
Georgia State University
ScholarWorks @ Georgia State University

Business Administration Dissertations Programs in Business Administration

4-15-2014

Software Service Innovation: An Action Research
into Release Cycle Management
Neda Barqawi
GSU

Follow this and additional works at: http://scholarworks.gsu.edu/bus_admin_diss

This Dissertation is brought to you for free and open access by the Programs in Business Administration at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Business Administration Dissertations by an authorized administrator of ScholarWorks @ Georgia State University.
For more information, please contact scholarworks@gsu.edu.

Recommended Citation
Barqawi, Neda, "Software Service Innovation: An Action Research into Release Cycle Management." Dissertation, Georgia State
University, 2014.
http://scholarworks.gsu.edu/bus_admin_diss/34

http://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fbus_admin_diss%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/bus_admin_diss?utm_source=scholarworks.gsu.edu%2Fbus_admin_diss%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/bus_admin?utm_source=scholarworks.gsu.edu%2Fbus_admin_diss%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/bus_admin_diss?utm_source=scholarworks.gsu.edu%2Fbus_admin_diss%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

Software Service Innovation:

An Action Research into Release Cycle Management

By

Neda A. Barqawi

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree

Of

Executive Doctorate in Business

In the Robinson College of Business

Of

Georgia State University

GEORGIA STATE UNIVERSITY

ROBINSON COLLEGE OF BUSINESS

2014

PERMISSION TO BORROW

In presenting this dissertation as a partial fulfillment of the requirements for an advanced degree

from Georgia State University, I agree that the Library of the University shall make it available

for inspection and circulation in accordance with its regulations governing materials of this type.

I agree that permission to quote from, to copy from, or publish this dissertation may be granted

by the author or, in his/her absence, the professor under whose direction it was written or, in his

absence, by the Dean of the Robinson College of Business. Such quoting, copying, or publishing

must be solely for the scholarly purposes and does not involve potential financial gain. It is

understood that any copying from or publication of this dissertation which involves potential

gain will not be allowed without written permission of the author.

Neda A. Barqawi

NOTICE TO BORROWERS

All dissertations deposited in the Georgia State University Library must be used only in

accordance with the stipulations prescribed by the author in the preceding statement.

The author of this dissertation is:

Neda A. Barqawi

J. Mack Robinson College of Business

Georgia State University

Robinson College of Business

35 Broad Street NW

Atlanta, GA 30303

The director of this dissertation is:

Dr. Lars Mathiassen

J. Mack Robinson College of Business

Georgia State University

Robinson College of Business

35 Broad Street NW

Atlanta, GA 30303

Copyright by

Neda A. Barqawi

2014

ACCEPTANCE

This dissertation was prepared under the direction of the Neda A. Barqawi Dissertation

Committee. It has been approved and accepted by all members of that committee, and it has

been accepted in partial fulfillment of the requirements for the degree of Doctoral of Philosophy

in Business Administration in the J. Mack Robinson College of Business of Georgia State

University.

 H. Fenwick Huss

Dean, J. Mack Robinson College of Business

DISSERTATION COMMITTEE:

Dr. Lars Mathiassen (Chair)

Dr. Wesley Johnston

Dr. Balasubramaniam Ramesh

v

TABLE OF CONTENTS

List of Tables ... viii

List of Figures .. ix

Abbreviations and Definitions .. x

ABSTRACT ... xi

1.0 Introduction .. 1

2.0 Area of Concern ... 4

2.1 Software as a Service ... 4

2.2 Release Cycle Management ... 6

3.0 Theoretical Framework .. 8

3.1 Service Science .. 8

3.2 Service-dominant Logic ... 10

4.0 Research Methodology .. 16

5.0 Problem-Solving Cycle .. 17

5.1 Initiation phase ... 18

5.2 Diagnostic phase .. 18

5.3 Establishment phase ... 21

5.4 Acting phase ... 27

5.5 Learning Phase ... 30

6.0 Research Cycle... 33

6.1 Data Collection ... 34

6.2 Data Analysis ... 35

7.0 Improving SaaS Releases at Software Inc. .. 39

7.1 Value Proposition ... 39

vi

7.2 Service Dominance .. 41

7.3 Value Co-Creation.. 46

7.4 Service Delivery Process .. 50

8.0 Discussion .. 57

8.1 Software Service Innovation at Software Inc. .. 57

8.2 S-D Logic Perspective on SaaS .. 62

8.3 Grounded SaaS Delivery Model .. 66

9.0 Conclusion ... 72

Appendix A: Shared Platform Document ... 77

A1.0 Problem Setting .. 78

A1.1 Recently Acquired Software ... 78

A1.2 Complexity of Service Delivery ... 79

A1.3 New Engineering and Product Management Team .. 79

A1.4 Low Software Engineering Process Maturity ... 80

A1.5 Actors.. 80

A2.0 Release Cycle Management ... 82

A3.0 Research Methodology .. 87

A3.1 Engaged Scholarship .. 87

A3.2 Action Research Design ... 89

A4.0 Problem-Solving Cycle .. 92

A4.1 Initiation Phase ... 93

A4.2 Diagnostic Phase .. 94

A4.3 Establishment Phase ... 100

A4.4 Acting Phase ... 102

vii

A4.5 Learning Phase ... 103

A5.0 Research Cycle ... 106

A5.1 Data Collection ... 107

A5.2 Data Analysis ... 108

A6.0 Principles of Canonical Action Research... 110

Appendix A References .. 118

Appendix B: Secure-on-Request Improvement Projects – Status Report 122

Appendix C: Secure-on-Request Processes Assessment and Improvement Options 124

Appendix D: Secure-on-Request New Release Cycle Model... 131

Appendix E: Customer Advisory Board - Meeting Items .. 132

References ... 134

viii

LIST OF TABLES

Table 1.0 - 1 Research Design – Style Composition .. 3

Table 3.2 - 1 S-D Logic Concepts and Their Transition ... 11

Table 3.2 - 2 Core Foundational Premises of S-D Logic .. 12

Table 5.0 - 1 Problem Solving Time Line at Software, Inc. ... 18

Table 5.2 - 1 Service Delivery Practice-Based Assessment - Diagnostic Phase 20

Table 5.3 - 1 Project Schedule .. 21

 Table 5.3 - 2 Improvements in Customer Relationship Project ... 22

Table 5.3 - 3 Conceptual Definition of Six SaaS-Qual Factors .. 24

Table 5.3 - 4 Improvements in Requirements and Quality Project... 25

Table 5.3 - 5 Improvements in Release Cycle Project .. 26

Table 5.4 - 1 Improvements in Customer Relationship - Acting Phase....................................... 28

Table 5.4 - 2 Improvements in Requirements and Quality - Acting Phase 29

Table 5.4 - 3 Improvements in Release Cycle - Acting Phase... 29

Table 5.5 - 1 Service Delivery Practice-Based Assessments – Learning Phase 31

Table 6.1 - 1 Primary and Secondary Data Sources ... 35

Table 8.3 - 1 Grounded Process Model for Value Co-Creation in SaaS 69

Table 8.3 - 2 Service Innovation Principles in SaaS Environments ... 71

ix

LIST OF FIGURES

Figure 5.0 - 1 IDEAL Model .. 17

Figure 5.2 - 1 Secure-on-Request Service Blueprint at Software, Inc. 21

Figure 5.5 - 1 Secure-on-Request Reported Issues - Learning Phase ... 32

Figure 6.2 - 1 Data Analysis Activities ... 36

Figure 8.3 - 1 Grounded Process Model for Value Co-Creation in SaaS 68

x

ABBREVIATIONS AND DEFINITIONS

AM Account Manager

CAR Canonical Action Research

CPR Collaborative Practice Research

G-D Logic- Goods-Dominant Logic

OPS Operation Services

PM Product Manager

SaaS Software-as-a-Service

S-D Service-Dominant

TAM Technical Account Manager

QA Quality Assurance

xi

ABSTRACT

SOFTWARE SERVICE INNOVATION:

AN ACTION RESEARCH INTO RELEASE CYCLE MANAGEMENT

BY

NEDA A. BARQAWI

May 8th, 2014

Committee Chair: Dr. Lars Mathiassen

Fierce competition in the market is driving software vendors to rely on Software-as-a-Service

(SaaS) strategies and to continuously match new software versions with customers’ needs and

competitors’ moves. Although release management as a recurrent activity related to SaaS

arguably shapes how a vendor services its customers, the literature is surprisingly limited on how

software releases are managed to support SaaS strategies. Against this backdrop, we present a

collaborative action-research study with Software Inc., a large multi-national software provider,

focused on improving the release cycle management process for a complex security software

service. The study is part of a comprehensive intervention into Software Inc. that combines a

perspective rooted in software process improvement and engineering practices with one rooted in

service delivery and customer interactions. The part that is reported in this dissertation draws on

the service-dominant logic framework to analyze how the release cycle management process was

organized to improve Software Inc.’s ongoing value co-creation with its customers. As a result,

the study contributed to improving release cycle management at Software Inc. and it expands

industry knowledge about the challenges and opportunities for software vendors to manage

releases and improve the value delivered to and co-created with their customers. This added

knowledge is of interest to both practitioners and researchers as SaaS strategies increasingly

shape the industry with important implications for how software is released.

1

1.0 INTRODUCTION

Software-as-a-Service (SaaS) is a software application delivery model that is rapidly

growing in popularity. SaaS solutions are usually web-based and accessible via Internet browsers

(M. Cusumano, 2010). Enhanced customer relationships are expected to result from the hybrid

software and service features of the SaaS model (Berkovich, Esch, Leimeister, & Krcmar, 2010).

Direct customer contact is expected to change the manner in which software vendors manage

development, operations, and quality control (Stuckenberg & Heinzl, 2010). Market competition

is driving corporations to pinpoint the timing of product introduction and to fulfill customer

requirements in an increasingly expeditious manner (Krishnan, 1994; Pratim Ghosh & Chandy

Varghese, 2004). A well-defined release-management process could raise the quality of building,

testing, and deployment activities, thereby reducing problems occurring after product or service

delivery (Lahtela & Jantti, 2011). Although release management as a recurrent activity related to

SaaS arguably shapes how a vendor services its customers, the literature is surprisingly limited

on how software releases are managed to support SaaS strategies.

Against this backdrop, we conducted a collaborative action research study with Software

Inc. regarding the delivery of one of their SaaS solutions, Secure-on-Request. Specifically, we

used collaborative practice research (CPR), an action research methodology that applies

methodological pluralism as well as collaboration between researchers and practitioners

(Mathiassen, 2002). The study adopted two complementary perspectives, one rooted in software

process improvement and engineering practices and one rooted in service delivery and customer

interactions (this overall research design is described in detailed in the shared platform

document, Appendix A). Drawing on these complementary perspectives, the study focused on

release cycle management to support Software Inc. in their Secure-on-Request repositioning

2

effort and contributed to the body of knowledge simultaneously (Avison, Baskerville, & Myers,

2001; Baskerville & Wood-Harper, 1996). To ensure the rigor of the overall study, we followed

the principles of canonical action research (CAR) (Davison, Martinsons, & Kock, 2004) as we

enacted the dual cycles outlined by McKay and Marshall (2001). In the problem-solving cycle,

we collaborated with Software Inc. to support their Secure-on-Request service-delivery

processes. We proceeded in a stepwise, iterative fashion, based on the approach described in the

IDEAL model (McFeeley, 1996). The model is an approach for innovating software practices

and was developed in 1996 by the Carnegie Mellon University Software Engineering Institute.

Our research cycle was guided by the style composition for action research developed by

Mathiassen, et al. (2012).

As theoretical lens for the specific part of the study reported in this dissertation, we drew

on service-dominant (S-D) logic, proposed by Stephen Vargo and Robert Lusch (Vargo &

Lusch, 2004, 2008) to address the following research question: How can release cycle

management be organized to improve Software Inc.’s ongoing value co-creation with its

customers? This framing is based on an alternative logic for understanding markets and

marketing, which views service, rather than goods, as the focus of economic and social exchange

(i.e., service is exchanged for service) (Vargo & Lusch, 2004). Accordingly, this dissertation

explored the software-release management and service-delivery processes at Software Inc.

through the theoretical lens of S-D logic with a focus on the co-creation of value of the SaaS

delivery model. We approached the issue from the point of view of the customer and determined

how the release-management process can be organized to improve Software Inc.’s ongoing value

co-creation with its customers.

3

We used our analysis to develop recommendations related to value creation through the

service delivery of the SaaS application and to release-management process improvement at

Software Inc. We propose that the insights gained from this study will both broaden our

theoretical understanding of this issue and assist those in the SaaS service field. Overall then, the

dissertation relied on the style composition for action research (Mathiassen, Chiasson, &

Germonprez, 2012) summarized in Table 1.0 - 1. The different elements of this design will be

motivated, described and further elaborated in the subsequent section of the dissertation.

Table 1.0 - 1 Research Design – Style Composition

Component Description

P - Problem Setting
Improve Software Inc.’s ability to effectively service their

customers and respond to their needs

A - Area of Concern SaaS, release management, and Service Science

RQ - Research

Question

How can release cycle management be organized to improve

Software Inc.’s ongoing value co-creation with its customers?

F - Conceptual

Framework
S-D Logic - proposed by Stephen Vargo and Robert Lusch in 2004

M - Research Method Qualitative, action research study

CA - Contribution to

Area of Concern

Empirical and theoretical contribution to SaaS, release

management, and service science knowledge

4

2.0 AREA OF CONCERN

This dissertation focuses on SaaS, an important contemporary form of software delivery,

in particular on the challenges related to recurrently releasing such services to existing customers

and the market. In the following, we will review the literature on each of these two areas of

contemporary software practice.

2.1 Software as a Service

SaaS refers to software applications delivered as a service over the Internet (Armbrust et

al., 2010; M. Cusumano, 2010). It is one of the leading models in the service-oriented software

business today and it is being increasingly adopted (M. A. Cusumano, 2008; Liu, Guo, Zhao, &

Chou, 2010; Susarla, Barua, & Whinston, 2009). SaaS has been described as a delivery,

business, pricing, revenue, or licensing model (Choudhary, 2007a; M. A. Cusumano, 2008;

Lassila, 2006; Srikanth & Cohen, 2011; Sun, Zhang, Chen, Zhang, & Liang, 2007). Revenues for

the SaaS delivery model are expected to grow by 19.4 percent overall from 2008 to 2013 (Mertz

et al., 2009). In the SaaS model, the service provider hosts and manages the SaaS applications,

while the “tenants” who want to use them rent the services instead of buying software licenses

(Guo, Sun, Huang, Wang, & Gao, 2007). The term “cloud computing” refers to both the

applications delivered as services over the Internet as well as the hardware and software systems

that reside in the data sites hosted by the providers. The services themselves are referred to as

SaaS (Armbrust et al., 2010) .

The SaaS model permits simultaneous utilization of the same application installation by a

large number of independent users, and allows for a swift introduction of new and innovative

software (Sääksjärvi, Lassila, & Nordström, 2005; Singh, Bhagat, & Kumar, 2012). SaaS also

offers customers an attractive payment structure. The pricing model is based on the continuous

5

service relationship between customers and vendors together with time- or usage-dependent

metrics (Sääksjärvi et al., 2005; Singh et al., 2012; Srikanth & Cohen, 2011). The model

provides customers with reductions in information technology (IT) infrastructure cost,

operational flexibility, and immediate access to the latest features and innovations (Armbrust et

al., 2010; Guo et al., 2007; Herrick, 2009; Singh et al., 2012).

SaaS benefits software providers as well as customers. Software providers benefit from

the cost reductions gained from scalability and customization, all the while growing their

customer base. Since SaaS solutions support many customers with a single-application code

base, deployment time is reduced and updating of application features is centralized and

simplified (Guo et al., 2007). Some authors have suggested that the SaaS model may improve the

user’s perception of quality and their user experience in general (Choudhary, 2007b). A number

of studies have demonstrated benefits of the software-service delivery model such as cost

savings, increased productivity, and improved operational efficiency (Herrick, 2009; Hudli,

Shivaradhya, & Hudli, 2009).

Companies that provide SaaS solutions face the challenge of delivering and maintaining

high-quality software applications that work in many different contexts. Customers can easily

unsubscribe from services, so frequent updates to the software and increased investments in

development are critical to retaining a competitive edge (Choudhary, 2007b; Singh et al., 2012;

Srikanth & Cohen, 2011). Service quality is fundamental to the continued success of the SaaS

model (Benlian, Koufaris, & Hess, 2011). The SaaS model is expected to change software

vendors’ management of development, operations, and quality control (Stuckenberg & Heinzl,

2010).

6

SaaS vendors are obliged to address the entire gamut of service-quality management

processes (Benlian et al., 2011). Managers can best allocate resources for service improvements

by having a measure of customer evaluation of SaaS services (Benlian et al., 2011). Although

release management could impact how a software vendor support its customers (Lahtela & Jantti,

2011), research is limited on how software releases are managed to support SaaS practices.

Hence, in our exploration of the release-management process of the SaaS application Secure-on-

Request at Software Inc., we examined how customers contributed to value co-creation

throughout the software release management and delivery process of the Secure-on-Request

software.

2.2 Release Cycle Management

Software Release Management refers to the typical recurring identification, packaging,

and distribution of the elements of a product (e.g., executable programs, documentation, release

notes, and configuration data) (Ballintijn, 2005; Scott & Nisse, 2001). It is defined as “the

process through which software is made available to and obtained by the user” (Van Der Hoek,

Hall, Heimbigner, & Wolf, 1997). Quality control and the success of release management are

dependent upon having the right processes in place. Well-organized release-management

processes have been found to play a critical role in the success of large projects (Danesh,

Saybani, & Danesh, 2011). Van der Hoek (1997) wrote that release management is “a poorly

understood and underdeveloped part of the software process” and identified several obstacles to

its execution. Although research on software release management is limited, both in general and

as it relates to SaaS, the subject has generated both academic and practical interest. We have only

identified a limited number of studies on the subject as documented in the comprehensive review

in the Shared Platform Document, Appendix A. Literature is also limited on the release cycle

7

concept which could describe how all the components in software development interconnect

(Syed, 2014). A comprehensive approach is necessary to connect software development and

delivery processes and the relevant functions involved in the process (Syed, 2014). In response,

this action research dissertation investigates software release cycle management as an interesting

starting point for improving the service quality of the SaaS application delivered by Software

Inc. Against this backdrop, we contribute to the software organization and release management

literature specifically in a SaaS environment, and we anticipate that the empirical insights from

our problem diagnosis, interventions, and learning from Software Inc. will be helpful to both

practitioners and academic researchers.

8

3.0 THEORETICAL FRAMEWORK

As a theoretical starting point, we will review service science background. The

theoretical foundation for this dissertation is adopting S-D logic. Through its foundational

premises and concepts, we studied the process of value co-creation between Software Inc. and its

customers as the SaaS application service was delivered.

3.1 Service Science

The world economy is moving from being goods-based to one that is dependent on

services (Bardhan, Demirkan, Kannan, Kauffman, & Sougstad, 2010; Maglio & Spohrer, 2008;

Spohrer & Maglio, 2008). Services are taking on an increasing importance, and approximately

80% of all employees in western economies now work in the service sector (Kohlborn, Korthaus,

Riedl, & Krcmar, 2009). Although, the service sector has matured over the last 50 years in most

advanced economies, the scientific understanding of services is still in its infancy (Chesbrough &

Spohrer, 2006).

Service can be defined as “acts performed for others, including the provision of resources

that others will use” (Spohrer, Anderson, Pass, & Ager 2008, p. 4). In marketing and economics,

service is understood as the non-material equivalent of a good. Service also has been defined as

an economic activity that does not lead to ownership, and this is what distinguishes it from

providing physical goods (Spohrer & Maglio, 2008). Service can be seen as a process that

produces benefits by enabling either a change in customers’ physical possessions, or a change in

their intangible assets (Spohrer, Maglio, Bailey, & Gruhl, 2007).

Service science is an emerging multidisciplinary field concerned with the study of service

systems and value co-creation. It is an industry-led, university-supported discipline to study

exchange among “service systems.” (Maglio & Spohrer, 2008; Vargo & Lusch, 2008). The field

9

“Combines organization and human understanding with business and technological

understanding to categorize and explain the many types of service systems that exist as well as

how service systems interact and evolve to co-create value” (Maglio & Spohrer 2008, p. 18).

Service systems are defined as “value co-creation configurations of people, technology, value

propositions connecting internal and external service systems, and shared information” (Maglio

& Spohrer 2008, p. 18). Value co-creation can be defined as: “An interactive process, involving

at least two willing resource integrating actors, which are engaged in specific form(s) of

mutually beneficial collaboration, resulting in value creation for those actors” (Frow, Payne, &

Storbacka, 2011). The actors (i.e., customers and SaaS providers) create value by cooperating

and merging their resources, competences, and capabilities (Bovet & Martha, 2000; Kähkönen &

Lintukangas, 2012).

Services differ from goods in that the former are intangible, inseparable, heterogeneous,

and perishable (Regan, 1963; Tracy, 2012). Inseparability refers to the fact that service acts are

simultaneously delivered and consumed by the customer, and consequently the customer has an

active role in influencing the quality of the service (Tracy, 2012; Wolak, Kalafatis, & Harris,

1998). Goods, are produced and then sold, but services are sold and then produced and consumed

(Tracy, 2012; Zeithaml, Parasuraman, & Berry, 1985) Service science refers to inseparable

characteristics of service as the process of value co-creation (Spohrer et al., 2008). The idea of

customers having an input in product delivery, and value, or ‘co-creation’ and ‘interactive

marketing’ has been emphasized in the service-market literature (Grönroos, 1982; Gummesson,

1987; Peters, Johnston, & Pressey, 2012; Shostack, 1977). Central to service science is the role

of the customer as a co-producer, where the service is adapted by customers based on their

specific needs or environments (Vargo & Lusch, 2004, 2008). The understanding of service as

10

applying resources for the benefit of others or oneself is applicable to business organizations, and

is particularly consistent with service concepts from IT, such as service-oriented architecture,

SaaS, and, more broadly, services computing (Lusch & Nambisan, 2012; Zhao, Tanniru, &

Zhang, 2007). S-D logic has been proposed as a theoretical and philosophical foundation for the

development of service science and the study of service systems (Maglio & Spohrer, 2008;

Vargo & Akaka, 2009; Vargo & Lusch, 2008).

3.2 Service-dominant Logic

In 2004, Vargo and Lusch introduced an S-D logic framework for understanding the

theory and practice of marketing. This perspective was presented as a more effective alternative

to goods-dominant (G-D) logic—which is based on traditional economic theories—for the study

of service systems (Barile & Polese, 2010; Vargo & Lusch, 2004). Vargo and Lusch have

attempted to produce a general marketing theory by synthesizing the different schools of thought

in the marketing literature (Vargo & Lusch, 2004, 2008; Winklhofer, Palmer, & Brodie, 2007).

Service in S-D logic is defined as applying specialized competences, including knowledge and

skills, through deeds, processes, and performances for the benefit of another actor or the actor

itself (Lusch & Nambisan, 2012; Vargo & Lusch, 2004, 2008).

S-D logic is still evolving. Eight foundational premises were initially set out (Vargo &

Lusch, 2004) and a more comprehensive conceptualization of ten foundational premises (FPs)

were later introduced (Vargo & Lusch, 2008). S-D logic premises are not a set of guidelines or

rules; rather, they represent a developing effort to construct a better “marketing-grounded”

understanding of value and exchange (Lusch & Vargo, 2006a; A. F. Payne, Storbacka, & Frow,

2008; Vargo & Lusch, 2004). The key concepts and constructs comprising S-D logic and the

transition of these constructs from G-D to S-D logic as demonstrated by the authors are listed in

11

Table 3.2 - (Lusch & Vargo, 2006b; Winklhofer et al., 2007). In the latest development of S-D

logic, the authors identified four FPs as the fundamental axioms of S-D logic. These are

illustrated in Table 3.2 - (Vargo, 2013).

Table 3.2 - 1 S-D Logic Concepts and Their Transition

Goods-dominant
logic concepts

Transitional
concepts

Service-dominant
logic concepts

Goods Services Service

Products Offerings Experiences

Feature-attribute Benefit Solution

Value-added Co-production Co-creation of value

Profit maximization Financial engineering Financial feedback/learning

Price Value delivery Value proposition

Equilibrium systems Dynamic systems Complex adaptive systems

Supply chain Value-chain
Value-creation

network/constellation

Promotion
Integrated marketing

communications
Dialogue

To market Market to Market with

Product orientation Market orientation Service orientation

Vargo and Lusch suggest that firms should focus on processes that are co-created with

customers (Lusch & Vargo, 2006a). These co-creation processes should reflect the four

fundamental building blocks forming the firm's marketing strategy: (1) service offerings; (2)

value propositions; (3) conversation and dialogue; and (4) value processes and networks (Lusch

& Vargo, 2006a). According to the authors, the role of the “producer” has been to create and

deliver goods and services, and the role of “customer” has been to consume those goods and use

those services. G-D logic understands these two roles are independent of one another, with goods

being the unit of exchange. S-D logic assigns service as the foundation for exchange, value

12

Table 3.2 - 2 Core Foundational Premises of S-D Logic

Premise Explanation
Application to SaaS

environment

FP1
Service is the

fundamental basis of

exchange.

The application of

operant resources

(knowledge and skills)

“service,” is the basis

for all exchange.

Service is exchanged

for service.

Customers and software

providers exchange skills and

knowledge in creating and using

the SaaS applications or

solutions.

FP6
The customer is always

a co-creator of value.

Implies value creation

is interactional.

It is important for SaaS

providers to understand their

customers’ processes and their

specific requirements while

developing and delivering their

SaaS applications.

FP9
All economic and social

actors are resource

integrators.

Implies the context of

value creation is

networks of networks

(resource-integrators).

Social and economic actors

integrate various types of

resources to create value.

Software Inc.’s customers

(actors) obtain Secure-on-

Request service because they

consider it part of a larger

solution they need in order to

integrate with other resources.

FP10
Value is always

uniquely and

phenomenologically

determined by the

beneficiary.

Value is idiosyncratic,

experimental,

contextual, and

meaning-laden.

In the context of SaaS

applications, the same service

delivered to certain customers

will provide different value to

other customers, dependent

upon their industry and their

need for using that application.

creation, and marketing (Vargo & Lusch, 2004, 2008). From the perspective of S-D logic,

customers and providers co-create value, whereas according to G-D logic customers only

consume and buy products and services. Value, in the S-D logic approach, is co-created when

13

customers and producers engage in a collaboration during the creation and the consuming of

products and services (Vargo & Lusch, 2008).

There exist very few studies on how software releases are managed in order to support

SaaS strategies and service delivery. In this study, we explored how the release-management

process at Software Inc. facilitated the value co-creation between consumers and service

providers in a SaaS environment. In doing so, we used S-D logic as a theoretical framework and

applied the S-D logic four core foundational premises (FPs) and key constructs to the SaaS

environment. Table 3.2 - shows our application of these core foundational premises to the SaaS

model, and the service delivery of Secure-on-Request.

The first foundational premise (FP1) of S-D logic holds that service is the fundamental

basis of exchange, and application of skills and knowledge is a service (Vargo, 2013; Vargo &

Lusch, 2004, 2008). IT service firms traditionally provide hardware and software for

organizations (Brocke et al., 2009). In S-D logic, skills and knowledge that help customers with

their objectives are the units of exchange, not the hardware and software provided. In this

approach, IT service providers would focus on skills and knowledge, and would use hardware

and software as a means of delivering these services (Brocke et al., 2009; Vargo & Lusch, 2008).

This is particularly applicable in the SaaS context, as customers and software providers exchange

skills and knowledge while creating and using the SaaS applications or solutions to achieve their

customers’ goals.

The sixth foundational premise (FP6) states that a basic principle for successful co-

creation of value for a company is to actively involve customers the process of value creation

and the service delivery process (Vargo, 2013; Vargo & Lusch, 2004, 2008). The customer

becomes a co-producer of value when shifting from the perspective of creating value through

14

exchange of goods to the perspective of creating value by applying certain skills and knowledge

through a service provided (Brocke et al., 2009; Vargo & Lusch, 2004). In order to provide

services that can be applied within the customer’s environment, SaaS providers have to

understand their customers’ processes and their specific requirements in developing and

delivering their SaaS applications. Therefore, SaaS customers are contributing to the creation of

value of the SaaS applications they require (Vargo & Lusch, 2008).

The ninth foundational premise (FP9), refers to the S-D notion that all social and

economic actors integrate various types of resources to create value (Lusch & Nambisan, 2012;

Vargo & Lusch, 2008). For example Software Inc.’s customers (i.e., the actors) obtain Secure-

on-Request service because they consider it part of a larger solution they need to integrate with

other resources (Lusch & Nambisan, 2012). Also, all firms are simultaneously “service offerers”

(i.e., offer resources or services to other actors) and “service beneficiaries” (i.e., they themselves

are beneficiaries of other firms that supply them with service or resources) (Lusch & Nambisan,

2012). This implies that SaaS solution providers have to consider the different roles of actors

(e.g., customers and suppliers) in resource integration and service innovation. It also implies that

SaaS providers need to understand the process of value co-creation and adapt their internal

business processes to support it (Lusch & Nambisan, 2012).

Lastly, (FP10) proposes that value co-creation is contingent upon the customer’s

experience. Perceived value is highly context-specific. A service delivered to one customer will

provide different value when delivered to another customer (Lusch & Vargo, 2006a; Vargo &

Lusch, 2004, 2008). For example, in the context of the Secure-on-Request application, a large

firm in the financial sector might utilize the service delivered by Secure-on-Request differently

than would a firm in the pharmaceutical or retail sector.

15

S-D logic provides the basis on which to create a service-oriented enterprise that

leverages IT for service by applying the skills of the enterprise to the requirements of customer

(i.e., being service-centric and rather than company-centric) (Khoshafian, 2006; Lusch &

Nambisan, 2012; Vargo & Lusch, 2008). The shift to S-D logic is particularly important for SaaS

solutions providers. When firms focus on service and how it is delivered to the customer, the

attention shifts from the hardware and software as products to the service-delivery responsibility

expected from the firm (Brocke et al., 2009; Lusch & Nambisan, 2012). Hence, S-D logic is a

highly suitable framework within which to study service delivery of SaaS application and

release-management processes at Software Inc.

16

4.0 RESEARCH METHODOLOGY

Our research was carried out as an action research study to support the SaaS solution

Secure-on-Request repositioning effort at Software Inc. (Avison et al., 2001; Baskerville &

Wood-Harper, 1996). Our general research approach was collaborative practice research (CPR),

a type of action research in which methodological pluralism and collaboration between

researchers and practitioners is emphasized (Mathiassen, 2002). CPR methodology works toward

understanding practice through interpretation, and improving practice by making interventions

(Mathiassen, 2002).

Action research was introduced by Kurt Lewin in 1951, and it uses intervention to

challenging social situations as a means to develop scientific knowledge (Lewin, 1951;

Rapoport, 1970). Rapoport writes that “Action research aims to contribute both to the practical

concerns of people in an immediate problematic situation and to the goals of social science by

joint collaboration within a mutually acceptable ethical framework” (1970, p. 499). Several

action research approaches have been developed by other scholars (Davison et al., 2004; Susman

& Evered, 1978). Susman and Evered described the development of a client-system

infrastructure and a multi-phased cyclical process for action research consisting of diagnosing,

action-planning, action-taking, evaluating, and specifying learning (Susman & Evered, 1978). To

ensure the rigor of this action research, we followed the five principles and associated criteria for

Canonical Action Research (CAR) suggested by Davison et al. (2004) as we enacted the dual

cycles outlined by McKay and Marshall (2001). The Shared Platform Document (Appendix A)

provides details on the overall research approach for this study.

17

5.0 PROBLEM-SOLVING CYCLE

As we engaged in the problem-solving cycle at Software Inc., we adopted the IDEAL

model (McFeeley, 1996) to guide our activities. The model is an approach for innovating

software practices and was developed in 1996 by the Carnegie Mellon University Software

Engineering Institute (McFeeley, 1996). It is illustrated in Figure 5.0 - 1.

Figure 5.0 - 1 IDEAL Model

The IDEAL model (Initiating, Diagnosing, Establishing, Acting, and Learning), is very

similar to the five-phase cyclical approach (diagnosing, action planning, action taking,

evaluating, and specifying learning) developed by Susman and Evered (1978). Following the

phases of the IDEAL process directed our actions in the problem-solving cycle as well as

provided opportunities to make research contributions as we studied the change processes over

time Table 5.0 - 1 Problem Solving Time Line at Software, Inc. The Shared Platform Document

(Appendix A) contains an overview and more details on the IDEAL model and the problem-

solving cycle of this research.

Stimulus for
improvement

Set context &
Establish

sponsorship

Establish

infra-
structure

Appraise &
Characterize

current process

Develop recommendations

& Document results

Set strategy &
Priorities

Establish

process action
teams & Action

plans

Define processes & measures

Plan & Execute pilots
Plan. Execute, & Track installation

Document &

Analyze lessons

Revise

organizational
approach

INITIATING

DIAGNO-
SING

ESTABLISH-
MENT

ACTING
LEARNING

18

Table 5.0 - 1 Problem Solving Time Line at Software, Inc.

Phase Description

Initiation phase

(January 5, 2013 -

April 9, 2013)

Obtained commitment, set goals and established an

improvement infrastructure.

Diagnostic phase

(April 9, 2013 -

June 28, 2013)

Assessed current practices; developed and prioritized

recommendations for improvements.

Establishment phase

(June 28, 2013 -

July 2, 2013)

Created specific, focused improvement initiatives. Teams were

established to deal with each of the recommended

improvement areas from the diagnostic phases.

Acting phase

(July 2, 2013 -

October 26, 2013)

Developed and implemented solutions for each improvement

area.

Learning phase

(October 26, 2013 -

February 28, 2014)

Evaluated results of the initiatives.

5.1 Initiation phase

In the initiation phase, we obtained commitment and set goals with Software Inc.

Consequently, we established an improvement infrastructure and obtained approval for a

commitment for resources to accomplish planned tasks. Key dates, and more details on the

initiation phase are included in the Shared Platform Document (Appendix A).

5.2 Diagnostic phase

In the diagnostic phase, we established the groundwork for the later phases in the process.

Our diagnostic work included perception-based as well as practice-based methods (Napier,

Mathiassen, & Johnson, 2009). We also analyzed performance data from Software Inc.’s main

tracking systems. Key dates for the diagnostic phase and more details are included in the Shared

Platform Document (Appendix A).

19

One of the goals of the diagnostic phase was to understand the current practices and

challenges related to service delivery of Secure-on-Request within Software Inc. We assessed

existing service-delivery practices related to Secure-on-Request from the viewpoint of key

stakeholders (Napier et al., 2009). For our practice-based assessment (Napier et al., 2009), we

selected service-delivery principles identified in the service-science literature (Karpen, Bove, &

Lukas, 2012; Schneider & Bowen, 2010; Vargo & Lusch, 2004). We compared these principles

to current service-delivery practices at Software Inc., and provided our assessment. Based on

data collected and observations, the research team assigned scores to Software Inc.’s service

delivery practices as they compare to the identified principles. Service practice assessment and

scores assigned are illustrated in Table 5.2 - 1.

In the perception-based part of the assessment we identified individuals from Software

Inc. who are involved in the release process and service delivery of Secure-on-Request as well as

internal and external customers (Napier et al., 2009). Participants’ viewpoints were analyzed

with a focus on strengths and weaknesses of service delivery practices of Secure-on-Request. An

overview of the identified areas for improvement is included in the Shared Platform Document

(Appendix A). The five areas identified for improvement are: specifying and stabilizing

requirements, prioritizing requirements across channels, managing release cycles, maintaining

complete service information, and communicating releases across customers. These areas are

interrelated and affect the service delivery of Secure-on-Request in many ways.

To help with identifying the gaps and areas for improvement for the service-delivery

process of Secure-on-Request, we used a practical technique called Service Blueprinting (Bitner,

Ostrom, & Morgan, 2008). Given the intangible and complex nature of services, blueprinting

helps create a visual depiction of the service process, the points of customer contact, and the

20

Table 5.2 - 1 Service Delivery Practice-Based Assessment - Diagnostic Phase

Principle Score

1 Support fair and non-opportunistic customer-service provisioning. High

2
Ensure connections and relationships with customers during service

provisioning.
High

3
Ensure alignment between Secure-on-Request directions and the strategic

focus of Software Inc.
Medium

4
Establish process to capture customer needs and have them influence the

service.
Medium

5 Understand customers’ service contexts, processes, and expected outcomes. Medium

6
Share information on customer perceptions of service value across Secure-

on-Request teams.
Medium

7
Coordinate and integrate the service to allow customization to individual

customers.
Low

8
Ensure clear communications of release features to provide new value to all

customers.
Low

9
Maintain complete service information to assist customers’ knowledge and

competence.
Low

10
Measure the gap between customer expectations and perceptions of the

service.
Low

evidence of service from the customer’s point of view (Bitner et al., 2008). Using service

blueprinting (Bitner et al., 2008) for Secure-on-Request, we displayed possible areas for

improvement and assigned the recommended project for improvement as it is illustrated in

Figure 5.2 - 1.

The steering committee was kept informed of the activities through weekly status reports

and status meetings. The assessment findings and improvement options and recommendations

were shared with the steering committee meeting on June 20, 2013, as is described in greater

detail in the Shared Platform Document (Appendix A).

21

Figure 5.2 - 1 Secure-on-Request Service Blueprint at Software, Inc.

5.3 Establishment phase

In the establishment phase, the issues identified during the diagnostic phase were

prioritized and strategies were developed for improvements, as explained in greater detail in the

Shared Platform Document (Appendix A). The steering committee approved three projects:

improvement of customer relations, improvement of requirements and quality, and improvement

of release cycle. Three teams were formed and specific roles were assigned for each project.

Projects schedules and milestones were determined as illustrated in Table 5.3 - 1.

Table 5.3 - 1 Project Schedule

Projects Milestones Target Dates

Project Start Date 7/2/2013

Implementation Decision By 8/15/2013

Implementation Complete By 9/30/2013

Lessons Learned By 10/15/2013

22

Improvement projects that are related to the enhancement of service delivery of Secure-

on-Request were developed through working with key stakeholders at Software Inc. Our

recommendations were also informed by current literature. For example, research suggests that

collaboration between the service provider and the customer must involve the whole value chain

in order to co-create value (Schmidt, Dengler, & Kieninger, 2010). There are a number of

challenges for the co-creation of value in service processes, and changing the focus of

cooperation with customers is required (Schmidt et al., 2010). The deliverables and assigned

roles of the first project (Improvement of Customer Relationship) are illustrated in 5.3 - 2.

5.3 - 2 Improvements in Customer Relationship Project

Project Roles Project Deliverables

 Project Manager:

Release Manager

 Project

Contributors:

Business Owner,

Product

Manager,

Technical

Account

Managers,

Selected

External

Customers

 Project

Consultants:

Research team

 Project Sponsor:

Secure-on-

Request business

owner

Enhanced Service

Usability
 Identify ways to enhance the usability

of Secure-on-Request website, from

the end-user’s perspective

 Effective and smooth communication

of new features and releases to

customers

Value-Added Services Enhance TAMs team weekly status

report

 Identify measurements that are related

to SaaS service quality and establish a

process for reporting them

Capturing The “Voice” of

The Customer

 Early Adopters Program

 Customer Advisory Board

 Web-based collaborative customer

service software

As part of the project of improving the customer relationship, the research team working

with Software Inc. key stakeholders recommended enhancing service usability for Secure-on-

23

Request customers. The team suggested that focusing on the usability features of the Secure-on-

Request tool would enhance the service quality from the end-user perspective. Also, improving

the release documentation process would result in smooth communication of new features and

releases to customers, and consequently enhance service usability.

For value-added services, the team recommended bolstering the TAMs team weekly

status report, which summarizes customer contact and concerns, along with Software, Inc.

responsiveness. The report is used by management as a measure of transparency and readiness to

deal with customers’ issues. Many organizations have established measurement and management

approaches to improve their service delivery (Zeithaml, Berry, & Parasuraman, 1996). Our

recommendation was to identify measurements as shown in Table 5.3 - 3, for Secure-on-Request

service delivery processes that could be mapped to SaaS-Qual service quality factors defined in

the literature (Benlian et al., 2011). The research team recommended this set of measurements

and establishing a process for communicating it to management and other relevant stakeholders

through the weekly report.

Capturing the “voice” of the customer is essential to improving the customer relationship

with the Secure-on-Request product. An active dialog between companies and customers is

needed to enhance value (Grissemann & Stokburger-Sauer, 2012; Lusch & Vargo, 2006b). S-D

logic holds that value is not only created by the delivery of the service, but also during the

service development process (Grissemann & Stokburger-Sauer, 2012; Lusch & Vargo, 2006b).

The Early Adopters Program is a forum wherein Software Inc. elicits from select customers

feedback on new product features prior to the official release to a wider customer base. Research

investigating the notion of perceived empowerment to engage in new product development has

24

Table 5.3 - 3 Conceptual Definition of Six SaaS-Qual Factors

Factor Conceptual Definition

Rapport Includes all aspects of a SaaS provider’s ability to provide knowledgeable,

caring, and courteous support (e.g., joint problem solving or aligned

working styles) as well as individualized attention (e.g., support tailored to

individual needs).

Responsiveness Consists of all aspects of a SaaS provider’s ability to ensure that the

availability and performance of the SaaS-delivered application (e.g.,

through professional disaster-recovery planning or load balancing) as well

as the responsiveness of support staff (e.g., 24-7 hotline support

availability) is guaranteed.

Reliability Comprises all features of a SaaS vendor’s ability to perform the promised

services in a timely, dependable, and accurate fashion (e.g., providing

services at the promised time, provision of error-free services).

Flexibility Covers the degrees of freedom customers have to change contractual (e.g.,

cancellation period, payment model) or functional/technical (e.g.,

scalability, interoperability, or modularity of the application) aspects in the

relationship with a SaaS vendor.

Features Refers to the degree the key functionalities (e.g., data extraction, reporting,

or configuration features) and design features (e.g., user interface) of a

SaaS application meet the business requirements of a customer.

Security Includes all aspects to ensure that regular (preventive) measures (e.g.,

regular security audits, usage of encryption, or antivirus technology) are

taken to avoid unintentional data breaches or corruptions (e.g., through

loss, theft, or intrusions).

shown that changes that support co-creation encourage customer creativity and appreciation

(Franke, Schreier, & Kaiser, 2010; FüLler, MüHlbacher, Matzler, & Jawecki, 2009; Grissemann

& Stokburger-Sauer, 2012). The Customer Advisory Board is another forum wherein Software

Inc. engages with customers and gathers their feedback on service delivery and future

requirements, thereby improving the value co-creation process. The web-based customer service

collaborative tool is yet another powerful way to work with customers. Studies indicate that the

use of communication tools that improve information and knowledge exchange result in a

25

reduction of organizational and technical barriers for customers to contribute ideas for improving

service (Schmidt et al., 2010). The deliverables and assigned roles of the second project

(Improvement in Requirements and Quality) are illustrated in Table 5.3 - 4. An accurate

understanding of customers’ requirements is crucial for proper service delivery. The team

recommended using specialized software tools for developing visual templates of requirements

to help Secure-on-Request development team in the implementation of customers’ requirements.

The team also recommended that meetings be held to validate and align requirements coming

from different stakeholder.

Table 5.3 - 4 Improvements in Requirements and Quality Project

Project Role Project Deliverables

 Project Manager: Release

Manager

 Project Contributors:

Development Manager,

Product Managers, QA

Managers

 Project Consultants:

Research team

 Project Sponsor: Secure-on-

Request business owner

Requirement

Management

Process

 Visualization of requirements

(wireframes) using software tools.

 Validation of requirements through

meetings and sessions and unifying

statements of all stakeholders.

Quality

Improvement

Process

 QA to develop end-to-end

scenario-based testing for each user

To improve the quality of the service delivered through Secure-on-Request, it is

important to ensure the quality of the SaaS product. We recommended that the QA team develop

and run more end-to-end scenario-based testing, which depicts actual procedures of most Secure

on-Request customers. The assigned roles and deliverables of the third project (Improvements in

Release Cycle) are illustrated in Table 5.3 - 5.

26

Table 5.3 - 5 Improvements in Release Cycle Project

Role Deliverables

 Project Manager: Release

Manager

 Project Contributors:

Development Manager,

Product Manager, QA

Manager

 Project Consultants:

Research team

 Project Sponsor: Secure-

on-Request business

owner

Revised Release

Model

Change the release frequency from 30

days to 60 days. Longer release cycles

will allow for process improvement and

thereby improve quality and service

delivery

Customer

Communication

Strategy

Revised release frequency to be

communicated to customers, and

benefits of these changes to be

explained

Improving the release cycle of Secure-on-Request will contribute to improving the

service delivered to their customers. The team recommended changing the release frequency

from 30 days to 60 days. This change will impact other areas in the release-cycle process and

contribute to enhancement of service delivery quality. For example, adequate time will be

allotted for enacting the requirement and quality process improvements suggested above. The

longer release cycle will also allow for the recommended documentation process improvement

that in turn will enchain customer communication and ultimately upgrade service quality. The

team also recommended a strategy for communicating this change to customers via product

management and technical account management teams.

All stakeholders agreed on the suggested improvement strategy and implementation plan

of the three projects. Leadership team support and operational preparedness were also part of the

three projects deliverables committed by Software Inc. In the next phase we enact the approved

plans. More details on the release cycle model are included in the other dissertation developed as

part of our study at Software Inc. (Syed, 2014)

27

5.4 Acting phase

In the acting phase, we positioned the improvement strategy approved by Software Inc.

The Shared Platform Document (Appendix A) has details and key dates of the acting phase

activities at Software Inc. The steering committee held a kick-off meeting for each improvement

project, and objectives were set. Meetings to work on the projects and evaluate progress took

place between research team members and Software Inc.’s key stakeholders.

The final deliverables from each project were submitted on October 19, 2013. The acting

phase was completed on October 26, 2013. Table 5.4 - 1, Table 5.4 - 2, and Table 5.4 - 3 give an

overview of our activities during the acting phase. These activities will be discussed in more

detail in the data analysis and findings sections.

28

Table 5.4 - 1 Improvements in Customer Relationship - Acting Phase

Project Deliverables Acting Phase Activities

Enhanced
Service
Usability

Identify ways to enhance

the usability of Secure-

on-Request website,

from the end user’s

perspective

Research team worked with TAM team to

provide a list of requirements that could

enhance portal usability. The list was

prioritized and communicated to PM and

Engineering. Most of the items from the list

are on the product management roadmap

Effective and smooth

communication of new

features and releases to

customers

PM took ownership of coordinating

documentation process. Documentation team

and PM worked early in the release cycle to

review and identify relevant activities

Value-Added
Services

Enhance TAM team

weekly status report

Research team discussed the summary report

with management and TAM. A summary

section was suggested as an addition to the

report which include main items for quick

review

Measuring Service

Quality

Research team discussed SaaS service quality

measures with TAM and PM teams. A list of

measurements are being considered: renewal

rates, expansion (new customers), open and

closed tickets

Capturing
The Voice of
The
Customer

Early Adopters Program

Introductory meetings between PMs and

identified early adopters’ customers were

completed. Customers reported positive

feedback and more meetings for discussing

requirements and evaluating features are

scheduled

Customer Advisory

Board

TAM management and research team worked

on this initiative. Information and sample

agenda were discussed and a list of customers

was identified. A CAB meeting was held at a

Software Inc. conference for customers

Web-based collaborative

customer service

software (“Help Desk”)

Demos of the proposed software solution were

done by potential vendors. The solutions

included live chat, ticketing, and knowledge-

management systems. A solution was chosen

and development is reviewing the

implementation steps to integrate the tool

within Secure-on-Request website.

29

Table 5.4 - 2 Improvements in Requirements and Quality - Acting Phase

Project Deliverables Acting Phase Activities

Requirement
Management
Process

Visualization of requirements

using specialized software tools.

A software tool is being used by PM

to develop visualization templates of

requirements to be used by

development and documentation

teams.

Validation of requirements

through meetings and sessions

and unifying statements of all

stakeholders.

Validation of requirements meetings.

Unifying statements of all

stakeholders including PMs, TAMs,

QA, and development during the

requirement gathering process. An

acceptance criteria for requirements

implementation was put in place.

Quality
Improvement
Process

QA to develop end to end

scenario base testing for each

user.

TAMs and business owner of Secure-

on-Request shared end to end testing

scenarios with QA and development.

These scenarios are documented and

being used by QA for testing.

Table 5.4 - 3 Improvements in Release Cycle - Acting Phase

Project Deliverables Acting Phase Activities

Revised Release
Model

Change the release frequency

from 30 days to 60 days. Longer

release cycles will allow for

processes improvement and

consequently improve quality

and service delivery

A release model was developed by

the release manager and was

agreed upon by all stakeholders.

The Secure-on-Request release

following this model was released

on October, 2013.

Customer
Communication
Strategy

Revised release frequency to be

communicated with customers,

and benefits of these changes to

be explained

A strategy for communicating

these changes to customers was

followed by PMs and TAMs and

in other appropriate forums.

30

5.5 Learning Phase

In the learning phase, we reviewed the implemented solutions as well as evaluated the

outcome of the three improvement projects. The details and key dates of the learning phase

activities at Software Inc. are specified in the Shared Platform Document (Appendix A). Our

learning-phase assessments incorporated both perception-based and practice-based methods

(Napier et al., 2009). The assessments were geared toward evaluating the impact on the service-

delivery process of Secure-on-Request. Our goals were to identify changes in each of the three

project-improvement areas, determine their effect on the processes with an eye toward noting

challenges that arose while implementing the changes, and make suggestions for further

improvement. For the practice-based part of the assessment, we applied the norms and practices

from release-management and service-delivery literature identified in the diagnostic phase

(Schneider & Bowen, 2010; Vargo & Lusch, 2004) and compared them after the implementation

of the improvement projects to software release management service-delivery practices at

Software Inc. The research team assigned scores based on collected data and observations, and

the assessment results were compared against those from the diagnostic phase. The resulting

assessments are summarized in Table 5.5 - 1. Additionally, the data we collected from Software

Inc.’s systems showed that the new release model allowed time for addressing service quality

and for more service issues to be reported. However, the subsequent release cycles showed better

stability of Secure-on-Request software and better service quality as illustrated in Figure 5.5 - 1.

An overall assessment of the improvement projects will be discussed in Section 7.0 and Section

8.0.

31

Table 5.5 - 1 Service Delivery Practice-Based Assessments – Learning Phase

Principle

Diagnostic
Phase Score
(June, 2013)

Learning
Phase Score

(February,
2014)

1
Support fair and non-opportunistic customer-

service provisioning.
High High

2
Ensure connections and relationships with

customers during service provisioning.
High High

3

Ensure alignment between Secure-on-Request

directions and the strategic focus of Software

Inc.

Medium High

4
Establish process to capture customer needs and

have them influence the service.
Medium Medium

5
Understand customers’ service contexts,

processes, and expected outcomes.
Medium High

6
Share information on customer perceptions of

service value across Secure-on-Request teams.
Medium Medium

7
Coordinate and integrate the service to allow

customization to individual customers.
Low Medium

8
Ensure clear communications of release features

to provide new value to all customers.
Low Medium

9
Maintain complete service information to assist

customers’ knowledge and competence.
Low Medium

10
Measure the gap between customer expectations

and perceptions of the service.
Low Medium

32

Figure 5.5 - 1 Secure-on-Request Reported Issues - Learning Phase

33

6.0 RESEARCH CYCLE

Our research cycle was guided by the style composition for action research developed by

Mathiassen, et al. (2012) (Table 1.0-1). We reviewed SaaS, Service Science, and software

release-management streams of literature. This dissertation adopted the S-D logic framework

(Vargo & Lusch, 2004). Our research process was a collaborative and iterative process focused

on problem-diagnosis, change, and reflection (Avison et al., 2001). Furthermore, our study

satisfied the three methodological characteristics that were described across action-research

cycles (Baskerville & Wood-Harper, 1996). Rapoport (1970) identified three characteristic

dilemmas of action research, which relate to ethics, goals and initiative. Details on how our study

satisfied the three methodological characteristics (Baskerville & Wood-Harper, 1996) and dealt

with the three dilemmas (Rapoport, 1970) are covered in the Action Research Design section in

the Shared Platform Document (Appendix A).

We followed the CAR principles of action research to ensure rigor in our study (Davison

et al., 2004). CAR suggests that action research is directed by five principles:

1) Researcher-client agreement;

2) Cyclical process model;

3) Theory

4) Change through action; and

5) Learning through reflection (Davison et al., 2004).

CAR provides specific questions and criteria for each principle. The Shared Platform

Document (Appendix A) covers in detail how these principles were followed during our action

study at Software Inc. As we followed the principles of canonical action research, evaluated the

data through our analytical framework, and triangulated, we managed the action research

34

dilemmas that occurred (Rapoport, 1970). This also helped us deal with the issue of insider bias

(Coghian, 2001).

6.1 Data Collection

Our research objective was to analyze how the release-management process impacted the

value co-creation in a SaaS environment at Software Inc. We collected data from multiple

primary and secondary sources (Myers, 2008) throughout our collaborative study period.

Following the guidelines found in Yin (2008) and Miles and Huberman (1994), the

principle data sources included semi-structured interviews and problem-solving cycle

documentation. We identified key individuals from Software Inc. to be interviewed for our study.

For our diagnostic-phase assessments, sixteen interviews were conducted. For our learning-phase

assessments, fourteen interviews were conducted. These were face-to-face interviews of

approximately one hours’ duration. All interviews were recorded, and detailed notes were taken.

During the course of our data collection, we used triangulation (Miles & Huberman, 1994) to

counterbalance insider bias (Coghian, 2001). Table 6.1 - 1 outlines the specific primary and

secondary data sources used in our research.

35

Table 6.1 - 1 Primary and Secondary Data Sources

Primary Data Sources Secondary Data Sources

Meetings:

 Release Management Meetings (Weekly)

 Bi-Weekly Scrums

 Monthly Release Planning and Demos

 Daily Customer Escalation Calls

Release management documentation tools:

 Requirement Management Tool

 Defect Management Tool

 Customer Relationship Management Tool

Semi-structured interviews:

 Professional Services

 Sales

 Quality Assurance

 Product Management

 Operational Services

 Development

 Business Unit Owner

 Technical Account Management

 Project Managers

 External Customer

6.2 Data Analysis

We produced our data analysis using a variety of qualitative data-analysis techniques as

we enacted the cyclical process of diagnosing, action-planning, action-taking, evaluating and

specifying learning during our problem-solving phase (Susman & Evered, 1978). We adopted the

concepts and constructs of S-D logic (Lusch & Vargo, 2006a; Vargo & Lusch, 2004) in

developing our coding scheme and analyzing our data. We used triangulation throughout our

data analysis to offset potential insider bias related to the role played in Software Inc. by one of

our research team members (Coghian, 2001). Our team of researchers independently analyzed

meetings and interview transcripts, and used qualitative data analysis software (NVIVO) to

classify, tabulate, and visualize the data.

36

We followed the qualitative data analysis strategy offered by Miles and Huberman

(1994). These researchers suggest three concurrent flows of activities: data reduction, data

display, and conclusion-drawing and verification. These activities, done continuously throughout

the data-collection process, helped us determine the subsequent data-collection actions needed

for evaluating the outcome of the problem-solving phase and applying the S-D logic theoretical

framework. Figure 6.2 - 1 represents the data-analysis process we performed during the research

cycle.

Figure 6.2 - 1 Data Analysis Activities

Miles and Huberman define data reduction as “The process of selecting, focusing,

simplifying, abstracting, and transforming the data that appear in written-up field notes or

transcriptions” (1994, p10). They stress that data reduction is meant to be done continuously

throughout the duration of the qualitative study. As we proceeded with our data collection, we

employed data-reduction techniques through identifying emerging themes, coding, and writing

summaries.

Our process of data reduction started immediately upon engagement with Software Inc.

During this engagement, the data-reduction process consisted of a weekly status report that was

37

sent to all stakeholders involved in the study, Appendix B, and a bi-monthly meeting update that

was sent to the business owner, who is the sponsor of our action study at Software Inc.

Additional data-reduction was accomplished by detecting major practical themes relating to

service delivery quality improvement, as well as identifying problem areas for refinement and

conveying this information to the steering committee, Appendix C.

Data display has been described as “an organized, compressed assembly of information

that permits conclusion drawing and action” (Miles and Huberman 1994, p11). Data displays

may take the form of tables, graphs, and charts that organize information and make it available

for quick demonstration. We developed data displays in an iterative manner during our data-

collection process and after its completion. Our data displays included tables, graphs, and

flowcharts (Table 5.4 - 1, Table 5.4 - 2, and Table 5.4 - 3 above). The service blueprint (Figure

5.2 - 1) also served as a data-display tool that helped to identify the complexity of the service-

delivery process of Secure-on-Request, and refined our understanding of the overall workflow

and team activities related to the service-delivery process and the release cycle at Software Inc.

Drawing conclusions involves “identifying regularities, patterns, explanations, possible

configurations, causal flows, and propositions from available data” (Miles and Huberman 1994,

p11). Miles and Huberman (1994) underscore the importance for research validity of iterating

between drawing conclusions and verifying those conclusions in a continuous manner and

reaching conclusions that may not appear until data collection is completed. Our data-analysis

conclusion-drawing and verification activities took place during both the problem-solving cycle

and the research cycle. During the problem-solving cycle, our twin diagnostic methods (Napier

et al., 2009) provided a framework to identify primary areas for improvement relating to the

service delivery of Secure-on-Request. Using these assessment methods, we determined the

38

major challenges at Software Inc., and were able to provide to the steering committee both an

initial diagnosis and several ideas for upgrading the system (Appendix C). These

recommendations reflected the conclusions drawn from our diagnostic-phase interviews and

meetings with key stakeholders during our action study at Software Inc.

Alongside each intervention, we collected additional data and conducted data analyses.

Our analysis material included transcribed interviews and meetings, researchers’ notes, email

communications, and system-performance data (Denzin & Lincoln, 2005). These data analyses

further clarified our understanding of the issues at Software Inc., and helped us to adjust our

interventions based on feedback and review of the initial results. The research team also

conducted ongoing discussions and debriefing sessions about the observations to advance our

understanding of the problem-context at Software Inc. Additionally, we regularly referred back

to the meetings and interview transcripts, researchers’ notes, meeting summaries, status updates,

and other material to pinpoint substantive themes related to the challenges at Software Inc.

(Boyatzis, 1998; Eisenhardt, 1989; Yin, 2003). In Section 7.0, we verify the applicability of the

S-D logic theoretical framework concepts in the context of the SaaS delivery environment at

Software Inc. and present our study findings.

39

7.0 IMPROVING SAAS RELEASES AT SOFTWARE INC.

In the following section, we present the empirical results of our study and provide

contextual accounts of the interventions at Software Inc. As we interpret the findings through the

prism of SD-Logic concepts, we examine how the release cycle management process at Software

Inc. was informed by and impacted the value co-creation process, particularly in the service

delivery of the SaaS solution Secure-on-Request.

7.1 Value Proposition

Software Inc. proposes value in the market based on certain competences and capabilities

through its SaaS solution Secure-on-Request. Potential customers assess this value proposition in

light of their needs and compare it to competing value propositions in the market. Customers

perceived the value of Secure-on-Request as a security solution backed by specialized services

which enabled them to proactively and effectively protect their applications and processes. From

the vantage point of customers, the ability of Software Inc. to respond quickly to a wide range of

needs was a pivotal part of the value proposition. Software Inc. provided customers with features

and services that were customized to their organizational processes. As one customer noted,

“I’ve been asking for these thing from your competitor for a year and you guys did it in…two

months.”

Software Inc. offered a value proposition that was consistent with customer perception.

Teams involved in the service delivery of Secure-on-Request, reported that Software Inc. gained

value in terms of profitability, revenue, and market share. They also reported that the knowledge

and expertise gained through the service delivery process resulted in a competitive edge and a

strong market position for Software Inc. In the words of one Secure-on-Request product

40

manager, “We won some very big deals, and in part because of our ability to turn pretty quickly

on features and functions and requirements, many of our customers feel we’re pretty nimble.”

Internal teams at Software Inc. shared this perception of the Secure-on-Request solution

value proposition. They understood the nature of the proposed value of the service and expressed

the importance of delivering it well to customers. “Secure-on-Request is a software as a service

and that means instead of just selling a box and a machine, customers use our software as a rental

and they can use it and gain the advantages from the services side,” explained a software

engineer. In fact, we found a homogeneous perception of the value proposition at Software Inc.

across teams and individuals who worked with customers directly and those that indirectly

supported the service delivery process. Moreover, this homogenous value proposition perception

was sustained throughout the study.

At the same time, we identified several ways in which the value proposition of Software

Inc. could be enhanced, including tracking customer information and measuring service quality.

Our initial assessment (Appendix A, Table 4.2-3) revealed that management and decision makers

of the Secure-on-Request team did not have easy access to the bulk of customer information and

the service quality measurements pertaining to these customers. This was important, since our

diagnosis of the service delivery process showed that Secure-on-Request serviced a large number

of customers from a variety of industries. Customer segmentation was, in fact, crucial to its

success. For instance, certain customers were willing to pay a premium price for specialized

service, whereas smaller customers purchased a type of service that was expected to have a

completely different value. Since our diagnosis showed that important customer information and

service quality measurements were not readily available to management, we worked with

management to refine an existing weekly report that included customer information and

41

recommended service quality measurements (Table 5.3 - 3 above and Table 5.4 - 1 above). This

report was given to the business owner and contained customer information such as number of

customers, contract renewals, new accounts, and details pertaining to lost accounts. Also, we

worked with the Secure-on-Request business owner and TAM manager to introduce a summary

review of the most critical information and include service quality measurements. This new

weekly report made it simple for decision makers to navigate massive amounts of customer

information and helped management to identify new value propositions. Secure-on-Request

management judged the summary review favorably. While not all suggestions were initially

implemented due to time constraints of the TAM manager, she committed to implementing the

remainder of the proposed changes including the suggested service quality measurements when it

became clear that the management and team members were fully supportive of the initiative.

In summary, we found that Software Inc. and its customers applied resources and worked

together in mutually beneficial ways. Software Inc. provided service by applying skill and

knowledge combined with processes and technologies through Secure-on-Request. This service

was deployed in combination with customers’ knowledge and alongside their existing

applications that needed security protection. Focusing on the value proposition related to Secure-

on-Request created a platform upon which we worked with Software Inc. to upgrade service

delivery quality and advance the value co-creation process. This will be demonstrated in the

following sections.

7.2 Service Dominance

Software Inc. prioritizes responding to its customers’ needs and maintaining close

relationships with them. The quality of the service delivery and the relationships were sustained

through the work of dedicated teams such as Sales, TAMs, and Product Management. While

42

TAMs were tasked with resolving customers’ problems, Product Management made certain that

service requirements were implemented to customers’ satisfaction and beyond. As one of the

product managers shared, “my work is focused around which functionality we need to provide

for the product as a service solution to even exceed the customers’ expectations and help cover

customers’ needs from that perspective.” Customer-oriented and dominated by a service mindset,

these teams interacted directly with their customers.

Teams and individuals, which supported service production, also reported awareness of

the service-driven nature of Secure-on-Request and of the importance of delivering quality to

customers. Naturally, the teams that did not directly interact with customers such as Product

Development and Quality Assurance had less of a service mindset and were less customer-

oriented. These teams were tasked with improving the basic infrastructure and software that

made delivering a quality SaaS to customers possible. While these internal teams were more

product-oriented, they accessed customer information needed for service production through

communication with the teams that had direct customer contact. As one of the Quality Assurance

members commented, “I usually reach out to one of the TAMs for a better analysis for our

scanning process with our solution.”

Our study at Software Inc. revealed that the overall approach to the service delivery of

Secure-on-Request was both service- and customer-oriented. However, as we evaluated the

service delivery and the release cycle process of the SaaS solution, we identified several gaps

related to service dominance and customer orientation, including capturing clear service

requirements, production and completion of service information, and service usability of the

Secure-on-Request portal. We then worked collaboratively with Software Inc. to develop a

number of pertinent interventions.

43

One gap that was affecting the service delivery of Secure-on- Request pertained to

capturing clear service requirements from customers. Unclear service requirements and the lack

of a verification process for their implementation caused confusion during service production

and a reduction in service delivery quality (Appendix A, Table 4.2-3). Hence, there was a need

for ensuring that service requirements were clearly and effectively communicated and managed

across all stakeholders. Accordingly, we worked with Software Inc. on improving the service

requirement process through release cycle management (Table 5.4 - 2 above). First, product

management identified a third-party tool that provided a way to depict service requirements

through a visual representation specifically designed for user interface. This tool enabled the

product manager to ensure that customers' and other stakeholders' service requirements were

accurately captured and clearly communicated across all teams involved. Second, the release

manger introduced a multi-step process to ensure accurate verification and validation of

requirement implementation in the early stages of service production. Meetings were held

between stakeholders such as TAMs, product management, quality assurance, and development

teams to align their understanding of the prioritized list of service requirements. Third, a list of

requirement acceptance criteria was compiled. And, finally, a sign-off by product management

development and quality assurance teams was established. Release management and product

management feedback confirmed that these changes, incorporating as they did feedback from

stakeholders who represented the customers’ point of view early in the release cycle (Appendix

D), resulted in better customer service and improved release cycle management process.

Moreover, these changes established a new, continuously evolving service requirement process

that reinforces service dominance and efficiency.

44

A second area for service delivery improvement pertained to the production and

completion of service information and communicating Secure-on-Request releases to customers.

The information is related to communication of newly developed features required for service

delivery. We determined that service information construction processes were not well

established for Secure-on-Request releases (Appendix A, Table 4.2-3). Information from the

engineering and development teams were not readily available because these teams did not view

this as a high priority. The release-cycle processes and related communications were unclear for

the teams that worked directly with customers. The description offered by one of the TAMs

encapsulates the problem neatly, “Sometimes I feel the need to hedge our release communication

to avoid failing to meet customers’ expectations.” At times, inadequate information had a

negative impact on customers’ procedures, which in turn reflected badly on their perception of

service quality. Communication pertaining to the newly released functionalities was not always

released in a timely fashion. Thus, customers had difficulty preparing for integrating the service

with their process. In the words of one customer, "You guys just released all that stuff and we

were not expecting it, we are glad you are doing all that kind of stuff, but we want more notice.”

Consequently, we worked with product management to develop and implement a process

that would produce and maintain complete customer service information and communication

(Table 5.4 - 1 above). Product management agreed to take responsibility for the service

information production process, as suggested by the GSU research team. The product manager

worked with the documentation team point-of-contact and managed the related communications

with the engineering and development teams. The new process also included walkthrough

meetings with product management and the documentation team to ensure the accuracy and

completeness of this service information (Appendix D). In the first release after we implemented

45

the new release cycle, TAMs reported a slight improvement in the service information quality.

The Release Manager also noted that this process established a platform for improvement in

forthcoming release cycles. However, the progress of the production of service information was

somewhat disrupted after the first release due to departure of the product managers assigned to

the task. Other product managers worked with the development manager to compensate for the

missing resource, and the product management started to find a replacement person to take on

the responsibility. “

Lastly, TAMs identified an important problem area in the service usability of the Secure-

on-Request portal. TAMs wanted to boost the usability of the portal from the end user’s

perspective. They also pointed out the absence of several major usability features which the

business owner believed already existed in the portal (Appendix A, Table 4.2-3). One of TAMs

explained, “Lack of certain usability features is seen as defects by customers.” Thus, the GSU

research team requested from the TAM manager a list of features that would strengthen portal

usability. We asked the TAMs to prioritize this list on the basis of ease of implementation and

predicted improvement on service quality. The features that scored highest based on these two

criteria were considered of highest priority. A list of 30 requirements was compiled and shared

with key stakeholders (Table 5.4 - 1 above). Product Management and Development committed

to the implementation of requested usability features based on their priority; some features were

included in the first release after our interventions; and, most features were incorporated into the

product management map. As a result, TAMs and other teams involved in the service delivery

reported improvement in portal usability. Most importantly, this intervention established a

process wherein Product Management and Development communicated regularly with TAMs

regarding service usability requirements. Development and Product Management valued the

46

input from TAMs and its effect on service quality. TAMs expressed that they now felt their voice

was being heard in the service production process, a situation that contributed to service delivery

quality and a better release cycle management process.

In summary, the above-mentioned changes leveraged collaboration between different

teams involved in the service delivery process. This allowed for better knowledge-sharing of

customer information and experiences, which heightened the service quality and moved the

organizational thinking further towards service dominance. In turn, this resulted in a better

understanding of customers’ issues during service production and allowed Software Inc. to

service its customers better. Service dominance and understanding the important role of

customers in improving Secure-on-Request continued to be a high priority for key stakeholders.

As we shall see in the next sections, this provided a platform for the process of value co-creation

and quality service delivery.

7.3 Value Co-Creation

Our analysis showed that Software Inc. as a service provider engaged in an interactive

value co-creation process with its customers. The value co-creation process of Secure-on-

Request centered on integrating customer-specific solutions and the core value was created as the

service was used by the customer.

We discovered specific evidence of value co-creation with customers as we analyzed the

service delivery of Secure-on-Request. These came to light especially in the context of teams and

individuals that worked with customers directly. These teams had a good grasp of their

customers’ processes and supported their requirements accordingly. As the Secure-on-Request

product manager commented, “I think because the software is as a service, it is an evolving

software, we always have the ability to go back and retool certain aspects of the solution itself,

47

adapting it to customers perspective.” This approach was crucial for the value co-creation

process that occurred between Software Inc. and its customers and created benefits for both.

Customers benefited from the service offered to them, and Software Inc. enhanced its value

offering and benefited from the expansion of its existing customer base.

Teams that supported the service delivery process played an indirect but important role in

the value co-creation process. These supporting functions collected valuable information from

the teams that interacted directly with Secure-on-Request customers. They subsequently

incorporated this information during the service production process and provided new features

and service functionalities in the solution. This served to further hone the value co-creation

process at Software Inc. and the quality of the service delivery.

Broadly speaking, Software Inc. was well connected to the market and its customers, both

of which provided important input for the value co-creation process. However, our diagnosis

identified certain areas in which the value co-creation process at the company could be

reinforced (Appendix A, Table 4.2-3). Hence, we worked with Secure-on-Request service

delivery stakeholders on introducing several changes that enriched relationships with customers

by eliciting customer feedback regarding the service processes.

Our assessment of the service delivery and value co-creation process at Software Inc.

revealed a need for fine-tuning communications and relationships with customers. Secure-on-

Request services a large and diverse customer base, which necessitated the development of

heterogeneous service features. Interviewees shared with us that they felt the need to better

understand and address their customer expectations and needs. Teams that work with customers

directly such as TAMs and Product Management reported that customers needed better access to

comprehensive service information and the SaaS solution. At the same time, TAMs and Product

48

Management expressed a desire for technical solutions and processes that would improve their

insight into customer needs and expectations. Overall, we noted a widespread desire for regular

dialog between customers and Software Inc. toward the goal of creating better customer

relationships, which was understood as crucial for the value co-creation process. The

interventions detailed below, included adding “Help Desk” to the Secure-on-Request portal,

introducing “Customer Advisory Board” (CAB) and “Early Adopters Program” to the release

cycle management represent our work in these areas (Table 5.4 - 1 above).

First, Product Management and the business owner led an effort to add a technical

solution to the Secure-on-Request portal that supported customers’ activities and facilitated

communication directly with them (Table 5.4 - 1 above). This effort was based on the feedback

from the TAM manager during our assessment, which highlighted the importance of such a

capability in order to serve customers better by establishing a convenient channel for

communicating with them. After considering a list of third-party tools, Software Inc. decided to

integrate a solution called “Help Desk” into the portal. This integration effort was high on the

priority list of the Development Manager due to the support of the Steering Committee for this

project. The integration of the third-party solution into the Secure-on-Request portal was

completed and delivered as part of the first release after the new release cycle was implemented.

This newly integrated capability served as a medium for knowledge management. Customers

could use the solution to report service problems and propose ideas for enhancing service value.

Additionally, the solution provided a way for customers to conveniently access support personal

or TAMs through a “Live Chat” feature. Immediately upon release of these features, TAMs

noted they had improved their communication with customers. However, it took more time for

customers to become familiar with the new capability. Most customers were introduced to this

49

function, with a consequent enhancement of customer communications and greater customer

involvement in the co-creating process.

Second, in collaboration with the TAM manager and the business owner, we developed a

customer-focused interaction process called the “Customer Advisory Board” (CAB) in which

customers' concerns featured prominently. CAB was a way for Software Inc. to keep its finger on

the pulse of the market in general and of its customers in particular, and to keep the Secure-on-

Request service abreast of both. The GSU research team worked with the TAM manager to

develop a sample agenda, and formal invitations were sent to a select list of customers identified

for the meeting, see Appendix E. The first Secure-on-Request CAB meeting was held at a

conference that occurred during the acting phase of our study. During the CAB meeting, the

TAM Manager, Product Management, and the business owner collected customer feedback that

was valuable for the value co-creation process. According to the TAM manager and the business

owner, customers appreciated the CAB meeting as a joint learning experience and information

exchange. They took the opportunity to comment on the Secure-on-Request strategy roadmap

and reported enjoying co-creating strategies for improved services. According to the Secure-on-

Request business owner, the exchange provided valuable knowledge which the company

incorporated in its service delivery and production planning. The company intends to hold

quarterly CAB meetings with select Secure-on-Request customers on both a domestic and global

basis.

A third initiative was the Early Adopters Program. Early in the production process and as

part of the release cycle management process, Product Management introduced select customers

to the newly developed features and service function and solicited their participation in pre-

release trials (Table 5.4 - 1 above). Meetings were held with the six customers who were selected

50

to participate in the process. In this program customers helped to test and evaluate the latest

service function added to the solution. Customers offered suggestions and feedback to Product

Management. Software Inc. received helpful feedback from customers that helped enhance the

release cycle process, and further meetings were scheduled. This process transformed Software

Inc. customers into partners, thus reinforcing the process of value co-creation.

In conclusion, we found that Software Inc. considers its customers an important source of

information. The customers' stamp was clearly visible in the service delivery, release cycle, and

creation process. Thus, we built on this foundation with Software Inc. to introduce processes and

tools that deepened customer involvement and incorporated the customers' points of view. This

enabled Software Inc. to advance into a co-creating process environment where internal and

external customers collaborated with, and contributed to, the process. In the next section we will

analyze the activities of the service delivery process of Secure-on-Request as it engaged in value

co-creation and provided service and value to its customers.

7.4 Service Delivery Process

Software Inc. serviced customers in diverse industries and the service delivery process of

Secure-on-Request involved a number of service systems. Understanding these systems and the

activities involved in the service delivery process was crucial to our analysis and the application

of S-D logic concepts. These service systems were made up of resources such as people,

organizations, technology and shared information. Value co-creation between consumers and

Software Inc. resulted from the interaction of these service systems.

Our analysis of the service delivery process of Secure-on-Request centered on the

activities of the relevant individuals and teams in the Software Inc. service systems. We acquired

detailed information on how the service delivery process of Secure-on-Request was conducted.

51

Mapping and analyzing the service delivery process of Secure-on-Request using the service blue

print technique (Figure 5.2 above) resulted in a shared understanding of activities of supporting

functions as well as internal and external customers. This analysis also enabled us to identify

opportunities to improve the service delivery quality as well as the release cycle and value co-

creation processes. Furthermore, identifying and determining service delivery activities triggered

important discussions between the managers and the other stakeholders at Software Inc.

The delivery process of Secure-on-Request starts with "customer actions." Customer

actions include customers accessing the Secure-on-Request portal to upload and check the

security of their applications and request the specialized service from Software Inc. (Figure 5.2

above). Customers’ actions were also the first step in the value co-creation process in which

customers evaluated the service delivery quality and the perceived value of Secure-on-Request.

Customer actions ran in parallel to Software Inc. “onstage contact employee actions."

These took the form of direct interactions with customers and were provided by different contact

persons for different matters (Figure 5.2 above). In the case of Secure-on-Request, the teams that

interacted directly with customers during the service delivery process were mainly TAMs and

Product Management. The TAMs' primary role was to resolve customers’ issues. Product

management defined functions in the software to meet and exceed customers' service

requirements. As one of the product mangers shared with us, “My work is focused around which

functionality we need to provide for the product as a service solution to even exceed the

customers’ expectations and help cover customers’ needs from that perspective.” Onstage

contact employees actions were typically service transactions in which customers contacted

Software Inc. for support. The nature of these interactions depended on the customers and their

industries. Secure-on-Request service delivery was usually performed in close contact with

52

customers. Further, the service delivery was highly knowledge-intensive. This resulted in the

service quality being quote dependent on customer inputs. A good grasp of customer needs was

critical for high-level service delivery and creation of value.

Supporting the direct contact employees were the “backstage contact employees.”

Secure-on-Request backstage contact employees assisted in the service delivery process and

solved customer problems without directly interacting with the customers themselves (Figure 5.2

above). In the case of Secure-on-Request, the Service Operations team provided support to

TAMs as they assisted customers. These service activities were performed on behalf of Secure-

on-Request customers without direct interaction. In some cases Service Operations interacted

with customers directly, but with the involvement of the TAMs who worked on resolving the

issue and delivering the service.

Although Software Inc. had in place certain mechanisms for supporting service delivery

and garnering customer involvement, there were a number of gaps in customer service and

communication. During our assessment and diagnosis, we identified areas for improvement that

affected customer actions as well as onstage and backstage employee actions. These areas

included capturing clear service requirements, production of service information and release

communication, and lack of certain service-usability features. The gaps in these areas were

addressed through introducing changes in a number of processes, as explained in Section 7.2.

Further, as noted in Section7.3, we worked with Software Inc. on introducing efficient and

effective means to achieve customer communication.

The service delivery of Secure-on-Request included the essential “Support Processes”

(Figure 5.2 above). The activities of the teams and individuals involved in the support processes

focused on the service production and helped with the quality of the service delivery. While

53

these individuals and teams did not interact directly with customers, they collaborated with the

"back stage" and "on stage" teams. Our analysis looked at the processes and sub-processes

associated with supporting the service delivery of Secure-on-Request. The release cycle and the

service production of Secure-on-Request were at the core of the service delivery, and thus

contributed greatly to the value creation and quality of service. The teams and individuals

involved in these processes were technically skilled and created value for customers through

their technical capabilities and service production processes.

The SaaS delivery model of Secure-on-Request meant that Software Inc. was challenged

with simultaneously designing software and delivering services. An important part of the value

co-creation process was incorporating the information gained through the service delivery

interactions of Secure-on-Request teams and the release cycle process. Our analysis revealed that

although the release cycle process enabled the supporting functions to collaborate with customer

facing teams, there were gaps in certain areas related to communication across the teams

involved in the service delivery and release cycle process of Secure-on-Request.

The release frequency represented one major problem area that affected service delivery

quality of the Secure-on-Request solution. Our assessment revealed that the monthly release of

the SaaS solution had a broad negative influence on service delivery quality (Appendix A, Table

4.2-3). Interviewees across all functions expressed that monthly releases did not allow enough

time for requirement analysis, quality testing, completing service information or adequate

customer communication related to service delivery of the solution. As one of the TAMs shared

with us, “Frankly, the customers can’t absorb these frequent updates and changes, and in the

process we haven’t been giving the customers enough time to know it is changing”.

54

As a result, we worked with the steering committee members to change the release

frequency from 30 days to 60 days. This change resulted in a reduction of these service delivery

issues. Furthermore, the release manager developed a new release model (Appendix D) that

systematically incorporated most of the changes that we introduced to improve the service

delivery and release cycle process of Secure-on-Request, including the changes related to service

dominance and value co-creation discussed in Sections 7.2 and 7.3. After implementing the new

release cycle model and extending the release duration (Table 5.4 - 3 above), relevant teams

reported an across-the-board improvement in the processes and service delivery of Secure-on-

Request. In the extended release cycle and new release model, sufficient time was allotted for the

service requirement process, service quality testing, service information completion, and

advanced service delivery communication to customers. The new release model also allowed for

better communication through weekly demonstration meetings and for better knowledge sharing

of customer information across different teams. The TAMs and the other teams with direct

customer contact had access early in the production process to the latest release information

through these weekly demonstrations (Appendix D). Hence, they were ready to provide

customers with the right communications.

Another issue that affected these internal support processes was related to requirement

prioritization across channels (Appendix A, Table 4.2-3). In this situation, expectations were

high, resources were limited, and the release timeline was short. The major challenges included

prioritization for new features development, escalations from customers on defects, and technical

debt. As one of the engineers stated, “Our maturity and our ability to move forward with

requirements prioritization process isn’t still 100% there, and we all agree that is not what we

want to be in the long term.”

55

Thus, we worked with Software Inc. to revamp the service requirement prioritization

process (Table 5.4 - 2 above). The release manager introduced a process to ensure clear

prioritization of requirements from the different stakeholders (Appendix D). The goal of this

process was to avoid confusion and ensure efficiency in implementing these requirements. For

instance, it was decided that a meeting of key stakeholders would be held two weeks prior to

each release cycle. The key stakeholders include the business owner, product manager, TAMs

manager, and development manager. In that meeting each manger presented a list of

requirements and at the end of the meeting a finalized prioritized list was drawn up, to be shared

among all stakeholders. According to the release manager, this turned out to be a major step

forward because it ensured that key stakeholders agreed on the requirements and how they were

to be prioritized. Further, this meant that requirements were shared across developers, QA and

service information production.

Another challenge pertains to quality testing of the solution. The QA team was new and

the processes of quality assurance for Secure-on-Request were immature (Appendix A, Table

4.2-3). Unclear and changing requirements as well as lack of visibility of planned features for

releases added to the confusion. The short release duration also adversely affected the quality

assurance process. As one of the QA engineers shared with us, “We don’t have enough time

between the end of the release and the time we put it out to get full quality regression tests done.”

We worked with Software Inc. to resolve this issue through altering the release frequency

and the development of a new release model (Appendix D). The new release model allowed

more time for testing and for the quality assurance team to do regression testing. It also involved

QA early in the process through the weekly development team demonstration of the new features

and strengthened collaboration between the two teams. Moreover, post-release meetings in

56

which key stakeholders analyzed strengths and defects were built into the model. This created a

feedback mechanism for applying learning gained in the previous release cycle to the next

release cycle.

In summary, we found multiple ways in which Software Inc. interacts with its customers

during the release cycle and service delivery of Secure-on-Request. A thorough understanding of

these was important for the enrichment of both the service delivery and the value co-creation

process. Identifying the Secure-on-Request service-delivery activities resulted in a

comprehensive view of the process and an upgrading of SaaS quality and service delivery.

Release Management commented that the evaluation of customer activities related to the Secure-

on-Request service provided them with valuable insight pertaining to the SaaS solution delivery.

Improving the relationship with, and information delivery to, customers in the service delivery

and value co-creation process through the release cycle management benefited both the

customers and the company. This reciprocal enhancement is in line with value co-creation and

the main concepts of S-D logic.

57

8.0 DISCUSSION

In this dissertation, we have presented our collaborative action research study with

Software Inc. We aimed to help the company upgrade their release-cycle management process

and service-delivery practices. Specifically, the goal was to overcome the challenges of

repositioning their SaaS application Secure-on-Request. Although current literature reflects both

the challenges in release-cycle management and the importance of the SaaS model to the

software industry, research about release-cycle management in SaaS environments is limited.

This dissertation adopted the S-D logic framework (Vargo & Lusch, 2004, 2008) to

explore how the release-cycle management process could be organized to improve the process of

value co-creation in a SaaS environment. S-D logic’s prioritization of service makes it a

particularly appropriate lens through which to analyze the SaaS environment (Vargo & Lusch,

2004, 2008). In the following, we present the empirical and theoretical contributions that

emerged from our action research study. Additionally, we present a grounded-process model that

illustrates the roles and activities of service delivery and value co-creation processes in the SaaS

environment.

8.1 Software Service Innovation at Software Inc.

Adopting S-D logic as a framework can help SaaS providers enhance the service quality

that they deliver to their customers (Vargo & Lusch, 2004, 2008). S-D logic's four foundational

premises (Table 3.2 - 1 above), provide a general framework for service innovation and value co-

creation processes to service providers. By applying a combination of insights from our action

research with S-D logic principles, SaaS providers will be particularly fortified to raise their

service quality and advance their value co-creation process. In this section, we provide an

58

account of how the managers at Software Inc. adapted S-D logic premises and organized release-

cycle management and heightened the company’s ongoing value co-creation with its customers.

1) Platforms for engaging customers were established: Software Inc. adopted several

approaches to better understand their customers' organizational processes and their

precise utilizations of Secure-on-Request. The company's managers recognized the

importance of this understanding for boosting the value proposition and the value co-

creation process. During our action study, we collaborated with Software Inc.’s

managers and established engagement platforms such as the Early Adopters Program

and the Customer Advisory Board meetings (Table 5.4 - 1 above). During these

interactions, customers and users provided valuable feedback for the recurrent

release-cycle and service-innovation processes at Software Inc. Moreover, these

interactions created partnerships with customers to further strengthen the value co-

creation process and the firm’s value proposition. Recent studies on improving value

co-creation and furthering S-D logic have noted the need for establishing specific

mechanisms to engage with customers to co-create value (Maglio & Spohrer, 2008;

Ramaswamy & Gouillart, 2010). Our analysis adds to these studies by highlighting

the value of proactivity on the part of SaaS providers to gather information from their

customers to maintain and enrich their service innovation. Although value co-creation

involves actions on the parts of both providers and customers, we found that SaaS

providers' initiation of customer engagement was pivotal to the promotion of the

value-creation process.

2) Technology was leveraged for continuous customer interaction: Software Inc.

invested resources in integrating a technological capability to efficiently and

59

effectively capture “the voice” of their customers. The company integrated “Help

Desk” within the Secure-on-Request portal (Table 5.4 - 1, above). The technology

enabled direct interactions with customers through a feature called “live chat”, and

included knowledgebase and ticket-tracking systems. This technology-based

interaction provided the company with a steady flow of up-to-date information on

customer service utilization, and empowered the company to quickly pinpoint

customer challenges in this area. Using this feedback, the service teams were able to

achieve a higher level of response to customers. Previous literature has demonstrated

how the leveraging of information technology contributes to the value co-creation

process (Burgoon et al., 2002; Rust & Kannan, 2003; Vargo, Maglio, & Akaka,

2008). Our analysis broadened the scope of this knowledge, and showed that

introducing and adopting such technological capability required a commitment from

teams interacting directly with customers (Walker, Craig-Lees, Hecker, & Francis,

2002). As the technology permitted information to be shared in new ways, it also

bettered company-customer relationships as customers became participants in service

innovation and value co-creation. This progression is consistent with S-D logic

(Vargo & Lusch, 2008).

3) New release-cycle management process provided effective service-systems

coordination: We found that coordination and communication between the teams

responsible for supporting and developing the service offered by SaaS providers was

vital. During our action research study, Software Inc. adopted a release-cycle

management model that permitted such interaction to occur by granting it adequate

time and by establishing specific meetings throughout the release- cycle process

60

among the relevant stakeholders. (Table 5.3 - 5, above). As a result, systematic

communication across the teams involved in supporting and developing the service

process became the norm. Moreover, the release-cycle model allowed for effective

information sharing and knowledge incorporation in relation to the value co-creation

process. There has been little discussion in the literature on the role of release-cycle

management in service delivery and the value co-creation process. However, scholars

agree on the pivotal part played by communication between the service systems for

advancement of the value co-creation process (Larsson & Bowen, 1989; Maglio &

Spohrer, 2008). Our study confirms the centrality of communication between the

service system participants. At the same time, our research explores the role of the

release-cycle management process in facilitating the coordination and information-

sharing activities that lie at the heart of service innovation and value co-creation.

4) Issues with capturing service requirements were addressed: It is imperative that SaaS

providers respond swiftly and accurately to their customers’ service requirements

(Berkovich et al., 2010). Software Inc. utilized the release-cycle management model

to upgrade the service-requirement process. During our action research, Software Inc.

introduced a tool that depicted service requirements visually, and a multi-step process

to ensure accurate verification and validation of service-requirement implementation.

These changes refined customer service, and established a new service-requirement

process that reinforces service quality and efficiency. The current literature stresses

the importance of understanding customers within the service delivery and value co-

creation process (Vargo & Lusch, 2004). Our study corroborates these findings, and

expands on them by suggesting the introduction to the release-cycle management

61

process of verification and validation processes and specific technological

capabilities. We found that a well-established service-requirement process positively

impacted on service innovation and value co-creation.

5) A process for maintaining complete customer-service information was introduced:

Customers need complete service information in order to get the best service value

and to be able to contribute in a meaningful way to the value co-creation process

(Lusch & Nambisan, 2012; A. Payne, Storbacka, Frow, & Knox, 2009). During our

action research, Software Inc. implemented a process that is designed to maintain up-

to-date customer service information and communication. In this process, the product

management and documentation teams collected and verified service information as

they communicated with the service development teams (Table 5.4 - 1, above). Thus,

we recommend assigning appropriate ownerships and establishing walkthrough

meetings among the relevant stakeholders to ensure accurate service-information

production. In this manner, a platform was established for improvement in release-

cycle management and service-delivery quality, and TAMs reported improvement in

the quality of the service information received. We found that keeping customers

continuously informed about services enhanced their contribution to the value co-

creation process and therefore the quality of the service they receive (Lusch &

Nambisan, 2012).

6) Software Inc. Stakeholders reported satisfaction with the new release-cycle model:

We used perception-based as well as practice-based methods (Napier et al., 2009) to

evaluate the impact of our interventions and the new release-cycle model on the

service-delivery process of Secure-on-Request. Our learning-phase interviews

62

revealed that Software Inc. stakeholders were satisfied with the new release-cycle

model, and that they perceived improvement in the areas of service requirements,

service quality, and company-customer communication. Consistent with this, our

learning-phase practice-based assessment showed improvement compared to the

assessment conducted in the diagnostic phase, as illustrated in Table 5.5 - 1, above.

Additionally, the data we collected from Software Inc.’s systems showed that the new

release model allowed time for addressing service quality. There was an increase in

the reported issued initially, however, the subsequent release cycles showed a decline

in the number of the issues reported, indicating heightened stability of Secure-on-

Request software and better service quality, as illustrated in Figure 5.5 - 1 above. In

summary, the extended-release cycle and new release model allowed for adequate

time to fulfill service requirements, attend to the process of service quality, and

provide customers with on-target communications. Hence, the changes that we made

to the service delivery- and release cycle- processes also improved service dominance

and value co-creation, as discussed in Sections 7.2 and 7.3.

8.2 S-D Logic Perspective on SaaS

Our study contributes to the existing body of knowledge by providing insight into the

area of SaaS thorough an action research study on the release-cycle management of a large SaaS

provider. Specifically, this study adopted S-D logic (Vargo & Lusch, 2004, 2008) as an

analytical lens to explore how release-cycle management can be organized to positively impact

on the value co-creation processes and the quality of service delivery in SaaS environments.

63

Extant SaaS literature has investigated the benefits to customers provided by the SaaS

model. These benefits include immediate access to the latest innovations (Sääksjärvi et al.,

2005; Singh et al., 2012), attractive payment structure (Sääksjärvi et al., 2005; Singh et al.,

2012; Srikanth & Cohen, 2011), and reductions in IT infrastructure cost (Armbrust et al., 2010;

Guo et al., 2007; Herrick, 2009; Singh et al., 2012). At the same time, research has looked at the

model's benefits to SaaS providers in terms of cost reductions gained from scalability and

customization, and deployment efficiency (Guo et al., 2007). The literature has also reflected the

challenge of delivering and maintaining high-quality SaaS applications and retaining a

competitive edge (Choudhary, 2007b; Singh et al., 2012; Srikanth & Cohen, 2011). There has

been limited discussion of release-cycle management in SaaS environments, particularly in the

context of service delivery and the value co-creation process.

Based on the analyses of our collaboration with Software Inc., our study adds to existing

knowledge by extending our current understanding of service-innovation dynamics in SaaS

environments. As explained below, our study furthers the discussion on the role of release-cycle

management in realizing service dominance, clarifies the impact of adapting S-D logic principles

(Vargo & Lusch, 2004, 2008) in SaaS environments, and explicates the roles of individuals and

teams as they interact in the value co-creation and service-delivery processes.

First, we address the impact of release-cycle management on service dominance and

service quality in SaaS environments. Our findings revealed important insight into how release-

cycle management can be organized to incorporate practices that boost service dominance.

Existing literature underscores the importance of service dominance for software organizations

that are adopting SaaS delivery models (Khoshafian, 2006; Lusch & Nambisan, 2012; Vargo et

al., 2008), shifting the thinking from the hardware and software as products to the service-

64

delivery responsibility expected from these providers (Brocke et al., 2009; Lusch & Nambisan,

2012). This was the case at Software Inc., as our study revealed that the overall approach to

service delivery was both service- and customer-oriented. However, as our evaluation identified

several gaps related to service dominance, we introduced a number of practices through release-

cycle management such as honing the service usability of the Secure-on-Request portal,

improving the service requirement, and maintaining customer service information processes

(Table 5.4-1, above). In turn, these changes allowed for better knowledge-sharing of customer

information and experiences, which moved the organizational thinking further towards service

dominance and upgraded service quality. So, while the literature is centered on the importance of

service dominance (Brocke et al., 2009; Lusch & Nambisan, 2012) and to a lesser extent on how

this is accomplished through release-cycle management, our study adds to existing research by

explicating how organizing the release-cycle management could be the means by which service

dominance could be systematically heightened in SaaS environments. As a result, by

extrapolation to broader SaaS environments, our findings indicates that organizing release-cycle

management can be instrumental and an integral part of the service innovation and enhancing

service dominance in such environments.

Second, since this dissertation investigates release-cycle management in a large SaaS

software provider firm, we further our understanding of how adopting the S-D logic framework

in a SaaS environment will enhance the value co-creation process with SaaS customers. As

evidenced in the literature, S-D logic helps SaaS providers to apprehend the process of value co-

creation and adapt their internal business processes to support it (Khoshafian, 2006; Lusch &

Nambisan, 2012; Vargo & Lusch, 2008). S-D logic is highly relevant to SaaS solutions

providers, as they co-create value with customers and concentrate on service-delivery (Brocke et

65

al., 2009; Vargo & Lusch, 2008). Our analysis showed that Software Inc. is a SaaS provider

engaged in an interactive value co-creation process with its customers. However, we identified

certain areas in which the value co-creation process could be reinforced, and we thus introduced

several S-D logic-informed changes. These changes improved relationships with customers and

served to elicit customer feedback regarding the service processes. Although the value co-

creation process has been recognized as significant in SaaS environments (Kähkönen &

Lintukangas, 2012; Lusch & Nambisan, 2012; Vargo et al., 2008), little has been written about

how to reinforce its processes specifically through release-cycle management. As demonstrated

in Table 5.4-1, above, the value co-creation process at Software Inc. was intensified through

changes such as adding a technical solution that facilitated direct communication with customers,

and the development of customer-focused interaction processes such as the Customer Advisory

Board and the Early Adopters Program. These release-cycle management actions ultimately

enabled Software Inc. to advance into a co-creating process environment where internal and

external customers cooperated and contributed to the process (Maglio & Spohrer, 2008; Spohrer

et al., 2007). Hence, when applied to the broader SaaS environments, we add to the current body

of knowledge by presenting a process of adopting S-D logic principles through changing the

release-cycle management, and exploring its implications for improving both the value co-

creation process and the quality of service delivery.

Finally, our study furthers the understanding of the roles and activities of individuals and

teams involved in the service-delivery process in a SaaS environment. The S-D logic framework

made it possible to understand how various stakeholders communicated information as the

release-cycle management process unfolded, and value was co-created. The importance of

identifying the role of service system participants as they engage in knowledge-based

66

interactions to co-create value is discussed in the literature (Maglio & Spohrer, 2008; Spohrer et

al., 2007). In particular, studies indicate that developments in service innovation are only

possible when a service system has information about their customers, and each other (Lusch &

Nambisan, 2012; Spohrer & Maglio, 2008; Vargo & Lusch, 2004). Research also points to the

notion that service-system resources have different arrangements of competencies that are

distributed among them and connected by the value co-creation (Maglio & Spohrer, 2008).

Expanding on this research, our study clarifies the roles and interaction of teams and individuals

in these service systems within a SaaS environment. We combined S-D logic (Vargo & Lusch,

2004, 2008) and a service blueprint (Bitner et al., 2008) to closely analyze how the service

systems interacted internally with Software Inc. and with customers externally to co-create value.

These service systems included resources such as people, organizations, technology and shared

information (Maglio & Spohrer, 2008). A thorough understanding of roles and interactions was

crucial for a polishing of both the service delivery and the value co-creation process. This

enhancement, in turn, benefited both the customers and the company.

In conclusion, our analyses suggest that the S-D framework offered a powerful approach

to understand and improve the service-delivery process in a SaaS environment and expand

knowledge as it relates to release-cycle management and value co-creation.

8.3 Grounded SaaS Delivery Model

The service literature discusses several instruments designed to enhance the depiction of

the service delivery process. One of these tools is the “Service Blueprint” technique (Bitner et

al., 2008): “Services are dynamic, unfolding over a period of time through a sequence or

constellation of events and steps” (Bitner et al., 2008, p. 68), and service systems can be defined

as “value co-creation configurations of people, technology, value propositions connecting

67

internal and external service systems, and shared information” (Maglio & Spohrer 2008, p. 18).

These actors create value by cooperating and merging their resources, competencies, and

capabilities (Bovet & Martha, 2000; Kähkönen & Lintukangas, 2012). We coded and analyzed

our data (Sections 6.1, 6.2) using S-D logic (Vargo & Lusch, 2004, 2008), and adopted the

framework as an analytical lens to make sense of the rich data we had gleaned from our

collaborative action study with Software Inc. As a result, we developed a detailed account of

how teams and individuals collaborated during the service-delivery process, and by extension the

value co-creation process, at Software Inc. The framework of S-D logic enabled us to learn how

the service teams engaged in the value co-creation process over the period of our action study.

Specifically, S-D logic (Vargo & Lusch, 2004, 2008) and the service blueprint technique (Figure

5.2 - 1 above) (Bitner et al., 2008) made it possible for us to tease out the ways in which teams

and individuals adopted various changes in order to refine the value co-creation process (Maglio

& Spohrer, 2008; Vargo et al., 2008).

Based on the empirical accounts of our analysis and previous literature, we offer a

grounded- process model of how individuals and teams interacted as they engaged in the service-

delivery process, Figure 8.3 - 1. This model illustrates the activities of each team in relation to

the value co-creation process at Software Inc., and pinpoints the service components involved as

per the service blueprint technique (Bitner et al., 2008). Moreover, the model identifies the role

of each team as it adopted changes in the release-cycle management and consequently the value

co-creation process. The ability to describe service process to SaaS managers and customers will

help them recognize what the service process encompasses and understand their corresponding

roles in the value co-creation process.

68

Figure 8.3 - 1 Grounded Process Model for Value Co-Creation in SaaS

Additionally, we draw upon our empirical results and propose theoretical statements or

principles (Lee & Baskerville, 2003) related to service innovation in SaaS environments, as

demonstrated in Table 8.3 - 1. The first principle states that value co-creation requires that SaaS

providers and customers engage in continuous quality interactions. The proposed grounded-

process model illustrates that activities that are related to engagement and continuous interaction

with the customer occur mainly during the service requirement and service delivery stages. This

principle is consistent with one of the main foundational premises of S-D logic (FP 6), which

states that the customer is always a co-creator of value (Vargo & Lusch, 2008). The value co-

creation process, in which the customer plays a central role, demands continuous interaction

between SaaS provider and the customer.

69

Table 8.3 - 1 Grounded Process Model for Value Co-Creation in SaaS

 Stages Actors Activities
Service

Components

C
o

n
ti

n
u

o
u

s
 F

e
e

d
b

a
c

k

1. Service

Requirements

Customer

AM

PM

DEV

 Engagement of Customer

through Various Platforms

such as CAB and Early

Adopters Program

 Responsiveness to Market

Needs

 Customer Actions

 Onstage employee

Actions

 Backstage

employee Actions

2. Service

Development

AM

PM

DEV

QA

 Clarification and

Prioritization of Service

Requirements

 Completion of Service

Information

 Support Service Production

 Backstage

employee Actions

 Support Processes

3. Service

Deployment

Customer

AM

PM

OPS

 Communication of Service

Information

 Deployment of Developed

Service

 Customer Actions

 Onstage employee

Actions

 Backstage

employee Actions

 Support Processes

4. Service

Delivery

Customer

AM

OPS

 Support Service In Use

 Leveraging technology

similar to “Help Desk” for

knowledge sharing with

customers

 Utilization of service

usability in the SaaS portal

 Customer Actions

 Onstage employee

Actions

 Backstage

employee Actions

The second principle states that SaaS providers must understand their customers’

requirements and processes while developing and delivering the service: this is related to the

service requirement and service delivery stages as demonstrated in the grounded- process model.

This principle is in accordance with S-D logic (FP 10), which states that value is always uniquely

determined by the beneficiary (Vargo & Lusch, 2008). In the SaaS context, a particular service

delivered to a particular customer is understood to provide a specific value; the same service

70

delivered to another customer might provide a very different value. A customer’s industry and

his or her need for that service constitute the determining factors. Hence, it is crucial for SaaS

providers to have a good grasp of their customers’ processes and specific requirements while

developing and delivering their software-as-a-service.

The third principle states that SaaS providers adopting service logic are required to

implement processes that facilitate close interactions between teams developing and supporting

the service. Service development-stage activities are related to this principle. The fourth principle

proposes that customers require complete information as they obtain and integrate the service

with other resources to create value. This principle is mainly associated with service-deployment

activities. These two principles are related to S-D logic (FP 9), which maintains that all

economic and social actors are "resource integrators." This term implies that the context of value

creation is a network of networks (resource integrators) and that social and economic actors

integrate various types of resources to create value (Vargo & Lusch, 2008). We take this general

notion and zero in on SaaS providers’ service teams and customers as the main actors in this

large network. The service developed and deployed is considered part of a larger solution

required by customers, and certain processes are required to facilitate close interactions for

efficient resource integration between all actors.

The fifth and final principle states that customers and SaaS providers exchange skills and

knowledge through developing and using the service. This principle is related to the service-

delivery stage illustrated in the grounded-process model. In addition, this principle is associated

with the S-D logic premise that service is the fundamental basis of exchange (FP1), and that the

application of operant resources (knowledge and skills) “service,” is the basis for all exchange

(Vargo & Lusch, 2008). Customers and SaaS providers exchange skills and knowledge in

71

creating and using the software as a service, and co-create value with their customers in the

process.

Finally, although such analytical generalizations are not validated beyond the observed

case, as noted by Yin (2009), they combine empirical and theoretical insights in a way that

informs further research in this important area. As our analysis incorporates empirical

observations and contributions from earlier studies, the proposed model might be applicable,

with minor variations and modifications, to other SaaS environments.

Table 8.3 - 2 Service Innovation Principles in SaaS Environments

 Service Innovation Principles in
SaaS Environments

Process
Model
Stage

Related S-D Logic
FP

1. Value co-creation requires that SaaS

providers and customers engage in

continuous quality interactions

Service

Requirements

Service

Delivery

FP 6 - The customer is always

a co-creator of value

2. SaaS providers are required to understand

their customers’ requirements and

processes while delivering the service

Service

Requirements

Service

Delivery

FP 10 - Value is always

uniquely and

phenomenologically

determined by the beneficiary

3. SaaS providers adopting a service logic

are required to implement processes that

facilitate close interactions between

teams developing and supporting the

service

Service

Development

FP 9 - All economic and social

actors are resource integrators

4. Customers require complete information

as they obtain and integrate the service

with other resources to create value

Service

Deployment

5. Customers and SaaS providers exchange

skills and knowledge through developing

and using the service

Service

Delivery

FP 1 - Service is the

fundamental basis of exchange

72

9.0 CONCLUSION

During our action research engagement at Software Inc., we collaborated with key

stakeholders and conducted research with the dual objectives of advancing academic knowledge

and enlightening professional practices (Van de Ven, 2007) . Thus, our research demonstrated

value in both theoretical and practical areas (Baskerville & Myers, 2009; Baskerville & Wood-

Harper, 1996). Accordingly, this research contributed to theory and sharpened the value co-

creation process and service quality of a SaaS provider through intervening in its release-cycle

management practices. However, as always the study has important limitations; these relate to

generalizability, research bias, and theoretical framing approach. It is to be noted that we

developed a research methodology which minimized these concerns and increased the reliability

and validity of our study.

First, the single-environment study sample used in this study may limit generalizability

(Miles & Huberman, 1994; Myers, 2008). However, this limitation should be considered against

the benefits of drawing attention to the details of processes and multiple stakeholder perspectives

(Miles & Huberman, 1994). Additionally, it is important to examine opportunities for engaging

in analytical generalizations that connect empirical insights to existing theory and into

suggestions for future research (Lee & Baskerville, 2003; Yin, 2009). Accordingly, the study

provides theoretical contributions and a grounded-process model of the value co-creation process

at Software Inc. so that other researchers may evaluate the results and their applicability to other

SaaS environments (Lee & Baskerville, 2003; Lincoln & Guba, 1985).

Second, research bias was a concern as one of our researchers is an “insider” (Coghian,

2001) and played multiple roles as both researcher and release manager at Software Inc. To

73

minimize this limitation, we gathered rich data through interviews, meetings, researchers’ notes,

and documentation from different primary and secondary sources (Miles & Huberman, 1994;

Myers, 2008; Yin, 2009). We triangulated the data with the involvement of the other two

research members and between the different data sources (Miles & Huberman, 1994).

Additionally, we followed the principles of canonical action research (Davison et al., 2004) as

set out in (Appendix A) to minimize insider bias and ensure research rigor.

Finally, the data analysis might have been susceptible to interpretive biases due to the

adoption of the S-D logic framework (Vargo & Lusch, 2004, 2008). Different theoretical

frameworks could have been applied to explore service delivery and value co-creation process at

Software Inc. However, as we evaluated the problem situation through the dual-cycle process

(McKay & Marshall, 2001), S-D logic (Vargo & Lusch, 2004, 2008) offered an appropriate

theoretical frame as we positioned the study in relation to extant SaaS, release-cycle

management, and service innovation literature.

Stakeholders at Software Inc. reported that our interventions improved the company's

release-cycle process and service quality. This helped Software Inc. to reposition their SaaS

application Secure-on-Request. Additionally, the interventions strengthened relations among the

service teams at Software Inc. and between the company and its customers. Thus, our

interventions at Software Inc. produced notable outcomes relating to release-cycle management

and service quality. The lessons learned by Software Inc. could well be relevant to other SaaS

providers in similar settings. Our findings have implications for SaaS managers seeking to

strengthen their service quality and enhance their value proposition in the market. Based on our

study at Software Inc., we recommend that SaaS managers:

74

1) Concentrate on knowledge-sharing with customers: SaaS providers would do well to

use to the fullest their direct interactions with customers, and actively seek to create

additional opportunities for knowledge-sharing. SaaS managers might implement

practical interaction forums such as CAB and the Early Adopters Program to solicit

customer feedback and grasp customer needs. Direct interactions with customers

during the service-delivery process and customer-engagement platforms should be

harnessed for knowledge-sharing and value co-creation.

2) Ensure communication among teams supporting the service: A critical lesson derived

from our collaboration with Software Inc. is that co-creating value and delivering

quality service depends upon a thorough understanding of customer needs. We further

learned that this understanding can only be gained when those responsible for service

delivery are functioning as a smooth-running unit. That is, fine-tuned communication

among the different stakeholders in turn allows the customer "voice" to ring out loud

and clear. Service quality and value co-creation were found to closely follow suit.

3) Re-organize release cycle to enhance the value co-creation process: We addressed

practical issues and enhanced the value co-creation process at Software Inc. by re-

organizing the release-cycle process. In like manner, SaaS managers might re-

organize their release-cycle process to systematically incorporate changes related to

service dominance and value co-creation, thus improving the SaaS quality and service

delivery process. Critically, the release-cycle process could be re-organized to allow

for better communication and knowledge-sharing of customer information across

different teams. Furthermore, it should allow adequate time for service-requirement

75

processes, service-quality testing, service-information completion, and advancing

service-delivery communication to customers.

4) Shift emphasis to service dominance to enhance SaaS quality: The SaaS managerial

approach should be dual-pronged: it should take into account both service- and

customer-orientation. Teams that support service internally and that do not directly

interact with customers should be helped to understand the importance of service

dominance. Gaps related to service dominance and customer orientation in SaaS

environments may be addressed through introducing into release-cycle management

certain goals such as enhancing service usability, capturing clear service

requirements, and completing service information.

5) Utilize technology to improve customer service experience: SaaS managers might

consider introducing technological capability to upgrade company-customer

interactions. These technology-assisted interactions with customers could give SaaS

providers up-to-the-minute information that may be germane to service innovation,

and permit a timely identification of customer problems. In this way, company-

customer relationships will be bolstered and the customer's role in value co-creation

and service innovation will be reinforced.

6) Utilize service mapping to improve the release cycle and service quality: We utilized

service-blueprinting to map out the service-delivery process at Software Inc. SaaS

managers might employ service-mapping techniques and similar tools to identify

opportunities for improvement, and to clarify the respective roles of the teams and

individuals who are participating in the process. The service mapping may uncover

opportunities for re-organizing the release-cycle model, identifying failure points, and

76

improving customer experience, which would in turn enrich SaaS delivery and

service quality.

This research contributed to the body of knowledge by supplementing the literature

through exploring service innovation in SaaS environments and providing insights into the role

of release-cycle management, service systems and the adoption of S-D logic principles for the

value co-creation process and service quality. Accordingly, our research began with an effort to

grasp how release-cycle management impacted on value co-creation in SaaS environments. As

we continued our work, we advanced the understanding of service innovation and proposed a

grounded-process model to describe the activities and roles of teams involved in the value co-

creation process in SaaS environments. Future studies might explore further the role of release-

cycle management in SaaS value co-creation and service dominance, adopt alternative theoretical

frameworks, and expand the proposed grounded model to the broader SaaS field.

77

APPENDIX A: SHARED PLATFORM DOCUMENT

Improving Processes and Services in a Software Unit: An Action Research

Study into Release Cycle Management

Neda Barqawi and Kamran Syed

J. Mack Robinson College of Business

Georgia State University

78

A1.0 PROBLEM SETTING

As part of its corporate business strategy, Software Inc. has decided to develop and

reposition its on-line security testing solution, Secure-on-Request. This Software-as-a-Service

(SaaS) application enables an organization to test the security of its software quickly, accurately,

affordably, and without installing additional software. This action research investigated the

challenges around the recurrent release management and the continuous service delivery

functions of Secure-on-Request at Software Inc. The release management team of the application

faces four significant problems: (1) the recent acquisition of the software; (2) the complexity of

service delivery; (3) a new engineering and product management team; and (4) software

engineering process immaturity.

A1.1 Recently Acquired Software

Software Inc. inherited Secure-on-Request through a recent acquisition. The company

plans to develop and reposition this SaaS to realize its full potential. There were issues with

Secure-on-Request stemming from before the acquisition: the original design needed rethinking,

parts of the system were difficult to use, and the system’s use of resources was less than optimal.

Overall, the software is complicated, and its components need better alignment and consistency.

As a result, the SaaS is somewhat fragile and until recently, the engineering team would not

modify its core. Instead, they built everything around it for new functionality, and consequently

the advancement of Secure-on-Request has been severely limited.

This innovation challenge is a predicament for the production group. The group is facing

difficult to manage technology at a time when Software Inc. faces serious challenges from

startup companies that threaten its market position with new, innovative technology. In this

situation, Software Inc. needs to find ways to respond to customer needs and market demands as

79

quickly as its smaller competitors. The company’s best option is to adopt more agile approaches

and business technology systems that respond nimbly to both changing market conditions and

competitive challenges.

“Security testing as a service is a way for enterprises to reduce upfront costs and to

augment limited internal resources when undertaking a software security program. This

technology area is growing and will have a significant impact on the application security market

over the next 12-18 months.” — Joseph Feiman, Ph.D., Research Vice President and Gartner

Fellow

A1.2 Complexity of Service Delivery

Secure-on-Demand is a complex, SaaS-based security-testing solution. Each customer

application submitted for security analysis is unique. A team of experts conducts a thorough

audit of each application for security vulnerabilities and provides a comprehensive and accurate

analysis. This service tests a variety of technologies (21 different development languages) for

back-end, web, mobile or cloud-based applications. It encompasses the testing of thousands of

applications, security expert teams located on four continents, services provided to sixteen

diverse industries including civilian and defense agencies, and companies of various sizes.

A1.3 New Engineering and Product Management Team

Due to the repositioning of Secure-on-Request, Software Inc. has formed several new

teams to support the recurrent release of the software. These teams, each with a specific function,

include engineering development, quality assurance, product management, program

management, and infrastructure operations. These functional teams are heterogeneous with

unique skills and knowledge. Across these teams, there are disparities in commitment due to

competing priorities. In this complex organizational set-up, the newly formed teams face two

80

critical issues: establishing appropriate collaboration patterns and effective processes, and

developing the capability to recurrently release new versions of the SaaS to market.

A1.4 Low Software Engineering Process Maturity

Processes for recurrent release-management and related activities are mostly ad hoc. On

the whole, software development is performed informally without proper documentation. As a

result, the release-management function does not operate in a repeatable fashion. Due to this less

than optimal software-development lifecycle maturity, the release-management team must work

overtime to meet set deadlines and customer expectations. There are some mature tracking

mechanisms and defined standards in place. However, quality issues are mainly addressed by

individual team members that are technically strong and experienced. As a result, the degree of

predictability in schedule, budget, scope and quality is not high and the success of a release

depends upon the heroism of a few key team members. Moreover, because there are no effective

mechanisms for organizational learning, the know-how of the software can easily be lost if an

engineer leaves the company.

A1.5 Actors

The key functional leaders associated with this challenging situation include the head of

the program management office, the development manager, the product manager and the

business owner of the services provided by the application. Each of these people faces different

but overlapping problems.

The head of the program management office is frustrated by the low visibility, weak

predictability, and inefficient processes in delivering quality software to the market. He believes

that these problems make it difficult to quickly and flexibly respond to problems and address the

needs of end-users. Fluctuating and conflicting requirements is a problem for the development

81

manager. The business owner of the service delivery of the software application is unhappy with

the quality and the speed at which solutions are being delivered. The product manager feels he is

sucked into day-to-day issues due to weak engineering processes which do not allow him

sufficient time to focus on customer needs. Together, these players seek intervention to improve

this problematic situation. Toward this end, we agreed to conduct an action research study with

the above-mentioned individuals as collaborators.

We consider release management a good starting point for intervention to improve

Software Inc.’s capabilities related to Secure-on-Request. Release management is the nub at

which all of the above-described functions meet. The release-management area oversees end-to-

end software engineering functions including requirement gathering, planning, designing,

developing, testing, and coordinating deployment activities in the Software Development

Lifecycle (SDLC). Looking at release management from the perspective of the product

management and engineering teams provided a rich, internal picture emphasizing software

engineering and management. At the same time, looking at the release-management function

from a customer-perspective provided an external, service-oriented view. Hence, release

management served as a platform for addressing the observed portfolio of problems, and drove

improvements both in software process improvement and service innovation.

82

A2.0 RELEASE CYCLE MANAGEMENT

Software release management is defined as “the process through which software is made

available to and obtained by the user” (A. Van Der Hoek, Hall, Heimbigner, & Wolf, 1997). It

includes the typically recurrent identification, packaging, and distribution of the elements of a

product such as an executable program, documentation, release notes, and configuration data

(Ballintijn, 2005; Scott & Nisse, 2001). The term “release” refers to the distribution of software

outside of the development activity, and this includes internal releases as well as outside

customers (Scott & Nisse, 2001). A well-defined release-management process can be the crux of

increased quality of release- planning, building, testing, and deployment activities. This will

likely reduce the number of problems occurring after delivering the release to customers (Lahtela

& Jantti, 2011).

The fact that Secure-on-Request was inherited through acquisition might be part of the

problem in the release-management process. High-tech companies acquire commercial off-the-

shelf software components as a strategy to achieve efficient new product development (Brown &

Eisenhardt, 1995; Kakola, Koivulahti-Ojala, & Liimatainen, 2009; Meyer & Seliger, 1998).

Companies try to shorten the cycle of new product development while reducing cost and

improving product quality and service delivery of their products in order to succeed in the global

markets of software-intensive products and services (Kakola et al., 2009; Krishnan, 1994;

Prasad, 1994). In general, software release management is further complicated by the increasing

tendency for software to be assembled as a “system of systems," constructed from pre-existing,

independently created systems. Both developers and users of such software are affected by these

trends (André Van der Hoek & Wolf, 2002)

83

Releasing a large software application is a complex procedure. In the case of Secure-on-

Request, this complexity is heightened by the number of customers that use the service. A

diverse and large customer base indicates a need for a substantial number of features to be

included in the service. Furthermore, as the service evolves over time to incorporate the changing

needs of customers, the release takes a great deal of effort and tends to be error-prone (Ballintijn,

2005). Delivering features that reliably meet customer requirements is an essential part of the

release-management process; low-quality releases affect customer operations and the long-term

relationship with their software providers (M. Kajko-Mattsson & Yulong, 2005). On-time

delivery is equally critical to customer satisfaction (Prasad, 1994). Creating a robust software-

release model and an effective release-management process will benefit business by reducing

general cost and enhancing customer satisfaction (Rana & Arfi, 2005) .

Release management involves technical and management activities that take a release

from a set of requirements to the final-delivery stage of the software (Danesh, Saybani, &

Danesh, 2011). New management of the Secure-on-Request team adds challenges to the release

process, since software typically result from the efforts of multiple individuals and teams (Otte,

Moreton, & Knoell, 2008). Managing the work of multiple teams requires careful planning to

ensure the quality of every part of the application. Meeting deadlines and documenting

milestones is equally important. A release manager can be appointed to coordinate the teams and

to identify problems that might affect the software-release process (C. Jensen & Scacchi, 2005).

Release managers play the diverse role of interacting, planning and coordinating with

different stakeholders, as well as understanding technical issues (C. Jensen & Scacchi, 2005;

Michlmayr, Hunt, & Probert, 2007) .

84

Software quality and the success of release management hinge on having the right

processes in place. Managers and developers must be provided with accurate information and

guidelines to improve decision-making processes, plan and schedule activities, predict

bottlenecks, allocate resources, and optimize implementation of change requests (Basili et al.,

1996). Van der Hoek et al. (1997) noted that release management is “a poorly understood and

underdeveloped part of the software process,” and they pointed out several pertinent issues.

Because efficient management of new-release production can improve software quality and

customer satisfaction, the release-management process is crucial to the success of large software

projects (Danesh et al., 2011) .

Software release management has garnered substantial academic and practical interest.

We categorized the reviewed articles into four areas: standardization and development of

models, process improvement, software quality, and customer and business perspectives.

Standardization was the focus of several studies on software release management (Ballintijn,

2005; Biswas, 2007; M. Kajko-Mattsson & Yulong, 2005; Ramakrishnan, 2004; A. Van Der

Hoek et al., 1997; André Van der Hoek & Wolf, 2002). Two studies identified specific issues in

software-release management, offered a list of requirements and proposed a prototype for a

software release management tool called “SRM.” The tool was designed to aid both customers

and developers in the software-release management process (A. Van Der Hoek et al., 1997;

André Van der Hoek & Wolf, 2002). Several studies examined the overall release process. These

studies identified problems and practices for release-management processes and offered practical

suggestions (Bjarnason, Wnuk, & Regnell, 2010; Danesh et al., 2011; Erenkrantz, 2003; Kakola

et al., 2009; Lahtela & Jantti, 2011). Release management has also been looked at in terms of

release-quality (Boote et al., 2007; Michlmayr, 2005; Prasad, 1994; Rana & Arfi, 2005). For

85

instance, Michlmayr (2005) found that improvement of release management impacted on quality

issues facing open-source development. This research identified problems in release practices,

and developed ways to improve release management in free-software projects. Finally, release

management has been investigated from business and customer perspectives (B. B. Jensen,

Lyngshede, & Søndergaard; M Kajko-Mattsson & Meyer, 2005; Krishnan, 1994). Krishnan

(1994) presented an economic model to evaluate the tradeoffs involved in software-release

decisions, and discussed techniques to achieve optimal software-release time (Krishnan, 1994) .

Research on software release management is limited. Consequently, no major

improvements have been seen in tools and processes used in this area. Furthermore, it has been

suggested that software-release processes have been “ad hoc and homegrown” in nature (Wright,

2009). Fierce market competition is now demanding a transformation of development strategies

that provides timely product introduction and responsiveness to customer need (Krishnan, 1994;

Pratim Ghosh & Chandy Varghese, 2004). Therefore, we are proposing an action research study

at Software Inc. on software rerelease management. Improvements in both software processes

and service-delivery quality are targeted results. The theory and practice of release management

is likely mainly instrumental in nature when focusing on the activity itself, that is, the

perspective is of a first-order nature. We also zoomed in on and explored release management on

a second-order level, that is, as an approach to organizational learning and innovation. In

addition, we looked at release management from both an internal (engineering orientation) and

external (customer orientation) perspective. Accordingly, our study contributed to the software

organization and release-management literature regarding development of high-reliability

capability, and to the SaaS and service-innovation literature regarding enhancing service-

delivery quality by improving the release-management process. This knowledge will be of both

86

practical and academic interest, as currently, significant resources are being expended on the

software-release management process.

87

A3.0 RESEARCH METHODOLOGY

A3.1 Engaged Scholarship

To achieve deep insight into the process, we applied the principles of engaged

scholarship, implying “negotiation and collaboration between researchers and practitioners in a

learning community; such a community jointly produces knowledge that can both advance the

scientific enterprise and enlighten a community of practitioners” (Van de Ven (2007), p.7).

Van de Ven describes engaged scholarship as a participative form of research for

obtaining the views of key stakeholders to understand a complex problem. By exploiting

differences between these viewpoints, he argues that engaged scholarship produces knowledge

that is more penetrating and insightful than when researchers work alone. Four alternative forms

of engaged scholarship are defined by Van de Ven: (1) informed basic research with stakeholder

advice that is undertaken to describe, explain or predict a social phenomenon; (2) co-produced

knowledge with collaborators entailing a greater sharing of power and participation between

researchers and stakeholders; (3) policy, design and evaluation research undertaken to develop

knowledge related to design and evaluation of policies, programs and models for addressing

practical and professional problems; and (4) action and intervention research for solving a

client’s problem while at the same time, contributing to the academic body of knowledge (Van

de Ven, 2007). Of the four forms of engaged scholarship, we adopted action research for a

number of reasons: we had unlimited access to Software Inc., we had close relationships to the

leadership of Secure-on-Request, we wanted to actively contribute to addressing the problems

faced by the Secure-on-Request teams, and, we assumed such interventions would provide new

valuable insights into release management and service provisioning in recurrent software

88

practices. As a result, we adopted a clinical intervention approach to diagnose and resolve a

portfolio of problems in a specific client context.

Action research was introduced by Kurt Lewin, and it makes use of intervention within

challenging social situations as a means of developing scientific knowledge (Lewin, 1951;

Rapoport, 1970). Rapport described action research as aiming “to contribute both to the practical

concerns of people in an immediate problematic situation and to the goals of social science by

joint collaboration within a mutually acceptable ethical framework” (1970, p. 499). Several

action research approaches have been developed by subsequent scholars. Susman and Evered

developed what has become known as Canonical Action Research (CAR) by expanding the work

of Lewin and Rapoport to develop a client-system infrastructure and a multi- phased cyclical

process for action research consisting of diagnosing, action planning, action taking, evaluating,

and specifying learning (Davison, Martinsons, & Kock, 2004; Susman & Evered, 1978). McKay

& Marshall, 2001 further developed the cyclical process of action research and introduced the

two simultaneous cycles of research and problem-solving. McKay and Marshall’s dual cycle

framework enables researchers to diagnose problems and develop solutions in the problem-

solving cycle while working closely with key stake holders. The research cycle allows

researchers to focus on developing and evaluating theory, while they start with an initial area of

research interest and adopt the appropriate theoretical framework (McKay & Marshall, 2001).

Figure 3.0 illustrates the two cycles and the exchange of information between them.

89

Figure 3.0: Dual Cycle Model of Action Research at Software Inc. (McKay and Marshall 2001)

A3.2 Action Research Design

Our action research study aimed to simultaneously support the Secure-on-Request

repositioning effort at Software Inc. and contribute to the body of scientific knowledge (Avison,

Baskerville, & Myers, 2001; Baskerville & Wood-Harper, 1996). The general research approach

is collaborative practice research (CPR). It is an action research methodology that advocates

methodological pluralism and collaboration between researchers and practitioners (Mathiassen,

2002). CPR methodology goal is to understand practice through interpretation, and to improve

practice through interventions (Mathiassen, 2002). CPR suggests ways to achieve the right

balance between relevance and rigor, requiring a dedicated effort involving both research and

organizational work. Throughout our study we facilitated collaboration and managed the

different agendas involved (Mathiassen, 2002). CPR disciplines complemented our action

research approach, and allowed for collecting data systematically in addition to applying

methods of interventions appropriately (Mathiassen, 2002).

90

We followed McKay and Marshall (2001) and organized our research into two parallel

cycles: the problem-solving cycle and the research cycle. We adopted the IDEAL model

(McFeeley, 1996) to guide our activities in the problem-solving cycle. Moreover, to ensure

applicability and accuracy, we followed the five principles and associated criteria for Canonical

Action Research (CAR) suggested by Davison et al. (2004). In Section 5, we provide a detailed

account of how these principles were applied to our research at Software Inc.

Our action research was collaborative and iterative and focused on problem diagnosis,

change, and reflection (Avison et al., 2001). Three methodological characteristics apply across

the action research cycles (Baskerville & Wood-Harper, 1996). First, the researcher is actively

involved with expected benefits for both the researcher and the organization. In our case, one of

the researchers is the release manager of the project we are studying at Software Inc. His

organization benefited from the ideas developed during the problem-solving cycle through the

enhancement of the knowledge base of their release management process. Second, immediate

application of the knowledge obtained, and cyclical process linking theory and practice. As we

moved forward with our activities, we applied the knowledge gained. Finally, the cyclical

process should link theory and practice. Most participants were, to some extent, involved in all

aspects of the action research cycles.

Rapoport (1970) identified three characteristic dilemmas of action research: ethics, goals

and initiative. He suggested that a resolution in the science direction could lead away from action

and vice versa. He also argued that “good” action research selectively combines elements of both

directions. We were on the look-out for these dilemmas in our research with Software Inc.

Examples of ethical dilemmas include researcher reactions to the client, managing confidentiality

of participants, being approached by a competitor of a client, and personal involvement in the

91

client’s organization (Rapoport, 1970). Since one of the researchers is a manager at Software

Inc., we were conscious of his dual role as researcher and employee of the client for whom we

conducted the study. We consider that working with two other researchers and other

stakeholders, and triangulating the data, will reduce the risks associated with dual allegiance. The

discrepancy between practice and academic goals is the second dilemma identified by Rapport.

We managed this dilemma by applying the recommended style composition practices

(Mathiassen, Chiasson, & Germonprez, 2012), identifying the dual cycles of action research

(McKay & Marshall, 2001), and recognizing the role duality as an insider action research project

raised by (Coghian, 2001). Initiative, which in this context concerns the solving of a client’s

problem as opposed to the pursuit of knowledge for knowledge’s sake, is the third dilemma

identified by Rapoport (Rapoport, 1970). The combined effort of multiple stakeholders when

conducting engaged scholarship and action research provided the proper platform for us to deal

with this dilemma.

92

A4.0 PROBLEM-SOLVING CYCLE

We worked in a collaborative, stepwise, iterative fashion as we engaged in the problem-

solving cycle to support the release-management and service-delivery processes at Software Inc.

To guide our activities in the problem-solving cycle, we adopted the IDEAL model (McFeeley,

1996). This model is an approach for innovating software practices and was developed in 1996

by the Carnegie Mellon University Software Engineering Institute (McFeeley, 1996). The

IDEAL model (Initiating, Diagnosing, Establishing, Acting, and Learning), illustrated in Figure

4.0, is very similar to the CAR five-phase cyclical approach (diagnosing, action planning, action

taking, evaluating, and specifying learning) developed by Susman and Evered (1978). Enacting

the phases of the IDEAL process guided our activities in the problem-solving cycle as well as

provided opportunities to make research contributions as we studied the change processes over

time.

Figure 4.0: IDEAL Model (McFeeley, 1996)

Stimulus for
improvement

Set context &
Establish

sponsorship

Establish

infra-
structure

Appraise &
Characterize

current process

Develop recommendations

& Document results

Set strategy &
Priorities

Establish

process action
teams & Action

plans

Define processes & measures

Plan & Execute pilots
Plan. Execute, & Track installation

Document &

Analyze lessons

Revise

organizational
approach

INITIATING

DIAGNO-
SING

ESTABLISH-
MENT

ACTING
LEARNING

93

Table 4.0: IDEAL Model Phases (McFeeley, 1996)

Initiation phase Obtaining commitment, setting goals and establishing an improvement

infrastructure

Diagnostic phase
Assess current practices; develop and prioritize recommendations for

improvements

Establishment

phase

Create specific, focused improvement initiatives. Teams are established to

deal with each of the recommended improvement areas from the

diagnostic phases

Acting phase
Develop and implement solutions for each improvement area.

Learning phase Develop plan based on the results of the initiatives. Improvements data are

collected and new evaluation is prepared

A4.1 Initiation Phase

In the initiation phase, we created an initial improvement infrastructure and established

the “mutually acceptable ethical framework” (Rapoport, 1970) that served as the foundation for

our study. We also secured a commitment from Software Inc. to work on the possible

improvement areas (McFeeley, 1996). Table 4.1: Initiation Phase Key Dates provides a summary

of key dates during the initiation phase at Software Inc. The research team received Institutional

Review Board approval (IRB) on March 8 2013. The research team created a memorandum of

understanding (MOU) which functioned as the researcher-client agreement (RCA) (Davison et

al., 2004) for the study. The MOU defined the initial roles and responsibilities of both Software

Inc. and the research team. It also clarified the dual objectives of contributing to research and

practice, and provided an overview of project outcomes. Subsequently, we obtained approval for

the improvement plans as well as a commitment for resources to accomplish future tasks.

94

Table 4.1: Initiation Phase Key Dates

Date Activity

January 5, 2013
Email sent to Software Inc. senior manager regarding possible

collaboration

January 12, 2013
Invitation to collaboration meeting with Software Inc. senior

management

March 08 , 2013 IRB Approval for Protocol Application Number: H13290

March 11, 2013
The Memorandum of Understanding was shared and agreed to by

Software Inc.

March 15, 2013 First meeting for the project steering committee

April 09, 2013 Starting Diagnostic Phase : First diagnostic interview was conducted

A4.2 Diagnostic Phase

In the diagnostic phase, we established the foundation for the later phases in the process.

The goal of the diagnostic phase was to understand the current practices and challenges related to

software release management and service delivery within Software Inc.

 We assessed existing software-release and service-delivery practices related to Secure-

on-Request at Software Inc. and established our baseline. We collected data between March 2013

and June 2013 to assess current practices from the viewpoint of key stakeholders at Software Inc.

(Table 4.2-1: Diagnostic Phase Key Dates). Our diagnostic work included 16 semi-structured

interviews, several meeting with Software Inc. stakeholders, and a review of performance data

extracted from Software Inc. internal tracking tools and systems. Our assessment included

perception-based methods constructed from our interviews and meetings with Software Inc.

stakeholders (Napier, Mathiassen, & Johnson, 2009). It also included practice-based methods,

derived from a review of release-management and service- delivery practices in the literature.

95

Finally, we analyzed the performance data and reported results extracted from the main tracking

systems of Software Inc.

Table 4.2-1: Diagnostic Phase Key Dates

Date Activity

April 09, 2013
Starting Diagnostic Phase : First diagnostic interview was

conducted

April 10, 2013
Meetings with product management team of Secure-on-Request

started

April 11, 2013
Meetings with software development team of Secure-on-

Request started

May 22, 2013 Last interview for initial diagnosis was completed

June 05, 2013 Release-management standards assessment completed

June 10, 2013 Service-quality standards assessment completed

June 14, 2013 First draft of diagnostic report completed

June 20, 2013
Steering committee meeting to share and discuss diagnostic

findings

June 28, 2013
Establishment phase begins: First meeting to plan improvement

projects

For the practice-based part of the assessment, the research team selected norms and

practices that were identified in the release-management literature (Elephant, 2006; Team, 2006),

and compared them to current release practices at Software Inc. We also selected service-

delivery principles identified in the service-science literature (Karpen, Bove, & Lukas, 2012;

Schneider & Bowen, 2010; Vargo & Lusch, 2004), and compared them to current service-

delivery practices at Software Inc. The research team assigned scores based on data collected and

observations, as it will be illustrated in the individual dissertation documents for the research

team members (Barqawi, 2014; Syed, 2014)

96

In the perception-based part of the assessment we identified individuals from Software

Inc. who were involved in the release process of Secure-on-Request as well as internal and

external customers (Napier et al., 2009). The research team created an interview guide that

discussed objective and subjective information about the release cycle and service-delivery

processes related to Secure-on-Request. The research team conducted semi-structured interviews

with the individuals listed in Table 4.2-2: Diagnosing Interview Sources.

Table 4.2-2: Diagnosing Interview Sources

Group Role Count

Software Development
Manager

Engineer
2

Quality Assurance
Manager

Engineer
2

Product Management
Manager

PM
2

Project Management
Manager

Release Manager
2

Internal Customers

Business Owner

Professional Services

Sales

Technical Account

Managers

6

External Customers Managers 2

 Total 16

The research team met and analyzed the interviews to reflect upon emerging themes on

release-management and service-delivery practices related to Secure-on-Demand. Participants’

viewpoints were analyzed with a focus on strengths and weaknesses of current release-

management and service-delivery practices. The identified areas for improvement are illustrated

97

in Table 4.2-3. We will expand on these identified areas in the research team members’

individual dissertation documents (Barqawi, 2014; Syed, 2014), as it relates to their research

focus.

Table 4.2-3 Identified Possible Areas for Improvement at Software Inc.

Area Identified Issues

Specifying and Stabilizing

Requirements

• Unclear requirements cause confusion, rework, delayed

releases and adverse effects on our ability to ensure

software quality.

• Inadequate verification of requirements quality

“In detailing our requirements there should always be a

picture or a screenshot (wireframe) of what it should look like

if it is a customer facing thing, so there will be no confusion”

Prioritizing Requirements

Across Channels

• Expectations are high, release timeline is short, and

resources are limited

• Too many inputs for requirements for detailed analysis

due to time constraint

• Prioritization within and between new features

development, escalations, fixing defects and technical debt

are major challenges

“Our maturity and our ability to move forward with the

prioritization process isn’t still 100% there, and we all agree

that is not what we want to be in the long term”

Managing Technical Debt

• Inherent product maturity issues

• Deadline pressure due to short release cycle

• Lack of unit test, peer code review, definition of “done”

• Technical debt often results in escalation of customer

problems

“We definitely have some technical debt, and I would say

moderate quality, it is not high quality, I think it is important

to say that our technical debt in January was much higher

than it is now”

98

Area Identified Issues

Testing Releases

• New quality assurance team and new management. Continue

to mature quality assurance processes

• Unclear and changing requirements adversely affect ability to

ensure software quality

• Lack of visibility of planned features for releases: adding

features late in the sprint creates challenges for QA

• Frequency of releases is affecting the time allowed for better

testing for and stabilization of the software

 “We don’t have enough time between the end of the release and

the time we put it out to get full quality regression tests done”

Managing Release

Cycles

• Monthly releases help catch up with competition in market

• Monthly releases does not allow enough time for requirements

analysis, testing, documentation and customer communication

“Frankly the customers can’t absorb this frequent updates and

changes, and in the process we haven’t been given the customers

enough time to know it is changing”

“We could do a 90 day cycle that could give us more time to

provide more components and focus on the core capability of the

application”

Maintaining Complete

Service Information

• Information about features in new releases is not effectively

communicated to TAM’s and customers

• Release frequency is not allowing enough time for generating

complete service information

 “Release notes and user guide documentations, have been a real

challenge because we have a monthly release cycles and how can

you write documentation if you are actually writing codes the night

before it goes out, it is pretty hard”

Communicating Releases

Across Customers

• Release process is unclear for internal customers

• Technical account managers feel the need to “hedge” their

communication to avoid failure to meet customers’

expectations

• Customers require early notice of new features released

• Engineering work closely with Technical account managers,

Beta is an initiative in this direction, Recent UI changes made

to help

“Customers commented on one of latest releases as the following:

you guys just released all that stuff and we were not expecting it,

we are glad you are doing all that kind of stuff, but we want more

notice”

99

Area Identified Issues

Giving Customers a

Voice

• Servicing large and diverse customer base allows for

developing heterogeneous functions and features

• A need for better way to understand and address customer

expectations and needs

• Fixing problems without changing the user interface making it

difficult for customers to appreciate the enhancement

“Lack of certain usability features is seen as defects by customers,

but this not how we see it”

During the course of the study, the steering committee was kept informed of the activities

through weekly status reports and periodic status meetings. The research team documented the

assessment findings in a complete diagnostic report, and a steering committee meeting was held

on June 20, 2013 to describe the findings and overall recommendations. Table 4.2-4 illustrates

the list of improvement options and recommendations shared with the steering committee during

that meeting.

100

Table 4.2-4 Suggested Improvement Options at Software Inc.

Area Improvement Options

Release Frequency Move from 30 day to 90 day release model

Service Requirements

• Allow more time for requirements analysis

• Ensure key stakeholders agree on requirements and how they

are prioritized

• Ensure requirements are explicated and effectively shared

across developers, QA and documentation

• Ensure requirements changes are managed explicitly and

shared effectively

• Use Wireframes to ensure effective communication between

technical and business people

• Early demo of feature for key stakeholders

Software Quality

• Allow time for testing by reducing release frequency

• Involve QA early in the process to support development of

test cases based on requirements

• Strengthen collaboration between development and QA

about requirements, test cases, test results, and defect fixing

• Introduce automatic testing to free resources from mundane

testing, provide quick feedback to developers, and focus on

high-priority issues

Customer Relationships

• Help customers build knowledge and competence by

maintaining complete service information and scheduling

monthly customer webinars

• Gain better insight into customer needs and expectations by

integrating support capability directly in the portal and

scheduling quarterly on site reviews with customers

• Improve communication of releases across TAMs and

customers by providing updates and notifications in the

system on new features upon application access

• Continue assessments with key people, TAM’s and customers

to create stronger basis for improving customer

relationships

A4.3 Establishment Phase

In the establishment phase, we prioritized the issues that Software Inc. would address and

we developed strategies for reaching solutions (Table 4.3-1: Establishment Phase Key Dates).

101

Table 4.3-1: Establishment Phase Key Dates

Date Activity

June 28, 2013
Establishment phase begins: First meeting to plan improvement

projects

July 1 , 2013
Meetings with steering committee members to agree on strategy

and deliverables of improvement projects

July 2, 2013
Acting phase begins: Kick-off meetings for improvement projects

started

We completed the detailed process-improvement plan based on the agreed-upon strategy,

and designed plans to execute it. The suggested improvement strategy were implemented

through a number of dedicated project teams with clear timelines and identified deliverables. The

steering committee members agreed to form three teams to work on three improvement projects:

customer relations, software quality, and release cycle. The details of these improvement projects

will be discussed in the individual dissertation documents for the research team members

(Barqawi, 2014; Syed, 2014). Table 4.3-2 shows an overview of the three improvement projects

approved by the steering committee members. The steering committee was responsible for

approving the overall plans for the improvements identified in the diagnostic phase.

102

Table 4.3-2 Secure-on-Request Release Management and Service Delivery

Project Name Project Roles Project Deliverables

Improve Customer

Relationship

• Project Manager: Release Manager

• Project Contributors: Business Owner,

Product Manager, Technical Account

Managers, Selected External Customers

• Project Consultants: Research team

• Project Sponsor: Secure-on-Request

business owner

• Enhanced Service

Usability

• Value Added Services

• Capturing The Voice of

The Customer

• Operational Preparedness

• Implementation Plan

• Leadership Team

Commitment

Improve

Requirements And

Quality

• Project Manager: Release Manager

• Project Contributors: Development

Manager, Product Managers, QA Managers

• Project Consultants: Research team

• Project Sponsor: Secure-on-Request

business owner

• Requirement Management

Process

• Requirement Specification

Formats

• Development–Test

Exchange Process

• Development–Test–

Documentation

Management

• Operational Preparedness

• Implementation Plan

• Leadership Team

Commitment

Improve Release

Cycle

• Project Manager: Release Manager

• Project Contributors: Development

Manager, Product Manager, QA Manager

• Project Consultants: Research team

• Project Sponsor: Secure-on-Request

business owner

• Revised Release Model

• Customer Communication

Strategy

• Operational Preparedness

• Implementation Plan

• Leadership Team

Commitment

A4.4 Acting Phase

In the acting phase, we positioned the improvement projects agreed on at Software Inc.,

to address the areas for improvement identified during the diagnosing phase (Table 4.4: Acting

Phase Key Dates). The strategy and prioritization as well as deliverables were agreed upon in the

establishment phase. The research team and steering committee members held a kick-off meeting

103

for each improvement project. At the kick-off meetings, the teams were given a set of objectives

and deliverables. The teams were provided with draft project plans along with expected delivery

dates. Numerous meetings were held between research team members and improvement teams to

work on the deliverables and assess progress. An interim status meeting for the steering

committee was held on August 19, 2013, where a status update on the three projects was

presented and progress was discussed.

Table 4.4: Acting Phase Key Dates

Date Activity

July 2, 2013
Acting phase begins: Kick-off meetings for improvement projects

started

July 2 , 2013 Kick-off meeting for improved customer relationship project

July 3, 2013 Kick-off meeting for improved requirements and quality project

July 5, 2013 Kick-off meeting for improved release cycle project

August 19, 2013 Interim status meeting for steering committee members

September 30, 2013 Deliverables from project teams due

October 26, 2013 Learning Phase begins: acting phase completion meeting

The project team members provided projects deliverables for review on September 30,

2013. The completion meeting to close this phase was conducted on October 19, 2013. The

details and key outcomes for each project are included in the individual dissertation documents

for the research team members (Barqawi, 2014; Syed, 2014).

A4.5 Learning Phase

In the learning phase, we reviewed the implemented solutions as well as evaluated the

outcome of the three improvement projects (Table 4.5: Learning Phase Key Dates). Our learning

104

phase assessments included perception-based as well as practice-based methods (Napier et al.,

2009) with a focus on evaluating the impact on the release cycle and service-delivery process of

Secure-on-Request. our goal was to identify changes in each of the three project improvement

areas, the effect on the processes as well as the challenges that occurred during implementing the

changes, and suggestions for improvement. For the perception-based assessment, we conducted

fourteen semi- structured interviews with the key stakeholders. Each interview was around 45

minutes, and was recorded, and later transcribed. Our goal was to determine how different

stakeholders perceived the overall value of the improvement projects implemented, their

satisfaction with their own level of involvement, as well as suggestions for future improvement.

For the practice-based part of the assessment, we used the norms and practices from release

management and service-delivery literature identified in the diagnostic phase (Elephant, 2006;

Team, 2006; Karpen, Bove, & Lukas, 2012; Schneider & Bowen, 2010; Vargo & Lusch, 2004)

and compared them to software release management service-delivery practices at Software Inc.

after implement the improvement projects. The research team assigned scores based on data

collected and observations, and the assessment results were compared against those from the

diagnosing phase as it will be illustrated in the individual dissertation documents for the research

team members (Barqawi, 2014; Syed, 2014). The resulting assessments and findings were

summarized. An overall assessment of the value of the improvement projects will be discussed

in details the individual dissertation documents for the research team members (Barqawi, 2014;

Syed, 2014).

105

Table 4.5: Learning Phase Key Dates

Date Activity

October 26, 2013 Learning Phase started

November 14, 2013 First learning phase interview was conducted

December 5, 2013 Last learning phase interview was completed

February 28, 2014 Release-management standards assessment completed

February 28 , 2014 Service-quality standards assessment completed

106

A5.0 RESEARCH CYCLE

The research cycle for this study was guided by the style composition for action research

developed by Mathiassen, et al. (2012). Our research explored software release management,

software improvement, and software-as-a-service and service-science streams of literature. The

study employed Pettigrew’s contextualist inquiry theory (Pettigrew, 1985) to analyze how

release cycle management can be improved in the context of recurrent development of software.

Additionally, the study adopted Service-dominant logic as a theoretical framework (Vargo &

Lusch, 2004) to analyze how the release management process can be organized to improve

Software Inc.’s ongoing value co-creation with its customers. Our research process was a

collaborative and iterative process highlighting problem diagnosis, change, and reflection

(Avison et al., 2001). Furthermore, our study satisfied the three methodology characteristics that

were described across action research cycles (Baskerville & Wood-Harper, 1996). First, the

researcher is actively involved with expected benefits for both the researcher and the

organization. In our case, one of the researchers was the release manager of the project we are

studying at Software Inc. We expect that as a manager, his organization will benefit from the

suggestions developed during the problem-solving cycle and add to the understanding of their

release-management process. Secondly, we linked theory and practice through immediate

application of the knowledge obtained, and by following the cyclical process. Using our research

at Software Inc., we applied knowledge gained as we moved forward to the next set of activities.

We followed CAR principles of action research to guarantee rigor as we conducted our

study and depicted the research cycles (Davison et al., 2004). As explained in Section 3 on the

adopted action research design, the authors provided specific questions and criteria for each

principle (Davison et al., 2004) to guide the study.

107

A5.1 Data Collection

Action research and qualitative research require rigorous documentation, data collection,

and documentation methods (Avison et al., 2001; Miles & Huberman, 1994). Our study

employed several sources for data collection, which include interviews, meetings, field

observations, researchers’ notes, and unlimited access to Software Inc. internal systems reports

and process documentation. For our diagnostic phase, we identified key individuals from

Software Inc. to be interviewed for our study. We conducted sixteen one-hour face-to-face as

well as phone interviews. All interviews were conducted in English, and detailed notes were

taken. All interviews were recorded. During the course of our data collection, we used

triangulation (Miles & Huberman, 1994) to counterbalance any insider bias (Coghian, 2001).

Table 5.1 outlines the specific primary and secondary data sources for our data collection phase.

Data collection methods for the study are discussed in more detail in the individual dissertation

documents for the research team members (Barqawi, 2014; Syed, 2014).

108

Table 5.1: Primary and Secondary Data Sources

Primary Data Sources Secondary Data Sources

Meetings:

 Release Management Meetings (Weekly)

 Bi-Weekly Scrums

 Monthly Release Planning and Demos

 Daily Customer Escalation Calls

Release management documentation

tools:

 Requirements Management tool

 Defect Management tool

 Customer Relationship Management

tool

Semi-structured interviews:

 Professional Services

 Sales

 Quality Assurance

 Product Management

 Operational Services

 Development

 Business Unit Owner

 Technical Account Management

 Project Managers

 External Customer

A5.2 Data Analysis

Analysis was performed using a variety of qualitative data analysis techniques and

followed the guidelines suggested by Miles and Huberman (1994). We used Pettigrew’s

contextualist inquiry theory and its adopted constructs (Pettigrew, 1985) in analyzing the data

related to the study of release management focused on the internal software process

improvement at Software Inc. We also used Service-dominant logic as framework (Vargo &

Lusch, 2004, 2008) in analyzing the data related to the service delivery practices of Secure-on-

Request. Additionally, our study followed the qualitative data analysis strategy offered by Miles

and Huberman (1994). They propose three concurrent flows of activities: data reduction, data

display, and conclusion drawing and verification. These activities were enacted continuously

109

throughout the data collection process as it is explained in more detail in the individual

dissertation documents for the research team members (Barqawi, 2014; Syed, 2014).

Our team of researchers independently analyzed the interviews and meetings transcripts

and used triangulation throughout the data analysis to offset potential for insider-bias related to

the role held by one of our research team members in Software Inc. (Coghian, 2001). Qualitative

data analysis software (NVIVO) was used to classify, tabulate, and visualize the data. We used

the constructs and concepts from the adapted theoretical framework to analyze and code our

data. Data analysis strategy and outcome of the study will be discussed in more detail in the

individual dissertation documents for the research team members (Barqawi, 2014; Syed, 2014).

110

A6.0 PRINCIPLES OF CANONICAL ACTION RESEARCH

We followed the principles of CAR to ensure rigor as we conducted our study at

Software Inc. Davison, Martinsons and Kock write that CAR is directed by five principles: 1)

researcher-client agreement; 2) cyclical process model; 3) theory; 4) change through action; and

5) learning through reflection (2004). The authors provide criteria for each principle that we

followed to ensure the rigor and relevance of our study (Davison et al., 2004).

Following the principle of Researcher-Client Agreement (Davison et al., 2004), we

provided a framework for our research by communicating the overall objectives of the study and

by explaining the roles of research team members. The Memorandum of Understanding on

Research Collaboration (MoU) that we initially shared with Software Inc. clearly stated the

objective of the research project. Software Inc. committed the time and resources needed to

complete the study. The business owner of the product Secure-on-Request at Software Inc.

became the sponsor of the project and helped identify the roles of the steering committee as well

as those of the problem-solving project’s team members. Key deliverables and evaluation criteria

were communicated to all stakeholders. Software Inc. also agreed to our data collection methods

including interviews, meeting attendance, and data and reports from internal systems and internal

communications. Table 6.1 lists the evaluation of the principle of Researcher-Client Agreement

criteria of our study.

111

Table 6.1: Criteria for the Researcher-Client Agreement

Principle 1 – Criteria for the
Researcher - Client

Agreement
Applied to Software Inc.

1a – Did both the researcher and the

client agree that CAR was the

appropriate approach for the

organizational situation?

No

No explicit agreement with Software Inc.,

but we followed the CAR principles to

guide our research effort.

1b – Was the focus of the research

project specified clearly and

explicitly?

Yes

Our MoU with Software Inc. clearly stated

the objective of the study: Improving

processes and services in a software unit:

An action research study into release

management.

1c – Did the client make an explicit

commitment to the project?
Yes

Software Inc. committed to the project the

time and resources needed to complete the

study.

1d – Were the roles and responsibilities

of the researcher and client

organization members specified

explicitly?

Yes
Steering committee as well as the problem

solving team were specified.

1e – Were project objectives and

evaluation measures specified

explicitly?

Yes
Key deliverables and evaluation criteria

were communicated to all stakeholders.

1f – Were the data collection and analysis

methods specified explicitly?
Yes

Software Inc. approved our data collection

methods, including interviews, meeting

attendance, data and reports from internal

systems, and internal communications.

The principle of the Cyclical Process Model evaluates the relationship between

diagnosing and acting (Davison et al., 2004). It emphasizes the need for modifying processes

based on continuing evaluations. We followed McKay and Marshall’s (2001) dual-cycle model;

therefore, the information gleaned from the problem-solving cycle was incorporated into the

research cycle, and the knowledge from the research cycle was integrated in the problem-solving

cycle. We modified our project plans throughout the course of our study in response to

112

challenges encountered and new knowledge gained. Continuous evaluation of our strategy and

results were discussed in meetings held between steering committee members. Table 6.2

summarizes the evaluation of the principle of Cyclical Process Model criteria of our study.

Table 6.2: Criteria for the Cyclical Process Model

Principle 2– Criteria for
the Cyclical Process

Model (CPM)
Applied to Software Inc.

2a – Did the project follow the

CPM or justify any deviation

from it?

Yes

We followed McKay and Marshall’s (2001) dual-

cycle model, therefore the information from the

problem-solving cycle added to the research

cycle while the knowledge from the research

cycle was employed in the problem-solving

cycle.

2b – Did the researcher conduct an

independent diagnosis of the

organizational situation?

Yes

2c – Were the planned actions

based explicitly on the results

of the diagnosis?

Yes

2d – Were the planned actions

implemented and evaluated?
Yes

2e – Did the researcher reflect on

the outcomes of the

intervention?

Yes

2f – Was this reflection followed

by an explicit decision on

whether or not to proceed

through an additional process

cycle?

Yes

Throughout the course of our study we modified

our project plans based on challenges

encountered and new knowledge gained.

Continuous evaluation of our strategy and results

were discussed in meetings held between steering

committee members.

The Principle of Theory focuses the research cycle and the project by ensuring that the

research is guided by a theoretical framework (Davison et al., 2004). We adopted Pettigrew’s

contextualist inquiry theory as a framework to analyze how release cycle management can be

improved in the context of recurrent development of software (Pettigrew, 1985). Based on

insights from our analysis, the study developed recommendations for software providers to

113

manage their software releases and software processes. Our study also adopted the service-

dominant logic framework (Vargo & Lusch, 2004) to analyze how the release-management

process can be organized to improve Software Inc.’s ongoing value co-creation with its

customers. As a result, the study contributed to improving release management at Software Inc.

and added to knowledge about the challenges and opportunities for software vendors to manage

releases and improve the value delivered to and co-created with their customers. The theoretical

frameworks chosen for our study guided our interventions and research activities as well as

helped in evaluating the outcomes. Table 6.3 summarizes the evaluation of the Principle of

Theory criteria of our study.

Table 6.3: Criteria for the Principle of Theory

Principle 3 – Criteria for the
Principle of Theory

Applied to Software Inc.

3a – Were the project activities guided by a

theory or set of theories? Yes
We adopted Pettigrew’s contextualist

inquiry theory as a framework to

analyze how release cycle

management can be improved in the

context of recurrent development of

software.

Service-dominant logic framework

was adopted to analyze how the

release management process can be

organized to improve Software Inc.’s

ongoing value co-creation with its

customers.

3b – Was the domain of investigation and the

specific problem setting relevant to, and

significant for, the interest of the

researcher’s community of peers as well as

the client?

Yes

3c – Was a theoretically based model used to

derive the causes of the observed problem? Yes

3d – Did the planned intervention follow from

this theoretically based model? Yes

The theoretical frameworks chosen

for our study guided our intervention

and research activities at Software

Inc. as well as helped in evaluating

the outcomes.

The principle of Change through Action helps researchers and clients isolate and resolve

problems (Davison et al., 2004). Research team members and the steering committee agreed to

114

improve both the release process of Secure-on-Request and the service quality delivered to their

customers. The researchers and steering committee members identified specific areas for

improvement after a comprehensive assessment was conducted. The research team ensured that

decisions were made with the involvement of all relevant stakeholders at Software Inc. The

process and plans for the project were documented and progress was communicated to all

stakeholders. Consequently, Software Inc. was supportive of our efforts throughout the project

and was appreciative of the work done to improve their release-management process and service

quality. Table 6.4 summarizes the evaluation of the principle of Change through Action criteria.

Table 6.4: Criteria for the Principle of Change through Action

Principle 4 – Criteria for the Principle of
Change through Action

Applied to Software Inc.

4a – Were both the researcher and client motivated to improve

the situation?
Yes

Software Inc. and the

research team members

agreed on improving the

release process of

Secure-on-Request and

improving the service

quality delivered to

customers.

4b – Were the problem and its hypothesized cause(s) specified

as a result of the diagnosis?
Yes

Specific areas for

improvement were

identified after a

comprehensive

assessment was

conducted at Software

Inc.

4c – Were the planned actions designed to address the

hypothesized cause(s)
Yes

4d – Did the client approve the planned actions before they

were implemented?
Yes

Decisions were made

with the involvement of

all relevant stakeholders.

Project plans were

documented and

progress was

communicated to all

stakeholders.

4e – Was the organization situation assessed comprehensively

both before and after the intervention?
Yes

4f – Were the timing and nature of the actions taken clearly

and completely documented?
Yes

115

The principle of Learning through Reflection concerns learning through reflection from

practical work as well as research (Davison et al., 2004). The research team discussed in a

meeting with the steering committee members the areas targeted for improvement in the

software-release and the service-delivery process. Shortly thereafter, initial recommendations for

improvement in these areas were communicated to Software Inc. The research team provided an

update on the status of each improvement project in a weekly communication that was sent out to

key stakeholders. Several meetings were held with key stakeholders from Software Inc. to assess

progress and discuss ways to ensure continuous improvement and rigorous data collection. Table

6.5 summarizes the evaluation of the principle of the Learning through Reflection criteria.

116

Table 6.5 Criteria for the Principle of Learning through Reflection

Principle 5 – Criteria for the
Principle of Learning through

Reflection
Applied to Software Inc.

5a – Did the researcher provide progress

reports to the client and organizational

members?

Yes

The research team provided an update

on the status of each improvement

project, in a weekly communication

material that was sent out to Software

Inc. key stakeholders.

5b – Did both the researcher and the client

reflect upon the outcomes of the project?
Yes The research team discussed the areas

needed for improvement Software Inc.

Initial recommendations for

improvement were communicated to

key stakeholders shortly thereafter.

5c – Were the research activities and

outcomes reported clearly and

completely?

Yes

5d – Were the results considered in terms of

implications for further action in this

situation?

Yes

Several meetings were held with key

stakeholders from Software Inc. to

assess progress and discuss ways to

ensure continuous improvement and

rigorous data collection

5e – Were the results considered in terms of

implications for actions to be taken in

related research domains?

Yes

5f – Were the results considered in terms of

implications for the research community

(general knowledge, informing/re-

informing theory)?

Yes

5g – Were the results considered in terms of

the general applicability of CAR?
Yes

In sum, we applied literature-derived knowledge on, Pettigrew’s contextualist inquiry

theory and service-dominant logic as theoretical frameworks (Pettigrew, 1985; Vargo & Lusch,

2004, 2008), and action research as a methodology (Davison et al., 2004; Lewin, 1951;

Mathiassen, 2002; McKay & Marshall, 2001; Rapoport, 1970), and engaged in collaborative

117

research and problem-solving at Software Inc. Our research aimed to provide rich data for

software-process and service-delivery improvements at Software Inc.

118

APPENDIX A REFERENCES

Avison, D., Baskerville, R., & Myers, M. (2001). Controlling action research projects. Information

technology & people, 14(1), 28-45.

Ballintijn, G. (2005). A case study of the release management of a health-care information system. Paper

presented at the proceedings of the IEEE International Conference on Software Maintenance,

ICSM2005, Industrial Applications track.

Barqawi, N. (2014). Software Service Innovation: An Action Research into Release Cycle Management.

Basili, V., Briand, L., Condon, S., Kim, Y.-M., Melo, W. L., & Valett, J. D. (1996). Understanding and

predicting the process of software maintenance release. Paper presented at the Proceedings of the 18th

international conference on Software engineering.

Baskerville, R. L., & Wood-Harper, A. T. (1996). A critical perspective on action research as a method

for information systems research. Journal of Information Technology, 11(3), 235-246.

Biswas, P. K. (2007). Autonomic Software Release Management for Communications Networks. Paper

presented at the Integrated Network Management, 2007. IM'07. 10th IFIP/IEEE International

Symposium on.

Bjarnason, E., Wnuk, K., & Regnell, B. (2010). Overscoping: Reasons and consequences—A case study

on decision making in software product management. Paper presented at the Software Product

Management (IWSPM), 2010 Fourth International Workshop on.

Boote, J. W., Hanemann, A., Kudarimoti, L., Louridas, P., Marta, L., Michael, M., . . . Tsompanidis, I.

(2007). Quality assurance in perfSONAR release management. Paper presented at the Quality of

Information and Communications Technology, 2007. QUATIC 2007. 6th International Conference on

the.

Brown, S. L., & Eisenhardt, K. M. (1995). Product development: Past research, present findings, and

future directions. Academy of management review, 343-378.

Coghian, D. (2001). Insider Action Research Projects Implications for Practising Managers. Management

Learning, 32(1), 49-60.

Danesh, A. S., Saybani, M. R., & Danesh, S. Y. S. (2011). Software release management challenges in

industry: An exploratory study. African Journal of Business Management, 5(20), 8050-8056.

Davison, R., Martinsons, M. G., & Kock, N. (2004). Principles of canonical action research. Information

Systems Journal, 14(1), 65-86.

Elephant, P. (2006). ITIL IT Service Management Essentials. Course Workbook. Burlington, Ontario:

Pink Elephant Inc.

Erenkrantz, J. R. (2003). Release management within open source projects. Proceedings of the 3rd Open

Source Software DevelopmentWorkshop, 51-55.

Jensen, B. B., Lyngshede, S., & Søndergaard, D. Quality Assurance Recommendations for Open Source

Developers.

119

Jensen, C., & Scacchi, W. (2005). Collaboration, leadership, control, and conflict negotiation and the

netbeans. org open source software development community. System Sciences, 2005. HICSS'05.

Proceedings of the 38th Annual Hawaii International Conference on, 196b-196b.

Kajko-Mattsson, M., & Meyer, P. (2005). Evaluating the acceptor side of EM< sup> 3</sup>: release

management at SAS. Paper presented at the Empirical Software Engineering, 2005. 2005

International Symposium on.

Kajko-Mattsson, M., & Yulong, F. (2005). Outlining a model of a release management process. Journal

of Integrated Design and Process Science, 9(4), 13-25.

Kakola, T., Koivulahti-Ojala, M., & Liimatainen, J. (2009). An Information Systems Design Theory for

Integrated Requirements and Release Management Systems. Paper presented at the System Sciences,

2009. HICSS'09. 42nd Hawaii International Conference on.

Karpen, I. O., Bove, L. L., & Lukas, B. A. (2012). Linking Service-Dominant Logic and Strategic

Business Practice A Conceptual Model of a Service-Dominant Orientation. Journal of Service

Research, 15(1), 21-38.

Krishnan, M. S. (1994). Software release management: a business perspective. Paper presented at the

Proceedings of the 1994 conference of the Centre for Advanced Studies on Collaborative research.

Lahtela, A., & Jantti, M. (2011). Challenges and problems in release management process: A case study.

Paper presented at the Software Engineering and Service Science (ICSESS), 2011 IEEE 2nd

International Conference on.

Lewin, K. (1951). Field theory in social science: selected theoretical papers (Edited by Dorwin

Cartwright.).

Mathiassen, L. (2002). Collaborative practice research. Information Technology & People, 15(4), 321-

345.

Mathiassen, L., Chiasson, M., & Germonprez, M. (2012). Style composition in action research

publication. MIS Quarterly, 36(2), 347-363.

McFeeley, B. (1996). IDEAL: A User's Guide for Software Process Improvement: DTIC Document.

McKay, J., & Marshall, P. (2001). The dual imperatives of action research. Information Technology &

People, 14(1), 46-59.

Meyer, M. H., & Seliger, R. (1998). Product platforms in software development. Sloan Management

Review, 40(1), 61-74.

Michlmayr, M. (2005). Quality improvement in volunteer free software projects: Exploring the impact of

release management. Paper presented at the Proceedings of the First International Conference on

Open Source Systems.

Michlmayr, M., Hunt, F., & Probert, D. (2007). Release management in free software projects: Practices

and problems. Open Source Development, Adoption and Innovation, 295-300.

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook: Sage

Publications, Incorporated.

120

Napier, N. P., Mathiassen, L., & Johnson, R. D. (2009). Combining perceptions and prescriptions in

requirements engineering process assessment: an industrial case study. Software Engineering, IEEE

Transactions on, 35(5), 593-606.

Otte, T., Moreton, R., & Knoell, H. D. (2008). Applied quality assurance methods under the open source

development model. Paper presented at the Computer Software and Applications, 2008.

COMPSAC'08. 32nd Annual IEEE International.

Pettigrew, A. M. (1985). Contextualist research and the study of organizational change processes.

Research methods in information systems, 53-78.

Prasad, R. K. (1994). Towards a zero-defect product-the End-To-End test process. Paper presented at the

Software Testing, Reliability and Quality Assurance, 1994. Conference Proceedings., First

International Conference on.

Pratim Ghosh, P., & Chandy Varghese, J. (2004). Globally distributed product development using a new

project management framework. International Journal of Project Management, 22(8), 669-678.

Ramakrishnan, M. (2004). Software release management. Bell Labs Technical Journal, 9(1), 205-210.

Rana, A. I., & Arfi, M. W. (2005). Software Release Methodology: A Case Study. Paper presented at the

Engineering Sciences and Technology, 2005. SCONEST 2005. Student Conference on.

Rapoport, R. N. (1970). Three dilemmas in action research with special reference to the Tavistock

experience. Human relations, 23(6), 499-513.

Schneider, B., & Bowen, D. E. (2010). Winning the service game: Springer.

Scott, J. A., & Nisse, D. (2001). Software configuration management. SWEBOK, 103.

Susman, G. I., & Evered, R. D. (1978). An assessment of the scientific merits of action research.

Administrative Science Quarterly, 582-603.

Syed, K. (2014). Improving Recurrent Software Development: A Contextualist Inquiry into Release

Cycle Management.

Team, C. P. (2006). CMMI for Development, version 1.2.

Van de Ven, A. H. (2007). Engaged Scholarship: A Guide for Organizational and Social Research: A

Guide for Organizational and Social Research: Oxford University Press.

Van Der Hoek, A., Hall, R., Heimbigner, D., & Wolf, A. (1997). Software release management. Software

Engineering—ESEC/FSE'97, 159-175.

Van der Hoek, A., & Wolf, A. L. (2002). Software release management for component‐based software.

Software: Practice and Experience, 33(1), 77-98.

Vargo, S. L., & Lusch, R. F. (2004). Evolving to a new dominant logic for marketing. Journal of

marketing, 1-17.

Vargo, S. L., & Lusch, R. F. (2008). Service-dominant logic: continuing the evolution. Journal of the

Academy of Marketing Science, 36(1), 1-10.

121

Wright, H. K. (2009). Release engineering processes, models, and metrics. Paper presented at the

Proceedings of the doctoral symposium for ESEC/FSE on Doctoral symposium.

122

APPENDIX B: SECURE-ON-REQUEST IMPROVEMENT

PROJECTS – STATUS REPORT

123

124

APPENDIX C: SECURE-ON-REQUEST PROCESSES ASSESSMENT

AND IMPROVEMENT OPTIONS

Meeting with Steering Committee - June 20th 2013

125

126

127

128

129

130

131

APPENDIX D: SECURE-ON-REQUEST NEW RELEASE CYCLE

MODEL

132

APPENDIX E: CUSTOMER ADVISORY BOARD - MEETING

ITEMS

133

134

REFERENCES

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., . . . Stoica, I. (2010). A view

of cloud computing. Communications of the ACM, 53(4), 50-58.

Avison, D., Baskerville, R., & Myers, M. (2001). Controlling action research projects. Information

technology & people, 14(1), 28-45.

Ballintijn, G. (2005). A case study of the release management of a health-care information system. Paper

presented at the proceedings of the IEEE International Conference on Software Maintenance,

ICSM2005, Industrial Applications track.

Bardhan, I. R., Demirkan, H., Kannan, P., Kauffman, R. J., & Sougstad, R. (2010). An interdisciplinary

perspective on IT services management and service science. Journal of Management Information

Systems, 26(4), 13-64.

Barile, S., & Polese, F. (2010). Smart service systems and viable service systems: Applying systems

theory to service science. Service Science, 2(1-2), 21-40.

Baskerville, R. L., & Myers, M. D. (2009). Fashion waves in information systems research and practice.

Mis Quarterly, 33(4).

Baskerville, R. L., & Wood-Harper, A. T. (1996). A critical perspective on action research as a method

for information systems research. Journal of Information Technology, 11(3), 235-246.

Benlian, A., Koufaris, M., & Hess, T. (2011). Service quality in software-as-a-service: developing the

SaaS-Qual measure and examining its role in usage continuance. Journal of Management Information

Systems, 28(3), 85-126.

Berkovich, M., Esch, S., Leimeister, J. M., & Krcmar, H. (2010). Towards Requirements Engineering for

“Software as a Service”. Multikonferenz Wirtschaftsinformatik 2010, 107.

Bitner, M. J., Ostrom, A. L., & Morgan, F. N. (2008). Service blueprinting: a practical technique for

service innovation. California Management Review, 50(3), 66.

Bovet, D., & Martha, J. (2000). Value nets: breaking the supply chain to unlock hidden profits: John

Wiley & Sons.

Boyatzis, R. E. (1998). Transforming qualitative information: Thematic analysis and code development:

Sage.

Brocke, H., Hau, T., Vogedes, A., Schindlholzer, B., Uebernickel, F., & Brenner, W. (2009). Design

Rules for User-Oriented IT Service Descriptions. Paper presented at the System Sciences, 2009.

HICSS'09. 42nd Hawaii International Conference on.

Burgoon, J. K., Bonito, J. A., Ramirez, A., Dunbar, N. E., Kam, K., & Fischer, J. (2002). Testing the

interactivity principle: Effects of mediation, propinquity, and verbal and nonverbal modalities in

interpersonal interaction. Journal of Communication, 52(3), 657-677.

Chesbrough, H., & Spohrer, J. (2006). A research manifesto for services science. Communications of the

ACM, 49(7), 35-40.

135

Choudhary, V. (2007a). Comparison of software quality under perpetual licensing and software as a

service. Journal of Management Information Systems, 24(2), 141-165.

Choudhary, V. (2007b). Software as a service: Implications for investment in software development.

Paper presented at the System Sciences, 2007. HICSS 2007. 40th Annual Hawaii International

Conference on.

Coghian, D. (2001). Insider Action Research Projects Implications for Practising Managers. Management

Learning, 32(1), 49-60.

Cusumano, M. (2010). Cloud computing and SaaS as new computing platforms. Communications of the

ACM, 53(4), 27-29.

Cusumano, M. A. (2008). The changing software business: Moving from products to services. Computer,

41(1), 20-27.

Danesh, A. S., Saybani, M. R., & Danesh, S. Y. S. (2011). Software release management challenges in

industry: An exploratory study. African Journal of Business Management, 5(20), 8050-8056.

Davison, R., Martinsons, M. G., & Kock, N. (2004). Principles of canonical action research. Information

Systems Journal, 14(1), 65-86.

Denzin, N. K., & Lincoln, Y. S. (2005). The Sage handbook of qualitative research: Sage.

Eisenhardt, K. M. (1989). Building theories from case study research. Academy of Management Review,

14(4), 532-550.

Franke, N., Schreier, M., & Kaiser, U. (2010). The “I designed it myself” effect in mass customization.

Management science, 56(1), 125-140.

Frow, P., Payne, A., & Storbacka, K. (2011). Co-creation: a typology and conceptual framework. Paper

presented at the Proceedings of the 2011 Anzmac conference.

FüLler, J., MüHlbacher, H., Matzler, K., & Jawecki, G. (2009). Consumer empowerment through

internet-based co-creation. Journal of Management Information Systems, 26(3), 71-102.

Grissemann, U. S., & Stokburger-Sauer, N. E. (2012). Customer co-creation of travel services: the role of

company support and customer satisfaction with the co-creation performance. Tourism Management,

33(6), 1483-1492.

Grönroos, C. (1982). An applied service marketing theory. European Journal of Marketing, 16(7), 30-41.

Gummesson, E. (1987). The new marketing—Developing long-term interactive relationships. Long

Range Planning, 20(4), 10-20.

Guo, C. J., Sun, W., Huang, Y., Wang, Z. H., & Gao, B. (2007). A framework for native multi-tenancy

application development and management. Paper presented at the E-Commerce Technology and the

4th IEEE International Conference on Enterprise Computing, E-Commerce, and E-Services, 2007.

CEC/EEE 2007. The 9th IEEE International Conference on.

Herrick, D. R. (2009). Google this!: using Google apps for collaboration and productivity. Paper

presented at the Proceedings of the 37th annual ACM SIGUCCS fall conference.

136

Hudli, A. V., Shivaradhya, B., & Hudli, R. V. (2009). Level-4 SaaS applications for healthcare industry.

Paper presented at the Proceedings of the 2nd Bangalore Annual Compute Conference.

Kähkönen, A.-K., & Lintukangas, K. (2012). The underlying potential of supply management in value

creation. Journal of Purchasing and Supply Management, 18(2), 68-75.

Karpen, I. O., Bove, L. L., & Lukas, B. A. (2012). Linking Service-Dominant Logic and Strategic

Business Practice A Conceptual Model of a Service-Dominant Orientation. Journal of Service

Research, 15(1), 21-38.

Khoshafian, S. (2006). Service oriented enterprises: CRC Press.

Kohlborn, T., Korthaus, A., Riedl, C., & Krcmar, H. (2009). Service aggregators in business networks.

Paper presented at the Enterprise Distributed Object Computing Conference Workshops, 2009.

EDOCW 2009. 13th.

Krishnan, M. S. (1994). Software release management: a business perspective. Paper presented at the

Proceedings of the 1994 conference of the Centre for Advanced Studies on Collaborative research.

Lahtela, A., & Jantti, M. (2011). Challenges and problems in release management process: A case study.

Paper presented at the Software Engineering and Service Science (ICSESS), 2011 IEEE 2nd

International Conference on.

Larsson, R., & Bowen, D. E. (1989). Organization and customer: managing design and coordination of

services. Academy of Management Review, 14(2), 213-233.

Lassila, A. (2006). Taking a service-oriented perspective on software business: How to move from

product business to online service business. IADIS International Journal on WWW/Internet, 4(1), 70-

82.

Lee, A. S., & Baskerville, R. L. (2003). Generalizing generalizability in information systems research.

Information systems research, 14(3), 221-243.

Lewin, K. (1951). Field theory in social science: selected theoretical papers (Edited by Dorwin

Cartwright.).

Lincoln, Y. S., & Guba, E. G. (1985). Establishing trustworthiness. Naturalistic inquiry, 289-331.

Liu, F., Guo, W., Zhao, Z. Q., & Chou, W. (2010). SaaS integration for software cloud. Paper presented

at the Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference on.

Lusch, R. F., & Nambisan, S. (2012). Service Innovation: A Service-Dominant (SD) Logic Perspective.

Retrieved August, 12, 2012.

Lusch, R. F., & Vargo, S. L. (2006a). Service-dominant logic as a foundation for a general theory. The

Service-Dominant Logic of Marketing: Dialog, Debate, and Directions, ME Sharpe, Armonk, NY,

406-420.

Lusch, R. F., & Vargo, S. L. (2006b). Service-dominant logic: reactions, reflections and refinements.

Marketing theory, 6(3), 281-288.

Maglio, P. P., & Spohrer, J. (2008). Fundamentals of service science. Journal of the Academy of

Marketing Science, 36(1), 18-20.

137

Mathiassen, L. (2002). Collaborative practice research. Information Technology & People, 15(4), 321-

345.

Mathiassen, L., Chiasson, M., & Germonprez, M. (2012). Style Composition in Action Research

Publication. Mis Quarterly, 36(2).

McFeeley, B. (1996). IDEAL: A User's Guide for Software Process Improvement: DTIC Document.

McKay, J., & Marshall, P. (2001). The dual imperatives of action research. Information Technology &

People, 14(1), 46-59.

Mertz, S., Eschinger, C., Eid, T., Huang, H., Pang, C., & Pring, B. (2009). Market trends: Software as a

service, worldwide, 2008-2013. Gartner, Stamford, CT.

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook: Sage

Publications, Incorporated.

Myers, M. D. (2008). Qualitative research in business & management: SAGE Publications Limited.

Napier, N. P., Mathiassen, L., & Johnson, R. D. (2009). Combining perceptions and prescriptions in

requirements engineering process assessment: an industrial case study. Software Engineering, IEEE

Transactions on, 35(5), 593-606.

Payne, A., Storbacka, K., Frow, P., & Knox, S. (2009). Co-creating brands: diagnosing and designing the

relationship experience. Journal of Business Research, 62(3), 379-389.

Payne, A. F., Storbacka, K., & Frow, P. (2008). Managing the co-creation of value. Journal of the

Academy of Marketing Science, 36(1), 83-96.

Peters, L., Johnston, W., & Pressey, A. (2012). Involving clients in innovation: Exploring expectation,

knowledge, and competency gaps.

Pratim Ghosh, P., & Chandy Varghese, J. (2004). Globally distributed product development using a new

project management framework. International Journal of Project Management, 22(8), 669-678.

Ramaswamy, V., & Gouillart, F. (2010). Building the co-creative enterprise. Harvard Business Review,

88(10), 100-109.

Rapoport, R. N. (1970). Three dilemmas in action research with special reference to the Tavistock

experience. Human relations, 23(6), 499-513.

Regan, W. J. (1963). The service revolution. The Journal of Marketing, 57-62.

Rust, R. T., & Kannan, P. (2003). E-service: a new paradigm for business in the electronic environment.

Communications of the ACM, 46(6), 36-42.

Sääksjärvi, M., Lassila, A., & Nordström, H. (2005). Evaluating the software as a service business

model: From CPU time-sharing to online innovation sharing. Paper presented at the IADIS

International Conference e-Society.

Schmidt, R., Dengler, F., & Kieninger, A. (2010). Co-creation of value in IT service processes using

semantic mediawiki. Paper presented at the Business Process Management Workshops.

138

Schneider, B., & Bowen, D. E. (2010). Winning the service game: Springer.

Scott, J. A., & Nisse, D. (2001). Software configuration management. SWEBOK, 103.

Shostack, G. L. (1977). Breaking free from product marketing. The Journal of Marketing, 73-80.

Singh, R., Bhagat, A., & Kumar, N. (2012). Generalization of Software Metrics on Software as a Service

(SaaS). Paper presented at the Computing Sciences (ICCS), 2012 International Conference on.

Spohrer, J., Anderson, L., Pass, N., & Ager, T. (2008). Service science and service-dominant logic. Paper

presented at the Otago Forum.

Spohrer, J., & Maglio, P. P. (2008). The Emergence of Service Science: Toward Systematic Service

Innovations to Accelerate Co‐Creation of Value. Production and Operations Management, 17(3),

238-246.

Spohrer, J., Maglio, P. P., Bailey, J., & Gruhl, D. (2007). Steps toward a science of service systems.

Computer, 40(1), 71-77.

Srikanth, H., & Cohen, M. B. (2011). Regression testing in Software as a Service: An industrial case

study. Paper presented at the Software Maintenance (ICSM), 2011 27th IEEE International

Conference on.

Stuckenberg, S., & Heinzl, A. (2010). The Impact of the Software-as-a-Service Concept on the

Underlying Software and Service Development Processes. PACIS 2010 Proceedings.

Sun, W., Zhang, K., Chen, S.-K., Zhang, X., & Liang, H. (2007). Software as a service: An integration

perspective Service-oriented computing–ICSOC 2007 (pp. 558-569): Springer.

Susarla, A., Barua, A., & Whinston, A. B. (2009). A transaction cost perspective of the" software as a

service" business model. Journal of Management Information Systems, 26(2), 205-240.

Susman, G. I., & Evered, R. D. (1978). An assessment of the scientific merits of action research.

Administrative Science Quarterly, 582-603.

Syed, K. (2014). Improving Recurrent Software Development: A Contextualist Inquiry into Release

Cycle Management.

Tracy, S. (2012). Service Systems and Social Enterprise: Beyond the Economics of Business.

Van de Ven, A. H. (2007). Engaged scholarship: A guide for organizational and social research: OUP

Oxford.

Van Der Hoek, A., Hall, R., Heimbigner, D., & Wolf, A. (1997). Software release management. Software

Engineering—ESEC/FSE'97, 159-175.

Vargo, S. L. (2013). Service-dominant logic reframes (service) innovation. VTT Technical Research

Centre of Finland, 7.

Vargo, S. L., & Akaka, M. A. (2009). Service-dominant logic as a foundation for service science:

clarifications. Service Science, 1(1), 32-41.

139

Vargo, S. L., & Lusch, R. F. (2004). Evolving to a new dominant logic for marketing. Journal of

marketing, 1-17.

Vargo, S. L., & Lusch, R. F. (2008). Service-dominant logic: continuing the evolution. Journal of the

Academy of Marketing Science, 36(1), 1-10.

Vargo, S. L., Maglio, P. P., & Akaka, M. A. (2008). On value and value co-creation: A service systems

and service logic perspective. European management journal, 26(3), 145-152.

Walker, R. H., Craig-Lees, M., Hecker, R., & Francis, H. (2002). Technology-enabled service delivery:

an investigation of reasons affecting customer adoption and rejection. International Journal of

Service Industry Management, 13(1), 91-106.

Winklhofer, H., Palmer, R. A., & Brodie, R. J. (2007). Researching the Service Dominant Logic–

Normative Perspective Versus Practice. Australasian Marketing Journal (AMJ), 15(1), 76-83.

Wolak, R., Kalafatis, S., & Harris, P. (1998). An investigation into four characteristics of services.

Journal of Empirical Generalisations in Marketing Science, 3(2), 22-43.

Yin, R. K. (2003). Case study research: Design and methods (Vol. 5): sage.

Yin, R. K. (2009). Case study research: Design and methods (Vol. 5): Sage.

Zeithaml, V. A., Berry, L. L., & Parasuraman, A. (1996). The behavioral consequences of service quality.

The Journal of Marketing, 31-46.

Zeithaml, V. A., Parasuraman, A., & Berry, L. L. (1985). Problems and strategies in services marketing.

The Journal of Marketing, 33-46.

Zhao, J. L., Tanniru, M., & Zhang, L.-J. (2007). Services computing as the foundation of enterprise

agility: Overview of recent advances and introduction to the special issue. Information Systems

Frontiers, 9(1), 1-8.

	Georgia State University
	ScholarWorks @ Georgia State University
	4-15-2014

	Software Service Innovation: An Action Research into Release Cycle Management
	Neda Barqawi
	Recommended Citation

	tmp.1399692330.pdf.4dChP

