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ABSTRACT 

In this age of ubiquitous communication in which we can stay constantly 

connected with the rest of the world, for most of the part, we have to be grateful 

for one particular invention - the Internet. But as the popularity of Internet 

connectivity grows, it has become a very dangerous place where objects of 

malicious content and intent can be hidden in plain sight. In this dissertation, we 

investigate different ways to detect and capture these malicious contents hidden 

in the Internet. First, we propose an automated system that mimics high-risk 

browsing activities such as clicking on suspicious online ads, and as a result 

collects malicious executable files for further analysis and diagnosis. Using our 

system we crawled over the Internet and collected a considerable amount of 

malicious executables with very limited resources. Malvertising has been one of 

the major recent threats against cyber security. Malvertisers apply a variety of 

evasion techniques to evade detection, whereas the ad networks apply inspection 

techniques to reveal the malicious ads. However, both the malvertiser and the ad 

network are under the constraints of resource and time. In the second part of this 

dissertation, we propose a game theoretic approach to formulate the problem of 

inspecting the malware inserted by the malvertisers into the Web-based
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 advertising system. During malware collection, we used the online multi-AV 

scanning service VirusTotal to scan and analyze the samples, which can only 

generate an aggregation of antivirus scan reports. We need a multi-scanner 

solution that can accurately determine the maliciousness of a given sample. In 

the third part of this dissertation, we introduce three theoretical models, which 

enable us to predict the accuracy levels of different combination of scanners and 

determine the optimum configuration of a multi-scanner detection system to 

achieve maximum accuracy. Malicious communication generated by malware 

also can reveal the presence of it. In the case of botnets, their command and 

control (C&C) communication is good candidate for it. Among the widely used 

C&C protocols, HTTP is becoming the most preferred one. However, detecting 

HTTP-based C&C packets that constitute a minuscule portion of everyday HTTP 

traffic is a formidable task. In the final part of this dissertation, we present an 

anomaly detection based approach to detect HTTP-based C&C traffic using 

statistical features based on client generated HTTP request packets and DNS 

server generated response packets. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation  

Most cyber crimes can be attributed to hacking or cracking, and computer virus 

or worm. Hacking or cracking falls into the category of malicious activity, in 

which the cyber criminal is online to perform malicious actions. On the other 

hand, computer virus or worm can be categorized as malicious content, in which 

the cyber criminal first injects the malicious contents into the victim system, and 

lets the malicious contents perform the malicious actions. In practice, there are 

many forms of malicious contents. A majority of them is classified as malicious 

software, or in short, malware. Malware is the primary and in many cases the 

only weapon of attack used by the cyber criminals. They usually use it in an 

intelligent way so that the victim remains unaware of the attack until very late. 

This is possible for the autonomous and active nature of software objects. Other 

forms of malicious contents involve some kind of malicious activity or 

communication and are passive on their own. Examples of such malicious 

content include botnet C&C communication, network intrusion packets, spam
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emails, etc. These passive malicious objects are created with stealthy 

characteristics as well. Therefore, detection of malicious contents is imperative 

for ensuring the security of most modern cyber systems.  

1.2 Problem Overview 

1.2.1 Collection and Inspection of Malware Hidden in Online Advertising 

To develop effective detection and mitigation techniques against malware, the 

first step is to develop a repository of existing malware samples for analysis and 

testing. For this purpose, we need an effecting malware collection system, which 

can provide us with the latest versions of active malware executable binary and 

other related files from various Internet sources. In the recent past, the online 

advertising system has become one of major sources of Internet malware. Over 

the years, this system has evolved to become very effective in reaching and 

delivering content to targeted audiences consisting of all kinds of Internet users. 

Recently, cyber-criminals have started exploiting this system as an effective and 

risk-free channel to disseminate malware. Many popular websites became 

victims to such exploitation and have had malicious advertisements placed on 

their webpages or widgets unknowingly, including Horoscope.com, The New 

York Times [1], the London Stock Exchange, Spotify [2], and The Onion. The 

most recent addition to this list was earlier in 2015 when HuffingtonPost website 
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served malicious ads via AOL ad-network [3]. Since the cyber criminal are 

already delivering their goods via malvertising, this should be a good source to 

find and capture active malware samples. But we have not seen any prior work 

where malvertising was considered a source of malware for collection. We want 

to address this issue in this dissertation.  

 Most malvertisements operate with the help of a tool called exploit kit [4], 

which can probe the vulnerabilities on the victim machine's web browser or 

plug-in in order to exploit and install the malware. There is an expensive price 

tag attached to the acquisition of these exploit kits. Moreover, in order to protect 

their "investments" on malicious ads and malware from detection by the ad 

network, malvertisers often apply to their campaigns a variety of evasion 

techniques such as fingerprinting the execution environment, redirecting to 

compromised IP addresses, and malware polymorphism (introduced in more 

detail in the next section). These evasion techniques also incur considerable 

overhead cost on the malvertiser. On the other hand, in order to control and limit 

the huge reputation damage and financial losses caused by malvertising 

campaigns [5], the ad network also spends a lot of money and efforts to apply 

inspection techniques on submitted ads, including live monitoring and code 

analysis. These inspection efforts also incur substantial overhead coming from 

labor, infrastructure, intellectual property fee for licensing diagnosis, time 
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needed to conduct analysis, and cost for establishing partnership with other 

companies for sharing of expertise and data [6]. However, we note that both the 

malvertiser and the ad network are under the constraints of resource and time, 

which makes it impossible and impractical for the malvertiser to always submit 

malicious ads and for the ad network to inspect every submitted ad. Therefore, 

the ad network needs proper guidelines to effectively manage its resources for 

inspection to maximize its chance to thwart possible malvertising campaigns. We 

intend to address this problem in this dissertation. 

1.2.2. Maximizing Accuracy in Multi-scanner Malware Detection System 

Malicious software or malware is one of the major tools of cyber attack. Every 

cyber attack involves some kind of malware. Therefore, detection of malware is 

one of the cornerstones of modern cyber security. For a long time, we have been 

relying on the anti-malware or anti-virus scanners to detect malware and to 

protect ourselves from it. Variety of anti-malware scanners have been developed 

over the years with different levels of performances. In the early days, a single 

scanner could detect most of the malware out there. But over time, the malware 

writers and their repository of malware has evolved and proliferated so much 

that no single anti-malware engine can protect us from all of them.  Moreover, 

researchers proved that combining the power of multiple anti-malware engines 

improve detection accuracy and performance significantly. This is why we now 
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have a lot of online multi-AV scanning services and tools (VirusTotal [8], Jotti, 

VirScan, etc.) at our disposal.  

Although we have many multi-AV scanning services and tools available, 

most of them are used only for informational purposes or as a source of second 

opinion. None of them directly provide an exact decision of whether a particular 

sample is malicious or benign. Instead, they work as an information aggregator 

and only list the individual results returned from each anti-virus scanning 

engine. The responsibility of making a decision based on these individual scan 

results is up to the human user. This may be convenient for personal use where 

an end-user is looking for a second opinion for an unknown sample downloaded 

from the Internet. But if we want to use these multi-scanner detection systems 

effectively for a large scale detection and collection operation, we need the 

system to automatically come up with the best decision. Now, the question 

remains - how the system can do that? Obviously, it has to use the available 

information at hand. Let's look at the available information we can have for the 

unknown sample set. Firstly, we have the individual scan results from various 

scanners, which can be considered merely as their opinions. We are labeling 

them as "opinions" since we don't know for sure whether they are right or 

wrong. Secondly, we have the   statistics for each scanner indicating their 

accuracy and performance. These statistics are accumulated from previous 
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scanning results which can be proven as right or wrong over the course of time. 

These statistical accuracy values can be used to measure how right or wrong 

these scanners can be. In other words, these are the ratings that indicate how 

good these scanners are. Now, the original problem becomes determining how to 

combine these detection accuracy ratings and the actual scan results for a given 

unknown sample to classify the sample as benign or malicious with the best 

possible accuracy. We further investigate this problem in this dissertation.  

1.2.3 Detection of HTTP Botnet Command and Control Traffic 

A botnet is a network of compromised computers, each of which harbors a piece 

of malicious software called bot. The bot software is remotely controlled by a 

botmaster, who exploits the botnet for malicious purposes like launching a 

distributed denial-of-service (DDoS) attack, spamming, performing click-fraud 

scams, stealing personal user information, etc. At the heart of any botnet is its 

communication architecture, i.e. how the botmaster communicates with 

hundreds and thousands of bot members. Since the size of a botnet is particularly 

crucial for its business, the botnet needs to be formed over common and popular 

network infrastructure, especially the Internet. Therefore, the botmaster chooses 

legitimate communication channels to interact with the bots. The server that the 

botmaster uses for its communication is called Command and Control (C&C) 

server. Internet Relay Chat (IRC) used to be the most prevalent communication 



7 

channel among the earliest botnets. Over time, it has been proved that the 

botnets formed over IRC network was not stealthy and the entire botnet could be 

shut down by simply taking down the IRC server. Moreover, network traffic 

monitoring on IRC based botnets was easier and effective in identifying C&C 

communication among botnet hosts. Consequently, botnets have evolved to 

adopt more common and generalized networking protocols and thus developed 

a stealth mechanism. Of the newer protocols used by botnets, peer-to-peer (P2P) 

protocols and hypertext transfer protocol (HTTP) are the most notable. The main 

advantage of using P2P networks is that it removes the centralized architecture 

from the botnet and makes it harder to shut down. However, P2P botnets suffer 

from higher latency in C&C communication and increased complexity in 

controlling the botnet as a whole. By contrast, HTTP, still being a centralized 

client-server protocol, provides the botmasters with desirable trade-off between 

stealth and performance. The protocol that runs the World Wide Web (WWW) is 

one of the most widely used network protocols, which helps the botmasters in 

bypassing most firewalls. In addition, HTTP allows using encryption to avoid 

detection based on deep packet inspection.  

Security researchers have been working for many years on botnet 

detection and mitigation. Over the recent years, we have seen a significant 

number of proposals on how to detect different types of botnets. A 
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straightforward approach is to apply C&C traffic signatures which can be very 

effective for a specific botnet. The problem with this approach is that new botnets 

emerge very fast with newer communication patterns, which require new 

signatures to detect.  To address this issue, most of the network traffic based 

methods apply some kind of machine learning algorithm to train and identify 

communication patterns and thus adapt to newer threats. However, these 

methods still focus on identifying botnet communication itself based on certain 

features, rather than isolating legitimate communication from the malicious ones. 

It is far easier for the botmasters to avoid certain patterns and come up with new 

techniques when they already know what patterns the defenders are looking for. 

Consequently, the detection methods begin to suffer from deteriorating 

performances against newer botnets. The detection of botnet C&C traffic 

becomes much more difficult when it comes to HTTP based C&C, since the 

percentage of C&C packets among the overall everyday Web traffic is in 

microscopic range. We investigate this problem further in this dissertation. 

1.3 Overview of Dissertation 

In this dissertation, we address four problems in the area of detection of 

malicious contents hidden in the internet. The organization of this dissertation is 

as follows.  



9 

 In Chapter 2, we provide a background on online advertising and 

malicious display ads and propose automated simulation of the user clicks and 

automatic downloads to collect and analyze malicious executable files generated 

in the process. We implemented an automated system to mimic harmful and 

risky browsing activities such as clicking on suspicious online ads, and thereby 

to collect malicious executable files for further analysis and diagnosis. Using our 

system we crawled over the Internet for a period of 3 months to collect a 

significant amount of ad frame or placeholder URLs, which has been monitored 

for another period of 3 months to collect more than 13 thousand malicious 

executables. The experimental results showed that our system is quite effective in 

collecting online malware samples within a short period of time using very 

limited resources compared to other honeypot systems. 

 In Chapter 3, we provide a brief background on game theory and model 

the malvertising inspection problem as a game between an attacker (the 

malvertiser) and a defender (the ad network). We define the strategies and 

payoff functions of each player. We assume both players are aware of each 

other's strategies, cost and payoff functions, and the rate of malvertising 

detection by the ad network. We then calculate pure strategy and mixed strategy 

Nash equilibria for the game. Through the game model, we intend to better 

understand the relationship between the malvertiser and the ad network and 
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extract insights that can guide the ad network in its choice of inspection 

strategies.  

In Chapter 4, we address the problem of finding an optimum 

configuration in multi-scanner malware detection systems by first deriving a 

mathematical model named Combined Probability Model (CPM) to capture the 

combined outcome of a specific combination of scanners, given their individual 

detection rates. The mathematical model consists of a set of formulas involving 

individual detection probabilities of the scanners. The model gives us a good 

approximation of the combined true and false detection probabilities of the 

combined system of scanners, which can be used to calculate the overall accuracy 

of the multi-scanner system for a specific configuration. Therefore, if we can 

calculate the accuracy of all configurations of the system, we can compare them 

to determine the optimum configuration that provides us with the maximum 

accuracy. We also present two other greedy heuristic based approximation 

models called Greedy Approximation Model (GAM) and Complementary 

Greedy Approximation Model (CGAM). These models apply greedy 

approximation over CPM formulas to improve runtime and at the same time try 

to maintain the accuracy as much as possible. In addition to the original problem, 

we also try to answer the following two questions - (1) Is it always beneficial to 

increase the number of scanners in a multi-scanner detection system? (2) How 
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can we select a subset from all available scanners, which will provide us with a 

maximum accuracy for a size of the given subset? To address the second 

question, we come up with a ranking system for the scanners which allows us 

select a best subset from the full set of scanners. To verify the accuracy of our 

models and to answer these additional questions, we first numerically simulate 

our models over randomly generated hypothetical datasets and test case 

scenarios. From the simulation results, we found that if the average false positive 

rate of the scanners is high enough, the accuracy value of multi-scanner system 

can decrease at some point with the increase in the number of scanners. At the 

end, we provide experimental evaluation based on real-world malware and 

goodware datasets and corresponding anti-virus scanning results using a 

popular online multi-AV scanning service, VirusTotal. From the evaluations, we 

can verify the accuracy of our simulation results and establish that our models 

along with the ranking system perform reasonably well in predicting the 

optimum configuration to achieve maximum accuracy based on available 

information. 

In Chapter 5, we introduce an anomaly detection based approach to detect 

HTTP-based botnet C&C communication which focuses on how to prevent the 

botnet from upgrading itself to avoid detection. That means, we want to make it 

very hard for the botmaster to mimic the legitimate HTTP communication and 
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hide C&C activities. Our approach is based on identifying anomaly in client 

generated HTTP request packets as well as DNS server generated response 

packets for the same HTTP communication. Based on some initial analysis of 

both legitimate and botnet C&C HTTP traffic, we have selected some statistical 

features that are suitable for detecting anomaly in a large set of captured HTTP 

traffic. These features are based on patterns emerging from HTTP request 

packets, more specifically, the URL string that is used to fetch data from an 

HTTP server. Using these features we primarily run an unsupervised anomaly 

detection algorithm to distinguish between HTTP request packets generated by 

human actions and HTTP request packets generated by a software bot, both 

legitimate and malicious. Then, to further narrow down the isolated packets, we 

extract the primary domain names involved in those packets and run a semi-

supervised anomaly detection algorithm using a selected set of features based on 

the DNS server response packets that particularly contain resolved IP address list 

(A or AAAA record). Eventually, we are left with a list of domain names that are 

highly probable to be involved in malicious C&C communication. Results 

indicate that our method can achieve more than 90% detection rate while 

maintaining a reasonably low false positive rate. 

 Finally, we conclude the dissertation with a brief summary of the research 

and directions for future work in Chapter 6.   
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CHAPTER 2 

COLLECTION OF MALWARE DISSEMINATED VIA 

MALVERTISING 

2.1 Background 

2.1.1 Online Advertising 

Online advertising is a form of advertising that uses the Internet as the delivery 

channel for promotional marketing messages to consumers. It includes all sorts 

of online marketing such as email marketing, search engine marketing (SEM) [7], 

social media marketing, display advertising, mobile advertising, etc. In this 

chapter, our focus is only on display advertising, the type of advertising that is 

located on websites in a wide range of different formats and contains items such 

as texts, images, flash, video, and audio. Besides the consumer, there are three 

major participants in online advertising described as follows. The Ad Publishers 

are the owners of the websites or online contents, who integrate or place 

advertisements into their contents. The Ad Networks are the companies that 

work as the middlemen who connect the Advertisers to interested Ad Publishers 

that want to host advertisements. Online Ad Networks usually maintain a
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central ad server which delivers advertisements to consumers, and also facilitates 

ad related activities such as targeting, tracking, reporting and billing. Lastly, the 

Advertisers are the business entities or individuals who are interested in 

promoting their products through online advertising. Figure 2.1 illustrates a 

typical scenario of how the ad delivery system works. From Figure 2.1 we can 

see four request-response style communications. The first such interaction is 

when the user opens a webpage hosted by the ad publisher who displays the ad 

frame or placeholder (referred to as adbox in the figure). This action triggers a 

background interaction of the browser with the ad network to fetch the actual 

Figure 2.1 Advertisement delivery system. 
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ads. This is shown as the second pair of request-response communication. The 

third interaction happens when the user actually clicks on the ad. The ad 

network sends the redirected URL as response which triggers the browser to 

request it to generate the final request-response communication. As a result, the 

browser gets the ad landing page.  

2.1.2 Infection Process of Malicious Ads 

The infection process of malicious ads can be largely divided into two categories: 

silent infection and user triggered infection. Silent infection can occur when an 

Internet user only visits a legitimate website that contains malicious ads. In this 

case, the malicious ad itself contains malicious code (written in JavaScript, Action 

Script, etc.) which can find Web browser vulnerabilities and exploit them to 

infect the user system. This is the most dangerous form of infection, since it does 

not require any interaction or trigger from the user. The mere action of visiting a 

legitimate and otherwise safe website triggers the infection. On the other hand, 

user triggered infections require some form of user interaction such as click or 

key press events. By refraining from risky interactions, the user can prevent 

infection in most cases. After the first interaction with the malicious ad, the user 

usually ends up visiting a malicious ad landing page hosted by the malicious 

advertiser. From this page, the user may also be infected in two ways: either 

automatically or based on further user interaction. The ultimate outcome can be 
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one the following three results: user system being infected, a malicious browser 

add-on being installed, or a malicious executable file being downloaded. Figure 

2.2 depicts various paths and outcomes generated when an ad publisher 

webpage is visited. The bold-faced sections of the figure highlight the path we 

focus on in this chapter. 

Figure 2.3(a) shows a sample malicious ad frame. This is a typical 

malicious ad falsely claiming that the user needs to update his or her media 

player. If the user clicks on anywhere inside the ad frame (not just the buttons), it 

will open a new page where the user will be prompted to download a malicious 

binary executable file with names like "mediaplayer.exe" or 

"mediaplayerupdate.exe". Figure 2.3(b) shows the underlying JavaScript code for 

the same ad frame. We can clearly see here that the target ad landing page URL 

Figure 2.2 Infection paths of malicious advertisements. 
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Figure 2.3 (a) Sample malicious ad frame, (b) JavaScript code for the same 

malicious ad frame. 

(a) (b) 

cannot be identified straightforwardly. Only after this JavaScript code is 

executed in the Web browser, we can see the target URL. This is the primary 

reason why we need to simulate user clicks on the ads to find the target URL. 

2.2 System Design 

Our system can be divided into four major components, including (i) Crawler, 

(ii) Detector, (iii) Extractor, and (iv) Verifier, as depicted in Figure 2.4. It also 

shows the input and output of each component. Each component implements a 

major stage in the overall process of collection and analysis of malicious 

executable files. Description of each of the components is given in the following 

subsections.  
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2.2.1 Crawler 

The main task of this component is to crawl over the Internet and find ad frames 

or placeholders in various websites. To increase the effectiveness in finding 

websites with more ads and potential malicious ads, it makes use of the popular 

Internet search engines like Google, Bing, Yahoo, etc. A pre-defined list of search 

keywords is used to search websites via different search engines and extract a list 

of URLs. Then, the web pages of these URLs are fetched and parsed to detect ad 

frames or placeholders that display textual or graphical ads. If detected, the ad 

frame or placeholder URL is recorded into a list of ad frame URLs for further 

processing. Figure 2.5 shows a flowchart of the overall process of the Crawler. 

Figure 2.4 System architecture. 
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2.2.2 Detector 

This component uses the list of ad frame URLs generated by the Crawler and 

detects whether the ad eventually results in a malicious download or not. To 

achieve this, we need to know what the target URLs are for the ads and test 

whether any one of them lead to an executable file download event. A simple 

HTML ad will contain the target URL as part of a plain HTML element. 

However, with the widespread use of Web 2.0 technologies, most of the ads now 

contain complex JavaScript or Action Script code (as shown in Figure 2.3), where 

it is very hard to find or generate the target URL. Therefore, we intend to 

Figure 2.5 Flowchart of Crawler. 
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simulate user interaction such as mouse click on the ad itself which will trigger 

the target ad landing page URL for us. Once we can fetch the ad landing page, 

we can further parse and inspect to determine whether it contains any download 

URL which lead to a download of an executable binary file. If the Detector 

detects at least one such download URL, it records the download URL along 

with the ad frame URL. Figure 2.6 shows a flowchart of the overall process of the 

Detector. 

 

 

Figure 2.6 Flowchart of Detector. 
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2.2.3 Extractor 

We make use of the ad frame URLs that is generated by the Detector to 

download more executable files. The design of the Extractor is similar to the 

Detector except that it is used to periodically monitor (and download from) only 

the already detected ad frame URLs. Using this approach we can maximize the 

number of downloaded files from a minimum number of ad frame URLs, since 

the contents of the ad placeholder changes dynamically over time with a 

probability of generating a new ad every time. Thus, by monitoring a single 

malicious ad placeholder we can extract many different malicious files. In 

addition, we can investigate the behavior of a single malicious ad frame URL and 

find out answers to questions like how frequently ads change, how many distinct 

download URLs are generated from the same ad frame, etc. Examples of such 

analysis results are further discussed in section 2.4. 

2.2.4 Verifier 

This is the part where we automatically submit the collected executable files to 

anti-malware scanning engines to verify the maliciousness of them. Instead of 

using a single scanner, we used the online service provided by VirusTotal [8] 

where at most 56 anti-virus scanning engines are used to generate the scanning 

report. 
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2.3 System Implementation 

We have implemented our system using Python 3.4. Details of the 

implementation for each component are given in the following sub-sections. 

2.3.1 Crawler 

We used a list of search keywords generated from Table 2.1. Each keyword is 

generated by combining one or more qualifier keywords and one content 

keyword. To create this list of potential keywords, we tried to answer the 

following question: what types of websites are most likely to host high number 

of advertisements? To find the answer, we manually analyzed 20 ad-filled 

websites collected from various Internet discussion forums. We found that most 

of the websites offer free services or contain free contents, for which they try to 

compensate by placing as many ads as possible.  

Table 2.1 Search Keywords 

 

Qualifier Keywords Content Keywords 

Free 

Download 

Watch 

Stream 

Hack 

Movies 

Ebook 

Pdf 

Music 

Mp3 

Wallpaper 

Fonts 

News 

Sports 

Highlights 

Software 

Freeware 

Cracks 

Password 
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 Therefore, a good qualifier keyword is "free". Similarly, we found that one 

of the most desired services is downloading some content or data from the 

Internet. Hence, "download" should be a good qualifier keyword.  

The fetching and parsing of websites has been done using Python libraries 

"Requests" [9] and "lxml" [10] respectively. The detection of ad frames or 

placeholders has been done using the Python library "adblockparser" [11] and a 

list of filters from EasyList [12], an ad filter provider service designed for the 

most popular ad blocking Web browser extension Adblock Plus [13].   

2.3.2 Detector 

To implement the Detector, we needed some way to simulate the user click 

events on the ads. Selenium WebDriver API [14] provided us with such features. 

This Python API can be easily used to simulate the behaviors exactly like what a 

normal human Web user will do, such as opening a URL in the browser, clicking 

on an ad, switching to new pages as a result of the clicking, responding to any 

JavaScript alert generated in the process, etc. A difficult task was to determine 

where to click, since ads are dynamically generated with varying sizes. 

Fortunately, Selenium provides a way to click on a specific HTML element. 

Therefore, we iterated over all the HTML elements of the ad and generated click 

event for them. The assumption we make is that at least one of the elements 

should be clickable and should produce our desired ad landing page as a result 
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of the click event. This is a valid assumption since usually the ads are generated 

such that the entire ad frame is clickable and the user can click anywhere inside 

the frame to produce the ad landing page. 

After the ad landing page is opened, we parse the HTML source and find 

all target URLs leading to external resources. Here, the Selenium WebDriver 

executes most of the internal JavaScript code and we can use the innerHTML 

property (the property that sets or returns the HTML content of an element) for 

each element to get the generated HTML code from JavaScript code. In this way, 

we can make sure that we don't miss any target URL generated by internal 

JavaScript codes. 

2.3.3 Extractor 

The implementation of the Extractor is similar to Detector. The only difference 

lies in the input and output. The input for the Extractor only contains those ad 

frame URLs that have been detected already, and the output contains 

downloaded executable files with corresponding download URLs for a specific 

ad frame URL. We map the downloaded files and URLs to a specific ad frame 

URL for further analysis later. 
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2.3.4 Verifier 

The VirusTotal API [15] provided by VirusTotal is used to implement the 

Verifier. For each of the downloaded files, we generated a scanning report from 

VirusTotal which contains how many anti-virus scanners have detected the file 

as malicious and what classes of malware the file belongs to. 

2.4 Results and Analysis 

We tested our system for a total period of 6 months and divided it into two 

stages of 3 months each. In the first stage, we deployed the Crawler and the 

Detector for 3 months. The Crawler used the search keywords generated from 

Table 2.1 and crawled 51,467 websites, where 10,950 of them contained at least 

one advertisement. The number of detected ad frame URLs were 73,240, which 

were passed to the Detector. We detected ad frames containing at least one target 

URL which lead to the download of executable binary files. In total, we found 

895 such ad frame URLs. This is our input to the second stage of experiment. 

In the second stage, we ran the Extractor for 3 months to monitor and 

extract downloads from 895 suspicious ad frame URLs. It ran a single iteration 

over all 895 of them 3 times a day. We recorded the download URLs along with 

the downloaded files for each individual ad frame URL. In total, we found 13,648 

distinct executable binary files downloaded in the process. These files were fed to 
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the Verifier to identify false positives checking against 56 anti-virus scanners 

provided by VirusTotal. Only 115 files out of 13,648 pass all the anti-virus 

scanners as benign and 13,353 files were identified by at least one scanner as 

malicious. This means that 99% of the files collected by our system were 

identified as malicious by VirusTotal. Table 2.2 lists the number of different types 

of malware detected. A single malware sample can belong to two or more 

different categories, since modern malware is packaged with multiple features 

and functionalities. Here, we have considered all the labels for a single sample 

labeled by different scanners. From the VirusTotal reports, we found that on an 

average each sample was detected as malicious by at least 9 out of 56 scanners. 

Table 2.2 Types of Malware Detected 

 

Malware Type Total Number Percentage 
Adware 12,952 97% 
Trojan 10,816 81% 
Virus 4,406 33% 

Backdoors 3,872 29% 
Potentially Unwanted Program 12,151 91% 

 

Some interesting results were observed when we grouped the malware 

samples and their download URLs by corresponding ad frame URL. We 

observed that every time we extracted the download target, a new distinct URL 

can be found. Even though the downloaded binary files looked exactly same 

with respect to name and size, the files were found to be different when MD5 

hash was calculated. We found that during the 3 month period, we could extract 
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approximately 49 malware samples on an average from a single ad frame URL, 

with a maximum of 255 samples. After the 3 month period ended, we replayed 

all download URLs to check their validity. 21% of them were still working while 

the rest of them were redirecting to a different webpage. In addition, malware 

samples collected from a single ad source usually fell into the same malware 

family or class. From these observations, we conclude that (1) a single malicious 

ad frame URL can be monitored for a long period of time to consistently collect 

malware samples, (2) URL that hosts the malware is changed frequently to 

provide a constant availability of malware as well as to thwart takedown efforts, 

(3) even though the malware samples disseminated by a single ad source belong 

to the same class or family, they could be distinct in binary content, which means 

every now and then a new malware payload is generated with a relatively short 

lifetime. 

Additionally, we tested the captured download URLs via VirusTotal URL 

scanner service. We found that only 34% of the URLs were flagged as malicious 

by at least one URL scanner. Therefore, the list of malicious download URLs 

generated from our system can be a good addition to online URL blacklist 

services. 
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2.5 Related Work 

In the scientific literature, malicious online advertising is better known as 

"malvertising" by taking the portmanteau of the words "malicious" and 

"advertising". Although numerous news articles have been published on 

malvertising, not many research articles can be found on this topic. 

Sood et al. [16] provided one of the earliest accounts of how malvertising 

works. They explained several malvertising modes and offered a few guidelines 

to prevent them. S. Manfield-Devine presented the recent state of malvertising in 

[17], describing the use of Flash and mobile websites. Zhang et al. [18] proposed 

a detection scheme to detect malvertising cases using depth of the URL 

strategies. In addition, Google has opened a website [19] dedicated to prevent 

malvertising compromises in all of Google's and partners' ad properties in an 

effort to build community awareness against it.  

There has been a considerable amount of research done regarding Web-

based malware collection. In the year 2006, researchers from Microsoft [20] came 

up with an automated Web patrolling system to automatically identify and 

monitor malicious websites that install malware programs by exploiting browser 

vulnerabilities. Since then, we have seen many other research efforts to automate 

malware collection from the Web. Worth mentioning among these are 

HoneyBow [21], PhoneyC [22], Rozzle [23], WebPatrol [24], HoneyInspector [25], 



 

29 

and PMCCS [26]. HoneyBow toolkit is an automated malware collection system 

based on high-interaction honeypots, which are able to collect autonomous 

spreading malware in an automated manner. PhoneyC is a virtual honeyclient 

that mimics the behavior of the user-driven network client applications such as 

Web browsers and is exploited by an attacker's content to reveal the attack in the 

process. Rozzle is a JavaScript multi-execution environment that can reveal 

environment specific Internet malware. WebPatrol automatically collects Web-

based malware scenarios including complete Web infection trails to enable 

further detailed analysis. HoneyInspector is another active honeypot system that 

collects malware from malicious websites as well as from shared P2P files.   

Proactive Malware Collection and Classification System (PMCCS) uses P2P 

software to actively search suspicious malware samples such as software crack 

tools. Although each of these research works presents a way to collect Web-based 

malware samples, none of these have explored malvertising and considered it as 

a source of malware collection and analysis. 

2.6 Summary 

Our main contribution in this work is, we have designed and implemented an 

automated system to collect malware samples from online advertising sources. 

To the best of our knowledge, this is one of the first efforts to automate 
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information collection for malvertising research, which can reveal many new 

paths of investigation and analysis in this area. Moreover, the collected samples 

are instances of live and active malware that are infecting Internet users at this 

very moment, which are extremely useful for research purposes. 

As of now our system can only collect information related to 

downloadable executable binary files via malvertising sources. If we refer back to 

Figure 2.2, we can see that we have only implemented one path in the malicious 

ad infection process. There are still two more paths yet to be explored. One is 

where the system is infected in the background, that is, a malicious code is 

executed in the browser through browser vulnerabilities and plug-in exploits. 

The other one is where a malicious add-on is installed into the browser. We can 

further extend our work to incorporate both of these infection paths. 

Along with the malicious executable files, we can collect the HTML, 

JavaScript and Action Script sources of the malicious ads and further investigate 

to find patterns so that they can be used in the future to detect malicious ads 

before they are executed. Moreover, the defenders can use the information about 

these patterns to develop mitigation strategies. This can be a very important 

future extension of our work. 
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CHAPTER  3 

A GAME THEORETIC MODEL OF MALVERTISING 

3.1 Background 

3.1.1 Overview of Game Theory 

Game theory identifies multi-person decision scenarios as games where each 

player selects actions which result in the best possible self rewards, while 

anticipating and considering the rational actions from other players. A player is 

the basic entity of a game who makes choices of what actions to perform. A game 

is a formal description of the strategic interaction that includes the constraints of, 

and payoffs for, a set of actions that the players can choose from, without 

specifying what actions they actually take. A solution concept is a formal 

description of how the game will be played by applying the best possible 

strategies and what the results might be. A strategy for a player is a complete set 

of actions in all possible scenarios throughout the game. If the strategy specifies 

to take a unique action in a scenario then it is called a pure strategy. If the 

strategy specifies a probability distribution for all possible actions in a scenario 

then the strategy is referred to as a mixed strategy. 
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 Nash equilibrium is a solution concept that describes an equilibrium state 

of the game where no player would prefer to change his strategy as that would 

lower his payoffs given that all the other players are adhering to their respective 

strategies. This solution concept only specifies the equilibrium state but does not 

specify how that state is reached in the game. The Nash equilibrium is the most 

famous equilibrium and one of the most used solution concepts in game theory.   

3.1.2 Game Theory Definitions 

Game 

A game is a formal description of the strategic interaction between opposing or 

co-operating entities where constraints and payoff for actions are taken into 

consideration. 

Player 

A player is a basic entity in a game that is required to make choices for actions.  

Action 

An action is a player's move in the given game. 

Payoff 

The payoff is the positive or negative reward to a player associated with a given 

action. 
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Strategy 

A strategy is a set of actions that a given player can choose during game play. 

3.1.3 The Malvertising Game 

The major motivation behind malvertising is the potential lucrative profit. Many 

malvertising campaigns install on vulnerable machines a variety of ransomware, 

which encrypts user data and files and forces users to pay a ransom of several 

hundred dollars to obtain the decryption key. According to the 2016 Annual 

Security Report published by Cisco [27], the estimated yearly income from 

ransomware per successful malvertising campaign could reach as high as $34M. 

However, this potentially huge profit does not come for free; there is a cost 

associated with launching a campaign. Most malvertisements operate with the 

help of a tool called exploit kit [4], which can probe the vulnerabilities on the 

victim machine's web browser or plug-in in order to exploit and install the 

malware. Malvertisers need to either develop the exploit kit from scratch (need a 

lot of investment), hire someone to do it (there is a list of task prices in the Deep 

Web black market [28]), purchase it (about $20-30K [28]), or rent it (about 

$500/month [28]). There is an expensive price tag attached to any option. 

Moreover, in order to protect their "investments" on malicious ads and malware 

from detection by the ad network, malvertisers often apply to their campaigns a 

variety of evasion techniques such as fingerprinting the execution environment, 
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redirecting to compromised IP addresses, and malware polymorphism 

(introduced in more detail in the next section). These evasion techniques also 

incur considerable overhead cost on the malvertiser. 

 On the other hand, in order to control and limit the huge reputation 

damage and financial losses caused by malvertising campaigns [5], the ad 

network also spends a lot of money and efforts to apply inspection techniques on 

submitted ads, including live monitoring and code analysis. Similar to the case of 

launching malvertising campaigns, these inspection efforts also incur substantial 

overhead coming from labor, infrastructure, intellectual property fee for 

licensing diagnosis tools (sometimes including purchasing exploit kits for 

analysis purpose), time needed to conduct analysis (ranging from a few minutes 

to tens of hours, on average around 10 hours per case), and cost for establishing 

partnership with other companies for sharing of expertise and data [6]. 

 However, we note that both the malvertiser and the ad network are under 

the constraints of resource and time, which makes it impossible and impractical 

for the malvertiser to always submit malicious ads and for the ad network to 

inspect every submitted ad. Therefore, the malvertising inspection problem can 

be modeled as a game between an attacker (the malvertiser) and a defender (the 

ad network). 
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3.1.4 Attacker and Defender Strategies in Malvertising Game 

Malicious advertisers employ many strategies to evade detection including 

fingerprinting, redirection, just-in-time assembling and compilation, obfuscation, 

timing based evasion, etc. Researchers at Malwarebytes and GeoEdge [29] 

investigated malvertising campaigns for several months and found out about an 

effective evasion technique used by the threat actors called fingerprinting. This 

technique is actually not new, rather has been used by the exploit kits for some 

times now. Now it is being used earlier rather than late in the malvertising chain, 

helping the malicious advertisers to decide whether to display a malicious ad or 

a benign ad. Basically, the fingerprinting technique employs sophisticated 

obfuscated code inside the ad to detect indications that can identify a machine 

belonging to a security researcher or a honeypot. Researchers at Invincia [30] 

identified a new technique called "just-in-time" (JIT) or on-host assembly of 

malware. This novel approach can evade detection from network sandbox and 

traditional endpoint security solutions while compromising vulnerable systems. 

JIT malware uses late-binding techniques to assemble a malware executable on 

the target endpoint itself in order to evade network sandbox analysis. In 

addition, native Windows components from the target machine are used to 

assemble the payload. This helps in evading endpoint white-listing approaches 

that allow only approved programs to run. The most recently discovered 



 

36 

AdGholas [31] malvertising campaign have been found to have used 

steganography and file whitelisting approach to evade detection.  

 Most of the malvertising campaigns involve an exploit kit to carry out the 

infection or delivery of malicious payload. Prominent examples of exploit kits [4] 

include SweetOrange, Angler, Magnitude, Rig, Nuclear, etc. Exploit kits are also 

equipped with evasion techniques [4] such as fingerprinting, obfuscation, etc. 

Researchers have found that through a vulnerability in Internet Explorer, an 

attacker can check the presence of files or folders in an affected system, thereby 

detecting whether the system is a virtual machine or has an antivirus software 

installed. For obfuscation purposes, the use of Pack200 archive format has been 

seen in use by Angler exploit kit. Other evasion techniques include encrypted 

payload, IP and domain fluxing, domain shadowing, and file-less infections [32].   

 There has been some work done by both industry and academic 

researchers on the strategies that can be employed by the defender, i.e. the ad 

network or the ad publisher. GeoEdge [6] is a commercial provider for ad 

verification and protection services. Their services include automated ad 

verification solution that monitors live advertisements using a globally 

distributed network of monitors. Similar techniques involving crawling and 

monitoring have been found in some prior academic research works as well [33, 
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34, 35, 36]. Another focus of research was to detect malicious exploit kits. Taylor 

et al. [37] proposed a network-centric technique to detect malicious exploit kits 

by capturing tree-like web request structures and finding similarities among 

them. Their approach is based on the insight that to infect a client browser, a 

web-based exploit kit must guide the client browser to visit its landing page 

through multiple redirections generating a pattern of multiple web requests. This 

pattern can be identified as a tree-like structure and used for the purpose of 

detection of malicious exploit kits. Stock et al. [38] presented Kizzle, an antivirus 

signature generator for detecting exploit kits. Wang et al. [39] presented an 

approach for identifying new undetected landing pages that lead to drive-by 

downloads by using malicious content patterns identified in previously known 

collection of Malware Distribution Networks. Malicious obfuscated JavaScript 

code has been an integrated part of malvertising campaigns. Lu and Dubray [40] 

presented an approach for automatic de-obfuscation of JavaScript code using 

dynamic analysis and slicing that preserves code semantics. The resulting code 

becomes observationally equivalent to the original program with obfuscation 

removed which exposes the core logic of the computation it performs. Xu et al. 

[41] presented JStill, a mostly static approach to malicious obfuscated JavaScript 

detection that uses static analysis of function invocation and lightweight runtime 

inspections. Dong et al. [42] proposed AdSentry, a sandbox for JavaScript-based 
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advertisements that enables flexible controlling on ad script behaviors by 

completely mediating its access to the web page (including its DOM) without 

restricting the JavaScript functionality exposed to the ads. Dewald et al. [43] 

presented ADSandbox, an analytical sandbox system for malicious websites that 

executes any embedded JavaScript within an isolated environment and log every 

critical action. Analyzing these logs using heuristic rules, ADSandbox can decide 

whether the site is malicious or not. Another useful evasion technique employed 

by the attackers is URL redirection. Mekky et al. [44] presented a method to 

identify malicious chains of HTTP redirections using supervised decision tree 

classifiers. 

3.2 The Malvertising Game Model 

Our solution aims to apply game theory to formulate the problem of inspecting 

the malware inserted by the malvertisers into the Web-based advertising system. 

We define a normal form game of two players, the Attacker and the Defender. 

The Attacker represents the malvertiser, whose goal is to distribute as many 

copies of its malware to vulnerable machines as possible when unwitting users 

visit legitimate websites (i.e. ad publishers). The Defender represents the ad 

network, whose goal is to detect and remove malicious online ads before they are 

posted on the ad publishers' websites. We assume that both players are rational; 
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that is, they both aim to maximize their payoffs, and will choose the strategy 

which is the best response to the strategy chosen by the other player. The 

Attacker has two strategies, namely "to post a benign ad" (denoted as B) and "to 

post a malicious ad for distributing malware" (denoted as M). The Defender also 

has two strategies, namely "to inspect the submitted ad" (denoted as I) and "not 

to inspect the submitted ad" (denoted as No-I). 

  Next, we define the payoff functions for each possible combination of the 

two players' chosen strategies. The notations used in the payoff functions are 

defined as follows: 

 cm: Attacker's cost of launching malvertising. 

 ci: Defender's cost of inspecting online ads. 

 g: Attacker's gain of successful malware distribution through 

malvertising. We can assume that g > cm holds because otherwise the 

Attacker will not have sufficient motivation to post malicious ads. 

 l: Defender's loss due to undetected malvertising. We can assume that l > ci 

holds because otherwise the Defender will not have sufficient motivation 

to inspect submitted ads. 

 α: probability of Defender detecting malvertising, where 0 ≤ α ≤ 1. 
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 Figure 3.1 shows the matrix of the payoff functions under each possible 

combination of the two players' chosen strategies. In each square, the first value 

represents the Attacker's payoff, while the second value represents the 

Defender's payoff. Several payoff functions are straightforward, so we will only 

explain the payoff functions in the bottom left square. When the Attacker plays 

strategy M and the Defender plays strategy I, the Attacker incurs cost cm for 

launching malvertising but can get the gain g of successful malware distribution 

with probability 1-α; the Defender incurs inspection cost ci but can reduce the 

loss due to undetected malvertising by αl. 

Figure 3.1 Payoff functions of the game. 
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3.3 Finding Nash Equilibrium of the Game 

In this section, we discuss the Nash equilibria computed from the game theoretic 

model. We explain how to find the pure-strategy and mixed-strategy Nash 

equilibria respectively. 

3.3.1 Pure-Strategy Nash Equilibria 

According to the payoff functions of each possible combination of strategy 

chosen by the Attacker and Defender as defined in Figure 3.1, we can compute 

the Nash equilibria of this game. To this end, we need to first determine the best 

response of each player toward each strategy chosen by the other player. 

  For the Attacker, we need to determine his best response to each of the 

Defender's two possible strategies, namely I and No-I, respectively. When the 

Defender plays I, we compare the Attacker's payoff for playing B, which is 0, and 

playing M, which is -cm+(1-α)g. If -cm+(1-α)g ≤ 0, which is equivalent to α ≥ 
    

 
, 

then B is Attacker's best response to Defender's strategy I. If -cm+(1-α)g ≥ 0, which 

is α ≤ 
    

 
, then M is Attacker's best response to Defender's strategy I. Note that 

when α = 
    

 
 , both B and M can be Attacker's best response to Defender's 

strategy I according to the definition of best response. When the Defender plays 

No-I, we compare the Attacker's payoff for playing B, which is 0, and playing M, 
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which is -cm+g. We can get -cm+g > 0 since g > cm. Thus, M is Attacker's dominant 

strategy to Defender's strategy No-I. 

 For the Defender, we need to determine his best response to each of the 

Attacker's two possible strategies, namely B and M, respectively. When the 

Attacker plays B, we compare Defender's payoff for playing I, which is -ci, and 

playing No-I, which is 0. Since cost ci must be positive, hence -ci < 0, we can get 

that No-I is Defender's dominant strategy to Attacker's strategy B. When the 

Attacker plays M, we compare the Defender's payoff for playing I, which is -ci-(1-

α)l, and playing No-I, which is -l. If -ci-(1-α)l-(-l) = -ci+αl ≥ 0, which is equivalent 

to α ≥ 
  

 
, then I is Defender's best response to Attacker's strategy M. If -ci+αl   0, 

which is α  
  

 
, then No-I is Defender's best response to Attacker's strategy M. 

Note that when α =  
  

 
 , both I and No-I can be Defender's best response to 

Attacker's strategy M according to the definition of best response. 

 From the best responses of both players discussed above we can 

determine the Nash equilibria of this game. If 
  

 
  α  

    

 
, then the strategy 

profile (M, I) is a pure-strategy Nash equilibrium, because when this condition 

holds, strategy M is Attacker's best response to the Defender's strategy I, and 

strategy I is also the Defender's best response to the Attacker's strategy M. In the 

same way, we can derive that if α  
  

 
, then strategy profile (M, No-I) is a pure-
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strategy Nash equilibrium. However, if α > 
  

 
 and α > 

    

 
, then no pure-strategy 

Nash equilibrium exists. This is because when one player chooses the best 

response strategy corresponding to the other player's chosen strategy, the latter 

player will shift to another strategy for it is the best response to the former 

player's chosen strategy, and then the former player will also shift to another 

strategy, which forms a loop as demonstrated in the example of the well-known 

Rock-Paper-Scissors game. However, a mixed-strategy may exist when α > 
  

 
 and 

α > 
    

 
, in which the Attacker and the Defender randomize their strategies 

instead of sticking to the same strategy at all times. 

3.3.2 Mixed-Strategy Nash Equilibrium 

Next, we show how to derive the mixed-strategy Nash equilibrium of this game. 

As shown in Figure 3.2, we assume that the Attacker plays strategy B with 

probability x and plays strategy M with probability 1-x, and assume that the 

Defender plays strategy I with probability y and plays strategy No-I with 

probability 1-y. 

 To compute x, consider that the Attacker will randomize his choice of 

strategy to make Defender indifferent between I and No-I; that is, the expected 

payoff is the same for the Defender no matter he plays I or No-I.  From Figure 

3.2, we get 
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  x(-ci)+(1-x)(-ci-(1-α)l) = 0x-(1-x)l  

  x = 
     

  
     (3.1) 

 

 

 On the other hand, y can be computed with the consideration that the 

Defender will randomize his choice of strategy to make Attacker indifferent 

between B and M; that is, the expected payoff is the same for the Attacker no 

matter he plays B or M. From Figure 3.2, we get 

  y(-cm+(1-α)g)+(1-y)(-cm+g) = 0y-(1-y)0 = 0 

  y = 
    

  
     (3.2) 

Figure 3.2 Attacker and Defender randomize their choice of strategies. 
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 Therefore, we can derive that if α > 
  

 
 and α > 

    

 
, then the strategy 

profile {xB + (1-x)M, yI + (1-y)No-I} is a mixed-strategy Nash equilibrium, where 

probabilities x and y are as computed above. 

3.4 Evaluation and Analysis 

In this section, we discuss the evaluation and analysis of our game theoretic 

model. We developed a Python program to evaluate our model numerically. The 

variables needed in the numerical formula for pure and mixed strategy 

equilibrium are α, ci, cm, l and g. We have done the numerical simulations for the 

Defender's payoff and Attacker's payoff when one of these variables is varied 

with all the other variables assigned a fixed value. Note that the values used in 

the simulations are just for the purpose of providing examples and generating 

charts so that the effects of one variable on another variable can be observed. 

3.4.1 Simulations 

We give a brief overview of the purpose and results of each simulation as 

follows. In the first simulation, we aim to observe the effects of detection rate α 

on the Defender's payoff. We vary α from 0.0 to 1.0 with a step size of 0.05 and all 

the other parameters remain fixed to calculate the Defender's payoff. The values 

of the other parameters are chosen as follows: ci = 0.4, cm= 0.3, g = 0.9, and l is 

assigned three different values 0.6, 0.7, and 0.8 in order to obtain three curves 
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based on l. Figure 3.3 shows that the Defender's payoff remains constant at -l 

when α ≤ 0.57 or  
  

 
, which corresponds to the first case of pure-strategy Nash 

equilibrium. When α > 0.57 and α ≤ 0.66 or 
    

 
, the Defender's payoff steadily 

increases. We see a switch from pure strategy to mixed strategy when α > 0.66. 

From this figure, we see that when the detection rate α is low, it has no effect on 

the Defender's payoff until α exceeds the first threshold (
  

 
   After that, the 

Defender's payoff increases as α continues to 

increase.

 

 In the second simulation, we aim to observe the effects of detection rate α 

on the Attacker's payoff. We vary α from 0.0 to 1.0 with a step size of 0.05 and all 

the other parameters remain fixed to calculate the Attacker's payoff. The values 

Figure 3.3 Variation in Defender's payoff with α. 
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of the other parameters are chosen as follows: ci = 0.4, cm= 0.3, l = 0.7, and g is 

assigned three different values 0.7, 0.8, and 0.9 in order to obtain three curves 

based on g. Figure 3.4 shows that the Attacker's payoff remains constant at g - cm 

when α ≤ 0.57 or 
  

 
, which is the first case of pure strategy Nash equilibrium. 

When α > 0.57 and α ≤ 0.66 or 
    

 
, the Attacker's payoff sharply comes down to 

0.078 and then steadily decreases until it reaches zero. It remains constantly at 

zero when α > 0.66. From this figure, we see that when the detection rate α is low, 

it has no effect on the Attacker's payoff until α reaches the first threshold (
  

 
   

Then, there is a sharp drop in the Attacker's payoff. As α continues to increase, 

Attacker's payoff continues to decrease until it reaches zero.  

 
Figure 3.4 Variation in Attacker's payoff with α. 
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 In the third simulation, we aim to observe the effects of the Defender's 

cost ci on the Defender's payoff. We vary Defender's cost ci and all the other 

parameters remain fixed to calculate Defender's payoff. We vary ci from 0.0 to 

0.65 with a step size of 0.05 (ci stops at 0.65 since according to the assumption in 

Section 3.2, ci must be less than l, which is assigned as 0.7 here). The values for 

the other parameters were as follows: cm = 0.3, l = 0.7 and g = 0.9. The value of α is 

assigned 0.3, 0.5, 0.7 to obtain three different curves. We can see in Figure 3.5 that 

for all three curves, when α > 
  

 
, defender's payoff steadily decreases and reaches 

the constant value of -l. It remains at this value when α ≤ 
  

 
. 

 Figure 3.6 shows the results for the simulation of Attacker's payoff vs. 

Attacker's cost cm. The fixed parameters ci, l, and g have the same values as in 

Figure 3.5 Variation in Defender's payoff with ci. 
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previous simulations, with only cm being varied from 0.0 to 0.85. The value of α is 

assigned 0.3, 0.4, 0.5, 0.6, 0.7 to obtain five different curves. We see that as the 

Attacker's cost cm increases, the payoff linearly decreases until it reaches 0. The 

starting point of each payoff curve (i.e. when cm = 0) depends on the value of the 

detection rate α. The higher the value of α, the lower the starting value of the 

payoff.  

 

 Figure 3.7 shows the results for the simulation of Defender's payoff vs. 

Defender's loss l. The fixed parameters cm, ci, and g have the same values as in 

previous simulations, with only l being varied from 0.45 to 1.25 (l starts from 0.45 

Figure 3.6 Variation in Attacker's payoff with cm. 
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since according to the assumption in Section 3.2, l should always be greater than 

ci, which is assigned as 0.4). The value of α is assigned 0.3, 0.4, 0.5, 0.6, 0.7 to 

obtain five curves. We see that as the Defender's loss l increases, the payoff 

linearly decreases. According to the Nash equilibria we derived, there is a switch 

of strategies for the Defender from No-I to I in the middle depending on the 

value of α. After the point of switch, the rate of decrease in the Defender's payoff 

slows down. The higher the value of α, the higher the change in the rate of 

decrease in the payoff. We see that when α = 0.7, the payoff becomes almost 

constant after the switch of strategies. 

 

Figure 3.7 Variation in Defender's payoff with l. 
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 Figure 3.8 shows the results for the simulation of Attacker's payoff vs. 

Attacker's gain g. The fixed parameters cm, ci, and l have the same values as in 

previous simulations, with only g being varied from 0.35 to 1.25. The value of α is 

assigned 0.3, 0.4, 0.5, 0.6, 0.7 to obtain five curves. We see that as g increases, the 

attacker's payoff always increases at a constant rate when α is lower (0.3, 0.4, or 

0.5). However, for a higher α (0.6 or 0.7), the payoff remains zero when g is not 

high enough, and starts to rise only when g is higher than a threshold.  

Figure 3.8 Variation in Attacker's payoff with g. 
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3.4.2 Analysis of the Game Theoretic Model 

From the analysis of the payoff functions of the Attacker and Defender, the 

conditions of each Nash equilibrium, and the results of above simulations, we 

can derive the following insights: 

1. This game is not a zero-sum game, because the Attacker's gain does not 

come from the Defender's loss.  

2. Although performing inspection (playing strategy I) will not bring the 

Defender any positive gain, it will lower his loss if he can detect the 

malicious ads with a sufficiently high rate. Therefore, the Defender is still 

motivated to inspect the submitted ads before letting them pass and be 

posted on ad publisher's website. 

3. If the detection rate is too low (α  
  

 
), then the Defender will just choose 

not to inspect the ads. This is because in this case the reduction of 

Defender's loss due to inspection is less than the cost spent on inspection, 

and thus will not lower the overall cost.  

4. If the detection rate is not high enough (α < 
    

 
), then the Attacker will 

always post malicious ads. This is because that although some malicious 

ads submitted by the Attacker will be detected by the Defender's 

inspection techniques, the gain brought in by those malicious ads 
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successfully delivered to vulnerable user machines is still higher than the 

cost of launching malvertising.  

5. If the detection rate is high enough (α > 
    

 
 and α > 

  

 
), then the Attacker 

and Defender start to randomize their choice of strategy because no pure-

strategy Nash equilibrium exists. 

6. Assume that the detection rate (α) is within the same range as given in 

point 5 (i.e. α > 
    

 
 and α > 

  

 
). Provided that everything else is constant, 

higher α will make the Attacker incline more to post benign ads (from 

Equation (3.1) in Section 3.3.2, we can get that x increases when α 

increases), and make the Defender incline more to not inspect the ads 

(from Equation (3.2) in Section 3.3.2, we can get that y decreases when α 

increases). 

7. Assume that the detection rate (α) is within the same range as given in 

point 5, and the Defender has knowledge of the Attacker's average gain 

(g) resulting from each successful delivery of malicious ad. Provided that 

everything else is constant, higher g will make Defender incline more to 

inspect (from Equation (3.2) in Section 3.3.2, we can get that y increases 

when g increases). 
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8. Assume that the detection rate (α) is within the same range as given in 

point 5, and the Attacker has knowledge of the Defender's average loss (l) 

resulting from each undetected malicious ad. Provided that everything 

else is constant, higher l will make Attacker incline more to post benign 

ads (from Equation (3.1) in Section 3.3.2, we can get that x increases when l 

increases).  

3.5 Related Work 

Researchers have proposed complete defense systems to counter 

malvertisements as well. Ford et al. [45] developed a tool that can automatically 

analyze Flash advertisements to identify malicious behavior. Li et al. [46] 

presented MadTracer, a malvertising detection system based on machine 

learning techniques that learn and identify prominent features from malicious 

advertising nodes and their related content delivery paths. MadTracer can 

automatically generate detection rules and utilize them to detect malvertising 

activities. Rastogi et al. [47] developed a framework for analyzing the app-web 

interfaces in Android applications and successfully analyzed 201 ad networks 

and their associated ad library packages and 600,000 apps in the Google Play 

store and identified hundreds of malicious files and scam campaigns. Their 

scheme involves triggering of the app-web interfaces, detection of malicious 
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content, and provenance to identify the responsible parties. Arshad et al. [48] 

proposed an in-browser approach called Excision to automatically detect and 

block malicious third-party content inclusions as the user's browser loads web 

pages or executes browser extensions. They claimed that their approach does not 

rely on the inspection of the resources' content; rather, it relies on analyzing the 

sequence of inclusions that leads to the resolution and loading of a final third-

party resource. 

 Researchers have previously applied the game theoretic approach to 

combat other similar malicious threats. Njilla et al. [49] proposed a game 

theoretic framework to model the security and trust relationship in cyberspace 

among users, service providers and attackers. The authors formulated a three-

player game and analyzed different solutions obtained from Nash equilibrium 

that can benefit the service providers in decision making. Kamhoua et al. [50] 

proposed a game-theoretic approach for testing for hardware Trojans in digital 

circuits where the testing is modeled as a zero-sum game between malicious 

manufacturers or designers who want to insert Trojans, and testers whose goal is 

to detect the Trojans. The resulting solution involves multiple possible mixed 

strategy Nash equilibria that can provide guideline for optimum test sets for 

identifying and preventing hardware Trojans. Similar game theoretic approaches 

have been used in [51, 52, 53, 54].  
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3.6 Summary  

Malvertising has posed serious security threats to the Internet, and caused losses 

to Internet users and ad networks alike. In this work, we formulated the 

malvertising inspection problem with a game theoretic model, and introduced a 

normal form game between the malvertiser and the ad network. To the best of 

our knowledge, this is the first attempt to apply game theory to model this 

problem. We computed pure-strategy and mixed-strategy Nash equilibria for the 

two players, and derived several useful insights from analysis of the game. Our 

findings can provide guidelines for ad networks to best utilize their resources to 

mitigate the problem of malvertising. 

 In the future, we aim to extend our game theoretic model to consider the 

repeated Bayesian game between the malvertiser and the ad network. The main 

characteristic of a Bayesian game is that one or both of the players have 

incomplete information about the type of the other player, which will allow us to 

model the scenario when the ad network has incomplete information to 

determine whether the advertiser belongs to the benign type or the malicious 

type. Moreover, repeated game will allow the players to incorporate the 

information they learned in previous games into the playing of future games.
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CHAPTER  4 

MAXIMIZING ACCURACY IN MULTI-SCANNER MALWARE 

DETECTION SYSTEMS 

4.1 Problem Formulation 

In this section, we have formulated the problem of maximizing accuracy in a 

multi-scanner detection system using appropriate formal notations. Table 4.1 

lists some of these notations used in the formulation. Formally, the problem of 

maximizing accuracy in a multi-scanner detection system can be stated as 

follows: 

 Given N scanners along with their respective (true positive and false 

positive) detection rates or probabilities Pi (where 1 ≤ i ≤ N) and binary detection 

results (either true or false) for a given sample obtained from these N scanners., 

how can we find the optimum value of T (1 ≤ T ≤ N) where T is the threshold to 

decide maliciousness of that given sample. Here, we assume the N is a finite 

number and we only have the detection rates or probabilities associated with 

each scanner that can be calculated from past detection history of the scanners. 
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Table 4.1 Notations 

 

Symbol Description 

I Input to the multi-scanner system 

Oi Output of ith scanner (0 or 1) 

N Total number of scanners 

Q Optimum number of scanners to achieve maximum 

accuracy 

T Threshold to decide the maliciousness of an object 

Pi Detection probability of  ith scanner 

PTi The probability of classifying a malicious object as 

malicious by  ith scanner 

PFi The probability of classifying a benign object as malicious 

by  ith scanner 

CP(t) Combined detection probability when T = t 
 

  

 The problem can be extended further to answer the following questions:  

1) Assuming that N is the total number of scanners that we can use and Q is the 

optimum number of scanners to achieve maximum accuracy, what is the 

relationship between N and Q? Is N = Q always holds, or Q < N can also be true? 

In other words, does adding another scanner always improve accuracy? 

2) If M is the size of a subset of all N scanners, how do we select these M scanners 

to achieve maximum accuracy that is possible for any subset of scanners of size 

M. In other words, given that there can be   
 
  of combinations possible, how can 

we rank all the scanners to select the best M scanners such that it will provide 

maximum accuracy among all these combinations possible?  
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4.2 Combined Probability Model (CPM) 

In this section, we will explain the development of the Combined Probability Model 

(CPM) in detail. As mentioned earlier, we have devised a set of formula to 

construct the model. In the formulas, we used certain symbols and notations to 

denote various terms. Table 4.1 lists these notations. To help better understand 

the model, we will start with a small scaled model consisting only 3 scanners. 

Then, we will extend the small scaled model to a more generalized version.  

4.2.1 3-Scanner CPM 

We start with a simple 3-scanner model (N=3) to better illustrate and explain the 

method of developing the generalized model. The most generic multi-scanner 

system consisting 3 scanners should be a parallel system of scanners, depicted as 

in Figure 4.1. A parallel system of scanners is a system of scanners where each 

input sample is fed to all the scanners in parallel and at the same time. We 

Figure 4.1 A 3-scanner parallel system. 
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assume here that all the scanners are binary scanners, i.e. they produce an output 

of either 1 or 0, where a 1-output means the sample is detected as malicious and 

0-output means the sample is detected as benign.  

 To decide maliciousness of an input object, we have 3 choices here. We 

can label the object as malicious if (i) all three scanners label it as malicious, (ii) 

any two of them label it as malicious, or (iii) any one of them labels it as 

malicious. This is equivalent to considering the value of T as 3, 2 and 1 

respectively.  

 Now, there are two distinct probabilities associated with each scanner – PT 

and PF. PT is used to calculate the overall true positive probability and PF is used 

to calculate the overall false positive probability. For the sake of generality, we 

will only use the notation P to denote a particular probability here.  

 To understand how we can come up with the equations, we have to break 

down each case into smaller parts. For example, if we consider T = 1, this means 

that if any single scanner detects the sample, we can consider that sample as 

detected and label it as malicious. Now, let us assume X denotes the random 

variable that is defined as the number of scanners that detect a given sample as 

malicious. Then, for T = 1, the combined probability can be derived as 

              

which in turn can be written as 
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 In other words, the probability of a sample being detected by at least one 

scanner is a summation of the probability of that sample being detected by 

exactly 1, 2 and 3 scanners. This is also depicted in Figure 4.2(a), where we can 

see the total white region consists of three types of smaller regions which depict 

three components of the summation in the above equation. Therefore, we can 

generalize this equation for T = t (where 1 ≤ t ≤ 3) as  

                 

 

   

                                  

 Now, we have to find out how to calculate the probability P{X=i}. Let's 

start with P{X=1}. This means, we have to calculate the probability that exactly 

one scanner will detect the sample. We have the individual detection 

probabilities as P1, P2, and P3 for scanner 1, scanner 2 and scanner 3 respectively. 

(a) 

T=

1 

(b) 

T=2 

(c) 

T=

3 
Figure 4.2 Venn diagrams for the three cases. 
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P{X=1} can be described as the summation of the probabilities that only scanner 1 

detects the sample, only scanner 2 detects the sample and only scanner 3 detects 

the sample. Now, according to the rules of probabilities, we can say that the 

probability that only scanner 1 detects the sample is P1(1-P2)(1-P3). Similarly, for 

scanner 2 and scanner 3 the probabilities will be P2(1-P3)(1-P1) and P3(1-P1)(1-P2)  

respectively. Therefore, we can write 

 

                       

                                               

                                                                                

 

Following similar reasoning, we can write  

  

                   

                                          

                                                                                            

 

and 

  

                                                                                                            

 

The reasoning behind these equations is also illustrated in Figure 4.2. Replacing 

the values from equations (4.2), (4.3) and (4.4) into equation (4.1), we can easily 

calculate the combined probability (CP) for a given T = t.  
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4.2.2 N-Scanner CPM 

In the previous section, we limited our discussion to only 3 scanners for ease of 

understanding. Now, we can extend this 3-scanner model to an N-scanner 

model. Figure 4.3 shows an N-scanner system.  

 For an N-scanner model with T = t (where 1 ≤ t ≤ N), equation (4.1) 

becomes  

                 

 

   

                                             

Based on equations (4.2), (4.3) and (4.4), we can come up with a generalized N-

scanner equation for the probability P{X=i} as   

           
 

 

   

    

   

      
 
 

 

     

                 

where   
 

 is the probability of  the scanner with index k (1 ≤ k ≤ i) in jth 

combination in   
 
  and   

 
 is the probability of the scanner with index l (i+1 ≤ l ≤ 

Figure 4.3 An N-scanner parallel system. 



 

64 

N) in all the other scanners that are not in jth combination. Substituting the value 

of P{X=i} from equation (4.6) into equation (4.5) we get  

             
 

 

   

    

   

      
 
 

 

     

 

 

   

                     

Equation (4.7) can be used as the generic N-scanner equation for combined 

detection probability when T = t. 

4.2.3 CPM for Other Multi-Scanner Systems 

So far we have considered only parallel system of scanners. In this section, we 

will discuss other types of multi-scanner systems such as the serial system and 

the mixed system and show how they only are special cases of the parallel 

system of scanners.  

4.2.3.1 Serial System 

A serial system of scanners is a system of scanners where all the scanners are 

connected serially, as depicted in Figure 4.4. The input sample is fed into the first 

scanner and the output from the first scanner is fed into the second scanner and 

so on. Again, we consider only binary outputs from the scanners. Therefore, by 

feeding the output into the next scanner, we mean that if the sample is detected 

as malicious (a 1-output), the sample is passed onto the next scanner to be 

scanned. This process goes on until the scanner is utilized and only if all the 
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scanner detect this sample as malicious, it is finally classified as malicious. On 

the other hand, if the sample is detected as benign ( a 0-output), the sample is not 

passed onto the next scanner and all the subsequent scanners automatically 

report that sample as benign, eventually classifying the sample as benign.  

 

 If we compare this system with the parallel system of scanners, we can 

easily see that this serial system of scanners is nothing but a special case of the 

parallel system of scanners, where the threshold value T is fixed at the total 

number of scanners N. This means, only when all the scanners detect a specific 

sample as malicious, the sample is classified as malicious. In all the other cases, 

the sample is classified as benign. Therefore, we can use equation (4.7) by just 

substituting t with N and calculating CP(N).   

 An alternative version of the serial system is also possible where instead 

of passing the sample to the next scanner when it is detected as malicious and 

blocking it when it is detected as benign, we can block it when it is detected as 

malicious and pass it to the next scanner when it is detected as benign. In this 

Figure 4.4 An N-scanner serial system. 
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case, the sample will be detected benign only when all the scanners have 

detected it as benign and it will be detected as malicious if a single scanner 

detects it as malicious. Again, if we compare this alternative serial system with 

the parallel one, we find that this is nothing but a special case of the parallel 

system where the threshold value T is fixed at the value of 1. Therefore, we can 

use equation (4.7) to calculate CP(1).  

4.2.3.2 Mixed System 

So far, we have seen only pure parallel and serial system of scanners. There also 

can be a third type of multi-scanner system, where there are both parallel and 

serial parts in the system. We can call them a mixed system. Consider the 

systems depicted in Figure 4.5 for a 3-scanner system. The system shown in 

Figure 4.5(a) has scanner 1 and scanner 2 connected serially, and scanner 3 is 

parallel to the serial system of scanner 1 and scanner 2. This system is in fact a 

parallel system of scanners where one line in the parallel system is a serial 

Figure 4.5 Two variations of a 3-scanner mixed system. 

(a) (b) 
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system, which is also a special type of parallel system as we established in 

section 4.1.3.1. Therefore, we can say that the mixed system is a parallel system 

consisting of other smaller parallel systems. This means, we can use the same 

equation (4.7) that we derived for parallel systems to derive the equation for a 

particular mixed system. Figure 4.5(b) shows another variation of 3-scanner 

mixed system. For an N-scanner system, obviously there can be many more 

variations possible.   

4.3 Greedy Heuristic Based Models 

4.3.1 Greedy Approximation Model (GAM) 

Instead of deriving a mathematical formula, the Greedy Approximation Model 

(GAM) applies the greedy heuristic to approximately calculate the combined 

probability CP(t) for a given threshold t. Here, the greedy heuristic is to start by 

combining the highest t individual detection probabilities and moving along in a 

decreasing order doing the same until less than t probabilities available. An 

example would better explain the approach. Let's say we have P1, P2, P3 ... PN 

individual detection probabilities available sorted in a decreasing order, that is, 

P1 ≥ P2 ≥ P3 ≥ ... ≥ PN. To calculate CP(t), we initialize CP(t) to 0 and calculate P1 × 

P2 × P3 × ... × Pt and add to CP(t). For the next iteration, we calculate 1 - CP(t) and 

multiply it with P2 × P3 × P4 × ... × Pt+1 and add the result to CP(t). This goes on till 
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we add PN-t+1 × PN-t+2 × PN-t+3 × ... × PN × (1 - CP(t)) to CP(t). The final value of CP(t) is 

our desired combined detection probability. We developed the Greedy 

Approximation algorithm based on this approach, as shown in Figure 4.6. Here, 

the parameters Lp and t refer to the list of individual detection probabilities and 

threshold respectively and the resulting combined probability is denoted by CPt. 

4.3.2 Complementary Greedy Approximation Model (CGAM) 

The Complementary Greedy Approximation Model (CGAM) applies a similar greedy 

heuristic approach. But instead of applying it on the detection probabilities, it is 

applied on the complements of the probabilities and again complemented to find 

the desired combined probability. To understand the reasoning behind this 

approach, we have to refer back to the Venn diagrams in Figure 4.2. In Figure 

Figure 4.6 The Greedy Approximation algorithm. 
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4.2(a), we can clearly see that the combined probability of P1, P2 and P3 is shown 

by the total white region. The area of this white region can be calculated in 

another way also, that is, by subtracting area of the total grey region from the 

area of the rectangle. Here, the area of the rectangle represents 1, since this is the 

universal set, and the area of the grey region is the combined probability of the 

complements of the probabilities, namely, (1-P1), (1-P2) and (1-P3). Figure 4.7 

shows the Complementary Greedy Approximation algorithm.  

 

4.4 Accuracy Metrics 

The simplest metric is called Accuracy (ACC) or Fraction Correct (FC) [55]. It 

measures the fraction of all instances that are correctly categorized and is defined 

by  

      
     

           
 

Figure 4.7 The Complementary Greedy Approximation algorithm. 



 

70 

where TP, TN, FP, and FN refers to true positive, true negative, false positive, 

and false negative respectively. In our experiments, we only calculate TP and FP. 

But TP and FN together make the total number of malicious samples. Similarly, 

TN and FP together makes the total number of benign samples. Therefore, we 

can easily calculate FN and TN from TP and FP. 

 Another useful metric is the F1 score [56]. It considers both precision and 

recall of the test to compute the score and is defined by  

     
   

            
      

A third metric, called the Matthews Correlation Coefficient (MCC) [57], is used in 

machine learning as measure of quality of binary classifications. It is generally 

regarded as a balanced measure and is defined by  

      
                 

                             
    

4.5 Ranking of Scanners 

To identify the best subset of scanners for a given size M out of N (1 ≤ M ≤ N), we 

need to rank the scanners based on a suitable criteria that can help in achieving 

the maximum accuracy and select the top M scanners. But the only information 

about the scanners is their detection rates. Therefore, we need to create an 
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individual scoring system based on the true positive and false positive detection 

probabilities for each scanner. Here, we propose to use the accuracy formula 

(ACC) from section 4.4. Then, individual score for scanner i should be,  

    si  
  
      

 

 
                                 (8) 

 Based on this score, we can sort all the N scanners in a descending order. 

Then, to get M best scanners, we can select top M scanners from the ordered set 

of N scanners. 

4.6 Numerical Simulation 

To verify the accuracy of our models and to answer the questions mentioned in 

section 4.1, we performed several numerical simulation experiments. We used 

Python to develop small programs that can simulate the scanning of a set of 

samples by a set of anti-virus scanners. In this section, we will describe the setup 

of these experiments and their results in detail.  

4.6.1 Simulation of the Models 

We defined a hypothetical set of 1000 malicious and 1000 benign samples and 10 

anti-virus scanners. We randomly decided whether a particular sample is 

detected as malicious or not by a particular anti-virus scanner. Then, we 

calculated the true positive rate and false positive rate for each anti-virus scanner 
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as well as the combined true positive rate and false positive rate for all the 

threshold values ranging from 1 to 10. We did the same using our models as 

well. Then, we calculated the accuracy values both for the actual case and for our 

models based on three metrics of evaluation, as described in section 4.4. 

 As mentioned earlier, we randomly decided whether a sample is detected 

as malicious or not by an anti-virus scanner. To create different test sets with 

different detection rates for the anti-virus scanners, we enforced different 

maximum values so that all the anti-virus scanners will have a detection rate that 

is below the maximum value for that test set. This means, for example, if the 

maximum value is 90, all the anti-virus scanners (10 in our experiments) will 

have a maximum detection rate of 0.9 or 90%. We varied the maximum value to 

create all the test sets spanning all possible detection rates. The range of 

maximum values for true positive rates was from 50 to 95 and the range of 

maximum values for false positive rates was from 5 to 50. 

 To better illustrate our simulation results, we show the graphs of one 

specific test case, where the true positive rate was limited to 80% and the false 

positive rate was limited to 10%. Figure 4.8(a) shows the graphs of combined true 

positive rates generated from the actual case and the models for different 

threshold values ranging from 1 to 10. Similarly, Figure 4.8(b) shows the graphs 
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combined false positive rates calculated from actual case and our models for 

different threshold values. 

 

 Figure 4.9 shows the comparison of accuracy values resulting from the 

actual values estimated using the actual optimum threshold and also using the 

Figure 4.8 Graphs of combined detection probabilities against different 

threshold values. 

(a) 

(b) 
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threshold calculated from our models for the example test case using three 

different evaluation metrics. We have also included the minimum accuracy levels 

to show how our model predicated accuracy values perform against them. The 

graph clearly indicates that all of the model predicted accuracy values are very 

close to the actual maximum accuracy values.   

 

   To evaluate how our models perform against the actual cases, we varied 

the limiting maximum values for randomization and created different test cases. 

As mentioned earlier, the range of limiting maximum values for true positive 

rates was from 50 to 95 and the range for false positive rates was from 5 to 50. We 

varied the values with a step size of 5, creating total 10 × 10 = 100 test cases. Table 

4.2 shows average deviation from the actual maximum accuracy value for all 

Figure 4.9 Comparison of accuracy values using three evaluation metrics 

based on simulation results. 
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three models based on three evaluation metrics we used. Results from Table 4.2 

indicate that CPM performs best among the models.    

Table 4.2 Average Deviation from Maximum Accuracy 

 

Metric Used CPM GAM CGAM 

ACC 0.03 0.1 0.14 

F1 0.04 0.12 0.15 

MCC 0.06 0.18 0.26 
 

4.6.2 Simulation of Optimum Size for Scanner Set (Q) 

The optimum size of the scanner set refers to the number of scanners in a scanner 

set that achieves the maximum accuracy value among all available N scanners. 

We have denoted it here as Q. Here, the goal of our simulation test is to 

determine whether adding new scanners to a multi-scanner system can always 

improve or maintain the maximum accuracy. In other words, if we have a total of 

N scanners available, we want to answer the following question - should we use 

all of them to achieve maximum accuracy (Q = N), or is it possible to reduce the 

number of scanners needed to achieve maximum accuracy by removing some 

scanners from the set (Q < N)? 

 In the simulation test, we vary the average false positive detection rate of 

the scanners and calculate the value of Q. The value of N is selected as 10 like 

before. The value of average false positive rate is varied from 0.01 to 0.1 with a 
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step size of 0.01. We run the tests for each average false positive rate value 100 

times to get an average estimate. Figure 4.10 (a) shows the percentage of times Q 

is less than N out of all instances as we increase the average false positive rate of 

scanners.  

 

Figure 4.10 Trends of changes in Q vs. average false positive rate. 

(a) 

(b) 
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 We can see from the graph that the increase is almost linear and it 

increases up to more than 50% when the average false positive rate is increased 

up to 0.1. Figure 4.10 (b) shows the calculated average values of Q when N is 10, 

as we increase the average false positive rate. The graph shows that the average 

value of Q almost linearly decreases with the increase in average false positive 

rate. Both of these graphs in Figure 4.10 verifies the fact that if the false positive 

rate of the scanners are high enough, the number of scanners that will yield the 

maximum accuracy can be lower than the total number of available scanners. In 

other words, with a high enough false positive rate, it is not always beneficial to 

add new scanners to the set of scanners in a multi-scanner system. 

4.6.3 Simulation of the Ranking Approach 

In section 4.5, we proposed a ranking system based on the accuracy score of 

individual scanners to rank all the scanners and take top M to create a subset of 

scanners. We performed simulation experiments to test how the performance of 

this ranked subset fit into the range of maximum accuracy values achieved by 

any M scanner subset.  

 Figure 4.11 shows the graph for a sample simulation test done to compare 

the maximum accuracy values achieved by best combination, worst combination 

and the combination consisting of top ranked scanners. The individual scanner 
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true positive and false positive detection rates were randomized like the 

previous simulation tests and were limited to a highest value. In this test case, 

true positive rates were limited to 80% and false positive rates were limited to 

5%. We can see from the graph that our ranking approach does much better than 

the worst combination selected and performs almost at the same level as the best 

combination for higher M values.   

 

 We executed similar simulation test 100 times to get an average estimate 

of how our ranking approach performs. We found that on average our ranking 

approach provides a combination that achieves a accuracy value  that is 0.0195 

lower than the maximum accuracy achieved by the best combination and 0.0655 

Figure 4.11 Comparison of maximum accuracy by best, worst and ranked 

best combinations based on simulation results. 
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higher than the maximum achieved by the worst combination. Here, we have 

only included the evaluation results done using the first metric (ACC). Similar 

evaluation could be done using the other two metrics as well.  

4.7 Experimental Evaluation Using Real Data 

4.7.1 Malware and Goodware Dataset 

 We collected a large data set of malware samples from VirusSign [58], which 

generously provides with a significant amount of malware samples everyday in 

return of a small payment. Our malware dataset consisted 38,789 malware 

samples in total. Our goodware dataset consisted of 21624 benign portable 

executable (PE) binary files collected from SourceForge [59]. We downloaded 

these files by crawling the SourceForge website in order of user rating to ensure 

they are not malicious. Table 4.3 lists the details of each of the malware and 

goodware datasets.  

Table 4.3 Malware and Goodware Dataset 

 

Name Source Number of 

Samples 

Period of  

Collection 

Malware 

Dataset 
VirusSign 38,789 April 26 to April 29, 2014 

Goodware 

Dataset 
SourceForge 21,624 July 20 to July 31, 2015 
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 We divided both the malware and goodware dataset further into training 

and test sets. The training datasets are used to calculate individual true and false 

detection probabilities (PT and PF) for each anti-virus scanner. These values are 

used by our models to calculate combined detection probabilities (CPT(t) and 

CPF(t)) according to our CPM formula (equation (4.7)) and GAM and CGAM 

algorithms. Then, the test datasets are used to calculate the actual combined 

detection probabilities (CPT(t) and CPF(t)) for each threshold t. Table 4.4 lists the 

division of malware and goodware dataset into corresponding training sets and 

test sets. We used multiple test sets of varying sizes by dividing the full test set to 

add diversity into the experiments.  

Table 4.4 Training and Test Sets 

 

Name Number of Samples 

Malware Training Set 28,789 

Malware Test Set 10,000 

Goodware Training Set 11,624 

Goodware Test Set 10,000 

 

4.7.2 Experimental Setup 

We used online multi-scanning service VirusTotal for our experiments. 

VirusTotal generates scanning reports based on scanning performed by at most 

55 anti-virus scanners (at the time of the writing). But not all the reports contain 
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the same anti-virus scanners all the time. This is why we had to identify a set of 

anti-virus scanners that are common to all the generated scanning reports. We 

found that 21 anti-virus scanners (listed in Table 4.5) were common to all the 

scanning reports. 

Table 4.5 List of Anti-virus Scanners 

 

Kaspersky 

Antivir 

Agnitum 

Avast 

AVG 

Comodo 

DrWeb 

ESET-NOD32 

GData  

Ikarus 

K7GW 

McAfee-GW-Edition 

Malwarebytes 

Sophos 

VBA32 

VIPRE 

TrendMicro-HouseCall 

BitDefender 

Emsisoft 

NANO-Antivirus 

Panda 

 

 To implement the experiment, we developed a small program in C#.NET 

that is based on the VirusTotal API to generate the scanning reports from 

VirusTotal and another small program in Python to parse and calculate our 

desired combined detection probability and accuracy values from them. We also 

implemented our models using Python.   

4.7.3 Results and Analysis 

 

Figure 4.12(a) shows the graphs of combined true positive detection probability 

(CPT(t)) against threshold values (t) from 1 to 21. Here, we have divided the full 

test set (both malware and goodware) into 5 test sets containing 2000 samples 
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each. From the graphs, we can see that the actual combined true positive 

detection rate varies from test to test. Among the graphs generated from the 

models, CPM shows least amount of deviation from the actual trend. The other 

two (GAM and CGAM) graphs deviate further in opposite directions. A similar 

trend can be found in Figure 4.12(b), which demonstrates the graphs of 

combined false positive detection probabilities (CPF(t))  against threshold values 

(t) from 1 to 21. 

 We use these combined true and false positive detection probabilities to 

calculate accuracy values according to three evaluation metrics from section 4.4 

and use them to determine the optimum threshold.  To add diversity in test sizes, 

we created 3 test sets from the malware and goodware test set according to Table 

4.6. Figure 4.13 shows the comparative graphs for these accuracy values for each 

test set. The accuracy values calculated using the models are actually the actual 

accuracy values for the model predicted optimum thresholds. Figure 4.13(a), 

4.13(b) and 4.13(c) presents the comparative accuracy values for test set 1, test set 

2 and test set 3 respectively. We can see that for all the test cases, the model 

predicted accuracy values are very close to actual maximum accuracy values. We 

also see that there is a very small difference in accuracy values among CPM, 

GAM and CGAM, where CPM and GAM perform better in comparison to 

CGAM. 
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Figure 4.12 Comparison of graphs of combined detection probabilities 

against threshold values generated from actual test cases and our models. 

(a) 

(b) 
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Figure 4.13 Comparison of accuracy values using three evaluation 

metrics based on real world (a) test set 1, (b) test set 2, and (c) test set 3. 

(a) 

(c) 

(b) 
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Table 4.6 Distribution of Test Sets for Combined Accuracy Test 

 

Test Set 
Number of  

Malware Samples 

Number of Goodware 

Samples 

1 4000 4000 

2 4000 2000 

3 2000 4000 

 

 Next, we perform all combination tests where we take a subset of M 

scanners from all N scanners and calculate maximum accuracy values for the best 

combination, the worst combination and the combination from top ranked 

scanners. Figure 4.14 shows the graphs for this experiment done only on the test 

set 1 from Table 4.6. The results for test set 2 and 3 also yield similar results and 

omitted for space constraints. In Figure 4.14, we see that the ranking approach 

yields accuracy values that are very close to the maximum accuracy values 

achieved by the best combination and much higher than the maximum accuracy 

achieved by the worst combination. We have also calculated an average among 

all 3 test sets to find out the average difference of the accuracy values for the 

combinations. We found that on average the maximum accuracy value calculated 

using the ranking approach is lower than the maximum accuracy for the best 

combination by 0.00164 and higher than the maximum accuracy for the worst 

combination by 0.05468.  
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 Another important observation from Figure 4.14 is that the accuracy 

values tend to always increase with the increase of M. This is because the average 

false positive rate for all the scanners is 0.00864 which is lower than 0.01. This 

also verifies our simulation results from section 4.6.2, where we have seen that 

for very low average false positive rates; Q is almost equal to N and the 

probability of Q being lower than N is very low. 

4.7.4 Runtime Analysis and Comparison of the Models 

A comparison of the models in terms of runtime analysis is given in Table 4.7 

and as you can see, CPM is far worse than both GAM and CGAM based on this 

criterion. The main reason behind this is obviously the combinatorial component 

Figure 4.14 Comparison of maximum accuracy by best, worst and ranked 

best combinations based on real world dataset. 
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in the formula for CPM. We have calculated actual execution time from our 

experiments for each model as well, which is also listed in Table 4.7. The 

execution time has been calculated in an Intel Core i3 2.10 GHz laptop for a 

scenario where N was assigned 20. We see that CPM takes almost more than 6 

minutes to execute, whereas GAM and CGAM takes about 1 millisecond. This 

means, CPM is not the best choice in terms of scalability and the greedy 

approximation algorithms provide a good alternative. If we want to reduce the 

execution time even more, we can consider using a subset of M scanners instead 

of all N scanners, where M < N. If we want to make the best tradeoff between 

scalability and accuracy, GAM should be our best choice. 

Table 4.7 Comparison of the Models 

 

Criteria CPM GAM CGAM 

Runtime  

Complexity 
O(N2  

   
 ) O(NlgN) O(NlgN) 

Actual  

Execution Time 

402.55  

Seconds 

0.00099 

Seconds 

0.001  

Seconds 
 

4.8 Related Work 

4.8.1 Multi-scanner Architecture 

Very few research papers have been published that focus solely on combining 

multiple scanners to achieve higher accuracy. Morales et al. [60] investigated 



 

88 

whether a single anti-malware program is sufficient to detect and clean all 

malware present on a system. They experimentally showed that a single anti-

malware program is not sufficient. Their experiments used a combination of 3 

well known anti-malware programs in different permutations and they followed 

a serial architecture. Though in a limited fashion, their results showed that 

combining multiple anti-malware programs achieve better recall and false 

negative rates. Oberheide et al. [61] presented a new model for malware 

detection on end hosts based on providing anti-virus as an in-cloud network 

service. Their model used multiple, heterogeneous detection engines in parallel, 

a technique termed as `N-version protection'. They claimed that their approach 

provides several benefits including better detection of malicious software, 

enhanced forensics capabilities, retrospective detection, and improved 

deployability and management. To verify their model, they constructed and 

deployed an in-cloud antivirus system called CloudAV. CloudAV includes a 

lightweight, cross-platform host agent and a network service with ten anti-virus 

engines and two behavioral detection engines. They evaluated the performance, 

scalability, and efficacy of the system using data from a real-world deployment 

lasting more than six months and a database of 7220 malware samples covering a 

one year period. The results showed that CloudAV provides 35% better detection 

coverage against recent threats compared to a single anti-virus engine and a 98% 
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detection rate across the full dataset. Cukier et al. [62] presented empirical 

evidence that detection capabilities are considerably improved by diversity with 

AVs and their findings also showed that none of the single anti-virus software 

achieved perfect detection rate. 

 4.8.2 Collaborative Malware Detection 

There has been some research on the collaborative approach in detecting 

malware. Schmidt et al. [63] presented a collaborative malware detection 

approach to reduce false negative rate for Android-based malware detection by 

performing static analysis of executables and sharing detection information 

among neighboring nodes. Fung et al. [64] presented a collaborative decision 

making approach for malware detection systems. They proposed a decision 

model called RevMatch [65], where collaborative malware detection decisions 

are made based on the scanning history with multiple anti-virus systems. They 

claimed that the experimental evaluation of their model shows significant 

improvement over any single anti-virus engine. RAVE [66] is a centralized 

collaborative malware scanning system for email infrastructures where email 

correspondence is used to contact multiple agents for malware scanning and a 

voting mechanism is used to make the final decisions. Marchetti et al. [67] 

presented a distributed peer-to-peer architecture for collaborative malware and 

intrusion detection focusing more on dependability and load-balancing issues. 
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Similar approach was proposed by Colajanni et al. [68]. Lu et al. [69] presented 

SCMA, a distributed malware analysis system with the goal of better 

collaboration and scalability.  

4.8.3 Multi-AV Scanning Services and Software 

There are free online public services that provide scanning reports from multiple 

anti-virus scanners. VirusTotal [8], a Google subsidiary, is the most prominent 

among these services. VirusTotal uses the command-line versions of 55 anti-virus 

scanners (at the time of writing) to scan a single file and include the results 

returned by each scanner into an aggregated report. In addition to telling 

whether a given anti-virus solution detected a submitted file, it displays the exact 

detection label returned by each engine. This service is mainly useful to the anti-

virus vendors and to those private users who wants a second opinion. Among 

other such services, there are Jotti [70], VirSCAN [71], File2Scan [72], and 

Metadefender [73], where File2Scan and Metadefender are paid services. There 

are also multi-AV scanning client tools such as HerdProtect [74], HitmanPro [75], 

SecureAPlus [76], and Multi-AV [77].  

4.8.4 Commercial AV Scanners 

Most of the anti-virus vendors use their own proprietary malware detection 

engine which usually includes a signature database, a heuristic-based detection 
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engine, and a reputation-based detection system. A few of them, namely 

Emsisoft [78] and G Data [79], use a dual-engine technology where each scan 

passes through two engines. 

4.9 Summary  

With the ever increasing amount of activities in the Internet and the world 

moving into an era of cloud computing, the protection from malicious content 

remains a top priority of cyber security. And the first step in this protection 

mechanism is detection of malware and other malicious content. In this chapter, 

we provided a new set of guidelines in achieving the optimum detection 

capabilities of malware using multiple anti-virus scanners. We have presented 

three theoretical models to capture the behavior of a multi-scanning malware 

detection system based on only the individual detection capabilities or ratings of 

the member scanners in the system. These models help us in finding the 

optimum threshold to achieve maximum accuracy in an N-scanner system, 

which our experimental evaluation verifies. Furthermore, we discovered that 

with high enough false positive rates, addition of new scanners might be 

disadvantageous and ranking the scanners based on accuracy scores is a good 

approximation for finding a best subset of scanners. All of these findings along 

with our models together make up a set of important guidelines for any multi-
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scanner detection system consisting of only third-party anti-virus scanners where 

very little information is available about them, such as VirusTotal.  

 In future, we anticipate further extending this work into other areas of 

malicious content detection, such as intrusion detection and anti-spam filtering. 

Our models do not take into account any specific detail of a single scanner or 

filter, rather take them as black boxes and only take into account their detection 

probabilities based on prior detection history. Even the past detection history 

does not have to be available at hand. Only an approximate or calculated 

detection rate or quality score is necessary. Therefore, incorporating the intrusion 

detection or anti-spam filters instead of an anti-virus scanner into a multi-filter 

system is quite straight forward. The only difficulty here is that there is no 

existing multi-filter system of intrusion detection or anti-spam filters currently 

available like VirusTotal or other multi-AV scanning services. We intend to 

include an extensive experimental evaluation of our models based on popular 

intrusion detection and anti-spam filters in future. 
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CHAPTER  5 

DETECTION OF HTTP-BASED BOTNET C&C TRAFFIC 

5.1 Introduction 

In this chapter, we introduce an anomaly detection based approach to detect 

HTTP-based botnet C&C communication which focuses on how to prevent the 

botnet from upgrading itself to avoid detection. That means, we want to make it 

very hard for the botmaster to mimic the legitimate HTTP communication and 

hide C&C activities. Our approach is based on identifying anomaly in client 

generated HTTP request packets as well as DNS server generated response 

packets for the same HTTP communication. Based on some initial analysis of 

both legitimate and botnet C&C HTTP traffic, we have selected some statistical 

features that are suitable for detecting anomaly in a large set of captured HTTP 

traffic. These features are based on patterns emerging from HTTP request 

packets, more specifically, the URL string that is used to fetch data from an 

HTTP server. Using these features we primarily run an unsupervised anomaly 

detection algorithm to distinguish between HTTP request packets generated by 

human actions and HTTP request packets generated by a software bot, both 
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legitimate and malicious. Then, to further narrow down the isolated packets, we 

extract the primary domain names involved in those packets and run a semi-

supervised anomaly detection algorithm using a selected set of features based on 

the DNS server response packets that particularly contain resolved IP address list 

(A or AAAA record). Eventually, we are left with a list of domain names that are 

highly probable to be involved in malicious C&C communication. 

5.2 Details of Methodology 

HTTP botnets try to hide their C&C communication in the massive HTTP traffic 

generated and transmitted over the Internet everyday by mimicking the 

behaviors of a legitimate Web communication. Our idea is to find the features 

that are very hard for the botnets to mimic and use those features to effectively 

isolate the C&C traffic. Therefore, the first step in our method is to select the 

feature set. We have selected a feature set based on HTTP request URL field and 

DNS response packet fields. Then, we apply anomaly detection algorithms on 

the feature set in unsupervised (for HTTP request URL) and semi-supervised (for 

DNS response) fashion. There are two stages in the anomaly detection part. In 

the first stage, our goal is to isolate the software-agent-generated HTTP packets 

from the browser-generated HTTP packets resulting from human browsing 

activities. For this purpose, we focus on the HTTP request URL patterns. Here, 
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the motivation of our approach is that human browsing activities tend to 

generate diverse and noisy HTTP traffic, whereas the software-agent-generated 

automated HTTP traffic tends to follow certain algorithms written by the 

software developer. In other words, browser-generated HTTP traffic can be 

regarded as human-generated manual traffic, where the human user effectively 

types or clicks through the URLs; on the other hand, the software-agent-

generated HTTP traffic can be regarded as non-human-generated bot-like traffic, 

where the software agent acts like a bot. Here, we should mention that the 

browser itself can also act like a software agent or bot and generate bot-like 

traffic and we have considered this into our approach. In the second stage, the 

goal is to isolate the botnet C&C domains from the legitimate Web domains. 

There are two steps in this stage. In the first step, we extract the primary domains 

from all the IP addresses. The concept of primary domain is discussed later in 

this section. In the second step, we extract the DNS response features from the 

dataset for each domain. Then we apply one anomaly detection algorithm 

(Chebyshev's inequality) to this set, along with our training dataset, in a semi-

supervised fashion. Figure 5.1 shows the steps in our method and we describe 

the details in the next subsections. 
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5.2.1 Feature Selection 

1) HTTP Request URL Features 

The HTTP request URL features are used to isolate the human-generated manual 

HTTP traffic and non-human-generated automated HTTP traffic. 

Figure 5.1 The main steps in our detection process. 
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a) Total number of distinct URLs 

Automated HTTP traffic usually has a lower value for this feature, unless they 

either generate a distinct URL every time or use many dummy URLs that 

effectively point to the same set of original URLs. In the latter cases, the value 

can be too high. Human users usually visit many distinct URL for the same 

website, which means the value should be high but within a certain limit. Using 

this feature in our detection method, we can make the botmaster to work a bit 

harder to mimic normal traffic and hide their activities.  

b) Frequencies of request URLs 

It is hard to come up with a frequency pattern that mimics human browsing 

activities. Normally a software agent either will reuse the same URL over and 

over again or generate a distinct URL every time. We use the mean and the 

standard deviation values for the set of frequencies as features into the anomaly 

detection algorithm. 

c) Lengths of request URLs 

 To make it even harder for the botmaster to generate pseudo-browsing pattern 

that resembles human browsing pattern, we take the request URL lengths into 

account. A website usually has a hierarchy of web pages with distinct names, 

which makes all the request URLs different in length. On the other hand, 
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software-agent-generated URLs generally have the same length, although they 

can be distinct (for example, if the URLs are encrypted).  A botmaster has to 

randomize not only the URLs, but also the URL lengths to pass this test. We use 

the standard deviation of all the observed URL lengths as the feature. 

d) Order of the request URLs 

 We take into account the predictiveness of the request URLs by calculating the 

information entropy of the order of the occurrence of the URLs. We assign to 

each URL an increasing number starting from 1 and generate a numeric sequence 

string that denotes the order of occurrence of the URLs. Then, we generate a 

signed differential number string from the sequence string that shows movement 

between consecutive URL numbers in the sequence. The following example will 

better illustrate the process: Suppose we have the numbers 1 through 9 to 

represent 9 distinct URLs. Then for an example URL sequence string 1231345231, 

the differential string will be +1+1+1-2+2+1+1-3+1-2. That is, it starts with an 

initial value of 0 and calculates the difference from the first number in the URL 

sequence string. Then, it will append the difference between the second number 

and the first number, append the difference between the third number and the 

second number, and continue appending until all the numbers are used. To 

calculate the entropy of this string, we use Shannon's formula, as given by 
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Equation (5.1), where X is a discrete random variable with possible values {x1, …, 

xn}  and H(X) is the entropy. 

                         (5.1) 

 

 

2) DNS Response Features 

The DNS response features are used to further isolate the legitimate software-

agent-targeted domains and botnet C&C domains. 

a) Number of distinct IP addresses per response 

Botmasters try to evade detection of C&C domains. Therefore, they tend to use 

IP flux and domain flux techniques. That means, the IP addresses associated with 

a domain can vary highly as well as there can be many domains for the same 

C&C server. Although the total number of distinct IP addresses associated with a 

single domain might be large, the number of IP addresses per DNS response 

packet can be lower. On the other hand, large load-balancing Web domains tend 

to have a fixed high number of IP addresses per DNS response packet. 

b) Total number of distinct IP addresses 

 We need the total number of IP addresses to check reuse of IP addresses per 

domain. 
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c) Mean TTL (Time to Live) value 

 The mean TTL value is used to check the frequency of change between IP 

addresses for a domain.  

d) Total number of distinct ASN 

Large load-balancing Web domains should have the IP addresses in a more 

concentrated distribution, whereas IP flux techniques force the botnet domain IP 

addresses to be sparsely distributed. We distinguish them by calculating the 

number of Autonomous System Numbers (ASN) for the whole IP address set. A 

legitimate Web domain should have most of the IP addresses in a single 

autonomous system, whereas a malicious domain using IP flux techniques 

should have the IP addresses distributed over many different autonomous 

systems. 

5.2.2 Feature Extraction 

We calculate the HTTP request features per source-destination IP address pair, 

where the source IP address is the client IP address and the destination IP 

address is the server IP address. We call a single source-destination IP address 

pair and the corresponding properties and features a Conversation. Since the 

features are statistical in nature, we need to have at least a minimum number of 

HTTP request packets per conversation to calculate the true value of each 
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feature. We set this minimum value to 20.  After the first stage is complete, we 

extract the primary domain name from the hostname field for each conversation 

and merge them to discard duplicates. The domain name extraction process is 

discussed in the next subsection. Then, for each domain we find all the DNS 

response packets and extract the DNS features from them. 

5.2.3 Domain Extraction 

In this work, a primary domain name refers to a domain name with all the 

subdomains after second or third level domain name stripped. For example, the 

primary domain name for my.example.com will be example.com, whereas the 

primary domain name for my.example.co.uk will be example.co.uk. This 

technique is used in both the steps in the second stage of our method, where we 

extract primary domain names from each conversation and also from each DNS 

response packet.  

5.2.4 Anomaly Detection Methods 

We have two different stages where we need to use anomaly detection. In the 

first stage for HTTP request features, we use three different anomaly detection 

methods independently in an unsupervised manner to compare between them. 

In the second stage for DNS response features, we only use the first anomaly 
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detection method based on Chebyshev's inequality in a semi-supervised manner. 

A brief overview of all three techniques is given below.  

1) Chebyshev's Inequality 

 The anomaly detection method based on Chebyshev's inequality can be used in 

both unsupervised and semi-supervised manner. This technique is particularly 

suitable when (1) the distribution of the available data is unknown or an 

experimenter does not want to make assumptions about its distribution, and (2) 

it is expected that the observations are independent from one another. The 

formula for Chebyshev's inequality is 

                   
 

  
   

Where X is a random variable, E(X) is its expected value and k > 0 is a parameter. 

This formula establishes an upper bound for the percentage of data points with 

value more than k standard deviations away from the population mean. As 

proposed by Amidan et al. [80], we use a two-stage approach to detect outliers. 

In the first stage, we use an upper bound of 0.1 (k = 3.16) to find more obvious 

outliers. Then in the second stage, after discarding the outliers from the first 

stage, we select a much smaller upper bound of 0.01 (k = 10) to fine tune the 

detection process. Following their approach, we generate the upper bound and 

lower bound for the outlier detection value (ODV) for each feature. But we 
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observe that the lower bound of the ODV values always become negative 

according to the formula. To maintain better symmetry, we include the inverse 

values of the existing features into the feature set and calculate ODV values for 

them as well. An instance is considered outlier when at least one of the feature 

values falls outside of the ODV bounds.  

2) One-class Support Vector Machine  

One-class Support Vector Machines (SVM) are a semi-supervised version of 

traditional Support Vector Machines. We use the extended version of the semi-

supervised one-class SVM such that it can be used for unsupervised anomaly 

detection as proposed by Amer et al. in [81]. Instead of implementing it from 

scratch, we use the implementation by RapidMiner Studio [82] that follows the 

same method. It generates an outlier value greater than 1 for outliers in a dataset. 

3) Nearest Neighbor based Local Outlier Factor 

This anomaly detection algorithm calculates an outlier score based on the local 

outlier factor (LOF) implementation proposed by Breunig et al. [83].Like the 

previous one, we use the implementation by RapidMiner Studio [82] for this one 

as well. Here also a normal instance has an outlier value of approximately 1, 

while outliers have values greater than 1.  
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5.2.5 Detection Process 

Our detection method is a cumulative process on the captured packets as they 

are accumulated at a network point such as an ISP router. That means, we don't 

discard anything as completely benign and the relevant information from all the 

packets is retained. As illustrated in Figure 5.1, the packets go through the steps 

into the next stages. If the packet is malicious and belongs to a C&C 

communication, it should go through all the steps and finally get detected. If the 

packet is from a benign and legitimate HTTP communication, at some point in 

the steps it will stop going to the next stage, but still the extracted information 

will be retained as part of the training set. Note that there is the possibility of 

false negative in the current round, in which the packet is malicious and belongs 

to a C&C communication, but does not get detected because of insufficient 

feature values. We want to point out that in this case the conversation along with 

its feature values is still retained for future review and not ruled out completely. 

As we capture more similar packets from the same C&C communication, it will 

eventually get picked by our detection process. This approach ensures that no 

C&C communication will be able to bypass our detection scheme completely all 

the time. The detection might be delayed but eventually the malicious 

communication will be captured. Note that the storage requirements to retain the 

conversations are significantly less since we are not storing the entire packet.   
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5.3 Experimental Evaluation 

5.3.1 Implementation 

All the processes in the flowchart of Figure 5.1 can be considered as separate 

modules in our implementation of the overall scheme. We implemented the 

feature extraction modules in Java using the jNetPcap packet parsing library [84]. 

The HTTP packet parser is already supported by jNetPcap, but we had to 

develop our own DNS packet parser on top of the existing support for packet 

parsing from jNetPcap. The domain extraction module is also part of the same 

Java code. One of the DNS features involves calculating the number of distinct 

ASN. We used the Team Cymru IP to ASN lookup [85] service for this purpose. 

For anomaly detection modules, we implemented three anomaly detection 

methods, namely, Chebyshev's inequality, one-class support vector machine, and 

nearest neighbor based local outlier factor algorithms.  

Table 5.1 RapidMiner Implementation Configurations 

 

Algorithm 
Description 

Parameter Value 

1-class SVM 

SVM Type Eta 1-class 
Kernel Type RBF 
Beta 0.3 
Epsilon 0.001 
Auto Gamma Tuning True 

NN-LOF 

K-min 10 
K-max 20 
Measure Types Mixed Measures 
Mixed Measure Mixed Euclidean Distance 
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 The first one is implemented from scratch by us as part of the same Java 

code we developed. The other two machine learning algorithms were 

implemented using RapidMiner Studio [82] by RapidMiner which provides 

support for many popular machine learning algorithms.  Table 5.1 lists the 

parameters used for each of the algorithm implementations. 

5.3.2 Data Collection 

The first part of our anomaly detection experiment, namely the anomaly 

detection in HTTP request traffic, is unsupervised in nature. Therefore, we 

needed a huge amount of unlabeled real world HTTP traffic for our experimental 

evaluation. We used a partial dataset from Clemson University campus network 

traffic [86] that was collected from May to June in 2013. This dataset consisted of 

general day-to-day Web browsing traffic captured for 7 days and filtered to 

remove probable malicious traffic from well-known suspicious domains. The 

total size of the dataset is 271 GB and it contained over 9 million HTTP request 

packets. The traffic was anonymized and HTTP payloads were truncated for 

privacy reasons, but we only needed the HTTP request headers. Therefore, this 

dataset was perfectly suitable for our experiment.  

 The second part of our anomaly detection, namely the anomaly detection 

in DNS response traffic, is semi-supervised in nature. That means, we needed a 

training data set of DNS response packets that will help construct the model 
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representing normal behavior. Our goal is to distinguish between large load-

sharing Web domains and botnet C&C domains. Therefore, we generated the 

normal DNS response traffic by crawling the top 500 websites in the world 

according to the Alexa ranking [87]. We crawled for 3 hours every day for a 

month to remove any kind of bias in the dataset. To reduce the size of the dataset 

we only retained the DNS traffic. The final dataset contained 97468 DNS 

response packets.  

Table 5.2 Collected HTTP Botnet Families 

 

1. Alina 

2. Andromeda 

3. Beebone 

4. Carberp 

5. Citadel 

6. Cutwail 

7. Dofoil 

8. Dorifel 

9. Dyre 

10. Expiro 

11. Festi 

12. Harnig 

13. Hiloti 

14. Medfos 

15. Mirage 

16. Njw0r 

17. Pushdo 

18. Renos 

19. Smoke 

20. Ubot 

21. Umbra 

22. Vobfus 

23. Weelsof 

24. Winwebsec 

25. Xpaj 

26. Xtreme 

27. Zegost 

28. ZeroAccess 

29. ZeroLocker 

30. ZeuS 

31. Zwangi 

 

 To effectively evaluate our method, we needed a test dataset of known 

botnet C&C traffic. We collected binary samples (and already captured C&C 

traffic in some cases as well) for 31 HTTP based botnet families from various 

sources. Table 5.2 shows the list of botnet families. The samples were a bit old, 

but they were still useful since they were still generating the HTTP request 

packets while being executed even if the C&C servers were already down. In 
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some cases, the DNS server was responding with NXDOMAIN responses. We 

removed those packets from our experimental dataset. Therefore, the available 

test dataset was good enough for our experimental evaluation. There were in 

total 8258 HTTP request packets and 689 DNS response packets as part of the 

C&C communication in total. 

5.4 Results and Analysis  

We evaluated our method by generating the overall false negative and false 

positive ratios over the complete dataset of benign and malicious domains. After 

running our experiment, we could accurately count the number of benign and 

malicious C&C domains involved in the traffic dataset. Tables 5.3 and 5.4 list the 

results of the experiment.  

 From Table 5.3, we can see that Chebyshev's inequality performs best as 

the anomaly detection approach used in terms of false negative ratios. 

Chebyshev's inequality based approach detects almost 94% of all the malicious 

C&C domains, whereas the other two methods detect more than 80% of them. 

Even though it does not look very high in terms of detection rate, it is still very 

good considering the fact that we are detecting these small number of C&C 

domains amongst an extremely large number of legitimate domains. From Table 

5.4, we can see that the one-class SVM based approach performs best in terms of 
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false positive ratios, though all three of them have quite small percentage of false 

positives, considering the huge number of packets and corresponding domains 

are being scanned.  

Table 5.3 Detection Results (False Negative) 

 

Anomaly Detection 

Approach Used 

Malicious (C&C) Domains 

Total Detected FN (%) 
Chebyshev's Inequality 134 125 6.71 
1-class SVM 134 111 17.16 
NN-LOF 134 101 19.40 

 

Table 5.4 Detection Results (False Positive) 

 

Anomaly Detection 

Approach Used 

Benign Domains 

Total Detected FP (%) 
Chebyshev's Inequality 7613 338 4.43 
1-class SVM 7613 293 3.84 
NN-LOF 7613 305 4.04 

 

  

 The main reason behind the slightly larger false negative ratio is that some 

of the malicious C&C domains did not have sufficient number of communicating 

packets to get them detected. As we mentioned earlier, our method has the 

requirement of observing a minimum number of HTTP request packets to 

calculate the true feature values which will accurately represent the behavior and 

pattern that we are looking for among the participating legitimate and malicious 

hosts. After some initial tests, we found that 20 is an appropriate value for this 

minimum number and we have used it throughout our experiments. We note 
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that varying this number will result in different false negative and false positive 

ratios. Finding the optimum threshold requires an extensive evaluation process. 

We intend it to be a part of our future work.  

5.5 Related Work 

A significant amount of research work can be found related to HTTP-based 

botnet detection and botnet detection in general. However, only a small portion 

of them focus solely on detecting C&C traffic. We can roughly divide them into 

two main categories: specific HTTP-based botnet detection methods and generic 

botnet detection methods.  

 To our best knowledge, there have been only a few existing works 

focusing solely on HTTP-based botnet detection. Ashley [88] presented an 

algorithm that uses repeated HTTP connections to detect botnet C&C activity. 

The algorithm works best if the bot polls the C&C server very frequently. Brezo 

et al. [89] used several supervised machine learning algorithms to develop a 

model capable of classifying both botnet and legitimate traffic. Chen et al. [90] 

combined both Web traffic and domain analysis to detect Web-based botnets 

with fast-flux domains. Cai et al. [91] focused on HTTP-based botnet's C&C 

patterns to classify network traffic into clusters. Yamauchi et al. [92] proposed a 

detection technique for HTTP-based botnets using Support Vector Machines 
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(SVM). Venkatesh et al. [93] presented a detection method based on hidden semi-

Markov model using TCP-based SNMP MIB variables. Matthew et al. [94] 

proposed a Genetic Algorithm based layered approach to detect attacks 

conducted by HTTP botnets. Zarras et al. proposed BotHound [95] which uses 

perceivable minute differences in different implementation of the HTTP protocol 

to generate models for both malicious and benign requests and thereby classifies 

HTTP-based malware. We observe that none of the previous researchers have 

used an anomaly based approach to distinguish legitimate and malicious HTTP 

communication in order to detect HTTP-based C&C communication.  

 The field of generic botnet detection is too wide to discuss here in detail. 

Therefore, we will only briefly overview the detection techniques that are more 

relevant to our approach, namely, the anomaly or other machine learning based 

techniques. BotSniffer [96] presented anomaly based detection algorithms based 

on spatial-temporal correlation and similarity properties of botnet command and 

control activities. Appendix B of BotSniffer [96] proposed to identify HTTP C&C 

channels by detecting a repeating and regular visiting pattern from one single 

bot. BotMiner [97] used a similar approach to cluster network traffic based on 

similarity. BotHunter [98] used a real-time dialog correlation engine that 

investigates evidence of botnet life-cycle phases. Lu et al. [99] proposed to detect 

by clustering botnet traffic based on N-gram feature selection. Wurzinger et al. 
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[100] presented a system that automatically generates detection models from 

network traffic traces recorded from actual bot instances. Strayer et al. [101] 

detected botnets by examining flow characteristics such as bandwidth, duration, 

and packet timing for evidence of botnet command and control activity. Reiter et 

al. [102] proposed a method called "TAMD" which aggregates traffic flows of 

internal hosts of a network to find similar communication patterns to external 

networks. We see that all of these generic botnet detection techniques also focus 

solely on different types of C&C patterns and statistical features instead of 

legitimate communication.  

 There have been a few attempts to model the Web traffic to identify 

anomaly and thereby detect malicious traffic. Estevez-Tapiador et al. [103] used 

Markov chains to model the HTTP network traffic. Their approach detects 

attacks carried over HTTP and is not meant to detect botnet C&C traffic. Xie et al. 

[104] used a similar hidden Markov model technique based on inter-arrival time 

of HTTP requests to detect pseudo Web behavior. Their work focuses on 

modeling the user session correctly and thereby detects anomaly. Spectrogram 

[105] presented a model and sensor framework using a mixture of Markov-

chains which is able to detect Web-layer code-injection attacks. The difference 

between these works and our approach is that, ours focuses more on 

distinguishing between normal legitimate Web traffic and botnet C&C traffic, 
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rather than detecting general anomalies in the entire Web traffic. Therefore, our 

technique might fail to detect other types of attacks carried over HTTP, but will 

be able to identify botnet C&C traffic. 

5.6 Summary 

In this chapter, we presented an anomaly detection based detection approach for 

the HTTP-based botnet C&C communication. The main strength of our approach 

is that it is able to exploit the limitations and weaknesses of a botnet system in 

our favor to reveal its presence. We believe that this approach will be able to 

detect not only the present day known botnets but also any future unknown 

botnet with better capabilities. To verify this, we plan to extend our work to 

include real time traffic capturing and monitoring in a live network that will 

include honeypots to attract bot infection.  

 Another possible extension of our work will be to evaluate our approach 

using other anomaly detection techniques currently available varying the 

minimum packet count requirement as mentioned earlier. 
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CHAPTER 6 

CONCLUDING REMARKS 

This dissertation provided some new directions towards revealing malicious 

contents hidden in the Internet. We presented an automated system for collection 

and analysis of malware hidden inside online advertisements, which can be 

detected and verified through any online multi-AV scanning services using our 

proposed multi-scanner model based optimum configurations with maximum 

accuracy. We presented a game theoretic model of the malvertising inspection 

problem that can provide guidelines for ad networks to best utilize their 

resources to mitigate the problem of malvertising. We also presented an anomaly 

detection based solution approach for the extremely difficult problem of 

detecting HTTP-based botnet command and control communication.  

 Through the proposed solutions in this dissertation, we have tackled 

important problems in four different areas of the malicious content research 

landscape. We believe that we have been successful in contributing significantly 

in furthering the progress of research in the field of network security. In future, 
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we plan to further extend our work by applying our solutions to other related 

problems of malicious content detection.  
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