt = 0}.

Then, given S as the set of points represented by B,

Theorem 4.3. proju(P ∗ω(B)) = (S − ω)◦.

Proof. The proof of Theorem 4.2 can be adapted to prove this theorem. Note that (S − ω)◦ = {u :
u>(x−ω) ≤ 1 ∀x ∈ S} = {u : u>x ≤ 1 +u>ω ∀x ∈ S}. In the proof of Theorem 4.2, vs leads to the
right-hand side of the constraints in the polar set. Therefore, instead of replacing vs by 1, replace
vs by 1 + u>ω, and the same steps lead to this result.

Theorem 4.3 is not only useful for our cut generator in this chapter, but it also provides
theoretical insight on the representability of BDDs with respect to polyhedra. Define a sub-BDD of
a BDD B as a subgraph of B structured as a BDD with the same root and terminal nodes.

Corollary 4.4. Let B be a BDD representing S. The set of binary points of any face of conv(S) is
representable by a sub-BDD of B.

Proof. Let F be a face of conv(S). Let ω be a point in the relative interior of conv(S). Denote by
Sω the translation of S so that it contains the origin in its relative interior, that is, Sω = S − ω.
Additionally, consider the similarly translated Fω = F − ω.

Consider a valid inequality u>x ≤ v defining Fω. That is, {x ∈ conv(Sω) : u>x = v} = Fω.
Since the origin is satisfied by the inequality, v ≥ 0. Without loss of generality, we consider the
cases v = 0 and v = 1, since the inequality can be normalized when v > 0.
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Suppose the inequality is of the form u>x ≤ 0. Then it must be an implicit equality – in other
words, u>x = 0 is valid – because otherwise the origin would not be in the relative interior of
conv(Sω). Then Fω = Sω, and thus F = S, which is representable by B.

Suppose the inequality is of the form u>x ≤ 1. This implies u ∈ S◦ω. By Theorem 4.3, there
exists v such that (u, v) ∈ P ∗ω(B). We call an arc tight if its corresponding constraint for P ∗ω(B)
is tight for (u, v). That is, an `-arc (i, j) at layer k is tight if vj = vi − `uk (or, if (i, j) is a long
arc, vj = vi −

∑
p `pup). We call a path tight if it is composed only of tight arcs. Let T be the set

of arcs that are in at least one tight path from the root s to the terminal t. The subgraph of B
induced by T forms a sub-BDD B′.

Let S′ be the set of points represented by B′. Then x ∈ S′ if and only if x corresponds to a
tight path from s to t, or equivalently u>x = 1 + u>ω by summing up all constraints of the path.
This implies S′ = {x ∈ conv(S) : u>(x− ω) = 1} = Fω + ω = F . Therefore B′ represents the set of
binary points of the face F .

In other words, if we take the sub-BDD given by the paths corresponding to the points of a face,
we do not end up including a path corresponding to a point not in the face.

Corollary 4.4 establishes that it is easy to represent the points of any face of a polytope
corresponding to a BDD if it is easy to represent the points of the BDD itself. This can also be
interpreted as a negative result: if a face of conv(S) is represented by a reduced BDD with N nodes
(recall that reduced BDDs are unique), then we cannot hope to construct an exact BDD representing
S with less than N nodes with the same variable ordering.

As a final remark to this section, there is a good reason why Theorems 4.1 and 4.2 are similar:
they are connected by duality. Given λ ≥ 0, define Pλ(B) as Pflow(B) except that we replace the
constraint

∑
j∈δ+(s) fsj = 1 by

∑
j∈δ+(s) fsj = λ. It is possible to slightly adapt Theorem 4.1 so that

we have a more general result: projx(Pλ(B)) = λ conv(S).
Then, given x and assuming solutions to the problems below exist, we have the following duality

relationship:

min{λ ∈ R+ : ∃f s.t. (f, x) ∈ Pλ(B)} = max{u>x : ∃v s.t. (u, v) ∈ P ∗(B)}.

This mirrors a duality relationship known in convex analysis: given a closed convex set C
containing the origin, the gauge function of C is equal to the support function of C◦ – see e.g. [38].
The gauge function of a closed convex set C containing the origin is defined as inf{λ > 0 : x ∈ λC}
and the support function of a nonempty set C is defined as sup{〈s, x〉 : s ∈ C}. In our context, this
applies to C = conv(S).
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4.4 Target Cut Generation from Decision Diagrams

4.4.1 Cut generation algorithm

The theory developed in the previous section is useful to generate target cuts with respect to decision
diagrams. Our cut generating algorithm consists of two steps:

1. construct a relaxed decision diagram B, and

2. optimize over P ∗ω(B) to generate a cut.

In this work, we assume that a relaxed decision diagram is already constructed for us and we
now show that the second step yields a valid cut.

We first consider the separation problem with respect to an arbitrary polyhedron P : given a
point x̄, we would like to either find an inequality valid for P and violated by x̄, or decide that x̄ ∈ P .
Ideally, we would like P to be the integer hull of the problem, but that is typically intractable. We
return to the choice of P after discussing how to obtain a valid cut.

The following classic result in polarity theory, discussed for instance in [52], captures an important
property of polar sets.

Theorem 4.5. Let P be a full-dimensional polyhedron containing the origin as an interior point.
Then u>x ≤ 1 is a facet-defining inequality of P if and only if u is an extreme point of P ◦.

Moreover, given a finite set S, conv(S)◦ = S◦ when conv(S) contains the origin. This allows us
to work directly with S◦ to generate facet-defining inequalities for conv(S).

The condition on the origin can be replaced if we are given an interior point ω of P . In this
case, we may translate P so that ω is in the origin and apply the above theorem. Note that we
must also translate the resulting inequality back, as detailed below.

Corollary 4.6. Let P be a full-dimensional polyhedron and let ω be an interior point of P . Then
u>(x− ω) ≤ 1 is a facet-defining inequality of P if and only if u is an extreme point of (P − ω)◦.

Finally, we may view the above corollary from the perspective of cut generation as follows.

Proposition 4.7. Let P be a full-dimensional polyhedron. Let ω be an interior point of P , a point
x̄ we want to separate, and

u∗ = arg max
u
{u>(x̄− ω) : u is an extreme point of (P − ω)◦}.

Then u∗>x ≤ 1 + u∗>ω is a facet-defining cut for x̄ if u∗>(x̄− ω) > 1, or x̄ ∈ P otherwise.

Proof. The optimal point u∗ can be attained because the polar of a set containing the origin in its
interior is bounded. By Corollary 4.6, the inequality is facet-defining for P . Moreover, the inequality
is a valid cut for x̄ because we maximize the violation of the inequality with respect to x̄, and thus
a cut will be found if and only if x̄ /∈ P .
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Proposition 4.7 summarizes target cut generation. We return to the choice of P . We would like
P to be a tractable polyhedron that is close to the integer hull of the problem and yields valid cuts,
such as a relaxation of the integer hull. Buchheim et al. [27] chooses P to be a sufficiently small
projection of the integer hull.

In our algorithm, we let P be the convex hull of the set S of points represented by a relaxed
decision diagram B. Any inequality valid for a relaxation of the problem is also valid for the problem
itself, and therefore we may use this method to generate valid cuts if we can optimize over S◦. We
have shown in the previous section that P ∗(B) formulates S◦ in a higher dimensional space, and
thus if the decision diagram has a small enough number of arcs, then generating a target cut should
be tractable.

Therefore, the algorithm can be concisely summarized as follows. Given a relaxed decision
diagram B representing S, optimize over P ∗ω(B) for some interior point ω of conv(S), and the resulting
point is a valid cut for x̄ if x̄ /∈ conv(S). A more precise description is given in Algorithm 4.1, which
also includes details addressed later in this section.

So far we have assumed that conv(S) is full-dimensional and an interior point ω is known. We
eliminate these assumptions in the following subsections. Finally, at the end of this section we
discuss the degenerate case where an extreme point of P ∗(B) does not project down to an extreme
point of conv(S), required for the facet-defining property of the cut.

4.4.2 Non-full-dimensional case

We have assumed so far that conv(S) is full-dimensional. Two modifications to the algorithm are
required to remove this assumption: the point ω is generalized to be in the relative interior of
conv(S) rather than the interior, and we must handle the case when the problem is unbounded.

If the problem is bounded, the algorithm remains the same. If the problem is unbounded, then
let r∗ be an unbounded ray. Buchheim et al. [27] show that r∗>(x− ω) = 0 is a valid equality that
is violated by x̄. Thus the algorithm may return this equality.

4.4.3 Obtaining an interior point

A relative interior point ω can be obtained from B. The geometric center of S – that is, the
arithmetic mean of all points of S – can be obtained in time linear in the number of nodes of
B [12], which can be used for this purpose. Note that the center of S is in the relative interior
of conv(S) because it can be expressed as a convex combination of all vertices of conv(S) with
(positive) uniform coefficients.

We present an alternative method to compute the center of S that is more suitable to our
context, relative to the one proposed by Behle [12]. This may be useful to obtain an interior point
for the target cut approach.
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Algorithm 4.1 BDD-based target cut generation algorithm
Input: Relaxed (or exact) BDD B representing a set of points S and point x̄ to separate.
Output: Decide whether x̄ ∈ conv(S) or not. If x̄ /∈ conv(S), return a valid inequality or equality
that separates x̄ from conv(S).

BDD-Target-Cut-Generator(B, x̄)
ω ← relative interior point of conv(S) (e.g. the geometric center of S)
find an optimal solution or unbounded ray (u∗, v∗) to the following problem:

max u>(x̄− ω)
vj ≤ vi − uk ∀ 1-arc (i, j) of layer k,
vj ≤ vi ∀ 0-arc (i, j), (P)
vs = 1 + u>ω,

vt = 0.

if (u∗, v∗) is an optimal solution then
if u∗>(x̄− ω) ≤ 1 then

return x̄ ∈ conv(S) . i.e., a cut cannot be derived from the relaxation B
else

optionally ensure u∗ is an extreme point of S◦ (see Section 4.4.4)
return u∗>x ≤ 1 + u∗>ω, a cut separating x̄ from conv(S)

else if (u∗, v∗) is an unbounded ray then
return u∗>x = u∗>ω, a valid equality separating x̄ from conv(S)
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The first step is to compute, for each arc (i, j), the number of paths nij from root s to terminal
t that traverse (i, j). To do so, observe that nij = n−i + n+

j , where n
−
i is the number of paths from

s to i and n+
j is the number of paths from j to t. Calculating the former can be done in a single

top-down pass: at node s we have n−s = 1, and at each node i 6= s, we let n−i =
∑
j∈N−(i) n

−
j , where

N−(i) denotes the parents of i. Likewise, the latter can be computed in a bottom-up pass: n+
t = 1

and n+
i =

∑
j∈N+(i) n

+
j , where N+(i) denotes the children of i.

We then use nij to calculate the total number N`,k of paths with label ` at layer k. That is,
N`,k :=

∑
(i,j)∈S`,k

nij , where S`,k is the set of `-arcs in layer k. Since paths of B correspond to
points of S, N`,k is the total number of points x ∈ S such that xk = `. In addition, note that
N :=

∑
(i,j)∈δ+(s) nij is the total number of points of S. Therefore, the center of S can be expressed

as 1
N (0N0,1 + 1N1,1, . . . , 0N0,n + 1N1,n) = 1

N (N1,1, . . . , N1,n).
Boyd [25] argues that one must be careful when selecting the interior point because the resulting

facet depends on this choice. For example, if the point is too close to a facet, then from the
geometrical interpretation of target cuts we can see that the algorithm prioritizes that facet. With
this intuition in mind however, the center of S appears to be a balanced choice of interior point.

This approach may not be necessary for certain problems. For example, it is easy to find an
interior point for the independent set problem, as discussed in Section 4.7.1.

4.4.4 Ensuring a facet-defining cut

There is one final detail to complete the algorithm. The cut generator as described so far will
produce a cut for x̄, but it may not be facet-defining with respect to the convex hull of the points S
defined by the BDD relaxation.

An extreme point of the polar set is required in order to obtain a facet-defining cut. If we use
the simplex algorithm, we obtain an extreme point (u∗, v∗) of P ∗ω(B). However, u∗ is not necessarily
an extreme point of proju(P ∗ω(B)) = (S − ω)◦. Note that this may only happen in the degenerate
case where u∗ is not a unique optimal solution.

We propose two methods to obtain an extreme point of (S − ω)◦: an exact method and a
heuristic method. The former requires n invocations of an LP solver, which may make it impractical
for larger instances, but it is theoretically relevant as it produces a facet-defining cut in polynomial
time.

Assume that the solution is not an extreme point of proju(P ∗ω(B)). Let V ∗ be the optimal value
of the problem, that is, V ∗ = u∗>(x̄ − ω). First note that u∗ lies on the face F of proju(P ∗ω(B)),
where F = {u ∈ proju(P ∗ω(B)) : u>(x̄− ω) = V ∗}. We are interested in finding an extreme point of
F , as it is also an extreme point of proju(P ∗ω(B)) and it is optimal.

The following algorithm ensures that the solution is an extreme point of F . First, add the
constraint u>(x̄ − ω) = V ∗ to the LP. For j = 1, . . . , n, iteratively reoptimize the problem by
maximizing uj , and at the end of each iteration add the constraint uj = vj , where vj is the optimal
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value at iteration j. At the end of this algorithm, we obtain an extreme point of F . To see why, let
F j be F with the addition of these constraints up to iteration j. Throughout the algorithm, we
maintain the property that F j is a face of F . Since Fn must be a single point and it is a face of F ,
the final solution is an extreme point of F . Note that we can stop any time none of the reduced
costs of the nonbasic variables are zero, since then the solution is unique and hence an extreme
point of F .

The systematic method above may be too slow for efficient application in practice. A faster
heuristic is as follows. As before, first add the constraint u>(x̄− ω) = V ∗ to the LP. Then apply a
small random perturbation to the objective with respect to the u variables and reoptimize. The
resulting solution is likely to be unique since, for any polytope, optimizing over a uniform random
direction yields a unique solution with high probability.

4.5 Face Certificates

Duality allows us to numerically certify that a target cut separating x̄ from S is facet-defining for
conv(S) in the case S is given explicitly. If S is given implicitly in a decision diagram, we may not
obtain a facet-defining cut directly from the cut generating LP as discussed in the previous section.
Nevertheless, we can still find a lower bound for the dimension of the face defined by the cut and
certify it.

Define a k-face certificate for an inequality u>x ≤ 1 as a set C of k affinely independent
points in S such that u>x = 1 for all x ∈ C. It certifies by definition that the face given by
{x ∈ conv(S) : u>x = 1} has dimension at least k.

Our goal is to find face certificates when S is implicitly represented as a decision diagram. Recall
that the LP we solve to generate a target cut from a decision diagram B with nodes V and arcs A is
maxu,v{u>x̄ : (u, v) ∈ P ∗(B)}, denoted by (P). Its dual is minf{

∑
j∈δ+(s) fsj : f ∈ P̃flow}, denoted

by (D), where P̃flow = {f ∈ R|A| :
∑
j∈δ−(i) fji −

∑
j∈δ+(i) fij = 0 ∀i ∈ V r{s, t},

∑
(i,j)∈Sk

fij =
x̄k ∀ layer k, f ≥ 0}.

In order to obtain face certificates, we apply flow decomposition to an optimal value of (D).
Consider the following class of flow decomposition algorithms, which turns a flow f into weights
α for all paths (points in S). The algorithm below, which we call standard flow decomposition,
iteratively selects paths and absorbs all possible flow in each step.

1. Choose a path p with positive flow according to any criteria. Let e be the bottleneck arc of p:
e = arg mine′∈p fe′ . Set αx to fe, where x is the point corresponding to p.

2. Reduce the flow of the path p by fe. That is, set fe′ to fe′ − fe for all e′ ∈ p.

3. Repeat steps 1 and 2 until the value of the flow becomes zero.

4. Set all remaining αx to zero.
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The following theorem assures that, after solving (P) to optimality, if we apply a standard flow
decomposition to its dual (D) and obtain k points with positive flow, then the dimension of the face
of conv(S) defined by the cut is at least k. Denote by S+

α the set {x ∈ S : αx > 0} for a given α.

Theorem 4.8. Let (u∗, v∗) and f∗ be an optimal primal-dual pair for (P) and (D). If f∗ is an
extreme point of P̃flow and α∗ is the result of a standard flow decomposition applied to f∗, then S+

α∗

is a |S+
α∗ |-face certificate for u∗>x ≤ 1 with respect to conv(S).

Proof. See Appendix 4.A.

In the remainder of this section, we consider the case where conv(S) is used as a relaxation of
the problem and we would like to find face certificates with respect to the integer hull PI of the
problem rather than conv(S). In other words, we seek a flow decomposition algorithm that finds a
set S+

α with many points in PI .
First note that finding S+

α that maximizes |PI ∩ S+
α | is NP-hard. If we applied such a method

to any flow that is positive in all arcs, it would allow us to identify whether a decision diagram
contains a point in PI or not. This is NP-hard because it generalizes the 0-1 IP feasibility problem,
if we consider the width-1 decision diagram representing {0, 1}n.

Instead, we use a simple heuristic criterion: at each step of the decomposition, we choose a path
that minimizes the sum of violations across all constraints of the corresponding IP. Finding this
path is a matter of optimizing over the BDD, which can be done efficiently.

These certificates have further practical uses other than being a measure of strength. For
instance, since they can be computed relatively quickly, they may be used in a rule to determine
whether to continue generating more cuts or not. Moreover, any point from a certificate for PI is a
feasible point for the problem and may be used as a primal bound.

4.6 Multivalued Decision Diagrams

Up to the previous section, we have only considered binary decision diagrams. In this section, we
extend the theoretical framework and cut generator to multivalued decision diagrams (MDDs). A
multivalued decision diagram is a generalization of a binary decision diagram where we allow arcs
to represent any value from a finite set, not only 0 or 1. This allows us to represent the feasible set
of any bounded pure integer program.

Theorems 4.1, 4.2, and 4.3 may be adapted to the case the decision diagram is multivalued.
Let M be an MDD with vertex set V , arc set A, root node s, and terminal t. Let S be the set of
points M represents.

We start with Theorem 4.1. Denote by Dk the (finite) domain of variable k; that is, xk may
take any value in Dk. For every layer k and ` ∈ Dk, let Sk,` be the set of arcs that have xk = ` as
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part of their labels. We generalize Pflow by adapting only the third class of constraints, as shown in
the following formulation:

Pflow,MDD(M) = {(f, x) ∈ R|A| × Rn :
∑

j∈δ−(i)
fji −

∑
j∈δ+(i)

fij = 0 ∀i ∈ V r{s, t},

∑
j∈δ+(s)

fsj = 1,

∑
`∈Dk

∑
(i,j)∈Sk,`

`fij = xk ∀ layer k,

fij ≥ 0 ∀(i, j) ∈ A}.

Then

Theorem 4.9. projx(Pflow,MDD(M)) = conv(S).

Theorem 4.9 holds for the same reason as Theorem 4.1: a flow f in Pflow,MDD(M) may be viewed
as a convex combination of paths, and thus x corresponds to a convex combination of points in S.
This modification only generalizes the correspondence between f and x to accept values other than
0 and 1.

We now adapt Theorem 4.2. Assume M has no long arcs for now. We generalize the polytope
P ∗ from Section 4.3.2 as follows:

P ∗MDD(M) = {(u, v) ∈ Rn × R|V | : vj ≤ vi − `uk ∀ `-arc (i, j) of layer k,

vs = 1, vt = 0}.

If M has long arcs, then the same modification from Section 4.3.2 applies here: if the label of
the long arc is (`k, . . . , `k+r), then we generalize the term `uk above to

∑k+r
p=k `pup.

Similarly to Theorem 4.2, this polytope can be projected to the space of the u variables to
obtain the polar set of S.

Theorem 4.10. proju(P ∗MDD) = S◦.

The alternative proof of Theorem 4.2 from Section 4.3.2 already takes into account general
labels, and thus it proves Theorem 4.10 without any changes.

Finally, let P ∗ω,MDD(M) be equal to P ∗MDD(M) except that we replace the constraint vs = 1 by
vs = 1 + u>ω. The theorem below generalizes Theorem 4.3 for MDDs.

Theorem 4.11. proju(P ∗ω,MDD) = (S − ω)◦.

Theorem 4.11 can be shown through the same line of reasoning as in Theorem 4.3.
Given that the entire theoretical framework from Section 4.3 can be generalized to MDDs, the

cut generation algorithm also follows. In order to generate a target cut from a relaxed MDD M , we
apply Algorithm 4.1, except that we optimize over P ∗ω,MDD(M) rather than P ∗ω(B) for a BDD B.
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The theorems above show that MDDs can be used to generate target cuts for general bounded
IPs. However, for a given combinatorial structure, a binary formulation may work best for an
IP solver, but at the same time an MDD may be more natural or compact than a corresponding
BDD. We next show how we can use an MDD to generate cuts for the binary IP formulation. More
precisely, for each variable xk with value ` in the MDD, we define variables ykp with value 1 when
p = ` or 0 otherwise, for j = 1, . . . , L. These variables will be used to represent the binary IP model.

Let Sbin be the feasible set of this binarized IP. Then we may directly obtain the polar set of
Sbin, allowing us to generate cuts for a binary IP from an MDD. Define

P ∗MDD,bin(M) = {(u, v) ∈ RnL × R|V | : vj ≤ vi − uk` ∀ `-arc (i, j) of layer k,

vs = 1, vt = 0}.

Corollary 4.12. proju(P ∗MDD,bin) = S◦bin.

Proof. We utilize the equivalence of the MDD with an associated BDD. Suppose that we replace
a variable xk by the corresponding binary variables ykp for p = 1, . . . , L. This transformation can
be viewed in the MDD as replacing each `-arc by a long arc with label yk` = 1 and ykp = 0 for
p 6= `. The resulting decision diagram is a BDD B with long arcs. Observe that P ∗(B) is exactly
the polyhedron P ∗MDD,bin(M) above. Note that since we only replaced the arc labels, the graph
structures of the MDD and BDD are the same.

Therefore, we may optimize over P ∗MDD,bin(M) to generate cuts from an MDD M for the
corresponding binary IP.

4.7 Computational Results

We computationally investigate target cuts from relaxed decision diagrams from two points of view:
strength and practicality. To evaluate the strength of the cuts, we observe the objective gap closed
by the cuts and the dimensions of the faces they define. We do so on smaller instances for which
we can construct the exact BDD, as we are interested in how they vary with the strength of the
relaxation. Next, we examine overall solving times and size of the branch-and-bound tree on larger
instances to determine how practical these cuts are. This takes into consideration the time it takes to
generate them. Finally, we compare them to the Lagrangian approach proposed by Becker et al. [11].
Implementation and instances are available in https://www.github.com/ctjandra/ddopt-cut.

Before presenting the computational results, we first describe the instances we select and further
details of our experimental setup.
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4. Cutting Planes from Relaxed Decision Diagrams

4.7.1 Instance selection

We test our cut generation algorithm on two problem classes: the maximum independent set problem
and the minimum set covering problem, both unweighted. Our goal is not necessarily to improve
upon the state of the art of solving these problems, but to evaluate the advantages and disadvantages
of target cuts from relaxed decision diagrams.

In particular, we require strong relaxations to generate cuts that can improve the performance
of a MIP solver. Thus, in order to extract meaningful observations about these cuts, we choose
instances of these problem classes for which sufficiently strong relaxations exist. These are high
density graphs for independent set and low bandwidth instances for set covering, which we detail in
the following subsections.

Maximum independent set problem

The maximum independent set problem is to find the maximum number of pairwise nonadjacent
vertices in a given graph. Previous work provides an efficient construction of a reduced BDD for the
independent set problem with bounds comparable or better than LP root node bounds [22].

We use an IP formulation based on clique cover. Given a graph G = (V,E), we generate a clique
cover C of V . Each clique is generated by selecting a vertex with the largest degree and greedily
including vertices with the largest degrees. The maximum independent set problem can be then
formulated as max{

∑
v∈V xv :

∑
v∈C xv ≤ 1 ∀C ∈ C, x ∈ {0, 1}V }.

We test our cut generator on random graphs with varying density, using the Erdős-Rényi model.
That is, we generate a graph G(n, d), on n vertices, in which each pair of distinct vertices is joined
by an edge with probability d. This probability d is also the average density of the graph. We
examine random graphs with densities d equal to 50% and 80%. We find that both IP and BDDs
tend to have more difficulty with graphs of smaller densities when the number of vertices is fixed.
For this reason, the number of vertices of the graphs we test on depend on the density.

We omit experiments on graphs with lower densities since tests on 50% density instances already
illustrate a case where relaxed BDDs are not tight enough for practical cuts. Lower density instances
are less suitable for small tight BDD relaxations.

For experiments on gap closed and dimension, we are interested in how the strength of the
cut changes as we vary the relaxation width. Thus, we use a set of smaller instances for which
we can construct an exact BDD as a benchmark. We consider random graphs with 120 and 300
vertices of densities 50% and 80% respectively. For experiments on solving time and number of
nodes, we consider random graphs with 250 and 400 vertices of densities 50% and 80% respectively.
We examine average results for 10 random instances for each graph size and density.

We use a minimum degree variable ordering to construct the BDD: at each layer, we select the
vertex with the smallest degree with respect to the vertices not yet selected.

Since an interior point is known for the maximum independent set problem, we use the interior
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point ω = ( 1
2n , . . . ,

1
2n), where n is the number of vertices of the instance. This is an interior point

because the zero vector is feasible and all unit vectors ej are feasible, where eji = 1 if i = j or
0 otherwise. This appears to be a reasonable choice as this is a point that is close to the origin
and should not be too close to any facet except the ones defined by the nonnegative constraints.
Moreover, its polyhedron is full-dimensional, so we do not have to be concerned about that aspect
of cut generation.

Minimum set covering problem

Given a set of elements U and a collection S of subsets of U , the minimum set covering is to find the
smallest number of sets in S such that their union covers all elements in U . We use the following
traditional IP formulation: min{

∑
S∈S xi : Ax ≥ 1, x ∈ {0, 1}S}, where A is such that AiS = 1 if

i ∈ S or 0 otherwise.

We test the target cuts on set covering instances where the constraint matrix A has low bandwidth,
known to support strong relaxed decision diagrams. These instances are randomly generated using
the same process from Bergman et al. [17], which creates a staircase-like structure in A. Given
number of variables n, set size k, and bandwidth bw ≥ s, for each row i of A we select a random
subset Si of size k of {i, i + 1, . . . , i + bw − 1}, and we let Aij = 1 if j ∈ Si or 0 otherwise. The
number of constraints of an instance is n− bw + 1.

The three groups of instances that we test on have n = 250 variables, set size k = 30, and
bandwidth bw ∈ {40, 50, 60}. Relaxed BDDs become weaker as the bandwidth increases, so this
choice of parameters allow us to evaluate the performance of the cuts as we weaken the relaxation.
We consider average results of 16 instances for each of these three groups. For the experiments on
strength of cuts in which we examine the full range of widths, we only consider instances of the
smallest bandwidth 40.

While a BDD can be constructed specifically for the set covering problem [19], in our implemen-
tation we use a generic BDD construction for linear inequalities using the top-down construction
from Section 2.7.2, which includes checking if each constraint is infeasible or will always be feasible
with respect to binary domains. To ensure a strong relaxation, the variable order in the BDD is the
same as the column order in the matrix A. In practice, one may run a heuristic to find an ordering
that minimizes bandwidth.

Moreover, the polyhedron is full-dimensional for this particular set of instances when k ≥ 2, as
the linearly independent points (1, . . . , 1) − ej for all j = 1, . . . , n are feasible. We use the point
(1, . . . , 1) as the origin of the target cut. Although it is not an interior point, it is still a valid point
if we are not concerned about generating facets of the form xi ≤ 1.
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4. Cutting Planes from Relaxed Decision Diagrams

4.7.2 Experimental setup

We use CPLEX 12.6 as a MIP solver. It is commonly known that the behavior of MIP solvers
can vary greatly. In order to reduce this variability and emphasize the effect of the cuts, CPLEX
heuristics are disabled. We also compare our cuts with CPLEX cuts separately as we are interested
in the behavior of our cuts independently from other cuts. In other words, CPLEX cuts are disabled
in all of the runs we generate target cuts. The presolve reduction parameter is set to linear in
all experiments, which is required for user cut generation. The root LP is solved with the barrier
method for independent set and the automatic setting is used for set covering. When solving the
LP to generate cuts with CPLEX, we set the preprocessing aggregation limit to a high value (100),
as we find that it can substantially help in solving the LP. The experiments were performed on a
2.33Ghz Linux machine with 32GB of RAM. No issues with memory usage were observed.

The merging rule of a relaxed BDD shapes the relaxation and thus it is natural is to search for
one that works well specifically for generating cuts. However, in our experience, we find that the
standard merging rule that merges nodes with weak objective bounds works well for cut generation.
We observe in preliminary experiments that merging rules based on Euclidean and Manhattan
distance from the point to separate do not perform as well as the objective-based merging rule. In
addition, we examined a rule that merges nodes based on violation with respect to a given inequality.
In fact, even if we give it the inequality one would obtain with an exact BDD, we do not find a
substantial improvement. Therefore, our experiments use the objective-based merging rule for both
problem classes.

In our experiments, we do not attempt to obtain facet-defining cuts with a method from
Section 4.4.4. This is because we already obtain cuts that define high-dimensional faces and the
time to run the perturbation heuristic can be non-negligible for some instances. Appendix 4.B
contains further experiments using the perturbation heuristic, which show they indeed increase the
face dimension fully or almost fully.

4.7.3 Strength of the cuts: Gap closed

Gap closed is a commonly used proxy for the effectiveness of a cut and it is defined as follows. If r
is the objective value at the initial relaxation, bk is the objective value after adding k cuts, and v∗ is
the optimal value of the problem, then the gap closed after k cuts is computed as r−bk

r−v∗ . We are also
interested with these experiments in observing how strong the cuts are as we increase the maximum
width of the BDD.

Figures 4.3 and 4.5 (left) display the gap closed as we iteratively generate more and more target
cuts, using different widths for the relaxed BDD. The BDD width is relative to the exact width: for
example, in “Width 20%” we use a relaxed BDD with 20% of the exact width, and in “Width 100%”
we use an exact BDD. The graphs show that target cuts from relaxed decision diagrams indeed
close a significant percentage of the gap even when the BDD is not exact. We see that they perform
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Figure 4.3: Gap closed for independent set instances of density 80% and 300 vertices (left) and
density 50% and 120 vertices (right).

Figure 4.4: Face dimensions for independent set instances of density 80% and 300 vertices (left) and
density 50% and 120 vertices (right).
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Figure 4.5: Gap closed (left) and face dimensions (right) for set covering instances of bandwidth 40.
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at its best when the relaxation is tight as expected, but the graph also shows that using a high
width relaxation is often as good or almost as good as using an exact BDD. In particular, for low
bandwidth set covering instances (Figure 4.5, left), a cut from a BDD of width 20% covers as much
gap as an exact BDD. Moreover, the gap closed for the first cut is often higher than the gap closed
by CPLEX at its default settings. This suggests that we can generate effective cuts with relaxed
BDDs that have a reasonable width.

Additionally, the first cuts provide a much larger gap closed when compared to later cuts. The
observation that the initial cuts are stronger emerges in all of our experiments.

4.7.4 Strength of the cuts: Face dimension

A second measure of cut strength is the dimension of the face defined by a cut, with respect to the
integer hull of the problem. A lower bound for these values can be obtained via flow decomposition
as described in Section 4.5, using a violation minimizing heuristic in order to find a good set of
feasible points. We numerically check if the points we obtain from the flow decomposition are
affinely independent, in accordance to Theorem 4.8.

Figures 4.4 and 4.5 (right) exhibit these dimension bounds as the BDD width varies. We also
include bounds for the BDD relaxation for context. The graphs show that increasing the width
improves the dimension of the faces (of the integer hull) on these instances, which reflects the
experiments on gap closed. For set covering, we do not need faces of very high dimension to close
a substantial amount of gap. Additionally, we see that the initial cuts tend to have higher face
dimension than subsequent cuts.

Among the instances we examined, widths of 10% for independent set and 40% for set covering
were sufficient to yield nonempty feasible certificates for the first cut, meaning the cut is supporting
with respect to the integer hull.

4.7.5 Overall performance of the cuts

In practice, we are interested in using these cuts to speed up MIP solvers. Total solving time,
including BDD construction and cut generation, and number of nodes are reported in Figure 4.6 for
the independent set problem and Figures 4.7 and 4.8 for the set covering problem. We highlight in
this section independent set instances of density 80% and set covering instances of bandwidth 50 and
60, and leave graphs of the remaining instances (density 50% and bandwidth 40) to Appendix 4.B.
Appendix 4.B also includes a breakdown on time spent in BDD construction, cut generation, and
MIP solving.

For independent set, we observe that target cuts from relaxed decision diagrams are able to
improve upon CPLEX with the first cut for density 80%. In particular, we obtain a significant
decrease in the number of nodes and solving time as we increase the width of the relaxation for the
first cut. On the other hand, for density 50% we cannot make a substantial conclusion on whether

84



4.7. Computational Results

0 2 4 6 8 10
Number of cuts

0

200

400

600

800

1000

1200
T
o
ta

l 
so

lv
in

g
 t

im
e
 (

s)
Width 100

Width 200

Width 400

Width 600

Exact width

CPLEX with cuts

CPLEX without cuts

0 2 4 6 8 10
Number of cuts

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

N
u
m

b
e
r 

o
f 

n
o
d
e
s

Width 100

Width 200

Width 400

Width 600

Exact width

CPLEX with cuts

CPLEX without cuts

Figure 4.6: Solving time (left) and number of nodes of branch-and-bound tree (right) for cuts on
independent set instances of density 80% with 400 vertices.
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Figure 4.7: Solving time (left) and number of nodes of branch-and-bound tree (right) for cuts on set
covering instances of bandwidth 50.
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Figure 4.8: Solving time (left) and number of nodes of branch-and-bound tree (right) for cuts on set
covering instances of bandwidth 60.
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the cuts decrease the size of the tree, and the time it takes to generate the cut is not worth the
realized speed up in the branch-and-bound tree.

For set covering, there is a substantial improvement in number of nodes for instances of bandwidth
40 and 50. In particular, target cuts for low-width relaxed BDDs improve solving time compared to
CPLEX in these instances. For instances of bandwidth 60 however, the cuts are not effective since
the relaxation is not strong enough.

4.7.6 Comparison with Lagrangian cuts

In this final set of experiments, we compare our cuts with a version of the Lagrangian cuts proposed
by Becker et al. [11]. They are relatively fast to generate as they rely on iteratively optimizing over
a BDD rather than solving a cut generating LP. The main difference is that we extract Lagrangian
cuts from the same relaxed BDDs that we use to generate target cuts, while Becker et al. Becker
et al. generate cuts from a BDD representing the feasible set of a fraction of active constraints. We
do not apply their proposed strengthening on Lagrangian cuts since we do not do so either on target
cuts. As with their version, we start with the objective as an initial solution and stop as soon as we
find a valid cut.

Since the initial guess of the Lagrangian cut is the objective c, the first cut generated by the
Lagrangian method is c>x ≤ B (for a maximization problem), where B is the bound given by the
BDD, if B is a better bound than the root relaxation bound. This cut may be particularly helpful
because it provides an upper bound for CPLEX, which can be used for pruning the tree. For a fair
comparison, we add this inequality as a constraint for both cases before we start generating cuts,
since it can be trivially obtained from the BDD.

For simplicity, we examine one instance group from each problem: density 80% graphs for
independent set and bandwidth 50 for set covering. Figures 4.9 and 4.10 show the solving time and
number of nodes in the branch-and-bound tree for target cuts and Lagrangian cuts, both with the
initial bound constraint.

In the independent set case, we observe that the bound constraint from the BDD is indeed
very helpful to reduce solving time. Since it is fast to generate Lagrangian cuts, it turns out that
generating them is more practical in terms of total solving time than generating target cuts. We find
that both target cuts and Lagrangian cuts behave similarly in terms of number of nodes, though
neither provides a significant improvement with respect to the problem in which only the bound on
the objective is added.

The set covering instances with low bandwidth have the unusual behavior of becoming slower if
we add the bound constraint, which is why all lines start above the CPLEX lines in Figure 4.10.
The Lagrangian cuts are not useful for these instances, likely in part because the cuts tend to be
similar to the bound constraint, given that the method stops and returns a cut as soon as it is
found. For both number of nodes and solving time, target cuts outperform Lagrangian cuts in these
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Figure 4.9: Comparison between target cuts and Lagrangian cuts from relaxed decision diagrams on
independent set instances of density 80% and 400 vertices.

Figure 4.10: Comparison between target cuts and Lagrangian cuts from relaxed decision diagrams
on set covering instances of bandwidth 50.

instances in most cases, despite being significantly more expensive to generate.

4.8 Conclusion

Previous works have shown that relaxed decision diagrams can provide good bounds, and in this
work we explored an alternative viewpoint on whether they may provide good cutting planes as well.
As our main contribution, we showed that generating target cuts from relaxed decision diagrams is
possible due to a connection between polarity and decision diagrams.

Our experiments on the independent set problem and the set covering problem demonstrate
that these cuts can be strong especially if the relaxation is tight enough. In practice, we are able
to improve upon a commercial solver for certain instances, even though there is a relatively large
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overhead to generate the cuts.
Nevertheless, the computational results suggest that it is worthwhile to further develop these

cuts and investigate their effect on other problems, especially those that have good decision diagram
relaxation but not tight continuous ones. In particular, Davarnia and van Hoeve [34] explore the
use of these cuts in the context of nonlinear optimization.

The experiments discussed in this chapter focus on cuts at the root node. One of the approaches
we investigate in the next chapter is the application of cuts throughout the branch-and-bound tree.
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Appendix of Chapter 4

4.A Proof of Theorem 4.8 on Face Certificates

We first restate Theorem 4.8, which shows how to obtain a face certificate for a target cut from a
decision diagram. All definitions required for the theorem, such as (P), (D), P̃flow, and S+

α∗ , can be
found in Section 4.5.

Theorem 4.8. Let (u∗, v∗) and f∗ be an optimal primal-dual pair for (P) and (D). If f∗ is an
extreme point of P̃flow and α∗ is the result of a standard flow decomposition applied to f∗, then S+

α∗

is a |S+
α∗ |-face certificate for u∗>x ≤ 1 with respect to conv(S).

We prove a series of intermediate results and the theorem will follow. For simplicity, throughout
this section we assume the origin is in the interior of conv(S). At the end of this section, we argue
that all of the following results still hold without this assumption.

We put aside decision diagrams for a moment and briefly discuss how to obtain certificates if
we had the set of points S explicitly. In this scenario, target cuts may be generated by solving
maxu{u>x̄ : u ∈ S◦}, denoted by (P̃). Its dual is minα{

∑
x∈S αx : α ∈ Pcone}, denoted by (D̃), where

Pcone = {α : S̃α = x̄, α ≥ 0}

and S̃ is the matrix formed by the points of S in its columns. In other words, Pcone is the polyhedron
of the coefficients of the conic combinations that express x̄.

In the following proposition, we view a basis J of S̃ as a set of points of S, since S̃ represents a
set of points of S in its columns. Moreover, we call a dim(S)-face certificate a facet certificate.

Proposition 4.13. Let u∗ and α∗ be an optimal primal-dual pair for (P̃) and (D̃).

(i) If J is an optimal basis for α∗, then J is a facet certificate for u∗>x ≤ 1 with respect to
conv(S).

(ii) If α∗ is an extreme point of Pcone, then S+
α∗ is a |S+

α∗ |-face certificate for u∗>x ≤ 1 with respect
to conv(S).

Proof. Since basic variables have zero reduced costs, x ∈ J implies u∗>x = 1. Therefore, all points
in J are tight with respect to u∗>x ≤ 1. Moreover, J is a maximal linearly independent set by
definition, and thus J is a facet certificate.

If we do not have an optimal basis but α∗ is an extreme point of Pcone, then there exists a basis
associated to α∗ that contains S+

α∗ . Therefore, all points in S+
α∗ are tight with respect to u∗>x ≤ 1

and are linearly independent, implying S+
α∗ is a |S+

α∗ |-face certificate.
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The weaker result (ii) from Proposition 4.13 is useful to prove Theorem 4.8. In the decision
diagram case, we cannot obtain a facet certificate from (P) in general without modifying its
optimal u∗ because u∗ is not guaranteed to define a facet without additional steps, as discussed in
Section 4.4.4.

Our goal now is to derive a similar result for the case where S is implicitly represented as
a decision diagram. That is, instead of (P̃), we solve (P). Recall that the dual (D) of (P) is
minf{

∑
j∈δ+(s) fsj : f ∈ P̃flow}. In this section, it is convenient to express the constraints of P̃flow

using matrix notation:

P̃flow = {f : Nf = 0, V f = x̄, f ≥ 0}.

Here, N is the node-arc incidence matrix and V is the arc value matrix. That is, Nie is 1 if arc
e incides on vertex i and 0 otherwise and Vke is the value that arc e assigns to variable xk.

In order to link P̃flow to Pcone, we rely on the following polyhedron that maps a fixed f ∈ P̃flow
to α ∈ Pcone:

Pdec(f) = {α : Hα = f, α ≥ 0},

where H is the arc-path incidence matrix, that is, Hep is 1 if arc e is in path p or 0 otherwise. This
polyhedron represents all possible ways that a fixed f ∈ P̃flow can be decomposed into α ∈ Pcone,
which is shown in the next proposition.

Proposition 4.14. If α ∈ Pcone, then Hα ∈ P̃flow. Conversely, if f ∈ P̃flow and α ∈ Pdec(f), then
α ∈ Pcone.

Proof. First note that all entries in the NH matrix are zero: each node has a single incoming arc
and a single outgoing arc in a path, which cancel out when calculating NH. In addition, V H = S̃,
since (V H)kp corresponds to the value assigned to xk by the path p.

Let α ∈ Pcone. Then N(Hα) = 0, V (Hα) = S̃α = x̄, and Hα ≥ 0. Therefore, Hα ∈ P̃flow.
Let f ∈ P̃flow and α ∈ Pdec(f). Then S̃α = V Hα = V f = x̄ and α ≥ 0. Therefore, α ∈ Pcone.

Next, we prove two lemmas that together imply Theorem 4.8.

Lemma 4.15. Let α be the result of a standard flow decomposition applied to f ∈ P̃flow. Then α is
an extreme point of Pdec(f).

Proof. It suffices to show that the columns x of S̃ such that αx > 0 are linearly independent. The
reason is that, if so, there must exist a basis J of S̃ containing these columns. Moreover, J must be
associated to α since S̃JαJ = S̃α = x̄, given that αx = 0 for all x /∈ J . This implies α is an extreme
point.
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Let t be the number of iterations of the decomposition, or equivalently the number of points x
with αx > 0 at the end of the decomposition. Consider a t× t matrix M where the columns (paths)
are the ones with positive flow from the decomposition in the order they were encountered, and the
rows (arcs) are the bottleneck arcs of each of those paths also in the same order. Then M is lower
triangular since a bottleneck arc never reappears in a path after its flow is set to zero. Therefore,
these columns are linearly independent.

The following result connects extreme points of P̃flow and Pdec(f) with extreme points of Pcone.

Lemma 4.16. If f is an extreme point of P̃flow and α is an extreme point of Pdec(f), then α is an
extreme point of Pcone.

Proof. Suppose for contradiction there exist α1, α2 ∈ Pα such that α = λα1 + (1− λ)α2 with λ > 0.
We show that if α1 and α2 correspond to different flows, then f is not an extreme point of P̃flow,
and if they correspond to the same flow, then α is not an extreme point of Pdec(f).

Case 1: Hα1 6= Hα2. Define f t = Hαt for t = 1, 2. By Proposition 4.14, f t ∈ P̃flow. Moreover,
f = Hα = H(λα1 + (1− λ)α2) = λHα1 + (1− λ)Hα2 = λf1 + (1− λ)f2, with f1 and f2 distinct.
Thus f is not an extreme point of P̃flow, a contradiction.

Case 2: Hα1 = Hα2. It suffices to show that α1, α2 ∈ Pdec(f), thus proving that α is not an
extreme point of Pdec(f). We have f = Hα = H(λα1 + (1− λ)α2) = λ(Hα1 −Hα2) +Hα2 = Hα2.
This also implies f = Hα1. Therefore, α1, α2 ∈ Pdec(f).

Finally, we complete the proof of Theorem 4.8 by putting together the previous results.

Proof. Proof of Theorem 4.8. By Lemmas 4.15 and 4.16, α∗ is an extreme point of Pcone. The result
then follows from Proposition 4.13.

As discussed in Section 4.4.4, the cut generation algorithm may involve translating points if the
origin is not in the interior of conv(S). While this may take away the linear independence of the
points of S+

α , they remain affinely independent, and thus all previous results still hold.

4.B Additional Computational Results

In this section, we present additional graphs on computational results. Figure 4.11 depicts solving
time and number of nodes for independent set instances of density 50%, in which we see target cuts
have little effect due to the relatively weak BDD relaxation. Figure 4.12 shows solving time and
number of nodes for set covering instances of bandwidth 40, which are similar to the results for
bandwidth 50.

Figure 4.13 gives us a breakdown of where the time is spent for the first cut for independent set
instances. In both situations, the time to construct a decision diagram is very small compared to
the time to solve the LP to generate a cut – less than 2%. For density 80%, we can observe that
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it is not too time consuming to generate a cut and it significantly reduces the time spent in the
branch-and-bound tree. This however does not happen for density 50%, where generating a cut is
significantly more expensive than solving the root LP relaxation. We also see in density 80% how
increasing the width of the BDD yields a stronger cut that significantly reduces the time spent in
the branch-and-bound tree.

Figure 4.14 shows the same graphs from Figure 4.4, in which we examined the dimension of
the faces defined by the cuts, except that in this case we apply the perturbation heuristic. If we
compare them to Figure 4.4, we observe that the perturbation heuristic does as expected: it fully or
almost fully increases the dimensions of the cuts with respect to the relaxation.
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Figure 4.11: Solving time (left) and number of nodes of branch-and-bound tree (right) for cuts on
independent set instances of density 50% with 250 vertices.
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Figure 4.12: Solving time (left) and number of nodes of branch-and-bound tree (right) for cuts on
set covering instances of bandwidth 40.
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Figure 4.13: Total solving time breakdown with a single cut for independent set instances of density
80% with 400 vertices (left) and 50% with 250 vertices (right).

Figure 4.14: Face dimensions for independent set instances of density 80% and 300 vertices (left)
and density 50% and 120 vertices (right), after applying the perturbation heuristic to increase
dimension.
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Chapter 5

Integrating Decision Diagrams into
MIP Solving

5.1 Introduction

The previous chapters in this dissertation laid out groundwork for embedding decision diagrams
into a MIP solver. We have explored how to extract useful decision diagrams from an integer
programming model in Chapter 3.

Once a good relaxation is constructed, the question becomes how to use the information gathered
in the decision diagram to aid the solving process. We discussed in detail one approach, cutting
plane generation, in Chapter 4. In this chapter, we examine three more approaches to use decision
diagrams in MIP solvers:

1. Presolve techniques with decision diagrams

2. Cut generation during MIP search

3. Primal and dual bound generation during MIP search

5.2 Presolve Techniques

An important component of MIP solvers is the presolve step, which preprocesses the model in order
toimprove the overall solving process. Preprocessing may involve eliminating redundant variables
or constraints and tightening bounds or constraints. In certain problems, the effect of presolve is
substantial. For a survey of presolve techniques, see [4]. We examine two presolve techniques under
the perspective of decision diagrams: bound strengthening and coefficient strengthening.

In the context of decision diagrams, we will see in this section that bound strengthening can be
viewed as a way to propagate information from a linear constraint to a decision diagram. Conversely,
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Example: Bound strengthening for x2 with
respect to −x1 + x2 ≤ 0 using the
relaxed decision diagram below:

(Bstd) x2 ≤ −minx1∈S2{−x1} =⇒ x2 ≤ 1

(Bfilt) The 1-arc in the second layer is filtered.

=⇒ =⇒ x2 ≤ 0

Figure 5.1: Example of the bound strengthening approaches (Bstd) and (Bfilt).

coefficient strengthening can be interpreted as propagating information from a decision diagram to
a linear constraint.

Throughout this section, we assume that we have a relaxed decision diagram D representing
the set of points S, which contains the feasible set of the problem. We also assume that we have a
constraint a>x ≤ b that is valid for the problem but not valid for all points in S. For convenience,
we take a variable xj , whose bound or coefficient is to be strengthened, and we express it as
a>I xI + ajxj ≤ b, where I denotes the set of all variable indices except j.

5.2.1 Bound strengthening

The aim of bound strengthening is to tighten bounds of variables using a relaxation R of the
problem, which could be the LP relaxation, a small subset of constraints, or simply the box induced
by variable bounds. The efficiency and strength of the method respectively depend on how easy it
is to optimize a linear function over the relaxation and how tight it is. If, for instance, we only use
bounds as R, the procedure is very efficient but we may be able to infer little, whereas using the
exact integer feasible set as R allows us to obtain the tightest bounds possible at a very expensive
cost in time.

The approach proceeds as follows. Consider a constraint a>I xI + ajxj ≤ b with aj 6= 0 in the
model. Calculate a lower bound L for a>I xI using the relaxation R projected to the space of x
variables except for xj , which we denote by Rj . That is, L := minxI∈Rj a

>
I xI .

If aj > 0, the constraint allows us to infer that xj ≤ (b−a>I xI)/aj for all feasible x. In particular,
xj ≤ (b−L)/aj is valid. This results in an upper bound for xj , which can replace the current one if
it is lower. In the case aj < 0, we obtain the same expression as a lower bound: xj ≥ (b− L)/aj .
Moreover, if xj is integer, then the bound can be rounded up or down if it is a lower or upper bound
respectively, but for simplicity we ignore rounding in this section.

Given a relaxed decision diagram corresponding to a set of points S, a natural way to use it to
strengthen bounds is to treat S as the relaxation R. We denote by Sj the projection of S onto the
space of x variables without xj . In this case, L can be computed by minimizing aI over the decision
diagram, except that zero weights are assigned to the arcs of the xj layer.
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We denote this standard approach by (Bstd). Consider now an alternative bound strengthening
approach based on arc filtering, which we call (Bfilt). Filter all arcs in the xj layer with respect
to the constraint a>I xI + ajxj ≤ b. Take as lower and upper bounds the lowest and highest values
of arcs corresponding to xj . In other words, we add the bounds implied by the induced domain
relaxation [39] of the decision diagram.

Arc filtering essentially performs the same type of inference that bound strengthening does,
except that it is able to consider for each arc separately only the solutions using the arc. In this
sense, it can be interpreted as a refined version of the standard bound strengthening. We formalize
this next by showing that (Bfilt) dominates (Bstd).

Proposition 5.1. The bound obtained by (Bfilt) is at least as tight as the one obtained by (Bstd).

Proof. Since the lower and upper bound cases are analogous, suppose that aj > 0 and we are
inferring an upper bound. Assume without loss of generality that the decision diagram is ordered as
x1, . . . , xn. Let S be the set of points represented by the relaxed decision diagram given as input.

The upper bound obtained by (Bstd) is Ustd := (b−minx∈Sj{a>I xI})/aj , where Sj consists of S
projected to the space of all variables except xj .

In (Bfilt), we filter an arc (u1, u2) with value vj if and only if

min
x↑∈S↑(u1)

{a↑>x↑}+ min
x↓∈S↓(u2)

{a↓>x↓}+ ajvj > b

or equivalently,

vj >
b− (minx↑∈S↑(u1){a↑>x↑}+ minx↓∈S↓(u2){a↓>x↓})

aj

where a↑ and a↓ correspond to (a1, . . . , aj−1) and (aj+1, . . . , an) respectively.
Hence, the upper bound obtained by (Bfilt) is

Ufilt := max
(u1,u2)∈Ej

{
b− (minx↑∈S↑(u1){a↑>x↑}+ minx↓∈S↓(u2){a↓>x↓})

aj

}
.

where Ej is the set of arcs at the layer corresponding to variable xj .
For any (u1, u2) ∈ Ej , minx↑∈S↑(u1){a↑>x↑}+ minx↓∈S↓(u2){a↓>x↓} ≥ minxI∈Sj{a>I xI} because

S↑(u1)× S↓(u2) ⊆ Sj . Therefore, Ufilt ≤ Ustd.

In addition, there are instances in which (Bfilt) yields a strictly better bound than (Bstd), as
illustrated in Figure 5.1. In this example, we want to strengthen the bound of x2 with respect
to −x1 + x2 ≤ 0 using a decision diagram D representing {(0, 0), (0, 1), (1, 0)}. Applying (Bstd)
provides no improvement, since x1 can take a value of 1 according to D, and thus the approach
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implies a redundant bound x2 ≤ 1. On the other hand, applying (Bfilt) removes the point (0, 1)
from D, leaving it with the points {(0, 0), (1, 0)}. From this, we derive x2 ≤ 0.

5.2.2 Coefficient strengthening

Coefficient strengthening can be viewed as a form of propagating information from (a relaxation
of) the feasible set to a linear constraint. Its approach is similar to bound strengthening and relies
on a relaxation R of the problem, which can take any form as discussed in the previous section.
We would like to strengthen a constraint a>I xI + ajxj ≤ b and we assume xj has lower and upper
bounds lj and uj respectively. We again use Rj to denote the projection of R onto the space of
variables without xj .

In this section, we describe how coefficient strengthening can be used with relaxed decision
diagrams. Furthermore, we provide an improvement to the coefficient strengthening technique
from [51] (see also [7, 4]). This extension is particularly suitable for use with relaxed decision
diagrams: for traditional relaxations it would typically require substantially more computational
effort, but not for relaxed decision diagrams.

We first rederive the coefficient strengthening technique not only for purposes of completeness
but also as a step towards our extension. Our description is similar to the one in [4], except
for differences in notation and derivation. In particular, in the following derivation, we view the
approach from the geometric perspective of tilting. This is illustrated by Figure 5.2.

In this tilting perspective, we first fix a hinge, an (n − 1)-dimensional set contained in the
hyperplane defining the inequality. Any tilted inequality must contain all points in the (n − 1)-
dimensional hinge, and thus a single degree of freedom is left for the inequality to tilt.

Not only we would like to avoid removing feasible solutions by tilting, but also we want the
resulting inequality to dominate the original one. In other words, every solution satisfied by the
new inequality but not by the original one must already be cut off by some other inequality present
in the model. In order to ensure this, given any variable xj , the coefficient strengthening technique
(implicitly) tilts an inequality using as hinge the points at a bound of xj . More precisely, if H
is the hyperplane defined by the inequality, we use as hinge either H ∩ {x ∈ Rn : xj = uj} or
H ∩ {x ∈ Rn : xj = lj}. This, along with the correct tilting direction, guarantees that a successfully
tilted inequality will dominate the original one within the region defined by the bounds of the
variable.

For simplicity, we derive the strengthening using the upper bound hinge.1 Tilting using the
lower bound hinge can be derived analogously (see [4] for the resulting inequality).

Proposition 5.2. Consider a valid linear constraint a>I xI + ajxj ≤ b and let lj ≤ xj ≤ uj. Assume
lj < uj. Let R be a relaxation of the problem and compute U := maxxI∈Rj{a>I xI}.

1In the notation from [4], d is equivalent to aj − âj in Proposition 5.2. Its assumption aj ≥ d is equivalent to the
condition U − b + ajuj ≥ 0 in Proposition 5.2. As shown in Proposition 5.2, coefficient strengthening is also possible
when U − b + ajuj < 0 if a lower bound for xj exists, despite not mentioned in [4].
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0 1,2

0,1,2 0,1

x1

x2

x1

x2

x1

x2

Figure 5.2: Examples for the two coefficient strengthening approaches given by Propositions 5.2
(left polyhedron) and 5.3 (right polyhedron). The square points correspond to the points in the
relaxed decision diagram illustrated on the left, which are used to calculate the bounds for coefficient
strengthening. The constraints are 3x1 + x2 ≤ 6 and x1 + 2x2 ≤ 4 and the variables have lower and
upper bounds 0 and 2. In this example, the constraint 3x1 + x2 ≤ 6 is being strengthened with
respect to x1. From a tilting perspective, the hinge is the point (2, 0). On the left, the resulting
constraint is 2x1 + x2 ≤ 4. On the right, the resulting constraint is x1 + x2 ≤ 2.

Then the constraint a>I xI + âjxj ≤ b̂ is valid for the problem, where

âj :=

U − b+ ujaj if U − b+ ujaj ≥ 0

(U − b+ ujaj)/(uj − lj) otherwise

b̂ := b− uj(aj − âj).

This constraint dominates the original constraint within the variable bounds if âj < aj.

Proof. The hyperplane a>I xI + âjxj = b̂ defined by the tilted inequality must contain the hinge
{x ∈ Rn : a>I xI + ajxj = b, xj = uj}, which is equivalent to {x ∈ Rn : a>I xI = b− ajuj , xj = uj}.
Intersecting all equalities, we obtain the condition b̂ = b− uj(aj − âj). In other words, the tilted
inequality has the form a>I xI + âjxj ≤ b− uj(aj − âj) and choosing âj defines how much we tilt the
inequality. In particular, if we decrease âj relative to aj , we are tightening the constraint within the
variable bounds (since the slope with respect to xj is increased and the hinge is at the upper bound
of xj); otherwise we are relaxing the constraint.

We want to choose an âj that does not result in a feasible point being cut off. When xj = uj , this
is guaranteed because the original linear constraint is valid and the hinge satisfies xj = uj . When
lj ≤ xj ≤ uj−1, it suffices to ensure that a>I xI ≤ U is implied by the inequality. Using the hyperplane
equality, this is equivalent to satisfying b− ajuj + âj(uj − xj) ≤ U for all xj = lj , lj + 1, . . . , uj − 1.
We choose the smallest âj satisfying these conditions, that is, âj = maxxj∈Z,lj≤xj≤uj−1{(U − b +
ajuj)/(uj −xj)}. If U − b+ ajuj ≥ 0, then the maximizer is xj = uj − 1 and thus âj = U − b+ ajuj .
Otherwise, the maximizer is xj = lj and hence âj = (U − b+ ajuj)/(uj − lj).

We can use a relaxed decision diagram as our relaxation R, as the bound U can be computed
by maximizing aI over the decision diagram, using zero weights on the layer corresponding to xj .
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Figure 5.2 (left) shows an example of this technique applied with respect to a relaxed decision
diagram. In addition, it depicts a situation where the inequality could be further tightened. We
next show how this can be done at the cost of the additional computational effort of optimizing
a>I xI + ajxj over R restricted to every value v in the domain of xj (except uj).

Proposition 5.3. Consider a valid linear constraint a>I xI + ajxj ≤ b and let lj ≤ xj ≤ uj. Assume
lj < uj. Let R be a relaxation of the problem and compute Uv := maxx∈R:xj=v{a>I xI + ajxj} for all
v = lj , lj + 1, . . . , uj − 1.

Then the constraint a>I xI + âjxj ≤ b̂ is valid for the problem, where

âj := max
xj∈Z,lj≤xj≤uj−1

{(Uxj − b+ ajuj)/(uj − xj)}

b̂ := b− uj(aj − âj).

This constraint dominates the original constraint within the variable bounds if âj < aj.

Proof. The proof proceeds exactly the same as in Proposition 5.2, except that to ensure validity,
instead of satisfying a>I xI ≤ U , we choose the tightest âj that satisfies the stronger conditions
a>I xI + ajxj ≤ Uv for each xj = v. Using the same approach as in the previous proof, this gives us
âj = maxxj∈Z,lj≤xj≤uj−1{(Uxj − b+ ajuj)/(uj − xj)}.

Figure 5.2 illustrates the difference between the two approaches. Note that if the domains are
binary, the two techniques are the same.

Optimizing over all Uv can be expensive when the domains are not small. However, using a relaxed
decision diagram as R enables us to efficiently compute Uv not only for all values v, but also for all
variables xj . Computing them can be done analogously to calculating bounds in arc filtering. For each
variable xj , we can express Uv as max(u1,u2)∈Ejv

{maxx↑∈R↑(u1){a↑>x↑}+ v+ maxx↓∈R↓(u2){a↓>x↓}}
where Ejv is the set of arcs that assign v to xj . These optimal values for the partial solution set
and the completion set can be computed for all nodes simultaneously in a top-down pass and a
bottom-up pass respectively.

With the bounds at hand, we choose a variable to strengthen and apply the strengthening. After
each strengthening step, we update the bounds according to the new coefficient, which can be done
by performing a top-down and bottom-up pass starting at the layer in which the coefficient was
altered, and repeat the process for a new variable. Note that the final constraint may be different
depending on the order of the chosen variables.

As a final remark, an inequality can be further tilted if we refine the relaxed decision diagram.
The point that is stopping the inequality from being tilted further is the optimal solution of the
bound Uv such that v maximizes the expression in the definition of âj . We can check if this point
is feasible with respect to the overall problem. If it is, then we know for sure that the inequality
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cannot be tilted further, and furthermore we obtain a primal feasible solution. If it is not, we can
remove this point from the decision diagram and repeat.

5.3 Cutting Planes in Branch-and-Bound

In Chapter 4, we have tested the use of target cuts at the root node of the branch-and-bound tree.
In this section, we evaluate their effectiveness if we add them throughout the tree instead of only at
the root. The cuts generated at subproblems with a small number of variables should be strong,
as the relaxed decision diagrams themselves should approximate the problem well. The trade-off
however is that the cuts will only have a local effect.

Given that in Chapter 4 we find that the first cut is typically the most effective, we generate a
single cut at every node that has at most k variables for some threshold k that we vary. We test on
the same independent set instances we use on Chapter 4: random graphs of densities 50% and 80%.
In particular, they have 250 and 400 vertices respectively. We take averages of 10 instances using
the shifted geometric mean2 with factors of 10 for solving time and 100 for number of nodes.

Figures 5.3 and 5.4 show the results of this experiment. While the cuts make an impact on
the number of nodes, they typically do not result in a significant improvement in solving time.
Nevertheless, it does not appear to be important in these instances to generate cuts for larger
subproblems, especially if the width is small. For instance, in the density 50% case with width 100,
the reduction in number of nodes is roughly the same whether the threshold is 100 or 250.
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Figure 5.3: Total solving time and number of nodes when adding target cuts from relaxed decision
diagrams within the branch-and-bound tree, for random graphs of density 50% and 250 vertices.
Cuts are only added if the size of the subproblem is below the given threshold.

2The shifted geometric mean of v1, . . . , vn is defined as (
∏n

i=1(vi + s))1/n − s for some shift factor s.
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Figure 5.4: Total solving time and number of nodes when adding target cuts from relaxed decision
diagrams within the branch-and-bound tree, for random graphs of density 80% and 400 vertices.
Cuts are only added if the size of the subproblem is below the given threshold.

5.4 Bounds from Decision Diagrams in Branch-and-Bound

In Chapter 3, we have discussed the construction of relaxed decision diagrams aimed at generating
dual bounds. It is left to address how they can aid the search process in MIP solving. In this section,
we computationally investigate the natural approach of using these bounds to help prune nodes in
the branch-and-bound tree.

Along with dual bounds, we also generate primal feasible solutions to improve the search process.
Not only better primal feasible solutions are informative for the user if the solving process is
terminated before reaching optimality, but also they can improve node pruning in the branch-
and-bound tree. Conversely, primal bounds generated from the MIP solver can help speed up the
construction of relaxed decision diagrams.

The computational experiments in this section are performed in two contexts. In the first,
we assume that the entire problem admits effective relaxed decision diagrams. In the second,
we follow the framework discussed in Chapter 3: we construct relaxed decision diagrams for a
selected substructure and incorporate further constraints via Lagrangian relaxation and constraint
propagation.3

5.4.1 Primal bounds

In this framework, primal bounds can not only be generated from decision diagrams for the MIP
solver, but also primal bounds from the MIP solver can benefit decision diagram construction.

Primal feasible solutions (and thus primal bounds) can be generated from restricted decision
diagrams [18], which encode a subset of feasible solutions. However, not only constructing further

3An early version of these computational results appeared in [56], in which an older version of SCIP (3.2.0) and a
different ordering rule (minimum degree) were used.
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decision diagrams for primal bounds can be inefficient, but also they require all constraints to be
considered in the construction.

Instead, we present simple heuristic approaches to identify feasible solutions from the relaxed
decision diagrams we use. We consider two cases: one when generic constraints are not present and
one when they are. In the latter case, we assume that we use Lagrangian relaxation as described in
the framework from Chapter 3.

1. Without generic constraints. During the construction of a relaxed decision diagram, we
keep track of nodes that have been merged due to relaxation. We then find the optimal path
that does not contain any of such nodes. This path corresponds to a feasible solution to the
overall problem because it only contains exact nodes.

2. With generic constraints. The process of solving the Lagrangian relaxation problem
typically involves optimizing over the decision diagram a number of times. The solutions
obtained in this process are called primal iterates. For every such solution generated, we
check its feasibility with respect to the overall problem. If we find that it is feasible, we store
it as a primal feasible solution. This simple approach has been suggested in early works on
Lagrangian relaxation [36].

Conversely, primal bounds from the MIP solver can help eliminate solutions from the decision
diagrams, potentially making them smaller. If we have a primal bound Bp and we are maximizing
an objective c, then we can effectively add the constraint c>x ≥ Bp to the decision diagrams. In
order to keep the size of the decision diagram in check, we do so by applying arc pruning with
respect to this constraint, as described in Section 2.8.2.

5.4.2 Selecting Nodes in Branch-and-Bound

Decision diagrams only scale well when problem structure is conserved during the scaling. As an
example, decision diagrams perform well for the independent set problem when the bandwidth of
the graph is small. In particular, they scale well when the bandwidth is kept constant as the graph
size increases, but not as well when the bandwidth increases along with the size of the graph.

In general, we cannot expect this to occur for an arbitrary problem. In particular, as evidenced
by the experiments from Chapter 3, we find that decision diagrams perform better for smaller
problems. As further evidence, Figure 5.5 illustrates the effectiveness of the bound over all nodes
within a branch-and-bound tree for the classes of instances we discuss in the next section. We
generate bounds at every node of the branch-and-bound tree and check if they would prune the
node, without applying them. We observe that they perform well for small subproblems.

In our experiments, we test the simple approach of applying decision diagrams when the number
of variables is below a given threshold. The threshold is a parameter to be tuned, for instance
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(a)

(b)

Figure 5.5: Branch-and-bound trees for two instances: (a) independent set for a random graph of
density 50% and size 150, and (b) independent set + knapsack constraints with 300 variables (see
next section for definition of instances). Green nodes are those in which bounds from width-100
relaxed decision diagrams would result in pruning if applied (bounds are generated but not applied).
The bounds are generated using all features: primal bounds, primal pruning, Lagrangian relaxation,
and constraint propagation. For purposes of visualization, we omit nodes in which pruning or
integrality is inferred by the LP.
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by examining trees such as those of Figure 5.5. More sophisticated approaches are left for future
research.

5.4.3 Computational experiments

We consider both the case when the entire problem is amenable to decision diagrams and when a
suitable structure is only partially present. We use problem classes examined in previous chapters.

Independent set constraints

We consider random graphs parameterized by size n and density d following the Erdős–Rényi model
G(n, d): each edge of a graph with n vertices is included with probability d. We select two instance
sizes n, 150 and 300, and vary the density d parameter from 10% to 90% in increments of 10%. For
each of these parameters, we generate 16 instances. All results are shifted geometric means among
these 16 instances with a shift factor of 10 for solving time and 100 for nodes. We set a time limit
of one hour.

Except when otherwise stated, we generate bounds for every subproblem with at most 2/3 of the
variables – that is, 100 and 200 for the instances of sizes 150 and 300 respectively. This subproblem
size is manually tuned: we performed some computational experiments with different sizes and
selected one that performed well for these runs. We elaborate more on subproblem size later in this
section.

In terms of implementation, we construct decision diagrams based on the conflict graph of
the problem, following the framework in Chapter 3, even though we know these are independent
set instances. Since the DP formulation of the conflict graph generalizes the formulation for the
independent set problem, the resulting decision diagrams are the same. The difference between
this version and one specific to the independent set problem is overhead in time, from for instance
extracting and processing conflict constraints. This is the same code we use in the experiments with
generic constraints in the next subsection.

We use the primal bound-based arc pruning and the primal heuristic without generic constraints
described in Section 5.4.1.

Overall performance. The first plots in Figures 5.6 and 5.7 show the overall performance of the
method. For random graphs, solving maximum independent set problems tends to be easier
for either dense graphs or very sparse graphs, and this is evident from the plot. The graph
suggests that this approach is more beneficial around middle ranges of density, reaching about
an order of magnitude in a best case scenario of density 50% and 300 vertices. The bounds
do not perform well for low densities, which is consistent with observations from previous
experiments such as those in Chapter 4 and [22].
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Subproblem size. Figure 5.8 shows what happens if we choose a different subproblem size thresh-
old. Selecting a larger threshold – that is, applying decision diagram bounds more often –
can be helpful when we know relaxed decision diagrams are strong, such as with high-density
cases. However, that can waste time when the relaxations do not scale well, as illustrated by
the low-density cases, in which case focusing on smaller subproblems performs better.

We omit the plot for instances of size 300 as it depicts a similar behavior as above (although
it cannot be observed for lower densities due to the time limit).

Primal bounds. Figure 5.9 illustrates the impact of primal bounds. It provides the ratio between
the solving time without a given feature (primal pruning and/or primal heuristic) and the
solving time with all features. The effect of the primal techniques becomes more significant
with larger branch-and-bound trees. Primal pruning is particularly helpful to avoid wasting
time on small nodes that are clearly infeasible.

Table 5.1 exhibits solving times for instances from the DIMACS maximum clique benchmark
set [35], converted to maximum independent set. We present only the set of instances that were
solved to optimality within one hour with SCIP 5.0.1. The bounds from decision diagrams are
applied at every branch-and-bound node with at most 3/4 of the total number of vertices with a
width of 100.

While the number of instances in Table 5.1 is small, it reflects our observation from the random
graph experiments that bounds aid the solution process when the density of the graph is not small,
but not otherwise. One exception is p_hat300-2, in which the bounds do not improve the solving
time despite reducing the size of the branch-and-bound tree. It suggests that improvements in
performance can be extended to more structured instances.

These computational results are generally positive; however, our main goal is to tackle more
general instances. We next move on to problems with independent set constraints as a substructure.

Independent set and knapsack constraints

The instances we consider in this section are a combination of independent set (set packing)
constraints with knapsack constraints. They were defined in Section 3.5, but we reiterate their
description here for completeness. The integer programming model is given by:

max c>x∑
j∈C

xj ≤ 1 for all C ∈ C (set packing)

n∑
j=1

aijxj ≤ bi for all i = 1, . . . ,mknap (knapsack)

x ∈ {0, 1}n
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Figure 5.6: Comparison in solving time and branch-and-bound tree size between applying bounds
from decision diagrams and not applying them in independent set instances with 150 vertices.
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Figure 5.7: Comparison in solving time and branch-and-bound tree size between applying bounds
from decision diagrams and not applying them in independent set instances with 300 vertices. The
gray dotted line on the left plot indicates the time limit of one hour. Unreported data on number of
nodes corresponds to cases in which the time limit of one hour was hit in the majority of runs.
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Figure 5.8: Comparison of different subproblem size thresholds with 150 vertices.
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Figure 5.9: Effect on solving time when disabling primal pruning and/or primal heuristic on instances
of size 150 (left) and 300 (right). More precisely, this is the ratio td/T , where td is the time without
a given feature and T is the time with all capabilities. On the right, data points for densities below
or equal 30 are omitted because the time limit is always hit.
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Solving time (s) Number of nodes
Instance Density MIP MIP + DD MIP MIP + DD

brock200_2 50.4% 217.13 58.43 17100 298
brock200_4 34.2% 1785.94 258.30 148455 4236
C125.9 10.2% 22.65 38.21 1514 1514
gen200_p0.9_44 10.0% 22.41 41.88 646 646
gen200_p0.9_55 10.0% 2.71 2.66 1 1
gen400_p0.9_75 10.0% 605.96 857.52 2148 2148
hamming8-4 36.1% 108.44 67.31 1575 289
MANN_a27 0.1% 39.50 39.66 5598 5598
MANN_a45 0.04% 1041.03 1393.84 108239 108239
p_hat300-1 75.6% 162.32 79.51 7313 189
p_hat300-2 51.1% 1128.14 1144.55 23769 11749

Table 5.1: Effect of applying bounds on DIMACS benchmark instances that can be solved in less
than one hour with SCIP 5.0.1.

The independent set constraints for the input graphG are modeled with a clique cover formulation.
Above, C is a set of cliques that cover G. Each clique is generated by starting with a vertex with
maximum degree and greedily adding vertices with maximum degree that form a clique with the
current set.

The underlying graph G is a random graph following the Watts-Strogatz model [57], which has
small-world properties and tend to work well with decision diagrams. Given the desired number of
vertices n, the desired mean degree k (assumed even), and a probability p, construct a preliminary
graph with n vertices arranged in a cycle and two vertices are adjacent if and only if they are within
distance k/2 in the cycle. Then for each vertex i and outgoing edge (i, j), reassign j with probability
p to another vertex (besides i or a neighbor of i) uniformly chosen at random.

We generate mknap knapsack constraints where n is the number of variables. These constraints
have coefficients aij chosen uniformly at random from 1 to 100 with a support of constant size
100. That is, we select 100 variables uniformly at random and let the coefficients of the remaining
variables be zero. We maximize an objective with coefficients cj also randomly chosen from 1 to 100.

Given that we have evaluated different parameters of number of knapsack constraints mknap and
right-hand side bi in Chapter 3, we fix mknap to 0.1n and bi to 150 in all instances in this section.
We vary the number of variables n from 300 to 450 in increments of 50.

For the relaxed decision diagrams, we use a width of 100. The subproblem size threshold is 100,
determined by manual tuning.

We follow the framework described in Chapter 3. In particular, we use Lagrangian relaxation
and constraint propagation as described in Section 3.4. Moreover, we include the primal pruning
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5. Integrating Decision Diagrams into MIP Solving

Instance size
300 350 400 450

Speed-up (%) 57.33 62.90 60.14 60.17
Node reduction (%) 73.93 67.44 63.63 57.75

Table 5.2: Speed-up and node reduction from using decision diagram bounds. Speed-up is the ratio
of original solving time to the solving time with the bounds, minus one (e.g. a speed-up of 100%
means twice as fast).

and the primal heuristic (Lagrangian relaxation-based) techniques described in Section 5.4.1.

Overall performance. The overall performance of the decision diagram bounds is presented in
Figure 5.10, along with a summary in relative terms in Table 5.2. On average for these
instances, this technique results in an overall speed-up of 59.08% (or equivalently, a slowdown
of 37.14% if we disable the bounds). The number of nodes is reduced by 65.49% – to almost
one-third of its original size. From Table 5.2, we observe that the speed-up scales well up to
the sizes we tested.

Figure 5.11 illustrates all individual instances and it suggests that the approach is fairly robust
for these instances.

Lagrangian relaxation, constraint propagation, and primal bounds. Figure 5.12 shows the
effect of disabling each of the techniques we use on top of the dual bound generation. While
the dual bounds by themselves are strong – in part because the independent set constraints
play a substantial role in defining the problem – removing from consideration either the generic
constraints or the primal techniques has a significant effect on the speed-up. In particular,
although removing one of the two generic constraint techniques does not affect the solving
time too much, disabling both of them has a large impact.

Effect of width. We observed that changing to a decision diagram width of 1000 instead of 100
results in very similar behavior. In the instances of sizes 300, 350, and 400, the average total
number of nodes remained the same, and in the 450 ones, it decreased slightly. A likely reason
for this behavior is that we only focus on small subproblems that do not require large widths
to be effectively tackled.
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Figure 5.10: Comparison in solving time and branch-and-bound tree size of the use of decision
diagram bounds for independent set + knapsack instances.
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Figure 5.11: Effect of using decision diagram bounds illustrated by individual independent set +
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better performance than not using bounds.
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5.5 Conclusion

In this chapter, we mainly explore the effectiveness of decision diagrams when used throughout
the branch-and-bound tree. Between the options of generating cutting planes or bounds, we find
that bounds are generally more effective throughout the tree. Part of the reason is the overhead of
the target cut approach from Chapter 4, as otherwise the cuts are able to reduce the size of the
branch-and-bound tree as well.

We find that the bounds are effective both in a case where the entire problem can be modeled
as a decision diagram and in a case where we exploit a substructure. They are able to substantially
reduce the tree size in the instances we tested, leading to a significant improvement in total solving
time.
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Conclusion

Relaxed decision diagrams are a powerful tool for discrete optimization. In this dissertation, we
use relaxed decision diagrams to exploit substructures of integer programming models in order
to improve their solution processes. The flexibility of decision diagrams enables us to develop
several ways that these relaxations can be used in the context of integer programming, including to
preprocess models, to generate cutting planes, to provide primal feasible solutions, and to generate
dual bounds for the branch-and-bound tree. The computational experiments in this dissertation
indicate that relaxed decision diagrams can effectively aid integer programming solvers for instances
where structure is present.

Decision diagrams are ultimately used in this dissertation as vessels to store discrete relaxations,
whether by focusing on substructures or by merging states within construction, and thus their
computational performance is tied to the strength of these relaxations. Further investigating how to
obtain strong decision diagram relaxations for different classes of linear constraints is valuable to
expand the applicability of these techniques for a wider range of integer linear programming models.

Moreover, these techniques can be extended beyond linear constraints in inequality-based models.
In integer linear programming, the linear relaxation augmented with cutting planes may already be
reasonably tight in several cases. We believe that the methodology developed in this dissertation
is particularly well suited when the continuous relaxation is not very strong, as we are in a sense
bypassing it. In fact, it has been shown that cuts from decision diagrams in the context of nonlinear
optimization (which succeeds our work on cuts) can be strong [34]. In general, discrete problems
lacking good continuous relaxations are promising candidates to benefit from decision diagrams.

Beyond inequality-based models, the literature on decision diagrams for optimization continues
to grow. A remarkable property of decision diagrams is their flexibility: they can be used for several
different purposes and it is often smooth to transfer DD-based techniques from one context to the
other. In particular, any progress on creating stronger relaxations can be used in conjunction with
the techniques presented in this dissertation. There is still a lot of research to be done in this area
and we expect decision diagrams to become more and more prominent in the discrete optimization
literature as the overall methodology evolves.
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