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Abstract

The Texas Instruments C66x Digital Signal Processor (DSP) is an embedded proces-

sor technology that is targeted at real time signal processing. It is also developed with

a high potential to become the new generation of coprocessor technology for high per-

formance embedded computing. Of particular interest is its performance for stencil

computations, such as those found in signal processing and computer vision tasks. A

stencil is a loop in which the output value is updated at each position of an array by

taking a weighted function of its neighbors. Efficiently mapping stencil-based kernels

to the C66x device presents two challenges. The first one is how to efficiently optimize

loops in order to facilitate the usage of Single Instruction Multiple Data (SIMD) in-

structions. On this architecture, like most others, SIMD instructions are not directly

generated by the compiler. The second problem is how to manage on-chip memory

in a way that minimizes off-chip memory access. Although this could theoretically

be achieved by using a highly associative cache, the high rate of data reuse in stencil

loops causes a high conflict miss rate. One way to solve this problem is to configure

the on-chip memory as a program controlled scratchpad. It allows user to buffer a

2D block of data and minimizes the off-chip data access.

For this dissertation, we have accomplished two goals: (1) Develop a methodology

for optimization of arbitrary 2D stencils that fully utilize SIMD instructions through

microachitecture-aware loop unrolling. (2) Deliver an easy-to-use scratchpad buffer

management system and use it to improve the memory efficiency for 2D stencils. We

show in the results and analysis section that our stencil compiler is able to achieve

up to 2x speed up compared with the code generated by the industrial standard
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compiler developed by Texas Instruments, and our memory management system is

able to achieve up to 10x speed up compared with cache.
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Chapter 1

Introduction

Stencil loops are implemented using iterative finite-difference techniques that sweep

over a spatial grid and perform nearest neighbor computations. In a stencil loop, each

point in a regular grid is updated with weighted contributions from a subset of its

spatial neighbors. Stencil loops are widely used in computer vision routines such as

spatial filters, feature extraction, and movement detection. They are useful not only

in computer vision but also in other numerical methods such as partial derivative

equation solvers and spatial data clustering.

Optimizing stencil loops is a time-consuming task and requires a large amount

of engineering effort. For example, a naively implemented Gaussian filter contains

less than 10 lines of C code. However its performance could be 3-5x slower than

an optimized implementation, which is over 100 lines of C code and partially imple-

mented by assembly intrinsic. Difficulties of implementing high performance stencil

loops come from the dense floating point arithmetic and data reuse. In this disserta-

tion, we study the techniques that optimize the memory and computation efficiency

for stencil loops and develop methodologies for automatic code optimization. In ad-

dition, we select the TI TMS320C6678 embedded DSP as our design platform and

targeted at accelerating a set of widely used stencil kernels in computer vision and

signal processing.
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1.1 Optimization of Stencils by Loop Unrolling and SIMD In-

structions

Two of the most powerful techniques for stencil optimization are SIMD instruction

and loop unrolling. However, the compiler do not have the ability to perform these

optimization mechanisms unless the code is written in a specific way. This is because

that the compiler assumes a loop is general structuralized. This limits the ability of

the general-purpose language compiler such as C and C++ to perform these code

optimizations on specialized loops.

Unrolling loops allows the compiler to pack up statically scheduled instructions

into multiple registers and functional units and to achieve higher instruction through-

put from parallel execution. However, optimizing unroll parameter requires a com-

prehensive analysis on both the arithmetic structure of the loop and the architecture

of the microprocessor. A small unrolling factor does not fully utilize the hardware

parallelism potential while large ones may exhaust register resources and create over-

head from data traffic. One of the goals of this dissertation is to develop a compiler

technology that is able to select the best unrolling strategy.

The trade off of loop unrolling is given in Figure 1.1. This figure shows a horizontal

1x3 filter (a) and a 2x manually unrolled version (b). We use the same strategy to

manually generate the code with unrolling up to 20x and test the performance of these

unrolled versions in Figure 1.2. It shows how loop unrolling affects the performance

as well as the other factors that are related to the code performance, such as the

functional unit utilization, register usage and instruction parallelism. Although the

search space of loop unrolling is small, consider that it could be combined with the

other optimization techniques, It could become a hard problem to solve.

SIMD instruction is an important aspect of modern CPU technology that performs

instruction-level parallelization. It is performed during the basic block optimization

2



for (i = 1; i < 1023; i++) {

for (j = 1; j < 1023; j++) {

float sum = 0;

for (u = j – 1; u <= j + 1; u++) {

sum += B[i, u] * C[u – j + 1];                      

}

A[i, j] = sum;

}

(a)

for (i = 1; i < 1023; i++) {

for (j = 1; j < 1023; j+=2) {

float sum0 = 0, sum1 = 0;

for (u = j – 1; u <= j + 1; u++) {

sum0 += B[i, u] * C[u – j + 1]; 

sum1 += B[i, u + 1] * C[u – j + 1];                     

}

A[i, j] = sum0; A[i, j + 1] = sum1;

}

(b)

Figure 1.1: A Typical Stencil Loop and Unrolling Manually by 2x

Figure 1.2: Performance Comparison of Loop Unrolling
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for (i = 1; i < 1023; i++) {

for (j = 1; j < 1023; j++) {

float sum = 0;

for (u = i – 1; u <= i + 1; u++) {

sum += B[u, j] * C[u – i + 1];                      

}

A[i, j] = sum;

}

(a)

for (i = 2; i < 1022; i++) {

for (j = 2; j < 1022; j++) {

float sum = 0;

for (u = i – 2; u <= i + 2; u++) {

sum += B[u, j] * C[u – i + 1];                      

}

A[i, j] = sum;

}

(b)

Figure 1.3: 3 Points and 5 Points Vertical Stencil Loop Example

phase of compilation in which the data-independent scalar operations can be grouped

up into vectorized instructions. To automatically generate SIMD optimization for

stencil loops, the compiler need to make two decisions, how to assign the operands

of the stencil into vectorized registers so that the number of inter-register transfer is

minimized and how to assign functional units to the computation pipeline in order

to minimize CPU stall rate. In this dissertation, we develop a technique to perform

SIMD instruction binding based on compiler-level code analysis, and use it together

with loop unrolling to explore the best strategy for stencil loop optimization.

1.2 Improving the Memory Performance by Loop Tiling and

Buffering

Memory efficiency influences the performance of stencil loop. In modern processor de-

sign, data access patterns that exhibit locality benefit from cache. However, TI C66x

DSP is designed with a limited associative cache and it does not perform efficiently

on multi-dimensional data. Reading data using a stride pattern such as accessing row

major data in column order potentially causes cache conflict misses.

One of the example code that cause cache misses is vertical stencils. Figure 1.3

shows two examples of 3 points and 5 points vertical stencil.

One way to improve the memory performance of stencil loops is to tile the loop in

blocks and use the high speed on-chip memory as program controlled scratchpad. By

4



Figure 1.4: Scratchpad Buffer v.s. Cache

applying this method, the blocks of the source matrices are copied into the scratchpad

memory before they are processed by the computation kernel. However, customiz-

ing buffer for a particular stencil loop requires the programmer to manage on-chip

memory explicitly and adds considerable work load into the code design phase. In

order to provide a generic and easy-to-use memory management system, we develop

an automatic data transfer system on TI C66x DSP. It is able to parallelize data

transfer and computation by using the hardware memory transfer DMA so that the

memory performance could be maximized.

Figure 1.4 shows the performance of using 2D buffer v.s cache on vertical stencil

of different width. We can observe from the figure that as the stencil width increases,

cache performance drops fast while the performance of using strachpad memory stays

constant.

1.3 Specific Aims

Figure 1.5 shows an overview of our stencil loop optimization system. User composed

stencil code will be parsed into LLVM IR and processed by our optimization tools

5



PIA Input
PIA 

Compiler

LLVM 

Optimization 

and TI Compiler 

Backend 

Double Buffer 

Management 

Module 

Tiled Stencil 

Kernel

Runtime 

Tiling 

Parameter 

Optimization

Final version

Compile time Run time

Figure 1.5: A System Overview

and linked with the buffer management module. A cost evaluation model will be

performed to optimize the tiling parameters and converge the system to the best

performance.

Our contributions can be summerized as follows:

• Research on optimization methodologies that target at microarchitecture-aware

stencil loop optimization.

• Develop an automatic double buffer scratchpad that improves the memory per-

formance on stencil loop tiling.

The structure of this dissertation is organized as follows, Chaper 1 gives the

introduction, Chaper 2 introduces the background of Stencil Loops and the DSP’s

micro-architecture, Chapter 3 lists and compares the related work. Chapter 4 provides

the methodology and implementation. Chapter 5 gives the experimental results and

analysis. Chapter 6 gives the conclusion.

6



Chapter 2

Background

In this chapter we give the background knowledge of stencil loops, introduction to the

typical stencil loops that plays an important role in signal processing and computer

vision, and an overview of the TI C66x embedded processor architecture and code

optimization.

2.1 1D and 2D Stencil Loops

In a stencil operation, each point in a regular grid is updated with weighted contribu-

tions from a subset of its neighbors in both time and space called coefficients. These

coefficients may be the same at every grid point (a constant coefficient stencil) or not

(a variable coefficient stencil). Figure 2.1 shows a typical 3 points 1D stencil and a 5

points 2D stencil.

(a) (b)

Figure 2.1: Example of 1D and 2D Stencil Loops
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Stencil performs sweeps through data structures that are usually much larger than

the capacity of the available data caches. However, it contains exploitable temporal

locality that allows for data reuse. Normally, a 1D stencil can reuse all but one point

per iteration. The efficiency of utilizing stencil locality is limited by two factors:

cache size and cache conflict rates. To avoid performance loss from cache conflict

miss, optimization technique such as tiling are widely used in such cases that strided

data access is often, but it requires user to explicitly manage the data transfer between

off-chip and on-chip memory [44].

The stencil loop can be single input, single output or multiple inputs, multiple

outputs. Single input and single output stencil loops read value from a source matrix

and output the results to a destination matrix. It is commonly used for spatial filters

(Gaussian, Sobel, Laplacian). Multiple input and multiple output stencils read and

write values from multiple matrices (for example, matrix addition) and has more

complicated data locality pattern. It is used widely as feature extraction and motion

detection (Derivatives, Haar Feature, DOG, HOG, Lucas-Kanade method).

2.2 Stencil Loops in Signal Processing and Computer Vision

1D and 2D Mean Filter

Mean filtering is a simple, intuitive and easy to implement method of smoothing

signals and images, i.e. reducing the amount of intensity variation between one pixel

and the next. In computer vision, it is commonly used for noise removal.

The idea of mean filtering is simply to replace each pixel value in an image with

the average value of its neighbors, including itself. This has the effect of eliminating

pixel values which are unrepresentative of their surroundings. Mean filtering is a

typical example of a convolutional filter. It is based around a kernel, and represents

the shape and size of the neighborhood to be sampled when calculating the mean.

8



Often a N ×N square kernel is used.

Gaussian Filter

The Gaussian filter is a 1D or 2D convolutional operator that is used to blur images

or remove noise from signals. In this sense it is similar to the mean filter, but it uses

a different kernel that represents the shape of a Gaussian hump. Computationally,

Gaussian filter is a weighted mean filter. It requires more arithmetic operations to

compute each output value. Gaussian filter could be be generalized to high dimen-

sional space, however, 1D and 2D Gaussian are used more frequently than higher

dimensional Gaussians.

Equation 2.1 shows an 1D 7 points Gaussian filter. Equation 2.2 shows a 2D 5×5

Gaussian filter.

Gaussian1D =
(

0.006 0.061 0.242 0.383 0.242 0.061 0.006
)

(2.1)

Gaussian2D = 1
273



1 4 7 4 1

4 16 26 16 4

7 26 41 26 7

4 16 26 16 4

1 4 7 4 1


(2.2)

Jacobi Stencil

The Jacobi stencil is a type of stencil loops that are used in numerical solver of partial

differential equations. To be more specific, the Jacobi stencil is the iterative format

for finding the solutions to the class of boundary value problems of the form ∆u = 0.

In two dimensional space, Jacobi stencil can be formulated as Equation 2.3.

9



Oi,j = 0.25× (Ii−1,j + Ii+1,j + Ii,j−1 + Ii,j+1) (2.3)

Sobel Filter

The Sobel filter uses two 3x3 kernel matrices which are convolved with the original

image to calculate approximations of the derivatives of the pixel intensive in horizon-

tal and vertical direction. If we define A as the source image, and Gx and Gy are

two images which at each point contain the horizontal and vertical derivative approx-

imations. The horizontal and vertical derivatives of the image can be calculated by

Gx ∗ A and Gy ∗ A, in which ∗ is the convolution operator.

Gx =


1 0 −1

2 0 −2

1 0 −1

 (2.4)

Gy =


1 2 1

0 0 0

−1 −2 −1

 (2.5)

Harris Corner Method

The Harris Corner Detector is used widely in image processing for discovering the

feature points, which are marked as corners. The basic idea of Harris Corner Detector

is to find the shift score of a given patch from all directions. This method is introduced

by Harris and Stephen in 1988.

The Harris Corner score is computed within a sliding window. Let the sliding

window be W , the scoring function involves firstly computing the horizontal and

vertical partial derivatives of the image Ix and Iy, and then computing the three

10



summation values ΣI2
x, ΣI2

y and ΣIxIy over the sliding window. The corner score can

be computed by ΣI2
x + ΣI2

y − αΣIxIy.

Equation 2.6 and 2.7 shows the computation performed at each pixel of Harris

Corner Method.

A =
∑
w

 I2
x IxIy

IxIy I2
y

 (2.6)

S = det(A)− trace2(A) (2.7)

Lucas Kanade Method

Lucas Kanade method is a typical computer vision algorithm that can be organized

as a series of 2D stencil loops. It is widely used for computing the pixel displacement

between two consecutive frames in a video stream. Lucas Kanade method assumes the

pixel movement can be approximated by its first order partial derivatives. Assuming

that an image sequence is a three dimensional function f(x, y, t) in which the value

of the function is the pixel intensity. Lucas-Kanade method evaluates optical flow by

solving the Equation 2.8.

f(x, y, t) = f(x+ ∆x, y + ∆y, t+ ∆t) (2.8)

The right side of the equation can be approximated by its first-order Tylor ex-

pansion. (Equation 2.9)

f(x, y, t) = f(x, y, t) + ∂f

∂x
∆x+ ∂f

∂y
∆y + ∂f

∂t
∆t (2.9)

And it provides Equation 2.10

∂f

∂x
Vx + ∂f

∂y
Vy = −∂f

∂t
(2.10)

11



There are multiple ways to evaluate partial derivatives from an image and most

of them are based on 2D stencil computation (convolution). The simplest way to

compute the partial derivative is to use convolution matrix kvx = [−0.5, 0, 0.5] and

kvy = [−0.5, 0, 0.5]T . Other kernels that are performed with local smoothing such as

Prewitt and Sobel Filter are introduced by Scharr [43].

However, Equation 2.10 still has two unknown variables that can cannot be solved

if no additional condition is provided. This is known as the aperture problem. Lucas

Kanade method assumes that the optical flow is spatially perservative. The pix-

els close to each other should have identical velocity. Thus the velocity value can

be solved by performing least square method on a neighbor window. Assume the

neighbor window around the current point includes n piexels q1, q2, ...qn.

∂f
∂x

(q1)Vx + ∂f
∂y

(q1)Vy = −∂f
∂t

(q1)
∂f
∂x

(q2)Vx + ∂f
∂y

(q2)Vy = −∂f
∂t

(q2)

...

∂f
∂x

(qn)Vx + ∂f
∂y

(qn)Vy = −∂f
∂t

(qn)

(2.11)

Because the number of equations is larger than the number of the unknowns,

Equation 2.11 need to be solved by least square method. Let

A =



fx(q1) fy(q1)

fx(q2) fy(q2)

...

fx(qn) fy(qn)


(2.12)

v =

 Vx

Vy

 (2.13)
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b =



−ft(q1)

−ft(q2)

...

−ft(qn)


(2.14)

The velocity values Vx and Vy of each pixel can be computed by Equation 2.15.

v = (ATA)−1AT b (2.15)

Algorithm 1 shows the pseudo code of the least square method.

Algorithm 1 Compute Flow Field by Least Square Method
Input: Gaussian blurred images im1, im2 and derivative matrices vx, vy, vt, neigh-
bor window size l
Output: Optical flow fx, fy

for x = 0→ m− 1− l do
for y = 0→ n− 1− l do

a11 = 0, a12 = 0, a22 = 0, ab1 = 0, ab2 = 0
for u = x→ x+ l do

for v = y → y + l do
a11 = a11 + v2

x(u, v)
a12 = a12 + vx(u, v)vy(u, v)
a22 = a22 + v2

y(u, v)
ab1 = ab1 + vx(u, v)vt(u, v)
ab2 = ab2 + vx(u, v)vt(u, v)

end for
end for
deta = a11a22 − a2

12
ia11 = a22/deta
ia12 = −a12/deta
ia22 = a11/deta
fx(x+ l/2, y + l/2) = ia11ab1 + ia12ab2
fy(x+ l/2, y + l/2) = ia12ab1 + ia22ab2

end for
end for

Lucas Kanade method is a typical algorithm in computer vision that can be

mapped to a series of stencil loops. It is a good baseline method for testing our

proposed stencil loop code generator. In order to make the implemented optical flow
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system more practical, we follow the state-of-the-art research and build up the system

from the Lucas Kanade method with a number of algorithmic improvements.

2.3 The Benchmark Stencil Loop Kernels

From the introduced stencil loops, we select a set of benchmarks for the evaluation

of our stencil code generation and optimization tool. In details, the C code of the

benchmark stencil loops are listed in the Appendix A of the dissertation.

Our benchmark kernels include:

• Matrix add: Compute the element wise summation of two matrices.

• 1x3 Mean filter: Compute and store the average value of horizontal consecutive

three elements.

• 3x3 Mean filter: Compute and store the average value of a 3 by 3 grid.

• 4 point Jacobi stencil: An instance of 2D Jacobi stencil family.

• 7 point Gaussian filter: Horizontal Gaussian filter.

• Sobel filter: Compute the image gradient on x and y direction.

• Harris Corner detector: The corner scoring kernel of Harris method.

• Lucas Kanade method: The least square method kernel of Lucas Kanade optical

flow estimation.

The characteristic of the selected kernel benchmarks are listed in the Table 2.1.

In the table, we provide the number of load/store/floating point addition and multi-

plication in the innermost loop of the stencil. We also list the memory to compute

ratio (The number of memory instructions divided the number of arithmetic instruc-

tions), the bottleneck of the computation, and the theoretical maximum performance

measured by Gflops (Giga Floating Point Operation per Second).
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Table 2.1: Characteristic of the Selected Stencil Kernel Benchmark

Kernel Load Store Mul Add Mem Arith M/C Bound Gflops
Matrix Add 2.0 1.0 0.0 1.0 3.0 1.0 3.0 Mem 1.3
1x3 mean 3.0 1.0 1.0 2.0 4.0 3.0 1.3 Mem 1.0
3x3 mean 9.0 1.0 1.0 8.0 10.0 9.0 1.1 Mem 1.0
Jaccobi 4.0 1.0 1.0 3.0 5.0 4.0 1.2 Mem 1.0
Gaussian 7.0 1.0 7.0 6.0 8.0 13.0 0.6 Mem 2.0
Sobel 8.0 2.0 2.0 6.0 10.0 8.0 1.3 Mem 1.5
Harris 18.0 2.0 27.0 27.0 19.0 54.0 0.35 Comp. 3.0
LK 27.0 2.0 45.0 45.0 29.0 90.0 0.32 Comp. 3.3

In the benchmarks, the first 6 stencils are memory bound. The last 2 stencils,

Harris Corner and Lucas Kanade, are compute bound and have a more complex

computation characteristic.

2.4 TI Keystone High-Performance DSP Architecture

Nowadays the term High Performance Computation is more and more moves off

from traditional PC and computer servers, but into the new generation of devices

that is able to perform computation faster or with higher degree of parallelism. For

example, general purpose GPUs and DSPs are widely applied into the domain of

scientific computation [3] [7] [8] [13] [14], simulation [4], [30] [23] data mining and

machine learning [51] [12].

The Texas Instruments Keystone architecture have the potential to achieve high

power efficiency for scientific computation. They are designed as VLIW micropro-

cessors that allow wide instruction-level parallelism and multicore support. However,

unlike GPUs, these DSPs have integrated network interfaces and are capable of run-

ning an operating system, thus in theory they could participate in a distributed

processing system with little or no involvement from CPU-based hosts. Much like

how the GPU’s role as a coprocessor was an outgrowth of its initial market in the

3D gaming industry, the TI DSP that originally designed for data processing in cel-
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Figure 2.2: Architecture of TMS320C6678 DSP

lular phone base stations will continue to sustain its continued development while it

grows in a potential secondary role as a coprocessor for supercomputing. Figure 2.2

shows an overview design architecture of TI TMS320C6678 DSP. We will separately

introduce the components of micro-architecture in the following subsections.

Register File

The C66x DSP has two register files, called side A and side B. On each side there

are 32 32-bits registers. These registers could be used to store either integer or single
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precision floating point numbers. The registers on the same side of the processor

could be grouped up into 2’s group (register pair) or 4’s group (register quad) to

store a number that requires 64 bits or 128 bits.

Microprocessor Functional Units and Instruction Sets

Each C66x DSP has two sets of functional units on each side of the register file. Each

functional unit set includes 2 .M units, 2 .L and .S units, 2 .D units and a cross-path

data transfer unit .X, .M units are used to perform multiplications, .L and .D units

are used to performs all the other arithmetic instructions besides multiplications,

include addition, subtraction, Boolean operations and bit-shift operations. The .D

units are used for load and store operations. The data cross-path transfer unit .X is

used to move the data between the two register files.

The DSP allows SIMD instructions and VLIW instruction packing. 2-way SIMD

(Single Instruction Multiple Data) Instructions allow the processor to perform com-

putation on a vector of 2 in one functional unit. For example, a scalar multiplication

instruction “MPYSP A1, A2, A3” takes input operand value in register A1 and

A2, multiply and save the result into register A3. The SIMD version of MPYSP is

“DMPYSP A1:A2, A3:A4, A5:A6”. It takes two register pairs as the input operands,

multiplies the value of A1 and A3, A2 and A4 and save the two products into the

register pair A5 and A6.

The VLIW (Very Long InstructionWord) instructions allow the processor to group

up data independent instructions together so that they could be issued simultane-

ously. Unlike SIMD instructions, the VLIW instructions can be classified as Multiple

Instruction Multiple Data (MIMD). However they require multiple functional units

to be executed. For example, Two instructions “ADDSP A1, A2, A3 (A3 = A1 +

A2)” and “MPYSP A4, A5, A6 (A6 = A5 × A4)” can be grouped up into a VLIW

instruction “ADDSP A1, A2, A3 || MPYSP A4, A5, A6”. The “ || ” sign between the
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two instructions indicates that these two instructions are belongs to the same VLIW

pack. The SIMD instructions are able to be further packed into VLIW instructions

as long as there are enough functional units to lauch these two SIMD instructions

simultaneously.

Memory Subsystem

Each DSP processor has its own on-chip memory. It includes a 32KB L1P instruc-

tion cache, 32KB L1D data scratchpad/cache and a 512KB L2 data scratchpad/cache.

The fastest on-chip memory is the L1P instruction cache and L1D data scratchpad/-

cache. The L1P instruction cache is designed specifically for instruction prefetching

and is not usable by user program. The L1D on-chip memory could be either con-

figured as program controlled scratchpad memory or cache. The L1 memory has the

fastest speed. The latency of reading data from L1 memory is 4 cycles (1 CPU cy-

cle for issue, and 3 cycles for delay slot). The L2 on-chip memory is similar to L1.

However, in exchange of its larger size, Peak speed of L2 is half of the peak speed of

L1.

The External Memory Interface (EMIF) allows the DSP to access the off-chip

DDR memory. The EMIF is shared between all the DSP cores. It supports in-

struction level memory fetch or Direct Memory Access (DMA), which is a hardware

data movement module that allows the memory transfer from off-chip memory onto

on-chip memory without stalling CPU execution.

The maximum computational throughput that the C66x DSP is able to achieve

can be calculated in the following methodologies. Assume the maximum bandwidth

from global memory to DSP core is a, the memory to compute ratio of the stencil

loop is rmc. Because the maximum number of arithmetic instructions of the DSP core

can execute per cycle is 2× (2+2+2)×2 = 24 (2 sets of functional units on each side

times the number of the functional units (.L, .S. and .M unit) times the maximum
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floating point vector width of each functional unit). The maximum number of floating

point operation can be executed per cycle is the minimum between a × rmc/4 and

24, determined by whether the stencil computation is memory bounded or compute

bounded.

Software Pipeline

The basic building block of code optimization on TI C6678 DSP is loops. In order

to fully utilize the computational resources on the processor. C66x DSP uses a

compiler technique called Software Pipeline to achieve higher throughput on the data

independent loops [21]. The main idea of software pipeline is to overlap loop iterations

as much as possible so that the parallelized instructions from different loop iterations

could be executed simultaneously. An example of software pipeline optimization is

adding a constant value to a floating point array, B[i] = A[i]+1.0. From this example

we can see that the loop body is composed of three parts: load data from A[i], perform

B[i] = A[i] + 1.0 and store B[i]. In the ideal case. those three instructions could be

pipelined with a step length equals to one cycle.

In a software pipelined loop, the number of CPU cycles between the launching

time of two consecutive loop iterations is called Iteration Interval (II). II describes

the average running time of each loop iteration and measures the code optimization

efficiency. Ideally, for a data independent loop, the processor should be able to issue

a new iteration in every cycle (II = 1). However since the number of functional units

on the processor is limited. If the new loop iteration requires more functional units

than the chip is able to allocate. It has to be stalled until the required functional

units are free. The number of cycles delayed because of the limitation of functional

units is called resource bound. To be more specific, the delay caused by memory

operation units is called memory operation bound; the delay caused by arithmetic

functional units is called arithmetic operation bound. For most of the stencil loops
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void vadd(float* A, float* B, float* C, int size) {

int i;

for (i = 0; i < size; ++i) {

C[i] = A[i] + B[i];

}

}

LDW     .D2T2   *B5++(4),B4      

|| LDW     .D1T1   *A5++(4),A3 (F)

FADDSP  .L1X    A3,B4,A3  (D)

STW     .D1T1   A3,*A4++(4) (E)

Vector add in C code Loop body in assembly

F1 D1 E1

F2 D2 E2

F3 D3 E3

Cycle1 Cycle2 Cycle3 Cycle4 Cycle5

Iteration1

Iteration2

Iteration3

Software pipeline in ideal case 

E1 Conflicts with F3 because they both need 

functional unit D1,T1

Figure 2.3: An Example of Software Pipeline on Vector Add Kernel

that contain more instructions than vector add, the II is very likely to be larger than

1 because of resource bound. In Figure 2.3. We also show an example of functional

unit contention between parallel iterations. In this case, iteration 3 cannot be issued

until iteration 1 finish storing the value and free functional unit D1 and T1.

In the following chapters, we will focus on the methdology and implementation of

our stencil optimization framework.
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Chapter 3

Related Work

In this chapter, we summarize a variaty of related work on optimizing stencil loops

and improving the performance of optical flow methods. Implementation of these

methods is available on various of platforms including multi-core CPUs, GPUs and

FPGAs.

3.1 Stencil Loop Acceleration on CPUs, GPUs and FPGAs

The code generation and optimization of stencils are studied intensively on GPUs

and CPUs that allow large scale parallelization. In this section we summarize the

state-of-the-art stecil loop optimization researches.

Holewinski et al. developed an automatic stencil loop generation and tuning tool

for both CPUs and GPUs [18]. They developed a domain-specific language to de-

scribe stencil and a compiler which is able to translate the domain-specific language

to C and CUDA code. However, their methodolody focus on minimizing the memory

access rate by loop tiling and cache performance optimization and does not involve

SIMD utiization and unrolling optimization. Experimental result shows that their

code generation scheme is able to achieve high performance on a range of GPU ar-

chitectures.

The PATUS framework developed by Christen et al. [6] is a code generation

and auto-tuning framework for stencil computations targeted at modern multi- and

many-core processors, such as multicore CPUs and graphics processing units. The

goal of this work is to provide a means towards productivity and performance on
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current and future high performance computing platforms. The framework generates

the code for a computation kernel from a specification of the stencil operation and

a description of optimization strategy. It is leveraged to find the optimal hardware

architecture-specific and strategy-specific parameter configuration. The shortcom-

ing of the PATUS framework is that it requires the users to provide the hardware

platform specifications and write both the stencil loops and the parameter configu-

ration for auto-tuning, which adds coding complexity. Similar to the Holewinski’s

work mentioned previously, PATUS also does not involve optimization with SIMD

instructions.

Han et al. presented in his work a PAttern-Driven Stencil (PADS) compiler-based

tool in 2011 [17]. Extension of this tool applies and depicts high-level data structures

in order to facilitate recognition of various stencil computation patterns. The PADS

allows programmers to rewrite kernel of stencils or reuse source-to-source translator

outputs as optimized stencil template codes with related tuning parameters. In ad-

dition, PADS consists of a OpenMP to CUDA translator and code generator using

optimized template codes. It is able to achieve in average 2.5x speed up compared

with non-optimized C code on a selected benchmark of three stencil algorithms.

Datta et al. developed an optimization and auto-tuning framework for stencil

computations [9], targeting at multi-core systems, NVidia GPUs, and Cell SPUs.

They proposed autotuning as essential in order to achieve performance levels on GPUs

where the benefits outweight the cost of sending data across the PCIe bus. Their

method is able to achieve 3x speed up compared with non-optimized version on a 3D

heat equation. However, their auto-tuning tools is based on stencil parameterization

and does not perform assembly-level code optimization.

The work of Tang et al. [48] proposes the Pochoir stencil compiler which uses a

DSL embedded in C++ to produce high performance code for stencil computations

using cache-oblivious parallelograms for parallelism. The Pochoir stencil compiler
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allows a programmer to write a simple specification of a stencil in a domain-specific

language embedded in C++ which the Pochoir compiler then translates into high-

performing Cilk code that employs an efficient parallel algorithm based on parallel

space cut. And then a set of optimization such as code cloning and loop indexing are

performed to generate efficient Cilk code. Pochoir supports general d-dimensional

stencils and handles both periodic and aperiodic boundary conditions in one unified

algorithm.

Overlapped tiling is a technique used in automatic code generation framework. It

is early presented by Krishnamoorthy et al. [31] for enhancing tile-level concurrency

for multi-core systems. Nguyen et al. [37] proposed a data blocking scheme that

optimizes both the memory bandwidth and computation resources on GPU devices.

Peng et al. [11] investigated the optimization of selection of tile sizes with an emphasis

on stencil computations.

Paulius Micikevicius described a GPU parallelization of the 3D finite difference

computation using CUDA [35]. In his work, a hand-tuned 3D finite difference com-

putation stencil achieved an order of magnitude performance increase over existing

CPU implementations on GT200-based Tesla GPUs. Multi-GPU parallelization is

also described, achieving linear scaling with GPUs by overlapping inter-GPU com-

munication with computation.

Since the memory access pattern of stencil loops are highly regular, hardware

acceleation techniques such as FPGAs are often utilized for stencil loop speed up.

Those research works many focus on optimizing the memory controller, memory ac-

cess scheduling system and floating point arithmetic pipeline. Jin et al. presented

his work for stencil optimization on Convey HC-1 FPGA platform [28] [27] and later

publish an appication specific research on BEAGLE library acceleration [26].

In summary, the state-of-the-art stencil loop compilers are mainly targeted at

code generation for multicore systems such as OpenMP and CUDA platforms. Most
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of those work focus on optimizing loop tile size and increasing data reuse rate (cache

performance). None of these work provides a solution with instruction-level paral-

lelism and improve the memory bandwith utilizing on-chip memory such as scratch-

pad.

3.2 Improve System Performance by Scratchpad Memory

Unlinke CPUs, embedded systems allow users to manipulate on-chip memory ex-

plicitly. Those on-chip memory called stratchpad memory, are 3-4 times faster than

off-chip memory, but relatively small. In this section, we summarize the literatures

that work towards improving scratchpad memory efficiency on embedded system.

Kandemir et al. presented a compiler strategy to optimize data accesses in reg-

ular array-intensive applications running on embedded multiprocessor environments

[29]. Their optimization algorithm targets at reducing extra off-chip memory ac-

cesses caused by inter-processor communication. It is achieved by increasing the

application-wide reuse of data that resides in the scratchpad memories of processors.

The experimental results obtained on four array-intensive image processing applica-

tions indicate that exploiting inter-processor data sharing can reduce the energy cost

by as much as 33.8% (and 24.3% on average) on a four-processor embedded system.

However, Their memory scheduling method is based on program I/O and did not uti-

lize hardware memory transfer functionalities such as Direct Memory Access (DMA).

This causes two problems: (1) Memory bandwidth can not be fully utilized. (2) CPU

is stalled when data copy is being processed.

Chattopadhyay et al. works towards reducing scratchpad usage through bus ad-

dress sharing. In his work, a compile-time scratchpad allocation framework for multi-

processor platforms is developed where the processors share on-chip scratchpad space

and external memory. The allocation method considers the waiting time for bus ac-

cess while deciding which memory blocks to load into the shared scratchpad memory
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space. Zhang et.al proposed a partitioning heuristics scheme for scratchpad alloca-

tion based on High Access Frequency First (HAFF) variable partitioning and Global

View Prediction (GVP) variable partitioning [52]. A loop pipeline scheduling was

developed to improve the overall memory efficiency. Ozturk et al. proposed a control

flow graph based technique to reduce the scratchpad memory usage on multicore em-

bedded system. It tracks the lifetime of instructions at the basic block level. Based

on the CFG analysis, if a basic block is known to be not accessible in the rest of

the program execution, the instruction memory space allocated to this basic block is

reclaimed. All these proposed works focus on reducing memory usage and does not

emphasize performance issue.

Scratchpad memory are useful on embedded system or special propose proces-

sor such as System-On-Chip. For the application which has a complicated memory

structure, How to partition and assign scratchpad memory so that the overall system

performance is optimized is still an open problem for research. Yang et al. studies the

scratchpad structure of TI Keystone2 and present their application specific study on

sparse matrix multiplication [15]. Yan et al. designed and optimized FPGA acceler-

ator with customized scratchpad memory architecture to accelerate frequent itemset

mining algorithm [53] [54].

3.3 Accelerating Lucas-Kanade Method on Various of Plat-

forms

One of the most influencial work that optimizes Lucas-Kanade method on multicore

CPU is published by Anguita et al. [1]. In the paper, a high-performance implemen-

tation of Lucas-Kanade method that takes advantage of the multicore processor’s

architecture is presented. Their optimized implementation is highly interesting for a

number of applications since it delivers real-time motion estimations at high-image

resolution on a PC or in an embedded system based on a general-purpose proces-
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sor. On a 2.83 GHz Core 2 Quad PC, it achieves a speedup of 14x compared to

the baseline version and 2052.7 fps for the well-known 252x316 Yosemite sequence,

and a speedup of 17.6x and 68.5 fps for a 1016x1280 sequence. Their optimization

of Lucas-Kanade method in the paper is separated into two stages. In stage 1, an

error-free baseline version is implemented in C language with single floating point

matrix type and optimized primitively by compiler options and cache parameter tun-

ing. A complete combination of the compiler options are studied and compared to

guarantee the optimal running time. Beside tuning compiler options, author rounds

up the matrix width used in the code with L2 cache line size of the CPU to reduce

the cache conflict miss rate. The first step optimization is able to achieve 25fps tested

on the Yosemite sequence.

The stage2 optimization includes:

• Cloning of the convolution functions. The convolution functions implemented

take advantage of the symmetry of the convolving filters (except the row con-

volution in the smooth stage). Furthermore, the smooth stage is implemented

with two nested loops (loop fusion).

• Loop unrolling is applied to the convolution operations.

• OpenMP directives have been explicitly added in order to distribute the com-

putation between different threads and thus take advantage of the multiple

cores.

• Block-driven processing is applied to reduce the negative impact of the image

sizes on the processing time. The algorithm is changed in order to process the

images in blocks. In this way, data locality is improved by taking advantage of

the cache.

26



Marzat et al. implemented CUDA based Pyramidal Lucas-Kanade method [34].

The paper tackles the problem by proposing a parallel implementation of the pyra-

midal and iterative refinement algorithm of Lucas-Kanade in a Graphics Processing

Unit (GPU). It is able to compute a dense velocity field at about 15 Hz with a

640x480 image definition using the Compute Unified Device Architecture interfance.

It parallelizes the velocity computation across 512 CUDA threads and utilizes hard-

ware acceleration module provided from CUDA Library to compute Gaussian blur

and flow bilinear interpolation. Their CUDA implementation achieves 100x speed up

compared with an optimized CPU version and 15 fps on 640x480 RGB images.

NVidia provided many GPU accelerated computer vision kernel functions based on

OpenCV library. Pyramidal Lucas-Kanande methods is implemented and integrated

into OpenCV library [38].

Devi et al. design an hardware Lucas-Kanade architecture with multi-scale exten-

sion on FPGA device simulation [10]. Their method is based on software simulation

model and provided with simulation results.

Diaz et al. developed a pipeline architecture for non-pyramidal Lucas-Kanade

method. In their work. Lucas-Kanade method is divided into a 5 phases, over 70

pipeline stages (Super Pipelining). Since implementing a full pipelined optical flow

uses considerable amount of gate resources on the board. They simplify the design

by using fix point arithmetic. Their super pipeling model is developed on the Virtex

II XC2V6000-4 Xilinx FPGA and achieves 170 fps on 800x600 video stream [24] [33].

Besides differential method. Other methods for optical flow estimation include

phase-based methods [41] [49] [16], tensor based and block matching methods [36]

[25] [45] [50].

Although nowadays Digital Signal Processors are growing more and more powerful

in numerical data processing and are able to achieve better power efficiency compared

with CPUs and GPUs, very few work has been published on accelerating computer
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vision tasks on those platforms. Basavaiah presented his paper of building object

tracking system on embedded processor in 2012, but his work many focuses on system

development and does not put much emphasis on to performance study [2]. Hutchings

et al. use a different platform called Ambric Massively Parallel Processor Array

(MPPA) as the hardware accelerator to implement real-time Lucas-Kanade optical

flow method and achieves 4x speed up [19].

Comparison studies of optical flow performance between different platforms are

available in the following published work [5] [40].

In summary, current stat-of-the-art research of accelerating Lucas-Kanade method

are all based on multicore CPU, GPU and FPGA. Our proposed work is the first one

that concerns how to improve the performance of the Lucas-Kanade method on a

multicore embedded processor.
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Chapter 4

Approach

In this chapter, we provide the detailed design of our stencil code generation, opti-

mization and scratchpad memory management methodologies and implementation.

4.1 Performance Metrics

The performance of a stencil loop can to be characterized using the following metrics.

• Iteration Interval, or II: It is the number of cycles between two consecutive

iterations are issued. II is most important metric since it is a direct throughput

measurement of the loop. Because the stencil loop iterations are completely

data-independent, the II is determined by resource bound such as functional

units and register usage. As shown in Figure 4.1, Because both of the memory

functional units are occupied in cycle 3, the launch of a new loop iteration must

be delayed until one of them is free. The same II delay could also be caused by

arithmetic operation unit contention. We separately discuss the two factors that

contribute to II, which are memory operation bound and arithmetic operation

bound.

• Operations per iteration: It characterizes the effectiveness of the code genera-

tion. It is the total number of operations in the loop. Scalar instruction counts

as 1 operation and n-way SIMD instruction counts as n operations. Operations

per iteration can be retrived by counting from the backend generated assembly

code.
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Figure 4.1: Example of II Increasing Caused by Functional Unit Allocation

• Operations per cycle: It is the number of operations executed per cycle. It

measures the VLIW and SIMD level parallelism of the generate code. The

operations per cycle is computed from the operations per iteration divided by

II.

• Allocated register number: It measures the register resource usage of the gener-

ated code. This number is computed by parsing the assembly code of the loop

body and counting the unique number of registers.

4.2 Stencil Code Generation and Optimization

The stencil code generation and optimization infrastructure we developed is composed

of two components.
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• A Domain Specific Language called Position Independent Arithmetic (PIA) and

a frontend compiler that generates code from PIA syntax to LLVM intermediate

representation.

• A code optimization engine that drives the optimization process on the LLVM

intermediate representation.

The LLVM is a compiler infrastructure designed as a set of reusable libraries

with well-defined interfaces. It is written in C++ and is designed for compile-time,

link-time, and run-time optimization of programs written in arbitrary programming

languages. We list more details of LLVM in the Appendix B section of the disserta-

tion.

The main motivation of separating the design of the stencil loop code into a

Domain Specific Language is to simplify the design of stencil loop body and take the

control flow management away from the programmer, given the fact that the identical

computation must be done on each entry of the output matrix. An user of PIA is

only required to specify the computation performed on each output matrices’ entries.

The user-defined code section is called the stencil body. We design a positional

index system to refer to the elements from the input matrices. More complex sten-

cils that contain multiple inputs and outputs, or dimesion higher than 2 are also

supported.

Syntax Design of the Position Independent Arithmetic

In order to illustrate how the stencil loops are represented in PIA format, we show

a hello world program in Figure 4.2. It shows a matrix add kernel in PIA. As a

comparison, we also show the equivalent C code implementation in the figure.

To be more specific, a PIA stencil loop function is declared by starting with

“STENCIL(func_name)” and ending with “END”. The “STENCIL” and “END” are
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STENCIL(func)

O0 = I0[0, 0] + I1[0, 0]

END

for (int i = 0; i < size_y; ++i) 

for (int j = 0 j < size_x; ++j)

O0[i * size_x + j] =

I0[i * size_x + j] + I1[i + size_x + j]

(a) Stencil loop in PIA (b) Stencil loop in C

Figure 4.2: Matrix Add in PIA and C

two of the reserved keywords in PIA. The “func_name” specified the name of the

stencil function and it is exported as the module function name in the generated

intermediate code and LLVM bytecode file. User code calls to PIA generated function

will need to used it as the function name.

In the PIA stencil body, standard arithmetic operations such as “+”, “-”, “*” and

“/” are supported. Assignment operation is performed by “=” operator.

There are 4 different types of identifiers in PIA syntax. They are “input field”,

“output field”, “local variable” and “parameter”. Input fields and output fields are

used to refer to the elements in the input and output matrices. They are named by

ANSI C standard, starting with letter or underline and followed by letters, underlines

and numbers. Each input or output field is parsed into a floating pointer parameter

in the output function’s parameter list.

The input fields can be used together with a dimensional offset modifier [_, _, ...

_]. For example I0[-1, -1] means the elements to the top left position of the current

position in matrix I0. The output fields are not allowed to be used with the offset

modifier. The input fields are read-only. The output fields are write-only.

The local variables are identified by a starting character “$”. They are used to store

the intermediate results. For example “$a = I0[0, -1] + I0[0, 1];”. This statement

takes the left and right elements from the current position and sum them up into

variable $a.

Parameters begin with “@”. They are used when the stencil loops need values to
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translation_unit 

: START_STENCIL '(' IDENTIFIER ')'  stencil_statements END_STENCIL ;

stencil_statements : stencil_statements stencil_statement ;

stencil_statement : stencil_lval '=' stencil_rval ';' ;

stencil_lval : LOCAL_VARIABLE  | OUTPUT_FIELD ;

stencil_rval : stencil_expression ;

input_field : INPUT_FIELD '[' stencil_offset ',' stencil_offset ']’ ;

stencil_offset : '-' CONSTANT_INT_DEC | CONSTANT_INT_DEC ;

stencil_expression

: stencil_expression '+' stencil_mul_expression

| stencil_expression '-' stencil_mul_expression

| stencil_mul_expression

stencil_mul_expression

: stencil_mul_expression '*' stencil_primary_expression

| stencil_mul_expression '/' stencil_primary_expression

| stencil_primary_expression;

stencil_primary_expression

: '(' stencil_expression ')'

| CONSTANT

| input_field

| LOCAL_VARIABLE

| INPUT_VARIABLE ;

Figure 4.3: The Context Free Grammar of PIA in Bison

be passed in from outside. They are read-only and parsed and listed as parameters

of the output function declarations.

Each statement in PIA ends with a semi column.

In order to better demonstrate the design of PIA syntax. Figure 4.3 list the

context free grammar of PIA.

The PIA stencil code is parsed by GNU Bison and Flex. The abstract syntax tree

is generated after code parsing. In the PIA syntax tree, there are three types of syntax

nodes. (1) value nodes, these nodes represent either a variable or a constant, (2)

operation nodes: these nodes represent arithmetic operations, (3) assignment node,

these nodes represent assignment operations. Each syntax code is provided with a

code generation method so that corresponding LLVM IR code can be generated with

a post order traversal of the syntax tree.

In the Figure 4.4, we list the major components of the LLVM code generation,

which includes syntax tree generation, stencil margin detection, loop structure gen-
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Syntax Tree Generation

Margin Detection

Loop Structure 

Generation

Stencil Code Generation

Output LLVM code

Figure 4.4: The System Overview of the PIA Compiler

eration and stencil body generation.

Stencil Loop Margin Detection

The margin of a stencil is the neighbor window size of the computation on each

matrix entry. For example, the computation structure of a 2D Jacobi stencil is shown

in Figure 4.5. Each point in the output matrix is computed by averaging adjacent 5

points (self, top, bottom, left and right neighbor) in the input matrix. The margin has

to be detected before code generation because the loop starting and ending conditions

are dependent to the margin size. The four margin values of the stencil loop can be

computed from the largest offset values from the modifiers fields in the input field

nodes.

The margin values need to be collected before control flow structure generation

because they are needed for construction of the starting and ending condition of the

loop.
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i-1, j

i, j-1 i, j i, j+1

i+1, j

Left margin = 1 Right margin = 1

Top margin = 1

Bottom margin = 1

Figure 4.5: A Stencil Loop Example (2D Jacobi) with Margins Sizes Equal to 1

Control Flow Structure Generation

After the stencil margins are detected, those values are used to generate the multi-

level nested loop structure. Wach level of the nested loop is consisted of 4 basic blocks

labeled Preheader, Loop, LoopCond and AfterLoop. The Preheader block initializes

the loop variables and then it passes the control flow into the Loop block. The Loop

block is generated from parsing the PIA stencil body into arithmetic operations in

LLVM intermediate representation format. The LoopCond block is executed after

the Loop block. It updates the value of the loop variables and evaluates the loop

condition to decide whether the loop should be started over or exit.

We use a recursive algorithm to generate nested loop structure. The input of

the algorithm is the margin sizes of x and y direction from margin detector and the

abstract syntax tree. The detailed design of the LLVM code generation is listed in

Appendix B of this dissertation.
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PIA Code LLVM Code Assembly Code

Code Generation Code Optimization

TI Assembler

LLVM Optimization Passes

Figure 4.6: An Overview of Code Optimization Engine

An Overview of Stencil Loop Optimization in LLVM

The code generation methodology we have introduced previously is able to gener-

ate executable code. In the following sections we focus on discussing how the code

optimization is performed and in which way the performance of the code could be

optimized. The basic idea of the code optimization is to search the optimized code

transformation strategy based on the feedback from the assembly code generator.

The Figure 4.6 shows an overview of the code optimization searching strategy. The

code optimization is separated into two parts: static optimizations are always exe-

cuted, such as constant propagation, instruction reassociation, common sub-expression

extraction, and dynamic optimizations are parameterized and executed conditionally

based on the feedback information from the backend assembler. In the following

section, we focus on introducing the dynamic optimization strategies. The dynamic

optimization strategies we developed and implemented are loop unrolling and SIMD

binding.

Loop Unrolling

Loop unrolling increase the number of instructions in the loop body and provide more

space for the assembler to perform VLIW parallelization. In order to perform loop

unrolling, the loops can be rewritten as a repeated sequence of similar independent
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statements.

Programmatically perform loop unrolling could be more challenging than doing

it manually. The unroll procedure need to decide:

• How the loop is structuralized. Generally before a loop can be unrolled. The

three sections has to be identified, phi node instructions, loop condition and

loop variable updating instructions and loop body.

• How to duplicate the loop body. Unroll the loop body is not as simple as writing

the loop body twice. In order to generate valid code, new variables need to be

allocated for the unrolled loop. This includes how to keep track of the operands

of all the instructions and decide which operand should be referred to.

• We need to perform the loop unrolling on the LLVM IR level. which is an

assembly-like formatted code. This means we cannot use most of the struc-

turalized information from the syntax parsing.

An example of how loop unrolling could optimize the code efficiency is shown in

Figure 4.7, In the figure, the instructions concatenated by “||” sign means they are

parallelized into a VLIW instruction. After the loop that performs vector add is

unrolled by 2, The homologous instructions could be grouped into one VLIW pack

and issued in parallel and the running time of the loop is reduced.

The unroll methodology we developed is composed of three major steps: loop

variable adjustment, instruction duplication, and middle block generation. In order

to expand multiple iterations of the loop into one. We must scan over every instruction

of the loop body and build an operand registration list to store the mapping relation

of each operand in the original loop and its duplications in the unrolled loop.

The loop unrolling algorithm is shown in Algorithm 2. At the beginning of the

algorithm, we use the LLVM loop information analysis module to find the loop vari-

able and manually spawn it into duplicates (line 4). For example, if we unroll a loop
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LDW     .D1T1 *B5++(4),B4      

FADDSP  .L1X    A3,B4,B4

STW     .D1T1   A3,*A4++(4)

LDW     .D1T1 *B5++(4),B4

|| LDW     .D2T2   *B5++(4),B5

FADDSP  .L1X    A3,B4,B4

|| FADDSP  .L2X    A4,B5,B5

STW     .D1T1   A3,*A6++(4)

|| STW     .D2T2 A4,*A6++(4)

Original loop Loop unrolled by 2x

Cycles: 3

FU usage: 5

Cycles: 3, 

FU usage: 10

Figure 4.7: Increase Functional Unit Utilization Rate by Loop Unrolling

with loop variable i with a factor of 2, the i will be duplicated to i1 = i and i2 = i+1

(line 5 to 8). The next step is to start from the beginning of the loop, duplicate

the phi node instructions into the new loop (line 10 to 12), then iterate over all the

instructions in the original loop, look up and duplicate them into the new loop, The

operands of the duplicated instructions are looked up from the operand registration

list (line 13 to 19). At the last, we insert the instructions for the loop variable updat-

ing into the new loop (line 21). Instead of increment by 1, the loop variable is now

increment by N . The branch instruction is attached at the end of the loop body. It

lead the instruction flow into a middle block (line 22, 23).

Because the unrolled loop only process the loop iteration numbered in the mul-

tiple of the unroll factor. For example, if a loop with 17 iterations is unrolled in a

factor of 4. It will stop at iteration 15 and leaves iteration 16 undone. The middle

block compare the value of the loop variable and the loop condition and process the

remained iterations. The exit of the middle block is set to be the exit of the unrolled

loop.
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Algorithm 2 Loop Unrolling Algorithm
1: Input: Original loop in LLVM format, Unroll factor N
2: Output: Unrolled loop in LLVM format
3: Initialize operand registration list m
4: Identify loop variable LoopV ar
5: m[LoopV ar] = [LoopV ar[0], LoopV ar[1], ...LoopV ar[N − 1]]
6: for i = 0 to N − 1 do
7: Generate LLVM code that assigns LoopV ar + i into LoopV ar[i]
8: end for
9: for each instruction i in the original loop do

10: for each operand o in i do
11: if m[o] == NULL then
12: Allocate N new variables [v0...vN ] and let m[o] = [v0...vN ]
13: end if
14: end for
15: Generate duplicated instruction from i and the operand registration list m
16: end for
17: Update the loop condition blocks
18: Generate middle block
19: Generate exit block

SIMD Binding

The second optimization we perform is SIMD binding (or called loop vectorization).

This optimization is often combined together with loop unrolling. Once the loop is

unrolled. The homologous instructions are expanded multiple times in the same loop

iteration, but with different operands. These homologous instructions can be grouped

up into SIMD instructions and reduce the functional unit occupation given that the

SIMD instruction is supported on the processor’s micro-architecture.

Like loop unrolling, SIMD binding also requires programmatically transforming

the LLVM’s IR code. The challenges of performing SIMD binding includes:

• Distinguish vectorizable instructions and transform them into the equivalent

SIMD instructions. Non-vectorizable instructions such as comparison, boolean

and branch insturctions are unrolled and scalarized.

• Group scalar variables into vector varables. As the instructions are SIMD
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binded, the operands of those instructions need to be transformed into vector

form. It is required that the instructions such as “insertelements” are automat-

ically inserted into the code to build vector values from scalar values.

• Generate C66x compatible SIMD instructions. As the C66x assembler does

not recognize LLVM vectorized memory instructions, for examples, the 2-way

SIMD load/store instructions. We need to explicitly generate C66x intrinsic

function call in the LLVM IR level. This requires to add a translation layer on

the top of the SIMD binding LLVM code, that distinguishes those instructions

into C66x intrinsic function call.

In order to perform the SIMD binding, the loop is firstly unrolled by the vector

width of the micro-architecture, for TI C66x DSP this number is 2. We search and

combine the homologous instructions together as SIMD instruction in LLVM. The

SIMD binding are targeted at two types of instructions: Memory instructions and

arithmetic instructions.

Figure 4.8 shows an example of SIMD binding after loop unrolling by 2x. The

SIMD binding process is able to convert the scalar load and store instruction LDW

and STW into 2-way SIMD load and store instructions LDDW/LDNDW and STD-

W/STNDW, and convert the scalar addition instruction FADDSP to DADDSP

We design a Function Pass module called PiaVectorize and add it to the LLVM

source code repository. The PiaVectorize module always vectorize code in a width of

2, because that is the largest width that TI C66x DSP supported.

The PiaVectorize first calls the LLVM loop analysis module to locate the innermost

loop body and the loop variable, then it enumarates all the homologous memory

operations and arithmetic operations and binds them into into SIMD operations,

In order to make the TI assembler backend to correctly translate LLVM code into

SIMD instructions, it generates inline intrinsic calls for the SIMD memory operations
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LDW     .D1T1 *B5++(4),B4

|| LDW     .D2T2   *B5++(4),B5

FADDSP  .L1X    A3,B4,B4

|| FADDSP  .L2X    A4,B5,B5

STW     .D1T1   A3,*A6++(4)

|| STW     .D2T2 A4,*A6++(4)

Loop unrolled by 2x

Cycles: 3, 

FU usage: 10

LDDW     .D1T1 *B5++(4),B4:B5

DADDSP  .L1X    A3:A4,B4:B5,B4:B5

STDW     .D1T1   A3:A4,*A6++(4)

Loop unrolled by 2x and 

SIMD binding

Cycles: 3, 

FU usage: 5

Figure 4.8: Increase Functional Unit Utilization Rate by SIMD Binding

“_memd8()”.

As shown in Algorithm 3, the SIMD binding function reads in the structure of

the loop (Line 4), create a new vectorized loop and replace the old one with the

new one. First, phi node instructions are identified and scalarized (Line 6). Next, If

the consecutive instructions are from the same parent from the loop unrolling, the

algorithm first check if they are vectorizable. If so, they will be combined into a SIMD

instruction (Line 13). If the instructions are memory operations, an address casting

instruction from single data pointer into vectorized data pointer is inserted before

the vectorized instruction. In order to correctly invoke C66x backend assembler

to generate vector load and store instructions, A call instruction that invokes the

intrinsic function _memd8() will be generated instead of the LLVM vector load/store

(Line 10). After all of the instructions in the loop body are completed then we adjust

the incoming edges to the updated phi nodes (In Algorithm 3, Line 16). At the last,

we output the vectorized basic blocks into the new loop body.
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Algorithm 3 SIMD Binding Algorithm
1: Input: Original loop in LLVM format
2: Output: Vectorized loop in LLVM format
3: Unroll all the innermost loops by a factor of 2
4: for each innermost loop L in the function do
5: Check if L is vectorizable
6: Identify and scalarize the phi node and loop condition check code
7: for each vectorizable instruction pair i in L do
8: if i is a memory instruction then
9: Static cast the address to vector format

10: Generate LLVM code that invokes the _memd8() intrinsic function
11: Fix address alignment
12: else if i is an arithmetic instruction then
13: Merge the instructions into SIMD operation
14: end if
15: end for
16: Update the branch instruction so that the loop will jump to the fixed phi node
17: end for

4.3 Improve Memory Throughput by Compile-Time Align-

ment Detection

There are two types of vectorized load/store instruction in TI C66x instruction set,

Aligned 2-way SIMD load/store LDDW and STDW, and unaligned 2-way SIMD

load/store LDNDW/STNDW. The aligned load and store must be used for accessing

memory data from an 8 byte aligned address and they are faster than the unaligned

load/store. Generally, all the memory operations are interpreted as the unaligned

operation. However, if we are able to use some of the prior knowledge from the input

data, for example, in the matrix add kernel, the programmer of PIA tells the compiler

that the starting address of all the rows of the input and output matrices are aligned

with 8 bytes. In the vectorized version of the stencil, the PIA compiler can safely

interpret all the memory operations as aligned.

We add into PIA syntax an additional field called “row align” declaration, located

after the declaration of the stencil header, for example“STENCIL(func) [row_align =
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a b c d

STENCIL (func) [row_align = 8]

O0 = (I0[0, -1] + I0[0, 0] +

I0[0, 1]) * 0.33

END

a b c d

STENCIL (func)

O0 = (I0[0, -1] + I0[0, 0] +

I0[0, 1]) * 0.33

END

Vectorized Execution Code

(with alignment detection)

Load [a,b] (aligned)

Load [b,c] (unaligned)

Load [c,d] (aligned)

[e,f] = ([a,b] + [b,c] + [c,d]) * [0.33, 0.33]

Store [e,f]

Vectorized Execution Code

(without alignment detection)

Load [a,b] (unaligned)

Load [b,c] (unaligned)

Load [c,d] (unaligned)

[e,f] = ([a,b] + [b,c] + [c,d]) * [0.33, 0.33]

Store [e,f]

Row is aligned Row is not guaranteed 

to be aligned

LDDW LDDW

LDNDW LDNDW

LDNDW LDNDW

Figure 4.9: An Example of Applying Alignment Detection on the PIA Code of an1x3
Mean Filter

8]”. The row align attribute tells the PIA compiler that the starting address of each

row from the input and output matrices is aligned with the number of bytes specified.

If the stencil matrices are specified by row_align = 8, when the code generation is

performed, The address alignment will be calculated and inserted into each load and

store instruction’s metadata field. When the SIMD binding procedure is perform-

ing the code vectorization. It reads the alignment information from the metadata

and generate intrinsic function call to _amem8 (LDDW/STDW) for alignment = 8

or _mem8 (LDNDW/STNDW) for alignment = 4. This optimization methdology

is called compile-time alignment detection. An example of compile-time alignment

detection is shown in Figure 4.9.

4.4 Finding the Best Optimization Stragegy

The dynamic optimization engine iteratively scan the search space of loop unrolling

factor UF ∈ {1...N} and vectorization factor V F ∈ {1, 2}. The upperbound of UF

theoretically could be as large as possible, but it is oberserved that the performance

43



of the loop unrolling would drop normally after 8x unroll. Our iterative search pro-

cedure parses the output information from the generated assembly code. It stops

searching forward with increasing loop unrolling when it observes the output assem-

bly code reporting that the register allocation is exceed the hardware limitation. The

parameter optimization procedure output the assembly code with the best iteration

interval result.

In the iterative optinization method, the unroll factor UF stops to increase based

on the three condition listed below.

• The iteration interval converges. In order to avoid to stop iteration at a local

minima, firstly we allows the user to manually set up the minimal number of

unroll that us need to be tried. Secondly we allow a tolerant factor. The

iteration is ended when the iteration iterval stops to decrease in consecutive ε

unroll factors.

• If the register number of the unrolled loop exceeds the processor limit, the

iteration stops.

• If the generated loop disqualifies software pipeline, the iteration stops.

Improve Memory Performance by Loop Tiling and Scratchpad DMA

As shown in Figure 4.10, the memory performance of stencil could be low when the

computation is performed within a multi-dimensional block. Accessing data in a

combination of row and column order will result in a large amount of cache misses.

Because of the structure of cache is linear, the horizontal overlapping read could be

effectively caught by cache, but the vertical overlapping read could encounter a high

miss rate. Since the vertical overlaps are between the data access of two consecutive

rows, as the computation is performed row-wisely, it is very likely when the vertical
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point i, j + 1
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point i + 1, j
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Figure 4.10: Data Overlapping in Stencil Loop Computation

overlapping region is revisited, they have been moved out from the cache and causes

capacity misses.

In order to improve the memory performance, we use the on-chip memory as pro-

grammer controlled scratchpad memory and build an automatic tiling and buffering

infrastructure for the stencil loops. We further generalized this idea to a set of in-

terdependent stencils, and extend our tiling and buffering system in order to solve

stencil pipelines.

In order to align the output of each tile output, the tiles of the source matrix are

overlapped. The overlapping region between consecutive tiles is decided by the margin

size of the stencil. For example, the halo width of a 3x3 mean filter is wx = 2, wy = 2.

We illustrate how to tile and optimize stencil loops with a 3x3 mean filter example

in Figure 4.11. The computation of stencil loop is split into blocks. Each block is

copied into the scratchpad memory by the hardware DMA (Direct Memory Access)

module. The computation of the stencil is performed on scratchpad memory and

the results are copied out to the destination matrix by DMA. In order to make

the scratchpad memory easier to use, we implement a memory manager module to

manage the allocation and recycling of the memory space.

Buffering the data in program controlled blocks performs better than cache, since
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Figure 4.11: Stencil Loop Tiling and Processing on Scratchpad Memory

the vertical overlapping region stays in the on chip memory as long as it is needed,

whereas using cache could results in large number of capacity misses.

Hiding Memory Transfer Latency by Double Buffer Rotation

The DMA memory transfer can be performed simultaneously when CPU is processing

data. The further improvement of the scratchpad buffering is to allocate two buffers

and execute computation on one buffer and data transfer on the other buffer at the

same time. This technique is called double buffer rotation. Double buffer rotation

is able to hide the memory transfer latency and is effective on optimizing the stencil
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Figure 4.12: Overlapping Computation and Memory Transfer by Double Buffering

loops that has balanced computation to memory ratio. An illustration of double

buffer rotation is shown in Figure 4.12.

An more detailed example of double buffer rotation method is shown in the

pipeline model shown in Figure 4.13.

The Algorithm 4 illustrates the double buffer rotation algorithm. The input ma-

trix I and output matrix O are tiled, each tile is associated with a tile label, for

example Tile(I, 0) is the first tile of the input matrix I. Before the for loop, there are

several operations that are used to fill in the double buffer rotation pipeline. The for

loop is the double buffer rotation kernel. Each iteration of the for loop parallelizes
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Figure 4.13: Illustration of the Double Buffer Rotation in Pipeline Diagram

the stencil on one tile, moving in and out the data for the another tile. The code

after the loop is to finish the data remaining in the pipeline.

Tiling Geometry Optimization

We introduce the tiling and double buffer rotation strategy in the previous sections.

The loop tiling is parameterized by the tiling size in x and y direction. In this

section, we perform mathematical analysis to derive the equation for the optimal

tiling geometry parameterization.

Our goal is to to find out the tiling size in x and y direction that minimizes the

total memory access time. The total memory access time can be computed from the

total size of the memory transfer (GB) divided by the memory bandwidth (GB/s).

A constraint we can use is that the size of the on-chip is an constant C. If the tiling

size in x direction is tx, tiling size in y direction is ty, we have tx × ty = C.

If the size of the input matrix is x × y, the margin of the stencil loop is mx and
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Algorithm 4 Double Buffer Rotation Algorthm
1: Input: Input Matrix I, tile size tx, ty
2: Output: Output Matrix O
3: Initialize EDMA module
4: Allocate scratchpad buffer A[2], B[2] from the frame heap
5: Compute the number of tiles N
6: Issue EDMA transfer: Tile(I, 0) to A[0], Tile(I, 1) to A[1]
7: Wait for EDMA transfer complete
8: Compute Stencil A[0] to B[0]
9: for i = 1; i < N - 1; i++ do

10: Issue EDMA transfer: Tile(I, i+1) to A[(i + 1)%2], B[(i + 1)%2] to Tile(O,
i-1)

11: Compute Stencil A[i%2] to B[i%2]
12: Wait for EDMA transfer complete
13: end for
14: Compute Stencil A[i%2] to B[i%2]
15: Issue EDMA transfer: B[(i+ 1)%2] to Tile(O, N-2), B[i%2] to Tile(O, N-1)
16: Wait for EDMA transfer complete

my.

The area of each tile can be computed by the following equation

St = (tx + 2mx)(ty + 2my) (4.1)

The number of the tiles Nt can be computed by the following equation.

Nt = (x− 2mx)(y − 2my)
txty

(4.2)

The total size of the memory transfer is St ×Nt.

Increasing the tiling in y direction lowers down the memory transfer speed (DMA

memory transfer is more preferred to continuous memory transfer).

In Figure 4.14, we show when the total transfer size is fixed, the relationship

between number of rows and the DMA bandwidth.

We use linear regression to fit the memory bandwidth w.r.t. the tiling size in y

direction in Equation 4.3.

MB(ty) = 8− 0.08ty (4.3)
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Figure 4.14: Relationship between EDMA bandwidth and the Tiling Size in y Direc-
tion (stride number)

Equation 4.4 gives the objective function that minimizes the tiling size ty.

min{F (ty) = StNt/MB(ty)} (4.4)

Because tx = C/ty, the best tiling size in x and y direction can be decided by

solving the optimization problem given in Equation 4.4. This would require solving

F ′(ty) = 0.

The Figure 4.15 shows the total memory access time of tiling an 1024 × 1024

matrix. The curve shows that the best tiling parameter is located between 10 and

20.
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Figure 4.15: Relationship Between Memory Access Time and the Tiling Size in y
Direction on an 1024x1024 Matrix
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Chapter 5

Results and Analysis

In this chapter we use the selected stencil benchmarks from Chapter 4 to test and

demonstrate the efficiency stencil code optimization and the tiling methodolog.

5.1 Performance of Loop Unrolling

We use the benchmark stencils introduced in Chapter 2 to test the performance

improvement of loop unrolling. Among all the stencils, we do not use the Lucas

Kanade and Harris Corner kernel because they have a relatively larger loop body

that unrolling on them exceeds the maximum number of instructions that software

pipeline can handle. However, we will show in the next section that they are able to

be optimized by SIMD binding.

Figure 5.1 shows the memory operation bounds and the arithmetic operation

bound on different kernel functions w.r.t. unroll factor. The unroll factor without

data point means the loop is disqualified from software pipeline either because number

of instructions exceeds 250, or the assembler fails to allocate enough registers to the

loop. On the kernels with a relatively high memory to compute ratio, the memory

operation bound becomes the performance bottleneck. The figure shows that the

PIA loop unrolling optimizer is effective for improving the performance of the stencil

kernel with high memory to compute ratio. The Gaussian kernel have lower MC ratio

so that the loop unrolling does not reduce its memory operation bound significantly.

As we have introduced in Chapter 4, Iteration Interval, or II, measures the per-

formance of the loop directly. The less II is, the faster the code is. We list the II
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Figure 5.1: Memory and Arithmetic Operation Bounds Improvement from Loop Un-
rolling

53



improvement from loop unrolling on each stencil kernels in Figure 5.2. The unroll

factor without data point means the loop is disqualified from software pipeline ei-

ther because number of instructions exceeds 250, or the assembler fails to allocate

enough registers to the loop. When the loop fails to be software pipelined, the II are

considered to be the length of the loop in CPU cycles.

The loop unrolling performs better optimization on the kernels with higher mem-

ory to compute ratio. One reason for that is the TI’s assembler backend has a limited

ability to group up consecutive memory loads and stores automatically. This could

improve the memory access bandwidth. The other reason for that is the kernels with

less number of arithmetic operation per iteration usually do not fully utilized the

multiple arithmetic functional units on the processor. Unrolling allows the compiler

to group up those arithmetic operations into parallel VLIW instructions and filled in

the functional unit with a higher occupation rate.

The two major reasons that the performance of loop unrolling is limited are listed

below.

• Register Allocation: As the unroll factor increases, the loop body requires more

registers. It may fail register allocation when the assemler attempts to software

pipeline the loop reduce instruction parallelism.

• Addressing Operations: The unrolled loop needs more addressing operations,

which are generated from the assembler as integer add instructions. The ad-

dressing operations occupy computational resources. As the unroll factor in-

creases to a certain degree, they will become a factor that affects performance.

In the worst case, it could cause software pipeline failure by exceeding the 250

instruction limitation or failing register allocation.

For example, the Figure 5.3 shows the relationship of register number and the

loop unroll factor in all the kernel benchmarks. The unroll factor without data point
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Figure 5.2: Improvement of Iteration Interval from Loop Unrolling

55



Figure 5.3: Register Usage from Loop Unrolling

means that the loop is disqualified from software pipeline either because number of

instructions exceeds 250, or the assembler fails to allocate enough registers.

When the allocated register number reaches the maximum of the processor, the

assembler fails to manage the loop in software pipeline. For example from the Figure

5.2 we observe that for the Gaussian kernel the unroll factor stops at 4. in the Figure

5.3 we can see that for the Gaussian kernel, unroll factor 4 uses 47 registers. That is

the maximum register number that allows software pipeline on Gaussian kernel.
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The Figure 5.4 shows the number of VLIW instructions that contain addressing

operations for all the kernels. Instead of counting the total number of add instruc-

tions, we only count the VLIW instructions, or cycles that contain an interger add.

The results show that the loop unrolling at 6x or 10x generates more addressing in-

structions, which explains why the II at 6x or 10x has a peak value. Additionally, we

observe that the addressing instructions could disqualify software pipeline by adding

register usage. An example is shown in 3x3 mean filter, unrolled at 6x.

Generally, the assembler generates better scheduled software pipeline code with

an unroll factor equals to a power of 2. (1, 2, 4 or 8)

5.2 Performance of SIMD Binding

For those kernels with lower memory to compute ratio which loop unrolling does not

show a significant improvement on II. We show in this section that our code optimizer

is able to improve their performance with SIMD binding. By combining instructions

into SIMD, ideally that the functional unit utilization could doubled.

Figure 5.5 shows the memory operation and arithmetic operation bound of the

benchmark kernels with SIMD binding. From the figure we can see that the SIMD

binding is able to reduce the floating point arithmetic operation bound for kernels

with low memory to compute ratio significantly.

Figure 5.6 compares the results of performance improvement of iteration interval

between SIMD binding and the baseline implementation. The results shows that the

SIMD binding is able to further achieve an average 20% improvement the performance

on the matrix add and Jacobi kernel. More importantly, The SIMD binding is able

to achieve a significant amout of improvement on the large and complex stencils,

in our experiments, these benchmarks are Harris Corner Method and Lucas Kanade

Method. The SIMD binding is able to reduce the II on these two kernels by 50%.

The operations per iteration (OPI) reflects the computational length of the loop,
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Figure 5.4: Addressing Instructions per Iteration from Loop Unrolling
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Figure 5.5: Memory and Arithmetic Operation Bound Improvement from SIMD Bind-
ing

which is mostly determined by the characteristic of the stencil and the efficiency of the

code generation. The operations per cycle (OPC) reflects the execution throughput

of the code. As the instructions are combined into SIMD, the OPC increases. How-

ever since the SIMD binding also requires addition data movement operations to be

inserted, for example, in order to make a SIMD operand, values from different sides

of the register files must be move into the same side. These extra data movement

operations could potentially increase OPI. We perform an analysis on OPI and OPC

between baseline and SIMD binding and show the efficiency of our SIMD binding

optimization.
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Figure 5.6: Compare the Iteration Interval between Baseline and SIMD Binding

Figure 5.7 shows the OPI results of the baseline code and SIMD optimized code.

The length of the bar shows the complexity of the stencil kernel. As we have seen, the

Harris Corner and Lucas Kanade method are the most expensive stencil loops among

the test benchmarks. The difference of OPI between baseline and SIMD version is

the traffic instruction that was caused from the data traffic overhead of the SIMD

code generation. From the figure we can see that the generated traffic instructions

are less than 10% of the total instruction.

Figure 5.8 shows the OPC value of the baseline code and SIMD optimized code.

The IPC characterizes the throughput of the instruction execution. This figure shows

that the SIMD binding is able to improve the instruction throughput of stencil loops

in a ratio between 0% to 45% dependent on the complexity of the kernel.
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Figure 5.7: Compare the OPI between Baseline and SIMD Binding

Figure 5.9 shows the register usage of the SIMD optimized code. Compared with

the baseline version, SIMD binding increases the register usage, but in a ratio less

than 2.

As a conclusion of the experimental results shown above, we summarize the best

optimization parameter that is found by PIA compiler and compare the best opti-

mized II with the baseline in Table 5.1.

5.3 Performance of Compile-Time Alignment Detection

When additional information of the input matrices are provided from the user, our

code optimization tool is able to use these informance to perform more aggressive

optimization. If the input matrices are assumed to be row aligned with 8 bytes,
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Figure 5.8: Compare the OPC between Baseline and SIMD Binding

Table 5.1: The Best Optimization Strategy for all the Test Benchmarks

Baseline II Best Optimized II Best Optimization Strategy
Matrix Add 2 1.5 Unroll 2x + SIMD Binding

1x3 Mean Filter 2 2 Baseline
3x3 Mean Filter 5 4.5 Unroll 6x

Jacobi 3 2.5 Unroll 2x or Unroll 4x
Gaussian 4 4 Baseline
Sobel 5 4.25 Unroll 8x

Harris Corner 27 14 Unroll 2x + SIMD Binding
Lucas Kanade 15 9.5 Unroll 2x + SIMD Binding
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Figure 5.9: Compare the Register Usage between Baseline and SIMD Binding

the alignment detecton method is able to recognize and differentiate the aligned and

unaligned SIMD memory instructions and reduce II from improveing the memory

access throughput.

We show the performance of the code optimization after adding row align in-

formation into the PIA code in Figure 5.10. The results show that the alignment

detection greatly improves the performance of the generated assembly code. The

memory bound kernels such as Matrix Add, Mean Filter and Sobel Filter achieve the

best performance improvement among all the bechmarks – the II is reduced by 30%.

An average of 16.2% performance improvement is observed on all the test becnmarks.
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Figure 5.10: Performance Improvement from Compile-Time Alignment Detection

5.4 Performance of the Double Buffer Rotation Management

In this section, we show the experimental results of our stencil loop tiling and memory

management methodology. In order to show the performance, We choose 4 kernel

functions, Gaussian, Mean Filter, Lucas Kanade Method and Harris Corner Method.

We use the halo region as the experimental variable to show the how the cache

performance are affected by the size of the kernel matrix of the stencil.

We compare the performance between the baseline implementation (cache ver-

sion) and the two versions of local buffer implementations. The baseline version is

implemented with no loop tiling and buffering. The two versions of locally buffered

implementations are singlely scheduled buffering and double buffer rotation, as intro-
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duced in the previous chapter.

The performance metrics we used for evaluating the memory management method-

ologies is Gflops, which is the giga number of floating point operation per second. The

Gflops characterize the speed of the code directly.

In order to show how efficient the double buffer rotation hides memory transfer

latency. We collect the running time of memory transfer from single buffer and double

buffer implemented loop tiling, which is represented as Tmem_single and Tmem_double.

The double buffer efficiency is computer by the following equation.

Edb = (Tmem_single − Tmem_double)
Tmem_single

(5.1)

The Figure 5.11 and the Figure 5.12 shows the performance of double buffer

rotation on Mean Filter and Gaussian Filter. The detailed description of these two

filters can be found in Appendix A. In the figure, we can see that the double buffer

rotation improves the performance of the stencil computation significantly when the

vertical width of the filter increases. As the filter expends more rows. The cache miss

rate is increasing. Using loop tiling and local scratchpad buffering could eliminates

those overhead from cache misses.

The Figure 5.13 shows the performance results from two of the more complex

stencil loops: Harris Corner Detector and Lucas Kanade Method. The results show

that the double buffer rotation is able the improve the system performance of these

complexstencil loops in a order of magnitude — up to 15x speedup for Lucas Kanade

Method and 10x speedup for Harris Corner Detector.

The Figure 5.14, 5.15 and 5.16 show the DMA transfer time vs compute time on

horizontal/vertical mean/Gaussian filters, Harris Corner detector and Lucas Kanade

method. The x coordinate is the width of the stencil. The y coordinate is the

spent time in millisecond. As the stecil width grows the percentage of time spent on

computation increase, and the memory transfer time stays constant. This shows that
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Figure 5.11: Performance of Double Buffer Rotation on Mean Filter
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Figure 5.12: Performance of Double Buffer Rotation on Gaussian Filter
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Figure 5.13: Performance of Double Buffer Rotation on Lucas Kanade Method and
Harris Corner Detector
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Table 5.2: The Improvement of Memory Access Time from Double Buffer Rotation

3x 5x 7x 9x 11x 13x 15x
Mean Filter (H) 13.2% 13.1% 13.6% 15.0% 15.5% 16.3% 16.1%
Mean Filter (V) 13.2% 13.2% 13.5% 15.4% 14.6% 16.0% 16.2%
Gaussian (H) 15.0% 15.4% 15.7% 16.4% 15.9% 16.7% 16.3%
Gaussian (V) 15.0% 15.3% 16.1% 16.5% 16.5% 16.5% 16.8%
Lucas Kanade 16.1% 16.5% 16.5% 16.5% 16.8% 17.2% 17.3%
Harris Corner 15.4% 16.4% 16.2% 16.3% 16.4% 17.1% 17.0%

the memory transfer time of the double buffer tiling is not dependent to the data

reuse pattern of the stencil.

The Table 5.2 shows the percentage of the improvement of the average memory

access time after double buffer rotation is applied. These results are compared with

the single buffer version. We list the improvement rate from horizontal and vertical

Gaussian filter, horizontal and vertical mean filter, Harris Corner and Lucas Kanade

kernels with different parameter setup.
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Figure 5.14: Time Split Analysis of Double Buffered Mean Filter
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Figure 5.15: Time Split Analysis of Double Buffered Gaussian Filter
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Figure 5.16: Time Split Analysis of Double Buffered Lucas Kanade Method and
Harris Corner Detector
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Chapter 6

Conclusion

In the first part of the dissertation, we describe a novel methodology for programming

and optimizing of stencil loops. We target our design platform to be Texas Instrument

C66x DSP. This design is able to automatically search the space of optimization

strategy and find the best optimization parameter. It is shown in the results and

analysis section that our designed code optimization is able to provide up tp 100%

improvement in speed.

The speedup from code optimization depends on the computational characteriza-

tion of the stencil loop. We discover that when the stencil loop is memory bound.

Loop unrolling is more effective. When the stencil loop is compute bound, SIMD

Binding is more effectiive. It raises the utilization rate of processor’s functional units

up to 2x. Both the loop unrolling and SIMD binding require more registers and may

not be effective when the loop body is too large.

In the second part of the dissertation, we describe a memory manage methodology

for stencil loop tiling. Our memory manage tool is able to automatically split the

input and output matrices into proper blocks, and handles data copy in and out. The

computation is performed entirely on the fast scratchpad memory. It is able to buffer

data in two dimensions and reduce the memory access overhead from using cache. We

also develop a double buffer rotation mechanism to hide the memory transfer latency

from the hardware DMA.

The double buffer rotation is proven to be very effective on the stencils with a

large halo region. Those stencils are frequently used in signal processing and com-
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puter vision, such as feature extraction and movement detection. Using double buffer

rotation could achieve a speed up of 10x compared with cache. Compared with single

buffer, double buffer rotation is able to reduce 17% of the average memory access

time from the stencil computation.
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Appendix A

Code of the Benchmark Stencil Loops

void MatrixAdd ( f loat ∗ input1 ,

f loat ∗ input2 ,

int size_x , int size_y ,

f loat ∗ output ) {

int i , j ;

for ( i = 0 ; i < size_y ; ++i ) {

for ( j = 0 ; j < size_x ; ++j ) {

output [ i ∗ s ize_x + j ] =

input1 [ i ∗ s ize_x + j ] +

input2 [ i ∗ s ize_x + j ] ;

}

}

}

void MeanFilter1x3 ( f loat ∗ input ,

int size_x , int size_y ,

f loat ∗ output ) {

int i , j ;

for ( i = 0 ; i < size_y ; ++i ) {

for ( j = 1 ; j < size_x − 1 ; ++j ) {

f loat v =
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input [ ( i ) ∗ s ize_x + ( j − 1 ) ] +

input [ ( i ) ∗ s ize_x + ( j ) ] +

input [ ( i ) ∗ s ize_x + ( j + 1 ) ] ;

output [ i ∗ s ize_x + j ] = v ∗ 0 . 3 3 ;

}

}

}

void MeanFilter3x3 ( f loat ∗ input ,

int size_x , int size_y ,

f loat ∗ output ) {

int i , j ;

for ( i = 1 ; i < size_y − 1 ; ++i ) {

for ( j = 1 ; j < size_x − 1 ; ++j ) {

f loat v =

input [ ( i − 1) ∗ s ize_x + ( j − 1 ) ] +

input [ ( i − 1) ∗ s ize_x + ( j ) ] +

input [ ( i − 1) ∗ s ize_x + ( j + 1 ) ] +

input [ ( i ) ∗ s ize_x + ( j − 1 ) ] +

input [ ( i ) ∗ s ize_x + ( j ) ] +

input [ ( i ) ∗ s ize_x + ( j + 1 ) ] +

input [ ( i + 1) ∗ s ize_x + ( j − 1 ) ] +

input [ ( i + 1) ∗ s ize_x + ( j ) ] +

input [ ( i + 1) ∗ s ize_x + ( j + 1 ) ] ;

output [ i ∗ s ize_x + j ] = v ∗ 0 . 1 1 ;

}

}

}
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void Jacobi ( f loat ∗ input ,

int size_x , int size_y ,

f loat ∗ output ) {

int i , j ;

for ( i = 1 ; i < size_y − 1 ; ++i ) {

for ( j = 1 ; j < size_x − 1 ; ++j ) {

f loat v =

input [ ( i − 1) ∗ s ize_x + ( j ) ] +

input [ ( i + 1) ∗ s ize_x + ( j ) ] +

input [ ( i ) ∗ s ize_x + ( j − 1 ) ] +

input [ ( i ) ∗ s ize_x + ( j + 1 ) ] ;

output [ i ∗ s ize_x + j ] = v ∗ 0 . 2 5 ;

}

}

}

void GaussianX7 ( f loat ∗ input ,

int size_x , int size_y ,

f loat ∗ r e s t r i c t output ) {

int i , j ;

for ( i = 3 ; i < size_y − 3 ; ++i ) {

for ( j = 3 ; j < size_x − 3 ; ++j ) {

f loat v =

input [ ( i ) ∗ s ize_x + ( j − 3 ) ] ∗ 0.006+

input [ ( i ) ∗ s ize_x + ( j − 2 ) ] ∗ 0 .062 +

input [ ( i ) ∗ s ize_x + ( j − 1 ) ] ∗ 0 .242 +

input [ ( i ) ∗ s ize_x + ( j ) ] ∗ 0 .383 +

input [ ( i ) ∗ s ize_x + ( j + 1 ) ] ∗ 0 .242 +
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input [ ( i ) ∗ s ize_x + ( j + 2 ) ] ∗ 0 .061 +

input [ ( i ) ∗ s ize_x + ( j + 3 ) ]∗ 0 . 0 0 6 ;

output [ i ∗ s ize_x + j ] = v ;

}

}

}

void Sobel ( f loat ∗ input ,

int size_x , int size_y ,

f loat ∗ output1 ,

f loat ∗ output2 ) {

int i , j ;

for ( i = 1 ; i < size_y − 1 ; ++i ) {

for ( j = 1 ; j < size_x − 1 ; ++j ) {

f loat a = input [ ( i − 1) ∗ s ize_x + j − 1 ] ;

f loat b = input [ ( i − 1) ∗ s ize_x + j ] ;

f loat c = input [ ( i − 1) ∗ s ize_x + j + 1 ] ;

f loat d = input [ ( i ) ∗ s ize_x + j − 1 ] ;

f loat e = input [ ( i ) ∗ s ize_x + j + 1 ] ;

f loat f = input [ ( i + 1) ∗ s ize_x + j − 1 ] ;

f loat g = input [ ( i + 1) ∗ s ize_x + j ] ;

f loat h = input [ ( i + 1) ∗ s ize_x + j + 1 ] ;

output1 [ i ∗ s ize_x + j ] = ( a + d + f − c − e − h) ∗ 0 . 5 ;

output2 [ i ∗ s ize_x + j ] = ( a + b + c − f − g − h) ∗ 0 . 5 ;

}

}

}
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void Harr i sCorner ( f loat ∗ dx ,

f loat ∗ dy ,

int size_x , int size_y ,

f loat ∗ s ) {

int i , j ;

for ( i = 1 ; i < size_y − 1 ; ++i ) {

for ( j = 1 ; j < size_x − 1 ; ++j ) {

f loat a1 = dx [ ( i − 1) ∗ s ize_x + j − 1 ] ;

f loat b1 = dx [ ( i − 1) ∗ s ize_x + j ] ;

f loat c1 = dx [ ( i − 1) ∗ s ize_x + j + 1 ] ;

f loat d1 = dx [ i ∗ s ize_x + j − 1 ] ;

f loat e1 = dx [ i ∗ s ize_x + j ] ;

f loat f 1 = dx [ i ∗ s ize_x + j + 1 ] ;

f loat g1 = dx [ ( i + 1) ∗ s ize_x + j − 1 ] ;

f loat h1 = dx [ ( i + 1) ∗ s ize_x + j ] ;

f loat i 1 = dx [ ( i + 1) ∗ s ize_x + j + 1 ] ;

f loat a2 = dy [ ( i − 1) ∗ s ize_x + j − 1 ] ;

f loat b2 = dy [ ( i − 1) ∗ s ize_x + j ] ;

f loat c2 = dy [ ( i − 1) ∗ s ize_x + j + 1 ] ;

f loat d2 = dy [ i ∗ s ize_x + j − 1 ] ;

f loat e2 = dy [ i ∗ s ize_x + j ] ;

f loat f 2 = dy [ i ∗ s ize_x + j + 1 ] ;

f loat g2 = dy [ ( i + 1) ∗ s ize_x + j − 1 ] ;

f loat h2 = dy [ ( i + 1) ∗ s ize_x + j ] ;

f loat i 2 = dy [ ( i + 1) ∗ s ize_x + j + 1 ] ;
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f loat xx = a1 ∗ a1 + b1 ∗ b1 + c1 ∗ c1 + d1 ∗ d1 +

e1 ∗ e1 + f1 ∗ f 1 + g1 ∗ g1 + h1 ∗ h1 + i1 ∗ i 1 ;

f loat xy = a1 ∗ a2 + b1 ∗ b2 + c1 ∗ c2 + d1 ∗ d2 +

e1 ∗ e2 + f1 ∗ f 2 + g1 ∗ g2 + h1 ∗ h2 + i1 ∗ i 2 ;

f loat yy = a2 ∗ a2 + b2 ∗ b2 + c2 ∗ c2 + d2 ∗ d2 +

e2 ∗ e2 + f2 ∗ f 2 + g2 ∗ g2 + h2 ∗ h2 + i2 ∗ i 2 ;

s [ i ∗ s ize_x + j ] = xx + yy − 0 .11 ∗ xy ;

}

}

}

void LucasKanade ( f loat ∗ dx ,

f loat ∗ dy ,

f loat ∗ dt ,

int size_x , int size_y ,

f loat ∗ vx ,

f loat ∗ vy ) {

int i , j ;

for ( i = 1 ; i < size_y − 1 ; ++i ) {

for ( j = 1 ; j < size_x − 1 ; ++j ) {

f loat a1 = dx [ ( i − 1) ∗ s ize_x + j − 1 ] ;

f loat b1 = dx [ ( i − 1) ∗ s ize_x + j ] ;

f loat c1 = dx [ ( i − 1) ∗ s ize_x + j + 1 ] ;

f loat d1 = dx [ i ∗ s ize_x + j − 1 ] ;

f loat e1 = dx [ i ∗ s ize_x + j ] ;

f loat f 1 = dx [ i ∗ s ize_x + j + 1 ] ;

f loat g1 = dx [ ( i + 1) ∗ s ize_x + j − 1 ] ;
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f loat h1 = dx [ ( i + 1) ∗ s ize_x + j ] ;

f loat i 1 = dx [ ( i + 1) ∗ s ize_x + j + 1 ] ;

f loat a2 = dy [ ( i − 1) ∗ s ize_x + j − 1 ] ;

f loat b2 = dy [ ( i − 1) ∗ s ize_x + j ] ;

f loat c2 = dy [ ( i − 1) ∗ s ize_x + j + 1 ] ;

f loat d2 = dy [ i ∗ s ize_x + j − 1 ] ;

f loat e2 = dy [ i ∗ s ize_x + j ] ;

f loat f 2 = dy [ i ∗ s ize_x + j + 1 ] ;

f loat g2 = dy [ ( i + 1) ∗ s ize_x + j − 1 ] ;

f loat h2 = dy [ ( i + 1) ∗ s ize_x + j ] ;

f loat i 2 = dy [ ( i + 1) ∗ s ize_x + j + 1 ] ;

f loat a3 = dt [ ( i − 1) ∗ s ize_x + j − 1 ] ;

f loat b3 = dt [ ( i − 1) ∗ s ize_x + j ] ;

f loat c3 = dt [ ( i − 1) ∗ s ize_x + j + 1 ] ;

f loat d3 = dt [ i ∗ s ize_x + j − 1 ] ;

f loat e3 = dt [ i ∗ s ize_x + j ] ;

f loat f 3 = dt [ i ∗ s ize_x + j + 1 ] ;

f loat g3 = dt [ ( i + 1) ∗ s ize_x + j − 1 ] ;

f loat h3 = dt [ ( i + 1) ∗ s ize_x + j ] ;

f loat i 3 = dt [ ( i + 1) ∗ s ize_x + j + 1 ] ;

f loat xx = a1 ∗ a1 + b1 ∗ b1 + c1 ∗ c1 + d1 ∗ d1 +

e1 ∗ e1 + f1 ∗ f 1 + g1 ∗ g1 + h1 ∗ h1 + i1 ∗ i 1 ;

f loat xy = a1 ∗ a2 + b1 ∗ b2 + c1 ∗ c2 + d1 ∗ d2 +

e1 ∗ e2 + f1 ∗ f 2 + g1 ∗ g2 + h1 ∗ h2 + i1 ∗ i 2 ;
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f loat yy = a2 ∗ a2 + b2 ∗ b2 + c2 ∗ c2 + d2 ∗ d2 +

e2 ∗ e2 + f2 ∗ f 2 + g2 ∗ g2 + h2 ∗ h2 + i2 ∗ i 2 ;

f loat xt = a1 ∗ a3 + b1 ∗ b3 + c1 ∗ c3 + d1 ∗ d3 +

e1 ∗ e3 + f1 ∗ f 3 + g1 ∗ g3 + h1 ∗ h3 + i1 ∗ i 3 ;

f loat yt = a2 ∗ a3 + b2 ∗ b3 + c2 ∗ c3 + d2 ∗ d3 +

e2 ∗ e3 + f2 ∗ f 3 + g2 ∗ g3 + h2 ∗ h3 + i2 ∗ i 3 ;

f loat det = xx ∗ yy − xy ∗ xy ;

vx [ i ∗ s ize_x + j ] = (−yy ∗ xt + xy ∗ yt ) / det ;

vy [ i ∗ s ize_x + j ] = ( xx ∗ yt − xy ∗ xt ) / det ;

}

}

}
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Appendix B

Implementation of Code Generation with LLVM

B.1 Generate LLVM Loop Structure in SSA format

The LLVM infrastructure uses Static Single Assignment (SSA) rule for its code gen-

eration. The SSA rule allow each variable be placed on the left side of the assignment

only once. Because the loop variables are initialized at the beginning of the loop

and updated at the end of the loop. They need to be semantically assigned at least

twice. In order to generate loops that complies to SSA rule, there are many ways

to solve this multiple assignment problem. We choose a code generation technique

among these solutions called phi node shadowing to solve it. Phi node is a condi-

tional assignment that allows the code to assign value to a variable based on which

predecessor block that the control flow is passed from. It allows the current block

to inherit the updated values of the loop variables from a predecessor block (The

predecessor of a basic block could be itself). The reassignment of the loop variables

can be solved by using phi node in a proper way, as shown in Figure B.1.

We use a recursive algorithm to generate nested loop structure. The input of

the algorithm is the margin sizes of x and y direction from margin detector and the

abstract syntax tree.

B.2 Generate Stencil Body from Abstract Syntax Tree

Each node in the abstract syntax tree is implemented with a CodeGen method that

is used to generate and output LLVM IR code that is used to perform the arithmetic
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loop1:                                            

%j = phi i32 [ 0, %beforeloop ], [ %next_loop_var, %loop1 ]

%1 = add i32 %j, %0

%I0_addr = getelementptr inbounds float* %I0, i32 %1

%I0_value = load float* %I0_addr, align 4

%addtmp = fadd float 1.000000e+00, %I0_value

%O0_addr = getelementptr inbounds float* %O0, i32 %1

store float %addtmp, float* %O0_addr, align 4

%next_lop_var = add i32 %j, 1

%2 = icmp slt i32 %next_loop_var, %size_x

br i1 %2, label %loop1, label %afterloop

afterloop:                                        ; preds = %loop1

next_loop_var = j + 1

If (j < size_x) goto loop1

I0[i,j] = O0[i,j] + 1

if from loop1 : 

j = next_loop_var

else : j = 0 

Figure B.1: Using Phi Node to Eliminate Reassignments in LLVM Loops

operation defined by the node. The methodologies of LLVM code generation for

different types of nodes are listed below.

• Constant node: Call LLVM Type::getFloatTy to generate a floating point con-

stant initialization instruction.

• Input field node: Compute the read address from the offsets using “getele-

mentptr” instruction and generate load instructions for reading in the value

from input matrix.

• Output field node: Compute the write address from the offsets using “getele-

mentptr” instruction and generate store instruction to assign the result value

into the output matrix.

• Arithmetic node: Generate arithmetic instruction that perform computation

on the two input operands.

Figure B.2 shows an example of how the LLVM code is generated from traversing

and calling CodeGen from the abstract syntax tree. The stencil code generation are

called after the loop structure is generated. The loop structure generation procedure

creates a basic block inside the most inner loop, calls the stencil code generation
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=

O0 = I0[0,0] + 1.0

O0

I0[0,0] 1.0

+

%I0_addr = getelementptr inbounds float* %I0, i32 %1

%I0_value = load float* %I0_addr, align 4,

%addtmp = fadd float 1.000000e+00, %I0_value

%O0_addr = getelementptr inbounds float* %O0, i32 %1

store float %addtmp, float* %O0_addr, align 4

Figure B.2: Example of a Stencil Syntax Tree and LLVM Code Generation

procedure and insert the generated code into the basic block. At the end of the code

generation, we use the LLVM function validation module to make a sanity check of

the generated code.
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