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Introduction

The typical objects of study in topological dynamics are flows and ambits. If G is a Hausdorff

topological group, a G-flow is a compact Hausdorff space X equipped with a continuous

action a : G × X → X. Typically the action a is understood, and one writes g · x or gx

for a(g, x). A G-ambit is a pair (X, x0) where X is a G-flow and x0 ∈ X is a distinguished

point with dense orbit. Given G-flows X and Y , a map ϕ : X → Y is a G-map provided ϕ

is continuous and respects the G-action; if (X, x0) and (Y, y0) are ambits, a map of ambits

ϕ : (X, x0) → (Y, y0) is a G-map with ϕ(x0) = y0. A flow X is minimal if every orbit is

dense.

An early theorem due to Ellis [8] asserts the existence and uniqueness of a universal

minimal flow, a minimal flow which admits a G-map onto any other minimal flow. This

flow is usually denoted by M(G). To construct M(G), one can use the greatest ambit,

denoted (S(G), 1G), or just S(G) when the distinguished point is understood. This is an

ambit which maps onto every other ambit, and any minimal subflow of S(G) is isomorphic to

M(G). Often M(G) is large; for instance when G is a countable abelian discrete group, the

underlying space of M(G) is the Gleason cover (Stone space of the regular open algebra) of

the cube 2c [31]. For any locally compact group M(G) is not metrizable, making it difficult

to provide a concrete description of what M(G) is.

Remarkably, there are non-trivial topological groups for which M(G) is a singleton. These

groups are called extremely amenable. Examples include the unitary group of a separable,

infinite-dimensional Hilbert space with the strong operator topology [13] and the automor-

phism group of the rational linear order with the pointwise convergence topology [27]. Other

topological groups have M(G) non-trivial, but still a compact metric space. For the group

G of orientation-preserving homeomorphisms of the unit circle, we have M(G) the natural

action of G on the circle [27]. For the group S∞ of permutations of the natural numbers, we

have M(S∞) = LO(N), the space of linear orders of N under the natural action [12].

The seminal paper by Kechris, Pestov, and Todorčević [16] considers M(G) in the case

that G is the automorphism group of a Fräıssé structure. These are countably infinite struc-

tures where every isomorphism between finite substructures extends to an automorphism

of the full structure. A Fräıssé structure K is uniquely determined by the class of finite

structures which embed into it, denoted Age(K). A classical result of Fräıssé [10] charac-

terizes exactly which classes K of finite structures are Age(K) for some Fräıssé structure; if

K = Age(K) with K a Fräıssé structure, we call K a Fräıssé class and write K = Flim(K).

ii
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Examples of Fräıssé classes and their limits include finite linear orders and the rational lin-

ear order, finite graphs and the Rado graph, and finite Boolean algebras and the countable

atomless Boolean algebra. Given a Fräıssé structure K, we endow G = Aut(K) with the

topology of pointwise convergence. A useful folklore result is that the automorphism groups

of Fräıssé structures are exactly the non-Archimedean Polish groups, namely those Polish

groups with a base at the identity of open subgroups. We will call such groups automorphism

groups for short.

The main result of [16] connects the topological dynamics of an automorphism group

G = Aut(K) with K = Flim(K) to Ramsey-theoretic properties of the class K. In particular,

G is extremely amenable iff the class K has the Ramsey property. This means that whenever

A,B ∈ K, there is C ∈ K so that for any coloring γ : Emb(A,C) → 2, there is x ∈
Emb(B,C) so that {x ◦ f : f ∈ Emb(A,B)} is constant under γ. For example, one can

restate the classical finite Ramsey theorem by saying that the class K of finite linear orders

has the Ramsey property. This paper and later work by Nguyen Van Thé [26] also provide a

mechanism for computing M(G) even when K is not a Ramsey class. Roughly speaking, if

K can be expanded into a Ramsey class K∗ so that K∗ is not too much bigger than K, then

M(G) is metrizable. When such a K∗ exists, we call the pair (K∗,K) excellent. A question

left open was whether this phenomenon always occurred, namely if K is a Fräıssé class with

Flim(K) = K and M(Aut(K)) metrizable, then is there an excellent expansion K∗ of K? A

major component of this thesis is the proof of an affirmative answer to this question, first

published in [34].

Theorem. Let K be a Fräıssé class with K = Flim(K), and let G = Aut(K). If M(G) is

metrizable, then there is an expansion K∗ of K with (K∗,K) excellent.

This is proven by providing a combinatorial characterization of metrizable M(G) much

in the way that the Ramsey Property characterizes extreme amenability. This generalization

is called finite Ramsey degrees. If K is a Fräıssé class and A ∈ K, we say that A has finite

Ramsey degree if there is k < ω so that for any B ∈ K and r < ω, there is C ∈ K so that

for any coloring γ : Emb(A,C)→ r, there is x ∈ Emb(B,C) so that

|{γ(x ◦ f) : f ∈ Emb(A,B)}| ≤ k. The class K has finite Ramsey degrees if every A ∈ K
has finite Ramsey degree.

Theorem. Let K be a Fräıssé class with K = Flim(K), and let G = Aut(K). Then M(G)

is metrizable iff K has finite Ramsey degrees.

There are several natural ways one can attempt to generalize the work in [16]. One

such effort is to attempt to generalize these efforts to all Polish groups. A question along

these lines was the Generic Point Problem asked by Angel, Kechris, and Lyons [1]: if G is

a Polish group and M(G) is metrizable, must M(G) have a comeager orbit? This question

arose naturally due to the examples produced by the machinery in [16]; whenever K is a
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Fräıssé class which admits an excellent companion and G = Aut(Flim(K)), then M(G) has

a comeager orbit. Melleray, Nguyen Van Thé, and Tsankov show in [21] that if G is a Polish

group so that M(G) is metrizable and has a comeager orbit, then M(G) is the left completion

of the right coset space Ĝ/G0 for some G0 extremely amenable and coprecompact in G, G/G0

is the right coset space, and the completion is taken with respect to the left uniformity on

G/G0. In particular, for G = Aut(Flim(K)) an automorphism group, saying that M(G) is

of the form Ĝ/G0 for G0 extremely amenable and coprecompact is exactly the statement

that K admits an excellent expansion class. For automorphism groups, the characterization

of metrizable M(G) given in [34] affirmatively solves the Generic Point Problem.

Ben–Yaacov, Melleray, and Tsankov in [5] affirmatively solve the Generic Point Problem

for general Polish groups. Their proof generalizes some of the key ideas from [34] by making

use of new topometric machinery. Roughly speaking, this allows a detailed study of how a

bounded left-invariant metric on the group G interacts with suitably universal dynamical

systems. In recent joint work with Bartošová, we use topometric methods to produce a new

characterization of when M(G) is metrizable for G a Polish group. For X a G-flow, write

AP (X) = {x ∈ X : xG is minimal}.

Theorem. Let G be a Polish group. Then M(G) is metrizable iff for every ambit (X, x0),

we have AP (X) ⊆ X closed.

A lingering question regarding the Generic Point Problem was the following. Suppose X

is a minimal metrizable G-flow with all orbits meager; then by the Generic Point Theorem,

we know M(G) is non-metrizable. Could this be seen directly, i.e. can we use X to construct

a non-metrizable minimal flow? It turns out that the correct object of study is the universal

highly proximal extension of X, denoted SG(X). This object was first studied by Auslander

and Glasner in [2]; for the definition, see section 2.6.

Theorem. Let G be a Polish group, and suppose X is a minimal metrizable G-flow with all

orbits meager. Then SG(X) is non-metrizable.

The proof provides a new construction of SG(X) which generalizes the notion of universal

highly proximal extension to any G-space.

Another direction one can attempt to generalize the work in [16] is to consider other

combinatorial properties that a Fräıssé class K might have. One natural property along

these lines is big Ramsey degree. The terminology is from [16], but the notion has been

around for several decades. If K is a Fräıssé class and A ∈ K, we say that A has finite big

Ramsey degree if there is k < ω so that for any r < ω and any coloring γ : Emb(A,K)→ r,

there is η ∈ Emb(K,K) with |{γ(η ◦ f) : f ∈ Emb(K,K)}| ≤ k. The least k < ω where

this holds is called the big Ramsey degree of A. The class K has finite big Ramsey degrees

if every A ∈ K has finite big Ramsey degree. Given the results of [34], one might hope that
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given a Fräıssé class K with G = Aut(Flim(K)), then K having finite big Ramsey degrees is

equivalent to the metrizability of some universal dynamical object for the group G.

In [36], a new type of dynamical object is defined, called a completion flow. Given this

new dynamical object, it is natural to ask which topological groups admit unique universal

completion flows, and when these universal objects are metrizable. To address this question

for G = Aut(Flim(K)) an automorphism group, a strengthening of the notion of finite big

Ramsey degrees is defined. Roughly speaking, if K = Flim(K), then K is said to admit a

big Ramsey structure if there is an expansion K∗ which simultaneously records the correct

big Ramsey degrees of every A ∈ K; see section 3.8 for the precise definition.

Theorem. Suppose K is a Fräıssé class with K = Flim(K), and set G = Aut(K). If K

admits a big Ramsey structure, then G admits a unique universal completion flow which is

metrizable.

The techniques in the proof of this theorem introduce other new dynamical objects which

seem interesting in their own right. A G-flow X is called a pre-ambit if there is some point

with dense orbit (so a pre-ambit is just an ambit before picking the distinguished point).

Write A(X) = {x ∈ X : xG ⊆ X is dense}. If X and Y are pre-ambits, a G-map ϕ : X → Y

is called strong if ϕ“(A(X)) = A(Y ). If X and Y are pre-ambits, a strong map ψ : Y → X

is called universal if for any other pre-ambit Y0 and strong map ψ0 : Y0 → X, there is a

G-map ϕ : Y → Y0 with ψ = ψ0 ◦ ϕ.

Theorem. Let G be a topological group, and let X be a pre-ambit. Then there is a univeral

strong extension of X, which is unique up to G-flow isomorphism over X.

In particular, this generalizes the existence and uniqueness of the universal minimal flow

M(G).

Organization

This thesis is organized into three chapters. The first is on uniform spaces and is mostly

background. However, the last section on topometric spaces discusses some recent new

approaches to the study of the Samuel compactification of a metric space.

The second focuses on abstract topological dynamics. The key unifying feature of this

chapter is the notion of a near ultrafilter. By viewing S(G) as a space of near ultrafilters, we

obtain an explicit formula for the semigroup operation, which allows for a detailed study of

how the minimal subflows sit inside S(G). Near ultrafilters also feature prominently in section

2.6 under the guise of “G-near” ultrafilters. These are used to provide a new construction

of the universal highly proximal extension of a G-flow X. Abstract considerations regarding

compact left-topological semigroups also feature prominently, especially in section 2.5, where

we construct the universal strong extension of a pre-ambit.
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The third and largest chapter focuses on automorphism groups. This chapter introduces

the notion of a diagram, which is more or less an abstract notion of partial right action.

While we will see that any diagram can be coded by a logic action, the main point of the

diagram is that the particular coding doesn’t matter. Therefore diagrams provide a unified

approach to understanding logic actions, spaces of colorings, and M(G).

Notation and conventions

Our notation follows set-theoretic standards. We write ω = N = {0, 1, 2, ...}, and we identify

k < ω with the set {0, ..., k − 1}. We sometimes use := for “equal by definition,” though

sometimes we simply use = when defining new objects.

If f : X → Y is a function and A ⊆ X, we write f“(A) = {f(a) : a ∈ A}. If G is a

group, X is a G-space, U ⊆ G, and A ⊆ X, we write A · U or just AU for the set

{ag : a ∈ A and g ∈ U}. If A, B, and C are structures, K ⊆ Emb(A,B), and L ⊆
Emb(B,C), we write L ◦K = {x ◦ f : x ∈ L and f ∈ K} ⊆ Emb(A,C).

In this thesis, we take our G-spaces to be right G-spaces, i.e. with the group acting on

the right. This choice is mainly due to various conventions that we will develop when G is

an automorphism group in chapter 3. Much of the literature in topological dynamics takes

the opposite convention and works with left G-spaces. When citing results from various

references, we will always phrase the result to refer to right G-spaces.

Preliminaries

A good reference in general topology is [9]. For topological groups and descriptive dynamics,

see [4] or [15].

Topology

All topological spaces will be assumed Hausdorff unless explicitly specified otherwise.

• Compact Hausdorff spaces are normal.

• A space X is Polish iff X is separable and completely metrizable, i.e. there is a com-

patible metric on X which is complete.

• A space X is compact iff every net (xi)i∈I from X has a convergent subnet. In general,

we will freely use vocabulary pertaining to nets (i.e. eventually xi ∈ U , frequently

xi ∈ U , etc.).

• Every compact metric space is separable, hence Polish.
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• If (X, d) is compact metric, Y is any space, and f : X → Y is continuous, then f“(X)

is metrizable. The Hausdorff metric defined by

dH(a, b) := sup
x∈f−1({a})

(
inf

y∈f−1({b})
(d(x, y))

)
+ sup

y∈f−1({b})

(
inf

x∈f−1({a})
(d(x, y))

)
is a compatible metric on f“(X).

• A subset A ⊆ X is called meager if A ⊆
⋃
n Fn with each Fn closed and nowhere dense.

B ⊆ X is comeager if X \ B is meager. A space X is Baire if every comeager set is

dense. All Polish spaces and all compact spaces are Baire.

• A subset A ⊆ X has the property of Baire or the BP if there is an open U ⊆ X with

the symmetric difference A4U meager.

• The following is a useful criterion for determining when a map ϕ : X → Y is continuous.

I don’t know of a good reference and the proof is short, so it is included here.

Proposition 0.0.1. Let X and Y be topological spaces, and assume that Y is regular.

Let D ⊆ X be dense, and let ϕ : X → Y be a map so that whenever (di)i∈I is a net

from D with di → x ∈ X, then ϕ(di)→ ϕ(x). Then ϕ is continuous.

Proof. Let U ⊆ Y be open with ϕ(x) ∈ U . Towards a contradiction, suppose we could

find a net (xi)i∈I from X with xi → x so that frequently ϕ(xi) 6∈ U . As Y is regular,

let V ⊆ Y be open with ϕ(x) ∈ V and V ⊆ U . By assumption, find open A ⊆ X

with x ∈ A and ϕ“(D ∩ A) ⊆ V . Find i ∈ I such that xi ∈ A and ϕ(xi) 6∈ U . Let

B ⊆ X be open so that xi ∈ B and ϕ“(D ∩B) ⊆ Y \ V . Since D ∩A ∩B 6= ∅, this is

a contradiction.

• We will make frequent use of spaces of ultrafilters. If X is any set, then βX is the

collection of ultrafilters on X. We endow βX with the compact Hausdorff topology

whose typical basic clopen set is of the form CA := {p ∈ βX : A ∈ p} for some A ⊆ X.

We identify X as a dense subset of βX by considering principal ultrafilters. If Y is

any compact space and f : X → Y is any function, then there is a unique continuous

map f̃ : βX → Y with f̃ |X = f .

Topological groups

• If G is a topological space and also a group, we call G a topological group if the

evaluation map G×G→ G and the inverse map G
−1−→ G are continuous.

• A classical theorem due to Birkhoff and Kakutani says that a topological group G is

metrizable iff G is first countable. Every separable metrizable group embeds densely

into a Polish group.
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• Every metrizable group admits a compatible bounded left-invariant metric. While

every Polish group admits a compatible complete metric by virtue of being Polish, it is

not always possible to find a compatible metric which is simultaneously complete and

left invariant (indeed this is what makes the left completion interesting to study)

Descriptive dynamics

• A G-space X is topologically transitive if for every non-empty open U ⊆ X, UG ⊆ X is

dense. Any pre-ambit is topologically transitive. If X is Polish, then X is topologically

transitive iff X is a pre-ambit.

• If G is a Polish group, X is a Polish G-space, and x ∈ X, then the orbit xG ⊆ X is

Borel, hence has the property of Baire. If furthermore X is topologically transitive,

we have the topological 0-1 law, sometimes called generic ergodicity : every G-invariant

set with the property of Baire is either meager or comeager. In particular, every orbit

is either meager or comeager.



Chapter 1

Uniform spaces

This chapter is devoted to background on uniform spaces, which will be used frequently

going forward. In particular, we introduce the notion of a near ultrafilter on a uniform

space. Using near ultrafilters, we construct the Samuel compactification and discuss some of

its key properties. Given a bounded metric space X, we turn the Samuel compactification

S(X) into a topometric space and prove a theorem of Ben–Yaacov, Melleray, and Tsankov

characterizing compact metrizable subsets of S(X).

1.1 Basics on uniform spaces

If X is a set, a uniformity on X is a collection U ⊆ P(X ×X) with the following properties.

1. Every U ∈ U contains the diagonal ∆X := {(x, x) : x ∈ X}.

2.
⋂
U∈U U = ∆X .

3. U is upwards closed and closed under finite intersections.

4. If U ∈ U , then so is U−1 := {(y, x) : (x, y) ∈ U}.

5. Every U ∈ U admits a square root , which is some V ∈ U with V · V := V 2 := {(x, y) :

∃z ((x, z) ∈ V and (z, y) ∈ V )} ⊆ U . It follows that every U ∈ U admits cube roots,

nth roots, etc., which are defined analogously.

We call the pair (X,U) a uniform space, and we sometimes call the members of U
entourages . A subset B ⊆ U is called a base for U if for every U ∈ U , there is V ∈ B with

V ⊆ U . For the remainder of the section, fix a uniform space (X,U).

Given A ⊆ X, we can form the subspace uniformity U|A := {U ∩ (A × A) : U ∈ U} on

A. We will always endow subsets of a uniform space with the subspace uniformity.

The uniform topology on X is defined as follows. If x ∈ X and U ∈ U , define x(U) =

{y ∈ X : (x, y) ∈ U}. Then the neighborhood filter for this topology is the collection

1
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U(x) := {x(U) : U ∈ U}. Equivalently, given A ⊆ X and letting A(U) =
⋃
x∈A x(U), the

uniform topology has the closure operator A =
⋂
U∈U A(U). Item (2) in the definition of

a uniform space guarantees that the uniform topology is Hausdorff. When dealing with a

uniform space, we will freely use topological notions in reference to this topology. If X is a

topological space and U is a uniformity on X, we say that U is compatible if the topology

on X coincides with the uniform topology.

If (Y,V) is another uniform space, then a function f : X → Y is uniformly continuous

if for every V ∈ V , there is U ∈ U with (f × f)“(U) ⊆ V . If f : X → Y is uniformly

continuous, then f is continuous when X and Y are given the uniform topology, but the

converse is not always true.

Some spaces do not admit a compatible uniform structure.

Fact (Weil [32]). Let X be a topological space. Then X admits a compatible uniform

structure iff X is Tychonoff , also called completely regular ; if A ⊆ X is closed and x ∈ X \A,

then A and x can be separated by a real valued function.

In practice, we often have a topological space X that we then endow with a compatible

uniformity U . When this is the case, we will often tacitly assume that entourages are

symmetric (U = U−1) and open in X×X. It is easy to see that entourages of this type form

a base for the uniformity.

The types of spaces we will most often want to uniformize are the following.

• If X is a discrete space, then the discrete uniformity on X is the collection

{U ⊆ X ×X : ∆X ⊆ U}.

• If (X, d) is a metric space, then {{(x, y) : d(x, y) < ε} : ε > 0} is the base for a

compatible uniformity.

• If X is compact, then X admits a unique compatible uniform structure; a base for

this uniformity is given by {U ⊆ X × X : ∆X ⊆ U and U is open}. Any continuous

function from a compact space X to another uniform space is uniformly continuous.

• If G is a topological group, then G admits several compatible uniform structures. One

worth mentioning now is the left uniformity ; if NG is a base of open neighborhoods of

the identity, then a base for this uniformity is given by {{(x, y) : x−1y ∈ U} : U ∈ NG}.

A net (xi)i∈I from X is called Cauchy if for every U ∈ U , there is i0 ∈ I so that for any

i, j ≥ i0 we have (xi, xj) ∈ U . The space (X,U) is complete if every Cauchy net converges

to some x ∈ X.

If (xi)i∈I and (yj)j∈J are two Cauchy nets, we say that they are equivalent if for every

U ∈ U , we eventually have (xi, yj) ∈ U . Our goal is to define the completion (X̂, Û) of
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(X,U). First, we set X̂ to be the set of equivalence classes of Cauchy nets1. If U ∈ U , we

define

Û := {([(xi)i∈I ], [(yj)j∈J ]) : there is V ∈ U so that eventually, whenever

(xi, x) ∈ V and (yj, y) ∈ V , we have (x, y) ∈ U}

We can now let {Û : U ∈ U} be a base for the uniformity Û on X̂. As one would expect,

the completion of a uniform space is complete. The map iX : X → X̂ sending x ∈ X to a

suitable constant net is a uniform embedding, and we often identify X as a subset of X̂.

The completion (X̂, Û) of (X,U) has the following abstract characterization. If (Y,V) is

a complete uniform space and f : X → Y is uniformly continuous, then there is a unique

extension of f to a uniformly continuous f̂ making the following diagram commute.

X̂

X Y

iX
f̂

f

Uniform spaces are closely related to the notion of proximity spaces. While we won’t

define those here, we will borrow some terminology. Namely, we call A,B ⊆ X apart if there

is some U ∈ U with A(U) ∩ B(U) = ∅. For a more complete treatment of uniform spaces,

see [9].

1.2 Near ultrafilters and the Samuel compactification

For this section, fix a uniform space (X,U). We will simply write X when U is understood.

Our goal is to construct the Samuel compactification of X. This is a compact space S(X)

and an embedding jX : X → S(X) so that whenever Y is compact and f : X → Y is

uniformly continuous, there is a (necessarily unique) continuous extension f̃ : S(G) → Y

making the following diagram commute.

S(X)

X Y

jX
f̃

f

1Some care must be taken here to verify that we can limit our attention to some suitable set of Cauchy

nets. One can check that any Cauchy net is equivalent to a Cauchy net with index set U , which we order by

reverse inclusion.
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Furthermore, we want S(X) to be the coarsest compactification of X with this property;

namely we want that if ϕ : S(G)→ Y is continuous, then ϕ|X is uniformly continuous. Like

we do with completions, we simply identify X as a subset of S(X).

Our construction is very similar to Samuel’s original construction in [29]; see also [17].

Definition 1.2.1.

• Let F ⊆ P(X). We say that F has the near finite intersection property , or near FIP,

if whenever A0, ..., Ak−1 ∈ F and U ∈ U , we have
⋂
i<k Ai(U) 6= ∅.

• A near ultrafilter on X is any p ⊆ P(X) which is maximal with respect to having the

near FIP.

Note that by Zorn’s lemma, any F with the near finite intersection property is contained

in some near ultrafilter. A key example worth keeping in mind is when X has the discrete

uniformity; then near ultrafilters on X are just ultrafilters on X.

Proposition 1.2.2. Fix p a near ultrafilter on X.

1. If A0, ..., Ak−1 ∈ p and U ∈ U , then
⋂
i<k Ai(U) ∈ p.

2. If A 6∈ p, then there is V ∈ U with A(V ) 6∈ p.

3. If A ∪B ∈ p, then either A ∈ p or B ∈ p.

Proof.

1. This is an easy consequence of the fact that p is maximal with respect to having the

near FIP.

2. Assume A 6∈ p. Then there are B0, ..., Bk−1 ∈ p and U ∈ U with A(U)∩
⋂
i<k Bi(U) = ∅.

Find V ∈ U a square root of U . Then A(V )(V ) ∩
⋂
i<k Bi(V ) = ∅.

3. Suppose neither A nor B were in p. Find C0, ..., Ck−1, D0, ..., D`−1 ∈ p, and U ∈ U
with A(U) ∩

⋂
i<k Ci(U) = ∅ and B(U) ∩

⋂
j<`Dj(U) = ∅. Write C =

⋂
i<k Ci(U) and

D =
⋂
j<`Dj(U). Then (A ∪ B)(U) ∩ C ∩ D 6= ∅. But notice that (A ∪ B)(U) =

A(U) ∪B(U), leading to a contradiction

Corollary 1.2.3. If p is a near ultrafilter on X, then A ∈ p iff for every B ∈ p and U ∈ U ,

we have A ∩B(U) 6= ∅.

Denote the set of near ultrafilters on X by S(X). For A ⊆ X, let CA ⊆ S(X) denote

those near ultrafilters which contain A, and write NA = S(X) \ CA. We endow S(X) with

the topology whose basic open neighborhoods are of the form NA, where A ⊆ X. When

X has the discrete uniformity, this is simply the space βX of all ultrafilters on X with its

standard topology.
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We view X as a dense subspace of S(X) by associating to each x ∈ X the principal near

ultrafilter {A ⊆ X : x ∈ A}. We write jX : X → S(X) for this embedding. If A ⊆ X,

we write A for the closure in X and clS(X)(A) for the closure in S(X). For sets U ⊆ S(X)

where there is no ambiguity, we write U for the S(X)-closure.

Below we collect some simple facts about this topology. Let A,B ⊆ X.

• CA = CA (use Proposition 1.2.2).

• CA ⊆ CB iff jX“(A) ⊆ CB iff A ⊆ B. In particular, jX“(X) ∩ CA = jX“(A), showing

that jX : X → S(X) is a topological embedding. From now on, we will freely identify

x ∈ X with jX(x) ∈ S(X).

• NA ∩NB = ∅ iff NA ⊆ CB iff X = A ∪B. In particular, NA = CX\A and

int(CB) = NX\B.

Proposition 1.2.4. The space S(X) is compact Hausdorff.

Proof. To show that S(X) is Hausdorff, let p 6= q ∈ S(X), and find A ∈ p \ q. Find

U ∈ U with A(U) 6∈ q. Notice that X \ (A(U)) 6∈ p. Then p ∈ NX\(A(U)), q ∈ NA(U), and

NA ∩NX\(A(U)) = ∅.

To show that S(X) is compact, suppose {NAi : i ∈ I} were a collection of basic open sets

with no finite subcover. Then for any i0, ..., ik−1 ∈ I, we can find p ∈
⋂
j<k S(X) \ NAij

=⋂
j<k CAij . Therefore the set {Ai : i ∈ I} has the near FIP, and can be extended to q ∈ S(X).

As q 6∈ NAi for any i ∈ I, the collection {NAi : i ∈ I} is not a cover.

The next two theorems will show us that S(X) is the Samuel compactification of X.

Theorem 1.2.5. Let Y be compact, and suppose f : X → Y is uniformly continuous. Then

f can be continuously extended to f̃ : S(G)→ Y .

Proof. Given p ∈ S(X), we define f̃(p) = y iff for every open B 3 y, we have f−1(B) ∈ p.
We will check that this is well defined and continuous.

A straightforward compactness argument shows that there is at least one y ∈ Y with the

above property. Suppose y 6= z ∈ Y both had the property. Find an open cover C of Y with

the following property.

• If y = y0, y1,...,yk = z are points in Y so that for each i < k, there is Bi ∈ C with

yi, yi+1 ∈ Bi, then k ≥ 4.

To do this, first let Dy and Dz be disjoint open neighborhoods of y and z. By normality,

find open By and Bz with y ∈ By, z ∈ Bz, By ⊆ Dy, and Bz ⊆ Dz. For any w ∈ Y with

w 6∈ {y, z}, choose open Bw 3 w as follows. If w ∈ Dy, ensure that Bw ⊆ Dy. Likewise for
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w ∈ Dz. If w 6∈ Dy ∪ Dz, then also w 6∈ By ∪ Bz, so ensure Bw ∩ (By ∪ Bz) = ∅. Now set

C = {Bw : w ∈ Y }.
Let V = {(a, b) ∈ Y × Y : ∃w ∈ Y with a, b ∈ Bw}. By uniform continuity of f , find

U ∈ U with (f × f)“(U) ⊆ V . Now consider f−1(By) and f−1(Bz), which by assumption

are both in p. The property of C is exactly what we need to conclude that (f−1(By))(U) ∩
(f−1(Bz))(U) = ∅, a contradiction.

To check that f̃ is continuous, let K ⊆ Y be closed. We show that

f̃−1(K) =
⋂
{Cf−1(B) : B ⊇ K open}.

The left to right inclusion is clear. For right to left, suppose p ∈ S(X) satisfies f̃(p) := y 6∈ K.

Use normality to find open sets BK , By, DK , Dy so that K ⊆ BK , BK ⊆ DK , y ∈ By,

By ∈ Dy, and DK ∩ Dy = ∅. Now much as in the proof of uniqueness, find a suitably fine

open cover of Y and use uniform continuity to conclude that f−1(By) and f−1(BK) can never

belong to the same near ultrafilter.

Theorem 1.2.6. Let Y be compact and suppose ϕ : S(X)→ Y is continuous. Then ϕ|X is

uniformly continuous.

Proof. Let V ⊆ Y ×Y be an open neighborhood of ∆Y . Towards a contradiction, suppose for

every U ∈ U , there were xU , yU ∈ X with (xU , yU) ∈ U , but (ϕ(xU), ϕ(yU)) 6∈ V . By passing

to a subnet, assume xi → p ∈ S(X) and yi → q ∈ S(X). Then (ϕ(p), ϕ(q)) 6∈ V . However,

suppose A 6∈ p. Then for some U ∈ U , we have A(U) 6∈ p. So eventually A(U) 6∈ xi, implying

that xi ∈ X \ (A(U)). If U ′ is a cube root of U , then eventually (xi, yi) ∈ U ′, implying that

eventually yi ∈ X \ (A(U ′)). Therefore A 6∈ q also, and p = q, a contradiction.

Corollary 1.2.7 (Uniform Urysohn lemma). Suppose A,B ⊆ X are apart. Then A and B

may be separated by a uniformly continuous real-valued function.

Proof. A and B are apart exactly when CA ∩ CB = ∅. Now use Urysohn’s lemma on

S(X).

Remark. Theorems 1.2.5 and 1.2.6 together imply that C(S(X)), the algebra of continuous

real-valued functions on S(X), is canonically isomorphic to UCb(X), the algebra of bounded

uniformly continuous functions on X. One can in fact use UCb(X) and the Gelfand-Naimark

theorem to provide an alternate construction of S(X).

If A ⊆ X, then we have a map iA : S(A) → S(X) with iA(p) = {B ⊆ X : B(U) ∩ A ∈
p for all U ∈ U}. As the inclusion of A into X preserves apartness of subsets of X, the map

iA is injective, hence an embedding of S(A) onto CA. We will often identify S(A) and CA
going forward.
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Corollary 1.2.8 (Uniform Tietze extension). Suppose A ⊆ X, and let f : A → [0, 1] be

uniformly continuous. Then there is a uniformly continuous F : X → [0, 1] with F |A = f .

How do the completion of X and the Samuel compactification of X interact? Consider

the inclusion jX : X → S(X). Since jX has a continuous extension to S(X), namely the

identity on S(X), we use Theorem 1.2.6 to conclude that jX is uniformly continuous. As

compact spaces are complete as uniform spaces, jX has an extension to ĵX : X̂ → S(X).

Lastly, if Y is compact and ϕ : X̂ → Y is uniformly continuous, then so is ϕ|X . Then ϕ|X
has a continuous extension ϕ̃ : S(X)→ Y . Now ϕ̃ ◦ ĵX and ϕ are two continuous functions

which agree on X, so are equal. Therefore S(X̂) ∼= S(X), and we can identify X̂ as a subset

of S(X).

We can be much more explicit. Suppose (xi)i∈I is a Cauchy net from X. For each

U ∈ U , choose iU ∈ I so that (xi, xj) ∈ U whenever i, j ≥ iU . Now consider the collection

F = {xiU (U) : U ∈ U}. Then F has the FIP, so in particular can be extended to some near

filter. We claim F has a unique extension to a near filter. If p and q are distinct, we could

find A ∈ p and U ∈ U with A(U) 6∈ q. If V ∈ U is suitably small, then either xiV (V ) and

A are apart or xiV (V ) or X \ (A(U)) are apart. It is routine to see that equivalent Cauchy

nets produce the same near ultrafilter.

Conversely, suppose for each U ∈ U we are given xU ∈ X so that F = {xU(U) : U ∈ U}
has the FIP. Then (xU)U∈U is a Cauchy net, and the near ultrafilter generated by F belongs

to X̂.

1.3 Topological properties of S(X)

One of the difficulties in working with S(X) is that the basic open conditions refer to non-

membership, and this can be awkward to work with. If one is willing to work with neigh-

borhoods that aren’t necessarily open, there is a convenient fix.

Proposition 1.3.1. Let p ∈ S(X). Then the collection {CA(U) : A ∈ p, U ∈ U} is a base of

neighborhoods at p.

Proof. First fix A ∈ p and U ∈ U . Then NX\(A(U)) is an open neighborhood of p with

NX\(A(U)) ⊆ CA(U). Conversely, suppose that p ∈ NB for some B ⊆ X. Find U ∈ U with

B(U) 6∈ p. Then A := X \ (B(U)) ∈ p. If V ∈ U is a square root of U , then CA(V ) ⊆ NB.

We can prove a similar neighborhood base theorem for closed K ⊆ S(X). If K ⊆ S(X)

is closed, set FK = {A ⊆ X : K ⊆ CA} =
⋂
{p : p ∈ K}.

Proposition 1.3.2. Let K ⊆ S(X) be closed. Then {CA(U) : A ∈ FK , U ∈ U} is a base of

neighborhoods of K.
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Proof. If A ∈ FK and U ∈ U , then by Proposition 1.3.1, CA(U) is a neighborhood of every

p ∈ K, so is a neighborhood of K. Conversely, suppose towards a contradiction that P ⊇ K

is open, but for every A ∈ FK and U ∈ U , we have CA(U) ∩ (S(X) \ P ) 6= ∅. Notice that if

A,B ∈ FK and U, V ∈ U , then for some suitably small W ∈ U we have

CA(U) ∩ CB(V ) ⊇ CA(U)∩B(V ) ⊇ C(A(W )∩B(W ))(W ).

Since A(W ) ∩B(W ) ∈ FK , we must have⋂
{CA(U) : A ∈ FK , U ∈ U} 6= K.

However, we also have CA =
⋂
U∈U CA(U), which immediately implies that⋂

{CA(U) : A ∈ FK , U ∈ U} = K, a contradiction.

It will be useful to define the following strengthening of the near FIP to talk about closed

subspaces of S(X).

Definition 1.3.3. A collection F ⊆ P(X) is a near filter if it has the near FIP and in

addition satisfies:

1. If A ∈ F and A ⊆ B, then B ∈ F .

2. If A0, ..., Ak−1 ∈ F and U ∈ U , then
⋂
i<k Ai(U) ∈ F .

3. If A(U) ∈ F for every U ∈ U , then A ∈ F .

Note that every near ultrafilter is a near filter. We now show that the near filters are

exactly the collections FK for K ⊆ S(X) closed.

Proposition 1.3.4. Suppose K ⊆ S(X) is closed. Then the set FK := {A ⊆ X : K ⊆ CA}
is a near filter. Conversely, if F is a near filter, then F = FK for some closed K ⊆ S(X).

Proof. Certainly FK has the near FIP. If A0, ..., Ak−1 ∈ FK , then every p ∈ K contains each

of the Ai. Therefore if U ∈ U , then
⋂
i<k Ai(U) ∈ p for every p ∈ K as p is a near filter. So⋂

i<k Ai(U) ∈ FK . Now suppose A(U) ∈ FK for every U ∈ U . Then this is true for each

p ∈ K. So A ∈ p for each p ∈ K, so A ∈ FK .

Now suppose F is a near filter. Set K =
⋂
{CA : A ∈ F}. Let A ⊆ X with K ⊆ CA; we

need to check that A ∈ F . It suffices to show that A(U) ∈ F for every U ∈ U . As CB =⋂
U∈U CB(V ), it follows that K =

⋂
{CB(V ) : B ∈ F , V ∈ U}. By Proposition 1.3.2, CA(U) is a

neighborhood of K, so find B0, ..., Bk−1 ∈ F and V ∈ U with CB0(V )∩· · ·∩CBk−1(V ) ⊆ CA(U).

As F is a near filter, we have B := B0(V )∩· · ·∩Bk−1(V ) ∈ F . But also, we know B ⊆ A(U),

so A(U) ∈ F , which implies that A(U) ∈ F as desired.
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If F ⊆ P(X) has the near FIP, we set KF ⊆ S(X) to be the set
⋂
{CA : A ∈ F}. The

near filter generated by F is the collection 〈F〉 = {A ⊆ X : KF ⊆ CA}. We conclude by

noting the following explicit formula for generating a near filter.

Proposition 1.3.5. Suppose F has the near FIP. Then we have

〈F〉 = {A ⊆ X : ∀U ∈ U∃V ∈ U∃A0, ..., Ak−1 ∈ F
(⋂

i<k Ai(V ) ⊆ A(U)
)
}.

1.4 S(X) as a topometric space

For this section, we let (X, d) be a bounded metric space, and we form S(X) with respect

to the metric uniformity. If A ⊆ X and ε > 0, we often write A(ε) := {x ∈ X : d(x,A) < ε}.
Notice that if ε, δ > 0, then A(ε)(δ) ⊆ A(ε+ δ).

Our goal for this section is to introduce an extra metric structure on S(X) which will

interact with the topology on S(X) in several key ways. In particular, we will prove a

characterization of the compact metrizable subspaces of S(X) due to Ben–Yaacov, Melleray,

and Tsankov [5].

Definition 1.4.1. A triple (K, τ, ∂) is a compact topometric space if the following hold.

1. τ is a compact Hausdorff topology on K.

2. ∂ is a metric on X which is τ -lower-semi-continuous, or τ -lsc, i.e. for any ε > 0, the

set {(x, y) : ∂(x, y) ≤ ε} is (τ × τ)-closed.

If a compact topology on K is understood, we call any lsc metric on K a topometric

and simply write (K, ∂) for the topometric space. When referring to a topometric space

(K, τ, δ), we write xi
∂−→ x to refer to ∂-convergence, and we simply write xi → x to refer

to τ -convergence. We will always decorate ∂-topological notions with the ∂ symbol, and we

will sometimes decorate τ -topological notions with the τ symbol for emphasis.

Lemma 1.4.2 (Ben–Yaacov [6]). Suppose (K, τ, ∂) is a compact topometric space. Then ∂

is finer than τ and is complete.

Proof. First suppose that (xi)i∈I is a net in K with xi
∂−→ x. We show that the net (xi)i∈I is

τ -convergent with limit x. By compactness, let y ∈ K be some cluster point of (xi)i∈I . For

any ε > 0, the set {z ∈ K : ∂(x, z) ≤ ε} is τ -closed, so it follows that ∂(y, x) ≤ ε. As ε was

arbitrary, we must have y = x.

To show completeness, let (xn)n<ω be a ∂-Cauchy sequence. Let y ∈ K be any τ -cluster

point. For every ε > 0, there is N < ω so that for every m,n ≥ N , we have ∂(xm, xn) ≤ ε.

By the τ -lsc, we eventually have ∂(xn, y) ≤ ε, so xn
∂−→ y.
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We now define the topometric structure on the Samuel compactification S(X) of a

bounded metric space. Instead of defining ∂(p, q) = c, it will be easier to define the in-

equality ∂(p, q) ≤ c.

Definition 1.4.3. Let (X, d) be a bounded metric space, and form S(X). Given c ≥ 0, we

declare ∂(p, q) ≤ c iff for every ε > 0, A ∈ p, and B ∈ q, we have A(c+ ε) ∩B 6= ∅.

This is not the definition originally given in [5]. Their definition is the second part of the

following proposition.

Proposition 1.4.4. Suppose (X, d) has diameter 1. Let p, q ∈ S(X), and fix c ≥ 0. Then

the following are equivalent.

1. ∂(p, q) ≤ c.

2. For any 1-Lipschitz function f : X → [0, 1], we have |f̃(p)− f̃(q)| ≤ c.

Proof. Suppose (2) fails, and let f : X → [0, 1] be 1-Lipschitz with |f̃(p) − f̃(q)| = r > c.

Let δ > 0 be very small, and let Bp, Bq ⊆ [0, 1] be the δ-intervals around f̃(p) and f̃(q),

respectively. Then f−1(Bp) ∈ p and f−1(Bq) ∈ q, but (f−1(Bp))(c + δ) ∩ f−1(Bq) = ∅. So

∂(p, q) > c.

Conversely, suppose ∂(p, q) > c. Then there are A ∈ p, B ∈ q, and ε > 0 with A(c+ ε)∩
B = ∅. Then the function f : X → [0, 1] given by f(x) = d(x,B) is 1-Lipschitz, and we have

f̃(q) = 0, f̃(p) ≥ c+ ε.

Lemma 1.4.5. Suppose p, q ∈ S(X), and let c ≥ 0. Then ∂(p, q) ≤ c iff for any ε > 0 and

A ∈ p, we have A(c+ ε) ∈ q.

Proof. This is an immediate consequece of Corollary 1.2.3.

Proposition 1.4.6. The function ∂ from Definition 1.4.3 is a topometric on S(X).

Proof. The function ∂ is symmetric and positive definite, so to show ∂ is a metric, it remains

to prove the triangle inequality. Let p, q, r ∈ S(X), and suppose α, β ≥ 0 with ∂(p, q) ≤ α

and ∂(q, r) ≤ β. Fix A ∈ p and ε > 0. Using Lemma 1.4.5, we have A(α + ε/2) ∈ q; using

the lemma again gives A(α + β + ε) ∈ r.

To see that ∂ is lsc, suppose c > 0 with ∂(p, q) > c. Find ε > 0 and A ∈ p, B ∈ q with

A(c + ε) ∩ B = ∅. Now consider A′ = A(ε/4) and B′ = B(ε/4). We have p ∈ NX\A′ and

q ∈ NX\B′ . Consider any p′ ∈ N(X \ A′) and q′ ∈ N(X \ B′). Then A′ ∈ p, B′ ∈ q, and

A′(c+ ε/2) ∩B′ = ∅, so ∂(p′, q′) > c.
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We call the topometric space (S(X), ∂) given by Definition 1.4.3 the topometric Samuel

compactification of the bounded metric space (X, d).

If A ⊆ X, we will want to understand how the topometric structure on S(A) interacts

with the topometric structure on S(X).

Proposition 1.4.7. Suppose A ⊆ X, and write ∂A for the topometric distance as computed

in A. Then for any p, q ∈ S(A) ⊆ S(X), we have ∂A(p, q) = ∂(p, q).

Proof. Suppose ∂A(p, q) ≤ c for some c > 0. Fix B ∈ p and ε > 0. Then we have B(ε/2)∩A ∈
p, so (B(ε/2) ∩ A)(c+ ε/2) ∈ q. It follows that B(c+ ε) ∈ q.

For the other direction, suppose ∂(p, q) ≤ c for some c ≥ 0. Fix B ⊆ A with B ∈ p.

Then B(c+ ε/2) ∈ q, so B(c+ ε) ∩ A ∈ q also.

We are now ready to characterize the compact metrizable subspaces of S(X).

Theorem 1.4.8 (Theorem 2.3 from [5]). Suppose K ⊆ S(X) is a compact metrizable sub-

space. Then ∂ is a compatible metric on K.

Lemma 1.4.9. Suppose K ⊆ S(X) is compact and ∂ is not compatible with K. Then there

are {qn : n < ω} ⊆ K, {An : n < ω} ⊆ P(X) with An ∈ qn, and c > 0 with {An(c) : n < ω}
pairwise disjoint.

Proof. We know that ∂ is complete and finer than the topology on K. This means that if ∂

is not compatible, then it is not totally bounded. Find a c > 0 and points {pn : n < ω} with

∂(pm, pn) > 3c whenever m 6= n. Set p0n = pn and X0 = X. Suppose q0, ..., qk−1, A0, ..., Ak−1,

{pkn : n < ω} ⊆ {pn : n < ω}, and Xk ⊆ X with pkn ∈ S(Xk) have been determined. Consider

pk0 and pk1. Find Bk
0 , B

k
1 ⊆ Xk with Bk

0 ∈ pk0, Bk
1 ∈ pk1 with Bk

0 (c)∩Bk
1 (c) = 0. Every other pkn

with n ≥ 2 must contain either Xk \Bk
0 (c) or Xk \Bk

1 (c), so for some i ∈ {0, 1} and infinitely

many n ≥ 2, Xk \ Bk
i (c) ∈ pkn. Set qk = pki , Ak = Bk

i , and delete all the pkn which do not

contain Xk \Bk
i (c) := Xk+1. Let {pk+1

n : n < ω} enumerate the remaining pkn.

Proof of Theorem 1.4.8. Let {qn : n < ω} and {An : n < ω} be as in Lemma 1.4.9. Let

ϕ : ω → K be the map ϕ(n) = qn, and continuously extend to ϕ̃ : βω → K. For S ⊆ ω,

set AS =
⋃
n∈S An. Then AS and Aω\S are apart. It follows that ϕ̃ is an injection, and K

cannot be metrizable.



Chapter 2

Abstract topological dynamics

In this chapter, we fix a topological group G and consider the ways in which G can act

on compact spaces. We will see that this is closely connected with S(G), the Samuel com-

pactification of G equipped with its left uniformity. When G is metrizable, the topometric

structure on S(G) allows for a detailed understanding of when M(G) is metrizable.

Sections 2.5, 2.6, and 2.7 contain mostly original results. Section 2.5 constructs the

universal strong extension of any pre-ambit and shows that this object is unique, a result

first appearing in [36]. Section 2.6 provides a new construction of the universal proximal

extension of a G-flow and uses this to produce a new proof of the Generic Point Problem;

this construction first appears in [35]. Section 2.7 is joint work with Dana Bartošová and

has not appeared before; given a Polish group G, we provide a new characterization of when

M(G) is metrizable.

2.1 Compact left-topological semigroups

An excellent reference on compact left-topological semigroups is the first two chapters of

the book by Hindman and Strauss [14]. Readers should note however the left-right switch

between that reference and the presentation here.

Let S be a semigroup. If x ∈ S, let λx : S → S and ρx : S → S denote the left and

right multiplication maps, respectively. A non-empty semigroup S is a compact left-topolgical

semigroup if S is also a compact Hausdorff space so that for every x ∈ S, the map λx is

continuous. Given x ∈ S and a subset T ⊆ S, we often write xT := {xy : y ∈ T} and

Tx := {yx : y ∈ T}. A right ideal (respectively left ideal) of a semigroup S is a subset

M ⊆ S so that for every x ∈ M , we have xS ⊆ M (respectively Sx ⊆ M). An idempotent

is any element x ∈ S with xx = x.

We will freely use the following facts. In the following, S denotes a compact left-

topological semigroup.

Fact.

12
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1. (Ellis) S contains an idempotent.

2. If u ∈ S is idempotent and x ∈ uS, then ux = x. If x ∈ Su, then xu = x.

3. Every right ideal M ⊆ S contains a closed right ideal; namely if x ∈ M , then xS =

λx“(S) is closed and a right ideal. Then by Zorn’s lemma, every right ideal contains

a minimal right ideal which must be closed. Every minimal right ideal is a compact

left-topological semigroup, so contains an idempotent.

4. If M is a minimal right ideal and x ∈ M , then Sx is a minimal left ideal. The

intersection of any minimal right ideal and any minimal left ideal is a group, hence

contains exactly one idempotent.

5. If M and N are minimal right ideals and x ∈M , then there is y ∈ N with yx ∈ N an

idempotent.

2.2 Flows and ambits

Let G be a topological group. A G-space is a topological space X equipped with a continuous

right action a : X × G → X. We typically suppress the notation and simply write xg for

a(x, g). If X and Y are G-spaces, a G-map from X to Y is a continuous map ϕ : X → Y

which respects the G-actions. We call X a G-flow if X is a compact G-space.

A G-ambit is a pair (X, x0) where X is a G-flow and x0 ∈ X is a distinguished point

with dense orbit. If (X, x0) and (Y, y0) are ambits, then a map of ambits from (X, x0) to

(Y, y0) is a G-map ϕ : X → Y with ϕ(x0) = y0. Notice that there is at most one map of

ambits from (X, x0) to (Y, y0).

A G-flow X is minimal if every orbit is dense. Equivalenty, define a subflow of X to

be a closed, G-invariant subset of X; then X is minimal iff X contains no proper subflows.

Notice that if ϕ : X → Y is a G-map and Y is minimal, then ϕ must be surjective. If ϕ is

surjective and X is minimal, then so is Y . The following observation is used frequently.

Proposition 2.2.1. If X is a minimal G-flow and U ⊆ X is non-empty open, then there

are g0, ..., gk−1 ∈ G with X =
⋃
i<k Ugi.

Proof. As X is minimal, every orbit meets U . Therefore {Ug : g ∈ G} is an open cover of

X, and we can appeal to compactness.

One of the key objects of study in this thesis is the universal minimal flow M(G) of the

group G.

Fact (Ellis [8]). There is a minimal flow M(G) which is universal , i.e. which admits a G-map

onto any other minimal flow. The flow M(G) is unique up to G-flow isomorphism.
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Fix NG a base of symmetric open neighborhoods of the identity 1G. The group G admits

several compatible uniform structures; recall that the left uniformity on G has a base given

by {{(x, y) : x−1y ∈ U} : U ∈ NG}. We will often identify U ∈ NG with the entourage

{(x, y) : x−1y ∈ U}. Notice that if A ⊆ G and U ∈ NG, we have A(U) = AU . When we

refer to uniform notions on G, we will be referring to this uniformity unless explicitly stated

otherwise. So let S(G) be the Samuel compactification of G. Our first goal is to understand

the dynamical properties of this space. If p ∈ S(G) and g ∈ G, we write pg = {Ag : A ∈ p}.

Proposition 2.2.2. With the above action, S(G) is a G-flow.

Proof. For each g ∈ G, the map p→ pg is continuous. So suppose pi → p and gi → 1G, and

assume A 6∈ p. Find U ∈ NG with AU 6∈ p. Then eventually AU 6∈ pi. Also, as gi → 1G, we

eventually have g−1i ∈ U . Whenever Ag−1i ⊆ AU , we have Ag−1i 6∈ pi. So eventually A 6∈ pigi
as desired.

Proposition 2.2.3. Let (X, x0) be a G-ambit. Then the map g → x0g is uniformly contin-

uous.

Proof. Fix P ⊆ X×X an open neighborhood of ∆X . Towards a contradiction, suppose that

for every U ∈ NG, there were (gU , hU) ∈ U with (x0gU , x0hU) 6∈ P . By passing to a subnet,

we may assume that x0gU → x and x0hU → y. Notice that (x, y) 6∈ P , so in particular x 6= y.

Let Ax and Ay be disjoint open neighborhoods of x and y respectively. By continuity of

the action, find open Bx 3 x, By 3 y, and U ∈ NG with BxU ⊆ Ax and ByU ⊆ Ay. For

some U ∈ NG, we have x0gU ∈ Bx and x0hU ∈ By. But then x0gU(g−1U hU) = x0hU ∈ Ax, a

contradiction.

Definition 2.2.4. In the setting of Proposition 2.2.3, write λx0 : S(G)→ X for the contin-

uous extension of the map g → x0g.

Proposition 2.2.5. In the setting of Proposition 2.2.3 and Definition 2.2.4, the map λx0 :

(S(G), 1G)→ (X, x0) is a map of ambits.

Proof. Certainly λx0(1G) = x0, so we need to check that λx0 is a G-map. If p ∈ S(G)

and g ∈ G, first find a net (gi)i∈I from G with gi → p. Then λx0(pg) = limi λx0(gig) =

limi(x0gi)g = λx0(pg).

Due to Proposition 2.2.5, the ambit (S(G), 1G) is called the greatest ambit ; it admits a

unique map of ambits onto any other ambit. If the base points are understood, we often

suppress the notation, and write for example “let λx0 : S(G) → X be the map of ambits.”

We will be very flexible with this notation; for instance, if Y ⊆ S(G) is a subflow and x0 ∈ X
is any point, we will write λx0 : Y → X for the restriction of the map λx0 : S(G)→ x0G.
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Our next goal is to endow S(G) with the structure of a compact left-topological semi-

group. Fix p ∈ S(G), and form the map λp : S(G)→ S(G). We define a semigroup structure

on S(G) by declaring for p, q ∈ S(G) that pq := λp(q).

Proposition 2.2.6. The operation (p, q)→ λp(q) turns S(G) into a compact left-topological

semigroup.

Proof. By definition, the operation is left-topological, so we only need to check associativity.

Notice that λp ◦ λq is a G-map sending 1G to λp(q). Therefore λp ◦ λq = λλp(q). Given

r ∈ S(G) as an input, this says that p(qr) = (pq)r.

Given Proposition 2.2.6, we can reinterpret Proposition 2.2.5 as follows. If X is a G-flow,

x ∈ X, and p ∈ S(G), write xp as a shorthand for λx(p). Now given x ∈ X and p, q ∈ S(G),

we have

(xp)q = lim
hi→q

(xp)hi = lim
hi→q

x(phi) = x(pq).

In other words, the G-flow X can also be interpreted as an action of the semigroup S(G) on

X, albeit with weaker continuity properties. If x ∈ X is fixed and pi → p ∈ S(G), then we

have xpi → xp. In general, we cannot deduce anything stronger.

As S(G) is a space of near ultrafilters, it will be useful to phrase the semigroup operation

in this language.

Definition 2.2.7. Let p ∈ S(G) and A ⊆ G. We set p−1(A) := {g ∈ G : A ∈ pg}.

Here are some easy facts about “p−1” that will be useful to keep in mind going forward.

Lemma 2.2.8. Fix p ∈ S(G).

1. p−1(Ag) = (p−1(A))g

2. p−1(A ∪B) = p−1(A) ∪ p−1(B).

Proposition 2.2.9. Let p, q ∈ S(G), and fix A ⊆ G. Then A ∈ pq iff for every U ∈ NG, we

have p−1(AU) ∈ q.

Proof. Keeping in mind Propositions 1.3.1 and 1.2.5, this is immediate. The sets

{CAU : A ∈ pq, U ∈ NG} form a neighborhood base for pq, and λp : S(G) → S(G) can be

viewed as the continuous extension of λp|G.
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2.3 Subflows of S(G)

Since S(G) is a compact left-topological semigroup, we should understand the relationship

between dynamical properties and semigroup properties of subspaces of S(G).

Proposition 2.3.1. Let Y ⊆ S(G) be closed. Then Y is a subflow of S(G) iff Y is a right

ideal of S(G).

Proof. Certainly if Y is a right ideal, then Y is G-invariant. Conversely, if Y is G-invariant,

p ∈ Y , and q ∈ S(G) with hi → q, then pq = limi phi ∈ Y .

It follows that the minimal subflows of S(G) correspond exactly to the minimal right

ideals of S(G).

Proposition 2.3.2. Let M,N ⊆ S(G) be minimal subflows, and let ψ : M → N be any

G-map. Then ψ is an isomorphism.

Proof sketch. We can sketch a proof of this using the facts from section 2.1 as follows.

Suppose M,N ⊆ G are minimal subflows and ψ : M → N is a G-map. Letting u ∈ M be

idempotent, we see that ψ(p) = ψ(up) = ψ(u)p, so ψ = λψ(u). Notice that since ψ(u) =

ψ(u)u, we have that ψ(u) and u belong to the same minimal left ideal. Finding q ∈ N with

qψ(u) := v an idempotent, we have uv = u and vu = v. It follows that λuq : N → M is the

inverse of λψ(u).

Corollary 2.3.3. There is up to isomorphism a unique universal minimal flow.

Proof. Certainly every minimal M ⊆ S(G) is universal for minimal flows. If X is any

other universal minimal flow, we let ϕ : M → X and ψ : X → M be G-maps, obtaining

ψ ◦ ϕ : M → M , which by the above must be an isomorphism. Therefore each of ϕ and ψ

was an isomorphism.

Viewing S(G) as the space of near ultrafilters on G, we want to know which near filters

correspond to subflows of S(G).

Definition 2.3.4. Fix T ⊆ G.

1. We say that T is thick if the collection {Tg : g ∈ G} has the FIP.

2. We say that T is near-thick if for every U ∈ NG, the set TU is thick.

Of course if G is a discrete group, then thick and near-thick coincide. An example to

keep in mind is the case G = Z, where T ⊆ Z is thick iff T contains arbitrarily long intervals.

The interaction between G as a topological group and G as a discrete group will prove

fruitful. In particular, it will be helpful to understand the return times p−1(A) for A ⊆ G

and p ∈ βG.
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Proposition 2.3.5. Let T ⊆ G. Then T is thick iff there is p ∈ βG with p−1(T ) = G.

Proof. For every finite F ⊆ G, find gF ∈ G with gFF ⊆ T . Viewing the finite subsets of G

as a net, pass to a subnet and let gF → p ∈ βG. It follows that T ∈ pg for every g ∈ G, i.e.

that p−1(T ) = G.

For the other direction, suppose p−1(T ) = G for some p ∈ βG. Let gi → p with gi ∈ G.

For any finite F ⊆ G, we eventually have giF ⊆ T . So T must be thick.

Proposition 2.3.6. Let T ⊆ G. The following are equivalent.

1. T is near-thick.

2. The collection {Tg : g ∈ G} has the near FIP.

3. For every U ∈ NG, CTU ⊆ S(G) contains a subflow.

4. CT ⊆ S(G) contains a subflow.

Proof. (1) ⇒ (2). Suppose T is near thick. Let g0, ..., gk−1 ∈ G, and fix U ∈ NG. Find

suitably small V ∈ NG so that for each i < k, we have V gi ⊆ giU . Then ∅ 6=
⋂
i<k TV gi ⊆⋂

i<k TgiU .

(2)⇒ (1). Suppose {Tg : g ∈ G} has the near FIP. Let g0, ..., gk−1 ∈ G, and fix U ∈ NG.

Find suitably small V ∈ NG so that for each i < k, we have giV ⊆ Ugi. Similar to the

forward direction, we conclude that
⋂
i<k TUgi 6= ∅.

(2) ⇔ (4). Notice that CT · g = CTg. Also note that {CTg : g ∈ G} has the FIP iff

{Tg : g ∈ G} is a near filter. Let X =
⋂
g∈GCTg. Then X is G-invariant, so if non-empty is

a subflow. Conversely, if Y ⊆ CT is a subflow, then Y ⊆ CT · g for each g ∈ G, so Y ⊆ X.

(4)⇒ (3) is clear.

(3) ⇒ (1). Fix U ∈ NG and g0, ..., gk−1 ∈ G. We want
⋂
i<k TUgi 6= ∅. Fix a small

V ∈ NG. Since CTV contains a minimal right ideal, we have that {TV g : g ∈ G} forms a

near filter. Therefore
⋂
i<k TV giV 6= ∅. By making V small enough, we have TV giV ⊆ TUgi

for each i < k.

Remark. Notice the similarities between Proposition 2.3.6 and Proposition 2.3.5. Indeed

T ⊆ G is near-thick iff there is p ∈ S(G) with p−1(G) = G.

Corollary 2.3.7. M ⊆ S(G) is a minimal right ideal iff FM = {A ⊆ G : M ⊆ CA} is a near

filter which is maximal with respect to the property that every member of FM is near-thick.

Now is a good time to recall one of the key concepts from the introduction.
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Definition 2.3.8. A topological group G is called extremely amenable if M(G) is the trivial

flow.

As indicated in the introduction, extreme amenability and its interaction with combina-

torial properties has been a fruitful object of study for the past two decades. Using Corollary

2.3.7, we can start to understand how this interaction arises.

Recall that if X is a set and F ⊆ P(X) is upwards closed, then F is called partition

regular if for every A ∈ F an partition A =
⋃
i<k Ai, then some Ai ∈ F .

Proposition 2.3.9. Let G be a topological group, and write T ⊆ P(G) for the collection of

near-thick subsets of G. Then G is extremely amenable iff T is partition regular.

Proof. If G is extremely amenable, let T ⊆ G be near thick. By Proposition 2.3.6, fix

M ⊆ CT a minimal right ideal; so by assumptionM = {p} for some p ∈ S(G). If T =
⋃
i<k Ti,

then some Ti ∈ p, so must be near-thick.

Conversely, suppose T is partition regular. This implies that the collection I of sets

which are not near-thick forms an ideal. Let F be the dual filter, and extend F to some

near ultrafilter p. If we can show that every member of p is near-thick, then we are done by

Corollary 2.3.7. Suppose A is not near-thick. Then there is some U ∈ NG so that AU is also

not near-thick. So G \ AU ∈ p, implying that A 6∈ p.

We will also be concerned with sets B ⊆ G where CB∩M 6= ∅ for all or for some minimal

right ideals M .

Definition 2.3.10. Fix S ⊆ G.

1. We say that S is syndetic if G \ S is not thick. Equivalently, there are g0, ..., gk−1 ∈ G
with

⋃
i<k Sgi = G.

2. We say that S is near-syndetic if for every U ∈ NG, we have SU syndetic.

Keeping in mind our example G = Z, a subset S ⊆ Z is syndetic iff there is k < ω so

that the gaps in S have size at most k.

Proposition 2.3.11. Let S ⊆ G. The following are equivalent.

1. S is near-syndetic.

2. For every U ∈ NG, CSU ⊆ S(G) meets every minimal right ideal.

3. CS meets every minimal right ideal.
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Proof. (1) ⇒ (2). Suppose S ⊆ G is near syndetic. Fix U ∈ NG and M ⊆ S(G) a minimal

right ideal. Find g0, ..., gk−1 so that G =
⋃
i<k SUgi. If p ∈ M , then p contains some SUgi.

So SU ∈ pg−1i , and CSU ∩M 6= ∅.

(2) ⇒ (1). Fix U ∈ NG. Towards a contradiction, assume G \ SU were thick. Then by

Proposition 2.3.6, find M ⊆ CG\SU a minimal right ideal. If V is a square root of U , then

SV and G \ SU are apart, so CSV ∩M = ∅, a contradiction.

(3)⇒ (2) is clear. For the converse, fix M ⊆ S(G) a minimal right ideal. If M ∩CSU 6= ∅
for every U ∈ NG, we simply note that CS =

⋂
U∈NG CSU and appeal to compactness.

While we have syndetic sets in mind, the following folklore fact is a useful criterion to

detect minimality of a G-flow.

Proposition 2.3.12. Suppose X is a G-flow and x ∈ X has dense orbit. Then xG is

minimal iff for every non-empty open U ⊆ X with U ∩ xG 6= ∅, we have {g ∈ G : xg ∈ U}
syndetic.

Proof. Suppose Y ⊆ xG were a proper subflow, and find p ∈ S(G) with xp ∈ Y . Fix U ⊆ xG

relatively open with U ∩ Y = ∅. Towards a contradiction, suppose {g ∈ G : xg ∈ U} were

syndetic. Then we can find g0, ..., gk−1 ∈ G so that for any g ∈ G, we have xggi ∈ U for

some i < k. If (gj)j∈J is a net with gj → p, we may assume by passing to a subnet that for

some i < k we have xgjgi ∈ U for every j ∈ J . But then xpgi ∈ U , a contradiction.

Conversely, suppose U ⊆ xG is non-empty and relatively open with T := {g ∈ G : xg ∈
xG\U} thick. For each finite F ⊆ G, find gF ∈ G with gFF ⊆ T . Viewing the finite subsets

of G as a directed set, find a convergent subnet with gF → p ∈ S(G). But then xpg ∈ xG\U
for every g ∈ G. As xp does not have dense orbit in xG, xG is not minimal.

Definition 2.3.13. Fix B ⊆ G.

1. We say that B is piecewise syndetic if there are g0, ..., gk−1 ∈ G with
⋃
i<k Bgi thick.

2. We say that B is near-pws if for every U ∈ NG, we have BU piecewise syndetic.

When G = Z, a subset B ⊆ Z is piecewise syndetic iff there is some k < ω so that on

arbitrarily long intervals I ⊆ Z, B ∩ I has gaps of size at most k. When G is discrete, the

following is a useful characterization of being piecewise syndetic.

Proposition 2.3.14. Let B ⊆ G. Then B is piecewise syndetic iff there is p ∈ βG with

p−1(B) syndetic.
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Proof. Suppose B is piecewise syndetic, and let g0, ..., gk−1 ∈ G with T :=
⋃
i<k Bgi thick.

Find p ∈ βG with p−1(
⋃
i<k Bgi) = G. Then

⋃
i<k p

−1(B)gi = G, so p−1(B) is syndetic.

Conversely, suppose there is p ∈ βG with p−1(B) syndetic. Find g0, ..., gk−1 ∈ G with⋃
i<k p

−1(B)gi = G. Then p−1(
⋃
i<k Bgi) = G, so

⋃
i<k Bgi is thick, and B is piecewise

syndetic.

Proposition 2.3.15. Let B ⊆ G. The following are equivalent.

1. B is near-pws,

2. For every U ∈ NG, CBU ⊆ S(G) meets a minimal right ideal.

Proof. (1) ⇒ (2). Suppose B ⊆ G is near-pws, and fix U ∈ NG. Then find g0, ..., gk−1 with

T :=
⋃
i<k BUgi thick. Then CT contains a minimal right ideal M , so some CBUgi meets M .

But as M is G-invariant, we have that M ∩ CBU 6= ∅.

(2)⇒ (1). Fix U ∈ NG. We want to show that BU is piecewise syndetic. Let V ∈ NG be

suitably small, and findM ⊆ S(G) a minimal right ideal withM∩CBV 6= ∅. Fix p ∈M∩CBV .

Then CBV 2 is a neighborhood of p, so find g0, ..., gk−1 with M ⊆
⋃
i<k CBV 2 · gi. It follows

that T :=
⋃
i<k BV

2gi is near-thick, so for any W ∈ NG, TW :=
⋃
i<k BV

2giW is thick.

Choose V so that V 3 ⊆ U , and choose W so that giW ⊆ V gi for every i < k. We see that

BU is thick as desired.

Remark. The proof of (1) ⇒ (2) above shows that whenever B ⊆ G is piecewise syndetic,

then CB meets some minimal right ideal. However, the converse of this is false. Consider

G = R with its usual topology. Let B = Z. Then in fact B is near syndetic. However, it

is impossible for any set of the form T :=
⋃
i<k(B + ri) to contain every finite pattern; for

instance, T could only meet k points out of an arithmetic progression with irrational gap

size.

Example 2.3.16. Unlike Proposition 2.3.11, we cannot in general strengthen Proposition

2.3.15 to say that if B ⊆ G is near-pws, then CB ∩M 6= ∅ for some minimal right ideal. We

sketch a construction of a counterexample. Consider G = Zω with the product topology. If

d < ω, set Z(d) = {p ∈ Zω : p|d = ~0 ∈ Zd}. Then {Z(d) : d < ω} is a base of clopen subgroups

at the identity.

Fix f : N+ → N+ where f(k) = n + 1 if 2n divides k and 2n+1 does not. Set `(d, k) =

min(d, f(k)) Now for each k ∈ N+, set

Bd,k =

{
(2k, 0, ..., 0) + f(k) · (N0, ..., N`(d,k)−1, 0, ..., 0) : 0 ≤ Ni ≤

⌊
2k−1

f(k)

⌋}
⊆ Zd

Set Bd =
⋃
k Bd,k, and set B = lim←−Bd. First notice that BZ(d) = {p ∈ Zω : p|d ∈ Bd}.

As each Bd is piecewise syndetic in Zd, we have that B is near-pws. Suppose CB met some
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minimal subflow M ⊆ S(Zω). Then for any d < ω, CBZ(d) ∩M has non-empty interior in

M , so we can find Fd ⊆ Zω finite with M ⊆ CBZ(d)Fd. In particular, BZ(d)Fd will be near-

thick, and in fact it will be thick since BZ(d)Fd = BFdZ(d). We will reach a contradiction

by showing that With d and Fd as above, there is a large enough D > d so that whenever

FD ⊆ Zω is finite with BZ(D)FD thick, we have (BZ(d)Fd) ∩ (BZ(D)FD) not thick.

Letting Jd = Fd|d ⊆ Zd, we have BZ(d)Fd thick in Zω iff BdJd is thick in Zd. Consider

a d-dimensional cube of side length N . For N suitably large (depending on Jd) any such

cube contained in BdJd must be contained in some Bd,kJd. For such a k, we must have

d ≤ f(k) ≤ K for some K depending on Jd but independent of N . Now choose D > K. The

same argument yields that a suitably large D-dimensional cube of side length N is contained

in BD,kJD for some k with D ≤ f(k). But setting C = {p ∈ ZD : p|d ∈ BdJd}, any large

D-dimensional cube contained in C projects onto a large d-dimensional cube in BdJd. It

follows that BDJD ∩ C does not contain any large D-dimensional cube, so cannot be thick.

Recall that if S is a compact left-topological semigroup, then the smallest ideal K(S) is

the union of all of the minimal right ideals of S. We can now characterize exactly which

near ultrafilters p ∈ K(S(G)) lie in the closure of the smallest ideal.

Proposition 2.3.17. If p ∈ S(G), then p ∈ K(S(G)) iff every B ∈ p is near-pws.

Proof. If B ∈ p, then for every U ∈ NG, CBU is a neighborhood of p by Proposition 1.3.1. If

p ∈ K(S(G)), then CBU meets a minimal right ideal, so B is near-pws. The converse follows

also by Proposition 1.3.1.

Many of the notions and theorems here concerning near-thick, near-syndetic, and near-

pws generalize existing facts known for discrete groups; see for example [14].

2.4 Completions of topological groups

We let Ĝ denote the completion of G with respect to the left uniformity. Our first task is

to endow Ĝ with the structure of a topological semigroup. If g ∈ G is fixed, then the right

multiplication ρg : G→ G is uniformly continuous, so extends to ρ̂g : Ĝ→ Ĝ. Now for each

η ∈ Ĝ, we define λη : G→ Ĝ by declaring λη(g) = ρg(η).

To show that λη is uniformly continuous, fix U ∈ NG, and suppose x, y ∈ G with

x−1y ∈ U . We want to show that (ηx, ηy) ∈ Û (recall the definition of Û from section 1.1).

Fix a Cauchy net (gi)i∈I with gi → η. Find V ∈ NG so that V x−1V yV ⊆ U . Now for

suitably large i, j ∈ I, suppose (gix, a) ∈ V and (gjy, b) ∈ V . Then a−1b ∈ V x−1g−1i gjyV .

As long as g−1i gj ∈ V , we have a−1b ∈ U as desired. Therefore for η, ζ ∈ Ĝ, we can define

η · ζ := λη(ζ).
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Remark. Recall the identification S(G) = S(Ĝ), and in particular the embedding ĵG = jĜ :

Ĝ → S(G). For η, ζ ∈ Ĝ, we note that η · ζ = lim
hj→ζ

(
lim
gi→η

(gihj)

)
. It follows that the

semigroup operation is the same whether computed in Ĝ or in S(G). As a result, we will be

less careful with the “hat” notation and simply write λη for both the map Ĝ → Ĝ and the

map S(G)→ S(G). The reader is advised to review the discussion at the end of section 1.2.

Proposition 2.4.1. The evaluation map Ĝ× Ĝ→ Ĝ is continuous.

Proof. Let η, ζ ∈ Ĝ ⊆ S(G). Fix bases {xUU : U ∈ NG} and {yUU : U ∈ NG} for the

corresponding near ultrafilters. We may assume each basis has the FIP. Keeping in mind

Proposition 0.0.1, it suffices to show that the collection F = {xV V yUU : U, V ∈ NG}
forms a base for the near ultrafilter η · ζ. First we note that F has the FIP. Second, if

U ∈ NG, then there is V ∈ NG with V yU ⊆ yUU , so F forms a base for some near ultrafilter

corresponding to an element of Ĝ. To finish the proof, we show that every element of F
is a member of η · ζ. Fix U, V ∈ NG, and consider xV V yUU ∈ F . As xV V ∈ η, we have

yUU ⊆ {g ∈ G : xV V yUUg
−1 ∈ η} = η−1(xV V yUU). Since yUU ∈ ζ, this is more than

enough to show that xV V yUU ∈ η · ζ as desired.

Our remaining task is to understand how Ĝ interacts with a G-flow X. We have seen

that the G-action on X extends to a semigroup action of S(G) on X. By restricting our

attention to Ĝ, we get far better continuity properties.

Proposition 2.4.2. The evaluation X × Ĝ→ X is continuous.

Proof. Keeping in mind Proposition 0.0.1, assume xi → x and gi → η with gi ∈ G. By

passing to a subnet, we may assume xigi → y for some y ∈ X. We must show y = xη.

Let A 3 xη be open. It is enough to show that frequently, we have xigi ∈ A. By

continuity of the action, there is open B ⊆ X with xη ∈ B and 1G ⊆ U ⊆ G with BU ⊆ A.

Note that (gi)i∈I is Cauchy, so eventually we have g−1i gj ∈ U for all large enough i, j ∈ I.

So find a suitably large index i ∈ I with xgi ∈ B. Then find a suitably large j ≥ i with

xjgi ∈ B. It follows that xjgi(g
−1
i gj) = xjgj ∈ A as desired.

It is reasonable to ask whether we can obtain better continuity results for larger subsets

of S(G). I conjecture that this is not the case.

Conjecture 2.4.3. Suppose q ∈ S(G) \ Ĝ. Then the right multiplication ρq : S(G)→ S(G)

is not continuous.

This is known to be true when G is locally compact [23]. In general, joint continuity

properties of S(G) even for G discrete seems to be quite subtle; see for instance [33].

We end the section with one more method for detecting the elements of Ĝ in S(G).
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Proposition 2.4.4. Let q ∈ S(G). Then q ∈ Ĝ iff q has a left inverse, i.e. if there is

p ∈ S(G) with pq = 1G.

Proof. Suppose q ∈ Ĝ, and let {xuU : U ∈ NG} be a base for q with the FIP. Form the

collection F = {Ux−1U : U ∈ NG}. As F has the FIP, extend it to a near ultrafilter p ∈ S(G).

We claim that pq = 1G. To show this, we need to show that for each U ∈ NG, we have

p−1(U) ∈ q. If V ∈ NG is a square root of U , then (V x−1V )xV V ⊆ U , so xV V ⊆ p−1(U) ∈ q
as desired.

Conversely, suppose there is p ∈ S(G) with pq = 1G. To show that q ∈ Ĝ, we need to

find for each U ∈ NG some A ∈ q so that A−1A ⊆ U . So fix U ∈ NG, and let V ∈ NG be

a fourth root of U . Then p−1(V ) ∈ q. Fix g, h ∈ p−1(V ). This means that V g−1 ∈ p and

V h−1 ∈ p. Find suitably small W ∈ NG so that g−1W ⊆ V g−1 and h−1W ⊆ V h−1. By

membership in p, we must have V g−1W ∩ V h−1W 6= ∅, so also V 2g−1 ∩ V 2h−1 6= ∅. This

implies that g−1h ∈ V 4 ⊆ U as desired.

2.5 Lifts of ambits and pre-ambits

This section introduces a generalization of the category of minimal flows and G-maps. This

is used in [36] to understand dynamical issues related to big Ramsey degree; we will discuss

these applications in more detail later. We introduce these ideas here since they seem of

independent interest in the study of abstract dynamics.

A pre-ambit is a G-flow X where some point has dense orbit. In the literature, these

flows are often called topologically point transitive. The ambit-set of X is the set A(X) :=

{x ∈ X : x ·G = X}. If X and Y are pre-ambits, then a surjective G-map ϕ : X → Y

is strong if ϕ“(A(X)) = A(Y ). For any surjective G-map, the left-to-right inclusion holds;

it is the reverse inclusion which is non-trivial. If X and Y are minimal, then any G-map

ϕ : X → Y is strong. We will prove several results about pre-ambits and strong maps in

this section and get results about minimal flows for free.

The following definition will be our main source of strong maps. Recall that if X is a

G-flow and x0 ∈ X, we write λx0 : S(G) → X for the unique G-map from S(G) to X with

λx0(1G) = x0.

Definition 2.5.1. Let (X, x0) be an ambit.

1. The fixed point semigroup of (X, x0) is Sx0 := λ−1x0 ({x0}) = {p ∈ S(G) : x0 · p = x0}.
It is a closed subsemigroup of S(G), hence a compact, left-topological semigroup in its

own right.

2. A lift of (X, x0) is any subflow Y ⊆ S(G) which is minimal subject to the property

that Y ∩ Sx0 6= ∅.
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Notice that since Sx0 is compact, Zorn’s lemma ensures that any ambit admits a lift. The

next lemma records some simple observations about lifts.

Lemma 2.5.2. Let (X, x0) be an ambit, and let Y ⊆ S(G) be a lift of (X, x0).

1. λx0 : Y → X is a strong G-map.

2. Y ∩ Sx0 is a minimal right ideal of Sx0.

Proof. For item (1), first note that λx0|Y is surjective since x0 ∈ λx0“(Y ). Let y ∈ Y be a

point with λx0(y) ∈ A(X). Then there is p ∈ S(G) with λx0(y)p = x0. Then yp ∈ Sx0 , so

in particular yG ∩ Sx0 6= ∅. By the minimality property of lifts, we must have yG = Y , so

y ∈ A(Y ) is a transitive point.

For item (2), certainly Y ∩ Sx0 is a right ideal of Sx0 , so suppose M ⊆ Y ∩ Sx0 is a

minimal right ideal of Sx0 , and let y ∈M . By the minimality property of lifts, we must have

yS(G) = Y . Suppose p ∈ S(G) \ Sx0 . Then x0yp = x0p 6= x0, so yp 6∈ Sx0 . It follows that

Y ∩ Sx0 = y · Sx0 ⊆M , so M = Y ∩ Sx0 .

To understand lifts, we need to understand the properties of pre-ambits which are sub-

flows of S(G). The following simple lemma is worth isolating.

Lemma 2.5.3. Suppose Y ⊆ S(G) is a pre-ambit, and assume there is an idempotent

u ∈ A(Y ). Let ψ : Y → X be a G-map. Then ψ = λψ(u).

Proof. Notice that ψ(u) = ψ(u · u) = ψ(u) · u. Therefore ψ and λψ(u) are two G-maps on Y

which agree on u. Since u ∈ A(Y ), they must be equal.

The next two propositions show that the choice of lift doesn’t matter. The first shows

that any two lifts are isomorphic, and the second limits the nature of G-maps between lifts.

Proposition 2.5.4. Let (X, x0) be an ambit, and let Y0, Y1 ⊆ S(G) be two lifts of (X, x0).

Then Y0 and Y1 are isomorphic over (X, x0), i.e. there is an isomorphism ψ : Y0 → Y1 so

that the following diagram commutes.

Y0 Y1

X

ψ

λx0 λx0

Proof. Write Mi = Yi ∩ Sx0 . Then each Mi is a minimal right ideal of Sx0 by item (2) of

Lemma 2.5.2. Let v ∈M1 be an idempotent. Then the left multiplication λv : M0 →M1 is an

isomorphism of right ideals of Sx0 . Using Fact 2.1, let u ∈M0 be an idempotent in the same

minimal left ideal of Sx0 as v. Then uv = u and vu = v. It follows that ψ := λv : Y0 → Y1
is an isomorphism with inverse λu. To check that the diagram commutes, let y ∈ Y0. Then

y = up for some p ∈ S(G). Then λx0 ◦ λv(up) = λx0(vp) = x0p = λx0(up).
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Proposition 2.5.5. Let (X, x0) be an ambit, and let Y0, Y1 ⊆ S(G) be two lifts of (X, x0).

Let ψ : Y0 → Y1 be a surjective G-map making the diagram from Proposition 2.5.4 commute.

Then ψ is an isomorphism.

Proof. Once again, write Mi = Yi∩Sx0 . Each Mi is a minimal right ideal of Sx0 . Let u ∈M0

be an idempotent. Then ψ = λψ(u) by Proposition 2.5.3. As ψ(u) ∈M1, use Fact 2.1 to find

v ∈ M0 with vψ(u) ∈ M0 an idempotent. Since vψ(u) ∈ M0, we have Y0 = vψ(u)S(G), so

in particular, λv ◦ λψ(u) is the identity map on Y0. It follows that ψ is an isomorphism.

We have shown that the lift of any ambit is canonical in the sense of Proposition 2.5.4.

Remarkably, the lift of any pre-ambit is also canonical; if X is a preambit and x0, x1 ∈ A(X),

then the lifts of the ambits (X, x0) and (X, x1) will be isomorphic as well. We spend the rest

of this section proving this fact.

If X and Y are pre-ambits and ψ : Y → X is a strong map, we call ψ a strong extension

of X. A strong extension ψ0 : Y0 → X is called universal if given any other strong extension

ψ1 : Y1 → X, there is a strong map ϕ : Y0 → Y1 with ψ1 ◦ ϕ = ψ0.

Y0 Y1

X

ϕ

ψ0 ψ1

If i < 2 and ψi : Yi → X are two strong extensions, we say that ψ0 and ψ1 are isomorphic

over X if there is an isomorphism ϕ : Y0 → Y1 with ψ1 ◦ ϕ = ψ0.

Theorem 2.5.6. Let X be a pre-ambit. Then there is a universal strong extension ψX :

L(X)→ X. Any two universal strong extensions are isomorphic over X.

We call the pre-ambit L(X) given by Theorem 2.5.6 the universal strong extension of X.

The next two propositions will prove Theorem 2.5.6. The first produces a universal strong

extension of any pre-ambit, and the second shows uniqueness.

The following notation will be useful. If (X, x0) is an ambit, we let L(X, x0) ⊆ S(G) be

a lift of (X, x0).

Proposition 2.5.7. Let X be a pre-ambit, and let x0 ∈ A(X). Then λx0 : L(X, x0)→ X is

a universal strong extension.

Proof. Let Y be a pre-ambit, and fix a strong map ψ : Y → X. Pick y0 ∈ Y with ψ(y0) = x0.

Then y0 ∈ A(Y ), and Sy0 ⊆ Sx0 . So we may assume that L(X, x0) ⊆ L(Y, y0).

We will show that L(X, x0) = L(Y, y0). Using the minimality property of lifts, it suffices

to show that λy0“(L(X, x0)) ∩ A(Y ) 6= ∅. Let p ∈ L(X, x0) ∩ Sx0 , towards showing that
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λy0(p) ∈ A(Y ). First note that ψ ◦ λy0 = λx0 . Then λx0(p) = ψ ◦ λy0(p) = ψ(y0p) = x0.

Since ψ is strong, we have y0p = λy0(p) ∈ A(Y ).

Putting everything together, we now have L(X, x0) = L(Y, y0), and λy0 : L(X, x0) → Y

is a strong map with ψ ◦ λy0 = λx0 .

Proposition 2.5.8. Let X be a pre-ambit. Then any two universal strong extensions are

isomorphic over X.

Proof. Let x0 ∈ A(X), and form λx0 : L(X, x0)→ X. Suppose that ψ : Y → X were another

universal strong extension. By using the universal property of each map and composing, we

obtain a strong map α : L(X, x0)→ L(X, x0) with λx0 = λx0 ◦ α. It is enough to note that

α must be an isomorphism, and this follows by Proposition 2.5.5.

As a last remark, notice that if X is the trivial flow, then a map ψ : Y → X is strong

iff A(Y ) = Y , i.e. if Y is minimal. So L(X) ∼= M(G), and the notion of universal strong

extension generalizes the notion of universal minimal flow.

2.6 Universal highly proximal extensions

This section provides a new construction of the universal highly proximal extension of a

G-flow X. Throughout this section, we will write A ⊆op X to mean that A is a non-empty

open subset of X.

Definition 2.6.1.

1. Let X and Y be compact spaces, and let ϕ : Y → X be continuous. If B ⊆op Y , the

fiber image of B is the set ϕfib(B) := {x ∈ X : ϕ−1({x}) ⊆ B. Note that ϕfib(B) is

always open, but possibly empty.

2. Let X and Y be compact spaces. A map ϕ : Y → X is called highly proximal if ϕ is

surjective and for every B ⊆op Y , we have ϕfib(B) 6= ∅.

3. Let X be a G-flow. The universal highly proximal extension of X is a G-flow SG(X)

and a highly proximal G-map πX : SG(X) → X so that whenever ϕ : Y → X is

another highly proximal G-map, there is a G-map ψ : SG(X)→ Y with πX = ϕ ◦ ψ.

The definition in item (1) is not standard, but it coincides with the standard one when

X and Y are minimal G-flows and ϕ is a G-map.

Proposition 2.6.2. Suppose X and Y are minimal G-flows, and let ϕ : Y → X be a G-map.

Then the following are equivalent.
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1. ϕ is highly proximal.

2. For every B ⊆op Y and every x ∈ X, there is g ∈ G with π−1({xg}) ⊆ B.

Proof. As ϕfib(B) ⊆op X, find g ∈ G with xg ∈ ϕfib(B).

The existence and uniqueness of the universal highly proximal extension was first proven

by Auslander and Glasner [2] for minimal flows. Our new construction will generalize this to

all flows. Even more, our construction of SG(X) will work even when X is just a G-space. In

this generality, we will not obtain the G-map πX : SG(X)→ X, but we will still call SG(X)

the universal highly proximal extension of X.

The key application of this new construction is from [35]. Recall that a G-space is

topologically transitive if for every A ⊆op X we have AG ⊆ X dense.

Theorem 2.6.3. Let G be a Polish group, and suppose X is a Polish, topologically transitive

G-space whose orbits are all meager. Then SG(X) is not metrizable.

Applpying Theorem 2.6.3 when X is a minimal, metrizable G-flow, this provides a new

solution to the Generic Point Problem (Question 15.2 from [1]). Of course, we need to know

that SG(X) is minimal if X is a minimal G-flow; we will prove this shortly.

We now proceed with the construction. Fix for now any topological group G and any G-

space X. Our construction of SG(X) mimics the near ultrafilter construction of the Samuel

compactification, and many proofs are the same as their counterparts from section 1.2.

However, instead of working with all subsets of X, we work with op(X) := {A : A ⊆op X}.

Definition 2.6.4. A G-near filter is any F ⊆ op(X) so that for any A1, ..., Ak ∈ F and any

U ∈ NG, we have A1U ∩ · · · ∩ AkU 6= ∅. A G-near ultrafilter is a maximal near filter.

Zorn’s lemma shows that G-near ultrafilters exist. Let SG(X) denote the space of G-near

ultrafilters on op(X).

Lemma 2.6.5.

1. Let p ∈ SG(X), and let A ⊆ X be open. If A 6∈ p, then there is some V ∈ NG with

AV 6∈ p.

2. Let A ⊆ X be open, and let B1, ..., Bk ⊆ A be open with B1 ∪ · · · ∪ Bk dense in A. If

p ∈ SG(X) and A ∈ p, then Bi ∈ p for some i ≤ k.

Proof. The proofs are nearly identical to those from Proposition 1.2.2.

Definition 2.6.6. If A ∈ op(X), set NA := {p ∈ SG(X) : A 6∈ p}. We endow SG(X) with

the topology whose typical basic open neighborhood is NA for A ∈ op(X).
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Proposition 2.6.7. The topology from Definition 2.6.6 is compact Hausdorff.

Proof. The proof is nearly identical to the one from Proposition 1.2.4. Keep in mind that

we should be working with open sets, so for instance, whenever p ∈ SG(X) and A ⊆op X
with A 6∈ p, we conclude using Lemma 2.6.5 that there is V ∈ NG with int(X \AV ) ∈ p.

Definition 2.6.8. If p ∈ SG(X) and g ∈ G, we let pg ∈ SG(X) be defined by declaring

A ∈ pg iff Ag−1 ∈ p for each A ∈ op(X).

Proposition 2.6.9. The action in Definition 2.6.8 is continuous.

Proof. The proof is nearly identical to the one from Proposition 2.2.2.

We now start to add assumptions to the G-space X in order to deduce more about SG(X).

In general, a G-space X is called minimal if every orbit is dense. Here, we will want the

following strengthening.

Definition 2.6.10. A G-space X is called finitely minimal if for every A ⊆op X, there are

g0, ..., gk−1 ∈ G with
⋃
i<k Agi = X.

Remark. By Proposition 2.2.1, a G-flow is finitely minimal iff it is minimal.

Proposition 2.6.11. Suppose X is a finitely minimal G-space. Then SG(X) is a minimal

G-flow.

Proof. Let p ∈ SG(X), and let A ∈ op(X) with NA 6= ∅. Find some V ∈ NG with NAV 6= ∅.
Then B := int(X \ AV ) 6= ∅. As X is finitely minimal, find g0, ..., gk−1 with X =

⋃
i<k Bgi.

For some i < k, we must have Bgi ∈ p. Then B ∈ pg−1i , so we must have A 6∈ pg−1i , i.e.

pg−1i ∈ NA, and the orbit of p is dense as desired.

Proposition 2.6.12. Let X be a G-space, and suppose there are {An : n < ω} ⊆ op(X)

and V ∈ NG with {AnV : n < ω} pairwise disjoint. Then SG(X) is non-metrizable.

Proof. If S ⊆ ω, let AS =
⋃
n∈S An, and let Y = {p ∈ SG(X) : Aω ∈ p}. Then Y ⊆ SG(X)

is a closed subspace. To show that SG(X) is non-metrizable, we will exhibit a continuous

surjection π : Y → βω. First note that if S ⊆ ω, then ASV ∩ Aω\SV = ∅. Therefore, if

p ∈ Y , p contains exactly one of AS or Aω\S for each S ⊆ ω. We let π : Y → βω be defined

so that for S ⊆ ω, S ∈ π(p) iff AS ∈ p. It is immediate that π is continuous. To see that

π is surjective, let q ∈ βω. Then {AS : S ∈ q} is a G-near filter; any G-near ultrafilter p

extending it is a member of Y with π(p) = q.
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To prove Theorem 2.6.3, we will need the following proposition due to Rosendal; see [5]

for a proof.

Proposition 2.6.13. Let G be a Polish group, and let X be a Polish, topologically transitive

G-space. Then the following are equivalent.

1. G has a comeager orbit.

2. For any V ∈ NG and any B ⊆op X, there is C ⊆op B so that for any D ⊆op C, the set

C \ V D is nowhere dense.

The next proposition along with Proposition 2.6.12 will prove Theorem 2.6.3

Proposition 2.6.14. Suppose G is a Polish group, and let X be a Polish, topologically

transitive G-space whose orbits are all meager. Then there are {An : n < ω} ⊆ op(X) and

V ∈ NG with {AnV : n < ω} pairwise disjoint.

Proof. By Proposition 2.6.13, there is U ∈ NG and B ⊆op X so that for any C ⊆op B, there

is D ⊆op C with C \ DU somewhere dense (since C and UD are open, this is the same as

C \DU having nonempty interior).

Let V ∈ NG with V V ⊆ U . We now produce {An : n < ω} ⊆ op(X) with {AnV : n < ω}
pairwise disjoint. First set B0 = B. As B0 ⊆ B, there is A0 ⊆ B0 so that B0 \ A0U has

nonempty interior. Suppose open sets B0, ..., Bn−1 and A0, ..., An−1 have been produced so

that Ai ⊆ Bi and int(Bi \ AiU) 6= ∅. We continue by setting Bn = int(Bn−1 \ An−1U). As

Bn ⊆ B, there is An ⊆ Bn so that Bn \ AnU has nonempty interior. Notice that for any

m ≤ n, we also have An ⊆ Bm. It follows that if m < n, we have AmU ∩ An = ∅. This

implies that AmV ∩ AnV = ∅ as desired.

We return to the setting where G is any topological group, but we now consider when

X is a G-flow. We want to exhibit a G-map πX : SG(X) → X and show that this is the

universal highly proximal extension of X.

Definition 2.6.15. Let X be a G-flow, and form SG(X). The G-map πX : SG(X) → X is

defined as follows. For each p ∈ SG(X), there is a unique xp ∈ X so that every neighborhood

of xp is in p. The existence of such a point is an easy consequence of the compactness of X

and the second item of 2.6.5. For uniqueness, notice that if x 6= y ∈ X, we can find open

A 3 x, B 3 y and U ∈ NG with AU ∩ BU = ∅. We set πX(p) = xp. This map clearly

respects the G-action. To check continuity, one can check that if K ⊆ X is closed, then

π−1X (K) = {p ∈ SG(X) : A ∈ p for every open A ⊇ K}, and this is a closed condition.

Proposition 2.6.16. Let X be a G-flow. Then the map πX : SG(X)→ X is highly proximal.
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Proof. Let NA ⊆ SG(X) be a nonempty basic open neighborhood. This implies that int(X \
A) 6= ∅. Let x ∈ int(X \ A). Then there are open B 3 x and U ∈ NG with BU ∩ A = ∅.
It follows that any p ∈ SG(X) containing B cannot contain A. In particular, we have

π−1X ({x}) ⊆ NA.

The next theorem generalizes the notion of universal highly proximal extension to any

G-flow.

Theorem 2.6.17. Let X be a G-flow. Then the map πX : SG(X) → X is the universal

highly proximal extension of X.

Proof. Fix a highly proximal extension ϕ : Y → X. For each y ∈ Y , let Fy := {ϕfib(B) :

B 3 y open}. Then Fy ⊆ op(X) is a filter of open sets, so in particular it is a near filter.

We will show that for each p ∈ SG(X), there is a unique y ∈ Y with Fy ⊆ p. This will define

the map ψ : SG(X)→ Y .

We first show that for each p ∈ SG(X), there is at least one such y ∈ Y . To the contrary,

suppose for each y ∈ Y , there were By 3 y open so that ϕfib(By) 6∈ p. Find y0, ..., yk−1
so that {By0 , ..., Byk−1

} is a finite subcover. Let Ai = ϕfib(Byi). Each Ai is open, so we

will reach a contradiction once we show that
⋃
i<k Ai is dense. Let A ⊆ X be open. Then

C := Byi ∩ ϕ−1(A) 6= ∅ for some i < k. As C is open, ϕfib(C) 6= ∅, and ϕfib(C) ⊆ A ∩ Ai.
Now we consider uniqueness. Let p ∈ SG(X), and consider y 6= z ∈ Y . Find open B 3 y

and C 3 z and some V ∈ NG so that BV ∩CV = ∅. It follows that ϕfib(BV )∩ϕfib(CV ) = ∅.
Now notice that ϕfib(B)V ⊆ ϕfib(BV ), and likewise for C. Hence p cannot contain both Fy
and Fz.

The map ψ clearly respects the G-action and satisfies πX = ϕ ◦ ψ. To show continuity,

let K ⊆ Y be closed. Let FK := {ϕfib(B) : B ⊇ K open}. We will show that ψ(p) ∈ K iff

FK ⊆ p. From this it follows that ψ−1(K) is closed. One direction is clear. For the other,

suppose ψ(p) = y 6∈ K. Find open sets B 3 y, C ⊇ K, and V ∈ NG with BV ∩CV = ∅. As

in the proof of uniqueness, p cannot contain both Fy and FK .

We end the section by considering possible universal properties that SG(X) might have

when X is a non-compact G-space. As a warmup, consider the following example.

Proposition 2.6.18. Viewing G as a G-space in the natural way, we have SG(G) ∼= S(G).

Proof. If p ∈ SG(G), then p is a near filter. If q ⊇ p is a near ultrafilter, then for any A ∈ q
and V ∈ NG, we have AV ∈ p. It follows that there is at most one extension of p to a near

ultrafilter; this defines a map ψ : SG(G) → S(G). If A ⊆ G, then ψ−1(NA) =
⋃
V ∈NG NAV ,

so ψ is continuous. To check that ψ is a bijection, consider q ∈ S(G). Then

{AV : A ∈ q, V ∈ NG} is a G-near filter which uniquely extends to a G-near ultrafilter.

This defines a map ϕ : S(G) → SG(G), and it is routine to check that ψ ◦ ϕ = 1S(G) and

ϕ ◦ ψ = 1SG(G).
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In this case, we have an embedding G ↪→ SG(G) rather than a G-map the other way

around. It is natural to ask for which other G-spaces this is the case.

Definition 2.6.19. A G-space X is called rich iff for any A ⊆op X, x ∈ A, and V ∈ NG,

we have x ∈ int(AV ).

The intuition behind this definition is that rich G-spaces are complicated enough to

recover much of the underlying topological information about X.

Proposition 2.6.20. Let X be a rich G-space. Then there is an embedding iGX : X → SG(X).

Proof. Given x ∈ X, consider the collection Fx := {A ⊆op X : x ∈ A}. As X is rich, Fx is

a G-near filter. Let us show that in fact, it is a G-near ultrafilter. Suppose A ⊆op X with

x 6∈ A. We can find B 3 x open and U ∈ NG with BU ∩ A = ∅. As B ∈ Fx, it follows that

A cannot belong to any G-near ultrafilter extending Fx.
This defines the map iGX : X → SG(X). It is clearly injective and respects the G-action.

To show iGX is continuous, fix A ⊆op X. Then (iGX)−1(NA) = X \ A. To show that iGX is an

embedding, fix A ⊆op X. Then (iGX)“(A) = Im(iGX) ∩NX\A.

It turns out that when X is a rich G-space, this map of X into a G-flow is the largest

possible in the following sense.

Definition 2.6.21. Let X be a G-space. The maximal equivariant compactification of X is

a G-flow αGX and a G-map iGX : X → αGX so that whenever Y is a G-flow and ϕ : X → Y

is a G-map, there is ψ : αGX → Y with ψ ◦ iGX = ϕ.

Theorem 2.6.22. Let X be a rich G-space. Then iGX : X → SG(X) is the maximal equiv-

ariant compactification of X.

Proof. Let Y be a G-flow, and suppose ϕ : X → Y is a G-map. For each y ∈ Y , let

Fy = {ϕ−1(B) : B 3 y open}. Each Fy is a filter of open sets, so also a G-near filter. We

will show that for each p ∈ SG(X), there is a unique y ∈ Y with Fy ∈ p. This will define

the map ψ : SG(X)→ Y .

We first show that for each p ∈ SG(X), there is at least one such y ∈ Y . To the contrary,

suppose for each y ∈ Y , there were By 3 y open so that ϕ−1(By) 6∈ p. Find {y0, ..., yk−1} so

that {By0 , ..., Byk−1
} is a finite subcover. Then X =

⋃
i<k ϕ

−1(Bi), and this contradicts item

(2) of Lemma 2.6.5.

Now we consider uniqueness. Let p ∈ SG(X), and consider y 6= z ∈ Y . Find open B 3 y
and C 3 z and some V ∈ NG so that BV ∩CV = ∅. It follows that ϕ−1(BV )∩ϕ−1(CV ) = ∅.
Now notice that ϕ−1(B)V = ϕ−1(BV ), and likewise for C. Hence p cannot contain both Fy
and Fz.
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The map ψ clearly respects the G-action and satisfies ϕ = ψ ◦ iGX . To show continuity,

let K ⊆ Y be closed. Let FK := {ϕ−1(B) : B ⊇ K open}. We will show that ψ(p) ∈ K iff

FK ⊆ p. From this it follows that ψ−1(K) is closed. One direction is clear. For the other,

suppose ψ(p) = y 6∈ K. Find open sets B 3 y, C ⊇ K, and V ∈ NG with BV ∩CV = ∅. As

in the proof of uniqueness, p cannot contain both Fy and FK .

Given that our construction of SG(X) sometimes coincides with the maximal equivariant

compactification, the following question seems intriguing.

Question 2.6.23. Given a G-space X, is there a “near ultrafilter like” construction which

always produces αGX?

Any construction as above would necessarily be quite strange; Pestov in [28] has recently

exhibited a Polish group G and a non-trivial G-space X with αGX a singleton.

2.7 Ambits and metrizable M(G)

If X is a G-flow and x ∈ X, we say that the point x is almost periodic if xG is a minimal

flow. Write AP (X) for the collection of almost periodic points of X. It will be helpful to

remember the characterization of almost periodic points given by Proposition 2.3.12. The

main result in this section was obtained in joint work with Dana Bartošová.

Theorem 2.7.1. Let G be a Polish group. The following are equivalent.

1. M(G) is metrizable.

2. For every pre-ambit X, AP (X) ⊆ X is closed.

It suffices to consider the case X = S(G). Recall that every compact left-topological

semigroup S has a smallest two-sided ideal which is the union of the minimal right ideals.

When S = S(G), then K(S(G)) is the union of the minimal subflows of S(G), and therefore

K(S(G)) = AP (S(G)). Recall that in Proposition 2.3.17, we characterized which near

ultrafilters are members of K(S(G)). If (X, x0) is an ambit and λx0 : S(G)→ X is the map

of ambits, then λx0“(K(S(G))) = AP (X).

Fix for the remainder of the section a Polish group G and a compatible left-invariant

metric d on G with diameter one, and form the topometric space (S(G), ∂). We will start

with the forward direction, so assume that M(G) is metrizable. Therefore by Theorem

1.4.8, ∂ is a compatible metric on any minimal subflow M ⊆ S(G). If M,N ⊆ S(G) are two

minimal subflows, we will want to understand how ∂|M and ∂|N compare.

Lemma 2.7.2. Let p ∈ S(G) and A ⊆ G, and fix ε > 0. Then p−1(A)(ε) ⊆ p−1(A(ε)).
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Proof. If g ∈ p−1(A)(ε), find h ∈ p−1(A) with d(g, h) < ε. Then A ∈ ph, so Ah−1g ∈ pg, so

A(ε) ∈ pg.

Proposition 2.7.3. Let p ∈ S(G). Then the left multiplication λp : S(G) → S(G) is

∂-nonexpansive.

Proof. Let p, q, r ∈ S(G). Suppose ∂(q, r) ≤ c for some c ≥ 0. Fix A ∈ pq and ε > 0.

We want to show that A(c + ε) ∈ pr. Since A ∈ pq, we have p−1(A(ε/2)) ∈ q. Then

p−1(A(ε/2))(c+ ε/2) ⊆ p−1(A(c+ ε)) ∈ r. It follows that A(c+ ε) ∈ pr as desired.

Corollary 2.7.4. If M,N ⊆ S(G) are two minimal right ideals (i.e. two minimal subflows),

then any G-flow isomorphism between M and N is a ∂-isometry.

We now prove the forward direction of Theorem 2.7.1. Let (pi)i∈I be a net from K(S(G))

with pi → p. Fix B ∈ p and ε > 0. Then by Proposition 1.3.1, CB(ε) is a typical neighborhood

of p. So by Proposition 2.3.12, we want to show that p−1(B(ε)) is syndetic.

Since M(G) is assumed metrizable, there is a canonical compatible metric given by

Corollary 2.7.4. Fix finite Fε ⊆ G so that whenever X ⊆ M(G) is a ball of radius ε/2, we

have M(G) =
⋃
g∈Fε Xg.

Let δ > 0 be suitably small. Notice that eventually B(δ) ∈ pi. Let Mi be a minimal

subflow containing pi. As CB(ε) contains the ∂-ball of radius ε − 2δ around pi, we have

Mi ⊆
⋃
g∈Fε CB(ε)g. It follows that p−1i (

⋃
g∈Fε B(ε)g) = G. Therefore p−1(

⋃
g∈Fε B(ε)g) = G.

So
⋃
g∈Fε(p

−1(B(ε)))g = G, showing that p−1(B(ε)) is syndetic.

We now turn towards the other direction. Fix for the remainder of this note M ⊆ S(G)

a minimal subflow which is not metrizable.

Proposition 2.7.5. If M(G) is non-metrizable, then |M(G)| = 2c.

Proof. We have |M | ≤ 2c since M is a separable compact Hausdorff space. For the other

inequality, recall from the proof of Theorem 1.4.8 that we can inject a copy of βω into K.

Proposition 2.7.6. In M , there is some ∂-ball which is nowhere dense.

Proof. For p ∈M and ε > 0, the set {q ∈M : ∂(p, q) ≤ ε} is topologically closed. So it will

suffice to find a ball with empty interior.

Suppose each ∂-ball contained some open neighborhood. Fix p ∈ M . Notice that p · G
must be ∂-dense. So M is the ∂-completion of p · G. But this would imply that |M | = c,

contradicting Proposition 2.7.5.
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Remark. Propositions 2.7.5 and 2.7.6 are the only points in the proof of Theorem 2.7.1

where we need to assume that G is separable. Ben–Yaacov and Melleray have suggested

the following alternate proof of Proposition 2.7.6 which doesn’t use Proposition 2.7.5. A

compact topometric space (X, ∂) is called adequate if for any open U ⊆ X and ε > 0, the

set B∂(U, ε) := {x ∈ X : ∃y ∈ U ∂(x, y) < ε} is open. One can prove that (S(G), ∂) is

adequate, and as M(G) is a retract of S(G), also (M(G), ∂) is adequate. Now in the setting

of Proposition 2.7.6, if every ∂-ball B∂(x, ε) had non-empty interior, it would follow that

x ∈
∫
B(x, ε). But this means that ∂ is a compatible metric for M(G), contradicting the

assumption that M(G) is non-metrizable.

The group G acts on [0, 1]G on the right, where if f ∈ [0, 1]G and g, h ∈ G, we have

f · g(h) = f(gh). Endow [0, 1]G with the product topology. For 0 < c ≤ 1, let

Lipc(G) ⊂ [0, c]G be the closed metrizable subspace of 1-Lipschitz functions. Then the

action Lipc(G) × G → Lipc(G) is continuous. If f ∈ Lipc(G) and p ∈ S(G), we define

f · p = limg→p f · g. Equivalently, one can first extend f to S(G); then if p, q ∈ S(G),

we have f · p(q) = f(pq). As a word of warning, note that in general, we do not have

limg→p f · g(q) = f · p(q).
Our next goal is to show that for some c > 0, Lipc(G) is topologically transitive. As

Lipc(G) is metrizable, this will imply that it is a pre-ambit. We will then finish the proof by

showing that AP (Lipc(G)) is not closed.

Given subsets {Si ⊆ G : i ∈ I}, call {Si : i ∈ I} equi-syndetic if there are g0, ..., gk−1 ∈ G
so that for every j ∈ I, we have G =

⋃
i<k Sjgi. Notice that if S ⊆ G is syndetic, then the

collection {gS : g ∈ G} is equi-syndetic.

Lemma 2.7.7. If Sn ⊆ G and {Sn : n < ω} is equi-syndetic, then the collection is not

pairwise disjoint.

Proof. Let g0, ..., gk−1 ∈ G witness that the collection {Sn : n < ω} is equi-syndetic. Notice

that for each n, we have g−1i ∈ Sn for some i < k. So we can find m 6= n and some i < k

with g−1i ∈ Sm ∩ Sn.

Lemma 2.7.8. There is c > 0 so that no B ⊆ G of diameter at most c is piecewise syndetic.

Proof. As M(G) is non-metrizable, we know that G is not pre-compact (otherwise

M(G) ∼= S(G) ∼= Ĝ). Find c > 0 so that for any A ⊆ G of diameter at most c, there

are (gn)|n<ω in G with {gnA : n < ω} pairwise disjoint. To see that this can be done, fix

{hn : n < ω} an ε-discrete set for some ε > 0. Let c = ε/3. If A ⊆ G has diameter at most

c, find g ∈ G with 1G ∈ gA. Then set gn = hng. For every n < ω, gnA has diameter at most

c and hn ∈ gnA.

Now fix B ⊆ G of diameter at most c. Towards a contradiction, assume B is piecewise

syndetic. By Proposition 2.3.14, we can find p ∈ βG (viewing G discretely) with p−1(B) :=

{g ∈ G : B ∈ pg} syndetic.
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Notice that p−1(B) has diameter at most c. To see this, if g, h ∈ p−1(B), then Bg−1 and

Bh−1 are in p, so Bg−1∩Bh−1 6= ∅. Find b, c ∈ B with bg−1 = ch−1, so also c−1b = h−1g. As

d(b, c) ≤ c, it follows that d(g, h) ≤ c. Now fix gn ∈ G with {gnp−1(B) : n < ω} a pairwise

disjoint, equi-syndetic set, a contradiction.

In order to show that Lipc(G) is topologically transitive, we will need the following

extension lemma for Lipschitz functions.

Lemma 2.7.9. Let A ⊆ G, and let f : A→ [0, c] be 1-Lipschitz. Then there is F ∈ Lipc(G)

with F |A = f and F |G\A(c) ≡ 0.

Proof. We first define a function F̂ as follows.

F̂ (g) := sup
h∈A

(f(h)− d(g, h))

We then set F (g) = max(F̂ (g), 0). To see that F is as desired, it is enough to check

that F̂ is 1-Lipschitz and satisfies F̂A = f . We have F̂A = f because f is 1-Lipschitz

on A. Now let g0, g1 ∈ G. For any h ∈ A, we see that F̂ (g0) ≥ f(h) − d(g0, h) implies

F̂ (g1) ≥ f(h)− d(g0, h)− d(g0, g1), and vice versa. This shows that F̂ is 1-Lipschitz.

Proposition 2.7.10. Suppose c > 0 is such that 2c works for Lemma 2.7.8. Then Lipc(G)

is topologically transitive.

Proof. Let U, V ⊆ Lipc(G) be two non-empty basic open neighborhoods. Then there are

points a0, ..., am−1 ∈ G, b0, ..., bn−1 ∈ G and open intervals I0, ..., Im−1 ⊆ [0, c], J0, ..., Jn−1 ⊆
[0, c] with U = {f : ∀k < m(f(ak) ∈ Ik)} and V = {f : ∀` < n(f(b`) ∈ J`)}. We need to

find g ∈ G with Ug−1 ∩ V 6= ∅. Notice that Ug−1 = {f : ∀k < m(f(gak) ∈ Ik)}.
Start by fixing fU ∈ U and fV ∈ V , and set ck = fU(ak), d` = fV (b`). Now set

A′ = {a0, ..., am−1} and B = {b0, ..., bn−1}. We want to find g ∈ G so that gA′ ∩ B(c) = ∅.
Suppose this were impossible. This implies that

⋃
i<mB(c)a−1i = G. So B(c) is syndetic,

implying that some {b`}(c) is piecewise syndetic, contradicting Lemma 2.7.8.

Now set A = gA′ ∪ B. Let f : A → [0, c] be given by f(gak) = ck and f(b`) = d`.

By choice of g ∈ G, f is 1-Lipschitz, so may be extended to F ∈ Lipc(G). We see that

F ∈ Ug−1 ∩ V as desired.

The last ingredient we need is to clarify a property shared by AP (Lipc(G)) functions.

Lemma 2.7.11. Suppose f ∈ AP (Lipc(G)) and f(g) = c for some g ∈ G. Then for any

ε > 0, the set f−1([c− ε, c]) is syndetic.

Proof. Towards a contradiction, assume this were false. Then for any finite F ⊆ G, there is

gF ∈ G with f(gFh) ≤ c− ε for each h ∈ F . Viewing the finite subsets of G as a directed set,

find a subnet with fgF → ϕ. Notice that ϕ is bounded above by c− ε. As f ∈ AP (Lipc(G)),

there is a net hi ∈ G with ϕ · hi → f . But this is impossible as f attains the value c.
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For the rest of the section, fix p ∈ M and c > 0 so that B∂(p, c) the ∂-ball of radius c

at p is nowhere dense as guaranteed by Lemma 2.7.6. We define f ∈ Lipc(G) via f(g) =

max(c− ∂(p, p · g), 0). If A ∈ p, we define fA ∈ Lipc(G) via fA(g) = max(c− ∂(A, p · g), 0).

Here ∂(A, p · g) := inf(ε > 0 : A(ε) ∈ p · g). Equivalently, one can define ϕA ∈ Lipc(G) via

ϕA(g) = max(c− d(g, A), 0), then set fA = ϕA · p.

Theorem 2.7.12. For each A ∈ p, fA ∈ AP (Lipc(G)). We have f ∈ {fA : A ∈ p}, and

f 6∈ AP (Lipc(G)).

Proof. Since fA = ϕA · p and p ∈ M , we have that fA ∈ AP (Lipc(G)). To see that f ∈
{fA : A ∈ p}, notice that for each g ∈ G, we have fA(g) ≥ f(g). Now fix g0, ..., gk−1 ∈ G and

ε > 0. We will find A ∈ p so that fA(gi) ≤ f(gi) + ε. Let ci = ∂(p, p · gi). We may assume

that for each i < k, we have ci > ε. Find Ai ∈ p and Bi ∈ p · gi so that Ai(ci − δ) ∩ Bi = ∅,
where δ is very small. Now form A =

⋂
i<k Ai(δ) ∈ p. Notice that A(ci − 2δ) ∩ Bi = ∅. It

follows that ∂(A, p · g) ≥ ci − 3δ, which implies the desired result.

We now show that f 6∈ APLipc(G). Towards a contradiction, suppose it were. Then as

f(1G) = c, the set S := f−1([c/2, c]) is syndetic. But notice that since S is syndetic and

p ·G is dense in M , we must have p · S somewhere dense in M . But p · S ⊆ B∂(p, c), which

is nowhere dense.



Chapter 3

Automorphism groups

Throughout this thesis, we use the term automorphism group to mean a topological group of

the form G = Aut(K). Here K is a countable first-order structure on countable underlying

set K, and G is endowed with the topology of pointwise convergence. We will see that when

G is an automorphism group, S(G) takes on a particularly nice form. This will allow us to

relate the metrizability of M(G) to the combinatorial phenomenon of finite Ramsey degree.

We also consider structures with finite big Ramsey degree and create new dynamical objects

in an attempt to capture this notion.

One of the key notions in this chapter is that of a diagram, defined in section 3.4. A

diagram uses embeddings between finite substructures of K to produce an abstract notion

of partial right action. For tall enough diagrams, the ω-diagrams, we can construct a G-flow

and relate properties of the diagram to properties of the G-flow. We will see that diagrams

can always be coded by a suitable logic action, but by working with diagrams instead of

expansion classes, we will never need to worry about the model-theoretic details of the

expansion.

Section 3.3 constructs the level representation of S(G), which will allow us a detailed

understanding of both its semigroup structure and its metrizable subspaces. We will see that

the level representation is more or less a refinement of the topometric structure on S(G).

Section 3.5 gives a new proof of KPT correspondence and strengthens it to characterize

when M(G) is metrizable. Section 3.6 provides a counterexample to the converse of the

Generic Point Theorem; we show using an example of Kwiatkowska [18] that there is an

automorphism group G with M(G) non-metrizable, but having a comeager orbit. Section

3.8 introduces the notion of a completion flow and discusses some connections between this

object and finite big Ramsey degree.

3.1 Fräıssé classes and structures

A relational language L = {Ri : i ∈ I} is a set of relational symbols; each symbol Ri comes

with a finite arity ni. All languages in this paper will be relational. Given a language L, an

37
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L-structure A = 〈A,RA
i 〉 is a set A along with an interpretation RA

i ⊆ Ani of each symbol in

L. We will use boldface for structures and lightface for the underlying set unless otherwise

specified. If A and B are L-structures, an embedding f : A → B is any injective map

f : A→ B so that for each i ∈ I and each ni-tuple a0, ..., ani−1 ∈ A, we have

RA
i (a0, ..., ani−1)⇔ RB

i (f(a0), ..., f(ani−1)).

Write Emb(A,B) for the set of embeddings from A to B, and write A ≤ B if Emb(A,B) 6= ∅.
If A ≤ B, we say that B embeds A. If A ⊆ B, then we write A ⊆ B if the inclusion map

is an embedding. An isomorphism is a bijective embedding, and an automorphism is an

isomorphism from a structure to itself. We write Emb(A) for Emb(A,A), and we write

Aut(A) for the group of automorphisms of A. A structure is finite or countable if the

underlying set is, and we write |A| := |A|.
If K is a countable L-structure, we write Age(K) := {A ≤ K : A is finite}. A countable

structure K is called ultrahomogeneous or a Fräıssé structure if for any partial isomorphism

of K, i.e. for any finite A ⊆ K and embedding f : A → K, there is g ∈ Aut(K) with

g|A = f . Two facts are worth pointing out, both due to Fräıssé [10]. First, if K is a Fräıssé

structure, then K := Age(K) is a Fräıssé class ; this is any class of L-structures with the

following four properties.

1. K contains only finite structures, contains structures of arbitrarily large finite cardi-

nality, is closed under isomorphism, and contains only countably many isomorphism

types of structures.

Remark. We will implicitly assume that (1) holds of all classes of finite structures that

we consider.

2. K has the Hereditary Property (HP): if B ∈ K and A ⊆ B, then A ∈ K.

3. K has the Joint Embedding Property (JEP): if A,B ∈ K, then there is C ∈ K which

embeds both A and B.

4. K has the Amalgamation Property (AP): if A,B,C ∈ K and f : A→ B and g : A→ C

are embeddings, there is D ∈ K and embeddings r : B → D and s : C → D with

r ◦ f = s ◦ g.

Second, if K is a Fräıssé class, there is up to isomorphism a unique Fräıssé structure K with

Age(K) = K. We call K the Fräıssé limit of K and write K = Flim(K).

The following property is nominally weaker, but actually equivalent to being Fräıssé . If

K is a countable L-structure with age K, we say that K has the extension property if for

any A ⊆ B ∈ K and any embedding f : A→ K, there is some h : B→ K with h|A = f .

Fact. K is a Fräıssé structure iff K has the extension property.
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It will be useful to keep some examples of Fräıssé classes and structures in mind. Many

more examples can be found in [16].

• If K is the class of finite sets, then Flim(K) is a countably infinite set.

• If K is the class of finite linear orders, then Flim(K) = 〈Q, <〉, the rational linear order.

• If K is the class of finite graphs, then Flim(K) is the Rado graph. This is sometimes

called the random graph; it is the graph obtained with probability one by taking a

countable vertex set and determining each edge with a coin toss.

• If one allows languages with functions and constant symbols, we can view the countable

atomless Boolean algebra as the Fräıssé limit of the class of finite Boolean algebras,

and we can view the countable infinite-dimensional vector space over a finite field F

as the Fräıssé limit of the finite-dimensional F -vector spaces. These examples can be

formalized relationally by considering Fräıssé-HP classes, which we will develop below.

For K a Fräıssé structure, form G = Aut(K). We endow G with the topology of pointwise

convergence; a basic open neighborhood of the identity is the collection {g ∈ G : g|A = 1|A}.
Notice that these basic open neighborhoods actually form subgroups; hence each is clopen.

Groups with this property are called non-Archimedean. Letting S∞ be the Polish group of

permutations of the countably infinite set K with this topology, we see that G is a closed

subgroup of S∞, so also Polish. It turns out (see [4]) that up to isomorphism, the non-

Archimedean Polish groups are exactly the closed subgroups of S∞.

Fact. Let G be a topological group. Then G is isomorphic to a closed subgroup of S∞ iff

there is some relational Fräıssé structure K with G ∼= Aut(K).

To understand why this is true, suppose G is a closed subgroup of S∞. For every finite

tuple a ∈ K<ω, introduce a relational symbol Ra of arity |a|. Using this as our language

L, we build the L-structure K by declaring that RK
a (b) holds iff for some g ∈ G we have

ga = b. Certainly G ⊆ Aut(K), and the fact that we assumed G closed in S∞ gives us

the reverse inclusion. Therefore using the terminology in this thesis, the non-Archimedean

Polish groups are exactly what we are calling automorphism groups.

We now proceed to develop some notational conventions regarding a countably infinite

structure K with Age(K) = K. Write Fin(K) = {A ⊆ K : A ∈ K}. An exhaustion of K is a

sequence (An)n<ω with A0 = ∅, An ∈ Fin(K), An ⊆ An+1, and K =
⋃
n An. When we write

K =
⋃
n An, we will assume that (An)n<ω is an exhaustion unless specified otherwise. When

working with an exhaustion, it is helpful to pretend that the elements of the exhaustion are

the only relevant finite substructures of K. When dealing with Fräıssé classes, we formalize

this by defining a Fräıssé-HP class (read “Fräıssé minus HP”).
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Definition 3.1.1. A class K is Fräıssé-HP if it satisfies every property of being a Fräıssé

class except possibly the hereditary property. Write K↓ for the hereditary closure of K.

If K is a Fräıssé-HP class, then there is up to isomorphism a unique structure K :=

Flim(K) with age K↓ which is K-ultrahomogeneous, namely that partial isomorphisms with

domain in K extend to full automorphisms of K. This is equivalent to K having age K↓ and

satisfying the K-extension property, the straighforward relativization of extension property

to structures in K.

As a convention, when we write “K =
⋃
n An is a Fräıssé structure,” we will take this to

mean that K = {A : ∃n (A ∼= An)} and K = Flim(K) in the Fräıssé-HP sense.

3.2 Structural Ramsey theory

If X is a set, r < ω, and Y is another set with |Y | = r, we will use the term r-coloring of X

to refer to any function γ : X → Y .

Definition 3.2.1.

1. Let A ≤ B ≤ C be L-structures, and let r < ω. We write

C→ (B)Ar

if for every coloring γ : Emb(A,C)→ r, there is h ∈ Emb(B,C) with

|{γ(h ◦ f) : f ∈ Emb(A,B)}| = 1.

2. Let C be a class of finite relational structures, and let A ∈ C. We say that A is a

Ramsey object in C if for every B ∈ C with A ≤ B and every r < ω, there is C ∈ C
with B ≤ C so that C→ (B)Ar . If the class C is understood, we simply sat that A ∈ C
is a Ramsey object.

3. Let C be a class of finite relational structures. We say that C has the Ramsey Property,

or simply RP , if every A ∈ C is a Ramsey object.

A prototypical example of a class with the RP is the class L of finite linear orders. In

fact, the statement that L has the RP is equivalent to the ordinary finite Ramsey theorem.

Another example is the class of linearly ordered finite graphs, a result due to Nešetřil and

Rödl [22]. Many other examples can be found in [16].

It will be helpful to think about the Ramsey Property by considering what happens on

a countably infinite structure.

Definition 3.2.2. Suppose D is a countably infinite L-structure with Age(D) = D, and fix

A ∈ D. We call a subset T ⊆ Emb(A,D) thick if for every B ∈ D with A ≤ B, there is

some h ∈ Emb(B,D) with h ◦ Emb(A,B) ⊆ T .
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The terminology is deliberate, as we will soon connect this to the notions of thick and

near-thick subsets of a topological group.

The next proposition seeks to understand the RP from this more infinite perspective.

The role of the cofinal subclass C ⊆ D is to allow us to freely consider Fräıssé-HP subclasses

of a given Fräıssé class.

Proposition 3.2.3. Suppose D is a countably infinite L-structure, D = Age(D), and C is

cofinal in D. Let A ∈ C. Then the following are equivalent:

1. A is a Ramsey object in C,

2. A is a Ramsey object in D,

3. For every B ∈ D with A ≤ B and every r < ω, we have D→ (B)Ar .

4. For any r < ω and r-coloring γ of Emb(A,D), there is some color γ−1({i}) which is

thick,

5. For any thick T ⊆ Emb(A,D), any r < ω, and any r-coloring γ of T , there is some

color γ−1({i}) which is thick.

Proof. (1⇔ 2) and (5⇒ 4⇒ 3) are straightforward.

For (2 ⇒ 5), fix thick T ⊆ Emb(A,D) and γ : T → r. Say A ≤ B ∈ D, and fix C ∈ D
for which C→ (B)Ar holds. Since T is thick, find f ∈ Emb(C,D) with f ◦Emb(A,C) ⊆ T .

Then we can find x ∈ Emb(B,C) with f ◦ x ◦ Emb(A,B) ⊆ γ−1({i}) for some i < r. It

remains to show that we can choose the same i < r for each B. If this weren’t possible, pick

a bad Bi for each i < r. As D is the age of a relational structure, D has JEP, so find B′ ∈ D
with Bi ≤ B′ for each i < r. We have seen that for some f ∈ Emb(B′,D) and some i < r,

we have f ◦Emb(A,B′) ⊆ γ−1({i}). But then f ◦Emb(A,Bi) ⊆ γ−1({i}), contradicting the

choice of Bi.

For (3⇒ 2), let D =
⋃
n Bn be an exhaustion with A ≤ B1. Suppose B ∈ D and r < ω

witnessed the fact that A is not a Ramsey object. Call an r-coloring γ of Emb(A,Bn) bad

if there is no f ∈ Emb(B,D) with f ◦ Emb(A,B) monochromatic. So for each n, there is a

bad r-coloring of Emb(A,Bn). Note that if γ is a bad r-coloring of Emb(A,Bn) and m ≤ n,

the restriction of γ to Emb(A,Bm) is also bad. We can now use König’s lemma to find a

bad r-coloring of Emb(A,D).

The following lemma shows that we can limit our attention to 2 colors. The proof is a

straightforward “color-fusing” argument.

Lemma 3.2.4. Let C be a class of finite relational structures, and fix A ∈ C. Then the

following are equivalent.
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1. A is a Ramsey object in C.

2. For every B ∈ C with A ≤ B, there is C ∈ C with B ≤ C and C→ (B)A2 .

In order to describe an important corollary of Lemma 3.2.4, we need to introduce a few

definitions.

Definition 3.2.5. Let D be a countably infinite L-structure with Age(D) = D. Fix A ∈ D.

1. S ⊆ Emb(A,D) is syndetic if Emb(A,D) \ S is not thick.

2. If γ : Emb(A,D) → Y is a coloring, then γ is a syndetic r-coloring if |Im(γ)| = r,

and for each y ∈ Y , we have γ−1({y}) either empty or syndetic. We call γ a syndetic

coloring if γ is a syndetic |Im(γ)|-coloring.

Once again, the terminology is deliberate, and we will soon connect this notion of syndetic

to the corresponding group-theoretic notions.

Corollary 3.2.6. Let D be a countably infinite L-structure with Age(D) = D. Fix A ∈ D.

Then if A is not a Ramsey object, there is a syndetic 2-coloring of Emb(A,D).

Proof. Repeat the proof of (3 ⇒ 2) in Proposition 3.2.3, but using Lemma 3.2.4 to know

that we can take r = 2.

It will be important to know when we can find a syndetic k-coloring of Emb(A,D) for

k ≥ 2. To do this, we need to introduce the idea of Ramsey degree.

Definition 3.2.7.

1. Let A ≤ B ≤ C be finite L-structures, and let k ≤ r < ω. We write

C→ (B)Ar,k

if for every coloring γ : Emb(A,C)→ r, there is h ∈ Emb(B,C) with

|{γ(h ◦ f) : f ∈ Emb(A,B)}| ≤ k.

2. Let C be a class of finite relational structures, and fix A ∈ C and k < ω. We say that

A has Ramsey degree k in C if k is least so that for every B ∈ C with A ≤ B and every

r with k ≤ r < ω, there is C ∈ C with B ≤ C so that C→ (B)Ar,k. If C is understood,

we simply say A ∈ C has Ramsey degree k.

3. With C as above, we say that C has finite Ramsey degrees if every A ∈ C has finite

Ramsey degree.
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Notice that A is a Ramsey object in C iff A has Ramsey degree 1 in C.
There are many examples of classes with finite Ramsey degrees. For K the class of finite

sets, the Ramsey degree of the set of size n is n!; this follows from the ordinary Ramsey

theorem, keeping in mind the n! permutations of the underlying set. For K the class of

finite graphs, a graph on n vertices also has Ramsey degree n!; we will soon see that this

follows from the Ramsey Property for the class K∗ of ordered finite graphs, along with a

correspondence between the classes K and K∗.
Much as in Lemma 3.2.4, a similar “color-fusing” argument shows that to test for Ramsey

degree k, it suffices to consider k + 1 colors.

Lemma 3.2.8. Let C be a class of finite relational structures, and fix A ∈ C and k < ω.

Then the following are equivalent.

1. A has Ramsey degree t ≤ k in C.

2. For every B ∈ C with A ≤ B, there is C ∈ C with B ≤ C and C→ (B)Ak+1,k.

We also have an analogue of Proposition 3.2.3. The proof is nearly identical.

Proposition 3.2.9. Suppose D is a countably infinite L-structure, D = Age(D), and C is

cofinal in D. Let A ∈ C and fix k < ω. Then the following are equivalent:

1. A has Ramsey degree t ≤ k in C,

2. A has Ramsey degree t ≤ k in D,

3. For any r with k ≤ r < ω and r-coloring γ of Emb(A,D), some k colors from γ form

a thick subset.

4. For any thick T ⊆ Emb(A,D), any r with k ≤ r < ω, and any r-coloring γ of T , some

k colors from γ form a thick subset.

By combining Proposition 3.2.9 and Lemma 3.2.8, we obtain the following important

corollary.

Corollary 3.2.10. Let D be a countably infinite L-structure with Age(D) = D. Fix A ∈ D
and k ≤ ω. Then if A does not have Ramsey degree t < k in D, there is a syndetic k-coloring

of Emb(A,D).

Suppose D is a class of finite L-structures and A ≤ B ∈ D; is it possible to compare

the Ramsey degrees? In general there is surprisingly little that can be said without adding

some assumptions. In the case D = Age(D), we could say something meaningful if we could

“push” syndetic colorings of Emb(A,D) up to Emb(B,D). However, the notion of largeness

we can push up happens to be thick, not syndetic.
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Proposition 3.2.11. Suppose D is a countably infinite L-structure with D = Age(D), and

let A ≤ B ∈ D. Fix some f ∈ Emb(A,B). If T ⊆ Emb(A,D) is thick, then

{x ∈ Emb(B,D) : x ◦ f ∈ T} is thick.

Proof. Fix C ∈ D with B ≤ C. Find y ∈ Emb(C,D) with y ◦ Emb(A,C) ⊆ T . Then for

every h ∈ Emb(B,C), we have y ◦ h ◦ f ∈ T . So {x ∈ Emb(B,D) : x ◦ f ∈ T} is thick as

desired.

When does the analogue of Proposition 3.2.11 hold for syndetic sets? A sufficient condi-

tion is that D be a Fräıssé-HP class.

Proposition 3.2.12. Let D is a countably infinite L-structure with D = Age(D). Suppose

C ⊆ D is a cofinal Fräıssé-HP subclass, and let A ≤ B ∈ C. Fix some f ∈ Emb(A,B). If

S ⊆ Emb(A,D) is syndetic, then Sf := {x ∈ Emb(B,D) : x ◦ f ∈ S} is syndetic.

Proof. As S is syndetic, there is C ∈ C with A ≤ C so that for every y ∈ Emb(C,D), we have

(y ◦ Emb(A,C)) ∩ S 6= ∅. Repeatedly use the amalgamation property to find some C′ ∈ C
and some z ∈ Emb(C,C′) so that for every j ∈ Emb(A,C), there is hj ∈ Emb(B,C′) with

hj ◦f = z ◦ j. Now let s ∈ Emb(C′,D). Then for some j ∈ Emb(A,C), we have s◦z ◦ j ∈ S.

Since s ◦ z ◦ j = s ◦ hj ◦ f , we have s ◦ hj ∈ Sf , so Sf is syndetic as desired.

Remark. Note that Proposition 3.2.12 did not require that D = Flim(C).

3.3 Dynamics of automorphism groups

Throughout this section, we fix a Fräıssé L-structure K =
⋃
n An, and we set G = Aut(K).

One of our first goals is to provide a more precise representation of S(G). To that end, we

establish some notational conventions.

Definition 3.3.1.

1. We set Hm := Emb(Am,K) and Hn
m := Emb(Am,An). We sometimes write H(m,n)

to avoid too many subscripts and superscripts. Notice that Hm =
⋃
n≥mH

n
m. The

group G acts on Hm on the left by post-composition.

2. We let im ∈ Hm be the inclusion embedding.

3. If g ∈ G, we write g|m for the embedding g|Am = g · im ∈ Hm. We let πm : G → Hm

be the map given by πm(g) = g|m. Note that πm is G-equivariant in the sense that

πm(gh) = g · πm(h).

4. We let Gm := {g ∈ G : g|m = im}. Notice that {Gn : n < ω} forms a base of clopen

subgroups at 1G, so we can take NG = {Gn : n < ω}. Using the map πm, we can

identify the members of Hm with the left cosets of Gm.
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5. For f ∈ Hm, we define ρf : G → Hm via ρf (g) = g · f . If f ∈ Hn
m, we define

ρnf : Hn → Hm given by ρf (x) = x ◦ f . Notice that ρim = πm, and we often write πnm
for ρnim . Also note that ρf and ρnf are G-equivariant.

6. Viewing Hm as discrete, form the space of ultrafilters βHn. For f ∈ Hn
m, we let

ρ̃nf : βHn → βHm denote the continuous extension of ρnf .

Lemma 3.3.2. Let f ∈ Hm. Then ρf : G→ Hm is uniformly continuous when Hm is given

the discrete uniformity.

Proof. Find n ≥ m with f ∈ Hn
m. If g−1h ∈ Gn, it follows that g · f = h · f .

Lemma 3.3.2 allows us to continuously extend ρf to the map ρ̃f : S(G) → βHm. When

f = im, we often write π̃m for this extension, and we often write π̃nm for ρ̃nim . If p ∈ S(G), we

often write p · f for ρ̃f (p), or just p|m in the case f = im.

If n ≥ m, notice that πm = πnm ◦πn, so upon extending to S(G), we obtain π̃m = π̃nm ◦ π̃n.

Form the inverse limit lim←− βHn along the maps π̃nm. Therefore we get a continuous surjection

π̃ : S(G)→ lim←− βHn.

Proposition 3.3.3. The map π̃ : S(G)→ lim←− βHn is injective, hence a homeomorphism.

Proof. Suppose p 6= q ∈ S(G). Find A ∈ p and B ∈ q which are apart. So for some m < ω,

we have AGm ∩BGm = ∅. But then πm(AGm) ∩ πm(BGm) = ∅, so p|m 6= q|m.

When G is an automorphism group, we will identify S(G) and lim←− βHn, often calling the

latter the level representation of S(G).

Remark. Consider the left-invariant metric on G given by d(g, h) = 2−n iff n is the largest

number with g|n = h|n. Form the topometric space (S(G), ∂). Then ∂(p, q) = 2−n iff n is

the largest number with p|n = q|n.

How does the right G-action on S(G) look when S(G) is given its level representation?

Suppose m < ω and S ⊆ Hm. Then for p ∈ S(G), we have π−1m (S) ∈ p iff S ∈ p|m. Now fix

g ∈ G, and let n ≥ m be large enough so that g|m ∈ Hn
m. Then we have

π−1m (S)g−1 = π−1n ({x ∈ Hn : x ◦ g|m ∈ S}).

In particular, we have

S ∈ (pg)|m ⇔ S ∈ p · g|m
⇔ {x ∈ Hn : x ◦ g|m ∈ S} ∈ p|n.
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To see at a glance why the above must be true, notice that it is true when p ∈ G, so it

must also be true for p ∈ S(G) by continuous extension.

In a similar fashion, we can understand the semigroup structure on S(G) under the

level representation. If m < ω and p ∈ S(G), form the map λmp : Hm → βHm given by

λmp (f) = p · f , and let λ̃mp : βHm → βHm be the continuous extension. If r ∈ βHm, we often

write p · r for λ̃mp (r). Now if S ⊆ Hm, notice that

p−1(π−1m (S)) = {g ∈ G : π−1m (S) ∈ pg}

= π−1m ({f ∈ Hm : S ∈ p · f}).

In particular, by defining p−1(S) := {f ∈ Hm : S ∈ p · f}, we obtain the familiar formula

S ∈ (pq)|m ⇔ S ∈ p · q|m
⇔ p−1(S) ∈ q|m.

Again, this can be seen at a glance by seeing that it is true for q ∈ G, then considering

the continuous extension. One corollary is worth pointing out explicitly.

Corollary 3.3.4. Let p, q ∈ S(G) and m < ω. Then (pq)|m = p · q|m.

Our next task is to understand the notions of thick, syndetic, and piecewise syndetic

from chapter 2. We begin by noticing two things. First, if A ⊆ G and m < ω, then

AGm = π−1m (πm(A)). Second, if A = π−1m (S) for some S ⊆ Hm, we have AGm = A. The

two conclusions that we can draw from this are first, that it suffices to work with subsets

of Hm for various m < ω, and second, that for sets of this form, disjointness and apartness

coincide, so we won’t need to deal with the “near” versions of various notions.

Definition 3.3.5. Let m < ω, and fix S ⊆ Hm. Then S is thick, syndetic, or piecewise

syndetic if π−1m (S) has the corresponding property.

The careful reader will notice that now the word thick has two competing definitions, the

other appearing in Definition 3.2.2. Let us show that they coincide.

Proposition 3.3.6. Let m < ω, and fix T ⊆ Hm. The following are equivalent.

1. T is thick as in Definition 3.3.5.
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2. For every n ≥ m, there is x ∈ Hn with x ◦ Hn
m ⊆ T , i.e. T is thick as in Definition

3.2.2.

Proof. (1) ⇒ (2). Assume T is thick, i.e. the collection {π−1m (T )g : g ∈ G} has the FIP.

Fix n ≥ m. Find g0, ..., gk−1 ∈ G so that {gi|m : i < k} = Hn
m. Then

⋂
i<k π

−1
m (T )g−1i 6= ∅.

If h ∈ G is in this intersection, then hgi|m ∈ T for each i < k. But this means that

h|n ◦Hn
m ⊆ T .

(2)⇒ (1). Assume (2) holds, and fix g0, ..., gk−1 ∈ G. Find some n ≥ m large enough so

that {g−1i |m : i < k} ⊆ Hn
m. Find x ∈ Hn with x ◦Hn

m ⊆ T . Now if g ∈ G with g|n = x, it

follows that g ∈ π−1m (T )gi for each i < k, so T is thick as desired.

An immediate corollary of this is that the two competing notions of syndetic also coincide.

It will be helpful to record this explicitly.

Corollary 3.3.7. Let m < ω, and fix S ⊆ Hm. Then the following are equivalent.

1. S is syndetic as in Definition 3.3.5.

2. There is n ≥ m so that for every x ∈ Hn, we have (x ◦Hn
m) ∩ S 6= ∅.

We now seek to understand how these largeness notions move between different levels.

The following is strictly weaker than Propositions 3.2.11 and 3.2.12, but this proof is more

illuminating.

Proposition 3.3.8. Suppose f ∈ Hn
m, and let T ⊆ Hm. Then T ⊆ Hm is thick iff

(ρnf )−1(T ) ⊆ Hn is thick.

Proof. Find g ∈ G with g|m = f . Noting that ρnf ◦ πn = ρf , we now have π−1n ((ρnf )−1(T )) =

ρ−1f (T ) = π−1m (T )g−1, and the result immediately follows.

Corollary 3.3.9. Let f ∈ Hn
m, and let γ : Hm → k be a coloring. Then γ is a syndetic

k-coloring iff γ ◦ ρnf : Hn → k is a syndetic k-coloring.

Corollary 3.3.10. Suppose n ≥ m and Am has Ramsey degree k in K. Then An does not

have Ramsey degree t < k.

3.4 Colorings, expansions, and diagrams

We fix a Fräıssé structure K =
⋃
n An with G = Aut(K). The goal of this section is

to discuss two of the most common types of G-flows, namely spaces of colorings and logic

actions. We will provide a common framework for discussing both types of flows, namely that

of a diagram. However, we spend some extra time developing notions related to colorings,

as these will be used throughout the remaining sections.



48 CHAPTER 3. AUTOMORPHISM GROUPS

3.4.1 Colorings

We first consider the space of k-colorings of Hm. The left G-action on Hm gives rise to a right

action on k-colorings. If γ ∈ kHm and g ∈ G, we define γ · g by setting γ · g(f) = γ(g · f).

The evaluation kHm × G → kHm is continuous, giving us a G-flow. Notice that kHm is

homeomorphic to Cantor space, so in particular is metrizable.

Definition 3.4.1. Suppose γ ∈ kHm . If n ≥ m and s ∈ Hn, we let γ · s : Hn
m → k be given

by γ · s(f) = γ(s · f). If f ∈ Hm, we often blur the distinction between γ · f and γ(f). If

m ≤ n ≤ N , γ ∈ kH(m,N), and s ∈ HN
n , then γ · s is similarly defined.

We can think of Definition 3.4.1 as providing a “partial action” of Hn on kHm . Indeed,

note that for γ ∈ kHm , s ∈ Hn, and g ∈ G, we have γ · (g · s) = (γ · g) · s. We freely extend

Definition 3.4.1 to βHn for n ≥ m by noting that kH(m,n) is finite, so if p ∈ βHn, there is

a unique coloring γ · p : Hn
m → k so that {s ∈ Hn : γ · s = γ · p} ∈ p. In particular, when

p ∈ βHm, we again blur the distinction between coloring and color and let γ · p be the color

γ̃(p), where γ̃ : βHm → k is the continuous extension of γ.

Lemma 3.4.2. Suppose γ ∈ kHm, p ∈ S(G), and n < ω. Then (γ · p) · in = γ · p|n.

Proof. Fix ψ ∈ kH(m,n). Then we have

γ · (p|n) = ψ ⇔ {s ∈ Hn : γ · s = ψ} ∈ p|n
⇔ (γ · p) · in = ψ.

Proposition 3.4.3. Suppose γ ∈ kHm, p ∈ S(G), and r ∈ βHn. Then γ · (p · r) = (γ · p) · r

Proof. Find some q ∈ S(G) with q|n = r. Then using Lemma 3.4.2 and Corollary 3.3.4, we

have

(γ · p) · r = ((γ · p) · q) · in
= (γ · (pq)) · in
= γ · (p · r).

We will often want to work with multiple spaces of colorings at the same time. The next

definition introduces some useful ways of comparing different colorings.

Definition 3.4.4.

1. Let m < ω, and suppose γ and δ are colorings of Hm. We say that δ refines γ and

write γ ≤ δ if whenever f, j ∈ Hm with δ · f = δ · j, we have γ · f = γ · j. We write

γ ∼ δ for the associated equivalence relation.
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2. Suppose m ≤ n < ω, and suppose γ is a coloring of Hm and δ is a coloring of Hn. We

say that γ and δ are coherent and write γ � δ if for every f ∈ Hn
m, we have γ ◦ ρnf ≤ δ.

Equivalently, γ � δ if whenever s, t ∈ Hn and δ · s = δ · t, then γ · s = γ · t.

3. If γn is a coloring of Hn for each n < r ≤ ω, we call the sequence (γn)n<r coherent if

for every m ≤ n < r we have γm � γn.

Proposition 3.4.5. Suppose m ≤ n < ω, and suppose γ � δ are colorings of Hm and Hn,

respectively. Then if p ∈ S(G), we have γ · p � δ · p. Furthermore, suppose |Im(γ)| = k and

|Im(δ)| = `. Then if |Im(δ · p)| = `, then |Im(γ · p)| = k.

Proof. Fix f ∈ Hn
m. Suppose s, t ∈ Hn satisfy δ · p(s) = δ · p(t). Let (gi)i∈I be a net from

G with gi → p. Then eventually γ · gi(s ◦ f) = γ · p(s ◦ f), γ · gi(t ◦ f) = γ · p(t ◦ f),

δ · gi(s) = δ · p(s), and δ · gi(t) = δ · p(t). As γ · gi � δ · gi, we have γ · gi(s ◦ f) = γ · gi(t ◦ f).

So the same is true of γ · p.

For the second claim, fix d < k. Find s ∈ Hn so that γ(s ◦ im) = d. Letting δ(s) = j, we

have that whenever t ∈ Hn with δ(t) = j, we have δ(t ◦ im) = d. Now suppose δ · p(t) = j.

Letting (gi)i∈I be a net from G with gi → p, we have that eventually δ(gi · t) = j. So

eventually γ(gi · t · im) = d. Hence γ · p(t · im) = d.

We will want an especially detailed understanding of the dynamics of syndetic colorings

and how they interact with the Ramsey degree.

Proposition 3.4.6. Let γ ∈ kHm, and fix t ≤ k. Then the following are equivalent.

1. γ is a syndetic t-coloring.

2. Every δ ∈ γ ·G = γ · S(G) has |Im(δ)| = t.

3. Every δ ∈ γ ·G = γ · S(G) is a syndetic t-coloring.

Proof. (3)⇒ (2) is clear. To see (2)⇒ (1), suppose there were i ∈ Im(γ) with γ−1({i}) not

syndetic. For each n ≥ m, find xn ∈ Hn with (xn ◦ Emb(Am,An)) ∩ γ−1({i}) = ∅. Find

gn ∈ G with gn|n = xn. By passing to a subsequence, we may assume γ · gn → δ. But then

i 6∈ Im(δ).

For (1) ⇒ (3), suppose (gN)N<ω is a sequence from G with γ · gN → δ. Fix i ∈ Im(γ).

We will show that δ−1({i}) is syndetic. As γ−1({i}) is syndetic, there is n ≥ m so that

(x ◦ Emb(Am,An)) ∩ γ−1({i}) 6= ∅ for every x ∈ Hn. Note that the same is true of

(γ · gN)−1({i}). Therefore the same is true of δ−1({i}).

Corollary 3.4.7. Suppose γ ∈ kHm is a coloring with γ · S(G) a minimal G-flow. Then γ

is a syndetic coloring.
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Proof. If γ were not a syndetic coloring, find p ∈ S(G) with |Im(γ · p)| < |Im(γ)|. But then

γ 6∈ γ · p · S(G), so γ · S(G) cannot be minimal.

Corollary 3.4.8. Suppose Am has Ramsey degree k in K, and let γ be a coloring of Hm.

Then there is p ∈ S(G) with γ · p a syndetic t-coloring for some t ≤ k.

Proof. Let p ∈ S(G) belong to some minimal subflow. Then γ · p · S(G) is a minimal flow.

It follows that γ · p is a syndetic coloring. As Am has Ramsey degree k, we must have

|Im(γ · p)| ≤ k.

Proposition 3.4.9.

1. Suppose γ ≤ δ are colorings of Hm, respectively. If δ is syndetic, then so is γ.

2. Suppose m ≤ n < ω, and let γ � δ be colorings of Hm and Hn, respectively. If δ is a

syndetic coloring, then so is γ.

Proof. Item (1) is immediate. For item (2), notice that δ refines the coloring γ ◦ ρnim , so by

item (1), γ ◦ ρnim is a syndetic coloring. Hence so is γ by Corollary 3.3.9.

Proposition 3.4.10. Suppose Am has Ramsey degree k in K. If γ, δ : Hm → k are both

syndetic k-colorings, then there is p ∈ S(G) with γ · p ∼ δ · p.

Proof. Let γ× δ : Hm → k×k be the product coloring. Notice that γ× δ refines both γ and

δ. Using Corollary 3.4.8, find p ∈ S(G) with (γ × δ) · p = γ · p × δ · p a syndetic t-coloring

for some t ≤ k. But (γ · δ)× p refines γ · p and δ · p, each of which is a syndetic k-coloring

by Proposition 3.4.6. Therefore (γ · δ) × p is also a syndetic k-coloring, so we must have

γ · p ∼ (γ × δ) · p ∼ δ · p.

3.4.2 Logic actions and diagrams

We now turn towards a more general type of G-flow, the logic action. Suppose L∗ ⊇ L

is a relational language. If A∗ is an L∗-structure, we write A∗|L, the reduct of A∗, for

the structure obtained from A∗ by forgetting the interpretations of the relations in L∗ \ L.

Conversely, if A is an L-structure, an expansion of A is any L∗-structure A∗ with reduct A.

The following definition provides the relevant notion of “partial action.”

Definition 3.4.11. Suppose A is an L-structure, B∗ is an L∗-structure, and f ∈ Emb(A,B∗|L).

Then B∗ · f is the unique expansion of A so that f ∈ Emb(A∗,B∗).
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We call a class K∗ of finite L∗-structures an expansion of K if we have K = {A∗|L : A∗ ∈
K∗}. If A ∈ K, we let K∗(A) be the set of expansions of A in K∗. We will from here on out

always assume that expansion classes satisfy the following two properties.

Definition 3.4.12. Fix an expansion K∗ of K.

1. (K∗,K) has the K-Hereditary Property or just K-HP , if whenever A ∈ K, B∗ ∈ K∗,
and f ∈ Emb(A,B∗|L), we have B∗ · f ∈ K∗.

2. (K∗,K) is reasonable if whenever A,B ∈ K, f ∈ Emb(A,B), and A∗ ∈ K∗(A), then

there is some B∗ ∈ K∗(B) with A∗ = B∗ · f .

Definition 3.4.13. Let K∗ be an expansion of K. Then XK∗ is the collection of L∗-structures

x with underlying set K so that x|L = K and Age(x) ⊆ K∗ ↓.

Remark.

1. We will often not use boldface when referring to structures from a space of structures.

2. When (K∗,K) is reasonable, then for any A∗n ∈ K∗(An), there is some x ∈ XK∗ with

x|An = A∗n

We topologize XK∗ by declaring a basic open neighborhood of structures to be those of

the form {x ∈ XK∗ : x · in = x|An = A∗n} for some expansion A∗n ∈ K∗(An). The group G

acts on XK∗ on the right via Definition 3.4.11. More explicitly, if R ∈ L∗ \ L is an n-ary

relational symbol, x ∈ XK∗ , g ∈ G, and a0, ..., an−1 ∈ K, we set

Rx·g(a0, ..., an−1) ⇔ Rx(ga0, ..., gan−1).

This action is continuous, so XK∗ is a G-flow if it is compact. A sufficient condition for

compactness is if K∗ only contains finitely many expansions of each An; in this case we say

that the expansion (K∗,K) is pre-compact.

The similarity between spaces of colorings and logic actions is that both have a notion

of “partial action” given by Definitions 3.4.1 and 3.4.11, respectively. We turn towards the

definition of a diagram, an abstract notion of partial action, and use diagrams to create

G-flows. We will see that every space of colorings and every logic action can be coded as a

diagram action. As it turns out, the logic action framework is perfectly general; every G-flow

arising from a diagram can be coded as a logic action, but the diagram provides exactly the

information we need and nothing more.

Definition 3.4.14.
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1. Suppose m ≤ n < ω. An (m,n)-diagram is a map D : Jn×Hn
m → Jm, where Jn and Jm

are finite sets and so that for every f ∈ Hn
m, the map D(−, f) : Jn → Jm is surjective.

When D is understood, y ∈ Jn, and f ∈ Hn
m, we often write y ·f for D(y, f). If x ∈ Jm

and y ∈ Jn, we write Emb(x, y) = {f ∈ Hn
m : y · f = x}.

2. Let DJ : Jn×Hn
m → Jm and DI : In×Hn

m → Im be (m,n)-diagrams. An isomorphism

of (m,n)-diagrams, written σ : DJ ⇒ DI , is a pair σ := (σm, σn) of bijections σm :

Jm → Im and σn : Jn → In so that the following commutes.

Jn ×Hn
m In ×Hn

m

Jm Im

σn × 1

DJ DI

σm

3. Let r ≤ ω. An r-diagram based on {Jn : n < r} is a collection D = {D(m,n) : m ≤
n < r} satisfying the following properties.

(a) Each Jn is a finite set so that for every m ≤ n < r, D(m,n) : Jn ×Hn
m → Jm is

an (m,n)-diagram. Furthermore, |J0| = 1.

(b) If m ≤ n ≤ N < r, f ∈ Hn
m, s ∈ HN

n , and j ∈ JN , then j · (s ◦ f) = (j · s) · f .

4. Let DJ = {DJ(m,n) : m ≤ n < r} and DI = {DI(m,n) : m ≤ n < r} be r-

diagrams based on {Jn : n < r} and {In : n < r}, respectively. An isomorphism of

r-diagrams σ : DJ ⇒ DI is a tuple σ := {σn : n < r} so that for every m ≤ n < r,

(σm, σn) : DJ(m,n)⇒ DI(m,n) is an isomorphism.

5. If r ≤ ω, N ≤ r, and D := {D(m,n) : m ≤ n < r} is an r-diagram, then the restriction

of D to N is the N -diagram D|N := {D(m,n) : m ≤ n < N}.

Example 3.4.15.

1. Suppose r < ω, and let (γn)n<r be coherent colorings of Hn for n < r. For m ≤ n < r,

the diagram of γm � γn is the map D(γm, γn) : Im(γn) × Hn
m → Im(γm) where given

f ∈ Hn
m and j ∈ Im(γn), we set D(γm, γn)(j, f) = i if for any s ∈ Hn with γn(s) = j,

we have γm(s ◦ f) = i. The diagram of (γn)n<r is the collection Dγ := {D(γm, γn) :

m ≤ n < r}

2. If K′ is an expansion of K and m ≤ n < ω, then the diagram DK′(m,n) : K′(An) ×
Hn
m → K′(Am) is given by DK′(m,n)(A′n, f) = A′n · f . We form an ω-diagram by

setting DK′ = {DK′(m,n) : m ≤ n < ω}. Keep in mind our convention that expansion

classes always are reasonable and have the K-HP.
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Definition 3.4.16. Suppose D = {D(m,n) : m ≤ n < ω} is an ω-diagram based on

{Jn : n < ω}.

1. We set XD = {p ∈
∏

n Jn : p(n) · im = p(m) for m ≤ n < ω}. We often write p|n for

p(n). This is a closed subspace of the product
∏

n Jn.

2. Given p ∈ XD and f ∈ Hn
m, we write p · f for p|n · f . If y ∈ Jm, we write Emb(y, p) :=

{f ∈ Hm : p · f = y}.

3. If p ∈ XD and g ∈ G, we define p · g ∈ XD via p · g(m) = p · g|m

Item 3(b) in Definition 3.4.14 is exactly what is needed to see that the action in (3) above

is well defined. In particular, for any s ∈ Hn and f ∈ Hn
m, we have p · (s · f) = (p · s) · f . The

action is continuous, turning XD into a G-flow. We freely extend the partial right actions to

βHm in the obvious way. In particular, the analogue of Proposition 3.4.3 holds in this more

general context with an identical proof.

Proposition 3.4.17. Suppose DI and DJ are ω-diagrams based on {In : n < ω} and

{Jn : n < ω}, respectively. If DI and DJ are isomorphic, then XDI
∼= XDJ .

Proof. Let σ : DJ ⇒ DI be an isomorphism of diagrams. We define ψσ : XDJ → XDI by

setting ψσ(p)|n = σn(p|n). As σ is an isomorphism of diagrams, this is well defined, and

therefore is a G-flow isomorphism.

We spend the remainder of the section showing that diagrams do nothing more than

provide a flexible way for building logic actions.

Proposition 3.4.18. Let K′ be an expansion of K, and form the diagram DK′. Then XDK′
∼=

XK′.

Proof. Given x ∈ XDK′
, we define ϕ(x) ∈ XK′ by setting ϕ(x) =

⋃
n x|n. This is a bijective

G-map.

Proposition 3.4.19. Let D be an ω-diagram based on {Jn : n < ω}. Then there is a

language L′ ⊇ L and an L′-expansion K′ of K so that D ∼= DK′.

Proof. Let rn = |An|, and fix an enumeration of K so that An = {a0, ..., arn−1}. For each

y ∈ Jn, let Ry be a new rn-ary relation symbol. Set L′ = L ∪ {Ry : y ∈
⋃
n Jn}. Now

for each y ∈ Jn, we define Ay an L′-expansion of An as follows. For every m ≤ n and

embedding f ∈ Hn
m, we declare that RAy

y·f (f(a0), ..., f(arm−1)) holds. We then set K′ = {A′ :
∃y ∈

⋃
n Jn (A′ ∼= Ay)}.

Let σn : Jn → K′(An) be the map σn(y) = Ay. To verify that σ = (σn)n<ω is an

isomorphism fromD toDK′ , suppose y ∈ JN and s ∈ HN
n . We need to show that Ay·s = Ay·s.
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So let m ≤ n. If ~b is a tuple of length rm from An and z ∈ Jm so that RAy·s
z (~b) holds, this

means that ~b enumerates some embedding f ∈ Hn
m and z = (y · s) · f . On the other

hand, RAy ·s
z (~b) holds iff RAy

z (s(~b)) holds. This means that s(~b) enumerates some h ∈ HN
m

and z = y · h. By letting h = s · f , we see that RAy·s
z (~b) implies RAy ·s

z (~b). However, if s(~b)

enumerates h ∈ HN
m , then it must be the case that ~b enumerates some f ∈ Hn

m with h = s◦f .

So RAy ·s
z (~b) implies RAy·s

z (~b), and Ay·s = Ay · s.
Lastly, we check that K′ has the K-HP and is reasonable. The equality Ay·s = Ay · s

verifies the K-HP, and the fact that the maps D(m,n)(−, f) are surjective shows that K′ is

reasonable.

We often write KD for the expansion of K constructed from an ω-diagram D as in

Proposition 3.4.19. Using this construction, we can take notions about expansion classes

and rephrase all of them in terms of diagrams. In particular, we can say that an ω-diagram

D has the JEP, AP, Ramsey Property, etc. iff the class KD does. It will be helpful to write

down what this means in terms of D itself. For the next few items, fix an ω-diagram D

based on {Jn : n < ω}.

• D has the JEP if for any x ∈ Jm and y ∈ Jn, there are N ≥ n, z ∈ JN , f ∈ HN
m and

s ∈ HN
n with z · f = x and z · s = y.

• D has the AP if for any x ∈ Jm, any n, ` ≥ m, and any y0 ∈ Jn, y1 ∈ J`, f0 ∈ Hn
m, and

f1 ∈ H`
m with y0 · f0 = y1 · f1 = x, there are N ≥ m, z ∈ JN , s0 ∈ HN

n , and s1 ∈ HN
`

with z · s0 = y0, z · s1 = y1, and s0 ◦ f0 = s1 ◦ f1.

• D has the Ramsey Property if for any x ∈ Jm and y ∈ Jn with Emb(x, y) 6= ∅, there is

N ≥ n and z ∈ JN with Emb(y, z) 6= ∅ so that z → (y)x2 .

3.5 Strengthenings of KPT correspondence

We continue with the notational conventions established at the beginning of section 3.3. So

let G = Aut(K), where K =
⋃
n An is a Fräıssé L-structure. We proceed to extend some

notation from section 2. If S ⊆ Hm, we let CS = {p ∈ S(G) : S ∈ p|m}. Notice that each

CS is clopen, and sets of this form form a basis for S(G). Combining Propositions 2.3.6 and

3.3.6, we immediately obtain the following.

Corollary 3.5.1. Let m < ω, and fix T ⊆ Hm. Then T is thick iff CT ⊆ S(G) contains a

minimal subflow of S(G).

Combining Propositions 3.2.3 and 2.3.9, we recover one of the major theorems from [16].

Theorem 3.5.2 (Theorem 4.7 from [16]). G is extremely amenable iff K has the Ramsey

Property.
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Remark. The statement of Theorem 4.7 from [16] uses a slightly different notion of Ram-

sey Property involving substructures instead of embeddings, so must also demand that the

structures in K are rigid, i.e. have no non-trivial automorphisms. Our notion of Ramsey

Property is an “embedding” notion, so is equivalent to “substructure” Ramsey plus rigid

structures.

Proof. If G is extremely amenable, then by Proposition 2.3.9, the collection of near-thick

subsets of G is partition regular. If T ⊆ Hm is thick and T = T0 ∪ T1, then one of π−1m (T0)

or π−1m (T1) must be near-thick, hence thick, so either T0 or T1 is thick. This shows that Am

is a Ramsey object by Proposition 3.2.3.

Conversely, suppose K has the Ramsey Property. Fix T ⊆ G a near-thick subset, and

write T = T0 ∪ T1. To show that one of T0 or T1 is near-thick, fix m < ω. Then πm(T )

is thick, and πm(T ) = πm(T0) ∪ πm(T1). By the Ramsey Property and Proposition 3.2.3,

some πm(Ti) is thick. Since this is true for each m < ω, for some i ∈ {0, 1} we have πm(Ti)

thick for cofinally many m < ω, hence for all m < ω. Hence the near thick subsets of G are

partition regular, so G is extremely amenable.

The major goal for the rest of this section is to similarly connect metrizability of M(G)

with the phenomenon of K having finite Ramsey degrees.

We first need to understand what metrizable subspaces of S(G) can look like. If Y ⊆ S(G)

is compact, we often write Ym = π̃m“(Y ) ⊆ βHm. note that Y = lim←−Ym. Now if Y ⊆ S(G)

is compact metrizable, then so is Ym. Conversely, if each Ym is metrizable, then so is

Y ∼= lim←−Ym. So it suffices to understand compact metrizable subspaces of βHm. The

following folklore theorem can be found in [14], but we have already proven a stronger

theorem in Theorem 1.4.8.

Proposition 3.5.3. Suppose X is a set and Y ⊆ βX is compact metrizable. Then Y is

finite.

Proof. Endow X with the discrete metric, i.e. d(x, y) = 1 whenever x 6= y. Then we have

βX = S(X) with respect to this metric. If ∂ is the discrete metric on βX, then (S(X), ∂) is

the topometric Samuel compactification of X, and we appeal to Theorem 1.4.8.

We can now prove one of the main theorems from [34].

Lemma 3.5.4. Suppose Y ⊆ S(G) is a subflow, and let p ∈ Y . Then if f ∈ Hm, we have

p · f ∈ Ym.

Proof. Find g ∈ G with g|m = f . Then p · g ∈ Y , so π̃m(p · g) = p · f ∈ Ym.

Theorem 3.5.5. M(G) is metrizable iff K has finite Ramsey degrees. In particular, if

Y ⊆ S(G) is a minimal, metrizable subflow, then Am has Ramsey degree |Ym| in K.
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Proof. First assume Y is metrizable, and fix p ∈ Y . Form the coloring λmp : Hm → Ym given

by λmp (f) = p · f . Since Y is a minimal subflow, we have by Proposition 2.3.12 that λmp is a

syndetic |Ym|-coloring.

Suppose γ : Hm → k is a syndetic k-coloring; we want to show that k ≤ |Ym|. Let

λγ : S(G)→ X be the map of ambits. By Proposition 3.4.3, we have γ · (p · f) = (γ · p) · f .

It follows that the coloring λmp refines the coloring γ · p. As γ · p is a syndetic k-coloring by

Proposition 3.4.6, we have k ≤ |Ym| as desired.

In the other direction, suppose Y ⊆ S(G) is a minimal subflow which is not metrizable.

Then Ym is infinite for some m < ω. If k < ω, let ψk : Ym → k be a partition of Ym into

k clopen pieces. Then if p ∈ Y , the coloring ψk ◦ λmp is a syndetic k-coloring. As k was

arbitrary, Am cannot have finite Ramsey degree in K.

When M(G) is metrizable, we can represent M(G) as XD for a suitable diagram.

Proposition 3.5.6. Suppose Y ⊆ S(G) is a minimal, metrizable subflow. Then letting

DY (m,n) : Yn ×Hn
m → Ym be given by D(m,n)(p, f) = p · f , we have that

DY = {DY (m,n) : m ≤ n < ω} is an ω-diagram based on {Yn : n < ω}, and Y ∼= XDY .

Proof. To verify that DY is a diagram, the only thing we need to check is that for f ∈ Hn
m,

the map D(m,n)(−, f) is surjective. Suppose r ∈ Ym. Let p ∈ Y with p|m = r. Find g ∈ G
with g|m = f , and then (pg−1)|n ·f = pg−1 ·g|m = p|m = r as desired. The map ψ : Y → XDY

given by ψ(p) = (p|n)n<ω is a G-flow isomorphism.

We now seek to understand which properties of a diagram D ensure that XD
∼= M(G).

Proposition 3.5.7. Let D be an ω-diagram based on {Jn : n < ω}. Then XD is a pre-ambit

iff D has the JEP.

Proof. Suppose D has the JEP, and write {xi : i < ω} =
⋃
n Jn. Let n0 < ω so that

x0 ∈ K∗(An0). Suppose some ynk ∈ Jnk has been determined which embeds each xi for

i ≤ k. Use JEP to find some n ≥ nk and zn ∈ Jn which embeds both ynk and xk+1. Suppose

s ∈ H(nk, n) satisfies zn ·s = ynk . Using the Extension Property for K, we can find nk+1 ≥ n

and t ∈ H(n, nk+1) so that t◦s = ink . Then find any ynk+1
∈ Jnk+1

with ynk+1
· t = zn. Notice

that ynk+1
· ink = ynk . We then let y ∈ XD be the unique element with y|nk = ynk for each

k < ω. Since y embeds every member of
⋃
n Jn, we see that y ·G is dense in XD.

Conversely, suppose D does not have the JEP, as witnessed by some ym ∈ Jm and

yn ∈ Jn. Suppose x ∈ XD has x|m = ym. Then x · G does not meet the non-empty open

neighborhood {z ∈ XD : z|n = yn}. Since x was an arbitrary member of the non-empty open

set {x ∈ XD : x|m = ym}, it follows that XD cannot be a pre-ambit.

Next, we define a combinatorial property which captures minimality of the flow XK∗ .
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Definition 3.5.8. Let D be an ω-diagram based on {Jn : n < ω}. We say that D has the

Minimal Property if whenever m < ω and x ∈ Jm, there is some n ≥ m so that for any

y ∈ Jn, we have Emb(x, y) 6= ∅.

Remark.

1. When referring to expansion classes, the Minimal Property is often called the Expansion

Property, or the Order Property when K∗ is an expansion of K by linear orders.

2. Since Jm is finite, we can find an n ≥ m which works for every element of Jm simul-

taneously. However, we will soon define weak diagrams where we allow the Jm to be

countable, and in this context Definition 3.5.8 is the correct definition to use.

Proposition 3.5.9. Let D be an ω-diagram based on {Jn : n < ω}. Then XD is a minimal

G-flow iff D has the Minimal Property.

Proof. Suppose D has the Minimal Property. Let x ∈ XD, and fix y ∈ Jm. We want to find

g ∈ G with (x · g)|m = y. The Minimal Property ensures that there is some n ≥ m so that

every z ∈ Jn embeds y. In particular, there is f ∈ Hn
m with x|n · f = y. Finding a g ∈ G

with g|m = f , we have x · g = y as desired.

Conversely, suppose D does not have the Minimal Property as witnessed by y ∈ Jm.

For each n < ω, we can find xn ∈ XD so that xn|n does not embed y. By passing to a

convergent subsequence, we obtain x ∈ XD with Emb(y, x) = ∅. Then the orbit x ·G avoids

the non-empty open set {z ∈ XD : z|m = y}, so XD is not minimal

Remark. Since minimal flows are pre-ambits, this shows that the Minimal Property implies

the JEP.

We can now state another of the major theorems from [16]; we phrase it here in terms of

expansions.

Theorem 3.5.10 (Theorem 7.5 and 10.8 in [16], see also Theorem 5 from [26]).

Suppose (K∗,K) is pre-compact, and form XK∗. Then the following are equivalent.

1. XK∗ ∼= M(G).

2. K∗ is a Fräıssé class with the Ramsey Property and (K∗,K) has the Minimal Property.

Remark. Expansions (K∗,K) satisfying item (2) are often called excellent .

We turn our attention towards the proof of this result. Along the way, we will strengthen

it and recover another major result from [34].

Theorem 3.5.11 (Theorem 8.14 in [34]). The following are equivalent.
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1. M(G) is metrizable.

2. Every A has finite Ramsey degree in K.

3. There is a pre-compact expansion (K∗,K) satisfying item (2) from Theorem 3.5.10.

This theorem also provided the first proof of the Generic Point Problem for G an auto-

morphism group. Of course, we have already seen a proof of the full Generic Point Problem

in section 2.6, but the original proof follows from the above two theorems and the following

observation.

Proposition 3.5.12. Suppose D is a Fräıssé diagram based on {Jn : n < ω}. Then XD has

a comeager orbit.

Proof. Let x ∈ XD be a Fräıssé limit of the diagram D. First note that if y ∈ XD is

another Fräıssé limit, then there is g ∈ G with xg = y; this is because any two Fräıssé

limits are isomorphic, and any isomorphism is necessarily an automorphism of the reduct K.

Second, note that x ∈ XD is a Fräıssé limit iff the following form of the Extension Property

holds: whenever z0 ∈ Jm, z1 ∈ Jn, f ∈ Emb(z0, z1), and j ∈ Emb(z0, x), then there is

s ∈ Emb(z1, x) with s ◦ f = j. The AP for D tells us that fixing z0, z1, f ∈ Emb(z0, z1), and

j ∈ Hm as above, the set

{x ∈ XD : j 6∈ Emb(z0, x) or ∃s ∈ Emb(z1, x) with s ◦ f = j}

is open dense in XD. The Expansion Property is the demand that x ∈ XD belong to the

above set for every choice of z0, z1, f , and j, and there are countably many such choices.

Therefore the set of x ∈ XD satisfying the Extension Property is comeager.

We have already shown (1)⇔ (2) in Theorem 3.5.5. We will phrase the remaining proofs

in terms of diagrams.

Definition 3.5.13. Let D be an ω-diagram. Then D is called excellent if D is Fräıssé and

has the Minimal and Ramsey Properties.

We first address (1) ⇒ (3). For the next few propositions, fix Y ⊆ S(G) a minimal

metrizable subflow, and form the diagram DY as in Proposition 3.5.6. We will show that

DY is excellent. Since Y ∼= XDY is minimal, we know that DY has the Minimal Property,

which also implies that DY has the JEP. It remains to show that DY has the AP and the

Ramsey Property. To simplify our task, we note the following theorem of Nešetřil and Rödl

[22].

Fact. Suppose D is a class of finite structures with the JEP and the Ramsey Property. Then

D has the AP.



3.5. STRENGTHENINGS OF KPT CORRESPONDENCE 59

So we only need to show that D := DY has the Ramsey Property. The idea will be to

view x ∈ Y as an element of XKD and use Proposition 3.2.3 in tandem with Proposition

3.2.9 for the reduct K. We will need to be a little careful with our terminology, as we will

be dealing with two different notions of thickness; we will emphasize this by writing x-thick

or K-thick as needed.

Lemma 3.5.14. Suppose D is an ω-diagram based on {Jn : n < ω}, and fix x ∈ XD and

y ∈ Jm.

1. If T (y, x) ⊆ Emb(y, x) is x-thick, then there is some K-thick T ⊆ Hm with

T ∩ Emb(y, x) = T (y, x).

2. If D has the Minimal Property, the converse is true; if T ⊆ Hm is K-thick, then

T (y, x) := T ∩ Emb(y, x) is thick. Further

Proof. Suppose T (y, x) ⊆ Emb(y, x) is x-thick. For each n ≥ m and z ∈ Jn with Emb(z, x) 6=
∅, find sz ∈ Emb(z, x) with sz ◦Emb(y, z) ⊆ T (y, x). Then set T ′ =

⋃
n

⋃
z∈Jn sz ◦H

n
m. Then

T ′ ⊆ Hm is K-thick, as is T := T ′ ∪ T (y, x). Then T ∩ Emb(y, x) = T (y, x) as desired.

Now assume D has the Minimal Property, and suppose T ⊆ Hm is K-thick. Then

consider T (y, x) := T ∩ Emb(y, x). Let z ∈ Jn; we want to find h ∈ Emb(z, x) with

h ◦Emb(y, z) ⊆ T (x, y). First find N ≥ n witnessing the Minimal Property for z. Then find

s ∈ HN with s ◦HN
m ⊆ T . As x · s ∈ JN , find t ∈ HN

n with x · s · t = z. So s ◦ t ∈ Emb(z, x)

and s ◦ t ◦ Emb(y, z) ⊆ T (x, y) as desired.

Proposition 3.5.15. The diagram D := DY has the Ramsey Property.

Proof. Fix x ∈ XD and y ∈ Ym. Let γ : Emb(y, x) → 2 be a coloring; we need to show

that some γ−1({i}) is x-thick. We use γ to form a coloring δ : Hm → (Ym \ {y}) ∪ {0, 1} as

follows.

δ(f) =

{
x · f if f 6∈ Emb(y, x)

γ(f) if f ∈ Emb(y, x)

By Theorem 3.5.5, Am has Ramsey degree |Ym| in K. So for some K-thick T ⊆ Hm,

we have |δ“(T )| = |Ym|. Notice that δ−1({z}) is K-syndetic for each z ∈ Ym \ {y} by

Proposition 2.3.12. Therefore the color missing from δ“(T ) is either 0 or 1; we may assume

δ“(T ) = (Ym \ {y}) ∪ {0}.
By Lemma 3.5.14, T (y, x) := T ∩ Emb(y, x) is x-thick. Now observe that γ“(T (y, x)) =

{0}, so γ−1({0}) is x-thick and we are done.

The direction (3)→ (1) in Theorem 3.5.11 is addressed by (2)→ (1) in Theorem 3.5.10.

For completeness, we provide a proof; given D an excellent ω-diagram, we need to show that

XD
∼= M(G). One of the key steps along the way is the following.
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Proposition 3.5.16. If D is an excellent diagram based on {Jn : n < ω}, then each Am ∈ K
has Ramsey degree |Jm| in K.

Remark. As promised earlier, we can now easily explain Ramsey degrees in the class K of

finite graphs. It is shown in [16] that if K∗ is the expansion class of finite linearly ordered

graphs, then (K∗,K) is excellent. As a graph on n vertices can be expanded by n! different

linear orders, we see that the Ramsey degree of a graph on n vertices is n!.

Lemma 3.5.17. Let D be a diagram based on {Jn : n < ω}, and fix x ∈ XD and y ∈ Jm.

Suppose γ : Hm → r is a coloring which is constant on Emb(y, x). Then for any p ∈ S(G),

the coloring γ · p is constant on Emb(y, x · p).

Proof. Fix f0, f1 ∈ Emb(y, x · p). Then x · p · f0 = x · p · f1 = y. Letting gi → p, we

eventually have gi · f0 and gi · f1 ∈ Emb(y, x). So γ(gi · f0) = γ(gi · f1), and therefore

γ · p(f0) = γ · p(f1).

Proof of Proposition 3.5.16. Write k = |Jm|, and let γ : Hm → r be a coloring. It suffices to

find p ∈ S(G) so that |Im(γ · p)| ≤ k.

Write Jm = {y0, ..., yk−1}. We inductively construct p0, ..., pk−1 ∈ S(G). Suppose

p0, ..., pi−1 have been determined, and set qi = p0 · · · pi−1; for i = 0 set q0 = 1G. Consider the

coloring γ ·qi on Emb(yi, x ·qi). Inductively assume that γ ·qi is constant on Emb(yj, x ·qi) for

each j < i. Find an x-thick Ti ⊆ Emb(yi, x ·qi) with (γ ·qi)“(Ti) a singleton. For each n < ω,

fix sn ∈ Hn with sn ◦ Emb(y, x|n) ⊆ Ti. Find gn ∈ G with gn|n = sn, and let pi ∈ S(G) be

a cluster point. Then γ · qi · pi = γ · qi+1 is monochromatic on Emb(yi, x · qi+1); by Lemma

3.5.17, γ · qi+1 is monochromatic on Emb(yj, x · qi+1) for every j ≤ i.

Now set p = qk. The coloring γ · p is monochromatic on Emb(yi, x · p) for every i < k.

As Hm =
⋃
i<k Emb(yi, x · p), we have that |Im(γ · p)| ≤ k as desired.

We can now complete the proofs of (3) ⇒ (1) in Theorem 3.5.11 and (2) ⇒ (1) in

Theorem 3.5.10. Let D be an excellent diagram based on {Jn : n < ω}. Let Y ⊆ S(G) be a

minimal subflow. Then Y = lim←−Ym with Ym ⊆ βHm and |Ym| = |Jm|. Fix x ∈ XD, and let

λx : Y → XD be the G-map λx(p) = x · p. Now if p0, p1 ∈ Y have x · p0 = x · p1, then for

every m < ω, we have x · p0 · im = x · p1 · im. But then since |Jm| = |Ym| and λx is surjective,

we must have p0|m = p1|m, hence p0 = p1.

3.6 Weak Diagrams

In this section, we negatively answer a question due to Ben–Yaacov, Melleray, and Tsankov

[5] asking about the converse to the Generic Point Problem.
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Theorem 3.6.1. There is a Polish group G with M(G) not metrizable and containing a

comeager orbit.

The example follows from recent work of Kwiatkowska on generalized Ważewski dendrites

[18]. What we will need is the following.

Proposition 3.6.2 ([18], Theorem 13). There is a Fräıssé-HP class K and an expansion

K∗ so that (K,K∗) satisfies every property of being an excellent pair except precompactness,

which fails.

It will be helpful to formalize these properties using the notion of a weak diagram.

Definition 3.6.3. A weak diagram based on {Jn : n < ω} satisfies all the properties of an

ω-diagram, except we now allow the Jn to be countably infinite.

The other properties that an ω-diagram might have, i.e. the JEP, AP, Ramsey Property,

Minimal Property, and being excellent, all have the same definitions.

Given a weak diagram D, we set XD := {x ∈
∏

n Jn : x(n) · im = x(m) for m ≤ n < ω}.
Notice that this is the exact same definition as before, and we let G act on XD in the exact

same manner. The key difference is that XD will only be compact if each Jn is finite, i.e. if

D is a diagram. So the action XD×G→ XD turns XD into a G-space rather than a G-flow.

We will prove Theorem 3.6.1 using Proposition 3.6.2 by proving the following.

Theorem 3.6.4. Suppose D is an excellent weak diagram. Then M(G) ∼= SG(XD). Fur-

thermore, X := XD is a rich G-space which has a comeager orbit, and the embedding

iGX : X → SG(X) has comeager image.

First note that the proof of Proposition 3.5.12 works just the same for weak diagrams, so

XD will have a comeager orbit. Also notice that the forward direction of Proposition 3.5.9

works in the weak setting, so if D has the Minimal Property, then

Lemma 3.6.5. Suppose D is a weak diagram based on {Jn : n < ω}. Then XD is finitely

minimal iff D has the Minimal Property.

Proof. Fix y ∈ Jm, and let Xy = {x ∈ XD : x|m = y}. We want to find g0, ..., gk−1 ∈ G

with XD =
⋃
i<kXygi. The Minimal Property ensures that there is some n ≥ m so that

every z ∈ Jn embeds y. Find g0, ..., gk−1 so that {g−1i |m : i < k} = Hn
m. Then we have

XD =
⋃
i<kXygi as desired.

Conversely, suppose XD is not finitely minimal as witnessed by y ∈ Jm. Consider the

open set Xy, and fix g0, ..., gk−1 ∈ G. Find some n ≥ m with {g−1i |m : i < k} ⊆ Hn
m, and

find some z ∈ Jn which doesn’t embed y. It follows that Xz ∩
⋃
i<kXygi = ∅.
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Lemma 3.6.6. Suppose D is a weak diagram with the AP. Then X := XD is a rich G-space.

Furthermore, we have SG(X) ∼= lim←− βJn, and X ⊆ lim←− βJn is comeager.

Proof. Given y ∈ Jn, write Xy = {x ∈ X : x|n = y}. Let A ⊆ X be open, and fix m < ω in

order to consider the subgroup Gm ∈ NG. We can write A =
⋃
y∈S Xy for some S ⊆

⋃
n≥m Jn.

Then also AGm =
⋃
y∈S XyGm. Notice first that XyGm ⊆ Xy|m . By AP, XyGm is dense in

Xy|m . It follows that AGm =
⋃
y∈S Xy|m , which is open. So given x ∈ X with x ∈ A, we

have x ∈ int(AGm), showing that X is rich.

For the second assertion, notice that if S ⊆ Jm, then any p ∈ SG(X) contains exactly one

of
⋃
y∈S Xy or

⋃
y∈Jm\S Xy. This provides a surjection ψ : SG(X)→ lim←− βJn. To see that this

is injective, suppose p 6= q ∈ SG(X). Find A ∈ p, B ∈ q, and m < ω with AGm ∩BGm = ∅.
There are sets S, T ⊆ Jm with AGm dense in

⋃
y ∈ SXy and BGm dense in

⋃
y∈T Xy. It

follows that S ∩ T = ∅, S ∈ ψ(p)|m, and T ∈ ψ(q)|m, so ψ(p) 6= ψ(q).

For the final assertion, notice that the maps ρnim : βJn → βJm occurring in the inverse

limit are open. It follows that for each n < ω, the set Xn := {p ∈ lim←− βHn : p|n ∈ Jn} is

open dense, and we have X =
⋂
nXn.

We extend the partial right actions to βJn for each n < ω by continuity, and can therefore

view lim←− βJn as a G-flow. The continuous bijection ψ : SG(X) → lim←− βJn produced in the

proof of the lemma is a G-map.

We now fix Y = lim←−Yn ⊆ S(G) a minimal subflow. Fix x ∈ XD ⊆ lim←− βJn, and consider

the G-map λx : Y → βJn. This gives rise to continuous maps λmx : Ym → βJm for each

m < ω. We want to show that λx is an isomorphism.

Proposition 3.6.7. Fix y ∈ Jm. If γ : Emb(y, x) → 2 is a coloring, then at least one of

γ−1({0}) or γ−1({1}) is not K-syndetic.

Proof. First notice that Lemma 3.5.14 goes through in the weak setting. By the Ramsey

Property, some color class is x-thick. Using Lemma 3.5.14, it follows that the other color

class cannot be K-syndetic.

Proposition 3.6.8. Suppose p, q ∈ Y with x · p|m = x · q|m = y ∈ Jm ⊆ βJm. Then

p|m = q|m.

Proof. First note that (λmx )−1({y}) := K ⊆ Ym is clopen. Towards a contradiction, suppose

K is not a singleton. Find disjoint clopen sets U, V ⊆ Ym with U ∪ V = K. This partition

of K gives rise to a coloring γ : Emb(y, x)→ 2 depending on whether x · f ∈ U or x · f ∈ V .

As XD is minimal, both color classes are K-syndetic, contradicting Lemma 3.6.7.

We conclude the proof of Theorem 3.6.4 by showing that λx is injective. It suffices to

show that each λmx is injective. Let Dm = {p ∈ Ym : x · p ∈ Jm}. We have seen that λmx
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is injective on Dm. The map λx, being a G-map between minimal flows, is pseudo-open. It

follows that each λmx is also pseudo-open. Since Jm is dense in βJm, it follows that Dm is

dense in Ym. But this implies that Ym ∼= βDm and that λmx is the continuous extension of

the injection from Dm to Jm.

3.7 Big Ramsey degrees

This section can be viewed as an extension of section 3.2. We consider here more infinite

Ramsey properties that a class D = Age(D) of finite structures might possess. Unlike the

previous notions we have encountered, these notions will depend on the choice of D. Of

course, if K is a Fräıssé-HP class, then there is a canonical choice of structure to consider.

Definition 3.7.1.

1. Let D be a countably infinite L-structure, and set D = Age(D). Fix A ∈ D and

k < ω. Then we say that A has Ramsey degree k in D if k is least so that for any r

with k ≤ r < ω, we have D→ (D)Ar,k.

2. If K is a Fräıssé-HP class and A ∈ K, we say that A has big Ramsey degree k in K if

A has Ramsey degree k in K = Flim(K).

Note that if A has Ramsey degree k in D, then A has Ramsey degree t ≤ k in D. A

good example to keep in mind is provided by looking at the Fräıssé class K of finite linear

orders. If A2 is the two element linear order, we can consider the following “Sierpinski-style”

coloring of Emb(A2,Q). Enumerate Q = {qn : n < ω}. Let A2 = {a, b} with a < b, and

consider f ∈ Emb(A2,Q). If f(a) = qk and f(b) = q`, we color f depending on whether

k < ` or ` < k. This coloring shows that Q 6→ (Q)A2
2 . By a theorem of Galvin [11], this

is the worst possible, i.e. the big Ramsey degree of A2 in K is 2. D. Devlin in his thesis

[7] showed that every finite linear order has finite big Ramsey degree. More precisely, if

Ak is the k-element linear order, then the big Ramsey degree of Ak in K is the k-th odd

tangent number. The sequence of these numbers starts off 1, 2, 16, 272, etc. In particular,

the “Sierpinski-style” 6-coloring of triples of rationals is not the worst possible.

Just as thick and syndetic were the appropriate notions of largeness for Ramsey degree

in a class, we need analogous notions of largeness for Ramsey degree in a structure. Recall

that we write Emb(D) for Emb(D,D).

Definition 3.7.2. Let D be a countably infinite L-structure with D = Age(D), and fix

A ∈ D.

1. S ⊆ Emb(A,D) is large if for some η ∈ Emb(D), we have η ◦ Emb(A,D) ⊆ S.

2. S ⊆ Emb(A,D) is unavoidable if Emb(A,D) \ S is not large.
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3. If γ : Emb(A,D) is a coloring, then γ is an unavoidable r-coloring if |Im(γ)| = r,

and for each y ∈ Y , we have γ−1({y}) either empty or unavoidable. We call γ an

unavoidable coloring if γ is an unavoidable |Im(γ)|-coloring.

Notice that every large set is thick, hence every syndetic set is unavoidable. We can now

state propositions very similar in spirit to Lemma 3.2.8, Proposition 3.2.9, and Corollary

3.2.10. In many ways the proofs of these are easier, as the largest structure involved (namely

D) stays the same throughout inductive proofs, and appeals to compactness are not needed

(indeed, appeals to compactness are doomed to fail when working with big Ramsey degree).

Lemma 3.7.3. Let D be a countably infinite L-structure with D = Age(D), and fix A ∈ D
and k < ω. Then the following are equivalent.

1. A has Ramsey degree t ≤ k in D.

2. D→ (D)Ak+1,k.

Proposition 3.7.4. Let D be a countably infinite L-structure with D = Age(D), and fix

A ∈ D and k < ω. Then the following are equivalent.

1. A has Ramsey degree t ≤ k in D.

2. For any r with k ≤ r < ω and coloring γ : Emb(A,D) → r, some k colors form a

large subset.

3. For any large T ⊆ Emb(A,D), any r with k ≤ r ≤ ω, and any coloring γ : T → r,

some k colors form a large subset.

Corollary 3.7.5. Let D be a countably infinite L-structure with D = Age(D), and fix A ∈ D
and k < ω. Then if A does not have Ramsey degree t < k in D, then there is an unavoidable

k-coloring of Emb(A,D).

As in Propositions 3.2.11 and 3.2.12, we can investigate how large and unavoidable sets

behave when considering different finite structures. As before, large sets will “push up,” but

we will need extra assumptions to push up unavoidable sets.

Proposition 3.7.6. Let D be a countably infinite L-structure with D = Age(D), and let

A ≤ B ∈ D. Fix f ∈ Emb(A,B). If T ⊆ Emb(A,D) is large, then so is Tf := {x ∈
Emb(B,D) : x ◦ f ∈ T}.

Proof. Fix η ∈ Emb(D) with η ◦ Emb(A,D) ⊆ T . Now if x ∈ Emb(B,D), we have

η ◦ (x ◦ f) ∈ T , so η ◦ x ∈ Tf , and Tf is large as desired.
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Proposition 3.7.7. Suppose K =
⋃
n An is a Fräıssé structure, and let m ≤ n < ω. Fix

f ∈ Hn
m. If S ⊆ Hm is unavoidable, then so is (ρnf )−1(S).

Proof. Fix η ∈ Emb(K). Find j ∈ Hm with η ◦ j ∈ S. As K is a Fräıssé structure, find

x ∈ Hn with x ◦ f = j. Then η ◦ x ∈ (ρnf )−1(S), so (ρnf )−1(S) is unavoidable as desired.

We spend the remainder of the section focusing on the case of K =
⋃
n An a Fräıssé

structure, using Proposition 3.7.7 as a key tool. Two immediate corollaries are the following.

Corollary 3.7.8. Suppose m ≤ n < ω, and let γ be a coloring of Hm. Then γ is unavoidable

iff the coloring γ · ρnim of Hn is unavoidable.

Corollary 3.7.9. Suppose Am has big Ramsey degree Rm. Then if n ≥ m, An does not

have big Ramsey degree t < Rm.

Proof. If γ : Hm → Rm is an unavoidable Rm-coloring, then so is γ · ρnim : Hn → Rm.

We want to allow the semigroup Emb(K) to act on colorings in the obvious way. If

γ : Hm → r is a coloring and η ∈ Emb(K), we define γ · η : Hm → r via γ · η(f) = γ(η ◦ f).

It turns out that this semigroup action coincides with one that we have already seen.

Proposition 3.7.10. When G = Aut(K) as above, Ĝ and Emb(K) are homeomorphic.

Proof. Suppose (gn)n<ω is a Cauchy sequence, and assume that for all m < ω and all n ≥ m,

that gn|m = gm|m. Then η : K→ K defined by η|m = gm|m is an embedding. Conversely, if

η : K→ K is an embedding, then find gn ∈ G with gn|n = η|n to create a Cauchy sequence

(gn)n<ω. One should check that both directions of this proof respect equivalence of Cauchy

sequences, but this is routine.

We now check that the semigroup structures of Ĝ and Emb(K,K) coincide. We can do

this by considering the level representation of S(G).

Proposition 3.7.11. Let p ∈ S(G). Then p ∈ Ĝ iff each p|m ∈ Hm ⊆ βHm.

Proof. Given η ∈ Ĝ ∼= Emb(K), we view η as a member of S(G) by considering η|m for

m < ω. Conversely, if p ∈ S(G) with p|m ∈ Hm for every m < ω, then
⋃
n p|n ∈ Emb(K).

Corollary 3.7.12. The semigroup structures on Ĝ and Emb(K) coincide.

Proof. Suppose η, ζ ∈ Ĝ, and let f ∈ Hm. Then {f} ∈ (η · ζ)|m = η · ζ|m iff η−1({f}) :=

{j ∈ Hm : η · j = f} ∈ ζ|m. This happens iff η · ζ|m = f , and this is precisely the semigroup

structure of Emb(K).
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From here on out, we will identify Ĝ and Emb(K).

We can now prove several useful facts about unavoidable colorings.

Proposition 3.7.13.

1. If γ : Hm → r is an unavoidable r-coloring and η ∈ Ĝ, then γ · η : Hm → r is also an

unavoidable r-coloring.

2. Suppose Am has big Ramsey degree Rm. Suppose γ and δ are both colorings of Hm

with γ an unavoidable Rm-coloring. Then there is η ∈ Ĝ with γ · η ≥ δ · η.

3. Suppose m ≤ n < ω, let γ � δ be colorings of Hm and Hn, respectively. Suppose δ

happens to be unavoidable. Then so is γ.

Proof. Item (1) is immediate. For item (2), form the product coloring γ× δ, and find η ∈ Ĝ
so that |Im((γ × δ) · η)| ≤ Rm. However, (γ × δ) · η refines both γ · η and δ · η, so we must

have γ · η ∼ (γ × δ) · η ≥ δ · η.

For item (3), notice that δ refines the coloring γ · πnm, so γ · πnm is unavoidable. Then by

Corollary 3.7.8, so is γ.

We end this section with a theorem about how big Ramsey degrees on different levels

interact, followed by an open question which will gain relevance in the next section.

Lemma 3.7.14. Suppose m ≤ n < ω, and assume Am and An have big Ramsey degrees

Rm and Rn, respectively. Then there are unavoidable Rm and Rn-colorings γm and γn of Hm

and Hn, respectively, with γm � γn

Proof. Write Hn
m = {f0, ..., fk−1}. Fix any unavoidable Rm-coloring δm of Hm and unavoid-

able Rn-coloring δn of Hn. Form the product coloring δ := δn ×
∏

i<k δm · ρnfi . Find η ∈ Ĝ
with |Im(δ · η)| ≤ Rn. Notice that δ · η refines δn · η, so we must have δ · η ∼ δn · η, meaning

δ · η is an unavoidable Rn-coloring. Also, δ · η refines each δm · ρnfi · η for i < k. Notice that

δm · ρnfi · η = δm · η · ρnfi , so we have δm · η � δ · η. Noting that δm · η is an unavoidable

Rm-coloring, we set γm = δm · η and γn = δ · η.

Repeated applications of Lemma 3.7.14 yield the following strengthening.

Proposition 3.7.15. Suppose A0, ...,AN−1 each have big Ramsey degrees R0, ..., RN−1 (re-

call by convention that A0 = ∅, so R0 = 1). Then there are unavoidable Rm-colorings γm of

Hm for 0 ≤ m < N with (γm)m<N coherent.

One of the major difficulties in working with big Ramsey degree rather than small Ramsey

degree is the lack of compactness; the relevant algebraic object is Ĝ rather than S(G). To

illustrate this difficulty, we pose the following question.



3.8. COMPLETION FLOWS 67

Question 3.7.16. Suppose for every n < ω that An has big Ramsey degree Rn. Are there

unavoidable Rn-colorings γn of Hn with (γn)n<ω coherent?

3.8 Completion Flows

We have seen in section 2.4 that ifX is aG-flow, the action extends to a continuous semigroup

action X × Ĝ → X of the left completion. This is the same action as the one induced by

viewing Ĝ as a subspace of S(G) in the canonical way.

Definition 3.8.1. Let X be a pre-ambit. A completion point of X is any x ∈ X so that

for every η ∈ Ĝ, we have x · η ∈ A(X). We call X a completion flow if X contains some

completion point. A completion ambit is an ambit (X, x0) where x0 is a completion point.

If X is a completion flow, we call X a universal completion flow if there is a surjective

G-map from X onto any other completion flow. The following key question remains open.

Question 3.8.2. Let G be a topological group. Does there exist a universal completion flow

for G? If yes, is it unique up to G-flow isomorphism?

In this section, we will restrict our attention to the case where G = Aut(K) for a Fräıssé

structure K =
⋃
n An as usual. Our goal is to connect the question of existence and unique-

ness of completion flows to the big Ramsey properties of the class K. For the remainder

of the section, we will assume that each An has big Ramsey degree Rn < ω. However, we

will need to consider the following strengthening of the property of having finite big Ramsey

degrees.

Definition 3.8.3. Let K be a Fräıssé L-structure with K = Age(K). We say that K admits

a big Ramsey structure if there is a language L′ ⊇ L and an L′-structure K′ so that the

following all hold.

1. K′|L = K.

2. Every A ∈ K has finitely many L′-expansions to a structure A′ ∈ Age(K′); denote the

set of expansions by K′(A).

3. Every A ∈ K has big Ramsey degree |K′(A)|.

4. The function γA : Emb(A,K)→ K′(A) given by γ(f) = K′ · f witnesses the fact that

the big Ramsey degree of A is not less than |K′(A)|.

Call a structure K′ satisfying (1)-(4) a big Ramsey structure for K.
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We can (and will) think about the big Ramsey structure as being given by the collection

of unavoidable colorings γA. Given a collection {γA : A ∈ K} of coherent colorings (where

the definition of coherent is extended in the obvious way), we can code the colorings into

new relational symbols to obtain a structure as in the proof of Proposition 3.4.19. The next

proposition shows that having cofinally many coherent colorings suffices.

Proposition 3.8.4. Let K =
⋃
n An be a Fräıssé structure, and suppose each An has finite

big Ramsey degree Rn < ω. Assume that for each n < ω, there is an unavoidable Rn-coloring

γn of Hn so that (γn)n<ω is coherent. Then K admits a big Ramsey structure.

Lemma 3.8.5. With γn as in the statement of Theorem 3.8.4, then if η ∈ Ĝ, there is

p ∈ S(G) with γn · η · p = γn.

Proof. For each N ≥ n, find gN ∈ G so that γN · η · gN and γN agree on iN . Let p ∈ S(G)

be a cluster point of the gN . Since γn � γN for every n ≤ N < ω, we have γn · η · p = γn as

desired.

Proof of Proposition 3.8.4. First notice that each B ∈ K has finite big Ramsey degree, as

for some n < ω, we have B ≤ An (and keeping in mind Proposition 3.7.7). Let RB < ω be

the big Ramsey degree of B ∈ K.

We produce for every B ∈ K with B ⊆ K a coloring γB of HB := Emb(B,K) so that

the following items hold.

1. Each γB is an unavoidable RB-coloring.

2. If B ≤ C ∈ K, then γB � γC, i.e. whenever f ∈ Emb(B,C), then γC refines γB ◦ ρCf .

Here ρCf : HC → HB is the map ρCf (x) = x ◦ f .

Fix B ∈ K with B ⊆ K, and find n < ω large enough so that B ⊆ An. Let iB : B→ An

denote the inclusion embedding. For each f ∈ HB, let

Sf = {j < Rn : ∃s ∈ Hn(s ◦ iB = f and γn(s) = j)}.

We define a reflexive graph Γ on HB by declaring (f, h) ∈ Γ iff Sf ∩Sh 6= ∅. Define a coloring

γB on HB by sending f ∈ HB to the connected component of f in Γ. Equivalently, γB is the

finest possible coloring with γB � γn.

First let us argue that γB is an unavoidable coloring. Fix a connected component X ⊆ HB

of Γ. We can write X = {f ∈ HB : Sf ⊆ S} for some S ⊆ Rn, namely S =
⋃
f∈X Sf . But

then we also have X = {f ∈ HB : Sf ∩ S 6= ∅}. Now fix η ∈ Ĝ towards showing that

η−1(X) 6= ∅. Pick j ∈ S, and find s ∈ Hn with γn(η ◦ s) = j. Then η ◦ s ◦ iB ∈ X, so

η−1(X) 6= ∅.
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To see that γB is an unavoidable RB-coloring, let δ : HB → RB be unavoidable. Find

η ∈ Ĝ with γB · η ∼ δ · η � γn · η. Using Lemma 3.8.5, find p ∈ S(G) with γn · η · p = γn.

By Proposition 3.4.5, we have δ · η · p an unavoidable RB-coloring with δ · η · p � γn. We

will show that γB ∼ δ · η · p. We must have γB ≥ δ · η · p; by construction, γB is the finest

possible coloring with γB � γn. But since γB is an unavoidable coloring and δ · η · p is an

unavoidable RB-coloring, we must have γB ∼ δ · η · p. In particular, γB is an unavoidable

RB-coloring as desired.

We now see that Question 3.7.16 is equivalent to asking whether having all big Ramsey

degrees finite allows us to construct a big Ramsey structure. One of the key theorems of

this section gives us a connection between big Ramsey structures and universal completion

flows.

Definition 3.8.6. Suppose K admits a big Ramsey structure, which by Proposition 3.8.3

we view as a coherent sequence γ := (γn)n<ω of unavoidable Rn-colorings of Hn for each

n < ω. Form the diagram Dγ as in Example 3.4.15. Then we call the G-flow XDγ a big

Ramsey flow .

Theorem 3.8.7. Suppose K admits a big Ramsey structure. Then any big Ramsey flow for

G is a universal completion flow, and any two universal completion flows are unique up to

G-flow isomorphism.

We will prove Theorem 3.8.7 over the course of the next few propositions. Until otherwise

noted, we fix a big Ramsey structure γ = (γn)n<ω on K; it will help to set ran(γn) = Jn
for pairwise disjoint sets {Jn : n < ω} each of size Rn. We view γ as an element of XDγ by

setting γ|n = γn(in).

A key ingredient to the proof is the notion of lift introduced in section 2.5. Indeed, the

following lemma was the initial motivation for studying lifts of ambits in [36].

Lemma 3.8.8. Suppose (X, x0) is a completion ambit, and let Y ⊆ S(G) be a lift. Then Y

is a completion flow; any y ∈ Y with λx0(y) = x0 is a completion point of Y .

Proof. Consider any y ∈ Y with λx0(y) = x0 · y = x0. Then for any η ∈ Ĝ, λx0(y · η) =

x0 · η ∈ A(X) as x0 is a completion point. Since λx0 : Y → X is a strong map, we have

y · η ∈ A(Y ), showing that y is a completion point of Y .

Proposition 3.8.9. Suppose (X, x0) is a completion ambit, and let Y ⊆ S(G) be a lift with

level representation Y = lim←−Ym. Then |Ym| ≤ Rm for each m < ω.

Proof. Pick y ∈ Y with x0 · y = x0. Then y is a completion point of Y . Let ψ : Ym → k be a

continuous surjection for some k < ω. Then the coloring δ : Hm → k given by δ(f) = ψ(y ·f)

is unavoidable. It follows that k ≤ Rm, so |Ym| ≤ Rm.



70 CHAPTER 3. AUTOMORPHISM GROUPS

Remark. Proposition 3.8.9 applies any time the big Ramsey degrees are all finite, even if

there isn’t a big Ramsey structure. In particular, if all big Ramsey degrees are finite, then

every completion flow of G is metrizable.

Proposition 3.8.10. (XDγ , γ) is a completion ambit. If Y ⊆ S(G) is a lift of (XDγ , γ),

then λγ : Y → XDγ is an isomorphism.

Proof. Fix i ∈ Jm and η ∈ Ĝ. We need to find g ∈ G with γ · η · g|m = i. Since γm is

unavoidable, find f ∈ Hm with γm(η · f) = i. It follows that γ · η · f = i. Pick any g ∈ G
with g|m = f to complete the proof that γ is a completion point.

Now let Y ⊆ S(G), Y = lim←−Ym be a lift of (XDγ , γ). Then the map λγ : Y → XDγ gives

rise to maps λmγ : Ym → Jm given by λmγ (r) = γ · r. Each map λmγ must be surjective. As

|Ym| ≤ Rm, λmγ is a bijection, from which it follows that λγ is an isomorphism.

Lemma 3.8.11. Suppose Y = lim←−Ym ⊆ S(G) is a metrizable subflow, and assume there is

u ∈ Y an idempotent with dense orbit. Then if ϕ : Y → Y is a surjective G-map, we have

that ϕ is an isomorphism.

Proof. First note that u · S(G) = u · Y = Y . From this it follows that ϕ = λϕ(u), as

ϕ(y) = ϕ(uy) = ϕ(u)y. Now each λϕ(u) gives rise to maps λmϕ(u) : Ym → Ym given by

λmϕ(u)(r) = ϕ(u) · r for each m < ω. Each map λmϕ(u) must be surjective; as each Ym is finite,

each λmϕ(u) is bijective, hence ϕ is an isomorphism.

Proof of Theorem 3.8.7. Instead of working with XDγ , we instead use Proposition 3.8.10 to

work with an isomorphic lift Y ⊆ S(G), and let y0 ∈ Y be the unique point with γ · y0 = γ.

Note that y0 is an idempotent and a completion point. By Lemma 3.8.11, it follows that if

Y is a universal completion flow, then it must be unique up to isomorphism.

Now let W be another completion flow, with w0 ∈ W a completion point. We need to

find a surjective G-map from Y to W . Using Lemma 3.8.8, we may assume that W ⊆ S(G)

with Wm finite for each m < ω. For each m < ω, form the colorings λmy0 and λmw0
: Hm → Ym.

Each is an unavoidable coloring, and λmy0 is an unavoidable Rm-coloring. For each n < ω, use

Proposition 3.7.13 to find ηn ∈ Ĝ so that for every m ≤ n, we have that λmy0 · ηn ≥ λmw0
· ηn.

Since y0 is a completion point, we can find pn ∈ S(G) with y0 · ηn · pn = y0. Let

p ∈ S(G) be a cluster point of the sequence ηnpn. Then y0 · p = y0, so for each m < ω,

we have λmy0 · p = λmy0·p = λmy0 . By Propositions 3.4.5 and 3.7.13, each λmw0
· p = λmw0p

is an

unavoidable |Wm|-coloring, and λmy0 ≥ λmw0
· p. Let cm : Ym → Wm be the surjective map so

that cm ◦ λmy0 = λmw0p
.
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We now show that w0 · py0 = w0 · p. Since y0 is an idempotent, we have w0 · p · im =

cm(y0 · im) = cm(y0 · y0 · im) = w0 · p · y0 · im. Since this holds for each m < ω, we have

w0 · py0 = w0 · p as desired.

Consider the G-map λw0p : Y → W . To check that λw0p is surjective, it suffices to check

that w0py0 = w0p has dense orbit. So let m < ω, and consider r ∈ Wm. We have seen that

λmw0p
: Hm → Wm is an unavoidable |Wm|-coloring, so in particular it is surjective. Find

some g ∈ G with w0pg|m = r. Hence λw0p is surjective.

We now collect some examples of automorphism groups whose universal completion flows

can be described using Theorem 3.8.7.

Example 3.8.12 (A countable set). The simplest example of an automorphism group with a

metrizable universal completion flow is the group G = S∞ = Aut(K), where K = N is just

a countable set with no additional structure. If we let An ⊆ K be a subset of size n, we

see by Ramsey’s theorem that the small Ramsey degree and the big Ramsey degree of An

are both n! (recall that we are considering embedding versions of Ramsey degree, so the n!

comes from the automorphisms of An). It follows that the universal minimal flow M(S∞) is

the universal completion flow of S∞. This is just the space of linear orders on a countable

set. In particular, if < is any linear order of N, then 〈N, <〉 is a big Ramsey structure.

More generally, whenever K = Flim(K) and K is a Fräıssé class where the big and small

Ramsey degrees are finite and equal, then M(Aut(K)) is the universal completion flow of

Aut(K). It would be interesting to find other examples of Fräıssé classes where the big and

small Ramsey degrees coincide.

Example 3.8.13 (Finite distance ultrametric spaces). Another family of examples are the

classes of finite distance ultrametric spaces. Fix S ⊆ (0,∞) with |S| = r < ω, and let K0

be the class of finite ultrametric spaces with distances from S. The big Ramsey behavior

of these classes was described by Nguyen Van Thé in [24]. To describe the big Ramsey

structure, it is useful to instead work with the class K of rooted finite trees of height at most

r. Structures in K are of the form 〈T,�, L0, ..., Lr〉, where � is the partial order and Li is a

unary predicate saying that a node is on level i of the tree (it should be remarked that this

class is not hereditary, but we will discuss Fräıssé classes without HP in the next section).

Then K = Flim(K) is the rooted, countably-branching tree of height r. If K0 = Flim(K0),

then K0 can be identified with the set of leaves of K, and Aut(K) ∼= Aut(K0). Then we

have the following.

Proposition. Let K′ = 〈K,≤〉, where ≤ is a linear order in order type ω which extends the

tree order. Then K′ is a big Ramsey structure for K.

It follows that XK′ , the space of linear orderings on K which extend the tree order, is

the universal completion flow for G = Aut(K). It should be noted that this is not the same
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space as M(G). Nguyen Van Thé describes M(G) in [25]; this is the space of all convex

linear orderings on the leaves of K. Here, a linear order of the leaves is convex if whenever

s, t, u ∈ K are leaves with s ≤ t ≤ u, then the meet of s and u is an initial segment of t.

Example 3.8.14 (The rational linear order). We next consider the example from the intro-

duction, the rational linear order 〈Q,≤〉. The group G = Aut(Q) is extremely amenable, but

it is not hard to see that G admits a non-trivial completion flow; the space of linear orders

on Q is a good example, as for instance any linear order of order type ω is a completion

point. As was mentioned in the introduction, this is not the universal completion flow. A

good account of the big Ramsey behavior of Q can be found in Todorčević’s book [30].

To construct the universal completion flow, first consider the binary tree 2<ω. If x, y ∈
2<ω, we set x ∧ y to be the longest common initial segment of both x and y. We set |x| to

be the unique n < ω so that x ∈ 2n. If x ∈ 2n and m < n, write x|m for the restriction

of x to domain m. We say that x and y are comparable if either x ∧ y = x or x ∧ y = y;

otherwise we say x and y are incomparable. Define x ≺ y if x and y are incomparable

and x(|x ∧ y|) < y(|x ∧ y|), which in the case of the binary tree means x(|x ∧ y|) = 0 and

y(|x ∧ y|) = 1. A subset A ⊆ 2<ω is an antichain if no two distinct elements of A are

comparable. Notice that if A is an antichain, then ≺ is a linear order on A.

It is possible to build an antichain Q ⊆ 2<ω so that 〈Q,≺〉 ∼= 〈Q, <〉, and we freely

identify Q with Q. We now define the 4-ary relation R as follows. If p ≤ q ≤ r ≤ s ∈ Q, we

set R(p, q, r, s) iff |p ∧ q| ≤ |r ∧ s|. We then have the following.

Proposition. The structure Q′ := 〈Q,≤, R〉 is a big Ramsey structure for 〈Q,≤〉.

We can then interpret the space XQ′ as a space of total pre-orders on W := Q ∪ [Q]2.

Let L be a total pre-order of W , and let EL be the induced equivalence relation on W . Then

L ∈ XQ′ iff L|Q is a linear order, and given a < b < c ∈ Q, we have ¬EL({a, b}, {b, c}), and

{a, c} is EL-equivalent to the L-least of {a, b} or {b, c}.

Example 3.8.15 (The random graph). The Random graph, often called the Rado graph, is

the Fräıssé limit of the class of all finite graphs. A countable graph 〈Q,E〉 is isomorphic to

the Rado graph iff for any disjoint and finite F0, F1 ⊆ Q, then there is x ∈ Q \ (F0 ∪ F1) so

that ¬E(x, y) for each y ∈ F0 and E(x, z) for every z ∈ F1.

It can be shown that the big Ramsey degree of any finite subgraph of the Rado graph is

finite by using Milliken’s tree theorem. To construct a big Ramsey structure, we follow the

presentation of Laflamme, Sauer, and Vuksanovic [20]. Once again, we consider the binary

tree 2<ω. We call a subset T ⊆ 2<ω transversal if |x| 6= |y| for any distinct x, y ∈ T . If

T ⊆ 2<ω is transversal, we can give T a graph structure E, where if x, y ∈ T and |x| < |y|,
we set E(x, y) iff y(|x|) = 1. Now let 〈Q,E〉 be a Rado graph, and fix an enumeration

Q = {qn : n < ω}. To each qn, we associate an element xn ∈ 2n, where for m < n < ω, we

set xn(m) = 1 iff E(qm, qn).
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Theorem 7.6 from [20] now gives us an unavoidable coloring for each finite subgraph.

To turn this into a Ramsey structure, we need to perform one extra step. Find a subset

T ⊆ Q of the Rado graph so that 〈T,E|T 〉 is isomorphic to the Rado graph, and so that

{xn : qn ∈ T} ⊆ 2<ω is an antichain. By doing this, we can ensure that the collection of

“non-diagonal” tuples as defined in [20] is empty.

To describe the resulting structure, it will be useful to instead assume that we have

mapped Q into a transversal antichain in 2<ω which respects the graph structure. With this

identification, we now define ≺ and the 4-ary relation R as before.

Proposition. The structure Q′ := 〈Q,E,≺, R〉 is a big Ramsey structure for the Rado graph

〈Q,E〉.

Similar to the example of the rationals, the space XQ′ can be described as a space of pairs

(L0, L1), where L0 is a linear order of Q and L1 is a total preorder of Q ∪ [Q]2. Describing

precisely which pairs are in the closure of the big Ramsey structure seems to be somewhat

more difficult.

Example 3.8.16 (The orders Qn and the tournament S(2)). The last examples we will consider

are the dense local order S(2) and the orders Qn. The dense local order is a countable

tournament, a directed graph 〈S,E〉 where for distinct x, y ∈ S exactly one of E(x, y) or

E(y, x) holds. One way to construct S(2) is to consider a countable dense set of points on

the unit circle so that no two points are exactly π radians apart. Then set E(x, y) iff y is

less than π radians counterclockwise from x. Then 〈S,E〉 is isomorphic to S(2).

The big Ramsey behavior of the structure S(2) is studied by Laflamme, Nguyen Van

Thé, and Sauer in [19]. The trick to analyzing S(2) is to instead analyze the structure

Q2 := 〈Q, <, P0, P1〉, where 〈Q, <〉 is the rational order, and each Pi is a dense subset of Q
with Q = P0 t P1. The structures Qn are defined similarly; they are rational orders with a

distinguished partition into n dense pieces. The authors of [19] prove a slight generalization of

Milliken’s theorem to obtain big Ramsey results for the structures Qn, the “colored” version

alluded to in the title of [19]. However, once this is proven, the big Ramsey structures for Qn

are easy to describe; namely, if 〈Q, <,R〉 is a big Ramsey structure for the rational order,

then 〈Q, <, P0, ...Pn−1, R〉 is a big Ramsey structure for Qn.

Using the big Ramsey structure for Q2, one obtains a big Ramsey structure for S(2) as

follows. Represent S(2) as 〈S,E〉, where S is a dense subset of the unit circle as before.

Then we can view Q2 as a structure with underlying set S. We let P0 be those points below

the x-axis, and P1 be the points above. Let S1 be the unit circle; define the map ϕ : S → S1

by setting ϕ(x) = x for x ∈ P0 and ϕ(x) = x · eiπ for x ∈ P1. Note that ϕ is an injection

with Im(ϕ) contained below the x-axis. Then for x, y ∈ S, we set x < y iff ϕ(y) is to

the right of ϕ(x). Then if Q′2 := 〈S,<, P0, P1, R〉 is a big Ramsey structure for Q2, then

S′ := 〈S,E,<, P0, P1, R〉 is a big Ramsey structure for S(2).
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