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ABSTRACT OF THESIS

BIVENTRICULAR FINITE ELEMENT MODELING AND QUANTIFICATION OF 3D 
LANGRAGIAN STRAINS AND TORSION USING DENSE MRI

Statistical data suggests that increased use of evidence-based medical therapies has 
largely contributed to the decrease in American death rate caused by heart disease. And my 
studies are about two applications of magnetic resonance imaging (MRI) as a non-invasive 
approach in evidence-based health care research. In my first study, the achievement of a 
pulmonary valve replacement surgery was assessed on a patient with tetralogy of Fallot 
(TOF). In order to evaluate the remodeling of right ventricle, two biventricular finite 
element models were built up for pre-surgical images and post-surgical images. In my 
second study, 3D Lagrangian strains and torsion in the left ventricle of ten rats were 
investigated using Displacement ENcoding with Stimulated Echoes (DENSE) cardiac 
magnetic resonance (CMR) images. Tools written in MATLAB were developed for 2D 
contouring, 3D modeling, strain and torsion computations, and statistical comparison
across subjects.

KEYWORDS: Biventricular Finite Element Modeling, Tetralogy of Fallot, DENSE MRI, 
3D Langragian Strains, Rats, Custom Programs with MATLAB
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1 Introduction

1.1 Background

According to latest reports of CDC WONDER online database, from 1999-2014, 
diseases of heart was the No. 1 leading cause of dead for both men and women in the United 
States [1]. From 1999-2000 to 2013-2014, the death rate caused by heart disease was
decreased by 24% [2]. Studies suggest that increased use of evidence-based medical 
therapies has contributed to 47% of the decrease in US deaths attributable to coronary heart 
disease from 1980 to 2000 [3]. As a non-invasive approach, magnetic resonance imaging
(MRI) has been widely used in many evidence-based health care practices.

1.2 Anatomy of the Heart

As shown in Figure 1.1, the human heart is located between lungs in the middle of 
chest. It is behind and slightly to the left of sternum. Depicted in Figure 1.2, the human 
heart is a four-chamber structure consisting of two large chambers as ventricles and two 
smaller chambers as atria. The septum is the wall separating the left and right ventricles, 
while the free wall is the rest part of ventricular wall except the septum and the apical wall.
There are four important valves inside the heart. The atria are connected to the ventricles 
by two atrioventricular (AV) valves. Between the left atrium and left ventricle is the mitral 
valve, while between the right atrium and right ventricle is the tricuspid valve. The arteries 
are connected to the ventricles via two semilunar valves which include the aortic valve
between left ventricle and aorta and the pulmonic valve between right ventricle and 
pulmonary artery.

Figure 1.1: Heart location from an anterior view of human body [4]
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Figure 1.2: Structure Diagram of the human heart from an anterior section [5]

The base of the heart is the widest part and constitutes the upper part of heart, where 
venae cavae and left pulmonary artery are attached to the left ventricle (LV), and where 
aorta and left pulmonary veins are attached to the right ventricle (RV). The apex of the 
heart is the lowest part of the heart. From an anterior view of human body (Figure 1.1), the 
base of heart is upward and leaning toward the right shoulder, while the apex directs
downward, forward, and pointing to the left shoulder.

The ventricular wall consists of three layers (Figure 1.3). The innermost layer is called 
endocardium, while the outer layer of heart tissue is termed epicardium. The majority of 
ventricular wall is myocardium locating between endocardium and epicardium. 
Myocardial fibers lying within the myocardium are responsible for the ventricular 
contraction. The fiber angle varies from endocardium to epicardium.
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Figure 1.3: Layers of the heart wall [6]

1.3 Physiology of the Heart

Figure 1.4: Wiggers Diagram of a cardiac cycle [7]

During one heartbeat, contraction and relaxation occur alternately, which is call a 
cardiac cycle (shown in Figure 1.4). The frequency of the heart beat is the heart rate with 
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beats per minute as most common unit. A cardiac cycle includes two phases, systole and 
diastole, or five stages (summarized in Table 1.1).

Table 1.1: Phases and stages of cardiac cycle
Cardiac phases Cardiac stages AV valves Semilunar valves

Systole
1. Isovolumetric contraction Closed Closed
2. Ventricular ejection Closed Open

Diastole
3. Isovolumetric relaxation Closed Closed
4. Ventricular filling and atrial diastole Open Closed
5. Ventricular filling and atrial systole Open Closed

Ventricular systole begins at the QRS complex illustrated on the electrocardiogram 
(ECG) curve of Figure 1.4. During systole, as shown in Figure 1.5a, blood is driven out of 
the heart. The left ventricle pumps blood via the aortic valve into systemic part of the body, 
while the right ventricle pumps blood via the pulmonic valve into the lungs. Systole
involves the first two stages. In the first stage, ventricles begin to contract. Since both 
valves are closed (shown in Table 1.1), no blood can enter or leave the ventricle, and thus
the ventricle is contracting isovolumically while pressure is rising dramatically (from time 
A to time B on Figure 1.6). In the second stage (from time B to time C on Figure 1.6),
ejection is rapid at first, slowing down as systole progresses. At the end, ventricles reach 
minimum volume at end systole (ES).

During diastole, as shown in Figure 1.5b, owing to relaxation, the left ventricle fills
with oxygenated blood from the left atrium via the mitral valve, while right ventricle fills
with deoxygenated blood from the right atrium via the tricuspid valve. Diastole involves 
the next three stages. In the third stage, both valves are closed again as ventricles relax and 
pressure within drops. Thus, volume stays the same but pressure drops rapidly (from time 
C to time D on Figure 1.6). The fourth stage is in early diastole, both the atria and ventricles 
are relaxed and passively filled in decreasing rate. Late diastole commences at the fifth
stage, atrial systole, when P wave appeared in ECG curve (Figure 1.4). As atria contract, 
blood is pumped into ventricles again. The additional flow of blood is called atrial kick.
Eventually ventricles reach maximum volume at end diastole (ED).
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                  (a) Systole [8]            (b) Diastole [9]
Figure 1.5: Schematic of blood circulation with red arrows as oxygenated blood and blue 

arrows as deoxygenated blood

Figure 1.6: Pressure volume loop of a typical human cardiac cycle [10]
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2 Assessment of a Pulmonary Valve Replacement in Tetralogy of Fallot

2.1 Background

Recent statistics from the American Heart Association (2011) indicate that Congestive 
Heart Failure (CHF) affects 5.7 million Americans [11]. CHF is characterized by the hearts 
inability to pump blood efficiently into the body, caused by either impaired myocardial 
contraction leading to global ventricular dilation (systolic heart failure), or decreased 
ventricular relaxation (diastolic heart failure). The tetralogy of Fallot (TOF) is one type of 
the most common congenital heart defect. It often results in impaired functional capacity 
and even early death. By definition, TOF involves four abnormalities co-occurring
frequently (summarized in Figure 2.1b). In Figure 2.1b, location A shows a narrowing of 
the right ventricular outflow tract near pulmonary valve. Location B shows an over-riding 
aortic valve connecting both LV and RV due to a ventricular septal defect as shown in 
location C. And since RV has more muscle in location D, a characteristic boot-shaped bump
appears. All of these lead to abnormal RV outflow causing RV dilation. One of typical 
symptoms of TOF is cyanosis, like the blue coloration of the finger-tips shown in Figure 
2.2.

              (a) Normal heart [12]      (b) Tetralogy of Fallot [13]
Figure 2.1: Comparison between a healthy heart and one with tetralogy of Fallot

Figure 2.2: Cyanotic nail beds in an adult [14]
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Patients with TOF usually take corrective surgery within the first year of life. But they 
still experience long-term problems including arrhythmia, pulmonary regurgitation, and re-
operation [15]. And after the repair of TOF, pulmonary valve replacement (PVR) can 
reduce pulmonary regurgitation and decreases RV dilation for a patient.

Our goal of this study is to evaluate if the pulmonary valve replacement surgery helps 
the patient to recover from abnormal remodeling of RV.
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2.2 Methods

2.2.1 Cine MRI Acquisition
Cine MR angiography images of the heart are basically short movies with the ability

to display average heart motion throughout the cardiac cycle. Cine MRI is taken the same 
way as a traditional MRI. A cardiac cycle begins with the R wave of the ECG, ends with 
the subsequent R wave, thus ECG tracing is used to trigger cine MRI. During the 
acquisition, a cardiac cycle is split into multiple frames depending on the heart rate. The 
heart is repeatedly imaged at a single slice location throughout the cardiac cycle so that 
each image is the information obtained during the same frame across multiple cardiac 
cycles (the same colored boxes in Figure 2.3).

Figure 2.3: An ECG tracing with multiple frames in different colors

Depicted in Figure 2.4, in order to generate tomographic images, three cardiac planes
are introduced during MRI[16]. These three corresponding views are perpendicular to each 
other. Two chambers, left ventricle and atrium, are seen in the vertical long-axis (VLA)
view, while all four chambers are shown in the horizontal long-axis (HLA) view.

Figure 2.4: Definitions of short axis (SA), vertical long-axis (VLA), and horizontal long-
axis (HLA) views [17]
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In order to fully assess the entire heart, separate cine image sets are acquired at various 
locations, like base, mid-ventricle, and apex for short-axis images, or various views, like 
2-, 3-, and 4-chamber views for long-axis images. At last, the series of images are gathered 
together to produce a movie (cine). A typical acquisition of images for a given slice location 
are in 10 to 20 seconds depending on the sequence, well within the single breath hold 
capabilities of most patients. Since the base pulse sequence is a bright-blood technique, 
dark pixels in the images represent tissue.

A cine MRI scan was performed on a female patient with repaired TOF at the 
University of California, San Francisco (UCSF). During the scan, 16 short-axis slices and 
24 long-axis slices of the 4-chamber view were acquired with a 7-mm slice thickness. 
Additionally, 16 frames of images in a cardiac cycle were collected with 0.05 s as repetition
time, leading to a heart rate of 75 beats per minute.

Two years after pulmonary valve replacement surgery, the patient had another cine 
MRI scan at UCSF. This scan was set up with 14 short-axis slices with a 8-mm slice 
thickness, single long-axis slice of the 4-chamber view, and single long-axis slice of the 2-
chamber view. In this time, 24 frames were imaged throughout a cardiac cycle with 0.031 
s as repetition time, which results in a heart rate of 81 beats per minute.

2.2.2 Contouring Technique
In order to post-process cine images, MeVisLab (MeVis Medical Solutions AG and 

Fraunhofer MEVIS) was used to replicate the in-vivo geometry of biventricular contours.
MeVisLab is a research and rapid prototyping platform for medical image processing 

and visualization. It provides us a powerful modular framework of visual programming. It 
integrates many widely-used third-party libraries, such as graphics standard OpenGL, the
application framework Qt, and the visualization and interaction toolkit Open Inventor.
Moreover, more dynamic functions can be added to a self-developed application via 
scripting utilizing popular scripting languages, such as JavaScript and Python.

Applications and algorithms were developed visually in a manner of modular design. 
Depicted in Figure 2.5, each unit (module) has its own input, output, and function 
implemented by built-in method or an algorithm. For example, by manipulating the 
processing pipeline connecting modules, three built-in modules built a subnetwork of
sharpen filter for images (Figure 2.5).
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Figure 2.5: Sharpen Filter for Images

Since cine MRI follows Digital Imaging and Communications in Medicine (DICOM) 
standard for handling, storing, printing, and transmitting information, a built-in DICOM
reader module with multiple visualization modules can implement a function of reading 
images (shown in Figure 2.6).

Figure 2.6: Images reading subnetwork

In order to extract the endocardial and epicardial biventricular surfaces, contours were 
drawn freehand on end-systolic and end-diastolic images (Figure 2.7) of each slice. Since 
MeVisLab provides many built-in modules for analyzing, maintaining, grouping, and 
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converting contour segmentation objects (CSO), hand-drawn contours were stored with
CSO which are in pixel coordinates. A subnetwork for drawing, managing, and saving CSO 
is shown in Figure 2.8.

Figure 2.7: Contours in pixel coordinates drawn on a pre-surgical end-diastolic image

Figure 2.8: CSO manipulation subnetwork

Pixel coordinates

11



Finally, an application for contouring was done via connecting images reading 
subnetwork, sharpen filter subnetwork, and CSO manipulation subnetwork (shown in
Figure 2.9).

Figure 2.9: Contouring application created with Mevislab

CSO were stored in pixel coordinates. In order to reconstruct the actual size of a heart,
the information of volumetric pixels (voxels) size, slice location, and slice orientation 
stored in the tags of DICOM was used to convert CSO data into Cartesian coordinates in
the global coordinate system created by the scanner. A self-developed macro module
(Appendix B) was coded with Python to get the actual Cartesian coordinates of 
biventricular contours (Figure 2.10).
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Figure 2.10: Self-developed Python coding module for coordinates transformation for 
CSO

Overall, biventricular endocardium and epicardium were contoured both at end-systole 
and end-diastole of pre-surgical and post-surgical images, followed by the transformation 
of coordinates. All contours are depicted in Figure 2.11.

            
(a) Pre-surgical end-systolic epicardial (left) and endocardial (right) contours
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(b) Pre-surgical end-diastolic epicardial (left) and endocardial (right) contours

          
(c) Post-surgical end-systolic epicardial (left) and endocardial (right) contours

       
(d) Post-surgical end-diastolic epicardial (left) and endocardial (right) contours

Figure 2.11: Biventricular endocardial and epicardial contours at ES and ED in the global
coordinate system
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2.2.3 3D Modeling and Visualization

Figure 2.12: 3D modeling application

Furthermore, the 3D epicardial and endocardial surfaces were reconstructed in 3 
dimensions by being fitted into the biventricular contours in the global coordinate system. 
Likewise, MeVisLab provides many built-in modules for manipulating Winged Edge Mesh 
(WEM), thus all surfaces were stored with WEM. An application for 3D modeling is shown 
in Figure 2.12. First, the built-in module CSOConvertTo3DMask fitted a continuous model 
to CSO contours from multiple slices, followed by refining and smoothing. Afterward, the 
built-in module WEMIsoSurface converted the model into a WEM. Last, WEM was 
rendered via the built- in module SoWEMRenderer. 3D surfaces of epicardium and 
endocardium are depicted in Figure 2.13.

15



            
(a) Pre-surgical end-systolic epicardium (left) and endocardium (right)

         
(b) Pre-surgical end-diastolic epicardium (left) and endocardium (right)

           

(c) Post-surgical end-systolic epicardium (left) and endocardium (right)
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(d) Post-surgical end-diastolic epicardium (left) and endocardium (right)

Figure 2.13: Biventricular epicardium and endocardium surfaces with their corresponding 
contours at ES and ED

2.2.4 Finite Element Meshes
End-systolic epicardial and endocardial surfaces were utilized to construct pre-surgica l 

and post-surgical biventricular meshes with Truegrid (XYZ Scientific Applications, Inc.,
Livermore, CA). The spaces between the epicardial and endocardial surfaces were filled 
with 8-noded brick elements. Since RV inserting locations were twisting along the 
longitudinal direction, surface geometries here were pointy. In order to replicate the 
complicated in-vivo geometries here, 3D splines were manually drawn on the surfaces
(Figure 2.14), followed by the alignment of element edges along the splines. Subsequent 
volumetric meshes were refined by adding more elements in the circumferential direction.
Considering the fact that the septum is thicker than the lateral wall, four elements in the 
septum and three elements in the lateral wall were deployed transmurally. In addition, in 
order to make elements evenly spaced, some nodes were manually moved, followed by the 
execution of smoothing commands. A layer of shell elements was used to line the 
endocardial surface of both the LV and RV, in order to form an enclosed volume for 
ventricular cavity volume measurements (Figure 2.15). The result of meshes is shown in
Figure 2.16, for a total of 23,752 elements for the pre-surgical case and 24,778 elements
for the post-surgical case.
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(a) Pre-surgical endocardial surfaces   (b) Pre-surgical epicardial surface

              

(c) Post-surgical endocardial surfaces   (d) Post-surgical epicardial surface
Figure 2.14: Freehand contours replicating complex geometries

                   

(a) Pre-surgical endocardial mesh   (b) Post-surgical endocardial mesh
Figure 2.15: Endocardial Meshes for ventricular cavity volume evaluation
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(a) Pre-surgical biventricular mesh   (b) Post-surgical biventricular mesh

Figure 2.16: Biventricular meshes created with Truegrid

2.3 Results and Discussion

          (a) Septal View                          (b) Lateral View

(c) Top View
Figure 2.17: Comparison between pre-surgical (grey) and post-surgical (green) RV

cavities at end diastole

First, the patient still had a severe problem of dilated RV after the surgery. The post-
surgical right ventricular end-diastolic volume (RVEDV) of blood was 186 ml, while the 
normal range is between 100 and 160 mL [18]. What's worse, the post-surgical RVEDV
(186 ml) was much larger than pre-surgical RVEDV (134 ml) (Figure 2.17a and Figure 
2.17b). Figure 2.17c also shows that the cross-sectional area of basal plane is larger after 
the surgery, compared with that before the surgery.

Another index used for evaluating the functionality of RV is right ventricular ejection 
fraction (RVEF). RVEF is the ratio between right ventricular stroke volume (RVSV) and 
RVEDV, where RVSV is the volume of blood pumped out by RV per beat. As a result, the 
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post-surgical RVEF is 34.33%, compared with 40%-60% in normal subjects [18]. Thus, 
the RV still functioned abnormally after the surgery.

2.4 Conclusion

Overall, a contouring technique was developed with MeVisLab. A methodology of 3D 
modeling and visualization of 3D contours was proposed. Biventricular surfaces in repaired
TOF were modeled before and after the pulmonary valve replacement surgery. Right 
ventricular end-diastolic volume and ejection fraction were computed.

Unfortunately, the patient still suffered severe RV dilation. When two post-surgica l 
indices were compared with those of normal subjects, the dysfunction of RV in the patient
was still indicated. Therefore, the pulmonary valve replacement failed to reduce pulmonary 
regurgitation or decreases RV dilation for the patient.

20



3 Quantification of 3D Lagrangian Strain and Torsion in Rat Left Ventricles with 

DENSE MRI

3.1 Background

Displacement ENcoding with Stimulated Echoes (DENSE) is an MRI tissue tracking 
technique which allows the analysis of myocardial deformation.

Figure 3.1: Timing diagram for the 3D cine DENSE spiral pulse sequence [19]

A diagram of DENSE acquisition protocol of spiral pulse sequence is depicted in 
Figure 3.1. Once triggered by the R wave of the ECG, an initial Rf excitation is emitted, 
followed by two k-cycle sinusoidal readout gradients GFE and GPE in two orthogonal
directions of a plane. GFE and GPE oscillate with a slowly increasing amplitude until they 
reach the amplitude limit. Assuming a single effective readout gradient GRO is the vector 
sum of GFE and GPE, GRO rotates as GFE and GPE change their directions and spirals out as 
GFE and GPE increase their amplitudes. As a result, GRO proceeds along a k-space trajectory
on the plane. As shown in Figure 3.2a, a single k-space trajectory is completed in a single 
readout window. It's a Archimedean spiral which can be constructed by running a angle θ
as a function of the radius of a specific trajectory point. Figure 3.2b shows four interleaved 
k-space trajectories which are conducted during four readout windows. Compared with a 
single-shot spiral scan, an interleaved spiral scan can bring more signal for the same spatial 
resolution leading to less blurring; but it also take longer time to complete. As GRO spirals
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out, phase dispersion is introduced across tissue in a direction perpendicular to GRO. Hence, 
phase dispersion also proceeds along k-space trajectories on the plane. Consequently, echo 
of radiation due to a magnetic moment change is recorded from the center to the periphery
along those trajectories until a circular field of view (FOV) is fully covered. Here, GRO is 
assumed to have a magnitude GR G/cm and a duration time tenc (period of a readout 
window).

             
(a) Single k-space spiral         (b) Four interleaved spiral

Figure 3.2: Diagram of k-space trajectories covered over a field-of-view [20]

Before a second Rf excitation is applied, a tissue displacement of Δx occurs during a 
time period of TR. After the second Rf excitation, a second effective readout gradient GRO

causes another phase dispersion. For stationary spins, the phase dispersion is complete. For 
protonic spins which have moved a distance of Δx, a net phase φ1 of the echo signal is 
accumulated, which is illustrated by Equation (3.1):

1   H R encG t xϕ γ= ∆ (3.1)

where γH is the gyromagnetic ratio in Hz/Tesla.
Imaging with slice selection is performed by a series of n-frame sampling per Rf

excitation with TR as repetition time. A scan is acquired at a cardiac sycle.
In order to obtain displacements in the FOV, the first scan serves as the phase reference 

data set. Next, a complementary data set is acquired through repeating the sequence once 
more with altered amplitude GR' of effective readout gradient. The difference in effective 
readout gradients is set for a specific value of displacement encoding. Since the amplitude
of effective readout gradient changes, accumulated phase φ2 is different, which is illustrated 
by Equation (3.2). Illustrated by Equation (3.3), the phase shift Δφ between two sequences
is used to compute Δx. Although the difference of effective readout gradient is small, TR
can be set to be large enough when Δx occurs so that a noticeable phase difference Δφ can 
be detected. Accordingly, DENSE has a high spatial resolution [21]. When the Rf excitation
frequency is fixed between two scans, the acquisition location in the complementary scan 
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slightly shifts from that in the phase reference scan due to the tiny difference in effective 
readout gradients.

'
2 H R encG t xϕ γ= ∆ (3.2)

'( )H R R encG G t xϕ γ∆ = − ∆ (3.3)

A balanced four-point encoding strategy is adopted to acquire displacements in three
directions, which can offer homogeneous phase noise in three directions and increase phase 
SNR as suggested by Zhong and colleagues [22]. As shown in Figure 3.3, in order to get 
the 3D displacements in the centroid of a regular tetrahedron, a phase reference scan and a 
complementary scan are performed on the four vertices of the tetrahedron, respectively, 
contributing to four sets of phase differences. Later, weighting vectors are used to derive x, 
y, and z displacements from phase differences. At last, tissue displacement values are
encoded directly into the intensity of each pixel of phase images along each direction. 
Consequently, a total of eight cine data sets are acquired for encoding phase images along 
three directions, presenting a map of 3D displacement of tissue on a specific slice.

Figure 3.3: Four weighting vectors for 3D balanced multi-point encoding method [22]

Magnitude images are averaged over the phase reference scans. Depicted in Figure 3.1,
due to the nonsynchronous motion of the blood in the ventricle, black blood images are 
produced. This type of image contrast is desirable in our cardiac MRI studies. First, black
blood can exhibit a contrast between myocardium and ventricular cavity, help us to 
separating them. Besides, without bright blood signal, motion artifacts can be reduced
along the phase direction (shown in Figure 3.4).
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Figure 3.4: Striping Artifacts caused by bright blood signal [23]

3.2 Introduction

Several previous studies have investigated Lagrangian strain in the mouse LV. 
Fornwalt et al. [24] investigated circumferential, longitudinal, and radial strains with 
DENSE. Variations in systolic and diastolic strain rates across five normal mice were
reported transmurally. They also reported basal, mid-ventricular, and apical torsion and 
ventricular synchrony with CURE and RURE indices. Zhong and Yu [25] investigated 2D 
strain and torsion using DENSE. They evenly divided each of apical and basal slices into 
four circumferential segments. Peak systolic radial and circumferential strains of each 
segment were compared at baseline and under dobutamine (Dob) stimulation. Torsion was 
reported over the cardiac cycle at baseline and under Dob stimulation. Li and Yu [26] also 
studied radial strain, circumferential strain, and torsion at baseline and under Dob 
stimulation. But they adopted a harmonic phase (HARP) based method of MRI tagging.

In addition, some researchers were interested in rat LV. Stelzer et al. [27] investigated 
2D strain and torsion with DENSE. End-systolic maximal principal strain E1 and minima l 
principal strain E2 at the apex and base were compared at baseline and under Dob 
stimulation. Torsion in hypothyroid rats was compared with control rats over the cardiac 
cycle. Li and Yu [28] studied two principal Lagrangian strains (E1 and E2) in apex, mid-
ventricle, and base at diastole. They compared 2D myocardial strain measured by HARP 
with those obtained by conventional homogeneous strain analysis based on manual 
tracking of tag lines.

Additionally, Hess et al. [29] focused on human LV and constructed 3D strain maps of 
the LV of six volunteers using cine DENSE and cine strain encoding (SENC) MRI. They 
divided the heart with the 17-segment model of AHA. Averaged principal mid-ventricular 
strain of each segment was compared in three directions over the cardiac cycle.

3.3 Aims

Surprisingly, it appears that no other research groups have segmented a slice of the LV 
circumferentially and transmurally. Inspired by the work of Fornwalt et al. [24], the goal 
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of the study is to apply a more detailed segmentation to the rat mid-ventricle and quantify 
six components of Lagrangian strain in polar orientation in each segment. Torsion of the 
rat LV is also computed. This work also aims to provide tools for rapid Lagrangian strain 
analysis. We hope strain data of segments can provide other researchers with useful 
reference.

3.4 Methods

A schematic of the methodology of quantification of 3D Lagrangian Strain and Torsion 
in LV is summarized in Figure 3.5.

Figure 3.5: Schematic of quantification of 3D Lagrangian strain and torsion in LV

3.4.1 Rat Models
Ten healthy rats were contained inside ventilated cages in a temperature-controlled 

room. They were provided with acrylic huts and nesting material. Their ages ranged from 
5 to 7 months when they were scanned. All procedures implemented on the rats were 
conducted by Dr. Xiaoyan Zhang. The procedures complied with Public Health Service 
policies for humane care and use of animals. The procedures also conformed to the 
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Lagrangian strains calculation

Displacement query for nodes
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protocols approved by the institutional animal care and use committee at the University of 
Kentucky.

3.4.2 Animal preparation
Animal preparation was conducted by Dr. Xiaoyan Zhang. Before being imaged, the 

rats were anesthetized with isoflurane. A vaporizer was used to precisely delivering 2.5% 
isoflurane in oxygen at a rate of 1.5 L/min. Once rats didn't have reflexes, three legs were 
shaved and ECG electrodes required for cardiac gating were attached. In order to reduce 
motion artifacts, a diaphragm of respiratory sensor was placed under the abdomen for 
respiratory gating. The animals were wrapped by a heated pad for the maintenance of body 
temperature between 36±1 degrees Celsius. A rectal thermometer was inserted to monitor 
body temperature. Consequently, heart rate, respiratory rate, and body temperature were 
continuously monitored during scanning with a fiber optic acquisition system (SA 
Instruments, Inc, Stony Brook, NY). 

3.4.3 DENSE MRI Acquisition
DENSE MRI acquisition was also conducted by Dr. Xiaoyan Zhang. DENSE MRI was 

performed on a 7-Tesla BrukerClinScan system (Bruker, Ettlingen, Germany).
Immediately after a detection of the peak of the ECG's R-wave during a stable respiratory
period, DENSE sequence was emitted. A magnitude image was constructed and three phase 
images were independently encoded for displacements in x, y and z directions, respectively 
(Figure 3.1). A total of 17–22 frames per cardiac cycle were collected with a repetition time 
of 7.4 ms and an echo time of 1 ms. Pixel spacing was 0.357 mm and slice thickness was 
1.3 mm, leading to a voxel size of 0.357 × 0.357 × 1.3 mm. Since an image is a matrix of 
140 × 140 pixels, field of view was about 50 × 50 mm, which fully covers two whole 
ventricles from both SA views and LA views. After multiple test scans, the displacement 
encoding frequency was set for a constant value of 0.3 cycles/mm, in which images have a 
minimal signal-to-noise ratio (SNR).

Depend on the ventricular size, 5-6 short-axis slices and 2 long-axis slices were set up
for each rat. The long-axis slices were aligned on the 4-chamber view and the 2-chamber
view. The short-axis slices were set up perpendicular to the long-axis slices. Specifica lly, 
the basal slice was placed in the position where the septum can just be entirely visualized 
at end systole, while the apical slice was positioned in the location where the cavity can 
just be visualized at end systole. Consequently, approximately 80% of end-systolic 
ventricular length was covered by short-axis images.

3.4.4 Image Segmentation
A software DENSEanalysis developed in MATLAB by Dr. Andrew D. Gilliam was

used to draw contours of endocardium and epicardium of left ventricle on both short-axis 
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and long-axis images (Figure 3.6). Blood pool and surrounding tissue were recognized 
from magnitude images and noisy phase data. Endocardial and epicardial boundaries were 
traced to identify the myocardium in all frames and slices.

(a) Short-axis contours

(a) Long-axis contours
Figure 3.6: Left ventricular contours at end systole on mid-ventricular short-axis images 

taken on Aug. 30, 2015
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First of all, myocardial contours need to be modified by distinguishing myocardium 
from papillary muscle. Because papillary muscles (2 protrusions in Figure 3.7) were 
aligned from the mid-level up to the base (Figure 3.8), a segment of endocardial contours
may be wrongly placed on them from short-axis views. If papillary muscles are inside 
myocardial contours, they could bring a tremendous change in wall thickness from slice to 
slice (Figure 3.8a). Besides, since papillary muscles are pulling atrioventricular valves 
during diastole, they would be hard to be tracked. Thus, papillary muscles need to be 
excluded from myocardial contours.

Figure 3.7: Papillary muscles in human heart [30]

Fortunately, papillary muscles in rat heart were large enough to be visualized at end 
systole from long-axis view. Thus, short-axis contours need to be displayed on long-axis 
images to verify they don't cover papillary muscles. A software CorrecterBorders 
developed in MATLAB by Dr. Jonathan Suever can display 3D freehand contours 
simultaneously on both short-axis and long-axis CMR images of DICOM standard. In order 
to draw contours with DENSEanalysis and CorrecterBorders, two custom modules
(Appendix C and Appendix D) were written in MATLAB (Mathworks, Inc., Natick, MA).
After associating short-axis images with long-axis images based on locations and 
orientations of all slices, 2D contours created with DENSEanalysis were converted to 3D 
contours read by CorrecterBorders. As shown in Figure 3.8a, papillary muscle was hard to 
tell from myocardioum in a short-axis view but well-marked from a long-axis view. After
modifications of short-axis contours (Figure 3.7b) were conducted with CorrecterBorders, 
the contours were imported back to DENSEanalysis for further adjustments.
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Figure 3.8: Exclusion of papillary muscle from myocardial contours

Furthermore, myocardial contours also need to be adjusted to confront the following 
principles of ventricular shapes changing in a particular cardiac stage. During 
isovolumetric contraction or isovolumetric relaxation, myocardial contours are supposed 
to have same size. Myocardial contours are also supposed to shrink with increasing wall 
thickness during systole, but enlarge with decreasing wall thickness during diastole.

Papillary muscle

(a) Before adjustment

(b) After adjustment

Papillary muscle
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3.4.5 Phase Unwrapping
As illustrated in Chapter 3.1, Lagrangian displacements indicating where voxels came 

from with respect to their referential location are encoded in the contrast of phase images. 
The contrast value of 0-4098 are corresponding to a phase range from -π to π. Depicted in 
Figure 3.9, since 0.3 cycles/mm (3𝜋𝜋/5 𝑟𝑟𝑎𝑎𝑑𝑑/mm) is selected displacement encoding 
frequency, displacements of -10/3, 0, 10/3 mm have phase values of -2π, 0, 2π but stored 
with a same contrast value. Consequently, tissue with the above displacements appear the 
same from phase images. In other words, displacements of -10/3 and 10/3 mm are wrapped
into the displacement of 0 mm and thus need to be restored back to actual values. Only a 
displacement in the range of -5/3-5/3 mm is unwrapped.

Figure 3.9: Schematic of phase and corresponding displacement when encoding 
frequency is 0.3 cyc/mm

With DENSEanalysis, first, drawn contours were used to extract myocardial pixels 
(non-blue pixels in Figure 3.10) from the pixels belong to blood and surrounding tissue 
(blue pixels in Figure 3.10) in each frame. Then, representative pixels encoded with
unwrapped displacement were manually picked out from phase images for all slices (Figure 
3.10). Last, an algorithm proposed by Spottiswoode [33] was used for phase unwrapping.
Consequently, actual displacements of all myocardial voxels in each frame were obtained.
They were relative to initial location of the voxels in the referential frame when the 
encoding occurred (Figure 3.1).

0 mm

+-

5/3 mm

0
Displacement (mm)

4/3-4/3-8/3 8/3 4-4
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Figure 3.10: Manual selection of unwrapped pixels in DENSEanalysis

3.4.6 Discretization of the LV in the Referential Frame
A module of generating a cardiac model is provided in DENSEanalysis. A cardiac 

model of a specific slice consists of resting contours (left viewer in Figure 3.11) in the 
referential frame and computational contours (right viewer in Figure 3.11) in each imaging
frame. First, resting contours were obtained via projecting the myocardial voxels in the 
unwrapped-pixels-located frame (Figure 3.10) back to the referential frame using the 
corresponding displacements. Next, computational contours were acquired via projecting
the resting contours forward to each frame using the corresponding myocardia l 
displacements. As shown in Figure 3.11, displacements in the frame 20 were used to move 
the resting contours to frame 20.

Figure 3.11: Meshing user interface for a short-axis slice
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The module was subsequently improved in MATLAB by adding a function of meshing 
the LV in the referential frame (Appendix E, Appendix G, Appendix H and Appendix I). 
The first step of left ventricular discretization was to set up mesh parameters and generate 
a 2D referential mesh for each SA slice. As shown in Figure 3.11, a custom mesh
configuration interface was created with graphical user interface design environment 
(GUIDE) of MATLAB (Appendix E). Computational contours were set for a 
circumferential partition of 60 sectors numbered counterclockwise. Four nearby yellow 
dots constructed a sector. Two insertion points of the RV wall to the LV separate 
myocardium into septum and free wall. The first sector was placed on the anterior RV 
insertion point (the square dot in Figure 3.11). The sector number on the inferior RV 
insertion point was also specified. The sectors between these two sectors were classified 
into septal segment, while the rest of the sectors were divided into equal thirds which were 
classified as inferior, lateral, and anterior segment, respectively. The anterior segment lies 
by the side which is closer to the chest. Last but not least, bad sectors were marked. In 
Figure 3.11, computational end-diastolic contours have abnormal wall thickness from
sector 21 to sector 24, resulting in enormous magnitude of negative strain. Therefore, it's 
necessary to take bad sectors out of play. On the other hand, bad sectors might be repaired 
by trying different unwrapped pixels from different frames.

For each rat left ventricle, once the mesh configuration was done for all short-axis 
slices, a referential volumetric mesh was built up by stacking 60 sectors of resting contours 
slice by slice so that the mesh was filled with 8-noded brick elements. There are 60 
elements in the circumferential direction and 3 elements in the transmural direction (Figure 
3.12). The number of elements in longitudinal direction was less than the number of SA 
slices by one. Segmentation attribution of each sector was transferred to the corresponding 
elements. The elements corresponding to bad sectors were also marked.
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Figure 3.12: A 3D referential mesh of 60 × 3 × 4 elements in circumferential, transmural
and longitudinal directions from the resting contours of LV scanned on Aug. 30, 2015

3.4.7 Converting to a Displacement Field and Mapping Referential Mesh
A MATLAB script written by Dr. Jonathan Suever was used for spatial interpolat ion 

of the myocardial displacements acquired in Chapter 3.4.5. For computational efficiency, 
the script fitted a continuous linear displacement field over the displacements that were 
within the region of the myocardial contours. The acquired displacement field was in terms 
of referential location of each node and frame number. Utilizing the queried displacements
of all nodes, the referential mesh was deformed over time. Consequently, coordinates of all 
nodes in each frame were acquired. In addition, impressed by the temporal fitting result of 
Spottiswoode [31], a temporal smoothing was performed on coordinates of all nodes over 
time using fifth-order Fourier basis functions. All nodes in the same frame were assembled 
into a computational mesh. An example of a computational end-systolic mesh is shown in 
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Figure 3.13. Construction of computational meshes was implemented by a custom main 
function (Appendix J) of DENSE3D written in MATLAB.

Figure 3.13: A computational end-systolic mesh of LV scanned on Aug. 30, 2015

3.4.8 Computing Mechanics
Considering a left ventricle in a specific frame (time t), the referential mesh is its 

referential configuration in the referential frame, while the computational mesh is its
current configuration in the corresponding frame. The deformation dx of a current element 
P' located at x can be mapped into the deformation dX of a referential element P located at
X, where X and x are both defined in a 3D Cartesian coordinate system. Thus, the 
deformation gradient tensor F can be defined by:

( , )x X tF
X

∂
=

∂
(3.4)

The Jacobian deformation J is equal to:
detJ F= (3.5)
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The Lagrangian strain tensor in Cartesian coordinates can be written as:
1 ( )
2

TE F F I= − (3.6)

where I is the identity tensor. Its components give us three normal strains and three shear 
strains in Cartesian coordinates.

X

Z
Y

O θ
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Figure 3.14: Transformation from Cartesian coordinates to polar coordinates
Depicted in Figure 3.14, point O is the center of the slice where element P' locates, 

point O' is the centroid of the element. The angle θ is defined by:
1 'tan

'
Y
X

θ −= (3.7)

The rotation matrix R which can transform Cartesian coordinate system into polar 
coordinate system can be written as:

(3.8)
Thus, the Lagrangian strain tensor in polar coordinates can be derived by:

rr rc rl
T

polar cr cc cl

lr lc ll

E RER
ε ε ε
ε ε ε
ε ε ε

 
 = =  
  

(3.9)

where εrr is radial strain, εcc is circumferential strain, εll is longitudinal strain, εrc , εrl and εcl

are shear strains relative to two corresponding directions.

Figure 3.15: Definition of torsion T between basal and apical slices [32]
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Torsion is described by the circumferential- longitudinal (CL) shear angle αCL which 
takes radius ρ of a myocardial slice and distance D between slices into account (Figure 
3.15). αCL can be obtained by Equation (3.10) [32].

1 2sin
(1 2 )(1 2 )

cl
CL

cc ll

εα
ε ε

−=
+ + (3.10)

In order to get Lagrangian strain in polar coordinates and CL shear angle of all 
elements in all frames, a custom module (Appendix K) was written in MATLAB.

3.4.9 Segmentation of the Middle Ventricle
Since the age of rats range from 5 to 7 months, a variety in heart sizes across subjects

was noticeable. Considering this fact, mid-ventricular locations were estimated at the half 
length of the left ventricular cavity based on the long-axis endocardial contours. The layer 
of elements closest to mid-ventricular locations in the referential mesh were then located.

During the discretization of the LV (Chapter 3.4.6), the middle ventricle was 
automatically divided into septal, lateral, inferior and anterior segments circumferentia lly
and transmural thirds (sub-endocardium, mid-wall, and sub-epicardium). A 12-segment 
mid-ventricular model is depicted in Figure 3.16 and segment names are summarized in 
Table 3.1. As American Heart Association (AHA) suggested [17], each segment can be 
assigned to one of the 3 major coronary arteries. Specifically, anterior and septal segments
relate to the left anterior descending (LAD). Interior segments relate to right coronary 
artery (RCA). And lateral segments relate to the left circumflex coronary artery (LCX).
The locations of coronary artery territories are demonstrated in Figure 3.17.
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Figure 3.16: A 12-segment mid-ventricular model

Table 3.1: Notation of segments
Septal Segments Inferior Segments Lateral Segments Anterior Segments

1. Septal sub-
endocardium

2. Inferior sub-
endocardium

3. Lateral sub-
endocardium

4. Anterior sub-
endocardium

5. Septal mid-wall 6. Inferior mid-wall 7. Lateral mid-wall 8. Anterior mid-wall
9. Septal sub-
epicardium

10. Inferior sub-
epicardium

11. Lateral sub-
epicardium

12. Anterior sub-
epicardium
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              (a) Anterior View                 (b) Inferior View
Figure 3.17: Coronary arteries and major veins of the heart [33]

In each frame, strain of each segment was evaluated by averaging the strains from the 
mid-ventricular good elements with the same segment attribution (generated during 
meshing the LV). Strain evaluation in each segment was implemented by the custom main 
function (Appendix J) of DENSE3D written in MATLAB.

3.5 Results and Discussion

3.5.1 Mid-ventricular Lagrangian Strain
A custom script was written in MATLAB (Appendix L) for strain comparison across 

subjects. Since the subjects have different heart rates, strain in terms of frame were 
transferred into strain in terms of percentage of cardiac cycle. A temporal interpolation was 
done by fitting a cubic spline into scattered strain values distributed over time. Figure 3.18
summarizes six components of Lagrangian strain averaged across 10 rats in each of the 12
segments.
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(a) Radial strain εrr

(b) Circumferential strain εcc
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(c) Longitudinal strain εll

(d) Circumferential- longitudinal shear strain εcl
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(e) Radial-circumferential shear strain εrc

(f) Radial-longitudinal shear strain εrl
Figure 3.18: Lagrangian mid-ventricular strain averaged across subjects. The lighter lines 

above and below the average strain are plotted at ± 1 standard deviation.

Since the material response of the myocardium is assumed to be nearly incompressib le,
Figure 3.18 reveals mechanical deformations of myocardium. During systole, positive 
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increasing radial strain implied a thickening wall; negative decreasing circumferentia l 
strain implied a shortening along that direction; and negative decreasing longitudinal strain
implied shortening length of LV due to atrioventricular plane displacement (AVPD). In the 
mid-wall, circumferential strain revealed the deformation of myocardial fiber, because the 
fiber angle is approximately aligned with its direction.

Figure 3.18 also indicates the repeatability is different for different strain components.
Small differences are observed in circumferential and longitudinal strains across subjects, 
meaning circumferential and longitudinal strains in each segment are highly repeatable. As 
for radial strains, standard deviations were acceptable except in the sub-endocardium. For 
circumferential- longitudinal shear strain, differences across subjects were acceptable 
except in the anterior segments. However, radial-circumferential and radial-longitud ina l 
shear strains were completely not repeatable.

The transmural variation of end-systolic normal strain is depicted in Figure 3.19. In 
the free wall, since blood pool inside the cavity stresses on endocardium, strain is expected 
to be higher in the sub-endocardium than in the sub-epicardium. This phenomenon can be 
observed in circumferential and longitudinal strains. Those strains were approximate ly 
linearly decreasing across the wall. However, radial strain was increasing nonlinearly from
endocardium to epicardium. The reverse of variation trend is possibly caused by the fact 
that imaging resolution was relatively low in the transmural direction considering wall 
thickness is much less than wall length. Consequently, displacement-encoded voxels in the 
transmural direction (normally 3-5 voxels) were not enough for reconstructing the actual 
variation of radial strain. What's worse, the spatial smoothing of 3-5 displacements across 
the wall might ruin the actual variation of radial strain.

(a) Transmural variation of radial strain εrr
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(b) Transmural variation of circumferential strain εcc

(c) Transmural variation of longitudinal strain εll
Figure 3.19: Transmural variation of normal strain at end systole. The lighter lines above 

and below the average normal strain are plotted at ±1 standard deviation.

3.5.2 Torsion of the LV
In order to calculate the torsion of the whole LV, using the custom script written in 

MATLAB (Appendix L), torsions in terms of time were also tranferred into torsions in 
terms of percentage of cardiac cycle, followed by being averaged over all elements. The 
results are depicted in Figure 3.20 and Figure 3.21.
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Figure 3.20: CL shear angles across 10 sudjects 

Figure 3.21: CL shear angle averaged across subjects. The lighter lines above and below 
the average CL shear angle are plotted at ± 1 standard deviation.

As shown in Figure 3.20, differences in CL shear angle across subjects were acceptable. 
Thus, CL shear angle is repeatable. Figure 3.21 shows positive values of CL shear angle 
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over time, indicating the LV twist in the direction as Figure 3.22 pictures. The basal slice 
twisted 6.8±1 °/cm2 with respect to the apical slice at end systole.

Figure 3.22: Positive direction of CL shear angle

3.6 Conclusion

A methodology for quantification of 3D Lagrangian strain using DENSE CMR images 
was proposed. Tools written in MATLAB were developed for the methodology. The LV 
was meshed, followed by displacements tracking for all elements. Lagrangian strain was
then calculated for each element. Average strains of all mid-ventricular segments were 
compared and discussed individually. Torsion of the whole LV was also evaluated.

Statistical stain analysis indicated that circumferential and longitudinal strains were 
highly repeatable, while radial strain and CL shear strain were less repeatable than 
circumferential and longitudinal strains. Radial strain, circumferential strain, longitud ina l 
strain, and CL shear angle provide a measurement of mechanical deformations in the 
cardiac wall over a cardiac cycle.
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Appendices

Appendix A – Abbreviations

AV Atrioventricular
AVPD Atrioventricular Plane Displacement
CMR Cardiac Magnetic Resonance
CHF Congestive Heart Failure
CSO Contour Segmentation Objects
DENSE Displacement ENcoding via Stimulated Echoes
DICOM Digital Imaging and Communications in Medicine
Dob Dobutamine
ECG Electrocardiogram
ES End Systole
ED End Diastole
HLA Horizontal Long-Axis
HARP Harmonic Phase
LAD Left Anterior Descending (Artery)
LCX Left Circumflex
LV Left Ventricle
MRI Magnetic Resonance Imaging
PVR Pulmonary Valve Replacement
RV Right Ventricle
RVEDV Right Ventricular End-Diastolic Volume
RVEF Right Ventricular Ejection
RVSV Right Ventricular Stroke Volume
RCA Right Coronary Artery
SA Short Axis
SNR Signal-to-noise Ratio
TOF Tetralogy of Fallot
VLA Vertical Long-Axis
WEM Winged Edge Mesh
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Appendix B – Python Codes in MeVisLab

# change for different surface:

SurfaceName = 'ED_SA_RV'

# change for different scan:

VoxelSize = [1.406, 1.406, 8]

csoList=CTX.field(SurfaceName + ".outputCSOList").object()

numCSOs=csoList.getNumCSOs()

numCSO=0

print 'Total Number of CSOs', numCSOs

# change for different scan:

text_file = open("Post_" + SurfaceName + ".txt", "w")

#cycle through all CSOs

for i in range(numCSOs): 

cso=csoList.getCSOAt(i)

numCSO=numCSO+1

#CSO Lable

#if cso.getTimePointIndex() == 2:

if cso.getTimePointIndex() == 14:

csopoints=cso.getPathPoints()

#print out coordinates of path points

for j in range(0,len(csopoints), 3):

CTX.field("WorldVoxelConvert.worldPos").value = [csopoints[j], csopoints[j+1], csopoints[j+2]]

voxelPos=CTX.field("WorldVoxelConvert.voxelPos").value

XPos=voxelPos[0]*VoxelSize[0]

YPos=voxelPos[1]*VoxelSize[1]

ZPos=str(round(voxelPos[2], 1)*VoxelSize[2]) 

text_file.write('{0:2f} {1:3f} {2:4s}\n'.format(XPos, YPos, ZPos))

text_file.close()

print 'Total Number of outputed CSOs', numCSO
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Appendix C – Matlab User-Defined Function of Converter from DENSEanalysis to 

Correcterborders

%% CONVERT DENSE DATA TO CORRECTERBORDERS DATA  --------------------------------------------------------------

% Last Modified: 11:15 PM Wednesday, October 28, 2015

% Modified By: Zhanqiu Liu (lafeir.lew@gmail.com)

function [ROI,Sequence,Images,roi,seq,img] = dense2correcterborders(roi,seq,img)

%% No "if" will be faster:

if ~isfield(seq,'AnalysisUID')

seq(1).AnalysisUID = '';

end

if ~isfield(seq,'AnalysisName')

seq(1).AnalysisName = '';

end

if ~isfield(seq,'Orientation')

seq(1).Orientation = '';

end

for k = 1:numel(seq)

%% probably NOT initialized by "rgs = cat(1, rgs, roi.ROIGroup.loadobj(rois(k)));" inside "CBdata.m" 

seq(k).AnalysisUID = seq(k).DENSEanalysisUID;

seq(k).AnalysisName = seq(k).DENSEanalysisName;

if isempty(seq(k).Orientation)

if ~isempty(strfind(seq(k).DENSEanalysisName, 'SA'))

seq(k).Orientation = 'ShortAxis';

elseif ~isempty(strfind(seq(k).DENSEanalysisName, 'LA'))

seq(k).Orientation = 'TwoChamber';

else

error(sprintf('%s:invalidInput ',mfilename),'%s',...

'Invalid DENSE seq(',sprintf('%d',k),').Orientation: ',sprintf('%s',seq(k).Orientation),'. Cannot 

recognize the type for SA or LA.');

[ROI,Sequence,Images,roi,seq,img] = deal([]);

return

end
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end

end

ii = 0;

nrois = numel(roi);

for k = 1:nrois

nFrames = size(roi(k).Position,1);

%% Transfer voxel position of points

switch roi(k).Type

case 'SA'

if strcmp(seq(roi(k).SeqIndex(1)).Orientation,'ShortAxis')

ii = ii + 1;

for frame = 1:nFrames

ROI(ii).ROIs(frame, 1) = struct('Nodes', roi(k).Position{frame, 1}, 'Periodic', true, 'Orientation', 

'ShortAxis', 'Type', 'LVEpicardium');

ROI(ii).ROIs(frame, 2) = struct('Nodes', roi(k).Position{frame, 2}, 'Periodic', true, 'Orientation', 

'ShortAxis', 'Type', 'LVEndocardium');

end

else

msgbox(strcat('Incorrect ROI type for Seq. #',num2str(k),'should be SA instead of LA'),'Error')

end

case 'LA'

if strcmp(seq(roi(k).SeqIndex(1)).Orientation,'TwoChamber')

ii = ii + 1;

for frame = 1:nFrames

ROI(ii).ROIs(frame, 1) = struct('Nodes', roi(k).Position{frame, 1}, 'Periodic', false, 'Orientation', 

'TwoChamber', 'Type', 'LVEpicardium');

ROI(ii).ROIs(frame, 2) = struct('Nodes', roi(k).Position{frame, 2}, 'Periodic', false, 'Orientation', 

'TwoChamber', 'Type', 'LVEndocardium');

end

else

msgbox(strcat('Incorrect ROI type for Seq. #',num2str(k),'should be LA instead of SA'),'Error')

end

case 'SAFull'

if strcmp(seq(roi(k).SeqIndex(1)).Orientation,'ShortAxis')
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ii = ii + 1;

for frame = 1:nFrames

ROI(ii).ROIs(frame, 1) = struct('Nodes', roi(k).Position{frame, 1}, 'Periodic', true, 'Orientation', 

'ShortAxis', 'Type', 'Epicardium');

ROI(ii).ROIs(frame, 2) = struct('Nodes', roi(k).Position{frame, 2}, 'Periodic', true, 'Orientation', 

'ShortAxis', 'Type', 'RVEndocardium');

ROI(ii).ROIs(frame, 3) = struct('Nodes', roi(k).Position{frame, 3}, 'Periodic', true, 'Orientation', 

'ShortAxis', 'Type', 'LVEndocardium');

end

else

msgbox(strcat('Incorrect ROI type for Seq. #',num2str(k),'should be SA instead of LA'),'Error')

end

case 'LAFull'

if strcmp(seq(roi(k).SeqIndex(1)).Orientation,'TwoChamber')

ii = ii + 1;

for frame = 1:nFrames

ROI(ii).ROIs(frame, 1) = struct('Nodes', roi(k).Position{frame, 1}, 'Periodic', false, 'Orientation', 

'TwoChamber', 'Type', 'Epicardium');

ROI(ii).ROIs(frame, 2) = struct('Nodes', roi(k).Position{frame, 2}, 'Periodic', false, 'Orientation', 

'TwoChamber', 'Type', 'RVEndocardium');

ROI(ii).ROIs(frame, 3) = struct('Nodes', roi(k).Position{frame, 3}, 'Periodic', false, 'Orientation', 

'TwoChamber', 'Type', 'LVEndocardium');

end

else

msgbox(strcat('Incorrect ROI type for Seq. #',num2str(k),'should be LA instead of SA'),'Error')

end

case 'curve'

if ismember(roi(k).Name, {'LVEpicardium','RVEndocardium','RVEpicardium','Epicardium','Infarct','Reference'})

flag_curve = false;

for jj = [1:k-1, k+1:nrois]

if isequal(roi(jj).SeqIndex,roi(k).SeqIndex) && ismember(roi(jj).Type,{'SA','LA','SAFull','LAFull'})

if strncmpi(roi(jj).Type, 'SA', 2)

Orientation = 'ShortAxis';

else

Orientation = 'TwoChamber';

end

if any(regexp(roi(jj).Type,'Full$'))

nContours = 3;

else
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nContours = 2;

end

col = size(ROI(jj).ROIs,2)+1;

if col < nContours+1

col = nContours + 1;

end

for frame = 1:nFrames

ROI(jj).ROIs(frame, col) = struct('Nodes', roi(k).Position{frame, 1}, 'Periodic', true, 'Orientation', Orientation, 

'Type', roi(k).Name);

end

ROI(jj).ROIs(1, col).UID = roi(k).UID;

flag_curve = true;

break

end

end

if flag_curve

continue

else

ii = ii + 1;

if strfind(seq(roi(k).SeqIndex(1)).Orientation, 'SA')

Orientation = 'ShortAxis';

else

Orientation = 'TwoChamber';

end

for frame = 1:nFrames

ROI(ii).ROIs(frame, 1) = struct('Nodes', roi(k).Position{frame, 1}, 'Periodic', true, 'Orientation', Orientation, 'Type', 

roi(k).Name);

end

ROI(ii).ROIs(1, 1).UID = roi(k).UID;

end

else

msgbox({strcat('"',roi(k).Name,'" is NOT a unsupported name for the type "curve" in Correcterborders.'),' Supported names of the 

type "curve":',' LVEpicardium, RVEndocardium, RVEpicardium, Epicardium, Infarct, Reference '},'Warning');

continue

end

otherwise

msgbox({strcat('"',roi(k).Type,'" is NOT a supported type of ROI in Correcterborders:'),' You can create a new 

ROI and select a different type in DENSE2D'},'Warning');
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continue

end

ROI(ii).Name = roi(k).Name;

ROI(ii).UID = roi(k).UID;

%% dimension mismatch if Sequence exists

Sequence(ii) = seq(roi(k).SeqIndex(1));

Images(ii) = img(roi(k).SeqIndex(1));

%% Initialized at the end of function "load" inside "CBdata.m" 

ROI(ii).Orientation = Sequence(ii).Orientation;

end

end
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Appendix D – Matlab User-Defined Function of Converter from Correcterborders to 

DENSEanalysis

%% CONVERT CORRECTERBORDERS DATA TO DENSE DATA  --------------------------------------------------------------

% Last Modified: 11:15 PM Wednesday, October 28, 2015

% Modified By: Zhanqiu Liu (lafeir.lew@gmail.com)

% function [roi,seq,img] = correcterborders2dense(ROI,Sequence,Images,roi,seq,img)

function [roi,seq,flag_savecdb] = correcterborders2dense(ROI,Sequence,roi,seq)

flag_savecdb = false;

newslice = numel(roi) + 1;

for k = 1:numel(ROI)

[nFrames,nContours] = size(ROI(k).ROIs);

if isempty(ROI(k).ROIs)

error(sprintf('%s:invalidInput ',mfilename),'%s',...

'Invalid Correcterborders ROI(',sprintf('%d',k),'): no voxel points inside.');

roi = struct([]);

return

end

index = find(strcmp(ROI(k).UID, {roi.UID}));

if numel(index) == 0

error(sprintf('%s:invalidInput ',mfilename),'%s',...

'Invalid Correcterborders ROI(',sprintf('%d',k),').UID: from DENSE2D to CORRECTERBORDERS, UID is 

changed. Try to Match ROIs using Sequence().AnalysisName and seq().DENSEanalysisName.');

roi = struct([]);

return

elseif numel(index) >= 2

error(sprintf('%s:invalidInput ',mfilename),'%s',...

'Invalid Correcterborders ROI(',sprintf('%d',k),').UID: from DENSE2D to CORRECTERBORDERS, a same 

UID has been repeated for ',sprintf('%d',numel(index)),' t imes. Try to Match ROIs using Sequence().AnalysisName and 

seq().DENSEanalysisName.');
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roi = struct([]);

return

end

if strcmpi(roi(index).Type,'SAFull') || strcmpi(roi(index).Type,'LAFull')

flag_biv = true;

else

flag_biv = false;

end

for ii = 1:nContours %size(ROI(k).ROIs,2)

%% Transfer voxel position of points

switch ROI(k).ROIs(1, ii).Type

case 'LVEpicardium'

if ~flag_biv

for frame = 1:nFrames

roi(index).Position{frame, 1} = ROI(k).ROIs(frame, ii).Nodes;

nPoints = size(roi(index).Position{frame, 1},1);

if nPoints == 0

nPoints = 1;

end

roi(index).IsCurved{frame, 1} = ones(nPoints,1);

roi(index).IsCorner{frame, 1} = zeros(nPoints,1);

%% NOT working since create a cell arrray of logical in each element!

% repmat({true}, [nPoints,1])

% repmat({false}, [nPoints,1])

end

flag_newslice = false;

else

flag_newslice = true;

end

case 'LVEndocardium'

if ~flag_biv

for frame = 1:nFrames

roi(index).Position{frame, 2} = ROI(k).ROIs(frame, ii).Nodes;

nPoints = size(roi(index).Position{frame, 2},1);

if nPoints == 0

nPoints = 1;
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end

roi(index).IsCurved{frame, 2} = ones(nPoints,1);

roi(index).IsCorner{frame, 2} = zeros(nPoints,1);

end

else

for frame = 1:nFrames

roi(index).Position{frame, 3} = ROI(k).ROIs(frame, ii).Nodes;

nPoints = size(roi(index).Position{frame, 1},1);

if nPoints == 0

nPoints = 1;

end

roi(index).IsCurved{frame, 3} = ones(nPoints,1);

roi(index).IsCorner{frame, 3} = zeros(nPoints,1);

end

end

flag_newslice = false;

case 'Epicardium'

if flag_biv

for frame = 1:nFrames

roi(index).Position{frame, 1} = ROI(k).ROIs(frame, ii).Nodes;

nPoints = size(roi(index).Position{frame, 1},1);

if nPoints == 0

nPoints = 1;

end

roi(index).IsCurved{frame, 1} = ones(nPoints,1);

roi(index).IsCorner{frame, 1} = zeros(nPoints,1);

end

flag_newslice = false;

else

flag_newslice = true;

end

case 'RVEndocardium'

if flag_biv

for frame = 1:nFrames

roi(index).Position{frame, 2} = ROI(k).ROIs(frame, ii).Nodes;

nPoints = size(roi(index).Position{frame, 1},1);

if nPoints == 0

nPoints = 1;

end
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roi(index).IsCurved{frame, 2} = ones(nPoints,1);

roi(index).IsCorner{frame, 2} = zeros(nPoints,1);

end

flag_newslice = false;

else

flag_newslice = true;

end

case {'RVEpicardium','Infarct','Reference'}

flag_newslice = true;

otherwise

flag_newslice = false;

flag_savecdb = true;

end

if flag_newslice

if isfield(ROI(k).ROIs(1, ii),'UID') && ~isempty(ROI(k).ROIs(1, ii).UID)

idx = find(strcmp(ROI(k).ROIs(1, ii).UID, {roi.UID}));

if numel(idx) == 0

error(sprintf('%s:invalidInput ',mfilename),'%s',...

'Invalid Correcterborders ROI(',sprintf('%d',k),').ROIs.(1, ',sprintf('%d',ii),').UID: from 

DENSE2D to CORRECTERBORDERS, UID is changed. Try to Match ROIs using Sequence().AnalysisName and 

seq().DENSEanalysisName.');

roi = struct([]);

return

elseif numel(idx) >= 2

error(sprintf('%s:invalidInput ',mfilename),'%s',...

'Invalid Correcterborders ROI(',sprintf('%d',k),').ROIs.(1, ',sprintf('%d',ii),').UID: from 

DENSE2D to CORRECTERBORDERS, a same UID has been repeated for ',sprintf('%d',numel(idx)),' t imes. Try to Match ROIs using 

Sequence().AnalysisName and seq().DENSEanalysisName.');

roi = struct([]);

return

end

for frame = 1:nFrames

roi(idx).Position{frame, 1} = ROI(k).ROIs(frame, ii).Nodes;

nPoints = size(roi(idx).Position{frame, 1},1);

if nPoints == 0

nPoints = 1;

end

roi(idx).IsCurved{frame, 1} = ones(nPoints,1);
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roi(idx).IsCorner{frame, 1} = zeros(nPoints,1);

end

else

for frame = 1:nFrames

roi(newslice).Position{frame, 1} = ROI(k).ROIs(frame, ii).Nodes;

nPoints = size(roi(newslice).Position{frame, 1},1);

if nPoints == 0

nPoints = 1;

end

roi(newslice).IsCurved{frame, 1} = ones(nPoints,1);

roi(newslice).IsCorner{frame, 1} = zeros(nPoints,1);

end

roi(newslice).IsClosed = repmat({true}, [nFrames,1]);

roi(newslice).SeqIndex = roi(index).SeqIndex;

roi(newslice).Type = 'curve';

roi(newslice).Name = ROI(k).ROIs(1, ii).Type;

roi(newslice).UID = dicomuid;

newslice = newslice + 1;

end

end

end

%% Detect if some contours are missing for some frames:

tmp = roi(index).Position;

emptyCells = cellfun(@isempty, tmp);

tmp(all(emptyCells,2),:) = [];

nContours = sum(sum(cellfun(@isempty, tmp)),2);

if ~isempty(tmp) && nContours~=0

[row,col] = find(~emptyCells);

msgbox({strcat('Uncompleted DENSE roi(',sprintf('%d',k),').Position: '), strcat(sprintf('% d ',nContours), ' contours 

are missing at frame No. ', sprintf('% d ',row))},'Error');

roi = struct([]);

return

end

% Update viewports and window / level data

idx = roi(index).SeqIndex(1);

% contrast:
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seq(idx).Window   = Sequence(k).Window;

seq(idx).Level    = Sequence(k).Level;

% zoom:

seq(idx).Viewport = Sequence(k).Viewport;

end

end

58



Appendix E – Design of GUI of Mesh Configuration in Matlab

Appendix F – Main Function of Meshing Module in Matlab

function options = mainFcn(api)

    % colors

    api.clrA = [1 0.5 0];

    api.clrB = [0.5 0.5 1.0];

    api.clrP = [0.75 0.25 1];

    api.clrH = [1 1 0];

    

    % COMMON INITIALIZATION------------------------------------------------

    

    % display magnitude image

    api.him = image('parent',api.hmag,...

        'cdata',zeros(api.Isz),...

        'cdatamapping','scaled');

    set(api.hmag,'clim',[0 1]);

    set(api.hfig,'colormap',gray(256),'renderer','zbuffer');

    

    % link axes / set display limits
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    linkaxes([api.hrest,api.hmag]);

    axis(api.hmag,api.drng);

    

    % axes tit les

    htit le(1) = title(api.hrest,'Resting Contours');

    htit le(2) = title(api.hmag,'Magnitude Viewer');

    set(htitle,'fontweight ','bold','fontsize',12);

    

    

    % display resting contours (static)

    heprest = line('parent',api.hrest,...

        'xdata',api.RestingContour{1}(:,1),...

        'ydata',api.RestingContour{1}(:,2),...

        'color','r','hittest','off');

    henrest = line('parent',api.hrest,...

        'xdata',api.RestingContour{2}(:,1),...

        'ydata',api.RestingContour{2}(:,2),...

        'color','g','hittest','off');

   

    % display frame contours

    api.hep = copyobj(heprest,api.hmag);

    api.hen = copyobj(henrest,api.hmag);    

    

    %% @ 'Resting Contours'

    % minor spokes

    api.hspokeminor = patch(...

        'parent',           api.hrest,...

        'vertices',         NaN(1,2),...

        'faces',            1,...

        'edgecolor',        'flat ',...

        'facecolor',        'none',...

        'facevertexcdata',  NaN(1,3),...

        'linestyle',        '--',...

        'hittest',          'off');    

    % major spokes

    api.hspokemajor = copyobj(api.hspokeminor,api.hrest);

    set(api.hspokemajor,'linestyle','-');  
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    % primary spoke

    api.hspoke1 = copyobj(api.hspokeminor,api.hrest);

    set(api.hspoke1,'linestyle','-','linewidth',2,'edgecolor',api.clrA);  

    

    

    % major intersections

    api.hcross = patch(...

        'parent',           api.hrest,...

        'vertices',         NaN(1,2),...

        'faces',            1,...

        'edgecolor',        'none',...

        'facecolor',        'none',...

        'markerfacecolor',  'flat',...

        'markeredgecolor',  'flat',...

        'marker',           'o',...

        'markersize',       6,...

        'facevertexcdata',  NaN(1,3),...

        'hittest',          'off');      

    

    % primary intersection

    api.hcross1 = copyobj(api.hcross,api.hrest);

    set(api.hcross1,'marker','s');

%% @ 'Magnitude Viewer'

    % copy intersection object to magnitude display

    api.hcrossmag  = copyobj(api.hcross, api.hmag);

    api.hcross1mag = copyobj(api.hcross1,api.hmag);

    % minor intersections

    api.hcrossmagnitude = patch(...

        'parent',           api.hmag,...

        'vertices',         NaN(1,2),...

        'faces',            1,...

        'edgecolor',        'none',...

        'facecolor',        'none',...

        'markerfacecolor',  'yellow',...

        'markeredgecolor',  'yellow',...
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        'marker',           'o',...

        'markersize',       2,...

        'facevertexcdata',  NaN(1,3),...

        'hittest',          'off');      

    

    api.hcross1magnitude = patch(...

        'vertices',         NaN(1,2),...

        'faces',            1,...

        'edgecolor',        'none',...

        'facecolor',        'none',...

        'markerfacecolor',  'red',...

        'markeredgecolor',  'red',...

        'marker',           'o',...

        'markersize',       1,...

        'facevertexcdata',  NaN(1,3),...

        'hittest',          'off');    

         

    % interactive points

    Npt = 2;

    

    api.hpoint = NaN(Npt,1);

    api.constrainFcn = cell(Npt,1);

    for k = 1:Npt        

        api.hpoint(k) = line(...

            'parent',       api.hrest,...

            'color',        api.clrP,...

            'marker',       'o',...

            'markersize',   15,...

            'linewidth',    3);

        

        pb = struct(...

            'enterFcn',     @(varargin)pointEnter(api.hpoint(k),api.hfig),...

            'traverseFcn',  [],...

            'exitFcn',      @(varargin)pointExit(api.hpoint(k),api.hfig));

        iptSetPointerBehavior(api.hpoint(k),pb);

        

        set(api.hpoint(k),'ButtonDownFcn',...
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            @(varargin)pointDrag(api.hpoint(k),api.hfig));

    end

    

    

    

    % SHORT AXIS INITIALIZATION--------------------------------------------   

    if strcmpi(api.Type,'SA')

            

        % redraw function

        api.redrawFcn = @redrawSA;

        % constraint functions

% rest_endo:

        api.constrainFcn{1} = @(varargin)constrainInContour(...

            varargin{:},api.RestingContour{2});

% rest_epi:

        api.constrainFcn{2} = @(varargin)constrainOnContour(...

            varargin{:},api.RestingContour{1});

        % auotmated point locations

       pos = api.autoorigin;

        set(api.hpoint(1),'xdata',pos(1),'ydata',pos(2),'hittest','off');

        pos = api.RestingContour{1}(1,:);

        set(api.hpoint(2),'xdata',pos(1),'ydata',pos(2));

        

        % inputted point locations

        if ~isempty(api.PositionA)

            pos = api.constrainFcn{1}(api.hpoint(1),api.PositionA,api);

            set(api.hpoint(1),'xdata',pos(1),'ydata',pos(2),'hittest','on');

            set(api.huser,'value',1);

        end

        

        if ~isempty(api.PositionB)

            pos = api.constrainFcn{2}(api.hpoint(2),api.PositionB,api);

            set(api.hpoint(2),'xdata',pos(1),'ydata',pos(2));

        end

        % Nmodel popup

        str = {'6 segments','4 segments'};
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        val = find(api.Nmodel==[6,4]);

        set(api.hmodel,'String',str,'Value',val);

        % Nseg popup

        seg = [1,api.Nmodel:api.Nmodel:api.MaxSegments];

        val = find(api.Nseg==seg);

        set(api.hnseg,'String',num2cell(seg),'Value',val);

        % note to user

        note = sprintf('%s\n','1.Adjust the PURPLE POSITIONS: Place the movable dot at the most anterior RV insertion point at 

EndFrame & Startframe. Then Segments are numbered starting from here','2.MajorTicks=BigDots(Interval=10Seg) & 

MinorTicks=SmallDots(Interval=1Seg)','3.Report Startframe: where cavity starts to show up','4.Report ES frame No.');

        note2 = sprintf('%s\n','Accord. to Computational Contours through a cardiac cycle, report BAD SEGMENTS CCW or CW 

(the direction you pick here).','Rules of reported values for Seg. A:','1.COMMA(,): separate Starting# from Ending# of a region. 

2.SEMICOLON(;): separate different regions.','Report Seg. B on the most inferior RV insertion point at EndFrame & Startframe.','All 

Reported Values >= 0 (EX for two bad regions: "1,2;10,15")');

        

    % LONG AXIS INITIALIZATION---------------------------------------------

    else

            

        % connector line

        pos = [api.RestingContour{1}(1,:); api.RestingContour{2}(end,:);

               NaN,NaN;

               api.RestingContour{2}(1,:); api.RestingContour{1}(end,:)];

        hconnect = line('parent',api.hrest,...

            'xdata',pos(:,1),'ydata',pos(:,2),...

            'color','b','hittest','off');

        api.hconnect = copyobj(hconnect,api.hmag);

        

        % redraw function

        api.redrawFcn = @redrawLA;

        % constraint functions

        api.constrainFcn{1} = @(varargin)...

            constrainInContour(varargin{:},api.RestingContour{2});

        api.constrainFcn{2} = @(varargin)...

            constrainInContour(varargin{:},api.RestingContour{2});

64



        % primary location

        C  = api.RestingContour{2};

        d1 = (C(1,1)-C(:,1)).^2 + (C(1,2)-C(:,2)).^2;

        d2 = (C(end,1)-C(:,1)).^2 + (C(end,2)-C(:,2)).^2;

        [val,idx] = max(d1+d2);

        posA = C(idx,:);

        % secondary location

        posB = mean(api.RestingContour{2}([1 end],:));

        

        % automated point locations

        fac = [0.01 0.75];

        pos = NaN(2,2);

        for k = 1:2

            pos(k,:) = fac(k)*(posB-posA) + posA;

        end        

        set(api.hpoint,{'xdata'},num2cell(pos(:,1)),...

            {'ydata'},num2cell(pos(:,2)));

        

        % inputted point locations

        if ~isempty(api.PositionA)

            pos = api.constrainFcn{1}(api.hpoint(1),api.PositionA,api);

            set(api.hpoint(1),'xdata',pos(1),'ydata',pos(2));

        end

        

        if ~isempty(api.PositionB)

            pos = api.constrainFcn{2}(api.hpoint(2),api.PositionB,api);

            set(api.hpoint(2),'xdata',pos(1),'ydata',pos(2));

        end

        % Nmodel popup

        set(api.hmodel,'String',{'SA:n slices=LA:(2n+1)segments'},...

            'Value',1,'enable','off');

       % Nseg popup

        seg = [1,(api.Nmodel+1):api.Nmodel:api.MaxSegments];

        val = find(api.Nseg==seg);

        set(api.hnseg,'String',num2cell(seg),'Value',val,'enable','on');

                

65



        % additional control setup

        set(api.huser,'value',1);

        set(api.hauto,'enable','off');

        % note to user

        note = sprintf('%s','Adjust the purple positions. ',...

            'The orange lines define the first segment. ',...

            'Segments are numbered from [1:3:5:7:...] ',...

            'in the direction specified.');

    end   

    

    

    % ADDITIONAL SETUP-----------------------------------------------------

    

    % display note

    [note,pos] = textwrap(api.hnote,{note});

    set(api.hnote,'string',note);

    [note2,pos] = textwrap(api.hnote2,{note2});

    set(api.hnote2,'string',note2);

    % Clockwise setup

    if api.Clockwise

        set(api.hclock,'value',1);

    else

        set(api.hcounterclock,'value',1);

    end   

    

    

    % setup callbacks

    set(api.hmodel,'Callback',...

        @(varargin)modelCallback(api.hfig));

    set(api.hnseg,'Callback',...

        @(varargin)nsegCallback(api.hfig));

    set(api.hclockpanel,'SelectionChangeFcn',...

        @(src,evnt)clockCallback(api.hfig,evnt)); 

    set(api.horiginpanel,'SelectionChangeFcn',...

        @(src,evnt)originCallback(api.hfig,evnt));  

    set(api.hok,'Callback',...
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@(varargin)okCallback(api.hfig,get(api.hsegA,'String'),get(api.hsegB,'String'),str2double(get(api.hStartFrame,'String')),str2double(get

(api.hESframe,'String'))));

    set(api.hcancel,'Callback',...

        @(varargin)cancelCallback(api.hfig));

   set(api.hfig,'CloseRequestFcn',...

        @(varargin)figCloseRequestFcn(api.hfig));

    

    % initialize pointer manager

    iptPointerManager(api.hfig,'enable');

            

    % initialize playbar

    api.hplaybar = playbar(api.hppanel); 

    api.hplaybar.Min = api.FramesForAnalysis(1);

    api.hplaybar.Max = api.FramesForAnalysis(2);

    hlisten_playbar = addlistener(api.hplaybar,...

        'NewValue',@(varargin)playbackFcn(api.hfig));    

    

    % position playbar

    pos    = getpixelposition(api.hplaybar.Parent);

    plsz   = [200 30];

    margin = 5;

    p = [(pos(3)+1)/2 - (plsz(1)+1)/2, 1+margin, plsz];

    setpixelposition(api.hplaybar,p);

    % update figure

    api.cross = [];

    guidata(api.hfig,api);

    api.redrawFcn(api.hfig);

        

    

    % WAIT & CLEANUP-------------------------------------------------------

    

    % wait for figure to finish  

    waitfor(api.hfig,'userdata')

    % cleanup

    delete(hlisten_playbar);
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    % output

    if ~ishandle(api.hfig) || ~isequal(get(api.hfig,'userdata'),'complete')

% CANCEL/FIGURECLOSE BUTTON CALLBACKS

        options = [];    

    else

tmp = get(api.hsegA,'String'); tmp = regexpi(tmp,',|;','split');

segA = cellfun(@str2double,tmp); % segA = unique(segA);

        segB = str2double(get(api.hsegB,'String'));

api = guidata(api.hfig);

propA = get(api.hpoint(1),{'xdata','ydata'});

propB = get(api.hpoint(2),{'xdata','ydata'});

options = struct(...

'Nmodel',       api.Nmodel,...

'Nseg',         api.Nseg,...

'Clockwise',    api.Clockwise,...

'StartFrame',    str2double(get(api.hStartFrame,'String')),...

'ESframe',    str2double(get(api.hESframe,'String')),...

'Strains3D',    get(api.hStrains3D,'Value'),...

'PositionA',    cat(2,propA{:}),...

'PositionB',    cat(2,propB{:})); %,...     

% 'SegDistribution',    ({segA,segB,segC}),...

% 'SegDistribution',    api.SegDistribution,...

% 'Strains3D',    api.Strains3D);

options.SegDistribution = {segA,segB};

end

end
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Appendix G – Callback Function of "OK" Button of Meshing Module in Matlab

function okCallback(hfig,segA,segB,StartFrame,ESframe)

if ~isempty(segB)

segB = str2double(segB);

if isnan(segB) || segB<=0

msgbox('Reported values of Seg. B must be Numerical & Positive!','Error');

return;    

end

end

if ~isempty(segA)

segA = regexpi(segA,',|;','split'); segA = cellfun(@str2double,segA);

if sum(isnan(segA)) 

msgbox('Reported values of Seg. A must be Numerical!','Error');

return;    

end

if sum(segA<=0) 

msgbox('Reported values of Seg. A must be Positive!','Error');

return;    

end

if sum(floor(segA)~=segA)

msgbox('The number of reported values of Seg. A must be Integers!','Error');

return;    

end

if mod(numel(segA),2)~=0

msgbox('The number of reported values of Seg. A must be Even!','Error');

return;    

end

segA = reshape(segA,2,[])'; tmp = [segA(:,1), segA(:,1)];

if sum((segA - tmp) < 0)

msgbox('For a reported region: Starting# <= Ending#!','Error');

return;    

end

end

if isnan(StartFrame) || isnan(ESframe) || StartFrame<1 || StartFrame>ESframe

msgbox('Reported numbers of StartFrame or ESframe must be numerical! Or the rank of report values must be 

satisfied!','Error');

return;    
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end

    set(hfig,'userdata','complete');

end
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Appendix H – Sector Partition Function of Meshing Module in Matlab

function redrawSA(hfig)

    % gather guidata

    api = guidata(hfig);

    

    % drawing parameters

    N      = api.Nmodel;

    Ntotal = api.Nseg;

    if Ntotal<N, Ntotal=N; end

    

    flag_clockwise = api.Clockwise;

    fac = Ntotal/N;

    C0 = api.RestingContour;

    % current origin

    prop = get(api.hpoint(1),{'xdata','ydata'});

    origin = cat(2,prop{:});

    % current spoke location

    prop = get(api.hpoint(2),{'xdata','ydata'});

    pos = cat(2,prop{:});

    

    

    % primary spoke angle

    theta0 = atan2(pos(2)-origin(2),pos(1)-origin(1));

    

    % minor spoke angles    

    if flag_clockwise

        theta = linspace(0,2*pi,Ntotal+1);

    else

        theta = linspace(2*pi,0,Ntotal+1);

    end        

    theta = theta(1:end-1) + theta0;

    % spoke vertices/faces/colors

    lim = api.drng;

    rad = 2*max([lim(2)-lim(1),lim(4)-lim(3)]);
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    [x,y] = pol2cart(theta,rad);

    x = x(:)+origin(1);

    y = y(:)+origin(2);

    

    vertices = [origin; x,y];

    faces    = [ones(1,Ntotal); 2:Ntotal+1]';

    fvcd = [NaN(1,3); ones(Ntotal,1)*api.clrB];

    fvcd([2 2+fac],:) = ones(2,1)*api.clrA;

        

    % update spoke appearance

    idxmajor = 1:fac:Ntotal; % fac = Ntotal/N;

    idxminor = setdiff(1:Ntotal,idxmajor);

    faces = {faces(1,:); faces(idxmajor,:); faces(idxminor,:)};

    

    set([api.hspoke1,api.hspokemajor,api.hspokeminor],...

        'vertices',vertices,{'faces'},faces(:),'facevertexcdata',fvcd);

     

    % remove too many-spokes

    if Ntotal > 36

        set(api.hspokeminor,'visible','off');

    else

        set(api.hspokeminor,'visible','on');

    end

    % determine intersections of major spokes with contours

    vertices = repmat({NaN(N,2)},[2 1]);

    pts = [origin; x(idxmajor),y(idxmajor)];

    for ck = 1:2

        for sk = 1:N

            idx = [1 sk+1];

            [xi,yi] = intersections(pts(idx,1),pts(idx,2),...

                C0{ck}(:,1),C0{ck}(:,2));

            if ~isempty(xi)

                vertices{ck}(sk,:) = [xi(1),yi(1)];

            end

        end    

    end
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    % check if origin is on the endocardial border

    [tfin,tfon] = inpolygon(origin(1),origin(2),C0{2}(:,1),C0{2}(:,2));

    if tfon

        vertices{2}(:) = NaN;

    end

    % intersection vertices/faces/colors

    vertices = cat(1,vertices{:});

    faces = (1:2*N)';

    fvcd = [ones(2,1)*api.clrA; ones(N-2,1)*api.clrB];

    fvcd = [fvcd; fvcd];

    % update major intersections

    idx1 = [1 N+1];

    idx  = setdiff(1:2*N,idx1);

    set([api.hcross1,api.hcross],...

        'vertices',vertices,...

        {'faces'},{faces(idx1,:); faces(idx,:)},...

        'facevertexcdata',fvcd);

    % save intersections to api

    api.cross = vertices;

    api.faces = faces;

    api.fvcd  = fvcd;

    

% determine intersections of minor spokes with contours

    vertices = repmat({NaN(Ntotal,2)},[2 1]);

    pts = [origin; x(1:Ntotal),y(1:Ntotal)];

    for ck = 1:2

        for sk = 1:Ntotal

            idx = [1 sk+1];

            [xi,yi] = intersections(pts(idx,1),pts(idx,2),...

                C0{ck}(:,1),C0{ck}(:,2));

            if ~isempty(xi)

                vertices{ck}(sk,:) = [xi(1),yi(1)];

            end

        end    

73



    end

    

    % check if origin is on the endocardial border

    [tfin,tfon] = inpolygon(origin(1),origin(2),C0{2}(:,1),C0{2}(:,2));

   if tfon

        vertices{2}(:) = NaN;

    end

    % intersection vertices/faces/colors

    vertices = cat(1,vertices{:});

    faces = (1:2*Ntotal)';

    fvcd = [ones(2,1)*api.clrA; ones(Ntotal-2,1)*api.clrB];

    fvcd = [fvcd; fvcd];

    % update minor intersections

    idx1 = [1 Ntotal+1];

    idx  = setdiff(1:2*Ntotal,idx1);

    set([api.hcross1magnitude,api.hcrossmagnitude],...

        'vertices',vertices,...

        {'faces'},{faces(idx1,:); faces(idx,:)},...

        'facevertexcdata',fvcd);

    % save intersections to api

    api.crosslite = vertices;

    api.faceslite = faces;

    api.fvcdlite  = fvcd;

    

    % update & playback

    guidata(api.hfig,api);

    playbackFcn(api.hfig);

                

    % update OK button

    if isempty(api.cross(:)) || any(isnan(api.cross(:)))

        set(api.hok,'enable','off');

    else

        set(api.hok,'enable','on');

    end
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end
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Appendix I – Playback Function of Playbar of Meshing Module in Matlab

function playbackFcn(hfig)

    % gather gui data

    api = guidata(hfig);

    

    % current frame

    fr = api.hplaybar.Value;

    

    % update image & contours

    set(api.him,'cdata',api.Mag(:,:,fr));

    set(api.hep,'xdata',api.Contour{fr,1}(:,1),...

        'ydata',api.Contour{fr,1}(:,2));

    set(api.hen,'xdata',api.Contour{fr,2}(:,1),...

        'ydata',api.Contour{fr,2}(:,2));

    % update major spoke intersections

    if ~isempty(api.cross)

       

        N = size(api.cross,1)/2;       

       tf = ~any(isnan(api.cross),2);

        if ~any(tf)

            vertices = NaN(2*N,2);

        else        

            dx = NaN(1,2*N);

            dy = NaN(1,2*N);

            pts = api.cross(tf,:)';

            pts(3,:) = fr;

            dx(tf) = fnvalmod(api.spldx,pts([2 1 3],:));

            dy(tf) = fnvalmod(api.spldy,pts([2 1 3],:));

            vertices = api.cross + [dx(:),dy(:)];

        end

        idx1 = [1 N+1];

        idx  = setdiff(api.faces,idx1);

        set([api.hcross1mag,api.hcrossmag],...
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            'vertices',         vertices,...

            {'faces'},          {api.faces(idx1,:); 

                                 api.faces(idx,:)},...

            'facevertexcdata',  api.fvcd);        

        

    end

% update minor spoke intersections

    if ~isempty(api.crosslite)

       

        N = size(api.crosslite,1)/2;       

        tf = ~any(isnan(api.crosslite),2);

        if ~any(tf)

            vertices = NaN(2*N,2);

        else        

            dx = NaN(1,2*N);

            dy = NaN(1,2*N);

            pts = api.crosslite(tf,:)';

            pts(3,:) = fr;

            dx(tf) = fnvalmod(api.spldx,pts([2 1 3],:));

            dy(tf) = fnvalmod(api.spldy,pts([2 1 3],:));

            vertices = api.crosslite + [dx(:),dy(:)];

        end

        idx1 = [1 N+1];

        idx  = setdiff(api.faceslite,idx1);

        set([api.hcross1magnitude,api.hcrossmagnitude],...

            'vertices',         vertices,...

            {'faces'},          {api.faceslite(idx1,:); 

                                 api.faceslite(idx,:)},...

            'facevertexcdata',  api.fvcdlite);        

        

    end

    % update connector line

    if strcmpi(api.Type,'LA')

        pos = [api.Contour{fr,1}(1,:); api.Contour{fr,2}(end,:); NaN,NaN;
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               api.Contour{fr,2}(1,:); api.Contour{fr,1}(end,:)];

        set(api.hconnect,'xdata',pos(:,1),'ydata',pos(:,2));

    end

    

end
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Appendix J – Main Function of DENSE3D in Matlab

function self = DENSE3D(varargin)

% DENSE3D - Object for computing 3D mechanics from DENSE

%

% USAGE:

%   obj = DENSE3D(files, param/value)

%

% INPUTS:

%   files:      Cell Array, cell array containing the paths to

%               all MAT files for analysis (from DENSEanalysis)

%

%   The Following parameter/value pairs are allowed:

%

%   Output:     String, Path to a MAT file to store the results

%   Layers:     Integer, Indicates how many transmural layers

%               (Default = 5)

%   Interp:     Integer, Amount of interpolation to use in z

%               direction (Default = 1)

%   Regions:    Integer, indicates how many elements we want

%               circumferentially (Default = 66)

%   Type:       Function Handle or String, Type of RBF

%               interpolation to use (Default = 'Linear')

%   Constant:   Scalar, RBF Constant (Default = 0)

%   Smooth:     Scalar, RBF Smoothing Factor (Default = 0)

%   Insertion:   Matrix/String, 'Base' or 'Mid' or 'Apex' or 'Whole' or 'Average' or n-by-2 Matrix of specific Insertion 

Points(Default = blank)

%   SegDistro:   String 'Average' OR 1-by-2 Cell Array: 1-by-2n Matrix of BadSegDistribution + Inferior RV Insert Pt(Default 

= blank)

%   Bold:   If it 's 0, only those from SOI will be ignored; If it 's 1, bad segments from SOI, slice above & slice below will be 

ignored; Otherwise bad segments from all silces will be ignored (by Default)

ip = inputParser();

ip.addRequired('Files', @(x)ischar(x) || iscell(x));

ip.addParamValue('Output', '',  @(x)ischar(x));

ip.addParamValue('Layers', 3,  @(x)isscalar(x));

ip.addParamValue('Interp', 1,  @(x)isscalar(x)); %&& isinteger(x));

ip.addParamValue('Regions', 60,  @(x)isscalar(x)); %&& isinteger(x));

ip.addParamValue('Type', RBFInterpolator.LINEAR, @(x)ischar(x) || isa(x, 'function-Handle'));
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ip.addParamValue('Constant', 0, @(x)isscalar(x));

ip.addParamValue('Smooth', 0, @(x)isscalar(x) && x >= 0);

ip.addParamValue('Insertion', ''); %,  @(x)ischar(x));

ip.addParamValue('SegDistro', {});

% ip.addParamValue('Bold', true,  @(x)islogical(x));

ip.addParamValue('Bold', 2,  @(x)isscalar(x));

ip.parse(varargin{:});

res = ip.Results;

if isa(res.Type, 'function_handle')

rbf.Type    = res.Type;

else

rbf.Type    = RBFInterpolator.(upper(res.Type));

end

rbf.Constant    = res.Constant;

rbf.Smooth      = res.Smooth;

% Specified Data to be loaded from DENSE2D:

fields = {'ImageInfo',...

  'AnalysisInfo',...

  'SequenceInfo',...

  'T ransmuralStrainInfo',...

  'ROIInfo'};

data = cellfun(@(x)load(x, fields{:}, '-mat'), res.Files);

nPartitions = numel(data);

% recognize Input Files type: SA or LA?

nSA = repmat(false,1,nPartitions); nLA = repmat(false,1,nPartitions);

for ii = 1:nPartitions

if ~isempty(strfind(data(ii).SequenceInfo(1,1).DENSEanalysisName, 'SA'))

nSA(ii) = true;

elseif ~isempty(strfind(data(ii).SequenceInfo(1,1).DENSEanalysisName, 'LA'))

nLA(ii) = true;

else

error(sprintf('%s:invalidInput ',mfilename),'%s',...
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'Invalid Input #',sprintf('%d',ii),': ',sprintf('%s',data(ii).SequenceInfo(1,1).DENSEanalysisName),'. Cannot 

recognize the type for SA or LA.');

return

end

end

if sum(nLA) > sum(nSA)

data = data(nLA);

else

data = data(nSA);

end

% clear nSA, nLA;

nPartitions = numel(data);

   

locs = cellfun(@(x)x(1).SliceLocation, {data.SequenceInfo});

[~, ind] = sort(locs, 'descend');

data = data(ind);

iminfo  = cat(1, data.ImageInfo);

aninfo  = cat(1, data.AnalysisInfo);

sqinfo  = cat(3, data.SequenceInfo);

sqinfo  = squeeze(sqinfo(1,1,:));

rois    = cat(1, data.ROIInfo);

doflip = false;

% Compute the RV insertion point for Septum

switch lower(res.Insertion)

case 'mid'

if mod(nPartitions,2) == 0

flag_aveStrain = false;

ind = nPartitions/2;

insertion = mean(vertcat(aninfo(ind).PositionB,aninfo(ind+1).PositionB), 1);

if mod(res.Interp,2) == 0

res.reportslice = ind + res.Interp/2*(1/(res.Interp+1));

else

msgbox('When #ofSlices is even and ROI is mid-ventricle: DENSE3D Input "Interp" must be even!','Error');
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return

end

switch res.Bold

case 0

SegDistro = vertcat(aninfo(ind).SegDistribution,aninfo(ind+1).SegDistribution);

case 1

if nPartitions > 4

SegDistro = vertcat(aninfo(ind-

1).SegDistribution,aninfo(ind).SegDistribution,aninfo(ind+1).SegDistribution,aninfo(ind+2).SegDistribution);

else

SegDistro = vertcat(aninfo.SegDistribution);

end

otherwise

SegDistro = vertcat(aninfo.SegDistribution);

end

clear tmp;

tmp{1} = [SegDistro{:,1}]; tmp{1}(isnan(tmp{1})) = [];

tmp{2} = round(mean([aninfo(ind).SegDistribution{2},aninfo(ind+1).SegDistribution{2}]));

SegDistro = tmp;

else

flag_aveStrain = true;

ind = round(nPartitions/2);

insertion = aninfo(ind).PositionB;

res.reportslice = [ind-1/(res.Interp+1), ind];

switch res.Bold

case 0

SegDistro = aninfo(ind).SegDistribution;

case 1

if nPartitions > 3

SegDistro = vertcat(aninfo(ind-

1).SegDistribution,aninfo(ind).SegDistribution,aninfo(ind+1).SegDistribution);

else

SegDistro = vertcat(aninfo.SegDistribution);

end

otherwise

SegDistro = vertcat(aninfo.SegDistribution);

end

clear tmp;

tmp{1} = [SegDistro{:,1}]; tmp{1}(isnan(tmp{1})) = [];
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tmp{2} = aninfo(ind).SegDistribution{2};

SegDistro = tmp;

end

case 'base'

insertion = aninfo(1).PositionB;

res.reportslice = 1;

switch res.Bold

case 0

SegDistro = aninfo(1).SegDistribution;;

case 1

if nPartitions > 2

SegDistro = vertcat(aninfo(1).SegDistribution,aninfo(2).SegDistribution);

else

SegDistro = vertcat(aninfo.SegDistribution);

end

otherwise

SegDistro = vertcat(aninfo.SegDistribution);

end

clear tmp;

tmp{1} = [SegDistro{:,1}]; tmp{1}(isnan(tmp{1})) = [];

tmp{2} = aninfo(1).SegDistribution{2};

SegDistro = tmp;

case 'apex'

insertion = aninfo(end).PositionB;

SegDistro = aninfo(end).SegDistribution;

res.reportslice = nPartitions-1/(res.Interp+1);

switch res.Bold

case 0

SegDistro = aninfo(end).SegDistribution;

case 1

if nPartitions > 2

SegDistro = vertcat(aninfo(end-1).SegDistribution,aninfo(end).SegDistribution);

else

SegDistro = vertcat(aninfo.SegDistribution);

end

otherwise

SegDistro = vertcat(aninfo.SegDistribution);

end

clear tmp;
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tmp{1} = [SegDistro{:,1}]; tmp{1}(isnan(tmp{1})) = [];

tmp{2} = aninfo(end).SegDistribution{2};

SegDistro = tmp;

case 'average'

% Compute the average RV insertion point

insertion = mean(vertcat(aninfo.PositionB), 1);

SegDistro = vertcat(aninfo.SegDistribution);

clear tmp;

tmp{1} = [SegDistro{:,1}]; tmp{1}(isnan(tmp{1})) = [];

tmp{2} = max([SegDistro{:,2}]);

SegDistro = tmp;

res.reportslice = 1: (1/(res.Interp+1)) : nPartitions-1/(res.Interp+1);

case ''

insertion = mean(vertcat(aninfo.PositionB), 1);

res.reportslice = [];

otherwise

if isnumeric(res.Insertion)

[~,col] = size (res.Insertion);

if col ~= 2

error(sprintf('%s:invalidInput ',mfilename),'%s','Incorrect size of inputed ParamValue Insertion: Row 

Number',sprintf(' %d',col),' is odd!');

return

end

insertion = mean(res.Insertion, 1);

if isfield(aninfo, 'SegDistribution')

SegDistro = vertcat(aninfo.SegDistribution);

clear tmp;

tmp{1} = [SegDistro{:,1}]; tmp{1}(isnan(tmp{1})) = [];

tmp{2} = max([SegDistro{:,2}]);

SegDistro = tmp;

res.reportslice = 1: (1/(res.Interp+1)) : nPartitions-1/(res.Interp+1);

else

res.reportslice = [];

end

else

insertion = mean(vertcat(aninfo.PositionB), 1);

res.reportslice = [];

end

end
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% clear aninfo;

if ~isempty(res.SegDistro)

if ischar(res.SegDistro)

% if strcmp(res.SegDistro,'average')

switch lower(res.SegDistro)

case 'average'

SegDistro = {NaN, round(res.Regions/4)};

case 'whole'

SegDistro = {NaN, SegDistro{2}};

% otherwise

end

else

if numel(res.SegDistro) ~= 2 %|| cellfun(@floor,res.SegDistro) ~= res.SegDistro

error(sprintf('%s:invalidInput ',mfilename),'%s','Incorrect size of inputed ParamValue 

SegDistro:',sprintf(' %s',res.SegDistro),'--it should be 2!');

return

else

SegDistro = res.SegDistro;

end

end

end

cons = cat(3, rois.Contour);

resting = squeeze(cons(1,:,:))';

orientation = [1 0 0 0 1 0];

con3D = resting;

for slice = 1:nPartitions

IPP = [0 0 sqinfo(slice).SliceLocation];

rest_endo = resting{slice,2};

rest_epi = resting{slice,1};

[X,Y,Z] = im2world(rest_endo(:,1), rest_endo(:,2),...

   IPP, orientation, sqinfo(slice).PixelSpacing);
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con3D{slice,2} = [X(:), Y(:), Z(:)];

[X,Y,Z] = im2world(rest_epi(:,1), rest_epi(:,2),...

   IPP, orientation, sqinfo(slice).PixelSpacing);

con3D{slice,1} = [X(:), Y(:), Z(:)];

end

IPP = [0 0 sqinfo(1).SliceLocation];

[insertion(1),insertion(2),insertion(3)] = im2world(insertion(1), insertion(2), IPP, orientation, sqinfo(1).PixelSpacing);

% Compute resting contour & indice:

contype = rois(1).ROIType;

msh = contour2patch(con3D(:,2), con3D(:,1), ...

contype, ...

res.Regions, ...

res.Interp, ...

res.Layers, ...

insertion(1:2));

% tmp = [fieldnames(msh)' fieldnames(tmp)'; struct2cell(msh)' struct2cell(tmp)'];

% msh=struct(tmp{:});

minframe = max(arrayfun(@(x)x.FramesForAnalysis(1), aninfo));

maxframe = min(arrayfun(@(x)x.FramesForAnalysis(2), aninfo));

frames = minframe:maxframe;

% initialize RBF:

nFrames = numel(frames);

RBF = cell(nFrames, 1);

for frame = minframe:maxframe

disps = zeros(0, 3);

points = zeros(0, 3);

for slice = 1:nPartitions

Xunwrap = iminfo(slice).Xunwrap(:,:,frame);

Yunwrap = iminfo(slice).Yunwrap(:,:,frame);
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if nPartitions == 1

Zunwrap = zeros(size(iminfo(slice).Zunwrap(:,:,frame)));

else

Zunwrap = iminfo(slice).Zunwrap(:,:,frame);

end

seq = sqinfo(slice);

% Find Array elements of Xunwrap that are NOT NaN

valid = ~isnan(Xunwrap);

% Find #ofRow & #ofCol of Array elements of Xunwrap that are NOT NaN

[row, col] = find(valid);

tmppos = [0 0 seq.SliceLocation];

% Get world coordinates of all unwrap voxel at time=0:

[X,Y,Z] = im2world(col, row, tmppos, orientation, seq.PixelSpacing);

points = cat(1, points, [X(:), Y(:), Z(:)]);

% Convert displacements to mm

dx = Xunwrap(valid) .* iminfo(slice).Multipliers(1) .* seq(1).PixelSpacing(2);

dy = Yunwrap(valid) .* iminfo(slice).Multipliers(2) .* seq(1).PixelSpacing(1);

dz = Zunwrap(valid) .* iminfo(slice).Multipliers(3) .* seq(1).PixelSpacing(1);

if doflip

dz = -dz;

end

disps = cat(1, disps, [dx(:), dy(:), dz(:)]);

end

% Get world coordinates of all voxel at t ime=frame:

points = points - disps;

RBF{frame} = RBFInterpolator(points, disps, rbf);

end
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% Deform meshes using the Lagrangian displacements

vert = msh.vertices;

defmesh = repmat(msh, [max(frames) + 1, 1]);

for frame = frames

dX = RBF{frame}.query(vert);

defmesh(frame+1).vertices = vert + dX;

end

% Perform fourier smoothing

FF = fourierfit([0 frames], cat(3, defmesh.vertices), 5);

smoothmesh = defmesh;

for k = 1:size(FF, 3)

smoothmesh(k).vertices = squeeze(FF(:,:,k));

end

% Compute strain components for each element:

inp = struct('faces',       {msh.faces},...

'vertices',    {msh.vertices},...

't ime',        frames,...

'RBF',         {RBF});

msh.strains = hexahedralstrain(inp);

% Compute strain components region by region:

if ~exist('SegDistro', 'var') || isnan(SegDistro{2})

msgbox('No Regional Strains Componets are computed!','Warning');

else

fields = {'XX', 'XY', 'XZ', 'YX', 'YY', 'YZ', 'ZX', 'ZY', 'ZZ', 'RR', 'RC', 'RL', 'CR', 'CC', 'CL', 'LR', 'LC', 'LL', 'p1', 'p2', 'p3', 

'torsion', 'J'};

nElemt = floor((res.Regions-SegDistro{2})/3);

SegD = repmat(true,1,res.Regions);

if ~isnan(SegDistro{1})

for ii = 1:2:numel(SegDistro{1})

SegD(SegDistro{1}(ii):SegDistro{1}(ii+1)) = false;
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end

end

clear SegD2;

tmp = repmat(false,1,res.Regions); tmp(1:SegDistro{2}) = true; SegD2{1} = tmp;

tmp = repmat(false,1,res.Regions); tmp(SegDistro{2}+1:SegDistro{2}+nElemt) = true; SegD2{2} = tmp;

tmp = repmat(false,1,res.Regions); tmp(SegDistro{2}+nElemt+1:res.Regions-nElemt) = true; SegD2{3} = tmp;

tmp = repmat(false,1,res.Regions); tmp(res.Regions-nElemt+1:res.Regions) = true; SegD2{4} = tmp;

% SegD&SegD2{ii}:

SegDist = cellfun(@(x)SegD&x,SegD2,'UniformOutput ',false);

slice = 0;

% for absind = 1: (1/(res.Interp+1)) : max(msh.absind)

for absind = res.reportslice

%Longitudinal location: base -> apex

% compare doubles with tolerance:

ind = abs(msh.absind-absind)<1e-2;

slice = slice + 1;

for layer = 1: res.Layers %Transmurally: endo -> epi

ind2 = (layer == msh.layerid);

index = ind&ind2;

for ii = 1:numel(fields)

tmp = msh.strains.(fields{ii})(index,:);

%Regionally: septal -> interior -> lateral -> anterior

msh.regionalstrains.(fields{ii}){slice,layer} = 

[mean(tmp(SegDist{1},:));mean(tmp(SegDist{2},:));mean(tmp(SegDist{3},:));mean(tmp(SegDist{4},:))];

end

end

% place Average strains at last: endo -> epi + Average 

for ii = 1:numel(fields)

tmp = vertcat(msh.regionalstrains.(fields{ii}){slice,:});

msh.regionalstrains.(fields{ii}){slice,layer+1}(1,:) = mean(tmp(1:4:end,:));

msh.regionalstrains.(fields{ii}){slice,layer+1}(2,:) = mean(tmp(2:4:end,:));

msh.regionalstrains.(fields{ii}){slice,layer+1}(3,:) = mean(tmp(3:4:end,:));

msh.regionalstrains.(fields{ii}){slice,layer+1}(4,:) = mean(tmp(4:4:end,:));

end

end
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if exist('flag_aveStrain', 'var') && flag_aveStrain

clear tmp tmp2;

for jj = 1:numel(fields)

for layer = 1:4

for region = 1:4

for slice = 1:numel(res.reportslice)

tmp2(slice,:) = msh.regionalstrains.(fields{jj}){slice,layer}(region,:);

end

tmp.(fields{jj}){1,layer}(region,:) = mean(vertcat(tmp2),1);

end

end

end

msh.regionalstrains = tmp;

end

% Save results:

msh.regionalstrains.nElemts = cellfun(@sum,SegDist);

msgbox(strcat('Strains in',sprintf(' %d',msh.regionalstrains.nElemts),' elements are average respectively for Septal, Inferior, 

lateral, Anterior wall!'),'Warning');

end

% Save results:

msh.regionalstrains.SegDistro = res.SegDistro;

msh.regionalstrains.insertion = res.Insertion;

msh.regionalstrains.reportslice = res.reportslice;

% msh.LAlength = res.LAlength;

msh.Layers = res.Layers;

msh.Interp = res.Interp;

msh.Regions = res.Regions;

self.Mesh = msh;

self.Data = data;

% Output results:            

if ~isempty(res.Output)

save(outfile, '-struct', 'out ');

end

end

90



Appendix K - Computing Mechanics Module in Matlab

function strain = hexahedralstrain(api)

    % Fields

    %   faces:      faces

    %   vertices:   vertices

    %   t imes:      t imes

    %   RBF:        rbf

    %   Origin:     origin

    %   Orientation:clockwise

    face = api.faces;

    % Make sure that we do not double any vertices

    vert = api.vertices;

    t ime = api.time;

    if ~isfield(api,'PositionA')

        % Basically the 2D centroid

        origin = mean(vert(:,[1 2]),1);

    else

        origin = api.PositionA;

    end

    Ntime = numel(time);

    [Nface, dim] = size(face);

    % Vertex trajectories

    vtrj = NaN([size(vert), Ntime]);

    % Only check points that are associated with a face

    for k = 1:Ntime

        % Compute dispalcements using rbf(radial basis function)

        dX = api.RBF{k}.query(vert);

        vtrj(:,:,k) = vert + dX;

    end

    % Put resting configuration at the beginning

    vtrj = cat(3, vert, vtrj);
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    dt = time(2) - time(1);

    t ime = [time(1) - dt, t ime];

    % Temporal smoothing

    vtrj = fourierfit(time, vtrj, 5);

    % Now compute the centroid of each element by averaging vertices

    pos = NaN(Nface, size(vert, 2));

    for k = 1:size(vert, 2)

        tmp = vert(:,k);

        tmp = tmp(face);

        pos(:,k) = mean(tmp, 2);

    end

    % Now move the centroids through time

    ptrj = NaN([size(pos), Ntime]);

    pts = pos';

    for k = 1:Ntime

        pts(3,:) = time(k);

        % compute dx, dy, dz

        dX = api.RBF{k}.query(pos);

        ptrj(:,:,k) = pos + dX;

    end

    % Put resting configuration at the beginning

    ptrj = cat(3, pos, ptrj);

    ptrj = fourierfit(time, ptrj, 5);

    theta = cart2pol(pos(:,1) - origin(1), pos(:,2) - origin(2));

    ct  = cos(theta);

    st  = sin(theta);

    %% Actually compute the strains %%
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    tmp = NaN([Nface Ntime]);

    strain = struct(...

        'vertices',     vert,...

        'faces',        face,...

        'orientation',  theta,...

        'ptrj',         ptrj,...

        'vtrj',         vtrj,...

        'XX',   tmp,...

        'YY',   tmp,...

        'ZZ',   tmp,...

        'XY',   tmp,...

        'YX',   tmp,...

        'XZ',   tmp,...

        'ZX',   tmp,...

        'YZ',   tmp,...

        'ZY',   tmp,...

        'RR',   tmp,...

        'CC',   tmp,...

        'LL',   tmp,...

        'RC',   tmp,...

        'CR',   tmp,...

        'RL',   tmp,...

        'LR',   tmp,...

        'CL',   tmp,...

        'LC',   tmp,...

        'p1',   tmp,...

        'p2',   tmp,...

        'p3',   tmp,...

        'torsion',   tmp,...

        'J',   tmp);

    dX = zeros([3 dim Nface]);

% Use the Resting Contour after Temporal Fourier Smoothing to get dist:

    for k = 1:Nface

        tmp = vtrj(face(k,:),:,1) - ptrj(k*ones(dim,1),:,1);

        dX(:,:,k) = tmp';
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    end

    % strain calculation

    for fr = 1:Ntime

        % Loop through each face

        for k = 1:Nface

            % difference matrix: current configuration

            tmp = vtrj(face(k,:),:,fr) - ptrj(k*ones(dim,1),:,fr);

            dx = tmp';

            Fave = dx/dX(:,:,k);

% Jacobian

strain.J(k, fr) = det(Fave);

            % Lagrangian x/y/z strain tensor

            E = 0.5 * (Fave' * Fave - eye(3));

            % Rotate the coordinate system 

            Rot = [ct(k) st(k) 0; -st(k)ct(k) 0; 0 0 1];

            % Lagrangian radial/circumferential/longitudinal strain tensor

            Erot = Rot*E*Rot';

% Torsion: circumferential-longitudinal (CL) shear angle

strain.torsion(k, fr) = asind(2*Erot(6)/sqrt((1+2*Erot(5))*(1+2*Erot(9))));

            % priniciple strains

            [v,d] = eig(E, 'nobalance');

            % Record the output

            fields = {'XX', 'XY', 'XZ', 'YX', 'YY', 'YZ', 'ZX', 'ZY', 'ZZ'};

            for i = 1:numel(fields)

                strain.(fields{i})(k, fr) = E(i);

            end

            fields = {'RR', 'RC', 'RL', 'CR', 'CC', 'CL', 'LR', 'LC', 'LL'};
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            for i = 1:numel(fields)

                strain.(fields{i})(k, fr) = Erot(i);

            end

            if all(d == 0)

                strain.p1(k,fr) = 0;

                strain.p2(k,fr) = 0;

                strain.p3(k,fr) = 0;

            else

                strain.p1(k,fr) = d(end);

                strain.p2(k,fr) = d(2,2);

                strain.p3(k,fr) = d(1,1);

            end

        end

    end

end
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Appendix L – MATLAB Script for Strains and Torsion Comparison across Subjects

% Last Modified: 1:06 PM Thursday, October 15, 2015

% Modified By: Zhanqiu Liu (lafeir.lew@gmail.com)

%%%Matlab Run

%set currunt Dir.

Insertion = input('The Longitudinal Ventricular Location of interest[press enter for "Mid", "1" for Base, "2" for "Apex", "3" for "Whole", 

"4" for "Average"; or Input a n-by-2 Matrix]: ');

if isempty(Insertion)

    Insertion = 'Mid';

end

switch Insertion

case 1

Insertion = 'Base';

case 2

Insertion = 'Apex';

case 3

Insertion = 'Whole';

case 4

Insertion = 'Average';

otherwise

if isnumeric(Insertion)

[~,col] = size(Insertion);

if col ~= 2

error(strcat('Incorrect size of inputed ParamValue Insertion: #ofColumns is',sprintf(' %d',col),'--it should be 

even!'));

return

end

end

end

SegDistro = input('Different kinds of regional distribution of circumferential elements [press enter for ignoring bad segments(specified 

in DENSE2D), "1" for including bad segments, "2" for four evenly-divided regions; or Input a 1-by-2 Cell Array]: ');

if isempty(SegDistro)

    SegDistro = '';

end

switch SegDistro

case 1

SegDistro = 'Whole';
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case 2

SegDistro = 'Average';

otherwise

if isnumeric(SegDistro)

if numel(SegDistro) ~= 2

error(strcat('Incorrect size of inputed ParamValue SegDistro: #ofColumns is',sprintf(' %d',col),'--it should be 

2!'));

return

end

end

end

tmp = input('1-by-3 DENSE3D Inputs(Meshing Parameters Matrix)--"[#Segments/slice,Transmural Interp,Z Interp]"[press enter for 

"[60,3,2]" by default]:');

if isempty(tmp)

Regions = 60; Layers = 3; Interp = 2;

else

Regions = tmp(1); Layers = tmp(2); Interp = tmp(3);

end

button = questdlg({'Do you wish to use a User Interface to select Datasets of interest?'},'Options');

if strcmp(button,'Yes')

clear files folders;

ii = 0;

while true

[uifile, uipath, uipopup] = uigetfile({'*.mat', 'Select DENSE3D workspaces (*.mat)'},'Open',pwd);

if ~uipopup %isequal(uifile,0) || isequal(uipath,0)

break;

else

ii = ii + 1;

files{ii} = fullfile(uipath,uifile);

tmp = strsplit(uipath, '\');

folders{ii} = tmp{end-1};

end

end

else

% Upper level of path:

% path = strsplit(pwd, '\'); path = {path{1:end-1}}; path = strjoin(path, '\');

tmp = dir(pwd); folders = {tmp.name}; folders = folders([tmp.isdir] == 1); folders = {folders{3:end}};

tmp = arrayfun(@num2str, 1:numel(folders), 'UniformOutput ', false);
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tmp = strcat(tmp, '.', folders);

ind = input(strcat([sprintf('%s\n',tmp{:}),'Input the numbers of Datasets of interest(use Space/Space/Semicolon(;) to seperate):']));

ind = reshape(ind,[],1); ind = round(abs(ind)); ind(ind==0) = [];

folders = folders(ind);

files = 

fullfile(pwd,folders,strcat('DENSE3Dobject',Insertion,SegDistro,num2str(Regions),num2str(Layers),num2str(Interp),'.mat'));

end

nFiles = numel(files);

clear data;

for ii = 1:nFiles

if ~exist(files{ii},'file')

Files = readpath(fullfile(pwd,folders{ii}))

Files = fullfile(pwd,folders{ii},Files);

% Files = readpath()

dbstop if error

DENSE3Dobject = 

DENSE3D(Files,'Layers',Layers,'Interp',Interp,'Regions',Regions,'Insertion',Insertion,'SegDistro',SegDistro)

save(strcat(pwd,'\',folders{ii},'\','DENSE3Dobject',Insertion,SegDistro,num2str(Regions),num2str(Layers),num2str(Interp)),'DE

NSE3Dobject ');

end

tmp = load(files{ii}); %, 'DENSE3Dobject', '-mat');

nFrames(ii) = tmp.DENSE3Dobject.Data(1).SequenceInfo(1, 1).CardiacNumberOfImages;

data{ii} = tmp.DENSE3Dobject.Mesh.regionalstrains;

torsion{ii} = mean(tmp.DENSE3Dobject.Mesh.strains.torsion,1);

end

%%% 3D Regional and Transmural Strain

%%% 6 segments

regions = {'Septal','Inferior','Lateral','Anterior'};

transmural = {' Sub-endocardium',' Mid-wall',' Sub-epicardium',' Myocardium'};

fields = {'RR', 'CC', 'LL', 'RC', 'RL', 'CL'};

Marker = {'x','+','*','o','s','d','p','+','*','o','s','d','p','x'};

Color = {'b','r','k','g','y','m','c','b','r','k','g','y','m','c'};

% Validate inputed datasets:

[ind, ~] = size(data{1}.(fields{1}));
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[ind2, ~] = size(data{1}.(fields{1}){1,1});

for ii = 1:nFiles

[nSlices, nLayers] = size(data{ii}.(fields{1}));

if nSlices ~= ind

error(strcat('The number of Slices for each Inputed Datasets is different:',sprintf(' %d',nSlices),' NOT EQUAL 

TO',sprintf(' %d',ind)));

return

end

[nRegions, ~] = size(data{ii}.(fields{1}){1,1});

if nRegions > 4 || nRegions ~= ind2

error(strcat('The number of regions for Input #',sprintf('%d',ii),' is invalid:',sprintf('%d',nRegions),'----Only support that 

myocardium is divided into 4 regions.'));

return

end

if nLayers > 4

if mod((nLayers-1),2)~=0

layer = [1,ceil((nLayers-1)/2),nLayers-1,nLayers];

for jj = 1:numel(fields)

for slice = 1:nSlices

data{ii}.(fields{jj}) = data{ii}.(fields{jj})(slice,layer);;

end

end

else

clear tmp2;

for jj = 1:numel(fields)

for slice = 1:nSlices

tmp = vertcat(data{ii}.(fields{jj}){slice,(nLayers-1)/2},data{ii}.(fields{jj}){slice,(nLayers-1)/2+1});

tmp2{slice,1} = data{ii}.(fields{jj}){slice, 1};

tmp2{slice,2}(1,:) = mean(tmp(1:4:nLayers,:));

tmp2{slice,2}(2,:) = mean(tmp(2:4:nLayers,:));

tmp2{slice,2}(3,:) = mean(tmp(3:4:nLayers,:));

tmp2{slice,2}(4,:) = mean(tmp(4:4:nLayers,:));

tmp2{slice,3} = data{ii}.(fields{jj}){slice, nLayers-1};

tmp2{slice,4} = data{ii}.(fields{jj}){slice, nLayers};

end

data{ii}.(fields{jj}) = tmp2;

end

end

end
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end

% Normalized:

minFrame = min(nFrames);

queryPoints = [1/minFrame:1/minFrame:1];

clear normalDataH;

for ii = 1:nFiles

if nFrames(ii) == minFrame

normalDataH{ii} = data{ii};

torsionH(ii,:) = torsion{ii};

else

samplePoints = [1/nFrames(ii):1/nFrames(ii):1];

for jj = 1:numel(fields)

for slice = 1:nSlices

for layer = 1:4

for region = 1:nRegions

sampleValues = data{ii}.(fields{jj}){slice,layer}(region,:);

normalDataH{ii}.(fields{jj}){slice,layer}(region,:) = pchip(samplePoints, sampleValues, 

queryPoints);

end

end

end

end

torsionH(ii,:) = pchip(samplePoints, torsion{ii}, queryPoints);

end

end

button = questdlg({'Do you wish to compute Mean+Std. Dev.?'},'Options');

if strcmp(button,'Yes')

ind = queryPoints*100;

for jj = 1:numel(fields)

for slice = 1:nSlices

figure('units','normalized','outerposition',[0 0 1 1],'Visible','off');

for region = 1:nRegions

for layer = 1:4

subplot(nRegions,4,4*(region-1)+layer);

xlabel('Cardiac Cycle(%)');

ylabel(strcat(regions{region},'-',transmural{layer}));

grid on;
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hold on;

tmp = [];

for ii = 1:nFiles

tmp = [tmp; normalDataH{ii}.(fields{jj}){slice,layer}(region,:)];

end

tmp2 = mean(tmp);

tmp3 = std(tmp);

ave.(fields{jj}){slice,layer}(region,:) = tmp2;

stdev.(fields{jj}){slice,layer}(region,:) = tmp3;

plot(ind,tmp2,'LineWidth',1,'color','b','Marker','x','MarkerSize', 5);

plot(ind,tmp2-tmp3,'LineWidth',0.5,'color','c','Marker','+','MarkerSize', 3);

plot(ind,tmp2+tmp3,'LineWidth',0.5,'color','c','Marker','+','MarkerSize', 3);

set(gca,'XMinorTick','on','YMinorTick','on');

end

end

axes('Position',[0 0 1 1],'Xlim',[0 1],'Ylim',[0 1],'Box','off','Visible','off','Units','normalized', 'clipping' , 'off');

text(0.5, 1,{strcat(Insertion,SegDistro,' slice#',num2str(slice),'-ventricular Strain E',lower(fields{jj})),strcat('Distrib. of 

Circumf. Elemt:',SegDistro,', #Segments/slice:',num2str(Regions),', T ransmural Interp:',num2str(Layers),', Z 

Interp:',num2str(Interp)),'Dark:Mean VS Light:±Standard Deviation'},'HorizontalAlignment','center','VerticalAlignment', 'top');

hgexport(gcf,strcat(strjoin(folders,'_VS_'),Insertion,SegDistro,num2str(Regions),num2str(Layers),num2str(Interp),'_E',lower(fi

elds{jj}),num2str(slice)),hgexport('factorystyle'), 'Format', 'jpeg');

end

end

else

for jj = 1:numel(fields)

for slice = 1:nSlices

figure('units','normalized','outerposition',[0 0 1 1],'Visible','off');

for region = 1:nRegions

for layer = 1:4

subplot(nRegions,4,4*(region-1)+layer);

xlabel('Cardiac Cycle(frames)');

ylabel(strcat(regions{region},transmural{layer}));

grid on;

hold on;

for ii = 1:nFiles

plot(normalDataH{ii}.(fields{jj}){slice,layer}(region,:),'LineWidth',1,'color', Color{ii},'Marker', 

Marker{ii},'MarkerSize',5); %,'MarkerEdgeColor','b');
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end

set(gca,'XMinorTick','on','YMinorTick','on');

% hold off;

end

end

axes('Position',[0 0 1 1],'Xlim',[0 1],'Ylim',[0 1],'Box','off','Visible','off','Units','normalized', 'clipping' , 'off');

text(0.5, 1,[strcat(Insertion,' slice#',num2str(slice),'-ventricular Strain E',lower(fields{jj})),strcat('Distrib. of Circumf. 

Elemt:',SegDistro,', #Segments/slice:',num2str(Regions),', T ransmural Interp:',num2str(Layers),', Z 

Interp:',num2str(Interp)),strcat(Color(1:nFiles), Marker(1:nFiles),'.', folders)],'HorizontalAlignment','center','VerticalAlignment', 'top');

hgexport(gcf,strcat(strjoin(folders,'_VS_'),Insertion,SegDistro,num2str(Regions),num2str(Layers),num2str(Interp),'_E',lower(fi

elds{jj}),num2str(slice)),hgexport('factorystyle'), 'Format', 'jpeg');

end

end

end

% Plot Torsion:

ind = queryPoints*100;

clear tmp;

figure('units','normalized','outerposition',[0 0 1 1],'Visible','off');

xlabel('Cardiac Cycle(%)');

ylabel('Circumferential-longitudinal shear angle(°/cm^2)');

grid on;

hold on;

for ii = 1:nFiles

tmp{ii} = plot(ind,torsionH(ii,:),'LineWidth',1,'color', Color{ii},'Marker', Marker{ii},'MarkerSize',5); %,'MarkerEdgeColor','b');

end

set(gca,'XMinorTick','on','YMinorTick','on');

legend([tmp{:}], folders);

hgexport(gcf,strcat('Torsion',Insertion,SegDistro,num2str(Regions),num2str(Layers),num2str(Interp),'_E',lower(fields{jj}),num2str(sli

ce)),hgexport('factorystyle'), 'Format', 'jpeg');

% Mean+Std. Dev.:

torsionAve = mean(torsionH);

torsionStd = std(torsionH);

figure('units','normalized','outerposition',[0 0 1 1],'Visible','off');

xlabel('Cardiac Cycle(%)');

ylabel('Circumferential-longitudinal shear angle(°/cm^2)');

grid on;
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hold on;

plot(ind,torsionAve,'LineWidth',1,'color','b','Marker','x','MarkerSize', 5);

plot(ind,torsionAve-torsionStd,'LineWidth',0.5,'color','c','Marker','+','MarkerSize', 3);

plot(ind,torsionAve+torsionStd,'LineWidth',0.5,'color','c','Marker','+','MarkerSize', 3);

set(gca,'XMinorTick','on','YMinorTick','on');

hgexport(gcf,strcat('TorsionStd',Insertion,SegDistro,num2str(Regions),num2str(Layers),num2str(Interp),'_E',lower(fields{jj}),num2str

(slice)),hgexport('factorystyle'), 'Format', 'jpeg');

% Figures in Thesis:

ind = queryPoints*100;

for jj = 1:numel(fields)

for slice = 1:nSlices

figure('units','normalized','outerposition',[0 0 1 1],'Visible','off');

for region = 1:nRegions

for layer = 1:4

subplot(nRegions,4,4*(region-1)+layer);

tit le(strcat(regions{region},transmural{layer}));

xlabel('Cardiac Cycle(%)');

ylabel(strcat('E',lower(fields{jj})));

grid on;

hold on;

tmp = [];

for ii = 1:nFiles

tmp = [tmp; normalDataH{ii}.(fields{jj}){slice,layer}(region,:)];

end

tmp2 = mean(tmp);

tmp3 = std(tmp);

ave.(fields{jj}){slice,layer}(region,:) = tmp2;

stdev.(fields{jj}){slice,layer}(region,:) = tmp3;

plot(ind,tmp2,'LineWidth',1,'color','b','Marker','x','MarkerSize', 5);

plot(ind,tmp2-tmp3,'LineWidth',0.5,'color','c','Marker','+','MarkerSize', 3);

plot(ind,tmp2+tmp3,'LineWidth',0.5,'color','c','Marker','+','MarkerSize', 3);

set(gca,'XMinorTick','on','YMinorTick','on');

end

end

hgexport(gcf,strcat('Strain',Insertion,SegDistro,num2str(Regions),num2str(Layers),num2str(Interp),'_E',lower(fields{jj}),num2s

tr(slice)),hgexport('factorystyle'), 'Format', 'jpeg');

end
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end

% Transmural trend:

frame = 9;

ind = [1:3];

for jj = 1 : 3

for slice = 1:nSlices

figure('units','normalized','outerposition',[0 0 1 0.5],'Visible','off');

for region = 1:nRegions

tmp = []; tmp2 = [];

for layer = 1:3

tmp = [tmp,ave.(fields{jj}){slice,layer}(region,frame)];

tmp2 = [tmp2,stdev.(fields{jj}){slice,layer}(region,frame)];

end

subplot(1,nRegions,region);

tit le(strcat(regions{region},' Segments'));

xlabel('Sub-endocardium        Mid-wall        Sub-epicardium');

ylabel(strcat('E',lower(fields{jj})));

grid on;

hold on;

plot(tmp,'LineWidth',1,'color','b','Marker','x','MarkerSize', 5);

plot(tmp-tmp2,'LineWidth',0.5,'color','c','Marker','+','MarkerSize', 3);

plot(tmp+tmp2,'LineWidth',0.5,'color','c','Marker','+','MarkerSize', 3);

% set(gca,'XMinorTick','off','YMinorTick','on');

set(gca,'XTick',[1 2 3],'YMinorTick','on');

end

hgexport(gcf,strcat('Transmural 

trend',Insertion,SegDistro,num2str(Regions),num2str(Layers),num2str(Interp),'_E',lower(fields{jj}),num2str(slice)),hgexport('factorys

tyle'), 'Format', 'jpeg');

end

end
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