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ABSTRACT 

This dissertation describes a methodology for the generation of a custom memory interface 

and associated direct memory access (DMA) controller for FPGA-based kernels that have 

a regular access pattern. The interface provides explicit support for the following features: 

(1) memory latency hiding, (2) static access scheduling, and (3) data reuse. The target 

platform is a multi-FPGA platform, the Convey HC-1, which has an advanced memory 

system that presents the user logic with three critical design challenges: the memory system 

itself does not perform caching or prefetching, memory operations are arbitrarily reordered, 

and the memory performance depends on the access order provided by the user logic. The 

objective of the interface is to reconcile the three problems described above and maximize 

overall interface performance. This dissertation proposes three memory access orders, 

explores buffering and blocking techniques, and exploits data reuse for the synthesis of 

custom memory interfaces for specific types of kernels. We evaluate our techniques with 

two types of benchmark kernels: matrix-vector multiplication and 6- and 27-point stencil 

operations. Experimental results show the proposed memory interface designs that 

combine memory latency hiding, access scheduling and data reuse achieve an overall 

performance speedup of 1.6 for matrix-vector multiplication, 2.2 for a 6-point stencil, and 

9.5 for a 27-point stencil as compared to using a naïve memory interface.
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CHAPTER 1 

INTRODUCTION 

 

High-performance reconfigurable computing (HPRC) is a computer architecture that 

combines the potential performance of reconfigurable computing accelerators like FPGAs 

with the flexibility of conventional general-purpose microprocessors. HPRC is suitable for 

numerous applications that spend substantial time on a few software kernel loops. 

Executing these kernels on HPRC systems reduces the execution time as compared to 

software implementations using general-purpose processors. 

In HPRC systems, kernels are implemented with hardware description languages such 

as Verilog and System Verilog. Some HPRC systems also allow the use of high-level 

synthesis tools [1,2,3,4] to aid the design implementation and verification of kernels. 

Current high-density FPGAs enable the implementation of a kernel in a modular fashion 

to improve design productivity.  

An FPGA is an integrated circuit designed to be configured by a customer after 

manufacturing. An FPGA contains programmable logic components and a hierarchy of 

reconfigurable interconnects that allow the components to be wired together in many 

different configurations for any arbitrary digital logic circuit. FPGAs often handle the 

kernel computation faster than general-purpose processors because they can be fully 

customized, allowing almost all hardware resources to be dedicated to the computation. On
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the other hand, CPUs generally utilize hardware resources less efficiently due to its 

general-purpose fixed microarchitecture. 

The major challenge with designing FPGA-based kernels is that a designer must 

explicitly define the on-chip portions of memory hierarchy and cannot take advantage of 

the complex and refined structures on microprocessors that are taken for granted. On many 

HPRC systems, on-chip components do not exist between memory system and FPGAs, so 

the designer has to specify the memory access mechanism (e.g., generate memory 

addresses and employ buffering) to hide memory access latency and reuse commonly 

occurring items to improve performance. The design and optimization of on-chip 

components are challenges for the designer. 

1.1 MEMORY PERFORMANCE 

In HPRC systems, the main applications run on the microprocessors while the FPGAs 

handle kernels that have long execution time. Such kernels typically present parallel 

computations that can be efficiently implemented on the FPGAs. To support highly parallel 

processing on the FPGAs, the memory system in an HPRC system offers very high memory 

bandwidth and capacity. However, high memory bandwidth and capacity do not lead 

directly to high increase in the memory system performance. For memory-bound kernels, 

memory system performance is very important because the overall kernel performance 

depends on memory system performance. Memory system performance is often 

characterized by memory latency hiding, memory access scheduling and data reuse. 

Memory latency hiding overlaps kernel computations with memory accesses. A high-

performance microprocessor hides the memory latency through out-of-order instruction 

execution, nonblocking cache and prefetching. In out-of-order instruction execution, 
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arithmetic instructions that follow the memory access instruction may bypass the pending 

memory instruction if there is no data dependency between them. Nonblocking cache also 

effectively reduces the cache miss penalty by overlapping execution with memory access. 

It allows the data cache to continue to supply cache hits during a cache miss. Another 

approach is to prefetch data before they are requested by the processor. The prefetched data 

can be put into the caches or into an external buffer that can be accessed more quickly than 

the main memory. In FPGA-based designs, support for memory latency hiding must be 

explicitly defined by the user based on the characteristics of the memory system on an 

HPRC platform. 

The HPRC memory system generally utilizes a DRAM-based memory system. DRAM 

is organized in a way in which its effective bandwidth depends on the order in which 

accesses are made. Some CPUs perform memory access scheduling to dynamically 

schedule memory loads and stores to improve memory performance, but they are limited 

by the size of the memory load/store queue and/or prefetching accuracy. Other CPUs 

access the memory in the order statically scheduled by the compiler. An FPGA design of 

a kernel with a regular access pattern and a priori knowledge of all memory accesses 

presents a huge potential for scheduling memory accesses insofar as on-chip memory 

capacity permits. However, the user has to explicitly define memory access orderings based 

on DRAM architecture and memory access patterns of a kernel to achieve high memory 

bandwidth.  

Data reuse is another memory performance optimization that improves memory 

performance. It takes advantage of temporal locality of memory accesses to avoid 

unnecessary off-chip memory accesses. CPUs reuse data in the caches by exploiting 
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temporal locality of memory accesses. However, conflict misses in a cache still cause some 

unnecessary memory accesses. In an FPGA design, whenever there is regular access 

pattern, unnecessary off-chip memory accesses can be completely avoided insofar as the 

on-chip memory capacity permits. The support for data reuse must be integrated into the 

design as well. 

1.2 OVERVIEW OF DISSERTATION 

The Convey HC-1 is a modern HPRC system combining FPGAs with microprocessors. 

The goal of this dissertation is to develop methodologies that employ memory latency 

hiding, memory access scheduling and data reuse for two types of memory-bound kernels, 

matrix vector multiply (MVM) and 3D stencil, on the Convey HC-1 system. 

We choose MVM and 3D stencil because both kernels are memory-bound. If the 

kernel is compute-bound, then its performance is not constrained by the memory 

performance. We select 6-point and 27-point 3D stencils as examples of simple and 

complex access patterns, respectively. The larger the number of stencil points, the more 

memory performance optimizations can be applied, but the fewer FPGA resources 

available for the implementation.  

Our approach is to develop an optimized memory controller interface that integrates 

memory latency hiding, memory access scheduling and data reuse to achieve high overall 

performance. The goal of memory latency hiding is to maximize interface efficiency, the 

percentage of interface execution time in which memory controller interface performs a 

memory access. We achieve almost 100% interface efficiency for memory latency hiding. 

For memory access scheduling, the goal is to maximize DRAM controller efficiency, 

the percentage of memory access time in which memory accesses are not stalled due to the 
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conflicts. We improve DRAM controller efficiency from 39% to 88% for MVM without 

data reuse, and from 42% to 89% for MVM with data reuse, and from 68.7% to 74% for 

6-point 3D stencil, and from 52% to 72% for 27-point 3D stencil.  

With a limited size of on-chip buffers, the goal of data reuse is to minimize the total 

number of memory requests required to achieve high data reuse rate. Data reuse rate is the 

ratio of the number of reused memory requests to the total number of memory requests 

without data reuse. We are able to achieve the reuse rate of about 0.5 for MVM and the 

reuse rate of 0.6 and 0.9 for 6-point and 27-point 3D stencil respectively.  

When combining all three optimizations in the memory controller interface, the goal 

is to improve (i.e., decrease) the execution time, so the overall performance of the memory 

controller interface is measured with speedup. Compared to the baseline memory interface 

designs, we are able to achieve averaged speedup of 1.6 for MVM, 2.2 for 6-point 3D 

stencil and 9.5 for 27-point 3D stencil, with data reuse contributing the most to the 

improvement of speedup. The experimental results show that our dissertation can provide 

design and optimization references to the end-user who needs to parallelize a specific 

application by implementing it on a multi-FPGA platform.  

The rest of the dissertation is organized as follows. Chapter 2 describes the multi-

FPGA Convey HC-1 platform. Then it describes the techniques of memory latency hiding, 

memory access ordering and data reuse in the memory interface. Chapter 3 discusses 

related work from the perspectives of the target platform, memory latency hiding, memory 

access scheduling and data reuse. Chapter 4 describes the preliminary results of our work 

on the Convey HC-1. Chapter 5 presents detailed memory interface designs of the kernels 
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on the Convey HC-1. Chapter 6 shows the experimental results of memory interface 

designs on the Convey HC-1. Chapter 7 concludes the dissertation.
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CHAPTER 2 

BACKGROUND 

 

2.1 HIGH-PERFORMANCE RECONFIGURABLE COMPUTING (HPRC) 

Field Programmable Gate Arrays (FPGAs) are semiconductor devices that are built on a 

matrix of configurable logic blocks (CLBs) connected via programmable interconnections. 

Each CLB is basically composed of combinational logic (CL) and flip-flops (FFs). Figure 

2.1 shows a simplified version of an FPGA internal architecture. As opposed to Application 

Specific Integrated Circuits (ASICs), where the devices are built specifically for an 

application, FPGAs can be programmed to the desired application or functionality 

requirements. Due to FPGAs’ programmable characteristics, they are widely used in fields 

of vehicles, consumer electronics, high-performance computing, video and image

 

Figure 2.1  Simplified version of FPGA internal architecture 

 

 

 

 

http://www.xilinx.com/fpga/asic.htm
http://www.xilinx.com/fpga/asic.htm
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processing. Two large companies, Altera and Xilinx, provide the broadest lineup of FPGAs 

with advanced features, low power, and high performance, for any FPGA designs [5,6]. 

What are the benefits of having FPGAs in an HPRC system? The potential speed 

benefits of using FPGAs are huge when taking advantage of massive parallelism in FPGAs. 

FPGAs also provide designers full control at the lowest hardware level, allowing fine-

grained, manual optimizations for each application. In addition, FPGAs are low-power 

devices compared to traditional microprocessors. The power consumption of a typical 

design in FPGAs is very low. Finally, FPGAs are flexible in the reconfiguration of 

hardware accelerators for multiple applications.  

The concept of reconfigurable computing has existed since the 1960s, when the 

concept of a computer made of a standard processor and an array of reconfigurable 

hardware was proposed [7,8,9]. The aim of the reconfigurable computing is to combine the 

flexibility of software with the speed and configurability of the hardware, with a main 

processor controlling the behavior of the hardware. Unfortunately the concept was not 

realizable until the advancements in silicon process technology allowed complex designs 

to be implemented on large and very large-scale integrated circuits.  

Early HPRC systems were designed around one node of microprocessors and another 

of FPGAs. The two nodes were connected directly without a scalable interconnection. The 

modern architecture of scalable parallel systems is grouped into two classes based on the 

types of the nodes and how they are connected. In uniform node nonuniform systems, each 

node has either FPGAs or microprocessors and the nodes are connected via an 

interconnection network to globally shared memory. In nonuniform node uniform systems, 

there is only one type of node and each node contains FPGAs and microprocessors. FPGAs 
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are connected directly to the microprocessors in the node. The nodes are connected the 

same way as in uniform node nonuniform systems.  

The Convey HC-1 platform, the first of a series of Convey’s high-performance 

reconfigurable computing products, was unveiled in 2009. The reconfigurable computing 

system combines commodity Intel processors with a reconfigurable coprocessor based on 

FPGA technology. Figure 2.2 illustrates Convey’s hybrid-core computer. The coprocessor 

can be dynamically reloaded with custom instructions that are optimized for different 

workloads. The instructions are a combination of x86 set of instructions and reloadable set 

of instructions. The reloadable set of instructions is called a personality. The platforms also 

feature globally shared memory that supports a standard load/store programming model. 

In the globally shared memory model, both the processor and the coprocessor have copies 

of the global memory space through a cache-coherent shared virtual memory.  

2.2 DYNAMIC RANDOM ACCESS MEMORY 

The memory system in an HPRC system provides very high memory bandwidth and 

capacity to support the highly parallel, high bandwidth processing of the coprocessors. In 

 

Figure 2.2  Convey’s hybrid-core computer [10] 
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such memory system, multiple DRAM devices are interconnected together to form a 

memory system managed by one or more memory controllers. The functionality of a 

memory controller is the read or write requests to a given address in DRAM in accordance 

with the DRAM access timing requirements. DRAM is logically a 3D memory with the 

dimensions of bank, row and column. Figure 2.3 shows the logical organization of a 

modern DRAM. Each bank operates independently of the other banks and contains an array 

of memory cells that are accessed an entire row at a time. Modern DRAM devices contain 

multiple banks so that multiple, independent accesses to different DRAM arrays can 

happen in parallel. When a row of the memory array is accessed (row access) through the 

row decoder, the entire row (a.k.a. a DRAM page) is latched into the sense amplifiers (row 

buffer). The row buffer reduces the latency of subsequent accesses to that row. The time it 

takes to move data from the memory array to the row buffer is known as the Row Column 

Delay (RCD). When a row is held in the buffer, any number of reads or writes (column 

access) may be performed through the column decoder. Read data, for example, are moved 

 

Figure 2.3  Modern DRAM organization 
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from the sense amplifiers of a given bank to the memory controller. The time it takes to 

move the data from the sense amplifier to the memory controller after initiation of column 

access is known as the Column Access Strobe (CAS) latency. The CAS latency measures 

the time to transfer the first word of memory. After the reads or writes are complete, the 

row must be written back to the memory array through bank precharge to prepare the bank 

for a subsequent row access. A detailed introduction to the DRAM organizations, 

operations, timing, and the basic nomenclature can be found in [11].  

Modern HPRC systems are becoming increasingly limited by DRAM based memory 

system performance. To improve memory performance, modern DRAM provides several 

independent memory banks, buffers the most recently accessed row of each bank and 

allows pipelined and burst memory accesses. Though these device-level optimizations 

increase the memory performance, they make memory performance dependent on the 

specific memory interface in the HPRC system. The functionality of memory interface is 

to efficiently manage the memory accesses to the memory system to achieve high system 

performance. 

Memory access scheduling or ordering is an effective way to improve the memory 

performance. It is a mechanism of ordering the memory accesses to complete the set of 

pending memory references. Figure 2.4 shows the sequence of eight memory operations 

on DRAM. Each memory reference is represented by the address (bank, row and column) 

and we assume 3 cycles, 3 cycles and 1 cycle are required for bank precharge, row access 

and column access respectively. If the eight memory operations are performed in order, 56 

cycles are needed to finish the eight references. If the memory references are reordered, 

they take only 19 cycles.  
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Another way to improve the overall performance of an HPRC system is the use of on-

chip buffers for hiding the latency of memory access. As compared to the general-purpose 

processors that have hardware-managed caches to hold frequently accessed data, the on-

chip buffers in the FPGAs store frequently accessed data. The overall performance 

increases significantly as the latency of accessing on-chip data is much faster than off-chip 

 

Figure 2.4  Memory access scheduling of eight memory operations. 

The figure is from [12] 

 

Figure 2.5  Convey HC-1 memory architecture 
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DRAM access. In addition, the on-chip buffers presents opportunities for data reuse, i.e., 

the access of data in the buffers more than once during application execution. By storing 

and accessing the reusable data in the on-chip buffers, the memory bandwidth contention 

is decreased, which in turn reduces memory access latency and improves the overall 

performance.  

2.3 CONVEY HC-1 MEMORY SYSTEM 

The Convey HC-1 is a high-performance reconfigurable computer containing an FPGA-

based coprocessor attached to a host motherboard through a socket-based front-side bus 

interface. Unlike socket-based coprocessors from Nallatech [ 13 ], DRC [ 14 ], and 

XtremeData [15], which are confined to a footprint matching the size of the socket, Convey 

uses a mezzanine connector to bring the front side bus (FSB) interface to a large 

coprocessor board roughly the size of an ATX motherboard. This allows the coprocessor 

memory to be coherent with the host CPU’s memory while providing sufficient real estate 

for the coprocessor board to be capable of hosting multiple large user FPGAs and a large 

and sophisticated memory system. 

As shown in Figure 2.5, the coprocessor board contains four user-programmable 

Virtex-5 LX 330 FPGAs that Convey refers to as “application engines (AEs)”. The 

coprocessor board also contains eight discrete memory controllers, each of which is 

implemented on its own Virtex-5 LX 110 FPGA. The memory space of the coprocessor 

board is physically partitioned into eight equal-size segments, and each segment is only 

accessible from one of the eight memory controllers. Specifically, each memory controller 

can access 64 contiguous bytes within each block of 512 contiguous bytes. Each AE is 
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connected to all eight memory controllers through a crossbar switch that is instanced on 

each memory controller.  

The interface between each AE and each memory controller allows up to two 

independent 64-bit memory transactions (read or write) per cycle on a 150 MHz clock, 

giving a peak theoretical bandwidth of 2.4 GB/s per memory controller, or 19.2 GB/s per 

AE, or 76.8 GB/s aggregate bandwidth for the coprocessor board [16]. In practice, each 

AE “sees” a memory interface consisting of 16 64-bit wide channels. 

Memory addresses are virtual and mapped to 4 MB pages. Each memory controller 

contains a translation lookaside buffer (TLB) to cache the page table. Within each 4 MB 

page, the memory address is divided into the following physical fields as listed in Table 

2.1. Each of the eight memory controllers are connected to two DIMMs, which are selected 

by bit 9. Both DIMMs contain eight DRAMs (i.e., eight 8-bit busses) and each DRAM has 

eight banks that can be accessed independently by the memory controller. The division 

Table 2.1  Divisions of memory address fields 

Bit Field Field Size Field Name 

21 : 20 2 DRAM row 

19 : 13 7 DRAM column 

12 : 10 3 DRAM bank 

9 1 DIMMs select 

8 : 6 3 Memory controller 

5 : 3 3 DRAM bus 

2 : 0 3 Byte alignment 
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(mapping) of memory address fields implies that the requests are interleaved across the 

memory controllers as well as across the banks within the DIMMs attached to each memory 

controller. This ensures that sequential accesses will be spread across all 16 DIMMs, 

maximizing concurrency and bandwidth.  

Each of the memory controllers also attempts to maximize bandwidth by scheduling 

incoming memory requests to each of the banks on its DIMMs, routing requests to non-

busy banks and grouping reads and writes into bursts to minimize bus turns (state change 

between read and write). As a result, memory accesses are performed in a different order 

in which they were requested by the user. Since Convey will not reveal implementation 

details nor provide a cycle-accurate model of the memory controller, we performed a 

bandwidth test that accesses all the 65536 64-bit words accessible from a single memory 

controller within a single page. The effective bandwidth given by the Convey memory 

controller with various access patterns will be characterized in Chapter 4. 

2.4 MEMORY ACCESS ORDERING ON THE CONVEY HC-1 

Apart from the memory access scheduling in the memory controller, the memory controller 

interface introduces memory access orderings from the perspective of custom personality. 

In other words, a custom personality can request the memory through the memory control 

interface in different access orders. Figure 2.6 gives an overview of the memory access 

orderings A, B, and C that occur on the Convey HC-1 platform. Different memory access 

orderings may be performed among the personality, the memory controller interface, the 

memory controller and the memory. While the memory access ordering at B depends on 

Convey’s proprietary memory controller, the ordering at A depends on the access orders 

of the custom personality. For example, a personality that implements a loop kernel of 
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vector addition, may request an element of each array for the current loop iteration before 

proceed to request the elements of the next iteration. Alternatively, the personality may 

request two elements of one array for the two loop iterations before proceed to request two 

elements of another array. The ordering at C may be the same as the ordering at A when 

the receiving data return to the personality in the same order as the data requests from the 

personality. The ordering at C may also be different from the ordering at A when the data 

from the memory controller interface can be reused by the personality. In this case, the 

personality only needs to request the data once and the return data can be reused by the 

personality. In the dissertation, we explore the memory access ordering at A for the 

application-specific personalities to improve memory performance. 

2.5 MEMORY LATENCY HIDING ON THE CONVEY HC-1 

On the Convey HC-1 platform, the memory access latency is around 256 clock cycles. To 

hide the long memory latency, the memory controller interface needs to support pending 

memory requests to efficiently utilize the memory bandwidth. When requested data return 

from the memory, they are stored in the on-chip buffers from which the kernel read the 

input data for computation. To parallelize the kernel computation with the memory requests, 

the memory interface uses more than one buffer (multiple buffering) to hide the memory 

Memory 
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Controller 

Interface

Personality

AA

Memory

B

B B C

User LogicConvey Memory System

 

Figure 2.6  Memory access orderings on Convey HC-1 
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latency. Multiple buffering delivers a stream of inputs from the DRAM-based memory 

system to the kernel while minimizing the number and length of stream interruptions.  

2.5.1 DOUBLE BUFFERING 

The first attempt at memory interface design used a double-buffering (ping-pong) approach, 

where data returned from the memory controller fill one buffer while the contents of the 

other buffer are flushed into the pipelined kernel. To simplify the control of double-

buffering, each of the two buffers has its FSM-based controller, shown in Figure 2.7. Each 

buffer proceeds through a sequence FILL, WAIT, and FLUSH with occasional transitions 

between FLUSH and STORE. In FILL, the buffer requests a sequence of load addresses 

from the memory channel. After all the addresses have been requested, the controller enters 

the WAIT state, where it waits for all the requested data to be delivered from memory. 

After all input values are delivered to the input buffer, the buffer enters the FLUSH state 

in which all the stored input values are sent into the pipelined kernel (assuming the other 

buffer has completed its own FLUSH procedure). Since both buffers share a single memory 

channel, only one buffer can be in the FILL state at a time. Likewise, since both buffers 

 

Figure 2.7  Double-buffering control FSM 
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are sharing a single kernel pipeline, only one buffer can be in the FLUSH state at one time. 

This yields a combined behavior as shown in Figure 2.8. The top two horizontal lines 

represent the state transitions of both buffers. The bottom two horizontal lines represent 

when memory requests are being made (top) and when the kernel pipeline is enabled 

(bottom). As shown, buffer A is the first to enter the FILL state, while buffer B must wait. 

This is shown at point (a). The time required in the FILL state depends on the number of 

stall requests issued by the MC. After buffer A issues all of its memory read requests it 

transitions to the WAIT state to wait for the input data to be delivered from MC. The 

amount of time required in the WAIT state depends on the average memory latency. After 

all data are received, buffer A transitions to the FLUSH state to send its buffer contents 

into the pipeline. The number of cycles required in the FLUSH state is fixed. However, as 

shown at point (b), buffer B must wait until buffer A completes its FLUSH before it can 

also transition to FLUSH. During the time that elapses after buffer B completes its FILL 

and before buffer A completes its FLUSH, the memory channel is idle. Likewise, during 

 

Figure 2.8  Double buffer behaviors and memory interface and pipeline utilization 
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the time that elapses between buffer A’s subsequent FLUSH and buffer B’s next FLUSH, 

the pipeline is idle. 

The analysis of Figure 2.8 shows that the memory interface is idle when both buffer 

are in the WAIT state or one buffer is in the WAIT state while the other in the FLUSH 

state. In addition, the kernel pipeline is stalled when one buffer is in the FILL state and the 

other in the WAIT or IDLE state. These overlapping intervals introduce the inefficiency of 

the memory interface design with double buffering. Thus, the memory latency is not 

entirely hidden due to the contentions of the buffers for memory accesses and kernel 

pipeline.  

2.5.2 CIRCULAR BUFFERING 

In recent releases on Convey’s Personality Design Kit, they included an optional 

memory reorder buffer that forms an interface between the user logic and the memory 

controller. The reorder buffer sends the requested words back to the user logic in the order 

they were requested from the user logic. As shown in Figure 2.9, when a request is received 

from the user logic, the reorder buffer’s state transitions from empty to pending. When the 

 

Figure 2.9  State transitions of the reorder buffer 
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memory controller returns the requested word, the word is stored in the reorder buffer and 

marked as ready. When the read pointer points to a buffered word that is marked as ready, 

its value is sent back to the user logic.  

Table 2.2 illustrates the operations of the reorder buffer. Assume the user logic 

implements a loop that computes an expression requiring one element from each of four 

arrays, A, B, C, and D. The kernel pipeline expects one entry from each array to be 

delivered in sequence, i.e., A[0], B[0], C[0], D[0], A[1], B[1], etc. The reorder buffer is 

based on a queue implemented as a circular buffer. As opposed to the double buffering 

where there are front and back buffers, the circular buffer has a single buffer that functions 

Table 2.2  Memory operations of read reorder buffer 

Cycles 
Address 

generator 
Reorder buffer 

Memory 

controller 

interface 

Buffer state 

0-3 

Load addresses 

of A[0], B[0], 

C[0], D[0] 

Request A[0], 

B[0], C[0], D[0] 

from memory 

Nothing 

 

4-7 

Load addresses 

of A[1], B[1], 

C[1], D[1] 

Request A[1], 

B[1], C[1], D[1] 

from memory 

Deliver values 

of A[0], C[0], 

D[0] from 

memory to the 

buffer  

8-11 

Load addresses 

of A[2], B[2], 

C[2], D[2] 

Return A[0] to 

user 

Request A[2], 

B[2], C[2], D[2] 

from memory 

Deliver values 

of B[0], C[1], 

D[1] from 

memory to 

buffer  

12-15 

Load addresses 

of A[3], B[3], 

C[3], D[3] 

Return B[0], 

C[0], D[0] to 

user 

Request A[3], 

B[3], C[3], D[3] 

from memory 

Deliver values 

of A[1], B[1], 

B[2] from 

memory to 

buffer  
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as both front and back buffers. When the user logic performs a load request, the state of 

the request is enqueued in the FIFO using a write pointer, it is requested from the memory 

controller, and its status is monitored.  

Compared to the double buffering technique in which the memory interface could be 

idle without memory requests, our FPGA tests based on the kernel benchmarks show that 

the reorder buffer doesn’t introduce any idle or stall cycles.  

2.6 DATA REUSE ON THE CONVEY HC-1 

Data transfers between the DRAM-based memory system and the processing elements are 

often the performance bottleneck when using reconfigurable logics in FPGAs as a 

hardware accelerator. As a result, the use of on-chip buffers to store repeatedly accessed 

data is an effective way to reuse the data and increase the memory access bandwidth. The 

on-chip buffers are typically implemented using FPGA’s embedded RAM blocks. Given 

the architecture of the Convey HC-1 memory system in which each AE has 16 memory 

channels with each channel composed of request and response ports, the kernel 

computation is divided among 16 PEs per AE for maximum parallel execution and memory 

access bandwidth. Each PE accesses its on-chip buffers for reused data.  

While each PE uses on-chip buffers for fast access to the reused data, the amount of 

reused data, however, is much larger than on-chip memory capacity. On-chip buffers have 

large bandwidth but limited size due to the number of available embedded RAM blocks on 

the target FPGAs. This means that some redundant memory accesses are still required as 

the on-chip memories cannot hold all reused data. So the buffers are updated at runtime 

based on the memory access patterns of the kernels. In section 2.9, we will define data 

reuse rate to measure the efficiency of data reuse.  
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2.7 BUFFERING FOR MEMORY LATENCY HIDING AND DATA REUSE 

From the descriptions in sections 2.5 and 2.6, the on-chip buffers assume the roles of 

memory latency hiding and data reuse. Convey’s circular buffering is better than double 

buffering in memory latency hiding because it doesn’t introduce idle or stall cycles. In 

circular buffering, the reorder buffer sends the requested words back to the user logic in 

the order they were requested from the user logic. The problem with the reorder buffer is 

that once the requested words return to the user logic, they are not available in the reorder 

buffers for reuse. On the other hand, to reuse the requested words they must be kept (until 

they have to be updated due to the limited size of buffers) in buffers after they have been 

read. To achieve both memory latency hiding and efficient data reuse, the memory interface 

has two kinds of buffering for each PE: the reorder buffer requests memory and returns the 

requested words in order while custom circular buffer stores and accesses the requested 

data in a way suitable for reuse. This approach realizes the advantage of each buffer so that 

the reorder buffer returns the requested data without interface stall and the custom buffer 

is focused on maximizing data reuses. 

2.8 PERFORMANCE MEASUREMENT 

Chapter 1 briefly mentions overall performance metric and memory performance metrics 

for memory latency hiding, memory access scheduling and data reuse. For memory-bound 

kernels, the user logic attempts to access memory during every clock cycle of operation. 

Any cycle where the logic does not access memory is either due to inefficiency in the 

memory controller interface designs or due to a stall request from Convey’s memory 



 

23 

controller. To evaluate the efficiency of memory controller interface design, we compute 

interface efficiency as: 

Interface efficiency = (rc + wc) / (execution time – sc), 

where rc is the number of memory reads (loads) and wc the number of writes (stores) for 

each PE. Execution time is the time lapse from the time when all PEs in an AE start the 

kernel computation to the time when all PEs finish the kernel computation. Since not all 

PEs finish their kernel computation at the same time, the execution time is the worst 

runtime of all PEs. Similarly, sc is the maximum number of stall cycles among all PEs in 

an AE. 

DRAM controller efficiency differs from interface efficiency in that it does not 

consider any inefficiency in the kernel design. To measure the performance of memory 

access scheduling, DRAM controller efficiency is computed as: 

DRAM controller efficiency = (rc + wc) / (rc + wc + sc), 

where rc is the number of memory reads (loads) and wc the number of writes (stores) that 

access a DRAM controller via its even and odd ports. As the crossbars distribute the 

memory requests of four AEs across eight DRAM controllers, we assume the number of 

memory accesses (rc + wc) to a DRAM controller is the number of memory accesses of 

all PEs of four AEs that are connected to the DRAM controller. sc is the sum of read and 

write stall cycles requested by the DRAM controller at its even and odd ports in a PE. 

Assuming that memory requests are performed every execution cycle, the effective 

memory bandwidth of each memory channel can be computed as: 

BW = 1.2 GB/s × Interface efficiency × DRAM controller efficiency 
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To measure the efficiency of data reuse, the reuse rate is computed as the ratio of the 

number of reused memory requests and the number of memory requests before (without) 

data reuse: 

Reuse rate = (M1 – M2) / M1, 

Where M1 – M2, the number of reused memory requests, is the difference of the number 

of memory requests before and after data reuse. 

Since interface efficiency does not take into account any memory stalls, it is expected 

to be higher than DRAM controller efficiency. Just as the cache performance in a memory 

hierarchy is evaluated by the memory access time, we evaluate overall performance 

combining memory latency hiding, memory access scheduling and data reuse by the 

execution time. When combining all three optimizations in the memory controller interface, 

the goal is to improve (i.e., decrease) the execution time. We use speedup, the ratio of the 

execution time of two implementations with different optimizations, to compare the overall 

performance of the designs. In the Chapter on experimental results, we will define speedup 

in the context of specific implementations for each kernel.
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CHAPTER 3 

RELATED WORK 

 

3.1 THE CONVEY HC-1 SYSTEM  

The Convey HC-1 is a modern HPRC system. A few papers on the system were published 

to study the software/hardware interfaces, the programming methodologies, design and 

implementation optimizations, and system performance. However, the improvement of 

memory performance on the Convey HC-1 has not been studied well in the past. 

Bakos examined the Convey HC-1 system in terms of system architecture, 

performance, ease of programming and flexibility [17]. The paper shows that the Convey 

system achieves better results than a CPU for memory-intensive applications such as 

Stride3 benchmark and Smith-Waterman algorithm. In [18] the authors analyzed the 

programming paradigm, the associated programming effort, and presented practical results 

on the Convey HC-1. Using a 3D 7-point stencil for solving the Laplace equation on grids 

of different sizes, they compared the peak floating-point performance on the Convey HC-

1 and on a 2-way 2.53-GHz Intel Nehalem processor. They showed that the stencil 

performance on the Convey HC-1 is lower on smaller grids due to the lack of caching.  

At the hardware design level, Ruthenberg [19] used the ROCCC compiler with 

Convey HC-1 support to generate the vector addition personality and evaluated the 

memory throughput using Convey’s crossbar and read order buffer. The results show that
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 the highest memory throughput is achieved when a read reorder buffer is instantiated alone 

as opposed to the combination of crossbar and read reorder buffer.  

Cong et al. [20] reported their implementations of a memory-bound application on the 

Convey HC-1 and GPU platforms. Their FPGA design is around 30% faster than the GPU 

implementation and consumes less than half of the power consumption. However, the 

memory efficiency is around 30% on both platforms though the design utilizes all the 

memory access ports on the Convey HC-1. 

Recently Nowak et al. [21] presented a highly parallel architecture that exploits the 

massive parallelism on the Convey HC-1 to accelerate prefiltering in HHblits. They 

achieved application speedup of 1.79 against the original, unmodified state-of-the-art SSE-

based implementation. By considering data reuse, they transformed the memory-bound, 

SSE-based algorithm to a compute-bound FPGA implementation that has an average 

throughput of only 69 MB/s. The paper, however, does not mention memory efficiency of 

the memory system. 

3.2 MEMORY ACCESS SCHEDULING 

Memory access scheduling is an effective way to improve DRAM-based memory 

efficiency where the memory performance depends on how DRAMs are accessed by the 

DRAM controllers. Scott et al. [10] introduced the concept of ordering memory references 

to exploit locality within the 3-D memory structure. They described DRAM architectures 

and presented the memory controller architecture that supports memory access ordering. 

They showed that conservative and strong orderings can improve memory bandwidth by 

40% and 93% respectively for a set of media benchmarks.  
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Zhang et al. [22] proposed a fine-grain priority scheduling method, which divides and 

maps memory accesses into different channels and returns critical data first, to fully utilize 

the available bandwidth and concurrency provided by DDR SDRAM and Direct Rambus 

DRAM systems in simultaneous multithreading systems. They showed DRAM 

optimizations make a larger difference than on single-threaded systems for workloads with 

intensive memory demands.  

Fang et al. [23] proposed a core-aware memory access scheduling that classifies 

outstanding requests from the same processor core and issue them together. The idea is that 

the requests from the same core more likely exhibit data locality than the requests from 

different cores. A threshold of the maximum number memory requests is also set to prevent 

starvation of memory requests from other cores. Their simulation results on Solaris OS 

show that OS task scheduling schemes reduce the performance improvement of the 

benchmarks running with multiple threads.  

Mutlu et al. [24] proposed a Stall-Time Fair Memory scheduler to provide quality of 

service to different threads using the DRAM memory system. Their scheduler achieves 

stall-time fairness by prioritizing requests from threads with very high memory slowdown. 

The memory slowdown is memory stall time of a thread running alongside other threads 

versus the stall time of the thread running alone. The scheduler is an extension to the first-

come-first-serve scheduler with the additions of slowdown estimation and priority policy. 

The experimental results running on an 8-core chip multiprocessor show an average 

throughput improvement of 7.6%.  

Yuan et al. [25] proposed a complexity-effective memory access scheduling for GPU 

architectures. They employed an interconnection network arbitration scheme that preserves 
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the row access locality of each memory request streams to achieve DRAM efficiency. 

There is up to 91% performance improvement on the architecture with 8 memory channels, 

each controlled by its own DRAM controller and 1,792 in-flight memory requests. In [26], 

the authors proposed a CUDA-based API that allows programmer to improve the efficiency 

of memory accesses on the GPU platform. They added memory layout remapping and 

index transformation to NVIDIA’s CUDA API and achieved about 3x speedup on GPU 

kernels and 20% overall performance improvement.  

3.3 MEMORY LATENCY HIDING 

Various software and hardware techniques of memory latency hiding have been proposed 

to improve the memory performance on the VLIW, HPRC and GPU architectures. The 

Decoupled Access/Execute architecture [27] in the early research decouples memory 

access and instruction execution. The access processor performs all memory access and 

address calculation; the execute processor does the computation. The communication 

between two asynchronously running processors is via the queues. The decoupled 

architecture hides memory latency by overlapping computation with memory transfer. 

Decoupled architectures are not very useful for general purpose computing as they don’t 

handle controls and branches well, but they play an important role in scheduling in VLIW 

architecture. On HPRC platforms, decoupled architectures may be drawn as a reference to 

exploit parallelism between memory access and kernel computation to improve 

performance. 

Software techniques were also proposed to hide the memory latency. Chen described 

a memory latency hiding algorithm that combines the loop pipelining with data prefetching 

[28]. The algorithm divides the iteration space into regular partitions, and then produces 
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two parts of a schedule for ALU and memory operation in a nest loop. They studied the 

optimal partition shape and size for a well-balanced overall schedule. Xue et al. [29] 

proposed a software prefetching technique that can completely hide memory latencies for 

applications with multi-dimensional loops on architectures like CELL processor. They 

presented an algorithm, iterational retiming with partition, to achieve complete memory 

latency hiding for multi-core architectures.  

For reconfigurable computers, Lange et al. [30] described a parameterized memory 

system suitable as target for high-level language to hardware compiler. The system 

combines support for control speculation, distributed memories, and clustered coherence 

mechanisms. Their experimental results using four benchmarks show that control-intensive 

codes gains much more from speculation than other types of codes. The speculation allows 

the hiding of memory latencies, but is limited to 10% improvement for some benchmarks 

that search for random key values.  

Thielmann et al. [ 31 ] presented a compiler framework capable of generating 

application-specific microarchitectures supporting load values speculation on 

reconfigurable computers. They examined the re-execution control mechanisms, the 

associated speculation queues that resupply the appropriate data items, and the actual 

speculation predicators. All the techniques have been implemented in their 

hardware/software co-compiler. The experimental results show a 2.48x speedup over 

nonspeculative implementations. 

3.4 DATA REUSE 

Data reuse has been widely studied for bandwidth optimization during the past. In [32], the 

authors introduced a formal model for data reuse analysis by applying algebraic techniques 
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specific to the data-flow analysis used in modern compilers. The analysis allows 

partitioning the index space of arrays in data-dominated application such that the heavily 

accessed array parts are used as redundant data in scratch-pad memories to reduce the 

dynamic energy consumption due to memory accesses.  

In [33], the authors presented a multiprocessor data reuse analysis technique to enable 

the designer to explore solutions that meet power and area constraints while maintaining 

the necessary performance level. They described a shared buffer that can be accessed by 

multiple processors to reduce the number of accesses to main memory.  

In [34] the authors introduced data block reuse to maximize the reuse of a data block 

before access the next data block. Their approach was based on dividing large data structure 

into logical blocks and clustering computations that access the same data block using a 

scheduler. They implemented a software-managed on-chip memory and gave no 

experimental results.  

Wang et al. [35] summarized the research works in [36,37,38,39,40,41] and concluded 

that the reuse buffer is designed for sequential execution model and thus causes memory 

access conflict and low throughput in pipelined loops. They also studied the work in 

[42,43,44,45,46,47] and pointed out that these memory mapping and partitions approach 

fail to work when data reuse is performed in a non-affined, circular manner to save buffer 

size. Based on the previous work, they presented an integrated automatic approach for 

combining memory partitioning and merging with data reuse and pipelining to generate a 

memory optimization flow for FPGA behavioral synthesis. However, memory latency 

hiding is not part of their memory optimization flow. 
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3.5 3D STENCIL 

Of all kernels selected for experiment in the dissertation, the 3D stencil is the most complex 

kernel. In [48] Brown evaluates efficient implementations of 2D finite-difference modeling. 

For evaluation Brown compared FPGA, quad-core and Cell machines. The best speedup 

was achieved by the FPGA implementation, but the work focused on 2D stencil 

computations.  

The hardware implementations and optimizations for 2D and 3D stencils in the FDTD 

simulation and seismic imaging problems were proposed by He et al. [49,50,51]. The 

authors proposed to exploit data reuse of some grid values by sending grid values from the 

input cache to a set of cascaded FIFOs. The number of FIFOs depends on kernel’s order of 

accuracy with respect to time and space. In 3D stencil each FIFO buffers 2D pages and 

each page generally contains hundreds to thousands of grid points along each spatial axis. 

So the onboard memory bandwidth has to be sacrificed to meet the buffering requirements. 

The authors didn’t explore the memory access ordering to improve the performance. 

Most work on stencil implementations has been done in the context of processor 

architectures. General microprocessor based solutions for solving scientific problems in 

three dimensions are cache-inefficient due to the high miss-rates for the large 3D arrays. 

In [52] the authors showed tiling is not needed for 2D stencil codes and developed 

techniques to apply tiling in 3D stencil codes by selection of non-conflicting tiles and/or 

padding array dimensions to eliminate cache access conflicts. Leopold [53] provides an 

analytical treatment to the problem to show the effects of tiling in Jacobi and Gauss-Seidel 

kernels on a 3D array. They proved a lower bound to the capacity miss of a cache of size 

C for an array of size N3. They showed that rectangular tiles outperform square tiles for 
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row-major storage order. Kamil et al. [54] investigated the impacts of trends in memory 

subsystems on cache optimizations for stencil computations. They considered the blocking 

strategies on prefetch-enabled microprocessors. They found that cache blocking is effective 

only for very large problem sizes and the software and hardware prefetching improved 

performance of long stride-1 accesses.  

The research in [ 55 ] explored double-precision 3D stencil computations on the 

multicores by developing numerous optimization strategies and an auto-tuning 

environment. To hide memory latency, they employed hardware prefetching, software 

prefetching, DMA, and multithreading. They explored the technique of circular buffer for 

both read and write planes to minimize memory traffic. The advantage of the circular queue 

is the potential avoidance of cache’s conflict misses.



 

33 

CHAPTER 4 

PRELIMINARY RESULTS  

 

This chapter presents preliminary results of DRAM scheduling, memory latency hiding 

using double buffer, data reuse analysis and kernel bandwidth requirement. We performed 

all memory performance tests on the Convey HC-1 platform. The experiment in DRAM 

scheduling shows how the performance of Convey’s DRAM controller depends on the 

memory access orders. The memory latency hiding test shows double buffering is not 

perfect due to the interface stall rate. We also calculate theoretical data reuse rate to show 

the benefit of data reuse for the kernels. In addition, we characterize the bandwidth 

requirement of 3D stencil kernel to show that 3D stencil is a memory-bound kernel. These 

results provide a basis for better understanding memory interface designs and 

implementations of memory-bound kernel. 

4.1 IMPACT OF DRAM SCHEDULING 

As described in Chapter 2, the Convey HC-1’s proprietary DRAM controllers attempt to 

maximize memory bandwidth by dynamically scheduling incoming memory requests, 

which results in memory accesses performed in a different order in which they are 

requested by the user. In order to investigate the effective bandwidth given by the memory 

controller with various access patterns, we designed a memory test kernel that accesses all 

the 65536 64-bit words accessible from a single memory controller within a single page.
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 There are 120 (5!) possible access orders that define the relative frequency of when the 

address in each of the five fields changes. For example, for the following ordering: DRAM 

bus, DRAM bank, DIMMs select, DRAM column, DRAM row, an access pattern would 

access all eight words within a bus before changing the bank address, all eight banks before 

changing the DIMM address, both DIMMs before changing the column address, and all 

128 columns before changing the row address. 

Table 4.1  DRAM controller efficiency test with 120 access orders 

Access Orders Efficiency Access Orders Efficiency 

bank,dimm,bus,col,row 0.93 bank,col,bus,row,dimm 0.19 

bank,dimm,bus,row,col 0.93 bus,row,dimm,col,bank 0.19 

dimm,bank,bus,row,col 0.92 dimm,col,bus,bank,row 0.19 

dimm,bank,bus,col,row 0.92 bank,col,dimm,row,bus 0.18 

bus,dimm,bank,row,col 0.92 bus,col,row,bank,dimm 0.17 

bus,dimm,bank,col,row 0.92 bus,row,col,bank,dimm 0.17 

dimm,bus,bank,col,row 0.92 col,dimm,bus,bank,row 0.16 

dimm,bus,bank,row,col 0.92 bank,col,row,dimm,bus 0.15 

bus,bank,dimm,col,row 0.92 dimm,col,bus,row,bank 0.15 

bus,bank,dimm,row,col 0.92 col,dimm,bus,row,bank 0.15 

bus,dimm,row,bank,col 0.91 bank,row,col,dimm,bus 0.15 

dimm,bus,row,bank,col 0.91 col,bus,dimm,row,bank 0.15 

bus,bank,row,dimm,col 0.90 col,bus,dimm,bank,row 0.14 

bank,dimm,row,bus,col 0.88 bank,col,row,bus,dimm 0.13 

dimm,bank,row,bus,col 0.87 col,bus,bank,dimm,row 0.13 

bank,row,bus,dimm,col 0.84 bank,row,col,bus,dimm 0.12 

bus,row,bank,dimm,col 0.80 col,bus,bank,row,dimm 0.12 

dimm,row,bank,bus,col 0.66 bank,row,dimm,col,bus 0.12 

row,bank,bus,dimm,col 0.64 col,bus,row,dimm,bank 0.12 

row,dimm,bank,bus,col 0.63 col,bus,row,bank,dimm 0.10 

row,bus,bank,dimm,col 0.58 dimm,col,bank,bus,row 0.10 

dimm,row,bus,bank,col 0.50 row,bus,col,dimm,bank 0.10 

row,dimm,bus,bank,col 0.50 dimm,row,bus,col,bank 0.09 

bank,bus,dimm,col,row 0.50 row,dimm,bus,col,bank 0.09 

bank,bus,dimm,row,col 0.50 row,bus,dimm,col,bank 0.09 

bus,dimm,col,bank,row 0.46 row,bank,col,dimm,bus 0.09 

bank,dimm,col,bus,row 0.46 dimm,row,bank,col,bus 0.09 

dimm,bank,col,bus,row 0.45 row,dimm,bank,col,bus 0.09 

dimm,bus,col,bank,row 0.43 row,bank,col,bus,dimm 0.08 

bank,bus,row,dimm,col 0.36 col,dimm,bank,bus,row 0.08 
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bus,bank,col,dimm,row 0.35 row,bank,dimm,col,bus 0.08 

bus,col,dimm,bank,row 0.35 row,bus,col,bank,dimm 0.08 

bank,row,dimm,bus,col 0.33 col,bank,dimm,bus,row 0.07 

bus,row,dimm,bank,col 0.33 dimm,col,bank,row,bus 0.07 

row,bus,dimm,bank,col 0.33 col,bank,dimm,row,bus 0.07 

row,bank,dimm,bus,col 0.33 col,bank,bus,row,dimm 0.07 

bus,bank,row,col,dimm 0.32 col,bank,bus,dimm,row 0.07 

bus,bank,col,row,dimm 0.32 col,dimm,bank,row,bus 0.06 

bus,row,bank,col,dimm 0.32 dimm,col,row,bus,bank 0.06 

bank,row,bus,col,dimm 0.32 row,dimm,col,bus,bank 0.05 

row,bus,bank,col,dimm 0.32 col,dimm,row,bus,bank 0.05 

row,bank,bus,col,dimm 0.32 dimm,row,col,bus,bank 0.05 

bus,col,bank,dimm,row 0.28 col,bank,row,dimm,bus 0.05 

bus,col,dimm,row,bank 0.28 col,bank,row,bus,dimm 0.05 

bus,dimm,row,col,bank 0.26 dimm,row,col,bank,bus 0.04 

bank,dimm,col,row,bus 0.25 col,dimm,row,bank,bus 0.04 

bank,dimm,row,col,bus 0.25 row,dimm,col,bank,bus 0.04 

dimm,bank,col,row,bus 0.24 row,col,dimm,bus,bank 0.04 

dimm,bus,col,row,bank 0.24 col,row,dimm,bus,bank 0.04 

dimm,bank,row,col,bus 0.24 dimm,col,row,bank,bus 0.04 

dimm,bus,row,col,bank 0.24 col,row,dimm,bank,bus 0.04 

bus,dimm,col,row,bank 0.23 row,col,dimm,bank,bus 0.03 

bank,col,dimm,bus,row 0.23 row,col,bus,dimm,bank 0.03 

bus,col,bank,row,dimm 0.22 row,col,bus,bank,dimm 0.03 

bus,row,col,dimm,bank 0.21 col,row,bus,dimm,bank 0.03 

bus,col,row,dimm,bank 0.21 col,row,bus,bank,dimm 0.03 

bank,bus,col,dimm,row 0.20 col,row,bank,dimm,bus 0.03 

bank,bus,row,col,dimm 0.20 row,col,bank,dimm,bus 0.02 

bank,bus,col,row,dimm 0.20 row,col,bank,bus,dimm 0.02 

bank,col,bus,dimm,row 0.19 col,row,bank,bus,dimm 0.02 

The DRAM controller efficiency results listed in Table 4.1 range from 93% down to 

2%, demonstrating that the access ordering makes a substantial difference in effective 

memory bandwidth. Only 21 of the 120 access patterns achieved greater than 50% 

efficiency and over half of the access patterns resulted in less than 20% efficiency. 

Any access pattern where the DRAM column and row were the two least frequently 

changed address fields achieved 92-93% efficiency, except for the following two cases 

which resulted in only 50% efficiency: 

1. bank,bus,dimm,col,row 
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2. bank,bus,dimm,row,col 

In these cases, contention for a single DIMM reduces memory performance. 

The worst efficiency was observed for access patterns where row and column change 

the most frequently. All twelve of these access patterns resulted in less than 4% efficiency. 

However, Convey’s scheduler was able to achieve good efficiency in some cases when the 

DRAM row was changed every cycle, as shown in the following cases: 

1. row,bank,bus,dimm,col (64%) 

2. row,dimm,bank,bus,col (63%) 

3. row,bus,bank,dimm,col (58%) 

4. row,dimm,bus,bank,col (50%) 

5. row,bus,dimm,bank,col (33%) 

6. row,bank,dimm,bus,col (33%) 

The memory bandwidth test shows that the access ordering makes a substantial 

difference in effective memory bandwidth. To achieve high memory bandwidth, the 

memory should be accessed consecutively as much as possible given the specific memory 

access pattern of a kernel.  

4.2 IMPACT OF DOUBLE BUFFERING ON MEMORY LATENCY HIDING 

As described in Chapter 2, double buffering is the first attempt to hide memory latency. 

However, double buffering introduces inefficiency in memory controller interface due to 

contentions of the buffers for memory accesses and kernel pipeline. To measure the 

inefficiency, a performance counter is used to count the number of cycles where there is 

no memory read or write without a corresponding memory stall request. This differentiates 

inefficiencies in DRAM controller with inefficiencies in the memory controller interface. 
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The number is then divided by the number of execution cycles to obtain the interface stall 

rate.  

We used MrBayes kernel, a memory-bound kernel, to evaluate the inefficiency of 

double buffering in a memory interface design. The results in Table 4.2 shows the interface 

stall rate depends on the size of the each buffer. The stall rate is high for very small and 

very large buffers and drops when the buffer is around 1K-entry deep. The interface stall 

rate in double buffering leads to the pursuit of a better memory latency hiding technique. 

As compared to double buffering, FPGA test shows circular buffering using Convey’s 

reorder buffer has zero interface stall rate. So all the experimental results that follow 

assume the memory controller interface has implemented circular buffering to eliminate 

the stall that arises from the inefficiency of the buffering for memory latency hiding. 

4.3 IMPACT OF LOOP AND ARRAY ACCESS ORDERS 

In order to evaluate the performance of the memory access orders, we implemented a 3D 

6-point stencil loop on the Convey HC-1. Figure 4.1 shows the stencil loop kernel and 

Figure 4.2 shows the block diagram of the design for one PE.  

The order of address generation affects the memory access pattern, which in turn 

affects memory performance. We define two memory access orders, the loop order and the 

for i=1 to x-2 do 
  for j=1 to y-2 do 
    for k=1 to z-2 do 

    S[i, j, k] =  A[i-1, j, k] + A[i+1, j, k] + A[i, j-1, k] +  
                      A[i, j+1, k] + A[i, j, k-1] + A[i, j,k+1]; 

    endfor 
  endfor 
endfor 

 
Figure 4.1 6-point 3D stencil loop kernel 
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array order. In the loop order, all inputs for each loop iteration are requested before 

proceeding to request the inputs required by next iteration. The ordering leads to 

nonconsecutive accesses within each loop iteration. It is not necessary to request all inputs 

of one iteration before requesting all inputs of the next iteration. In the array order, all 

inputs belonging to each array are requested as needed by the iteration range covered by 

the buffer before moving to the next array. The ordering leads to non-consecutive access 

Table 4.2  Memory interface stall rate using double buffering 

Buffer size Interface stall rate 

256 20.7% 

512 9.3% 

1K 6.2% 

2K 10.8% 

3K 16.1% 

4K 20.5% 

 

 

Figure 4.2  Block diagram of the 6-point 3D stencil for each PE 
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for each array at the boundary of iteration range. The size of the iteration range is also 

referred to as block size. 

The address generator produces the memory addresses in either the loop or array order. 

Convey’s read reorder buffer receives data requests and returns the data to the kernel 

through the input FIFOs. Each of six input FIFOs corresponds to one of the six elements 

in the 6-point stencil. When any FIFO is almost full, the read reorder buffer will stop 

sending data to the FIFO. When all the FIFOs are not empty, the kernel accumulates six 

FIFO output data in parallel. The accumulation result is then written to the memory through 

the memory interface. 

The design is implemented using only two PEs accessing just one memory controller. 

Table 4.3 shows DRAM controller efficiency is 67% for the loop order and 90% for the 

array order. It is expected that the efficiency will be lower when 64 PEs of four AEs run in 

parallel. In the loop order, we request six elements in the innermost loop of the stencil code 

before proceeding to request the elements of the next loop iteration. In the array order, we 

request an array of elements of 85 iterations before proceeding to request next array of 

elements of 85 iterations. It is assumed that when block size is 1 the array order reduces to 

the loop order. Note this specific block size of 85 is only introduced as part of the 

Table 4.3  DRAM controller efficiency of 6-point 3D stencil  

Request Order Loop Array 

Block size 1 85 

Efficiency 67% 90% 
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preliminary 3D 6-point stencil result. The experimental result in Chapter 6 will take block 

size as a parameter for studying the impact of block size on the memory performance.  

4.4 DATA REUSE ANALYSIS OF 3D STENCIL 

In the stencil code shown in Figure 4.1, six references to the array A are located in the 

innermost loop of the nested loops. The references are R0 (A[i-1, j, k]), R1(A[i+1, j, k]), 

R2(A[i, j-1, k]), R3(A[i, j+1, k]), R4(A[i, j, k-1]) and R5(A[i, j, k+1]). An array element 

accessed by one reference in an iteration may be accessed again by other references in other 

iterations. For example, the array element accessed by reference R3 in iteration (i, j+1, k) 

can be reused by reference R2 in iteration (i, j+2, k).  

As introduced in Chapter 2, data reuse is realized using on-chip buffers. If the size of 

on-chip buffers is large enough to store all elements of array A after requesting them from 

the memory, then all loop iterations can access the elements from the on-chip buffers, 

achieving maximum data reuse. If data reuse is not enabled, then each iteration has to 

access six elements from the memory to produce an output element. Since the size of on-

chip buffers is limited, some redundant accesses are required to request the same elements 

that have been requested before. 

We have built a FIFO-based model to analyze data reuse rate using different sizes of 

on-chip buffers and stencil space. The model counts the total number of reused memory 

references in the 3D stencil kernel loops and then divide it by the total number of memory 

references without data reuse to compute data reuse rate. When the FIFO buffer cannot 

hold a new memory reference due to the limited size, the oldest reference in the buffer is 

removed to provide space for storing the new reference. 
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Table 4.4 and Table 4.5 show data reuse rate depends on the sizes of buffer and stencil 

space. The first column of the table lists the sizes of the N-cube stencil space and the first 

row the sizes of the buffer. The sizes of the buffer range from 16 to 4096 while the sizes 

of the stencil space from 53 (N=5) to 5123 (N=512). The last column of the table lists 

maximum data reuse rate for each N-cube stencil space when the buffer size is equal to N3. 

Table 4.4 lists the results of 6-point 3D stencil. When N ≥ 256 data reuse rate stays at 

about 16% when the buffer size increases to 4096. This means the buffer is still too small 

to accommodate more references that can be reused for very large stencil space. When N 

≤ 32, data reuse rate is at maximum when BS ≤ 4096. Notice a buffer as small as 16-entry 

deep can achieve the same data reuse rate as a much larger buffer for large 3D stencils. As 

shown in the last column, maximum data reuse rate increases monotonically from N = 16 

Table 4.4  Data reuse rate of 6-point 3D stencil  

 16 32 64 128 256 512 1024 4096 N3 

5 0.148 0.302 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

10 0.125 0.125 0.411 0.417 0.69 0.708 0.708 0.708 0.708 

16 0.143 0.143 0.154 0.452 0.452 0.452 0.452 0.762 0.762 

32 0.156 0.156 0.156 0.156 0.478 0.478 0.478 0.800 0.800 

64 0.161 0.161 0.161 0.161 0.161 0.489 0.489 0.489 0.817 

128 0.164 0.164 0.164 0.164 0.164 0.164 0.495 0.495 0.825 

256 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.829 

512 0.166 0.166 0.166 0.166 0.166 0.166 0.166 0.166 0.831 

 

Table 4.5  Data reuse rate of 27-point 3D stencil  

 16 32 64 128 256 512 1024 4096 N3 

5 0.198 0.442 0.689 0.829 0.829 0.829 0.829 0.829 0.829 

10 0.259 0.579 0.583 0.826 0.826 0.928 0.928 0.928 0.928 

16 0.275 0.616 0.619 0.619 0.855 0.855 0.945 0.945 0.945 

32 0.286 0.643 0.644 0.644 0.644 0.874 0.874 0.955 0.955 

64 0.292 0.655 0.655 0.655 0.655 0.655 0.882 0.882 0.959 

128 0.294 0.661 0.661 0.661 0.661 0.661 0.661 0.885 0.961 

256 0.295 0.663 0.664 0.664 0.664 0.664 0.664 0.664 0.962 

512 0.296 0.665 0.665 0.665 0.665 0.665 0.665 0.665 0.963 
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to N = 512. The maximum rates are very close from N = 256 to N = 512. The highest data 

reuse rate is about 83% when N = 512.  

Table 4.5 lists the results of 27-point 3D stencil. When N ≥ 256 data reuse rate stays at 

about 66% when the buffer size increases to 4096. Compared to 16% data reuse rate in 6-

point 3D stencil, the rate is much higher, but the buffer is still too small to accommodate 

more references that can be reused. When N ≤ 32, data reuse rate is at maximum when BS 

≤ 4096. Notice a 32-entry buffer increases more than twice data reuse rate compared to a 

16-entry buffer. Maximum data reuse rate also increases monotonically. The maximum 

rates are very close from N = 128 to N = 512. The highest data reuse rate is about 96% 

when N = 512.  

The results of using different sizes of buffer and stencil space provide an upper bound 

to the data reuse rate in a 3D stencil. In reality, there are many PEs on a multi-FPGA 

platform and each PE is assigned a block of stencil space to achieve high parallelism. The 

buffer size is also highly constrained by FPGA memory resources and timing requirement. 

As shown in Table 4.4 and 4.5, when the buffer size is 512, N = 10 has the highest data 

reuse rates. 

4.5 BANDWIDTH CHARACTERISTICS OF THE 3D STENCIL 

The 3D Stencil is a memory bound application. Without considering data reuse, the 

memory bandwidth required by the kernel to perform 3D stencil can be computed as: 

    readbytes = D × PTS × N3  (4.1) 

   writebytes = D × N3 (4.2) 

   compute time = PTS / (kernelFLOPS × F)  (4.3) 

Bandwidth = D × N3 × (1 + 1 / PTS) × (kernelFLOPS × F) (4.4) 
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where PTS is the number of points in the stencil function, D the data type used in stencil, 

N the size of dimension of 3D stencil array with the assumption of a cubic array, 

kernelFLOPS floating-point operations in the accumulation stencil kernel and F the 

frequency at which the kernel executes. Assuming kernelFLOPS is 1 for the double-

precision accumulation operation and the kernel operates at 150MHz, the required memory 

bandwidth for the stencil computation is approximately: 

D × N3 ×150e6 (4.5) 

When N > 4, the required memory bandwidth is larger than the 76.8 GB/s memory 

bandwidth on the Convey HC-1. Note the stencil kernel is still memory-bound when data 

reuse (i.e., PTS = 1) is enabled. 

4.6 CONCLUSION 

The preliminary results in this chapter show that the performance of Convey’s DRAM 

controller strongly depends on the memory access orders even though it is optimized for 

scatter-gather operations. The access orders that achieve highest memory bandwidth imply 

that Convey’s memory system should be accessed in sequential order for best performance. 

To hide memory latency, double buffering introduces high controller stall rate, which 

causes us to adopt circular buffering to avoid any controller stalls that lead to inefficiency 

of memory latency hiding. Based on the regular access pattern of a kernel, we define two 

memory access orders, the loop order and the array order. The array order is better than the 

loop order in DRAM controller efficiency for a specified block size. We also show data 

reuse rate depends on the sizes of the on-chip buffers and the stencil space. A 27-point 3D 

stencil has higher data reuse rate than a 6-point 3D stencil for a given buffer size. The next 
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chapter will describe in detail the memory interface designs based partly on the preliminary 

results in this chapter. 
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CHAPTER 5 

MEMORY INTERFACE DESIGNS ON THE CONVEY HC-1 

 

In this chapter, we describe memory controller interface designs using two types of 

memory-bound kernels, 3D stencil and matrix vector multiplication. Taking advantage of 

the static access pattern of each kernel, we explore design techniques for improving 

memory latency hiding, memory access ordering and data reuse to maximize performance. 

5.1 STENCILS 

Stencil computations are widely used in scientific computation, such as in structured grids, 

partial differential equation solvers for simulation of thermo/fluid dynamics and 

electromagnetics. These applications are often implemented using iterative finite-

difference techniques that sweep over a spatial grid performing nearest neighbor 

computations called stencils.  

5.1.1 STENCIL COMPUTATION 

As shown in Figure 5.1, a stencil calculation reads N input points to calculate one output 

point. In this dissertation, we chose the 6-point and 27-point stencil computation as 

representative kernels: 

 3D 6-point Stencil: Each point (element) in the output grid is updated by the six 

neighbors offset by 1 in each direction. Each point is a 64-bit number. The six 
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 neighbors are accumulated to generate the output point, so there are five adds for 

each point.  

 3D 27-point Stencil: Each point computation involves all points in a 3×3×3 cube 

surrounding the center output point. The 27 64-bit points are accumulated to 

generate the output point, so there are 26 adds for each point. 

The stencil computation is based on the Jacobi (out-of-place) iterative method. We keep 

two separate memory arrays — one for input data and another for output data. This means 

that the stencil computation of each output point is independent of every other output point. 

As a result, they can be computed in any order. On the other hand, Gauss-Seidel (in-place) 

iterations require a single array for read and write. However, the dependencies in Gauss-

Seidel stencil complicate the performance optimization and evaluation. This topic will be 

left as future research. 

While a 6-point stencil is simple and quite common, there are cases where larger stencils 

with more neighboring points are required. The 27-point stencil is a good approximation 

 

Figure 5.1  6-point and 27-point 3D stencils 
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for other compute-intensive stencil kernels such as the NAS Parallel Multigrid benchmark 

[56]. This is why it is chosen for the dissertation. 

Note all the points in our stencil computations have a scaled constant of 1, so there is 

no multiplication. Our focus is more on the impact of memory access patterns on the kernel 

performance than on the exact stencil computation of an N-point 3D stencil. The 

abstraction of any specific stencil computation with the accumulation provides us with the 

insight for implementing any stencil kernels.  

5.1.2 27-POINT STENCIL KERNEL ON THE CONVEY HC-1 

The preliminary result shows 6-point stencil implementation requires six 512-entry deep 

input FIFOs for each PE. When 16 PEs are implemented, the total FPGA memory resource 

used, including the memory resources for Convey’s own hardware infrastructure, accounts 

for 77% of total memory resources on a Xilinx Virtex-5 LX330 FPGA.  

For a 27-point stencil, 27 512-entry deep input FIFOs for each of 16 PEs are too large 

to fit on the FPGA. To implement 27 FIFOs without exceeding the FPGA memory limit, 

the depth of each FIFO can be reduced from 512 to 32 and both block RAMs (BRAMs) 

and distributed RAMs can be used. Using distributed RAM is necessary because the 

available BRAMs on the target FPGA are not sufficient for implementing 27 BRAM-based 

FIFOs per PE. Though the shallow FIFO limits the exploration space of block sizes on the 

Convey HC-1 platform, this will not be an issue when targeting the applications on the 

newer Convey HC-1ex platform. The Convey HC-1ex platform is equipped with four 

higher-capacity Virtex-6 LX760 FPGAs for the Application Engines. 
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5.1.3 PROPOSED 6-POINT STENCIL KERNEL DESIGN ON THE CONVEY HC-1 

The proposed design is to combine memory latency hiding, memory access scheduling 

and data reuse to achieve high performance. We propose the numerical order, a memory 

access mechanism based on static access pattern, which facilitates the hardware 

implementations of memory latency hiding and data reuse. The idea can be explained using 

a small 5×5×4 grid (block) in the example of 6-point 3D stencil.  

Figure 5.2 illustrates a 5×5×4 block composed of four planes P0, P1, P2 and P3. Each 

element in the planes is numbered numerically starting from 0 in P0 and ending at 99 in 

P3. A point in a plane is not considered as an output point if any of its N neighbors are 

outside the grid. As such, plane P1 has nine output points corresponding to the locations at 

31, 32, 33, 36, 37, 38, 41, 42 and 43 and plane P2 has nine output points (56, 57, 58, 61, 

62, 63, 66, 67 and 68). Since each output element is accumulated by N neighbors offset by 

1 in each direction in the stencil computation, the 6-point stencil computation of an output 

point in P1 requires the neighboring elements in P0, P1 and P2 while the computation of 

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

35 36 37 38 39

40 41 42 43 44

45 46 47 48 49

25 26 27 28 29
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70 71 72 73 74

50 51 52 53 54
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85 86 87 88 89

90 91 92 93 94

95 96 97 98 99

75 76 77 78 79

80 81 82 83 84

P3

 

Figure 5.2  A 5×5×4 grid with elements numbered numerically 
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an output point in P2 the neighboring elements in P1, P2 and P3. For simplicity we refer 

to these planes as top, middle and bottom. For example, output element corresponding to 

location 31 in P1 is a sum of elements at locations 6 (P0), 26 (P1), 30 (P1), 32 (P1), 36 (P1) 

and 56 (P2). 

5.1.3.1 MEMORY LATENCY HIDING IN THE PROPOSED DESIGN 

Recall the design of 6-point stencil using the loop or array order has six input FIFOs that 

receive six elements for computing an output element. Each FIFO receives the appropriate 

data with the FIFO select control signal. The control signal specifies which of the six FIFOs 

the requested element from the memory interface will be stored into. When the address 

generator requests the elements numerically, it is not feasible to have a large decoder to 

decode the location of each element to know which FIFO the element will be stored into. 

So all the requested elements have to be stored in the same on-chip buffer. On the other 

hand, if all the elements are stored in one buffer with a single read port, then it would take 

six cycles to read six elements for computing an output element, decreasing the 

computation throughput of the kernel and thus requiring a very large buffer to store the 

elements.  

In order to effectively hide memory latency, we duplicate the buffer six times for the 6-

point stencil, so each buffer receives the same data from the memory controller interface. 

Then the kernel can read six elements from the buffers in one cycle, increasing the buffer 

read throughput. Moreover, because the size of each buffer is limited, each buffer is a 

rotation buffer (RTB) that is read and written simultaneously to hide memory latency 

without introducing double buffering’s stall rate. Figure 5.3 shows the block diagram of 

the proposed design.  
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As compared to the FIFO, each of the rotation buffers can be randomly addressed like 

static random access memory (SRAM), which facilitates simultaneous accesses of six 

elements at different memory addresses. In addition, unlike FIFO the data in RTB is still 

available after reading as long as it is not overwritten, which facilitates data reuse of the 

elements for computing the output elements. The RTBs always store the requested 

elements from the memory in the numerical order. To read six elements for computing an 

output element just as dequeueing six elements from six FIFOs, we must know where in 

the RTBs the kernel reads the data. The location (address) of reading each element in the 

buffer is specified by the numerical order of each element in a grid. For example, to 

compute the output element corresponding to location 31, six RTBs are accessed at the 

addresses 6, 26, 30, 32, 36 and 56 respectively. Thus each output element can be computed 

by reading the buffers at the numerically ordered addresses. However, it is not hardware 

efficient for the address generator to store in memory the read addresses for each output. 

 

Figure 5.3  Block diagram of the proposed 3D 6-point stencil for each PE 
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To optimize the address generation, we use relative addressing based on the static access 

patterns of 3D stencil. 

Observe in Figure 5.2 that if address 31 of the output point is assumed as the reference 

address, then the differences between the reference address and the addresses of six 

neighbors are -25, -5, -1, 1, 5 and 25. It can also be observed that the address differences 

(offsets) are the same given the size of a plane when computing any output element.  

For an N-point stencil, we take advantage of the static nature of the address differences 

to simplify the implementation of read addresses generation. As long as the location of an 

output element and the size of the plane are known, the addresses of the N neighbor can be 

calculated using the relative addresses without knowing their exact addresses. It should be 

noted, however, that the circular nature of the RTB requires any address be calculated in 

modular arithmetic. 

5.1.3.2 MEMORY ACCESS ORDERING IN THE PROPOSED DESIGN 

The numerical order does not imply the elements numbered numerically are stored in 

the memory consecutively or in the array order. In a large stencil space that is divided into 

subspaces for parallel computations among the PEs, the elements in each row of a plane 

are stored in the array order, but there is an address stride from the end of a row to the start 

of the next row in a plane. For example, in plane P0 as shown in Figure 5.2, elements at 

location 4 and location 5 are not stored in memory consecutively.  

Compared to the loop or array order, the address generator of each PE requests the 

elements in a block in the numerical order. This means every row of a plane in a block is 

accessed in the array order.  
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Just as a block is composed of a set of planes, the entire stencil space is divided into 

many blocks as shown in Figure 5.2. On a multi-FPGA platform, these blocks are assigned 

to all PEs for highly parallel operations. To divide the entire workload among 64 PEs of 

four AEs on the Convey HC-1 platform, we can partition 3D stencil space along I, J and K 

dimensions. The experimental results in the next chapter will describe these partitions and 

their impact on the performance.  

5.1.3.3 DATA REUSE IN THE PROPOSED DESIGN 

In the memory interface designs with the loop or array order, the address generator 

requests six times the number of output elements so that each output element is computed 

using six elements. In this case, there is no data reuse and computing all output elements 

in the 5×5×4 block requires 108 (9×2×6) requests, 6 requests for each of 18 output elements. 

The numerical order facilitates data reuse in that the address generator can request all the 

Table 5.1  Reuse rates of using the loop, array and  

numerical orders 

Num. of  

Planes 

Numerical 

order 

Loop or  

array order 

Reuse  

rate 

3 75 54 0.00 

4 100 108 0.07 

5 125 162 0.23 

7 175 270 0.35 

8 200 324 0.38 

32 800 1620 0.51 

53 1325 2754 0.52 

87 2175 4590 0.53 

104 2600 5508 0.53 

172 4300 9180 0.53 

257 6425 13770 0.53 

512 12800 27540 0.54 
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elements in the 5×5×4 block for computing 18 output elements in planes P1 and P2. In this 

case, the number of requested elements is 100 (5×5×4) elements.  

Table 5.1 compares the number of elements that need to be requested in the loop, array 

and numerical orders for computing all the output points in a set of 5×5 planes. For a small 

5×5×3 grid, the numerical order requests more elements than the array or loop order does, 

so the reuse rate is 0. However, as the size of the grid increases the numerical order reduces 

the number of requests by around 50% compared to the loop or array order. Since the size 

of each buffer is limited, it cannot hold all the data and has to be rotationally updated with 

the new data. The update is based on the knowledge of regular access patterns of a grid in 

the stencil space. As the buffers always store data in the numerical order, the old data in a 

buffer can be updated with new data when all elements for computing all output elements 

in a plane have been read by the kernel. For example, after all elements in P0 for computing 

all output elements in P1 have been read from the buffers, all elements in P0 in the buffers 

can be replaced safely. In the course of reading RTBs from the kernel and updating RTBs 

from the memory interface, we must read and write the buffer in a way such that the stencil 

computation is performed correctly.  

Assume a block assigned to each PE is composed of four 5×5 planes. After each RTB 

has stored three planes of elements, the kernel can start stencil computation in P1 by 

reading simultaneously six RTBs. Since there are nine output elements in P1, it takes nine 

cycles to read all input elements with each cycle reading six input elements for one output 

element. After nine cycles of reading all 54 (6×9) elements, the kernel can start reading six 

input elements for the stencil computation in P2 if a plane of elements for P3 has been 

stored in RTB. As the size of a plane is 5×5, it takes at least 25 cycles to store a plane of 
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elements for P3 in RTB, so the kernel cannot start stencil computation in P2 when RTBs 

are still receiving elements of P3. In other words, the read control logic must ensure that 

stencil computation is not started until three planes of elements are ready in the buffers. So 

the size of the buffer is at least three times the number of elements in a plane. For this 

example, the size of RTB could be 25×3 when a block is composed of 5×5 planes. Note it 

is possible to start stencil computation a little early in P1 when the buffers are still receiving 

the last few elements of the 5th row of P2. However the read control logic is simplified 

when stencil computation is started after three planes of elements are ready because we do 

not need to know when the remaining elements will be delivered from memory to RTB. 

This does not decrease the performance as RTB read is faster than RTB write. 

As describe in the last paragraph, when a RTB contains three planes for stencil 

computation in the current plane (e.g., P1), it is also receiving data elements of P3 that will 

be used for stencil computation in the next plane (e.g., P2). When the buffer size is three 

times the number of elements in a plane, the received data have to be written in the buffer 

region that contains top of three planes. To avoid the possible cases that elements received 

overwrite the elements that have not been read in the stencil kernel (e.g., 27-point stencil) 

when overlapping read and write in RTB, the size of the buffer is increased to four times 

the number of elements in a plane. As long as RTB read time for all output elements in 

each plane (e.g., P1) is faster than the time to update RTB with a plane (e.g., P3), it 

guarantees that data written in the RTB region that does not contain top of the three planes 

being read for stencil computation. 

Unfortunately, the maximum size of each buffer is limited by the available memory 

resources on the target FPGA. Given the constraints of 16 PEs per AE, with six or more 
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RTBs and one output FIFO per PE, our experiment shows the maximum size of each buffer 

is 512 while the size of output FIFO is 2048 for 6-point stencil and 1024 for 27-point stencil. 

The size of the buffer provides us with a little more room for evaluating the performance 

impact of a relatively large plane. 

5.1.6 PROPOSED 27-POINT STENCIL KERNEL DESIGN ON THE CONVEY HC-1 

The 27-point stencil design is more challenging. While it is feasible to have 27 buffers, 

as implemented using 27 32-entry deep FIFOs in the loop and array order designs, the size 

of each buffer is too shallow to store three planes of elements. To reconcile limited memory 

resources with the buffer size requirement, we choose nine BRAM-based 512-entry deep 

buffers for each PE. While six elements can be read in one cycle using six buffers in 6-

point stencil, it takes three cycles to read 27 elements using nine buffers.  

For a relatively large 10×10×4 grid, each plane (P1 or P2) has 64 output elements. It 

takes 100 (10×10) cycles for RTBs to be written with a plane of elements. On the other 

hand, as three cycles are required to read 27 input elements from nine RTBs, it would take 

192 (64×3) cycles to read RTBs for all output elements in a plane (e.g., P1). Since RTB 

write is faster than RTB read, RTB overflow would eventually occur.  

If RTB read time can be reduced below 100, then the overflow can be prevented from 

happening. Notice the buffer read time is not only constrained by the number of buffers, 

but also related with the computational capacity of the kernel. If we can increase kernel’s 

computational capacity, we can reduce RTB read time by reusing the data without reading 

them again from RTBs. 
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Figure 5.4 shows a 3×8×3 block composed of eight planes parallel to each other 

vertically. The output element O1 is accumulated by reading nine input elements of the 

O1
O2 O3

O4
O5 O6

Figure 5.4  The stencil computation of six output elements in 27-point 3D stencil 
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Figure 5.5  Block diagram of one of the three accumulators which operate in parallel 
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first plane followed by nine inputs in the second plane and then nine inputs in the third 

plane. When the second or third plane is read from RTBs and delivered to the kernel for 

computing the first output element O1, it is also used for computing the second output 

element O2. By increasing the computational capacity of the kernel to share RTB read data, 

it takes eight cycles to read all input elements for six output elements as compared to 18 

cycles. 

There are two logic designs for reading and accumulating 27 inputs for each output 

element as shown in Figure 5.4. The first design instantiates three 9-input accumulators. 

Figure 5.5 shows the block diagram of a single 9-input accumulator and the timing diagram 

of three 9-input accumulators operate in parallel. The functional unit receives nine 64-bit 

inputs (I0 to I8) from the buffers and three inputs from the intermediate registered results. 

To increase the kernel’s computational capacity, we instantiate three accumulation units. 

The timing diagram shows how three functional units operate in parallel. The first unit 

(ACC1) starts to read nine inputs and accumulates them on cycle 1 (c1). This is the first-

stage accumulation for output element 1 (i.e., S1_ACC1 _O1). On the next cycle (c2) the 

second unit (ACC2) starts while ACC1 is performing the second-stage accumulation. On 

cycle 3 the third unit (ACC3) starts while ACC1 and ACC2 are performing the third-stage 

and second-stage accumulations respectively. After three-cycle latency, ACC1 finishes 

reading all inputs for O1 and begins to read and accumulate the inputs for output element 

O4. Each accumulator is fully utilized during the stable phase. The latency of accumulating 

27 64-bit inputs is four cycles, three cycles for reading 27 inputs plus one cycle to produce 

the final result. This is the minimum latency under the 150MHz timing requirement.  
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As shown in Figure 5.6, the second design has a 27-input pipelined adder tree with 

certain inputs buffered appropriately for reusing the read data. It accumulates every 27 

input elements when they are ready. Comparing both designs in terms of the number of 

adders and registers (assuming each register or adder is 64-bit), the first one has 12 registers 

and 33 adders while the second one 37 registers and 26 adders. There is a tradeoff between 

the number of registers and the number of adders. However, the resource usage depends 

on how each design is implemented and optimized by the EDA tools on the FPGA. 

By reusing the RTB read data and increasing the computational capacity of the kernel, 

RTB read time is reduced from 192 cycles to 66 cycles. Another approach to prevent buffer 

full is to stall the buffer write before buffer write full occurs. The drawbacks of this 

approach are the complexity of the buffer control logics, and the introduction of rotation 

buffers stall that degrades the performance of the design. 

Though the accumulation-based stencil computation is simpler than other stencil 

computations that involve weighted multiplications and additions, the proposed 3D stencil 
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Figure 5.6  Block diagram of 27-input 64-bit pipelined adder tree 
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designs provide insights for solving the issues that arise from the combination of memory 

latency hiding, memory access scheduling and data reuse. 

5.2 MATRIX VECTOR MULTIPLICATION 

Matrix vector multiplication (MVM) is a fundamental operation in linear algebra. 

Assuming C, A, and B are matrices of dimensions M × 1, M × N and N × 1. The standard 

algorithm that implements MVM is shown in Figure 5.7: 

The algorithm shows that each C[i] is the dot product (inner product) of the ith row of 

matrix A with matrix B (i.e., vector B). Our MVM kernel ignores matrix C writes so that 

we can explore the impact of maximum data reuse of matrix B for each PE upon memory 

performance. The implementation of matrix C write will be left for future research.  

5.2.1 BANDWIDTH CHARACTERISTICS OF MVM 

The memory bandwidth required by the kernel to perform MVM is: 

 readbytes = D × N2 + D × N (5.6) 

 writebytes = D × N (5.7) 

 compute time = (2 × N – 1) × N / (kernelFLOPS × F)  (5.8) 

bandwidth = (D×N + 2×D) / ( 2 × N – 1) × (kernelFLOPS × F) (5.9) 

where D is the data type used in MVM, N the column size of the matrix A assuming it 

is square (M = N), kernelFLOPS kernel’s floating-point operations per cycle and F the 

for i=1 to M do 
    for k=1 to N do 

C[i]= C[i] + A[i, k] × B[k]; 
    endfor 
endfor 
 
Figure 5.7 The standard algorithm of MVM 

 

 

 

 

Table 4.2 Memory interface stall rate in double buffering 
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frequency of the kernel. To maintain a balanced system, the total memory bandwidth must 

scale with the computational throughout [57]. The Convey HC-1 has an aggregate memory 

bandwidth of 76.8 GB/s and operates at 150MHz. Then kernelFLOPS of the double-

precision floating-point MVM for 64 PEs is approximately: 

(128 × N) / (N + 2) (5.10) 

or two floating-point operations per PE for very large N. The target Virtex-5 LX330 

FPGA is large enough to provide the kernel with the resources for two double-precision 

floating-point operators per PE. 

5.2.2 DATA REUSE IN MATRIX VECTOR MULTIPLICATION 

For simplicity of description we assume M and N are 4 in the standard MVM algorithm 

as shown in Figure 5.7, so four references to the 4×4 matrix A and the 4×1 matrix B are 

located in the innermost loop of the nested loops. The references are A0(A[i,1]), A1(A[i,2]), 

A2(A[i,3]), A3(A[i,4]), B0(B[1]), B1(B[2]), B2(B[3]), and B3(B[4]). An element accessed 

by one reference in one iteration is accessed again by references in other iterations. For 

example, the element accessed by B0 in iteration i is accessed again in iteration i+1 for the 

dot product. Furthermore, each element in matrix B is reused by matrix vector 

multiplication for all iterations, so data reuse of matrix B is at maximum. 

Without data reuse, each PE has to request the elements of matrix B every time the inner 

product is performed. When the workload of MVM is divided among multiple PEs, data 

reuse is implemented by each PE requesting part of the elements of matrix B once, and 

then reusing them after storing them in on-chip buffers. On the Convey HC1, the reuse rate 

is 0.5 – 8/M assuming there are 16 PEs in each AE and M is the row dimension of matrix 
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A. This shows there is no data reuse until the row size of matrix A is larger than 16. On the 

other hand, the reuse rate theoretically reaches the maximum rate of 0.5 if M is infinite. 

5.2.3 PROPOSED MVM DESIGN ON THE CONVEY HC-1 

The basic challenge in optimizing MVM is to reduce memory accesses of off-chip memory 

when computing very large matrices and vectors that do not fit in limited on-chip memory. 

The effective approach to reducing the off-chip memory accesses is to exploit reuse 

through blocking [58]. MVM is highly parallelizable since all the dot product calculations 

are independent. Blocking divides a large MVM into smaller MVMs that can fit within the 

limited on-chip memory constraint. The following C-style algorithm gives an example of 

blocking in MVM, where M and N are the dimensions of matrix A and the block size is 

NB × BS where NB is the number of rows and BS the number of columns in the block. 

void block_mvm_kernel 

(Data* A, Data* B, Data* C, int N, int NB, int BS) { 

 int i, k; 

 for (i = 0; i < NB; i++) 

   for (k = 0; k < BS; k++) 

    C[k] += A[i, k] * B[k]; 

} 

 

void block_mvm 

(Data* A, Data* B, Data *C, int M, int N, int NB, int BS){ 

 int i, k; 

 for (i = 0; i < M; i += NB) 

   for (k = 0; k < N; k += BS) 

    block_mvm_kernel(&(A[i, k]), &(B[k]),&(C[i]), N, NB, BS); 

} 

To divide the workload of MVM on the Convey HC-1 platform, four AEs execute the 

block MVMs in parallel and access the entire memory through Convey’s crossbars. Each 

AE is assigned a block of matrix A of size NB × BS and BS elements of matrix B. Since 

each AE can accommodate 16 PEs on the Convey HC-1, we fully utilize memory 
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bandwidth from the AEs to coprocessor memory by assigning each PE in an AE a subrow 

of size BS in matrix A and a column of size BS in matrix B. So all PEs in an AE access a 

block of size 16 × BS.  

Figure 5.8 shows the matrices are divided among four AEs in shaded gray and each AE 

has 16 PEs and each PE accesses its local row elements in matrix A and its local column 

elements in matrix B. Without data reuse, the address generator in each PE produces the 

row addresses that request a subrow and then the column addresses that request a 

subcolumn. Since there are 16 PEs and 4 AEs on the Convey HC-1, the number of memory 

requests for each PE is (N/16) × (N/4) × 2.  

Notice all subrows in a group assigned to a PE (e.g., PE0) in matrix A require the same 

column elements in matrix B for inner product operation. To achieve data reuse in matrix 

B, the address generator is optimized to skip the redundant column requests if the column 
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Figure 5.8  Matrix blocks assignments among  

four AEs with 16 PEs per AE 
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elements have already been requested before. The elements that correspond to the skipped 

requests can be obtained by reading the on-chip buffers that store the reused column data. 

Since column data are reused for every subrows assigned to a PE, the number of memory 

requests of each PE is (N/16) × (N/4) + N/4. 

To support column data reuse a column reorder buffer is integrated into the memory 

controller interface. The controller interface has implemented Convey’s read reorder buffer 

as described in Chapter 2. The size of the column reorder buffer is the same as the size of 

the read reorder buffer, which is 512-deep and 72-bit wide. Unlike Convey’s read reorder 

buffer which receives all the requested data from the memory, the modified read reorder 

buffer (MVM row ROB) only receives row data of Matrix A while the column reorder 

buffer (MVM column ROB) only receives column data of Matrix B. The distinction is 

made possible by the row/column select control sent by the address generator to the 

memory control interface when requesting the data. Compared to MVM column ROB that 

reuses column data, MVM row ROB does not reuse row data. 

Figure 5.9 shows the block diagram of the proposed design for MVM. The multiplexer 

(MUX) selects the row or column data with the knowledge of row and column access 

patterns in the block MVM. For each PE, the MUX selects BS elements from the row 
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Figure 5.9  Block diagram of the proposed MVM for each PE 
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reorder buffer and then selects BS elements from the column reorder buffer. The MUX 

repeatedly selects between row and column data until the PE finishes all the inner products 

in the blocks assigned to the PE. The MUX output is delivered to the kernel through the 

row and column FIFOs. When both FIFOs are not empty, the kernel reads a row element 

and a column element, multiplies them to get the product and saves it for inner product 

operation.  

As shown in Figure 5.8, all subrows in a group assigned to a PE (e.g., PE0) in matrix A 

require the same column elements in matrix B for inner product operation. After the 

requested column elements for the group are stored in the column reorder buffer, they are 

delivered to the column FIFO through the MUX every time the row reorder buffer has sent 

all row elements in a subrow to the row FIFO. After all the subrows in a group assigned to 

a PE are sent to the kernel, the column reorder buffer finishes reusing the column elements 

of the group. This process then repeats for each group of subrows and column elements 

assigned to the PE. Because the size of the column reorder buffer is limited, the buffer has 

to be updated in a circular manner. When the column elements have been reused by all 

subrows in the group, the spaces that are occupied by the column elements can be freed for 

receiving new column elements in the next group. 

5.3 CONCLUSION 

The chapter describes the proposed memory control interface designs for two types of 

memory-bound kernels, 3D stencil and MVM. Memory latency hiding is achieved by using 

custom reorder buffers and FIFOs. Three memory access orderings, the loop, array and 

numerical orderings, are defined in 3D stencil kernels. In stencil data reuse is achieved 

inside a 3D block composed of a set of planes for each PE. The reuse rate depends on the 
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size of the 3D block and the size of on-chip buffer. The proposed numerical order facilitates 

the implementations of memory latency hiding and data reuse in the stencil kernel. In 

MVM each PE requests a subrow and a subcolumn in the array order. The sizes of the 

subrow and subcolumn depend on the number of AEs and the dimensions of the matrix. 

Each PE then performs inner product on the row and the column. The column can be reused 

for all iterations in a block assigned to a PE, which maximizes data reuse. The differences 

in blocking and data reuse for each kernel require the memory interface design tailored for 

each kernel to maximize performance. The next chapter will present the experimental 

results of the designs. 
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CHAPTER 6 

EXPERIMENTAL RESULTS 

 

In Chapter 4, we compared the performance of the loop and array orderings using two PEs 

and one AE. In Chapter 5, we described the proposed designs in details. In this chapter, we 

present and discuss the experimental results of the 3D stencil and MVM using 64 PEs on 

four AEs. Each PE runs at 150 MHz and the crossbar is enabled for each PE.  

6.1 PERFORMANCE IMPACT OF THE LOOP AND ARRAY ORDERS 

We evaluate the performance of 3D stencils with the loop and array orders by using a 

large 3D space of 512×512×512. Since there are 64 PEs, we divide the stencil space along 

one of the K, J and I dimensions for workload assignment. Figure 6.1 illustrates the 

partitions of stencil space along the J dimension (left) and I dimension (right). The partition 

along the K dimension is not shown, as it is very similar to the partition along the J 

dimension. Each PE is assigned a chunk of stencil space. For the J-dimension partition, 

each PE is assigned a chunk of size 512×8×512 (k=512, j=8, i=512) except PE63 which is 

assigned a chunk of size 512×6×512. For the I-dimension partition, each PE is assigned a 

chunk of size 512×512×8 except PE63 which is assigned a chunk of size 512×512×6. We 

assume the stencil computation for each PE is based on the algorithm shown in Figure 4.1 

where the innermost loop index is k and the outmost loop index i. 
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Figure 6.2 shows interface efficiency (black line) and DRAM controller efficiency (gray 

line) of 6-point stencil when the stencil space is partitioned along the K dimension. As 

mentioned before, the loop order corresponds to a block size of 1 while the array order has 

parameterized block size. The range of block sizes is from 1 to 500. For each block size, 

the figure plots the corresponding efficiency results. As shown in the figure, DRAM 
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Figure 6.1  Partitions along the J (left) or I (right) dimensions in 3D stencil space  

  

Figure 6.2  Efficiency vs. the block sizes (K-dimension partition, 6-point stencil) 
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controller efficiency stays close to 66.8% while interface efficiency is almost 100% for any 

block size. 

Figure 6.3 shows the efficiency results of 6-point stencil when the stencil space is 

partitioned along the J dimension. As shown in the figure, DRAM controller efficiency is 

around 68.7% for the loop order and increases to about 74% as the block size reaches 

around 100. Interface efficiency is almost 100% except at block sizes of around 32 and in 

between 90 and 100 where they drop by 3% to 5%. When the block sizes are larger than 

100, DRAM controller efficiency results level off.  

     

Figure 6.4  Efficiency vs. the block sizes (I-dimension partition, 6-point stencil)  
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Figure 6.3  Efficiency vs. the block sizes (J-dimension partition, 6-point stencil)  
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Figure 6.4 shows the efficiency results of 6-point stencil when the stencil space is 

partitioned along the I dimension. Notice the results are similar to those in Figure 6.3. 

DRAM controller efficiency is around 68.6% for the loop order and increases to about 74% 

as the block size reaches around 100. Interface efficiency is almost 100% except at sizes 

in between 90 and 100 where it drops by 3% to 6%. 

Figure 6.5 compares the averaged runtime in cycles of all PEs in an AE for K-

dimension (black line), J-dimension and I-dimension partitions in 6-point stencil. The 

runtime of K-dimension partition, above 29 million cycles, is about 16% higher than the 

runtime for J-dimension or I-dimension partition when the block size is larger than 100. 

The runtime of J-dimension partition is very close to the runtime of I-dimension partition 

over the block sizes, and they decrease from about 28 million cycles to about 25 million 

cycles when the block size increases from 1 to 100. Then the runtime slightly fluctuates at 

25 million cycles when the block sizes are larger than 100. The minimum runtime is about 

24.3 million cycles.  

  

Figure 6.5  Runtime vs. the block sizes in 3D 6-point stencil 
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Comparing these figures shown above, we see that interface efficiency is almost 100% 

regardless of the way the stencil space is partitioned and the block sizes. DRAM controller 

efficiency increases from 68.6% to 74% for the partitions along the J or I dimension when 

the block sizes increase. However, DRAM controller efficiency is almost not affected by 

the block sizes and stays at around 66.8% for the partition along the K dimension. Though 

DRAM controller efficiency results are close for three partitions, the K-dimension partition 

does not achieve the highest DRAM controller efficiency given the elements are stored 

consecutively along the K dimension. For the 6-point stencil, none of the six memory 

accesses of six input points are consecutive for each output point, but there are more 

consecutive memory accesses as the number of stencil computations along the K dimension 

increase. The more consecutive memory accesses to the DRAM controllers, the fewer 

number of memory access stalls. Compared to the partitions along the J and I dimensions 

in which the size of the K dimension of the chunk is 512, the K-dimension partition reduces 

the number of consecutive memory accesses to the DRAM controllers, but the impact is 

quite small. 

  

Figure 6.6  Efficiency vs. the block sizes (K-dimension partition, 27-point stencil)  
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We apply the same partitions to 27-point stencil space and the results are shown from 

Figure 6.6 to Figure 6.8. The range of block sizes is from 1 to 27 due to the memory 

constraint as described before. For each block size, the figure plots the corresponding 

efficiency results.  

For the partition along the K dimension, Figure 6.6 shows DRAM controller efficiency 

increases very slightly from 64.6% to 67% and stays at around 67% for larger block sizes. 

Interface efficiency is almost 100% for any block sizes.  

  

Figure 6.7  Efficiency vs. the block sizes (J-dimension partition, 27-point stencil)  
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 Figure 6.8  Efficiency vs. the block sizes (I-dimension partition, 27-point stencil) 
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For the partition along the J dimension, Figure 6.7 shows DRAM controller efficiency 

increases from 53.5% to 72% almost monotonically while interface efficiency is almost 

100% for any block sizes. 

For the partition along the I dimension, the results shown in Figure 6.8 are very similar 

to those in Figure 6.7. DRAM controller efficiency increases from 52.1% to 71.6% almost 

monotonically while interface efficiency is almost 100% for any block sizes except a 4% 

drop when the block size is 2. 

Figure 6.9 compares the runtime in cycles of K-dimension (black line), J-dimension 

(gray) and I-dimension (light gray) partitions in 27-point stencil. The runtime of I-

dimension partition is about 1% to 4% higher than the runtime of J-dimension partition. 

When the block size is smaller than 17, the runtime of K-dimension partition is lower than 

the runtime of I-dimension or J-dimension partition. The runtime of K-dimension partition 

then stays at around 116.5 million cycles when the block sizes are larger than 16. However, 

the runtime of J-dimension or I-dimension continues improving when the block sizes 

increase further. The minimum runtime is about 104.5 million cycles when the block size 

is 27. 

  

Figure 6.9  Runtime vs. the block sizes in 3D 27-point stencil 
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Comparing these figures we see that interface efficiency is almost 100% regardless of 

the way the stencil space is partitioned. However, DRAM controller efficiency increases 

from about 52% to 72% for the partitions along the J or I dimension when the block sizes 

increase. For the partition along the K dimension, DRAM controller efficiency is only 

slightly affected by the block sizes and stays at around 67%. Compared to the K-dimension 

partition in the 6-point stencil, the K-dimension partition allows 27 memory accesses for 

each stencil computation of each PE to be spread across all DRAM controllers for 

scheduling, reducing the bank conflicts that arise from the strided memory accesses in the 

J-dimension or I-dimension partition that interact with the interleaving in a way that 

memory accesses are to the same memory controller. As the block size increases, however, 

there are more consecutive memory accesses in each PE that can be exploited by the 

DRAM controllers in the J-dimension or I-dimension partition.  

Based on the efficiency results of 6-point and 27-point 3D stencils, the blocking 

technique is an effective way to improve memory performance of stencil applications on 

the Convey HC-1 FPGA platform. The difference in DRAM efficiency is related with the 

access patterns of 6-point and 27-point stencils. When accessing input points in the loop 

order, 27-point stencil presents more irregular access pattern than that of 6-point stencil for 

each loop iteration, so the DRAM controller efficiency is 52% for 27-point stencil and 68.7% 

for 6-point stencil. On the other hand, when the block size increases, 27-point stencil sees 

a larger improvement of memory performance than 6-point stencil. And the efficiency will 

be expected to further increase if the size of input FIFO is not limited by the FPGA’s 

memory resources. From the perspective of access pattern in a block, 27-point stencil 

presents more consecutive accesses than the 6-point stencil when the block size increases. 
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This helps DRAM controller schedule memory accesses more efficiently. However, for 

both stencil kernels memory efficiency will reach a point where further increase of block 

size has little effect on it.  

6.2 PERFORMANCE IMPACT OF PROPOSED 3D STENCIL KERNEL DESIGNS 

We evaluate the performance of proposed 3D stencil designs using the numerical 

ordering by a slightly larger 3D space of 514×514×512. We adjust the stencil space from 

512×512×512 to 514×514×512 so that each of 64 PEs can request a grid (block) composed 

of a number of 10×10 planes of elements without introducing load imbalance in the j or k 

dimension of the block. 

We also divide the stencil space along the K, J or I dimension for workload assignment 

to 64 PEs. Figure 6.10 illustrates the partitions of stencil space along the J dimension (left) 

and I dimension (right). The partition along the K dimension is not shown, as it is very 

similar to the partitions along the J dimension as shown in Figure 6.10. Since there are 64 

PEs for four AEs, each PE is assigned a chunk of stencil space. The size of each chunk is 
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Figure 6.10  Block partitions along the J and I dimensions in 3D stencil space  
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514×10×512 in the J-dimension partitions. For the I-dimension partitions, each PE is 

assigned a chunk of size 514×514×10 except PE63 which is assigned a chunk of size 

514×514×8. Each chunk is further divided into blocks. The size of each block (e.g., t0) is 

j×k×i where j=k=10. For each PE (e.g., PE0), it requests a block of elements in the order 

from block t0, through block t63, to block t64 until all blocks have been accessed in the 

chunk. The size of a block in i dimension is a parameter that correlates with the data reuse. 

The larger the value of the parameter is, the fewer number of blocks that are accessed in 

the chunk, increasing the data reuse rate. We choose the value of i such that the number of 

planes that contain the output points in the block is integer divisible by the number of 

planes that contain the output points in the chunk.  

Table 6.1 lists the performance results of 6-point stencil for the partitions along the K 

dimension. The first column lists the size of the block in i dimension. The second and third 

columns list the number of load requests (ld_req_nu) and the number of store requests 

(st_req_nu) for each PE respectively. The fourth column lists the averaged runtime in 

cycles of all PEs of each AE. The fifth and sixth columns list the interface efficiency (I/F 

Table 6.1  Results of proposed 6-point stencil design (K-dimension partition) 

i dim ld_req_nu st_req_nu runtime 
I/F 

eff 

DRAM 

eff 

reuse 

rate 

4 6528000 2088960 17210316 99.988% 67.3% 0.408 

5 5440000 2088960 15513067 99.986% 66.0% 0.483 

7 4569600 2088960 14046638 99.985% 65.0% 0.543 

8 4352000 2088960 13769022 99.984% 64.4% 0.558 

32 3481600 2088960 11479047 99.982% 65.9% 0.618 

53 3392000 2088960 11372618 99.982% 65.7% 0.624 

87 3340800 2088960 11251270 99.982% 65.7% 0.627 

104 3328000 2088960 11141877 99.981% 66.1% 0.628 

172 3302400 2088960 11103086 99.982% 66.1% 0.630 

257 3289600 2088960 10994738 99.982% 66.2% 0.631 

512 3276800 2088960 10965916 99.982% 66.2% 0.632 
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eff) and DRAM controller efficiency (DRAM eff) respectively. Recall reuse rate is the 

ratio of the number of reused memory requests and the total number of memory requests 

without data reuse. For each PE, the total number of requests without data reuse is 

510×510×8×7 where 7 is the number of load and store requests for the 6-point stencil 

computation of each point.  

As shown in Table 6.1, when the i dimension of the block increases, the number of load 

requests decreases and the number of store requests is the same. Therefore the reuse rate 

increases when i value increases. The runtime also decreases as i value increases. From the 

smallest block with i = 4 to the largest block with i = 512, the runtime decreases by 38.9%. 

For all sizes of i, interface efficiency is close to 100% and the DRAM controller efficiency 

close to 65.8%. Compared to the lowest runtime in Section 6.1, the runtime decreases by 

63% when i = 512.  

Table 6.2 lists the performance results of 6-point stencil for the partitions along the J 

dimension. Compared to the results in Table 6.1, on average the runtime increases by 1% 

and memory efficiency is 1% lower. The reuse rates are the same as those in Table 6.1. 

Table 6.2  Results of proposed 6-point stencil design (J-dimension partition) 

i dim ld_req_nu st_req_nu runtime 
I/F 

eff 

DRAM 

eff 

reuse 

rate 
4 6528000 2088960 18098117 99.988% 65.5% 0.408 

5 5440000 2088960 16032267 99.986% 64.8% 0.483 

7 4569600 2088960 14341699 99.985% 64.3% 0.543 

8 4352000 2088960 13862271 99.984% 64.3% 0.558 

32 3481600 2088960 11409848 99.982% 66.5% 0.618 

53 3392000 2088960 11297963 99.982% 66.0% 0.624 

87 3340800 2088960 11245668 99.982% 65.9% 0.627 

104 3328000 2088960 11278774 99.982% 65.6% 0.628 

172 3302400 2088960 11232771 99.982% 65.5% 0.630 

257 3289600 2088960 11129135 99.982% 65.8% 0.631 

512 3276800 2088960 11105254 99.982% 65.8% 0.632 
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Table 6.3 lists the performance results of 6-point stencil for the partitions along the I 

dimension. As mentioned before, the I dimension of the chunk is 10 so the i dimension of 

the block is among 4, 6 and 10. Compared to the best runtime and DRAM controller 

efficiency in Table 6.1, the runtime increases by 19% when i = 10 and DRAM controller 

efficiency is 2% lower. The reuse rate is close to the reuse rate when i = 8 in Table 6.1.  

To compare overall performance of the proposed 6-point 3D stencil design that 

combines memory latency hiding, memory access scheduling and data reuse with the 

design that has no data reuse, we define the ideal speedup as the ratio of the number of 

memory accesses without data reuse to the number of memory accesses with data reuse for 

each PE. As mentioned before, the total number of memory requests without data reuse is 

Table 6.4  Comparison of the ideal and actual speedup in  

proposed 3D 6-point stencil 

i dim 
Ideal 

speedup 

Actual 

speedup 

Actual speedup 

vs. Ideal speedup 

4 1.69 1.41 83.48% 

5 1.93 1.57 80.92% 

7 2.19 1.73 79.03% 

8 2.26 1.76 77.99% 

32 2.61 2.12 80.91% 

53 2.66 2.14 80.35% 

87 2.68 2.16 80.46% 

104 2.69 2.18 81.06% 

172 2.70 2.19 80.96% 

257 2.71 2.21 81.56% 

512 2.71 2.21 81.58% 

 

Table 6.3  Results of proposed 6-point stencil design (I-dimension partition) 

i dim ld_req_nu st_req_nu runtime 
I/F 

eff 

DRAM 

eff 

reuse  

rate 
4 6553600 2097152 18191555 99.988% 65.4% 0.406 

6 4915200 2097152 15170615 99.985% 64.1% 0.519 

10 4096000 2097152 13046077 99.983% 65.1% 0.575 
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510×510×8×7. For each i dimension of the block, the actual speedup is calculated by the 

ratio of the lowest runtime when the block size is 446 in the I-dimension partition to the 

corresponding runtime in Table 6.1. Table 6.4 compares the ideal and best actual speedup 

of 6-point stencil. With the increase of i value, the ideal speed up increases from 1.7 to 2.7 

while the actual speedup from 1.4 to 2.2. The actual speedup achieves on average 80.76% 

of the ideal speedup.  

Figure 6.11 compares DRAM controller efficiency results of the proposed 6-point 3D 

stencil design with the best DRAM controller efficiency. The best DRAM controller 

efficiency is 74% as described in Section 6.1. Since DRAM controller efficiency results 

across all i dimensions of the block are close, we average the efficiency results in Table 

6.1, Table 6.2 and Table 6.3 respectively. As shown in Figure 6.11, the averaged DRAM 

controller efficiency of the K-dimension partition is about 11% lower than the best. 

It is expected that the results of proposed 27-point stencil design are similar to those 

of proposed 6-point stencil design as their access patterns of the numerical order are the 

same. Because the results of the partitions along the K dimension are best in the proposed 

 

Figure 6.11  Comparison of 6-point 3D DRAM controller efficiency results 

60.00%

62.00%

64.00%

66.00%

68.00%

70.00%

72.00%

74.00%

76.00%

K J I Best

DRAM controller efficiency



 

79 

6-point stencil design, we choose the same partition and compare the results with the best 

results in Section 6.1.  

Table 6.5 shows the results of the partitions along the K dimension for 27-point stencil. 

Noticeably, the reuse rate reaches 0.9 as compared to the reuse rate of 0.63 in the 6-point 

stencil in Table 6.2. For all dimensions of i, interface efficiency is close to 100% and the 

DRAM controller efficiency close to 65.8%.  

Table 6.5  Results of proposed 27-point stencil design (K-dimension partition) 

i 

dim 
ld_req_nu st_req_nu runtime 

I/F 

eff 

DRAM 

eff 

reuse 

rate 
4 6528000 2088960 17427111 99.976% 66.9% 0.852 

5 5440000 2088960 15499617 99.972% 65.9% 0.871 

7 4569600 2088960 14057215 99.969% 65.0% 0.886 

8 4352000 2088960 13668242 99.969% 64.8% 0.889 

32 3481600 2088960 11453561 99.966% 66.0% 0.904 

53 3392000 2088960 11383692 99.964% 65.7% 0.906 

87 3340800 2088960 11303780 99.965% 65.7% 0.907 

104 3328000 2088960 11226497 99.964% 65.7% 0.907 

172 3302400 2088960 11175431 99.964% 65.7% 0.907 

257 3289600 2088960 11057459 99.964% 66.0% 0.908 

512 3276800 2088960 11034504 99.964% 66.1% 0.908 

 
Table 6.6  Comparison of the ideal and actual speedup in  

proposed 3D 27-point stencil 

 

i dim 
Ideal 

speedup 

Actual 

speedup 

Actual speedup vs. 

Ideal speedup 

4 6.76 6.00 88.73% 

5 7.74 6.75 87.17% 

7 8.75 7.44 85.00% 

8 9.05 7.65 84.57% 

32 10.46 9.13 87.28% 

53 10.63 9.18 86.40% 

87 10.73 9.25 86.20% 

104 10.76 9.31 86.59% 

172 10.81 9.36 86.57% 

257 10.83 9.46 87.29% 

512 10.86 9.48 87.26% 
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Table 6.6 compares the ideal and actual speedup of the proposed 27-point stencil design 

across all i dimensions. As defined before, the ideal speedup is the ratio of the number of 

memory accesses without data reuse to the number of memory accesses with data reuse for 

each PE. The total number of memory requests without data reuse is 510×510×8×28. For 

each i dimension of the block, the actual speedup is calculated by the ratio of the lowest 

runtime when the block size is 27 in the I-dimension partition to the corresponding runtime 

in Table 6.5. With the increase of i value, the ideal speedup increases from 6.76 to 10.86 

while the actual speedup from 6 to 9.48. The actual speedup achieves on average 86.64% 

of the ideal speedup.  

As described in Section 6.1, the best DRAM controller efficiency for the 27-point stencil 

is 72% when the block size is 27. The averaged DRAM controller efficiency of the K-

dimension partition in Table 6.5 is 65.8%, which is about 8.6% lower than the best. 

6.3 PERFORMANCE OF MVM DESIGNS WITHOUT DATA REUSE 

We evaluate the performance of MVM with different sizes of matrices and blocks. In our 

experiments on the Convey HC-1 platform, matrix A is a large N×N square matrix and N 

is 2048, 4096, 8192 and 16384. Matrices A and B are stored in the memory in the row-

major order. The kernel is implemented with 64 PEs on four AEs with BS ranging from 16 

to 512. The minimum size of the matrix is 2048 so that each PE in an AE can be assigned 

a subrow when BS is 512 at maximum. Without data reuse, the number of memory requests 

for MVM is (N/16) × (N/4) × 2 for each PE assuming there is no write operation.  

As shown in Figure 5.8, matrices A and B are divided among 64 PEs of four AEs. 

Without data reuse, the address generator in each PE produces the row addresses that 

request a subrow and then the column addresses that request a subcolumn. Depending on 



 

81 

the next subrow and subcolumn each PE in an AE is going to request, Figure 6.12 shows 

the row-major stride access ordering and the column-major stride access ordering for each 

PE (e.g., PE0) based on Figure 5.8. 

Let us take PE0 in AE0 for the descriptions of the two orderings. In the row-major 

stride access ordering, PE0 first requests a subrow of size BS in the first row of matrix A, 

and then requests a subcolumn of size BS in matrix B. Then PE0 requests the next subrow 

which is pointed by the arc labeled with “row”. After all subrows in the first row of matrix 

A and all subcolumns in matrix B are requested, PE0 will request the subrows in the 16th 

row of matrix A. The process continues until PE0 requests all subrows and subcolumns 

assigned to it.  

In the column-major stride access ordering, PE0 requests a subrow of size BS in the 

first row of matrix A, then requests a subcolumn of size BS in matrix B. Then PE0 requests 
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Figure 6.12 Row-major and column-major stride  

access orderings for each PE 
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the subrow which is pointed by the arc labeled with “column”. After all subrows in between 

the first column and the BSth column of matrix A and the subcolumns in matrix B are 

requested, PE0 will request the subrows in between the (4 × BS)th column and the (5 × 

BS)th column of matrix A. The process continues until PE0 requests all subrows and 

subcolumns assigned to it.  

Table 6.7 and Table 6.8 show the interface efficiency results of row-major and 

column-major stride access orderings respectively. The interface efficiency depends on the 

sizes of BS for each matrix. When BS = 16, interface efficiency is around 94%. As BS 

increases from 16 to 512, interface efficiency rises from 94% to almost 100%. The increase 

of interface efficiency is due to the fact that the larger the block size, the fewer number of 

blocks resulting from blocking MVM, and the less overhead caused by the address 

generations of the blocks.  

Table 6.8  Interface efficiency (no data reuse and column-major)  

I/F eff BS=16 BS=32 BS=64 BS=128 BS=256 BS=512 

N=2048 93.398% 96.761% 98.306% 99.021% 98.344% 99.046% 

N=4096 93.933% 96.937% 98.427% 99.149% 99.311% 99.647% 

N=8192 94.070% 96.958% 98.452% 99.156% 99.531% 99.764% 

N=1638 94.105% 96.966% 98.421% 99.171% 99.562% 99.790% 

 

Table 6.7  Interface efficiency (no data reuse and row-major)  

I/F eff BS=16 BS=32 BS=64 BS=128 BS=256 BS=512 

N=2048 93.644% 96.478% 97.724% 98.277% 98.302% 99.254% 

N=4096 94.000% 96.857% 98.196% 99.037% 99.337% 99.683% 

N=8192 94.088% 96.937% 98.354% 99.181% 99.559% 99.766% 

N=1638 94.110% 96.962% 98.455% 99.214% 99.591% 99.795% 
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Table 6.9 and Table 6.10 show the DRAM controller efficiency results of row-major 

and column-major stride access orderings respectively. As shown in the tables, DRAM 

controller efficiency depends on the sizes of BS for a given matrix of size N. For the row-

major stride access ordering, DRAM controller efficiency increases from 39% to 88% 

when BS increases from 16 to 512. For the column-major stride access ordering, DRAM 

controller efficiency increases from around 27% to 87% when BS increases from 16 to 512. 

For small sizes of BS, the row-major stride access ordering is much better than the column-

Table 6.9  DRAM controller efficiency (no data reuse and row-major)  

DRAM eff BS=16 BS=32 BS=64 BS=128 BS=256 BS=512 

N=2048 39.3% 57.1% 80.1% 85.3% 79.2% 86.3% 

N=4096 39.8% 57.3% 80.2% 86.4% 83.1% 87.2% 

N=8192 40.9% 55.3% 80.2% 88.2% 85.1% 86.0% 

N=16384 41.2 % 57.2% 80.2% 88.3% 84.7% 88.0% 

 
Table 6.10  DRAM controller efficiency (no data reuse and column-major)  

DRAM eff BS=16 BS=32 BS=64 BS=128 BS=256 BS=512 

N=2048 26.8% 54.2% 75.9% 85.8% 80.1% 85.4% 

N=4096 26.8% 54.3% 76.1% 86.2% 82.6% 87.3% 

N=8192 26.7% 55.0% 76.1% 85.3% 83.9% 87.5% 

N=16384 26.6 % 54.6% 64.4% 84.9% 78.3% 87.2% 

 

Table 6.11  Runtime (no data reuse and row-major)  

Runtime BS=16 BS=32 BS=64 BS=128 BS=256 BS=512 

N=2048 948626 532093 264434 225311 268430 214358 

N=4096 3714137 2104296 1036304 868384 954309 849226 

N=8192 14389481 8425879 4214742 3283330 3583135 3427312 

N=16384 55871701 33781148 16822756 12936476 14438786 13014154 

 

 
Table 6.12  Runtime (No data reuse and column-major)  

Runtime BS=16 BS=32 BS=64 BS=128 BS=256 BS=512 

N=2048 1568436 587004 329660 241471 263733 217579 

N=4096 6284594 2317150 1223201 905288 976044 830685 

N=8192 25235340 9100608 4827260 3671456 3625848 3296994 

N=16384 101281117 35767664 19483892 14448023 15065649 12996661 
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major stride access ordering in improving DRAM controller efficiency. However, the 

improvement diminishes as the block size further increases. For both access orderings, 

DRAM controller efficiency drops when BS=256 and increases again from BS=256 to 

BS=512.  

Table 6.11 and Table 6.12 show the runtime results of row-major and column-major 

stride access orderings respectively. For small sizes of BS, the row-major stride access 

ordering is better than the column-major stride access ordering in improving runtime. 

However, the improvement diminishes as the block size further increases.  

Figure 6.13 plots the relationships between logarithmically scaled runtime time and N 

and BS using Table 6.12. The figure shows that runtime scales up with the matrix size N 

increasing from 2048 to 16384. For a matrix of size N, runtime decreases when BS 

increases from 16 to 256. From BS=16 to BS=128 there is 50% more reduction in runtime. 

However, due to the effect of DRAM controller efficiency, runtime increases from BS=128 

 

Figure 6.13  Scaled runtime vs. matrix and block sizes (No data reuse) 
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to BS=256, but decreases from BS=256 to BS=512. The experimental results suggest that 

a large BS generally achieves better performance on the Convey platform, but the 

performance improvement diminishes as BS increases.  

6.4 PERFORMANCE OF PROPOSED MVM DESIGNS 

We evaluate the performance of proposed MVM design with the same sizes of 

matrices and blocks as those in Section 6.3. The kernel is implemented with 64 PEs with 

BS ranging from 16 to 512. The minimum size of the matrix is 2048. For the proposed 

designs that maximize column vector data reuse, the number of memory requests for each 

PE is (N/16) × (N/4) + N/4. So the reuse rate is 0.5-8/N, which reaches 0.5 when the size 

of matrix is infinite.  

Table 6.13 lists the results of interface efficiency for the proposed design. Compared 

with the results in Table 6.7 and Table 6.8, the efficiency also increases from about 93% 

to almost 100% when BS increases from 16 to 512. Although the address generator skips 

the generation of addresses that can be reused, the overhead of address generation still 

depends on the number of blocks in the blocking MVM. 

Table 6.14  DRAM controller efficiency (data reuse)  

DRAM eff  BS=16 BS=32 BS=64 BS=128 BS=256 BS=512 

N=2048 42.7% 70.9% 85.9% 88.9% 89.0% 88.7% 

N=4096 42.3% 71.9% 86.1% 89.1% 88.9% 88.9% 

N=8192 42.3% 71.9% 86.9% 89.1% 88.9% 88.9% 

N=16384 42.2 % 72.2% 85.9% 89.1% 88.9% 88.9% 

 

 

 

Table 6.13  Interface efficiency (data reuse)  

I/F eff  BS=16 BS=32 BS=64 BS=128 BS=256 BS=512 

N=2048 92.091% 93.161% 95.749% 96.987% 97.721% 98.093% 

N=4096 93.026% 94.083% 96.930% 98.090% 98.844% 99.226% 

N=8192 93.244% 94.250% 97.186% 98.369% 99.130% 99.514% 

N=16384 93.281% 94.492% 97.289% 98.439% 99.201% 99.586% 
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As shown in Table 6.14, with data reuse the efficiency results are better than those 

without data reuse in Tables 6.9 and 6.10. When the block size is 32, DRAM controller 

efficiency even increases from 57% to 72%. However, the increase diminishes when the 

block size further increases. The results suggest that decreasing the number of memory 

requests using data reuse may reduce the number of DRAM controller stalls. 

Table 6.15 lists the runtime with data reuse and Table 6.16 compares the runtime 

results with the lowest runtime results in Table 6.9 and Table 6.10. The proposed design 

reduces the runtime by a minimum of 10% and a maximum of 50% compared to the design 

without reusing the column elements. 

Table 6.15  Runtime (data reuse) 

Runtime BS=16 BS=32 BS=64 BS=128 BS=256 BS=512 

N=2048 787796 298171 180709 164571 132672 134403 

N=4096 3148240 1149857 683249 546120 525852 528046 

N=8192 12590893 4576754 2532722 2146875 2098629 2100585 

N=16384 50491697 17982722 10146566 8528111 8390234 8392746 

 

 
Table 6.16  Runtime (data reuse) vs. runtime (without data reuse) 

Runtime BS=16 BS=32 BS=64 BS=128 BS=256 BS=512 

N=2048 17.0% 44.0% 31.7% 27.0% 49.7% 37.3% 

N=4096 15.2% 45.4% 34.1% 37.1% 44.9% 36.4% 

N=8192 12.5% 45.7% 39.9% 34.6% 41.4% 38.7% 

N=16384 9.6% 46.8% 39.7% 34.1% 41.9% 35.4% 

 

 
Table 6.17  The ideal speedup and the actual speedup in the  

Proposed MVM designs 

N 
Ideal  

speedup 

Actual 

speedup 

Actual speedup vs. 

Ideal speedup 
2048 1.984 1.57 78.98% 

4096 1.992 1.58 79.51% 

8192 1.996 1.59 79.46% 

16384 1.998 1.57 78.66% 
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In MVM we define the ideal speedup as the ratio of the number of memory accesses 

without and with data reuse for each PE. So the ideal speedup is 2 / (1+16/N). The actual 

speedup is calculated by the ratio of the lowest runtime without data reuse to the runtime 

with data reuse for each PE. Table 6.17 lists the ideal speedup and the actual speedup for 

each matrix size N. The actual speedup for each N is the average of the actual speedup 

results of all values of BS. As shown in the Table 6.17, the ideal speedup is close to 2 while 

the actual speedup is around 1.6. The actual speedup achieves on average 79% of the ideal 

speedup. 

6.5 RESOURCE UTILIZATION 

All the designs are compiled using Xilinx ISE 14.4 with the same constraints and settings 

for synthesis, map, place and route. Table 6.18 summarizes the resource utilization of the 

6-point and 27-point stencils with the loop, array and numerical orders when the stencil 

space is divided along the K dimension. The resource utilization results of dividing the 

space along the other two dimensions are not listed as they are almost the same as the 

results in the table. As shown in the table, the proposed design with the numerical order is 

more resource efficient in terms of the number of Slices, Slice registers, Slice LUTs and 

Block RAMs. Note DSP48E macros are not used as all the arithmetic operations are 

Table 6.18  Resource utilization of 6-point and 27-point 3D stencils 

Resource 

k-dim (6-point) k-dim (27-point) 

loop array numerical loop array numerical 

Slice 83% 84% 81% 98% 98% 88% 

Slice reg 57% 58% 53% 72% 73% 58% 

Slice LUT 47% 48% 48% 78% 80% 62% 

BRAM 80% 80% 80% 97% 97% 86% 
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implemented with Slice LUTs. The 27-point stencil design with the loop or array order 

utilizes 98% of total FPGA slices due to the large number of 64-bit adders and the FSM 

controller in the address generator. For the 6-point stencil, the BRAM utilization is 80% 

for the three orderings. For the 27-point stencil, the BRAM utilization is 97% for the loop 

and array orderings, and 86% for the numerical ordering. 

Table 6.19 summarizes the resource utilization of the MVM designs. The MVM with 

data reuse utilizes a little more resources due to the additional control logics for column 

ROB and the address generator. The BRAM utilization is 25% for the MVM without data 

reuse and 30% for the MVM with data reuse. 

6.6 DISCUSSION OF THE EXPERIMENTAL RESULTS 

For the N-point 3D stencil kernels, we partition the stencil space along the J, K and I 

dimensions to evaluate the performance of each partition. For the designs that accesses 

memory in the loop and array order without reusing the input elements for stencil 

computation, the performance results of J-dimension and I-dimension partitions are very 

similar. Compared to the K-dimension partition, they achieve lower runtime and higher 

DRAM controller efficiency for large block sizes in both 6-point and 27-point stencils. 

However, the runtime and DRAM controller efficiency are not affected much by the block 

sizes in the K-dimension partition in both stencils. 

Table 6.19  Resource utilization of MVMs 

Resource 

MVM 

(no reuse) 

MVM 

(reuse) 

Slice 64% 66% 

Slice reg 44% 44% 

Slice LUT 38% 39% 

BRAM 25% 30% 
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For the proposed designs that access memory in the numerical order and reuse input 

elements for stencil computation, the efficiency and runtime results of J-dimension and K-

dimension partitions are very close, but K-dimension partition is slightly better. Because 

the I dimension of the chuck assigned to each PE in the I-dimension partition is 10, the best 

efficiency and runtime of the I-dimension are lower than the best results in J-dimension 

and K-dimension partitions. The partition along the K dimension allows each PE to request 

part of the consecutive elements in 3D stencil array and the requests from all PEs are 

distributed in an interleaving way to the memory system through the crossbars.  

By varying the size of i dimension of a 10×10×i block assigned to each PE, the runtime 

is significantly reduced while interface efficiency and DRAM controller efficiency are 

almost the same as shown in Table 6.1, Table 6.2, Table 6.3 and Table 6.5. This means 

data reuse contributes the most to the overall performance improvement. 

Though the runtime of the proposed designs that reuse data is much better than that of 

the design that accesses memory in the array order without data reuse, the memory 

performance is 8% to 11% lower than the best performance in the array order. When 

accessing a block in the numerical order, each row of a plane is accessed consecutively, 

but the memory accesses are strided between the rows of the plane(s). On the other hand, 

there are more consecutive memory accesses in a block in the array order when the block 

size increases. So the array order causes fewer load and store stalls from the DRAM 

controller per memory access than the numerical order, which in turn increases the memory 

performance. For the proposed designs, we believe increasing the block size in the k 

dimension will improve the memory performance. However, this will be left to the future 

research when the target FPGA platform offers a larger number of memory resources.  
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For MVM designs, increasing the block size can effectively increase the memory 

performance regardless of data reuse. Without data reuse, the row-major stride access 

ordering is much better than the column-major stride access ordering when the block size 

is small. However, the improvement in memory performance with the row-major stride 

access ordering diminishes as the block size increases. In addition, the drop in DRAM 

controller efficiency when the block size is 256 for both access orderings indicates that the 

memory controller cannot schedule the memory requests very effectively when the 

memory accesses are to the same memory controller and the rest are unused, causing more 

bank contentions.  

As mentioned before, the experimental results show that data reuse is the most effective 

optimization in improving overall performance. For 6-point and 27-point stencils, the 

speedup of the proposed design over the design without data reuse is 2.2 and 9.5. In MVM, 

the speedup is 1.6 when column vector reuse is maximized.
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CHAPTER 7 

CONCLUSION 

 

This dissertation presents generations of custom memory interface on the multi-FPGA 

platform for FPGA-based kernels that have a regular access pattern. The target platform, 

the Convey HC-1, is a multi-FPGA platform whose memory system performs dynamic 

access scheduling but presents the user logic with the critical challenges:  

 Memory system itself does not perform caching or prefetching.  

 Memory operations are arbitrarily reordered.  

 Memory performance depends on the access order provided by the user logic.  

To reconcile these problems and maximize overall performance of memory interface, 

the interface of each kernel should provide explicit support for the latency hiding, memory 

access scheduling and data reuse.  

3D stencil and MVM are two memory-bound kernels. The stencil computation 

presents nonconsecutive memory accesses for N points in the innermost loop iterations. In 

MVM each AE accesses the matrices blocks in a stride pattern as each matrix is divided 

among four AEs. Both kernels are parallelizable for their hardware implementations on the 

HPC platforms such as the Convey HC-1. So they are benchmarks appropriate for 

evaluating performance of the memory interface designs and DRAM-based memory 

system. 
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To hide memory latency, we compare the performance of double buffering and 

circular buffering and show that double buffering introduces interface stall whereas circular

buffering can eliminate the interface stall. For memory access scheduling, we propose three 

memory access orders, the loop order, the array order and the numerical order to evaluate 

the effect of memory access scheduling on the performance of memory interface. Based on 

the regular access pattern of the kernel, the numerical order facilitates the hardware 

implementations of memory latency hiding and data reuse in 3D stencil. In MVM data 

reuse is achieved by maximizing the reuse of column vector for each PE. In 3D stencil data 

reuse is realized by each PE reading 3D blocks composed of a set of planes and then 

performing stencil computation in the blocks. To combine memory latency hiding, memory 

access ordering and data reuse, we develop custom circular buffering techniques, custom 

address generators and kernel implementations in both kernels.  

Experimental results show that when the block size increases, DRAM controller 

efficiency increases from 39% to 88% for MVM without data reuse using row-major stride 

access ordering, from 42% to 89% for MVM without data reuse, from 68.7% to 74% for 

6-point 3D stencil, and from 52% to 72% for 27-point 3D stencil. With the proposed 

designs that enable data reuse, we are able to achieve the reuse rate of about 0.5 for MVM 

and the reuse rate of 0.6 and 0.9 for 6-point and 27-point 3D stencil respectively. We also 

achieve a speedup of 2.2 and 9.48 for 6-point and 27-point 3D stencil and a speedup of 1.6 

for MVM with data reuse increasing the overall performance of the memory interface more 

than memory latency hiding and memory access ordering. 

As mentioned before, the stencil computation in the dissertation has no multiply. When 

multiplication is considered, multiply will increase the runtime assuming multiply takes 
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more time than add. However, the runtime increase is negligible. Our interface can hide 

memory latency almost 100% so that the stencil computations can be overlapped with 

memory accesses. When memory accesses are finished, the kernel will finish all the 

remaining stencil computations, increasing the runtime at the last loop iteration in the 

stencil algorithm. 

As described in Chapter 4 and Chapter 5, the memory resource on the target Virtex-5 

LX330 FPGA constrains the exploration space of our research. The future work beyond 

the dissertation includes (1) Explore memory efficiency results by increasing the FIFO size 

from 32 to 512 in the 27-point stencil implementation on the Convey HC-1ex platform. (2) 

In the implementations of proposed N-point stencil design that combines memory latency 

hiding, memory access ordering and data reuse, increase the stencil space and the plane 

size of a 3D block to further improve the memory efficiency. (3) Implement a version of 

the MVM kernel that contains memory write operations.
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