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ABSTRACT 

 Proteomics has made major progress in recent years after the sequencing of the 

genomes of a substantial number of organisms. A typical method for identifying peptides 

uses a database of peptides identified using tandem mass spectrometry (MS/MS). The 

profile of accurate mass and elution time (AMT) for peptides that need to be identified 

will be compared with this database. Restricting the search to those peptides detectable 

by MS will reduce processing time and more importantly increase accuracy. In addition, 

there are significant impacts for clinical studies. Proteotypic peptides are those peptides 

in a protein sequence that are most likely to be confidently observed by current MS-based 

proteomics methods. There has been rapid improvement in the prediction of proteotypic 

peptides for AMT studies based on amino acid properties such as amino acid content, 

polarity, charge and hydrophobicity using a support vector machine (SVM) classification 

approach. Our goal is to improve proteotypic peptide prediction. We describe the 

development of a classifier that considers amino acid usage that has achieved a 

classification sensitivity of 90% and specificity 81% on the Yersinia pestis proteome 

(using 3-AAU). Using Ordered Amino Acid Usage (AAU) feature, we were able to 

identify a different set of peptides that was not identified by the 35 peptides features that 

STEP (Webb-Robertson, 2010)[2] have used. This means that Ordered Amino Acid 

Usage (AAU) feature could complement other features used by STEP to improve 

identification accuracy. Building on this success, we used STEP (Webb-Robertson, 
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2010)[2] 35 amino acids features to complement Ordered Amino Acid Usage (AAU) 

feature in order to enhance the overall accuracy. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Problem and Hypothesis  

Proteomics aim to identify and quantify all of the proteins present in a cell at a 

specific moment. Such studies typically pose challenges owing to the high degree of 

complexity of cellular proteomes and the low abundance of many of the proteins, which 

necessitates highly sensitive analytical techniques. Mass spectrometry (MS) has 

increasingly become the method of choice for analysis of complex protein samples. MS-

based proteomics is a discipline made possible by the availability of gene and genome 

sequence databases and technical and conceptual advances in many areas, most notably 

the discovery and development of protein ionization methods, as recognized by the 2002 

Nobel prize in chemistry (2003) [15]. Although Mass spectrometry (MS) offers a high-

throughput approach to quantifying the proteome and therefore becomes the standard 

method of proteomic analyses, however, a lot of computation is required to analyze those 

large data STEP (Webb-Robertson, 2010)[2]. 

The first formulation of the peptides detectability problem was in 2006 (Tang, 

2006) [1]. Since then, several algorithmic approaches have been proposed.  Those 

approaches use different machine learning techniques and all share common steps:  

1) Extract training data that is divided into positive and negative groups. 
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2) Use machine learning techniques on the training data to create a model for prediction. 

Researchers have taken different approach to define the concept of prototypic 

peptides. For example STEPP (Webb-Robertson, 2010) [2] defines prototypic peptides to 

be those that have been included in the AMT database every time the parent protein is 

observed.  In contrast, PeptideSieve (Mallick, 2007) [3] and CONSeQuence (Eyers, 

2011) [4] use peptides that have been observed in 50% of all identification of the 

corresponding protein in a set of experiments. In this paper we used one of the three 

training testing dataset used by STEPP (Webb-Robertson, 2010) [2] and adopt that 

definition of prototypic peptides. 

Researchers have used different features and different methods. For example 

STEPP (Webb-Robertson, 2010) [2] uses 35 peptide features as input to the support 

vector machine (SVM). PeptideSieve (Mallick, 2007) [3] uses 494 properties with 

Gaussian mixture likelihood scoring function. Also, authors used different methods, for 

example, ESPPredictor (Fusaro, 2009) [5] uses random Forests classification. While 

others used neutral networks to classify peptides, such as Tang, et al. (Tang, 2006) [1].  

In tandem MS experiments only a small number of peptides present can be 

reliably identified. Presumably, those peptides that cannot be reliably detected do not 

fragment appropriately for the spectrometer. We hypothesize that bonds between adjacent 

amino acids are an important factor affecting how a peptide fragments. Consequently, we 

propose to use an abstract model of bonds between adjacent amino acids as an additional 

feature for identifying proteotypic and non-proteotypic peptides computationally. 
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We refer to this feature as Ordered Amino Acid Usage (AAU). Specifically, we 

implicitly model peptide bonds at an abstract level by looking at ordered adjacent amino 

acids. To be clear, we do not explicitly model peptide bonds. Ordered amino acids tuples 

capture the mutual information of these peptide fragments at an abstract level. We have 

considered ordered adjacent amino acids (2-AAU) as well as ordered triples of adjacent 

amino acids (3-AAU). In this research, we have used the 35 features that STEPP have 

used, in addition to the new AAU feature. 

1.2 Importance of topic  

Several mass spectrometry-based quantitative proteomics methods attempt to 

comprehensively identify and quantify constituent proteins in complex mixtures. 

Differences in the abundance of proteins in distinct samples have enabled scientist to  

 Identify cellular functions and pathways affected by perturbations and disease. 

 Revealed new components and changes in the compositions of protein complexes 

and organelles. 

 Enabled detection of putative disease biomarkers (Mallick, 2007) [6].  

A standard method for identifying peptides uses databases of peptides identified 

using tandem mass spectrometry (MS/MS). A unique advantage for identifying 

proteotypic peptides for accurate mass and elution time (AMT) studies is that the 

prediction of the detectable peptides along with accurate elution time prediction of these 

peptides would allow for prediction via computer simulation of an AMT database 

(database of peptides previously identified from tandem mass spectrometry [MS/MS] 

studies) without the costly and time consuming prior identification of peptides by 
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MS/MS. As a result, accurate prediction of proteotypic peptides for these studies could 

significantly reduce cost and time (Webb-Robertson, 2010) [2]. 

Different researchers have used different parameters and algorithms to calculate 

predication of identified and unidentified peptides. For example, STEPP (Webb-

Robertson, 2010) [2] used 35 features and used the SVM approach. STEPP (Webb-

Robertson, 2010) [2] achieved an accuracy measure of ~83% with SD of less than 0.038. 

SD is calculated by first generating ROC curve. 

STEPP (Webb-Robertson, 2010) [2] used the following proteotypic peptide features 

shown on Table 1: 

Table 1.1: Proteotypic peptide features STEPP (Webb-Robertson, 2010) [2] 

 

Feature Index in STEPP  Feature 

1 Length 

2 Molecular weight 

3 Number of non-polar hydrophobic residues 

4 Number of polar hydrophilic residues 

5 Number of uncharged polar hydrophilic residues 

6 Number of charged polar hydrophilic residues 

7 Number of positively charged polar hydrophilic 

residues 

8 Number of negatively charged polar hydrophilic 

residues 

9 Hydrophobicity—Eisenberg scale 

10 Hydrophilicity—Hopp–Woods scale 

11 Hydrophobicity—Kyte–Doolittle 

12 Hydropathicity—Roseman scale 

13 Polarity—Grantham scale 

14 Polarity—Zimmerman scale 

15 Bulkiness 

16 to 35 Amino acid singlet counts 
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 (Receiver Operating Characteristic). The area under curve is a good overall 

measurement of accuracy (AUC). That is the ability to correctly classify a peptide on 

average. Hence, perfect classification method will have an AUC of one, while a random 

classifier will have AUC of ~0.5. 

AUC have been calculated for the 3 datasets, S.oneidensis, S.typhimurium and 

Y.pestis. Moreover, for validation across organisms, each classifier is used on the other 

datasets. For example, the SVM classifier generated from S.oneidensis is used to classify 

the peptides for the remaining two organisms (Webb-Robertson, 2010) [2]. This result on 

the AUC values shown on Table 2: 

Table 1.2: AUC values for within and across AMT dataset evaluation (Webb-Robertson, 

2010) [2] 

 

Training organism Shewanella 

oneidensis 

Salmonella 

typhimurium 

Yersinia 

pestis 

Shewanella oneidensis 0.791 0.827 0.865 

Salmonella typhimurium 0.773 0.841 0.857 

Yersinia pestis 0.782 0.834 0.879 

 

As stated earlier, the mean for AUC data on table 3 is 0.828 and SD is 0.038. 

Our approach aims to complement the success achieved by this method by 

introducing a new type of feature, Ordered Amino Acid Usage (AAU) that aim to 

enhance the accuracy. Preliminary results indicate that Ordered Amino Acid Usage 

(AAU) is a useful feature for peptides identification.    
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1.3 Background  

One of the first approaches to experimentally identify proteotypic peptides 

associated with a specific MS technology was using an accurate mass and elution time 

(AMT) strategy that employed high-resolution MS. This generated a set of peptides that 

could be detected based on mass and elution time profile (Mallick , 2007) [6]. 

Using standard database search algorithms such as SEQUEST, a list of peptides 

are identified. This list of peptides called potential mass tags (PMT) (Yates , 1998) [8]. 

The next stage is validation using high accuracy MS using both mass and elution time. 

Once this achieved, future identification is done merely by selection of peptides from the 

AMT database based on AMT measurement. This method is advantageous, particularly, 

in complex samples such as plasma, because it offers great sensitivity and increased 

throughput (May, 2007) [9]. 

Creating an AMT database for all organisms using experimentation is very challenging. 

Tremendous work has been expended in cataloging peptides identified by MS/MS (Craig 

, 2005) [10]. One example of such a database is the European Bioinformatics Institute 

PRIDE database. Available: http://genesis.ugent.be/pride, PeptideAtlas, GPM, SBEAMS 

and PRIDE (Mallick , 2007) [6]. 

Those databases are very beneficial for evaluating proteomes as they only need to 

search a subset of potential peptides candidates (Kuster, 2005) [11]. However, populating 

these databases for new organisms remains a challenge. To overcome those problems, it 

proposed to use known properties associated with the high probability that a peptide will 

be identified.  Examples of such properties are numbers of basic and acidic residues and 

http://genesis.ugent.be/pride


 

7 

 

hydrophobicity of the peptide (refer to Table 1). Using those properties, it is possible to 

predict proteotypic peptides directly from a primary sequence. Success has been reported 

using shotgun LC-MS/MS and gel-based MS proteomics (Kuster, 2005) [11] ( Mallick, 

2007) [3] (Tang, 2006) [1].  

Webb-Robertson et al. (2010), report an approach for the prediction of 

proteotypic peptides for AMT studies based on simple sequence-derived properties using 

a support vector machine (SVM) classification [2]. As discussed in the introduction, this 

method has the advantage of simulating AMT databases without having to identity the 

peptides via MS/MS. 

Webb-Robertson et al (2010), use three databases collected for organisms Shewanella 

oneidensis, Salmonella typhimurium and Yersinia pestis. They used a selection of 35 

features (List of features on Table 1) for the prediction of proteotypic peptides for LC-

FTICR-MS. 

Ermir Qeli et al. (2014), use a rank based algorithm called PeptideRank similar to 

those used in information retrieval and web searches (Qeli, 2014) [12]. They use 574 

different numerical peptide features. Examples of such features are 20 peptides relative 

frequencies of each amino acid, 10 general peptides properties (length, mass, estimated 

isoelectric point, etc.) and 5,444 averaged physicochemical properties that were extracted 

from AAindex1 [14] (AAindex is a database of numerical indices representing various 

physicochemical and biochemical properties of amino acids and pairs of amino acids) 

(Qeli, 2014) [12].    
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1.4 Research Methodology  

Preliminary results show that the performance of a classifier based only on the 3-

AAU feature comparable to the performance of a classifier using peptides properties. An 

SVM classifier trained using only the 3-AAU features achieve a sensitivity of 89.72% 

and a specificity of 81.04%. If we compared this with result achieved by STEPP, STEPP 

achieved average accuracy measure of ∼0.83 using 35 features (Webb-Robertson, 2010) 

[12]. We integrated the AAU feature with a subset of the 35 features used in by Webb-

Robertson et al. in STEPP [12]. This resulted in an improved classification rate. We, also, 

noticed that classification differences between AAU approach and the STEPP result in 

the misclassification of different peptides subsets. This indicates that the some of the 

features used in STEPP could complement the AAU feature. In addition, we achieved 

comparable results by using a subset of features rather than all 35 features together with 

AAU. 

1.5 Verifying Webb-Robertson et al. Results using Matlab machine learning 

built in functions: 

We started first by verification of the result that Webb-Robertson et al achieved 

using the SVM. Webb-Robertson et al have calculated SVM using the linear SVM: 

 

Where  defines the separating hyper plane, z is the normalized data, and si is the i-th 

support vector as defined by the training. We used Matlab built-in SVM functions such as 

fitcsvm. We also used one of peptide training data sets published as Webb-Robertson et 

al.  The peptide training data set we used is Yersinia pestis.  
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Diagrams in Figure 2 shows histogram for identified peptide probability, where 

most of data are close to one. While Figure 3 shows histogram for un-identified peptide 

with probability data close to zero.   

 Similarly, Figure 4 below shows histogram for identified peptide score, which shows 

how far from the separating hyper plane. 

 

 

 

 

 

Figure 1.1: histogram for 8,073 identified 

Peptides probability   

 

Figure 1.2: Histogram for the 105,399 

Peptides probability for unidentified 

peptides 
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Figure 1.4: peptides score for un-

identified. 

 

 We evaluated different SVM kernels and noticed that while performance varies 

between proteotypic and non-proteotypic peptides, the best average result is achieved 

when the Polynomial kernel is used. For SVM result verification, we used 10-fold cross 

validation and also calculated the confusion matrix. Accuracy is shown below for 

different SVM kernels.     

 

 

 

 

 

Figure 1.3: histogram for peptides score for 

identified 
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Table 1.3: Accuracy for different SVM kernels 

 

Kernel Type Accuracy 

Linear 80.05% 

RBF 78.97% 

Gaussian 78.97% 

Polynomial 81.28% 

 

Below graph gives a visual representation for above table. 

 

 

Figure 1.5: Accuracy using different kernel types.  
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CHAPTER 2 

EVALUATION USING AAU 

 

2.1 Evaluating AAU-based Classifiers: 

Next, we evaluated ordered adjacent amino acid tuples as a new feature. In order 

to do that, we performed the following steps: 

These steps are used to create separate log-probability matrices for proteotypic 

peptides and non-proteotypic peptides. These matrices are later used to compute the log-

odds of a peptide being proteotypic. Notice, The log odds ratio is a common approach to 

specifying a decision boundary in sequence classification. 

1) We calculated the probability that two adjacent amino acids appear in proteotypic 

and nonproteotypic peptide. This result in two matrices, one for proteotypic 

peptide and another for nonproteotypic peptide. Each matrix column and row 

represents a letter that correspond to an amino acid. So for example, columns of 

matrix are labeled from A… Z and also for rows. Each element of the matrix 

represents a bond between adjacent amino acids. In the case of these AAU 

models, overlapping pairs were extracted from the coding sections of genomes. If 

<a1a2a3…an> is a contiguous sequence of n amino acids, there are n – 1 pairs in 

the sequence, i.e. <a1a2>, <a2a3>, …, <an−1 an>. For 2-AAP data, the number of 
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2) occurrences of each of the 400 (202) possible ordered pairs for a genome was 

tabulated. The histogram is then normalized to sum to 1. 

3) In order to avoid underflow when multiplying, a natural log is taken for each 

element. 

4) Since there are possibly elements with values equal to zero, epsilon is added to all 

elements to mitigate the issue of taking log of zero. 

The following steps were used to calculate log odds of peptide being proteotypic: 

5) Assuming we have a new peptide ―EGALVQK‖. We look up the log odds values 

of the adjacent amino acids ―EG‖, ―GA‖, ―AL‖,‖LV‖, ―VQ‖, ‖QK‖ in the two 

log-probability matrices we created above ,using for example ―E‖ as a row index 

and ―G‖ as a column index. 

 

6) We sum up the log-probabilities from above step for each 2 adjacent amino acid, 

so for ―EGALVQK‖, we sum up probabilities for ―EG‖, ―GA‖, ―AL‖,‖LV‖, 

―VQ‖ and ‖QK‖. Again, we do this twice, once for the proteotypic peptide matric 

and also for the non-proteotypic peptide model. 

7) We derive the log odd ratio by divide the proteotypic log-probability by the non- 

proteotypic log-probability. If the result is less than one, it’s classified as a 

proteotypic peptide, otherwise non-proteotypic. 

The process described above also repeated for three adjacent amino acids, i.e. 

proteotypic and non-proteotypic log-probability tables are derived from training data. 
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The best result was achieved using 3-AAU model. For the 2-AAU model, the sensitivity 

was 83% and the specificity was 74.59%. In the case of the 3-AAU model, the sensitivity 

was 89.72% and the specificity was 81.04%. The figure below summarizes this result. 

 

Table 2.1: Accuracy for 2 and 3 adjacent Amino Acids 

 

 Proteotypic Non-proteotypic 

2 Amino Acid bonds (AAU) 83% 75% 

3 Amino Acid Bonds (AAU) 90% 81% 

 

Below diagram (Figure 2.1) gives visual representation for same result. 

 

                                           

                                           Figure 2.1: Accuracy for 2 and 3 adjacent Amino Acids 

This result suggests that the 2-AAU or 3-AAU feature could be combined with a 

subset of the 35 features used by STEPP to achieve even better accuracy. We 

demonstrate this in section 5. 

As a preliminary step, we created a Venn diagram to depict the classification results of 

STEPP and our simple 2-AAU-based classifier. In the case of proteotypic peptides, both 

methods agree on 76% of the true proteotypic peptides, but disagree on roughly an 
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additional 8% of actual proteotypic peptides. This Venn diagram is shown below in 

Figure 8 for proteotypic peptides and Figure 9 for nonproteotypic peptides. In figure 8, 

we see that STEPP and the simple 2-AAU-based classifier disagree on a significantly 

larger ~23% of actual nonproteotypic peptides. Notice, the shaded region in figure 8 is 

where STEPP and AAU methods agree that this peptide is proteotypic. Likewise, the 

shaded region in figure 9 is where STEPP and AAU methods agree that this peptide is 

nonproteotypic.   

    

 

2.2 Combining the 2-AAU Features with STEPP Feature: 

The next stage is to combine the Ordered Amino Acid Usage (AAU) (2-AA) 

feature with an appropriate subset of the 35 STEPP features to increase the accuracy of 

peptide identification. We expected this to be possible since the two methods miss-

Figure 2.2: Venn diagram shows common 

classification  (overlap area) and 

misclassification errors. 

Figure 2.3: Venn diagram shows common 

classification (overlap area) and 

misclassification errors. 
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classify peptides differently. Hence, there is room for improvement as the feature sets 

possibly complement each other. The first approach was to simply add the Ordered 

Amino Acid Usage (AAU) feature to the set of STEPP features by adding one new 

column that represents the new AAU feature to the matrix that contains the 35 feature 

used in STEPP (Webb-Robertson et al.). The new column is created by calculating log 

odds values for each peptide. 

Table 5 below shows the improved accuracy after combing the two methods (AAU and 

STEPP). 

                      Table 2.2: Accuracy for 35 Features and 2-AAU feature combined 

 

Kernel Type  Accuracy (2-

AAU) 

Linear  82.6% 

Gaussian 81.1% 

RBF 81.1% 

Polynomial 83.5% 

 

Below diagram represent the table above:  
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Figure 2.4: Accuracy for 35 Features and 2-AAU feature combined 

Comparing the result (Table 5) that with previous result that uses STEPP 35 

features only (Table 3), indicate there is some improvement. Below Figure (11) compare 

the two methods. In the next section we describe a subset of features that achieve similar 

results as that achieved by using all of these features. 

 

Figure 2.5: Comparing STEPP 35 feature with AAU+STEPP. AAU her is 2-AAU 

Likewise, we repeated the test using 3-AAU, ( 3 adjacent amino acid). 3-AAU gave a 

much better result: 
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                    Table 2.3: Accuracy for 35 Features and 3-AAU feature combined 

 

Kernel Type  Accuracy (3-

AAU) 

Linear  86.97% 

Gaussian 83.07% 

Polynomial 86.93% 

 

 

 

Figure 2.6: Accuracy for 35 Features and 3-AAU feature combined 

 

Notice, unlike 2-AAU, liner kernel gave the best performance.  In order to compare the 

performance for 3-AAU with 2-AAU 
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Figure 2.7: Comparing 3-AAU with 2-AAU 

Notice by looking at above figure with compare 3-AAU to 2-AUU. There is a major 

improvement. For example, there is more than 4% improvement in linear kernel.  

2.3 Feature Reduction using PCA: 

We tried to use Principle Component Analysis (PCA) to give us insight to see 

which feature of the STEPP 35 feature has more contribution. However, eventually, we 

have used instead LDA. Nevertheless, for sake of completeness, I’m explaining here the 

analysis I have done using PCA.  

Principle Component Analysis (PCA) for the 35 features has been calculated. The aim is 

to see if some of the features are dependent on each other and hence eliminate redundant 

78

79

80

81

82

83

84

85

86

87

88

Linear Gaussian Polynomial

Comparing 3-AAU with 2-AAU 

3-AAU

2-AAU



 

20 

 

features. The advantage of feature elimination is that, by reducing the numbers of 

unnecessary features, the SVM performance may be improved.  

When calculating Principle Components, Matlab outputs a variable called 

―explained‖ which shows the percentage of how each feature ―explains‖ the variance of 

the data. The chart of the values of the ―explained‖ vector is shown below: 

 

 

Figure 2.8: Matlab ―explained‖ which shows the percentage of how each feature 

contributes to the variance of data. 

In addition, the empirical and uniform classification error is calculated as a function of 

the number of included eigenvectors (components). This step is repeated using Linear, 

Gaussian, and Polynomial kernel types. The graphs for each have been plotted below: 
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Figure 2.9: Errors calculated as a function of the number of included eigenvectors 

(components) for Linear kernel 

 

Figure 2.10: Errors calculated as a function of the number of included eigenvectors 

(components) for Gaussian kernel 
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Figure 2.11: Errors calculated as a function of the number of included eigenvectors 

(components) for Polynomial kernel 
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CHAPTER 3 

RESULT VERFICATION 

 

3.1 Verification Using Second Data Set: 

Our initial work used the Yersinia pestis data set that was also used for STEPP 

(Webb-Robertson) [12]. We identified a second proteotypic peptide data set from a paper 

titled “CONSeQuence: Prediction of Reference Peptides for Absolute Quantitative 

Proteomics Using Consensus Machine Learning Approaches” [3]. The data set is for 

Saccharomyces cerevisiae. The data is spilt on 2/3 for training and 1/3 for verification. 

The results are shown the figure below. 

Table 3.1: Success Rate for Yeast dataset 

 

 Proteotypic Non-proteotypic 

Yeast dataset with 2-AUU 93.22%  81.69%  

Yeast dataset without 2-AUU 88.70%  80% 
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Figure 3.1: Accuracy for Yeast dataset with 2-AAU compared to one without AAU. 

 

3.2 Testing the two data sets combined: 

As a verification, we have tested the two dataset combined (Yersinia pestis and Yeast-

Saccharomyces cerevisiae) to see if the result is still consistent. The result has sensitivity of 

87.36% and specificity 77.08%. The cross-validated error rate is 17.84% 

 

 

 



 

25 

 

 

   

Figure 3.2: Success rate for data-set combined using 2-AAU 
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CHAPTER 4 

FEATURE SELECTION 

 

4.1 Features Selection 

One of the objectives of this research is to select a subset of the features used by STEPP 

to both improve accuracy and reduce computation time. We have used Linear Discriminant 

Analysis (LDA) to test and see which features contributing more. It is computationally not 

possible to exhaustively examine all possible combinations of features. Instead we examined each 

feature individually using LDA by looking at LDA loadings (Figure 19). 

 

 

Figure 4.1: Accuracy for each feature of STEPP 35 features alone using LDA. This is used in 

feature selection to understand which feature has more weight (more important). 
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We noticed that it’s possible to achieve 82% accuracy using 7 features only. These features are: 

 Ordered Amino Acid Usage 

 Number of positively charged polar hydrophilic residues 

 Amino acid singlet counts: Proline (P) 

 Length 

 Number of non-polar hydrophobic residues 

 Number of polar hydrophilic residues 

 Number of charged polar hydrophilic residues 

Notice that the features in Figure 6 are ordered based on their individual LDA score. We plan on 

looking at a more sophisticated approach to feature selection to either improve this result or 

confirm that this is optimal subset of the 35 STEPP features to use in conjunction with ordered 

amino acid usage. 

In order to see how the how the new selected feature will perform, tests have been repeated with 

this feature subset only. 

                                  Table 4.1: Accuracy of 6 selected feature from STEPP and 2-AAU. 

 

Kernel Type  Accuracy (2-

AAU) 

Linear  82.59% 

Gaussian 81.07% 

Polynomial 81.07% 

 

While, below table shows data for 3-AAU with clear improvement: 
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                        Table 4.2: Accuracy of 6 selected feature from STEPP and 2-AAU. 

 

Kernel Type  Accuracy (3-

AAU) 

Linear  86.45% 

Gaussian 82.90% 

Polynomial 59.47% 

 

 

Below chars compares the 2 tables above: 

 

 

Figure 4.2: Comparing accuracy of 6 selected feature from STEPP with 2-AAU and 3-AAU. 
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CHAPTER 5 

DISCUSSION OF RESULTS 

 

5.1 Accuracy for proteotypic and non- proteotypic peptide separately: 

The above accuracy are based on 10-fold cross-validation error (―crossval‖ in Matlab). 

However, you might want to see how many proteotypic peptide have been classified correctly and 

visa-versa. Below table list accuracy for proteotypic and non-proteotypic peptide separately. The 

table below show the case for STEPP 35 feature with 2-AUU: 

Table 5.1: Accuracy for proteotypic and non- proteotypic peptide separately using 2-AAU. 

 

 Kernel Type  Accuracy (2-AAU) proteotypic Accuracy (2-AAU) non-

proteotypic 

1 Linear  87.99% 77.190% 

2 Gaussian 97.51% 87.257% 

3 Polynomial 18.75% 76.81% 

 

Moreover, below table shows the case for STEPP 35 feature with 3-AUU. Notice, there a clear 

improvement with 3-AAU compared to 2-AAU: 
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Table 5.2: Accuracy for proteotypic and non- proteotypic peptide separately using 3-AAU. 

 

 Kernel Type  Accuracy (3-AAU) 

proteotypic 

Accuracy (3-AAU) non-

proteotypic 

4 Linear  95.11% 78.89% 

5 Gaussian 87.61% 87.68% 

6 Polynomial 96.96% 85.53% 

 

The last case is for the 7 selected features: 

Table 5.3: Accuracy for proteotypic and non- proteotypic peptide separately using 7 selected 

feature and 2-AAU. 

 

 Kernel Type  Accuracy (2-AAU with 

selected feature) 

proteotypic 

Accuracy (2-AAU with 

selected feature) non-

proteotypic 

7 Linear  89.26% 74.95% 

8 Gaussian 95.57% 83.26% 

9 Polynomial 18.75% 76.81% 

  

 

Table 5.4:Accuracy for proteotypic and non- proteotypic peptide separately using 7 selected 

feature and 3-AAU. 

 

 Kernel Type  Accuracy (3-AAU with selected 

feature) proteotypic 

Accuracy (3-AAU 

with selected feature) 

non-proteotypic 

10 Linear  94.75% 78.185% 

11 Gaussian 97.14% 83.90% 

12 Polynomial 18.09% 92.19% 

 

The below chart compare the 4 tables above: 
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Figure 5.1: Comparing accuracy for proteotypic and non- proteotypic peptide separately using 

different configuration.  

Notice, since this method, unlike the previous one, don’t use 10-fold validation, it might be prone 

to over fitting. 

5.2 Prediction Time: 

To get an understanding of how long predication time takes for each configuration, we 

have recorded the required time to predict if a peptide is proteotypic or non- proteotypic (call to 

predict function). Below table list time of each configuration: 
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Table 5.5:  Prediction Time using different configuration. 

 

 configuration Time in seconds to 

predict 8,073 

peptide 

1 Linear (STEPP 35 feature and 2-AUU combined)  6.918 

2 Linear (STEPP 35 feature and 3-AUU combined) 3.675 

3 Gaussian (STEPP 35 feature and 2-AUU combined) 13..142 

4 Gaussian (STEPP 35 feature and 3-AUU combined) 8.250 

5 Polynomial (STEPP 35 feature and 2-AUU combined) 12.783 

6 Polynomial (STEPP 35 feature and 3-AUU combined) 2.417 

7 Linear (STEPP 7 selected feature and 2-AUU combined) 2.521 

8 Linear (STEPP 7 selected feature and 3-AUU combined) 1.862 

9 Gaussian (STEPP 7 selected feature and 2-AUU combined) 10.287 

10 Gaussian (STEPP 7 selected feature and 3-AUU combined) 14.454 

11 Polynomial (STEPP 7 selected feature and 2-AUU combined) 2.565 

12 Polynomial (STEPP 7 selected feature and 3-AUU combined) 1.967 

 

 

 

 

 

Figure 5.2:  Comparing prediction Time using different configuration. 

Notice the fastest prediction time happened when linear kernel with selected feature from STEPP 

and 3-AAU combined. 
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Receiver Operating Characteristic (ROC) curves for different configurations have been generated 

and area under the curve (AUC) values have been calculated.  

Below ROC curve shows ROC with different Configuration. 

 

 

Figure 5.3: ROC with Polynomial kernel, 2-AAU and 35 STEPP features. 

Above configuration have been summarized on below table and chart: 
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Table 5.6: AUC values for different configuration. 

 

 Configuration AU

C 

1 Gaussian (STEPP 35 feature and 3-AUU combined) 0.98 

2 Gaussian (STEPP 35 feature and 2-AUU combined) 0.97 

3 Polynomial (STEPP 35 feature and 3-AUU combined) 0.96 

4 Gaussian (STEPP 7 selected feature and 3-AUU combined) 0.95 

5 Polynomial (STEPP 35 feature and 2-AUU combined) 0.94 

6 Gaussian (STEPP 7 selected feature and 2-AUU combined) 0.94 

7 Linear (STEPP 35 feature and 3-AUU combined) 0.93 

8 Linear (STEPP 7 selected feature and 3-AUU combined) 0.92 

9 Linear (STEPP 35 feature and 2-AUU combined)  0.88 

10 Linear (STEPP 7 selected feature and 2-AUU combined) 0.87 

11 Polynomial (STEPP 7 selected feature and 3-AUU combined) 0.83 

12 Polynomial (STEPP 7 selected feature and 2-AUU combined) 0.60 

 

5.4 Limitations and key Assumptions  

There are three factors to govern the likelihood of observing a peptide in a 

proteomics experiment: One, the chemical properties of the peptides and its parent 

protein. Two, the limitation of the peptides identification protocol, including the pre-

processing of the sample, the MS instruments and software tools used for mass spectrum 

analysis. And three, the abundance of the peptides in the sample that compete with this 

peptides in the identification procedure (Tang, 2006) [1]. 

We used the same definition of proteotypic peptide that Webb-Robertson et have 

used. Proteotypic peptides are those that have been included in the ATM database at any 

time that the parent protein is observed, rather than requiring minimal observations of 

peptides (Webb-Robertson, 2010) [2].    
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The selection of peptides training set is a very crucial step in machine learning. For the 

binary peptide detectability predication problem, both observed and non-observed 

peptides should be represented in the training set to avoid bias and over-fitting in the later 

learning process. Ideally there should be no bias against specific protein classes (Qeli, 

2014) [12]. 

In our analysis we used peptides that have been provided by Webb-Robertson et 

al. Other peptides samples will be evaluated.   
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CHAPTER 6 

CONCLUSION 

 

6.1 Contributions  
 

The aim of this thesis is to help improve the accuracy of peptides identification 

and classification which have been gaining momentum due to their ability to generate 

accurate quantitative data that is mostly relevant to system biology studies and clinical 

use. 

This thesis will explore bonds between amino acids as a new identification 

feature. As mentioned previously, this new feature will be used to complement the 

existing 35 features used by Webb-Robertson et al. and reduce the unnecessary features 

in order to optimize Support Vector Machine (SVM) performance.   

6.2 Summery  

The most important conclusion of this research is that, the use of AAU feature 

representing bonds between adjacent amino acids improves proteotypic peptide 

prediction. The 3-AAU model is superior to the 2-AAU model. In addition, we used LDA 

to select a subset of six of the STEPP features. Together with the AAU feature, a 

classifier based on these features achieves classification accuracy similar to that achieved 

using all of the original features plus AAU. 
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A paper has been published based on this thesis. Citing of the paper is: 

Ahmed Al-qurri and John Rose. "Improving Peptide Identification By Considering 

Ordered Amino Acid Usage." Bioinformatics and Computational Biology (2017): 203-

208. 
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