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Abstract

In this dissertation, a new technique is proposed for the compensation of non-

periodic load current. The method provides control references for three co-located

devices, each corresponding to one moving calculation window and one decomposed

part of the compensated current. They are slow compensator with high power rating,

large calculation window, and low switching frequency; fast compensator with lower

power rating, shorter calculation window, and higher switching frequency; and the

reactive compensator which is an ordinary static VAR compensator (SVC). To im-

prove the flexibility of the technique, a fuzzy based adaptive window is proposed for

the slow compensator to find the optimum window for different load characteristics.

Moreover, three power quality criteria are proposed specifically for the non-periodic

current compensation, namely, time-frequency distortion index, modulation index,

and high frequency distortion index. The method is verified using both simulation

and real-time implementation. First, the proposed method is verified in simulation

using real-world data acquired from a local steel mill. Second, it is validated us-

ing a real-time controller-in-the-loop implementation. The proposed compensation

approach demonstrates high flexibility and effectiveness in increasing power quality

under various non-periodic load conditions. Finally, some practical aspects of the

implementation of a three-part compensator including cost analysis are presented.
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Chapter 1

Introduction

Current distortion has a harmful effect on both distribution system equipment

and on loads that the system supplies. Because of this, current distortion is a main

cause of supply quality degradation. Furthermore, current distortion increases the

root mean square value of current without increasing energy transmission. Thus,

it creates increased losses during transmission of energy as well as requiring higher

ratings of distribution system equipment. Therefore, it is necessary to reduce cur-

rent distortion for the same reasons as for reactive current, as well as to reduce the

other harmful effects. If distortion exceeds some limits, then equipment is needed

for its suppression. “Compensator” is a term used for the equipment that mitigates

the effect of power quality degrading loads. There are numerous types of devices

and strategies available for the compensation of distorted but periodic currents from

harmonic generating loads. However, although non-periodic loads, result in similar

harmful effects, there has been very limited research on how to compensate them.

The focus of this research is to combine the recent advances in power electronics and

signal processing to manage and compensate non-periodic loads.

In this chapter, different some key concepts related to compensation are discussed.

These concepts are (1) power quality, its issues, and indices, (2) power quality im-

proving devices (compensators), (3) power theories, (4) time-frequency distribution,

(5) and non-periodic loads.
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1.1 Power Quality (PQ)

In general, a power system quality disturbance is defined as “ Any power prob-

lem manifested in voltage, current, or frequency deviations that results in failure or

misoperation of customer equipment” [1]. We can add to this definition the problems

that result in a decrease in the efficiency of the power systems. PQ is, therefore,

defined as the absence or limited presence of power quality disturbances. Keeping

the quality of power within the acceptable range has been one of the most challeng-

ing tasks of the utilities and device manufacturers. Especially, by the recent large

increase in non-linear loads (power electronics based) and grid-connected distributed

generation the PQ issues been worsened. It is shown that the keyword “Distributed

Generation” is the fifth most used phrase in articles regarding the power quality [2].

The power quality could be seen from two aspects, the from the utility side, and

from the costumer side. First, the utility is responsible for providing a supply voltage

which is balanced, constant, sinusoidal, and with a fixed frequency (60 Hz in the

United States). However, a little deviation from this condition is also acceptable

by the standards. Improving this “voltage quality (VQ)” is the responsibility of the

utility companies, and remarkable deviation from this power quality would result in

failure and mal-operation of power systems and the loads. Some examples of such

power quality disturbance are voltage sag [3], voltage swell [4], voltage interruption[5],

voltage harmonic [6], voltage imbalance [7], voltage flicker [8], voltage transient [9],

and frequency deviation[10].

The second perspective of the power quality is the consumer side. The customer is

responsible for drawing a current waveform which has the same shape as the voltage

waveform with possibly different magnitude. In other words, for a system with a si-

nusoidal voltage supply, the current waveform of the load should have the same phase

angle and frequency to assure acceptable power quality (constant equivalent conduc-

2



tance and zero equivalent susceptance). Any load that does not have balanced pure

resistive characteristics is considered a PQ degrading load. Though small deviation

from this condition is acceptable, larger variation results in a decrease of the power

system efficiency. This lower efficiency is the product of several factors; increase in

the power loss, elevation of the source current RMS, and elevation of the line voltage

distortion. As a result, the customers with unacceptable “current quality (CQ)” will

end up paying penalties to the utility. Some example of the CQ disturbance are load

reactive power [11], load harmonic [12], unbalance load [13], load inter-harmonic [14].

It is noted that CQ disturbances could lead to VQ disturbances and vice versa.

For example, large load current drawn from a non-linear load would result in a signif-

icant voltage drop on the line impedance, which in turn results in distorted voltage

waveform. On the other hand, also, the distorted voltage on a balanced resistive load

would also lead to current waveform distortion. Therefore, it is the responsibility of

the utility to provide voltage supply with acceptable VQ and then the responsibility

of the consumers to maintain acceptable CQ. It is noted that the primary purpose of

this dissertation is the improvement of the CQ disturbances which are the byprod-

uct of large steel mills. However, in the last part of the dissertation, a possible VQ

disturbance improvement for the microgrids (MG) is also proposed.

1.1.1 Power Quality Indices

In general, the indices used to evaluate the quality of power are categorized into

three groups, namely, waveform distortion indices, equivalent susceptance indices,

and sequence indices.

The first group of PQ indices is waveform distortion indices that are used for both

VQ and CQ disturbance evaluation. The most famous index in this group is the “Total

Harmonic Distortion (THD)” index which is used to quantify the level of harmonic

distortion (existence of sinusoidal components whose frequency is multiple integers

3



of the fundamental frequency). THD is calculated using the following equation:

THD =

√√√√∑∞n=0 X(nω0)2 −X(ω0)2

X(ω0)2 % (1.1)

where X is the quantity of interest (current or voltage), ω0 is the fundamental fre-

quency in rad/s, and n is the harmonic order. Other indices in this category are crest

factor [15], notch area (and notch depth) [16], and instantaneous distortion energy

ratio [17].

The second group of power quality criteria is the equivalent susceptance indices.

For a load to receive the required active power with the highest efficiency, it is nec-

essary that its equivalent susceptance is equal to zero. It is noted that the equiv-

alent susceptance (Be) is proportionally related to the reactive power consumption

(QL = Be×V 2). The most popular power quality index in this category is the power

factor (PF ) which is calculated as follows:

PF = P

S
= cos(ϕ) (1.2)

where P is the load active power, S is the load apparent power, and φ is the phase

displacement between voltage and the current waveform. It is noted that this def-

inition holds meaning only for sinusoidal and balanced systems [18]. Other indices

in this group are displacement factor, interactive power transfer factor, and reactive

power transfer factor [19]. It is noted that this group of power quality indices is

mainly related to CQ disturbances.

The third group of power quality criteria, sequence indices, are evaluating the

level of balance in the power system and loads. Therefore, these indices are also

working for both CQ and VQ disturbances. They are called sequence indices since

any imbalance in power system could be reflected in the existence of negative and

zero sequence components of voltage or current [20]. The most popular power quality

factor in this group is the unbalanced factor (UF ) which is calculated as follows:

4



UFX = XN

XP
(1.3)

where X is the quantity of interest, N superscript demonstrates the negative se-

quence, and P superscript demonstrates the positive sequence. some other indices in

this group are V UNB and IUNB proposed in [21].

Although the existing PQ indices are capable of describing the level of PQ distur-

bance in most of the normal loads and network, for some especial cases, such as for

the loads from steel mills, these PQ indices lose their meaning. Chapter 2 is dedicated

to the discussion on the difference between non-periodic loads (such as steel mills)

and periodic loads. Moreover, a new set of PQ indices is proposed that are capable

of evaluating this situation.

1.2 Power Quality Improving Devices

Various technologies have been developed to address the PQ disturbances and

bring the power system state back within the acceptable PQ indices. These devices

are divided into two basic categories, passive devices, and active devices. Passive

devices are always pre-designed based on the power system condition to mitigate

some PQ disturbances partially. Active devices, on the other hand, adaptively modify

their behavior to comply with the changes in the system configuration, loading, or

generation. The power quality improving devices are called compensators. In this

section passive and active compensators are introduced in more details.

1.2.1 Passive Compensators

Passive compensators could be divided into four categories: (1) power factor cor-

rection devices, (2) harmonic reduction devices, (3) voltage profile improvement [22].

The first group of passive compensators, power factor correction devices are mainly

5



Figure 1.1: Typical structure of a passive filter.

shunt capacitors and shunt inductors used to improve the CQ of the load. They are

designed to generate (or consume) the reactive power that the load consumes (or

generates). The rating and values of these components are pre-calculated, and they

are installed, usually, at the load terminal. The problem with these compensators is

their unresponsiveness to the load changes and system changes [23]. Moreover, they

might result in resonance with the line impedance.

The second group of passive compensators, harmonic reduction devices (also

known as passive filters), are mainly shunt tuned LC filters that are designed to make

an extremely large conductance path for current harmonics. Fig. 1.1 demonstrates

the equivalent circuit for one phase of a passive filter connected to a harmonic gen-

erating load in the distribution system. These filters require one series RLC branch

for each harmonic are eliminating. Though these devices are cheap and reliable for

most periodic loads, they tend to become ineffective for loads with more complicated

harmonic patterns (such as non-periodic loads).

The third group of passive compensator is voltage profile improvement devices.

These devices are (switched) capacitor- and inductor banks located in both distri-

bution and transmission network to compensate for loads with large reactive power

transactions and Ferranti effect [24]. Both of these situations result in exceeding the

voltage magnitude beyond acceptable voltage level. These compensators can be shunt

or in series with the lines.

6



1.2.2 Active Compensators

Active compensators are capable of adaptively track the PQ disturbances. There-

fore, they are responsive to the change in loads and network configuration. These

compensators are divided into three groups: Static VAR Compensators (SVCs), Static

Series Compensators, and Switching Compensators.

The first class of active compensators, SVCs are adaptive susceptances. They

use a combination of passive elements (inductors, capacitors, and resistors) and ac-

tive devices (Thyristors) to form a controlled susceptance. SVCs are mainly used to

compensate for reactive power generation/consumption. Moreover, more heuristics

structures of SVCs can also compensate unbalanced power. The main drawback of

the SVCs is the fact that the use of switching components results in the generation of

harmonic current, which in some cases are fairly large. Fig. 1.2 demonstrates three

popular structures of the SVC. In this dissertation, we perform a cost analysis to

explore the most optimal structure for the development of our technique.

The first structure of SVC, FC-TCR (fixed capacitor- thyristor controlled reactor),

shown in Fig. 1.2a is capable of compensating reactive power [25]. However, it gen-

erates current harmonics of the order 6k± 1 multiples of the fundamental frequency.

Moreover, this compensator is incapable of compensating the unbalanced power. The

second structure, 12-pulse FC-TCR is shown in Fig. 1.2b. This device consists of

one Y − Y and one Y −∆ transformer that together reduces the harmonic content

of the reactive compensator to 12k ± 1 multiples of the fundamental frequency [25].

However, similar to the basic FC-TCR, 12-pulse FC-TCR is incapable of compensat-

ing the unbalanced power. The third structure, adaptive balancing compensator, is

shown in Fig. 1.2c. This configuration is an extension of the FC-TCR that is also

capable of compensating the unbalanced part of the current [26]. However, since for

the compensation of unbalance power the value of each phase to phase impedance

7



should be different, the triple-nth harmonics generated by the TCR branch could

not circulate inside the delta connected compensator and will be injected into the

line. Therefore, although this compensator is capable of compensating the unbal-

anced power, it generates and injects 2k ± 1 multiples of the fundamental frequency

to the grid.

The second class of active compensators is Static Series Compensators. These

compensators are mainly used to mitigate the subsynchronous resonance [27, 28],

controlling the transmitted power [29], and preventing loop flows.

The last class of active compensators, switching compensators (also known as

active filters) are controlled current sources. The basic structure of an active filter

is shown in Fig. 1.3. When a voltage source converter is accompanied by a proper

control algorithm, it could behave as a controlled current source. Therefore, assuming

enough bandwidth and rating, it would be able to compensate harmonics, reactive

current, and unbalance current. Therefore, if this current source is controlled to

generate the distortion part of the current in the opposite direction, active filter

compensates the load.

The most important subsystem within the control structure of an active filter is the

“reference signal generation” block which is responsible for calculating the distortion

part of the current. Various “Power Theories” have been developed to calculate this

distortion part of the current, which will be discussed briefly in Section 1.3 below. It

is noted that the main focus of this dissertation is to develop an appropriate reference

signal generation block, that is capable of compensating different part of the current

waveform of the non-periodic loads.

1.3 Power Theories

Power theories are mathematical techniques used for decomposing the current

waveform into various components, based on the applications, requirement, and avail-

8



(a) Fixed capacitor thyristor controlled reactor (FC-
TCR)

(b) Fixed capacitor 12-pulse thyristor controlled re-
actor.

(c) Adaptive balancing compensator.

Figure 1.2: Popular structures of SVCs.
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Figure 1.3: Typical structure of an active filter.

able technologies. These current (power) components could be utilized for different

applications, such as energy metering, compensation, performance evaluation, and

system design [18]. Moreover, depending on the design requirement, and available

technologies, different power theories might be suitable for various applications. In

this section, the main power theories developed for the application purposes are dis-

cussed.

References [30] and [31] provide comprehensive reviews on the power theories uti-

lized by different active filters. Morsi et al. [18], also, investigate the power theories

using bottom-up and top-down approaches. These power theories are placed into

three subcategories, namely, time-domain based methods, frequency domain based

method, and hybrid time-frequency domain-based methods.

10



1.3.1 Time-domain power theories

The time-domain based power theories decompose the current waveform into its

orthogonal components without using mapping the power components (voltage and

current) to any other domains (e.g. frequency, time-frequency, wavelet). Most well-

known time domain power theories are Fryze power theory and instantaneous pq

power theory.

Fryze theory takes advantage of the fact that the only part of the current wave-

form which is contributing to the power transfer has the same shape as the voltage

waveform [32]. Therefore, this theory simply divides the load current into two parts,

the active current, which is responsible for the power transfer, and the non-active

part which does not contribute to the transfer:

p(t) = v(t)iL(t)⇒ instantanous power (1.4)

P = 1
T

∫ T

0
p(t)dt⇒ active power (1.5)

Ge = P

VRMS
2 ⇒ equivalent conductance (1.6)

ia(t) = Gev(t)⇒ active current (1.7)

The remaining part of the current is named non-active current (ina(t) = iL(t) −

ia(t)). This part does not contribute to the power transfer and needs to be compen-

sated using the active filter. It is noted that the advantage of the Fryze theory is its

simplicity. However, using Fryze theory, the optimum utilization of bandwidth and

rating of the active filter and also the integration of active filter with other devices

are not possible.

The second popular time-domain power theory is the instantaneous pq power

theory [33]. This theory has been widely used for the control of power converter

due to its simplified design and high-speed [34].This power theory first transfers the

three-phase quantities (voltage and current) into the rotating frame using the Park
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transform.

vαβ0 = Tvabc (1.8)

iαβ0 = Tiabc (1.9)

where v and i are voltage and current vector, respectively. abc and αβ0 subscript

demonstrate the vector in the abc and rotating domain, respectively. T is the Park

domain mapping matrix calculated as follows:

T =
√

2
3


cos(θ) cos(θ − 2π

3 ) cos(θ + 2π
3 )

sin(θ) sin(θ − 2π
3 ) sin(θ + 2π

3 )
√

2
2

√
2

2

√
2

2

 (1.10)

where θ is the rotation angle of the rotating frame.

After mapping the quantities into the rotating frame, the instantaneous powers

are calculated as follows: 
p0

p

q

 = M


i0

iα

iβ

 (1.11)

M =
√

2
3


v0 0 0

0 vα vβ

0 vβ −vα

 (1.12)

where p is known as instantaneous real power and consists of constant (p̄) and oscu-

lating (p̃) parts; q is known as instantaneous imaginary power which also consists of

constant and oscillatory parts (q = q̄ + q̃); and finally, p0 is known as the instanta-

neous zero-sequence power (p0 = p̄0 + p̃0).

It is shown that among these six power components (p̄, q̄, p̄0, and p̃, q̃, p̃0), only

constant part of the real power contributes to the power transfer (p̄). Therefore,

the reference signal generating block calculates the current waveform corresponding
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to the five power components that are not contributing to the power transfer. The

voltage source converter generates this value to annihilate the distortion part of the

current. The reference current is calculated as follows:

iαβ0
∗ =


i0

iα

iβ

 = M−1


p̃0

p̃

q

 (1.13)

ic
∗ = T−1iαβ0

∗ (1.14)

Though the instantaneous pq power theory is simple and fast, it loses its reliability

for compensating the various abnormal loadings, such as non-periodic loads.

1.3.2 Frequency-domain power theories

The second class of power theories are frequency-domain based. They require the

preprocessing of the data and mapping from the time domain to the frequency domain.

Th most popular power theory in this class is the Current Physical Component theory.

In this technique, the non-active part of the current is further decomposed into four

parts, reactive, unbalanced, scattered, and generated [35]. It is suggested that each

part of the non-active current can be compensated separately. The technique is

similar to the Fryze theory up to the point that it calculates the active current. The

remaining current are calculated as follows:

ir =
√

2Re{
∑
n∈N

jBenUne
jnω1t} ⇒ reactive current (1.15)

iu =
√

2Re{
∑
n∈N

AU#ejnω1t} ⇒ unbalanced current (1.16)

is =
√

2Re{
∑
n∈N

(Ge −Gn)Unejnω1t} ⇒ scattered current (1.17)

ig =
∑

h∈(Ni∩N̄v)
ih ⇒ generated current (1.18)
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where Ge is the load equivalent conductance, U is the voltage phasor, U# is the

voltage phasor transpose, Ben is the equivalent susceptance of each harmonic, A is

the unbalanced admittance, Gn is the harmonic equivalent conductance. N is the set

of harmonic orders in voltage and current, Ni is the set of harmonic orders in current,

and Nv is the set of harmonic orders in voltage.

The decomposition of the current waveform into several components is very helpful

for sharing the rating and bandwidth between different compensators. However, for

some abnormal loading cases, such as non-periodic loads, the definition of frequency

components using solely FFT is not efficient anymore. The reason is that these

loads do not only contain multiple integers of the fundamental frequency components.

Therefore, the CPC theory would become ineffective in such cases. Moreover, in the

case that the voltage waveform is more distorted than the current waveform, the CPC

theory would increase the line current distortion.

1.3.3 Hybrid-domain power theories

Hybrid time-frequency algorithms combine time and frequency domain approaches.

Czarnecki et. al [36] proposed a hybrid active filter that consists of a frequency do-

main method for the compensation of reactive powers and a time-domain method for

the compensation of non-periodicity. Such techniques are, however, more complex,

not verified for non-periodic current compensation, and may increase the line current

THD in the case of a highly distorted supply voltage.

1.4 Time-Frequency Analysis (TFA)

TFA was motivated by the need to describe non-stationary signals, where Fourier

transform proves ineffective. Non-stationary signals are the ones whose frequency

spectrum varies over time, such as non-periodic load current. Several time-frequency
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representation methods are designed to mathematically describe these signals, namely

short time Fourier transform (STFT), Wigner-Ville distribution (WVD), and Choi-

Williams distribution (CWD) [37]-[38]. To systematically design proper time-frequency

distribution (TFD), Cohen generalization of the quadratic TFDs is used [37]. Cohen

proved that one can relate the desirable properties of TFDs to constraints on its

kernel:

TFDs(t, ω) = 1
4π2

∫∫∫ ∞
−∞

IACs(u, τ)φ(θ, τ)

× e−jθt−jτω+jτudθdτdu (1.19)

where φ(θ, τ) is a two dimensional function (in Doppler-lag domain), called kernel

and TFDs is the time-frequency distribution of the signal. The constant time cross

section of time frequency distribution (TFD(t0, ω)) represents the frequencies avail-

able at time t0, and its frequency cross section (TFD(t, ω0)) represents the times

when frequency ω0 occurred. And IACs is the instantaneous auto-correlation of the

signal s(t), respectively. IACs is defined in Eq.(2.2).

IACs(t, τ) = s∗(t− τ/2)s(t+ τ/2) (1.20)

The desirable properties of TFD and their constraints are defined as follows:

Time Marginal

Integration of the TFD over frequency gives the “Instantaneous Power” (|s(t)|2):

∫ ∞
−∞

TFDs(t, ω)dω = |s(t)|2 ⇐⇒ φ(θ, 0) = 1 (1.21)

Frequency Marginal

Integration of the TFD over time gives the “Energy Spectrum” (|S(ω)|2):

∫ ∞
−∞

TFDs(t, ω)dt = |S(ω)|2 ⇐⇒ φ(0, τ) = 1 (1.22)
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Global Energy

Integration of the TFD over the entire time-frequency plane yields the “Signal

Energy” (ES):

∫ ∞
−∞

∫ ∞
−∞

TFDs(t, ω)dtdω = Es ⇐⇒ φ(0, 0) = 1 (1.23)

Reduced Interference

Due to the bi-linearity of the IAC, introducing “artifacts” (interference) is in-

evitable in generating TFDs. If the kernel has low pass filter characteristic in Doppler-

lag domain (θ, τ), the interference could be reduced.

Since the disturbances in power systems are characterized by the presence of multiple

frequency components over a short duration of time, keeping high time-frequency

resolution, while avoiding artifacts is of great significance in their analysis [39].

AlthoughWVD satisfies the first three constraints (φ(θ, τ) = 1), a large proportion

of interference could result in a poor interpretation of a signal. However, in the case

of analyzing non-periodic current, since it is the energy of harmonics in different

time-windows and frequency windows that are important, the reduced interference

requirement could be waived. Therefore, for the analysis of the non-periodic load

current, the WVD is chosen.

1.5 Non-periodic Load

In general, any power system quantity (voltage, current) whose frequency content

is not integer multiples of the system supply frequency (i.e. 50 Hz, 60 Hz) is con-

sidered a non-periodic quantity [40]. The time duration of the non-periodicity could

be from a fraction of one period of the power system frequency up to a steady state

component of the current or voltage [36].
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Non-periodicity in a power system shall not be confused with the mathematical

meaning of non-periodicity. In the mathematical sense, a signal is considered non-

periodic if it does not have a complete pattern within a measurable constant time

frame. To reconcile the definition of the non-periodic signal in power systems and

mathematics, Czarnecki [36] proposed a classification of the waveforms based on their

periodicity, as it relates to the power system generators, namely, co-periodics, non-

coperiodics, and quasi-periodics. A co-periodic quantity has an integer multiple of

the power system frequency. On the contrary, a non-coperiodic quantity is a periodic

or non-periodic waveform that does not have the same period of the power system

generators or any of its multiples. If the non-coperiodic current has a small time du-

ration and small magnitude comparing to the fundamental component of the signal, it

is called quasi-periodic. The frequency spectrum of a quasi-periodic current, though

continuous, is located in the sub-band neighborhood of the fundamental frequency

(and its multiples) [41]. In this work when the term “non-periodic” is used, it means

non-coperidoic.

Non-periodic current could be the result of various loads, such as cyclo-converters,

welders, arc furnaces, adjustable speed drives [42]. The harmful impacts of the non-

periodic currents are similar to those of harmonic loads, such as contribution to power

loss, elevation of the source current RMS, interference with the local sensitive loads,

elevation of the line voltage distortion, and interference with measurement devices

[43].

Two widely used devices for load current compensation are active filters and pas-

sive filters [36]. Passive filters, though straightforward and inexpensive as compared

to active filters, may bring a strong possibility of the amplification of inter-harmonics

noise components of the current, which makes them not practically applicable for

non-periodic load compensation. Therefore, active filters (switching compensators)

are necessary for the compensation of such loads.
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Time-domain based approaches are mostly originated from the Fryze power theory

[32]- [44], instantaneous p-q theory [45, 46, 34] , and synchronous d-q frame theory

[47]. In [48] and [49] an extension of Fryze power theory, and instantaneous power

theory is utilized for the compensation of non-periodic current. The time-domain

based techniques have the advantage of being simple and instantaneous under some

specific conditions.

The second group of power theories, frequency domain approaches, are based on

the Fourier transform or Kalman filtering of the current or voltage waveforms. In [50],

Czarnecki proposed a frequency based method to decompose the load current into ac-

tive, reactive, scattered, and generated current. Unlike the time-domain approaches,

frequency based methods are more easily tailored to compensation objectives. How-

ever, they are not instantaneous, and they are more complex due to the necessity of

FFT calculation of each harmonic.

1.5.1 Existing Techniques for Non-periodic Current Compensation

Compensation using Fryze theory

One of the earliest power theory to describe the power flow and decomposing the

current waveform into orthogonal components is proposed by Fryze in [32]. In fact,

the first time the term “power theory” is utilized was in that article. Fryze power

theory decomposes the current waveform into active and non-active components;

where the active component is the part of the current which is responsible for power

transmission, and the non-active component is any part of the current that does

not contribute to the power transfer and need to be compensated. Fryze theory has

been used for different applications such as reactive current compensation, harmonic

current compensation, and subharmonic current compensation.
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In [48], Fryze theory is proposed for the compensation of non-periodic load current.

This technique considers all the non-periodicity, harmonics, reactive current, and

imbalance current as a residual non-active current. However, the feasibility of a

device that is capable of such compensation is not discussed. Moreover, the proposed

technique utilizes an arbitrary averaging window length for the calculation of reference

current. The dissertation suggests a trade-off between averaging window length and

the cost of the compensator.

Compensation using pq theory

The instantaneous pq theory, also known as instantaneous active and reactive

power theory, is first proposed by Akagi in 1983 [33]. The pq theory performs a

Clark transformation of current and voltage waveforms to define “instantaneous”

active (p) and reactive (q) powers, and subsequently reactive and active current. pq

theory has been widely used in the compensation of power quality degrading events,

such as non-linear loads, imbalance loads, and systems with non-sinusoidal voltage

supply [34, 51].

In [45], the pq theory is proposed for the compensation of non-periodic loads.

In this technique, an integrator with “averaging time tending to infinity” is used.

Moreover, it is mentioned that a faster compensation of non-periodic current comes

at the price of “power fluctuation”, and “ torque ripple in the axis of the generator”.

As a result of this trade-off between fluctuation and speed, the technique required

a decision making to be performed by engineers before setting up the compensator,

which largely decreases its objectivity. Therefore, it is evident that the pq-theory

based compensation is incapable of efficiently addressing the non-periodic load current

compensation.
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Compensation using Current’s Physical Components theory

Another power theory utilized for the compensation of power quality degrading

loads is proposed by Czarnecki, known as Current Physical Components (CPC) theory

[50]. In this technique, the current waveform is decomposed into several components,

each carrying a physical meaning, namely, active current, reactive current, scattered

current, generated current, and unbalance current. CPC theory has been used for

the compensation of various power quality degrading situations, namely, non-linear

load, unbalanced load, pulsed loads, and systems with non-sinusoidal and imbalance

supply voltage[52].

In [41], the CPC theory is used for the compensation of loads with the non-periodic

voltage of a finite energy. For the CPC theory to be able to decompose such a load

into the orthogonal components (active current, reactive current, and scatter cur-

rent), several optimistic assumptions are made, such as infinite window length of the

calculation, and continuity and finite energy of the voltage signal. Also, the proposed

technique minimizes the source current only by minimization of the reactive current

and not considering other components of the current.

In another work, CPC theory is utilized to compensate the non-periodic current

using a hybrid time and frequency domain based compensator[36]. In this work

the current components are compensated using two compensators; one (a thyristor

controlled susceptance) responsible for reactive current and imbalance current com-

pensation, and another (active filter) responsible for harmonic current and the rest

of the non-periodic current. Lumping all the harmonic and non-periodic part of

the current into “residual component”, however, degrades the meaning of Current

Physical Components. In other words, the non-periodic part of the current does not

carry a physical meaning and is not compensated by a compensator that is designed

specifically for such current waveform. Moreover, the proposed technique is incapable

of simultaneously compensating the sharp edges and the slow variation of the cur-
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rent waveform. Also, this method is not evaluated using the existing power quality

criteria, as they are incapable of describing the non-periodic load.

Shortcomings of the Existing Techniques

The existing techniques for the compensation of the non-periodic load demonstrate

several shortcomings listed below:

1. Single calculation window:

Non-periodic load current consists of numerous quasi-harmonic components, and

inter-harmonic noise. Therefore, unlike the frequency components of a periodic

quantity, it might not share a greatest common divisor frequency. Moreover, there

exists a large difference between the frequency of load various components of cur-

rent to be compensated. Therefore, choosing a single value for the calculation

window, which takes into account such variety of frequency components, largely

decreases the efficiency of the existing techniques. In other words, in order to

compensate the non-periodic current solely, based on the existing power theories,

requires a voltage source converter with an extremely large rating, and simultane-

ously extremely large bandwidth. Therefore, an efficient technique would be able

to decompose the current waveform into different frequency bands with different

time window lengths.

2. Energy storage requirement:

Compensation of non-periodic current requires active current injection. The reason

is that the frequency components of the non-periodic load are not all multiple

integers of the fundamental frequency. Therefore, there will be excess or deficient of

active power over one cycle of power frequency which should be provided using an

energy storage. The existing technique, however, does not consider such constraint

in their design. Therefore, they are not capable of optimizing the energy storage
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size which is one of the most salient cost factors of the design of non-periodic load

compensator.

3. Decomposed components without meaning:

All of the existing techniques are the mere extension of the techniques assum-

ing periodic quantities. Therefore, the decomposed current components lose their

meaning migrating from periodic quantities to non-periodic ones. An efficient

technique for the compensation of non-periodic current would take into account

the differences between periodic and non-periodic quantities while using the same

framework used for the compensation of periodic quantities. Therefore, such tech-

nique has to decompose the current into components that are meaningful parts of

the non-periodic current. As a result, it is possible to develop devices which are

specifically designed to compensate each part of such current.

4. Absence of power quality indexes:

None of the proposed techniques are evaluated using power quality indexes. The

main reason is that most of the power quality indexes are explicitly defined based

on the assumption of the periodicity of power quantities. An acceptable power

quality index takes into account the difference between non-periodic and periodic

quantity but is capable of describing the characteristics of both systems.

1.6 Contribution of this Dissertation

The method proposed in this dissertation is a hybrid time-frequency method

to provide current reference for a co-located arrangement which is temporally dis-

tributed. This compensation technique consists of three parts, namely fast compen-

sator, slow compensator, and reactive compensator. The first (fast compensator) and

second (slow compensator) are time-domain based approaches and the third (reactive

component compensator) is a frequency based method. The proposed technique is

capable of compensating non-periodic loads in networks with distorted voltage sup-
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ply, capable of compensating the unbalanced loads and poly-phase loads. Moreover,

the design limitation of the proposed method, such as the active filter energy stor-

age requirement, is discussed thoroughly. The proposed technique is validated using

MATLAB simulation in conjunction with real-world data acquired from a steel mill

cyclo-converter. Moreover, a real-time controller in the loop structure is utilized to

verify the method using steel mill data. It should be noted that compared to the

existing techniques of compensation of non-periodic loads, the proposed technique

utilized faster and more sophisticated signal processing tools.

Moreover, three power quality indexes are proposed to develop supervisory con-

trol for the compensators and also evaluate the proposed technique. Three signal

processing driven criteria, namely, modulation index, time-frequency distortion, and

high frequency distortion index, are proposed to comply with the non-stationary be-

havior of the non-periodic load. Existing power quality criteria, such as Power Factor

(PF) and Total Harmonic Distortion (THD) are incapable of describing the charac-

teristics of non-periodic loads. The proposed approach demonstrates high capability

in improving these power quality indexes.

This dissertation is organized as follows: Chapter 2 and Chapter 3 describe the

development toward the proposed technique, Chapter 4 demonstrates the simulation

and real-time results of this technique, Chapter 5 describes the practical considera-

tions of building this technique, and Chapter 6 discusses the possible future works

based on the development presented. Moreover, this dissertation is followed by four

appendices that clarify different mathematical aspects of this work.
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Chapter 2

Non-periodic Current Properties and Power

Quality Indexes

A general frequency spectrum of a periodic and a non-periodic load are depicted

in fig. 2.1. Loads with non-periodic current share two characteristics representable

in the frequency domain [36]. First, instead of sharp spikes around the harmonic

frequencies, the non-periodic current has rather a narrow band of frequencies around

each harmonic, which is referred to as a “quasi-harmonic band”. This part of the

current results in a variation of the current waveform peak based on an envelope.

This phenomenon could be modeled as an amplitude modulation of the component

by a time-varying carrier. Any device for the compensation of this part of the cur-

rent waveform requires a large window length (integer multiple of the fundamental

frequency cycle) to be able to catch and filter the low frequency components of the

signal. In the next chapter a high rating low bandwidth compensator is proposed for

the compensation of such quasi-harmonic band of the spectrum.

The second frequency domain feature of non-periodic components is the pres-

ence of non-negligible frequency content between different harmonics, which is called

“inter-harmonics noise” [36, 53]. These components could be amplified drastically if

a traditional resonance based passive filter is used to compensate them. Therefore,

extraction of a compensator control reference targeted toward this feature of the non-

periodic components should have small window length (fraction of the fundamental

frequency cycle), to be able to catch the high frequency components of the current
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Figure 2.1: Frequency domain difference between the non-periodic and periodic quan-
tities.

waveform. In the next chapter, a compensator named fast compensator is proposed

for such purpose.

There is also a need for the elimination of reactive part of the current waveform,

which is common between most of the power quality degrading loads. The window

length required for the calculation of the reactive part of the current is equal to the

fundamental frequency cycle.

As demonstrated in fig. 2.1, since the spectrum of the non-periodic current con-

tains frequencies other than the power system frequency (e.g. 60 Hz) and their

multiples, the well-known total harmonic distortion would result in an inaccurate

representation of the harmonic distortion level. Moreover, the non-periodic current

is non-stationary, which means its frequency spectrum demonstrates temporal varia-

tion. Therefore, it cannot be quantified using frequency-domain based power quality

indexes. To alleviate these issues, three power quality indexes, capable of describing

non-periodic loads are proposed.
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2.1 Time-Frequency Distortion Index (TFDI)

In this work, a time-frequency based index is proposed to demonstrate the level

of current distortion. Time-frequency domain analysis takes into account the time

and frequency domain simultaneously [54]. Time-frequency based criteria has been

recently utilized to define the active/ reactive part of the power (current) waveform

[55]. In this work, the time-frequency analysis is used to describe the non-fundamental

part of the current waveform. Similar to THD, TFDI emphasizes the total power

of the waveform excluding the power in the fundamental frequency of the current. In

this work, Wigner-Ville time-frequency distribution (WVD) of the current waveform

is used for the definition of the TFDI. The WVD distribution, WVDs(t, ω), of the

current waveform, s(t), is calculated using the following equation:

WVDs(t, ω) = 1
4π2

∫∫∫ ∞
−∞

IACs(u, τ)φ(θ, τ)

× e−jθt−jτω+jτudθdτdu (2.1)

where φ(θ, τ) is a two dimensional function,φ(θ, τ), (in Doppler-lag domain), called

kernel. It is equal to “1” for the WVD. t and ω are time and frequency, respectively,

and IACs is the instantaneous auto-correlation of the signal s(t) defined as:

IACs(t, τ) = s∗(t− τ/2)s(t+ τ/2) (2.2)

The WVD could be used to extract the frequency and time localization of the

current waveform, which are necessary to define a criterion for non-periodic currents.

This capability comes from the fact that WVD meets two requirements, namely, time

marginal (TM), and frequency marginal (FM). These requirements are described as

follows:
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TM :
∫ ∞
−∞

WVDs(t, ω)dω = |s(t)|2 (2.3)

FM :
∫ ∞
−∞

WVDs(t, ω)dt = |S(ω)|2 (2.4)

The signal energy (ES) over the window of calculation (T ) is calculated using the

following equation:

Es =
1
T

∫ ωmax

0

∫ T

0
WVDi(t, ω)dtdω (2.5)

where ωmax is the largest frequency components of the signal which is based on the

Nyquist–Shannon theorem equal to half of the sampling frequency.

The energy of the fundamental harmonic, Es1, (which is responsible for the actual

transfer of power from the source to the load) is calculated using the following equa-

tion.

Es1 =
1
T

∫ ω0+ε

ω0−ε

∫ T

0
WVDi(t, ω)dtdω (2.6)

where ε is considered a few frequency bins in the neighborhood of the fundamental

frequency.

Finally, the time-frequency distortion index is defined as:

TFDIs =
√
Es − Es1
Es1

% (2.7)

Note that, for periodic quantities, this definition coincides with the traditional

definition of total harmonic distortion calculated using Fourier transform (Eq. 2.8).

On the other hand, THD loses its efficiency for calculating the harmonics distortion

of the non-periodic (non-stationary) signal.

THDs =

√√√√∑∞n=0 I(nω0)2 − I(ω0)2

I(ω0)2 % (2.8)
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Figure 2.2: Demonstration of an amplitude-modulated waveform.

Please refer to Appendix A for the discussion about the equality of THD and

TFDI for periodic components.

2.2 Modulation Index (mi)

As demonstrated in [36], one of two main characteristics of non-period currents,

besides the existence of inter-harmonic noise, is the presence of some form of am-

plitude modulation which results in spreading the frequency content around each

harmonic. In this work, modulation index, defined in (2.9), is utilized as a fast time-

domain method to demonstrate the level of amplitude modulation, and therefore the

degree of the non-periodicity of the current. Assume that the current waveform of a

non-periodic current is depicted fig. 2.2. The modulation index, mi, for such a case

is calculated as:

mi(t) = Amax − Amin
Amax + Amin

(2.9)

where Amax and Amin are the maximum value of the modulated signal envelope,

respectively.

One of the main advantages of modulation index criterion, compared to the fre-

quency based criteria is the fact that its calculation merely needs half of one period of
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the modulation frequency. On the other hand, to calculate the frequency based crite-

ria, such as distortion factor [40], at least on the period of the modulation frequency

is needed.

2.3 High Frequency Distortion Index (HFDI)

The existing criteria, TFDI and mi are appropriate to access the overall perfor-

mance of a compensator for non-periodic currents. For the purposes of evaluating the

performance of compensation within a particular frequency range another metric is

developed. This is important since compensation may be done is frequency intervals

depending on the power ratings and bandwidth limitations of particular equipment.

Thus, a targeted index, typically in the high frequency where compensation is more

limited is useful. For such purpose, High Frequency Distortion Index (HDFI) is

proposed. Similar to the TFDI, HDFI finds the ratio between the energy in the

unwanted frequency components and the energy in the fundamental frequency. How-

ever, instead of calculating the energy over the whole the frequency range, HDFI

calculates the energy in components in a specified frequency interval above the fun-

damental. Therefore, the HDFI is simply calculated using the following equations:

EHF =
1
T

∫ ωmax

ωSC

∫ T

0
WVDi(t, ω)dtdω (2.10)

HFDIs =
√
EHF
Es1

% (2.11)

where EHF is the energy in the high-frequency range of the signal and ωSC is the

bandwidth of the slow compensator (which will be discussed in Section 3.3).
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Chapter 3

Proposed Compensator Control References

The method proposed in this dissertation for the compensation of non-periodic

load provides control references for three co-located devices, each corresponding to

one moving calculation window and one decomposed part of the compensated current.

These compensators are slow compensator with high power rating, large calculation

window, and low switching frequency; fast compensator with lower power rating,

shorter calculation window, and higher switching frequency; and the reactive com-

pensator which is an ordinary static VAR compensator (SVC). In this chapter, the

structure of this proposed control reference is discussed. Moreover, a new structure

is proposed to share the bandwidth and rating between the compensators.

The complete structure of the compensator with these three compensation devices

are shown in fig. 3.2. Each one of the proposed devices has a particular moving

window for the calculation of their current reference. The fast compensator window

length is a short fraction of the generated voltage frequency period which results in

higher compensation speed compared to other non-periodic compensation techniques,

which use windows equal or larger than the fundamental frequency period of the

generated voltage. For example, in [48], a window length equal to ten times the period

of the fundamental frequency of the voltage is chosen. The reactive compensator

window length is one cycle of generated voltage frequency period. The window length

of the slow compensator is larger than the other two compensators since it is in

charge of the low-frequency part of the non-periodic current. Therefore, to ideally

achieve zero non-periodicity, the slow compensator must realize infinite window length
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[42]. However, since such design is not realizable, the proposed algorithm uses an

adaptive fuzzy algorithm to look for optimized window length. The optimized window

is found in a way that the power quality requirements are met while having the

minimum energy storage size for the slow compensator. The tri-window structure of

the proposed method is shown in fig. 3.1.

Figure 3.1: The tri-window structure of the proposed method.

3.1 Reactive Compensator

In order to eliminate the reactive current, a Static VAR Compensator is used. The

reference current for this compensator is calculated using the following equations:

q(t) = v(t− T0

4 )(i(t)− iFC(t)) (3.1)

Q(t) = 1
T0

∫ t+T0

t
q(τ)dτ (3.2)

Be = Q

V1
2 (3.3)

iR1(t) = Bev(t− T0

4 ) (3.4)

iRemRC
= iL − iR (3.5)
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Figure 3.2: Structure of the proposed compensator.

where q is called instantaneous reactive power, Q is reactive power of the load, T0

is the period of one cycle of power frequency, Be is the equivalent susceptance, V1 is

the RMS value of the fundamental voltage, iR is the reactive current reference,and

iRemRC
is the remaining current after the reactive compensation that will be loaded

to the fast compensator.

3.2 Fast Compensator

Passive filters prove ineffective in the compensation of loads with non-periodic cur-

rent since the inter-harmonic noise would coincide with their resonant frequencies.

Therefore, active filters are required to filter out the high-frequency and low-frequency

part of the current waveform. A novel adaptive fast compensator (FC) control refer-
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ence is proposed in this dissertation for the compensation of high-frequency content

of the current. The main purpose of this compensator is to make sure that the com-

pensator with the large rating (slow compensator) does not require high bandwidth.

Therefore, this compensator is responsible for conditioning the current waveform to

a bandwidth level that is manageable by the slow compensator.

The reference current of the fast compensator is calculated using the following set

of equations:

pFC(t) = v(t)iRemRC
(t) (3.6)

PFC(t) = 1
kT0

∫ t+kT0

t
pFC(τ)dτ (3.7)

VFC
2(t) = 1

kT0

∫ t+kT0

t
v(τ)2dτ (3.8)

GeF C
(t) = PFC(t)

VFC
2(t)

(3.9)

iFC(t) = iRemRC
(t)−GeF C

v(t) (3.10)

iRemF C
(t) = iRemF C

(t)− iFC(t) (3.11)

where pFC is instantaneous power of the load after reactive compensation, PFC is the

power average over a window length which is equal to the fraction of supply voltage

period (kT0), VFC2 is the voltage RMS calculated over the same window length (kT0),

GeF C
is the equivalent conductance of the load after reactive compensation over the

same window length (kT0), iFC is the reference current of the fast compensator, and

iRemF C
is the remaining current after the fast compensation.

The final purpose of any compensation is to achieve a constant equivalent conduc-

tance. However, such goal requires an active filter with very high rating, large energy

storage, and large bandwidth. In this dissertation, the purpose of the fast compen-

sator is to compensate the low power-high frequency part of the current waveform.

This goal is achieved through adaptively controlling the fast compensator window

length (kT0).
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In general the load equivalent conductance seen by the fast compensator could be

written as follows:

GeF C
(t) = P + p̃LF (t) + p̃HF (t)

V 2 + ṽ2
LF (t) + ṽ2

HF (t)
(3.12)

where symbols “˜′′ and “¯′′ demonstrate time-varying and constant quantities, respec-

tively, and subscript “LF ′′ and “HF ′′ demonstrate low frequency and high frequency

components, respectively.

The constant equivalent conductance is achievable when both nominator and de-

nominator have zero time-varying components. For such purpose, two moving aver-

age FIR (finite impulse response) filters (equations (3.8) and (3.9)) are used in Fryze

power theory. However, the basic Fryze power theory based compensator (k = 1)

does not allow for adaptive sharing of the bandwidth between compensators and also

compensation of non-periodic current.

3.3 Slow Compensator

The non-periodic part of the current has theoretically infinity large period [42].

Therefore, the higher compensation window results in smoother compensation and

higher power quality. The existing attitude for non-periodic compensation in the

literature is that, the longer the window size, the better the compensation quality.

Though it is correct in general, the longer window also implies longer transient re-

sponse. Therefore, by choosing possibly a smaller window (with similar power quality

of longer windows) the transient time after a load change could be minimized without

compromising the power quality. Moreover, by decreasing the window length size,

the required bandwidth of the slow compensator is decreased.

Therefore, in order to remove the non-periodic and low frequency part of the

current, an active filter, whose window length is adaptively modified is designed.

The window length is chosen so that it has the minimum size to achieve acceptable
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modulation index. The slow compensator current is calculated using the following

relations:

p(t) = v(t)iRemF C
(t) (3.13)

P (t) = 1
T

∫ t+T

t
p(τ)dτ (3.14)

Ge1 = P

V1
2 (3.15)

iSC(t) = iRemF C
(t)−Ge1(t)v1(t) (3.16)

where Ge1 is the total power equivalent conductance of the fundamental frequency

which reflects the equivalent conductance of the load in case all the current is being

transferred with the fundamental frequency, iSC is the current being compensated by

the slow compensator, and T is the window length for the calculation of equivalent

conductance.

The ultimate goal of the slow compensator is to achieve the equivalent conductance

with zero oscillation. However, in the practical case, such goal is not achievable since

it requires an infinitely large energy storage. In this work, a fuzzy-based algorithm is

proposed to minimize the oscillating part of the equivalent conductance by adaptively

modifying the length of the calculation window:

Ge(t) = Ge1(t) + G̃e(t) (3.17)

where Ge(t) is the measured load equivalent conductance and G̃e is the oscillating

part of the equivalent conductance. The goal of the slow compensator is to achieve

constant Ge1, and therefore zero G̃e(t).

It could be proven that for a non-periodic current, the oscillating part of the

equivalent conductance is proportional to several factors as follows.
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G̃e ∝ sin(2πlq)
l

(3.18)

for l = T

T0
(3.19)

for q = ±mk (3.20)

where n is the order of existing harmonics in the current (odd numbers for power

systems),m is the order of existing harmonics in the modulating signals (odd numbers

for regular modulating signals), k is the modulation ratio (∆ω
ω0

), ∆ω(= 2πfm) is the

modulation frequency, and ω0 is the power system frequency. Please see the Appendix

B for detailed mathematical explanation.

It could be concluded that in order to reach zero oscillating conductance (pure

sinusoid current), one of two requirements shall be met; (1) infinite window length

(1/T = 0), and (2) integer 2lq (cos(2πlq) = 0) . Though the former is unrealizable

(infinite energy storage is needed), the latter could be realized using a minimiza-

tion algorithm in a way that the window length (l) is to be manipulated to reach a

minimized error signal e(n,m, l):

e(n,m, l) = 2lq − round(2lq), for n = 3, 5, .., m = 1, 3, ... (3.21)

However, it is not feasible to minimize all the errors with one particular window

(l). Therefore, an algorithm is needed that incorporates the importance of each

current harmonics and modulation harmonic (n,m) in finding the best window size.

The flowchart of the proposed Mamdani-based fuzzy algorithm part of the slow

compensator is shown in fig. 3.3. The method uses FFT calculation of the remainder

current (irem = iL − iF − iR) to find the dominant harmonics, the modulation fre-

quency (∆ω), and modulation ratio (k). Using FFT for such purpose results in less

computational burden compared to other methods such as Kalman filtering used in

[56] for the similar purpose. The fuzzy logic uses the modulation index reference (in
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this work it is set mi = 5.3% for acceptable fluctuation) to define different regions of

the fuzzy logic. For each window length three decisions are possible, namely, accepted

window, good window, and rejected window. The optimized window is selected in the

following way:

• find the decision of the algorithm for window length l = 1 to lmax.

• if there exists several window length (l) with ACCEPTED response, choose the

smallest one.

• if there is no ACCEPTED response, choose the largest GOOD window length.

• if there is no ACCEPTED or GOOD window, choose the maximum window

length (lmax).

The fuzzy logic assures that while we meet the power quality criteria, maximize

the slow compensator utilization (and therefore load sharing), minimize the transient

response of the compensator, and also minimize the overall implementation cost.

3.4 Sharing between Fast- and Slow Compensator

3.4.1 Sharing of Bandwidth

As previously mentioned, the fast compensator function is to condition the current

waveform, to a level that is manageable by the slow compensator. In other words, in

the design phase, the bandwidth of the fast compensator is being determined by the

available bandwidth of the slow compensator. Moreover, the fast compensator power

rating is by definition a fraction of the slow compensator power.

In this dissertation, to realize the sharing of bandwidth between the compen-

sators, the window length of the fast compensator is set to a fraction of one cycle of

power frequency (k). Figure 3.4 shows the frequency response of the moving average
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integrator for different window lengths (k). It is apparent that larger window size of

the fast compensator results in more substantial high-frequency removal. Therefore,

by defining the k factor in the design phase, the bandwidth and power of the load

could be easily shared between the two compensators. It is noted that other FIR

filters could also be utilized for the purpose of low pass filtering. However, as it will

be shown in Section 4.4.3, in this work the moving average low pass filter is used,

since it allows using the recursive integrals which largely decreases the computational

burden on the processor.

Figure 3.5 demonstrates the 3dB bandwidth of the line current after the fast

compensation for different window lengths. This figure could be used for designing

the sharing scheme of the bandwidth between fast- and slow compensators. As an

example, if the available (required) bandwidth of the slow compensator is 1.4kHz,

the fast compensator window length is set to 30◦(k = 0.083) suffices.

3.4.2 Sharing of Rating

The fast compensator is a power conditioner before the main (slow) compensator.

Therefore, its power rating should be, by definition, a fraction of the slow compensator

power rating. In this work, the ratio of the fast compensator to the rating of the slow

compensator is predetermined in the design phase and is equal to Ratio parameter.

3.5 Summary

This chapter is developing a novel tri-window based compensator for the com-

pensation of loads with the non-periodic current. This compensator consists of three

co-located devices with different calculation window, called fast compensator, reac-

tive compensator, and slow compensator. One of the challenges with the proposed

method is that, though the reactive compensator current and slow compensator cur-
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rents are mathematically orthogonal, the fast compensator current is not orthogonal

to them. However, since these components are sequentially ordered, the orthogonality

requirement is waived.
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Figure 3.3: Flowchart of the adaptive fuzzy algorithm for modification of slow com-
pensator window length.

40



Figure 3.4: Frequency response of the moving average integrator for different window
lengths.

Figure 3.5: The bandwidth of the current waveform after the fast compensation with
different window lengths.
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Chapter 4

Simulation and Real-time Verification

4.1 System Under Study

To verify the proposed tri-window algorithm, real-world data acquisition was per-

formed on a running steel mill with six units of six-pulse cyclo-converter bridge, each

supplying a 7.7 MW synchronous motor. The detailed circuit diagram of the system

under study is shown in fig. 4.1. Description and operating condition of four loading

cases of the motor are shown in Table 4.1. It is noted that in this table fmotor demon-

strates the motor rotation speed.Moreover, the current waveforms for these cases are

demonstrated in the left column of Fig. 4.2. Results for each case assume an ideal

tracking of the references generated using the method described in chapter 3. Thus,

current tracking error in an actual implementation will result in reduced performance

that depends on specific implementation issues such as conversion and computation

delays and switching frequency limitations.

4.2 Simulation Result

In this section the results of the proposed algorithm is demonstrated using real-

world data acquired from a local steel mill and processed using Matlab. A sample

design specification is also used to demonstrate the technique efficiency. For such

purposed the bandwidth reference (BW ∗
SC) is set at 1.4kHz and the power rating

ratio (Ratio∗) is set at 50% (0.5).
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Figure 4.1: The circuit diagram of the steel mill cycloconverter.

4.2.1 Fast Compensator

The main function of the fast compensator is to filter out the high-frequency con-

tent of the current in a way that the slow compensator, which has a higher power

rating active filter, does not require high switching frequency devices. Fig. 4.3.(d)

demonstrates the current waveform of the fast compensator for Ratio∗ equal to 0.5.

Fig. 4.3.(f) and (g) also demonstrate the difference between the line current after

the compensation with and without using the adaptive scheme for the fast compen-

sation, respectively. Though the final result without the adaptive scheme has higher

power quality, it might not be practically achievable as the power rating of the fast

compensator, in this case, is about 73% of the slow compensator.

The specification of the fast compensator for loading of case1 (for data acquisition

by sampling rate of 37.3kHz) are: SCALE = 0.68 (power sharing scale), k = 0.083
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Figure 4.2: Current waveform for four loading cases of the cyclo-converter and their
corresponding current after the compensation

(window length) BWFC = 9kHz (bandwidth), PratingF C
= 209.7 kV A (rating power).

4.2.2 Slow Compensator

The slow compensator is the main part of the tri-window compensator whose role

is the compensation of the non-periodicity in the load current. Fig. 4.3 demonstrates

different aspects of the slow compensation for the loading case 1. Fig. 4.4a depicts

the modulation index value for different window lengths of the slow compensator. It
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Figure 4.3: Voltage and current waveform of the compensator :(a) line voltage, (b)
load current waveform acquired from measurement data (c) reactive compensator
current, (d) fast compensator current (Ratio∗ = 0.50), (e) slow compensator cur-
rent, (f) line current after compensation (with Ratio∗ = 0.5), (g) line current after
compensation (with full scale fast compensator)

is evident from the figure that with the increase of the window length, generally, the

modulation index decreases. However, there are some local minima, estimated by the

slow compensator fuzzy logic, which result in modulation indexes comparable to that

of larger windows, e.g. T = 11T0 for loading case 1.
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The line current waveforms for different window length are presented in fig. 4.4b

. It could be concluded from the zoomed-in figure that the line current waveform

after slow compensation with T = 11 T0 and T = 22 T0 have the lowest amplitude

modulation.

Moreover, Fig. 4.3.(e) demonstrates the slow compensator waveform for the com-

pensation of the non-periodicity of the current. The specification of the slow com-

pensator for loading of case1 (for data acquisition by sampling rate of 37.3kHz) are:

l = 11 (window length), BW ∗
SC = 1.4 kHz (bandwidth), and PratingSC

= 421.0 kV A.

Fuzzy Algorithm

The result of the fuzzy logic based adaptive window estimator of the slow com-

pensator for loading case 1 is shown in fig. 4.3c. It is shown that for this case, two

windows have acceptable results, namely, T = 11T0 and T = 22T0. Therefore, the

window with a smaller size (T = 11T0) is chosen by the slow fuzzy logic as the opti-

mum window. The result of the estimated window by the fuzzy logic is completely

in line with the calculated results from fig.4.4a.

Energy Storage

An energy storage system is required to keep the dc-link voltage of the slow

compensator constant, which without the use of the proposed fuzzy algorithm, occurs

only if the dc-bus storage is gigantic. The compensator’s energy storage should store

the energy difference between the maximum output power and minimum output

power. This value depends on the chosen window length of the compensator. The

energy storage capability against the chosen time window is formulated as follows:

∆E =
∫ T

0
v(t)iC(t)dt (4.1)

As demonstrated in fig. 4.3d, the energy storage size increases with the increase

in the compensator window length. Using the fuzzy logic adaptive window estimator,
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a window length T = 11T0 is chosen which demonstrates the same power quality

as of a design with T = 22T0, while its energy storage requirement is about 2/3 of

the energy storage of its counterpart. It is also evident, that only by increasing the

window length the power quality is not necessarily improved since the modulation

index of a design with T = 11T0 is much smaller than that of T = 24T0.

Table 4.1: Load description and power quality indices before and after the compen-
sation.

Number Description Before
Compensation

Compensation
Parameters

After
Compensation

Case 1 fmotor = 16.4Hz
mi = 73.9%
TFDI = 71.1%
HFDI = 8.35%

SCALE = 0.68
T = 11T0(l = 11)
PRatingRC

= 131.8kV Ar
PRatingF C

= 209.9kV A
PRatingSC

= 421.0kV A

mi = 7.3%
TFDI = 19.1%
HFDI = 1.3%

Case 2 fmotor = 12.4Hz
mi = 69.6%
TFDI = 67.3%
HFDI = 5.8%

SCALE = 0.66
T = 24T0(l = 24)
PRatingRC

= 169.6kV Ar
PRatingF C

= 381.0kV A
PRatingSC

= 755.6kV A

mi = 10.9%
TFDI = 18.5%
HFDI = 1.4%

Case 3 fmotor = 10.0Hz
mi = 81.7%
TFDI = 115.9%
HFDI = 7.6%

SCALE = 0.38
T = 13T0(l = 13)
PRatingRC

= 37.3kV Ar
PRatingF C

= 53.7kV A
PRatingSC

= 108.8kV A

mi = 4.0%
TFDI = 77.8%
HFDI = 5.0%

Case 4 fmotor = 5.5Hz
mi = 76.1%
TFDI = 77.5%
HFDI = 8.5%

SCALE = 0.53
T = 6T0(l = 6)
PRatingRC

= 166.9kV Ar
PRatingF C

= 387.2kV A
PRatingSC

= 821.6kV A

mi = 2.5%
TFDI = 35.5%
HFDI = 3.8%

4.2.3 Reactive Compensator

The current waveform of the reactive compensator is shown in Fig. 4.3. (c).The

rating of the reactive compensator for the compensation of case 1 load is PratingF C
=

131.8 kV Ar. It should, however, be noted that the focus of this section is on the

behavior of the fast and slow compensators. The reason is that the reactive com-

pensator does not contribute to the proposed power quality indexes (mi, TFDI, and
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HFDI). The reason is that the reactive compensator merely shifts the current phase

and modifies the magnitude of the fundamental component of the current to minimize

the phase displacement between current and voltage waveforms.

4.3 Power Quality Criteria

In this section, the result of the proposed algorithm is evaluated using the intro-

duced power quality criteria.

Time-Frequency Distortion Index

Table 4.1 demonstrates the TFDI, the overall quality measure of the compen-

sator, before and after the compensation. It is evident that the TFDI decreases,

in all cases. The level of improvement of TFDI, however, depends on the level of

existing inter-harmonic noise.

Modulation Index

Fig. 4.4a demonstrates the modulation index, the quality measure of the slow

compensator, for different window length calculated for case1. As also predicted

by fig. 4.3c, for window length l = 11, 22 the compensated current has the lowest

modulation index. Moreover, Table 4.1 shows the modulation index for different

loading of the cyclo-converter before and after the slow compensation. In all the

cases, the mi reaches the accepted region after the compensation.

High Frequency Distortion Index

Table 4.1 demonstrates the HFDI, the quality measure of the fast compensator,

before and after the compensation. It is evident that the HFDI decreases, in all

cases. The level of improvement of HFDI, however, depends on the level of existing

inter-harmonic noise in the responsibility bandwidth of the fast compensator.
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4.4 Real-time (RT) Implementation of the Tri-window Compensator

After verification of the technique using real-world data, it is necessary to evaluate

the technique in real-world condition. Therefore, a real-time test setup is designed

to test and evaluate the proposed compensator. In this structure, the load current

and voltage are simulated in real-time and are generated as an analog voltage out-

put. Therefore, the tri-window compensator behaves as a controller-in-the-loop (CIL)

and generates the reference current required for each compensator as output analog

voltage.

4.4.1 Real-Time Test Setup

The schematic of the RT test setup for the evaluation of the proposed technique is

shown in Fig.4.4. This setup consists of two RT controllers and three I/O connectors.

In this design, the first controller, a PXI 8176, is booted up into RT operating

system (RTOS) and emulates the load based on the model proposed in Appendix D.

The data of this model is loaded on the RT machine hardware, and a LabVIEW RT

graphical code generates the line voltage and the load current waveforms onto the

analog output. The analog output card on this board (NI 6713 ) has a large enough

buffer size (16354 samples) to emulate the load with the high sampling frequency.

It is noted that the RTOS assures that the real-time operation of the algorithm is

performed within the maximum calculation window.

The second controller is used to calculate the current reference and output the

waveforms onto the line emulator. For this purpose, a National Instrument PXI 8108

controller is used which is a Core 2 Duo 2.53 GHz RT embedded controller with

80 GB hard drive. This controller is also booted into an RTOS. It acquires the data

using high speed NI-PXI-6143 data acquisition card (250Ksample/s) and generates
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the waveform onto another high-speed data acquisition card (NI-PXI-6221 with 833

kSample/s). The current reference of the compensators is calculated using C code

and was loaded to the RT machine using LabWindows/CVI RT module. A minimal

example of this code could be found in Appendix 4.4.3.

The line emulator consists of two simple I/O connectors (NI SCB-68 ) that facili-

tate the connection between the load emulator and the compensator emulator. And

finally, the oscilloscope depicts the load voltage, load current, compensating current,

and calculates the current being drawn from the line by simply adding these two

current waveforms.

4.4.2 Test Results

Fig. 4.4 demonstrate the result of the compensators for a non-periodic load re-

sulted from a modeled 6.6Hz synchronous motor. For this purpose, the bandwidth

reference (BW ∗
SC) is set at 360Hz and the power rating ratio (Ratio∗) is set at 50%

(0.5). The compensator parameters therefore, will be: k = 0.11(40◦), SCALE = 0.63,

and T = 9T0. It is noted that to fit the code into the maximum calculation window,

it was necessary to perform the experiment in three steps:

• Reactive Compensator: In the first step, the reactive compensation of the load

is performed with 12 kHz sampling frequency. After the compensation using the

reactive compensator the remaining current is calculated (iRemRC).

• Fast Compensator: In the second step, the generated remaining current (iRemRC)

is loaded to the fast compensator which is performing compensation with 18 kHz

sampling frequency. The remaining current is treated by the compensator as it

is the load current. Again, after the fast compensation the remaining current is

calculated (iRemFC).
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• Slow Compensator: In the third step, the generated remaining current after the

fast compensation (iRemFC) is loaded to the slow compensator. The slow compen-

sator samples the input current with 12 kHz sampling frequency. The remaining

current is the line current which will be drawn from the grid.

The real-time results demonstrate that the modified version of the proposed

compensator is capable of the compensation of the non-periodic current to an al-

most sinusoidal quantity. It is noted that the bandwidth of the fast compensator

(9kHz = 18kHz/2) restricts the compensation of very high-frequency components of

the current waveform. It is also pointed out that the line current will be ideally sinu-

soidal. However, since the slow compensator is assumed to have limited bandwidth

(of 360Hz) the final result of the line current will be less sinusoidal.

4.4.3 Code Optimization

Since for a real-time control application, the determinism (performing the whole

code in a predetermined window of time) is crucial, the code should be optimized so

that it takes the shortest deterministic possible time. The following considerations

are taken to achieve the most optimum c code:

1. Using double data type proved to be more efficient than float due to the fact

that the processor was 64 bit. Using float data type introduced some jitter

to the code(variation of calculation period time from the desired deterministic

maximum calculation window).

2. Preallocating the variables inside the memory largely decreases the jitter. For

such purpose static variables are used.

3. Scaling the measurements to fixed-point and performing fixed-point calculation

would not improve the code since the processor has the capability of hardware-

based floating point calculation.
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4. All the mathematical integrals are performed in a recursive manner. Doing so

decreased the number of operations extensively. Moreover, any division that

is possible to avoid was eliminated. For example, the equivalent conductance

(equation (3.15)) is calculated as follows:

Ge(k) = P (k)
V 2

1 (k) (4.2)

Using the unoptimized code, the parameters are calculated as follows:

P (k) =
∑0
k=−NT +1 p(k)

NT

(4.3)

V1
2(k) =

∑0
k=−NT +1 v1

2(k)
NT

(4.4)

where NT is number of calculation samples (NT = T.fs).

An optimize code, however, calculates these parameters as follows:

P (k) = P (k − 1) + [p(0)− p(−NT )] (4.5)

V1
2(k) = V1

2(k − 1) + [v1
2(0)− v1

2(−NT )] (4.6)

As a comparison, for the calculation of slow compensator equivalent conduc-

tance, the unoptimized code requires 3600 additions and 3 devisions; however,

the optimized code only requires 2 additions and 2 subtractions and 1 devision.

5. Any unnecessary communication between the host machine and the real-time

target shall be avoided. For example, releasing the code on the RT machine

instead of establishing a debug between RT machine and the host increases the

calculation speed up to t times.

4.5 Summary

This chapter is dedicated to the verification of the proposed tri-window compen-

sator. The method is first verified using the simulation of real-world data acquired
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from a local steel mill. It is shown that all the proposed power quality criteria

would largely improve after the compensation using this compensator. Moreover, the

method is further verified using real-time implementation of a controller-in-the-loop.

The real-time implementation of the technique proved that the method is capable of

removing the non-periodicity of the current. Note that the level of compensation of

the sharp edges of the current is limited by the bandwidth of the fast compensator.
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(a) Modulation index for different window lengths.

(b) Line current waveforms for different window lengths of the slow compensator.
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(c) Fuzzy logic decision for different window lengths of the slow compensator.

(d) Energy storage requirement for the slow compensator DC-link against the length
of the calculation window.

Figure 4.3: Result of the slow compensator for loading case 1.
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Figure 4.4: Real-time test setup schematic.

(a) Test result of the reactive compensator: (a) line voltage, (b) load current, (c) reactive
compensator current, (d) remaining current after reactive compensation (iRemRC).
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(b) Test result of the fast compensator: (a) line voltage, (b) remaining current after reactive
compensation (iL = iRemRC), (c) fast compensator current, (d) remaining current after fast
compensation (iRemF C).

(c) Test result of the slow compensator: (a) line voltage, (b) remaining current after fast
compensation (iL = iRemF C), (c) slow compensator current, (d) current drawn from the
grid.

Figure 4.4: Test results.
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Chapter 5

Practical Considerations

The desired real-time platform for testing and implementation of the tri-window

compensator is shown in Fig. 5.1. In such design, the slow compensator and the non-

periodic load can be implemented using two back-to-back power electronic building

blocks (PEBBs). A PEBB is a three-phase bidirectional voltage source converter

which, when accompanied by a proper control board, can function as a controlled

current source. The fast compensator can also be implemented using only one PEBB.

The Energy Routing Laboratory of the University of South Carolina has the poten-

tial of developing a real-time test platform for the implementation of the tri-window

compensator. However, the cost analysis of a Static VAR Compensator needs to be

addressed before building the tri-window compensator.

5.1 Design and Cost Analysis of the Reactive Compensator (SVC)

The practical aspects of the Static VAR Compensator is required to be studied and

analyzed to complete the design of the real-time platform used for the implementation

of the tri-window compensator. The available power rating for the non-periodic load

emulator is 35 kV A of which 16.4kV A is dedicated to the reactive power and 5.5 kV A

is devoted to the unbalance power. There are several design factors that should be

studied before building the SVC:

1. is the SVC responsible for compensating the unbalance power?
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Figure 5.1: Desired real-time platform for development of the tri-window compen-
sator.

2. which device is in charge of the compensation of harmonic byproducts of the

reactive compensator?

Three SVC configurations are proposed, and cost analysis is performed to select

the most optimum configuration. These three configurations are shown in Fig. 5.2.

The first option, FC-TCR (fixed capacitor- thyristor controlled reactor), shown

in Fig. 5.2a is capable of compensating reactive power [25]. However, it generates

current harmonics of the order 6k± 1 multiples of the fundamental frequency. More-

over, this compensator is incapable of compensating the unbalance power. Therefore,
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(a) Fixed capacitor thyristor controlled reactor (FC-
TCR)

(b) Fixed capacitor 12-pulse thyristor controlled re-
actor.

(c) Adaptive balancing compensator.

Figure 5.2: Static VAR Compensator designs used for performing cost analysis.
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if the FC-TCR is used for the compensation of the reactive power, the slow compen-

sator will be responsible for compensating the unbalance power and low-frequency

harmonic byproduct of the reactive compensator. The fast compensator will also be

responsible for compensating the high-frequency harmonic byproduct of the reactive

compensator.

The second option, 12-pulse FC-TCR is shown in Fig. 5.2b. This device consists

of one Y −Y and one Y −∆ transformer that together reduces the harmonic content

of the reactive compensator to 12k ± 1 multiples of the fundamental frequency [25].

However, similar to the basic FC-TCR, 12-pulse FC-TCR is incapable of compensat-

ing the unbalance power. Also, the additional transformers largely increase the cost

of the design. Therefore, if the 12-pulse FC-TCR is used for the compensation of

reactive power, the slow compensator will be responsible for compensating the un-

balance power. Moreover, the fast compensator will be responsible for compensating

the harmonic byproduct of the reactive compensator.

The third option, adaptive balancing compensator, is shown in Fig. 5.2c. This

configuration is an extension of the FC-TCR that is also capable of compensating the

unbalance part of the current [26]. However, since for the compensation of unbalance

power the value of each phase to phase impedance should be different, the triple-nth

harmonics generated by the TCR branch could not circulate inside the delta connected

compensator and will be injected into the line. Therefore, although this compensator

is capable of compensating the unbalanced power, it generates and injects 2k ± 1

multiples of the fundamental frequency to the grid. Thus, if this compensator is

used for the compensation of the reactive power, its high power harmonic byproducts

should be compensated using the fast and slow compensator.

A cost analysis has to be performed to select the optimum configuration based on

the desired performance of the compensator and its power rating.
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5.1.1 Cost Analysis of the SVC

Depending on the chosen SVC configuration, the size of the fast compensator and

the size of the slow compensator increase. The reason is that the unbalance power,

reactive power, and the harmonic byproduct of the compensator should be shared

between the three compensators in the tri-window compensator structure. Therefore,

the overall cost of the SVC design consists of the expense of the SVC configuration

and the increase in cost (rating) of the fast and slow compensator. It is noted that

instead of power rating, here we use the current RMS as the cost factor of the design.

The reason is that, since the compensators are connected to the same terminals,

they have equal voltage and therefore, the current RMS could be an indicator of the

power rating. Therefore, the cost analysis of the SVC configuration is performed by

minimizing the following cost function:

λ = IF × kFC + ISL × kSC + IR × kRC (5.1)

where λ is the overall cost in unit cost (U$), IF is the RMS current provided by the fast

compensator to compensate the harmonic byproduct of the reactive compensator, ISL

is the RMS current provided by the slow compensator to compensate the unbalance

power or harmonic byproduct of the reactive compensator. Additionally, kFC , kSC ,

and kRC are the relative cost of the fast compensator, slow compensator, and reactive

compensator in unit cost per unit current.

A parametric cost analysis of the SVC configuration is shown in Table 5.1. The

value of the reactive current and the unbalance current is simply calculated by the

required compensation rating (16.4 kV A for reactive load compensation and 5.5 kV A

for unbalanced load compensation). Also, the harmonic byproducts of the SVC is

calculated using the following equation for a single phase FC-TCR:
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Table 5.1: Cost analysis of the Static VAR Compensator.

ILn(α) = V

ω0L

4
π

{
sin(α) cos(nα)− n cos(α) sin(nα)

n(n2 − 1)

}
(5.2)

where ILn is the RMS value of the n − th harmonic of the current, n is odd integer

(3, 5, 7, ...), α is the firing angle of the thyristor, V is the voltage across the TCR, ω

is the frequency of the voltage waveform in (rad/s), and L is the value of inductor in

the TCR branch.

For this cost analysis, the firing angle is set at α = 28.0 degree to take into account

the highest harmonic current generated by the TCRs.

The following relative cost factors are selected for each device: kFC = 1, kSC = 1,

kBAS = 1, k12P = 1.5, and kABC = 1.2. This results in the following cost for each

SVC structure: λBAS = 61.8 U$ for the FC-TCR, λ12P = 83.8 U$ for the 12-pulse

FC-TCR, and λABC = 80.6 U$ for the adaptive balancing compensator. Therefore,

it is apparent that using the basic FC-TCR as the SVC reduces the overall cost of

the SVC design about 20− 25%.

It is noted that the relative cost factor of the slow compensator and the fast com-

pensator is dominated by the increase in the size of the output inductor. Moreover, if

the relative cost of the basic FC-TCR is set as the reference, the cost of the adaptive

balancing compensator increases mostly because of additional inductors, and the cost

of 12-pulse FC-TCR increases mostly by the required six single-phase transformers.
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Chapter 6

Toward Distributed Compensation: Power

Quality Improvement inside Microgrids

If multiple active filters are needed for the compensation of power quality dis-

turbances, two arrangements are possible, namely, distributed and co-located. Dis-

tributed arrangement has been widely used recently for the power quality disturbance

compensation inside the microgrids [57]. For example, it has been used to compensate

voltage harmonics and voltage imbalance in the grid-connected and islanded micro-

grids [58, 59, 60]. In this case, although active filters are distributed, they all use

the same time-window size for the calculation of the reference signal. In other words,

they are spatially distributed and temporally synchronized. The second arrangement

of compensation devices, co-located, uses specific device for the compensation of each

component of the current. For example, [50] proposed several devices for the com-

pensation of all components of the disturbance current. Such techniques are also

temporally synchronized. The tri-window compensator suggested in this dissertation

is also co-located however since it uses different window length, it is temporally un-

synchronized.

When it comes to microgrids (highly dispatchable load/generation units), how-

ever, since the active filter units (distributed generations) are distributed by nature,

usage of co-located compensator structure is not possible. Moreover, the rapid growth

of the non-linear and single phase loads in the microgrids pollutes the line current

and voltage with harmonics and imbalance. Power transfer loss, interfere with sen-
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sitive loads, stability issues, and a decrease in the microgrid efficiency are some of

the consequences of this power quality disturbances. To eliminate these problems,

the available rating of the distributed generations (DGs) in the microgrid could be

exploited. In this chapter the current physical component (CPC) theory is utilized to

generate a reference current for shunt active filters for harmonic/imbalance mitiga-

tion. Two set of droop controls, i.e. Gh−‖ih‖ and Gu−‖iu‖, are utilized to facilitates

the sharing of the nonlinearity and asymmetry of the loads between different DGs.

Moreover, a centralized controller connected with a low bandwidth communication

line to the DGs is used to smooth out the total harmonic distortion and unbalance

factor throughout the network.

The proposed technique, moreover, takes advantage of the combination of current

physical component power theory and computationally effective recursive discrete

Fourier transform (RDFT) for the calculation of the current reference. Therefore,

the proposed technique has a low computational burden, due to the exploitation of

RDFT and elimination of low pass- and high-pass filters. Also, the proposed tech-

nique can share the nonlinear and unbalanced load between different active filter units

based on their available power rating.

6.1 Harmonic Node-Analysis of Microgrids

A typical grid-connected microgrid (MG) is demonstrated in fig. 6.1. MGs often

consist of various energy resources, such as solar cells, fuel cells, wind turbines, and

energy storage systems. Non-linear loads such as electric vehicles and residential

loads could also be inside to the MGs. Since these sources and loads are mostly

connected to the microgrid through power electronics based converters, the microgrid

could become highly polluted with power quality disturbances, such as harmonics,

unbalanced current, and reactive power. The elimination of power system polluting

current is critical as it largely decreases the efficiency of the microgrid.
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Figure 6.1: Typical microgrid structure with fuel cell, photovoltaic, and wind turbine
generation, and electric vehicle and other non-linear loads.

In this section, the voltage harmonic compensation in the microgrid is discussed

using the node analysis. The two-node equivalent circuit of the microgrid for harmonic

frequencies is shown in fig. 6.2a. To simplify the analysis, assume that the length

of the distribution line is less than a tenth of the highest compensated frequency

wavelength in the network. Therefore, the lines could be safely modeled as resistance

in series with the inductance. Moreover, the series compensator is presented using

its equivalent virtual resistance (frequency-dependent), and the distorted grid and

the non-linear load are demonstrated using harmonic current sources. The two-node

structure is proper for the voltage compensation analysis, as it could help studying

both the harmonic propagation to remote nodes (RN), and harmonic pollution of the

point of common coupling (PCC). A more simplified version of this circuit is shown

in fig. 6.2b. The harmonic voltage of two nodes could be calculated using the node

analysis as follows:

Ih1

Ih2

 =

Y1 + YL −YL

−Y L Y2 + YL


V1

V2

 (6.1)

Using the matrix inverse transform, the harmonic voltage at the PCC and the
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(a) Equivalent circuit of the grid connected microgrid.

(b) Simplified equivalent circuit of the grid connected micro-
grid.

Figure 6.2: The node-analysis representation of the grid connected microgrid

RN is calculated as follows:

V1

V2

 =

Z11 Z12

Z21 Z22


Ih1

Ih2

 (6.2)

where Z11, Z12(= Z21), and Z22 are the arrays of the admittance inverse matrix, not

to be confused with impedance matrix used for mesh analysis, and are calculated as

follows:

Z11 = Y2 + YL
(Y1 + YL)(Y2 + YL)− YL2 (6.3)

= Y2 + YL
Y1Y2 + (Y1 + Y2)YL

(6.4)
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Z22 = Y1 + YL
(Y1 + YL)(Y2 + YL)− YL2 (6.5)

= Y1 + YL
Y1Y2 + (Y1 + Y2)YL

(6.6)

Z12 = Z21 = YL
(Y1 + YL)(Y2 + YL)− YL2 (6.7)

= YL
Y1Y2 + (Y1 + Y2)YL

(6.8)

It could be concluded from the eq. (6.3) that in order to minimize the voltage har-

monics on each node, two options are available; decreasing the diagonal impedances

(Z11 and Z22), or decreasing the off-diagonal impedances (Z12 and Z21). The diagonal

arrays are responsible for the voltage harmonics that are result of the non-linear loads

at the same node. On the other hand, the off-diagonal arrays are responsible for the

harmonic propagation. First, let’s analyze minimizing the diagonal impedances, e.g.

Z11.

The minimization of Z11 is achievable by installing a parallel virtual impedance,

Gp1(= 1/Rp1), at the PCC, which increases Y1. However, increase or decrease in YL

and Y2 does not necessarily contribute to the minimization of Z11. Therefore, the

voltage harmonics due to the non-linear load on the node it is connected to could

only be eliminated using parallel virtual impedance (providing parallel current path).

The minimization of the off-diagonal arrays, e.g. Z12, could be achieved by in-

stalling parallel virtual impedances, Gp1 andGp2, or installing series virtual impedance,

RS1, which decreases YL. Therefore, the harmonic propagation could be blocked using

both series and parallel virtual impedances. It is noted that in typical distribution

systems without compensation, the line impedance is way smaller than the load

impedances (YL >> Y1 and YL >> Y2).

To sum up, there are two directions for decreasing the voltage harmonics through-

out the network; (1) providing a parallel path for the harmonic current at each node
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(nodal compensation), and (2) blocking the harmonic propagation at each line (loop

compensation). The late goal could be achieved using the well-known shunt virtual

conductance, while the latter would be accomplished by both the parallel virtual

conductance and the series virtual resistance, which is proposed in this chapter. Al-

though the shunt compensation has attracted more interest in harmonic compensa-

tion, it needs high rating active power filters for blocking the harmonic propagation.

Therefore, the proposed technique in this work is to prevent the harmonic propaga-

tion throughout the network by using virtual series resistance whose magnitude is

controlled using a droop controller for equivalent sharing of the voltage harmonics

between different active filters.

6.2 Fundamental of Voltage Compensation

6.2.1 Current Physical Components Theory for Harmonic and Imbal-

ance Current Extraction

Czarnecki [61, 62] proposed a frequency domain approach for the extraction of

reactive, unbalanced, and harmonic components of the current. In [63], the method

is further improved using the computationally practical recursive discrete Fourier

transform (RDFT) for the calculation of the fundamental frequency component.

Assume three-phase load current and line voltage are measured at the terminals

of the active power filter are {iR, iS, iT} and {vR, vS, vT}. It is shown in [63] that

in three phase and three wire systems the measurement of two-phase (R and S) is

enough for the compensation purposes. The reason is that the third voltage and

current quantity is linearly dependent on the other two quantities.

In this section the extended current physical component (CPC) technique is used

for the extraction of harmonics from the current waveform. The CPC method de-
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composes the phase current, i, into four components:

i = ia + ir + iu+ih︸ ︷︷ ︸
ic

(6.9)

where ia is the active current which is the part of the current responsible for the

transfer of active power toward the load; ic is the non-active part of the current which

is required to be compensated to assure high power quality and consists of reactive,

unbalanced, and harmonic current; ir is the reactive current, which transfers the

reactive power; iu is the unbalanced part of the current, whose compensation results

in balanced power being drawn from the source; and ih is the harmonic part of the

current. These four components are proved to be mutually orthogonal which allows

their independent compensation.

In order to perform the CPC decomposition, each of the aforementioned current

components should be calculated. The first step toward this calculation is calculat-

ing the time varying equivalent admittance of the load, Ỹe(= G̃e + jB̃e), which is

calculated as follows:

Ỹe = ỸST + ỸTR (6.10)

ỸTR = ĨR

ŨRT
, ỸST = ĨS

ŨST
(6.11)

where {ĨR, ĨS} and {ŨRT , ŨST} are the fundamental harmonic phasor of line current

and line-line voltage, respectively.

Moreover, the time-varying unbalanced admittance which is used for the unbal-

anced current compensation is defined as follows:

Ã =
∣∣∣Ã∣∣∣ ejϕ̃ = (ỸST + αỸTR) (6.12)

where α(= ej120) is used to decompose the unbalanced currents to three balanced

components.

Using the equivalent admittance and unbalanced admittance, the active current,

reactive current, and unbalanced current could be found as follows:
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ia =

iRa
iSa

 =
√

2G̃e

Re{ŨR} −Im{ŨR}
Re{ŨS} −Im{ŨS}


cos(ω1gk)

sin(ω1gk)

 (6.13)

ir =

iRr
iSr

 = −
√

2B̃e

Im{ŨR} Re{ŨR}

Im{ŨS} Re{ŨS}


cos(ω1gk)

sin(ω1gk)

 (6.14)

iu =

iRu
iSu

 = (6.15)

√
2

Re{Ã}Re{ŨR} − Im{Ã}Im{ŨR} −(Re{Ã}Im{ŨR}+ Im{Ã}Re{ŨR})

Re{Ã}Re{ŨT} − Im{Ã}Im{ŨT} −(Re{Ã}Im{ŨT}+ Im{Ã}Re{ŨT})



×

cos(ω1gk)

sin(ω1gk)


where Re(X) and Im(X) reflect the real and imaginary components of phasor X.

The fourth component of the current waveform, the harmonic component, is cal-

culated simply by subtracting the active, reactive, and unbalance current from the

current waveform. This is a critical property of the CPC method since it only requires

working on fundamental frequency components and there is no need for additional

filtering to calculate the harmonic part of the current.

ih = i− (ia + ir + iu) (6.16)

A flexible active compensator could be realized by adaptively compensating each

component of the current waveform [63]. Using this technique, the compensator

current, iC , is not equal to the disturbance current (=ir + iu + ih). Instead, the part

of the current which has higher priority for the compensation could utilize more of

the rating power of the compensator. Therefore, the current reference of the active

compensator becomes equal to:

i∗c = Mrir +Muiu +Mhih (6.17)
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where Mr,Mu, and Mh are the weight coefficients for reactive, unbalanced, and har-

monic current on the output.

In the next step of the reference generator, the shunt current reference is cal-

culated. Its value is equal to the multiplication of the harmonic voltage, Uh, by a

droop-derived virtual conductance, Gh, plus multiplication of the harmonic voltage,

Uu, by a droop-derived virtual conductance, Gu. Therefore, based on the discussion

in section 6.1, the active filter will behave as virtual conductance for both voltage

harmonics and voltage unbalance and could dampen the effect of voltage disturbance.

The reference current of the active filter will be:

j∗ = Ghuh +GuUu (6.18)

The droop control is a higher control structure, used as a sharing scheme between

multiple distributed active filters throughout the microgrid. This control technique

permits sharing the distortion part of the load between different active filters pro-

portional to their available power rating [64]. The value of the virtual conductances,

therefore, are calculated as follows:

Ghi
= Ghi0 + bhi

(Si −Hi − Ui) (6.19)

Gui
= Gui0 + bui

(Si −Hi − Ui) (6.20)

where i reflects the ith active filter, Ghi0 and Gui0 are the rated conductances, S

reflects the available apparent power of the compensator, and H reflects the harmonic

power, and U reflects the unbalance power, calculated as follows:

P 2 = ‖VAF‖2‖Ia‖2, Q2 = ‖VAF‖2‖Ir‖2 (6.21)

H2 = ‖VAF‖2‖Ih‖2, U2 = ‖VAF‖2‖Iu‖2 (6.22)

S2 = S2
0 − P 2 −Q2 − U2 −H2 (6.23)

where S0, P , Q, U , and H reflect the active filter rated power, active power, re-

active power, unbalanced power, and harmonic power, respectively. Moreover, ‖X‖
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demonstrate the norm of the signal, x, calculated using the inner product function

as follows:

‖X‖2 = 1
T

∫ T

0
x(t)2dt (6.24)

where T is the period of the periodic signal, x. The structure of the proposed

current reference calculator is shown in Fig. 6.3. There is another higher level control

structure in this figure which is used to further smooth out the microgrid harmonic

and imbalance. The purpose of this centralized controller is to keep the average

voltage THD and average voltage unbalance factor (equation (1.3)) within acceptable

region. This is performed by manipulating the droop slope of the controllers (bhi
, bui

).

6.2.2 Recursive Discrete Fourier Transform (RDFT)

In this section, the RDFT is used for the calculation of voltage and current pha-

sors, (US1, UR1) and (IS1, IR1). The frequency response of the RDFT is shown in

Fig. 6.4, where HC , HS, H are the magnitude of cosine filter, sine filter, and total

filter, respectively. It is evident from the figure that, as long as no non-integer mul-

tiplication of fundamental frequency exists in the frequency spectrum (as of the case

of non-periodic current), the RDFT returns the magnitude of the fundamental fre-

quency with zero error. The fundamental frequency phasor X1 of the sampled signal

x(n) is calculated using DFT (discrete Fourier transform) as follows:
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Figure 6.3: Structure of the proposed shunt harmonic and unbalance compensation technique.
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Figure 6.4: The frequency response of the proposed RDFT filter.

X̃1C =
√

2
N

N−1∑
i=0

x(i+ k −N + 1)cos(ω1gi) (6.25)

X̃1S = −
√

2
N

N−1∑
i=0

x(i+ k −N + 1)sin(ω1gi) (6.26)

X̃1 = X̃1C + X̃1S (6.27)

where the subscript 1C and 1S represent the cosine- and sine-filtered fundamental

harmonic. Moreover, the “ ˜ ” demonstrated that the value of the phasor is calcu-

lated through the sliding window DFT. The RDFT is the recursive form of the DFT,

which reduces the number of arithmetic operations to only two additions, two multi-

plications, and two subtractions in each calculation time interval. Therefore, RDFT

largely increases the calculation speed of the fundamental frequency components, es-

pecially when the sampling rate is high. Moreover, the RDFT has a faster dynamic

to reach the steady state value. The RDFT is calculated as follows:
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Figure 6.5: The filter for the extraction of the voltage harmonic.

6.3 System Under Study

The result of the proposed technique is analyzed using the circuit proposed in

[65]. A Matlab block diagram of this system is shown in Fig. 6.6.

Figure 6.6: Schematic of the system under study used to test the proposed technique

Moreover, the loading scheme shown in Fig. 6.7 is used to activate different active

filters and loads.

Figure 6.7: The time-line of different events in the simulation.
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6.4 Results and Discussion

In this section the product of the proposed technique is demonstrated and com-

pared with two conditions: (1) un-compensated microgrid, (2) microgrid compensated

with distributed compensation without centralized THD and UF controller. Fig. 6.8

demonstrate the variation of two power quality factors, THD and UF , for these three

conditions. It is noted that the THD and UF references are set at 3% for this study.

Without using an active filter, the value of THD increases by any addition of non-

linear load. UF also increases by the introduction of single phase load. However,

using both cases of active filter (centralized and distributed) largely decreases the

value of these power quality criteria. Moreover, when these criteria are outside of

their required band (< 3%), the centralized controller behaves better by pushing the

value of them further down.

Moreover, it is important to understand that using the centralized method,

though brings smoother power quality criteria, increases the required power rating of

the compensators. This is shown in Fig. 6.9. Moreover, this technique completely

relies on the existence of low bandwidth reliable communication from the nodes in

the microgrid to the control center and from the control center to the active filters.

6.5 Future Work

This chapter was dedicated to the preliminary study of a distributed control struc-

ture for the mitigation of the microgrid unbalance and harmonic voltage. The pro-

posed technique combines the CPC and RDFT to develop a droop controlled virtual

resistance for the distributed active filters. Also, a centralized controller is used for

smoothing the THD and UF throughout the network, while optimizing the energy

consumption. When the THD and UF are out of the accepted region, the central-

ized hysteresis based controller increases the output current of the AFUs to move
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Figure 6.8: Power quality criteria, without compensation, with compensation by
distributed control, and with compensation by centralized control

the system back to an acceptable operating point. The proposed scheme not only

facilitates sharing of imbalance and harmonic load but also adaptively optimizes the

disturbance power generation.

In spite of these advantages, the proposed technique still requires further study.

The following steps are ahead of this research for further improvement:

1. Developing the proposed technique to improve the power quality in more chal-

lenging scenarios, such as asymmetric supply voltage and poly-phase systems
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Figure 6.9: The RMS current of the active filter units with and without the centralized
controller.

2. Developing distributed series and distributed hybrid compensators and com-

paring them with the original shunt compensator

3. Designing new adaptive control algorithm to adaptively change the controller

setting for large variations in the load current frequency spectrum and asym-

metry

4. Evolving the method toward the load compensation and power quality distur-

bance sharing in the stand-alone Microgrids

5. Testing the method using the real-time simulation

6. Evaluating the method using real-world setup of the Microgrid,
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Chapter 7

Conclusion

A novel tri-window based compensator for the compensation of loads with a non-

periodic current was proposed. This compensator consists of three co-located devices

with different calculation window, called fast compensator, reactive compensator,

and slow compensator. By decomposing the load current into mathematically non-

orthogonal non-synchronized components, different frequency ranges of the current

waveform are addressed separately. This optimizes the design of active filters, by

choosing devices with lower power rating and higher switching frequency, and de-

vices with higher power rating and lower switching frequency. Moreover, separating

the reactive current component of the load current allows utilizing the Static Var

Compensators (SVCs) which lowers the overall cost of the design. Adding an adap-

tive fuzzy algorithm, whose rules are based on the characteristics of the non-periodic

loads, results in optimizing the window length of the slow compensator and decreas-

ing bandwidth and reaction time of the compensator to transients.

Three power quality criteria, named time-frequency distortion index (TFDI),

high-frequency distortion index (HFDI) and modulation index (mi), capable of de-

scribing the behavior of non-periodic current compensator, were proposed. These

indices are used to evaluate the proposed technique and also as a supervisory control

of the design.

The verification of the proposed technique was performed with the simulation and

real-time structure. The method was first verified using the simulation of real-world

data acquired from a local steel mill. It was shown that all the proposed power
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quality criteria would largely improve after the compensation using this compen-

sator. Moreover, the method was further verified using real-time implementation of

a controller-in-the-loop. The real-time implementation of the technique proved that

the technique was capable of removing the non-periodicity of the current.

One of the challenges with the proposed method was that, though the reactive

compensator current and slow compensator currents are mathematically orthogonal,

the fast compensator current is not orthogonal to them. However, since these com-

ponents are sequentially ordered, the orthogonality requirement is waived.

In the last chapter of this dissertation, the possible road toward the distributed

structure for the compensators is discussed. Moreover, preliminary study of a dis-

tributed structure with a centralized higher level control is performed, and the pre-

liminary results demonstrate a high capability of this structure. This chapter opens

up research potential for further investigation of power quality improvement using

the advanced digital signal processing and the power electronics.
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Appendix A

TFDI Convergence to the THD for Periodic

Loads

This appendix is dedicated to demonstrate that the TFDI converges to the THD

when considering periodic quantities. Assume the current waveform contaminated

with kth harmonic:

i(t) = sin(ω0t) + α sin(kω0t) (A.1)

where ω0 is the fundamental frequency of the generated voltage (rad/s). It can be

easily shown that the THD for such current waveform is THD = α%.

In the next step, assuming that the signals are transferred to the positive side of the

frequency plane (such signals are known as analytical signals and are achieved using

Hilbert transform of the original waveform), we can rewrite the equation (A.1) in the

complex domain as follows:

i(t) = eω0t + α ekω0t (A.2)

As mentioned in [37], the Wigner-Ville distribution of a single sinusoid oscillating

in frequency ω0 with magnitude A is:

WVD(t, ω) = A2 δ(ω − ω0) (A.3)

It is also mentioned in the same reference that the summation of two signals

s(t) = s1(t) + s2(t) has the following Wigner-Ville Distribution:
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WVDs(t, ω) = WVDs1(t, ω) +WVDs2(t, ω) + 2Re{CWVDs1+s2(t, ω)} (A.4)

where Re denotes the real part of the signal, and CWVD denotes the cross Wigner-

Ville distribution between two signals. Therefore, by concluding from equations (A.3)

and (A.4), the Wigner-Ville distribution of the current waveform (equation (A.2)) is:

WVDi(t, ω) = δ(ω−ω0) +α2δ(ω−kω0) + 2αδ(ω−
1
2(k+ 1)ω0)cos((k−1)ω0t) (A.5)

Now, the TFDI will be calculated using the equation (2.7) as follows:

Es1 =
1
T

∫ ω0+ε

ω0−ε

∫ T

0
WVDi(t, ω)dtdω =

1
T

(A.6)

Es =
1
T

∫ ωmax

0

∫ T

0
WVDi(t, ω)dtdω =

1 + α2

T
(A.7)

TFDIs =
√
Es − Es1
Es1

= α% (A.8)

where ωmax is the highest frequency available in the signal.

Therefore, it is apparent that in the stationary condition, the TFDI converges to the

THD. However, for the non-stationary condition, such as the one for non-periodic

load current, the Fourier transform (therefore the THD) loses its meaning. On the

contrary, the Wigner-Ville distribution stays valid in the case of non-stationarity.

Therefore, the TFDI can replace the THD for the case of non-stationary current

waveforms, e.g. non-periodic loads.

Now, the TFDI will be calculated using the equation (2.7) as follows:
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Es1 =
1
T

∫ ω0+ε

ω0−ε

∫ T

0
WVDi(t, ω)dtdω =

1
T

(A.9)

Es =
1
T

∫ ωmax

0

∫ T

0
WVDi(t, ω)dtdω =

1 + α2

T
(A.10)

TFDIs =
√
Es − Es1
Es1

= α% (A.11)

where ωmax is the highest frequency available in the signal.

Therefore, it is apparent that in the stationary condition, the TFDI converges to the

THD. However, for the non-stationary condition, such as the one for non-periodic

load current, the Fourier transform (therefore the THD) loses its meaning. On the

contrary, the Wigner-Ville distribution stays effective in the case of non-stationarity.

Therefore, the TFDI is able to replace the THD for the case of non-stationary current

waveforms, e.g. non-periodic loads.
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Appendix B

Proof of Equation (3.18)

This section is dedicated to the mathematical explanation of the equation Part I-

(3.18). Assume that the single phase instantaneous voltage at the terminal of the non-

periodic load consists of odd harmonics, and the single phase instantaneous current of

the non-periodic load consists of both odd harmonics and low frequency modulating

odd harmonics:

v(t) =
∞∑
n=1

Vncos(nω0t) (B.1)

i(t) =
∞∑
n=1

∞∑
m=1

I(n,m)cos((nω0 ±m∆ω)t− φ(n,m)) (B.2)

where n is the order of existing harmonics in the current and voltage (odd numbers

for power system), and m is the order of existing harmonics in the modulating signal

(odd numbers for regular modulating signal), ∆ω(= 2πfm) is the modulation fre-

quency, and ω0 is the power system frequency.

The equivalent conductance of the load is calculated using equation Part I-(3.15).

In this equation the denominator is always constant, assuming the calculation window

(T ) is an integer multiple of the power system frequency period (T = lT0). Therefore,

in order to reach the compensation goal, which is absence oscillating component in

the equivalent conductance, the nominator of equation Part I-(3.15) should be kept

constant. This is possible, only if T is an integer multiple of all the period of all

frequency components of p(t) in equation (B.3).

Using equation (B.1), and (B.2) the components of p(t) for each phase are calcu-
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lated as follows:

p(t) = v(t)i(t)

=
∞∑
n=1

∞∑
m=1

P(n,m)cos(nω0t)cos(Lω0t− φ(n,m)) (B.3)

where P(n,m) = VnI(n,m), L = n±mk and k is the modulation ratio (k = ∆ω
ω0

). From

the trigonometric product-to-sum identity, p(n,m)(t) could be rewritten as:

p(n,m)(t) = P(n,m)

2 [cos(L′ω0t− φ(n,m)) + cos(L′′ω0t+ φ(n,m))] (B.4)

where L′ = n + L = 2n ± mk and L′′ = n − L = ∓mk are the frequency orders

(multiplication of ω0) available in the instantaneous power (p(t)) waveform. There-

fore, assuming zero φ(n,m) to simplify the calculation, the value of the oscillating part

of the average power (P̃ , which corresponds to the oscillating part of the equivalent

conductance) can be calculated using equation (B.3) as follows:

P̃ =
∞∑
n=1

∞∑
m=1

P(n,m)

2T [sin(L′ω0T )
L′ω0

+ sin(L′′ω0T )
L′′ω0

] (B.5)

Therefore, by replacing T with lT0 (which means ω0T = 2πl), and replacing L′

with 2n±mk and L′′ with ∓mk, the oscillating part of the power is equal to:

P̃ =
∞∑
n=1

∞∑
m=1

P(n,m)[K ′
sin(±2πlmk)

l
+K ′′

sin(∓2πlmk)
l

] (B.6)

where K ′ = 1
4πL′ and K ′′ = 1

4πL′′ .

Therefore, it can be concluded that the oscillating part of the equivalent con-

ductance has a double relationship with the window length (l) with the following

equation:

G̃e ∝ sin(±2πlmk)
l

(B.7)

Therefore, there are two options for achieving equivalent conductance with small

oscillation, a gigantic window length, or a window length that keeps the lmk product
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close to an integer value (sin(integer × π) = 0). It should be noted that, since

there is more than one modulating harmonic, it is desired that the oscillation of high

power modulating harmonics (high P(n,m)) is decreased more compared to modulating

harmonics with lower power. In other words, the lmk product should be much closer

to an integer for higher P(n,m). This significance of the stronger oscillating components

is reflected in the fuzzy rules of the proposed algorithm.
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Appendix C

C-code Demonstration

In this appendix, a c-code example of the slow compensator is provided. This

code is the part of the code that runs inside the infinite loop (while(1)). Note that

to build a minimal program, several components are not mentioned in this section,

including, service interrupt routines, preprocessors, error checking and error issuing

functions, read and write functions, functions for communication with the host, and

multi-threading commands.

// v a r i a b l e d e f i n i t i o n

s t a t i c double vt , i t ; // v o l t a g e and cur rent

s t a t i c double ps ,P=1,v2s , Ge=0;

s t a t i c double Vp2=1;// v o l t a g e squared

s t a t i c double read_array [ 2 ] ; / / read data

s t a t i c double pa [ 1 8 0 1 ] ; // ins tantaneous power o f s i z e NT+1= f s ∗T+1 =1801

s t a t i c double v2a [ 1 8 0 1 ] ; // ins tantaneous v o l t a g e squared o f s i z e NT+1= f s ∗T+1 =1801

s t a t i c unsigned shor t counter =0; // f o r sw i t ch ing to r e c u r s i v e c a l c u l a t i o n

s t a t i c unsigned shor t k ; // r e c u r s i v e loop counter

s t a t i c double p_end , p_beg , delP ;// f o r r e c u r s i v e loop c a l c u l a t i o n

s t a t i c double v2_end , v2_beg , delV2 ;// f o r r e c u r s i v e loop c a l c u l a t i o n

s t a t i c double iG=0; // compensating cur rent

// i n f i n i t e loop

whi l e (1 ) {

GetAnalogInput ( read_array ) ; // f u n c t i o n to r e c e i v e v o l t a g e and cur rent samples

i t=read_array [ 0 ] ; / / g e t t i n g cur rent sample

vt=read_array [ 1 ] ; / / g e t t i n g v o l t ag e sample

ps=i t ∗vt ; // ins tantaneous power

v2s=vt∗vt ; // ins tantaneous v o l t a g e squared

// f o r r e c u r s i v e c a l c u l a t i o n ( r e f e r to equat ions (41) and (42)

p_beg=pa [ 1 8 0 0 ] ; / /NT

p_end=pa [ 0 ] ;

delP=p_end−p_beg ;
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v2_beg=v2a [/∗N∗/ 1 8 0 0 ] ;

v2_end=v2a [ 0 ] ;

delV2=v2_end−v2_beg ;

// f i r s t the c a l c u l a t i o n i s performed us ing non−r e c u r s i v e

// i n t e g r a l s to ach i eve the steady s t a t e va lue o f the i n t e g r a l

i f ( counter <2000) {

counter++;

// c a l c u l a t i o n o f the power average us ing non−r e c u r s i v e technique

P=pa [ 0 ] ;

Vp2=v2a [ 0 ] ;

f o r ( k= 1800−1; k > 0 ; k−−){

P+= pa [ k ] ;

pa [ k]=pa [ k−1] ; // t h i s loop i s a l s o used to s h i f t

// the ar rays to make p lace f o r new samples

Vp2+= v2a [ k ] ;

v2a [ k]=v2a [ k−1] ;

}

}

// r e c u r s i v e c a l c u l a t i o n

e l s e i f ( counter >=2000){ // once the average reached a steady

// s t a t e va lue the r e c u r s i v e c a l c u l a t i o n s t a r t s

f o r ( k=1801−1; k > 0 ; k−−){// t h i s loop i s used to s h i f t the ar rays

// to make p lace f o r new samples

pa [ k]=pa [ k−1] ;

v2a [ k]=v2a [ k−1] ;

}

P+=delP ;// r e c u r s i v e c a l c u l a t i o n o f power

Vp2+=delV2 ;// r e c u r s i v e c a l c u l a t i o n o f squared v o l t ag e

}

// load ing the new value i n t o ar rays

pa [0 ]= ps ;

v2a [0 ]= v2s ;

// c a l c u l a t i n g the output cur rent

Ge=P/(Vp2 ) ;

iG=i t−Ge∗vt ; // cur rent r e f e r e n c e c a l c u l a t i o n

// w r i t i n g the cur rent va lue on analog output

WriteAnalogInput ( iG ) ; // f u n c t i o n to wr i t e the r e f e r e n c e gene ra t ing cur rent

}
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Appendix D

Non-periodic Current Modeling

As discussed previously, the non-periodic current demonstrates some form of am-

plitude modulation with a fixed modulation frequency. Therefore, a technique is

proposed in this work for simple modeling the non-periodic load current which based

on the amplitude modulation observation. In this appendix, this model is developed

and formulated. Current waveform of the load is the amplitude modulation of a

carrier with a modulating waveform:

iL = (1 +m(t))c(t) (D.1)

where iL(t) is the load current, m(t) is modulating waveform, and c(t) is the carrier

waveform. The modulating waveform is calculated using the following equation:

m(t) = m0 tri(ωmt) (D.2)

where m0 is modulation amplitude, tri is the triangle waveform, and ωm is the mod-

ulating frequency in rad/s. The carrier waveform is calculated as follows:

c0(t) = A1sin(ω0t− φ0) + A3sin(3ω0t− 3φ0) (D.3)

c(t) =


c0(t) if |c0(t)| > th

0 otherwise

(D.4)

where th set the threshold so that the current waveform demonstrates the sharp edges.

Please note that when this current is generated using the load emulator, the slope of
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Figure D.1: (a) Real-world current waveform (loading case 4), (b) current waveform
resulted from the proposed modeling technique.

the sharp edges will be dictated by the slew rate of the analog output device.

Fig.D.1 compares the result of the proposed model and the real-world data cur-

rent waveform (loading case 4). It is evident that by neglecting the environmental

noise, the proposed model of the current waveform converges to the real-world cur-

rent waveform. To achieve this model, the following values are used: m0 = 0.75,

ωm = 58.81rad/s, A1 = 1.6 , A3 = 0.5, ω0 = 376.3rad/s, th = 1.5.
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