
Georgia State University
ScholarWorks @ Georgia State University

Business Administration Dissertations Programs in Business Administration

12-17-2014

The Vortex of Continuous Development of
Embedded Systems: An Inquiry into Agility
Orchestration
David A. Bishop
Georgia State University

Follow this and additional works at: http://scholarworks.gsu.edu/bus_admin_diss

This Dissertation is brought to you for free and open access by the Programs in Business Administration at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Business Administration Dissertations by an authorized administrator of ScholarWorks @ Georgia State University.
For more information, please contact scholarworks@gsu.edu.

Recommended Citation
Bishop, David A., "The Vortex of Continuous Development of Embedded Systems: An Inquiry into Agility Orchestration."
Dissertation, Georgia State University, 2014.
http://scholarworks.gsu.edu/bus_admin_diss/45

http://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fbus_admin_diss%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/bus_admin_diss?utm_source=scholarworks.gsu.edu%2Fbus_admin_diss%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/bus_admin?utm_source=scholarworks.gsu.edu%2Fbus_admin_diss%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/bus_admin_diss?utm_source=scholarworks.gsu.edu%2Fbus_admin_diss%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

 i

PERMISSION TO BORROW

In presenting this dissertation as a partial fulfillment of the requirements for an advanced degree

from Georgia State University, I agree that the Library of the University shall make it available

for inspection and circulation in accordance with its regulations governing materials of this type.

I agree that permission to quote from, to copy from, or publish this dissertation may be granted

by the author or, in his/her absence, the professor under whose direction it was written or, in his

absence, by the Dean of the Robinson College of Business. Such quoting, copying, or publishing

must be solely for the scholarly purposes and does not involve potential financial gain. It is

understood that any copying from or publication of this dissertation which involves potential

gain will not be allowed without written permission of the author.

David Anthony Bishop

 ii

NOTICE TO BORROWERS

All dissertations deposited in the Georgia State University Library must be used only in

accordance with the stipulations prescribed by the author in the preceding statement.

The author of this dissertation is:

David Bishop

271 River Laurel Way

Woodstock, Georgia 30188

The director of this dissertation is:

Richard Baskerville

Robinson College of Business

Georgia State University

35 Broad Street, NW, Suite 427

Atlanta, GA 30303

 iii

The Vortex of Continuous Development of Embedded Systems: An Inquiry into Agility

Orchestration

BY

David Anthony Bishop

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree

Of

Doctor of Philosophy

In the Robinson College of Business

Of

Georgia State University

 iv

Copyright by

David Anthony Bishop

2014

 v

ACCEPTANCE

This dissertation was prepared under the direction of the David Bishop Dissertation Committee.

It has been approved and accepted by all members of that committee, and it has been accepted in

partial fulfillment of the requirements for the degree of Doctoral of Philosophy in Business

Administration in the J. Mack Robinson College of Business of Georgia State University.

 H. Fenwick Huss, Dean

DISSERTATION COMMITTEE

Richard Baskerville

Lars Mathiassen

Balasubramaniam Ramesh

 vi

Table of Contents

Chapter 1: Introduction ..1

Research Domain ..1

Research Perspective ...2

Research Approach ...3

Chapter 2: Approach: Agile Software Development Methods ..5

Engineering and Software Traditions ..5

Agility ...8

Agile Software Development Methodologies ..11

Chapter 3: Context: Continuous Development of Embedded Systems17

Embedded Systems ..17

 Continuous Development ..20

Chapter 4: Hybridity: Adoption of Agility to Context...23

Adoption of Agility: A Hybrid Approach ..23

Performance and Limitations of Agile Methods ...28

Limitations of Agile Research ..32

Chapter 5: Research Methodology...36

Research Design ..36

Data Collection ...37

Data analysis ...39

Chapter 6: Results ..41

Institutional Context ..41

 vii

Market Agility ...43

Process Agility ..54

Agile Orchestration ...66

Agile Vortices: The Grounded Theory ..86

Chapter 7: Discussion ..94

An Inquiry into Hybrid Agility ...94

Fluidity and Continuous Releases ...96

Hybrid Agility Implications: Whirlpools within a "River of Innovation" 97

Chapter 8: Conclusion..100

Implications for Research ...100

Implications for Practice ...102

Limitations and Opportunities for Future Research ..104

Appendix ..105

References ..107

 viii

List of Tables

Table 1: Key Constructs and Major Categories from Axial Coding .. 43

Table 2: Elements of Market Pressure .. 44

Table 3: Elements of Product Genesis .. 48

Table 4: Elements of Hybrid Agility .. 56

Table 5: Elements of Agile Orchestration .. 67

Table 6: Understanding Interconnections and Interactions in Hybrid Agility 68

 ix

List of Figures

Figure 1: The Evolution of Product Genesis... 51

Figure 2 : Hybrid Agility in Embedded Systems: Key Characteristics 58

Figure 3: Rolling up Process and Market Agility Categories into One View 87

Figure 4: Business Momentum and the Systems Release are Created by Market

and Process Agility ... 88

Figure 5: The Agile Business Vortex: The Ultimate Goal of Agile Orchestration

is the Management of Process and Market Agility to achieve Agile Vorticity 91

Figure 6: Agile Orchestration Closeup: Business Momentum, Innovation, and

Agile Vorticity .. 92

Figure 7: Agile Business Category Diagram .. 106

 x

Abstract

The Vortex of Continuous Development of Embedded Systems: An Inquiry into Agility

Orchestration

BY

David Anthony Bishop

May 6, 2014

Committee Chair: Richard Baskerville

Major Academic Unit: Robinson College of Business

Agile methodologies have become a popular and widely accepted method for managing software

development. Since the inception of the Agile Manifesto over ten years ago, agile development

techniques have superseded waterfall methods in many, if not most, software development

organizations. Despite its apparent success, many companies have struggled with the adoption

and implementation of agile, and exactly what level of adoption provides optimum agility.

Agility is commonly held in the literature to be constructed of elements external to a company or

project but may in fact be composed of both external and internal elements. The exact

relationship of the adoption of agile development techniques and their relationship to the

actual agility of a business remain unclear. A primary contributor to this uncertainty is the

somewhat amorphous definition of agile itself. In academic literature, the concept is still

relatively young and loosely defined. In practice, organizations have largely opted for a hybrid

approach to agile, mixing its concepts and methods with existing Stage Gate or waterfall

methodologies. This has made the management of agile even more complex. Crucially, there is

no definition or criterion available to determine the appropriate mix of agile and waterfall

processes in an embedded software development context nor is there a method to determine the

 xi

impact of one against the other. These issues beg the question: how do organizations manage

agility? This interpretive case study provides an empirical account of how stakeholders manage

both market and process agility in an embedded systems context via a hybrid agility

implementation and product genesis. As a result, we provide the notion of agile vorticity, as the

point at which market and process agility collide to produce business momentum at a specific

point of innovation within the agile business vortex.

 1

Chapter 1: Introduction

Research Domain

The management of agile methodologies can be a challenge to organizations on many

levels. The first issue is the concept of agile itself. The current literature on agility is sparse,

particularly in relation to information systems development. This is largely due to the fact that

agile is a relatively new concept in an information systems development context, and is therefore

not entirely solidified. The second challenge is the management of agility. Most agile

frameworks available today are operational in nature, focusing on project management indicators

such as velocity, release frequency, sprint completion, and so forth (Highsmith, 2010). Still,

other methods focus entirely on the outcome of agile adoption in relation to environmental

turbulence (Yauch, 2011). This type of study, however, does not allow for the evaluation of the

adoption of agile principles, such as people over processes and tools, against quality and

customer responsiveness. Giachetti holds that the assessment and management of agile should

not only take into account performance, but agile characteristics that have been assimilated into

the organization (Giachetti, Martinez, Sáenz, & Chen, 2003). Although there have been methods

describing agile adoption, none of these has related the level of adoption to agility outcomes. As

a result, these existing methods do not completely address all dimensions of agility. These

challenges are compounded by the fact that recent research has revealed that most organizations

have not adopted agile in its entirety, but instead have assimilated a variety of agile concepts and

methods into existing traditional methods. Such hybrid agile implementations have only added

to the complexity of agility management.

Orchestration of agility within any organization is often poorly defined, due to its fluid,

quickly changing, and somewhat amorphous concepts, processes, and methodologies. Hybrid

 2

implementations, environment specific assessments, and varying degrees of market turbulence

are just a few dimensions of agility that should be considered within a management context. In

short, the management of agile methods require their own brand of agility. This study examines

the various dimensions of this agility to determine how agile processes are managed and

orchestrated.

Research Perspective

Transitioning to, adopting, and implementing agile methodologies in a software

organization is a costly and time consuming proposition. Companies and organizations need to

know where they stand in terms of adoption/assimilation and its impact to the external agility of

the business. They also need a framework to manage their performance so that strategic

adjustments can be made. For researchers, this study may provide greater understanding with

regards to how agility can be managed and the impact of assimilation and adoption on these

management processes. As the literature review has revealed, most embedded systems

environments with larger, more mature organizations have taken a hybridized approach to agile

adoption by combining agile with existing State Gate methodologies. The orchestration of the

processes required to support agile principles in such an environment and the way those

principles are affected can reveal new insights into agility in new and different contexts. Such

contexts include

 large teams,

 geographically distributed teams,

 hybrid agility evolution, and

 embedded systems (environments which include the synchronization of firmware,

software and hardware development).

 3

From a practitioner standpoint, the audience for this study includes technology managers,

software development professionals, and organizations interested in adopting agile

methodologies or managing agile processes in their current environment. From an academic

perspective, this study would appeal to researchers interested in the adoption, implementation, or

assimilation of agile methodologies in different organizational contexts.

The purpose of this study is to provide an empirical account of the orchestration of hybrid

agility, and feedback on how this orchestration is adjusted to integrate agile principles more fully

into a complex, embedded systems development environment.

Therefore, to better understand agility and how organizations adapt to it, this research

endeavors to answer the question: How are agile processes orchestrated in embedded systems

development?

Research Approach

This research consists of an interpretive case study using a grounded theory analysis.

The grounded theory approach makes use of the Straussian brand of grounded theory outlined in

Strauss and Corbin’s Basics of Qualitative Research: Grounded Theory Procedures and

Techniques (Strauss, 1990). Such studies can provide theories arising from the research effort

itself, and therefore do not generally employ theoretical frameworks as a lens to examine a

problem. However, such studies can use other research to inform the study at hand (Strauss,

1990). This case study uses the four basic agile principles as stated in the Agile Manifesto for

this purpose. These principles can be described as

 development over documentation,

 individual interactions over processes and tools,

 customer Collaboration over contract negotiation, and

 4

 responding to change over following a plan (Alliance, 2001).

This is a participative study that includes perspectives on agile from a variety of stakeholders

within the company in question. It examines the normative questions dealing with the

management, design, and evaluation of agile assimilation specific to embedded systems

development. These traits are characteristic of a engaged scholarship effort using design and

evaluation research (Van de Ven, 2007).

Contributions of the study include

 an empirical account of how agility principles and methods are orchestrated in

embedded software development, and hence, the orchestration of hybrid agility,

 in keeping with engaged scholarship principles, feedback is provided to the client

organization on how its approach to agility could be improved or “tweaked” as a

component of software development management,

 a method or framework for orchestrating agility over time in context, while

constantly adapting and fine tuning it, and

 greater insights into the drivers of agile process innovation.

We begin with an exploration of engineering and software traditions, followed by agility,

embedded systems, and the current state of research on each.

 5

Chapter 2: Approach: Agile Software Development Methods

Engineering and Software Traditions

In the past, there has been much debate as to whether software development is science or

engineering. In the literature, most researchers believe it to be the latter. This perception is due

in large part to the difference between the tools that scientists and engineers use. While a

scientist may use experimentation, the engineer develops prototypes or demonstrations. In his

study on the traditions of computing, Tedre stated that “computer science is an empirical science

not based on traditional scientific experimentation” (Tedre, 2008). Over time, software

development became more regarded as an engineering discipline as the size and scale of

computing projects required larger teams (Tedre, 2008). As a result, the guiding mantra for

software engineers and computer scientists is more often considered to be demo or die, as

opposed to the traditional publish or perish, employed by so many traditional researchers. These

precepts have had a significant influence on the management of large software development

efforts. This section seeks to explore the evolution of software development management and

how this evolution has been influenced by engineering, science, and innovation.

Although larger teams and more complex development projects have led to software

development becoming more of an engineering discipline, this has also led to a need for a more

efficient means of management. Early software engineering managers and developers were faced

with challenges in design, development, communication, and production. Arguably, the earliest

form of software development management is traditionally referred to as the software

development life cycle or waterfall method. It is also often referred to as a Stage Gate method

due to its rigid process orientation and the use of gates to pass from one phase to another. The

creation of this method is most often attributed to Winston Royce in 1970 when he documented

 6

the process he used to develop software packages for spacecraft mission planning (Royce, 1970).

Although not originally intended to be a comprehensive roadmap, Royce’s work proliferated

throughout other government agencies and became widely adopted within the software

development industry. According to Christiane Floyd in her 1992 publication of “Software

Development and Reality Construction” this software development tradition is based on the

following precepts (Floyd, 1992):

 Software engineering is produced, based on a series of fixed requirements.

 These requirements are provided via an analysis process that is performed before

design begins.

 Developers are only responsible for producing a solution that meets these specific

requirements.

 Software development is independent of individuals. Developers are considered to

be interchangeable resources.

 Communication should be managed and regulated through fixed interfaces.

Floyd argues that while this existing methodology has brought about impressive advances

in programming methods and allows for a greater understanding of software development before

coding begins, it does not support the subsequent emergence of insights into functionality,

implementation, and usability (Floyd, 1992). The need to provide such insights gave rise to a

greater usage of the engineering concept of prototyping.

The concept of prototyping, or even rapid prototyping, is not new. Rather, it is a tradition

that has been a part of electrical and mechanical engineering for many years. One reason for its

success is that it allows for more teleological requirement definitions based on outputs and

constraints (Orr, 2004). Back in 1985, many authors believed that prototyping would replace

 7

traditional life-cycle methods of systems development (Janson, 1985). However, a study from

this time period does not recommend that. Instead, it performed a comparison of prototyping

based on existing engineering practices against proposals to use the same technique in

information systems design. This comparison suggested that prototyping should be integrated

within existing waterfall processes to

 verify user requirements,

 verify design specifications,

 aid in selecting the best design,

 assist with various stages of testing and development, and

 obtain approval for new product concepts (Janson, 1985).

This need for prototyping in software has given rise to iterative software development in

which regular demonstrations of incremental components are key to developing an entire product

line.

Manufacturing concepts have also had a significant impact on software development. The

concept of lean or just in time manufacturing became prominent in the 1970’s as part of the

highly regarded Toyota production system. Lean development is based on removing any aspect

of a process that does not add customer value. At Toyota factories, inventory was kept to a

minimum by only manufacturing the necessary products, at the necessary time, in the necessary

quantities. In addition, the system included a respect for human system which allowed workers

the latitude to display their capabilities by improving their own work processes (Sugimori,

Kusunoki, Cho, & Uchikawa, 1977). Lean techniques improved the flow of information and

materials across the business, focused on market pressure created by the customer, and required

an organizational commitment to continuous improvement. Although lean manufacturing was

 8

driven in large part by Japan’s need to compete with Europe and America with fewer resources,

the concepts became widely adopted in the automotive industry all over the world.

The production control system of the Toyota production system was referred to as the

Kanban system, which consisted of a series of order cards instead of computers to manage

production (Sugimori et al., 1977). Kanban is yet another outgrowth of the Toyota production

system which has made its way into software development management. Using Kanban, software

development organizations have been found to reduce the amount of work in progress. Such lean

concepts of value and waste elimination have been found to provide target and route for

continuous software development improvement, particularly with agile development (Wang,

Conboy, & Cawley, 2012). Organizations that employ Kanban techniques have moved away from

the time-boxed iteration to more of a continuous flow. This has been shown to be especially true

in organizations with mature adoption of agile development techniques (Wang, Conboy, &

Cawley, 2012).

Agility

Agility originated in a manufacturing context, primarily as an output of lean or flexible

manufacturing (Mathiassen & Pries-Heje, 2006; Kidd & Dove). It concerns the economy of

scope, as opposed to scale (Dove, 2001). It has been defined as the ability to manage and apply

knowledge effectively, to adapt to change (Arteta & Giachetti, 2004; Dove, 2001), and it has

been summarized as the capability to quickly respond to market requirements (Ramesh and

Devadasan, 2007).

The concept of agility was first introduced in a report from the Iacocca Institute (Nagel

and Dove, 1992). Other notable research articles include:

 9

 A Hewlett-Packard (HP) agility assessment expands on agility as comprising three

factors of speed, range, and ease to assess an organization’s ability to respond to

change. (HP 2005).

 Agility was defined by Goldman et al. (1995) as the ability to prosper in a

competitive environment characterized by constant and unpredictable change.

This concept was further broken down into four dimensions of agility, which are

o enriching the customer,

o cooperating to increase competitiveness,

o organizing to control change and uncertainty, and

o leveraging the impact of people and information.

Haeckel expands on these dimensions in a different way, by enumerating the

organizational characteristics required to achieve agility as described in Goldman’s dimensions.

Speed with which an organization can respond to customer requests, market dynamics, and

emerging technical change is seen as a key element. This includes

 time to sense relevant events,

 time to interpret what is happening and assess the consequences for the

organization,

 time to explore options and decide which actions to take, and

 time to implement the appropriate responses (Haeckel 1999).

Organizational capabilities, both tangible and intangible, that provide the basis for

conducting business and creating change are also considered to be a prerequisite to achieve

agility. These include people, technology, processes, and knowledge (Haeckel 1999).

 10

Adaptability is essential as well. How well organizations respond to changing demands, threats,

or opportunities require the ability to learn and to use flexible processes and products that can be

reconfigured without extensive additional costs (Haeckel, Dove; Mathiassen & Pries-Heje,

2006).

Agility has perhaps been best described as a solution for maintaining competitive

advantage during times of uncertainty and turbulence in the business environment (Sharifi &

Zhang, 2001).

Further research into the literature reveals that agility is more than a method or an

organizational capability. Rather, it is a business philosophy (Highsmith, 2010). As agile

concepts champion people over processes, focus should be on the organizations and the

individuals that comprise them. Agile minds should be quick, resourceful, and adaptable in

character. Agile organizations should respond quickly, be resourceful, and able to adapt to their

environment (Mathiassen & Pries-Heje, 2006).

Organizations are complex adaptive systems. Such systems have been defined as

comprising of decentralized independent individuals interacting in self-organizing ways, guided

by a set of simple, generative rules, to create innovative emergent results (Highsmith &

Cockburn, 2001). Highsmith and Cockburn emphasize creativity over written rules as the way to

manage complex software development problems and diverse situations. (Highsmith &

Cockburn, 2001). It is this style of management from which organizational agility is said to

arise. Additionally, organizations do not think objectively about software development agility

(Sheffield & Lemétayer, 2013). Adoptions of agile practices are typically subject to the

organizational structure and context. In one study, it was found that developmental

organizations, those which focus on adaptation and creativity, were much more conducive to the

 11

adoption of agile practices than a hierarchical culture which focused more on command and

control (Iivari & Iivari, 2011).

Although the concept of agility has been available in manufacturing for some time, it was

not adapted to information systems development until the advent of the Agile Manifesto.

Information systems have brought about a new context and application for agility. An

information systems development’s ability to support agility has been defined as the continual

readiness to rapidly or inherently create change, embrace change, and learn from such change

while contributing to perceived customer value. Such value is often characterized as additions to

economy, quality, and simplicity. This is accomplished via the information systems

development’s collective components and its relationships with its environment (Baskerville,

Pries-Heje, & Madsen, 2011).

Based on the literature that has been discussed, it can be noted that agile is somewhat

conceptually weak from a research point of view due to the number and variation of definitions.

In practice, however, it is considered well defined enough for practitioners, particularly with

respect to how they use and combine agile with plan driven methods (Baskerville et al., 2011).

Agile Software Development Methodologies

Agile is an iterative software development methodology based on self-organizing and

cross-functional teams. It is based on the following key concepts derived from the highly

popularized Agile Manifesto (Alliance, 2001; Vinekar, Slinkman, & Nerur, 2006) that argues

 individuals and their interactions are more important than processes and tools,

 working software is more important than documentation,

 customer collaboration is more important than contract negotiation, and

 responding to change is more important than following a plan.

 12

Using Ward’s method, Dingsøyr al. identify the seminal works in agile research and

many of the key underlying themes. Most of the early research focused on understanding agile

concepts. Other key topics included adoption or adaptation, reconciliation between agile and

plan-driven methods, and evaluation of adoption issues in environments not conducive to agile

(Dingsøyr, Nerur, Balijepally, & Moe, 2012). More research is needed to better define what the

core of agile is and its role in architecture and knowledge management (Dingsøyr et al., 2012).

Additional research is also needed with respect to examining agile across various contexts such

as different projects and organizations.

One such context that demands study are methods for information systems development.

An information systems development method can be defined as one that “encompasses the

complete range of practices involved in the process of designing, building, implementing, and

maintaining an information system, how these activities are accomplished and managed, the

sequence and frequency of these activities, as well as the values and goals of all of the above”

(Conboy, 2009). Such a method is not a set of rules, but an ideal in the sense that it is not

expected to be followed literally (Conboy, 2009).

Conboy finds that an agile information systems development method should meet the

criteria of

 flexibility—the ability to create change, or proactively, reactively, or inherently

embrace change in a timely manner, through its internal components and

relationships with its environment;

 leanness—the ability to contribute to perceived customer value through economy,

quality, and simplicity from the customer’s perspective.

 Agility— the combination of flexibility and leanness with continual readiness.

 13

Qumer adds speed, learning, and responsiveness to these criteria (Qumer & Henderson-

Sellers, 2008). One problem with current agile method thinking is that some practices are now

commonly referred to as agile even though the connection to the concept may be tenuous at best,

and even if this link is clear, it may be too simplistic to be considered agile in every context or

circumstance (Conboy, 2009). Conboy states that the following steps should be taken to evaluate

such practices based on the aforementioned criteria:

1. Evaluate whether certain practices or procedures are agile with respect to long-

term sustainability and implementation.

2. Examine the behaviors and outcomes that contribute to agility.

This idea could be extended by developing assessments to evaluate performance outcomes

(Conboy, 2009). Applying such assessments across methods, method variants, organizations,

and projects could not only reveal interesting insights, but improve orchestration of agile

processes.

The integration of agility concepts into information systems development has created a

number of variations on a theme. These include adaptive systems development, dynamic

systems development, test driven development, and feature driven development to name a few.

By far the most popular of these methods used in the industry today are XP and Scrum

(Baskerville et al., 2011). A more recent addition to this list of commonly used methodologies is

Kanban.

Scrum is more of an agile management methodology with a greater focus on projects,

while XP is more of an engineering philosophy, concentrated on code management and quality

(Wang, Conboy, & Cawley, 2012). Both methods can, and often are, used in tandem.

Weaknesses with XP have been cited with medium to large size projects because of inadequate

 14

testing, architectural planning, and documentation. All of which are often required with large

complex systems in which the cost of change can be high (Qureshi, 2012). Studies have shown

that some shortcomings such as defect rates can be mitigated by extending XP to include more

analysis and architectural design, characteristics which look similar to waterfall-based methods

(Qureshi, 2012). For the purposes of this study, we are primarily focused on the management

aspects of agile and therefore the focus will be on Scrum. Another reason for this emphasis is

that Scrum is commonly used in hybrid implementations of agile methods. This is mostly

because Scrum acts as a wrapper around existing development methodologies, and can be used

with virtually any existing method (Schatz & Abdelshafi, 2005).

Despite its success, Scrum has been found to present challenges with resource allocation.

This has led to a noticeable shift in the industry from agile to lean software development

practices (Wang, Conboy, & Cawley, 2012).Kanban is one such process, and it is a less

structured method than Scrum, which focuses on minimizing the amount of work in progress.

Instead of using time-boxed iterations, Kanban employs more of a flow by allocating time and

resources as they are needed. Software development organizations that have challenges with

work estimation and interruptions have been shown to show improvements over lead time and

defect rates by using Kanban over the time-boxed method of Scrum (Sjøberg, Johnsen, &

Solberg, 2012). A significant area for further research is operational guidance on mapping such

lean and agile processes to their current roles and a roadmap for implementing them (Wang,

Conboy, & Cawley, 2012).

Successful implementation of an agile methodology has been found to rely heavily on the

establishment of many cultural and procedural changes within an organization. The first of these

is building a continuous feedback loop to allow for constant replanning (Vidgen, 2009). Shared

 15

responsibility by empowering Scrum team members to manage day-to-day work is also

important (Vidgen, 2009). A key enabler for self-managed teams is fostering high

communication and collaboration on a daily basis. Spontaneous interactions should be supported

by structured interconnected practices such as Scrum meetings and pair programming (Vidgen,

2009). A willingness to adapt the process to the development context is key, and the

development iterations themselves should work towards a sustainable rhythm (Vidgen, 2009).

Agile implementation is not limited to the development organization. Product

management should also integrate agile methods into their work. This can be accomplished by

establishing sprints that alternate with the development teams. Implementing agile in product

management as well as development provides for structured detailing of complex requirements,

early collaboration, and disciplined backlog administration. (Vlaanderen, Jansen, Brinkkemper,

& Jaspers, 2011)

For requirements prioritization, it was found that a mix of agile and plan based methods

proved to outperform either agile or plan based methods alone in which volatility is not very high

or low (Port & Bui, 2009). Since volatility is rarely at the extreme and often unknown, it was

inferred that mixed strategies should be the most widely used. However, it should be noted that

very turbulent markets or gold rush situations could accelerate the volatility or “pull” rapidly.

The adoption of such mixed practices have been found to allow for change, driven by close

customer interaction, continuous requirements gathering, and frequent iterative delivery (Vidgen,

2009).

Although agile has been noted to increase productivity, foster shared learning, and create

job satisfaction among developers (Vinekar et al., 2006), it may not be the best choice for all

 16

environments. The literature as well as practitioner experience shows that successful adoption of

agile in its purest form may depend on the following factors:

 size of the project and team,

 consequences of failure or criticality of the project,

 volatility of the environment,

 skill level of the development team(s), and

 company culture (Vinekar et al., 2006).

One example of such an environment, embedded systems development, is impacted by

these factors on many levels. Firmware and hardware development teams tend to be much

smaller than their software counterparts with a much higher degree of specialization. While

there are many software developers in the organization with skills that are easily transferable

from one project to another (such as C#, Java, or .NET programming), their firmware

counterparts do not share the same level of transferability. Firmware professionals often have

very focused knowledge of the embedded systems stacks for home area networking, RF network

communication, or metering metrology that inhibits them from being easily interchangeable.

Embedded systems are often mission critical systems with high consequences for failure. As a

result, organizations developing such systems tend to be less comfortable with the higher rates of

change that often come with the iterative and potentially chaotic agile development than their

software counterparts.

 17

Chapter 3: Context: Continuous Development of Embedded Systems

Embedded Systems

An embedded system is typically one which consists of a combination of software,

firmware, and hardware components that must be developed and tested in tandem (Douglass,

2004). The exact nature of an embedded system may vary according to the application, but it

typically consists of the following key characteristics:

Embedded Systems are Real Time

A real time embedded system is one where the predictability and schedulability of the

system affects the correctness of the application (Stankovic, 1996). For example, if a purchase is

made on a website, it may appear as though the transaction is immediate or real time, but in fact,

it is being queued on a server and is being processed accordingly. If it takes a few extra minutes

to process a credit card, the functionality of the application is not affected. However, in the

context of a complex avionics system on a fighter jet, or a heart pacemaker, if a signal is not sent

correctly at a specific instance in time, disastrous consequences could result, meaning that the

application has failed. This also applies to smart metering devices. If meter readings are not

calculated and sent at a specific instance in time, incorrect billing could result. If the meter fails

to respond to a load shedding event or power interruption, this could cause problems on the

electric power grid.

More stringent reliability and safety requirements are needed for embedded systems.

Such requirements call for extensive fault tolerance and safety testing to ensure that the

equipment in question is safe for workers to manage and that the public interest in protected

(Stankovic, 1996). In the case of smart metering, much of the equipment may have thousands of

volts flowing through it at any given time. Safety guidelines must be determined through

 18

extensive testing. Utilities that purchase this equipment must answer to the public service

commissions of their respective governments, which often have questions regarding accuracy

and reliability.

Complex Change Management

Most IT systems are maintained systems. In other words, the software work they entail

consists of small incremental efforts to add features and repair defects. This work is easily

conducive to an iterative approach. By contrast, an embedded system contains software,

hardware, and firmware that are intertwined. Making a change to an embedded device,

particularly once a few thousand circuit boards have already rolled off the assembly line, could

be a monumental undertaking both technically and financially.

More device driver-level software is required—as implicated in earlier statements,

embedded systems often have custom hardware, requiring custom software drivers to operate

them (Douglass, 2004). A smart meter is a good example. It consists of a radio, metrology, and

home area network hardware components, all of which are operated by custom software

applications. If one of these components changes, others may be impacted as well.

More restrictive optimization requirements are also needed due to the highly resource-

constrained platforms (Douglass, 2004). Most embedded devices only have a very limited

amount of memory and CPU to operate on.

Finally, there is a significant difference in target environments between embedded

systems and traditional software applications (Douglass, 2004). A typical software application is

developed on a PC and can be installed, tested, and run in the same or very similar environment.

An embedded system however, must be developed on a different environment from its target.

For example, a smart metering application may be developed on a laptop computer, but it must

 19

be tested and operated on a smart meter or radio frequency network equipment. The

characteristics of these environments are difficult to simulate, and so they must be tested as much

as possible with real equipment. Due to size and cost restrictions, full scale testing can be

exponentially more complicated than traditional software applications.

All of the aforementioned characteristics combine to significantly differentiate embedded

systems from the traditional software application development effort. In line with these

characteristics, agile is often not considered for embedded systems development, due to lack of

full life cycle support and tools (Smith, Miller, Huang, & Tran, 2009).

Despite these barriers, embedded systems development organizations have successfully

integrated XP and Scrum based agile practices with positive results. One such successful

example provided for acceptance testing that drove a high level of prototyping, beyond what

standard XP development would provide (Smith et al., 2009). As one may expect from such

examples, the literature shows that the integration of specific practices and their adaptation varies

from company to company and from project to project (Salo & Abrahamsson, 2008; Sue,

Kendall, & Kendall, 2012). Most critically, a study of process model selection in embedded

systems development found that for large, complex projects no single method applied most of

the time, rather, a “hybrid model blending and balancing the features of different models is often

the choice” (Kettunen & Laanti, 2005).

 20

Continuous Development

The concept of continuous software releases consists of providing for a series of smaller,

sequential releases, as opposed to one large monolithic production. Such concepts have been

long known to provide better time-to-delivery for software products. More specifically,

continuous development has been found to have the following benefits (Greer & Ruhe, 2004):

 Requirements can be prioritized so that a working, beneficial system can be

produced sooner.

 It allows customers to receive at least a piece of a working system earlier and

provide feedback.

 It allows for the integration of customer or user feedback at incremental stages.

 It simplifies scheduling and estimation due to working with smaller chunks instead

of larger products.

 It makes adapting to change easier.

The key components of continuous development have been found in the literature to be

release planning, iteration pacing, and continuous integration of change.

Release planning or road mapping is important to directing iterative releases. In one study,

a systematic review of 24 release planning models was performed, and sixteen of these belonged

to the EVOLVE family of models. EVOLVE employs a genetic algorithm to determine an

optimal requirements set for each iteration (Greer & Ruhe, 2004). It can be used to build a

release plan within certain technical constraints once requirements have been categorized and

estimated. Most planning methods found in the literature focus on a small set of requirements

selection factors and emphasized constraints such as budget, technology, and schedule. About

58% of these methods included soft factors such as customer or company value, risk, stakeholder

 21

influence, or resources. Although most of these models were validated with case studies, very

few were tested in full-scale industry projects. Additionally, all such models were intended for

market-driven development (Svahnberg et al., 2010). In essence, Svahnberg’s study revealed that

there are few real choices for practitioners wishing to adapt a release planning model, and the

most of those in existence are very interrelated. Finding a model that suits a company’s unique

needs, which at the same time has enough empirical evidence from industry to prove that it

works, is challenging (Svahnberg et al., 2010).

Continuous releases typically require the creation of successive development iterations.

Iterations can be used from the product development level down to the organization of individual

coding tasks. Companies that compete in very fast-paced markets have found that proactively

setting a time-boxed pace for new product development, based on an established rhythm, allows

them to keep one step ahead of the competition (Eisenhardt & Brown, 1998). It does this by

combining flexibility and control in turbulent environments (Vidgen, 2009). This is in contrast to

event pacing which is more reactionary. Although every market will have its surprises that

require companies to be reactionary at some point, making proactive commitments to innovation

in this way has been shown to have a direct impact to the timeliness and effectiveness of new

product introduction (Eisenhardt & Brown, 1998). A key in making time pacing successful is the

use of time based performance metrics such as speed, rate, and elapsed time, in addition to costs

or profit margins.

Another component of continuous development is the practice of continuous integration of

development changes. Continuous integration has been found to increase quality at up to 30%

because it eliminates the integration periods required by the delivery milestones of a traditional

systems development life cycle. (Karlstrom & Runeson, 2005; Schatz & Abdelshafi, 2005).

 22

Although often considered an important contributor to the success of extreme programming

methods, a recent study concluded that the concept is “not homogeneous and has many contextual

variations” (Ståhl & Bosch, 2014). The study identified a need for a model that described these

variants and their effects. Industry stakeholders could then decide which variant they should seek

out based on their respective goals. As with time pacing, more advanced tools or reporting

systems are needed to allow for greater user input into this continuous integration flow

(Muthitacharoen & Saeed, 2009).

 23

Chapter 4: Hybridity: Adoption of Agility to Context

Adoption of Agility: A Hybrid Approach

The push to adopt agile development methodologies within the technology sector is

strong. Many companies have been made to feel that adoption of agile is critical to staying

competitive. This has become so pervasive that even the government has taken notice. In a

recent study, the Department of Defense cited insufficient progress and performance with

traditional methods, and inability to provide urgent responses to evolving mission needs, as key

reasons for adopting agile methods (Broadus, 2013).

Despite the drive to adopt, assimilation of agile methods into new organizations well

entrenched in traditional waterfall methodology often face significant resistance. Many

stakeholders are uncomfortable with key tenets of the Agile Manifesto and fear that loosely

defined requirements and iterative development will cause significant disruption, particularly in

complex projects (Barlow et al., 2011).

Organizational, process, and procedural barriers to agile adoption are numerous. Some of

the most commonly cited concerns are the management of non-functional requirements,

documentation, contractual issues, resource management, and cost estimation (Barry Boehm &

Turner, 2005). Depending on the industry, conflicts with critical design review processes,

regulatory requirements, and human resource policies can also be difficult to overcome.

Additionally, maturity assessments and traditional engineering performance indicators can

become issues. (Boehm & Turner, 2005) Critics often doubt whether the benefits of agile

outweigh the costs of adoption. Many cite the lack of required documentation and too much

focus on coding, as opposed to implementation and planning. Others have noted implementation

failures in large complex projects (Barlow et al., 2011). In some agile environments

 24

development was found to skip procedures or processes under tight deadlines, causing the

process to proceed in an ad-hoc shortsighted way (Karlstrom & Runeson, 2005). Such concerns

tend to be more pervasive with embedded systems development.

Some studies found, not long after the advent of the Agile Manifesto, that although agile

methods were designed to solve many of the same problems that faced embedded development,

existing methods were not well suited to the task (Ronkainen & Abrahamsson, 2003).

Embedded systems often place the following constraints on agile assimilation (Ronkainen &

Abrahamsson, 2003):

 Up-front architecture design cannot be avoided and must be provided for.

 Refactoring must include configuration management for both software and hardware,

supported by system level analysis.

 Transitioning prototypes to well documented production code requires techniques for

increasing code maturity.

 More formalized communication and coordination methods are needed between

teams.

 A method is needed for throttling changing requirements gradually as the product gets

closer to release.

 Techniques are needed for building and optimizing test cases.

Integration of agile with Stage Gate methodologies addresses many of these constraints

such as resolution of communication problems (Karlstrom & Runeson, 2005) . Such

dependencies are even more prevalent in an embedded systems environment. In a study of agile

integration with software product line engineering, it was found that although collaboration

between teams is encouraged, project managers should also manage the boundaries between

 25

teams. Additionally, project managers should manage the scope based on market,

organizational, and technological factors (Mohan, Ramesh, & Sugumaran, 2010). Software

product line engineering is similar in complexity to embedded systems development, in that it

involves the development of one comprehensive solution that may span multiple domains.

An organization need not be concerned with complete adoption of all commonly accepted

agile practices. Environments dictate practices as opposed to principles, and some combinations

of practices may be better suited for specialized environments (Baskerville, Ramesh, Levina,

Pries-Heje, & Slaughter, 2003). Some of the latest research has shown that many adopters,

particularly larger organizations, are taking a hybrid approach, stating that a la carte selection of

agile practices can work very well. (Fitzgerald, Hartnett, & Conboy, 2006). Other studies have

shown that combining agile with other approaches has proved promising and that practitioners

should not be afraid to adopt hybrid methods tailored to their needs (Sheffield & Lemétayer,

2013). In fact, a one size fits all solution for software agility has been found to be inappropriate

because it is often contextual and organizationally dependent (Sheffield & Lemétayer, 2013; Sue

et al., 2012). Mixed strategies for development work such as requirements prioritization have

been found to outperform either agile or plan-based methods alone (Abrahamsson, Conboy, &

Xiaofeng, 2009). Hybrid approaches are further strengthened by the fact that they build on the

strengths of both plan-based and agile methods while mitigating their weaknesses (Barlow et al.,

2011). For example, agile methods have been shown to provide the Stage Gate model with tools

for planning small iterations, day to day work management, and reporting. In turn, the Stage

Gate model can provide agile methods a means to coordinate with other development teams and

communicate with marketing and upper management (Karlstrom & Runeson, 2005). Most

critically, much research has shown that agile is often not the best choice in certain contexts,

 26

such as larger organizations, and combining it with State Gate models has proven the best

approach. (Dybå & Dingsøyr, 2008). Such contexts need development approaches that balance

flexibility and disciplined methodology (Baskerville et al., 2003). The causal factors for such a

hybrid approach have been stated to include

 a desperation to rush to market,

 a new and unique software market environment, and

 a lack of experience of developing software under the conditions imposed by the

environment (Baskerville et al., 2003; Lyytinen & Rose, 2005).

Indeed, those facing high uncertainty and reciprocal interdependencies in their projects

should implement a hybrid method combining strengths of current software life cycle

development with complementary agile practices (Barlow et al., 2011).

Finally, this trend of hybridization is expected to continue and proliferate, perhaps to the

extent of changing the face of agile development methods themselves. The proliferation and

assimilation of agile development methods is a cyclical evolution that continues to this day and

will ultimately combine agile and plan driven techniques (Baskerville et al., 2011).

As mentioned previously, agile is as much a business philosophy as it is software

development methodology. With its adoption comes an entire change in the way a company

does business. Design reviews are handled differently, product delivery is iterative, and the

management of expectations relating to acceptance and decision making have to change

(Broadus, 2013). In fact, adopting agile often requires moving away from the iron triangle of

cost, scope, and schedule into an entirely new project management paradigm (Baskerville et al.,

2003; Highsmith, 2010).

 27

Successful agile adoption depends not only on agile development teams but agile

organizations. As mentioned earlier, product management and executives must also participate

in the process (Vlaanderen et al., 2011). Particularly in large or relatively mature companies, it

is necessary to focus on human and social interaction to succeed (Dybå & Dingsøyr, 2008). In

such organizations, the high levels of individual autonomy provided by agile must be balanced

with high team autonomy and corporate responsibility (Dybå & Dingsøyr, 2008). This requires

teams with high functioning employees capable of trust, strong communication skills,

interpersonal skills, and confidence in their own abilities (Dybå & Dingsøyr, 2008). Complete

integration of agile at the organizational level requires an understanding of the adopters,

understanding of the risks, and time to allow change to work (Broadus, 2013).

Environments can dictate practices, and studies have shown that some combinations work

better in different environments than others based on project size and other factors (Baskerville

et al., 2003). Barlow provides a framework to evaluate what kind of agile approach is best for a

given situation based on the examination of project interdependencies and volatility. It was

found that large mature organizations often require a hybrid approach to agile due to complexity,

IT governance processes, and size of the teams (Barlow et al., 2011). Additional studies made

similar conclusions. Using adaptive structuration as a lens, one study concluded the following

points regarding optimum agile adoption (Baskerville et al., 2003):

 Successful adoption requires top management buy-in and support.

 Methods should be tailored to the team.

 Developers need to understand the impact of their autonomy.

 28

Key to making all three of the points above happen is communication. Indeed, an

organization’s support for formal and informal communication affects the outcome of the type of

hybrid approach used (Barlow et al., 2011).

Despite the extensive monetary and organizational commitment required to adopt agile

practices, it is rare to have any comparable data to explain the impact of agile before and after

adoption. (Laanti, Salo, & Abrahamsson, 2011). In one study, it was difficult to assess whether

the hybrid method that Intel eventually developed was superior to either XP/Scrum or traditional

methods (Fitzgerald et al., 2006). Barlow maintains that the success of an agile team could be

determined as a function of the density of the project team's advice network, moderated by the

cost of maintaining informal relationships (Barlow et al., 2011). However, this success factor is

only at the team level as opposed to the organization level and does not provide a link to agility

in the marketplace.

From a research perspective, links between social interaction and project outcomes such

as budget, schedule, and quality are subjects of ongoing research. (Cao, Mohan, Peng, &

Ramesh, 2009).

Performance and Limitations of Agile Methods

The following section outlines the positive contributions of agile methods to information

systems development, as well as the shortcomings found during their implementation and

management.

There is almost no question as to the positive contributions of agile development

methods. While at times controversial, they are being adopted in one form or another worldwide

across a variety of contexts. Agile methods are here to stay, and the perception of the impact of

agile methods is predominantly positive (Laanti et al., 2011). Much of this successful adoption

 29

has been due to the impact agile has had on project performance. For example, agile has been

proven to reduce defect density by a factor of seven and allow projects of six to twelve months in

duration to be delivered ahead of schedule with high quality (Fitzgerald et al., 2006; Schatz &

Abdelshafi, 2005).

The literature has shown that many negative perceptions of agile do not hold up under

scrutiny. Contrary to popular belief, agile is not an undisciplined approach. In fact it has been

found to require just as much discipline as traditional methods (Fitzgerald et al., 2006) (Schatz &

Abdelshafi, 2005).

Agile’s contributions are not limited to project management and software development

improvements. It has also been shown to create improved job satisfaction, productivity, and

increased customer satisfaction (Dybå & Dingsøyr, 2008). The practices of sprint planning,

daily standups, and retrospectives have been shown to help people function better as teams

(McHugh, Conboy, & Lang, 2012).

Additionally, agile methods have been found to positively influence quality, especially in

highly turbulent markets where requirements often change. This has been especially true in

situations where high outcome controls are used, such as established standards for evaluating

project performance. It has also been found to lower software complexity in rapid changing

environments (Maruping, Venkatesh, & Agarwal, 2009).

Despite all of its contributions, agile methodology is not a panacea. Agile can be difficult

to introduce to large, complex projects, and having continuous customer input can be

unsustainable for long periods (Dybå & Dingsøyr, 2008). Agile can also generate obstacles with

decision making, such as commitment, conflicting priorities, unstable resource availability,

ownership, implementation and empowerment. These can result in the absence of strategic

 30

roadmaps, lack of team engagement, and an ever growing backlog of delayed work from

previous iterations. This backlog is often referred to as technical debt (Drury, Conboy, & Power,

2012). The high level of empowerment that an agile team often has can result in groupthink or

Abilene paradox (Abrahamsson et al., 2009). Determining solutions to these obstacles is critical

to agile project and team success (Drury et al., 2012).

For the individual developer, agile presents another set of challenges. Gold plating, or

adding features that the customer never asked for, can be a common issue because programmers

like to be creative, and the autonomy provided by agile gives them this latitude (Baskerville &

Pries-Heje, 2004). Agile techniques such as Scrum can put developers “on the spot” and cause

them to fear exposure of their weaknesses. Placing two developers to code together, referred to

as pair programming, can be one technique to guard against such shortcomings.

Also, agile developers must wear many hats, often playing the roles of coder, tester,

architect, customer, QA expert, and so forth. It can be difficult to find people with such a broad

skill set, particularly when it comes to the interpersonal or business skills necessary to function

in these roles. Taking on such responsibilities often makes it difficult for developers to hone the

specific skills required for their job, which may inhibit promotion. Mitigating these issues

requires agile specific policies across the organization. Agile values and principles need to be

integrated throughout, and periodic assessments of a team’s agility should be conducted using an

assessment framework based on agile goals, as opposed to practices (Conboy, Coyle, Xiaofeng,

& Pikkarainen, 2011).

Agile methods derive much of their agility by relying on the tacit knowledge embodied in

the team, instead of formal documentation. As a result, unapparent shortfalls in this knowledge

 31

can lead to significant mistakes. This may be exacerbated in the teams are large. Agile has been

found to become unwieldy with teams beyond fifteen to twenty developers (B. Boehm, 2002).

Distributed development teams can have their own unique set of conflicts related to agile,

including lack of team cohesion, people versus process controls, communication, and formal

versus informal agreements. However, studies have shown that much of this can be mitigated

through knowledge sharing, intensive communication, trust, and a practice of continual

improvement (Ramesh, Cao, Mohan, & Peng, 2006). Such issues can further be resolved with

the establishment of contextual ambidexterity through the balancing of formal structures with

flexibility, trust with verification, and process assimilation with quick delivery (Ramesh, Mohan,

& Lan, 2012).

Iterative agile development can often cause too much focus on short-term deliverables,

which can create situations in which the resulting end product is unshippable. Dedicated sprints

must often be created to fix bugs, due to the time-boxed nature of sprint planning. Lack of focus

on non-functional requirements, such as scalability or long term maintainability, has always been

a challenge for the agile organization. Burndown charts do not sufficiently communicate

remaining work for a release because of the changing nature of requirements. Accurate reporting

requires a greater level of discipline within the teams to provide regular and accurate feedback

(Schatz & Abdelshafi, 2005). It has also been noted that there is a tendency to underestimate

tasks in agile because even for experienced developers, estimating the unknown can be difficult

(McHugh et al., 2012).

Finally, agile increases the risk of overemphasizing functional requirements, incomplete

or inadequate requirements, and inadequate design (Ramesh, Lan, & Baskerville, 2010). This

makes the management of agile particularly challenging at the organizational level where

 32

requirements are emergent rather than specified up front (B. Boehm, 2002). Misunderstanding

user requirements has been cited as a major cause for software quality problems in agile as well

as other methods of development. Studies have shown that such quality problems can better be

solved by improving communication, rather than testing (Sue et al., 2012). Ensuring that such

communication occurs can be a challenge in an environment with no Stage Gate process to

provide checks and balances.

Limitations of Agile Research

As previously mentioned, agile software development methods have only come into

practice during the last decade. As a relatively new concept in software development, much of

the current literature lacks clarity, theoretical glue, and parsimony. In addition, much of this

literature has limited applicability to various contexts (Conboy, 2009). Most importantly, the

current body of research lacks clarity with regards to what agility is, its adaptability, and how it

is deployed in practice (Abrahamsson et al., 2009).

Researchers have noted that there is an overall need to improve the rigor of agile research

(Abrahamsson et al., 2009). In many such studies, research methods were not well defined and

weaknessess regarding bias, validity, and reliability were not addressed. Employment of

applicable theoretcial frameworks are rare. Data collection and analysis processes are often

poorly defined and the “current contribution of agile research remains low and uncertain”

(Abrahamsson et al., 2009).

Agile methods, especially in the early years of the Agile Manifesto, have been used

primarily in small teams at younger companies. As a result, there have been few studies in

mature teams or teams in larger organizations (Dybå & Dingsøyr, 2008). Research studies

framed in known general contexts, such as embedded development, are also lacking

 33

(Abrahamsson et al., 2009). This is compounded by a dearth of research in post adoption

contexts and innovation (Abrahamsson et al., 2009).

More case studies are needed to evaluate control patterns in different contexts. For

example, it has been found that multiple categories of control, including both formal and

informal, are needed in large distributed development contexts (Persson, Mathiassen, & Aaen,

2012).

Although there is a significant and growing body of research on agile, many aspects are

yet to be explored, particularly outside systems development at the organizational level (Conboy,

2009). The extent to which various stakeholders inside and outside the organization contribute

to agility and agile teams is yet to be investigated (Conboy & Morgan, 2011). This is largely due

to the fact that agile has traditionally been championed from the bottom up, being implemented

at the development team level with few if any agile concepts being adopted upstream

(Abrahamsson et al., 2009). Barlow cites that team culture, top management support and

alignment with organizational strategy were typically not included in determining an approach to

agile adoption (Barlow et al., 2011). However, Highsmith maintains that true agility requires

assimilation of agile concepts into all aspects of the business including determining success

factors (Highsmith, 2010).

Abrahamsson tells us “there is a poignant need to identify rigorous ways with which

agility can be assessed” (Abrahamsson et al., 2009). Examples cited included determining the

decline of agility over time, across projects, and at the organizational level to identify

improvements. Most importantly, there needs to be a way to bridge the understanding of agility

to system development success (Abrahamsson et al., 2009).

 34

To bolster these claims further, Conboy asserts that “mechanisms for scanning the project

landscape should be incorporated into project management practices in agile organizations.” The

same study further asserts that “project managers need to be aware that an information systems

project is no longer a local matter that can be treated as a closed innovation isolated from the rest

of the organization.” Such projects should be seen in light of other projects within an

organization” (Conboy & Morgan, 2011). Similar studies have drawn a clear distinction

between “doing” agile and “being” agile. True agility requires significant cultural and

procedural changes within an organization as well as a new thought process. A prerequisite for

information systems development agility has been stated as the practice of mindfulness routines

as organizational routines. Mindfulness routines have been described as the practice of

“gathering new information from multiple perspectives via self-assessment and reflection to

promote continuous creation and refinements of organizational routine performance” (McAvoy,

Nagle, & Sammon, 2013).

A practice perceived as new by its adopters, such as agility, can be considered an

innovation (Rogers, 2003). Agile methods are often viewed as process innovations of an

information systems development organization (Wang, Conboy, & Pikkarainen, 2012). The

assimilation of agile has been conceptualized using innovation diffusion as a lens, concentrating

on the stages of acceptance, routinisation, and infusion (Wang, Conboy, & Pikkarainen, 2012).

In a software context, agility is affected by the extent of innovation in base technologies as well

as process innovations in complementary assets (Lyytinen & Rose, 2005).

Software organizations organize themselves differently during different innovation

periods while they decide to explore fast or deliver fast. They control their focus on agility on

 35

how good they want to become in managing technologies in different innovation phases

(Lyytinen & Rose, 2005).

Current research needs more careful constructs for agility and other process features.

Variances have been found in process features, across phases, and between companies due to

varying focus on exploration or exploitation. There is a poignant need to explore other factors

than just an organization’s learning focus to establish causal explanations of agility in

organizational contexts (Lyytinen & Rose, 2005). In summary, systematic and insightful

understanding of agile methods in use is yet to be achieved (Wang, Conboy, & Pikkarainen,

2012).

 36

Chapter 5: Research Methodology

Research Design

The purpose of this study was to answer the question of how agile processes are

orchestrated in an embedded systems environment. The study did not require any behavioral

controls, and it focused on contemporary events. The assimilation of agile methodologies within

embedded systems development is indeed a most contemporary phenomenon that requires in-

depth analysis in a real-life context. The boundaries between these are not clearly evident, and

there are many more variables of interest than data points due to the complexity of agility

measurement. These are all key characteristics of research conducive to a case study approach

(Yin, 2009). In addition, this case study approach was conducted in the interpretive tradition of

information technology studies (Klein & Myers, 1999). As a result, focus was placed on the

participants descriptions of software development practices and their work related to them.

A grounded theory method of data analysis was employed. Grounded Theory is a

qualitative research methodology that does not begin with a theory; instead it starts with an area

of interest and allows the theory to emerge from the data. Strauss and Corbin define it as “a

qualitative research method that uses a systematic set of procedures to develop an inductively

derived grounded theory about a phenomenon (Pozzebon, 2011). Research results consist of

grounded theories discovered inductively by collection and analysis of qualitative, empirical data

(Baskerville et al., 2011). Grounded theory is most appropriate where research questions are

descriptive and explanatory, and the field of phenomena is not well studied and lacks a

substantive body of theory (Galliers, 1991).

Two variations on grounded theory can be found in the literature: Glaserian and

Straussian (Pozzebon, 2011). While the Glaserian method advocates an unstructured approach

 37

for data analysis and theory construction, Straussian provides a well-defined set of procedures

for applying the method (Pozzebon, 2011). Although both approaches to grounded theory can be

found in information systems literature, the Straussian method is much more prevalent. Its

structured design also better lends itself to a doctoral dissertation (Pozzebon, 2011). It is for

these reasons that this study employs Straussian grounded theory as its research methodology.

The methodology herein is based on Strauss and Corbin’s seminal work Basics of Qualitative

Research: Grounded theory procedures and techniques published in 1990 (Strauss, 1990).

This research effort consisted of a singular case study. One of the often-cited limitations

of using one case study is its lack of generalizability, as the data collected is often specific to the

particular situation at a particular point in time (Fitzgerald et al., 2006). However, quality with

interpretive case studies is defined by the plausibility of the story and the argument it presents, as

opposed to validity and reliability found in positivist studies (Klein & Myers, 1999). More

importantly, the rich detail provided by case studies is considered more valuable than

generalizability (Yin, 2003).

Data Collection

The case chosen for this study was an embedded systems development organization in

the power utility industry. Beginning five years ago, this organization instituted a mandate to

integrate agile development methodologies enterprise-wide. Although the implementation and

evolution of agile adoption is known to many of the participants and adds context to the study,

this research is focused primarily on the post-adoption state that the business currently finds

itself in.

Participant observation, interviews, and documentation were all used as data sources for

this effort. Participant observation was used because the first author has been an employee of the

 38

organization for almost five years. As a result, he has been a regular participant in several

projects including the continuous development of the organization’s primary product line. He is

and has been a regular attendee for virtually all meetings and activities relating to these projects,

and is intimately familiar with, not only with the development processes and procedures

themselves, but also how they have evolved over time. During the past five years he has

participated in the organization’s adoption, assimilation, and ultimate hybridization of agile

methodologies.

The second source of data consisted of semi-structured interviews with managers and

lead architects involved in managing agility. As an employee of the organization being studied,

the first author was able to identify and access the interview candidates using his knowledge of

the organization. Roles were selected based on their knowledge of and impact of the

orchestration of agile processes and product development. This selection method was based on

the criteria for key informants as outlined in Klein and Meyers (Klein & Myers, 1999). Four key

roles were identified as those regularly involved in these activities. These included product

managers, project managers, engineering managers, and technical architects. These four roles

were found to have the most hands-on impact in managing agility for the products, processes,

people, and technology in the organization. Embedded systems development in this company

consisted of three primary domains: hardware, firmware, and software. Candidates for each of

the four roles in all three domains were selected, resulting in a total of twelve interviews.

As previously mentioned, the interviews were semi-structured in format. Interview

questions were informed by the literature using the Strausserian approach to grounded theory

development (Strauss, 1990). The candidates who were interviewed were assured of anonymity.

Interview sessions lasted on average about an hour in length. The interview data gathered was

 39

recorded, transcribed, and coded using Nvivo software. The first author’s familiarity with the

organization and the interview candidates had a positive influence on the results. For example,

the first author had unfettered access to select any candidates that were willing to participate. In

addition, interviewees seemed comfortable and candid with an interviewer they knew personally.

Documentation served as the final source of data which included archival data of agile

processes and procedures, meeting minutes, and project artifacts such as feasibility studies.

These sources allowed the author to better understand the issues and outcomes of management

decisions during project life cycles and to fill in any gaps of understanding with respect to

processes, procedures and history.

Data Analysis

Data analysis was performed based on the three commonly used coding techniques in

grounded theory research: open, axial, and selective coding (Strauss, 1990; Baskerville et al.,

2011). Open coding is a process of analysis that develops concepts in terms of their properties

and dimensions. Key tasks involved are the asking of questions regarding data, and then making

comparisons. Similarities are grouped to form categories (Strauss, 1990). Essentially, the text

was broken down into segments which were compared for similarities and differences. They

were then labeled and grouped to form codes. A single code could have multiple text segments.

During coding, 542 codes were created. As an interpretive case study, the data primarily

reflected the interpretations that the interview candidates formed about agile process

orchestration within their organization and their work relating to it. As a result, the coding

categories included both positive and negative views of agility in the organization and described

actions taken by many of the interview respondents.

 40

Once the data was broken down via the open coding, it was reconstructed in new and

different ways using the axial coding method. Axial coding is a process of relating subcategories

to a category through a process of inductive and deductive thinking. Although it too involves the

tasks of asking questions and making comparisons, categories that arise from this analytic

method are developed in terms of causal conditions, context, consequences, and

action/interactional strategies (Strauss, 1990). Through axial coding, six larger categories were

developed. The first three categories reflected the company’s market agility. The fourth

category identified process agility and the organizational context: hybridized agile methodology

and embedded systems development. The final two categories described agile orchestration.

Sample codes for these categories can be found in Table 1.

The final step was selective coding. Selective coding is the process of selecting the core

category, relating that category to others, validating the relationships and completing those which

need further development (Strauss, 1990). Strauss and Corbin advocate continuing this grounded

theory coding of data until one single category stands out. (Baskerville & Pries-Heje, 2004).

Selective coding was considered complete once saturation had taken place. Such saturation

occurs once there is no additional data to inform a category and the relationships between the

categories have adequate data to support them. The final result is a story line that correctly

conceptualizes this core category or primary phenomenon. This story line is the heart of

grounded theory. The next section accomplishes this task by presenting the empirical analysis,

followed by the presentation of the final theory of the agile business vortex.

 41

Chapter 6: Results

In this section, we first describe the institutional context surrounding the orchestration of

agile processes within an embedded systems development organization. Then we describe the

three main constructs: generation of market agility, the development of process agility, and the

orchestration of agility within the embedded systems development. These constructs are then

rolled up into the grounded theory of the study which is conceptualized by a comprehensive

illustration combining all of the constructs into one end-to-end view. Table 1 provides an

overview of these constructs, their major categories, and code examples for each. Each section

includes a table of elements for each category. For a more detailed view of how all categories

and elements are linked, refer to the category diagram in Appendix A.

Institutional Context

The institution in this study is a company in the business of developing embedded

systems devices for use at power utilities. It is an international corporation employing over

5,000 individuals worldwide and has recently become a subsidiary of a major electronics firm. It

is important to note that the company’s contracts with its customers are largely based on the

number of embedded devices that they sell. These devices have a long lifespan of between ten

and twenty years. As a result, once a customer is taken, it puts them out of the market for quite

some time. The company has developed a strategic direction of establishing itself as a market

leader by “grabbing up” market share before its competitors, and it has been largely successful in

doing so. Although the firmware and software aspects of the embedded systems are critical to

the overall functionality of its products, company profits are primarily driven by how much

hardware can be manufactured and sold to a given client. Because of this, it was critical to

include hardware as well as software and firmware domains in this study.

 42

It should also be noted that the subject of this study was the result of several mergers over

the years, with a large number of disparate technologies, processes, and procedures that have

slowly evolved and converged over time. As it was largely a hardware development firm in the

beginning, the company’s projects are grounded in a waterfall process, termed new product

introduction, that it has inherited and largely maintained over the last seven years as agile

methods have been integrated. As with many similar organizations, the company has gradually

adopted and adapted agile methods into the enterprise, with the highest degree of adoption in

areas with the highest rates of change, such as software and firmware.

Three years ago the company embarked on an initiative to adopt agile and Scrum

methods in earnest, which was the third iteration of the company’s agile adoption process. This

phase is now considered complete, with the result being a hybrid agile implementation across the

enterprise with varying degrees of absorption per domain. At this time, the company has no

further plans to make any process improvements or changes with respect to agility or agile

methodologies.

 43

Category Sample of the Codes within a category

 Market Agility

Market Pressure Competition, Government Regulation

Product Genesis Requirements Comprehension, Dynamic Priorities

 Process Agility

Hybrid Agility Software, Firmware, and Hardware

 Agile Orchestration

Interconnections

& Interactions

 Dependencies, Interdependencies, Linkages,

Decision Points, Status Points, Touch Points

Making Adjustments Customer Negotiation, Resource Adjustment,

Scope Adjustment, Constant Re-assessment
Table 1: Key Constructs and Major Categories from Axial Coding

Market Agility

Market agility, in the context of this study, is the ability to adapt to market pressures via

product genesis. In essence, the business responds to market pressures with a product roadmap,

based on its understanding of customer needs and the internal capacity to meet those needs. The

resulting product scope, or roadmap, creates business momentum, which process agility attempts

to match with the systems release. This section begins by describing the elements of market

agility, starting with its key driver, which is market pressure. This is followed by a description

of product genesis, which is the company’s market agility response to such pressure. The section

ends by summarizing market agility with the culmination of business momentum.

Market pressure in this study was found to be composed of six elements. These included

four pressure drivers, which are market share, customer base, government regulation, and

competition, followed by two limiting factors or “governor elements” that served to keep the

pressure in check. While most of these elements within market pressure are outside the control of

 44

the organization, there are some aspects that it can influence. These elements are outlined in

Table 2 below, followed by descriptions of each respectively.

Elements of Market Pressure

1. Market Pressure 1.1 Market Share

1.2 Customer Base

1.3 Government Regulation

1.4 Competition

1.5 Governing Market Pressures: Strategic

Direction

1.6 Customer Appetite

Table 2: Elements of Market Pressure

Although gaining market share is important to any corporation, participants in this study

brought forth characteristics that made this context particularly challenging. The embedded

devices in this case study consist of new smart grid metering technology. These devices have a

long lifespan, and are often sold in large numbers. Customer contracts tend to be long term,

often spanning decades. Installation of the devices takes place over a period of several months,

and once they are installed customers expect maintenance over the life of the product. The

customers in question are power utilities which are often the only service providers in their

respective areas. As a result, there is a limited amount of territory to be had, and once that

territory is sold, it is out of the market for a very long time. These factors have created what one

respondent termed a land grab situation. Vendors are under exceptional pressure to grab up as

much market share as possible before it is all gone. Those who do not are not expected to

survive in the business for long, or will at least face long-term marginalization in the market.

 45

This phenomenon is analogous to the gold rush situation noted by Vigden, which can create very

high market turbulence (Vidgen, 2009).

Respondents also noted the relatively small, intertwined customer base as being a factor.

Although power utility companies are often large government regulated entities, there are

relatively few of them. Utilities are part of a small tight knit community that readily exchange

information about their vendor experiences. Recommendations from utility customers can not

only help sales, they can make or break a vendor in the business. This gives customers a great

deal of leverage when it comes to getting what they want out of the product.

In addition to this limited customer base, strong competition between vendors was also felt by

many of the respondents. Other vendors were believed to be more agile and nimble in some

cases because they did not have the baggage created by numerous mergers and acquisitions over

the years. Competitors were believed to have the ability to respond to the market just as quickly

with equivalent feature sets and embedded device support. The respondents felt that this resulted

in a constant battle of who could provide the richest feature sets in the least amount of time. As

one respondent explained:

“They [our competition] go to the customer and say, ‘hey, these guys don't have this

latest and greatest [feature but] we have it,’ so agility is certainly important.” “Since

everybody is responding to the market, if you're the one who is doing it quicker, it

helps your business.” Hardware Project Manager

Governments were also found to be a market driver. Being an international company,

this organization was subject to, and worked with, a number of different governments all over

 46

the world, and even domestically, it was often faced with issues within different states, counties,

and municipalities. Although government funding often helped drive the adoption rate of the

smart grid technology that the company sold, sudden changes in regulations could have a

significant impact on required feature sets and quality standards:

“In a regulated environment, we find that we are reacting to the whims of government

change and having to adopt changes to the products to head off being excluded from

bidding on future projects.” Software Project Manager

The utility industry is highly regulated. Mistakes in billing and meter reading have

garnered a great deal of media attention, and hence, governments have passed strict regulations

on billing requirements and feature sets to ensure accuracy.

Despite the pressures of gaining market share in a turbulent environment, intertwined

customer base, government regulation and stiff competition, participants agreed that market

pressure did not go on unchecked. The organization was adept at employing methods of

maintaining a good mix of responsiveness and control. One of these methods was the

establishment of a strategic direction. In order to get products to market as fast as possible,

close customer collaboration was often required. The company made strategic decisions to

concentrate on those customers who were willing to support this high level of collaboration by

acting as testers for new technology in exchange for being the first in the industry to obtain the

latest feature sets. Such collaboration allowed participating customers to influence the technical

direction of new features. This approach in turn allowed the organization to get products to

market faster along with the added benefit of conserving resources by using the customer as an

 47

extended quality assurance team. Although such customers had to deal with extensive defect

rates, they were compensated by receiving higher levels of service. By contrast, customers who

demanded proven products out the gate were often ignored. In essence, the company made

strategic decisions to adjust customer focus to those willing to collaborate heavily in order to

maintain its competitive edge. One respondent summarized this concept as follows:

“Some customers are just simply adamant that they get a proven product, they don't

want to deal with our problems and, you know, ‘It had better come to them tested or,

you know, there will be repercussions.’ Those are customers that we tend, frankly, not

to focus on. If they are going to take that approach that’s unrealistic, then they'll get

older product and they'll get less attention, because, again, that land grab is the

strategic priority.” Software Product Manager

Another control on market pressure is customer appetite. Although customers willing to

collaborate are going to get the latest features and the most attention, there’s only so much

innovation that they can handle at a given time. Each release must be qualified by the customer

before they can accept it, and the continuous release nature of agile development methods can

create more work for them. As one respondent put it:

“Customers don’t have an appetite for numerous system releases just because, again,

the complexity of the system release and the level of integration effort and expense on

their side to qualify.” Firmware Product Manager

 48

In summary, the findings show that market pressure is the key driver of market agility.

This pressure is created by the drive to achieve market share, the size of the customer base,

competition, and in the case of this study, government regulation. At the same time, this

pressure is governed by customer appetite and the company’s own strategic direction. These

elements outlined in Table 2 illustrate how this response to and control of market pressure

creates an interesting balance that allows the business to respond to customer needs and stay just

ahead of the competition without exceeding its capabilities.

The organization responds to market pressures through the creation and evolution of its

product line, or product genesis. Product genesis is essentially the organization’s market agility

response to market pressure. At a high level, it consists of the prioritization and comprehension

of requirements, followed by scope negotiation and development of the product roadmap. Table

3 below illustrates the elements that comprise it.

Elements of Product Genesis

2 Product Genesis 2.1 Establishment of Market Timing

2.2 Dynamic Priorities

2.3 Requirements Comprehension

2.4 Decomposition

2.5 Dropping Requirements

2.6 Scope Negotiation

3 Business Momentum

Table 3: Elements of Product Genesis

The process of product genesis begins with the introduction of new requirements.

Product managers noted that they serve as the first entry point for these new requirements and

 49

are the primary interface to the customer. They play a large part in managing the components of

market agility by gathering the initial requirements, establishing priorities, contributing to

requirements comprehension, and negotiating scope with both the customers and internal

stakeholders. Their first step, according to the respondents, is to create business cases from the

initial requirements gathering, and work to determine where in the product roadmap it should fit.

This is referred to as establishing the market timing. Market timing ensures that the product

roadmap is in alignment with current market pressures, as well as internal needs. Respondents

stated that the establishment of such timing was subject to a number of internal as well as

external factors, which included dependencies on other development efforts, organizational

priorities, resource availability, and budget.

Once market timing is established for a requirement or feature set, it is then prioritized.

This prioritization changes dynamically as requirements and their impacts become better

understood. This understanding is an iterative process of requirements comprehension and

decomposition with the input of both product management and engineering. Requirements are

decomposed into components which are typically translated into user stories. As these stories

are discussed, reviewed, and estimated, the understanding or comprehension of these

requirements changes. The priority of the requirements can therefore change as a result of this

iterative analysis. This phenomenon was referred to by respondents as “bubbling up” the

requirements. As this dynamic priority becomes better established, requirements are then

accepted, dropped, or postponed, and the scope for the systems release (and therefore the overall

product roadmap) becomes more solidified. The scope of the latest systems release in essence

bubbles up to the top of the product roadmap. Such prioritization is dynamic throughout product

genesis.

 50

So how exactly does prioritization occur? Respondents stated that prioritization is a

constant “push and tug” process between the business and engineering, or as in the context of

this study, between market and process agility. It is both dynamic and iterative and becomes

better defined as requirements comprehension and decomposition progress. Respondents stated

that product managers compete with each other as well as engineering stakeholders to bring

visibility to their priorities. The dynamism of these priorities is somewhat dependent on their

foreseeability and perceived impact. In summary, prioritization is a process of assessment and

reassessment of features against company strategic direction, the value of deals coming in, and

internal competition between product managers. This process evolves as requirements and their

impacts become better understood.

If requirements comprehension is key to the evolution of priorities, then how does it

occur? Respondents stated that requirements become better understood as they are broken down

through decomposition. Decomposition was defined by respondents as the process of increasing

understanding by reducing complexity. Complexity is reduced by breaking requirements down

into manageable chunks so that the technical, financial, and product implications are clear to the

stakeholders. The output of this process is typically a series of user stories that can be fed into

development sprints once they have been reviewed and accepted for a system release. Once a

requirement is decomposed, additional dependencies, requirements, resource, or budget needs

often become more apparent. This information is then fed back into the prioritization.

Ultimately, the business seeks to understand how much capacity a specific requirement will

need, its technical impact, and value add to the company’s product roadmap and customer base.

This process is a vital input to product genesis, because it dictates what features may or may not

make it into a specific system release. It is the way in which product genesis right-sizes itself as

 51

requirements and business needs become better understood and agreement with the customer (or

market) is negotiated. The diagram in Figure 1 illustrates this cyclical process.

Figure 1: The Evolution of Product Genesis

 In the end, company culture plays a large part determining the level of market agility.

According to one software product manager:

“So, you know, it is probably a cultural strength, and the reason for our success is

that we are used to change and it's not a cliché.”

 52

“But the aggressive nature of our expansion and our corporate parent pushes us in

that direction and fortunately the culture can stand it because it's used to it in North

American business. There are jobs I’ve been in where the cultures couldn't stand it

and that usually ended up with a bunch of people quitting when something moved to a

different mode of operation or went from domestic to international business.”

Software Product Manager

To summarize, we have shown that market pressure is driven higher through the need to

gain more market share. Such pressure can also be driven by a small tightly knit customer base

or community that readily exchanges detailed information about the vendors, their offerings, and

customer experiences. Government regulation can drive market pressure in this industry through

government mandates to utilities to adopt certain technologies, enforcement of billing standards

for embedded device performance, and government financial incentives. These market pressure

drives are tempered by a company’s strategic decision making to accept or ignore certain

pressures, and the appetite for customers to accept innovation at a given time. Product genesis is

the business’s agile response to this market pressure. It begins with establishing market timing

for a set of feature functionality, and dynamically prioritizing these feature sets as they go

through a requirements comprehension and decomposition process. As this process arrives to

completion, some features are dropped or retained as the final scope is negotiated. What remains

is the scope and timeline that the organization strives to “reach.” This scope and timeline creates

business momentum that the organization often finds itself chasing after.

 53

While the previous sections illustrated the components of market agility, the next section

includes the output, namely the product roadmap and the momentum it creates. This roadmap is

comprised of a series of system releases each of which have a scope and timeline, as created via

product genesis. System releases are essentially complex embedded systems that are comprised

of software, firmware, and hardware components released in tandem.

 In the world of physics, momentum is mass multiplied by velocity. Business momentum

in the context of our study is the scope of the release or product roadmap (release mass)

multiplied by the velocity or timeline in which the organization is attempting to achieve it. The

direction in which this flows is in the direction of technological innovation. As market pressures

increase, this business momentum can be sensed within the organization and can feel as though it

is increasing or building over time. It begins with an aggressive initiative to gain market share,

which feeds into the product genesis and results in the size and speed of the system release.

 Respondents noted that as this momentum builds, it creates a ripple effect that can be felt

throughout the organization. As it gains speed, managers, developers, and engineers may feel as

though they are always “behind the curve,” never having enough time to build in robustness or

form long lasting and architecturally sound solutions. The following comments illustrate this

sense of momentum:

“It seems to me that we're always behind the curve, and we've just got to get it done,

and there's not enough time to do architectural work and look for – you know; make

sure it's being done correctly and for long-term extensibility.” Firmware Manager

 54

“We don't usually get the time, just don't have the resources, at least not for the last

couple of years, to really – to look ahead and evaluate new technologies. It feels like

we're always a little bit behind the curve and reactive.” Hardware Architect

 Despite all of this, the development organization attempts to rise to the challenge and

match this momentum. As one respondent explained:

“There will be a call for extra hours, weekends to try and make it. I wouldn’t say we

change the deadlines, we just roll over them and we get in the ‘as soon as it’s done’

mode. We try to condense when things change.” Firmware Architect

 The “condensation” expressed above is one example of how the organization attempts to

match this challenge. Although market agility sets the tone through product genesis and the

momentum it creates, the development organization uses its own form of agility, described in the

next section as process agility, not only to match the momentum but to influence it as well.

Process Agility

In this embedded systems organization each of the three domains, software, firmware, and

hardware are capable of releasing independently and at different speeds. At some point,

however, all three domains must work together to create a system release. A system release is

one where components of all three domains are developed, tested and released together as one

cohesive product. Doing so often stretches the capability of the organization to its limits. It is

this crucible where process agility is flexed or adjusted in order to reach the same point of

 55

momentum that the business has been leading, via market agility. The organization makes this

happen via hybrid agility.

 Hybrid agility can be defined as a delicate balance of agile development methods and

Stage Gate processes. For example, in a hybrid vehicle, electric power is utilized as much as

possible to maintain economy, but it is augmented by gas motorization when extra power is

needed. Hybrid agility makes use of its stage gate and agile scrum components in much the

same way. Agile scrum methods were employed across domains to allow the development

organization to “rev high” when needed, while at the same time stage gate components served as

a sort of “throttle” for this capability. Table 4 outlines the elements used to create this balance.

It illustrates how agile development methods allow the organization to stretch or “reach when it

needs to, while the Stage Gate aspects keep the entire process in check. Doing so allows all three

domains to work together at an optimum level to achieve system release.

 56

Elements of Hybrid Agility

4 Hybrid Agility 4A Software 4A.1 Employs mostly

Agile/Scrum Methods

4A.2 Serve as the Early

Responders

4B Firmware 4B.1 Employs some Agile

Methodologies

4B.2 A Shared Resource: The

Middle Domain

4C Hardware 4C.1 Employs waterfall

process

4C.2 Prototyping

4C.3 “C-Level” Projects

4D Customer Management 4D.1 Managing Expectations

4D.2 Customer Negotiation

5 System Release

Table 4: Elements of Hybrid Agility

 Respondents indicated that each domain approached agility differently. The claims in

Table 4 above outline these differences from one domain to another. One manager attempts to

explain why some of these differences exist:

“The problem we found in agile was morphing and meshing that set of work to the

waterfall methodology for hardware development” Software Product Manager

Figure 2 below attempts to illustrate the characteristics of each domain and how they fit together.

It is important to note that these “agile characteristics” which vary from one domain to the other

are largely unique to the embedded systems context. For example, the software domain acts as

 57

the “early responders” for high priority issues when the other domains cannot respond as

quickly. Firmware is a shared resource for both software and hardware domains, and hardware

will often employ rapid prototyping or fast track projects to keep up with its more nimble domain

cousins. These characteristics enable the three domains to work together as one cohesive unit.

Further, all of the agile characteristics within each domain are collectively grounded by the stage

gate components of the process. In addition, customer management activities are typically

performed with the input of all three domains acting as one cohesive unit when communicating

with the customer.

 58

Figure 2: Hybrid Agility in Embedded Systems: Key Characteristics

 Although merging agile and Scrum with the Stage Gate methodology may have been

driven in part by the need to incorporate hardware projects more effectively, it also served as a

series of sanity checks for the organization as a whole. The purpose of this sanity checking is to

ensure that the system release matches what the business needs. It is how process agility lines

itself up with market agility at a specific point. In short, Stage Gate acts as a control or

checkpoint on agile methods. One product manager explains these toll booth characteristics:

 59

“[The merging of agile methods] to gate-driven process is more or less like a toll

booth. Before you go onto the next section of road, do you have the right fare to get

through? And did you get the right checks of the requirements? Did you get the right

financial backing? Did you get the right details in the technical pieces and how you

are going to get to the next toll gate? That is our NPI gate-driven methodology.”

Software Product Manager

 This kind of sanity checking is often necessary in an embedded systems environment due

to the complexity of the solutions, interdependencies, and the need to eventually roll components

up from all three domains (software, firmware, and hardware) into one comprehensive system

release. As one firmware manager explained:

“That complexity [of] firmware, the head-end, and the hardware in order to release it is

what contributes to the waterfall methodology of a system release.” Firmware Product Manager

 The next three sections describe the domains of software, firmware, and hardware within

an embedded systems environment, and their role in hybrid agility. Yet another element of

hybrid agility is customer management. Although product management may serve as the

primary interface to the customer initially, the engineering organization is not without a voice.

Respondents noted that the organization’s voice, as well as the business side, was a critical

component to hybrid agility success.

As with the other domains of firmware and hardware, software can release independently,

but is also linked to the other domains. Respondents repeatedly noted that the software domain

had adopted the most agile development practices. These included regularly scheduled sprints,

 60

Scrum meetings, retrospectives, and agile methods for requirements management and estimation.

Software development in an embedded systems environment can be just as conducive to iterative

agile development as software alone, with the exception that it has some constraints or linkages

to the other domains from time to time. This is due to the fact that software can be more easily

decomposed into testable chunks of code. Because of these factors, the software domain is

capable of cutting new releases in an little as six months, compared to hardware which could be

up to eighteen months or two years.

Respondents also noted that as the most agile domain of the three in the organization,

software often serves as the SWAT team or early responders for the company. Whenever there

is an urgent need, or even if it is not urgent and merely a process of decomposition, the

organization strives to achieve software only solutions where it can bypasses firmware and

hardware when possible. This tactic contributes to the process agility of the entire embedded

system.

 Firmware development employs many of the same agile Scrum processes that the

software side does, with a few exceptions. Although firmware teams manage requirements

through user stories and have regular Scrum standup meetings, the story estimations and sprints

tend to be longer and more flexible. This partial adoption of agile is due in part to the fact that

firmware development cannot always be broken down into testable, iterative chunks as software

can. Respondents stated that size of the “chunks” impacted team velocity and sprint

management, making it much more difficult to monitor and manage firmware development in the

same way as software. As one manager noted:

 61

“It seems to reach a point where it can't be broken down because it can't be testable – it's

definitely not the level of fineness that [software] is.” Firmware Manager

 From a process perspective, firmware must straddle the organizational divide between the

pure agile methodology of software, and the waterfall process of hardware development. More

importantly, both software and hardware domains often require support from firmware resources

to complete their tasks, which can produce a sort of organizational tension. An architect explains:

“Given that firmware is kind of a shared resource across all these different products and

they’re following a sprint cycle -- it creates some tension in terms of [interdependencies]”

Hardware Architect

 Firmware’s ability to stretch resources in support of the other domains is critical. In many

ways it serves as the “glue” which keeps software and hardware connected.

 Hardware moves the slowest out of all the domains, with release cycles of up to two to

three years in length. Like the other domains, it can release independently, but it is constrained

to a certain extent by linkages to the others, particularly when a systems release is needed.

Hardware’s linkage to manufacturing, longer product life and the associated costs of spinning

boards makes it difficult to manage requirements in the same way software and even firmware

can. As a result, it operates largely within a waterfall context. One of the main reasons cited for

this is hardware’s inability to drop features as development and manufacturing progress, as cited

by a project manager:

 62

“With software, you can be agile as you go along and you can drop certain features

as needed. With hardware the reason it hasn't been adopted is you can't really do

that.” Hardware Project Manager

 In addition, the product lifespan of the hardware warrants more extensive quality

assurance requirements than the other domains. As a hardware manager explained, this means it

cannot flex or compromise in these areas as firmware and software often do:

“On the hardware side, we commit 15 or up to 20 years of product life, so since our

products are installed, they are exposed to the elements and [must withstand] severe

or extreme weather conditions and humidity conditions, so we have to maintain our

quality and put a lot of effort in testing and validating” Hardware Product Manager

 Another reason for waterfall methodology is the cost of spinning boards. If new

hardware needs to be created due to changing requirements, that can be expensive. This

characteristic does not lend itself well to continuous iterative development.

 Although the hardware domain does not use agile methodologies as the other two

domains do, comments from respondents showed that it does contribute to process agility

through the use of agile or lean techniques. These include rapid prototyping and by-passing the

State Gate methodology when necessary.

 Rapid prototyping is one way in which the Hardware domain attempts to keep up with the

agility of the other domains without outright adoption of agile methodologies or Scrum. In

essence, it is exercising an agile capability in contribution to the organization’s hybrid approach.

 63

Using this method, the hardware team begins with a working prototype, and then rapidly and

iteratively develops subsequent prototypes as requirements change. This is often performed in

tandem with firmware development.

 The hardware domain has the ability to bypass the Stage Gate process under certain

circumstances. These situations are referred to as “C-Level” projects. It is one way in which the

hardware domain can suddenly become more agile on demand, as the following comment

explains:

“There are smaller hardware projects that can be more agile where it's just having to

change out one part on a board that's already designed and verify it's good and those .

. . don't need as strict following of the NPI process [waterfall]. We call them 'C-Level

projects' and they're managed, you know, real loosely. They only have to basically go

through two gates, a planning gate and a project closure gate and then the team is

allowed to be free in between. We do have many of those type projects and I think they

work well if the team plans it well from the beginning. So those are where we're able

to take the more agile approach on the hardware side.” Hardware Project Manager

 Unlike the firmware and software domains, the hardware domain is managed without the

use of sprints, Scrums, or other commonly accepted agile methods. Through prototyping and

“C-Level” projects, however, the hardware domain still has an agile or lean contribution.

 Although the business side serves as the primary communication interface to the

customer and the market at large, the engineering organization is not without a voice. Like

market agility, process agility not only attempts to reach the momentum set by the business, but

 64

influences it as well. This is done through managing customer expectations and negotiating from

a technical perspective when necessary. Such communication is performed by all three domains

within embedded systems. As one manager explained:

“It can also slow the project down if the customer isn’t managed in a way that lets

them know ‘we’re demoing something you asked us to do and here’s the result AND

the limitations.’” Operations Manager

 Even though agility demands extensive customer collaboration and adaptation, these

must be tempered and controlled for the good of the business. The company cannot respond to

any and all demands every time. Through managing expectations, the business grounds what

may often be lofty or unrealistic expectations by the customer with respect to quality and feature

functionality.

 Not only must expectations be managed with respect to technology and capability, but the

deliverable must also be negotiated with the customer. This illustrates that not only does the

business have a voice with the customer when it comes to deciding the scope of the systems

release, but the development organization does as well. Although the business leads, while the

organization largely reaches, there is a symbiotic interaction here where the organization may

offer more technical input to the roadmap that the business was, or is not capable of, seeing. As

a result, the organization and business, or the process and market agility responds respectively, to

influence and adapt to customer demands. The following comment illustrates this:

 65

“If certain issues are not fixed or if you realize that you won't be able to fix it in time,

then they work with the customer to get some kind of a resolution on when that

commitment could be satisfied, so in the ideal world you provide everything to the

customer, but in reality sometimes you have to go and tell them, ‘hey, yes, this is our

commitment, but right now it's not working.’ With my experience, the customers

understand that as long as there is a reasonable time frame to fix or close that gap, I

think they always work with us.” Hardware Product Manager

 As explained previously, the process agility response of the organization is the hybrid

agile implementation. The product of this implementation is the system release. System releases

are complicated embedded systems developed in a hybrid agile environment. As mentioned

previously, they consist of software, firmware, and hardware components released in tandem.

The environment in this study has organically adopted the optimum mix of agile and waterfall

processes to make the systems release happen.

 System releases are strategic as well as practical. Feature functionality that makes the

system release can be driven by the desire to gain new business in a specific area, as well as

satisfying existing customers. In this way the company can increase business momentum with

each release in the direction of innovation. As one product manager explained:

“Sometimes, we just need to put things in system releases in order to do something

like a proof of concept to gain more business. A lot of times, proof of concepts for

bids have tight deadlines around them which could drive their urgency for

requirements.” Firmware Product Manager

 66

 The system release seeks to match the business momentum that the business side has

established. However it is important to keep in mind that both influence each other. Since all

three domains within embedded systems can release independently, business momentum can

affect each in different ways. For example, hardware may experience a stronger momentum than

software, due to the fact that it has a more difficult time adjusting to dramatic change and the

“larger mass” of their releases. This in turn may impact tbe scope of such releases. The

customer management category within hybrid agility is utilized by the embedded systems

development organization to negotiate scope modifications when these situations occur. In this

way all three domains are kept to some level of synchronicity within the embedded systems

context thru utilization of its hybrid agile implementation.

 Now that process and market agility have been defined, the following section will

describe how these two categories are managed to achieve the central theory .

Agile Orchestration

 Analysis of the data revealed that the activities of orchestrating agility in this case study

fall into two main categories: interconnections or interactions and making adjustments. Table 5

below outlines these categories and their elements. Interconnections consist of people

interactions and technical connections that communicate, monitor, and synchronize with each

other. The enterprise uses these interconnections to make adjustments, thereby bringing market

and process agility closer together.

 67

Table 5: Elements of Agile Orchestration

6 Agile Orchestration 6.1 Interconnections and

Interactions

6.1.1 Dependencies

6.1.2 Interdependencies

6.1.3 Linkages

6.1.4 Status Points

6.1.5 Decision Points

6.1.6 Touch Points

6.2 Making Adjustments 6.2.1 Customer Acceptance

6.2.2 Scope Adjustment

6.2.3 Resource Adjustment

6.2.4 Constant Re-assessment

Table 5: Elements of Agile Orchestration

 Interconnections are intersection points between different domains within the embedded

systems environment. These interconnections can be interactions between people or

dependencies based on technology or resources. The major categories that arose from the data

included dependencies, interdependencies, linkages, decision points, status points, and touch

points. Dependencies and interdependencies are involuntary connections that are forced due to

the nature of the technology and the product(s) being developed. The remaining connection

types are voluntarily initiated connections created by the organization to manage the first two.

Table 6 provides a summary. The following sections describe these different categories and their

relationships to each other.

 68

Understanding Interconnections and Interactions in Hybrid Agility

Connection or

Interaction Type

Formal

or

Informal

Definition

Dependencies Informal One domain has a technical or resource dependency on another.

Interdependencies Informal Two or more domains have technical or resource dependencies

on each other.

Linkages Formal Scheduled Meetings between domains for collaboration and

coordination.

Status Points Formal Monitoring Points and Metrics

Decision Points Formal Formal meetings or process points between stakeholders for

making decisions. These could be agile in nature, such as a

demonstration for user acceptance, or more waterfall based, such

as decision gates in the Stage Gate process.

Touch Points Informal Informal interactions that occur to resolve potential problems or

follow up on progress. Largely intuitive in nature.
Table 6: Understanding Interconnections and Interactions in Hybrid Agility

Dependencies are just that. They are situations where one domain has a dependency on

another to complete a task. As is often the case in embedded systems, one piece of the solution,

such as firmware, may have to be completed to a specific level before hardware can complete

their work, or vice-versa. This is a technical dependency. In addition, respondents noted the

presence of resource dependencies. Often, one domain may require expertise or consultation with

another domain before it can move on. This may require a resource or subject matter expert from

one domain to stop what they are working on to help out with another.

 Often, the result of these dependencies is that one domain must put its work into a sleep

state until the other domain is ready. As one architect explained:

“If firmware resources are diverted then the project basically is just in a sleep state until it

gets resurrected.” Hardware Architect

 69

 This presents some practical problems in that once resurrection occurs, resources must be

re-engaged. This may become difficult if the original participants are not available, and new

resources have to be brought up to speed. Domains attempt to mitigate these dependencies and

sleep state situations through proactive communication and coordination. Each domain

communicates to others what changes they are making that could impact them. For example, if

hardware is changing the way a circuit operates and firmware needs to know about it, they will

communicate this to them. If hardware needs additional test modes, they will communicate

those changes as well. Although this communication or agile interaction is often informal, the

results must be coordinated in order for the domains to keep in sync. This synchronization can

put limitations on iterative development. The following excerpt illustrates that although

firmware utilizes development sprints, they cannot keep developing until they are done as is

usually the case with agile Scrum methodology:

“And so a lot of times we have to coordinate, so the firmware team can't just say 'well,

we're just going to deliver features until we run out of time.' We have to build those

three features about a month before software needs them so software can do their

work.” Software Development Manager

 In summary, dependencies are managed through a series of informal agile interactions, as

opposed to a formal process. Synchronicity between the domains is maintained by either

planning ahead so that one domain does not have to wait on another, or by putting a project into

a sleep state until the dependency is resolved.

 Dependencies in embedded systems can be particularly complex in that there may be

 70

multiple interdependencies intertwined between multiple domains. While dependencies can be

described as one-way situations in which one domain is reliant on another, interdependencies

consist of two-way dependencies between two or more domains. For example, one or more

domains may be waiting on another domain, while at the same time that domain will need

feedback from yet another before work can proceed. As one Architect noted:

“Hardware quality doesn't want to finish its final product testing until they have a

final version of firmware. That may be dependent on, you know, the [software]

release.” Hardware Architect

 The organization mitigates these issues by using iterative development to provide enough

material for dependent domains to proceed. As one manager explained:

“So they generally have major milestones or target dates for deliverables of features

and so they'll deliver us a [device] that has 30% of the features set on it. We'll take

that, we'll implement that 30%, test it, and then by the time we've done that, they've

delivered the next, you know, 30% of the feature set and we'll work with them.”

Software Development Manager

 Interdependencies in embedded systems are essentially a complex web of intertwined

dependencies that must be carefully monitored and managed to ensure that projects keep moving.

To summarize, they are a form of interconnection in which two or more domains are

symbiotically interdependent on each other. Such interdependencies can come in the form of

shared testing and development needs, and they are often managed by one or more domains,

 71

providing iterative functionality that allows the other domain(s) to proceed. This is one way in

which process agility is managed.

 Different from dependencies or interdependencies, linkages are scheduled interactions

between stakeholders for the purpose of sharing information, coordination, collaboration, and

decision making. These consist largely of a series of formally organized meetings attended by

progressively smaller, yet more executive-level, teams as issues and the status move from the

ground level up to C-Level. Such meetings include release architecture meetings, Scrum standup

meetings (including a larger Scrum of Scrums meeting), project operations review and change

control board meetings.

At the lowest (or development team) level resides the daily Scrum standup meetings. As the

development organization is divided into Scrum teams, each has its own standup within the

software and firmware domains:

“There are daily standups by sprint teams. Those are attended by Scrum master

and/or the key people on the team. They discuss what they’re working on, how they’re

progressing, and issues they’re encountering.” Software Project Manager

 As the development organization employs two-week sprints, sprint team meetings are

held bi-weekly. These meetings are where requirements or user stories are reviewed with the

engineers and product management to resolve issues and negotiate what the final outcome may

be for a set of user stories within a sprint.

 Due to the size of the organization, large distributed teams report in to small Scrum of

Scrums meetings which roll into an even larger one. This is one way in which an embedded

 72

systems organization allows the various distributed teams to roll up together into one Scrum. As

one project manager explained:

 “We have a Scrum of Scrums which is where we meet with all the software managers,

firmware managers, and the leads and we discuss how the sprint teams are

performing, and any issues that they’re encountering.” Software Project Manager

Depending on the needs of the release or the project, there may be multiple Scrum of Scrum

meetings broken up by function, as a project manager explained:

“There’s even a smaller Scrum of Scums that meet a couple times a week and that is a

little bit higher level than the standups and a little bit lower level than the project

Scrum of Scrums, and those have been broken up by major functional areas.”

Software Project Manager

 At the next level (release management level) are the release architecture meetings. As a

project manager explained, these meetings are attended by most first-level managers, product

managers, project managers, systems engineering, and other stakeholders who may have issues

on the agenda for discussion:

“And so we have release architecture meetings multiple times a week, which is where

we review what’s going on in the release. That’s attended by software managers,

firmware managers, and systems engineers, architects, some key experts as needed,

 73

and in there we review what’s targeted for the scope and get things slated up for

sprint work.” Software Project Manager

 Release architecture and Scrum meetings typically only involve software and firmware

domains. Hardware is brought in at the project operations review meeting, which consists

primarily of first and second-level managers in conjunction with the executive team:

“We have a project operations review every week, which is where we bubble up

everything out of the project systems meeting and present that to basically everyone

else in the company, the executive review board, the VPs. We give them insight into

the project. We give them the opportunity to weigh in or help us with an issue or

address any questions they have.” Software Project Manager

 As with most agile Scrum environments, retrospectives are performed to find out what

could be improved upon. In a large embedded systems organization with distributed teams, this

was found to be a challenge. As one development manager explained:

“Yeah, we do the retrospectives. Rolling retrospective information across 40 teams is a

bigger challenge than rolling it up across three or four teams. You can't meet all together

and talk about it. So in past projects where I've had three teams, you can bring 20 people

 74

in the room and talk about a retrospective, you do it on a team-by-team basis and you

can bring [roll] those results back up. Across 40 teams that a big challenge.”

Software Development Manager

 Another linkage type is the change control board meetings where defects or other

significant changes to released software are discussed. The attendee list is similar to that of the

release architecture meetings.

 Linkages are a form of formal interconnection (or interaction) that usually consists of a

set meeting or meetings that serve as formal contact points between domains. They are part of

how agile processes are orchestrated across the enterprise.

 Status points are monitoring points and metrics that managers use to observe progress

and alert on potential problems. This activity is not limited to development but starts early, even

as new requirements are decomposed and understood. In addition to the usual burn down charts,

managers employ a customized dashboard that monitors progress based on requirements activity.

The first of these metrics is the decomposition rate.

 As mentioned earlier, decomposition of requirements is key to understanding them. This

activity takes time, and it is important that it is monitored. The excerpts below explain how the

decomposition rate is created and monitored:

“So [for] a feature that hasn’t been broken down or well understood, it [dashboard]

shows an estimated value of that, and we compare that to the total decomposed value

and also the percent complete based on each.” Software Project Manager

 75

“So [in] that decomposition process we have a percentage. So I'm simplifying the

math, but if we start with 10 requirements and they have, you know, between five and

20 stories each, on day one, the decomposition percentage would be zero and then as

the business analysts and the product owners work and start generating stories, we'll

start checking off stories that have reached a gating point.”

Software Development Manager

 In addition to decomposition rate, the progress of user story development and the tasks

they consist of is monitored via the dashboard and a burn down chart. These burn down charts

are broken down to the team level and to the individual level. These statistics can also be rolled

back up to project level which shows how many ideal engineering days (based on approximately

6.5 work hours per day) are in each sprint and the entire release. System releases typically

consist of ten such sprints.

Another important metric is velocity, which is based on how many ideal engineering days

a team has completed in each sprint. Velocity performance is compared to previous releases to

gain an understanding of how teams perform over time. It also serves as a benchmark for

capacity and as a predictor for scoping the next release

 Of course, no executive dashboard would be complete without financials and general

project performance data. Budgets are tracked to the actuals of the company’s financial spend.

Project dependencies are monitored as well as past release metrics. Measurements of how long it

took previous system releases to go from one Stage Gate to another and their respective

financials are actively compared to current efforts.

 76

 Yet another important status point is defect metrics. The incoming arrival and closure

rates for defects are monitored, as well as their customer impacts. All of this metric data is

maintained internally in a central repository accessible by the project team.

 In summary, status points are a form of interconnection that consists of monitoring points

that the organization uses to keep track of what is going on with feature decomposition,

development and testing. They serve as inputs to decision making and agility management.

 Another type of interconnection is the decision point. These don’t always occur in a

meeting or specific venue and can happen throughout scoping and development. As

requirements understanding is taking place, decisions are made collaboratively by the executives

from engineering (process agility) and the business (market agility). These include decisions

regarding what kind of work and how much can be taken on for the next systems release, as one

manager described:

“Before we sign up for it, they’re evaluating at different levels whether we're ready to

take on the next "big one," and that would be when they look at their revenue plans

and they see the top-line utilization of the R&D assets.” Software Product Manager

 While software and firmware tend to be more agile in the way they approach decisions,

hardware is much more rigid and waterfall based, requiring a feasibility study in the beginning to

help decide whether, when, and how the work could be taken on. During the progression of the

systems release, Stage Gates are integrated into the agile process as check points on the progress

and reliability of the release. These check points allow all three domains to maintain

 77

synchronicity. If the project has met its gating requirements, it will be allowed to proceed to the

next gate.

 Not all decision points are grounded in the Stage Gate process. Important decision points

are made at the user story and requirement levels as well. The final decision point for any

requirement is the demo or demonstration. Stakeholders, typically the product manager, will

observe and sign-off on the demo if it meets expectations. Respondents felt as though the size

and complexity of the organization contributed to a more formal demonstration process. As one

manager noted:

“Our demo is more formal, much more formal than it has been in other companies,

and I think the reason for the formality is because we have a lot of product managers,

a lot of different people, and a lot of developers in place.” Software Development Manager

 Such complexity contributes to limitations elsewhere, such as change management. Even

in a hybrid agile environment, change becomes more rigid beyond a certain point. Although the

ability to change is an important component of market agility, it does not mean that it is constant

throughout the development process. As the system release progresses, it becomes less

impervious to change. With embedded systems organizations in particular, the release tends to

be more rigid where hardware and multiple domains are affected. The following excerpt

illustrates how change is managed after the systems release has passed its Stage Gates:

“After that, change still happens but, you know, it’s a process. It has to go through

change control, it has to be well documented and with that, the team agrees that ‘hey,

 78

this is the change we need to make, it has all the right buy in and has the right

business specifications, so let’s make it.’” Software Project Manager

 A Hardware Engineering manager explained how such changes tend to be much more

rigid in his domain:

“Before that can happen, an engineering change order has to be written that explains

what's being changed, what it effects, and why it's being changed and then this ECO is

routed through the various functional groups: electrical, mechanical, firmware,

supply chain, manufacturing, hardware quality assurance and systems quality

assurance. It communicates the change and all these functional groups have to

approve that change and it also notifies them of what's changing and what the impact

is on that functional group.” Hardware Engineering Manager

 To summarize, decision points are a form of interconnection where the Stage Gate

process and agile methodology synchronize and sanity check each other. In other words, it is

where the agile and waterfall sides of the organization come together, hence the management of

hybrid agility.

 Less formal interconnections are touch points. Touch points are informal interactions

performed by managers and other stakeholders to check on what may be going on in another

domain or team. It is a form of tacit communication that is always going on, yet it is not

formally required or stated. The initiating of such communication is largely intuitive, but has

proven effective in making sure tasks are being performed, roadblocks are removed, and that

 79

processes are being orchestrated as expected. These touch points can be one-off communications

for follow up or ad-hoc meetings to resolve issues or to continue requirements decomposition.

One manager described this as:

“Helping [to] ensure that the teams are completing what they need to complete, when

they need to complete it.” Software Project Manager

 Systems engineering plays a significant role in managing these interactions, along with

project management. They ensure that business requirements are properly broken down into

technical requirements for each domain, and serve as the primary communication conduit from

the engineering organization up to the business:

“I will interact with systems engineering and systems might go to the change

meetings. Systems would also act as the go-between between product management and

firmware.” Firmware Architect

 These communications occur at all levels of management, as one project manager

explained:

“Then I work with product managers on a regular basis, the directors and the VPs to

assess the project, determine where we are, how we need to proceed, let me know if

there are issues with scope or some new customer commitment. I meet with them, kind

of on a regular, not a scheduled basis but a regular basis.” Software Project Manager

 80

 One respondent stated that documentation can sometimes take the place of interpersonal

interaction as a touch point:

 “So usually the way that those touch points happen would be us developing a

technical specification.” Hardware Architect

 Touch points are a form of interconnection that consists of ad-hoc meetings,

documentation, and personal follow-up. It is a largely intuitive part of the process because it

may be initiated by the project manager or other stakeholder based on feel, discomfort, or output

from a monitoring tool that lets them know they need to initiate a meeting or contact a

stakeholder for status.

 As the information inputs from the various interconnections and interactions are realized,

the company makes adjustments. Promises are made intuitively and quickly with little

information and are actively balanced with contractual workload. Adjustments to scope,

resources, and customer acceptance in particular are an important component of agility

management. These adjustments are updated via a process of constant reassessment.

 Customer collaboration is a key tenet of the Agile Manifesto. Respondents indicated that

much of their work involved influencing customer acceptance of the product. By working with

the customer to develop different modes of acceptance, products could be brought to market

quicker. These modes most often consisted of field trials and pilot projects. Field trials are

where the customer receives an early version of the product and is allowed to test them and

provide feedback. With this technique, the customer benefits by getting a new product quicker

 81

and having the chance to influence the product direction, while the vendor company saves

resource costs by essentially outsourcing its testing to the customer, as a hardware product

manager explained:

“And that's the first chance for us to get some feedback on our quality. Our customers

in Canada, they do really, really thorough testing of our products. I would say

sometimes even more detailed testing than us, so we take those feedbacks, and that

helps us to improve if there is an improvement needed in the quality of [our] tests,

that's certainly a good thing.” Hardware Product Manager

 Pilot projects are another method of agile customer collaboration. Using this method, the

customer’s expectations on quality are lowered in exchange for the opportunity to be first. This

allows the vendor company to bridge customer needs with organizational capabilities, as a

software product manager explained:

“We work with that customer to set expectations that we are going to pilot things with

them instead of giving them a proven, field-ready, tried-and-true product, and the

customers, to their credit, have generally accepted some of these decisions and

worked with us as long as the expectations were managed.” Software Product Manager

 Manipulating customer acceptance is one way in which the organization makes

adjustments to manage agility. Through the use of field trials, pilot projects, and other modes of

 82

acceptance, the organization influences as well as adapts to the business momentum generated by

market pressures.

 As with managing customer acceptance, adjusting scope is one of the necessary evils of

managing agility. Due to the high unknowns of new technology and changing customer needs,

capacity is pushed to its limits and is often over-estimated, then it is gradually adjusted as the

requirements and business needs become more apparent. This refinement occurs gradually as

requirements are better understood. Often, this may continue after decomposition and well into

development.

 One respondent noted how they over estimate capacity or pack the release with the

expectation that items will be pulled later:

“I get a lot more of ‘well, I want you to prioritize three times the capacity of the

project because I really don’t know which bits and pieces I’m going to pull to be able

to fill up the actual capacity.’” Operations Manager

 Another respondent recounted how requirements are selected for the release as they

bubble up to the top:

“We pick the highest priority items off of the top of the pile and slate those to a

release, haggling over what’s really a priority and so forth [until it] is finally settled.”

Software Product Manager

 These scope adjustments are often strategic. They may be based on obtaining business

from a specific customer or sector or be due to the lack of profit in a specific product line.

 83

Respondents noted that revenue generation tended to be a key component of the company’s

strategic direction. In order for rapid scope adjustment to work, the organization must be

flexible in its ability to abort gracefully on requirements, features, and/or products. These

requirements may be postponed, or dropped altogether. Resources can then move quickly from

one aborted task to a more important priority. Such decisions are made at the executive level,

with the business or product side working in tandem with the engineering or organizational side

to make the ultimate decision.

 Resources must be adjusted, as well as scope. Analysis revealed that the organization

cultivated an ability to flex resources in a variety of ways. These consisted of maintaining team

flexibility, outsourcing when needed, and most importantly, relying on a core group of engineers

with high expertise. Such flexibility is much higher within the software domain than the

firmware or hardware domains, but it still exists. The reason for this difference was cited by

many respondents as being due to the lack of interchangeability of resources. Such

interchangeability is less prevalent in the firmware and hardware domains due to the specialized

level of expertise required.

 Teams have the ability to optimize the use of this high expertise when necessary. The

agile concept of self-organizing teams and pair programming allows them to organize the

required expertise according to the current scope. Although expertise may be high and

specialized, respondents noted that the teams are smart enough to organize the right mix of

people. Having these self-organizing agile teams was found to be critical in maintaining

capacity, as one manager explained:

 84

“If we don’t have agile teams, if we are constantly swapping in new features, if Team

A only works with one type of code or one type of functionality and that feature is now

pulled from the release, well now that team goes unused and they have to scramble to

do something else or we’re going to lose capacity.” Software Project Manager

 Embedded systems development brings with it its own set of challenges with regards to

high expertise and self-organizing teams. As mentioned previously, firmware sits in the middle

of the technological solution between software and hardware. Resources from firmware are

often strained because the other domains require their support. Managing this resource rotation

is a continual challenge. These resources tend to be even more specialized and less

interchangeable than other domains, as a manager explained:

 “We have firmware guys that are rotating in and out, say for instance 80% of the time

they’re supporting the software group and 20% of the time they’re supporting

hardware. If I've got a firmware guy that’s supporting hardware efforts and he gets

moved over halfway through the life of development to support software and we bring

somebody else in that knows nothing about this hardware development it’s a challenge

for him to get up to speed.” Hardware Engineering Manager

 The most severe example of this flexibility is referred to as the hero model. Often as a

last resort, the organization will draft one, or more, highly capable expert to solve a problem or

meet the goals of a release entirely outside of the agile processes, as a lead architect explained:

 85

“The hero model, which we know doesn't really last forever, it's not a good thing to

build a company on, but sometimes when you've got to get something done really

quickly and you don't have time to track story points and break it down, you can just

give it to a group of very capable people and say, here, you just need to get this done

as quick as possible.” Software Architect

 The organization must continually adjust the correct resource mix across the range of

domains and projects. This adjusting is facilitated by a constant process of reassessment of the

business’s current position against its strategic direction. In this way, the business reassesses all

of its adjustments.

 Respondents noted that much of this reassessment activity arose from the hybrid agile

implementation. The Stage Gate method forces re-evaluation at each gate that many felt makes

the organization more agile, despite its waterfall nature, as a manager explained:

“Because it’s within that waterfall process, it probably makes us more agile because we

have to constantly reassess and reevaluate where we are and what we need to complete

versus just finishing what we finish.” Software Project Manager

 Agile orchestration is the group of activities used to manage agility across the enterprise.

It is how process and market agility are managed to achieve a common goal. There are two

major categories of agile orchestration, which are interconnections or interactions, and making

adjustments. Interconnections consist of dependencies of one domain on another,

interdependencies between two or more domains, formal linkages or key meeting points between

 86

domains, status points for monitoring and maintaining status, decision points for executive

decision making, and informal touch points that stakeholders establish intuitively to keep the

process moving. Decision points and linkages also serve as the connecting points between the

agile method process and the waterfall process, and they therefore assist in managing the hybrid

agility implementation that the organization has employed. It is important to note that the kinds

of interconnections and interactions developed within this study are largely influenced by the

embedded systems context. The “agile characteristics” outlined in figure 2 enable all of the

domains to work together as one cohesive unit, agile orchestration ensures that this cohesion

occurs. The interactions and interconnections are designed to bring all domains within

embedded systems together both informally and formally when necessary to ensure the

production of the systems release. The necessity of this cohesion and the agile characteristics

and orchestration it demands are specific to embedded systems.

The business then uses the outputs and inputs from these interconnections to make

adjustments to customer acceptance modes, scope, and resources to manage the agility of the

organization. The process of making these adjustments is one of continual reassessment.

Agile Vortices: The Grounded Theory

 Through open, axial, and finally, selective coding, grounded theory methodology

maintains that a central theory should be identified. Strauss and Corbin define this phenomenon

as the central problem that the subjects are trying to solve. Strauss and Corbin further hold that

other categories should be explained in terms of this central theory (Strauss, 1990). The

previous sections illustrated the primary categories identified via axial and open coding and the

elements that compose them. These include market agility, process agility, business momentum,

and the systems release. In this section, we explain these categories in terms of the central

 87

theory. Using concepts from fluid dynamics, combined with the metaphor of a whirlpool, a

succinct visualization is provided which describes how all of the categories are linked together

into one comprehensive model.

 Figure 3 below combines the two figures previously mentioned, Figure 1, and Figure 2,

into one view. It illustrates how the hybrid agile organization of software, firmware, and

hardware combine with the product genesis of the business as a result of market pressure.

Figure 3: Rolling up Process and Market Agility Categories into One View

 During selective coding, an analysis of the data indicated that both sides of the business,

the product management organization and development, are constantly attempting to reach the

 88

same point throughout each product release and will manage themselves into making this

happen. According to the software project manager:

“Usually we determine when the release is going to go out the door and then from there

we back into how much development can we squeeze in, and we really say how much

quality are we willing to accept within this period and if it works out then that period

stays. If we need more quality then we’ll reduce capacity of the release and do less

development.” Software Project Manager

 This point of convergence was identified as the central theory . The reason it is identified

as such is because it is the central problem that the subjects are trying to solve. Essentially it is

the gravity that pulls all of the categories identified in axial coding together. Figure 4 below

illustrates this point of convergence. Product genesis is the business’s market agility response to

market pressure. Product genesis in turn sets the tone through its creation of business

momentum. The development organization attempts to match this momentum through the

creation of the systems release, which is created by the hybrid agile development organization.

Hybrid agility is the development organization’s process agility response to market pressures.

Figure 4: Business Momentum and the Systems Release are created by Market and Process Agility

 89

 These linkages can best be explained using a metaphorical illustration, as part of the

selective coding process.

 Consider a whirlpool as a metaphor for the subject of our study. Whirlpools are a form of

vortex, which spin around a central axis. Based on fluid dynamics, the velocity of the rotation in

a whirlpool is greater as you get closer to this axis. Suddenly, a tennis ball falls into the pool.

As the ball is drawn closer to the axis, it acquires a spin or rotation of its own and moves at a

velocity and direction influenced by the vortex. As it does so, it gains momentum, based on its

mass or size multiplied by its velocity. The movement of this ball illustrates the motion or

circulation of the vortex. The circulation of the vortex at the position of the ball is its vorticity.

Vorticity has been defined in fluid dynamics as the point in a vortex where the curl is the

strongest. One firmware manager characterized how momentum is felt within his organization:

“It (change) kicks off a whole chain of events that goes on, so I think there's always

a lot of momentum going with project schedules. There's a lot of momentum going.

If you have something that changes midstream within a project then it's very hard for

us to change direction there, and it's got to be kind of planned into future releases.”

Firmware Manager

 Using this metaphor, we can easily map Figures 1 through to 4 to the whirlpool. The

central axis of the whirlpool illustrates the effect of market pressure. The innermost ring of the

pool is product development or product genesis as we described earlier. This ring consists of

requirements development based on customer input, as influenced by market pressure, and it is

led largely by product management in conjunction with systems engineering. As the innermost

ring, it spins the fastest. The next innermost ring is the software development part of the

 90

organization. Software development can occur independently or in conjunction with other

domains such as firmware and hardware. Because it runs on a fast release cycle of six months or

less, it is the next innermost ring. Firmware and Hardware domains make up the next two rings

respectively, with hardware furthest to the outside. Firmware is often managed within a software

context but has linkages to both software and hardware within the organization. Hardware

makes up the outermost ring because it operates on the slowest release cycle of all, which can be

up to two to three years. Although all three domains can and do operate and release

independently, during a full system release they must all be in complete alignment. This is a

unique property of embedded systems and illustrates one of the key challenges present in this

context. As in a whirlpool, although each ring is interconnected they are all running

independently at progressively slower velocities as the observer looks outward from inside the

vortex at the observation point of the tennis ball (refer to Figure 5). These domains and the

management of them constitute our hybrid agility implementation.

 91

Figure 5: The Agile-Business Vortex: The Ultimate Goal of Agile Orchestration is the Management of Process and

Market Agility to achieve Agile Vorticity

 The tennis ball in our metaphor falls between the first ring, product genesis, and the

second ring, software. The position here represents the dividing line between market agility (the

area between market pressure, product genesis and the ball) and process agility (consisting of

software, firmware, and hardware). Market agility is the ability of the business to adapt to

change in the market and is a function of product genesis. Process agility is the ability of the

organization, including software, firmware, and hardware, to adapt accordingly through hybrid

agility.

 92

The vortex could include a mass, or size, which can represent the scope of a specific system

release or a series of system releases over time. This can include a product scope or roadmap.

The velocity of the ball is the timeline at which this system release or product roadmap is to be

achieved. Multiplying the scope size by the timeline velocity produces business momentum.

The direction that the ball is moving illustrates the technical direction of the product roadmap, or

innovation. (Refer to Figure 2.)

Momentum = Mass X Velocity

Business Momentum = Scope X Timeline

Figure 6: Agile Orchestration Close-up: Business momentum, Innovation, and Agile Vorticity

 Finally, the circulation of the water at the point where the ball is located is called its

vorticity. This is the point at which everything converges. Market agility is the ability of the

business to reach the vorticity point with its product roadmap under the influence of market

pressure via product genesis. Process agility is the ability of the organization through hybrid

agility to reach the same point of vorticity. A good illustration of process agility in this

illustration is an outstretched arm attempting to reach across the organizational rings to reach the

 93

ball, as market agility slowly sucks it further away. It should be noted that time in this metaphor

is ever present, as it would be in actuality. Vorticity is relative to the point of view of an

observer at the same point of observation, moving along with the fluid.

 Agile orchestration is the creation, nurturing, and closing of an agile business vortex in

which market and process agility intertwine to produce a new software release. This was found

to be the central problem that all aspects of the organization were trying to solve. These agile

business vortices which are created as a result of high market pressure in conjunction with high

technological innovation are the central theory of this study. The aforementioned model depicts

bringing multiple forces together that create a need to be agile. Each concentric ring influences

the point of Vorticity where the firm needs to be to successfully produce a systems release.

 94

Chapter 7: Discussion

The purpose of this study was to determine how agile processes are orchestrated in an

embedded systems context. The result was an empirical analysis of a hybrid agile

implementation involving high innovation within a turbulent marketplace. We begin this section

with a discussion of this hybrid agile implementation, how it is managed and the forces that

created it. This discussion is followed by an exploration of fluidity and how this concept links

together hybrid agility, embedded systems, continuous releases, and innovation, within the

context of our fluid whirlpool metaphor.

An Inquiry into Hybrid Agility

As our vortex metaphor implies, a hybrid agile implementation is a complex one, subject

to powerful forces of market and innovation, thereby making the management of it particularly

challenging. So how does the organization in such an environment organically adapt to these

forces, and can they actually be controlled? Based on the results of our study, hybrid agility is a

delicate balance of agile methodologies and Stage Gate processes. While the agile aspects of this

balance allow for higher degrees of market response, the Stage Gate characteristics function

largely as the boundary conditions. They serve as the check and balance against agility. This is

due in large part to the embedded systems context and the constraints that such technology

places on an engineering firm. Embedded systems environments include not one, but multiple

development domains that operate independently yet are forever linked. While the business as a

whole considers itself agile, each domain within the embedded context has adopted agility in

very different ways.

Software, the most nimble of the domains, has adopted agile Scrum methods almost

entirely. As a result of this high level of adoption, they serve as the early responders of the

 95

engineering team. By contrast, the slowest of the domains, hardware, has not adopted any agile

methods at all and remains largely Stage Gate managed. Despite this fact though, our study

found that hardware does employ lean concepts of rapid prototyping and a fast track Stage Gate

pathway that it uses to maintain rhythm with the rest of the company. In the middle is the

firmware domain, which has employed some aspects of agile and Scrum in terms of

requirements management and standup meetings, yet stays away from the rigidity of two-week

development sprints. Due to the shared resource nature of firmware, its complexity and the

specialized expertise required to develop it, breaking up work into small, rigid iterative sprints is

not very feasible.

In this way, the nature of the different domains places boundaries on the level of agility

each can accept. Additionally, as hardware is the slowest domain and the primary profit center

for the company, the Stage Gate process used to manage it also used to keep the other domains

grounded. Regardless of their level of agile adoption, stakeholders from each of the three

domains must check in at the various gates within this waterfall process. In this way, the

boundary conditions of hybrid agility are largely provided for by this Stage Gate process.

Why has the engineering organization in our study adopted agility in this way? As explored

earlier, causal factors for organizing development in ways such as this have been found to be:

 a desperation to rush market,

 a new and unique market environment,

 a lack of experience developing under the conditions imposed by the environment

(Baskerville et al., 2003; Lyytinen & Rose, 2005).

 As mentioned previously, the nature of the smart grid technology and the power utility

market have created a gold rush situation. This is definitely in line with the first two causal

 96

factors. Secondly, although some components of the business being studied have been around

for years, the current combination of merged organizations has only been in place for a relatively

short time. Adoption of agile methodologies within the business was started only a few years

ago. Such adoption occurred fluidly and organically over time, because no one involved had

much prior experience implementing agile in a complex embedded systems environment with

such high market turbulence.

Fluidity and Continuous Releases

The implementation and orchestration of hybrid agility can be at least partially explained

by a fluid view of agile methodology. Allowing agile implementations to be tailored provides

for better accommodation of change, especially when frequent releases are necessary

(Baskerville et al., 2003; Lyytinen & Rose, 2005). This can be further enhanced with parallel

development which allows developers to correct problems as they occur. As with the different

domains within embedded systems, it has been shown that different methodologies can be

isolated for different releases (Baskerville et al., 2003). Further, this fluid view of development

methodology provides a framework that can contain the behavior of system components that

have been developed with different approaches, such as software developed with agile and

hardware, created with waterfall.

Methodological flexibility allows different teams to find their ideal working style given

the mix of the group, such as firmware teams versus software teams (Baskerville et al., 2003). It

also allows developers to vary their approaches when environmental constraints change, such as

the examples of C-Level and hero model approaches in our study (Vidgen, 2009). All of these

fluid methodology characteristics are in line with our findings of hybrid agility. Although the

literature shows that boundaries are needed on process innovation, we can see these boundaries

 97

in our study with the adoption level of each embedded domain and the decision points provided

by stage gating.

This fluid approach to process innovation is likely to continue to influence the subject of

our study as well as the industry at large. Recent studies have noted a movement from agile

methods to more lean practices in software development (Wang, Conboy, & Cawley, 2012).

Kanban is a good example (Sjøberg et al., 2012). When one examines the agile business vortex,

it is easy to see that as business momentum increases and the point of vorticity becomes more

challenging to achieve, the organization may be required to move from the time-boxed iteration

style of Scrum to the more fluid process of Kanban. This strategy combines both event and time

pacing into more of a flow. Such a strategy can better accommodate more continuous releases

with less lead time (Sjøberg et al., 2012). Indeed, in some ways the subject of our study has

already expressed some tendencies towards this end. Even though time-boxed iterations are used

within the company’s agile process, event pacing is employed when necessary with such

techniques as the aforementioned hero model. This allows the development organization to get

things done on the fly, thereby allowing the business to be more reactionary when needed.

Hybrid Agile Implementations: Whirlpools within a “River of Innovation”

Innovation has also been characterized as a sort of flow (Rogers, 2003). Innovation takes

place when a technology is created, and more innovation occurs as that technology is transferred

to others (Rogers, 2003). In other words, when one event happens upstream it triggers other

events downstream, just like a river. These events can be influenced by market dynamics and

technology turbulence. With respect to our agile business vortex, agile is accelerating the

response to increasing market pressures which in turn is creating these whirlpools within a river

of innovation. This increased agile response, and the resulting whirlpool, place higher demands

 98

on the organization. As implied earlier, this demand may force an organization to supersede the

time-boxed agile iteration with a Kanban type of flow just to keep up.

 In the latest version of his book, Diffusion of Innovations, Rogers notes the following

research opportunities with respect to innovation development processes (Rogers, 2003):

 How are user’s needs and problems communicated to development teams?

 To what extent are technological innovations developed by lead users instead of

research and development experts? Is the creation of innovations by end users a

general pattern?

 What are the key linkages and interrelationships among the various organizations

involved in the innovation development process?

 In the context of embedded systems development and hybrid agility, this study provides

answers to these questions. It shows how user’s needs are communicated in a hybrid agile

environment. This process begins with product genesis, the continuous activity of requirements

comprehension and refinement. Expectations with customers are then actively managed and

negotiated by the engineering organization as the product is iteratively developed. Finally,

different modes of acceptance are negotiated with the customers, which typically include intense

customer involvement in the testing process.

 Customers willing to accept a less than perfect product in exchange for added influence

in product direction, enhanced service levels, and the chance to be an early adopter could well be

considered lead users, as Rogers describes them. When it comes to highly innovative products

or technologies, requirements comprehension within product genesis can only get so far due to

gaps in knowledge. Lead users, in the context of hybrid agile embedded systems, are critical to

bridging this gap. This gap bridging is an element of customer acceptance within agile

 99

orchestration. It is one way in which the designated point of agile vorticity is reached. To

further answer Rogers’ query, it is indeed a general pattern with respect to our context.

 Finally, the results of the study explicate in detail the linkages and interrelationships

among the embedded systems development organization (including software, firmware, and

hardware domains), the business, and how these are orchestrated.

 100

Chapter 8: Conclusion

 There has been a noticeable proliferation of hybrid agile solutions which have evoked

interest from both research and practice alike. The objective of this study was to determine how

agile methods are orchestrated in such an important context, with the added complication of

embedded systems development. To perform this study, key informants were interviewed with

direct responsibility of managing agility and related processes across the enterprise. This was

further enriched with informants from each embedded domain, including software, firmware, and

hardware development. What resulted were new learnings with regards to hybrid agility,

embedded systems, and process innovation.

Implications for Research

 Our study discovered that hybrid agility can include a mix of agile, Stage Gate, and even

lean concepts, depending on the domain, project, and development context. The optimum mix

for this hybrid approach is often actively tailored to the needs of the organization. Additionally,

our theory of agility orchestration in the vortex of embedded systems provides a deeper

understanding of how hybrid agile is adopted in embedded systems, how it is managed, and the

enablers or inhibitors specific to this context. Most importantly, our inquiry into the

orchestration of agility revealed new insights on some very interesting processes and behaviors,

such as product genesis, customer appetite, business momentum, and agile vorticity. As there

are not many studies involving agility in embedded systems development, or in combining agile

with Stage Gate processes, we believe our study is an important addition to both of these

branches of research.

One of the primary drivers for adopting agile methodologies (and indeed, a key tenet of

the Agile Manifesto) has been stated as the need for a higher level of customer responsiveness

 101

(Alliance, 2001). Our research shows that in particularly turbulent markets with high technical

innovation, whirlpools or agile business vortices can result. Agile innovation creates the

whirlpools due to its high responsiveness to market demands or pressures. Despite the existence

of such whirlpools, these forces do not run amok. We found that the organization uses agility to

manipulate as well as respond. Product genesis combined with different modes of customer

acceptance, and customer appetite for innovation all place limitations on how high the vortex can

be revved. Interestingly, the literature of agile methodologies is relatively silent with respect to

such limitations.

Beyond customer responsiveness and technical innovation, the delineation of a clear goal or

end game with respect to agility is also seemingly absent in the literature. The subject of our

study was found to actively seek out a sweet spot that it can back itself in to when it needs to

conduct an enterprise-wide systems release. Doing so required the creation of some very elegant

techniques for project management, systems engineering, and customer management across the

enterprise. How this agile vorticity occurs in embedded systems is particularly important

because of the different levels of agile and Stage Gate integration in each domain.

In addition to these learnings in hybrid agility and embedded systems, our work contributes

to agile process innovation as well. The current state of agile methodology literature has been

said to be in a largely post agile mode where the chief concerns have shifted from agile versus

plan driven and workflow, to simply creating agility in a variety of ways in all aspects of

development (Baskerville et al., 2011). This process innovation of agility is focused on

proactively creating fast responses to changing requirements and frequent releases using

concepts from other methods such as Stage Gate and Kanban. Our study shows that this process

innovation was impacted by the desire to reach a point of agile vorticity, a desire shared by

 102

release development and product management. The results of our research show that lean

methods of rapid prototyping and event pacing or hero models were often used in place of time-

boxed iterations. Elements from Stage Gate models were used as decision points or boundaries

against pure agile implementations. These are all examples of process innovation. Although

these boundaries were largely influenced by the various embedded systems domains, the desire

to reach a point of agile vorticity was the driving factor. This same desire for agile vorticity also

impacted requirements comprehension and the linkages and interrelationships used to manage

the hybrid process. Using these interconnections, lead users (Rogers, 2003) were employed

extensively to bridge the gap between product knowledge within the organization and

innovation. Out of all of this activity, the central theory of agile vortices proved to be the

common denominator.

Implications for Practice

 In industry, agile methods are seldom seen in clean form. A practical implication of our

study is that it shows in detail one framework for combining agile and Stage Gate methods.

There is not likely to be a one size fits all solution for building such a hybrid approach. As our

research implies, process innovation is tailored to its respective environments. Each organization

must focus on its own development context, projects, and limitations. In developing an approach

to process innovation, the concepts of agile and Stage Gate, and what these methods bring to the

table should always be considered. The framework brought forth in this study could be used as a

playbook for similar organizations to manage a hybrid approach of their own. In addition, the

study could provide beneficial directions for exploration. How to effectively tailor these

strategies to different contexts is yet to be explored and is worth studying.

 103

 Practical recommendations could include the introduction of more lean methods into the

current hybrid mix. A move from iterative agile development to methods such as Kanban may

reduce the amount of work in progress and allow for better process flow between embedded

domains. This move would be in line with other research findings, as more organizations with

mature agile adoptions are beginning to move in this direction (Wang, Conboy, & Cawley,

2012).

 Kanban has been shown to be well suited to situations where great uncertainty and high

amounts of change occur more frequently than that allowed by agile iterations (Wang, Conboy,

& Cawley, 2012). The use of hero models and C-Level projects may indicate that the subject of

our study is experiencing such conditions. The literature has explicated that development teams

will often resort to such methods if the existing process seems to be falling short (Vidgen, 2009).

This organization has also been working with a hybrid agile environment for a few years now

and the current implementation is considered relatively mature. Based on the literature, this

indicates that embedded systems organizations may consider moving to leaner methods. (Wang,

Conboy, & Cawley, 2012). Another indicator for a need to move to leaner methods could be

difficulty or failure to achieve a point of agile vorticity. Very high responsiveness to market

pressures can continue to increase to a level that demands replacing the time-boxed agile

iteration with more of a Kanban flow. Organizations considered mature in their adoption of agile

or hybrid approaches should be mindful of their agile vorticity. This may indicate that it is time

to change the approach to continuous process innovation in their business.

 104

Limitations and Opportunities for Future Research

A limitation on this study is the fact that it was conducted with one case. It was also

conducted in an embedded systems organization. Future studies could expand on this research

by applying it to a larger number of organizations and a wider variety of development contexts.

 Another future research opportunity could be a longitudinal study on how a hybrid agile

implementation is organically built over time. Determining how interconnections or adjustments

are established as agile methodologies are slowly integrated into existing Stage Gate

environments could provide new insights. As people interactions are a key tenet of the Agile

Manifesto, research on understanding how these interactions are established and routinized,

perhaps intuitively, could also be promising. The outputs from such studies could provide new

frameworks for agile orchestration and new ways to achieve agile vorticity.

 105

Appendix

Figure 7: Agile Business Category Diagram

 106

 107

References

Abrahamsson, Pekka, Conboy, Kieran, & Xiaofeng, Wang. (2009). 'Lots done, more to do': the

current state of agile systems development research, Editorial, European Journal of

Information Systems, pp. 281-284. Retrieved from

http://ezproxy.gsu.edu:2048/login?url=http://search.ebscohost.com/login.aspx?direct=tru

e&db=bth&AN=44385902&site=bsi-live

Alliance, The Agile. (2001). Manifesto for Agile Software Development. Retrieved August

12th 2014, 2014, from http://www.agilemanifesto.org

Arteta, B. M., & Giachetti, R. E. (2004). A measure of agility as the complexity of the enterprise

system. Robotics and Computer-Integrated Manufacturing, 20(6), 495-503. doi:

http://dx.doi.org/10.1016/j.rcim.2004.05.008

Barlow, Jordan B., Keith, Mark Jeffrey, Wilson, David W., Schuetzler, Ryan M., Lowry, Paul

Benjamin, Vance, Anthony, & Giboney, Justin Scott. (2011). Overview and Guidance on

Agile Development in Large Organizations. Communications of AIS, 29, 25-44.

Baskerville, Richard, & Pries-Heje, Jan. (2004). Short cycle time systems development.

Information Systems Journal, 14(3), 237-264. doi: 10.1111/j.1365-2575.2004.00171.x

Baskerville, Richard, Pries-Heje, Jan, & Madsen, Sabine. (2011). Post-agility: What follows a

decade of agility? Information & Software Technology, 53(5), 543-555. doi:

10.1016/j.infsof.2010.10.010

Baskerville, Richard, Ramesh, Balasubramaniam, Levina, Linda, Pries-Heje, Jan, & Slaughter,

Sandra. (2003). Is Internet-Speed Software Development Different? IEEE Software,

20(6), 70-77.

Boehm, B. (2002). Get ready for agile methods, with care. Computer, 35(1), 64-69. doi:

10.1109/2.976920

Boehm, Barry, & Turner, Richard. (2005). Management Challenges to Implementing Agile

Processes in Traditional Development Organizations. IEEE Software, 22(5), 30-39.

Broadus, William. (2013). The Challenges of Being Agile in DOD. Defense AT&L, 42(1), 4-9.

Cao, Lan, Mohan, Kannan, Peng, Xu, & Ramesh, Balasubramaniam. (2009). A framework for

adapting agile development methodologies. European Journal of Information Systems,

18(4), 332-343. doi: 10.1057/ejis.2009.26

Conboy, Kieran. (2009). Agility from First Principles: Reconstructing the Concept of Agility in

Information Systems Development. Information Systems Research, 20(3), 329-354.

Conboy, Kieran, Coyle, Sharon, Xiaofeng, Wang, & Pikkarainen, Minna. (2011). People over

Process: Key Challenges in Agile Development. IEEE Software, 28(4), 48-57. doi:

10.1109/MS.2010.132

http://ezproxy.gsu.edu:2048/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=44385902&site=bsi-live
http://ezproxy.gsu.edu:2048/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=44385902&site=bsi-live
http://www.agilemanifesto.org/
http://dx.doi.org/10.1016/j.rcim.2004.05.008

 108

Conboy, Kieran, & Morgan, Lorraine. (2011). Beyond the customer: Opening the agile systems

development process. Information & Software Technology, 53(5), 535-542. doi:

10.1016/j.infsof.2010.10.007

Dingsøyr, Torgeir, Nerur, Sridhar, Balijepally, VenuGopal, & Moe, Nils Brede. (2012). A

decade of agile methodologies: Towards explaining agile software development,

Editorial, Journal of Systems & Software, pp. 1213-1221. Retrieved from

http://ezproxy.gsu.edu:2048/login?url=http://search.ebscohost.com/login.aspx?direct=tru

e&db=bth&AN=74095428&site=bsi-live

Douglass, Bruce Powel. (2004). Real Time Agility. Upper Saddle River, NJ: Addison-Wesley.

Drury, Meghann, Conboy, Kieran, & Power, Ken. (2012). Obstacles to decision making in Agile

software development teams. Journal of Systems & Software, 85(6), 1239-1254. doi:

10.1016/j.jss.2012.01.058

Dybå, Tore, & Dingsøyr, Torgeir. (2008). Empirical studies of agile software development: A

systematic review. Information and Software Technology, 50(9–10), 833-859. doi:

http://dx.doi.org/10.1016/j.infsof.2008.01.006

Eisenhardt, Kathleen M., & Brown, Shona L. (1998). TIME PACING: COMPETING IN

MARKETS THAT WON'T STAND STILL. (cover story). Harvard Business Review,

76(2), 59-69.

Fitzgerald, Brian, Hartnett, Gerard, & Conboy, Kieran. (2006). Customising agile methods to

software practices at Intel Shannon. European Journal of Information Systems, 15(2),

200-213. doi: 10.1057/palgrave.ejis.3000605

Floyd, Christiane. (1992). Software development as reality construction: Springer.

Galliers, R.D. (1991). Choosing Information Systems Research Approaches in Information

Systems Research: Alfred Waller.

Giachetti, Ronald E., Martinez, Luis D., Sáenz, Oscar A., & Chen, Chin-Sheng. (2003). Analysis

of the structural measures of flexibility and agility using a measurement theoretical

framework. International Journal of Production Economics, 86(1), 47-62. doi:

http://dx.doi.org/10.1016/S0925-5273(03)00004-5

Greer, D., & Ruhe, G. (2004). Software release planning: an evolutionary and iterative approach.

Information & Software Technology, 46(4), 243. doi: 10.1016/j.infsof.2003.07.002

Highsmith, J. (2010). Agile Project Management (2nd ed.). Boston, MA: Pearson Education, Inc.

Highsmith, J., & Cockburn, A. (2001). Agile software development: the business of innovation.

Computer, 34(9), 120-127. doi: 10.1109/2.947100

http://ezproxy.gsu.edu:2048/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=74095428&site=bsi-live
http://ezproxy.gsu.edu:2048/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=74095428&site=bsi-live
http://dx.doi.org/10.1016/j.infsof.2008.01.006
http://dx.doi.org/10.1016/S0925-5273(03)00004-5

 109

Iivari, Juhani, & Iivari, Netta. (2011). The relationship between organizational culture and the

deployment of agile methods. Information & Software Technology, 53(5), 509-520. doi:

10.1016/j.infsof.2010.10.008

Janson, Marius A. Smith L. Douglas. (1985). Prototyping for Systems Development: A Critical

Appraisal. MIS Quarterly, 9(4), 305-316.

Karlstrom, Daniel, & Runeson, Per. (2005). Combining Agile Methods with Stage-Gate Project

Management. IEEE Software, 22(3), 43-49.

Kettunen, Petri, & Laanti, Maarit. (2005). How to steer an embedded software project: tactics for

selecting the software process model. Information & Software Technology, 47(9), 587-

608. doi: 10.1016/j.infsof.2004.11.001

Klein, Heinz K., & Myers, Michael D. (1999). A SET OF PRINCIPLES FOR CONDUCTING

AND EVALUATING INTERPRETIVE FIELD STUDIES IN INFORMATION

SYSTEMS. MIS Quarterly, 23(1), 67-93.

Laanti, Maarit, Salo, Outi, & Abrahamsson, Pekka. (2011). Agile methods rapidly replacing

traditional methods at Nokia: A survey of opinions on agile transformation. Information

& Software Technology, 53(3), 276-290. doi: 10.1016/j.infsof.2010.11.010

Lyytinen, Kalle, & Rose, Gregory M. (2005). How Agile is Agile Enough? Toward a Theory of

Agility in Software Development Business Agility and Information Technology Diffusion

(pp. 203-225): Springer.

Maruping, Likoebe M., Venkatesh, Viswanath, & Agarwal, Ritu. (2009). A Control Theory

Perspective on Agile Methodology Use and Changing User Requirements. Information

Systems Research, 20(3), 377-399.

Mathiassen, Lars, & Pries-Heje, Jan. (2006). Business agility and diffusion of information

technology. European Journal of Information Systems, 15(2), 116-119. doi:

10.1057/palgrave.ejis.3000610

McAvoy, John, Nagle, Tadhg, & Sammon, David. (2013). Using mindfulness to examine ISD

agility. Information Systems Journal, 23(2), 155-172. doi: 10.1111/j.1365-

2575.2012.00405.x

McHugh, Orla, Conboy, Kieran, & Lang, Michael. (2012). Agile Practices: The Impact on Trust

in Software Project Teams. IEEE Software, 29, 71-76. doi: 10.1109/MS.2011.118

Mohan, Kannan, Ramesh, Balasubramaniam, & Sugumaran, Vijayan. (2010). Integrating

Software Product Line Engineering and Agile Development. IEEE Software, 27(3), 48-

55.

Muthitacharoen, Achita, & Saeed, Khawaja A. (2009). Examining User Involvement in

Continuous Software Development (A case of error reporting system). Communications

of the ACM, 52(9), 113-117.

 110

Orr, Ken. (2004). Agile requirements: Opportunity or oxymoron? IEEE Software, 21(3), 71-73.

Persson, John Stouby, Mathiassen, Lars, & Aaen, Ivan. (2012). Agile distributed software

development: enacting control through media and context. Information Systems Journal,

22(6), 411-433. doi: 10.1111/j.1365-2575.2011.00390.x

Port, Daniel, & Bui, Tung. (2009). Simulating mixed agile and plan-based requirements

prioritization strategies: proof-of-concept and practical implications. Eur J Inf Syst, 18(4),

317-331.

Pozzebon, Marlei, Petrini, Maira, de Mello, Rodrigo Bandeira, & Garreau, Lionel. (2011).

Unpacking researchers' creativity and imagination in grounded theorizing: An exemplar

from IS research. Information and Organization. (21(4)), 177-193. doi:

http://dx.doi.org/10.1016/j.infoandorg.2011.09.001

Qumer, A., & Henderson-Sellers, B. (2008). A framework to support the evaluation, adoption

and improvement of agile methods in practice. Journal of Systems and Software, 81(11),

1899-1919. doi: http://dx.doi.org/10.1016/j.jss.2007.12.806

Qureshi, M. Rizwan Jameel. (2012). Agile software development methodology for medium and

large projects. IET Software, 6(4), 358-363. doi: 10.1049/iet-sen.2011.0110

Ramesh, Balasubramaniam, Cao, L. A. N., Mohan, Kannan, & Peng, X. U. (2006). CAN

DISTRIBUTED SOFTWARE DEVELOPMENT BE AGILE? Communications of the

ACM, 49(10), 41-46.

Ramesh, Balasubramaniam, Lan, Cao, & Baskerville, Richard. (2010). Agile requirements

engineering practices and challenges: an empirical study. Information Systems Journal,

20(5), 449-480. doi: 10.1111/j.1365-2575.2007.00259.x

Ramesh, Balasubramaniam, Mohan, Kannan, & Lan, Cao. (2012). Ambidexterity in Agile

Distributed Development: An Empirical Investigation. Information Systems Research, 23,

323-339. doi: 10.1287/isre.1110.0351

Rogers, Everett M. (2003). Diffusion of Innovations (5th ed.). New York: Free Press.

Ronkainen, Jussi, & Abrahamsson, Pekka. (2003). Software Development under Stringent

Hardware Constraints: Do Agile Methods Have a Chance? In Michele Marchesi &

Giancarlo Succi (Eds.), Extreme Programming and Agile Processes in Software

Engineering (Vol. 2675, pp. 73-79): Springer Berlin Heidelberg.

Royce, Winston W. (1970, August). Managing the development of large software systems. Paper

presented at the proceedings of IEEE WESCON.

Salo, O., & Abrahamsson, P. (2008). Agile methods in European embedded software

development organisations: a survey on the actual use and usefulness of Extreme

Programming and Scrum. IET Software, 2(1), 58-64. doi: 10.1049/iet-sen:20070038

http://dx.doi.org/10.1016/j.infoandorg.2011.09.001
http://dx.doi.org/10.1016/j.jss.2007.12.806

 111

Schatz, Bob, & Abdelshafi, Ibrahim. (2005). Primavera Gets Agile: A Successful Transition to

Agile Development. IEEE Software, 22(3), 36-42.

Sheffield, Jim, & Lemétayer, Julien. (2013). Factors associated with the software development

agility of successful projects. International Journal of Project Management, 31(3), 459-

472. doi: 10.1016/j.ijproman.2012.09.011

Sjøberg, Dag I. K., Johnsen, Anders, & Solberg, Jørgen. (2012). Quantifying the Effect of Using

Kanban versus Scrum: A Case Study. IEEE Software, 29(5), 47-53. doi:

10.1109/MS.2012.110

Smith, Michael, Miller, James, Huang, Lily, & Tran, Albert. (2009). A More Agile Approach to

Embedded System Development. IEEE Software, 26(3), 50-57.

Ståhl, Daniel, & Bosch, Jan. (2014). Modeling continuous integration practice differences in

industry software development. Journal of Systems & Software, 87, 48-59. doi:

10.1016/j.jss.2013.08.032

Stankovic, John A. (1996). Strategic directions in real-time and embedded systems. ACM

Comput. Surv., 28(4), 751-763. doi: 10.1145/242223.242291

Strauss, Anselm; Corbin, Juliet. (1990). Basics of Qualitative Research: Grounded Theory

Procedures and Techniques. Newbury Park, CA: Sage.

Sue, Kong, Kendall, Julie E., & Kendall, Kenneth E. (2012). PROJECT CONTEXTS AND USE

OF AGILE SOFTWARE DEVELOPMENT METHODOLOGY IN PRACTICE: A

CASE STUDY. Journal of the Academy of Business & Economics, 12(2), 1-15.

Sugimori, Y., Kusunoki, K., Cho, F., & Uchikawa, S. (1977). Toyota production system and

Kanban system Materialization of just-in-time and respect-for-human system.

International Journal of Production Research, 15(6), 553-564. doi:

10.1080/00207547708943149

Svahnberg, Mikael, Gorschek, Tony, Feldt, Robert, Torkar, Richard, Saleem, Saad Bin, &

Shafique, Muhammad Usman. (2010). A systematic review on strategic release planning

models. Information and Software Technology, 52(3), 237-248. doi:

http://dx.doi.org/10.1016/j.infsof.2009.11.006

Tedre, MattiSutinen Erkki. (2008). Three traditions of computing: what educators should know.

Computer Science Education, 18(3), 153-170. doi: 10.1080/08993400802332332

Van de Ven, A. . (2007). Engaged Scholarship: A Guide for Organizational and Social

Research. New York, NY: Oxford University Press.

Vidgen, Richard (2009). Coevolving Systems and the Organization of Agile Software

Development. Information Systems Research, 20(3), 355-376.

http://dx.doi.org/10.1016/j.infsof.2009.11.006

 112

Vinekar, Vishnu, Slinkman, Craig W. , & Nerur, Sridhar. (2006). CAN AGILE AND

TRADITIONAL SYSTEMS DEVELOPMENT APPROACHES COEXIST? AN

AMBIDEXTROUS VIEW. Information Systems Management, 23(3), 31-42.

Vlaanderen, Kevin, Jansen, Slinger, Brinkkemper, Sjaak, & Jaspers, Erik. (2011). The agile

requirements refinery: Applying SCRUM principles to software product management.

Information and Software Technology, 53(1), 58-70. doi:

http://dx.doi.org/10.1016/j.infsof.2010.08.004

Wang, Xiaofeng, Conboy, Kieran, & Cawley, Oisin. (2012). “Leagile” software development:

An experience report analysis of the application of lean approaches in agile software

development. Journal of Systems & Software, 85(6), 1287-1299. doi:

10.1016/j.jss.2012.01.061

Wang, Xiaofeng, Conboy, Kieran, & Pikkarainen, Minna. (2012). Assimilation of agile practices

in use. Information Systems Journal, 22(6), 435-455. doi: 10.1111/j.1365-

2575.2011.00393.x

Yauch, Charlene. (2011). Measuring agility as a performance outcome. Journal of

Manufacturing Technology Management, 22(3), 384-404.

Yin, Robert K. (2009). Case Study Research Design and Methods. Thousand Oaks, CA: Sage.

http://dx.doi.org/10.1016/j.infsof.2010.08.004

	Georgia State University
	ScholarWorks @ Georgia State University
	12-17-2014

	The Vortex of Continuous Development of Embedded Systems: An Inquiry into Agility Orchestration
	David A. Bishop
	Recommended Citation

	APA Format 6th Edition Template

