
I M P R O V I N G P R O S O D Y T H R O U G H A N A LY S I S B Y S Y N T H E S I S

kevin a . lenzo

Submitted in Partial Fulfillment of
Philosophy of Doctorate

Carnegie Mellon University
Robotics Institute

Comittee:

Alan W Black, CMU LTI
Julia Hirschberg, Columbia CS

Jack Mostow, CMU RI
Alex Rudnicky, CMU LTI

Date: March 28, 2017

version 1.0

Robotics Institute Tech Report
CMU-RI-TR-17-11

To my father and mother, wife and children, dogs and cats: thank
you for all the support, love, and patience.

To Osamu Fujimura, who lit my path in ways I didn’t always
understand.

A B S T R A C T

Prosody and prosodic modeling in trainable Speech Synthesis sys-
tems are often based on large corpora of automatically annotated
training data; however, these annotations are often incorrect. In prac-
tice, this has been either addressed through labor intensive manual
annotation or simply ignored. In order to overcome this problem and
improve prosodic realization, an iterative model-based method is pro-
posed for improving linguistic structure, segmentation, and prosodic
annotations that correspond to the delivery of each utterance as regu-
larized across the data. For each iteration, the training utterances are
resynthesized according to the existing symbolic annotation. Values
of various features and subgraph structures are "twiddled:" each is
perturbed based on the features and constraints of the model. Twid-
dled utterances are evaluated using an objective function appropri-
ate to the type of perturbation and compared with the unmodified,
resynthesized utterance. The instance with least error is assigned as
the current annotation, and the entire process is repeated. At each
iteration, the model is re-estimated, and the distributions and anno-
tations regularize across the corpus. As a result, the annotations have
more accurate and effective distributions, which leads to improved
control and expressiveness given the features of the model.

v

"After all our technology, the pseudo-intelligence algorithms, the vast
exception matrices, the portent and content monitors, and everything else,
we still can’t come close to generating a human voice that sounds as good

as a real, live ractor can give us."
– Hackworth, in Neal Stephenson’s The Diamond Age

A C K N O W L E D G M E N T S

A heartfelt thank-you to my committee members, Julia Hirschberg,
Jack Mostow, Alex Rudnicky, and especially Alan W Black for sup-
port, encouragement, and collaboration through the years.

vii

C O N T E N T S

List of Figures xiii
List of Tables xvi
1 introduction 1

1.1 Rendering Synthetic Speech 1

1.2 Ambiguity of Text 2

1.3 Data Sparsity 3

1.4 Voice Talent Delivery 3

1.5 Meaningless Prosody 4

1.6 Meaning and Prosody 4

1.7 Annotating and Modifying Prosody 5

1.8 Building Synthetic Voices 5

1.9 Towards Increasing Error Rates 6

1.10 Overview 6

2 prosody and prosodic modeling 7

2.1 Duration 8

2.1.1 Sums of Products 9

2.1.2 Decision Trees 9

2.1.3 Transformed Duration 10

2.2 Intonation 11

2.2.1 Copy Synthesis 11

2.2.2 General Text-to-Speech Synthesis 11

2.2.3 Tone and Break Theoretical Basis 11

2.2.4 Annotating Tones and Break Indices (ToBI) 12

2.2.5 Tone Sequence Modeling 13

2.2.6 Superpositional Approaches 15

2.2.7 The Rise/Fall/Connection (RFC) Model 18

2.2.8 Intonation From Text 19

2.2.9 Inducing Local Parameters from Constrained Tone
Sequences 20

2.2.10 F0 Modeling in CLUSTERGEN 23

2.3 Energy 24

2.3.1 Energy Modeling in CLUSTERGEN 24

2.4 Pronunciation 24

2.4.1 Known Words 25

2.4.2 Grapheme-to-Phoneme Conversion 25

2.4.3 Epsilon Scattering to Improve Alignments 26

2.4.4 Pronunciation Variation 26

3 heterogeneous relation graphs in festival 29

3.1 Structure of an HRG 30

3.2 Conventional Relations in Festival 31

3.3 Inducing an Utterance Structure 32

3.4 Visualizing the Festival Utterance Structure 33

ix

x contents

3.5 Features, Paths, and Feature Functions 35

4 automatic feature discovery 41

4.1 Paradigmatic and Syntagmatic Features 42

4.2 Exploring Structural Features in a Patch 43

4.3 Generating System Configuration 45

4.4 Comparison to Baseline 46

4.5 Issues in Using Stock Festival HRGs 47

5 critique of hrg conventions in festival 49

5.1 Visualizing Quirks 49

5.1.1 Tokens, Phrases and Words 49

5.1.2 Words to Segments 50

5.1.3 Syllables and Intonation 51

5.2 HRG and Other Graph Formalisms 51

5.3 Expressive Power vs. Implicit Constraints 52

5.4 Uncertainty of Structural Dependency 52

5.5 Opaque Unserialized Feature Functions 52

5.6 Redundancy of Paired Edges 53

5.7 Unnecessary Indirection in Relative IDs 53

5.8 Relation Names as Identifiers 53

5.9 Fixed Depth Relations 53

5.10 No Logical Operator Relation 54

5.11 Limitations of HRG Features 54

5.12 Lack of Explicit Type 54

5.13 No Namespace or Introspection 54

5.14 Inconsistent Temporal Ordering 54

5.15 No Relation Structure Declaration 55

5.16 Incomplete Set of Simple Relations 55

6 karnival and the krg 57

6.1 Monkey in the Middle 57

6.2 The Karnival Resource Graph 57

6.2.1 Typing 57

6.3 Objects as Stream Items 57

6.4 Removing Indirection and Doubly-Linked Lists 58

6.5 Regularizing Relations 58

6.5.1 Removing Vestigial Nodes 59

6.5.2 Fixing Temporal Order 60

6.6 Generalizing HRG Relations 60

6.6.1 The k_ Namespace 60

6.6.2 Generalized Containment 60

6.6.3 Allowing Multiple Parentage 61

6.6.4 Adding a Dependency Parse 61

6.7 rpath: An XPath-Like Query Language for Relations 61

6.8 Paradigmatic and Syntagmatic Features 63

6.9 Automatic Enumeration of Features 64

6.10 Syntagmatic Feature Discovery 64

6.11 The Prosodic Signature 65

contents xi

7 iteratively improving prosody 67

7.1 Twiddling 68

7.2 Creating a Baseline 69

7.3 Reduction and Pronunciation Variation 71

7.3.1 Twiddling Phonetic Variation in Reducing Words 72

7.3.2 Twiddling Word Sense and Alternate Pronunci-
ations 75

7.3.3 Iteratively Refining Pronunciations 75

7.3.4 Improving Reduction Prediction from Twiddled
Pronunciations 81

7.4 Twiddling Prosody 82

7.4.1 Exploring the Space of Signatures 82

7.4.2 State Duration Objective Function for Prosodic
Twiddles 84

7.4.3 State Duration Evaluation on Hand-Corrected
Data 87

7.4.4 Combined F0, C0/C1, and Duration Evaluation
Function 88

7.5 Recap of EM Analysis by Synthesis Procedure 101

7.5.1 Stock Voice Setup 101

7.5.2 Baseline Voice Build 101

7.5.3 EM Iterations (Epsilon Scattering) 102

8 subjective evaluation 103

8.1 Reducible Words 103

8.2 Iterated Prosodic Improvement 104

8.3 Limericks with Established Signatures 104

8.4 Comparing Resynthesis of Baseline and Updated Voices 105

9 conclusion 107

9.1 Discussion 107

9.1.1 KRG: Isomorphically Reformulating the HRG 107

9.1.2 Value of the Inductive Graph 108

9.1.3 rpath and Feature Paths 108

9.1.4 HRG as API 109

9.1.5 Importance of Segmental Alignment 109

9.1.6 Glottalization 110

9.1.7 Accent Group vs. Phrase 110

9.1.8 Nuclear or Very Heavy Prominence 111

9.1.9 Unsupervised vs. Supervised Learning 111

9.1.10 Ranking and Tractability 112

9.1.11 Subsetting 112

9.1.12 Inducing Tone Type 113

9.1.13 Authoring TTS Prompts for Recording 113

9.1.14 Authoring With Synthesis 114

9.2 Future Work 114

9.2.1 Breaks and Stress from Annotated Results 114

9.2.2 More Stress and Phrase Values 114

xii contents

9.2.3 Optimize Independent Modal Features for F0,
C0/C1, Duration 115

9.2.4 Other Languages, Different Styles 115

9.2.5 Apply to Other Synthesizers 115

9.2.6 Supervised Improvement 116

9.2.7 Tone Type Annotation 116

9.2.8 Annotating and Authoring Environment 116

9.3 Conclusion 116

bibliography 117

L I S T O F F I G U R E S

Figure 1 LSAF0 Model Fit to an Utterance 22

Figure 2 A Stream_Items Entry 30

Figure 3 Serialized HRG Relations 31

Figure 4 Function Application Order Definition for Text 33

Figure 5 Force Directed Graph of a Large HRG 34

Figure 6 Visualization of a Small HRG 36

Figure 7 Example Features in statedur.feats 38

Figure 8 HRG for “How much was it?” 42

Figure 9 Token, Phrase, and Word "Ah, indeed." 49

Figure 10 Word, Syllable, Segment, and SylStructure "Ah,
indeed." 50

Figure 11 Syllable, Intonation, and IntEvent "Ah, indeed." 51

Figure 12 KRG of Token, Phrase, and Word "Ah, indeed." 59

Figure 13 KRG of Token, Phrase, and Word "Ah, indeed." 59

Figure 14 HRG+KRG of Token, Phrase, and Word "Saxon’s
onto her job." 59

Figure 15 KRG of Word, Syllable, Segment "Ah, indeed." 60

Figure 16 Syllable, Intonation, and IntEvent "Ah, indeed." 60

Figure 17 KRG of Word, Syllable, Segment "Ah, indeed." 61

Figure 18 Example Initial Prosodic Signatures 66

Figure 19 Build Dependencies for CLUSTERGEN Mixed
Excitation Voices in FestVox 70

Figure 20 Correlation Changes for Baseline after Initial
Resynthesis 70

Figure 21 Metric Error for 10 Iterations of mcep-Based
EM Perturbation of Function Word Pronuncia-
tion 78

Figure 22 Number of Changes over 10 Iterations of mcep-
Based EM Perturbation of Function Word Pro-
nunciation 78

Figure 23 Duration Correlation for 10 Iterations of mcep-
Based EM Perturbation of Function Word Pro-
nunciation 79

Figure 24 Duration Error for 10 Iterations of mcep-Based
EM Perturbation of Function Word Pronuncia-
tion 79

Figure 25 Mel-Cepstral Distortion for 10 Iterations of mcep-
Based EM Perturbation of Function Word Pro-
nunciation 80

Figure 26 F0 Error for 10 Iterations of mcep-Based EM
Perturbation of Function Word Pronunciation 80

xiii

xiv contents

Figure 27 Function Word Pronunciation Twiddle Changes
over 10 Iterations for awb_arctic_a0415. Col-
ored changes are textual differences in the strings
and may not phonemes, as in /ax/ vs /ah/. 81

Figure 28 Distribution of 2nd State Durations for AWB
Arctic 85

Figure 29 Correlation Changes over Arctic Voices for 33

Iterations of Duration-Based EM Perturbation
of Function Word Stress 86

Figure 30 Correlation Changes for 11 Iterations of Duration-
Based All Word Stress Perturbation 86

Figure 31 Correlation Changes for 4 Iterations of Duration-
Based All Word Stress and Boundary 87

Figure 32 Duration Correlation Changes for 12 Iterations
of Duration-Based All Word Stress Twiddling
on Partially Hand-Corrected Data 88

Figure 33 Duration RMSE Changes for 12 Iterations of
Duration-Based All Word Stress Twiddling on
Partially Hand-Corrected Data 88

Figure 34 Duration Correlation Changes for 5 Iterations
of Combined Content Word Twiddling 90

Figure 35 Duration RMS Error Changes for 5 Iterations
of Combined Content Word Twiddling 90

Figure 36 Duration Correlation for 5 Iterations of Com-
bined Content Word Twiddling 91

Figure 37 Duration Error for 5 Iterations of Combined
Content Word Twiddling 91

Figure 38 Mel-Cepstral Distortion for 5 Iterations of Com-
bined Content Word Twiddling 92

Figure 39 F0 Error for 5 Iterations of Combined Content
Word Twiddling 92

Figure 40 Metric Error for 5 Iterations of Combined Con-
tent Word Twiddling 93

Figure 41 Number of Changes over 5 Iterations of Com-
bined Content Word Twiddling 93

Figure 42 Duration Correlation for 10 Iterations for 7 Voices 94

Figure 43 Duration Error for 10 Iterations for 7 Voices 95

Figure 44 Mel-Cepstral Distortion for 10 Iterations for 7

Voices 95

Figure 45 F0 Error for 10 Iterations for 7 Voices 96

Figure 46 Metric Error for 10 Iterations for 7 Voices 96

Figure 47 Number of Changes over 10 Iterations for 7

Voices 97

Figure 48 Duration Correlation for 15 Iterations of SLT
With Four Metrics 97

contents xv

Figure 49 Duration Error for 15 Iterations of SLT With
Four Metrics 98

Figure 50 Mel-Cepstral Distortion for 15 Iterations of SLT
With Four Metrics 98

Figure 51 F0 Error for 15 Iterations of SLT With Four Met-
rics 99

Figure 52 Metric Error for 15 Iterations of SLT With Four
Metrics 99

Figure 53 Number of Changes over 15 Iterations of SLT
With Four Metrics 100

L I S T O F TA B L E S

Table 1 Conventional Relations in Festival 32

Table 2 Node and Edge Counts by Relation for CLUS-
TERGEN Synthesis of arctic_a0407 34

Table 3 Sample Phonetic Features in radio phoneset 37

Table 4 Feature Path Moves 38

Table 5 Example Alternative Signatures of “You were
engaged.” 67

Table 6 Example Prosodic Twiddle Signatures for “Will
we ever forget it.” 69

Table 7 Steps to Create a Baseline 71

Table 8 Function Word Pronunciations in SLT Arctic 73

Table 9 Word Sense Errors in Arctic by Talker 76

Table 10 Example Edit Signatures for Three Iterations of
Pronunciation Twiddling 77

Table 11 Example Prosodic Twiddle Edit and Signatures 84

Table 12 Example of Iterative Signature Changes 87

Table 13 Baseline vs. Iterated Function Word Reduction 103

Table 14 Baseline vs. Iterated Prosodic Update 104

Table 15 Results for Limerics, Baseline vs. Updated 105

Table 16 Comparing Baseline and Updated Resynthesis
to Natural Speech 106

xvii

1
I N T R O D U C T I O N

1.1 rendering synthetic speech

HERB’s Sure Thing [1] is a rapid drama system for rehearsing and
performing live robot theater. A robot was introduced into a live dra-
matic production, as a means to explore human-robot interaction. The
setting was a dialog between two people – a man and a woman – with
the robot performing as the man. A discussion takes place, which
heads in one direction, then a “reset” happens to go back in time and
deliver the lines in a different way, opening a different path. The “re-
set” schema is used many times through the script. Using synthetic
speech for HERB leads to a number of interesting issues.

For one dramatic performance, it would be possible to record the
speech in advance, and synchronize the robot’s movements and speech.
This approach leaves little flexibility beyond editing the audio to alter
the performance.

Working with synthetic speech in this dramatic context depends
on different readings of the same text, with different prosody, which
opens a different path in the dialog after each reset. A single deter-
ministic delivery of the text doesn’t capture the expressive variation
that a performer would provide from context.

A simple approach of modifying the audio by resampling and
changing pitch to copy prosody was used. While the result had dra-
matic effect, the experience proved difficult: “To manage this gap in
the level of abstraction versus level of control, either the audio oper-
ator needs to learn what low level changes map to high level effects,
or the controls need to be raised to a more abstract level.”

Using a mark-up language like W3C’s Speech Synthesis Markup
Language (SSML [2]) or SABLE [3] allows for a gross-level tag for em-
phasis (<emph>), which does not capture the changes in delivery; us-
ing fine-grained specification for the duration and frequency of each
unit is difficult and tedious, short of directly copying the prosody
from a human performance. Using this mark-up had similar issues to
pre-recorded speech, in the absence of a larger framework.

In this case, the scripting of the performance could have been im-
proved and made better, if there were high level controls over the

1

2 introduction

speech to adjust a synthetic performance with relatively few param-
eters. The synthesizer could deliver better prosody for the perfor-
mance, and provide more flexibility for real-time dramatic reactions
and effects. An interface tool could be built on top of it, to make the
detailing process more accessible, without getting into the weeds to
specify exactly how much to lengthen or change the pitch of each
segment in detail.

Trainable speech synthesis systems are built from linguistically an-
notated corpora, and the nature and quality of the annotations have
an impact on the models and spoken output. However, detailed man-
ual annotation is labor intensive, and for some features, the details
of how and what to annotate are not easily categorized. Furthermore,
many systems use completely automatically labeled data which as-
sumes a structure and labels using dead reckoning: the text analysis
front end of the system is used to generate a guess, and it is modified
only to account for segmental alignment, leaving the assumptions
about stress, phrasing, syllable structure and other prosodic features
unadapted. As a result, the models built from these alignments are
degraded in comparison to perfectly annotated data.

We will introduce a formalism and methods for inducing regular-
ized annotations across a speech corpus, using Expectation Maximiza-
tion over model-based perturbations of the data. As a result, the mod-
els are more reliable and expressive when the features are modified
as performance parameters.

1.2 ambiguity of text

However, creating spoken output from text is an exercise in ambiguity.
Any performance or utterance is informed by factors that may not
be marked out in text. A word sequence can be spoken in a variety
of ways by varying the prosody – changing the intonation, energy,
timing, and other factors. When a text-to-speech synthesizer operates
on “raw” text, it constructs a representation using a model. There is
a good chance of missing or producing nuances that an author does
not intend. It is safer to give an uninteresting rendering than one with
marked prosody.

In working with synthetic speech, authors and language generation
systems have two options: to rely on the system’s text processing of
the system, with few controls – perhaps an <emph> tag to add em-
phasis; or setting detailed phonetic duration, frequency, and energy
on individual phonetic units. Some systems allow for entering ToBI
labels directly. Each of these solutions has drawbacks – the text inter-
pretation may be different than intended; specifying in terms of fine

1.3 data sparsity 3

detail is tedious; emphasis is too course of a tag to capture different
accent types; ToBI labels require a certain level of linguistic training.
On top of these issues, there is generally no way to finely adjust the
performance of an utterance, other than copying values from another
performance.

1.3 data sparsity

It is difficult to find enough naturally occurring speech from a sin-
gle talker to have all combinations that need to be accounted for. In
general, it is possible to model effects without having exhaustive ex-
amples, and synthesize effects from sparse examples. A specification
for the linguistic units and features is built abstractly, and constructed
by the “front end” in a data structure. This structure may be passed
to a “back end” and used as input to a signal generation method. For
example, unit selection synthesis produces spoken output even when
many sequences of phonemes do not appear often.

In voice building, the voice talent is given a corpus of material to
deliver, which covers the target space, and models are created. The
texts are typically constructed, or selected “greedily” from larger cor-
pora, in order to obtain samples of all the units and contexts needed
for modeling. However, the prompts are typically presented with no
motivation or mark-up to select, or constrain, the possible renderings.
After many hours working on isolated, unconnected sentences, the
talent settles into a sort of neutral style, with no unacceptable sur-
prises.

1.4 voice talent delivery

The CMU Arctic Database contains read sentences in isolation. With-
out performance instructions for each prompt, the collection led to
a distribution of possible meanings over the word sequences. Each
talker delivered comparable sentences differently. Each chooses one
of the many acceptable deliveries for a given text.

A neutral or deadpan delivery gives few clues to the structure, im-
plication, or emotional valence of elements in the speech. Neutral de-
livery may be helpful when the corpus is constructed without marked
pragmatics or precise delivery instructions. The talker has no informa-
tion of which possible delivery should be produced, and the corpus
is not balanced for the variations: it is not designed to have examples
of all the possible variations. Delivering in a deadpan or neutral style
avoids prosodic mismatch by suppressing large pitch movements or

4 introduction

duration changes, leading to a more uniform corpus but with little or
no expressive prosody.

Story or audiobook reading has a markedly different delivery (Black
Beauty, Usborne) in comparison to read or spontaneous speech.

Radio and television news readers have another style, as demon-
strated in the Boston University Radio corpus (BURNC).

A talker reading aloud may be using very little look-ahead, and
know very little about what they are saying – or, at another extreme,
may have read and studied the text deeply to get into the story or
even a character for the delivery. Dialogs between talkers, where in-
tentions, structures, and meanings are ambiguous, lend themselves
to prosodic effects which depart from a neutral delivery.

1.5 meaningless prosody

Statistical methods which focus only on syntagmatic (structural and
local neighborhood) factors are operating at the wrong level to ac-
count for pitch accent and break placement. By analogy, it is like pre-
dicting the meaning of a word from its phonemes: there will be some
correlations, but the analysis is not generative at the right level. An al-
ternative is to label prominence, or perhaps something more narrow
such as “emphasis”, which may lump all types of pitch accents and
uses into a single marked category.

While systems have been created to model the prosody of individ-
ual talkers, these systems tend to focus on syntagmatic features such
as position in the utterance, distance from boundaries, and part of
speech sequences. However, when an utterance is created, there are
choices that a talker makes that relate to their intentions in discourse:
Any word in a sentence may receive a pitch accent, irrespective of
the part of speech or position. The result of synthesis is a deadpan
delivery, or some random variation overfit by the model, as the vari-
ation is averaged within the model if the variations are not properly
annotated.

1.6 meaning and prosody

Models have been produced which relate meaning to intonation, at
least for some operations. These models are mappings from discourse
structure to tones, such as using a high tone to indicate new informa-
tion, and using a high boundary tone to indicate an act which asks
for completion (a fall to a low), perhaps for a “continuation” non-fall

1.7 annotating and modifying prosody 5

or asking a question in English. Declination effects, and downstep,
describe overall tonal changes. However, the labels are very coarse,
and do not address how a specific talker relates units in terms of
prominence.

On the one hand, the mark-up does not support authoring at the
level of semantics; on the other, synthesizers typically do not offer
easy controls over the performance parameters. There is no high-level
interface or language which allows prosodic differentiation of mean-
ing or intention, nor one which allows event-based controls where
the author of synthetic speech can change a rendering at a high level.

1.7 annotating and modifying prosody

The realization of prosody is not fixed, and repeated deliveries of an
utterance by human performers vary considerably in naturalistic con-
texts. One factor in variations of prosody seems to be a desire not
to be monotonous or repetitive, so that repeated deliveries are var-
ied as a performance choice to avoid sounding mechanical or boring.
Prominence may be found in a high peak, a late peak, higher energy,
or other phenomena which may be traded off in a given delivery.

One interesting implication of the variability is that a simple time or
energy based metric, such as RMS error for intonation, will measure
variance as error when it has little impact on the listener. That is, if
there are many acceptable ways to render something, then not all
measured differences are meaningful. This variety makes evaluation
particularly challenging.1

1.8 building synthetic voices

Throughout this work, we build voices within the framework we set
forth in FestVox [5] [6] for the Festival Speech Synthesizer [7] and
Festival Lite (FLite) [8]. These tools are all available freely on-line at
www.festvox.org along with documentation and example databases.

We use the Arctic speech databases [9] for most of the voice builds.
In particular we use the awb, bdl, clb, jmk, ksp, rms, and slt data,
which contain English as spoken by Scottish, US, Canadian, and In-
dian talkers.

1 In Firesign Theatre’s “Don’t Crush That Dwarf, Hand Me the Pliers,” the charac-
ters in a skit show this dramatically by repeating the same sentence with emphasis
moved around in the sentence: “What are going to DO, lieutenant?”, “What ARE we
going to do, lieutenant?”, “What are WE going to do, lieutenant?” and so on.[4]

6 introduction

While many of the processes described here have been created with
special tools and processing, everything runs inside of the existing
systems when a voice is built. Anyone can learn how to make new
voices in FestVox, and implement the techniques described here.

1.9 towards increasing error rates

In a paper discussing the state of the the art in Speech Recognition
in 1996, a case was made for exploring techniques which may lead
to a short-term increase in error rate, in return for progress toward
the end goal of systems with greater utility (though worse in terms
of conventional error rates) [10]:

Permitting an initial increase in error rate can be useful,
as long as three conditions are fulfilled: (1) solid theoret-
ical or empirical motivations, (2) sound methodology (so
that something can be learned from the results), and (3)
deep understanding of state-of- the-art systems and of the
specificity of the new approach.

This work can be seen in a similar light: several experiments show
worsening metrics, at least at first, but end up creating new utility
and descriptions that allow for different kinds of engagement. Opti-
mizing for a combination of criteria may not lead to improvements in
any one of them measured individually, as we search new spaces for
meaningful distinctions.

1.10 overview

In this work, we improve annotation of the prosody, and show how
the annotation may be used to modify synthetic speech at a high
level. We start with an overview of how the linguistic information in
an utterance is organized, and critique the utterance representation
as it used in Festival. This is followed by a motivated refactoring in a
framework named Karnival to facilitate prosodic modeling, markup,
and improvement. Experiments show application of the framework
to improve annotation and synthesis. We close with a discussion of
the work, and list some future directions.

2
P R O S O D Y A N D P R O S O D I C M O D E L I N G

Talker and style may be seen as parameter settings in the space of a
generative prosodic model, and to consider transformations and dif-
ferences between one parameterization and another. This perspective
can gives us insight into the organization of speech; it allows us to
imagine adapting one talker or style to another; and, if we can un-
cover general transformations, we can use data from many talkers to
build the model and then modify it to fit a particular talker and style,
even if we have little or no data from that combination a priori.

A number of studies point to the importance of segmental effects
on prosodic realization; that is, the short-term changes in pitch, tim-
ing, energy, and voice quality that are either intrinsic to a particular
phone, or resulting from transitions between them. These effects in-
clude pre- and post-consonantal perturbations of the fundamental
frequency that may be as large as 30 Hz, as well as vowel-intrinsic
pitch, which may contribute up to 20 Hz in [u] at the top of the pitch
range down to about -15 in [a], as measured by observing the timing
of pitch periods sample with an electroglottograph. There are some
excellent instrumental studies, many notably by Lehiste [11, 12], that
report particular conditions, but with the growth in computational
power, storage, and relative ease of data collection, there is a case
for systematically crafting corpora that cover the necessary inventory
of units, and replicating them under each condition (intonation of
vowels in context, embedded in syllabic structures). Local segmental
effects on F0 are on the same order as some pitch movements used to
indicate prominence, and so can confound model estimation unless
they are taken into account.

Ladd [13] notes the following points on terminology, contrasting
with Lehiste’s characterization of suprasegmentals as features of Pitch,
Stress, and Quantity [12]:

Intensity is physical and measurable. Stress is perceptual,
and measurable through indirect means only. Frequency is
physical, Pitch is perceptual. Duration is measurable, but
Quantity is perceptual.

In the following discussion, we will focus as much as possible on
measurable phenomena of the signal, but for evaluation, one is nec-
essarily led to perceptual experiments, and perceptually mediated as-
pects of speech are ultimately what a listener hears. Ilse Lehiste’s own

7

8 prosody and prosodic modeling

work shows her awareness of this distinction, and her instrumental
experiments lay the basis for much of the modern view of intonation;
however, I will attempt to follow Ladd in meaning.

Pitch-Synchronous OverLap-and-Add (PSOLA, [14]), Linear Pre-
dictive Coding (LPC), sinusoidal resynthesis, or any number of tech-
niques allow one to alter pitch without modifying duration, and du-
ration without modifying intonation. HMM synthesis also allows for
separate control of acoustics, duration, and fundamental frequency
[15]. This separate control is an important tool in resynthesizing speech
for experimental conditions, as well as for altering segments from a
unit inventory to reflect the predicted duration and time course of
F0 at synthesis time. These techniques help us focus on the duration
and intonation components as distinct models. Other components of
a complete prosody system include the modeling of the time course
of energy, and voice quality or glottal source control.

The estimation of fundamental frequency in speech is by no means
trivial, and pitch tracking errors are the bane of fine instrumental
analyses of F0. Problems in pitch estimation led to hand-marking all
the data to analyze segmental influences on F0 in [16].

Electroglottograph (EGG) data is helpful in the estimation of fun-
damental frequency. An EGG tracks electrical signals from muscle in-
nervation near the larynx, rather than after the oral cavity; this helps
reduce, but does not eliminate, pitch tracking error.

2.1 duration

Metrical structure is important in the prediction of unit duration, and
encodes rhythm and phrasing through timing and breaks; Lieberman
and Prince [17] set the stage for this approach in their manifesto
on metrical structure. The intonational events are aligned in metri-
cal time. In English, metrical time is expressed in syllable units, and
appear as stress groups or metric feet. Their work prompted a num-
ber of studies in stress relations and how they may be represented, for
instance, as trees or grids, and how focus and prominence rearrange
the structures. Duration, and resultantly timing, has been modeled a
number of ways for synthesis. Linear models are often used, includ-
ing simply using mean duration in some systems.

Duration domain transformations, such as the root sinusoidal trans-
formation [18] allow estimation of the combined factors using gener-
alized additive models.

2.1 duration 9

2.1.1 Sums of Products

Van Santen’s sums-of-products model [19] is an example of gener-
alized additive decomposition. Under this model, the duration of a
segment is the (linear) sum of products, and each of these products
represents some interactions, in the sense of interaction terms in mul-
tiple linear regression.

Rather than compute the product of all possible interactions (a
daunting number) or reduce the model to a strictly additive one, the
sums-of-products approach helps overcome the sparse data problem.
Van Santen models classes of phonemes, rather than individual al-
lophones, which is a further reduction of the sparseness. Thus, one
simple example of the form of the model is

duration(/i/, voiced, stressed) = A(i) +B(voiced)×C(stressed)

Isotonic smoothing may be used to condition the matrix, so that
interpolation makes sense even when there are no observations that
exactly match the desired conditions. This is a natural result of func-
tional analysis – assuming that there is an underlying function pro-
ducing the observables we have, and trying to model the function.

Sums-of-products duration models and SVD-based duration trans-
formation prediction [20] are one way of transforming one duration
model into another. A matrix is generated for the language using
SVD, and the talker parameters are then weights on the dimensions
of each retained eigenvector. In most speech synthesis systems, the
duration of the segmental material is used as input to the intonation
prediction routine – segmental duration is estimated first, and then
the intonation is draped over the segments, by either selecting the
units from a database and using them as they are, or modifying them
with a pitch- or time-scale modification such as PSOLA. This is clearly
a simplification, as the duration of a presumed segment is completely
dependent upon the timing of elemental gestures required for its re-
alization, not the reverse. Changes in rate have different effects on
different ’segments’, that have varying compressibility; however, this
duration-first assumption is quite powerful and useful, because it is
so strongly correlated with gestures themselves.

2.1.2 Decision Trees

In CLUSTERGEN [21] statistical parametric synthesis, the duration
of sub-phonetic states is modeled directly using clustering and deci-
sion trees [22] or random forests [23]. After the training utterances are

10 prosody and prosodic modeling

aligned using the FestVox ehmm tool, the units are clustered for the sig-
nal generation component, and then the state durations are modeled
using questions over an utterance structure.

Linguistic features are enumerated and treated as independent vari-
ables, and trees are trained using a greedy tree-building strategy that
optimizes information gain at each node [6][24].

The features for duration modeling are listed in a file called dur.feats

for clunits or statedur.feats. Segmental identity, neighboring seg-
ment identity, phonetic features1, syllabic stress of the parent and
parent’s neighboring syllables, position in syllable, word and phrase
structures, and other attributes.

Decision trees have a lot of flexibility in partitioning the output
function, and so are somewhat robust to nonlinear duration distribu-
tions. Log-duration, z-score, or pdf are possible representations for
the modeling technique.

2.1.3 Transformed Duration

Each of the systems predicts duration, but may do so in a transformed
domain. For example, Campbell [26] and, later, Barbossa [27] model
log-normalized durations, while CLUSTERGEN operates on z-scores
of unit distributions, and Zen [15, 28] uses probability density func-
tions over HMM state durations and later Deep Neural Networks
[29].

The duration transform and modeling method interact. In systems
that are modeled with multiple linear regression, such as van San-
tenś sum-of-products models, there are assumptions about smooth-
ness and linearity; however, systems like Festival which use decision
trees or random forests can split the measures in many places without
much regard for these assumptions, and neural networks can manage
nonlinear functions effectively as well.

The decision trees in Festival divide the search space into arbitrar-
ily fine distributions, and so do not have the log- or linear-spacing
assumptions built into multiple linear regression for duration mod-
eling. However, the error function may be skewed if it assumes any
linear symmetry. In the default Festival duration models, the z-scored
durations are symmetric, while the durations, being bounded by zero
on the lowest end, look more symmetric after log-normalizing them.
While this is a source of bias in training, the state duration distribu-
tions are close to Gaussian in the time scale they operate within, as a

1 Basically the Sound Pattern of English features from Chomsky and Halle[25] based
on phonetic identity. This allows tieing of mixtures based on common features.

2.2 intonation 11

consequence of the EHMM alignment process with Hidden Markov
Models. Figure 28 has an example.

2.2 intonation

2.2.1 Copy Synthesis

Close-copy synthesis, which takes parameter values from a natural ut-
terance and imposes it upon a synthetic contour, is useful to describe
a warping with a distance metric, as well as for conducting exper-
iments on the relative importance of components by altering them.
However, while being a great demo, close-copy synthesis avoids the
modeling problem entirely, as the parameter estimation is largely
avoided, and does not decompose the prosody into its representa-
tive components. With this in mind, close-copy synthesis helps give
a bound on how a perfect model might sound, and thus is a good
“cheating experiment.”

2.2.2 General Text-to-Speech Synthesis

For more general synthesis, either a latent model (with no distinct
annotation) or an explicit model of intonation is needed. When Unit
Selection synthesis became popular, it reduced the impact of explicit
intonation models: The synthesis could make do with latent prosody,
which came from the concatenation and smoothing of individual
database examples in context. This led to something of a “winter”
of intonational modeling in speech synthesis2. As parametric synthe-
sis systems have become more practical, many of the systems have
adopted similar techniques. As such, much of the active work on in-
tonational description and modeling comes from before 2000.

2.2.3 Tone and Break Theoretical Basis

There are a number of theories of prosodic organization, but few
works have had a greater influence than Janet Breckenridge Pierre-
humbert’s germinal thesis on the phonological structure of funda-
mental frequency contours [30]. Pierrehumbert posited a formal de-
scription of fundamental frequency contours in terms of a (tonally
’phonemic’) binary opposition of High (H) and Low (L) tones, and

2 Alan W Black, personal communication

12 prosody and prosodic modeling

argued that the description was sufficient from a phonological per-
spective and did not overgenerate combinations.

The system consists of a set of pitch accents (described in ToBI as
H*, L*); associated with syllables, phrasal tones (L-, H-), and bound-
ary tones (L%, H%). Pitch accents may also be bitonal, represented by
a plus, as in H*+L. By analysis of African tone languages, Pierrehum-
bert posited an inventory of bitonal accents and their concomitant
effects – most notably ’downstep’, where the following pitch accents
are lowered in frequency following a H+L bitonal accent.

2.2.4 Annotating Tones and Break Indices (ToBI)

Pierrehumbert’s formalism and the work of many other contribu-
tors underlies the annotation standard now known as ToBI [31], for
Tones and Break Indices. The inventory and some of the positions
have changed, but the basic theory remains: a pitch contour can be
represented as an abstract sequence of symbols, each of which can
be placed in minimal opposition with another and produce poten-
tially meaningful differences. This allows one to take compositional
approaches to a tune (intonational contour), and relate them, compo-
sitionally, to meaning, as in [32].

ToBI itself is not a strong theory of linguistic organization, but a
picklist of tags. It is an annotation standard, forged through heated
debate among interested linguists at the time it was created – before
the World Wide Web, as an outgrowth of laboratory phonology and
speech technology research. ToBI does not specify the phonetic real-
ization; it is a set of symbols attached to existing contours. This an-
notation can be used as a common standard for databases, and there
have been some efforts to predict the time course of F0 from ToBI
strings. The modeling then requires a theory of phonetic implemen-
tation to be realized in signal.

There has been some work on automatically detecting and deter-
mining prosodic annotations [33] [34]. The automatic detection rate
for pitch accent type in AuToBi is about 75% when the accents consist
of between 70-80% H*, and this result is the most successful (given
a proper train/test division). This is better than for Maghbouleh [35]
who reported 50% accuracy for automatic recognition of five pitch
accents in the same Boston University Radio Corpus, compared with
an inter-transcriber agreement reported in [36] of 73% overall, with
him noting that 65% of the accents in the corpus are H* or uncertain,
so one might achieve human performance by assigning H* to all ac-
cented syllables. Syrdal [37] found higher agreement – 90% – on tone
presence, irrespective of type, and a 92% agreement on break place-

2.2 intonation 13

ment. This difference underscores issues of representation given only
ToBI, without additional information such as an F0 contour to which
it might be attached: the impact of tone type is confuseable, and a
single ToBI representation could be realized in many different ways.

Analor [38] is a tool for semi-automatic annotation of prosody in
French which segments the data into prosodic units and accented
syllables using a set of rules, reporting 84% agreement with human
labelers on presence or absence of prominence in French. Tone type
was not included.

Kim Silverman’s thesis [31] contains a model of phonetic implemen-
tation from tone sequences. Silverman also demonstrated the impor-
tance of factoring segmental components into analysis – the effects of
the phonetic segments upon the time course of F0. These components
include vowel-intrinsic pitch, which is presumed to be as much as 20

Hz at the high end of the pitch range; anticipatory perturbations, in
which F0 takes a sudden drop before constrictions in the oral tract;
and perseveratory perturbations following the release of constriction.
He also noted intrinsic effects in voiced obstruents and sonorants, but
did not model them in great detail.

These segmental effects are overlaid on a fundamental frequency
trajectory that is modeled in broad accordance with Pierrehumbert’s
model. Tonal movements are considered to be phonetic realizations
of abstract tonal phonemes. Thus, all pitch contours can be described
abstractly with a small number of labels that presumably represent
all meaningful oppositions in intonation.

The segmental interactions with F0 are not clearly agreed upon.
Shih [39] reports the effect of consonants on F0 in the following vowel
for Mandarin level tones, showing somewhat different segmental ef-
fects than those reported by Silverman in [40] – there is a slight rise
before F0 drops in the post-obstruent case as opposed to a monotonic
fall. However, this apparent difference can be explained by the differ-
ence in the granularity of their reports: Silverman used increments of
five glottal periods to report conditions, while Shih shows the F0 con-
tour for each sample. This would indicate that the effects reported by
Silverman could be even larger, but that his measurement points do
not show segmental effect peak. Furthermore, van Santen and Möbius
[41] find a single post-obstruent fall to be sufficient, and do not use
any anticipatory or intrinsic effects in their model.

2.2.5 Tone Sequence Modeling

Any intonation contour can then be represented as a linear sequence
of pitch accents (H*, L*, L+H*, etc), phrasal tones (H-, L-), and bound-

14 prosody and prosodic modeling

ary tones (H%, L%). Each pitch accent bears an abstract magnitude
(T) in a transformed tonal space, specifically so that a single model
can be used for all talkers. The transformed space, T, is also used to
linearly combine the effects of vowel intrinsic pitch with the tone se-
quence contour. In Silverman’s implementation, T is derived from a
top line (Top), a reference line (Ref), and a baseline representing the
lower limit of the talker’s range (Floor), which are talker parameters.

F0 = Floor+ (Ref− Floor)× (Top−Floor
Ref−Floor)

T

T =
log(F0−Floor

Ref−Floor)

log(Top−Floor
Ref−Floor)

The abstract magnitude determines the height of the pitch accent,
and may contribute to the local shape of the tone. The Reference line
is a constant proportion of the talker’s pitch range, and the Floor is a
constant. The implementation scales the pitch range throughout the
utterance in response to tonal events, and events that lie on the top
line have abstract magnitude of one. With this transformation, the
components define a generalized additive model of segmental effects
and the tone contour, where the speaking range of a particular talker
is expressed in terms of Top, Ref, and Floor.

In between local shapes produced by each symbol, F0 was linearly
interpolated in [40]. Thus, without pitch accent or other tone, the
intonational movement is locally unspecified, and only the salient
points of oppositions are maintained.3

Silverman and Pierrehumbert [16] explored the timing of pitch ac-
cent peaks further in pre-nuclear high accents, and showed that peak
timing varies with metrical embedding. As two syllables receiving
pitch accents are separated by fewer and fewer intervening unac-
cented syllables, the local shapes of the pitch accents change, and the
timing of the peak of high pitch accents moves. This is some support
for using the type and time of the neighboring tones as parameters
to predicting local shape.

Bruce [42] mentions the evocatively named Scandinavian accent
orbit, attributed to Öhman[43]: Two accent types (Accent I and Accent
II) in Scandinavian dialects differ systematically in the timing of the
peak placement in an intonational movement. For two-syllable words
in phrase-final position, Accent I is /H L* H L/, and Accent II is
/H* L H L/, where the asterisk marks the associated strong syllable,
and the timing of the pitch in the H moves smoothly between early
and late in the second syllable. The relative timing of the peak has
been related to the region of the talker’s origin. That is, the tonal

3 This is also followed in some initial work on generating intonational contours below:
the LSAF0 model.

2.2 intonation 15

symbols are used differently to represent the same lexical material,
and the only difference is dialect. Thus, one cannot simply say that a
condition is a certain abstract set of symbols, but rather, the symbols
are a result of the configuration, because the dialect influences the
annotation.

Symbol choice, and the annotation of the data with respect to it, re-
mains a central theoretical problem, in that it is language dependent.
A computational model was given by Pierrehumbert and Beckman
[44], which gave flesh to the skeletonized annotations set forth in
Janet Pierrehumbert’s thesis, for Japanese. True to the nature of tone
sequences, the model predicts the time course of fundamental fre-
quency from the tone sequence and moraic time alone. The moraic
timing in Japanese allowed them to reduce some of the issues of
stress-timed languages such as English, in which a stressed syllable
has a higher correlation with longer duration. The implementation is
similar to that of Silverman [40], and also used interpolation between
the locally specified portions of the model.

Since the work on Japanese tone structure, there have been a num-
ber of models that predict the fundamental frequency contour from
ToBI labels, including Dusterhoff and Black [45], who used ToBI label
as a predictive feature. However, this is not done from ToBI alone, as
ToBI does not specify abstract magnitude, or F0, or timing.

Nolan and Grabe [46] assert that ToBI is a weak representation of
variations in dialects of British English, and point to a number of is-
sues, noting that ToBI expresses phonetic oppositions that sometimes
do not manifest, leading to multiple possible interpretations (in terms
of which pitch accents) of some intonational contours, and that ToBI
is an uneasy mix of “phonetic specification and linguistic generaliza-
tion.”

2.2.6 Superpositional Approaches

While tone sequences are one approach, they are not the only one.
Fujisaki (e.g. [47, 48]) posited a superpositional model of fundamen-
tal frequency (after Öhman [43]) which consists of two components:
an accent component, represented by the response to a step function,
riding on a longer phrasal curve, which is an impulse response. Seg-
mental effects on the time course of F0 may also be added in. This is
the canonical superpositional model – all of the components are ad-
ditive in the log F0 domain. Fujisaki interprets the shape of the accent
(step) and phrase (impulse) responses as talker-independent, and a
base value is set for each talker.

16 prosody and prosodic modeling

In other words, by positing a speaker-specific base value,
the phrase and accent commands become speaker-independent
to a first-order approximation.

[48]

Ladd [13] notes problems when attempting to apply the Fujisaki
model to English (or other non-Japanese languages):

The principal difficulty is in modeling low or low-rising
accentual contours (as in a common pronunciation of En-
glish “Good morning”) - a feature that is completely ab-
sent from Japanese. The quantitative details of Fujisaki’s
model are such that negative accent commands yield con-
tours of the wrong shape. It is possible to approximate
the low-rising contours by negative phrase components,
but this is inconsistent with the intended function of the
phrase command.

(Ch. 1, note 8)

The rise does actually occur in Japanese casual speech, for example
in the long rise on "Eeeeee?," a questioning-with-surprise-and-interest
that all manifests on a vocalic monosyllable, but it probably did not
occur in the laboratory data. Still, there are low movements in English,
that cause the pitch to drop to nearly the bottom of the range. If the
pitch accents are positive, and the phrase curve is positive, then the
nadir of these low regions must lie on or above the phrase curve,
making the phrasal contribution very small, and requiring that the
pitch accents be very high in order to produce the same contour – if
it is even possible.

Nevertheless, in Möbius’ work [49, 50], linguistic constraints are ap-
plied to limit the solution space for automatically deriving the param-
eters for German using a variation of the Fujisaki model. All phrase
and accent commands are positive. He specifically does not handle
segmental effects on F0 until later papers; the early work assumes
they are irrelevant, which is nearly accurate for all-sonorant material,
and if the data has a good mix of vowel-intrinsic pitches that cancel
each other out. In [49], the decomposition of the model parameters is
described, and notably:

Based on the principle of superposition, the step of de-
termining the phrase command parameters and the ba-
sic value Fmin, which is the first step in the algorithm,
can be separated from the subsequent determination of
the accent command parameters. The contour resulting
from Fmin and the phrase parameters is approximated
to the measured F0 curve. Once the parameters of the

2.2 intonation 17

phrase component have been optimized, the resulting dif-
ference signal is interpreted by the accent component of
the model.

[49]

One damping factor was used for the phrase component, and one
for the accent component, computed as the arithmetic mean of the
fitted damping factors for all the talkers. The value for the accent
command was found by a process similar to simulated annealing,
as the range of the parameter estimation was reduced on successive
iterations until it became fixed for all talkers. Interestingly enough,
they report that constant damping factors were

perceptually as similar to the original as were the versions
with varying values of the damping factors.

Furthermore,

no dependency of phrase command amplitude on utter-
ance duration or speech tempo was found.

Style variation using the Fujisaki model is reported in [51] for
Japanese, in which they model style differences using fixed differ-
entials for the bottom line, the phrase amplitude, and the accent am-
plitude. This approach allows for mixing styles together – there is
a vector difference between the parameter settings, and so they can
be combined as weighted averages. Thus, one could in principle es-
timate the "sad" parameters and apply them to a voice by the vector
difference from the normative model.

Van Santen and colleagues [41, 52, 19, 53] generalize the superpo-
sitional model with convex functions, in which the time course of F0
is composed of phrase and accent curves. The response of the filters
in the Fujisaki model are of a restricted class, but if we were to allow
them to be arbitrary positive curves that rise to a peak and return
to zero, it approaches the same order and power as the van San-
ten model. The sum-of-products model is more general than using
a damped exponential response, because the shape of the response
may be time-warped.

The contour for an accent group has several points estimated as
percentages of the peak height, and can be seen as a time-warping
of an underlying curve that is dependent upon the sub-durations of
the accented syllable and the unstressed following syllables in the
stress group. This approach can capture the data with higher fidelity
than the Fujisaki model, which is also superpositional, but with the
additional complexity of more parameters. Van Santen also takes into
account, somewhat, the segmental material, but uses only a single
perturbation in post-obstruent sonorants. While the model has only

18 prosody and prosodic modeling

phrase and accent curves, a tantalizing possibility is suggested near
the end of the paper:

We could generalize the concept of accent group, which is
based on syllables being dichotomized into stressed and
unstressed syllables. For example, we could trichotomize
syllables into Strong, Medium, and Weak, and posit that
there are two types of accent groups, Strong and Medium,
that might overlap (share syllables). Strong accent groups
would start with strong syllables and be terminated by
strong, but not be medium or weak, syllables; medium
accent groups would start with medium syllables and be
terminated by either strong or medium, but not by weak,
syllables.

[41]

This may address some problematic issues in phrase and accent
shape in utterances with more than one phrase [54]. Venditti and
Maeda [53] showed phonetic variation of fundamental frequency of
Japanese boundary tones that depended upon illocutionary type, which
clearly shows that a single magnitude on an abstract J-ToBI pitch ac-
cent is not sufficient to represent the surface variation, even within-
talker. J-ToBI is a version of ToBI adapted for Japanese intonation.

Fujimura’s Converter-Distributor model of phonetic implementa-
tion [55] models the organization and information flow in order to
realize physical signals from abstract representations, but does not
specify what the important phonetic results for F0 are – it focuses on
the realization of phonemes, but there is no reason that F0 could not
also be modeled in a similar framework.

2.2.7 The Rise/Fall/Connection (RFC) Model

The Rise/Fall/Connection (RFC) model [56] and Tilt [57] are phonet-
ically descriptive of the time course of F0, but do not model a theory
of phonological implementation. This is a phonetically descriptive
model, as is INTSINT [58]; however, neither model segmental effects
explicitly. Rather, they describe the contour directly, and so are prone
to confounds from segmental effects.

Template-prosody [59] is an interesting approach to prosodic gener-
alization based on the syntagmatic structure. In much the way speech
segments are stored in databases and referenced by contextual effects,
whole intonational contours in phrases are coded symbolically, and
looked up at run-time. This approach is well-suited to micro-domain
synthesis, and could benefit substantially by modeling the segmental

2.2 intonation 19

effects separately. Factoring out the segmental contributions to the
time-course of F0 will make for higher-fidelity models as well as im-
prove generalization.

Vector-quantized shapes of F0 movements [60] may also benefit sig-
nificantly from segmental models, as peak timing has been shown to
be strongly related to the segmental material. Segmental effects may
be considered codeword-dependent models.

All these approaches are susceptible to the confounds of segmental
perturbations in the analysis phase, excepting by hand-analysis, and
none have been worked into a framework of talker and style varia-
tion to a great degree. Smoothing is usually used, which blurs the
segmental effects with the tonal motion, and interpolation is often
used between voiced regions.

2.2.8 Intonation From Text

The prediction of intonation from text remains a difficult problem.
Some systems use systems of rules over symbols (e.g., [40]), while
others try to directly predict the phonetic form from feature vectors
(with Tilt or ToBI [45]). Naturally, the assignment of prosody to ex-
press meaning by manipulating prominence and scope depends on
a reasonable model of text understanding, but simple effects such as
given/new effects (using a queue for a paragraph), word class, posi-
tion in the phrase, and other relatively easily measured quantities are
still in wide use.

The general form of intonation prediction is

F0(unit[i]) = f(UtteranceTree, i)

where the utterance tree is the decomposition of the utterance in
terms of its feature geometry. One model is that an Utterance contains
Phrases, which are made up of Words, which contain Syllables, which
join into Stress Groups. Syllable quantities can then be predicted as
functions of their syntagmatic and paradigmatic components: the syn-
tagmatic ones describe the context and containment structure (such
as position in syllable, word or phrase), whereas the paradigmatic
components are those that name the type itself (stress, segment name,
part of speech, and so on). The components that the F0 is determined
to depend upon in the tree can be turned into an extended vector
that describes the unit’s identity and embedding, and each of these
vectors can then be used for training. Generalized additive models
may be used, as in the sum-of-products model [41], linear regression
models [61], Hidden Markov Models, neural networks, decision trees,
or other methods.

20 prosody and prosodic modeling

2.2.9 Inducing Local Parameters from Constrained Tone Sequences

A corpus was designed that systematically varied three things: Met-
rical structure, tonal structure, and phonetic structure. These are de-
scribed at length in two papers [62, 61]. This work was built using
sequences of ToBI labels as in [31]. For the phonetic structure, the
demisyllabic assumption was made: onsets are relatively indepen-
dent of codas given the vowel. The material was limited to two pitch
accents per utterance, over two words of varying syllabic length. Each
prompt was constructed with these variation, with an initial carrier
phrase ("Like a", "As a").

The metrical structure was varied, as in this example with two
monosyllabic words:

* : .] "BAD man."

. : *] "bad MAN."

* : *] "BAD MAN."

* | *] "BAD, MAN."

The process was continued, adding more syllables to each word
incrementally. The approach is similar to enumerating state machines
by diagonalization.

* . : *]

* . | *]

* : . *]

* | . *]

...

....* |*]

where

• * is a pitch accent and a lexical primary stress (L*, H*, L+H*,
L*+H)

• . is an unaccented syllable (also unstressed, but may have sec-
ondary)

• : is a word boundary

• | is a minor phrase boundary (L-)

•] is an phrasal end tone (L%, H%)

2.2 intonation 21

Pitch accents were systematically varied over the * accents, and
delivered by talent with detailed knowledge of ToBi. The same metri-
cal material appeared in balanced contrast over the pitch accents on
same phonetic material. Thus, the metrical corpus was expanded and
recorded, in order to try to capture all the necessary variations.

Words were selected from the CMU dictionary, with cross-word
phonetic constraints, using a greedy algorithm, and utterances were
formed from common words in order to create a balanced corpus
crossing demisyllable contents and metrical embedding in carrier
phrases4. Words were used in each prompt with a carrier phrase, in
variety of contexts5 There are parallel phonetic structures for different
phrasal contrasts. The data was collected using natural and reiterant
speech, substituting the syllable "ma" for each syllable, as spoken by
Victoria Anderson, a trained linguist. Each tone adds a number of
degrees of freedom to the overall tune. The result is smoothed with
a rectangular window of fixed duration, making a smooth contour.
The reiterant speech was used for modeling, and segmental effects
presumed negligible6.

For modeling, we constructed local shapes of two or three points
joined by straight lines for each pitch accent, phrasal, and boundary
tone based on observation of the data and used linear interpolation
between local tone realizations for each utterance in the training cor-
pus. An initial set of annotations was made using the specifications
that went into to corpus design, with an initial approximation of each
tone type aligned with the F0. The piecewise intonation contour was
smoothed using a Hamming window.

The annotations were then modeled using the data, to produce
parametrized local templates. These were fit to the data, and, similar
to the EM approach with epsilon scattering in grapheme-to-phoneme
modeling, iteratively improved by gradient descent to minimize the
error the local templates with respect to the entire corpus. The new
templates were then fit again to each of the training examples, and
the process repeated to refine the template shapes. The control points
of the templates were predicted using multiple linear regression, with
the metrical structure and syllable structure as factors.

The LSAF0 model of interpolative model constraints was used to
find a set of parameters for F0 contours using simulated annealing.
The model consisted of a set of local templates representing control
points placed on a metrical grid and smoothed. The local templates
consisted of:

4 An example of the text is "Like an ARCHduke LAUNdress," with and without a
break between the final two words.

5 "rife undertaking, anyhow fanatic, grab disruptive?"
6 Even though they could clearly be seen in F0 tracks.

22 prosody and prosodic modeling

Figure 1: LSAF0 Model Fit to an Utterance

• Pitch Accents * (H*, L*). A Starred Accent adds 3 control points:
One anchored at the peak, one a window’s length before the
peak, and one free in time and F0, but within 400 milliseconds
(ms).

• Bitonal Components + (L+H*, H*+L). The second tone in bitonal
adds 2 points: the first point placed at the peak or nadir of the
minor tone, within 500ms of the temporally first control point
in the starred accent; the second point a window’s length pre-
ceding it, at the same F0.

• Phrasal Tones - (L-, H-). A Phrase adds 1 point at the inflection
point

• Boundary Tones % (%H, %L, L%, H%). A Boundary adds 3

points at the final boundary. One may be sufficient at the initial
boundary.

2.2 intonation 23

• Smoothing window size: One parameter for the whole model
(rectangular)

With these constraints, and the annotated data, a contour was fit
to each utterance from the ToBI labels and the time and F0 of the
associated syllables. We then began alternating minimization using
gradient descent: first the global shape was optimized, then local
models estimated. The constraints of these local models were then
propagated back to the global configuration for each utterance, and
fit again using gradient descent. This process was repeated to conver-
gence. Once the best-fit annotations of the training data were found,
context-dependent linear models for the local movements of control
points as a function of accent type, abstract magnitude, metrical dis-
tance, and prosodic structure were produced. The result was about
2.7 Hz average distortion with respect to the training set.

Evaluation of models has been fraught with the usual problems
that perceptual studies with many confounding factors bring, but this
has been aggravated by a lack of systematic pairwise evaluations of
models in minimal contrast conditions.

2.2.10 F0 Modeling in CLUSTERGEN

In CLUSTERGEN, frame-based durations are predicted using a sin-
gle decision tree for each state type7. The current implementation
first predicts F0 for each frame, and then spline-smoothes through
a beginning, middle, and end of each syllable over a three-frame
window. Voiced-unvoiced prediction is part of the frame prediction.
The independent features include accented/non-accented but does
not use ToBI label itself8. Variance has always been a problem, lead-
ing to the introduced global variance (for F0 and duration and all
mel-generalized cepstral coefficients), but this is not in the baseline
FestVox).

For evaluation, Anumanchipalli [63] preferred ABX evaluation by
human subjects over objective measures of RMSE and correlation9.
The objective measures are difficult to correlate to improvements in
subjective assements.

7 Typically, there are three states in a segmental model in CLUSTERGEN. The
phoneme /s/ would have three associated state names, one for each state (e.g., s_1).

8 A runtime feature function checks if there is a pitch accent or tone associated with
the syllable.

9 "As RMSE and correlation are not ideal metrics for evaluating perceptual goodness
of synthetic intonation, subjective ABX listening tests on each pairs of the above
models were carried out." p. 40

24 prosody and prosodic modeling

2.3 energy

Models of time course of energy of the source may also be estimated
from data, and are important to perceptions of relative magnitude
[40]. These estimations are similar to the those of the time course
of F0. There have been several characterizations of overall energy or
intensity using decision trees [64] and neural networks in one form
or another. Recently, global variance modification and [65] the mod-
ulation spectrum have been used for it (and nearly all parameters in
HMM synthesis [66] [67]). These methods focus on overall averages
across a corpus, rather than performance variations, so even when
the variance is increased to approach that of the training corpus it
is a statistical average and not a reflection of accent placement or ex-
plicit prosodic modeling.

2.3.1 Energy Modeling in CLUSTERGEN

Energy modeling in CLUSTERGEN is a by-product of the mel-generalized
cepstral estimation [68]. Decision trees or random forests estimate the
parameters on a per-frame basis, includes the frame number and dis-
tance (in abstract units) from the state margins. While energy is not in-
dependently modeled from the short-term acoustic frame generation,
the trees consider prosodic features, including stress and phrasing in
finding the best leaf node containing parameters.

2.4 pronunciation

Each word to be synthesized is placed into the utterance with some
internal structure. It contains, at a minimum, a sequence of segments
which correspond to each word, but typically also includes grouped
information such as syllables, which contain segments and have an
associated stress feature.

In the initial stages of text processing for English in Festival, the in-
put text is tokenized, and parts of speech are associated with the tex-
tual tokens. The ’Token’ relation itself could be called ’Token_Word’,
because it encodes not only the tokens, but also the Word represen-
tation as used by the rest of the system. The parts of speech of the
relevant parent tokens are used to determine the tags on the related
Words when they are expanded by the Token-to-Word module.

2.4 pronunciation 25

2.4.1 Known Words

Each word to be spoken must be assigned a pronunciation. Text-to-
speech synthesis systems such as Festival rely to one degree or an-
other on a simple dictionary lookup. In the Festival version of the
CMU Dictionary (version 0.4 10), there are 105,376 entries. Most of
these use the part of speech ’nil’, which indicates that pronunciation
does not differ based on part of speech. When the word pronunciation
is looked up, the dictionary is checked to see if there is a separately
defined entry for the corresponding part of speech, and if not, the
system falls back to the ’nil’ pronunciation.

2.4.2 Grapheme-to-Phoneme Conversion

When there is no static, predefined pronunciation in the dictionary,
there are several paths a Text-to-Speech system may take to produce a
pronunciation. There may be some transforms, such as decompound-
ing, which may generalize the existing dictionary based on some
model. After delegating this process, if there is no pronunciation, a
grapheme-to-phoneme converter does the best job it can using the
input features to infer a pronunciation.

One set of approaches to out-of-vocabulary pronunciation genera-
tion involves creating a set of likely alignments between symbols in
the grapheme and phoneme sequences [69] [70], and then training a
machine learning technique to produce mappings in a way that gen-
eralizes to produce acceptable pronunciations given the alignment.

The technique takes a training set – the CMU dictionary – and gen-
erates an initial set of letter-phoneme alignments, where there are
never more phonemes than letters. For cases where a letter often
spans two phones, a cover symbol of those phones together is cre-
ated (such as ’x’ -> /k s/). Because there are often fewer phonemes
than letters, some alignments will include null strings, or epsilons,
on the phonetic side, which changes the alignments from being L:P
to being L:L; that is, one-to-one and onto. A model is trained from
these alignments, and typically a single best pronunciation is used
for synthesis. As an example, one reasonable alignment between the
letters and phonemes of the word “algebraically” is

a l g e b r a i c a l l y

AE L JH AH B R EY IH K _ L _ IY

10 This is the version that is still the most current one in Festival as of this writing.
While there have been updates since, they have not been converted into Festival
format, which would take some additional effort to enumerate the parts of speech
of homographs

26 prosody and prosodic modeling

The underscores represent the “epsilon” phonemes, where the let-
ter is associated with an empty output. For this example, the two
epsilon outputs could be associated with any of the letters, so long as
the ordering is unchanged. The number of possibilities for this exam-
ple is C(n,k), or 13!

11!2! = 78. With over 100,000 entries, the total search
space of possible alignments is intractably large to approach by brute
force.

2.4.3 Epsilon Scattering to Improve Alignments

Given an initial alignment, each letter is expanded into an extended
vector, which contains the letter context and possibly a part of speech
or other tag, and the "observed" phonemic output for an alignment.
However, for each letter/phoneme sequence, there are many possi-
ble epsilon assignments. Without prior probabilities, these are esti-
mated through epsilon scattering, which checks all possible combina-
tions, ranks them with respect to the model, and then assigns the
best alignment to replace each instance in the training set. The model
is built again, and after several iterations of Expectation Maximiza-
tion, the alignments converge. The final models, made from the reg-
ularized alignment data, are then used to create pronunciations for
out-of-vocabulary words at run-time.

Epsilon scattering here was the process of enumerating the possible
combinations of alignments or states which should be evaluated with
respect to the model. It is less important to note that the combinatorial
function C(n,k) was used than to recognize the enumeration process.

While improvements in generalizing N:M sequence mappings have
come since, such as Phonetisaurus [71] using Weighted Finite State
Transducers, the technique opened the possibility of iteratively im-
proving the annotation by using the model to find likely interpreta-
tions. The alignments are regularized over time, based on what is
likely given a model made from the aggregate of alignments.

2.4.4 Pronunciation Variation

Pronunciation of words is one of the many ways in which talkers
differ. While the vanilla system produces a deterministic predicted
pronunciation, human beings are quite flexible and varied in their
delivery. You say tomato, I say... tomato. Reduction in vowels is one
common kind of post-lexical variation. While some of these are due to
dialect and idiolect distinctions, allophonic variation may come about
as a results of a variety of factors in production [72], [73], [55]. Neural
networks have been used to model postlexical variation in a talker-

2.4 pronunciation 27

dependent way [74], and abstract lexicons that contain a structure to
represent dialect variations are modeled in [75].

The Festival front-end generates the same pronunciation for each
voice database in Arctic by default, and does not take into account
individual variation. While it is possible to include or change the pro-
nunciations of words, this is not commonly done. It is normative in
this sense, whereas the talkers do not play by the same rules when
they speak: the actual delivery often diverges from the predicted pro-
nunciation, phrasing, and stress.

One attempt to get around this dead-reckoning approach to la-
beling the corpus introduced alternate pronunciations into a CMU
Sphinx pronunciation dictionary [76]. While this does mitigate the is-
sues of multiple pronunciations in the training data, the variation was
over a small set limited number of function words and the speech syn-
thesizer only a single form from the front-end processing irrespective
of the voice used. That work also extended to making predictors for
the various forms of the function words using decision trees, in order
to improve the generation of pronunciations from Festival’s front-end
processing.

3
H E T E R O G E N E O U S R E L AT I O N G R A P H S I N
F E S T I VA L

Festival [7] is a widely used platform for speech synthesis. FestVox [6]
is a set of tools, data and documentation for creating voices and lan-
guages in Festival. Many researchers have built speech synthesizers
using these platforms.

Heterogeneous Relation Graphs (HRGs) [77, 78] are used to rep-
resent and encode the linguistic information in Festival and FestVox.
The structures and values for each element necessary for synthesis
are elaborated into a graph for each utterance in the training mate-
rial, and is used as a specification of what should be rendered for
output. The HRG acts as an interchange format between functions or
modules that operate on the linguistic structure.

Taylor et al. [78] argue that the HRG, as an abstract concept, is
quite general and “theory neutral” with respect to the structures that
can be encoded. However, the only available public implementation
is in Festival, with much of that coming from the Edinburgh Speech
Tools [24]. In reviewing the HRGs, we refer to the Festival implemen-
tation and the Festival/FestVox conventions for them, rather than the
abstract HRG, except where the contrast is called out.

The organization of the utterance structure represents a model of
speech for synthesis that has been derived from applying theories
and observations of engineering results over time. Within Festival, the
utterance contains a set of nodes with feature values, and a set of re-
lations, which describe structure and type. As the utterance structure
is elaborated in order to pass to the back-end for synthesis, relations
are added to the structure. The text is added in a Token relation; the
tokens are assigned part of speech by a textual part of speech tagger.
The Word relation is added, using information in the Token relation,
and so on, with each new relation providing data to the next stage of
the processing pipeline.

The singly-rooted tree structures of systems like MaryTTS [79] and
idlak [80] may be converted into HRGs, but the converse is not al-
ways possible. The techniques and discussion which apply to HRGs
may also be applied to simple trees converted to HRGs.

29

30 heterogeneous relation graphs in festival

3.1 structure of an hrg

An HRG can be serialized to a file format; in FestVox, these files typi-
cally end with .utt. The structure of the HRG, and all accompanying
data, may be placed into these files.

While the file format is not, strictly speaking, the theoretical de-
scription of the HRG, we use it here as an existence case, being the
only common implementation that we have available. It is worth sep-
arating the concept and generality of the formal HRG from the imple-
mentation, especially as we consider improving on the serialization or
expose new functionality in libraries. The theoretical HRG encodes a
multigraph, with a common set of nodes and several graphs defining
relations between the nodes. Nodes may have features, and partici-
pate in relations, but with constraints.

The outline of the utterance file consists of an EST_File header, a
list of Stream_Items (nodes), and a Relations section, which contains
a list of Relation definitions.

The header contains basic annotations of the file format and con-
tents, including format version and magic number so that utterances
may be identified easily.

Stream_Items enumerate the objects represented by the nodes in
the graph. The first number is the node id, and it is followed by a
list of feature names and their values for that node. The features are
delimited by semicolons and spaces; within the feature, the name
and value are space-separated, and the value is a quoted string when
necessary.1

18 id _9 ; name Author ; pos_index 8 ; pos_index_score 0 ;

pos nn ; phr_pos n ; phrase_score -7.42703 ; pbreak_index 1 ;

pbreak_index_score 0 ; pbreak NB ;

Figure 2: A Stream_Items Entry

Here is an example for the first word of the first prompt in the
Arctic [9] database US English talker SLT, from a basic build using
FestVox (figure 2).

The Relations section follows. Each Relation must have a unique
name. Within each relation, the edges and edge types are listed in
a particular format. A short example of the edge lists for the Word

relation of an utterance is shown in figure 3.

1 Note that there is a bookkeeping feature named id (here, _9), and the actual iden-
tifier using within the stream, which is 18 (the very first number). This feature is,
confusingly, only used internally to keep track of things, but not as an identifier for
computation.

3.2 conventional relations in festival 31

Relations

...

Relation Word ; "(" ")" ;

1 2 0 0 2 0

2 3 0 0 3 1

3 4 0 0 0 2

End_of_Relation

...

End_of_Relations

Figure 3: Serialized HRG Relations

Each row in the relation has six numbers. The first two are iden-
tifiers: A relation-internal, relative id; and a Stream_Item id. The
relation-internal ids then appear in the four numbers relating to the
edge types: up, down, next, previous. A 0 indicates no edge of that
type from the node; otherwise, it contains the relative id of the target
within the relation.

relative_id stream_id up down next previous

These edges encode doubly-linked lists in two dimensions, capable
of representing either a tree or a flat structure (a degenerate tree).
Each id may only have one row associated with it (the first two
columns). A node may only have zero or one exit edge of each type.
That is, within a relation instance, any node may have only up to one
down, up, next, or previous node.

The file format also includes with some closing material for each
section to ensure data integrity. For each Relation there is an EndRelation,
and similarly for the header, stream items, and the file as a whole.

3.2 conventional relations in festival

An HRG that contains a representation of an utterance is referred to
as an utterance structure. It contains the linguistic objects (Stream_Items),
and a conventional set of Relations. In FestVox voice builds, the base
utterances are in the festival/utts directory.

The root of the tree is implicit with a depth of zero. The conven-
tional relations each have a tree depth of between one and three,
with one being a list-like structure which may be considered a “type”,
though there is no explicit notion of type outside of participation in
a relation. For each relation, we can view them in terms of the degree
one types which they connect. The depth of each relation is fixed, and
are listed in table 1.

32 heterogeneous relation graphs in festival

Relation Depth Types

Token 2 Token, Word

Word 1 Word

Syllable 1 Syllable

Segment 1 Segment

SylStructure 3 Word, Syllable, Segment

IntEvent 1 IntEvent

Intonation 2 Syllable, IntEvent

Target 2 Segment, Target

Phrase 2 Phrase, Word

Table 1: Conventional Relations in Festival

While this is the conventional baseline set of relations, the HRG
structure allows for any number of relations and shapes along these
lines. Other relations may be added, depending on the synthesis
method. The parametric CLUSTERGEN and unit selection clunits

methods each use some additional information internally as well,
some of which is not typical serialized into a file – and so is not
generally observable.

3.3 inducing an utterance structure

Synthesis in Festival is a set of operations that induce new graphs
from existing ones. We begin with the empty graph and call a func-
tion on it with a few arguments, such as the input text in text-to-
speech synthesis. The output is a copy of the original graph, with the
new relation added.

We will not discuss each of the typical functions in a Festival voice;
these are described in the Festival manual [] and FestVox []. In this
discussion, we look at the process of building an HRG using compo-
sition of functions.

When the system is called, it looks at the type of request received
in order to call a composition of functions which elaborate their re-
spective relations into the utterance structure (an HRG). The output
of each function is passed on to the input of the next, and the HRG
is populated with relations and feature values as the functions are
applied. Typically, information is not modified, but a function may,
in principle, modify part of the HRG when it produces output.2

2 Code within Festival had to be changed in order to really be in the functional style.
The function which iterated over the elaboration functions held a reference to the

3.4 visualizing the festival utterance structure 33

(defUttType Text

(Initialize utt)

(Text utt)

(Token_POS utt)

(Token utt)

(POS utt)

(Phrasify utt)

(Word utt)

(Pauses utt)

(Intonation utt)

(PostLex utt)

(Duration utt)

(Int_Targets utt)

(Wave_Synth utt)

)

Figure 4: Function Application Order Definition for Text

The function defUttType festival/lib/synthesis.scm shown in
figure 4 defines the order of function application for a synthesis method.
The method “Text” begins with text segmentation, followed by part
of speech imputation over the token sequence onto the tokens. This
function initializes the token relation from the text, adding the to-
kens as a list of nodes into the output graph. The result is input to
a Phrasify function which adds an initial Phrase relation. Then, to
Word, which duplicates some items and moves them into two levels
in Token (token to word), and two levels in Phrase (phrase to word).
The next phase introduces pauses, given the latest utterance structure.
The process continues with each of the enumerated functions.

A fully elaborated utterance may contain several thousand nodes.
For the Arctic prompt arctic_a0407, the graph contains 1695 nodes
and 7306 edges in 13 relations with cardinality shown in table 2. The
text of this utterance is

Mercedes screamed, cried, laughed, and manifested the
chaotic abandonment of hysteria.

from Jack London’s The Call of the Wild.

3.4 visualizing the festival utterance structure

An HRG for CLUSTERGEN synthesis is shown as a force-directed
graph using the dot utility of GraphViz [81] in figure 5. This rendering

original utterance, which prevented removing or changing some things with depen-
dencies. This was clearly a bug, and not as the authors intended it.

34 heterogeneous relation graphs in festival

Relation Nodes Edges

1 Token 26 50

2 Word 11 20

3 Syllable 24 46

4 Segment 72 142

5 SylStructure 102 202

6 IntEvent 8 14

7 Intonation 15 28

8 Target 96 190

9 Phrase 12 22

10 HMMstate 202 402

11 segstate 274 546

12 mcep 1311 2620

13 mcep_link 1513 3024

Total 1695 7306

Table 2: Node and Edge Counts by Relation for CLUSTERGEN Synthesis of
arctic_a0407

Mercedes

screamed

Mercedes

of
hysteria

of

ax

b

97.9172

ax_1

n_2

n_2

n_2

n_2

n_3

d_1

d_1

d_1

d_1

d_2

d_3

ae

94.1668

b_1

d_3

d_3

pau_5

pau_5

pau_5

pau_5

pau_5

pau_5

m_1

m_1

n

d

94.5158

ae_1

m_1

m_1

m_1

m_1

m_1

m_2

m_2

m_2

m_2

m_2

n_1

m_2

m_2

m_2

m_2

m_2

m_3

m_3

ae_1

ae_2

ae_3

ax

96.0025

d_1

ae_3

ae_3

ae_3

ae_3

ae_3

ae_3

ae_3

ae_3

ae_3

ae_3

n
m

97.2526

ax_1

ae_3

ae_3

ae_3

ae_3

ae_3

ae_3

ae_3

ae_3

n_1

n_1

n_1

n_2

n_3

n_3

n_3

n_3

n_3

n_3

ax_1

ax_2

ax_2

ax

96.521

m_1

ax_2

ax_2

ax_2

ax_2

ax_2

ax_3

f_1

f_1

f_1

f_1

n

ah

95.5344

ax_1

f_1

f_1

f_1

f_1

f_1

f_1

f_1

f_1

f_1

f_1

t

n_1

f_1

f_1

f_1

f_2

f_2

f_2

f_2

f_2

f_3

f_3

hysteria

pau

t_1

f_3

eh_1

eh_1

eh_2

eh_2

eh_2

eh_2

eh_2

eh_2

eh_2

pau_5

eh_2

eh_2

eh_2

eh_2

eh_2

eh_2

eh_2

eh_2

eh_2

eh_3

v
hh

96.0056

ah_1

eh_3

eh_3

s_1

s_1

s_1

s_1

s_1

s_1

s_1

s_1

v_1

s_1s_1

s_1

s_1

s_1

s_1

s_1

s_1

s_2

s_3

ih

93.7495

hh_1

s_3

s_3

s_3

s_3

s_3

s_3

s_3

s_3

s_3

t_1

s

91.0342

ih_1

t_2

t_2

t_2

t_2

t_3
t_3

ax_1

ax_1

ax_1

ax_1

t

eh

93.8064

s_1

ax_1

ax_1

ax_1

ax_1

ax_1

ax_1

ax_1

ax_1

ax_1

ax_2

t_1

ax_2

ax_3

d_1

d_1

d_1

d_1

d_1

d_1

d_1

d_1

r

99.6371

eh_1

d_1

d_2

d_2

d_2

d_2

d_2

d_2

d_3

dh_1

dh_2

iy

98.5502
r_1

dh_2

dh_3

dh_3

dh_3

dh_3

dh_3

dh_3

ax_1

ax_1

ax_1

.

0

ax

92.9086

iy_1

ax_1

ax_1

ax_2

ax_3

ax_3

ax_3

ax_3

k_1

k_1

k_1

pau

91.3932

ax_1

k_1

k_1

k_1

k_1

k_1

k_1

k_2

k_3

k_3

k_3

pau_1

k_3

k_3

k_3

k_3

k_3

k_3

k_3

k_3

k_3

k_3

L-H%

L-L%

k_3

k_3

k_3

ey_1

ey_1

ey_1

ey_1

ey_1

ey_1

ey_1

L-L%

H*

ey_1

ey_1

ey_1

ey_1

ey_1

ey_1

ey_1

ey_1

ey_1

ey_1

H*

ey_1

ey_1

ey_1

ey_1

ey_1

ey_1

ey_1

ey_1

ey_1

ey_2

ey_3

aa_1

aa_1

aa_2

aa_2

aa_2

aa_2

aa_2

aa_2

aa_2

H*

aa_2

aa_2

aa_2

aa_2

aa_2

aa_2

aa_2

aa_2

aa_3

aa_3

!H*

aa_3

t_1

t_1

t_2

t_3

ih_1

ih_1

ih_1

ih_1

ih_1

L+H*

ih_1

ih_2

ih_3

ih_3

ih_3

ih_3

k_1

k_1

k_1

k_1

k_1

k_2

k_2

k_2

k_2

k_3

k_3

k_3

k_3

k_3

82.6382

k_3

k_3

k_3

pau_5

pau_5

pau_5

pau_5
pau_5

pau_5

pau_5

81.1681

pau_5

ax_1

ax_2

ax_2

ax_2

ax_2

ax_2

ax_2

ax_2 ax_2

ax_2

ax_2

ax_2

ax_2

ax_2

ax_2

ax_3

b_1

b_1

b_1

b_1

b_1

b_1

b_1

b_1

b_1

b_1

b_1

b_1

b_1

b_2

b_3

b_3

b_3

ae_1

ae_2

ae_2

ae_2

ae_2

ae_2

ae_2

ae_2

ae_2

ae_2

ae_2

ae_2

ae_2

ae_2

ae_2

ae_2 ae_2

ae_2

ae_2

ae_2

ae_2

ae_2

ae_2

ae_2

ae_2

ae_2

ae_2

ae_2

ae_2

ae_2

ae_2

ae_3

n_1

n_2

n_2

n_2

n_2

n_2

n_2

n_3

d_1

d_1

d_2

d_2 d_2

d_2

1

94.8479

d_2

d_3

d_3

d_3

ax_1
ax_1 ax_1 ax_1 ax_1

ax_1

ax_1

ax_1
ax_1ax_1

ax_1

ax_1

ax_2

ax_3

n_1

n_1

n_2

n_2

n_2

n_2

n_2

n_2

n_2

n_2

n_2

n_2
n_2

n_2

n_2

n_2

n_2

n_2

n_2

n_2

n_3

m_1

m_1

m_1

m_1

m_1

m_1

m_2

m_3

m_3

m_3

ax_1

ax_1

ax_1

ax_1

ax_1

ax_1

ax_1

ax_1

ax_1

ax_1

ax_1

ax_1

ax_1

ax_1

ax_1

ax_1

ax_2

ax_3

n_1

n_1

n_2

n_2

n_2

n_2

n_3

n_3
n_3

n_3

t_1

t_1

t_1

92.9703

t_1

t_1

t_1

t_1

t_1

t_1

t_1

t_1

t_1

t_2

t_2

t_2

t_2

t_2

t_2

t_3

t_3

t_3

t_3

t_3

abandonment

0

100.209

t_3

pau_5

pau_5

pau_5

pau_5

pau_5
pau_5

pau_5

pau_5

pau_5

102.934

pau_5

pau_5

ah_1 ah_1
ah_1

ah_1
ah_1

ah_1

ah_1

ah_1

98.5098

106.487

ah_1ah_1
ah_1

ah_1
ah_2

ah_2

ah_2

ah_2

ah_2

ah_2

ah_2

ah_2

ah_2

ah_2

ah_2

ah_2

ah_3

ah_3
ah_3ah_3

97.3861

v_1

v_1

v_1

v_1

v_2

v_2

v_2

v_3

v_3

v_3

97.2173

v_3

v_3

v_3

v_3

v_3

v_3

v_3

hh_1

hh_2

hh_2

97.6554

hh_2

hh_2

hh_2

hh_2

hh_2

hh_3

hh_3

hh_3

hh_3

ih_1

97.7079

ih_2

ih_2

ih_2

ih_2

ih_2

ih_2

ih_2

ih_2

ih_2

ih_2

97.8105

ih_2

ih_2

ih_2

ih_3ih_3

s_1

s_1

s_1

s_1

s_1

97.4335

s_1

s_1

s_1

s_1

s_1

s_1

s_1

s_1

s_1

s_1

chaotic

0

100.325

s_2

s_2

s_2

s_3

s_3

s_3

s_3

s_3

s_3

s_3

101.537

t_1

t_2

t_2

t_2
t_2

t_2

t_2

t_3

t_3

t_3

103.465

eh_1

eh_1

eh_1eh_1

eh_1

eh_1

eh_2

eh_3

r_1

r_2

107.786

r_2

r_2

r_2

r_2

r_2

r_2

r_2

r_2

r_2

r_2

109.149

r_2

r_2

r_2

r_2

r_2

r_2

r_2

r_2

r_2

r_3

96.9449

r_3

r_3
r_3

r_3

iy_1

iy_1

iy_1

iy_1

iy_1

iy_1

97.9678

94.2273

iy_1

iy_1

iy_1

iy_1

iy_1

iy_2

iy_3

iy_3

iy_3

iy_3

iy_3

iy_3

ax_1

ax_1

ax_1

ax_1

ax_1

ax_1

ax_1

ax_1

97.4969

ax_2

ax_2

ax_2

ax_2

ax_2

ax_2

ax_2

ax_3

pau_1

pau_1

102.601

pau_2

pau_2

pau_2

pau_2

pau_2

the

0

96.4927

94.1693

94.1325

97.8634

96.4665

106.121

112.05

116.903

122.292

107.94

manifested

1

106.317

99.3267

BB

pau_1

pau_3

pau_1

m_1

pau_3

m_2

m_1

m_3

m_2

er_1

m_3

er_2
er_1

er_3

er_2

and

1

s_1

er_3

s_2

s_1

s_3

s_2

ey_1

s_3

ey_2

ey_1

ey_3

ey_2

d_1
ey_3

d_2

d_1

d_3

d_2

iy_1

d_3

screamed

cried

laughed

,

1

iy_2

iy_1

iy_3

iy_2

z_1

iy_3

z_2

z_1

z_3

z_2

pau_5

z_3

s_1

pau_5

s_2

s_1
s_3

s_2

k_1

s_3

k_2

k_1

k_3

k_2

r_1

k_3

r_2

r_1

r_3

r_2

iy_1

r_3

iy_2

iy_1

iy_3

iy_2

m_1

iy_3

m_2

m_1

cried

,

1

m_3

m_2

d_1

m_3

d_2

d_1

d_3

d_2

pau_1

d_3

pau_2

pau_1

k_1

pau_2

k_2

k_1

k_3

k_2

r_1

k_3

r_2

r_1

r_3

r_2

ay_1

r_3

ay_2

ay_1

ay_3

ay_2

d_1

ay_3

d_2

d_1

d_3

d_2

pau_5

d_3

l_1

pau_5

,

1

l_2 l_1

l_3

l_2

ae_1

l_3

ae_2

ae_1

ae_3

ae_2

f_1
ae_3

f_2

f_1

f_3

f_2

t_1

f_3

t_2

t_1

t_3

t_2

pau_1

t_3

pau_2

pau_1

ae_1

pau_2

ae_2

ae_1

ae_3

ae_2

n_1

ae_3

n_2

n_1

n_3

n_2

d_1

0

d_2

d_3

pau_5

m_1

m_2

m_3

ae_1

ae_2

ae_3

n_1

1

m

n_2

n_3

ax_1

ax_2

ax_3

f_1

f_2

f_3

eh_1

eh_2

0

s

eh_3

s_1

s_2

s_3

t_1

t_2

t_3

ax_1

ax_2

ax_3

d

d_1

d_2

d_3

dh_1

dh_2

dh_3

ax_1

ax_2

ax_3

k_1

laughed

s

k_2

k_3

ey_1

ey_2

ey_3

aa_1

aa_2

aa_3

t_1

t_2

k

t_3

ih_1

ih_2

ih_3

k_1

k_2

k_3

pau_5

ax_2

0

l

ax_3

b_2

b_3

ae_2

ae_3

n_2

n_3

ae

d_2

d_3

ax_2

ax_3

n_2

n_3

0

1

m

m_2

m_3

ax_2

ax_3

n_2 n_3

t_2

1

n

t_3

ah_2

ah_3

v_2

v_3

hh_2

0

f

hh_3

ih_2

ih_3

s_2

s_3

t_2

t_3

s

eh_2

eh_3

r_2

r_3

iy_2

iy_3

dh

ax_2

ax_3

pau_2

pau_1

pau_3

pau_3

pau_3

k

pau_3

pau_3

pau_3

pau_3

pau_3

pau_3

pau_3

pau_3

pau_3

pau_3

and

0

1
aa

pau_3

pau_3

pau_3

pau_3

pau_3

pau_3

pau_3

pau_3

m_1

t

m_1

m_1

m_1

m_1

m_1

m_1

m_1

1

er_1

er_1

er_1

er_1

er_1

er_1

er_1

er_1

er_1

0

er_2

er_2

er_2

er_2

er_2

er_2

er_2

er_2

er_3

0

er_3

er_3

er_3

er_3

er_3

s_1

s_1

s_1

s_1

s_1

s_1

s_1

s_1

s_1

s_1

s_1

s_1

s_1

s_1

s_1

s_1

s_1

s_1

s_2

s_2

s_2

s_3

ey_1

ey_1

ey_1

ey_1

ey_1

ey_1

ey_2

ey_2

0

ey_2

ey_2

ey_2

ey_2

ey_2

ey_2

ey_2

ey_2

ey_2

ey_2

ey_2

ey_2

ey_2

ey_3

d_3

manifested

iy_1

iy_1

iy_1

iy_1

iy_1

iy_1

iy_1

iy_1

iy_1

iy_1

pau

iy_1

iy_1

iy_1

iy_1

iy_1

iy_1

iy_1

iy_1

iy_1

iy_1

er

iy_1

iy_1

iy_1

iy_1

iy_1

iy_1

iy_3

z_1

z_1

z_1

z_1

z_1

z_2

z_2

z_2

z_2

ey

z_2

z_2

z_2

z_2

z_2

z_2

z_2

z_2

z_2

z_2

z_2

z_3

z_3

z_3

pau_5

pau_5

pau_5

pau_5

iy

pau_5

pau_5

pau_5

pau_5

pau_5

pau_5

pau_5

s_1

s_1

z

s_1

s_1

s_1

s_1

s_1

s_1

s_1

s_1

s_1

s_1

pau

s_1

s_1

s_1

s_1

s_2

s_2

s_2

s_2

s_2

s_3

s_3

k_2

k_2

k_2

k_2k_2

the

k

iy

k_2

k_2

k_3

k_3

k_3

k_3

r_1

r_1

r

r_1

r_1

r_1

r_1

r_1

r_1

r_1

r_1

r_3

r_3

r_3

r_3

r_3

r_3

r_3

r_3

iy_1

m

d

iy_1

iy_1

iy_1

iy_1

iy_1

iy_1

iy_2

iy_2

iy_2

iy_2

iy_2

iy_2

iy_2

iy_2

iy_2

iy_2

iy_2
iy_2

iy_2

pau

iy_2

iy_2

iy_2

iy_2

iy_2

iy_2

iy_2

iy_2

iy_2

iy_3

m_1

m_2

m_2

m_2

m_2

m_2

m_2

r

ay

m_2

m_2

m_2

m_2

m_2

d_1

d_1

d_1

d_2

d_3

d_3

d_3

d_3

d_3
d_3

d_3

d

d_3

d_3

d_3

d_3

d_3

k_2

chaotic

pau

k_2

k_2

k_2

k_2

k_2
k_2

k_2

k_2

k_2

k_2

k_2

k_2

k_3

k_3
k_3

k_3

k_3

k_3

k_3

ae

k_3

k_3
k_3 k_3

k_3
k_3

k_3
k_3

k_3

f

t

r_1

r_1

r_1

r_1

r_1 r_1

r_1

r_1

r_2

r_2

r_2

r_2
r_2

r_2

ay_1

ay_1

ay_1

pau

ay_1

ay_1

ay_1

ay_1

ay_1

ay_1

ay_1

ay_1

ay_1

ay_1

ay_1

ay_2

ay_2

ay_2

ay_2

ay_2

ay_2

ay_2

ay_2

n

ay_2

ay_2

ay_2

ay_2

ay_2

ay_2

ay_2

ay_2

ay_2

ay_2

d

ay_2

ay_2

ay_2

ay_3

ay_3

ay_3

ay_3

ay_3

ay_3

pau

ay_3

ay_3

ay_3

ay_3

ay_3

ay_3

ay_3

ay_3

ay_3

ay_3

abandonment

ay_3

ay_3

d_1

d_1

d_1

d_1

d_2

d_2

ae

d_3

d_3

d_3

d_3

d_3

d_3

d_3

d_3

d_3

d_3

pau_5

pau_5

l_1

l_1

l_1

l_1

l_1

ax

l_1

l_1

l_1 l_1

l_1

l_1

l_1

l_1
l_2

l_2

l_2

l_2

l_2

l_2

l_2l_2

l_2

l_2

l_2

eh

l_2

l_2

l_2

l_2

l_2

l_2

l_2

l_2

l_3

l_3

l_3

l_3

l_3 l_3
l_3

l_3

t

ax

ae_3

ae_3

ae_3

ae_3

ae_3

ae_3

ae_3

ae_3

ae_3

ae_3

ae_3

ae_3

ae_3

ae_3

ae_3

ae_3

ae_3
ae_3

ae_3

ae_3

d

ae_3

ae_3

ae_3

ae_3

ae_3

ae_3

ae_3

ae_3

ae_3

ae_3

ae_3

f_1

f_1

f_1

f_1

f_1

f_1

f_1

f_1

ax

f_1

f_1

f_1
f_2

f_2

f_2

f_2

f_2

f_2

f_2

t_1

t_1

t_1

t_1

t_1

t_1

t_1

ey

t_1 t_2

t_2

t_2

t_2

t_2

t_2

t_3

pau_2

pau_2

pau_2

pau_2

pau_2

pau_2

pau_2

pau_2

pau_2

pau_2

pau_2

ae_1

ae_1

ae_1

ae_1

ae_1

ae_1

ih

ae_1

ae_1

ae_1

ae_1

ae_1

ae_1

ae_1

ae_1

ae_1

ae_1

k

ae_2

ae_2

ae_2

ae_2

ae_2

ae_2

ae_2

ae_2

ae_2

pau

ae_2 ae_3

ae_3

ae_3

ae_3

ae_3

ae_3

ae_3

ae_3

ae_3

n_1

n_1

n_2

n_2

n_2

n_2

Figure 5: Force Directed Graph of a Large HRG

3.5 features , paths , and feature functions 35

is the same Arctic prompt arctic_0407 as in table 2. To create these
graphs, a program was written to express the relations in Festival
utterances and HRGs in the graph specification language of GraphViz.
The figure shows the relative complexity of the graph structure. For
large graphs, it is unwieldy to show the whole graph when inspecting
local structures.

Visualization of the utterance exposes structures that are otherwise
rather abstract. To get a view of the structures, tools were created
in the Karnival framework, discussed further in Chapter 6. A util-
ity named hrg.py was made which reads and writes HRGs, and op-
tionally converts the graph structure to dot format for plotting with
GraphViz [81]. The tool can produce Scalable Vector Graphics (SVG)
output with tooltips revealing the features of each node and optional
hyperlinks.

A simple specification format for the graph conversion program al-
lows customization of which nodes to show, and induces type names
from the relations of depth 1. To avoid clutter, only the down and next

edges are retained without any significant loss of information in the
visualization – next and previous are always paired, as are up and
down.

The conventional relations for the text “Ah, indeed” (arctic_a0329)
are shown in figure 6, down to the level of Segment. With the tool, we
can look at a few of the relations together and see their characteristic
structure. While the HRG definition is simple, and the types and re-
lations appear straightforward, unexpected quirks are revealed in the
graph. This will be illustrated in some detail in the next section.

3.5 features , paths , and feature functions

In Festival, features are attached to nodes in HRGs. Some of these
nodes are placed into the utterance structure, while others are com-
puted dynamically and may not be inserted. These dynamic features
are referred to as feature functions, and are not available when in-
specting the serialized utterance file. Features are used in all aspects
of the system, and provide a flexible way to configure what data is
available during training, as well as what is produced by the front
end for synthesis.

Feature paths and functions are a convenient way to enumerate
and describe what information from the general graph may be made
available to machine learning algorithms as sequences of extended
observation vectors. The provide an interface between the utterance
structure and the serializations used for training models.

36 heterogeneous relation graphs in festival

IntEvent

Intonation

Target

Phrase

Segment

SylStructure

Syllable

Token

Word

Ah

indeed Ah

pau

pau

aa

pau

ih

101.004

n

d

110.923

iy 105.345

d 111.106

pau 104.096

indeed

L-L%

H*

H*

106.672

115.478

. 0

BB

,

1

1

Figure 6: Visualization of a Small HRG

One type of feature function expands linguistic features for a pho-
netic segment, which is essentially a table lookup based on the name
of the segment. Rather than encode these deterministic expansions
in the tree, there are functions which compute the values given the
existing paradigmatic values. These include ph_vc, which encodes
whether the segment is vocalic or not; ph_ctype which encodes man-
ner, ph_vlng long vowel, and so on. For phonetic features, these are
defined in the phoneset definition for the language. Some examples
are shown from the radio_phones.scm definition in table 3.

Some convenience functions operate over the structure to compute
a result, such as looking across relations to determine whether a sylla-
ble bears a pitch accent. Typically, if the result can be deterministically
derived from the HRG, it is not written into a file when it is serialized.
For example, the accented feature function takes an utterance and a
Syllable, walks from there to the Intonation relation which connects
Syllables and IntEvents, and checks whether there is a pitch accent
connected. If this feature is called at run-time, it will produce a value
derived from whether a pitch accent is associated with the syllable,
and is usually not written into the file when it is serialized.

3.5 features , paths , and feature functions 37

Segment vc vlng vheight vfront vrnd ctype cplace cvox

aa + l 3 3 - 0 0 0

ae + s 3 1 - 0 0 0

ah + s 2 2 - 0 0 0

ao + l 3 3 + 0 0 0

aw + d 3 2 - 0 0 0

ax + a 2 2 - 0 0 0

axr + a 2 2 - r a +

ay + d 3 2 - 0 0 0

b - 0 0 0 0 s l +

ch - 0 0 0 0 a p -

d - 0 0 0 0 s a +

dh - 0 0 0 0 f d +

Table 3: Sample Phonetic Features in radio phoneset

Features may also have a path associated with them, in a unique
syntax. Steps in the path are separated by a dot, with the last step
being a feature name as attached to the node or a feature function.
The moves (steps) are listed in table 4.

In addition to path moves, there are relation selectors, which act as
both a predicate and a coordinate shift. These start with the prefix R:,
followed by a relation name; for example, R:SylStructure selects the
SylStructure relation. Any moves on the path until the next R: are
within the named relation.

Features with paths are used, importantly, in enumerating extended
observation vectors for training of duration, intonation, and signal
generation models. A configuration for each of these is simply a list
of features (with paths), starting from the node of interest.

In figure 7 we see the first few features in the

festival/dur/statedur.feats

file, which enumerates the features for state duration in clustergen.
The first item, lisp_zscore_dur, is the feature to be predicted (duration
z-score computed in a feature function) from those that follow. When
dumping out the features, the HMMstate relation is traversed, which
each node in turn used as the origin of the path. Each path is walked,
and the resulting value is placed into an observation vector for the
unit. These vectors are then used in both training and run-time pro-
cessing to produce synthetic output.

38 heterogeneous relation graphs in festival

Notation Move

n. next

p. previous

nn. next next

pp. previous

parent. most previous, then up

daughter1. first daughter

daughter2. second daughter

daughtern. last daughter

first. most previous item

last. most next item

Table 4: Feature Path Moves

lisp_zscore_dur

name

p.name

n.name

R:segstate.parent.name

R:segstate.parent.p.name

R:segstate.parent.n.name

R:segstate.parent.R:SylStructure.parent.syl_onsetsize

R:segstate.parent.R:SylStructure.parent.syl_codasize

R:segstate.parent.R:SylStructure.parent.R:Syllable.n.syl_onsetsize

R:segstate.parent.R:SylStructure.parent.R:Syllable.p.syl_codasize

R:segstate.parent.R:SylStructure.parent.position_type

R:segstate.parent.R:SylStructure.parent.parent.word_numsyls

R:segstate.parent.pos_in_syl

R:segstate.parent.syl_initial

R:segstate.parent.syl_final

R:segstate.parent.R:SylStructure.parent.pos_in_word

R:segstate.parent.p.seg_onsetcoda

R:segstate.parent.seg_onsetcoda

R:segstate.parent.n.seg_onsetcoda

R:segstate.parent.pp.ph_vc

R:segstate.parent.p.ph_vc

R:segstate.parent.ph_vc

Figure 7: Example Features in statedur.feats

segstate is a relation which connects a segment to its sub-segment
states. R:segstate.parent.name is a path from the HMMstate, switch-
ing to the segstate relation, then going to its parent Segment and

3.5 features , paths , and feature functions 39

getting the feature name. This may be continued with more steps and
crossing over to other relations:

R:segstate.parent.R:SylStructure.parent.R:Syllable.n.syl_onsetsize

switches from the parent segment to the SylStructure relation
which connects words to syllables and syllables to their segments, to
the parent syllable, then switches to the Syllable relation and steps
n. to the next one and evaluates the feature function syl_onsetsize

which dynamically calculates the size of the onset. Feature functions
and paths provide a flexible means of addressing information in the
graph without writing any code, given the utterance structure and
code definitions.

4
A U T O M AT I C F E AT U R E D I S C O V E RY

In statistical speech synthesis, spoken audio data is annotated in or-
der to make models for rendering synthetic output. Utterances are
typically represented as a graph with nodes that correspond to lin-
guistic items, with a set of features for the items. These may be di-
vided into two main types: paradigmatic features, related to what an
element is; and syntagmatic ones, describing structure.

We automatically collect paradigmatic features and generate syn-
tagmatic features from arbitrary relations by walking neighborhoods
in a collection of HRGs1. This removes the need to hand-engineer fea-
ture lists and paths, and allows for new relations and features to be
introduced without manually enumerating the features. The result-
ing feature set is evaluated, and promising features retained. Auto-
matic structural feature discovery makes feature exploration easier,
and reduces the effort of implementing linguistic theories and new
languages.

The approach applies to statistical parametric speech synthesis as
well as trainable unit selection synthesis. The graphs are traversed
to produce extended observation vectors for training and run-time
decoding. The results for using automatic derived structural features
are comparable to the best hand-written sets for mature languages in
Festival [7].

Statistical speech synthesis methods ([82], [21], [28], [80] and others)
train voice models from spoken corpora. While a corpus may initially
consist only of audio, or a set of sentences to be spoken, more an-
notations may be added, until the corpus has been fully decorated
with features. Given a list of files and a set of waveforms, we may
pass the text to the front end of a Text-To-Speech system and obtain
a representation of features and utterance structure as have seen in
Chapter 3.

An example is shown in Figure 8 of an HRG down to the segment
level for the sentence “How much was it?”, which is the smallest
utterance structure in the Arctic database ([9], prompt a0207).2

1 The Heterogeneous Relation Graphs described in Chapter 3

2 The HMMstate, mcep_link and mcep relations are omitted to show the general form,
which consists of multiple relations over a common node set.

41

42 automatic feature discovery

How much

How

was

much

it

was it

.

syl

syl

syl

syl

hh m

H*

w

ih

L-L%

pau pau aw

101.303

108.473

ah

108.455

ch

118.666

pau

aa

111.884

z

102.362

t

99.1021

pau

88.2504

91.6464

BB

Figure 8: HRG for “How much was it?”

Once the utterance information is fully elaborated, models are trained
using the features that are in the structure. In Festival, these are en-
coded as paths from one node to another in a graph, where paths
may traverse between relations. These paths end in a feature, which
may be either a static value or a function which lazily computes the
value.

4.1 paradigmatic and syntagmatic features

The features may be divided into two categories: paradigmatic fea-
tures, deriving from identity (or substitutability); and syntagmatic
ones which describe relationships and structure. In the Festival fea-
ture specification, a path is an edge traversal and a feature function
applied to the relative node. The traverse part is syntagmatic, and
the feature function typically applies to elaborate the paradigmatic
information, such as expanding phone names into phonetic features.
However, the split is not entirely clean in this case, because there are
feature functions which encode some structural information – posi-
tion in syllable, for example.

These paths are produced manually, and depend on knowledge the
topology input HRGs. When a new paradigmatic feature is added,
there are several places where changes need to be made manually,
including new paths to be added to the feature path specification, and
redefining the data definitions. We believe these relational features
are rarely inspected or modified when new voices and languages are
built with FestVox [6] and Festival. Furthermore, there has been no
easy way to add or modify features from outside the base processes
in FestVox and Festival, which limits experimentation.

As trees are a subset of relational graphs, it is easy to create an
HRG from a tree-based structure as described by the XML structures
used in MaryTTS [79] and Idlak [80]. However, HRGs are more pow-
erful, in that there is not complete containment as in XML trees: while
pauses are segments, they are not in syllables or words – and by exten-
sion, not in phrases. A pause segment may not have any parents at all,

4.2 exploring structural features in a patch 43

whereas in a total tree ordering, each element must be attached. To-
tal trees can be converted to HRGs by defining a new relation which
visits every node in the graph, adding a sequential relation for each
element type, and then running processes on the graph.

We propose a method for automatically capturing features, enu-
merating their values, and deriving structural features from a voice
corpus by traversing paths over neighborhoods in HRGs.

4.2 exploring structural features in a patch

For each transcription in a voice database, the front-end is run to cre-
ate an initial structure, and aligned to the audio. The HRGs are stored
externally, and other processes may add relations or decorate them
further. Once the utterances have been fully elaborated, the structures
are cataloged. Input structures may be converted to HRGs for process-
ing.

In order to find feature paths, we traverse one of the relations and
explore the neighborhood. For CLUSTERGEN [21] voices, we use the
mcep3 relation, which describes a sequence of fixed-duration frames.
A neighborhood is described which is to be explored around each
node in the relation, which may be either a list of paths or a policy for
exploration. In order to approximate a neighborhood used previously,
we limited the paths to up to two hops back, one hop forward, and
any number of hops up, where a hop is traversing a single edge in
any relation.

3 mel-generalized cepstra

44 automatic feature discovery

Relation Direction Max Exits

combined all 6

combined up 5

combined down 0

combined prev_next 2

Token all 0

Phrase all 0

Word all 1

Syllable all 1

Segment prev 2

Segment next 1

HMMstate all 1

mcep all 0

SylStructure prev_next 0

segstate prev_next 0

mcep_link prev_next 0

To save processing time, the paths are enumerated before evaluat-
ing the feature functions, and these paths may be re-used as long as
no new relations are added. The list of paths present is counted for
the corpus, and any with trivially low counts may be dropped. In or-
der to save some time, the paths may be approximated using a subset
of the corpus for rapid development – the longest 10 utterances are
very likely to contain all the paths, so that path determination may
be done quickly.

To automatically generate syntagmatic features, we visit each node
in the relation of interest and apply each path in the path list to
find relative nodes. For each relative node, we determine all the rela-
tions in which it participates, and describe it in terms of only three
generic positional features: integer indices from the left and right in
each relation (num_prev, num_next), and a floating point proportion
within parent (position). These are decorated into the node with
a unique name prefixed by the relation type, as Segment_num_next,
SylStruct_position, etc. A node may participate in many relations,
and the structural information is named and determined for each.
In Festival, each child gives different position results for each par-
ent. A node in Segment and SylStructure will have different values
for the structural features in each relation: Segment is a stream and
SylStructure is a tree which intersects a subset of nodes that partici-
pate in Segment.

4.3 generating system configuration 45

For each node in the relation of interest, we visit every node in
the path list and inspect all the features in the relative node. Fea-
ture values are cataloged by final relation in the path: all the values
for Syllable.stress are enumerated, and their type is inferred by
looking at the number and shape of unique values (checking if there
are any non-numbers, non-ints, all floating point, and whether there
is a very large number of values4). The union of the values is accu-
mulated across the corpus, and their distribution is used to make a
paradigmatic feature description for any features present – including
those added outside of the Festival process, in our example case. The
features now also include the structural information in relative paths,
such as the number of children in the parent.

4.3 generating system configuration

The feature description file is generated. In CLUSTERGEN, this is
the mcep.desc file. Features may be selected using another control
file (mcep.feats) and this is generated automatically. The importance
of each is determined in order to remove features with little impact.
For this work, we built decision trees or random forests [83] with all
the features present. The features were then ranked by total average
information gain summed over 20 trees, and results evaluated for
different cut-off values. For this comparison, the hand-enumerated
structural features are retained in the baseline, but removed from the
generated set so that only automatic structural features are used in
the new decision trees.

The resulting feature list contains 597 items, covering both the orig-
inal paradigmatic features extended to nodes by class and the struc-
tural features.

For a series of cutoff points in the ranked feature list, we build new
single decision trees and calculate the Mel-Cepstral Distortion (MCD)
for each held-out test utterance. The baseline system comprises 64

features, created manually, and yields a Mel-Cepstral Distortion of
4.882. The best system, with 120 features, scores at 4.895, giving a
difference of 0.013. In [84], it is reported that absolute differences
below 0.08 are not statistically significant for MCD. The results are
shown in the table below.

4 More than 100.

46 automatic feature discovery

Num features MCD

Baseline 64 4.882

50 4.914

60 4.915

70 4.922

80 4.913

90 4.913

100 4.911

110 4.906

120 4.895

130 4.896

140 4.898

150 4.905

160 4.907

180 4.918

200 4.923

220 4.921

250 4.923

all 597 4.919

The lowest value produces a result with a MCD difference from the
baseline that is lower than the reported significance level for MCD
differences.

4.4 comparison to baseline

The narrow range of MCD over the cut-off levels is a testament to the
power of random forests when the information is present somewhere
in the features. While there are only 3 basic types of primitive struc-
tural features, applying them over all relations within even a small
neighborhood produces a lot of potential features: the cross-product
of paths and feature functions.

When using features derived automatically from a relation graph,
the structure of the relations have an impact on how discoverable a
feature may be. A feature may be attached to an existing node in a
relation, or a new relation may be added. Using structural feature
discovery, items along a relation path may be evaluated in terms of
their previous and next elements without explicitly coding them. For
example, while stress may be added at a syllable level, it is interesting

4.5 issues in using stock festival hrgs 47

to know how far away the next stressed syllable is – which may be
added as a relation itself, which will make it more discoverable and
generate contextual information which encodes foot structure.

There are two main advantages to automatic feature discovery: al-
lowing arbitrary new features from outside the otherwise insular pro-
cess, and removing the need for manually changing other parts of the
system to accommodate new relations or features. These advantages
may be useful in rapid development for new languages, and for ex-
perimenting with feature representation in order to improve results.
For example, choices may be made as to whether demisyllables are
included as in [85], either by encoding information on segments, or
by creating a new relation, which may be traversed and used to create
contextual features.

We have not used these structures to introduce new relations, but
focused so far on existing ones. Future work will involve working
with new information and creating new relations, in order to evalu-
ate which features improve the results and how to encode them in
ways that favor discovery. Another application is in automatic cor-
pus design [86], where structural features are included in a selection
algorithm to make a training set balanced over a wider array of fea-
tures. We also intend to explore new structural features, such as cross-
relation distance, which can capture quantities such as how many
segments there are to the next accented syllable in an automated way
for all pairs of relations.

We have demonstrated an automatic method for discovering struc-
tural features by walking neighborhoods of a relational graph for
speech synthesis, which has comparable performance to manually
engineered features in mature languages in Festival. The method has
general application across statistical speech synthesis systems, and
reduces the feature engineering and specification burden to defining
paradigmatic features and relations.

While the results do not improve over a mature hand-engineered
structural feature set, they are comparable. The approach provides
a new and flexible way to approach the automatic enumeration of
features which removes some of the development burden for intro-
ducing new features and relationships.

4.5 issues in using stock festival hrgs

While walking the graph in patches around nodes in the Festival
HRGs, it became clear that items in some of the relations were not
as assumed.

48 automatic feature discovery

The first issue we found was that many of the features we wanted
to examine were dynamically created in feature functions, which were
not encoded in the utterance structure but computed on-the-fly. This
led to issues in expanding those features and using them, as well as
having the system honor changes to those values in later processing
steps.

Some relations, such as SylStructure, contained unexpected empty
nodes which weakened the predictive value of adjacency. When travers-
ing the first (depth 1) level of the relation and looking forward or
backward N steps, some of those were not words but empty nodes
left over from the initial graph induction of the front end.

In other cases, the order within the relations, such as Intonation
and IntEvent, were not in the expected order. This reduced the effec-
tiveness of searching adjacency elements, due to a mismatch between
the temporal and structural order.

Another problem arose in the item sequences for the Word rela-
tion: During tokenization, hyphenated words are split, and some
morphemes5 were both split from the main portion of the word and
contained no syllables in the SylStructure relation. There are sur-
prising structural differences between what one would expect based
on sequential ordering, and how these are encoded into the Festival
HRGs.

In summary, there were issues in the structure produced in the con-
ventional relations which hindered automatic search and discovery.
These will be described more thoroughly in the next chapter.

One observation does stick out, however: the features of identity,
syllable stress, and phrase breaking have a significant role in the
model, both in terms of the segment or parent, and of neighboring
node feature values.

5 such as the possessive morph s

5
C R I T I Q U E O F H R G C O N V E N T I O N S I N F E S T I VA L

Between the definition and implementation of HRGs, there are a num-
ber of issues that can lead to unexpected or poor results. In this chap-
ter, we offer a critique of the formalism and implementation, in an-
ticipation of reformulating them for further experiments in prosody
improvement.

5.1 visualizing quirks

In the following sections, we convert HRGs to GraphViz format and
create visualizations with dot. Bold arrows represent ’next’ edges;
dashed lines signify a ’down’ edge. The redundant ’previous’ and ’up’
edges are not shown. The shapes of the nodes represent their primary
“type,” when it can be inferred1 To aid in decoding the graphs, a
legend is provided, linked by edges with no arrowheads.

5.1.1 Tokens, Phrases and Words

PhraseToken Word

Ah indeed

Ah indeed .BB

,

Figure 9: Token, Phrase, and Word
"Ah, indeed."

The Phrase, Token, and Word relations for the text “Ah, indeed”
(slt_arctic_a0329) are shown in figure 9. There are four tokens: two
tokens have corresponding words, and the other two are punctuation.
There is a single phrase, that ends in a “Big Boundary” (BB), which

1 While nodes are not typed in Festival, it is possible to use the 1-level relations such
as Phrase, Word, Syllable, and Segment to infer a node type.

49

50 critique of hrg conventions in festival

points down2 to the first word. The first word has a next pointer to the
next word in the phrase. In a quirk of how Festival creates the Word
relation, the punctuation tokens are children of the related words.
This does not immediately follow from the process of elaborating to-
kens into words. Visualizing the relations of a few utterances reveals
how our expectations may be violated by proceeding from reasonable
assumptions such as temporal or sequential ordering.

5.1.2 Words to Segments

Segment SylStructureSyllableWord

pau pau aa pau ih n d iy d pau

indeed .

0

Ah

,

1 1

Figure 10: Word, Syllable, Segment, and SylStructure
"Ah, indeed."

In figure 10, the simple Word, Syllable, Segment, and the depth
3 SylStructure relations are shown. From this view we can see that
the punctuation appears in the Word-level (depth 1) of SyllStructure,
but not in Word. If one were to traverse the SylStructure assuming
that depth 1 contained only Syllables, it would produce unexpected
results.

A key feature of HRGs in general is also revealed: the relations are
not a singly-rooted in a global tree. In figure 9, Word is dominated
by Phrase and Token in a manner that defies total hierarchy. In fig-
ure 10, there are Segments that have no other parent: the pau (silence)
segments have no linguistic parents. A corollary to this is that the
silence (or pause) segments are not under any Phrase. Traversing the
utterance by Phrases and traversing the children across relations to
the Segment would not include pau units, and a Phrase comprises
noncontiguous Segments. The lack of a single rooted global tree is a
design feature, but it does have implications for adjacency, counting,
and position of nodes.

5.2 hrg and other graph formalisms 51

IntEvent IntonationSyllable

L-L%

H*

H*

1 0 1

Figure 11: Syllable, Intonation, and IntEvent
"Ah, indeed."

5.1.3 Syllables and Intonation

In order to represent intonation in US English ToBI [31] tone labels,
Festival relates IntEvents to Syllables though the Intonation re-
lation. Figure 11 shows the annotations for the same utterance as
before. Here, we see another unexpected sequence: the order of the
IntEvents and Intonation is not the order in which they appear in the
Syllable sequence. The first item in IntEvent is the final phrasal and
endtone encoded as L-L% attached to the final syllable. The next edge
points to the high pitch accent H*, which is attached to the first sylla-
ble. Traversing either of these may be a trap. And the Intonation has
syllables at depth 1, with the same ordering, but with another twist:
the second H* is the next after the endtone, which doesn’t fit the ToBI
standard annotation order.

5.2 hrg and other graph formalisms

The original HRG definition came about in the early 1990ś, when
XML was in the cradle. There was yet not GraphML [], which now
could also encode the formalism; JSON [87], YAML [88], and RDF
[89] weren’t invented yet. The HRG structure was a practical defini-
tion of a flat ASCII file which encoded everything needed to instanti-
ate theories of computation about speech synthesis into a graph. We
could consider any of these widely known and supported formats to
be the basis for the information, and bring along with it the commu-
nities, source libraries and documentation. There is an isomorphism
between them, and Festival utterances as HRGs are convenient for
speech synthesis implementations.

2 Down in edge definition, even when it appears to the right visually. In keeping the
graphs planar, the packing algorithm does not always put things that are edgewise
“down” beneath the nodes.

52 critique of hrg conventions in festival

5.3 expressive power vs . implicit constraints

An HRG multigraph has more expressive power than a single global
tree by virtue of being a more general graph, but many of the is-
sues raised so far, about ordering and constituency, are removed in
a singly-rooted representation. In an XML representation as in idlak

or MaryTTS, all nodes are ordered and all the children are ordered, so
that it is always clear what is contained within what, and in which
order. The HRG invites many different traversals, each with different
results, whereas a singly-rooted representation induces a total, deter-
ministic order in depth-first traversal from the root. In a global tree,
each child has only one position in its immediate parent, but in an
HRG, a node can have several different immediate parents and each
parent may have a different ordering of children.

XML documents may refer to other files and elements, and define
graph structures within a document using standards such as XLink
[] or XPointer []. However, the approach of systems that use XML
is not to use references, but rather to enforce total order and child
containment.

5.4 uncertainty of structural dependency

If one thing is changed, how many relations need to be recomputed?
When trying to edit any part of the utterance structure, there is a
great deal of bookkeeping and maintenance of relationships. For ex-
ample, adding a phrase break involves modifying not only the Phrase
relation, but also the Intonation and IntEvent relations, which are dis-
tal from the the phrase: we must go from the top of the Phrase level
(depth 1) to a child word, then to its final syllable, to the Intonation
relation, and modify each in turn.

5.5 opaque unserialized feature functions

Many of the features used come from feature functions, which are
not injected into the HRG. While the computed features are available
within Festival, they are completely opaque to any process which
treats the utterance as an interchange format or API outside of the
runtime system. The system was designed so that things are available
at the Scheme layer, but even so they must be recomputed, possibly
differently, when another phase of the synthesis occurs. There is no
easy way to export the utterance structure to an outside tool and
maintain all the information for analysis or modification.

5.6 redundancy of paired edges 53

5.6 redundancy of paired edges

The explicit encoding of paired, doubly linked next-previous and up-
down edges in the relations is unnecessary3. It is scaffolding that
may be provided by the implementation library, without putting it
into the file format. While it mirrors how Festival works internally,
these double edges introduce complexity in examining the files, and
incur unnecessary maintenance overhead for external tools to keep it
consistent. It also bloats the format.

5.7 unnecessary indirection in relative ids

In each Relation edge row, there is a stream ID and a relative ID
within the relation. The edge targets are coded in terms of the relative
ID. The stream nodes are related by id through all relations, and may
appear as the head of each row only once in each Relation.

The relative ID is unnecessary and incurs an unnecessary derefer-
ence, as well as bloating the format. When examining the utterance
structure, it becomes tedious to move back and forth between stream
ID and relative ID. The relative, within-relation IDs may be done away
with entirely, and the stream IDs used throughout.

5.8 relation names as identifiers

While the HRG definition paper points to allowing instances of Rela-
tions, rather than only one, in Festival it is required that a Relation
appear only once. Without relation instances, there is no way to aggre-
gate alternatives within a single utterance. For example, there is only
one instance of the SylStructure relation, and there cannot be any
alternative SylStructures. Furthermore, all the nodes in a relation
must be connected; by contrast, there could be one syllable structure
relation for each Word without connecting the nodes4.

5.9 fixed depth relations

Each conventional relation in the Festival HRG has a fixed depth,
with implicit types at each level. This precludes homogeneous tree
structures such as parse trees.

3 These are visible in the example in figure 3.
4 Though the top levels would be connected in the Word relation, they are redundantly

connected in SylStructure as well.

54 critique of hrg conventions in festival

5.10 no logical operator relation

There are no logical operation relations, as are present in And/Or
graphs or ontologies. While there is no immediate use of these in
Festival, they represent a common formalism in logic programming
and weighted finite state automata that are missing from the HRGs
in their basic form.

5.11 limitations of hrg features

Every feature on a node is a scalar, with no structure. Lists or dic-
tionaries must be introduced as additional relations, even if they are
logically within a node.

5.12 lack of explicit type

Depth 1 relations stand for effective object type, and the fixed nature
of each relation depends on it. Furthermore, the nodes are flat feature
lists rather than hierarchic object serializations. This means that the
flat structure must be marshalled onto objects through a very close
and careful understanding of each feature. Within the Festival sys-
tem, this is not much of a problem, because the nodes all correspond
to shallow S-Expressions in the object graph. However, it prevents in-
trospection of the utterance without a good deal of knowledge about
the Festival conventions.

5.13 no namespace or introspection

Related to the lack of explicit type, it not possible to start from a
node and determine type without examining each of the relations in
which it participates and inferring relations. A corollary is that it is
not knowable which features belong to which relation, so that when
a node is removed from a relation, the features are left behind. There
is no namespacing over the features or relations, which is a common
feature of modern mark-up formalisms.

5.14 inconsistent temporal ordering

Within some of the conventional relations, the order of the constituents
does not always reflect temporal order, or align with the order of

5.15 no relation structure declaration 55

other relations. This is a potential source of error and confusion if a
user is not deeply away of the uses and limitations of each relation.
These quirks are apparent in the visualizations in figures 9, 10, and
11.

5.15 no relation structure declaration

The depths and meanings of each level in a Relation is a matter of
convention. There is no declaration of category for a relation – the
user must either know the conventions for a Relation, or try to walk
the items to infer a topology.

5.16 incomplete set of simple relations

While the Word, Syllable, and Segment levels exist as simple (depth
1) relations, they also appear in the cross-type relation SylStructure,
which binds them together. However, the Phrase relation consists of
a top level of phrases which do not have a corresponding simple
relation, while the words on the lower (depth 2) level are all in the
simple Word relation. This is also the case in the Token relation, which
contains tokens and words, and then tokens as children of words as
well.

6
K A R N I VA L A N D T H E K R G

For this work, a set of tools and conventions was created to address
the issues of Festival HRGs as they relate to automatic discovery and
modification, called Karnival. Karnival is a module which interoper-
ates with Festival, which incorporates a number of design improve-
ments based upon the Heterogeneous Resource Graph described in
Chapter 3, the lessons learning in Chapter 4, and the critique of Chap-
ter 5.

6.1 monkey in the middle

With a few small changes to the Scheme file festival/lib/synthesis.scm,
we create a path out of Festival and the Karnival environment. Inside
Karnival, we convert to an internal format and do most everything
we need to do, then pass the result back in as a well-formed HRG for
complete the downstream processing.

6.2 the karnival resource graph

The Karnival Resource Graph, or KRG, is a modified form of HRG
which is used in the Karnival system.

6.2.1 Typing

During conversion, type is inferred from membership in a simple
(depth 1) relation such as Word. In the conventional HRG, nodes only
appear in one of these. The type name is stamped into the node as
a feature, k_type, which makes identification of nodes easier, and al-
lows enumeration of features within type for generalization to paths.

6.3 objects as stream items

Rather than using flat feature nodes, KRG embeds the data structure
and serializes objects into YAML. YAML, like JSON, can encode ar-

57

58 karnival and the krg

bitrary hierarchic object structure and references within a document.
The object id is synonymous with the stream id.

6.4 removing indirection and doubly-linked lists

In the internal representation, the unique stream item id is used di-
rectly rather than adding a with-relation relative id. The next-prev
and up-down pairs are implemented as scaffolding over the structure,
so that only one of the edges is needed (and reversed as needed).

6.5 regularizing relations

The KRG of the Token, Phrase and Word relations of slt_arctic_a0329
are shown in figure 12. This is converted from the same utterance
shown as a stock HRG in figure 9, with some notable differences.

• There are five relations rather than the three in the baseline ut-
terance.

• The new relations all begin with the namespace prefix k_. This
allows them to coexist with the original HRG relations.

• There are simple (depth 1) relations for k_Token, k_Phrase, and
k_Word which correspond to types for their constituents.

• There are depth 2 relations for k_Token_Word and k_Phrase_Word,
with a clear typed naming convention.

• Punctuation tokens have been isolated into the simple relation
k_Token, rather than be the token-next of Word.

• Phrase boundary tone has been moved to the k_Phrase, and
out the k_IntEvent relation which consists of pitch accents. The
phrase level still contains the break strength feature as a k_-
prefix feature as well.

Showing both together, we have figure 13. Since the new relations
do not conflict with the original we can have both in the same utter-
ance. There are two new relations here: k_Morph and k_Word_Morph.
These connect the old HRG Word nodes to the KRG structure, but op-
erate within the k_ namespace.

The Morph level is introduced to regularize words. It combines
the word chunks from the Festival HRG into full words, including
hyphenations. Since some of the nodes overlap, only one type deter-
mines the shape and color of each node, but the edges are all color-
coded by the relation name as given in the legend below the utterance.

6.5 regularizing relations 59

k_Phrase k_Word k_Phrase_Wordk_Token k_Token_Word

Ah
indeed

Ah

,
.

indeed

L-L% L-L%

Figure 12: KRG of Token, Phrase, and Word
"Ah, indeed."

Phrase k_TokenToken Word k_Morph k_Token_Wordk_Phrase k_Word k_Phrase_Word k_Word_Morph

Ah
indeed

Ah

Ah

,

indeed

.

indeed

L-L% L-L%

Figure 13: KRG of Token, Phrase, and Word
"Ah, indeed."

Figure 14 shows slt_arctic_b0262, which demonstrates this. The ’s

of Saxon’s is an HRG Word and a KRG k_Morph. The k_Word com-
bines the two morph chunks into a single parent word.

Phrase k_TokenToken Word k_Morph k_Token_Wordk_Phrase k_Word k_Phrase_Word k_Word_Morph

Saxon’s onto

Saxon’s

Saxon ’s

onto

her

onto

job

her

her

job

.

job

L-L%

Figure 14: HRG+KRG of Token, Phrase, and Word
"Saxon’s onto her job."

6.5.1 Removing Vestigial Nodes

Figure 10 is the sister to figure 10 as a KRG, but including the k_Token
relation as well to clarify that the syllable-free words do not appear.

Another key feature is that the depth 3 relation, SylStructure, is
factored into two two-level relations with consistent nomenclature by
type at the upper and lower levels.

60 karnival and the krg

k_Segment k_Token_Wordk_Syllable k_Syllable_Segmentk_Token k_Word k_Word_Syllable

Ah

indeed

Ah

,

pau pau pau pau aa pau ih n d iy d

.

indeed

pau

’aa ih n ’d iy d

Figure 15: KRG of Word, Syllable, Segment
"Ah, indeed."

6.5.2 Fixing Temporal Order

We correct the unexpected ordering and constituency of the conven-
tional relations. Figure 16 is the KRG pair of 11. The nodes in each
relation correspond to temporal order, which removes some of the
ambiguity as well. A similar treatment is applied to the Targets, which
are not used in CLUSTERGEN.

k_IntEvent k_Phrase_Word k_Word_Syllablek_Syllable k_Syllable_IntEventk_Word

H* H*

L-L% L-L%

Ah indeed

’aa

ih n ’d iy d

Figure 16: Syllable, Intonation, and IntEvent
"Ah, indeed."

6.6 generalizing hrg relations

6.6.1 The k_ Namespace

In order to maintain the HRG and KRG relations in the same utter-
ance for comparison, we introduce a name-spacing prefix k_ on all
KRG relations and features. This has an added benefit that it is pos-
sible to strip all the KRG data from the whole utterance, or from one
relation.

6.6.2 Generalized Containment

Node rows become lists of typed children, which may by of mixed
type. Fixed types at depths are not necessary.

6.7 rpath : an xpath-like query language for relations 61

6.6.3 Allowing Multiple Parentage

Single parentage is no longer enforced. For practical reasons of return-
ing to the Festival HRG, however, we remain within a singly rooted
structure.

6.6.4 Adding a Dependency Parse

Figure 17 shows the addition of a dependency parse, which may be
arbitrarily deep.

Ah indeed

Ah

, .

indeed

indeed

L-L% L-L%

Ah

Ah indeed

ROOT INTJ UH UH

Figure 17: KRG of Word, Syllable, Segment
"Ah, indeed."

6.7 rpath : an xpath-like query language for relations

The feature path selector which is used to enumerate features for
modeling can be extended analogously to XPath [90] expressions.
This is convenient for examining and operating on nodes in a utter-
ance.

In an HRG, the feature paths are used to traverse the graph and get
the values relative to one node. However, XPath expressions can both
be applied to and return node sets, and they may contain additional
predicates. An interpreter of this sort is straightforward to implement
and creates an expressive path query language over relational graphs.

62 karnival and the krg

For example, this feature path:

R:Segment.R:SylStructure.parent.stress

can be decoded as "for this segment, get the parent in the SylStruc-
ture, and then return the value of the stress feature".

In an xpath-like expression, we can do things like:

R:Syllable[@stress=1].R:SylStructure.children.@name

which selects segments with a parent with a stressed syllable. The
at symbol is used to identify feature names in contrast to a node,
by analogy to XML attributes. For awb_arctic_a0001, this expression
yields "ao d ey n t r ey l f ih s t iy l z eh t s eh" for the initial utterance
alignment.

Here is the sequence of syllable stresses in the same utterance. For
consistency with XPath, we also allow slashes instead of dots on the
path names.

$ hrg.py -e’R:Syllable/@stress’ awb_arctic_a0001.utt

1 0 0 0 1 0 1 1 0 1 1 1 0 0

By this extension, we can select nodes that fit some criteria, and
then operate on the node set. When we have a node at the end of the
path, we can return the node or nodes that correspond. The test may
also be applied to a node set. The results are a union of the nodes
that evaluate to true.

We assume the path on the left starts with all nodes in the utterance.
Each step in the path is then either a predicate, which reduces the
input nodes set for the nodes; or a feature function, which returns
the value of the feature for that node. The bracketed predicates in an
expression serve as a predicate which reduces the current node set
(before the bracket) without moving the node pointer to the leaf.

$ hrg.py -e’R:Syllable[@stress=1]/R:SylStructure/children’

awb_arctic_a0001.utt

{’end’: ’0.775’, ’name’: ’ao’}

{’end’: ’1.3’, ’name’: ’d’}

{’end’: ’1.42’, ’name’: ’ey’}

{’end’: ’1.48’, ’name’: ’n’}

...

Throughout this work, these sorts of expressions are used to collect
statistics and to modify utterances. Looking ahead, we can use these

6.8 paradigmatic and syntagmatic features 63

selectors to find nodes to operate on, and then systematically vary
them to search alternatives.

6.8 paradigmatic and syntagmatic features

In Festival synthesis, there are a number of features that are not ex-
plicitly in the HRG, but are computed using feature functions. In-
cluded in these are all the phonetic features for a given phone or
segment – the place, manner, and type features that are often used.
When using KRGs, we explicitly expand these into the features of the
graph, so they can be inspected and changed.

$ hrg.py -e’R:k_Segment[@name=ao]’ awb_arctic_a0001.utt

{’end’: ’0.775’, ’name’: ’ao’, ’k_type’: ’Segment’,

’k_end’: ’0.775’, ’k_name’: ’ao’,

’k_cplace’: ’0’, ’k_ctype’: ’0’, ’k_cvox’: ’0’,

’k_vc’: ’+’, ’k_vfront’: ’3’, ’k_vheight’: ’3’,

’k_vlng’: ’l’, ’k_vrnd’: ’+’}

Paradigmatic features like these are related to the features of the
node type or class – they relate the the identity of what the node is,
rather than the embedding or structure the node lives in. We can draw
the distinction between these and features which relate to what neigh-
bors are, or how many items are in a parent, which are syntagmatic
or structurally defined.

Looking at the syllable level, we have a different kind of paradig-
matic feature. This is an aggregation function, which indicates whether
the parent has any children matching a feature. Here, it captures place
and manner of consonantal segments, but the syllable has null onset
and no coda beyond the nucleus (vowel).

hrg.py -e’R:k_Syllable[1]’ awb_arctic_a0001.utt

{’name’: ’syl’, ’stress’: ’1’, ’k_type’: ’Syllable’

’k_name’: "’ao", ’k_stress’: ’1’}

’k_coda_cplace_a’: ’-’, ’k_coda_cplace_b’: ’-’,

’k_coda_cplace_d’: ’-’, ’k_coda_cplace_g’: ’-’,

’k_coda_cplace_l’: ’-’, ’k_coda_cplace_p’: ’-’,

’k_coda_cplace_v’: ’-’,

’k_coda_ctype_a’: ’-’, ’k_coda_ctype_f’: ’-’,

’k_coda_ctype_l’: ’-’, ’k_coda_ctype_n’: ’-’,

’k_coda_ctype_r’: ’-’, ’k_coda_ctype_s’: ’-’,

’k_onset_cplace_a’: ’-’, ’k_onset_cplace_b’: ’-’,

’k_onset_cplace_d’: ’-’, ’k_onset_cplace_g’: ’-’,

64 karnival and the krg

’k_onset_cplace_l’: ’-’, ’k_onset_cplace_p’: ’-’,

’k_onset_cplace_v’: ’-’,

’k_onset_ctype_a’: ’-’, ’k_onset_ctype_f’: ’-’,

’k_onset_ctype_l’: ’-’, ’k_onset_ctype_n’: ’-’,

’k_onset_ctype_r’: ’-’, ’k_onset_ctype_s’: ’-’,

6.9 automatic enumeration of features

6.10 syntagmatic feature discovery

In the KRG conventions, each Relation is either a Simple list of typed
objects, such as Phrase, Word, Syllable or Segment; or a Container
list of objects such as Word_Syllable, which consists of a "top" se-
quence of one type (Word) and an ordered list of children (Syllable).
In contrast to the conventional Festival HRG, there are no three-level
relations – no SylStructure.

With these conventions, we can automatically define the size of
each Container parent, and the position of each child within the par-
ent from both the left and right boundaries. This gives an implicit
structural feature, which we make explicit by iterating over the Con-
tainer relations and writing the structural features for each node.

With these structural features in place, the same query as above
includes the syntagmatic features. Here, the segment is participating
in two parent relations, Syllable_Segment and ONC_Segment. _L and
_R represent counting from the Left and Right margin of the parent
container, respectively.

’k_in_Syllable_Segment_L’: ’1’,

’k_in_Syllable_Segment_R’: ’1’,

’k_in_ONC_Segment_L’: ’1’,

’k_in_ONC_Segment_R’: ’1’,

Syllable_Segment captures the segmental position in the syllable.
ONC stands for Onset/Nucleus/Coda, which is an additional struc-
tural level introduced corresponding to conventional index functions.
There is also a Syllable_ONC relation which maps each syllable to
a sequence of onset, nucleus and coda slots. This way we can au-
tomatically derive both position in Syllable and position inside the
subsyllabic structure.

Looking at the parent Syllable, we see the corresponding syntag-
matic features. However, this time the Syllable is both a parent (in the
Syllable_Segment and Syllable_ONC) – showing num_ChildType –

6.11 the prosodic signature 65

and a child (Word_Syllable, Phrase_Syllable, Utterance_Syllable, Foot_Syllable),
appearing as _in_ParentType_ChildType.

’k_num_ONC’: ’3’,

’k_num_Segment’: ’1’,

’k_in_Word_Syllable_L’: ’1’,

’k_in_Word_Syllable_R’: ’2’,

’k_in_Phrase_Syllable_L’: ’1’,

’k_in_Phrase_Syllable_R’: ’7’,

’k_in_Utterance_Syllable_L’: ’1’,

’k_in_Utterance_Syllable_R’: ’14’,

’k_in_Foot_Syllable_L’: ’1’,

’k_in_Foot_Syllable_R’: ’4’

Here we see a pair of tree structures where one cannot contain
the other, and so a strict tree structure would have different impli-
cations: the Foot_Syllable and Word_Syllable relations. Neither one
can dominate the other, and the relations coexist. This contrasts with
the Syllable_ONC and Syllable_Segment hierarchies, where we put a
strict hierarchy on them (Syllable/ONC/Segment), but having both
representations available makes the index more direct.

The structural indexing is injected into the nodes in the utterance
for all Container type objects, and so comes automatically from cre-
ating the structure itself. In some cases a relation is introduced in
order to create a metric space for containment and make features
more proximal to the nodes which depend on them.

6.11 the prosodic signature

A signature in this context is a traverse of the utterance graph, with the
features of interest linearized into a string. For this work, the features
include the segmental material, syllabification and stress, word and
phrase boundaries.

For the arctic_b0228, the prompt "You were engaged." has a de-
fault prosodic signature with three words, four syllables, and one
phrase. Each syllable is one character long, being either S or w (1 or
0, strong or weak). The upper and lower case contrast redundantly
codes the stress value. Word boundaries constrain where a phrase
break can occur – no phrase boundary can occur within a word. In
order to keep the strings of comparable length irrespective of phras-
ing changes, each word boundary is marked with a single character
depicting the break status. A colon (:) indicates no break; slash (/), a
minor break; and a major break is characterized with a closing bracket
(]).

66 karnival and the krg

S:w:wS]

Table 18 shows some more examples of prosodic signatures in the
AWB arctic data.

awb_arctic_a0001 "AUTHOR OF THE DANGER TRAIL, PHILIP

STEELS, ETC"

Sw:S:w:Sw:S|Sw:S:SSww]

awb_arctic_a0002 "Not at this particular case, Tom,

apologized Whittemore."

S:S:S:wSww:S|S:wSwS:Sw]

awb_arctic_a0003 "For the twentieth time that evening

the two men shook hands."

S:w:Sww:S:S:Sw|w:S:S:S:S]

awb_arctic_a0004 "Lord, but I’m glad to see you again,

Phil."

S|S:S:S:w:S:S:wS:S]

Figure 18: Example Initial Prosodic Signatures

If we expect that utterances to be compared differ in segmental ma-
terial, the segmental material can also be encoded, so that the signa-
tures can be directly compared to determine whether two utterances
differ. Here, a syllable is prefixed with a stress value, and a dash (-)
is introduced as a syllable separator. This gives the segmental signa-
ture, which also contains the prosodic structure. The equals sign (=)
is a special boundary after pauses.

pau=1yuw:0wer:0ehn-1geyjhd]pau=

Finally, we can make this more readable by stripping the initial
and final pauses, spreading it out with some white space, and using
UPPER and lower case to indicate stress condition.

YUW : wer : ehn-GEYJHD]

Signatures can be used to show or check differences between utter-
ances, and also may act as an edit over an existing utterance. The new
signature can be applied to the existing structure, modifying it. These
are a major feature of the resynthesis approach outlined here.

7
I T E R AT I V E LY I M P R O V I N G P R O S O D Y

The Arctic voice databases [9] are typical of many speech synthesis
systems, in that each talker was given isolated sentences of text as
prompts for the utterance recordings, with no mark-up or context.
The delivery is left to the performer, and is generally in a relatively
neutral style – no large prosodic movements. This works well for
avoiding unexpected excursions, but leads to an overall neutral de-
livery in the resulting voice. Large excursions, without causal anno-
tations in the features of the data, can degrade the models overall
quality. Even so, any sentence in a stress-timed language may be pro-
duced in a number of different ways, by rearranging the strong and
weak patterns or inserting breaks, even without producing a high
degree of emphasis.

Revisiting the signature for arctic_b0228, the prompt is “You were
engaged.”. Even this short sentence can have several different deliv-
eries without extreme prosody; some examples are show in table 5.
S signifies a strong syllable, w weak; colon signifies word boundary,
vertical bar minor break, and bracket major break.

We use two levels of stress, rather than trichotomizing as [41] sug-
gests, and three levels of break rather than the 4 levels of ToBI.

Pros. Sig. Segmental Signature Delivery

S:w:wS] YUW : wer : ehn-GEYJHD] YOU were en-GAGED.

w:S:ww] yuw : WER : ehn-geyjhd] You WERE en-gaged.

w:w:wS] yuw : wer : ehn-GEYJHD] You were en-GAGED.

Table 5: Example Alternative Signatures of “You were engaged.”

When the talker delivers the prompt, they give one such pattern
– but the automatic labeling and alignment process may not have
the same signature. In Festival, each prompt is annotated with an
utterance structure made largely from dead reckoning: it makes its
best guess and runs with it without feedback.

The one exception to this in the Festival build process is break in-
sertion around pauses. During the phonetic alignment process (ehmm),
short silences may be introduced, which may be promoted to phrase

67

68 iteratively improving prosody

breaks if they are over a specified length when utterance files are
build (with build_utts).

In order to overcome this, we introduce a method of incremen-
tally modifying the annotations of the training data using Expectation
Maximization over synthetic perturbations of the utterance in order
to improve the duration model. The same method can be applied to
regularizing different kinds of features, such as pronunciation differ-
ences, stress and phrasing.

7.1 twiddling

In order to evaluate whether a change in annotation will be useful,
we "twiddle" each utterance to produce a set of variations over the
signature. The twiddle may be over any level of representation in
an HRG or KRG – segmental content, syllable structure or features,
phrase break and type, or anything else we want to evaluate.

The name of each twiddle is set to the original file identifier with
an edit signature appended to it. The edit signature contains a short,
lossless description of the changes applied to the original. When two
twiddle names are the same, the annotations are identical. Likewise,
if the signatures are identical, so are the annotations.

The space of possible annotations for each utterance is quite large,
even with the limited number of alternatives for each item. If we
twiddle stress between 0 and 1 for n syllables, there are 2n possible
labellings; with m words and 3 possible break conditions, there are
3m−1 variations if we assume the final boundary is always a break. If
both are varied, this is 2n × 3m−1 possible combinations.

For a 7-syllable, 5-word sentence like "Will we ever forget it", there
are 10,368 possible annotations. This number makes it intractable to
evaluate every possible alternative. Rather than try them all by brute
force, we instead make a smaller set of single "moves" which mutate
the original signature, and allow only one move per twiddle.

Each twiddle, including an unmodified copy of the original, is
resynthesized, compared to the original, and ranked by an error met-
ric. The twiddle with lowest error when compared with the record-
ings or state level alignments is considered the best twiddle. For each
utterance, the best twiddle will become the annotation for the next
build iteration. If the best twiddle is the copy of the previous, the
annotation is unchanged.

Table 6 shows some example twiddles for awb_arctic_a0005. The
meanings of the edit signature will be discussed under the sections

7.2 creating a baseline 69

Twiddle Signature

a0005 WIHL : WIY : EH-ver : fer-GEHT : IHT]

a0005_w01s010 wihl : WIY : EH-ver : fer-GEHT : IHT]

a0005_w01s010p1 wihl / WIY : EH-ver : fer-GEHT : IHT]

a0005_w01s011p1 WIHL / WIY : EH-ver : fer-GEHT : IHT]

a0005_w02s010 WIHL : wiy : EH-ver : fer-GEHT : IHT]

a0005_w02s010p1 WIHL : wiy / EH-ver : fer-GEHT : IHT]

a0005_w02s011p1 WIHL : WIY / EH-ver : fer-GEHT : IHT]

a0005_w03s010 WIHL : WIY : eh-ver : fer-GEHT : IHT]

a0005_w03s020p1 WIHL : WIY : EH-ver / fer-GEHT : IHT]

a0005_w03s021 WIHL : WIY : EH-VER : fer-GEHT : IHT]

a0005_w03s021p1 WIHL : WIY : EH-VER / fer-GEHT : IHT]

a0005_w03x021 WIHL : WIY : eh-VER : fer-GEHT : IHT]

a0005_w04s011 WIHL : WIY : EH-ver : FER-GEHT : IHT]

a0005_w04s020 WIHL : WIY : EH-ver : fer-geht : IHT]

a0005_w04s020p1 WIHL : WIY : EH-ver : fer-geht / IHT]

a0005_w04s021p1 WIHL : WIY : EH-ver : fer-GEHT / IHT]

a0005_w04x020 WIHL : WIY : EH-ver : FER-geht : IHT]

a0005_w05s010 WIHL : WIY : EH-ver : fer-GEHT : iht]

Table 6: Example Prosodic Twiddle Signatures for “Will we ever forget it.”

pertaining to each type of twiddle, along with a rationale for each
allowable move.

7.2 creating a baseline

Because we will be working with durations, we want to have a good
starting point for measuring them. Getting good phonetic alignments
is a problem unto itself, but we can establish a baseline carefully with
the existing tools and small modifications.

We use mixed excitation CLUSTERGEN [21] voices, because they
offer the best overall voice quality in parametric synthesis in FestVox.
The dependencies for voice builds in FestVox are shown in figure 19.
All voices perform the steps in the figure for the unit selection voice
(clunits); CLUSTERGEN also involves some additional steps for acous-
tic parameters, and the mixed excitation build deviates from the de-
fault build slightly. The main packages used are FestVox [5] [6], Fes-
tival [7], Edinburgh Speech Tools (EST) [24], and Speech Processing
ToolKit (SPTK) [91].

70 iteratively improving prosody

clunits clustergen mixed_excitation

setup

build_prompts

mcep_sptk

test

label

build_utts

f0_v_sptk

generate_statenames

traintest

cluster dur

combine_coeffs_v

combine_coeffs_me

generate_filters

str_sptk

Figure 19: Build Dependencies for CLUSTERGEN Mixed Excitation Voices
in FestVox

The voice is built initially using the FestVox process, with a stock
distribution and features, and short silence insertion with phrase
break promotion. These short silences tend to be overgenerated, and
sometimes are confusable with closure events. Very short silences
are often false positives in the initial segmental alignment system
(EHMM [92]), so we remove all silences shorter than 80ms, before
building a mixed excitation parametric synthesis voice. The voice is
built normally from there.

Figure 20: Correlation Changes for Baseline after Initial Resynthesis

For the initial alignments (build “zero”), we pool the data and build
a voice from all of Arctic combined in order to get the best initial
phonetic alignments that are consistent across the talkers. These are
then split into individual voices (build 1).

In the build process, there is a mismatch between the initial prompt
alignment and the utterance as produced by the run-time synthesizer.
This comes in part from the method of short silence deletion, which
simply deletes a boundary and absorbs the silence into another seg-

7.3 reduction and pronunciation variation 71

0 Combined Data Build (for alignment)

1 Split Standard FestVox HRG Build

2 Collapse Silences and Remove Short (< 80ms)

3 Build as Karnival KRG

Table 7: Steps to Create a Baseline

ment; there are also other differences that come from the utterance
building process, and how pauses are created. To overcome this mis-
match, we re-synthesize the prompts with the newly built voice and
use the results as the new prompts, but without allowing short pause
insertion during alignment. We systematically built voices with dif-
fering cutoff rates for the short silences to settle on the 80ms range.

Some of the remaining pauses shrink during the EM, and we then
allow phrase insertion for any silence over 20 ms (after we have al-
ready deleted anything under 80ms in the first build, removing the
closure confusion). The voice is then converted to the Karnival KRG
format, and the baseline voice is built. The result is improved state-
level alignments and initial pauses (or silences). For five of the seven
Arctic voices, the correlation improves as shown in (figure 20). The
stock system is on the left (at 0), and the new baseline system is on
the right (at 1.0). For the talkers awb and bdl, it does not, though we
still believe this is an improved state-level alignment. Silences and
pauses are not included in the error metric.

7.3 reduction and pronunciation variation

Many function words have more than one realization for a given
talker. Here we consider two components: removal of lexical stress,
and phonetic reduction.

The front-end (FE) of the synthesizer generates on form or another
in various contexts. In the default US English Festival front-end, there
is a model which assigns pronunciations for words, and it reduces
some function words.

However, the talker often performs the utterances differently from
the output of the front end. If the results are used directly as an ut-
terance structure for aligning and annotating the training data, there
may be a large number of mismatches. While these may be hand-
corrected, we use analysis by synthesis to correct for the variation.

Table 8 compares the pronunciations of one the Arctic talkers, SLT,
with the output of the default US English front end. There are on aver-

72 iteratively improving prosody

age more than two occurrences of words in this set in each utterance
of the data.

Incorrect stress marking makes the stress feature less powerful
for modeling, and when there are many that are different from the
talker’s delivery, the effect becomes more pronounced. Several func-
tion words are given 1 stress by the front end, which are never stressed
by SLT: an, and, are, as, at, be, but, can, had, have, it’s, its, of, or,
should, some, the, to, were, will, with, would, and one form of the
word “a”. In many other cases, a 1-stress appears in relatively few
cases compared with a 0-stress: am, could, for, has, in, is, on, up, was,
what.

Phonetic reduction occurs in some cases where there is no (or
“zero”) stress: ae and ah will often reduce to ax, and iy may reduced
to ih. It is fair to point out here that ix is not used in this phone set,
otherwise we would see it in comparable contexts.

7.3.1 Twiddling Phonetic Variation in Reducing Words

To help overcome the discrepancy between the default output of the
front-end and a particular performance, we will start by improving
the annotation of function words which are often reduced. Once we
have the re-annotated content, we can modify the pronunciations the
front-end produces to better match the annotated training data for
each voice.

First, we change the syllabification and segments of the reducible
words to remove stress and to use unreduced segments (no ax). With-
out a distribution of the actual pronunciations, this places the model
mass of these instances into their full-form vowels as a starting point.
Once this is build (build 4), we twiddle the pronunciations of the
reducible words to find which segmental sequences were given.

In principle, the approach is similar to getting better initial align-
ments by adding pronunciation variants to a speech decoder [76], but
there are some differences. For one thing, we are using the synthe-
sizer rather than the recognizer in the process. Beyond that, though,
we can also manipulate the stress annotation which may be absent
from recognizer output, and we can define general reduction pro-
cesses which can generate pronunciation as an alternative to preset
lists or pronunciations.

In the current implementation, we need to re-do the EHMM align-
ment step whenever the segment sequence changes, and recalculate
acoustic parameters that depend on segmental identity, such as the
mixed excitation strength coefficients. However, if we get all the seg-

7.3 reduction and pronunciation variation 73

word count pron from FE full form -stress ax/er alt

a 2 1 ey 1 ey 0 ey

a 213 0 ax 0 ah 0 ax

am 6 1 ae m 1 ae m 0 ae m 0 ax m

an 35 1 ae n 0 ae n 0 ax n

and 258 1 ae n d 0 ae n d 0 ax n d

are 37 1 aa r 0 aa r 0 er

as 37 1 ae z 0 ih z 0 ax z

at 51 1 ae t 0 ae t 0 ax t

be 29 1 b iy 0 b iy

because 1 0 b ih . 1 k ao z 0 b iy . 1 k ao z

before 13 0 b iy . 1 f ao r 0 b iy . 1 f ao r 0 b ih . 1 f ao r

between 7 0 b ih . 1 t w iy n 0 b iy . 1 t w iy n 0 b ih . 1 t w iy n

but 47 1 b ah t 0 b ah t 0 b ax t

can 11 1 k ae n 0 k ae n 0 k ax n

could 19 1 k uh d 1 k uh d 0 k uh d 0 k ax d

every 5 1 eh . 0 v er . 0 iy 1 eh v . r iy

for 67 1 f ao r 1 f ao r 0 f ao r 0 f er

from 37 1 f r ah m 0 f r ax m

had 93 1 hh ae d 0 h ae d 0 h ax d

has 9 1 hh ae z 1 h ae z 0 h ae z 0 h ax z

have 36 1 hh ae v 0 h ae v 0 h ax v

in 164 0 ih n 1 ih n 0 ih n

into 20 0 ih n . 1 t uw 1 ih n . 0 t uw 0 ih n . 0 t ax 1 ih n . 0 t ax

is 68 1 ih z 1 ih z 0 ih z

it’s 8 1 ih t s 0 ih t s

its 16 1 ih t s 0 ih t s

must 7 1 m ah s t 1 m ah s t 0 m ah s t

neither 1 1 n iy . 0 dh er 1 n ay . 0 dh er

of 215 1 ah v 0 ah v (?) 0 ax v

on 45 1 aa n 1 aa n 0 aa n

or 19 1 ao r 0 oa r 0 er

our 18 1 aw . 0 er 1 aw . er 0 aa r

should 7 1 sh uh d 0 sh ax d

some 12 1 s ah m 0 s ah m 0 s ax m

that 82 1 dh ae t 1 dh ae t 0 dh ae t 0 dh ax t

the 442 0 dh ax 0 dh iy 0 dh ax

this 50 1 dh ih s 1 dh ih s 0 dh ih s

to 178 0 t ax 0 t uw 0 t ax

up 17 1 ah p 1 ah p 0 ah p

was 225 1 w aa z 1 w aa z 0 w aa z 0 w ax z

were 58 0 w er 0 w er

what 25 1 w ah t 1 w ah t 0 w ah t 0 w ax t

will 15 1 w ih l 0 w ih l

with 93 1 w ih dh 0 w ih th

would 21 1 w uh d 0 w uh d

2819

Table 8: Function Word Pronunciations in SLT Arctic

74 iteratively improving prosody

mental changes out of the way, we can work in the prosodic twiddle
space without realigning. This seems reasonable – that the prosodic
differences have less fine-grained acoustic impact than they do on
duration, intensity, and fundamental frequency. Furthermore, the du-
ration of each segment is dependent on its phonemic name.

When the segmental material or syllable structure changes, we can
no longer compare segment features pairwise, which precludes the
use of segmental duration or error as metric. It is possible to go “up”
a level and measure the durations of the next higher stable level of
structure, such as the syllable or word, but this sacrifices precision in
relative timing. In early tests, state-level durations were more sensi-
tive to syllable stress and phrase boundary than aggregate durations.

Rather than using duration as the metric, we can use measures
which compare the entire acoustics. The measure used here is to
DTW align the synthetic waveform to the original, and calculate the
summed mel-scale cepstral distortion over the best alignment path.
In order to account for duration differences, we use the summed ab-
solute error rather than normalizing by the path length. This has the
added benefit of making the measures comparable in magnitude be-
tween utterances.

7.3 reduction and pronunciation variation 75

7.3.2 Twiddling Word Sense and Alternate Pronunciations

Analysis by synthesis can be used for overcoming other pronuncia-
tion errors as well: when there are more than one acceptable pronun-
ciation of a word, and to correct parsing errors where different word
senses can have different pronunciations.

For an example of variant pronunciations, the word ’neither’ may
be pronounced as ’1 n iy . 0 dh er’ or ’1 n ay . 0 dh er’ by different
talkers, or even the same talker in different utterances.

Word sense differences may be realized as lexical stress differences,
phonetic differences, or both. Table 9 shows the counts where the pre-
dicted pronunciation differed from the final annotated by talker in
Arctic. The counts were taken after iteratively adjusting the pronunci-
ations, which will be described in the next section.

There are very few of them overall. Of the 221 words with differing
pronunciations by word sense in the CMU dictionary1, 26 appear in
the Arctic prompts, and of these, only 6 words (aged, articulate, close,
fragments, object, use) are produced as errors. There are about 10,000

words in each of the Arctic talker databases.

However, it should be recognized that the same method used to
find model-based reduction differences can be extended to other dif-
ferences, including pronunciation and stress variation, in a unified
manner.

7.3.3 Iteratively Refining Pronunciations

The two sets of words, reducible and word sense variants, are com-
bined into a list of words that differ in segment sequence. Stress is left
as 0 on the reducible words with full-form vowels, and segmentally
contrastive word sense or pronunciation variants are included.

When we twiddle a pronunciation, the allowed moves are the pro-
nunciations of each word2. Each twiddle contains a pronunciation
change in exactly one word. For combination moves, where more

1 CMU Dictionary version 0.4 used in Festival US English. While this is a relatively
old version at the time of this writing, there is no more current one that is publicly
available for Festival.

2 For each word that has alternative pronunciations, a pronunciation change is consid-
ered one move.

76 iteratively improving prosody

word instances forms in corpus awb bdl clb jmk ksp rms slt

aged 1 2 0 1 1 1 1 0 0 4

ally 2 1 0 0 0 0 0 0 0 0

articulate 2 2 0 1 1 1 0 1 1 5

close 2 2 1 1 1 1 1 1 1 7

compound 2 1 0 0 0 0 0 0 0 0

conduct 2 1 0 0 0 0 0 0 0 0

defect 1 2 0 0 0 0 0 0 0 0

desert 1 2 0 0 0 0 0 0 0 0

does 4 1 0 0 0 0 0 0 0 0

excuse 2 2 0 0 0 0 0 0 0 0

fragment 1 2 0 0 0 0 0 0 0 0

fragments 1 2 1 1 1 1 1 1 1 7

house 2 1 0 0 0 0 0 0 0 0

import 1 2 0 0 0 0 0 0 0 0

insult 1 1 0 0 0 0 0 0 0 0

live 1 1 0 0 0 0 0 0 0 0

minute 5 1 0 0 0 0 0 0 0 0

mouth 3 1 0 0 0 0 0 0 0 0

object 1 1 1 1 1 1 1 1 1 7

produce 1 1 0 0 0 0 0 0 0 0

produces 1 1 0 0 0 0 0 0 0 0

progress 1 1 0 0 0 0 0 0 0 0

subject 1 1 0 0 0 0 0 0 0 0

tear 1 1 0 0 0 0 0 0 0 0

use 2 2 1 1 1 1 1 1 1 7

wind 1 1 0 0 0 0 0 0 0 0

43 36 4 6 6 6 5 5 5 37

Table 9: Word Sense Errors in Arctic by Talker

7.3 reduction and pronunciation variation 77

Label Signature

a0317 HHIY : waaz : ah : WAYZ : hhay-IY-nax]

a0317_w02v2 HHIY : waxz : ah : WAYZ : hhay-IY-nax]

a0317_w03v1 HHIY : waaz : ey : WAYZ : hhay-IY-nax]

a0317_w03v3 HHIY : waaz : ax : WAYZ : hhay-IY-nax]

Table 10: Example Edit Signatures for Three Iterations of

Pronunciation Twiddling

than one thing can change within a twiddle instance3, the cross-product
of variations are generated.

The computational complexity is linear in the number of words,
as each independently twiddled word is considered as a move can-
didate. Operating on one item in the sequence for evaluation avoids
exploring the entire space, which would otherwise be represented by
the product of the possible variations.

The edit signature which is appended to the original symbol name
consists of a word index and a value index. Table 10 shows an ex-
ample for slt_arctic_a0307, "He was a wise hyena", with phonetic
changes for two words ("was" and "a"). The original has no appended
edit signature.

We perform 10 iterations of pronunciation twiddling to refine the
annotations. In an iteration, each utterance is twiddled with respect
to the enumerated pronunciations, and the best is selected. The aggre-
gate of utterances then becomes the new prompts for alignment by
the EHMM process, and the voice is built again. In the next iteration,
the models reflect the impact of the annotation changes.

The changes in the objective function score by iteration is shown in
figure 21, and the proportion of utterances changed over the process
is shown in figure 22. Both of these go in the right direction or, at
worst, do not go much in the wrong direction.

However, for the metrics that Festival uses itself, the results are
not as good – because the objective function differs, and because the
models change during every iteration. The overall duration model
correlation and RMS error in terms of the internal metrics are shown
in figure 23 and figure 24.

It appears that the process at least causes no harm. The range of
the error changes is narrow.

3 The final syllable of a word may change in stress value, and the break value at the
end of the word may change within a single twiddle. This does not happen when
performing pronunciation improvement, but appears later in iteratively improving
stress and break annotations.

78 iteratively improving prosody

Figure 21: Metric Error for 10 Iterations of mcep-Based EM Perturbation of
Function Word Pronunciation

Figure 22: Number of Changes over 10 Iterations of mcep-Based EM Pertur-
bation of Function Word Pronunciation

7.3 reduction and pronunciation variation 79

Figure 23: Duration Correlation for 10 Iterations of mcep-Based EM Pertur-
bation of Function Word Pronunciation

Figure 24: Duration Error for 10 Iterations of mcep-Based EM Perturbation
of Function Word Pronunciation

80 iteratively improving prosody

Figure 25: Mel-Cepstral Distortion for 10 Iterations of mcep-Based EM Per-
turbation of Function Word Pronunciation

Figure 26: F0 Error for 10 Iterations of mcep-Based EM Perturbation of Func-
tion Word Pronunciation

7.3 reduction and pronunciation variation 81

In figure 27, we can see the changes made to one utterance of the
AWB voice over the ten iterations. The word "But" loses its stress and
changes /ah/ to the phonetically reduced /ax/; a similar effect oc-
curs on "am" and "at". For "of", /ah/ becomes /ax/. And for the word
"resources", the stress is moved due to a word sense or pronunciation
variant.

Figure 27: Function Word Pronunciation Twiddle Changes over 10 Iterations
for awb_arctic_a0415. Colored changes are textual differences in
the strings and may not phonemes, as in /ax/ vs /ah/.

7.3.4 Improving Reduction Prediction from Twiddled Pronunciations

The procedure ran for ten iterations, we count how many times each
pronunciation appears and make a set of default pronunciations by
voice using the most likely pronunciation. This could be improved by
building word-level decision trees, one for each word [76], but this
first approximation is already an improvement over the stock front-
end.

A new default reduction pronunciation set is then produced by
voting across the seven arctic voices, which is used in the absence of
a voice-specific list.

82 iteratively improving prosody

7.4 twiddling prosody

7.4.1 Exploring the Space of Signatures

The initial signature is produced given the contents of baseline utter-
ances, by walking the KRG relations using feature paths and func-
tions.

If we assume that some parts of an utterance are fixed (immutable),
then the signature can be used to compare two renditions of an utter-
ance, and string comparisons can illuminate the differences.

YUW : wer : ehn-GEYJHD]

yuw : wer : ehn-GEYJHD]

YUW / wer : ehn-GEYJHD]

yuw : WER / ehn-geyjhd]

The last signature in the example above shows a "phrase" which
has no primary stress. The signature does not impose constraints
on the structure; it reflects the annotations in the utterance structure.
While this may be ill-formed with respect to a prescribed definition
of what is possible in a phrase, the signature is agnostic about it. We
experimented with adding constraints in processing which disallow
variations with model violations, but found that it was best to impose
these after searching the space, as sometimes annotations will assume
an “invalid” configuration while iterating towards a better marking.

For Arctic awb, there are around 1138 prompts in the baseline, with
10,010 words and 14,156 syllables. Without introducing constraints,
the size of the space of possible prosodic signatures is 210010× 314156

– each syllable may be strong or weak, and each word may have 3

boundary types. This number is incomprehensibly large. It would
take far too long to evaluate every possible configuration for the
whole database.

To constrain the search, we assume that small, incremental changes
may be made to the signature which result in a lower error score
than the original, in EM style. We assume that there is enough data
and accuracy in the initial set of signatures that will induce some
regularity in the prosodic models for the features we are looking at,
which may not be the case.

Given an initial signature for an utterance, we can perturb the signa-
ture with small changes and resynthesize the utterance. This oppor-
tunistic, gradient approach greatly reduces the search space: rather
than 2|Syllables| × 3|Words|, we have something that is effectively lin-
ear in the number of words and/or syllables at each iteration of EM.

7.4 twiddling prosody 83

We can place some constraints on the signatures, to help conver-
gence and to avoid wandering or using symbols in unexpected ways.

• Every phrase must have at least one strong syllable in it.

• Phrase boundaries followed by silence may not be completely
deleted.

• The final boundary remains a major break boundary.

• Words and Syllables may not change number or constituency
(signature is the same length).

• No phonetically reduced vowel pronunciation such as /ax/ may
receive a 1-stress.

A move may involve flipping the strength of a syllable or changing
the word boundary status. However, we found that leaving these as
independent moves, where the system may take one or the other, led
to a local maximum that made it hard to move over. Instead, the
possible moves are:

• Any non-word-final syllable may be flipped (2× |Syllable|)

• Word-final syllable moves are all possible stress × boundary
(2× 3)

In addition to these basic moves, we added the ability to move
stresses and phrases. While the general case would allow moving
more than one unit away, we restrict these to a single swap and rely
on the insertion and deletion moves to account for more distal swaps.

• Adjacent 0 / 1 or 1 / 0 stresses may be swapped

• Adjacent nonbreak / break or break / nonbreak may be swapped

In order to keep the complexity down, we perform alternating mim-
imization over a sequence of conditions. In some configurations, only
the function word stress is considered; or only stress in content words;
or in both; or in both with boundary. It is also optional whether or
not to use validation constraints for each step, or apply them at the
end, allowing for ill-formed phrases in the intermediate search. For
this work, we performed function word pronunciation improvement
first, then improve the stress values of the function words. Finally, we
improve stress and phrase breaking jointly over the corpus.

The edit signature for prosodic twiddles consists initially of a word
index which is being affected. The next symbol is either a P, s or x,
indicating whether it is a bare phrase move (P) or involves a syllable
move (s or x). If it is a P, it is a swap move, and it is followed by
a two-digit phrase index and then a single digit encoding 0 or 1 for

84 iteratively improving prosody

Label Signature

a0317 w|w:w:w:SSw]

a0317_w01P010px w]w:w:w:SSw]

a0317_w01P011px S]w:w:w:SSw]

a0317_w01s010p0 w:w:w:w:SSw]

a0317_w01s011 S|w:w:w:SSw]

a0317_w01s011p0 S:w:w:w:SSw]

a0317_w02s010p1 w|w|w:w:SSw]

a0317_w02s011 w|S:w:w:SSw]

a0317_w02s011p1 w|S|w:w:SSw]

a0317_w03s010p1 w|w:w|w:SSw]

a0317_w03s011 w|w:S:w:SSw]

a0317_w03s011p1 w|w:S|w:SSw]

a0317_w04s010p1 w|w:w:w|SSw]

a0317_w04s011 w|w:w:S:SSw]

a0317_w04s011p1 w|w:w:S|SSw]

a0317_w05s010 w|w:w:w:wSw]

a0317_w05s020 w|w:w:w:Sww]

Table 11: Example Prosodic Twiddle Edit and Signatures

left and right respectively, followed by the letters ’px’ indicating the
swap. If the character after the word index is an s, it is followed by
a two-digit syllable index and then a digit for the new stress value
of the symbol; if it is an x, then two syllables are swapped, and it is
followed by the syllable index and the new stress value at the index
(the other syllable takes the opposite label). Finally, when the final
syllable is twiddled, it may also have a phrase change, indicated by a
p and the new break level.

An example of edit and prosodic signatures for twiddles of rms_arctic_a0317
is shown in figure 11. This is the same text as the pronunciation
prompt ("He was a wise hyena").

7.4.2 State Duration Objective Function for Prosodic Twiddles

We use RMS state z-scored duration error as once objective function
to evaluate twiddles. Festival/FestVox uses z-score normalized state
durations in prediction and when reporting correlation and error,
but other authors have suggested that log duration may be appro-
priate because they look more like Poisson than Gaussian distribu-
tions, bounded from below. However, state durations are very short
and highly quantized into 5ms frames in FestVox. There is an over-

7.4 twiddling prosody 85

abundance of 1-frame states, but the rest looks pretty Gaussian, as
figure 28 shows for distribution of state 2 durations (excluding states
1 and 3 of a three-state model, and excluding silence or pause seg-
ments). This is likely due to assumptions of state-level models in the
EHMM alignment step.

Figure 28: Distribution of 2nd State Durations for AWB Arctic

Figure 29 shows correlation improvements for all Arctic voices over
33 iterations of perturbation of function word stress alone using only
state-based duration as the objective function. While the first few iter-
ations of EM may not improve the resulting model, subsequent passes
result in an upward trend overall. Working with only function words
reduces the size of the search space, so builds may go more quickly. It
also seems reasonable insofar as function words are often mislabeled
based on reduction models in the initial front end output.

In figure 30, we have 11 iterations of stress perturbation over all
words, function and content. The curves are bumpier, but the best im-
provements in 11 iterations are already better then 33 of the function
words alone.

When we perturb everything at once, things move up quickly, but
the first few iterations are volatile, as in figure 31.

Table 12 shows an example of changes in the prosodic signature
over 8 iterations of EM over analysis by synthesis. The utterance is
awb_arctic_a0293, “The weeks had gone by, and no overt acts had
been attempted.” Note that the prompt identifiers do not always cor-
respond across data sets in Arctic; awb is particularly different from
the rest. Each line represents the best “move” for that iteration. Some-
times nothing is changed.

86 iteratively improving prosody

Figure 29: Correlation Changes over Arctic Voices for 33 Iterations of
Duration-Based EM Perturbation of Function Word Stress

Figure 30: Correlation Changes for 11 Iterations of Duration-Based All Word
Stress Perturbation

Raw numbers for RMSE and correlation changes per iteration for
each voice are given in Appendix A for the state-duration based ob-
jective function.

7.4 twiddling prosody 87

Figure 31: Correlation Changes for 4 Iterations of Duration-Based All Word
Stress and Boundary

N Signature

0 w:S:S:S:S:S:S:wS:S:S:S:wSw]

1 w:S:S:S:S|S:S:wS:S|S:S:wSw]

2 w:S:S:S:S|S:S:wS:S|S:S:wSw]

3 w:S:S:S:S|S:S:wS:S|w:S:wSw]

4 w:S:S:S:S|S:w:wS:S|w:S:wSw]

5 w:S:w:S:S|S:w:wS:S|w:S:wSw]

6 w:S:w:S:S|S:w:wS:S|w:S:wSw]

7 w:S:w:S:S|S:S:wS:S|w:S:wSw]

8 w:S:w:S:S|w:S:wS:S|w:S:wSw]

Table 12: Example of Iterative Signature Changes

7.4.3 State Duration Evaluation on Hand-Corrected Data

There are many alignment errors in the initial segment labels. For
this experiment, we do the same 3 builds as the initial set up, but
then we hand-correct the most errorful 5%, in terms of duration error.
Then we rebuild, and evaluate these again, removing the very bad
alignments. There were only a few (< 5) really horrible alignments for
each voices. As part of the annotation, the /q/ symbol is introduced
for glottalization between segments.

The error rate improves more smoothly over time with respect to
the same state-based duration evaluation function when the segmen-

88 iteratively improving prosody

tal identity is more correct overall, and the few worst alignments are
removed. This shows that prosodic twiddling is improved when the
segment annotation quality is improved.

Figure 32: Duration Correlation Changes for 12 Iterations of Duration-Based
All Word Stress Twiddling on Partially Hand-Corrected Data

Figure 33: Duration RMSE Changes for 12 Iterations of Duration-Based All
Word Stress Twiddling on Partially Hand-Corrected Data

7.4.4 Combined F0, C0/C1, and Duration Evaluation Function

The last form of objective function for evaluation is the most compli-
cated. Rather than using a single measure, such as path-DTW MCD
or state-based duration, we construct a function which incorporates

7.4 twiddling prosody 89

F0, C0/C1, and duration, which correspond to the classically defined
correlates of stress [12] [11]. Because duration is one of the measures,
this can only be applied after the segments and syllable structure
have been fixed. The changes are to the prosodic signature.

F0 error is calculated using RMS error over DTW of the log fun-
damental frequency, subtracting off the baseline as Silverman [40]
proposed in order to keep the dynamic range of errors similar across
talkers and to normalize across speaking range. We truncate the mel-
cepstral coefficients and keep only C0 and C1, corresponding to log
energy and spectral tilt, respectively. Distortion for these is modeled
in the same manner as the mel-cepstral DTW path score before. Du-
ration error is calculated as before.

We twiddle the entire corpus for each talker, and then collect the
error statistics for each feature. The error distributions are used to
normalize each measure into a z score, which is equivalent to a unit
variance Gaussian with mean 0. The measures are then combined
using euclidean distance to create a single measure. In the absence of
other information, we treat the combination as a diagonal covariance
matrix.

The motivation for this measure is to avoid favoring any single
dimension during optimization, and instead to try to simultaneously
satisfy each of the classical correlates of stress simultaneously.

We also removed phrase well-formedness constraints, because we
found that it was useful for the algorithm to move through ill-formed
states on the way to a final improvement, which we could force to
well-formedness at the end.

7.4.4.1 Twiddling All Utterances with Combined Score

Initially, we twiddled content word stress and phrasing as before, us-
ing the combined evaluation metric to chose the best twiddles for
each utterance. The process takes on the order of 3 hours per build
despite parallelization. For comparison, a stock build takes less than
an hour on the base machine.4

Duration correlation using Festival’s usual metrics are shown in
figure 36, and RMS duration error in figure 35. Correlation moves in
the right direction again.

For the bdl voice, the mel-cepstral distortion as measured by the
usual FestVox metric improves, but the F0 bounces around, not con-
vincingly improving. The improvement on the MCD is 0.03, which is
a perceptible improvement according to [84]; small, but this is only 5

4 3.5 GHz 6-Core Intel Xeon E5 running Mac OS X 10.x

90 iteratively improving prosody

Figure 34: Duration Correlation Changes for 5 Iterations of Combined Con-
tent Word Twiddling

Figure 35: Duration RMS Error Changes for 5 Iterations of Combined Con-
tent Word Twiddling

iterations. Not all voices follow this pattern over the 5 iterations, but
the overall trend is toward improvement for all measures.

7.4 twiddling prosody 91

Figure 36: Duration Correlation for 5 Iterations of Combined Content Word
Twiddling

Figure 37: Duration Error for 5 Iterations of Combined Content Word Twid-
dling

92 iteratively improving prosody

Figure 38: Mel-Cepstral Distortion for 5 Iterations of Combined Content
Word Twiddling

Figure 39: F0 Error for 5 Iterations of Combined Content Word Twiddling

7.4 twiddling prosody 93

Figure 40: Metric Error for 5 Iterations of Combined Content Word Twid-
dling

Figure 41: Number of Changes over 5 Iterations of Combined Content Word
Twiddling

94 iteratively improving prosody

7.4.4.2 Ranked Largest Error Subset Twiddling with Combined Score

In order make progress more quickly, we implemented a strategy of
rank-ordering the utterances by the resynthesis error of the untwid-
dled original, and taking the 50% with largest error and twiddling
them. This cut the build time nearly in half. The strategy arose when
building another corpus, and audio book rendition of Black Beauty
with nearly 6,000 utterances. With some 30 twiddles per utterance,
this was taking too long to produce and evaluate, and so we adopted
this utilitarian approach.

Since the overall number of twiddles was reduced, it was easy to
twiddle all words, stress and phrasing.

Figure 42: Duration Correlation for 10 Iterations for 7 Voices

7.4.4.3 Comparing Results from Metrics

In this experiment, we use the SLT Arctic data and twiddle it for 15

iterations, using four different metrics: F0, C0/C1, duration ("dur"),
and the combined metric ("combi").

7.4 twiddling prosody 95

Figure 43: Duration Error for 10 Iterations for 7 Voices

Figure 44: Mel-Cepstral Distortion for 10 Iterations for 7 Voices

96 iteratively improving prosody

Figure 45: F0 Error for 10 Iterations for 7 Voices

Figure 46: Metric Error for 10 Iterations for 7 Voices

7.4 twiddling prosody 97

Figure 47: Number of Changes over 10 Iterations for 7 Voices

Figure 48: Duration Correlation for 15 Iterations of SLT With Four Metrics

98 iteratively improving prosody

Figure 49: Duration Error for 15 Iterations of SLT With Four Metrics

Figure 50: Mel-Cepstral Distortion for 15 Iterations of SLT With Four Metrics

7.4 twiddling prosody 99

Figure 51: F0 Error for 15 Iterations of SLT With Four Metrics

Figure 52: Metric Error for 15 Iterations of SLT With Four Metrics

100 iteratively improving prosody

Figure 53: Number of Changes over 15 Iterations of SLT With Four Metrics

7.5 recap of em analysis by synthesis procedure 101

7.5 recap of em analysis by synthesis procedure

The process is similar, differing generally in choosing the objective
function to apply, and what to twiddle in the utterances.

7.5.1 Stock Voice Setup

• Set up stock voice build

• Build prompts and prompt labels

• Align using EHMM with short silence insertion

• Remove short silences under 80 ms

• Build utterances from initial prompts and prompt labels

• Introduce phrase breaks for silences over 20 ms

• Extract base signal features

• Build clustergen and duration models

• Collect metrics for HRG baseline

7.5.2 Baseline Voice Build

• Resynthesize utterances (clustergen)

• Use resynthesized for new prompts, prompt labels

• Align segments using EM without short silence insertion

• Build utterances with new representation

102 iteratively improving prosody

• Convert to KRG build (decorate, change clustergen and dura-
tion features)

• Extract dependent signal features

• Build clustergen and duration models

• Collect metrics for KRG baseline

7.5.3 EM Iterations (Epsilon Scattering)

Iterate:

• Resynthesize utterances

• Order decreasing by objective function

• Take top N or proportion (perhaps all)

• Twiddle the selected utterances

• Take best twiddles for each selected utterance

• If segmental: Copy into prompts and prompt labels and realign,
remake build utts

• If prosodic: Copy into build utterances

• Extract dependent signal features

• Build clustergen and duration models

• Collect metrics

8
S U B J E C T I V E E VA L U AT I O N

While the objective measures of F0 error, Mel-Cepstral Distortion, and
duration error have been reported in Chapter 7, subjective listening
tests were also carried out.

TestVox [93] was used in each experiment and deployed to Amazon
Mechanical Turk (MTurk) as Human Intelligence tasks.

8.1 reducible words

In this evaluation, we compared user preference for voices after the
reducible words update, with those from the baseline without it. We
take a stock voice, and a voice after phonetic iterative updates, and
present pairs of stimuli to listers as an A/B test to determine which
sounded better, with an option to choose neither.

The function words were iteratively updated using the analysis by
synthesis Expectation Maximization procedure for pronunciations as
in Section 7.3.3 over 10 epochs. The most common pronunciation was
then used as the pronunciation for each voice.

Data was selected from additional “nice” Arctic data that was not
included in the voice databases. The SLT voice was used in this test,
with 16 unique workers and 300 total observations.

The results are presented in Table 13. The updated reduced pro-
nunciations were mildly preferred, 44% to 40%, with 16% declared
undecideable.

Preference Count Percentage

Baseline 120 40%

Updated 133 44%

Neither 47 16%

Table 13: Baseline vs. Iterated Function Word Reduction

103

104 subjective evaluation

Preference Count Percentage

Baseline 177 55%

Updated 106 33%

Neither 116 37%

Table 14: Baseline vs. Iterated Prosodic Update

8.2 iterated prosodic improvement

For this evaluation, we perform an A/B test again (with option for
“neither”) using held-out Arctic sentences using MTurk. The baseline
voice is compared against a voice iteratively updated over 5 iterations
using the combined objective function as in section 7.4.

The baseline prediction was used for both sets of samples; that
is, the stock Festival symbolic prosody placement as trained on the
Boston University Radio data (talker f2b) for break, stress and accent
placement. No changes in prediction based on the updated, iterated
corpus.

For this test, there were 24 unique workers, with 320 observations
on the SLT voice.

The results are shown in Table 14. The listeners favor the baseline
55% to updated 33%, with 37% judged equal.

While this was not the expected results, the train/test mismatch in
break, stress and accent prediction seems to have a had an effect on
preference.

8.3 limericks with established signatures

For this test, we use limericks from Lear’s "The Book of Nonsense"
[94].

The default Festival front end for US English text processing was
used to generate the initial signature, and then the Limerick signature
was edited by hand and imposed up the utterance. The signature-
imposed utterances were then re-synthesized by the baseline synthe-
sis and the updated voices, using the same voice builds as in the
previous experiment.

Each Limerick was annotated with the traditional Limerick stress
phrase pattern of

8.4 comparing resynthesis of baseline and updated voices 105

Preference Count Percentage

Baseline 120 39%

Updated 147 47%

Neither 43 14%

Table 15: Results for Limerics, Baseline vs. Updated

1 w* S w* S w* S w*]

2 w* S w* S w* S w*]

3 w* S w* S w* /

5 w* S w* S w* /

4 w* S w* S w* S w*]

An example:

There was a Young Lady of Ryde,

Whose shoe-strings were seldom untied;

She purchased some clogs,

And some small spotty dogs,

And frequently walked about Ryde.

The signatures, before and after:

before S:w:w:S:Sw:w:S|S:Sw:w:Sw:wS|S:Sw:w:S|w:w:S:Sw:S|w:Sww:S:wS:S]

after w:S:w:w:Sw:w:S]w:Sw:w:Sw:wS]w:Sw:w:S|w:w:S:ww:S|w:Sww:S:ww:S]

Utterances were again compared in an A/B test, with 22 workers
and 310 total observations. The results are in Table 15.

Here, the preference shifts back to the updated voices. The prosodic
annotation is equally mismatched to the baseline and updated voices,
in that it is not tailored to either, but the updated voice is mildly pre-
ferred for Limericks with pre-defined break, stress, and accent place-
ment.

8.4 comparing resynthesis of baseline and updated voices

In order to work around the train/test mismatch in the prosodic anno-
tations between the stock voices and the prosodically updated voices,
we take the annotations of each and resynthesize them.

In this evaluation, we compared user preference for resynthesized
marked-up utterances, with those from the baseline without it. We

106 subjective evaluation

Preference Count Percentage

Baseline 218 44%

Updated 245 49%

Neither 37 7%

Table 16: Comparing Baseline and Updated Resynthesis to Natural Speech

take a stock voice, and a voice after iterative prosodic updates, and
present pairs of stimuli to listers as an A/B test to determine which
sounded better, with an option to choose neither.

The results are in Table 16.

Again we see a slight preference for the updated voices. This ap-
pears to support the hypothesis of a train-test mismatch between
the front-end and the results of the process, and implies that if the
new format were produced or predicted, the synthesis would be im-
proved.

9
C O N C L U S I O N

9.1 discussion

We started by searching the graph neighborhoods to discover and
enumerate features automatically. This led to a reformulation of the
utterance structure to overcome some of the shortcomings of the tradi-
tional FestVox/Festival structures. Finally, we used the new, smoother
representations to automatically improve annotation and, by exten-
sion, improve prosodic models and the realization of prosodic fea-
tures for authoring.

The approach we have taken here opens the door to much more ex-
ploration of the synthesis model itself, while lowering the complexity
of use. With the KRG-style representation, many of the opaque and
unexpected issues of the HRG fall away: we can visualize the graphs,
inspect them by type, have more general relations, and automatically
perform some of the tasks.

Feature enumeration, syntagmatic structure extraction, and auto-
matic exploration of the graph structure reduce the complexity of
creating new relations. This should make it easier to explore new
structures, and build new languages quickly.

9.1.1 KRG: Isomorphically Reformulating the HRG

We found that the conventions and structures used in FestVox voice
builds and Festival are quite powerful, but have limitations for auto-
mated discovery and iteration improvement. In particular, there are
many surprises in temporal ordering, irregularities of type coding,
and no mechanism for multiple parentage.

With some reformulation, the KRG introduces nodes in the ex-
pected order (good for neighborhood graph search), object type en-
coding, reduced relations to two basic types (simple and bipartite),
and introduced syntagmatic relations (Foot, ONC) and syntagmatic
features (position in parent, number of children) to replace some of
the otherwise one-off feature functions (ssyl_in, ssyl_out, pos_in_syll,
is_final, etc.).

107

108 conclusion

These changes made it easier to perform some of the automated
processes outlined, and also make it much easier to add and remove
relationships and features in the overall modeling, which simplifies
experimentation.

9.1.2 Value of the Inductive Graph

The graph of an HRG or KRG leads to a structure which can be deco-
rated and searched as an entire graph, in contrast to a list of features
alone. With the inductive graph approach, a new graph is always
well-formed and built from another graph (initially, the empty graph)
using well-defined operations. Because of this, it can be examined,
queried and displayed consistently.

By incrementally adding relations, we preserve all the linguistic
information at each step if we want to – it can be stripped to the
necessary final parts as in FLite, but we have a complete structure
that is isomorphic to the run-time objects in the synthesis system.

As a well-formed graph, it also lends itself to graph-oriented tools
like GraphViz, which was very helpful for visualization.

Finally, any fully-rooted tree structure, such as MaryXML, can be
trivially and losslessly converted to a graph, but the converse is not
true. Thus, the XML-based formats are a topological subset of the
HRG-like graph formalism, and the techniques outlined here can be
applied to them easily.

9.1.3 rpath and Feature Paths

Feature paths have always been one of the great strengths of Festival:
they provide a method of accessing relative nodes and features in the
graph without any re-coding of the underlying system. With rpath,
we extend the original and results of paths to node sets, similar to
XPath, which makes it very easy to query and subset the data.

Feature paths in Festival are used to get to features, but from a
programmatic perspective, it is often useful to work on sets. It is con-
venient, for instance, to select all words by using a call (in python)

utt.find(’R:Word’)

When gathering statistics, we can count them and find distribu-
tions of their feature values. When we are exploring the data, we can
easily query for a particular word and see its features. And when

9.1 discussion 109

twiddling, we can use the same path mechanism to find the nodes
we are twiddling and operate on them.

While a path traversal expression language is syntactic sugar, it
made life better for this developer.

9.1.4 HRG as API

One important aspect of the HRG style is that it can be used as an
Application Programmer Interface as much as an interchange format.
The utterance structure is passed from module to module, and each
reads the graph and decorates it (as an inductive graph).

However, since Festival was really only made to work with itself,
many of the feature values are not written into the utterance itself,
but maintained in memory or computed dynamically. This makes the
operations opaque and resistant to modification of the types we have
done here.

If all the features that are used are serialized into the HRG, it be-
comes easier to allow other operations to observe, act on, and modify
the contents. Another great benefit is that systems can be compared
directly based on their inputs and outputs, deterministically, which
allows for improved modularization and testing. As an HRG can al-
ways be turned into a KRG and back, there is no loss of fidelity or
generality in the representation, and internal processing of a KRG is
more efficient due to reduced indirection and relation simplification.

With the HRG as an API, we can compare how two signal gener-
ation systems perform, given precisely the same input. This has not
been possible in the Blizzard challenge, but could be if a challenge
included using the HRG as an API.

9.1.5 Importance of Segmental Alignment

The iterative improvement model depends strongly on the quality of
segmental alignments. All duration measures are derived from the
segment boundaries, and the acoustic measures are created and pre-
dicted with respect to them. For this work, we relied on the EHMM
utility in FestVox for alignments; this was enough to prove the con-
cept, but we should have the best labeling we can in order to do
iterative EM-based modeling of the prosody and segments.

When we hand corrected the words of 5% of the utterances, the
improvements were more consistent and moved more smoothly in
the right directions (getting better). Without the hand correction, we

110 conclusion

get more oscillation in the modeling: the overall scores go the right
way, then the wrong way, and back and forth, though generally going
in the right direction.

We could also do away with the segmental pronunciation iterations
if we used a better aligner, which allowed for pronunciation varia-
tions in the alignments, which EHMM does not.

While all this did get working, there were several quirks in the
free software versions which had to be overcome. The FestVox builds
have surprising hidden dependencies and small errors in the code
which compound to trap for the unwary developer. One that stands
out is the coupling between the alignment process and the creation
of the utterances, which had to be re-created nearly in entirety in
order to modify the data CLUSTERGEN operates upon. This could
be streamlined quite a bit.

9.1.6 Glottalization

In the hand-correction phase, it became clear that there was a lot of
glottalization going on which was not being modeled well. A /q/
unit was introduced for these, but since we only updated the 5% of
the data, it wasn’t extended through the whole corpus. But the effects
were quite large and consistent across talkers: introducing glottaliza-
tion especially before strong vowels with null onset, such as "The
Eighteenth Amendment" /dh iy0 : q ey1 t iy0 n th : ax0 . m eh1 n
d . m ax nt/. Furthermore, the front-end does not predict glottalized
forms or a glottal segment like /q/. It is not generated at synthesis
time, and the units with and without glottalization are all lumped
together, degrading the statistics.

9.1.7 Accent Group vs. Phrase

Especially as we iterated further with the combined F0, C0/C1, and
duration metric, more and more minor breaks were introduced, to
the point where things start looking more like accent groups than
phrases. It seems as if the three levels of break were not sufficient: we
should go for four, as ToBI suggests, in order to capture these levels.

While it may be useful to represent break level is a continuous
rather than discrete value, it is useful to quantize it and treat it as
symbolic for iteration operations.

9.1 discussion 111

9.1.8 Nuclear or Very Heavy Prominence

With the two values of stress here, we are also missing a notion of ex-
tra heavy or nuclear phrase accent. Because of this, there is a tendency
for the system to compensate by using phrase breaks to increase du-
ration. For example, if we were to have

I’m THE Easter Bunny

the system would begin with the signature

AYM dhiy IYster BAHniy]

and would quickly move the stresses:

aym DHIY iyster bahniy]

But, simply changing the word "the" to a strong syllable doesn’t
fully account for the extra duration and intensity of the emphatic
stress, and so it will add a break after:

aym DHIY / iyster bahniy]

This is also not really enough, so it raises break value after it to
a large break, and may even place a boundary before the emphatic
stress which acts like pre-lengthening:

aym / DHIY] iyster bahniy]

And the algorithm says "I did what you told me, boss!"

These marks are not technically wrong. The marks were annotated
this way, and a model trained across the aggregate. It is likely to
improve the synthesis, but it no longer corresponds to our notions
of phrasing. This compensation related to having only three levels of
break as well, but in a more oblique manner.

9.1.9 Unsupervised vs. Supervised Learning

One way to work around the issues of poor alignments, phrase level
issues and stress level issues is to use the approach for supervised

112 conclusion

incremental improvement, rather than operating completely automat-
ically. This would allow the system to improve more in line with our
intuitions about the mark-up.

This could work by allowing the system to propose changes to a
person who would decide whether or not to accept the correction,
rather than just taking them all. The work can be prioritized in terms
of resynthesis error, similar to the automatic fashion – the ranked re-
sults can be given the same way, It could be possible then to supervise
correction of the worst prosodic errors semi-automatically.

9.1.10 Ranking and Tractability

Speaking of ranking, one of the apparent results was that ranking
the utterances by resynthesis errors in order to choose those with
the largest error did not help smooth out the metrics or speed con-
vergence. We had expected ranking and taking the worst to provide
a sort of smoothing effect, to prevent oscillations in the measured
objective function, but it did not. This may have been due to segmen-
tation or other errors, but it was a bit of a surprise. Better results
were achieved by twiddling everything and take the best for every
utterance. However, ranking did speed up the overall build process
for each iteration.

9.1.11 Subsetting

Subsetting the twiddle effects, however was effective. It was very use-
ful to operate on either function or content words, and work on either
stress or phrasing for some iterations.

For example, it was effective to twiddle stress in function words
alone, irrespective of potential phrase boundary changes. This helped
regularize the data safely, because function words are likely to be
reduced and unlikely to be followed by a break in English.

In later iterations, we can operate over everything with less risk
if the easy cases have been corrected and the model improved first.
While this ordering seemed sensible for English, we did not compare
the result in a factorial design to permute the experimental design1.
In future work in other languages, subsetting and ordering should
depend on what operations can be done to improve the model safely
before opening up unbounded gradient descent.

1 For example, compare twiddling all of them for all steps vs. using this order.

9.1 discussion 113

9.1.12 Inducing Tone Type

We did not look at different tone types, despite extensive discussion
of ToBI in Chapter 2. We could have tried to induce these, but instead
assumed that the default ToBI labels produced by Festival were not
particularly accurate. We did start some work on the Boston Univer-
sity Radio Corpus (BURNC), which has annotated ToBI labels, but
there are some structural problems in converting the annotation data
into Festival (most noticeably, different pronunciations and reduc-
tions in the lexicon, stop closures v. no stop closures, differing num-
bers of break types, and differing tone coding). That said, it should be
possible to perform iterative improvement from a sensible baseline.

For the case of Arctic, there are few questions and almost no low
pitch accents. The utterances are relatively neutral, without a lot of
tonal variation. Perhaps all of them are something like /L+H* H*
(H* H* ...) L- L%/. Due to this regularity, there wasn’t much tonal
difference to capture, except perhaps downstep.

Tone type be more interesting with the "Black Beauty" audio book
experiment, but we haven’t explored this fully.

9.1.13 Authoring TTS Prompts for Recording

One of the underlying issues with the Arctic databases is that the
talkers delivered them with no mark-up, setup or "back story" to each
prompt. That is both a strength and a weakness: on the one hand,
they are delivered naturalistically, without too much contrivance; on
the other, the data is not annotated to reflect this, and the talkers
delivered quite varied versions of the same prompts (emphasizing
different words, different phrasing, differing pronunciations).

In the LSAF0 work, we carefully made the prompt list and annota-
tions to systematically explore the space, but at the expense of natu-
ralness.

It may be worthwhile to give guidance somewhere in between
these, such as the text and the segmental signatures as we have here.
A corpus is made, the default signatures produced and hand-edited
to make sensible deliveries, and then the prompts spoken by the voice
talent for recording. The annotation is taken as a baseline for model-
ing, and the iterative method used to check if there were notable
deviations from the script.

114 conclusion

9.1.14 Authoring With Synthesis

As a result of this work, after improving the annotation of the database,
an author crafting synthetic output from mark-up should be able to
get more predictable and reliable expressive control from stress and
break placement. Another use for the text-to-speech output author
is to generate a palette of possibilities from the twiddles, which can
each be listened to – and, similarly to the iterative system, the one
closest to the author’s intent can be chosen.

The signature also lends itself to graphical tools, which could lead
to future synthetic authoring environments where the values can eas-
ily be altered. When the signature is changed, there are topological
changes to the graph behind it, but they are factored away in the
presentation and editing.

9.2 future work

There are many possibilities for future work.

9.2.1 Breaks and Stress from Annotated Results

While we got quite far in automated improvement and discovery, we
did not complete the process to convergence for a very large corpus
and create break and stress prediction from that. It is a natural ex-
tension of this work to create new, trained models that have a close
match to the contents of the database and annotation system.

While not every annotation produced by the system fits with intu-
ition, the aggregate is regularized across the data, and so predicting
the same sort and placement of features should result in improve-
ment.

We also did not look at the impact on meaning and discourse on
the placement of breaks and stress, but this is made possible with
an iterative prosodic annotation improvement system. After a large
corpus is regularized, it may be used to train prosodic realization
models from pragmatic and discourse relations.

9.2.2 More Stress and Phrase Values

Since we suffered from not having a stress level to indicate emphasis,
we can go to three or more stress values to explore that space; the

9.2 future work 115

same can be said for breaks. With three breaks, the combined eval-
uation metric favored accent groups over phrases. We will explore
enhancing the annotation scheme to include more levels of each, to
see if we can recover better overall structures.

9.2.3 Optimize Independent Modal Features for F0, C0/C1, Duration

Conflating the combined measures into one does produce a simple
annotation set, but it may be useful to model the separate pieces in-
dependently, and create an annotation for each – intonation events,
intensity events, duration events. To do this, we can use the same
method but using each error function to iteratively produce its own
annotation.

There are cases where intensity is increased without a pitch accent,
and vice versa. We can try to annotate and predict them, comparing
the separated results with the combined. This may also lead to more
expressive control for authoring synthetic speech in flexible environ-
ment2.

9.2.4 Other Languages, Different Styles

It will be interesting to see how things work in languages that have
markedly different prosodic organization from English, such as Span-
ish, French, and Mandarin Chinese. This may help toward creating a
new theory of organization, perhaps with some universal underpin-
nings.

9.2.5 Apply to Other Synthesizers

Since Festival is only one synthesizer and we have proposed a gen-
eral method, we can try the same techniques by converting between
some existing XML-style systems and the HRG to run the same exper-
iments, and re-construct the training data after improvements. This
will show that the method applies universally, and may lead to a
synthesizer-independent Twiddling Toolkit.

2 Rather than narrating the whole thing. If only one rendering is ever needed, it may
be better to record a performance. In practical use of text-to-speech, there are often
cases that are produced badly by default, and a method of sculpting the prosody
without getting into the parametric weeds is helpful.

116 conclusion

9.2.6 Supervised Improvement

As pointed out above, the method lends itself to an iterative super-
vised learning context. Rather than allow the system to work on its
own, we may produce an ordered set of possible "edits" to be ap-
proved by a human operator. We can explore how effective the order-
ing is (how much correction leads to how much improvement, when
ranked by error), to see often and when a person agrees with the sys-
tem, and to compare the final annotations and predictions between
the supervised and unsupervised conditions.

9.2.7 Tone Type Annotation

While we did not explore tone type annotations due to the corpora
and time limitations, this is another area we want to go into. However,
the default tone annotations from Festival do not give us a very good
starting point. Instead, we will try to start from a system like AuToBi,
and iteratively improve upon the results.

9.2.8 Annotating and Authoring Environment

A graphical tool to edit and compare twiddles will be extremely use-
ful. We can show these in a terminal, and using GraphViz, but the
process is not easy to directly manipulate. An editing tool which op-
erates over the features we have described could help both in anno-
tating data, and in producing synthetic output with increased expres-
siveness.

9.3 conclusion

We have shown a method for automatic exploration of linguistic struc-
tures, refactored a conventional representation to aid discovery, im-
proving the automatic annotation of prosody, and improving the re-
sulting synthesis quality. The techniques used in exploring the space
may also be used to modify the rendering of synthetic speech to
better match a desired performance and improve corpus annotation
broadly.

B I B L I O G R A P H Y

[1] G. Zeglin, A. Walsman, L. Herlant, Z. Zheng, Y. Guo, M. Koval,
K. Lenzo, H. J. Tay, P. Velagapudi, K. Correll, and S. Srinivasa,
“Herb’s sure thing: a rapid drama system for rehearsing and
performing live robot theater,” in IEEE Workshop on Advanced
Robotics and its Social Impacts, September 2014. (Cited on page 1.)

[2] M. Walker, A. Hunt, and D. Burnett, “Speech synthesis
markup language (SSML) version 1.0,” W3C, W3C Recommen-
dation, Sep. 2004, http://www.w3.org/TR/2004/REC-speech-
synthesis-20040907/. (Cited on page 1.)

[3] R. Sproat, A. Hunt, M. Ostendorf, P. Taylor, A. Black, K. Lenzo,
and M. Edgington, “Sable: A standard for tts markup,” in The
Third ESCA/COCOSDA Workshop (ETRW) on Speech Synthesis,
1998. (Cited on page 1.)

[4] F. Theatre, Don’t Crush that Dwarf, Hand Me the Pliers. Columbia,
1970. (Cited on page 5.)

[5] A. Black and K. Lenzo, “Building voices in the festival speech
synthesis system,” 2000. (Cited on pages 5 and 69.)

[6] ——, “Festvox: Building synthetic voices,” Language Technologies
Institute, Carnegie Mellon University, PA, USA, Tech. Rep, 2002.
(Cited on pages 5, 10, 29, 42, and 69.)

[7] A. Black, P. Taylor, R. Caley, R. Clark, K. Richmond, S. King,
V. Strom, and H. Zen, “The festival speech synthesis system, ver-
sion 1.4. 2,” Unpublished document available via http://www. cstr.
ed. ac. uk/projects/festival. html, 2001. (Cited on pages 5, 29, 41,
and 69.)

[8] A. W. Black and K. A. Lenzo, “Flite: a small fast run-time syn-
thesis engine,” in 4th ISCA Tutorial and Research Workshop (ITRW)
on Speech Synthesis, 2001. (Cited on page 5.)

[9] J. Kominek and A. W. Black, “The cmu arctic speech databases,”
Tech. Rep., 2004. (Cited on pages 5, 30, 41, and 67.)

[10] H. Bourlard, H. Hermansky, and N. Morgan, “Towards increas-
ing speech recognition error rates,” Speech communication, vol. 18,
no. 3, pp. 205–231, 1996. (Cited on page 6.)

117

118 bibliography

[11] I. Lehiste and G. E. Peterson, “Some basic considerations in
the analysis of intonation,” The Journal of the Acoustical Society
of America, vol. 33, p. 419, 1961. (Cited on pages 7 and 89.)

[12] I. Lehiste, “Suprasegmentals.” 1970. (Cited on pages 7 and 89.)

[13] D. R. Ladd, Intonational phonology. Cambridge University Press,
2008. (Cited on pages 7 and 16.)

[14] E. Moulines and F. Charpentier, “Pitch-synchronous waveform
processing techniques for text-to-speech synthesis using di-
phones,” Speech communication, vol. 9, no. 5, pp. 453–467, 1990.
(Cited on page 8.)

[15] H. Zen, T. Nose, T. Masuko, A. W. Black, and K. Tokuda, “The
hmm-based speech synthesis system (hts) version 2.0.” (Cited
on pages 8 and 10.)

[16] K. E. A. Silverman and J. Pierrehumbert, “The timing of pre-
nuclear high accents in english,” in Laboratory Phonology I: Be-
tween the Grammar and Physics of Speech, ser. Papers in Labora-
tory Phonology. Cambridge University Press, 1990, pp. 72–106.
(Cited on pages 8 and 14.)

[17] M. Liberman and A. Prince, “On stress and linguistic rhythm,”
Linguistic inquiry, vol. 8, no. 2, pp. 249–336, 1977. (Cited on
page 8.)

[18] J. R. Bellegarda and K. E. Silverman, “Improved duration model-
ing of english phonemes using a root sinusoidal transformation.”
in ICSLP, vol. 98, 1998, pp. 21–24. (Cited on page 8.)

[19] J. P. Van Santen, “Assignment of segmental duration in text-to-
speech synthesis,” Computer Speech & Language, vol. 8, no. 2, pp.
95–128, 1994. (Cited on pages 9 and 17.)

[20] C. Shih, W. Gu, and J. P. v. Santen, “Efficient adaptation of tts
duration model to new speakers,” in The Third ESCA/COCOSDA
Workshop (ETRW) on Speech Synthesis, 1998. (Cited on page 9.)

[21] A. W. Black, “ClusterGen: a statistical parametric synthesizer us-
ing trajectory modeling.” in INTERSPEECH, 2006. (Cited on
pages 9, 41, 43, and 69.)

[22] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, “Clas-
sification and regression trees,” 1998. (Cited on page 9.)

[23] A. W. Black and P. K. Muthukumar, “Random forests for
statistical speech synthesis,” in INTERSPEECH 2015, 16th
Annual Conference of the International Speech Communication
Association, Dresden, Germany, September 6-10, 2015, 2015, pp.

bibliography 119

1211–1215. [Online]. Available: http://www.isca-speech.org/
archive/interspeech_2015/i15_1211.html (Cited on page 9.)

[24] S. King, A. Black, P. Taylor, R. Caley, and R. Clark, “Edinburgh
speech tools library,” 2003. (Cited on pages 10, 29, and 69.)

[25] M. Halle and N. Chomsky, The sound pattern of English. Harper
& Row, 1968. (Cited on page 10.)

[26] W. N. Campbell and S. D. Isard, “Segment durations in a syllable
frame,” Journal of Phonetics, vol. 19, no. 1, pp. 37–47, 1991. (Cited
on page 10.)

[27] G. Bailly and B. Holm, “Sfc: a trainable prosodic model,” Speech
Communication, vol. 46, no. 3, pp. 348–364, 2005. (Cited on
page 10.)

[28] H. Zen, K. Tokuda, and A. W. Black, “Statistical parametric
speech synthesis,” Speech Communication, vol. 51, no. 11, pp.
1039–1064, 2009. (Cited on pages 10 and 41.)

[29] H. Zen, A. Senior, and M. Schuster, “Statistical parametric
speech synthesis using deep neural networks.” (Cited on
page 10.)

[30] J. B. Pierrehumbert, “The phonology and phonetics of english
intonation,” Ph.D. dissertation, Massachusetts Institute of Tech-
nology, 1980. (Cited on page 11.)

[31] K. E. Silverman, M. E. Beckman, J. F. Pitrelli, M. Ostendorf, C. W.
Wightman, P. Price, J. B. Pierrehumbert, and J. Hirschberg, “ToBI:
A standard for labeling English prosody.” in ICSLP, vol. 2. Banff:
International Conf. on Spoken Language Processing, 1992, pp.
867–870. (Cited on pages 12, 13, 20, and 51.)

[32] J. Pierrehumbert, “The meaning of intonational contours in
the interpretation of discourse janet pierrehumbert and julia
hirschberg,” Intentions in communications, p. 271, 1990. (Cited
on page 12.)

[33] A. Rosenberg, “Automatic detection and classification of
prosodic events,” Ph.D. dissertation, COLUMBIA UNIVERSITY,
2009. (Cited on page 12.)

[34] ——, “Autobi-a tool for automatic tobi annotation.” in INTER-
SPEECH, 2010, pp. 146–149. (Cited on page 12.)

[35] A. Maghbouleh, “Tobi accent type recognition,” ISSUES, vol. 3,
p. 1, 1998. (Cited on page 12.)

http://www.isca-speech.org/archive/interspeech_2015/i15_1211.html
http://www.isca-speech.org/archive/interspeech_2015/i15_1211.html

120 bibliography

[36] J. F. Pitrelli, M. E. Beckman, and J. Hirschberg, “Evaluation of
prosodic transcription labeling reliability in the tobi framework.”
in ICSLP, vol. 1, 1994, pp. 123–6. (Cited on page 12.)

[37] A. K. Syrdal and J. T. McGory, “Inter-transcriber reliability of
tobi prosodic labeling.” in INTERSPEECH, vol. 2000, 2000, pp.
235–238. (Cited on page 12.)

[38] M. Avanzi, A. Lacheret-Dujour, and B. Victorri, “A corpus-
based learning method for prominence detection in spontaneous
speech,” in Proceedings of Prosodic Prominence, Speech Prosody 2010
Satellite Workshop, Chicago, May 10th, 2010. (Cited on page 13.)

[39] C. Shih, “A declination model of mandarin chinese,” in Intona-
tion. Springer, 2000, pp. 243–268. (Cited on page 13.)

[40] K. E. A. Silverman, “The structure and processing of fundamen-
tal frequency contours,” Ph.D. dissertation, Cambridge Univer-
sity, 1987. (Cited on pages 13, 14, 15, 19, 24, and 89.)

[41] J. v. Santen and B. Möbius, “Modeling pitch accent curves,” in In-
tonation: Theory, Models and Applications, 1997. (Cited on pages 13,
17, 18, 19, and 67.)

[42] G. Bruce, “Models of intonation-from the lund horizon,” in Into-
nation: Theory, Models and Applications, 1997. (Cited on page 14.)

[43] S. Öhman, Word and sentence intonation: A quantitative model.
Speech Transmission Laboratory, Department of Speech Commu-
nication, Royal Institute of Technology, 1967. (Cited on pages 14

and 15.)

[44] J. Pierrehumbert and M. Beckman, “Japanese tone structure,”
Linguistic Inquiry Monographs, no. 15, pp. 1–282, 1988. (Cited on
page 15.)

[45] K. Dusterhoff and A. W. Black, “Generating f0 contours for
speech synthesis using the tilt intonation theory,” in Intonation:
Theory, Models and Applications, 1997. (Cited on pages 15 and 19.)

[46] F. Nolan and E. Grabe, “Can’tobi’transcribe intonational varia-
tion in british english?” in Intonation: Theory, Models and Applica-
tions, 1997. (Cited on page 15.)

[47] H. Fujisaki, “Dynamic characteristics of voice fundamental fre-
quency in speech and singing,” in The production of speech.
Springer, 1983, pp. 39–55. (Cited on page 15.)

[48] H. Fujisaki and S. Ohno, “Comparison and assessment of models
in the study of fundamental frequency contours of speech,” in In-
tonation: Theory, Models and Applications, 1997. (Cited on pages 15

and 16.)

bibliography 121

[49] B. Möbius, M. Pätzold, and W. Hess, “Analysis and synthesis
of german< i> f</i>< sub> 0</sub> contours by means of fu-
jisaki’s model,” Speech Communication, vol. 13, no. 1, pp. 53–61,
1993. (Cited on pages 16 and 17.)

[50] B. Möbius, “Synthesizing german intonation contours,” Progress
in Speech Synthesis, Springer, pp. 401–415, 1997. (Cited on
page 16.)

[51] N. Higuchi, T. Hirai, and Y. Sagisaka, “Effect of speaking style
on parameters of fundamental frequency contour,” Progress in
speech synthesis, pp. 417–428, 1997. (Cited on page 17.)

[52] J. P. van Santen, B. Möbius, J. Venditti, and C. Shih, “Descrip-
tion of the bell labs intonation system,” in Proceedings of Third
ESCA Workshop on Speech Synthesis, vol. 98, 1998, p. 18. (Cited on
page 17.)

[53] J. J. Venditti, K. Maeda, and J. P. v. Santen, “Modeling japanese
boundary pitch movements for speech synthesis,” in The Third
ESCA/COCOSDA Workshop (ETRW) on Speech Synthesis, 1998.
(Cited on pages 17 and 18.)

[54] K. Lenzo, C.-l. Shih, and J. van Santen, “Clefting of one/two
companies,” Unpublished internship work at Bell Labs, 1997. (Cited
on page 18.)

[55] O. Fujimura, “C/d model: A computational model of phonetic
implementation,” DIMACS Series in Discrete Mathematics and The-
oretical Computer Science, vol. 17, pp. 1–20, 1994. (Cited on
pages 18 and 26.)

[56] P. Taylor, “The rise/fall/connection model of intonation,” Speech
Communication, vol. 15, no. 1, pp. 169–186, 1994. (Cited on
page 18.)

[57] ——, “The tilt intonation model,” 1998. (Cited on page 18.)

[58] J. Louw and E. Barnard, “Automatic intonation modeling with
intsint,” Proceedings of the Pattern Recognition Association of South
Africa, pp. 107–111, 2004. (Cited on page 18.)

[59] F. Malfrère, T. Dutoit, and P. Mertens, “Automatic prosody gener-
ation using suprasegmental unit selection,” in The Third ESCA/-
COCOSDA Workshop (ETRW) on Speech Synthesis, 1998. (Cited on
page 18.)

[60] G. Möhler and A. Conkie, “Parametric modeling of intonation
using vector quantization,” in The Third ESCA/COCOSDA Work-
shop (ETRW) on Speech Synthesis, 1998. (Cited on page 19.)

122 bibliography

[61] J. R. Bellegarda, K. E. Silverman, K. Lenzo, and V. Anderson,
“Statistical prosodic modeling: from corpus design to parame-
ter estimation,” Speech and Audio Processing, IEEE Transactions on,
vol. 9, no. 1, pp. 52–66, 2001. (Cited on pages 19 and 20.)

[62] K. E. Silverman, J. R. Bellegarda, and K. A. Lenzo, “Smooth
contour estimation in data-driven pitch modelling.” in INTER-
SPEECH, 2001, pp. 1167–1170. (Cited on page 20.)

[63] G. K. Anumanchipalli, “Intra-lingual and cross-lingual prosody
modelling,” Ph.D. dissertation, Carnegie Mellon University, 2013.
(Cited on page 23.)

[64] P. C. Bagshaw, “Unsupervised training of phone duration and
energy models for text-to-speech synthesis.” in ICSLP, vol. 98,
1998, pp. 17–20. (Cited on page 24.)

[65] T. Tomoki and K. Tokuda, “A speech parameter generation algo-
rithm considering global variance for hmm-based speech synthe-
sis,” IEICE TRANSACTIONS on Information and Systems, vol. 90,
no. 5, pp. 816–824, 2007. (Cited on page 24.)

[66] S. Takamichi, T. Toda, A. W. Black, and S. Nakamura, “Param-
eter generation algorithm considering modulation spectrum for
hmm-based speech synthesis,” in 2015 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2015, pp. 4210–4214. (Cited on page 24.)

[67] S. Takamichi, T. Toda, G. Neubig, S. Sakti, and S. Nakamura,
“A postfilter to modify the modulation spectrum in hmm-based
speech synthesis,” in 2014 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, 2014, pp. 290–
294. (Cited on page 24.)

[68] K. Tokuda, T. Kobayashi, T. Masuko, and S. Imai, “Mel-
generalized cepstral analysis-a unified approach to speech spec-
tral estimation.” in ICSLP, vol. 94, 1994, pp. 18–22. (Cited on
page 24.)

[69] A. W. Black, K. Lenzo, and V. Pagel, “Issues in building general
letter to sound rules,” 1998. (Cited on page 25.)

[70] V. Pagel, K. Lenzo, and A. Black, “Letter to sound rules for ac-
cented lexicon compression,” arXiv preprint cmp-lg/9808010, 1998.
(Cited on page 25.)

[71] J. R. Novak, D. Yang, N. Minematsu, and K. Hirose, “Phoneti-
saurus: A wfst-driven phoneticizer,” The University of Tokyo,
Tokyo Institute of Technology, pp. 221–222, 2011. (Cited on
page 26.)

bibliography 123

[72] C. P. Browman and L. Goldstein, “Some notes on syllable struc-
ture in articulatory phonology,” Phonetica, vol. 45, no. 2-4, pp.
140–155, 1988. (Cited on page 26.)

[73] E. L. Saltzman and K. G. Munhall, “A dynamical approach to
gestural patterning in speech production,” Ecological psychology,
vol. 1, no. 4, pp. 333–382, 1989. (Cited on page 26.)

[74] C. Miller, “Individuation of postlexical phonology for speech
synthesis,” in The Third ESCA/COCOSDA Workshop (ETRW) on
Speech Synthesis, 1998. (Cited on page 27.)

[75] S. Fitt and S. Isard, “Representing the environments for phono-
logical processes in an accent-independent lexicon for synthesis
of english,” 1998. (Cited on page 27.)

[76] C. L. Bennett and A. W. Black, “Prediction of pronunciation vari-
ations for speech synthesis: A data-driven approach.” in ICASSP
(1), 2005, pp. 297–300. (Cited on pages 27, 72, and 81.)

[77] P. Taylor, A. W. Black, and R. Caley, “The architecture of the
festival speech synthesis system,” 1998. (Cited on page 29.)

[78] ——, “Heterogeneous relation graphs as a formalism for rep-
resenting linguistic information,” Speech Communication, vol. 33,
no. 1, pp. 153–174, 2001. (Cited on page 29.)

[79] M. Schröder, M. Charfuelan, S. Pammi, and I. Steiner, “Open
source voice creation toolkit for the mary tts platform,” in
12th Annual Conference of the International Speech Communication
Association-Interspeech 2011. ISCA, 2011, pp. 3253–3256. (Cited
on pages 29 and 42.)

[80] M. P. Aylett, R. Dall, A. Ghoshal, G. E. Henter, and T. Merritt,
“A flexible front-end for hts,” in INTERSPEECH, 2014, pp. 1283–
1287. (Cited on pages 29, 41, and 42.)

[81] J. Ellson, E. Gansner, L. Koutsofios, S. North, G. Woodhull, S. De-
scription, and L. Technologies, “Graphviz – open source graph
drawing tools,” in Lecture Notes in Computer Science. Springer-
Verlag, 2001, pp. 483–484. (Cited on pages 33 and 35.)

[82] A. J. Hunt and A. W. Black, “Unit selection in a concatena-
tive speech synthesis system using a large speech database,”
in Acoustics, Speech, and Signal Processing, 1996. ICASSP-96. Con-
ference Proceedings., 1996 IEEE International Conference on, vol. 1.
IEEE, 1996, pp. 373–376. (Cited on page 41.)

[83] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1,
pp. 5–32, 2001. (Cited on page 45.)

124 bibliography

[84] J. Kominek, T. Schultz, and A. W. Black, “Synthesizer voice qual-
ity of new languages calibrated with mean mel cepstral distor-
tion.” in SLTU, 2008, pp. 63–68. (Cited on pages 45 and 89.)

[85] O. Fujimura, “Phonology and phonetics. a syllable-based model
of articulatory organization.” Journal of the Acoustical Society of
Japan (E), vol. 13, no. 1, pp. 39–48, 1992. (Cited on page 47.)

[86] A. W. Black and K. A. Lenzo, “Optimal data selection for unit
selection synthesis,” in 4th ISCA Tutorial and Research Workshop
(ITRW) on Speech Synthesis, 2001. (Cited on page 47.)

[87] D. Crockford, “The application/json media type for javascript
object notation (json),” 2006. (Cited on page 51.)

[88] O. Ben-Kiki, C. Evans, and B. Ingerson, “Yaml ain’t markup lan-
guage (yaml) version 1.1,” yaml. org, Tech. Rep, 2005. (Cited on
page 51.)

[89] W. W. W. Consortium et al., “Rdf 1.1 concepts and abstract syn-
tax,” 2014. (Cited on page 51.)

[90] J. Clark, S. DeRose et al., “Xml path language (xpath) version
1.0,” 1999. (Cited on page 61.)

[91] S. Imai, T. Kobayashi, K. Tokuda, T. Masuko, K. Koishida,
S. Sako, and H. Zen, “Speech signal processing toolkit (sptk),
version 3.3,” 2009. (Cited on page 69.)

[92] G. K. Anumanchipalli, K. Prahallad, and A. W. Black, “Festvox:
Tools for creation and analyses of large speech corpora,” in Work-
shop on Very Large Scale Phonetics Research, UPenn, Philadelphia,
2011. (Cited on page 70.)

[93] A. Parlikar, “Testvox: Web-based framework for subjective eval-
uation of speech synthesis,” Opensource Software, p. 13, 2012.
(Cited on page 103.)

[94] E. Lear, The complete nonsense book. Dodd, Mead, 1921. (Cited
on page 104.)

	Dedication
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Rendering Synthetic Speech
	1.2 Ambiguity of Text
	1.3 Data Sparsity
	1.4 Voice Talent Delivery
	1.5 Meaningless Prosody
	1.6 Meaning and Prosody
	1.7 Annotating and Modifying Prosody
	1.8 Building Synthetic Voices
	1.9 Towards Increasing Error Rates
	1.10 Overview

	2 Prosody and Prosodic Modeling
	2.1 Duration
	2.1.1 Sums of Products
	2.1.2 Decision Trees
	2.1.3 Transformed Duration

	2.2 Intonation
	2.2.1 Copy Synthesis
	2.2.2 General Text-to-Speech Synthesis
	2.2.3 Tone and Break Theoretical Basis
	2.2.4 Annotating Tones and Break Indices (ToBI)
	2.2.5 Tone Sequence Modeling
	2.2.6 Superpositional Approaches
	2.2.7 The Rise/Fall/Connection (RFC) Model
	2.2.8 Intonation From Text
	2.2.9 Inducing Local Parameters from Constrained Tone Sequences
	2.2.10 F0 Modeling in CLUSTERGEN

	2.3 Energy
	2.3.1 Energy Modeling in CLUSTERGEN

	2.4 Pronunciation
	2.4.1 Known Words
	2.4.2 Grapheme-to-Phoneme Conversion
	2.4.3 Epsilon Scattering to Improve Alignments
	2.4.4 Pronunciation Variation

	3 Heterogeneous Relation Graphs in Festival
	3.1 Structure of an HRG
	3.2 Conventional Relations in Festival
	3.3 Inducing an Utterance Structure
	3.4 Visualizing the Festival Utterance Structure
	3.5 Features, Paths, and Feature Functions

	4 Automatic Feature Discovery
	4.1 Paradigmatic and Syntagmatic Features
	4.2 Exploring Structural Features in a Patch
	4.3 Generating System Configuration
	4.4 Comparison to Baseline
	4.5 Issues in Using Stock Festival HRGs

	5 Critique of HRG Conventions in Festival
	5.1 Visualizing Quirks
	5.1.1 Tokens, Phrases and Words
	5.1.2 Words to Segments
	5.1.3 Syllables and Intonation

	5.2 HRG and Other Graph Formalisms
	5.3 Expressive Power vs. Implicit Constraints
	5.4 Uncertainty of Structural Dependency
	5.5 Opaque Unserialized Feature Functions
	5.6 Redundancy of Paired Edges
	5.7 Unnecessary Indirection in Relative IDs
	5.8 Relation Names as Identifiers
	5.9 Fixed Depth Relations
	5.10 No Logical Operator Relation
	5.11 Limitations of HRG Features
	5.12 Lack of Explicit Type
	5.13 No Namespace or Introspection
	5.14 Inconsistent Temporal Ordering
	5.15 No Relation Structure Declaration
	5.16 Incomplete Set of Simple Relations

	6 Karnival and the KRG
	6.1 Monkey in the Middle
	6.2 The Karnival Resource Graph
	6.2.1 Typing

	6.3 Objects as Stream Items
	6.4 Removing Indirection and Doubly-Linked Lists
	6.5 Regularizing Relations
	6.5.1 Removing Vestigial Nodes
	6.5.2 Fixing Temporal Order

	6.6 Generalizing HRG Relations
	6.6.1 The k_ Namespace
	6.6.2 Generalized Containment
	6.6.3 Allowing Multiple Parentage
	6.6.4 Adding a Dependency Parse

	6.7 rpath: An XPath-Like Query Language for Relations
	6.8 Paradigmatic and Syntagmatic Features
	6.9 Automatic Enumeration of Features
	6.10 Syntagmatic Feature Discovery
	6.11 The Prosodic Signature

	7 Iteratively Improving Prosody
	7.1 Twiddling
	7.2 Creating a Baseline
	7.3 Reduction and Pronunciation Variation
	7.3.1 Twiddling Phonetic Variation in Reducing Words
	7.3.2 Twiddling Word Sense and Alternate Pronunciations
	7.3.3 Iteratively Refining Pronunciations
	7.3.4 Improving Reduction Prediction from Twiddled Pronunciations

	7.4 Twiddling Prosody
	7.4.1 Exploring the Space of Signatures
	7.4.2 State Duration Objective Function for Prosodic Twiddles
	7.4.3 State Duration Evaluation on Hand-Corrected Data
	7.4.4 Combined F0 , C0 / C1 , and Duration Evaluation Function

	7.5 Recap of EM Analysis by Synthesis Procedure
	7.5.1 Stock Voice Setup
	7.5.2 Baseline Voice Build
	7.5.3 EM Iterations (Epsilon Scattering)

	8 Subjective Evaluation
	8.1 Reducible Words
	8.2 Iterated Prosodic Improvement
	8.3 Limericks with Established Signatures
	8.4 Comparing Resynthesis of Baseline and Updated Voices

	9 Conclusion
	9.1 Discussion
	9.1.1 KRG: Isomorphically Reformulating the HRG
	9.1.2 Value of the Inductive Graph
	9.1.3 rpath and Feature Paths
	9.1.4 HRG as API
	9.1.5 Importance of Segmental Alignment
	9.1.6 Glottalization
	9.1.7 Accent Group vs. Phrase
	9.1.8 Nuclear or Very Heavy Prominence
	9.1.9 Unsupervised vs. Supervised Learning
	9.1.10 Ranking and Tractability
	9.1.11 Subsetting
	9.1.12 Inducing Tone Type
	9.1.13 Authoring TTS Prompts for Recording
	9.1.14 Authoring With Synthesis

	9.2 Future Work
	9.2.1 Breaks and Stress from Annotated Results
	9.2.2 More Stress and Phrase Values
	9.2.3 Optimize Independent Modal Features for F0, C0/C1, Duration
	9.2.4 Other Languages, Different Styles
	9.2.5 Apply to Other Synthesizers
	9.2.6 Supervised Improvement
	9.2.7 Tone Type Annotation
	9.2.8 Annotating and Authoring Environment

	9.3 Conclusion

	Bibliography

